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ABSTRACT 

The cerebral cortex is the part of our brains that has suffered the major changes 

during evolution and is responsible for our cognitive and memory capabilities.The 

complex circuitries of the cerebral cortex comprise networks produced by two 

major neuronal cell types: the excitatory projection neurons and the inhibitory 

interneurons. Although interneurons represent a minority (∼20%) of the entire 

neocortical neuronal population (Hensch, 2005; Wang et al., 2004; Whittington 

and Traub, 2003), it is thought that they play a vital role in the function of the 

cerebral cortex. In fact, altered balance between excitation and inhibition might 

result in death or lead to a large variety of neurological disorders (Belforte et al., 

2010; Kalanithi et al., 2005; Kitamura et al., 2009; Powell et al., 2003). The 

establishment of functional neuronal connectivity starts during development and 

depends on neuronal migration and the correct positioning of newborn neurons 

which integrate into specific layers of the cortex. Unlike the projection neurons, 

that originate from the pallial progenitors and migrate radially relatively short 

distances, interneurons are generated remotely in several progenitor pools of the 

subpallium. Therefore, they perform a complex choreography to reach their final 

position in the nascent cortex (Marín, 2013). 

Once in the cortex, GABAergic interneurons disperse tangentially via highly 

stereotyped routes throughout the cerebral cortex (Lavdas et al., 1999). 

Interneurons then switch from tangential to radial migration to adopt their final 

laminar position in the cerebral cortex (Ang et al., 2003; Polleux et al., 2002; 

Tanaka et al., 2003). Although significant progress has been made in identifying 

the molecules and mechanisms that regulate the precise tangential and radial 

dispersion of interneurons along the cortical streams, many questions about these 

complex processes are just beginning to be elucidated (Abe et al., 2014; López-
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Bendito et al., 2008; Myers et al., 2014; Sánchez-Alcañiz et al., 2011; Wang et al., 

2011). 

During the last past years, the fibronectin and leucine-rich family of 

transmembrane proteins (FLRT) have evolved as new regulators of several 

aspects during nervous system development, including neuronal migration. 

Interestingly, FLRTs display different mechanisms of action in several processes 

which demonstrate the versatility of these proteins. For instance, it was described 

that Unc5D-expressing neurons display a delayed migration to the FLRT2-

enriched cortical plate, consistent with FLRT2 acting as a repulsive cue for 

Unc5D
+
 cells (Yamagishi et al., 2011). Moreover, it has been recently reported 

that FLRT3-FLRT3 homophilic adhesion interaction regulates the tangential 

distribution of migrating pyramidal neurons (Seiradake et al., 2014). Thus, FLRTs 

have distinct functions that need to be integrated during radial and tangential 

patterns of pyramidal neuron migration. Taken together, all these data suggest that 

FLRTs are important molecules for the regulation of different processes during 

nervous system development. In this respect, our group has recently shown that 

FLRT3 plays a key role in axon guidance for the developing of the 

thalamocortical projections (Leyva-Díaz et al., 2014). However, we think that 

many of the FLRT-dependent functions in the nervous system remain to be 

elucidated. Therefore, this work is focused on the study of in vivo FLRTs 

involvement in the tangential migration of interneurons. For this, we have 

analyzed nervous system specific knockout (KO) animals for FLRT2 and FLRT3, 

single mutants as well as the double KOs (DKO). The results revealed that 

deletion of only one of the two genes does not affect the normal intracortical 

migration pattern of Calbindin (CB) positive interneurons during development. 

Surprisingly, the simultaneous suppression of FLRT2 and FLRT3, resulted in the 

appearance of several defects related to interneuron migration: a disruption of the 

distribution pattern of intracortical interneurons and a perturbed tangential 
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migration. In particular, a decrease in the number of CB
+
 cells transiting through 

the subplate (SP) route and a consequent increase of these cells within the 

intermediate zone was observed. As a consequence, the interneuron tangential 

progression transiting through the SP stream is also affected. In order to know if 

FLRTs were intrinsically involved in this effect, we analyzed the DKOs using the 

Emx1-Cre line which only recombines in the pallial pyramidal neurons. The 

results obtained were essentially the same as we obtained with the whole nervous 

system deletion of FLRT2 and FLRT3, indicating that FLRTs may function during 

interneuron migration by a non-cell autonomous mechanism, probably through 

Unc5 receptors. Finally, we addressed the intracellular mechanisms involved in 

FLRT function and considering the importance of the regulation of cytoskeleton 

dynamics to drive neuronal migration, we assessed the relationship between 

FLRT3 and the Rho GTPase Rnd3. In vitro, both proteins physically interact in 

heterologous cells. In addition, we started the analysis of Rnd3 mutant mice, and 

obtained preliminary results pointing that the interneuron tangential migration is 

also disrupted in these animals suggesting a possible functional interaction 

between FLRTs and Rnds in this system. 
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RESUM 

L’escorça cerebral és la part del cervell que presenta un nombre més gran de 

canvis al llarg de l’evolució i és la responsable de la nostra capacitat cognitiva i 

memòria. La complexitat dels circuits de l’escorça cerebral és majoritàriament 

conseqüència de les relacions entre dos tipus cel·lulars: les neurones excitatòries 

de projecció i les interneurones inhibitòries. Malgrat que les interneurones 

representen una minoria (∼20%) del conjunt de neurones neocorticals (Hensch, 

2005; Wang et al., 2004; Whittington and Traub, 2003), es creu que juguen un 

paper rellevant en la funcionalitat de l’escorça cerebral. De fet, l’alteració del 

balanç entre aquestes dues poblacions pot produir la mort o comportar una gran 

varietat de símptomes neurològics (Belforte et al., 2010; Kalanithi et al., 2005; 

Kitamura et al., 2009; Powell et al., 2003). L’establiment de les connectivitats 

neuronals a l’escorça en desenvolupament depèn de la migració i del correcte 

posicionament de les noves neurones que integren específicament les diferents 

capes corticals. A diferència de les neurones de projecció, que s’originen a partir 

dels progenitors del pal·li i migren radialment distàncies relativament curtes, les 

interneurones es generen en llocs allunyats, en diversos grups de cèl·lules 

progenitores, al subpal·li. En conjunt, estableixen una complexa coreografia per 

aconseguir la posició correcta final a l’escorça en desenvolupament (Marín, 

2013). 

Un cop a l’escorça, les interneurones GABAèrgiques es dispersen tangencialment 

a través de vies altament predefinides (Lavdas et al., 1999). A continuació, les 

interneurones canvien d’una migració tangencial a una de radial per adoptar 

finalment una disposició laminar a aquesta estructura (Ang et al., 2003; Polleux et 

al., 2002; Tanaka et al., 2003). Malgrat els progressos significatius en la 

identificació de les molècules i mecanismes que regulen la precisa dispersió 

tangencial i radial de les interneurones al llarg dels corrents corticals, moltes de 
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les qüestions relacionades amb aquests processos complexos, tot just comencen a 

ser esbrinades (Abe et al., 2014; López-Bendito et al., 2008; Myers et al., 2014; 

Sánchez-Alcañiz et al., 2011; Wang et al., 2011). 

En els darrers anys, les proteïnes transmembrana riques en fibronectina i leucina 

(FLRT) han estat identificades com a nous reguladors de diversos aspectes en el 

desenvolupament del sistema nerviós, incloent la migració neuronal. Especialment 

interessant és el fet que els FLRTs presenten mecanismes d’acció diferents en 

diversos processos, el quals demostren la versatilitat d’aquestes proteïnes. Per 

exemple, s’ha descrit que les neurones que expressen Unc5D presenten un 

endarreriment en la migració cap a la placa cortical rica en FLRT2, basat en la 

repulsió que estableix FLRT2 sobre les cèl·lules que expressen Unc5D 

(Yamagishi et al., 2011). A més, s’ha descrit recentment que la interacció 

homofílica FLRT3-FLRT3 regula la distribució tangencial de les neurones 

piramidals migratòries (Seiradake et al., 2014). En definitiva, els FLRTs presenten 

diverses funcions integrades als patrons de migració radial i tangencial de les 

neurones piramidals. En conjunt, totes aquestes dades suggereixen que FLRTs són 

molècules importants per la regulació de diferents processos durant el 

desenvolupament del sistema nerviós. En aquest sentit, el nostre grup ha 

demostrat recentment que FLRT3 juga un paper clau en la guia d'axons pel 

desenvolupament de les projeccions talamocorticals (Leyva-Díaz et al., 2014). El 

present treball de tesi està centrat en l’estudi in vivo de la implicació dels FLRTs 

en la migració tangencial de les interneurones. Amb aquest propòsit, hem analitzat 

animals knockout (KO) de FLRT2 i FLRT3, específics de sistema nerviós,com a 

mutants simples i també, com a dobles mutants (DKO). Els resultats indiquen que 

l’eliminació de l’expressió de només una de les dues proteïnes no afecta la 

migració normal d’interneurones positives per Calbindina (CB) durant el 

desenvolupament. Sorprenentment, la supressió simultània de FLRT2 i FLRT3, 

produeix diversos defectes relacionats amb la migració de les interneurones: una 
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disrupció del patró de distribució de les interneurones intracorticals i una migració 

tangencial. En particular, s’observa una disminució en el nombre de cèl·lules CB-

positives desplaçant-se per la sub-placa (SP) i un conseqüent increment d’aquestes 

cèl·lules a la zona intermèdia. Com a conseqüència, també es veu afectada la 

progressió tangencial de les interneurones a través de la SP. Per tal d’estudiar si 

els FLRTs es troben intrínsicament implicats en aquest efecte, hem analitzat els 

DKOs utilitzant la línia Emx1-Cre, que només recombina a les neurones 

piramidals del pal·li. Els resultats obtinguts són essencialment els mateixos que 

quan eliminem FLRT2 i FLRT3 al sistema nerviós complet, indicant que els 

FLRTs poden mediar la seva funció en la migració de les interneurones per un 

mecanisme extrínsec a la cèl·lula, probablement a través dels receptors Unc5. 

Finalment, considerant la rellevància de la regulació de la dinàmica del 

citoesquelet en la migració neuronal, abordem els mecanismes intracel·lulars 

implicats en la funció de FLRT, descrivint la relació entre FLRT3 i RhoGTPase 

Rnd3. In vitro, amb dues proteïnes interaccionen físicament en cèl·lules 

heteròlogues. A més, hem iniciat l’estudi del model murí mutant de Rnd3 obtenint 

resultats preliminars que indiquen que la migració tangencial de les interneurones 

també s’hi troba alterada. Això suggereix una interacció funcional entre els 

FLRTs i els Rnds en aquest sistema.  
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RESUMEN 

La corteza cerebral es la parte de nuestro cerebro que ha sufrido los mayores 

cambios durante la evolución y que es responsable de nuestras capacidades 

cognitivas y de memoria. La complejidad de la corteza cerebral comprende redes 

que se forman a partir de dos grandes tipos celulares de neuronas: las neuronas 

excitatorias de proyección y las interneuronas inhibitorias. Aunque las 

interneuronas representan la minoría (∼20%) del total de la población neocortical 

neuronal (Hensch, 2005; Wang et al., 2004; Whittington and Traub, 2003), se 

considera que juegan un papel vital en el funcionamiento de la corteza cerebral. 

