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Abstract 

The present experiment investigated early-rearing environment modulation of individual 

differences in impulsive and risky choice.  Rats were reared in an isolated condition (IC; n = 12), 

in which they lived alone without novel stimuli, or an enriched condition (EC; n = 12), in which 

they lived among conspecifics with novel stimuli.  The impulsive choice task involved choices 

between smaller-sooner (SS) versus larger-later (LL) rewards.  The risky choice task involved 

choices between certain-smaller (C-S) versus uncertain-larger (U-L) rewards.  Following choice 

testing, incentive motivation to work for food was measured using a progressive ratio task and 

correlated with choice behavior.  HPLC analyses were conducted to determine how monoamine 

concentrations within the prefrontal cortex (PFC) and nucleus accumbens (NAC) related to 

behavior in different tasks.  IC rats were more impulsive than EC rats, but they did not differ in 

risky choice behavior.  However, choice behavior across tasks was significantly correlated (i.e., 

the more impulsive rats were also riskier).  There were no group differences in monoamine 

levels, but noradrenergic and serotonergic concentrations were significantly correlated with 

impulsive and risky choice.  Furthermore, serotonin and norepinephrine concentrations in the 

NAC significantly correlated with incentive motivation and the timing of the reward delays 

within the choice tasks.  These results suggest a role for domain general processes in impulsive 

and risky choice and indicate the importance of the NAC and/or PFC in timing, reward 

processing, and choice behavior. 

Keywords: impulsive choice; risky choice; differential rearing; individual difference; 

monoamine concentration; rat 

  



3 
 

1. Introduction 

Individual differences in impulsive and risky behaviors have been identified as predictors 

of substance abuse and pathological gambling (e.g., Bickel & Marsch, 2001; Carroll, Anker, & 

Perry, 2009; de Wit, 2008; Perry & Carroll, 2008).  Impulsive and risky choice have also been 

identified as potential trait variables, showing test-rest reliability statistics in the range of other 

personality variables in human participants (Jimura et al., 2011; Kirby, 2009; Matusiewicz, 

Carter, Landes, & Yi, 2013; Odum, 2011a, 2011b; Odum & Baumann, 2010; Ohmura, 

Takahashi, Kitamura, & Wehr, 2006; Peters & Büchel, 2009).  In addition, stable individual 

differences in impulsive choice have been reported in rats across different choice parameters, 

suggesting that impulsive choice may also serve as a trait variable in rats (Galtress, Garcia, & 

Kirkpatrick, 2012; Garcia & Kirkpatrick, 2013; Marshall, Smith, & Kirkpatrick, under review). 

Impulsive choice is often defined as the choice for smaller-sooner (SS) over larger-later 

(LL) rewards (e.g., Ainslie, 1975), while risky choice is often defined as the choice for uncertain-

larger (U-L) over certain-smaller (C-S; e.g., Kahneman & Tversky, 1979) rewards.  The fact that 

both impulsive and risky choice behaviors are risk factors in similar problem behaviors suggests 

the possibility of shared underlying processes.  In addition, both impulsive and risky choice can 

be accounted for by the hyperbolic discounting equation, V = A / (1 + kX), where V is the 

subjective value of reward and A is the amount of reward (Mazur, 1987, 2001; Rachlin, Raineri, 

& Cross, 1991).  In impulsive choice, X is the delay to reward, which decreases the value of a 

reward as delay increases, thus leading to the discounting of reward value with delay.  In risky 

choice, X is the odds against receiving the larger risky reward, which leads to the discounting of 

probabilistic rewards.  In both cases, k is the discounting rate which determines the effect of 

delay or probability on subjective value and serves as an individual difference parameter.  
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Despite the similar patterns of impulsive and risky choice, and their shared correlation 

with other behaviors, there is surprisingly little research examining their interrelationship.  The 

few examinations that have been undertaken have revealed inconsistent results, with weak to 

moderate correlation patterns in individual differences in impulsive and risky choice behavior in 

humans (Baumann & Odum, 2012; Myerson, Green, Hanson, Holt, & Estle, 2003; Peters & 

Büchel, 2009; Richards, Zhang, Mitchell, & de Wit, 1999), and moderately strong correlations in 

pigeons (Laude, Beckman, Daniels, & Zentall, 2014). 

 Neurobiological studies have indicated partial overlap in the substrates involved in 

impulsive and risky choice and their component processes of delay, probability, and reward 

processing (see Doya, 2008; Peters & Büchel, 2011; Platt & Huettel, 2008).  The nucleus 

accumbens (NAC) and prefrontal cortex (PFC) are involved in both impulsive and risky choice 

(Ballard & Knutson, 2009; Cardinal & Howes, 2005; Doya, 2008; Galtress & Kirkpatrick, 2010; 

Mobini et al., 2002; Peters & Büchel, 2011; Platt & Huettel, 2008; Stopper & Floresco, 2011), as 

are dopamine (DA) and serotonin (5-HT) levels (Brunner, 1997; Campbell-Meiklejohn et al., 

2011; Cocker, Dinelle, Kornelson, Sossi, & Winstanley, 2012; Evenden, 1999; Winstanley, 

Theobald, Dalley, Cardinal, & Robbins, 2006; Zhong et al., 2009).  Therefore, given the shared 

neural mechanisms of impulsive and risky choice, one would expect to observe behavioral 

correlations as well. 

Peters and Büchel (2009) proposed that domain general and specific processes contribute 

to impulsive and risky choice.  Domain-general reward processes emerge from the NAC and 

PFC, and involve shared processes related to the overall valuation and incentive salience of 

rewards.  Domain-general processes should result in comorbidities of impulsive and risky choice.  

On the other hand, domain-specific processes are involved in the determination of task-specific 
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information.  In impulsive choice, delay is a task-specific factor, whereas probability is specific 

to risky choice.  Magnitude is involved in both of these tasks and would produce some shared 

task variance (although magnitude would still be considered domain specific as it would not 

contribute to other choice tasks such as effort discounting or social discounting).  Given that 

domain-general processes participate in both tasks, coupled with the involvement of reward 

magnitude processing in both impulsive and risky choice, one would expect to observe robust 

correlations in individual differences in impulsive and risky choice.  Accordingly, the present 

study sought to further assess the presence of these correlations in individual rats. 

