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Abstract 

This paper describes the underlying principles of a computer model, CHREST+, which learns to solve problems using 
diagrammatic representations. Although earlier work has determined that experts store domain-specific information 
within schemata, no substantive model has been proposed for learning such representations. We describe the different 
strategies used by subjects in constructing a diagrammatic representation of an electric circuit known as an AVOW dia-
gram, and explain how these strategies fit a theory for the learnt representations. Then we describe CHREST+, an ex-
tended version of an established model of human perceptual memory. The extension enables the model to relate informa-
tion learnt about circuits with that about their associated AVOW diagrams, and use this information as a schema to im-
prove its efficiency at problem solving. 

Introduction 

Earlier work has established the general form of a model of problem solving with diagrams and the kinds of in-

ternal representations required for effective performance. This project attempts to combine these ideas into a 

learning-based framework, so developing a computational model which can learn effective representations for 

problem solving with diagrams. Our framework is based on Chase and Simon’s (1973) chunking theory, which 

hypothesises that an expert’s memory contains a large number of perceptual chunks, which can be used for prob-

lem recognition and decomposition. CHREST (Gobet, 1998; Gobet & Simon, in press) is a computer model 

which uses a simulated eye and Short-Term Memory (STM) for learning a discrimination network of perceptual 

chunks. This model has been shown to provide an excellent fit to human data in the task of recalling chess posi-

tions. 

CHREST shares a number of components with models of reasoning and inferencing with external representa-

tions (e.g. Tabachneck-Schijf, Leonardo & Simon, 1997). These include an external representation, a simulated 

eye and a STM. In general, the STM may contain a number of components, such as: a perceptual memory, for 

visuo-spatial information; a  verbal memory, for propositional or sentential information; and also a memory for 

information relating to the current goals of the system. The Long-Term Memory (LTM) of CHREST is a dis-

crimination network of perceptual chunks. In this paper we extend CHREST with an output device, a pen, for 

adding information to the external representation. More importantly, we include suitable internal representations 
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for associating problem states with domain-specific information about possible solutions. Detailed work in this 

area has identified schemata as the primary representation of skilled knowledge (e.g. Koedinger & Anderson, 

1990). However, in spite of this theory being the basis of intelligent tutoring systems (e.g. Koedinger & Ander-

son, 1993), no substantive computational model has been proposed for learning such representations. This ques-

tion is addressed in the remainder of this paper. 

 This paper focuses on a specific diagrammatic representation, AVOW diagrams, for problem solving in the 

domain of electric circuits. Diagrammatic representations support efficient problem solving by humans because 

they encode domain-specific information in constraints such as the topology or geometry of the diagram (e.g. 

Larkin & Simon, 1987). AVOW diagrams are themselves an example of a wider class of diagrammatic represen-

tations, known as Law Encoding Diagrams (Cheng, 1996), which encode physical laws of scientific domains in 

the properties of the diagram. The construction of AVOW diagrams makes a suitable domain for our project be-

cause, firstly, subjects require a few hours to demonstrate developing expertise, and, secondly, the performance 

of subjects can be shown to conform with the chunking and schema theories of expert representations.  

We begin by describing the diagrammatic representation used as a target domain for our model, and how data 

from subjects’ protocols provides support for the chunking and schema theories of expert representations. Then 

we describe a concrete model for learning perceptual chunks, and extend it to support the acquisition of multiple 

representations. The extended model, known as CHREST+, learns information which supports a growing exper-

tise in problem solving with diagrams.   

Representing Circuits as AVOW Diagrams 

We focus in this paper on a specific task requiring subjects to construct a diagrammatic representation for electric 

circuits. This task has the advantage of requiring relatively little training time before signs of expertise are ob-

served in subjects. This rapid development is in part due to the fact that diagrammatic representations index in-

formation in a manner which supports useful and efficient computational processes (Larkin & Simon, 1987; Ta-

bachneck-Schijf, Leonardo & Simon, 1997; Zhang & Norman, 1994). Cheng (1996) has introduced a range of 

representations for problem solving and learning in science which rely on geometric or topological properties of 

the diagrams to encode domain-specific laws. These kinds of representation enable perceptual information to de-

Ohm’s Law: V = I * r 

 

Power Law:  P = I * V 

Figure 1 : An AVOW box for a resistor. 
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termine the conceptual similarity of separate instances. These points are manifested in our example domain, us-

ing a diagrammatic representation for electric circuits known as AVOW diagrams (Cheng, 1998, 1999). 