De hecho, alteraciones en el equilibrio entre la excitación y la inhibición podría 

causar la muerte o dar lugar a una gran variedad de alteraciones neurológicas 

(Belforte et al., 2010; Kalanithi et al., 2005; Kitamura et al., 2009; Powell et al., 

2003). El establecimiento de las conectividad neuronal comienza durante el 

desarrollo y depende de la migración neuronal y del correcto posicionamiento de 

las nuevas neuronas, las cuales se integran dentro de capas específicas de la 

corteza. A diferencia de las neuronas de proyección, que se originan a partir de los 

progenitores del palio y migran radialmente distancias relativamente cortas, las 

interneuronas se generan en varios grupos progenitores del subpalio. Por lo tanto 

las interneuronas tienen que atravesar grandes distancias para alcanzar su posición 

final en la corteza en formación (Marín, 2013).  

Una vez en la corteza, las interneuronas GABAérgicas se dispersan 

tangencialmente por rutas bien definidas a través de la corteza cerebral (Lavdas et 

al., 1999). A continuación, las interneuronas cambian de una migración tangencial 

a una radial para adoptar su posición laminar final en la corteza cerebral (Ang et 

al., 2003; Polleux et al., 2002; Tanaka et al., 2003). A pesar de los progresos 

significativos en la identificación de moléculas y mecanismos que regulan la 

dispersión tangencial y radial de las interneuronas a lo largo de las rutas 
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corticales, muchas de las cuestiones relacionadas con estos procesos apenas 

empiezan a ser dilucidadas (Abe et al., 2014; López-Bendito et al., 2008; Myers et 

al., 2014; Sánchez-Alcañiz et al., 2011; Wang et al., 2011). 

Durante los últimos años, las proteínas transmembrana ricas en fibronectina y 

leucina (FLRT) han evolucionado como nuevos reguladores de varios aspectos 

durante el desarrollo del sistema nervioso, incluyendo la migración neuronal. 

Curiosamente, FLRTs muestran distintos mecanismos de acción en diferentes 

procesos que demuestran la versatilidad de estas proteínas. Por ejemplo, se ha 

descrito que las neuronas que expresan Unc5D muestran una migración retardada 

a la placa cortical, acorde con las señales repulsivas de FLRT2 hacia las células 

Unc5D
+ 

(Yamagishi et al., 2011). Por otra parte, se ha publicado recientemente 

que la interacción de adhesión homofílica FLRT3-FLRT3 regula la distribución 

tangencial de las neuronas piramidales que migran (Seiradake et al., 2014). Todos 

estos datos en conjunto sugieren que FLRTs son moléculas relevantes para la 

regulación de diferentes procesos durante el desarrollo del sistema nervioso. En 

este sentido, nuestro grupo ha mostrado recientemente que FLRT3 juega un papel 

clave en la guía axonal para el desarrollo de las proyecciones talamocorticales 

(Leyva-Díaz et al., 2014). Sin embargo, pensamos que muchas de las funciones 

dependientes de FLRT en el sistema nervioso aún no se han dilucidado. Por tanto, 

este trabajo se centra en el estudio de la implicación in vivo de FLRTs en la 

migración tangencial de las interneuronas. Para ello, hemos analizado animales 

knockout (KO) específicos del sistema nervioso para FLRT2 y FLRT3, simples 

mutantes y dobles KOs (DKO). Los resultados revelaron que la deleción de sólo 

uno de estos dos genes no afecta el patrón normal de migración intracortical de las 

interneuronas positivas para Calbindina (CB) durante el desarrollo. 

Sorprendentemente, la supresión simultánea de FLRT2 y FLRT3, resultó en la 

aparición de varios defectos relacionados con la migración de las interneuronas: 

una alteración en el patrón de distribución de las interneuronas intracorticales y 
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una migración tangencial afectada. En particular, se observó una disminución en 

el número de células CB
+
 que transitan via subplaca cortical (SP) y un 

consecuente incremento de estas células dentro de la zona intermedia. Como 

consecuencia, la progresión tangencial de las interneuronas que transitan a través 

de la ruta SP también se vio afectada. Para saber si FLRTs estaban implicadas 

intrínsecamente en este efecto, analizamos los DKOs usando la línea Emx1-Cre, 

que sólo recombina en las neuronas piramidales paliales. Los resultados obtenidos 

fueron básicamente los mismos que obtuvimos con la deleción completa de 

FLRT2 y FLRT3 en el sistema nervioso, indicando que FLRTs pudieran actuar 

durante la migración de las interneuronas mediante un mecanismo extrínseco a 

estas células, probablemente a través de los receptores Unc5. Por último, 

abordamos los mecanismos intracelulares implicados en la función de FLRT y, 

considerando la importancia de la regulación de la dinámica del citoesqueleto en 

la migración neuronal, evaluamos la relación entre FLRT3 y Rho GTPase Rnd3. 

In vitro, ambas proteínas interaccionan físicamente en células heterólogas. 

Además, comenzamos el análisis de los ratones mutantes Rnd3 y obtuvimos 

resultados preliminares que apuntan a que la migración tangencial de las 

interneuronas está también alterada en estos animales, sugiriendo una posible 

interacción funcional entre FLRTs y Rnds en este sistema.  
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1. INTRODUCTION 

The Brain, the most complex and magnificent organ in humans, gives us 

awareness of ourselves and of our environment. It directs our existence, 

controlling our voluntary movements and involuntary activities. As the mainstay 

of the consciousness, the brain is responsible of everything related with memories, 

intelligence, emotions and personalities, interpreter of the senses, initiator of body 

movement, and controller of behavior. The processing a constant stream of 

sensory data, and the unique abilities of communicating through a native 

language, are some of the qualities man that separates humans from the animal 

world. This was the result of an evolution towards increasing of brain complexity. 

However, it has been recognized that the physical differences of the human brain 

are not sufficient to explain the power that defines human ingenuity. Despite of 

the advances in the field of brain research most of the processes remain a mystery 

and that's why the numerous efforts began in the 90s with the decade of the brain 

and human brain project creation, it continues today in order to have a more 

complete understanding of this fascinating organ. In addition, nowadays increases 

the risk of diseases affecting the brain and new ones are emerging, as the most 

serious neurodegenerative diseases are Parkinson's disease or Alzheimer's, mental 

illness or the process that is so genuinely human aging. The research continues to 

bring new insights into the brain behavior, in turn, the neuroscience improved 

understanding makes the development of new treatment options possible and the 

research challenge is to discover the molecular mechanisms that govern these 

diseases and whether damage to the brain can be reversed. Besides this not only 

aims, moreover it is intended to go further in search of our privacy as human 

beings whose goals reach beyond the simple molecular and cellular understanding 

of the brain and trying to understand the complex mechanism that governing 

human mind and behavior to know the codes of how our brain works.  
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1.1 Development and organization of the mammalian cerebral cortex 

The forebrain is undoubtedly one of the most intricate regions of the mammalian 

brain, the principal organ of the central nervous system (CNS) (Marín and 

Rubenstein, 2003) and comprises a complex set of structures that derive from the 

most anterior region of the neural tube, the prosencepahlon (Marín and 

Rubenstein, 2002). The prosencephalon consists of the diencephalon and 

telencephalic vesicles, which evaginate from the dorsal aspect of the rostral 

diencephalon. The telencephalon is an extremely complex biological entity and is 

responsible for the higher functions of the CNS (Sultan et al., 2013). It has two 

major regions: the pallium (roof) and the subpallium (base). The pallium gives 

rise to the cerebral cortex and hippocampus, whereas the subpallium consists of 

three primary subdivisions: the striatal, pallidal, and telencephalic stalk domains, 

all of which extend medially into the septum. Finally, the olfactory bulbs (OB) 

develop as bilateral evaginations from a region of the prosencephalic neural plate 

intercalated between the septal and the cortical anlage (Cobos et al., 2001; 

Rubenstein et al., 1998) (Figure 1). 

Figure 1. Anatomical organization of the developing forebrain. (A) Schema of a sagittal 

section through the brain of an E12.5 mouse showing the main subdivisions of the forebrain, the 

diencephalon and the telencephalon. In the telencephalon, the pallium is depicted in lighter gray 
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than the subpallium. (B) Schema of a transversal section through the telencephalon of an E12.5 

mouse, indicating some of its main subdivisions. Abbreviations: VZ, ventricular zone; LGE, 

lateral ganglionic eminence; MGE, medial ganglionic eminence; POA, preoptic area. Figure 

adapted from (Marín and Rubenstein, 2003). 

 

Over the course of evolution, the mammalian brain massively expanded its size 

and complexity, which is thought to underlie the growth of intellectual capacity 

believed to be responsible for an increase in cognitive functions and intellectual 

skills. Most of this expansion is due to a massive increase in surface area of the 

multilayered sheet of neurons forming cerebral cortex (Finlay and Darlington, 

1995). Such expansion in cortical surface area, which is about 1000 times larger in 

humans than in mice, is not accompanied by a proportionate difference in 

thickness (only~2 times thicker in humans than mice) but rather comes together 

with the appearance of convolutions of the cortical sheet (gyrencephaly), with 

folds and fissures known as gyri and sulci (Welker, 1990; Rakic, 1995; Reillo et 

al., 2011). Largely based on the anatomical differences between the developing 

cortex of lissencephalic and gyrencephalic brains, several hypotheses have been 

formulated aiming to explain the massive increase in size and induction of brain 

folding during mammalian evolution (Ghosh and Jessberger, 2013) (Figure 2). 

The formation of the cerebral cortex during development occurs via highly 

complicated processes and fundamental principles. How to organize something as 

complex as the cerebral cortex?. It is precisely the target research of many 

neuroscientists, who through animals models are studying these processes in order 

to extrapolate to humans. Although for over a century the mouse became the 

preferred animal model for the research, several studies demonstrate that are 

decisive histological differences precisely distinguished the gyrencephalic from 

the lissencephalic cerebral cortex in species like mouse and guinea pig (Reillo et 

al., 2011). Thus, lately are used a variety of non primate gyrencephalic species, 
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including ferret (Fietz et al., 2010; Reillo et al., 2011; Reillo and Borrell, 2012), as 

more appropriate models to better understand the process in the human brain. 

Figure 2. Cerebral cortex expansion during evolution. Based on cortical folding, mammals can 

be divided into lissencephalic species (such as mice), which have smooth-surfaced cortices (A), 

and gyrencephalic species (such as ferrets and most primates), which exhibit a cortical surface 

expansion results in folded structures called sulci and gyri (B). Abbreviations: CP, cortical plate; 

IZ, intermediate zone; SVZ, subventricular zone; OSVZ, outer SVZ; ISVZ, inner SVZ; VZ, 

ventricular zone. Figure adapted from (Sun and Hevner, 2014). 

 

Although the laminar organization of the cortex is relatively similar in all 

mammals, the expansion in cortical surface area underlies the transformation from 

smooth cortex to the highly folded primate neocortex (Rakic, 1988). The 

expansion of the neocortex may be explained by some evolutionary changes in 

corticogenesis (Charvet and Striedter, 2011). Growth of the neocortex results from 

an increase in neuron numbers that populate larger cortical surface areas (lateral 

expansion) in thicker cortical walls (radial growth) (Lui et al., 2011; Rakic, 2007). 

The greater increase in neuronal production obviously underlies the remarkable 

expansion of the cortex (Betizeau et al., 2013; Fish et al., 2008; Gertz et al., 2014; 
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Lewitus et al., 2013; Lui et al., 2011; Martínez-Cerdeño et al., 2006; Noctor et al., 

1997; Rakic, 1995; Borrell and Götz, 2014). 

