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Abstract

This paper presents new algorithms for use in the eigenvalue response ma-
trix method (ERMM) for reactor eigenvalue problems. ERMM spatially decom-
poses a domain into independent nodes linked via boundary conditions ap-
proximated as truncated orthogonal expansions, the coefficients of which are
response functions. In its simplest form, ERMM consists of a two-level eigen-
problem: an outer Picard iteration updates the k-eigenvalue via balance, while
the inner λ-eigenproblem imposes neutron balance between nodes. Efficient
methods are developed for solving the inner λ-eigenvalue problem within the
outer Picard iteration. Based on results from several diffusion and transport
benchmark models, it was found that the Krylov-Schur method applied to the
λ-eigenvalue problem reduces Picard solver times (excluding response gener-
ation) by a factor of 2–5. Furthermore, alternative methods, including Picard
acceleration schemes, Steffensen’s method, and Newton’s method, are devel-
oped in this paper. These approaches often yield faster k-convergence and
a need for fewer k-dependent response function evaluations, which is impor-
tant because response generation is often the primary cost for problems using
responses computed online (i.e., not from a precomputed database). Accel-
erated Picard iteration was found to reduce total computational times by 2–3
compared to the unaccelerated case for problems dominated by response gen-
eration. In addition, Newton’s method was found to provide nearly the same
performance with improved robustness.
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1. Introduction and Background

Fundamental to reactor modeling is analysis of the steady-state balance of
neutrons, described concisely as

Tφ(~ρ) =
1

k
Fφ(~ρ) , (1)

where the operator T describes transport processes, F describes neutron gener-
ation, φ is the neutron flux, ~ρ represents the relevant phase space, and k is the
eigenvalue, the ratio of the number of neutrons in successive generations.

Since the late 1970’s, full core analyses for light water reactors (LWR) have
been performed using relatively low fidelity nodal methods based on clever
homogenization of phase-space with proven success. However, as current re-
actors become increasingly heterogeneous due more aggressive fuel loadings
and longer cycle lengths in existing LWR’s, nodal methods are becoming less
applicable, and for new, highly heterogeneous reactor designs, even less so.
Although advances in production nodal codes, including use of generalized
multigroup SP3 transport with subassembly resolution, address issues related
to more complicated designs [1], there likely is limited room for further im-
provement of the underlying approach. Consequently, a move toward full core
analysis techniques that can leverage the high fidelity methods typically used
for smaller problems is desired.

1.1. The Eigenvalue Response Matrix Method

One such approach is the response matrix method (RMM), which is based
on a spatial decomposition of the global problem of Eq. 1 into local fixed source
problems connected by approximate boundary conditions. The response matrix
method has been used in various forms since the early 1960’s [2]. Using the
terminology of Lindahl and Weiss [3], the method can be formulated using
explicit volume flux responses, called the “source” RMM, or by using current
responses that include fission implicitly and hence are functions of k, known as
the “direct” RMM. Although both forms are used in various nodal methods, the
source RMM is more widespread. This work is on the the direct RMM, which
shall be referred to as the eigenvalue response matrix method (ERMM).

Several formulations of ERMM have been proposed since its first use in
the 1960’s. Here, a rather general approach is described based on expansions
of the boundary conditions that couple subvolumes of the global problem, a
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formalism introduced as early as the work of Lindahl [4] and studied more
recently by several authors [5, 6, 7].

Suppose the global problem of Eq. 1 is defined over a volume V . Then a
local homogeneous problem can be defined over a subvolume Vi subject to

Tφ(~ρi) =
1

k
Fφ(~ρi) , (2)

and
J local
− (~ρis) = Jglobal

− (~ρis) , (3)

where J local
− (~ρis) is a function of the incident boundary flux, typically the partial

current, which quantifies net flows through a surface.
To represent the local problem numerically, an orthogonal basis, Pn, over

the relevant phase space is defined

Pn(~ρis), n= 0, 1, . . . N (4)

subject to
∫

Pm(~ρis)Pn(~ρis)dρis = δmn . (5)

A response equation is defined

Tφms
i (~ρi) =

1

k
Fφms

i (~ρi) (6)

subject to
J local
− (~ρis) = Pm(~ρis) . (7)

The resulting outgoing currents J−(~ρis) are used to define response functions

rms
im′s′ =

∫

Pm′(~ρis′)J
m
i+(~ρis′)dρis′ . (8)

The quantity rms
im′s′ has a simple physical interpretation: it is the m′th order

response out of surface s′ due to a unit incident mth order condition on surface
s of subvolume i.

The incident and outgoing currents are expressed as truncated expansions
using the same basis

Jis±(~ρis)≈
N
∑

n=0

jn
is±

Pn(~ρis) (9)

3



where

jn
is±
=

∫

Pn(~ρis)J±(ρis)dρis . (10)

These coefficients are then represented in vector form as

Ji± = ( j
0
i1±

j1i1± . . . j0i2± j1i2± . . . jN
iS±
)T , (11)

and using these together with Eq. 8 yields the nodal balance equation

Ji+ =









r01
i01 r11

i01 · · ·
r01

i11 r11
i11 · · ·

. . .

















j0i1−
j1i1−
...









= RiJi− . (12)

Global balance is defined by the eigenvalue response matrix equation

MR(k)J− = λJ− , (13)

where R is the block diagonal response matrix of Ri , J− are vectors contain-
ing all incident current coefficients, M = MT is the connectivity matrix that
redirects outgoing responses as incident responses of neighbors, superscript T
represents the matrix transpose, and λ is an eigenvalue that represents the
global balance of neutron currents through all nodal surfaces. If the response
matrix R is conservative (i.e. it strictly maintains neutron balance),

lim
k→k∗

λ= 1 , (14)

where k∗ is the true eigenvalue. For nonconservative response expansions,
the deviation of λ from unity measures discontinuities introduced across node
boundaries and may be used to evaluate accuracy of the expansions used (with
respect to an infinite expansion).