An AVOW diagram is composed of a number of AVOW boxes, with each AVOW box in the diagram repre-

senting a specific resistor (or load) within an electric circuit. An example is shown in Figure 1. An individual 

resistor has the properties of voltage (V), current (I) and resistance (r), and these properties are represented dia-

grammatically in the AVOW box by scaling the indicated dimension, voltage being the height, current the width, 

and resistance the gradient of the box’s diagonal. The relation of the gradient to the box’s height and width en-

capsulates Ohm’s law, and the area of the box also represents the power expended in the resistor.  

Simple rules of composition are used to combine separate AVOW boxes into a complete diagram for an electric 

circuit. The composition process relies on breaking the circuit into collections of parallel and series resistors. 

Two series resistors are represented by aligning two AVOW boxes vertically, as shown in Figure 2(a), and two 

parallel resistors by aligning the boxes horizontally, as shown in Figure 2(b). Although simple, these rules encap-

sulate Kirchhoff’s Laws which govern the flow of current and distribution of potential differences in electric cir-

cuits. For the completed AVOW diagram to be a well-formed representation of the circuit, it must be a rectangle 

completely filled with AVOW boxes with no overlap or gaps. These rules additionally capture an important ab-

straction often used in circuit analysis: a collection of resistors in a circuit can be regarded as equivalent to a sin-

gle resistor, and formulae exist to compute this single resistor’s resistance from that of its components. In the 

same way, a collection of AVOW boxes can be regarded as equivalent to a single AVOW box. The difference is 

that, just as with the single AVOW box, the resistance of the total AVOW diagram can be found by measuring 

the gradient of the total rectangle’s diagonal, irrespective of the layout of the separate boxes which comprise it; in 

the equivalent algebraic case, separate formulae must be used for each arrangement of resistors. This, coupled 

with the geometrical nature of the composition rules, in large part explains computational benefits of working 

with this representation.  

The Problem to Solve: Constructing an AVOW Diagram 

The construction of an AVOW diagram for a given circuit requires the subject to obey two sets of constraints 

simultaneously: the first is to form an accurate representation of the circuit, and the second is to construct a well-

formed AVOW diagram. For an ideal problem solver, defined as one for which no resource constraints apply, the 

problem becomes a technical one: for each resistor, a separate AVOW box must be drawn, and its dimensions 

(height, width, gradient) can be computed from the circuit using appropriate algebraic equations. This is possible 

because the AVOW diagram is an equivalent representation for the information in the circuit. However, the 

AVOW diagram, as a diagrammatic representation, provides some assistance with the necessary computations, 

and the way in which human learners take advantage of this is what makes their behaviour interesting and worth 

simulating. 
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Essentially, the human learner relies on the constraints imposed by the rules for composing AVOW diagrams. 

The geometric and intuitive nature of these constraints lead to the computational benefits when working with this 

diagrammatic representation. For instance, the compositional rules for AVOW boxes mean that the size of a box 

will be constrained by any neighbouring boxes, and so not require computing from the circuit diagram. This also 

means that each problem solver can adopt a different construction strategy, depending on which of these con-

straints is used at any time: either information is explicitly taken from the circuit diagram, or else the evolving 

AVOW diagram itself is used to constrain the construction process. In consequence, a rich variety of  strategies is 

observed in human subjects, even with relatively simple problems. This can be seen in Figure 4, where we illus-

trate the separate steps taken by three subjects in constructing an AVOW diagram for the circuit illustrated in 

Figure 3(a); the complete AVOW diagram is illustrated in Figure 3(b).  

The subject (S15) in Figure 4(a) begins by draw-

ing the AVOW box for one of the resistors in the 

diagram; most often subjects start with the top-left 

one. Because the only knowledge about the resistor 

immediately available is that its resistance is 1 ohm, 

S15 draws a square AVOW box. Next, S15 applies 

the same reasoning to the adjacent resistor, but this 

time, because the two resistors are in parallel, the 

AVOW boxes are aligned horizontally. Finally, S15 

can draw the third resistor, an AVOW box which is 

constrained to be aligned with the lower edge of the previous two boxes, and also a square, because its resistance 

is again 1 ohm. Once the AVOW diagram is complete, S15 can use a ruler (or a background grid/mental calcula-

tions) to find the quantities in the diagram; the total height of the AVOW box represents 12V, the given value of 

the source. Therefore, by measuring and rescaling, the rest of the quantities in the circuit can be simply obtained. 

