
This is the author’s final, peer-reviewed manuscript as accepted for publication.  The 
publisher-formatted version may be available through the publisher’s web site or your 
institution’s library.  

This item was retrieved from the K-State Research Exchange (K-REx), the institutional 
repository of Kansas State University.  K-REx is available at http://krex.ksu.edu 

 

Non-exclusionary input prices 
 
Soheil R. Nadimi and Dennis L. Weisman 
 
 
How to cite this manuscript 
 
If you make reference to this version of the manuscript, use the following information: 
 
 
Nadimi, S. R., & Weisman, D. L. (2014). Non-exclusionary input prices. Retrieved from 
http://krex.ksu.edu 
 
 
 
Published Version Information 
 
 
Citation: Nadimi, S. R., & Weisman, D. L. (2014). Nonexclusionary input prices. Applied 
Economics Letters, 21(11), 727-732. 
 
 
 
Copyright: © 2014 Taylor & Francis 
 
 
 
Digital Object Identifier (DOI): doi:10.1080/13504851.2014.881961 
 
 
 
Publisher’s Link: 
http://www.tandfonline.com/doi/full/10.1080/13504851.2014.881961#.U8U7TJRdXL9 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33353041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

Non-Exclusionary Input Prices  

 

By 

 

Soheil R. Nadimi 
Ph.D. Candidate 

 
 

and 
 

 
Dennis L. Weisman 

Professor 
 

 

Department of Economics 

Kansas State University 

Waters Hall 

Manhattan, KS 66506-4001 

 

Correspondence: 

weisman@ksu.edu 

(785) 532-4588 (V) 

(785) 539-7225 (F) 

 

 

 

 

 

Keywords:  input prices; vertical integration; foreclosure; sabotage   

JEL classification: L51, L96 



1 
 

Abstract 

This paper models a vertically-integrated provider that is a monopoly supplier of an input 
that is essential for downstream production. An input price that is “too high” can lead to 
inefficient foreclosure and one that is “too low” creates incentives for non-price 
discrimination. The range of non-exclusionary input prices is circumscribed by the input 
prices generated on the basis of upper-bound and lower-bound displacement ratios. The 
admissible range of the ratio of downstream to upstream price-cost margins is increasing 
in the degree of product differentiation and reduces to a single ratio in the limit as the 
products become perfectly homogeneous.   

 

1. Introduction  

In traditional infrastructure industries, including telecommunications, electric power and 

natural gas, it is common for an upstream monopolist to supply an input that is essential 

for downstream production. An input price that is “too high” can give rise to inefficient 

foreclosure,1 whereas an input price that is “too low” can induce the vertically-integrated 

provider (VIP) to engage in sabotage or non-price discrimination.2 The primary objective 

of this paper is to examine the role of product differentiation in circumscribing the range 

of non-exclusionary input prices.  

2. Notation and Definitions  

There is a single VIP that serves as a monopolist in the upstream input market and a 

single independent downstream provider. The downstream demand functions for the VIP 

and the independent provider are given by ( , )V V IQ P P  and ( , ),I I VQ P P where ,  iP i V  

and I denotes the respective downstream prices for the VIP and the independent rival. 

The downstream outputs of the VIP and the independent downstream provider are 

imperfect substitutes so that 0j

i

P
Q 

 
for ,i j V and I, ,i j where the subscripts denote 

partial derivatives. There are no income effects. 

                                                           
1 Weisman (2002) and Hausman and Tardiff (1995).  
2 Mandy and Sappington (2007) and Sibley and Weisman (1998). 
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 The price and constant marginal cost of the input are denoted by w and c, 

respectively. The production technology is fixed-coefficient: each unit of downstream 

output requires one unit of the VIP-supplied input and one unit of a complementary input. 

The cost of each unit of the complementary input is denoted by ,  is i V and I. Let 0d 

denote the increment by which the VIP raises the per-unit cost of its rival through non-

price discrimination. Finally, let ( )C d denote the cost of non-price discrimination for the 

VIP, with (0) 0,C   '(0) 0,C  '( ) 0, and ''( ) > 0 0.C d C d d    

 The profit functions for the VIP and the independent rival, which are assumed to 

satisfy standard regularity conditions that ensure a unique optimum, are given, 

respectively, by:  

 V I I V V V I V VQ P P w c Q P P P c s C d     ( , )[ ] ( , )[ ] ( ), and                 (1) 

   I I I V I IQ P P P w s d   ( , )[ ].                    (2)  

Assumption 1. , , , , .
i i

i j

Q Q
i j V I i j

P P

 
  

 
 

Assumption 1 imposes the standard regularity condition that own-price effects dominate 

cross-price effects (Vives, 1999, p. 157). 