The k-eigenvalue can be interpreted physically as the ratio of neutrons pro-
duced in one generation to the previous generation. Alternatively, k can be
viewed as the ratio of gains to losses in a given generation, and when applying
this interpretation to the response matrix formalism, k can be updated via the
process

kn+1 =
F(kn)J−

A(kn)J−+ L(kn)J−
, (15)

where F(k)J− is the global fission rate, A(k)J− is the global absorption rate,
and L(k)J− is the total leakage rate from global boundaries.
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1.2. Survey of ERMM Implementations

The method defined by Eqs. 2-15 originates from the work of Shimizu et
al. [8, 2], which appears to be the first work on response matrix methods (al-
though the authors acknowledged a connection between their work and the
earlier and more general theory of invariant imbedding as developed by Bell-
man et al. [9]). The method was originally based on 1-D diffusion in slab
geometry. Aoki and Shimizu extended the approach to two dimensions, using
a linear approximation in space to represent boundary currents [10]. A short-
coming of this early work was an assumed value (unity) of the k-eigenvalue
when evaluating responses, following which Eqs. 13 and 15 were solved just
once to compute k. Typically k ≈ 1 for nuclear reactors, so the errors observed
were only tens of pcm, which may have been deceptively small and not rep-
resentative of more general cases. In the later 2-D analysis [10], the results
compared favorably to fine mesh diffusion calculations.

Weiss and Lindahl generalized ERMM by considering arbitrarily high order
expansions of the boundary currents in Legendre polynomials [11] and intro-
ducing an iterative sceheme for the k-eigenvalue equivalent to Eq. 15. Lindahl
also studied expansions of the current, comparing Legendre expansions to an
approach that divides the boundary in several segments in which the current is
assumed flat [4]. A more complete overview of these approaches can be found
in the review by Lindahl and Weiss [3].

These diffusion-based methods rely on semi-analytic solutions to the diffu-
sion equation and hence require homogeneous nodes. Previous scoping studies
examined diffusion-based responses using discretized operators [6]. By nu-
merically integrating the diffusion equation, heterogeneous nodes are treated
naturally, though no diffusion models with heterogeneous nodes were studied.

In addition to methods based on diffusion theory, previous work applied
transport theory for generating responses. Pryor et al. used a hybrid stochastic-
deterministic approach based on Monte Carlo and the collision probability
method to generate responses [12, 13, 14]. Their work is unique in its defi-
nition of the response matrix R(k) based on a precomputed series expansion.
Considering again Eq. 2, the solution φ (omitting indices) can be expressed as

φ = φ0+
1

k
φ1+

1

k2φ2+ . . . , (16)

whereφi is the flux for the ith neutron generation due to fission. The associated
responses can be similarly defined

R(k) = R0+
1

k
R1+

1

k2 R2+ . . . . (17)
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The authors claim this series can be truncated in as few as three terms by
estimating the analytical sum, though the accuracy is not specified [14]. When
no fissile material is present, φi = 0 for i > 0, and so R(k) = R0.

A somewhat similar approach was developed by Moriwaki et al. [15] in
which Monte Carlo is used to generate assembly-level responses for full core
analyses. Their method decomposes the response matrix into four physically
distinct components: transmission of incident neutrons from one surface to
another surface (T), escape of neutrons born in the volume out of a surface (L),
production of neutrons in the volume due to neutrons born in the volume (A),
and production of neutrons in the volume due to neutrons entering a surface
(S). If all indices but the surface are neglected, a current response can be
expressed as

rs
t = T s

t +
1

k
Ss(Lt +

1

k
A(Lt +

1

k
A(Lt + · · · )) + · · · ) . (18)

Like Eq. 17, this infinite sum represents the contributions of each generation
to the total response. The matrices T, L, A, and S are precomputed, and the
full matrix R is computed on-the-fly by iteration. In the actual implementation,
the volume-dependent responses are unique for each pin in an assembly. Addi-
tionally, spatial segmentation is used on boundaries, but angular dependence
is neglected.

The more recent extension of Ishii et al. improved the angular accuracy by
including angular segmentation [16]. However, the resulting amount of data
required is quite significant, since the responses are then dependent on spatial
segment, angular segment, energy group, and for volume responses, unique
pins. Therefore, the approach in Eq. 17 may be more economical because no
volume-dependent responses are required. However, computing pin reaction
rates would still require volume-dependent responses but would preclude their
use in solving Eq. 13.

Other related work has been development of the incident flux expansion
method [5, 17]. Initial work by Ilas and Rahnema focused on a variational ap-
proach using a basis of Green’s functions for each variable with one-dimensional
discrete ordinates [17]. Mosher and Rahnema extended the method to two
dimensions using discrete Legendre polynomials for space and angle expan-
sions. In addition, they introduced a nonvariational variant that is equivalent
to ERMM, but without explicit construction of matrices. Forget and Rahnema
extended this nonvariational approach to three dimensions using Monte Carlo
with continuous Legendre polynomials in space and angle [18]. In all cases,
the responses were precomputed as functions of the k-eigenvalue, and linear
interpolation was used to compute responses during global analysis.
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1.3. Major Challenge

The application of ERMM to realistic steady-state analyses with feedback ef-
fects entails several challenges, predominantly the shear number of responses
functions and hence transport solves required. These response functions are
entirely independent for a given state and k, making ERMM ideal for paral-
lelization.

In the past work on ERMM, responses were precomputed as a function of
k and interpolated as needed. In many cases, clever use of symmetry can re-
duce the amount of required data. For benchmark problems, this reduction
is helpful, but as the effects of thermal feedback are included, each node be-
comes unique and, usually, asymmetric. As such, precomputation of responses
would require inclusion of dependence on several variables in addition to k.
There seems at this time no completely satisfactory way to parameterize a re-
sponse function database for accurate steady-state analyses. Parameterization
becomes even more difficult if burnup is included for cycle analyses. Recent
work has attempted to parameterize the responses for steady-state analysis of
cold critical experiments [19]. While the results are promising (sub-percent
errors on pin fission rates), the problem assessed is not entirely representative
of the current problems of interest. Consequently, this paper focuses on ERMM
implementations suitable for online generation of response functions because,
at present, this appears to be the only meaningful manner in which to apply
ERMM. However, any improvements developed for online response generation
would be readily applicable to generation of response databases should an ad-
equate parameterization scheme be developed in the future.