 One variable that has been shown to participate in impulsive and risky choice, 

dopaminergic and serotonergic function, and neural functioning within the NAC and PFC is the 

post-weaning rearing environment (Brenes, Rodriguez, & Fornaguera, 2008; Hellemans, 

Nobrega, & Olmstead, 2005; Kirkpatrick, Marshall, Clarke, & Cain, 2013; Perry, Stairs, & 

Bardo, 2008; Rahman & Bardo, 2008; Wood, Buse, Wellman, & Rebec, 2005; Wood & Rebec, 

2009; Zeeb, Wong, & Winstanley, 2013; Zhu, Apparsundarum, Bardo, & Dwoskin, 2005).  The 

differential rearing paradigm has typically compared rats raised in an isolated condition (IC) and 

an enriched condition (EC; Renner & Rosenzweig, 1987; Simpson & Kelly, 2011).  EC rats are 

housed with other rats and novel objects, whereas IC rats are housed individually without novel 

objects.  The present study sought to determine whether these extreme rearing conditions would 

interact with individual differences in impulsive and risky choice.  If rearing conditions moderate 

individual differences, then this could provide a potential route for the development of future 

interventions to decrease impulsive and risky choice behaviors, as well as providing some further 

understanding of mechanisms of impulsive and risky choice. 



6 
 

 Accordingly, the goal of the present report was to investigate the moderation of 

individual differences in impulsive and risky choice by differential rearing, examining both the 

relevant behavioral and neurobiological processes.  Despite the effects of differential rearing on 

brain and behavioral functioning, there has not been, to our knowledge, a comprehensive 

analysis of an interaction of rearing environment with individual differences.  In addition, 

relatively little is known about the effects of rearing environment on comorbidities of impulsive 

and risky choice.  Therefore, the present study sought to yield further understanding of these 

processes.  We also included measures of timing and reward processing as potential indices of 

domain-specific processes, and their possible modulation by environmental rearing, relationship 

with impulsive and risky choice, and correlations with monoamine concentrations. 

2. Materials and Methods 

2.1. Animals 

Twenty-four experimentally naïve male Sprague-Dawley rats arrived to the colony at 

Kansas State University (Manhattan, KS) at 21 days of age (Charles River, Portage, MI).  Their 

housing conditions varied according to their group assignment (see 2.3.1. Environmental 

rearing).  Following rearing, and prior to the onset of behavioral testing, the rats were placed on 

a restricted diet to achieve 85% of their target weights determined by growth charts obtained 

from the supplier.  During behavioral testing, the rats received part of their daily ration in the 

form of 45-mg pellets (BioServ, Frenchtown, NJ) that were delivered in the experimental 

chambers.  The rats had free access to water at all times.  The colony room was maintained on a 

12:12 hr reversed light:dark cycle with the lights off at 8 a.m.  Several red lamps illuminated the 

room during the dark cycle.  

2.2. Apparatus 
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2.2.1. Locomotor testing.  Environmental rearing is known to produce robust and long-

lasting effects on locomotor behavior (e.g., Simpson & Kelly, 2011), so this assay assessed the 

effectiveness of the rearing conditions.  Locomotor testing was conducted in an enclosed, novel 

environment measuring 40.6 × 40.6 × 40.6 cm.  The chamber consisted of Plexiglas walls and 

plastic flooring that was covered with bedding.  The chamber also had a photo beam sensor ring 

that consisted of a 16 × 16 (x-axis) photocell array that created a detection grid with individual 

beams spaced 2.5 cm apart (TruScan 2.01, Coulbourn Instruments, Whitehall, PA) and was 

linked to a personal computer.  Photobeam interruptions were recorded every 50 ms.  A white-

noise generator (~70 dB) was used to mask extraneous sounds. 

2.2.2. Operant behavioral testing.  The choice and progressive ratio procedures were 

conducted in 24 identical operant chambers (Med Associates, St. Albans, VT).  Each chamber 

measured 25 × 30 × 30 cm and was housed inside a ventilated, noise attenuating box measuring 

74 × 38 × 60 cm.  The chambers were located in two separate rooms, with 12 chambers in each 

room.  Two levers (ENV-122CM) were situated on either side of the food cup and presses were 

recorded by a micro-switch.  Nose poke keys with cue lights (ENV-119M-1) were located 

directly above each lever.  A magazine pellet dispenser (ENV-203) delivered 45-mg food pellets 

into the food cup.  Water was available through a metal tube located on the lower-center of the 

back wall, directly opposite the food cup.  MED-PC IV controlled the experiment and recorded 

the time of events with a 2-ms resolution (Tatham & Zurn, 1989).  

2.3. Procedure 

2.3.1. Environmental rearing.  Upon arrival, the rats were pair-housed in standard 

shoebox cages for two days prior to the initial activity test.  They were then randomly assigned to 

initial groups and their activity levels in the locomotor chamber were assessed for any 
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differences.  The groups did not differ significantly in their pre-rearing activity levels (p > .05), 

so the initial random assignment was maintained.  The two groups were differentially reared in 

either an enriched (EC) or impoverished (IC) condition (n = 12) for the duration of the study.  

All EC rats were housed together in a single large metal cage (60 × 120 × 45 cm) with pulp 

paper bedding.  They were given 14 novel objects (i.e. PVC pipe, buckets, children’s toys, etc.), 

seven of which were replaced daily with seven new objects.  Once per week, all objects in the 

cage were replaced with new items.  The IC rats were housed individually in hanging wire cages 

with a wire mesh floor and front panel (17 × 24 × 20 cm), and solid metal sides, back, and top.  

IC rats were not handled during the rearing period, while EC rats were handled daily.  The EC 

and IC conditions represent the extremes of the animal husbandry spectrum, and these extremes 

were employed to maximize the potential moderation of individual differences across the 

spectrum of rearing conditions. 

2.3.2. Locomotor activity.  The rats were placed in locomotor chambers for 60 min on 

the second day after arrival (post-natal day, PND 23) and again following the rearing period 

(PND 55).  During the first screen the chamber floors were covered with pine chip bedding and 

Plexiglas walls, while the second screen used corn cob bedding and the walls were covered with 

opaque plastic sheets to maintain the novelty of the locomotor chambers. 