Definition 1. (Displacement Ratio)  

The displacement ratio is the absolute value of the change in the output of the 

independent rival associated with a one-unit increase in the output of the VIP (Armstrong 

et. al., 1996).   

 In the differentiated products setting under examination, there are two downstream 

prices and therefore two displacement ratios.  
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Lemma 1.  The upper-bound displacement ratio: .
I V

u I I

Q Q
P P

  
 

 

Lemma 2.  The lower-bound displacement ratio: .
I I I V

l V I V V

Q Q P Q
P P P P

    
       

 

Definition 2. (Product Homogeneity)  

The degree of product homogeneity is given by (0,1).l

u




 
  

Assumption 2. The displacement ratios, , , ,i i l u   are constants. 

The VIP is generally required by the antitrust or regulatory authority to satisfy a 

price floor (P-F) constraint. This constraint requires that the downstream price for the 

VIP be no lower than the incremental cost of providing downstream output plus the net 

contribution foregone (opportunity cost) in not providing the upstream input. The 

opportunity cost in this setting is computed on the basis of l because it is the change in 

the VIP’s price ( )VP  rather than the rival’s price ( )IP  that induces the change in the 

VIP’s output. This constraint requires that the lower-bound displacement ratio be no 

greater than the ratio of downstream to upstream price-cost margins (r).  

Definition 3. (P-F Constraint)  

1[ ] [ ] .
V V

V V V V
l l l

P c s
P c s w c w c P c s r

w c
  

             


3 

An input price that is too low relative to the output price can give rise to non-price 

discrimination and underscores the need for a complementary, price-ceiling (P-C) 

constraint. This constraint requires that the upper-bound displacement ratio be no less 

than the ratio of downstream to upstream price-cost margins. 
                                                           
3 The input price that results when this last relation holds with equality is a form of the efficient component 
pricing rule or ECPR.  
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Definition 4. (P-C Constraint)  

1[ ] [ ] .
V V

V V V V
u u u

P c s
P c s w c w c P c s r

w c
  

             


 

The upper-bound displacement ratio ( u ) enters the analysis here because it is the 

change in the rival’s price ( IP ), triggered by the non-price discrimination and the 

resultant increase in its costs, that diverts demand from the rival to the VIP.    

A binding P-C constraint defines the lower bound input price, ,w and a binding P-F 

constraint defines the upper bound input price, .w    

Definition 5.  (Lower/Upper Bound Input Prices and Margin Ratios) 

a) The lower-bound input price (upper-bound margin ratio) is given by 

1 1( ) [ ]
V V

V V
u u u

P c s
w c P c s r

w c
   

         


.  

b) The upper-bound input price (lower-bound margin ratio) is given by 

1 1( ) [ ] .
V V

V V
l l l

P c s
w c P c s r

w c
   

         


 

3. Formal Model 

The VIP and the independent rival compete in a three-stage, Bertrand-Nash game.4 In the 

first stage, the regulator chooses the input pricing rule, [ ],V Vw c k P c s    where k is 

the inverse displacement ratio. In the second stage, the VIP and the independent rival 

simultaneously choose profit-maximizing prices.  In the third stage, the VIP chooses the 

profit-maximizing level of non-price discrimination ( ).d   

The necessary first-order conditions for the second stage of the game are given by: 

                                                           
4 Weisman (2013) examines a similar problem in which the VIP is the leader and the rival is the follower.  
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[ ] ( , ) [ ] ( , ) 0;
V I V

I I V V V V V I
V V V V

Q w Q
w c Q P P P c s Q P P

P P P P

   
       

   
     (3) 

[ ( ) ] ( , ) 0.
I I

I I I I V
I I

Q
P w d s Q P P

P P

 
     

 
           (4) 

Lemma 3.  At the Nash equilibrium defined by (3) and (4), 
*

0
IP

d





and 

*

0.
VP

d




  

 The first proposition establishes that the VIP does not engage in non-price 

discrimination for any input price that is greater than or equal to the lower-bound input 

price.  

Proposition 1. At the Nash equilibrium, * 0d  1 .uk w w     

 The second proposition establishes that the VIP engages in non-price discrimination 

for any input price that is strictly less than the lower-bound input price.  

Proposition 2. At the Nash equilibrium, * 0d  1 .uk w w     

The third proposition establishes that the VIP engages in neither type of market 

exclusion for input prices that satisfy both the P-F and P-C constraints.    