1.4. Goals

The primary goal of this work is to develop a response matrix method that
can efficiently leverage high fidelity deterministic transport methods for solving
large-scale reactor eigenvalue problems on a variety of computer architectures.
Several solvers that support this goal are developed in this paper, which sub-
stantially extends and elaborates on the authors’ previous work [6, 7], and the
remainder of which is organized as follows. Section 2 discusses solution of
the response matrix equations via fixed point iteration and methods for solving
the resulting eigenvalue problem for λ efficiently. Section 3 presents schemes
that provide faster convergence in k than standard fixed-point iteration, which
is important because the number of k-evaluations defines the number of re-
sponses evaluated. A numerical study of the methods applied to several bench-
mark problems is provided in Section 4, followed by concluding remarks in
Section 5.
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2. Solving the λ-Eigenvalue Problem

Equations 13 and 15 represent a Picard (fixed point) iteration for the k-
eigenvalue. For each new k value, however, the λ-eigenvalue problem defined
by Eq. 13 must be solved.

Historically, the method to solve Eq. 13 is equivalent to simple power iter-
ation. For a given k(n), the current vector J− is initialized, MR(kn) is applied
to the J−, and the resulting vector points closer to the dominant eigenvector of
interest. The process repeats until converged.

Unfortunately, the asymptotic convergence rate to the dominant mode is
equal to ln (1/ρ), in which the dominance ratio ρ is defined

ρ = |λ2|/|λ| , (19)

and the eigenvalues of MR satisfy λ > |λ2| ≥ |λi| , ∀ i > 2. For many problems,
ρ typically falls above 0.99 and is frequently larger than the dominance ratio
associated with k.

Because of the large dominance ratio, 1000’s of iterations are required to
reduce residual norms ||MRJ− − λJ−|| to within the tolerances typically em-
ployed. Chebyshev acceleration has been considered for accelerating conver-
gence, but its utility is severely limited due to the eigenspectrum of MR, a
significant portion of which sits away from the real axis. For a representative
problem, previous work showed that the expected (theoretical) speedup is lim-
ited to approximately two, compared to the factor of 20 gained if the spectrum
is completely real [7]. Despite these theoretical limitations, Chebyshev acceler-
ation has been used successfully for solving the inner problem [20]. However,
such success is likely highly problem-dependent and subject to significant tun-
ing.

Alternatively, more efficient eigenvalue solvers such as Krylov subspace
methods can be used for the λ-eigenvalue problem. Krylov methods are based
on generation of a Krylov subspace of dimension n, defined for an m×m oper-
ator A as

K (n, x0)≡ span{x0, Ax0, A2 x0, . . . , Am−1 x0} , (20)

for some initial, possibly random, vector x0. The fundamental goal of all Krylov
subspace methods is to find x ∈K (n, x0) that “best” solves the system of inter-
est, be it an eigenproblem or linear system, where it is assumed that n� m.

Using K (n, x0) directly is difficult numerically because repeated applica-
tion of A sends the initial vector x0 into the same direction, namely that of
the dominant eigenvector of A. Hence, the basis must be orthogonalized. The
canonical approach for nonsymmetric operators is Arnoldi’s method, which by
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successive application of the modified Gram-Schmidt process yields the Arnoldi
decomposition

AV= VH+ f eTn , (21)

where V ∈ Rm×n consists of orthonormal columns, H ∈ Rn×n is an upper Hes-
senberg matrix, en is a zero vector with its last entry equal to one, and f is the
residual, which is orthogonal to the columns of V.

The eigenvalues of H, called Ritz values, tend to be good estimates of eigen-
values of A, and given an eigenpair (λ̃, y) of Hn, the Rayleigh-Ritz estimate
of the corresponding eigenvector of A is defined x = Vn y and is called a Ritz
vector. Using these approximate eigenvalues and eigenvectors is the basis of
Arnoldi’s method.

The eigenpairs of H are found via a dense eigensolver, such as the QR
method. While these dense problems are small (since n� m), they are solved
repeatedly for increasing n until converged. If n becomes too large, the dense
methods become too expensive. A more efficient approach is to restart Arnoldi’s
method. In the explicitly restarted Arnoldi method (ERAM), some combination
of the existing n Ritz vectors is used to choose a single starting guess, from
which a new Arnoldi factorization is generated [21]. An alternative to explicit
restart is implicit restart, where the desired portion of the spectrum is retained
continuously by contracting from a subspace of dimension n to a smaller space
of size p and mapping back to the larger space. Several implicit restart schemes
exist, and the one used in this paper is the Krylov-Schur (KS) method [22]. KS
transforms a general Krylov decomposition (of which the Arnoldi decomposi-
tion is a special case) into a Krylov-Schur decomposition, in which H is a strictly
upper triangle matrix. With this decomposition, it is comparatively easier nu-
merically to keep the desired spectral information, and the method tends to be
more efficient than other implicitly-restarted algorithms [21].

3. Solving the k-Eigenvalue Problem

The convergence properties of the fixed-point iteration are generally favor-
able [23], but in many cases, faster convergence in k is desirable. Because
responses must be recomputed for each new value of k, methods that minimize
the number of unique k values are critical for efficient application of ERMM.

3.1. Accelerating Fixed Point Iteration
In this section, several techniques are studied for accelerating the fixed

point iteration in k. All the methods are based on extrapolation with respect to
k, and hence no machinery beyond that needed for the fixed point iteration is
required.
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3.1.1. Regula Falsi and Related Methods
The λ-eigenvalue approaches an asymptotic value λ∗ ≈ 1 in the limit k →

k∗. For conservative responses with negligible iteration error, λ∗ is exactly unity.
Various schemes have been used to capitalize on this relationship between k
and λ. In each of these schemes, an initial guess k0 is made for which the
corresponding λ0 is found. Subsequently, k1 is selected, potentially via balance,
and λ1 is computed. All successive values kn are selected so that λn ≈ 1. Such
a scheme is often called regula falsi or the method of false points [4].

Lindahl studied the relationship between λ and k and found that k̃ = 1/k
varies quite linearly with λ̃ ∝ 1/λ. Lindahl extended the concept by storing
three or more pairs for interpolation via higher order polynomials [4].

