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Abstract

Scattering of electromagnetic (EM) waves by many small impedance
particles (bodies), embedded in a homogeneous medium, is studied. Phys-
ical properties of the particles are described by their boundary impedances.
The limiting equation is obtained for the effective EM field in the limiting
medium, in the limit a → 0, where a is the characteristic size of a parti-
cle and the number M(a) of the particles tends to infinity at a suitable
rate. The proposed theory allows one to create a medium with a desirable
spatially inhomogeneous permeability. The main new physical result is
the explicit analytical formula for the permeability µ(x) of the limiting
medium. The computational results confirm a possibility to create the
media with various distributions of µ(x).

Keywords: EM Wave Scattering, Permeability, Modeling Results.

1 Introduction

A theory of electromagnetic (EM) wave scattering by many small impedance
particles (bodies) embedded in a homogeneous medium with a constant permit-
tivity ε0 > 0, permeability µ0 > 0 and, possibly, constant conductivity σ0 ≥ 0 is
applied for creating a media with a prescribed permeability. The computational
procedure for numerical solution of the scattering problem were developed in
[1].

In [9] there is a mathematical analysis of the Maxwell’s equations, and in
[10] theory of the wave scattering by obstacles is developed.
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The small particles are embedded in a finite domain D. The medium, cre-
ated by the embedding of the small particles, has new physical properties. In
particular, it has a spatially inhomogeneous magnetic permeability µ(x), which
can be controlled by the choice of the boundary impedances of the embedded
small particles and their distribution density. An analytic formula for the per-
meability of the new medium is obtained (see Subsection 2.3).

Although the initial medium has a constant permeability µ0, the limiting
medium, obtained as a result of embedding many small particles with prescribed
boundary impedances, has a non-homogeneous permeability which is expressed
analytically in terms of the distribution density of the small particles and their
boundary impedances. Therefore, a new physical phenomenon is predicted the-
oretically, namely, appearance of a spatially inhomogeneous permeability as a
result of embedding of many small particles whose physical properties are de-
scribed by their boundary impedances.

We assume that in any sub-domain ∆, the number N(∆) of the embedded
particles is given by the formula:

N (∆) =
1

a2−κ

∫
∆

N(x)dx[1+o(1)], a→ 0, (1)

where N(x) ≥ 0 is a continuous function, vanishing outside of the finite domain
D in which small particles (bodies) are distributed, κ ∈ (0, 1) is a number
that one can choose as one wishes, and the boundary impedances of the small
particles are defined by the formula:

ζm =
h(xm)

aκ
, xm ∈ Dm, Reh(x) ≥ 0, (2)

where xm is a point inside m-th particle, and h(x) is a continuous function
vanishing outside D which satisfies only the physical restriction Reh(x) ≥ 0.
The function h, used in our numerical examples satisfies this restriction. The
impedance boundary condition on the surface Sm of the m-th particle Dm is
Et = ζm[Ht, N ], where Et(Ht) is the tangential component of E(H) on Sm,
and N is the unit normal to Sm, pointing out of Dm.

Since one can choose the functions N(x) and h(x), one can create a desired
magnetic permeability in D. This is a novel idea proposed originally in [14], [15].
It has led to a recipe for creating materials with a desired refraction coefficient
in [19], [20]. [21].

Materials with negative permittivity and permeability are of interest in ap-
plications, see [11], [23], [24]).

We also derive an analytic formula for the refraction coefficient of the medium
in D created by the embedding of many small particles. An equation for the ef-
fective EM field in the limiting medium is derived. This medium is created when
the size a of small particles tends to zero while the total number M = M(a) of
the particles tends to infinity at a suitable rate.

The refraction coefficient n2(x) in the limiting medium is spatially inhomo-
geneous.
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The proposed theory may be viewed as a ”homogenization theory”, but it
differs from the usual homogenization theory (see, e.g., [3], [10], [5], and ref-
erences therein) in several respects: we do not assume any periodic structure
in the distribution of small bodies, our problem does not have a discrete spec-
trum, our operators are non-selfadjoint, to mention some of the differences. The
ideas, methods, and techniques are also quite different from the usual methods.
These ideas are similar to the ideas developed in papers [15], [16], where scalar
wave scattering by small bodies was studied. More on this one can find in the
forthcoming monograph [22].

However, the scattering of EM waves brought new technical difficulties which
are resolved in this paper. The difficulties come from the vectorial nature of
the boundary conditions. Our approach is valid for small particles of arbitrary
shape, but for simplicity we assume that the small bodies are balls of radius a
[18].