Proposition 3. The VIP does not engage in market exclusion 1 1[ , ] [ , ].u lk w w w        

The fourth proposition reveals that the range of admissible margin ratios reduces to a 

single ratio in the limit as the degree of product differentiation vanishes.   

Proposition 4.  In the limit as 1, .r r    

Corollary 1. In the limit as 1,   the non-exclusionary margin ratio is unique and 

satisfies the “equal-margin rule.” 

The “equal-margin rule” requires that the input price be set so as maintain equality 

between the VIP’s retail and wholesale margins, or .V VP c s w c      
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 To facilitate a closed-form solution, we specify a linear demand system of the form 

( , ) .V V I V V V V IQ P P a b P g P                 (5) 

( , ) ,I I V I I I I VQ P P a b P g P                       (6) 

where , , , , , 0.V I V I V Ia a b b g g    

Proposition 5. The Nash-Equilibrium prices are given by 

 2 ( ( ) ( ) 2( )( ) ( )
( ) .

(3 ) 4

V
V I V V I V V I I

I
V

I V
I V I V

I

g
a c d s k s c g b k c s b g k a k

bP k
g g

g g b k k b
b

          
 

   
          (7) 

and  

2

( ) ( ) ( 2 ) 2 ( ) ( )
( ) .

4 (3 )

V I I V I V I I I I I V V I I V

I

I V I V I I V

b kg c s b ck ks s b c d a b k a k a a a b
P k

b b b k k g g

g g

g g

           


   

  
  

    

(8) 

Proposition 6. The VIP’s Nash-Equilibrium profit function is given by  

 

2

2
2

( ) ( )( ) 2
( )

( ) ( 2 )
( ) ( ).

4 (3 )

I V I I I V I V I

V I

V I V I I V

V

I V I V I I V

a g b k b c d s g b k a b
b g k

c s g g b g k b
k C d

g g b b b k k g g

      
  

         
     

    (9) 

 The following example illustrates the manner in which the range of non-exclusionary 

input prices varies with the degree of product differentiation. 

Example 1. The demand functions for the VIP and the independent rival are symmetric in 

(5) and (6) with 20, 2 and (0,2).V I V I V Ia a b b g g g        Also, 1.V Is s c  

The non-exclusionary input prices and margin ratios are shown below.5 

                                                           

5 Lemmas1 and 2 along with (5), (6) and (A7) imply that 
I

u V

b

g
   and 

1

2 2

1

[( ) 82 ] .II

l

I I Vg b bb g



  
 
 
 
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  g  1
u
  1

l
    

w  w  
( )VP w ( )VP w  r  r  r r

0.5 0.25 1.29 0.19 2.42 10.03 7.67 8.98 4.00 0.77 3.23 

1.0 0.5 1.19 0.42 5.50 15.13 11.00 13.91 2.00 0.84 1.16 

1.2 0.6 1.15 0.52 7.90 18.92 13.50 17.64 1.67 0.87 0.80 

1.4 0.7 1.11 0.63 11.97 25.21 17.67 23.87 1.43 0.90 0.53 

1.6 0.8 1.07 0.75 20.20 37.75 26.00 36.36 1.25 0.93 0.32 

1.8 0.9 1.03 0.87 45.10 75.29 51.00 73.84 1.11 0.97 0.14 

1.9 0.95 1.02 0.93 95.05 150.31 101.00 148.84 1.05 0.98 0.07 

 

4. Conclusion 

Market exclusion is a concern when input prices are “too high” because it can result in 

inefficient foreclosure as well as when input prices are “too low” because it can create 

incentives for sabotage. Upper/lower-bound displacement ratios are used to generate a 

range of non-exclusionary input prices. The admissible range of the ratio of downstream 

to upstream margins is increasing in the degree of product differentiation and reduces to a 

single ratio in the limit as the products become perfectly homogeneous. An important 

implication for competition policy is that both price-floor and price-ceiling constraints 

may be necessary to protect against market exclusion in certain settings.   
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Appendix 

Proof of Lemma 1.  

( , ) .
V V

V I V V I
V I

Q Q
dQ P P dP dP

P P

 
 

   Set 1VdQ   and 0,VdP  then 
1

.
V

I
I

Q
dP

P





 

  
 

 

( , ) .
I I

I I V V I
V I

Q Q
dQ P P dP dP

P P

 
 

   Set 0,VdP  and substituting for IdP yields  

.
I I V

I I
I II

Q Q Q
dQ dP

P PP

  
 

  □  

Proof of Lemma 2.  