Anghel and Gheorghu [24] modified the approach of Lindahl by assuming
the exponential relation

λ∝ aeb/k . (22)

Because response functions tend to have exponential dependence on k, the au-
thors assumed a similar dependence would also hold true for the λ-eigenvalue.

A more recent study by Forget and Rahnema [25] rediscovered the re-
lationship between k and λ, referring to λ as the “normalization constant.”
Moving from a k-update via balance, they assumed the relation k ∝ 1/λ and
observed good convergence without needing to compute the gain and loss op-
erators needed for balance. In theory, the relationship k ∝ 1/λ is expected.
Previous work [23] used one group diffusion theory to show that

dλ

dB
∝ B (23)

for small buckling B =
p

νΣ f /k−Σa, which suggests

λ≈ aB2+ b ≈
a′

k
+ b′ . (24)

Lindahl found that k−1 ∝ λ−1 produced better results compared to k ∝ λ−1

and k ∝ λ but did not provide numerical results [4].
These two-term schemes are limited by their dependence on the asymptotic

value λ∗ being unity, or at least close enough so that λ∗−1 is within the conver-
gence criteria. If the responses or inner iterations are poorly converged, or the
response expansions are not conservative, the schemes can become unstable.

3.1.2. Steffensen’s Method
Steffensen’s method, which, like the extrapolation schemes, relies on a se-

quence of evaluations of the fixed point. Steffensen’s method can be written as
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the one step fixed point iteration

kn+1 = g(kn) = kn−
( f (kn)− kn)2

f ( f (kn))− 2 f (kn) + kn
. (25)

This process has second order convergence, meaning the error diminishes with
the square of n. This can be demonstrated by expanding g(k) about the fixed
point g(k∗) = k∗, yielding

g(k) = k∗+∆g ′(k∗) +
∆2

2
g ′′(k∗) +O (∆3) . (26)

To be (at least) second order, g ′(k∗) must vanish. Here,

lim
k→k∗

g ′(k) = 1−
2(k− f (k))(1− f ′(k))

f ( f (k))− 2 f (k) + k

+
(k− f (k))2( f ′( f (k)) f ′(k)− 2 f ′(k) + 1)

( f ( f (k))− 2 f (k) + k)2

= 1− (2) + (1)
= 0 ,

(27)

where the second two terms are reduced via L’Hôpital’s rule. Hence, kn+1−k∗ =
O (∆2), so the method is second order as stated.

In practice, Steffensen’s method is highly sensitive to the accuracy of the se-
quence estimates. Within ERMM, it has been observed that Steffensen’s method
becomes unstable unless very small tolerances (≈ 10−9) are used for solving
the λ-eigenvalue problem [7]. Furthermore, once the responses are evaluated
for the initial guess, each successive Steffensen iteration requires two response
evaluations. The savings gained by second order convergence may or may
not outweigh the cost of additional evaluations, depending on the problem.
However, Steffensen’s method is likely ideal when responses are inexpensive to
compute or to interpolate from a precomputed database.

3.2. Newton Methods
The eigenvalue response matrix problem has been recognized as nonlinear

since it was first solved, but it has not been cast in a form for solution directly
by Newton-based methods until quite recently [6, 26].

The eigenvalue response matrix equation, k update equation, and L2 nor-
malization of J− can be written as the nonlinear residual

f(x) =







(MR(k)−λI)J−
F(k)J−− (kL(k)J−)

1
2
− 1

2
JT
−J−






= 0 , (28)
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and the associated Jacobian is defined

f′(x) =







(MR−λI) MRkJ− −J−
(F− kL) (Fk− kLk− L)J− 0
−JT
− 0 0






, (29)

where the k subscripts indicate partial differentiation. For R(k) of size m×m,
the Jacobian is of size (m+2)×(m+2). Moreover, after one evaluation of the re-
sponse quantities, only the first m+1 rows of the (m+1)th column of f′ are not
known a priori, and that unknown column requires only one additional evalu-
ation of the response quantities to allow for a finite difference approximation
of the partial derivatives with respect to k. Hence, like Steffensen’s method,
Newton’s method requires two evaluations of k per iteration, if the latter ap-
proximates the derivative via functions evaluated at k and k + δk. Typically,
a value of δk ≈ pεmachine ≈ 10−8 is nearly optimal for minimizing roundoff
error. However, at potentially reduced performance, the finite difference can
use previous values of k; in this case, convergence would likely improve every
iteration as successive k values approach the solution.

3.2.1. Newton’s Method
Newton’s method [27] solves a nonlinear system via the sequence

s=−f′(x(n))−1f(x(n)) (30)

where s is the Newton step, and the Newton update is

x(n+1) = x(n)+ ls , (31)

with a step length l defined to guarantee a decrease in ||f(x)||2. If a solution x∗

exists, and f′ is Lipschitz continuous near and nonsingular at x∗, then Newton’s
method is known to exhibit quadratic convergence [27].

For a standard, non-parameterized eigenvalue problem Ax = λx , Peters
and Wilkinson [28] have shown the associated Jacobian (similar to Eq. 29
without the (m + 1)th column and row) is nonsingular at the solution if λ
is simple (which is true for the dominant mode of interest [3]). However, it
does not appear the full Jacobian in Eq. 29 is guaranteed to be nonsingular at
the solution, though, in practice, the conditions for singularity have not been
observed.

3.2.2. Inexact Newton and JFNK
An inexact Newton method uses an approximate linear solve for the Newton

step satisfying
||f′(x (n))s+ f(x(n))||2 ≤ η||x(n)||2 , (32)
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where η is the “forcing term” that may vary at each iteration [27]. The inex-
act solution of the Newton step necessarily impacts convergence of Newton’s
method, but convergence typically remains superlinear. While any iterative lin-
ear solver could be used, the focus in this paper is on Krylov solvers, leading to
Newton-Krylov methods.

Because solving for s involves only the action of the Jacobian, the Jacobian
need not be explicitly formed, and Newton-Krylov methods become Jacobian-
Free Newton-Krylov (JFNK) methods, for which Knoll and Keyes provide an
extensive survey [29]. If the action of MR were performed in a matrix-free
manner, the same algorithm could be used to evaluate the action of f′ in a fully
matrix-free approach.