Most notably in primates, there is an expanded subventricular zone (SVZ), which 

can be subdivided into inner (ISVZ) and outer (OSVZ) regions (Fietz et al., 2010; 

Lui et al., 2011; Smart et al., 2002) (see Figure 2). In addition to increased 

neurogenesis, have been studied cellular mechanisms involved in the tangential 

expansion of the cerebral cortex in higher mammals. This process relies on the 

proliferation of OSVZ progenitors driving the tangential dispersion of radially 

migrating neurons and, finally, the expansion in surface area of the cerebral cortex 

(Reillo et al., 2011). The molecular mechanisms of cortical growth have been 

recently summarized (Sun and Hevner, 2014). 

The hallmark in mammals is the emergence of the newest part of the cerebral 

cortex, the neocortex (isocortex), defined by its six-layer organization. The cortex 

also includes the hippocampus and rhinal cortex (allocortex) (Guérout et al., 

2014). The development of the cortex requires a continuous rearrangement of a 

primordial structure that progresses through successive steps including 

proliferation, specification, migration, and neuronal differentiation. Disrupting the 

completion of one or several of these events can lead to brain malformations such 

as microcephaly or lissencephaly (see below) (Laguesse et al., 2015). 

Each layer is cytoarchitectonically and functionally distinct and contains neurons 

with similar morphology, functional properties, connections; as well as time and 

place of origin (Kwan et al., 2012). There are two major types of neurons: 

excitatory projection neurons (pyramidal neurons) and inhibitory interneurons 

distributed along the layers. Although inhibitory interneurons comprise only about 

20% of cortical neurons and thus constitute a clear minority compared to the vast 

number of excitatory projection neurons, they play a vital role in modulating 
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neuronal excitability. This role is depicted in an eloquent analogy by Di Cristo “to 

compare interneuron function to the music director of a symphony orchestra, who 

structures and coordinates the overall musical performance. Without proper 

direction, the ensemble cannot produce the right melody” (Di Cristo, 2007). 

Interneurons, of all the cells within the forebrain, are the most diverse in terms of 

morphology, molecular and functional properties. The best effort to date by 

physiologists, anatomists and developmental neurobiologists to come to a 

common nomenclature for gamma-aminobutyric acid (GABA)ergic interneurons 

is a unifying nomenclature of GABAergic interneurons in the cortex, the Petilla 

terminology (Petilla Interneuron Nomenclature et al., 2008). The expression of 

molecular markers is probably the simplest and most commonly classification 

used. These include: the calcium-binding proteins: parvalbumin (PV), calbindin 

(CB) and calretinin (CR); certain neuropeptides, such as somatostatin (SST), 

vaso-active intestinal peptide (VIP), neuropeptide Y (NPY), cholecystokinin and 

corticotropin-releasing factor (Kawaguchi and Kondo, 2002; Kubota et al., 2011; 

Xu and Callaway, 2009). Also, combining molecular and physiological properties, 

the large variety of interneurons subtypes will fall in one of four major groups: (a) 

fast spiking, PV-expressing interneurons; (b) burst spiking or adapting non-fast 

spiking SST-expressing interneurons; (c) non-fast spiking and fast adapting CR- 

and/or VIP-expressing interneurons; (d) rapidly adapting neuropeptide Y (NPY)- 

and/or Reelin-expressing interneurons (Gelman and Marín, 2010) (Figure 3).  

The projection neurons and interneurons originate from two different germinal 

areas. All cortical pyramidal neurons are born locally along the neuroepithelium 

in the dorsal pallium ventricular zone (VZ), whereas cortical interneurons most 

are born in subcortical domains (subpallium), the ganglionic eminence (GE), that 

includes the lateral ganglionic eminence (LGE), medial ganglionic eminence 

(MGE), caudal ganglionic eminence (CGE) and the preoptic area (POA) (Marín 
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and Rubenstein, 2003) (see Figure 1). These two classes of neurons follow distinct 

migration modes to get their intended destinations in the neocortex (see below).  

Figure 3. Multiple dimensions of interneuron diversity. Interneuron cell types are usually 

defined using a combination of criteria based on morphology, connectivity pattern, synaptic 

properties, marker expression and intrinsic firing properties. Figure adapted from (Kepecs and 

Fishell, 2014). 

 

1.2 Cortical progenitors and corticogenesis 

Corticogenesis is a highly dynamic process that requires the generation of 

different classes of neurons that are later distributed within layers regionally 

organized into sensory, motor and association areas (Rash and Grove, 2006). 

Cortical lamination in the mouse begins around embryonic day (E)11 and is 

completed by approximately postnatal day (P)14. During early corticogenesis (up 

to E14.5) (Faux et al., 2012), cortical layers originate from the proliferation of 
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progenitor cells in the neurogenic compartment of the developing neocortex lining 

the VZ. Cortical progenitors of projections neurons are classified into two groups 

according to the location of their mitosis in cortical wall in the developing cortex: 

the apical progenitors (AP) they comprise neuroepithelial cells (NE), radial glial 

cells (RG) and short neural precursors (SNP) and the basal progenitors (BP) 

include intermediate progenitor cells (IP) and outer radial glial cells (ORG) (Götz 

and Huttner, 2005; Laguesse et al., 2015) (Figure 4). During embryogenesis, NE 

in the dorsal telencephalon symmetrically divide until E9-E10. Initially, there is a 

single sheet of pseudostratified NE undergoing symmetric cell divisions to expand 

the pool of multipotent progenitors as well as a smaller percentage of asymmetric 

cell divisions to generate the earliest born neurons (Götz and Huttner, 2005). 

These NE then become RG with glial cell features and radial processes extending 

from the pial surface to the lateral ventricle. The RG are connected to each other 

by adherence junctions forming the VZ (Haubensak et al., 2004). RG can divide 

both symmetrically to expand their population and asymmetrically to generate one 

RG daughter cell and one non-RG daughter cell, with 10-20% of RG directly 

generating neurons. Most of the non-RGC daughter cells are known as IP. IP are 

the other major type of neuron-producing progenitor and are located in the SVZ 

(the adyacent part of VZ that starts to form at E13.5 in the mouse and expands 

significantly during late corticogenesis), and in the basal VZ early in neurogenesis 

before the formation of the SVZ (Molyneaux et al., 2007). Over the course of 

cortical neurogenesis, IP cells migrate away from the VZ and form the new 

germinal layer, the SVZ (Noctor et al., 2004). Progenitors cells residing in the VZ 

and SVZ produce the projection neurons of the different neocortical layers in a 

tightly controlled temporal order from E11.5 to E17.5 in the mouse (Caviness and 

Takahashi, 1995), and postmitotic neurons position themselves in the developing 

neocortex through defined modes of migration (Britanova et al., 2006). Of note, 

the SVZ has increased in size with evolution leading to thicker upper-layer 
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neurons involved in higher cognitive functions, which underlines the importance 

of RG regulation (Guérout et al., 2014). In addition, the basal processes of RG 

contact meninges which secrete regulatory factors for progenitor maintenance. β1-

integrins anchor RG basal processes to the extracellular matrix, allowing exposure 

to meningeal-derived trophic signals that maintain progenitor survival and 

proliferation (Radakovits et al., 2009) (Figure 4). 

The earliest born neurons appear around E10.5 in the mouse and form a layered 

structure termed the preplate (PP), which is later split into the more superficial 

marginal zone (MZ) and the deeply located subplate (SP). The next wave (E13.5) 

of post-mitotic neural progenitors forms CP by entering the PP and splitting it into 

a superficial layer, the MZ or layer I and the deep SP (Gupta et al., 2002; Marín 

and Rubenstein, 2003). Intercalation within the PP also marks the nascent CP, 

which further develops into layers II to VI. In mice, this occurs approximately at 

E11.5 (Angevine and Sidman, 1961). The CP, which will give rise to the 

multilayered neocortex, begins to develop in between these two layers (Bayer and 

Altman, 1991), such that later born neurons arriving at the CP migrate past earlier 

born neurons through a mechanisms that is known as “inside-out” layering 

(Caviness and Takahashi, 1995). 

Because the layers are conventionally number from the top, layers II/III contain 

the youngest neurons and the layer VI the oldest. Inside-out layering means that 

each neuronal precursor has to migrate outward from the ventricle, pass beyond its 

predecessors and then stop, undergo terminal differentiation and establish its 

synaptic connections (Cooper, 2008) (Figure 5A). Because the Cajal-Retzius (C-

R) neurons, which localize in the most superficial layer (MZ/layer I) (Soriano and 

Del Río, 2005), are continually pushed outward as the cortex grows, they are an 

exception to the inside-out birth order of the rest of the CP (Cooper, 2008). 
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Figure 4. Neurogenesis in the mouse cortex. Neocortical projection neurons are generated by 

diverse progenitor types in the VZ and SVZ. This schematic depicts the sequential generation of 

neocortical projection neuron subtypes and their migration to appropriate layers over the course of 

mouse embryonic development. NE initially divide symmetrically to expand their pool and 

progressively transform into RG progenitor cells. They divide symmetrically, and asymmetrically 

to produce neurons that migrate radially to form the CP. RG in the VZ begin to produce projection 

neurons around E11.5. At the same time, RG generate IP and ORG, which establish the SVZ and 

act as transit-amplifying cells to increase neuronal production. Abbreviations: RG, radial glial 

cells; VZ, ventricular zone; IP, intermediate progenitor cells; ORG, outer RG; SVZ, subventricular 

zone; NE, neuroepithelial cells; E, embryonic day. Figure adapted from (Greig et al., 2013). 

 

Unlike pyramidal neurons, inhibitory interneurons derive from RG cells in the 

MGE and CGE of the ventral telencephalon (Guérout et al., 2014), do not always 

follow an inside-out pattern. Birth-date analysis of specific interneuron subtypes 

suggests that interneurons follow heterogeneous developmental rules for laminar 

positioning (Ang et al., 2003; McConnell and Kaznowski, 1991; Métin et al., 

2006; Pla et al., 2006; Valcanis and Tan, 2003; Yozu et al., 2004).The laminar 
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distribution and subtypes of interneurons dependon their gene expression, origin 

within the GE and birthdate (Miyoshi and Fishell, 2011). 

Figure 5. Inside-out layering of cortical projection neurons and developmental distribution 

of interneuron subtypes. (A) The normal adult CP is divided into layers I through VI, numbered 

from outside (pial surface) to inside (ventricular surface). In the adult, layer I and the region below 

the CP are crowded with neurites (gray). Projection neurons in the CP are layered with oldest 

neurons below and youngest ones above (color coded in different shades of blue). The arrow on 

the right shows the order of layer formation. Layer thickness is not to scale. (B) Schematic of a 

coronal section through the mouse neonatal cerebral cortex showing the areal and laminar 

positioning of MGE- and CGE-derived interneurons. Both MGE- and CGE-derived interneurons 

reach their final areal positions in a lateral-to-medial gradient (i.e., arriving first in lateral regions 

of the cortex). MGE-derived interneurons show an inside-out pattern of distribution, whereas 

CGE-derived interneurons exhibit an outside-in pattern of distribution. MGE-derived interneurons 

distribute relatively evenly in the neocortex, whereas CGE-derived interneurons preferentially 

distribute in superficial layers. Abbreviations: CP, cortical plate; MGE, medial ganglionic 

eminence; CGE, caudal ganglionic eminence; SP, subplate (purple); VZ, ventricular zone; CR, 

Cajal-Retzius cells (yellow). Figure adapted from (Cooper, 2008; Guo and Anton, 2014). 