2 EM Wave Scattering by Many Small Particles

2.1 Statement of Problem

It is assumed that many small bodies Dm, 1 ≤ m ≤ M , are embedded in
a homogeneous medium with constant parameters ε0, µ0. Let k2 = ω2ε0µ0,
where ω is the frequency. The arguments remain valid if one assumes that the
medium has a constant conductivity σ0 > 0. In this case ε0 is replaced by
ε0 + iσ0

ω . Denote by [E,H] = E ×H the cross product of two vectors, and by
(E,H) = E ·H the dot product of two vectors.

EM wave scattering problem consists of finding vectors E and H satisfying
the Maxwell equations:

∇× E = iωµ0H, ∇×H = −iωε0E (3)

in D := R3\
M⋃
m=1

Dm, the impedance boundary conditions:

[N, [E,N ]] = ζm[N,H] (4)

on Sm, 1 ≤ m ≤M , and the radiation conditions:

E = E0 + vE , H = H0 + vH , (5)

where ζm is the impedance, N is the unit normal to Sm pointing out of Dm,
E0, H0 are the incident fields satisfying equations (3) in all of R3. The usual form
of impedance boundary condition is Et = ζ[N,Ht], where Et := [N, [E,N ]] is
the tangential component of E on S. Thus, [N,Ht] = [N, [N, [H,N ]]] = [N,H],
because [N, [H,N ]] = H−NH ·N , and [N,N ] = 0. This justifies the impedance
boundary condition (4) we use. The impedance boundary condition is widely
applicable in physics. We assume in this paper that the impedance ζ is a
constant, Imζ ≥ 0. In the literature (see, for example, [9]) one may see the
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impedance boundary condition with [Ht, N ] in place of our [N,Ht]. This is due
to the fact that N in [9] is the unit normal to S pointing into D, while we use
N pointing out of D.

One often assumes that the incident wave is a plane wave, i.e., E0 = βeikα·x, β
is a constant vector, α ∈ S2 is a unit vector, S2 is the unit sphere in R3, α·β = 0,
vE and vH satisfy the radiation condition:

r(
∂v

∂r
− ikv) = o(1). (6)

Impedance ζm is assumed to be a constant, Reζm ≥ 0, so that

Re(ζmE
t, Et) ≥ 0 ∀Et ∈ Tm, (7)

where Tm is the set of all tangential to Sm continuous vector fields such that
DivEt = 0, where Div is the surface divergence, and Et is the tangential com-
ponent of E. Smallness of Dm means that ka� 1, where

a = 0.5 max
1≤m≤M

diamDm.

Our definition of Et is:

Et = E −N(E,N) = [N, [E,N ]]. (8)

This definition differs from the one used often in the literature, namely, from
the definition Et = [N,E]. Since

H =
∇× E
iωµ0

, (9)

one gets

∇×∇× E = k2E in D, (10)

and the impedance boundary condition is

[N, [E,N ]] =
ζm
iωµ0

[N,∇× E] (11)

on Sm, 1 ≤ m ≤M .
Thus, we have reduced problem (3)-(5) to finding one vector E(x) satisfying

the impedance boundary condition (11). If E(x) is found, then H = ∇E
iωµ0

.

2.2 Finding the Solution

Let us look for E of the form

E = E0 +
M∑
m=1
∇×

∫
Sm

g(x, t)σm(t)dt,

g(x, y) = eik|x−y|

4π|x−y| ,

(12)

4



where t ∈ Sm and dt is an element of the area of Sm, σm(t) ∈ Tm. This E for
any continuous σm(t) solves equation (10) in D because E0 solves (10).

Define the effective field Ee(x) = Eme (x) = E
(m)
e (x, a), acting on the m-th

body Dm, by the formula:

Ee(x) = E(x)−∇×
∫
Sm

g(x, t)σm(t)dt := E(m)
e (x), (13)

where it is assumed that x is in a neighborhood of Sm, but Ee(x) is defined for
all x ∈ R3. Let xm ∈ Dm be a point inside Dm, and d = d(a) be the distance
between two neighboring small bodies. Let us assume that

lim
a→0

a

d(a)
= 0, lim

a→0
d(a) = 0. (14)

It is proved in [15] that Ee(x, a) tends to a limit Ee(x) as a→ 0, and Ee(x) is
a twice continuously differentiable function.

Let us assume that in any sub-domain ∆, the number N (∆) of the embed-
ded bodies Dm is given by formula (1), and boundary impedances ζm of small
particles are defined by formula (2).