2.3.3. Pre-training.  Prior to the onset of operant behavioral testing (starting on PND 

69), the rats were trained to eat from the food receptacle on an random time 60 s schedule (1 

session) followed by training to press the left and right levers.  Lever press training (1 session) 

consisted of blocks of an incrementing response requirement: fixed ratio 1, random ratio 3, and 

random ratio 5.  There were four sub-blocks within each block in which the rat was exposed to 

both levers until 5 rewards were earned on each lever.  We have previously used this procedure 
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(e.g., Garcia & Kirkpatrick, 2013) as it results in steady rates of lever pressing and minimizes 

initial lever biases.  We did not observe any significant differences in initial lever preferences 

between the two rearing conditions (p > .05). 

2.3.4. Impulsive choice task.  The rats received an impulsive choice task with 

magnitudes that varied across phases (see Garcia & Kirkpatrick, 2013; Marshall et al., under 

review).  In Phase 1, the rats were given a choice between a 10-s, 1-pellet SS option and a 30-s, 

1-pellet LL option to establish choice behavior in the absence of differential rewards.  

Subsequently, in Phases 2 and 3, the LL reward increased to 2 and then 3 pellets. Each phase 

lasted for 10 sessions.  The impulsive choice task consisted of an intermixture of free choice, 

forced choice, and peak trials in each session.  There were 100 total trials delivered in two 50-

trial blocks.  Each trial block consisted of 30 free choice, 8 SS forced choice, 8 LL forced choice, 

2 SS peak, and 2 LL peak trials, randomly intermixed.  A 60-s intertrial interval (ITI) followed 

each trial.  On free choice trials, both levers were initially inserted.  After one lever was pressed, 

the alternate lever retracted, the cue light above the lever was illuminated, and the FI schedule 

(10-s for the SS and 30-s for the LL) began.  The first response following the delay criterion 

resulted in reward delivery, lever retraction, cue light offset, and delivery of the ITI.  Forced 

choice trials began with the insertion of the SS or LL lever, and the first lever press initiated the 

FI duration (10 or 30 s); these trials were otherwise the same as free choice trials.  Peak trials 

(Roberts, 1981) also began with the insertion of either the SS or the LL lever, with a lever press 

initiating the trial, which lasted for 90 s.  No food was delivered on peak trials, and lever presses 

were recorded to assess timing of the SS and LL delays.  Sessions lasted approximately 2.5 hr, 

and training continued for 10 sessions in each phase.  Half of the rats in each condition received 

the impulsive choice task first and half received the risky choice task first. 
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2.3.5. Risky choice task.  The risky choice task consisted of variations of the probability 

of reward for U-L choices (Marshall & Kirkpatrick, 2013).  The risky choice task was identical 

to the impulsive choice task except for the nature of the two outcomes.  The C-S option always 

delivered a reward magnitude of either 1 or 3 pellets (p = .5).  The U-L choices probabilistically 

delivered either 3 or 9 pellets, with probability of U-L reward varying across phases that lasted 

for 10 sessions each: .17, .33, .5, and .67.  For example, with a probability of .5, the rats would 

receive 0, 3, or 9 pellets with the probabilities of .5, .25, and .25, respectively. The delay to 

reward was 20 s for both options and the ITI was 60 s. 

2.3.6. Progressive ratio task. Rats were given a progressive ratio (PR) 3 task to assess 

their motivation to work for rewards of different magnitudes and probabilities.  Food was 

delivered after 3 lever presses on the first trial, and the response requirement increased by 3 

presses on each subsequent trial.  The PR incremented until the rat stopped pressing for 10 min, 

at which time a 20-min inter-block interval (IBI) ensued, and the required number of lever 

presses was reset to 3 for next block.  Rats were tested for two blocks and the last PR completed 

in each block was recorded as the breakpoint.  The rats received 2 sessions of each of the 

magnitude/probability combinations: 1/100, 3/100, 3/67, and 3/17.  The PR was given on the left 

lever, which was the SS/C-S lever for half of the rats and the LL/U-L lever for the other half.  PR 

training ended on PND 164. 

2.3.7. High performance liquid chromatography (HPLC).  Following behavioral 

testing, the rats were euthanized and their brains removed for analysis of monoamine 

concentrations.  The NAC and PFC were extracted and frozen at -80° C.  For analysis of 

monoamines, each tissue sample was homogenized by a plastic pestle in 100 μl of 

homogenization solution containing 0.2M perchloric acid (PCA), 100 μM EDTA.2Na and 1 ng 
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of internal standard isoproterenol (ISO) per 20 μl of solution.  After homogenization, additional 

homogenization solution was added according to the milligram tissue weight to obtain a final 5-

fold volume (e.g., 100 mg = 500 μl).  The tissue homogenate was incubated on ice bath for 30 

min and centrifuged at 20000g and 4°C for 15 min.  Supernatant was removed, filtrated in a 0.45 

μm PVDF filter column (12000g for 4 min) and analyzed or stored at -80°C until analysis.  

HPLC analyses were performed using HTEC-500 (Eicom Corp., Japan), standalone HPLC 

system incorporating an electrochemical detector consisting of counter electrode, pure graphite 

WE-PG working electrode and Ag/AgCl RE-100 reference electrode.  Separation HPLC column 

SC-50DS, 3 mm × 150 mm (Eicom Corp., Japan), was with a pre-column, packed with AC-0DS 

packing matrix (Eicom Corp., Japan).  Analyses of monoamines were carried out by injecting 

20-μl injection volumes, consisting of 10 μl of sample aliquot and 10 μl of homogenization 

solution.  The flow rate was 500 μl/min with a mobile phase solution containing citric acid (8.4), 

sodium acetate (3.1), sodium 1-octanesulfonate (0.22), EDTA.2Na (0.05 g/L) and methanol 

(15%), pH 3.5.  The effluent was monitored electrochemically at a potential of +500 mV versus 

Ag/AgCl.  