 

MGE- and POA-derived interneurons subtypes show a time-dependent, inside-out 

pattern of positioning that is similar to projection neurons. By contrast, CGE-

derived interneurons show an outside-in placement pattern (Ang et al., 2003; 

Rymar and Sadikot, 2007). Further, VIP- and NPY-expressing interneurons do not 
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show a strict inside-out layering pattern, but preferentially localize to superficial 

layers or scatter widely within the cortex, respectively (Métin et al., 2006; Rymar 

and Sadikot, 2007). The final cortical distribution of interneurons therefore 

depends on the temporal and spatial origin of interneurons and subtype 

specification, as well as on interactions with the RG scaffold and projection 

neurons (Guo and Anton, 2014). Moreover, it was recently shown that subtypes of 

pyramidal neurons extrinsically influence the fate of interneurons by regulating 

their laminar fate and circuitry (Lodato et al., 2011a) (Figure 5B).  

Cerebral cortical functions depend on the accurate construction of neural circuits, 

which require balanced and coordinated activities between the glutamatergic 

excitatory projection neurons and GABAergic inhibitory interneurons (Guo and 

Anton, 2014). The achievement of such a highly complex architecture relies on an 

exquisite orchestration between the spatio-temporal generation of distinct cell 

types in progenitors, the control of their migration and final settling position 

(often via long migration journeys), and finally cell death (Pierani and Wassef, 

2009). The neuronal migration plays essential roles in the establishment of this 

expanding laminar structure, and the molecular mechanisms that regulate these 

processes are being unraveled and remain a highly active area of research. 

 

1.3 Neuronal migration 

The proper development of cortical circuits requires highly orchestrated cell 

migratory events to establish specific laminar position, orientation, and 

connectivity of neurons (Kriegstein and Noctor, 2004; Rakic, 2007). Neocortical 

circuits are assembled from subtypes of glutamatergic excitatory and GABAergic 

inhibitory neurons with divergent anatomical and molecular signatures and unique 

physiological properties (Marín and Müller, 2014). Although multiple genes and 
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signaling networks have been implicated in cortical neuron migration, the 

molecular mechanisms underlying this process are still poorly understood. 

The importance of neuronal migration for cerebral cortical formation and function 

is evident in neurodevelopmental disorders resulting from disrupted neuronal 

migration. Major neuronal migration defects lead to severe brain malformations 

including lissencephaly, heterotopias, polymicrogrya, schizencephaly, and focal 

cortical dysgenesis (Spalice et al., 2009). The mutations in cytoskeletal regulators, 

extracellular matrix molecules, or posttranslational modifiers tend to affect both 

radial and tangential migration (Valiente and Marín, 2010). However, minor 

changes in temporal or spatial patterns of neuronal migration may contribute to 

the formation of aberrant neuronal circuitry underlying these disorders, which 

have been recently summarized (Evsyukova et al., 2013). Especially disruption of 

cortical GABAergic interneurons function has been linked to various 

neurodevelopmental disorders, including epilepsy, mental retardation, autism, and 

schizophrenia (Akbarian and Huang, 2006; Cossart et al., 2005; Levitt et al., 

2004; Lewis et al., 2005; Rossignol, 2011).  

One of the structures that better illustrates how the types of migrations are 

integrated during brain development is the cerebral cortex (Marín et al., 2010). 

Two major types of neuronal migration have been implicated in corticogenesis: 

radial migration of excitatory neuron precursors and tangential migration of 

interneurons as well as C-R cells. In the past several years, significant progress 

has been made in understanding how these parallel events are regulated and 

coordinated during corticogenesis (Huang, 2009). 

During radial migration, neurons follow a trajectory that is perpendicular to the 

ventricular surface, moving alongside RG fibers expanding the thickness of the 

neural tube. In contrast, tangentially migrating neurons move in trajectories that 
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are parallel to the ventricular surface and orthogonal to the RG palisade (Figure 

6). Besides their relative orientation, some of the basic mechanisms underlying the 

movement of cells using each of these two modes of migration are also different. 

For example, radially migrating neurons often use RG fibers as substrate, whereas 

tangentially migrating neurons do not seem to require their support to migrate. 

Even so, neurons may alternate from radial to tangential movement and vice versa 

during the course of their migration. In fact, tangentially migrating interneurons 

switch to radial migration as they move toward specific laminar locations within 

the CP (Figure 6) (Faux et al., 2012; Nadarajah and Parnavelas, 2002; Yokota et 

al., 2007) (see below).Thus, the different types of neurons (projection neurons and 

interneurons) coordinate their oriented migratory activities within the developing 

cerebral cortex to ultimately produce functional laminar organization (Evsyukova 

et al., 2013). This suggests that both types of migrations share common principles, 

in particular those directly related to the cell biology of movement (Marín et al., 

2010).  

Figure 6. Generation and migration of neocortical excitatory and inhibitory neurons. (A,B) 

Excitatory and inhibitory neurons originate from different germinal zones of the embryonic 
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telencephalon. (A) Cortical excitatory neurons are generated from progenitor cells in the VZ of the 

dorsal telencephalon. Newborn excitatory neurons undergo RG fiber-guided radial migration 

(orange arrows) and settle into the developing CP (light green). (B) Cortical inhibitory 

interneurons are predominantly generated from progenitor cells located in the proliferative zone of 

the ventral telencephalon, mainly within the MGE (dark green) and the CGE. A small population 

of cortical inhibitory interneurons is produced from the POA. Newborn inhibitory interneurons 

follow two tangentially oriented migratory streams to enter the cortex: a superficially migrating 

early cohort (pale-blue arrows) migrates through the MZ, and a deeply migrating second and more 

prominent cohort (dark-blue arrows) migrates through the lower IZ and SVZ. Upon reaching the 

cortex, they switch to radial migration (pink double-headed arrows) and settle into their final 

laminar position in the CP. Abbreviations: VZ, ventricular zone; SVZ, subventricular zone; RG, 

radial glial cells; MGE, medial ganglionic eminence; CGE, caudal ganglionic eminence; CP, 

cortical plate; MZ, marginal zone; IZ, intermediate zone; POA, preoptic area. Figure adapted from 

(Gao et al., 2013). 

 

1.4 Cellular mechanisms in neuronal migration 

Neuronal migration is a dynamic and directional process. Neurons must 

coordinate the extension and branching of their leading processes, cell movement 

with axon specification and extension, switching between actin and microtubule 

motors, and attachment and recycling of diverse adhesion proteins (Cooper, 

2013). Migration of neurons is a tightly regulated by varios extracellular cues that 

ultimately trigger rearrangement of the cytoskeletal components. Migrating 

neurons are highly polarized in the direction of their movement. The standard 

movement of neurons is commonly known as locomotion (Nadarajah and 

Parnavelas, 2002). Neurons undergoing locomotion follow three cellular events 

synchronized steps to move (Ayala et al., 2007; Marín and López-Bendito, 2006) 

(Figure 7).  

First, the cell extends a leading process, which is tipped by structures that are 

similar to the growth cones of migrating axons, and they are thought to play an 

important role in sensing the surrounding microenvironment and thereby 

contributing to the guidance of neurons (Rakic, 1990; Yee et al., 1999). The 

generation, maintenance, and remodeling of a leading process marks the direction 
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followed by the cell. The leading process acts as the compass of migrating 

neurons, selecting the direction of migration in response to chemotactic cues 

(Marín et al., 2010). The morphology of the leading process varies in different 

neuronal types, probably reflecting an adaptation to different migratory 

requirements. In cortical interneurons, for instance, the leading process branches 

as part of the migratory cycle (Bellion, 2005; Kappeler et al., 2006; Martini et al., 

2009). This seems to be common to many tangentially migrating neurons (Okada 

et al., 2007). In contrast, radially migrating neurons seem to have a single leading 

process (Rakic, 1972).  

Second, the nucleus translocates into the leading process, a step referred to as 

nucleokinesis that occurs in two steps. First, a cytoplasmic swelling forms in the 

leading process, immediately proximal to the nucleus. The centrosome, which is 

normally positioned in front of the nucleus, moves into this swelling (Bellion, 

2005; Schaar and McConnell, 2005; Tsai and Gleeson, 2005). The centrosome is 

accompanied by additional organelles, including the Golgi apparatus, 

mitochondria, and the rough endoplasmic reticulum. Second, the nucleus follows 

the centrosome. These two steps are repeated producing the typical saltatory 

movement of migrating neurons. Third, in the final step, the migrating neuron 

eliminates its trailing process, which leads to the net movement of the cell (Marín 

et al., 2010). 

 

1.5 Projection neurons: radial migration 

Newly born projection neurons, which constitute the majority of cortical neurons, 

reach their target locations within the developing cortex via radial migration 

(Ayala et al., 2007; Marín and Rubenstein, 2003; Marín et al., 2010) (Figure 6A). 

Proper cortical lamination thus requires precise guidance of these neurons from 
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the VZ to CP in order for them to reach appropriate cortical layers (Ayala et al., 

2007; Rakic, 2007). 

Figure 7. Cellular events in neurons locomotion. (A) Neuronal migration occurs in three stages. 

First, the leading process advances in the direction of migration (1). This is followed by advance 

of the centrosome into the leading process. Subsequently, the nucleus translocates forward in a 

saltatory fashion (nucleokinesis) (2) and (B), and the trailing process of the neuron undergoes 

remodeling (3). Neuronal migration results from repeating of this basic sequence of events. Figure 

adapted from (Tsai and Gleeson, 2005). 

 

Radial migration occurs in two different modes: somal translocation and 

locomotion (Kriegstein and Noctor, 2004; Marín and Rubenstein, 2003; 

Nadarajah and Parnavelas, 2002; Nadarajah et al., 2001) (Figure 8). The earliest 

neurons that form the PP use somal translocation, whereas most cortical neurons 

forming the CP employ locomotion (Evsyukova et al., 2013). 

 



Introduction 

18 

1.6 Cellular mechanism of radial neuron migration 

During early corticogenesis, somal translocation is the predominant mode and 

some neurons appear to migrate solely by this mode. Somally translocating 

neurons move continuously, without significant pausing (Nadarajah et al., 2001). 

Early-born cortical neurons possess a long, branched leading process attached to 

the pial surface (Miyata et al., 2001; Nadarajah et al., 2001). The leading process 

gets progressively shorter as the cell soma translocates upward (Nadarajah et al., 

2001). Importantly, this mode of migration does not depend on RG guides, but 

attachment of the leading process to the intact pial basement membrane is likely 

required (Hawthorne et al., 2010; Marín and Rubenstein, 2003) (Figure 8). 

The fundamental feature of migration via locomotion is the involvement of RG, 

highly polarized cortical progenitor cells that not only serve as precursors to the 

majority of cortical neurons but also provide an instructive scaffold for neuronal 

migration (Marín and Rubenstein, 2003; Marín et al., 2010; Noctor et al., 2001; 

Rakic, 1972). As the thickness of the developing cortex grows, neurons 

undergoing locomotion use these fibers as a guide to reach the CP (Campbell and 

Götz, 2002; Rakic, 1972). Polarized RG have a characteristic pear-shaped soma 

positioned in the VZ and posses long processes that extend spanning the entire 

thickness of the developing cortex from the ventricular wall to the pial surface 

(Ayala et al., 2007). After the final division, immature neurons transiently become 

multipolar, with multiple neurites within SVZ and lower intermediate zone (IZ), 

which is also known as the premigratory zone (Ohshima et al., 2007). These 

multipolar neurons do not seem to require RG and move at a slower speed in the 

direction of the pial surface, occasionally reverting back to the ventricular surface 

and then reassuming pia-oriented migration (Tabata and Nakajima, 2003; Tabata 

et al., 2009) (Figure 8). 
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Importantly, the multipolar stage is transient and is followed by a switch back to 

the bipolar morphology and locomotion-based mechanism of migration (Noctor et 

al., 2004; Tabata et al., 2009), with a long leading process oriented toward the pial 

surface and a shorter trailing process in the direction of the VZ. 