The Jacobian action is usually applied in JFNK methods using a finite differ-
ence approximation; however, because the Jacobian in Eq. 29 is defined almost
entirely a priori, only a relatively small portion of the action must be approxi-
mated via finite differences. This is critical for online response generation, for
which evaluation of k-dependent responses is the dominant cost, because each
Krylov vector generally represents a perturbed k.

3.2.3. Preconditioning JFNK
The key to effective use of Krylov-based linear solvers is often adequate

preconditioning. For JFNK, a preconditioner M is in some way “close” to the
Jacobian f′ but is easier to construct or apply. Moreover, M can be applied
either to the left, yielding the system M−1f′s=−M−1f, or to the right by solving
f′M−1s̃=−f and setting s=M−1s̃.

4. Numerical Results

In this section, the solvers developed in Section 3 are applied to several
benchmark problems to determine which of the various algorithms is best suited
for solving response matrix equations. All response matrix calculations were
performed using Serment, a parallel eigenvalue response matrix code, while
all responses were computed using libraries of Detran, a deterministic trans-
port code with implementations of the discrete ordinates, method of charac-
teristics, and diffusion approximations, and several modern transport solvers
developed specifically for the fixed-source problems characteristic of response
generation [30]. Serment and Detran use several external packages, includ-
ing PETSc [31] and SLEPc [21] for various linear, nonlinear, and eigenvalue
solvers.

Several diffusion and transport benchmarks were studied, including the 2-D
and 3-D IAEA [32], the 2-D Biblis [33], and 2-D Koeberg diffusion benchmarks,
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as well as the 2-D C5G7 [34] and 3-D Takeda [35] transport benchmarks. For
all problems, the multigroup dependence was exactly treated while the spatial
dependence was expanded in discrete Legendre polynomials [5, 23] DLPs.

For the diffusion problems, each 2-D assembly was discretized using a uni-
form 20×20 spatial mesh, corresponding roughly to 1 cm square cells. For the
3-D IAEA problem, 20 cm cubes were represented by a 10 × 10 × 10 spatial
mesh to reduce the size of the reference calculation. A mesh-centered finite
volume discretization was used for all problems.

For the 2-D C5G7 problem, pin cells were represented with a non-uniform,
volume-conserving 7× 7 mesh. The DLP basis on non-uniform meshes is not
conservative, meaning λ does not approach unity. For the 3-D Takeda bench-
mark, 5 cm cubes were represented using a uniform 0.25 cm spatial mesh in all
directions. Both problems were modeled using the discrete ordinates method
in angle with the diamond difference approximation in space.

For the transport benchmarks, the angular dependence was expanded in
DLPs for the angular flux or angular current, or a conservative basis of Cheby-
shev, Legendre, and/or Jacobi polynomials [23, 20] for the angular flux. For
all cases, a product quadrature was employed that exactly integrates the con-
servative basis moments [23].

When computing responses, no symmetry was considered. For homoge-
neous problems, exploiting symmetry would reduce the number of responses
by a factor of 4 in 2-D or a factor of 6 in 3-D. Such tricks are of course
handy for benchmarking, but in reality, reactor assemblies are only symmet-
ric at beginning-of-life (and that is on the order of 1/3 of the core fuel), and
even then, only at cold zero power. Once any realistic treatment of temperature
feedback is considered, all symmetry is lost, and essentially no insight is to be
gained from artificially reducing the problem size.

Unless stated otherwise, convergence is defined by ||f||2 ≤ 10−7, where f
is the nonlinear residual of Eq. 28. This criterion makes comparison of Picard
and Newton methods straightforward. For the diffusion and Takeda transport
benchmarks, Detran was used to compute the reference solution, while for the
2-D C5G7, reference results from the original documentation were used.

4.1. Diffusion Benchmarks

All the diffusion benchmarks studied have homogeneous assemblies using
two (IAEA, Biblis) or four (Koeberg) group data. Although not challenging by
current standards, these benchmarks are useful for probing the response matrix
solvers as functions of tolerance and expansion order.
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4.1.1. Tolerances and Errors
A convergence criterion based on one quantity may not be an accurate mea-

sure of the error in another quantity. For example, assembly powers for the 2-D
IAEA problem were computed for spatial orders of 0 through 4 subject to a
tolerance on the residual norm ranging from 10−1 down to 10−12. The rela-
tive eigenvalue error and maximum relative assembly error for each order as
functions of tolerance are shown in Figure 1. The results indicate that the con-
vergence error in assembly powers for a given order is negligible compared to
the truncation error due to the order for tolerances below approximately 10−6.
A similar trend appears for the eigenvalue error, but for looser tolerances. For
all subsequent analyses, a tolerance of 10−7 was selected to ensure only trun-
cation errors affect the solutions.

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

nonlinear residual tolerance

10−5

10−4

10−3

10−2

10−1

100

ei
ge

nv
al

ue
re

la
ti

ve
er

ro
r

[%
]

0
1
2
3
4

(a) Eigenvalue error.

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

nonlinear residual tolerance

10−3

10−2

10−1

100

101

102
as

se
m

bl
y

re
la

ti
ve

er
ro

r
[%

]

0
1
2
3
4

(b) Assembly power error.

Figure 1: Absolute relative eigenvalue (1a) and absolute maximum relative assembly power (1b)
errors for the 2-D IAEA problem as functions of the residual norm tolerance for several spatial
orders.

4.1.2. Orders and Accuracy
While a detailed discussion of basis accuracies is outside the present scope,

it is illustrative to assess convergence of the DLP spatial basis applied to the
diffusion benchmarks. Figure 2 shows the maximum relative error in the as-
sembly powers and absolute relative eigenvalue error as functions of spatial
order. For the 3-D IAEA problem, two approximations were used. The first is
a full expansion of order m in both spatial variables, meaning that on a given
side, the two-dimensional expansion is equivalent to the form

F(x , y)≈ a+ bx + c y + d x2+ ex y + f y2+ . . . . (33)
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The second case uses an order reduction scheme that limits the sum of the x
and y orders [18]. In this case,

F(x , y)≈ a+ bx + c y + d x2+ f y2+ . . . , (34)

where the cross term ex y has been omitted. Previous experience has demon-
strated that these cross terms, particularly at high order, have little value,
clearly demonstrated in Figure 2.