( , ) .
V V

V I V V I
V I

Q Q
dQ P P dP dP

P P

 
 

   Set 1VdQ   and 0,IdP  then 
1

.
V

V
V

Q
dP

P





 

  
 

 

( , ) .
I I

I I V V I
V I

Q Q
dQ P P dP dP

P P

 
 

    

Recognizing that 
I

I V
V

P
dP dP

P




and substituting for VdP yields  

.
I I I I I I V

I V V
V I V VV I V

Q Q P Q Q P Q
dQ dP dP

P P P PP P P

      
     

 
    

 
□ 

Proof of Lemma 3.  

Totally differentiating (3) and (4) with respect to d yields the linear system :A X B    





2 2

2

2 2

2

0

.

A BX

V
V V

V V I

I I
I I

I V I

I

P

d
P P P

P Q
P P P

d P





    
                  
                       

 




                                                                         (A1) 

Sufficient second-order conditions for a maximum require that 
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2

2
0,

V

VP

 




2

2
0

I

IP

 


  
and 

2 2 2 2

2 2
0.

V I V I

V I V I I V
A

P P P P P P

       
  
     

 

Appealing to Cramer's rule yields 

2 22 2

2 2

2 2

2

0 0
1 1

0, 0.

V VV I V I

I VV V IV I V I I

I I I I

I V I I I

Q Q
P PP P PP P P P P
d A A d A AQ Q

P P P P P

        
            

      
    

 

since 
2

0
V

V IP P

 


 
when prices are strategic complements. □ 

Proof of Proposition 1.  

From (1), the necessary first-order condition for d is given by 

 
 

: ( ) [ ]

( ) 0;  and  0.

I I I V V V V V I
V I V V
d I V V V I

V
V V

d

Q P Q P w P Q P Q P
w c Q P c s

P d P d P d P d P d

P
Q C d d

d

            
                      

     
  

(A2) 

Let 1,uk      where 0.   Substituting for 1
V I V I

u I I I I

Q Q Q Q
P P P P

   
   

  
   

 

along with 1( )[ ]V V
uw c P c s       and (A2) yields 

1 1( )[ ] ( )

[ ] ( ) 0.

I I I V V
V V I

u uI V

V V V I V
V V V

V I

Q P Q P P
P c s Q

P d P d d

Q P Q P P
P c s Q C d

P d P d d

       
              

                 

                               (A3) 

Rewrite (A3) in the following form:  
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[ ]

[ ] ( ) 0.

I I I V VV I V I
V V I

I I I II V

V V V
V V V

V

Q P Q P PQ Q Q Q
P c s Q

P P P PP d P d d

Q P P
P c s Q C d

P d d

   
   

               
                                
              

(A4) 

At an optimum for (1), 0V

V

P
   or 

[ ]

[ ] 0.

I V I V I
V V I

I I I IV

V
V V V

V

Q Q Q Q Q
P c s Q

P P P PP

Q
P c s Q

P

   
   




      
                   

    

                                (A5) 

Substituting (A5) into (A4) and appealing to Lemma 3 yields 

[ ] ( ) 0.
I I

V V
I

Q P
P c s C d

P d




          


                                                                        (A6)                              

Since 0,   (A6) implies that * 0d  by complementary slackness from (A2). □  

Proof of Proposition 2.  

From (A6), 0  implies that '( ) 0 * 0.C d d    □  

Proof of Proposition 3.   

By Proposition 1, * 0d  1 .uk w w      By Proposition 2, * 0d  1 .uk w w     

If 1
lk    then w w  and the P-F constraint is violated. The result follows. □  

Proof of Proposition 4.  

1 1 and .ul r r      □  

Proof of Corollary 1.  

1 1.ul       Satisfaction of the P-C and P-F constraints requires that 
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1
V VP c s

w c

 



 and 1

V VP c s

w c

 
 


1

V VP c s

w c

 
 


,V VP c s w c    the “equal-

margin rule.” □ 

Proof of Proposition 5.   

Substituting for w in (4), appealing to (6) and solving for IP yields 

 [ ]
.

2

I I I V V V I

I
I

a b c d s k P c s P g
P

b

      


                                                         
(A7)

 

Substituting for w and IP along with solving (3) and (4) simultaneously for the linear 

system in (5) and (6) yields the Nash-equilibrium prices in (7) and (8). □ 

Proof of Proposition 6.  

Substituting (5) - (8) into (1) yields the VIP’s reduced-form profit function in (9). □ 
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