Neurons migrating by locomotion switch to somal translocation during the final 

stages of their migration, right after their leading process makes contact with the 

MZ (Nadarajah et al., 2001), which implies that these two modes of radial 

migration are not entirely neuronal-type specific. However, considering 

differences in the morphologies of locomoting and translocating cells, as well as 

differences in how they move (continuous translocation versus saltatory 

movement of locomoting neurons), the two modes of radial migration are likely 

mediated by different mechanisms (Franco et al., 2011; Marín and Rubenstein, 

2003; Nadarajah et al., 2001). 

Figure 8. Principals cellular mechanism in radial migration. Projection neurons, generated 

from RG progenitors (brown) or IP (orange), migrate using either RG-independent somal 

translocation or glial-guided locomotion. Newborn neurons undergo a multipolar transition phase 

prior to glial-guided radial migration. Abbreviations: RG, radial glial cells; IP, intermediate 

progenitors. Figure adapted from (Evsyukova et al., 2013). 
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1.7 Regulation of projection neuron migration 

Multiple cellular events are precisely regulated and coordinated to ensure proper 

neuronal migration (Ayala et al., 2007; Bielas et al., 2004; Creppe et al., 2009; 

Guerrier et al., 2009). The mechanisms and cues guiding radial neuronal 

migrations are highly diverse. Here will be addressed those related with: RG-

neuron interactions, transcriptional and cues regulating radial migration. 

RG cells play a vital role in neuronal migration, since neurons undergoing 

locomotion use these fibers as a guide to reach the CP. Various membrane-bound 

cell adhesion molecules (CAM), including astrotactin, neuregulin, and several 

integrins, mediate the interaction of migrating neurons and RG fibers (Adams et 

al., 2002; Anton et al., 1997; Edmondson et al., 1988; Fishell and Hatten, 1991; 

Stitt and Hatten, 1990). In the case of integrins, several studies indicate a wide 

spectrum of cell adhesion functions mediated by the integrin family, which 

cooperatively modulate the radial migration of cortical neurons (Anton et al., 

1999; Dulabon et al., 2000; Graus-Porta et al., 2001; Marín and Rubenstein, 2003; 

Schmid et al., 2004). Integrin activation is translated by intracellular mediators to 

modifications of the microtubule and actin networks as well as cell-cell adhesion, 

both of which are precisely modulated during neuronal migration (Marín et al., 

2010). Recent studies have shown that the interaction between RG fibers and 

migrating neurons also relies on the adhesive properties of Gap junctions (Cina et 

al., 2009; Elias et al., 2007). Several connexins, the component of Gap junctions, 

are expressed in both RG and migrating neurons, and their association in trans is 

required for glial-guided migration. The mechanisms regulating the dynamic 

assembly and disassembly of these transient contacts between RG fibers and 

migrating neurons are currently unknown (Marín et al., 2010). 
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Recent data suggest that transcriptional programs regulate neuronal migration, 

positioning, and acquisition of correct neuronal identity in the developing 

neocortex (Kwan et al., 2012). For example, transcription factors that are 

expressed by both early- and late-born projection neurons (Sox5, POU3F2 and -3) 

regulate neuronal migration in a neuronal type-specific manner (Kwan et al., 

2012, 2008; Lai et al., 2008). However, early neuron transcription factor Tbr1 and 

late neuron transcription factor Satb2 regulate neuronal migration in a layer-

specific manner (Alcamo et al., 2008; Bedogni et al., 2010; Britanova et al., 2008; 

Kwan et al., 2012). The downstream mechanisms of this transcriptional regulation 

have not yet been explored fully, but it is intriguing that POU3 transcription 

factors exhibit their regulatory effect via Cdk5 and Dab1, suggesting that 

migration-dependent transcriptional programs modulate intracellular signaling 

pathways known to be essential for oriented neuronal migration (Evsyukova et al., 

2013). KLF4, Scratch2 and FoxG1 transcription factors are required for the 

multipolar-to-bipolar transition, migration during the multipolar phase and exit 

from the multipolar stage, respectively (Miyoshi and Fishell, 2012; Paul et al., 

2014; Qin and Zhang, 2012). 

Since leading process extension of migrating neurons is highly similar to growth 

cone extension by navigating axons, guidance cues may operate similarly in 

migrating neurons as in growth cones and mainly affect leading process extension 

(Huang, 2009). A large number of secreted extracellular molecules have been 

shown to regulate migration, including: Slits, Netrins, Semaphorins, and Reelin. 

The functions of Slits, Netrins, and Semaphorins have been characterized in 

tangential migration, but their role in radial migration is not as well studied as 

Reelin (Marín et al., 2010). 

Reelin, a gene encoding for a large extracellular glycoprotein, is mutated in reeler 

mice (D’Arcangelo et al., 1995; Hirotsune et al., 1995; Ogawa et al., 1995; 
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Sheppard and Pearlman, 1997). During cortical development, Reelin is expressed 

by C-R cells in MZ (Soriano and Del Río, 2005), and from E18 onward it is 

expressed by interneurons (Alcántara et al., 1998; Borrell et al., 1999; Drakew et 

al., 1998). The spontaneous mutant reeler mouse display layering defects in 

multiple brain regions, but most prominently in cortical areas (Lambert de 

Rouvroit and Goffinet, 2001; Rice and Curran, 1999). In the neocortex, the PP 

forms normally, but the next cohort of cortical neurons fails to divide it into the 

MZ and the SP. Loss of Reelin signalling reverses the lamination of the cortex to 

an outside-in pattern, whereby late-born pyramidal neurons are unable to migrate 

past the early-born cells (Caviness, 1982; Hevner et al., 2004). Reelin plays 

multiple roles in regulating the proper laminar position of neurons in the cortex by 

acting as a stop signal to terminate the radial migration of cortical neurons at the 

top of the CP (Frotscher, 2010; Magdaleno et al., 2002). 

Reelin binds to two members of the lipoprotein family receptors, VLDLR and 

ApoER2 (D’Arcangelo et al., 1999; Hiesberger et al., 1999) and induces tyrosine 

phosphorylation of Dab1 (Howell et al., 2000, 1999), which triggers a signaling 

cascade that instructs neurons to adopt their proper destination in the cortex. Dab1 

phosphorylation is finally translated into the regulation of microtubule dynamics, 

as supported by several lines of evidence (Marín et al., 2010). Also, Dab1 

interacts with Lis1, aprotein implicated in the development of a human brain 

developmental disorder called lissencephaly. Reelin/Lis1 heterozygous mice show 

a greater degree of cortical malformation than the individual heterozygotes, 

suggesting an epistatic relationship of the two genes (Assadi et al., 2003).  

Significant insights into cortical neuron migration have also come from studies of 

mouse mutants in cyclin-dependent kinase 5 (cdk5) and related genes (Huang, 

2009). In cdk5 mutants the cortical neurons appear to fail a multipolar to bipolar 

transition before initiation of radial migration (Ohshima et al., 2007). Thus, Cdk5 
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appears to regulate cytoskeletal dynamics in migrating neurons. Indeed, several 

molecular targets of Cdk5 have been identified that modulate either the 

microtubule or actin cytoskeleton, or both (Huang, 2009). Recently was described 

the role of Mst3, a serine/threonine kinase family member, in neuronal 

positioning. The activity of Mst3 is regulated via Cdk5 signaling and regulates 

neuronal migration via RhoA-dependent actin dynamics (J. Tang et al., 2014). As 

RG are an intrinsically asymmetric cell type, it is conceivable that this asymmetry 

may contribute to the directionality of radial neuron migration. Alternatively, 

additional pathways may act to regulate this process. Indeed, recent data suggest 

that Semaphorin 3A and 3F (Sema3A and 3F) in the developing CP may regulate 

the directionality of cortical neuron migration (Chen et al., 2008). 

 

1.8 Interneurons 

1.8.1 Generation and specification of cortical interneurons 

The discovery, approximately 15 years ago, that cortical GABAergic interneurons 

originate outside the pallium has revolutionized our understanding of the 

development of the cerebral cortex (Marín, 2013). While the MGE, CGE and 

POA contribute to the generation of cortical interneurons (Flames et al., 2007; 

Rubin et al., 2011), the LGE is mostly involved in striatal and OB histogenesis 

(Yun et al., 2003). 

Despite these observations, what is well known is that cortical interneurons, 

especially from the MGE, migrate through a corridor in the LGE on their way to 

the cortex and that LGE plays an important instructive role in their migration 

(Flames et al., 2004). These distinct subpallial regions differ in progenitor domain 

composition and also in the ability to generate interneurons subtypes characterized 
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by specific networks of transcription factors. In addition to genetic programs, 

diffusing molecules also participate in shaping the timing, space and specificity of 

cortical interneurons subtype production (Peyre et al., 2015). 

During mouse embryogenesis MGE histogenesis starts at around E9, followed by 

the generation of LGE at E10 and CGE at E11 (Smart, 1976). More recently, 

genetic lineage tracing experiments have confirmed that most cortical 

interneurons originate from the MGE and CGE (Fogarty et al., 2007; Miyoshi et 

al., 2010; Rubin et al., 2010; Xu et al., 2008), and adding proved as well that the 

POA acts as the source of a small fraction of cortical interneurons (Gelman et al., 

2011, 2009). MGE, CGE and POA were estimated to contribute to cortical 

interneurons in a ratio of 6:3:1, respectively (Marín, 2013). 

The molecular rules governing cell proliferation in the ventral telencephalon as 

well as the characterization of the distinct interneurons progenitor behavior has 

just started to be unveiled. For some time it was anticipated that GE progenitors 

would display a proliferative behavior similar to progenitors in the cerebral cortex 

(Ross, 2011). Brown and collaborators identified the presence of RG in the VZ of 

MGE and POA that undergo interkinetic nuclear migration and divide 

asymmetrically in the VZ to self-renew and produce IP or differentiating 

interneurons (Brown et al., 2011). Later was proposed a more complex 

hierarchical classification for ventral progenitors. RG sit at the base of this 

classification and divide asymmetrically to generate both an amplifying and a self-

renewal branch. These cells give rise to SNP. Both RG and SNP generate 

subapical progenitors (SAP) which in turn divide to produce basal radial glia 

(bRG) or BP and they contribute to the great SVZ expansion (Pilz et al., 2013). 