The second subject (S6), shown in Figure 4(b), exhibits a similar pattern but begins by only drawing diagonal 

lines for the resistance of each of the three resistors. These lines constrain the shape of the entire AVOW dia-

gram, and the final step is to fill in the implicit bounding squares, completing the diagram. Radically different is 

the progress of the third subject (S11), shown in Figure 4(c). S11 begins by drawing a single vertical line to rep-

resent the voltage across the entire circuit, making this line a multiple of 12 grid units. The next piece of informa-

tion to be filled in is the current flow through the left-hand of the top two resistors. This is followed by a line for 

the resistance of the lower resistor. At this point S11 now has a fully constrained diagram, and so proceeds me-

thodically to complete it. 

(a) Circuit Diagram 

A B 

C 

Figure 3 : Equivalent circuit and AVOW diagrams. 

(b) AVOW Diagram 
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The first thing to note is that the subjects use the sheet of paper as a store for known information, i.e. the repre-

sentation is used as an external memory aid which reduces demands on STM. The difference between the sub-

jects may be explained on two distinct dimensions: first, subjects differ in their level of experience with the do-

main; second, subjects differ individually in the sequences of actions used to construct the AVOW diagram. The 

different strategies used by the subjects S15 and S11, illustrated in Figures 4(a) and 4(c) respectively, may be 

explained with the theory of perceptual chunking (Chase & Simon, 1973; Egan & Schwartz, 1979; Koedinger & 

Anderson, 1990). For instance, S15 draws components of the circuit at the single resistor level, whereas S11 be-

gins by drawing a line representing the voltage for the entire circuit and proceeds by filling out key lines to con-

strain the diagram. Individual differences can be seen in how S6 and S11 fill out critical information to constrain 

the full AVOW diagram before completing the details, whereas S15 carefully completes each AVOW box before 

moving on to the next. Taken together, this suggests that subjects use perceptual cues from the circuit diagram to 

form an internal representation, or mental impression, of how the completed AVOW diagram should look. 

The basic elements for modelling such behaviour are an eye, a STM and an appropriate long-term perceptual 

memory. We restrict our attention in this paper to the acquisition of appropriate perceptual information. We be-

gin by discussing the chunking theory for perceptual memory, from which CHREST was developed. Later we 

show how CHREST’s learning operations and the use of an appropriate STM and directable eye model the acqui-

sition of chunks of perceptual information. 

The Chunking Theory of Memory 

The chunking theory of memory is based on EPAM (Elementary Perceiver and Memoriser), a well-known com-

puter model of a wide and growing range of memory tasks. The basic ideas behind EPAM include mechanisms 

for encoding chunks of information into long-term memory (LTM) by constructing a discrimination network. The 

EPAM model has been used to simulate the  learning of verbal material (Feigenbaum & Simon, 1962, 1984) and 

expert digit-span memory (Richman, Staszewski & Simon, 1995). EPAM has been expanded to use visuo-spatial 

information, as in MAPP (Simon & Gilmartin, 1973). CHREST (Gobet, 1998) is a further extension of EPAM 

which includes the ability to learn templates and semantic links between nodes. Next we describe the learning 

mechanisms used to construct a discrimination network and explain how CHREST can be extended to be a model 

of problem solving. In a later section we describe an extension of CHREST where nodes can be linked to repre-

sent equivalences between multiple representations. 

(b) S6 (a) S15 

(c) S11 

Figure 4 : Solutions by three subjects for the circuit in Figure 3(a). (This data has been taken from a larger study, Cheng, 

1999). Each set of diagrams shows the separate steps in the construction of the solution. 
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CHREST organises memory into a collection of chunks, where each chunk is a meaningful group of basic ele-

ments. For example, in chess, the basic elements denote the pieces and their locations; the chunks are collections 

of pieces, such as a king-side pawn formation. These chunks are developed as the discrimination network grows 

through the processes of discrimination and familiarisation. Essentially, each node of the network holds a chunk 

of information about an object in the world. The nodes are interconnected by links into a network, with each link 

representing the result of applying a test to the object. When trying to recognise an object, the tests are applied 

beginning from the root node, and the links are followed until no further test can be applied. At the node reached, 

if the stored chunk matches that of the object then familiarisation occurs, in which the chunk’s resolution is in-

creased by adding more details of the features in that object. If the current object and the chunk at the node 

reached differ in some feature, then discrimination occurs, which adds a new node and a new link based on the 

mis-matched feature. Therefore, with discrimination, new nodes are added to the discrimination network; with 

familiarisation, the resolution of chunks at those nodes is increased. 