Let us write (12) as

E(x) = E0(x) +
M∑
m=1

[∇xg(x, xm), Qm]+

M∑
m=1
∇×

∫
Sm

(
g(x, t)− g(x, xm)

)
σm(t)dt,

(15)

where

Qm :=

∫
Sm

σm(t)dt. (16)

Since σm = O(a−κ), one has Qm = O(a2−κ). One wants to prove that
the second sum in (15) is negligible compared with the first one. This proof
is based on several estimates. These estimates show that one may neglect the
second sum in (15), see [18], and write

Ee(x) = E0(x) +

M∑
m=1

[∇xg(x, xm), Qm] (17)

with an error that tends to zero under our assumptions as a → 0, and when
|x − xj | ∼ a then the term with m = j in the sum (17) should be dropped
according to the definition of the effective field. We will show that the limit of
the effective field, as a→ 0 does exist and solves equation (21), see below.

As a→ 0, the sum in (17) converges to the integral

E(x) = E0(x) +∇×
∫
D

g(x, y)N(y)Q(y)dy, (18)
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where Q(y) is the function uniquely defined by the formula

Qm = Q(xm)a2−κ, (19)

whereQ(y) is a continuous function inD. This functionQ(y) is defined uniquely,
because, as a→ 0 the set of points {xm}Mm=1 becomes dense in D. The physical
meaning of vector E(x) in equation (18) is clear: this vector is the limit of the
effective field Ee(x) as a→ 0, and N(x) is the function from equation (1).

The function Q(y) can be expressed in terms of E :

Q(y) =
8πi

3ωµ0
h(y)(∇× E)(y). (20)

The factor 8π
3 appears if Dm are balls. Otherwise a tensorial factor cm,

depending on the shape of Sm, should be used in place of 8π
3 .

From equations (18) and (20) one obtains

E(x) = E0(x) +
8πi

3ωµ0
∇×

∫
D

g(x, y)h(y)N(y)∇× E(y)dy. (21)

2.3 Explicit Formula for Permeability of Resulting Medium

Let us derive main physical conclusion from equation (21). Applying the oper-
ator ∇×∇× to (21) yields

∇×∇× E = k2E0(x) + 8πi
3ωµ0
∇× (grad div−

∇2)
∫
D

g(x, y)h(y)N(y)∇× E(y)dy

= k2E(x) + 8πi
3ωµ0

h(x)N(x)∇×∇× E + 8πi
3ωµ0

[∇ (h(x)N(x)) ,∇× E(x)].

(22)
Here we have used the formula ∇× grad = 0 and the equation

−∇2g(x, y) = k2g(x, y) + δ(x− y), (23)

and took into account that h(x) is a scalar function by the assumption.
It follows from (22) that

∇×∇× E = K2(x)E +

8πi
3ωµ0

1− 8πi
3ωµ0

h(x)N(x)
[∇(h(x)N(x)),∇× E(x)], (24)

where

K2(x) =
k2

1− 8πi
3ωµ0

h(x)N(x)
, k2 = ω2ε0µ0. (25)

If one uses the equation
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∇× E = iωµ(x)H, ∇×H = −iωε(x)E,

then

∇×∇× E = ω2ε(x)µ(x)E + [
∇µ(x)

µ(x)
,∇× E]. (26)

Comparing this equation with (24), one can identify the last term in (24)
as coming from a variable permeability µ(x). This µ(x) appears in the limiting
medium due to the boundary currents on the surfaces Sm, 1 ≤ m ≤ M . These
currents appear because of the impedance boundary conditions (11).

Let us identify the permeability µ(x). Denote

Ψ(x) := 1− 8πi

3ωµ0
h(x)N(x). (27)

Let ε(x) = ε0, ε0 = const, and define

µ(x) :=
µ0

Ψ(x)
. (28)

Then K2 = ω2ε0µ(x), and

∇µ(x)

µ(x)
=
∇Ψ(x)

Ψ(x)
.

Consequently, formula (24) has a clear physical meaning: the electromag-
netic properties of the limiting medium are described by the variable perme-
ability:

µ(x) =
µ0

Ψ(x)
=

µ0

1− 8πi
3ωµ0

h(x)N(x)
, (29)

and the limiting medium is described by the new refraction coefficient K2 =
ω2ε0µ(x).

3 Derivation of a Linear Algebraic System for
Vectors Pm

In this Section a numerical method is developed for solving many-body wave
scattering problem when the scatterers (bodies) are small in comparison with
the wavelength. The method consists of a derivation of a linear algebraic system
for finding vectors

Pm = (∇× E)(xm), 1 ≤ m ≤M. (30)

If Pm are found, then by formulas (20) and (19) one finds

Qm =
8πi

3ωµ0
a2−κh(xm)Pm (31)
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and, by formula (17), the field E(x).
Let us derive linear algebraic system for finding Pm. Apply the operator ∇×

to equation (21), let x = xj , 1 ≤ j ≤M , and replace
M∑
m=1

by the sum
M∑

m 6=j,m=1

.