For all the problems, a fourth order expansion yielded assembly (or nodal,
for the IAEA-3D problem) errors below a tenth of a percent and eigenvalue
errors on the range of a few pcm. Consequently, a fourth order expansion was
selected for use in comparing the solvers in subsequent performance analyses.
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Figure 2: Absolute relative eigenvalue (2a) and absolute maximum relative assembly power
(2b) errors as functions of spatial order.

4.1.3. Inner Solver Comparison
For the Picard solver, several eigenvalue solvers were investigated to solve

the inner λ-eigenvalue problem, including the power (PI), Krylov-Schur (KS),
and explicitly-restarted Arnoldi methods (ERAM), which are each implemented
in SLEPc [21]. Because convergence of the outer Picard iteration is sensitive
to the inner convergence, the tolerance τλ of the inner problem was set more
tightly at 10−10.

Table 1 provides the number of inner and outer iterations, total computa-
tional time, and response generation time for each method and diffusion prob-
lem. For all problems, KS outperforms ERAM by a small margin and PI by a
factor of two or three. Initial studies demonstrated that IRAM (not included
by default with SLEPc) performs at about the same level as KS [7]. Were the
tolerance smaller, the improvement of KS over PI would likely diminish.
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For the three 2-D problems, the response time constituted a significant por-
tion of the total computational time, ranging from about a third to half de-
pending on the solver. For the 3-D IAEA problem, the global solver was the
dominant cost because the diffusion problems underlying the response genera-
tion are inexpensive compared to the much larger global problem.

Table 1: Picard inner solver comparison for diffusion problems.

solver time a r. time b inners outers

2-D IAEA

PI 1.87 0.37 3416 6
KS 0.69 0.41 33 6

ERAM 0.77 0.40 36 6

Biblis

PI 2.16 0.68 3437 5
KS 0.97 0.68 31 5

ERAM 1.05 0.69 34 5

Koeberg

PI 5.83 1.62 2012 3
KS 2.38 1.66 21 3

ERAM 2.63 1.67 21 3

3-D IAEA

PI 910.63 18.77 4427 6
KS 210.91 19.47 75 6

ERAM 294.48 19.75 70 6
a Total time [s]
a Response generation time [s]

4.1.4. Outer Solver Comparison
Because KS outperformed the other inner solvers investigated, it was se-

lected to study the Picard-based outer iteration schemes. For this study, Picard
iteration, along with the accelerated variant based on the regula falsi method,
was compared to Steffensen’s method and Newton’s method.
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4.1.5. Picard Acceleration
The four Picard acceleration schemes were applied to the 2-D IAEA and

Koeberg problems using a fourth order expansion. Figure 3 shows the nonlinear
residual as a function of outer iteration for the unaccelerated case along with
the four accelerated cases.

Picard iteration alone is a rapidly converging process, but acceleration schemes
can further reduce the number of iterations required. Exponential and inverse-
inverse extrapolation provide the most robust improvement, although for the
Koeberg problem, they did not reduce the number of iterations. The accel-
eration schemes each critically depend on the limit λ → 1, which is satisfied
only if the responses are both conservative and computed very accurately. The
diffusion equation for each response is small and can be solved nearly exactly
via LU factorization. Moreover, the responses are conservative because a uni-
form mesh and DLP expansion were used. Even so, the linear-inverse and
linear-linear suffered from their sensitivity to round-off errors, and even though
care was taken when implementing the coefficients, the convergence tolerances
used were not tight enough to ensure stability. Because the exponential scheme
yielded a slightly smaller final residual norm, it was included for study with the
remaining algorithms.
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Figure 3: Comparison of Picard acceleration schemes for the 2-D IAEA problem (solid lines) and
Koeberg problem (dashed lines).
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4.1.6. Newton Variants
For Newton’s method, unpreconditioned and preconditioned variants using

ILU were studied. The ILU preconditioner is based on an explicit Jacobian
constructed either once, using the initial responses, or every iteration, using the
updated responses. In all cases, the underlying linear solves were performed
with GMRES(30), and the ILU preconditioner was applied with 0 through 2
levels.

Table 2 provides results for the 2-D IAEA and Koeberg problems with a
fourth order spatial expansion and 4 × 4 nodes per assembly, corresponding
to 184962 and 369922 unknowns, respectively. Somewhat larger problems
were used to highlight differences between the preconditioners because the
preconditioners offered no benefit for the single node case.

For both problems, ILU(0) preconditioning offered the best performance
with respect to time, although higher preconditioner levels led to lower num-
bers of inner iterations. Failure to update the preconditioner had no discernible
effect on the iteration count and yielded lower computational times than when
the preconditioner was updated at every iteration. This can be explained by
noting that a majority of the Jacobian is relatively insensitive to small changes
in k. Given the initial guess for k (unity in these cases) is expected to be pretty
close to the final answer, the original Jacobian should be nearly equal to its
final value.

4.1.7. Comparing Picard, Steffensen, and Newton
Several metrics can be used to compared the outer solvers. Ultimately, wall

clock time is most important in practice. However, the number of iterations of
each method, both outer and inner, is also indicative of the algorithm perfor-
mance, independent of any particular implementation. These data are provided
in Table 3 for each of the benchmarks. A fourth order spatial expansion was
used for all problems, with order reduction applied to the 3-D IAEA problem.
For the 2-D problems, a 4 × 4 node-per-assembly model was used, while for
the 3-D IAEA problem, a single node was used, corresponding to 184962 un-
knowns for the 2-D IAEA and Biblis problems, 369922 for the Koeberg problem,
and 988382 for the 3-D IAEA problem.