The experiments in the recall of chess positions reported in Gobet (1998; Gobet & Simon, in press) show that 

CHREST captures the main features of perceptual memory gathered in experiments with human subjects; the dif-

ference between expert and novice behaviour is explained by the size of the discrimination network, i.e. the num-

ber of stored chunks of information. However, CHREST as it stands is not a model of problem solving behaviour. 

For instance, CHREST does not play chess as it lacks a mechanism for handling the construction of game trees 

and the interaction of various chunks. Although CHUMP (Gobet & Jansen, 1994), a program based on CHREST, 

does play chess, it does so purely by pattern recognition and without search. The important ability required in 

complex problem solving, which CHREST lacks, is the ability to form a plan. Accordingly, we adapt CHREST to 

handle multiple external representations, and apply it to acquiring perceptual chunks of electric circuits and their 

associated AVOW diagrams. The advantage of this domain is that a visual image of the target diagram can be 

used as a plan for problem solving, which is of the same type as the perceptual memory being acquired, whereas 

in chess, plans require a separate type of knowledge. In the remainder of this paper we describe some of the de-

tails of our current implementation of this model, and also show how our approach forms the basis of a larger 

model of problem-solving behaviour. 

Learning Internal Representations for Problem Solving 

For the model to learn to solve problems using diagrams, it must first extract information from the external repre-

sentation. We avoid an inappropriate amount of low-level simulation by assuming a set of basic visual primitives. 

These include identification of separate rectangles and shapes in the diagrams, as well as their relative position-

ing, alignment and interconnections. These primitives are a subset of those described in, for example, Lindsay 

(1988), and enable the model to parse the diagram into separate resistors or AVOW boxes; no experimental sub-

ject has shown difficulty in such parsing. We describe next how the model combines this information into larger 
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chunks for whole diagrams, the learning mechanism for associating problem states and their solutions, and how 

the learnt information generalises to assist in improving problem-solving ability. 

Acquiring Large Perceptual Chunks 

Small chunks are those of the order of the size of the visual field. These can be learnt and recognised by passing 

the information retrieved by the eye directly to the perceptual memory (LTM), where the standard familiarisa-

tion/discrimination process will apply. In order to acquire chunks for visual images which extend beyond the vis-

ual field, an interaction is needed between the eye, STM and LTM. The procedure here is the same as that used in 

CHREST (Gobet, 1998). The visual STM contains a queue of pointers to the last chunks observed. One of these 

chunks has a special status, and is known as the ‘hypothesis’, the largest chunk currently considered. Information 

retrieved from the visual field is passed to the LTM and familiarisation/discrimination will occur if appropriate. 

A pointer to the chunk indexed by the current visual object is placed in the STM queue. The hypothesis chunk is 

then combined with the most recent chunk stored in STM, and this new chunk will be used for further learning in 

LTM. 

This combination process depends upon two assumptions: firstly, that the two chunks combined will be over-

laid without duplication, and secondly that the image of the combined chunks will be the same if the chunks were 

combined in a different order. This latter assumption deals with the situation of visual chunks being retrieved by 

a different sequence of eye movements. Each of these assumptions is handled in our current implementation by 

retaining the identity of the separate elements in the visual field: a sorting process on these elements then re-

moves the duplications and ensures all chunks with the same elements are stored in an identical fashion. 
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Combining Multiple Representations 

In order to work with more than one representation, a method is needed for indexing information in different 

parts of a discrimination network other than with the links representing tests. Gobet (1996) describes such a 

method, showing how production rules and semantic networks can be learnt by combining multiple networks. All 

that is required is the use of additional links, which can be used when traversing the network.  

This method can be used to combine chunks for multiple representations; we assume that every node in the 

network will refer to a separate representation, which has a similar effect to a high-level test in the discrimination 

network for separating out the representations. Figure 5 depicts part of the network learned from the circuits in 

Figures 1-3 (the full network contains around 20 nodes): the left-hand part of the network represents information 

about electric circuits, and the right-hand information about AVOW diagrams. The relationship between these 

two representations can be shown by an equivalence link which connects a node from the electric circuit network 

with its equivalent AVOW representation in the AVOW diagram network. The dashed links in Figure 5 show 

examples of this. 