Then one obtains

Pj = P0j + 8πi
3ωµ0

a2−κ
M∑

m 6=j,m=1

{k2g(x, xm)h(xm)Pm+

h(xm)(Pm,∇)∇g(x, xm)}|x=xj

(32)

where 1 ≤ j ≤M , and

P0j := (∇× E0)(xj), Pj = (∇× E)(xj), 1 ≤ j ≤M. (33)

Equation (32) is a linear algebraic system for finding Pm.

4 Numerical Results

The numerical calculations demonstrate the dependence of convergence of the
iterative process for solving LAS (34)-(36) on the parameters a, d, and M .
This allows one to establish the limits of the asymptotic approach depending
on the parameters of problem and to investigate the dependence of the created
permeability on a and M .

Part of the numerical results justifies the assumptions DivEt = 0 and Divσm =
0, which can be used for obtaining the asymptotic solution (17).

The numerical examples demonstrate a possibility to create media with
piecewise-constant permeability.

4.1 Checking the Applicability of Asymptotic Approach

The numerical experiments were carried out for checking the convergence of
solution to LAS (32). It contains the unknown values of Pj on the left-hand
part, and on the right-hand part in the terms (Pm,∇)∇g(x, xm). The detailed
form of LAS (32) can be given by the formulas:

Pjx = P0x + 8πi
3ωµ0

a2−κ
M∑

m6=j,m=1

h(xm)[−Pmx×

( ∂
2

∂y2 + ∂2

∂z2 )g(x, xm) + Pmy
∂2

∂x∂y g(x, xm) + Pmz
∂2

∂x∂z g(x, xm)],

(34)

Pjy = P0y + 8πi
3ωµ0

a2−κ
M∑

m 6=j,m=1

h(xm)[−Pmy×

( ∂2

∂x2 + ∂2

∂z2 )g(x, xm) + Pmx
∂2

∂x∂y g(x, xm) + Pmz
∂2

∂y∂z g(x, xm)],

(35)
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Pjz = P0z + 8πi
3ωµ0

a2−κ
M∑

m 6=j,m=1

h(xm)[−Pmz×

( ∂2

∂x2 + ∂2

∂y2 )g(x, xm) + Pmx
∂2

∂x∂z g(x, xm) + Pmy
∂2

∂y∂z g(x, xm)],

(36)

where Pjx, Pjy, and Pjz are the x-, y-, and z-components of vectors Pj , re-
spectively. One can see from (34)-(36) that for determination of Pjx component
it is necessary to know the remaining components Pjy and Pjz. The following
iterative process is proposed for solving LAS (34)-(36):

Step 1. Let n = 0 is number of iteration.
Step 2. The initial approximations Pmyn and Pmzn are prescribed (or given

if n 6= 0), and vector Pjxn+1 is determined by solving (34).
Step 3. Having Pmxn+1 and Pmzn, we determine Pmyn+1 from (35).
Step 4. We determine Pmzn+1 with know Pmxn+1, Pmyn+1 solving LAS (36).
Step 5. If the inequalities

|Pmxn+1
− Pmxn

| < ε, (37)

|Pmyn+1
− Pmyn | < ε, (38)

|Pmzn+1
− Pmzn | < ε, (39)

are satisfied (there ε is the given accuracy of calculations), we finish the iterative
procedure. Otherwise, we return to Step 2, by setting n = n+ 1.

It is obvious that the inequalities are not checked in the first iteration, be-
cause Pmx0 is not given.

It was established that convergence of the above iterative process depends
on the ratio d to a at the fixed value of M . The calculations for a series of d
show that the value d/a ≈ 10 is the lowest one, that provides the convergence
of the iterative method used. The iterative procedure for solving LAS (34)-(36)
for d/a < 10 becomes unstable and does not converge if d/a increase, but there
are special cases when the value of the threshold is smaller.

In Fig. 1, the rate of convergence, depending on the radius a of particle at
the fixed number of particles in D and the distance between them, is shown for
Pmx and Pmy components. The relative error of the solution

RE =
||Sn+1 − Sn||
||Sn+1||

(40)

is put along the y axis, and number of iteration n is put along the x axis. Here
Sn := {Pmxn, Pmyn, Pmzn}, and we use the sign || · || of the norm because Pmxn,
Pmyn, and Pmzn are the matrices. The number of particles is equal to 103,
and the distance between them is equal to 0.5. The linear distances (a and d)
are measured in cm (1 × 10−2m). The maximal error is observed in the first
iteration. This error is equal to 0.075 and 0.004 for a = 0.08 and a = 0.01,
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Figure 1: The relative error versus number n of iteration for Pmx component

respectively. The error decreases quickly and in the third iteration it is equal
to 2× 10−4 and 5.6× 10−9 for the above values of a.