The tested solvers include Picard (P) with and without exponential extrapo-
lation (exp), Steffensen’s method (S), and Newton’s method (N). For Newton’s
method, two schemes were examined. The first is the same as used for testing
the preconditioning and is based on a Jacobian with k-derivatives computed
using a finite difference with a ∆k = 10−8. The second scheme uses the two
most recent k values for computing∆k, resulting in a larger∆k and, therefore,
a less accurate finite difference. However, the accuracy of the finite difference
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Table 2: Newton solver ILU preconditioner comparison for diffusion problems.

preconditioner timea r. timeb inners outers

2-D IAEA

none 12.62 0.46 477 4
no update ILU(0) 10.43 0.46 144 4
no update ILU(1) 11.68 0.46 118 4
no update ILU(2) 12.37 0.46 86 4

ILU(0) 10.69 0.46 144 4
ILU(1) 14.07 0.45 118 4
ILU(2) 17.12 0.45 86 4

Koeberg

none 45.82 3.29 403 4
no update ILU(0) 43.18 3.34 157 4
no update ILU(1) 52.18 3.35 136 4
no update ILU(2) 58.26 3.35 91 4

ILU(0) 45.61 3.35 157 4
ILU(1) 67.44 3.38 136 4
ILU(2) 89.90 3.35 91 4

a Total time [s]
b Response generation time [s]

did not affect the convergence, and for all four problems, the coarse differ-
ence yielded the same number of outer iterations as the fine difference while
reducing the number of k evaluations by nearly half.

Steffensen’s method provided the fastest convergence with respect to outer
iterations, but it requires two k evaluations per outer iteration. Picard with ex-
ponential extrapolation yielded the lowest computational time and the fewest
k evaluations. While Newton’s method with a coarse ∆k is competitive with
respect to k evaluations, the overhead of solving the linear systems is higher
than the cost of the λ-eigenvalue problem in the Picard iteration.

4.1.8. Comments
Based on these diffusion analyses, Picard iteration with KS for the inners

and exponential extrapolation for accelerating the outers represents an ideal
ERMM solver. The Newton methods yield perform nearly as well with respect
to k evaluations, but the cost of applying the method is higher per iteration
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than the Picard variants, implying further work on preconditioning the inner
solves is warranted.

4.2. 2-D C5G7

The 2-D C5G7 transport benchmark is a small quarter core model consist-
ing of two UO2 assemblies and two MOX assemblies, all surrounded by an
assembly-width reflector. The model is based on 7 group data and homoge-
nization of the fuel and cladding.

4.2.1. Orders and Accuracy
To assess the accuracy of the response schemes available for transport prob-

lems, the C5G7 benchmark was solved using a variety of angular bases. Be-
cause a uniform spatial mesh was not used, the DLP spatial expansion con-
verged more slowly for the C5G7 problem than for the uniformly-meshed dif-
fusion problems. For all cases, the response transport calculations were con-
verged to a relative residual norm of 10−8, and the outer calculation was con-
verged to a nonlinear residual norm of 10−7.

Table 4 shows the convergence of the eigenvalue and pin power errors as
a function of space-angle order. By third order, the conservative basis yields
very limited improvement, most likely due to the DLP spatial basis used. A
nonuniform mesh yields a nonconservative DLP expansion that is inaccurate at
low orders compared to a conservative expansion. Table 4 shows that both the
DLP and Chebyshev bases yield maximum relative pin power errors of slightly
more than 2%. These results are in contrast to results reported in Ref. [36],
which used a full order spatial basis to eliminate spatial errors and showed that
a conservative Chebyshev basis significantly outperforms a DLP basis. Conse-
quently, the present results indicate that spatial expansion errors are dominant
by second or third order, and, therefore, a full implementation and systematic
study of new spatial bases is warranted.

4.2.2. Solver Comparison
The same global solvers used in Section 4.1.7 were also applied to the 2-D

C5G7 problem. In this case, 64 processes were used for response generation,
while a single process was used for the outer (λ-eigenvalue) problem.

Table 5 provides the wall time, as well as the total and response time
summed over all processes. In addition, the number of inner iterations, outer
iterations, and k evaluations are included. Newton’s method with the coarse
k derivative yielded the best performance, with a wall time of 1.09 · 103 sec-
onds, total time of 6.97 ·104 seconds (summed over all processes), and a solver
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(excluding response generation) time of 34 seconds. Use of the fine k deriva-
tive required more outer iterations and, consequently, significantly more time.
Steffensen’s method required the fewest outer iterations but at the cost of more
k evaluations. Standard Picard iteration readily converged, but extrapolation
failed miserably. However, this failure is completely expected: the spatial basis
is not conservative, so λ does not tend toward unity, and, hence, extrapolation
does not apply. This highlights significant value in selecting a conservative ba-
sis, because the extrapolated Picard iteration was the best performing method
for the diffusion problems.

4.3. 3-D Takeda

The 3-D Takeda benchmark is a simple benchmark, but it allows for in-
depth examination of the convergence properties of the basis sets. The model
consists of three homogeneous regions using a two group approximation in
energy. For this study, the the “rods in” configuration was used.

4.3.1. Order Convergence
Figures 4a and 4b provide the absolute relative error in the eigenvalue and

the maximum absolute relative error in the nodal powers as a function of an-
gular order for several spatial orders. Order reduction was used in both space
and angle. Very little improvement was observed with increasing angular order
for a spatial order of zero. For higher spatial orders, an increasing angular or-
der yielded a monotonically decreasing error for both k and the nodal powers.
The conservative basis outperformed the DLP variants, yielding nearly sub-1%
nodal errors for a third order angular expansion and spatial orders greater than
one. DLP-J yielded slightly better nodal powers than DLP-ψ at higher orders
but higher k errors for all orders.

For all angular bases, a significant trend observed was the markedly dimin-
ishing returns for spatial orders above two. In other words, the most consistent
improvement observed, irrespective of angular order and basis, was obtained
by shifting from first to second order in space. This trend is reasonable be-
cause the nodes are homogeneous, and boundary quantities should, therefore,
be relatively smooth functions of space.

4.3.2. Solver Comparison
The same solvers used for the diffusion and 2-D C5G7 problems were ap-

plied to the Takeda problem. A second order spatial expansion with a third
order angular expansion in the azimuth and polar variables was used. Order
reduction was applied to the spatial and angular terms. The problem was run
with 64 processes, with one process for the global problem. Table 6 provides
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(b) Nodal power error.