2.4. Data Analysis 

 2.4.1. Locomotor activity.  Locomotor activity was detected by an infrared-beam array 

that tracked the location of the rat in consecutive 0.5-s intervals; the location of the rat was 

defined as the center of all beams crossed in the 0.5-s interval.  The total distance moved (m) was 

derived from the change in location across the test session.  The locomotor testing results were 

subjected to a 2 × 2 repeated measures analysis of variance (ANOVA) with rearing condition 

(EC, IC) as the between-subjects variable and pre/post (pre-rearing, post-rearing) as the within 

subjects variable. 
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 2.4.2. Choice behavior.  Analyses of risky and impulsive choice behavior were 

conducted on the last five sessions of each phase.  Choice behavior was measured with an 

empirical log odds ratio, log odds = log(NSS + .5/ NLL + .5), in which log is the natural logarithm 

of the odds ratio, NSS is the total SS choices and NLL is the total LL choices.  The addition of .5 

to the numerator and denominator avoids computational problems associated with exclusive 

choice (Garcia & Kirkpatrick, 2013; Haldane, 1956).  Analyses of the log odds ratios were 

conducted using a 3 × 2 repeated measures ANOVA for impulsive choice and a 4 × 2 repeated 

measures ANOVA for risky choice with a within-subjects variable of LL magnitude (for 

impulsive choice) or U-L probability (for risky choice) and a between-groups variable of rearing 

condition (EC, IC). 

 Two additional metrics of choice behavior were determined for each rat to disentangle 

the possible effects of rearing condition on bias to select the more impulsive/risky choice versus 

adaptability in choice behavior.  The mean of the log odds across phases within each task was 

used as a measure of overall bias and the slope of the function relating log odds to LL magnitude 

or U-L probability as a measure of adaptability to changes in magnitude or probability. 

 2.4.3. Peak trial timing behavior.  Tracking of the delay to reward in the impulsive and 

risky choice tasks was measured on each peak trial using a low-high-low (LHL) algorithm 

(Church, Meck, & Gibbon, 1994; Galtress & Kirkpatrick, 2009).  Response rates on peak trials 

follow the pattern of an initial low state of responding followed by a high state of responding that 

usually straddles the expected time of reward, and then followed by a second low state of 

responding.  The LHL algorithm is used to identify the times of high states of responding on 

individual trials by determining the best-fitting square wave to the set of individual responses on 

each trial, defined by: A = dL1(r - rL1) + dH(rH - r) + dL2(r - rL2), where r refers to the mean 
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response rate over the trial duration, dL1, dH, and dL2 refer to the durations of the first low state, 

high state, and second low state, respectively, and rL1, rH, and rL2 refer to the response rate in 

those states.  The first low state is the time from the start of the trial until the start time of the 

high state, and the second low state is the time from the end of the high state until the end of the 

trial.  The high state occupies the time between the two low states and must begin and end with a 

response.  From the fitted square wave, indices of response timing can be extracted.  The start 

time is the time of the response that initiates the high state relative to trial onset, the end time is 

the time of the last response in the high state, the middle time is the mean of the start and end 

time, and the duration is the difference of the start and end times.  Responses prior to the start or 

following the end time are considered as low state responses, and all responses in between the 

start and end are considered as high state responses.  The analysis was conducted across the last 

5 sessions of each phase to mirror the choice analyses, and then averaged across phases for each 

choice task to increase stability of measurements of timing behavior due to the small number of 

peak trials per session. 

 2.4.4. PR behavior.  PR behavior was measured with a break point, which was the last 

PR value completed before the rat stopped responding for 10 min.  If only one breakpoint was 

completed in a session, then that was used as the breakpoint for the session, but if two 

breakpoints were completed then the mean breakpoint was used.  The analysis was conducted on 

the last session of each reward magnitude/probability phase. 

 2.4.5. HPLC monoamine concentrations.  Quantifications of monoamines were 

performed in PowerChrom software (eDAQ Pty Ltd., Australia) using standard curves and the 

peak area method.  Isoproterenol served as an internal standard to compensate for recovery rate 
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variations in the purification process.  Final monoamine concentrations in the samples were 

expressed as ng/mg of tissue weight. 

2.4.6. Statistical analyses.  The statistical analyses were conducted in SPSS using the 

repeated measures ANOVA techniques in the general linear model and bivariate Pearson 

correlation techniques.  Tukey post-hoc tests were used to identify the source of significant 

interactions.  The criterion for reporting of significant results was p < .05 in all cases.  

3. Results 

3.1. Locomotor activity 

Figure 1 displays the results of the locomotor activity tests conducted immediately before 

(Pre) and after (Post) the 30-day rearing period.  There were considerable individual differences 

in locomotor activity prior to rearing, with the two groups showing similar activity levels.  

Following rearing, all 12 of the IC rats increased their activity in the post-rearing test while the 

EC rats as a group maintained their activity levels, with some individuals showing decreases, and 

some showing increases.  These general patterns were verified by an ANOVA, which revealed a 

significant Pre/Post × Rearing Condition interaction, F(1, 21) = 21.4, p < .001, p
2 = .51, and 

significant main effects of pre/post, F(1, 21) = 21.8, p < .001, p
2 = .51, and rearing condition, 

F(1, 21) = 7.1, p = .014, p
2 = .25.  The interaction was due to significantly greater activity in the 

IC rats (versus the EC rats) in the post-rearing test (p < .05), whereas there were no group 

differences pre-rearing.  

3.2. Choice behavior 

 3.2.1. Impulsive choice.  Figure 2A displays the log odds of impulsive (SS) choices as a 

function of LL magnitude.  Both groups were sensitive to the change in LL magnitude, but the 

EC rats altered their choice behavior to a greater degree.  This was verified by an ANOVA, 
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which revealed a significant main effect of phase, F(2, 42) = 70.5, p < .001, p
2 = .77, and a 

Phase × Rearing condition interaction, F(2, 42) = 4.8, p = .013, p
2 = .19. 

 In addition to analyzing the choice data, the mean and slope of the log odds function was 

calculated (Section 2.4.2) to determine the effect of rearing condition on bias and adaptability, 

respectively.  The mean versus slope is displayed in Figure 2B for the individual EC and IC rats.  

In general, low slopes indicate poor adaptation of choice behavior when the magnitude changed 

and high means indicate a bias towards impulsivity.  Thus, rats in the lower-right quadrant of the 

decision space are SS responders (Garcia & Kirkpatrick, 2013; Marco et al., 2009) that have an 

impulsive bias coupled with poor adaptability, whereas rats in the lower-left quadrant are LL 

responders with a flat slope and an LL bias, and rats near the top of the distribution are adaptive 

decision makers with more neutral biases.  Figure 2B shows substantial individual differences in 

choice behavior, and that the IC rats were shifted towards the SS responder quadrant relative to 

the EC rats, which is reflected in their generally flatter choice functions (Figure 2A).  Both the 

mean and slope were subjected to a one-way ANOVA to determine the effect of rearing 

condition on bias versus adaptability. This revealed a significant rearing condition effect on the 

slope of the impulsive choice function, F(1, 21) = 6.3, p = .020, p
2 = .23, but no significant 

effect on the mean. 