The interneurons are specified at the time of birth and therefore subtype 

specification is largely defined within the GE by transcription factors in a 
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temporal regulation (Faux et al., 2012). GE histogenesis requires a complex 

interplay between morphogens and transcription factors to ventralize the structure 

and promote interneurons subtype production (Peyre et al., 2015). The analysis of 

the expression of several transcription factors within the VZ of the MGE have led 

to the proposal that this region can be compartmentalized into five different pro- 

genitor domains (Flames et al., 2007). The dorsal region of the MGE (dMGE) 

preferentially gives rise to SST-expressing interneurons. In contrast, the ventral 

part of the MGE (vMGE) was shown to mostly generate PV-expressing 

interneurons (Xu et al., 2010). On the other part, MGE transcription factor 

expression [Nkx2.1, Lhx6, Lhx8(7), Sox6] promotes the specification of 

interneuron subtypes (Azim et al., 2009; Batista-Brito et al., 2009; Butt et al., 

2008; Flandin et al., 2011; Fragkouli et al., 2005; Liodis et al., 2007; Zhao et al., 

2008, 2003). Dlx genes also contribute to interneuron specification and 

maturation. Dlx genes expression is temporally regulated, following the sequence: 

Dlx2, Dlx1, Dlx5, and Dlx6 (Eisenstat et al., 1999; Liu et al., 1997). Dlx1/2 gene 

seems to be particularly important for the acquisition of SST, CR, NPY and 

Reelin fates (Cobos et al., 2005) as its absence leads to an abnormal expression of 

cortical markers in the ventral telencephalon (Long et al., 2009a, 2009b). Several 

studies have demonstrated that CGE derived interneurons acquire either a CR 

and/or VIP (Butt et al., 2005; Pleasure et al., 2000) or Reelin identity (Miyoshi et 

al., 2010). Gsh or Gsx homeobox transcription factors act at the top of the genetic 

network involved in CGE cell specification (Pei et al., 2011; Xu et al., 2010). 

Interestingly, the control of the choice between proliferation and differentiation by 

Gsh genes seems to involve the downstream target Mash1 (Fode et al., 2000). In 

Mash1 loss of function there is premature differentiation of progenitors located in 

the SVZ and precocious expression of Dlx genes (Casarosa et al., 1999; Yun et al., 

2002), downstream effectors. Other CGE transcription factors include Nrf2f1 and 

Nrf2f2 or Couptf1 and Couptf2, respectively, as well as SP8. These genes are 
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however not exclusive from CGE, as they have been identified in the dMGE and 

POA (Lodato et al., 2011b). Finally, the POA primarily produces NPY-containing 

interneurons and a smaller proportion of PV-containing and SST-containing 

interneurons. In terms of molecular markers expression, the cells generated by the 

POA resemble the ones originating from the CGE (Gelman et al., 2009). Shh and 

Nkx2.1 but not Lhx6 are also expressed in the POA (Flames et al., 2007). Dbx1 

and Nkx6.2 are respectively markers of the dorsal and ventral POA. The function 

of these genes remains, however, elusive. 

It also became clear that there is a strong correspondence between interneuron and 

its temporal production. For example: interneuron genesis in mice takes place 

between E9 and E16, and the peak production from the MGE occurs around E12-

E13 (Faux et al., 2012). In contrast, the initiation and peak production of 

interneurons from the CGE is around E12 and E15-E16, respectively (Miyoshi et 

al., 2010, 2007). This temporal pattern is reflected by the subtypes that are 

generated, for example, most SST positive Martinotti cells are predominantly born 

at E9, SST-and CR-double-positive cells at E12 and most VIP-positive cells at 

E15 (Miyoshi et al., 2007; Sousa et al., 2009). 

1.8.2 Tangential migratory streams of interneurons in the developing brain 

Whereas pyramidal cells migrate radially to adopt their corresponding laminar 

position in the nascent cortex, interneurons originating from the ventral 

telencephalon choreograph a complex pattern of migration to reach their final 

position (Guo and Anton, 2014). Interneurons do not only migrate dorsally to the 

cortex. They also tangentially migrate toward other destinations within the 

developing brain; ventrolaterally to the striatum, caudally to the hippocampus, and 

rostrally to the OB (Ang et al., 2003; Gelman and Marín, 2010; Lois and Alvarez-
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Buylla, 1994; Nery et al., 2002; Stenman et al., 2003; Sussel et al., 1999; Yozu et 

al., 2005). 

There are three general consecutive phases through which neocortical 

interneurons adopt their final position in the cortex during corticogenesis. First, 

they reach the pallium along well-defined long tangential migration routes from 

the subpallium; towards the corticostriatal junction and into the cortical wall, 

second they spread out tangentially within specific migratory paths to occupy the 

entire cerebral cortex, and the third involves a shift towards a radial trajectory so 

as to enter the CP and they integrate into specific layers of the cortex (Faux et al., 

2012; Marín, 2013). These phases in turn can be broadly divided into six decision-

making steps involved in interneuron migration (Guo and Anton, 2014) (Figure 

9).  

Figure 9. Patterns of interneuron migration in the developing telencephalon. This schema 

shows a rostral and caudal hemisection through the mouse telencephalon at the mid-embryonic 

stage (E15). The major decision-making steps (1-6) involved in the migration of cortical 

interneurons derived from the subpallium are illustrated. Interneurons derived from the MGE 

(green), the POA (purple), or the CGE (orange) exit the proliferative zones and initiate their 

migration toward the developing neocortex and striatum. Cortical interneurons traverse around the 

developing striatum, transit across the corticosubpallial boundary, and course tangentially into the 

cortex, whereas striatal interneurons migrate ventrolaterally into the developing striatum. Cortical 
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interneurons transit the neocortex mainly through the MZ, SP, and IZ/SVZ migratory streams. 

Once in the neocortex, tangentially migrating interneurons undergo multimodal local migration as 

they reach and settle in specific areal and laminar locations within the emerging CP before forming 

functional synaptic contacts with appropriate projection neuron partners. Multiple decision-making 

steps are involved in this process. These include: (1) exit from the proliferative zone and initiation 

of migration in the subpallium; (2) selection of migratory route toward the dorsal cortex; (3) 

choice of migratory stream within the neocortex; (4) local orientation of migration within the 

cerebral wall; (5) identification of the final areal and laminar location; and (6) termination of 

migration at the appropriate cortical layer. Arrows indicate net directionality of movement. 

Abbreviations: MGE, medial ganglionic eminence; LGE, lateral ganglionic eminence; CGE, 

caudal ganglionic eminence; POA, preoptic area; Str, striatum; MZ, marginal zone; CP, cortical 

plate; SP, subplate; IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone. Figure 

adapted from (Guo and Anton, 2014). 

 

Newborn interneurons have an enormous ability to migrate throughout the 

developing telencephalon, a feature that is common to all interneurons, 

independent of their origin (Marín, 2013). They cluster around RG fibers or 

coalesce as a migratory stream as they exit from the subpallial proliferative zone 

(Brown et al., 2011; Hansen et al., 2013). Interneurons with different temporal and 

spatial origin in the subpallium follow specific migratory routes, suggesting that 

the distinct origins of interneurons help to prespecify their migratory routes (Guo 

and Anton, 2014). 

Once generated in the MGE, postmitotic interneurons journey towards the cortex 

by first traversing the developing LGE (striatum primordium) en route to the 

corticostriatal junction. During their transit through the subpallium, cortical 

interneurons actively avoid entering the POA and the striatum, two structures that 

develop in close proximity to the MGE. As compared with MGE-derived 

interneurons, relatively little is known about the tangential migration of CGE-

derived and POA derived interneurons. However, the routes followed by CGE-

derived and POA-derived interneurons to reach the cortex are largely distinct from 

those used by MGE-derived interneurons, suggesting that interneurons born in the 

CGE and POA respond, at least in part, to a different set of guidance cues (Faux et 

al., 2012; Marín, 2013). In particular, most CGE-derived interneurons colonize the 
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cortex through its caudal pole (Yozu et al., 2005); whereas POA interneurons 

reach the cortex via a route that courses superficially to the striatum (Gelman et 

al., 2009; Marín and Rubenstein, 2001; Zimmer et al., 2010). Interneurons that 

reach the cortex through routes that course superficially (putatively POA-derived) 

or deep (putatively MGE-derived) to the striatum seem to express different 

guidance receptors (Zimmer et al., 2011).  

1.8.3 Intracortical dispersion of interneurons 

Travel across the pallial-subpallial boundary and course tangentially into the 

cortex marks the termination of a phase in the interneurons migratory program. 

The second phase in the migration of cortical interneurons primarily involves the 

homogeneous dispersion of interneurons throughout the entire cerebral cortex, 

which do not disperse in an indiscriminate way, but rather use a very specific set 

of routes or migratory streams. Most interneurons migrate through one of two 

large migratory streams, a superficial route that courses through the MZ, and a 

deep route that largely overlaps with the SVZ. A smaller fraction of interneurons 

migrate through the SP (Lavdas et al., 1999; Wichterle et al., 2001; Nadarajah et 

al., 2002; Yokota et al., 2007) (Figure 10). A first cohort of interneurons (E11.5 in 

mouse) from the MGE migrates dorsolaterally and forms a stream onto the top of 

the PP. Later during corticogenesis (E13-E15 in mouse), a second and more 

prominent stream of interneurons, mainly from the MGE, rapidly migrate into the 

neocortex, through the IZ (Marín and Rubenstein, 2001). At later stages of 

corticogenesis, and after de formation of the CP, interneurons enter the cortex, 

where they disperse tangentially via highly stereotyped streams: largely through 

the lower IZ and SVZ, as well as through migratory streams in the SP and MZ 

(Anderson et al., 2001; Lavdas et al., 1999; Métin et al., 2006). Especifically the 

SP was defined as a transient zone (Bystron et al., 2008; Rakic, 1977) that 

contains residential SP cells, and numerous other migrating cells and extending 
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fibers through the region (Montiel et al., 2011). SP has received renewed attention 

because of its functional relevance in cerebral cortex development (Ayoub and 

Kostovic, 2009; Hoerder-Suabedissen and Molnár, 2015). The 3D profile of 

cortical interneuron migration indicates that, simultaneously with the MGE-

derived streams, a wave of interneurons originating from the CGE migrate in a 

lateral and medial direction to enter the caudal-most end of the cerebral cortex 

(Ang et al., 2003; Nery et al., 2002; Yozu et al., 2005).  

 Figure 10. Tangential migration of cortical interneuron. (A) Drawing of a coronal section of 

E15.5 mouse brain showing the tangential paths of early- (blue broken lines), and late (red broken 

lines)-born interneurons. Upon the emergence of the CP, an additional migratory path is formed 

within the SP (green broken lines). (B) Schema showing the tangential and radial movements of 

interneurons within the cortical wall at E13.5 and E14.5. Abbreviations: LV, lateral ventricle; PP, 

preplate; NCx, neocortex; SP, subplate; Sp, septum; St, striatum. Figure adapted from (Hernández-

Miranda et al., 2010). 

 

Several lines of evidence suggest that the interneurons are not distributed 

randomly across these streams. Cell-intrinsic determinants, acquired either before 

or after their entry into the cortex (Avila et al., 2013; Crandall et al., 2007; 

Ferguson et al., 2005; López-Bendito et al., 2003), in combination with 

extracellular cues released within the cerebral wall (Alcántara et al., 2006; Antypa 
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et al., 2011; Shinozaki et al., 2002; Stanco et al., 2009; Zarbalis et al., 2012); 

dictate the choice of distinct interneuron migratory route within the cerebral wall. 

Evidence comes from the observation that populations of cortical interneurons 

migrating along the different cortical streams do not show the same gene 

expression profile (Antypa et al., 2011). Also, GABA signaling, in addition to its 

migration promoting role, seems to be implicated in the choice of the migratory 

route during cortical migration (López-Bendito et al., 2003).  