Figure 4: Takeda problem absolute relative eigenvalue (4a) and nodal power (4b) errors as a
function of angular order for several spatial orders. The solid lines indicate the conservative
basis, while the dashed and dashed-dot lines indicate the DLP basis used to expand the angular
flux ψ and current J , respectively.

the wall time, total time summed over all processors, and the total response
function time summed over all processors.

Similar to the diffusion results, the extrapolated Picard iteration proved to
be the most efficient of the solvers studied. Newton’s method with the coarse
k finite difference yielded just as few k evaluations but with a slightly higher
overall cost.

5. Conclusion

Based on the results for both the diffusion and transport problems, Picard it-
eration with exponential extrapolation appears to be the most efficient method
studied, yielding minimum numbers of k evaluations while providing the low-
est global solver overhead. However, extrapolation is based on λ converging
to unity, and because this is not always guaranteed, Newton’s method with the
coarse finite difference provides a more consistently robust solver, with nearly
as few k evaluations and only relatively small overhead due to the inner linear
solves.

Further work on preconditioners for Newton’s method will likely reduce
the corresponding (global) computation time to levels similar to extrapolated
Picard iteration. Even so, the efficacy and simplicity of Picard iteration suggests
that care should be taken to select a conservative basis leading to λ = 1 upon
convergence.
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Ultimately, the present work supports broader efforts to use ERMM for pro-
duction level analyses, but significant challenges remain, dominated by the vast
number of responses required for realistic modeling. Solvers were developed
that reduce the number of k evaluations required and minimize time spent gen-
erating responses, while related recent work successfully developed diffusion-
based transport preconditioners that significantly reduce the time of individual
response calculations [30]. Because responses are independent, parallel com-
putation will be a natural component of any future ERMM implementation.
Scoping studies have demonstrated nearly ideal scaling of Serment on a small
research cluster [23], and ongoing work aims to test Serment on leadership-
class machines.
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Table 3: Outer solver comparison for diffusion problems.

solver timef r. timeg inners outers k-evals.

2-D IAEA

Pa 10.26 0.32 76 5 6
P+expb 9.09 0.27 65 4 5

Sc 11.20 0.39 80 3 7
N+δkd 10.35 0.44 144 4 8
N+∆ke 10.22 0.28 146 4 5

Koeberg

P 9.26 0.56 64 4 5
P+exp 9.06 0.56 62 4 5

S 9.36 0.56 64 2 5
N+δk 10.89 0.92 140 4 8
N+∆k 10.49 0.57 140 4 5

Biblis

P 25.65 1.61 54 3 4
P+exp 25.76 1.62 54 3 4

S 29.61 2.02 60 2 5
N+δk 43.10 3.26 157 4 8
N+∆k 42.07 2.05 157 4 5

3-D IAEA

P 213.51 17.93 75 6 7
P+exp 167.93 12.79 62 4 5

S 214.07 17.98 75 3 7
N+δk 269.36 20.93 129 4 8
N+∆k 261.27 13.02 129 4 5
a Picard
b Picard with exponential extrapolation
c Steffensen
d Newton with fine k difference
e Newton with coarse k difference
f Total time [s]
g Response generation time [s]
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Table 4: 2-D C5G7 order convergence. All errors in %, with reference MCNP results from the
original documentation.

basis order ek
a max |ei|b

max |ei |
pref

i

∑

i |ei |
N

p
∑

i e2
i

N

∑

i |ei |pref
i

N
p̄ref

DLP-ψ 0 1.00 33.32 109.45 9.41 0.36 10.97
DLP-ψ 1 0.72 38.17 18.49 2.65 0.12 3.06
DLP-ψ 2 0.13 4.36 7.49 0.98 0.04 1.36
DLP-ψ 3 0.01 2.20 5.81 0.37 0.02 0.42

Chebyshev-ψ 0 2.61 40.43 107.58 9.46 0.37 10.86
Chebyshev-ψ 1 0.07 19.93 11.38 0.99 0.05 1.22
Chebyshev-ψ 2 0.04 2.73 6.28 0.39 0.02 0.40
Chebyshev-ψ 3 0.04 2.27 6.00 0.35 0.02 0.38

Detranc n/a 0.01 0.91 0.94 0.17 0.01 0.22
a ek = |k− kref|/kref

b ei = pi − pref
i , for ith pin

c based on Detran solution of the C5G7 problem with the same discretization and quadrature
and, thus, represents the lower error bound for Serment

Table 5: Outer solver comparison for 2-D C5G7 problem with first order expansions. Picard with
exponential extrapolation fails due to the nonconservative spatial basis, i.e. λ 6= 1.

solver w. timef timeg r. timeh inners outers k-evals.

Pa 1.67 · 103 1.07 · 105 1.07 · 105 16 6 7
P+expb 6.26 · 103 4.00 · 105 4.00 · 105 36 21 21

Sc 1.73 · 103 1.11 · 105 1.11 · 105 16 3 7
N+δkd 4.60 · 103 2.94 · 105 2.94 · 105 76 8 16
N+∆ke 1.09 · 103 6.97 · 104 6.96 · 104 33 4 5
a Picard
b Picard with exponential extrapolation
c Steffensen
d Newton with fine k difference
e Newton with coarse k difference
f Wall time [s]
g Total time summed over all processes [s]
h Total response generation time summed over all processes [s]
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Table 6: Outer solver comparison for 3-D Takeda problem with second order spatial expansion
and third order polar and azimuthal angle expansions.

solver w. timef timeg r. timeh inners outers k-evals.

Pa 9.76 · 102 6.25 · 104 5.91 · 104 56 13 14
P+expb 3.51 · 102 2.24 · 104 2.12 · 104 23 4 5

Sc 1.05 · 103 6.72 · 104 6.36 · 104 58 7 15
N+δkd 7.30 · 102 4.67 · 104 4.26 · 104 57 5 10
N+∆ke 3.87 · 102 2.48 · 104 2.14 · 104 44 4 5
a Picard
b Picard with exponential extrapolation
c Steffensen
d Newton with fine k difference
e Newton with coarse k difference
f Wall time [s]
g Total time summed over all processes [s]
h Total response generation time summed over all processes [s]
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