 3.2.2 Risky choice.  Figure 2C displays the choice results from the risky choice task as a 

function of U-L probability.  Both groups were sensitive to the probability of food on the 

uncertain side.  Although there was a tendency for the IC rats to choose the risky (U-L) option 

more often, this was not significant, but there was an overall effect of phase, F(3, 63) = 51.3, p < 

.001, p
2 = .71. 
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 Figure 2D displays the risky choice mean versus slope for the individual EC and IC rats.  

Here, the lower-left quadrant contains individuals with a risk-averse bias and individuals in the 

lower-right are risk-prone.  The majority of rats were adaptive decision makers with a steeper 

slope and fairly neutral bias.  There was no obvious shift in the distribution of animals, but the IC 

rats did have a tighter distribution, and they were less likely to show a risk-averse bias than the 

EC rats.  An ANOVA on the mean and slope of the risky function confirmed that there were no 

significant effects of rearing condition. 

3.2.3. Inter-task correlations: Impulsive and risky choice.  Given the considerable 

individual differences observed in both rearing conditions and in both tasks, a further analysis 

was conducted to examine inter-task correlations between means and slopes for the impulsive 

and risky choice tasks.  The correlations are displayed in Figure 3 for the EC and IC rats.  There 

was a significant positive correlation between the mean of the two tasks (r = .83, p < .001; Figure 

3A), and the slopes were also positively correlated (r = .68, p < .001; Figure 3B). 

3.3. Peak trial timing behavior 

The four measures of timing behavior [start time (S), middle time (M), end time (E) and 

duration (D)] from the LHL analysis are displayed in Figure 4 for the individual EC and IC rats.  

Separate analyses are provided for the SS and LL levers in the impulsive choice task (Figure 4A 

and 4B) and for the C-S and U-L levers in the risky choice task (Figure 4C and 4D).  In general, 

the rats in both groups accurately tracked the durations in both tasks.  Middle times measuring 

the peak time of responding were close to the target durations (10 s for SS, 30 s for LL, and 20 s 

for C-S and U-L levers).  The high states generally started at around 50% of the target duration 

and ended at around 2 times the target duration.  There were, however, no effects of differential 
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rearing on any of the metrics of timing, as assessed by one-way ANOVAs conducted separately 

for each measure on each lever. 

3.4. PR behavior 

 The PR breakpoint for each of the reward magnitude and probability combinations is 

displayed in Figure 5.  The IC rats displayed significantly longer breakpoints for the PR 1/100 

condition, F(1, 21) = 7.7, p = .011, p
2 = .27, but there were no effects of rearing condition on the 

other reward conditions. 

3.5. Inter-task correlations: Locomotor activity, impulsive and risky choice, timing 

behavior, and PR breakpoints 

To determine whether the performance on the locomotor activity and PR tasks was 

related to choice behavior at the individual rat level, cross-task correlations were conducted 

comparing post-rearing locomotor activity and the PR break point in each reward phase with the 

mean and slope of the impulsive and risky choice functions.  Post-rearing locomotor activity did 

not correlate with impulsive choice, risky choice, or PR break point.  However, the PR 

breakpoint for the 3/100 reward phase was positively correlated with the slope of the impulsive 

(r = .48, p = .020) and risky (r = .50, p = .015) choice functions, shown in Figures 6A and 6B, 

respectively.  We also assessed correlations of the four timing measures with choice, but none of 

these measures correlated with either the mean or slope of the impulsive or risky choice tasks, or 

with the locomotor activity or PR break point. 

3.6. HPLC results 

The results of the HPLC analysis of the NAC and PFC are presented in Table 1 (see also 

Supplementary Figure 1 for a representative chromatogram from the NAC).  There were 

significantly greater monoamine concentrations in the NAC, F(1, 21) = 68.8, p < .001, p
2 = .77.  
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There also were significant differences among the monoamines and their metabolites, F(6, 126) 

= 42.0, p < .001, p
2 = .67, and these differed by brain region, F(6, 126) = 33.0, p < .001, p

2 = 

.61.  Within the NAC, the concentration of DA was higher than all of the other monoamines, 

whereas within the PFC, 5-HIAA/5-HT turnover was highest followed by DOPAC.  Although 

there were some indications of group differences, there was considerable within-group variance 

that resulted in no significant differences as a function of rearing condition.  As a result, all 

subsequent analyses focused on individual difference correlations between the neurotransmitter 

concentrations and performance in the behavioral tasks.  

3.6.1. Correlations with locomotor behavior.  There were no significant correlations of 

any of the neurotransmitter or metabolite concentrations and post-rearing locomotor activity.  

The highest correlations were with PFC DA and DOPAC, but none of the correlations were 

significant. 

3.6.2. Correlations with choice behavior.  There were several significant correlations 

between monoamine/metabolite concentrations and impulsive or risky choice behavior, shown in 

Figure 7.  For impulsive choice behavior, NAC NE concentrations were negatively correlated 

with the impulsive mean (r = -.44, p = .036; Figure 7A) and positively correlated with the 

impulsive slope (r = .45, p = .033; Figure 7B) and NAC 5-HIAA concentrations were positively 

correlated with the impulsive slope (r = .55, p = .007; Figure 7C).  For risky choice behavior, 

NAC NE (r = -.44, p = .035; Figure 7D) and NAC 5-HT (r = -.43, p = .043; Figure 7E) 

concentrations were negatively correlated with the risky mean. 

3.6.3. Correlations with timing behavior.  An examination of the correlation of the 

monoamine concentrations with timing measures revealed several significant correlations with 

end times and the duration of high states of responding, but there were no correlations with start 
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or middle times.  The most common correlation was with high state duration, and all of the 

significant correlations with the high state duration are displayed in Figures 8 and 9.  There were 

different correlation patterns in the impulsive choice task, where the two delays to reinforcement 

were different, compared to the risky choice task where the two delays where the same. 