Before constructing an equivalence link, the two separate representations must be fully learned. This condition 

is easily identified during the recognition of a visual chunk; if no discrimination or familiarisation occurs at the 

node reached during recognition, then that node has fully learned the current chunk. Consider now that the sys-

tem is presented with a circuit, recognises it, and so places in STM a pointer to a fully learned chunk representing 

that circuit. On looking at the AVOW diagram, no training during its recognition will occur if a fully learned rep-

resentation for the AVOW diagram exists. Because of this, the pointer to the node representing the circuit dia-

gram will not be displaced from STM. Once the AVOW diagram has also been fully recognised, an equivalence 

 . . . 

Figure 5 : A discrimination network for multiple representations, showing two equivalence links and the inheritance structure. 

The chunks at some of the nodes are illustrated, dark lines represent test links and dashed links equivalence links. 

 . . .  
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link can be formed between the two nodes. This is the critical mechanism for learning multiple representations 

and associations between them in CHREST+, which is an important extension of CHREST. 

Solving Problems like Humans 

The LTM acquired for circuit diagrams and their associated AVOW diagrams has two features which generate 

human-like problem solving. First, the associations between the circuit and AVOW information learnt by the 

model form schemata, i.e. domain-specific information which supports problem solving (Sweller, 1988). The cir-

cuit information provides a template, or set of pre-conditions, for determining the set of circuits to which the 

schema applies, and the AVOW information provides a template for constructing specific AVOW diagrams for a 

range of possible quantities specified in the circuit. 

The second feature of our model is the efficiency with which these schemata support problem solving. This 

support comes in two parts: flexibility in creating specific solutions, and generalisation to complex circuits. 

Firstly, let us assume a solver matches a given circuit to a chunk in its memory and retrieves information about 

the corresponding AVOW diagram. The AVOW diagram must then be drawn as a series of separate lines, each 

line of the length determined by the quantities in the circuit diagram. As there is no constraint in the AVOW dia-

gram’s representation on the precise sequence in which to do this, the solver is free to fit its drawing sequence 

with the information provided in the circuit. For example, information about current will lead the solver to begin 

by drawing the width of the appropriate box to scale; information about voltage will lead the solver to scale the 

height of the appropriate box. Our model therefore exhibits the step-skipping behaviour described by Koedinger 

and Anderson (1990, 1993) as a characteristic of human solvers.  

A second support for problem solving is that each schema may be matched to sub-circuits as well as entire cir-

cuits, and it is a feature of the representation that perceptually similar circuits will have perceptually similar 

AVOW diagrams. Therefore, our model can use the perceptual hierarchy in the discrimination network to retrieve 

subgoals; if the circuit were that in Figure 3(a) but the lower equivalence link in Figure 5 had not been learnt, the 

model could instead use the link from its parent node to retrieve a diagram for a sub-component of the circuit. 

This feature also models individual differences observed in the way subjects tackle a problem. Essentially, be-

cause the discrimination network is built up in an incremental manner, individual differences between subjects 

arise naturally due to differences in the training sequence, caused, for instance, by subjects following different 

attentional strategies. These differences lead to different discrimination networks, which means different sub-

circuits will be retrieved from LTM, and therefore a different solution strategy will be followed. 

Conclusion 

This paper has described the underlying principles of a computational model, CHREST+, for simulating the 

learning process by which expertise at problem solving with diagrams develops in human subjects. CHREST+ is 
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based on an established model of perceptual memory which learns perceptual chunks. The key feature of 

CHREST+ is an ability to associate information about two different representations with equivalence links, and 

we use this ability to learn representations for problems and their solution. We have shown how the model ap-

plies to subjects learning a diagrammatic representation for electric circuits known as AVOW diagrams. 

CHREST+ has a number of desirable features for this level of cognitive modelling: firstly, the use of a perceptual 

memory and the learning of perceptual chunks is supported by observations of such behaviour in human subjects; 

secondly, the use of the AVOW diagram as a template for the solution process means that behaviour such as step-

skipping is observed in the model. Future work will focus on a more complete comparison of CHREST+’s behav-

iour with human data and also its application to further domains. 
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