The relative error for the Pmy component behaves similarly, although their
values are slightly smaller: they are equal to 0.066 and 0.003 for a = 0.08 and
a = 0.01, respectively.
The properties of the resulting medium depends on the radius a of the particles
when M and d are fixed. In Table 1, the permeability µ, wave number k, and
maximal value of amplitude Ex of the scattered field are given for the values of
a, considered in the previous example. The values of µ are normalized on the
quantity µ0 = 4π× 10−7H×m ≈ 1.256× 10−6H×m. At such a normalization,
µ0 = 1. One can see that value of µ is changed by 14% for a = 0.01 and by 58%
for a = 0.08. The maximal value of the component Ex of the scattered field
increased almost tenfold when a is changed from 0.01 to 0.08.

The iterative process becomes unstable as a grows, and this process does not
converges if d/a < 6 at the considered values of M and d.

Table 1. The properties of resulting domain D at various a.

a = 0.01 a = 0.03 a = 0.05 a = 0.08
µ 0.8641 0.6616 0.5345 0.4196
k 0.0930 0.0814 0.0731 0.0646
max(Ex ) 1.1569 1.5308 1.94191 2.61896

In Fig. 3, the values of the permeability µ are calculated by formula 29 and
their dependence on a is shown. The value of k = 10m−1 corresponds to the
frequency ω = 30MHz, while the radius a of the particles changes between the
limits 1× 10−4m÷ 9× 10−4m, h(x) = 10i.

One can see that the values of µ for larger d are closer to the initial per-
meability µ0 = 1 of the medium without embedded particles. This is clear,

10



1 2 3 4 5
0   

0.02

0.04

0.06

 n

R
e
l
a
t
i
v
e
 
E
r
r
o
r

 a=0.01
 a=0.03
 a=0.05
 a=0.08

Figure 2: The relative error versus number n of iteration for Pmy component

because as the values of d increase, the physical properties of D become closer
to properties of the initial medium. The results shown for the values of d/a
which assure the convergence of the proposed iterative process.
The results, presented in Fig. 4, demonstrate the change of µ for various d at

the optimal physical parameters of D which guarantee the convergence of the
iterative process for solving LAS (34)-(36). One can see that for the smaller d
the permeability changes considerably. For example, at d = 0.3 and a = 0.01 the
values of µ deviate from µ0 = 1.0 by 40%. This deviation decreases as d grows,
and it does not exceed 5% at d = 0.9 for the considered range of a. The value
of the function h(x) influences the behavior of µ. The results shown in Fig. 5
demonstrate that the values of µ corresponding to the small |Imh(x)| are closer
to µ0 = 1, and the difference between µ and µ0 grows if |Imh(x)| increases. The
convergence of the solution to LAS (34)-(36) depends on the values of |Imh(x)|.
At the small values of d the convergence holds for small values of |Im(h)| and
the convergence region increases as the value of d increases.
The other characteristics of the field change if the radius a and the function
h(x) change. The amplitude of the scattered field E is one of such character-
istics. In Fig. 6, the dependence of the maximum of the amplitude Ex of the
scattered field on the radius a of the particles is shown. This amplitude grows
if a increases. The increase of the amplitude is similar for various d and the
amplitude changes almost linearly as the radius a of the particles grows. The
amplitude increases at d = 0.9 more than ten times when ka increases from 0.01
up to 0.09. Referring to Fig. 3, one sees that the amplitude grows as a grows
and the values of µ deviate from the initial value µ0.
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Figure 7: Relative error of Ex, Ey, and Ez components for various distances r
to observation point, h(x) = 10i

4.2 Exactness of Asymptotic Formula (17)

It is important from the practical point of view to know how accurate is asymp-
totic formula (17). To answer on this question we carry out a series of computa-
tions related to the comparison of asymptotic formula (17) with the solution of
EM wave scattering problem by Mie series, obtained in [2]. We consider here the
particular case M = 1, because the EM wave scattering problem for one particle
was considered there. Solution (52) in the form of Mie series is considered as the
benchmark one. We use the formulas of transformation of the electrical field’s
spherical components into cartesian ones [7] because solution (52) is given in
the spherical coordinates. The relative error is defined as ||E52 − E17||/||E52||,
where || · || is the sup norm, E = (Ex, Ey, Ez). The subscript 52 indicates the
solution obtained by Mie series (52) in [2], and subscript 17 indicates the solu-
tion obtained by asymptotic formula (17). The calculations are performed for
series of radius a of particle and various functions h(x).