In the impulsive choice task on SS peak trials, PFC 5-HIAA concentration was negatively 

correlated with the end time of the high state, r = -.49, p = .017, and high state duration, r = -.57, 

p = .005, and PFC 5-HIAA/5-HT turnover was negatively correlated with the high state duration, 

r = -.53, p = .010 (Figure 8A and 8B).  There were no significant correlations with any of the 

metrics of LL timing behavior. 

In the risky choice task, NAC DA was positively correlated with high state duration, r = 

.47, p = .023 on U-L trials (Figure 9D).  NAC DOPAC/DA turn-over was negatively correlated 

with both end times, r = -.45, p = .030, and high state duration, r = -.48, p = .022, on C-S trials, 

and was negatively correlated with high state duration, r = -.43, p = .039, on U-L trials (Figures 

9A and 9E).  In addition, NAC 5-HT was positively correlated with end times, r = .52, p = .012, 

high state durations, r = .67, p = .001, and middle times on C-S trials, and on U-L trials was 

positively correlated with end times, r = .57, p = .004, and high state duration, r = .69, p < .001, 

and middle times, r = .45, p = .033 (Figures 9B and 9F).  Finally, NAC 5-HIAA/5-HT turnover 

was negatively correlated with end times, r = -.49, p = .018, and high state duration, r = -.55, p = 

.006, on C-S trials, and was negatively correlated with high state duration, r = -.46, p = .026, on 

U-L trials (Figure 9C and 9G). 

3.6.4. Correlations with PR behavior.  The only significant correlation involved NAC 

5-HIAA/5-HT turnover ratio, which was negatively correlated with PR 1/100 break point, r = -

.42, p = .047, shown in Figure 10. 
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4. Discussion 

 The present experiment examined early-rearing-induced moderation of individual 

differences in locomotor behavior, impulsive choice, risky choice, peak trial timing, and PR 

performance, as well as NAC and PFC monoamine concentrations.  The IC rats displayed greater 

locomotor activity, were more impulsive, and had higher PR 1/100 breakpoints than EC rats, but 

the groups did not differ in risky choice or in their timing behavior.  There also were no rearing 

condition differences in monoamine levels.  There were, however, substantial individual 

differences observed in all tasks, several significant cross-task correlations, as well as substantial 

correlations between monoamine concentrations in the NAC and PFC and many of the individual 

difference patterns in the behavioral tasks.  Choice behavior across tasks was positively 

correlated, with the most impulsive rats also displaying the greatest risky choice behavior.  

Serotonergic and noradrenergic functioning in the NAC significantly correlated with impulsive 

and risky choice behavior, incentive motivation and the timing of the reward delays within the 

choice tasks, indicating a clear role for this brain region in contributing to individual differences 

in choice behavior and related tasks. 

4.1. Individual differences in choice, timing, and motivation 

 One of the most striking individual difference patterns was the correlation between 

impulsive and risky choice (Figure 3).  Specifically, the rats that were the most impulsive were 

also the riskiest, evidenced by a strong positive correlation between the mean of the impulsive 

and risky choice functions.  In addition, there was a positive correlation between the slopes of the 

two tasks, indicating that the rats that were the most adaptable in one choice task were also the 

most adaptable in the other choice task.  The combination of mean and slope measures suggest 

that a subset of rats were “impulsive and risky” with strong biases and poor adaptability (Figure 
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2), consistent with some previous studies (Baumann & Odum, 2012; Richards et al., 1999).  

However, the correlations here were generally stronger than in previous work.  Previous studies 

have typically used impulsive and risky choice procedures with different task demands, which 

may have diluted the correlation between the two tasks.  Therefore, the present findings suggest 

that previous studies may have underestimated the strength of correlation between impulsive and 

risky choice (see also Laude et al., 2014 for related evidence).  The strong correlation suggests 

that impulsive and risky choice may rely heavily on shared processes within the domain general 

valuation system (Peters & Büchel, 2009). 

One relevant factor of the domain general system may be an individual’s incentive 

motivation to earn larger rewards.  Here, both impulsive choice and risky choice slopes were 

positively correlated with PR 3/100 breakpoints, indicating that the rats that were the most 

adaptable in their choice behavior also showed the greatest willingness to work (Figure 6).  It is 

possible that individual differences in incentive motivation may predict maladaptive impulsive 

and risky tendencies due to deficits in valuations of different outcomes.  This relationship could 

explain the maladaptive decision making that characterizes schizophrenia (Heerey, Bell-Warren, 

& Gold, 2008; Heerey, Robinson, McMahon, & Gold, 2007), depression (Imhoff, Harris, 

Weiser, & Reynolds, 2013), and attention deficit hyperactivity disorder (e.g., Barkley, Edwards, 

Laneri, Fletcher, & Metevia, 2001; Drechsler, Rizzo, & Steinhausen, 2008), which are also 

associated with motivational deficits (Fervaha et al., 2013; Pizzagalli et al., 2009; Volkow et al., 

2010; Ward et al., 2012). 

On the other hand, individual differences in timing behavior, measured within the 

impulsive choice task, did not correlate with impulsive or risky choice.  This is surprising given 

the growing evidence of the importance of timing processes in contributing to individual 
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differences in choice behavior (Baumann & Odum, 2012; Galtress et al., 2012; Heilbronner & 

Meck, 2013; Marshall et al., under review; McClure, Podos, & Richardson, 2014; Smith, 

Marshall, & Kirkpatrick, under review).  However, Galtress et al. (2012) suggested that 

measurements of timing within an impulsive choice task may underestimate individual 

difference correlations with choice behavior as the choices themselves may impact on timing 

behavior.  For example, if a rat rarely chose the LL, then it would have only a limited basis for 

learning to time the LL duration and this could undermine any timing-choice correlation.  Their 

proposition is consistent with recent research from our laboratory that was conducted in parallel 

with the present research (Marshall et al., under review), and suggests that future measurements 

of timing-choice correlations should be conducted with timing measured outside of the choice 

task. 