Remarkably, interneurons stay away from the CP during this phase, whereas 

pyramidal cells begin forming cortical layers in this location. This observation 

suggests that the dispersion of cortical interneurons throughout the cortex requires 

the active avoidance of the CP, their final place of residence. Interestingly, the 

region of origin (MGE vs. CGE) does not seem to influence the choice of 

migratory stream by cortical interneurons (Miyoshi and Fishell, 2011). The 

confinement of interneurons to specific migratory streams in the cortex seems to 

generally rely on chemokine signaling, but it is unclear whether specific 

interneurons show a preference for a particular route of migration. 

Within the developing cortex, that migration of cortical interneurons appears to 

occur primarily in two streams, in the cortical MZ and the IZ/SVZ (Kriegstein and 

Noctor, 2004); the most prominent cortical migratory streams compared to the SP 

stream. In fact, most of the studies to elucidate the mechanisms that regulate the 

preferential interneurons migration through the streams refer to the cues 

regulating the interneurons confining to the MZ and IZ/SVZ; but have been less 

reported about the SP stream (Abe et al., 2014; Li et al., 2008; López-Bendito et 

al., 2008; Sánchez-Alcañiz et al., 2011; Wang et al., 2011). The SP is a transient 

cortical structure that forms during mammalian brain development (Allendoerfer 

and Shatz, 1994) and has numerous developmental functions (Hoerder-

Suabedissen and Molnár, 2015). At embryonic ages, SP cells are involved in 
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thalamocortical and corticofugal axon guidance, including establishment of 

topographical projections (Ghosh et al., 1990; Grant et al., 2012; McConnell et al., 

1989). SP neurons are a heterogeneous population of neurons that are among the 

earliest generated in the cerebral cortex (Allendoerfer and Shatz, 1994; Hoerder-

Suabedissen and Molnár, 2013; Price et al., 1997; Rakic, 1974; Robertson et al., 

2000) and are recognized to be important players in cortical development and 

maturation, with distinct roles at different developmental ages (Kanold and 

Luhmann, 2010). A recent study identified a further source of tangentially 

migrating SP neurons (rostro-medial telencephalic wall), although these are non-

GABAergic (Pedraza et al., 2014). Exactly what interneuronal subtypes 

participate in this migratory pathway is not yet well understood.  

Once interneurons arrive into the cortex, different modes of migration are 

employed as intracortical migration. These migratory behaviours include: (1) the 

multidirectional migration within tangential routes (Ang et al., 2003; Tanaka et 

al., 2003, 2009, 2006), (2) the radial migration for cells moving away from the 

tangential routes into the CP (Martini et al., 2009) and (3) the ventricle-directed 

migration from the IZ/SVZ towards the VZ (Nadarajah and Parnavelas, 2002). 

The second migratory mode encompasses both inward radial migration towards 

the CP from the MZ (Ang et al., 2003; Polleux et al., 2002; Tanaka et al., 2003) 

and outward radial migration towards the CP from the IZ/SVZ (Hevner et al., 

2004; Polleux et al., 2002; Tanaka et al., 2003, 2006) (Figure 11).  
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Figure 11. Intracortical migration of interneurons. Intracortical migration represented as 

multidirectional migration within the MZ, the inward and outward radial migration from the 

tangential paths into the CP and the ventricle-directed migration towards the VZ. Abbreviations: 

MZ, marginal zone; CP, cortical plate; VZ, ventricular zone. Figure adapted from (Faux et al., 

2012). 

 

Alternatively, changing streams routes might only reflect transient, exploratory 

movements that migrating interneurons make as they progress through the cortex. 

In this context, the spreading of interneurons in the MZ stream exhibit a particular 

migratory behavior called “random walk”, leading to constant multidirectional 

changes (Tanaka et al., 2009). This behavior of interneurons is believed to 

contribute to the tangential dispersion of interneurons to appropriate cortical areal 

positions, but it is tempting to speculate that interneurons in the MZ may actually 

undergo contact repulsion to disperse through the surface of the cortex, as recently 

shown for C-R cells (Villar-Cerviño and Marín, 2012). It is tempting to speculate 

that similar contact-repulsive interactions may exist between individual 

interneurons within the MZ stream, between C-R cells and interneurons, or 

between interneurons and RG endfeet and may thus contribute to the appropriate 

dispersion of interneurons within the cerebral cortex (Guo and Anton, 2014). 
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1.8.3.1 Switch tangential to radial migration 

The final stages of intracortical dispersion of interneurons depend on a tangential-

to-radial switch of the interneuronal migratory mode. The mechanisms that trigger 

the switching from tangential to radial of cortical interneurons remain unclear. It 

has been demostrated that interneurons of different birthdates remain within the 

tangential migration streams for similar amounts of time (~48 h) (López-Bendito 

et al., 2008). However, it has been shown that the timing of exit from the 

migratory streams is related with the different chemoattractive activities present in 

the embryonic cortex, which must be hierarchically organized (Marín, 2013). In 

fact it correlates with the loss of responsiveness to Cxcl12 as an attractant (Li et 

al., 2008). One possibility is that interneurons have an internal clock that 

determines their maturation, independently of the environment and this would 

explain why MGE-derived interneurons invade the CP progressively, with early-

born interneurons entering the CP earlier than late-born interneurons (López-

Bendito et al., 2008; Pla et al., 2006). 

During normal embryonic development interneurons normally tend to avoid the 

CP. The CP undergoes invasion by MGE-derived neurons from both the IZ 

(moving outward) and from the MZ (moving inward). Also it has been proposed 

that MGE-derived interneurons migrate first to the cortical SVZ, then from the 

SVZ to the CP, accumulating transiently in the MZ. The existence of this outward 

migration was confirmed and identified as being characteristic of late-born 

interneurons (after E15.5) (Hevner et al., 2004; Polleux et al., 2002; Tanaka et al., 

2009). Finally, there is evidence that a subpopulation of cortical interneurons 

within the IZ may migrate radially inwardly towards the VZ, in what has been 

termed “ventricle-directed migration”, and pause at the bottom of the VZ, 

extending multiple processes to scan the ventricular surface, possibly to obtain 

positional information or modulate progenitor proliferation, that may ultimately 
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assist them in correctly integrating into the cortex, before migrating up radially 

toward the CP (Nadarajah et al., 2002; Yokota et al., 2007). 

From a cellular perspective interneurons seem to rely on RG to enter the CP 

during their tangential-to-radial switch in migration (Ang et al., 2003; Tanaka et 

al., 2003, 2009, 2006; Yokota et al., 2007). The interactions with the basal 

processes of RG might be similarly to the glial-dependent migration of pyramidal 

cells (Elias et al., 2010, 2007; Valiente et al., 2011). Although the molecular cues 

governing this switch in trajectory are still largely unknown, the RG scaffold is 

instructive in interneurons tangential-to-radial migration transition (Polleux et al., 

2002; Yokota et al., 2007). On the other hand it has been suggested that the switch 

from tangential to radial migration is dependent on neurite branching dynamics. 

During migration through the tangential streams, interneurons maintain the 

orientation of the leading neurite parallel to the ventricular surface/pia. Once 

received the signal to move into the CP, the angle of the leading branch changes 

from small to nearly orthogonal, and the switch from tangential to a radial 

migratory mode is achieved (Martini et al., 2009). 

1.8.3.2 Laminar and areal allocation 

After arriving at the appropriate cortical area, and within the CP, interneurons 

settle into specific laminar positions before forming functional synaptic contacts 

with appropriate projection neuronal partners (Ang et al., 2003; Hevner et al., 

2004; Pla et al., 2006; Polleux et al., 2002; Tanaka et al., 2003, 2006). The final 

phase in the migration of cortical interneurons corresponds to their allocation (i.e. 

their soma) to specific layers of the cortex which occurs during the first postnatal 

days (Hevner et al., 2004; Miyoshi and Fishell, 2011; Pla et al., 2006), and is 

likely to be regulated by mechanisms different from those that recruit interneurons 

within the CP (Marín, 2013). 
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Birth-date analysis of specific interneuron subtypes suggests that interneurons 

follow heterogeneous developmental rules for laminar positioning (Ang et al., 

2003; McConnell and Kaznowski, 1991; Métin et al., 2006; Pla et al., 2006; 

Valcanis and Tan, 2003; Yozu et al., 2004). The final cortical distribution of 

interneurons therefore depends on the temporal and spatial origin of interneurons 

and subtype specification, as well as on interactions with the RG scaffold and 

projection neurons (Guo and Anton, 2014). In addition to signals from projection 

neurons, postnatal neuronal activity can also affect interneuron positioning (De 

Marco García et al., 2011). These observations thus suggest that the laminar 

allocation of interneurons is strictly regulated, probably in a cell class-specific 

way (Marín, 2013). Once at their final laminar localization, interneurons cease 

migration by altering their intracellular calcium transients in response to ambient 

GABA and glutamate signals (Bortone and Polleux, 2009). 

1.8.4 Cellular dynamics of migrating interneurons 

Distinct types of neurons possess morphologically distinct leading processes (i.e., 

the single unbranched leading process of the radially migrating projection 

neurons, the multiple thin leading processes of multipolar neurons, and the 

constantly branching leading process of the tangentially migrating interneurons), 

but in all cases the leading process serves as a compass that directs oriented 

migration by responding to various chemotactic, chemoattractant, or 

chemorepellent gradients (Faux et al., 2012; Marín et al., 2010; Trivedi and 

Solecki, 2011). 

Unlike the stereotypical migratory behavior of many neurons that extend a single 

leading process in the direction of migration, the leading process (neurite) of 

interneurons branches continuously during the migratory cycle (Martini et al., 

2009; Yanagida et al., 2012). A single branch is selected and oriented toward the 
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direction of movement, and the rest of the branches retract. Similar to growing 

axons, interneurons use their leading process as a compass, having a growth-cone-

like structure at the distal end. Stabilization of the selected leading process is 

followed by translocation of the centrosome and the Golgi complex toward the 

selected branch, followed by nuclear translocation and trailing-process retraction 

(Faux et al., 2012; Marín et al., 2010; Trivedi and Solecki, 2011). The leading-

process extension, nucleokinesis, and trailing-process retraction of the migrating 

neurons depend on integration of extrinsic cues and the resultant dynamic 

rearrangements of the cytoskeletal functions (Evsyukova et al., 2013) (Figure 12). 

This active branching is hypothesized to facilitate the finding of the appropriate 

route of migration by constantly measuring the concentrations of chemoattractants 

or repellents across a broad area (Valiente and Marín, 2010). Whereas a single 

growth cone can only compare the concentrations of attractant or repellant cues 

across its width (Zheng, 1996), a cell may be able to compare attractant and 

repellant concentrations at widely different locations using multiple growth cones. 

Figure 12. Morphological remodeling during interneuron migration. They extend multiple 

leading branches (1), followed by branch stabilization (2), centrosomal movement (3), (4), and 

forward nucleokinesis (5). Figure adapted from (Evsyukova et al., 2013). 
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Indeed, the leading process does not turn when the source of attractant changes 

(Martini et al., 2009; Ward et al., 2005); rather, branches are selectively stabilized 

based on proximity to the source of attractant: the branch whose growth cone is 

nearer the attractant is stabilized while the others retract. Once the migratory 

direction is decided, interneurons advance forward by performing a repeated cycle 

of two-phase nucleokinesis (Bellion, 2005). Competition between different 

branches also steers pontine neurons from tangential to radial paths (Watanabe 

and Murakami, 2009). 