In Fig. 7, the relative error of the Ex, Ey, and Ez components depending
on the radius a of particles is shown for several distances r from the center of
particle to the observation point, k = 0.1, h(x) = 10i. One can observe that the
relative error is very sensitive to the radius a of particle. The maximal value of
error is attained for Ex component at a = 0.5 and it is equal to 7.6%. The values
of relative error for Ey and Ez components are 1.2% and 0.1%, respectively. The
minimal values of error for all components are reached at a = 0.1 and they are
equal to 0.2%, 0.1%, and 0.02% for Ex, Ey, and Ez, respectively. The relative
error diminishes quickly as distance r grows. So, the maximal values of error for
r = 8.0 are observed at a = 0.5 and they are equal to 2.1%, 0.3%, and 0.07% for
for Ex, Ey, and Ez components. This error does not exceed 0.06% at a = 0.1.
The numerical calculations show that the relative error depends on the function
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Figure 8: Relative error of Ex, Ey, and Ez components for various distances r
to observation point, h(x) = 100i

h(x) influencing the value of surface impedance ζ considerably. In Fig. 8, the
values of relative error are shown for h(x) = 100i. It turned out that relative
error increases too much. For example, its value for Ex component at r = 8.0
is equal to 25.1%, the values of this error for Ey and Ez components are a little
smaller. In order to attain the relative error of the same order as in the previous
example, it is necessary to increase the distance r approximately twice. So, the
relative error of Ey component at r = 10.0 for a = 0.5 is equal to 5.7%; the
minimal value of error at these r and a is reached for Ez component and it is
equal to 0.5%. The maximal value of error at r = 15.0 is equal to 1.0% and
0.02% for a=0.5 and a = 0.1, respectively, and these values are attained for Ey
component. The relative error for Ex and Ez components is smaller.

The obtained computational results testify the high accuracy of asymptotic
formula (17) for the case of one particle. The relative error of (17) depends on
the radius a of particle, distance r to point of observation (point in far zone),
and function h(x) influencing the value of surface impedance ζ.

4.3 Justification of Assumption DivEt = 0

Is it possible to use the assumption DivEt = 0 on the surfaces of the particles?
This assumption is not justified theoretically. Therefore, the numerical justifica-
tion of this assumption is of interest. We carry out a series of calculations which
show that the equality DivEt = 0 is satisfied with high accuracy. The deriva-
tives ∂Ex

∂x ,
∂Ey

∂y , and ∂Ez

∂z are replaced by the corresponding finite differences in
the process of the numerical calculations of DivEt.

First, the investigation of the dependence of the value of DivEt on the radius
a of particles at a fixed distance d between them is done. The calculations are

15



0.01 0.03 0.05 0.07
0

1

2

3

4

5

6

7
x 10

−3

 a

max(Div E
t
)

(first)
(central)
(last)

Figure 9: Maximal value of DivEt versus radius a of particle

carried out for M = 103, d = 0.5, and k = 0.1. In Fig. 9, the maximal values
of DivEt on the surface of the first, central, and last particles are shown. The
numbering of particles starts from the left upper side of D and continues to its
right lower side. One can see that the maximal value of DivEt does not exceed
6.4× 10−3, 3.7× 10−3, and 0.45× 10−3 for the first, central, and last particles,
respectively. In Fig. 10, the minimal values of the Ex and Ez components
on the surface of the particles are shown. In this case, the values Ex and Ey
practically coincide. Comparing the results in both Figures, one concludes that
the values of DivEt does not exceed 2% in comparison with the corresponding
values of E components. So, the relation max(DivEt)/min(Ex,y,z) equals to
1.4×10−2, 0.46×10−3, and 2.5×10−2 for the first, central and the last particles,
respectively, that is, part of DivEt on the particles’ surfaces does not exceed
2.5% of the value of the E components. In Fig. 9, the maximal values of DivEt
are presented. In fact, this value is two orders smaller, so the average value
of DivEt is practically one order smaller than presented ones. The numerical
results, presented in Fig. 11, demonstrate that the value of DivEt depends on
the distance d between particles less, and this value becomes stable as d grows.
The results are related to central particle, M = 103, k = 0.1. For example, the
value of DivEt is equal to 2.8 × 10−4 for d = 0.5 and it stabilizes at the value
3.4 × 10−4 at d > 1.2 for a = 0.05. Similar behavior of DivEt is observed for
a = 0.03 and a = 0.01. The maximal value of the ratio max(DivEt)/min(Ex,y,z)
is equal to 1.4% for the considered values of a and d. The value of DivEt slowly
grows also as d/a ≤ 7.