4.2. Differential rearing 

 Environmental rearing conditions moderated individual differences in locomotor activity, 

impulsive choice, and PR performance (in the initial 1/100 condition), with IC rats displaying 

higher rates of activity post-rearing, greater impulsive choice, and higher PR break points (in the 

PR 1/100 condition) compared to EC rats.  Interestingly, there were no correlations of individual 

differences between the tasks moderated by rearing conditions (e.g., individual differences in 

post-rearing locomotor activity did not correlate with impulsive choice behavior), suggesting that 

the rearing environments at least partially overrode the pre-existing individual differences.  The 

present pattern of results is consistent with previous reports of the effects of rearing conditions 

on reward sensitivity, incentive motivation, and impulsivity (e.g., Kirkpatrick et al., 2013).  IC 

rats have frequently been reported to display greater locomotor activity than EC rats (e.g., 

Simpson & Kelly, 2011) and greater response rates when working for rewards (Cain, Green, & 



23 
 

Bardo, 2006; Kirkpatrick et al., 2013), which has been interpreted as being due to greater reward 

sensitivity and incentive motivation in IC rats compared to EC rats (e.g., Beckmann & Bardo, 

2012; Brenes & Fornaguera, 2008; Fone & Porkess, 2008; Kirkpatrick et al., 2013; Lapiz et al., 

2003). 

Previous impulsive choice research has revealed mixed results, with two reports 

displaying increased impulsive choice in IC rats (Kirkpatrick et al., 2013; Perry et al., 2008) and 

one study revealing the opposite result (Hellemans et al., 2005).  Due to differences in rearing 

environments and reinforcer type, it is difficult to discern the reason for the different patterns of 

results in the study by Hellemans et al. (2005).  The present study implemented similar rearing 

conditions and reinforcer types as Kirkpatrick et al. (2013) and Perry et al. (2008), and a similar 

impulsive choice task as Kirkpatrick et al. (2013) indicating that IC rats do make more impulsive 

choices when tested under conditions similar to the present study.  Further research should 

elucidate the boundary conditions under which these results hold to understand the different 

patterns in the literature. 

 On the other hand, the differential rearing conditions exerted little to no effect on risky 

choice.  To our knowledge, there are no previous studies examining risky choice as a function of 

rearing environment.  One examination of behavior in a rodent version of the Iowa Gambling 

task found that IC rats were more likely to choose larger rewards even when those choices were 

disadvantageous (Zeeb et al., 2013).  It is therefore possible that the differences in rearing 

conditions might be more pronounced in situations where the risky option is poorer as is the case 

in the sub-optimal choice task.  Indeed, a recent study in pigeons showed greater attraction to 

risk in IC-reared pigeons in sub-optimal risky choice behavior (Pattison, Laude, & Zentall, 

2013). 
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 There also were no effects of rearing environment on any aspects of peak timing.  To our 

knowledge, there have been no previous examinations of timing behavior as a function of 

different rearing conditions.  While further assessments should be conducted before reaching any 

definitive conclusions, it is possible that the effects of the rearing environment may operate 

primarily through alterations of reward valuation processes related to impulsive choice, leaving 

timing processes relatively intact. 

4.3. HPLC analyses 

 Despite the rearing-induced behavioral differences, there were no significant differences 

in NAC or PFC monoamine concentrations, consistent with the idea that differential rearing 

produces changes in neurotransmitter functionality rather than the corresponding basal levels 

(Stairs & Bardo, 2009).  There were, however, multiple relationships between monoamine 

concentrations in the PFC and NAC and behavior in different tasks (Figures 7-10). 

With regard to choice behavior, rats with higher NAC NE levels displayed greater self-

control and risk aversion, and rats with higher NAC 5-HT concentrations displayed greater risk 

aversion (Figure 7).  This suggests that basal NE and/or 5-HT levels may play a key role in 

determining biases towards impulsivity versus self-control and risk proneness versus risk 

aversion.  In addition, NAC NE and 5-HIAA concentrations were positively correlated with the 

impulsive slope (Figure 7), indicating that higher concentrations of NE and 5-HIAA may 

promote greater flexibility/adaptability, at least in impulsive choice.  The present findings are 

consistent with previous research showing NAC involvement in impulsive and risky choice 

(Doya, 2008; Peters & Büchel, 2011; Platt & Huettel, 2008).  An interesting and related finding 

was the negative correlation between NAC 5-HIAA/5-HT turn-over and progressive ratio 

breakpoints (Figure 10), indicating that rats with greater 5-HT turn-over showed greater 
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elasticity of reward (indexed by earlier break points) in the PR 1/100 task.  Elasticity reflects the 

value of a reward in relation to its cost, which in the PR task is the amount of work required to 

earn the reward, and therefore closely tied to the motivational value of the reward.  This indicates 

that NAC 5-HT may be playing an important role in incentive motivational processes, which has 

been previously suggested (Galtress & Kirkpatrick, 2010; Olausson et al., 2006; Peters & 

Büchel, 2011; Robbins & Everitt, 1996; Zhang, Balmadrid, & Kelley, 2003).  The NAC has also 

been implicated as a potential source for domain general valuation of rewards (Peters & Büchel, 

2009), which is consistent with the patterns observed in the present study, as NAC monoamine 

concentrations would be expected to then correlate with aspects of both choice tasks.  This 

suggests that the NAC should be examined more extensively to understand the nature of its 

involvement in choice behavior, particularly in promoting comorbidities in impulsive and risky 

choice. 

With regard to timing behavior, the PFC was primarily involved in impulsive choice 

timing behavior (Figure 8), with greater 5-HIAA and 5-HIAA/5-HT concentrations associated 

with shorter high state durations.  On the other hand, the NAC was primarily involved in risky 

choice timing behavior (Figure 9), with high state durations showing a positive correlation with 

DA and 5-HT levels, but negative correlations with DOPAC/DA and 5-HIAA/5-HT levels.  The 

pattern of results in the NAC indicate that higher basal DA and 5-HT levels led to longer high 

state durations, whereas higher DA and 5-HT turnover rates were associated with shorter high 

state durations.  Shorter high state durations are indicative of shaper peaks in timing functions, 

which are associated with greater precision (less noise) in timing processes (e.g., Gibbon & 

Church, 1984).  Therefore, it appears that DA and 5-HT were involved in timing precision, with 

increased precision potentially due to increased functional levels (i.e., turnover) of those 
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neurotransmitters.  Both DA and 5-HT have previously been associated with interval timing 

processes (Coull, Cheng, & Meck, 2011), so the present pattern of results is consistent with and 

extends upon previous reports.  