The dependence of DivEt on the number M of particles for various a at the
fixed value of d is shown in Fig. 12. Here k = 0.1, d = 0.5. The maximal value
of DivEt is observed at M = 125 and it is equal to 2.0 × 10−3, 1.15 × 10−3,
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Figure 10: Minimal values of Ex and Ez components versus radius a of particle

and 0.33 × 10−3 for a = 0.05, a = 0.03, and a = 0.01, respectively. This value
becomes a local minimum for M = 93, it grows slowly as M increases and
becomes stable at M > 15 × 103. The values of DivEt at this M are equal to
1.62× 10−3, 0.73× 10−3, and 0.09× 10−3 for a = 0.05, a = 0.03, and a = 0.01,
respectively. The maximal value of the ratio max(DivEt)/min(Ex,y,z) in the
above calculations does not exceed 1.85%.

Consequently, the obtained numerical results show that the condition DivEt =
0 on the surfaces of the particles is satisfied with high accuracy.

4.4 Justification of the Assumption Divσm = 0

To check this assumption numerically we define the function σm as the solution
to integral equation of the second kind obtained in [21]

σm(t) = Aσm(t) + fm(t), (41)

where fm = 2[fe(s), Ns] and

fe(s) = [Ns, [Ee(s), Ns]]−
ζm
iωµ0

[∇× Ee(s), Ns], (42)

Aσm = 2ζmiωε0[Ns, [Ns,
∫
Sm

g(s, t)σm(t)]]dt−

2
∫
Sm

[Ns, [∇sg(s, t), σm(t)]]dt.
(43)

This equation is solved by the collocation method [17]. The corresponding
LAS has the form similar to (34)-(36).

17



0.5 0.6 0.7 0.8 0.9 
0

1

2

3

3.5
x 10

−4

 d

max(Div E
t
)

 a=0.05
 a=0.03
 a=0.01

Figure 11: Maximal value of DivEt versus distance d between particles

5 10 15
0

0.4

0.8

1.2

1.6

2
x 10

−3

 M1/3

max(Div E
t
)

 a=0.05
 a=0.03
 a=0.01

Figure 12: Maximal value of DivEt versus number M of particles

18



First, we investigate the dependence of Divσm on the radius a of particles at
the fixed distance d between them. The respective results are shown in Fig. 13.
The maximal value of Divσm is shown for the first, central and last particles,
total number of particles M = 103, k = 0.1, d = 0.5. The maximal value of
Divσm is given for the central particle at a = 0.01 and it is equal to 0.0088.
This value is slightly smaller for the last and first particles (0.0055 and 0.0043,
respectively). It decreases slowly as a grows and becomes stable at a > 0.5.
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Figure 13: Maximal value of Divσm versus radius a of particle

In Fig. 14, the θ-th and ϕ-th components of σm are presented. Use of
the spherical components for calculation of Divσm is more convenient here.
The σmϕ component is practically the same for the first, central and the last
particles; therefore it is shown only for the central particle. One can see that
the minimal value of σmϕ and σmθ components are two orders larger than the
values of Divσm. For example, the ratio max(Divσm)/min(σmθ) is equal to
0.65%, 0.48%, and 0.41% for the central, last and first particles, respectively, at
a = 0.01. This value for max(Divσm)/min(σmϕ) equals to 2.42%, 1.51%, and
1.18%, that is the values of Divσm do not exceed several percents in comparison
with the corresponding values of σm components.
The dependence of the maximal value of Divσm on the distance d between

particles for several values of radius a is shown in Fig. 15 for the central particle.
The numerical results confirm that the values of the maximum of Divσm are at
least two orders less than the values of σmϕ and σmθ components presented in
Fig. 17. So, the ratio max(Divσm)/min(σmθ) is equal to 0.41%, 0.38%, and
0.32% for a = 0.01, a = 0.03, and a = 0.05, respectively, at d = 0.5. This value
is equal to 0.18%, 0.18%, and 0.17% for the above a at d = 1.0. One can see
that this relation decreases slowly as d increases. As for DivEt, the quantity
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Divσm depends less on d at fixed a than on a at fixed d.
The dependence of max(Divσm) on the number M of particles for several

values of a at fixed d is shown in Fig. 17. Parameters d = 0.5, k = 0.1. The
greatest value of Divσm is observed for M = 53 at a = 0.01 and it is equal to
0.0087; this value decreases as M grows and it is equal to 0.0016 at M = 203.
This change is less for a = 0.03 and a = 0.05. The values of Divσm are 0.0033
and 0.0020 for M = 53, and 0.0011 and 0.0006 for M = 203. As example, the
value of max(Divσm)/min(σmθ) for d = 1.0 is equal to 0.63% for M = 53 and
0.21% for M = 203 at a = 0.03, and it is equal to 0.56% for M = 53 and 0.17%
for M = 203 at a = 0.05. These numerical results show that maximal value of
the ratio max(Divσm)/min(σmθ, σmϕ) does not exceed a fraction of a percent.
This confirms that the equality Divσm = 0 on the surface of particles can be
used in numerical calculations.

4.5 Creating Media with Piecewise-constant Distribution
of Permeability

The proposed approach allows one to create a media with a piecewise-constant
magnetic permeability µ. Such permeability can be realized either by embedding
various numbers Mm of particles into sub-domains ∆m or by the variation of
the function h(xm) in these sub-domains.

Both approaches have their advantages depending on the parameters M , a,
and d of D. In engineering it is often useful to have constant distribution of
µ along certain direction (for example, along z− and y-axis), and piecewise-
constant µ in the direction of x−axis.

In Fig. 18, such µ is formed by embedding various numbers of particles
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Mm in sub-domains ∆m, (m = 1, 2, 3): M1 = 11 × 11 × 4, M2 = 9 × 9 × 3,
M3 = 11×11×4, respectively. At these values of Mm, the values of permeability
are equal to 0.9229 in sub-domains ∆1 and ∆3, and the permeability is equal to
0.9410 in sub-domain ∆2. Such distribution of particles in the medium allows
one to reach a difference in the µ values in the range of 2.2% , the minimal
deviation of µ from the µ0 is 5.9%. In order to increase the difference µm for
various Dm it is necessary to increase the difference between Mm.

The distributions of µ obtained above allows one to form different distri-
bution of Ex and Ey component of the total field. In Figs. 19 and 20, these
components are shown in the far zone of D (df = 20lD), where lD is diameter
of D, and df is distance from center of D to the far zone. The non-uniform dis-
tribution of Ex− and Ey−components is explained by the different distribution
of µ along x− and y−axes.
Combining the ratio of values Mm, one can create the distribution of µ cor-

responding to various requirements. For example, distribution of µ which is
shown in Fig. 21, is obtained at the following values of particles in sub-domains
∆m, m = 1, 2, 3: M1 = 11 × 11 × 4, M2 = 9 × 9 × 3, M3 = 7 × 7 × 4. At such
values of Mm, the values of the permeability are equal to 0.8745, 0.9026, 0.9451
in sub-domains ∆1, ∆2 and ∆3, respectively. The amplitudes Ex and Ey of EM
field for this case have more complicated structure because of the larger change
of µ.

In Fig. 22, the piecewise-constant distribution of µ, created by prescribing
the various values of function h(xm) in four sub-domains ∆m, (m = 1, 2, 3, 4)
of D, is shown. The number of particles in all sub-domains is equal to: M =
11 × 5 × 5, the values of h(xm) are the following h1 = 7i, h2 = 9i, h3 = 11i,
h4 = 13i (that is, h(xm) is piecewise-constant). The values of obtained µ and
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Figure 16: Minimal values of σm components versus distance d between particles

respective values of wave number k are presented in Table 2. The minimal
deviation of the obtained µ from the values µ0 is observed in sub-domain ∆1

and it is equal to 4%, this deviation reaches 7% in sub-domain ∆4. In order to
increase the deviation of µ in certain sub-domain ∆m it is necessary to increase
the value of hm in this sub-domain and keep the values of hm in the rest of
sub-domains the same.

Table 2. The properties of resulting domain D at piecewise-constant
distribution of h(xm).

Subdomain h(xm) µ k
∆1 −7i 0.9616 0.0981
∆2 −9i 0.9512 0.0976
∆3 −11i 0.9410 0.0970
∆4 −13i 0.9310 0.0965

5 Conclusions

The numerical procedures for solving the EM wave scattering problem by one
and many small impedance particles of an arbitrary shape are given. On this
basis a method for creating the media with non-uniform distribution of magnetic
permeability µ(x) is developed and tested numerically.

It is shown that the relative error of the asymptotic solution (17) compared
with the Mie-type solution (52) in the paper [2] depends on the radius a of the
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particle, the distance r to the observation point, and on the parameter h which
defines the surface impedance ζ of the particle.

The numerical results show that the assumptions DivEt = 0 and Divσm = 0
on the surfaces of the particles are practically accurate: the relative error of these
assumptions does not exceed 1.85% in the considered range of the parameters
used for the solution of the scattering problem.

The computational results confirm the theoretical conclusion about the pos-
sibility to create media with piecewise-constant magnetic permeability µ. Cre-
ating such a µ is achieved either by embedding various numbers Mm of small
particles in the sub-domains ∆m of total domain D, or by changing the values
h(xm) of the boundary impedances of the particles. Both approaches provide
the possibility to change the initial values of µ in the range of 5%− 40%.
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