The dissociation between NAC and PFC involvement in the two tasks may be explained 

by the involvement of the PFC in interval timing (e.g., Coull et al., 2011) and the importance of 

timing the differential delays in impulsive choice tasks (cf., Galtress et al., 2012).  In contrast, 

the delays to reward were the same in the risky choice task, and the NAC involvement in timing 

may have reflected the contribution of single-interval timing processes, consistent with previous 

research showing later end times in responding in single interval timing following NAC lesions 

(Galtress & Kirkpatrick, 2010). 

4.4. Conclusion 

 Individual differences in impulsive choice predict the onset and success of treatments of 

substance abuse (MacKillop & Kahler, 2009; Perry & Carroll, 2008; Washio et al., 2011).  

Additionally, individuals susceptible to risky decision making, such as pathological gamblers, 

show heightened impulsivity relative to control subjects (Alessi & Petry, 2003; Dixon, Marley, 

& Jacobs, 2003; Reynolds, 2006).  Elucidating the psychological and neurobiological source of 

such differences has become a crucial endeavor (Potenza, 2009; Winstanley, 2011).  

Furthermore, determining how individual differences are moderated by other factors such as 

rearing environment may aid in the development of more effective intervention techniques to 

alleviate maladaptive behaviors.  The present results suggest that individual differences in choice 

behavior may originate from domain general processes such as reward sensitivity and incentive 

motivation tied to basal NAC monoamine concentrations, but may also be affected by domain-

specific processes.  Rearing environment may operate primarily on impulsive choice, suggesting 



27 
 

that future studies should examine domain-specific processes related more specifically to 

impulsive choice. 
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Table 1. Mean + standard deviation concentration of monoamines in the nucleus accumbens and 

medial prefrontal cortex, measured by HPLC (in ng/mg), in EC and IC rats.  

  EC IC 

Nucleus Accumbens 

NE 3.29 + 0.22 2.80 + 0.27 

DOPAC 2.59 + 0.34 2.49 + 0.27 

DA 6.32 + 0.98 6.75 + 1.02 

DOPAC/DA 0.50 + 0.08 0.52 + 0.14 

5-HIAA 2.54 + 0.17 2.17 + 0.20 

5-HT 1.20 + 0.10 1.22 + 0.10 

5-HIAA/5-HT 2.27 + 0.24 2.16 + 0.52 

Prefrontal Cortex 

NE 0.54 + 0.04 0.57 + 0.04 

DOPAC 1.24 + 0.54 1.54 + 0.64 

DA 0.57 + 0.21 0.73 + 0.28 

DOPAC/DA 0.67 + 0.34 0.82 + 0.37 

5-HIAA 0.78 + 0.06 0.87 + 0.05 

5-HT 0.23 + 0.02 0.23 + 0.01 

5-HIAA/5-HT 3.53 + 0.38 3.97 + 0.29 
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Figure Captions 

Figure 1. Total distance moved (mean + standard error of the mean, SEM) in meters (m) as a 

function of rearing condition during the pre- and post-rearing assessments for EC and IC rats.  

Figure 2. A. Mean (+SEM) log odds of impulsive (SS) choices as a function of LL magnitude in 

EC and IC rats. The corresponding percentage SS choices is provided next to each data point. B. 

Mean impulsive (SS) choices, collapsed across reward magnitude, versus the slope of the 

impulsive choice function for individual EC and IC rats. A polynomial function is fitted through 

the distribution for each group. C. Mean (+ SEM) log odds of risky (U-L) choices as a function 

of U-L probability for EC and IC rats, with corresponding percentage U-L choices presented 

next to each data point. D. Mean risky choice versus the slope of the risky choice function for 

individual EC and IC rats. Polynomial functions are fitted through the distributions. 

Figure 3. A. The mean of the impulsive choice versus risky choice functions for individual EC 

and IC rats. The solid line is the best-fitting regression function through the combined data from 

the two rearing conditions. B. The slope of the impulsive choice versus risky choice functions for 

the individual EC and IC rats. The solid line is the best-fitting regression function through the 

combined data from the two rearing conditions. 

Figure 4. Mean (+ SEM) start (S), middle (M), end (E), and duration (D) times of high states of 

responding obtained from the low-high-low algorithm for EC and IC rearing conditions for the 

SS (A) and LL (B) levers in the impulsive choice task and the C-S (C) and U-L (D) levers in the 

risky choice task.  

Figure 5. The effect of reward magnitude or probability on the mean (+ SEM) breakpoint for EC 

and IC rats during the PR task.  

Figure 6. The PR breakpoint versus impulsive slope (A) or risky slope (B) for individual EC and 

IC rats.  
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Figure 7. NAC NE concentration (ng/mg) versus impulsive mean (A), impulsive slope (B) or 

risky mean (D), NAC 5-HIAA concentration (ng/mg) versus impulsive slope (C) and NAC 5-HT 

(ng/mg) versus risky mean (E).  

Figure 8. Correlations of PFC 5-HIAA (A), and 5-HIAA/5-HT turnover (B) with high state 

duration during the impulsive choice task on the SS lever. The high state duration was obtained 

from the low-high-low algorithm. The solid line is the best-fitting regression function through 

the combined data from the two rearing conditions. 

Figure 9. Correlations of NAC DOPAC/DA turnover (A), NAC 5-HT (B), and NAC 5-HIAA/5-

HT turnover (C) with high state duration in the risky choice task on the C-S lever, and of NAC 

DA (D), NAC DOPAC/DA (E), NAC 5-HT (F), and NAC 5-HIAA/5-HT turnover (G) with high 

state duration in the risky choice task on the U-L lever for individual EC and IC rats. The high 

state duration was obtained from the low-high-low algorithm. The solid line is the best-fitting 

regression function through the combined data from the two rearing conditions. 

Figure 10. NAC 5-HIAA/5-HT turnover ratio versus PR breakpoint in the 1/100 reward 

condition for individual EC and IC rats. The solid line is the best-fitting regression function 

through the combined data from the two rearing conditions. 

 

Supplementary Figure 1. Chromatograms of the sample (NAC), standard (1 ng/μl) and blank 

(effluent only) runs.  Note that the blank did not mask any of the sample or standard runs.  
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