1.8.5 Molecular mechanisms controlling the tangential migration of 

interneurons 

The migration of newly born neurons is a precisely regulated process that is 

critical for the development of brain architecture. Appropriate interneuron 

migration and distribution is essential for the assembly of functional neuronal 

circuitry and the maintenance of excitatory/inhibitory balance in the brain. 

Interneuron migration is regulated by a combination of intrinsic programming 

signals and extracellular matrix substrates. Intricate molecular mechanisms 

including an array of motogenic factors, chemotactic guidance cues, transcription 

factors and neurotransmitters are employed by interneurons throughout tangential 

migration. 

1.8.5.1 Transcription factors 

The intrinsic migratory fate of interneurons is specified by the combinatorial 

expression of several key transcription factors (Briscoe et al., 1999; Cobos et al., 

2005; Flames et al., 2007; Flandin et al., 2011; Long et al., 2009b; Nadarajah et 

al., 2002). For example, Lhx6 LIM-homeobox transcription factor and Arx 

homeodomain transcription factor in mouse brain slices have shown impeded 

tangential migration of interneurons into the cortex (Alifragis et al., 2004; 
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Colasante et al., 2008; Friocourt et al., 2008; Liodis et al., 2007). The homeobox 

genes Dlx1 and Dlx2 are essential not only for the migration of interneuron 

precursors but also for their maturation in the cortex. Recent evidence suggests 

that Dlx1 and Dlx2 regulation of interneuron migration depends on its ability to 

restrain neurite outgrowth (Anderson, 1997; Cobos et al., 2007; Le et al., 2007).  

The transcription factors not only define subpallial patterning and interneuron 

differentiation, but also provide migratory route instructions for the newborn 

interneurons. The homeodomain factor Nkx2.1 is specifically expressed in MGE 

interneuron progenitors and required for the specification of cortical interneuron 

subtypes (Butt et al., 2008; Du et al., 2008). The expression of Nkx2.1, however, 

is downregulated in interneurons entering the migratory route in the cortex, and 

this downregulation is in fact an active step taken by cortical interneurons to 

coordinate their programmes of differentiation and migration (Nóbrega-Pereira et 

al., 2008). On the other hand, COUP transcription factor II (COUPTFII) is 

preferentially expressed in the CGE and is required for CGE-derived interneuron 

migration in the caudal direction. Notably, overexpression of COUP-TFII in MGE 

interneurons is sufficient to change their migratory orientation to the caudal 

direction when they are transplanted into the CGE environment, thus providing an 

example of how a single, locally expressed transcription factor activity is capable 

of determining the migratory fate of interneurons in its local environment 

(Kanatani et al., 2008). 

1.8.5.2 Motogenic cues 

Newborn interneurons seem to respond to several soluble factors that have been 

proposed to play a role in cortical interneuron migration by acting as motogenic 

factors. Several growth factors increase the migratory rate of MGE derived 

interneurons in vitro and are thought to promote the movement of these cells in 
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vivo. For instance, hepatocyte growth factor/scatter factor (HGF/SF) enhances the 

migration of the cells away from the ventral telencephalon and demarcate the 

migratory routes of migrating interneurons in the developing forebrain (Powell et 

al., 2001). Members of the neurotrophin family of soluble trophic factors, 

including glial cell line-derived neutrophic factor (GDNF), brain derived 

neurotrophic factor (BDNF) and neurotrophin 4 (NT4), are widely expressed in 

the developing cortex and have also been shown to act as motogenic factors for 

migrating interneurons (Polleux et al., 2002; Pozas and Ibáñez, 2005). However, 

the direct involvement of these molecules in the regulation of the migration of 

MGE-derived interneurons in vivo is less clear. It is also known that BDNF 

signalling, modulates Reelin expression, the distribution of both C-R cells and 

interneurons in the MZ, and participates in the final phase of interneuron 

migration within the cerebral cortex (Alcántara et al., 2006). 

1.8.5.3 Chemotactic molecules 

Tangentially migrating neurons most frequently achieve directional migration by 

interpreting chemotactic gradients. An exquisite coordination of chemoattractive 

and chemorepulsive cues, expressed within the developing brain, allow cortical 

interneurons to reach the cerebral cortex and avoid subcortical areas (Andrews et 

al., 2007; Marín and Rubenstein, 2003; Métin et al., 2006; Parnavelas, 2000). 

Interestingly, almost every molecule known to influence axon guidance has also 

been implicated in tangential migration of interneurons, demonstrating the multi-

functionality of these molecules.  

1.8.5.3.1 Neuropilins/Sema 

Postmitotic interneurons generated in the MGE traversing the developing LGE 

(striatum primordium) en route to the corticostriatal junction and cortex, actively 

avoid entering the POA and the striatum suggesting that both areas are hostile to 
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the migration of cortical interneurons. Some of the molecules involved in this 

avoidance have been characterized. To avoid entering the striatum, migrating 

interneurons express neuropilins (Nrp1 and Nrp2) and plexin co-receptors that 

respond to the chemorepulsive ligands semaphorin (Sema)3A and Sema3F 

emanating from the striatal mantle (Marín et al., 2001). In addition, the 

proteoglycan chondroitin-4-sulphate expressed in the striatal mantle (Zimmer et 

al., 2010); which, in conjunction with the Semaphorins, creates an exclusion zone 

for migrating interneuronsto channel them into adjacent paths and thus define the 

formation of migratory routes into the cortex. The Semaphorins proteins are also 

active in the neocortex and act to direct interneuron migration in the tangential 

streams, preventing them from entering the CP (Tamamaki et al., 2003).  

1.8.5.3.2 Slit/Robo 

Slit proteins are secreted from the VZ and SVZ of the GE (Andrews et al., 2007; 

Marillat et al., 2002; Yuan et al., 1999). Binding of Slit proteins to their 

corresponding Robo (Roundabout) receptor family, expressed by interneurons, 

repels interneurons from the GE; thus initiating their migration toward the 

neocortex (W. Andrews et al., 2008; Andrews et al., 2007). Although these 

proteins appear to regulate neuronal migration within the basal telencephalon, no 

defects in the tangential migration of interneurons were detected in the cortices of 

Slit1/Slit2 double mutant, which suggests that different ligands may mediate Robo 

signaling (Marín et al., 2003). 

Robo1-null effects could be Slit independent, and this has been confirmed with 

the recent discovery that Robo1 modulates semaphorin-neuropilin/plexin 

signalling to steer interneurons around the striatum and into the cortex 

(Hernández-Miranda et al., 2011). Later studies discovered that Slit/Robo 

signaling is indeed important for establishing correct morphology of the 
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interneuron population (W. Andrews et al., 2008). Recent studies also suggest that 

Robo1 receptors expressed in migrating interneurons may also contribute to this 

repulsive effect by sensing striatal Semaphorins (Hernández-Miranda et al., 2011). 

Also, a new member of the Robo family, Robo4, regulates radial migration, partly 

by suppressing the repulsive activity of Slit (Zheng et al., 2012). 

1.8.5.3.3 Ephrin/Eph 

The Eph-ephrin is a bidirecctional receptor system that has been related to a vast 

number of events in the developing and adult brain (Klein, 2004) and constitute an 

additional set of molecules mediating chemorepulsion for interneurons. The class-

A members of the Eph/ephrin system act as a repulsive cue that restricts cortical 

interneurons from entering inappropriate regions and thus contributes to define the 

migratory route of cortical interneurons (Rudolph et al., 2010). 

Further, a recent study has demonstrated that ephrin A5 acts as the repellent force 

to facilitate the exit of newborn interneurons from GE. Ephrin A5 and its receptor 

EphA4 are complementarily expressed in the VZ and SVZ of the GE, 

respectively, and CB-positive cells isolated from the MGE express the EphA4 

receptor. In vitro stripe assays have demonstrated that both ephrinA5 and ephrin 

A3 are potent chemorepellents for MGE-derived neurons thus implicating EphA4 

in mediating in part the repulsive effects of ephrin A3 (Rudolph et al., 2010; 

Zimmer et al., 2008). Although the molecular nature of the chemorepulsive 

activity present in the POA has not been identified yet, it is known that ephrin B3 

expressed in the POA and its derivatives act as repulsive cues by binding to the 

EphA4 receptor expressed by MGE derived cortical interneurons. This repellent 

activity prevents MGE interneurons from migrating in a ventral direction and is 

possibly responsible for their dorsal orientation toward the cortex (Zimmer et al., 

2011). In summary, despite previous data suggest a role of ephrins and Ephs in 
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some steps of interneuron migration, genetic confirmation need to be provided to 

clarify the function of Eph/ephrin signaling in this process in vivo (Marín, 2013). 

1.8.5.3.4 Neuregulin-1 

Addition to the inhibitory cues necessary to guide migration; interneurons are also 

directed towards the cortex in response to attractive cues. MGE-derived 

interneurons follow a gradient of increasing permissivity towards the cortex, most 

likely created by the diffusion of long-range chemoattractive cues from the 

pallium (Marín, 2013; Wichterle et al., 2003). The Neuregulin-1 (NRG1) is a 

protein that contains an epidermal growth factor-like domain that signals through 

receptor tyrosine kinases of the Erbb family (Buonanno and Fischbach, 2001; 

Falls, 2003). An interesting work, found that, indeed, different isoforms of NRG1 

play distinct roles along the migratory path. Two different isoforms of NRG1 are 

expressed in the developing telencephalon: CRD-NRG1, a membrane-bound 

protein that is expressed in the route followedby MGE-derived interneurons 

towards the cortex; and Ig-NRG1, a diffusible protein that is produced by the 

pallium. Experimental evidence suggests that these different isoformsof NRG1 act 

sequentially as short-range and long-range attractants, respectively, for migrating 

interneurons (Flames et al., 2004).  

The membrane-bound isoform of NRG1 (CRD-NRG, type III) is found highly 

expressed by the so-called corridor cells present in the SVZ but not the VZ of the 

LGE. Together with the inhibitory action of Semaphorins emanating from the 

striatum, a permissive corridor is created along the SVZ for interneurons to 

traverse the LGE. Next, in order to cross the corticostriatal notch, interneurons 

require the secreted isoforms of NRG1 (Ig-NRG1, types I and II), which are 

expressed in the neocortex and act as a long-range chemo-attractant for migrating 

interneurons. The immediate action of interneurons exposed to an exogenous 
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source of secreted NRG1 is to alter the direction of migration by the extension of 

a new leading neurite in the direction of the source (Flames et al., 2004; Martini et 

al., 2009). 

Both, short and long-range NRG1 functions are mediated by Erbb4, the 

neuregulin receptor expressed by MGE-derived interneurons (Flames et al., 2004; 

Yau et al., 2003). Consistently, genetic studies have revealed that perturbation of 

ErbB4 function decreases the number of MGE-derived interneurons that reach the 

cortex (Fisahn et al., 2009; Flames et al., 2004). In the long term, when cortical 

NRG1 expression is reduced, there is a concomitant accumulation of ErbB4-

positive interneurons at the corticostriatal junction (Ying et al., 2009) and the 

complete loss of NRG1 in the forebrain leaves interneurons incapable of leaving 

the MGE (Flames et al., 2004). Interestingly, NRG1 has reproducibly emerged as 

a susceptibility gene for schizophrenia (Li et al., 2006; Nicodemus et al., 2006).  

1.8.5.3.5 Cxcl12/Cxcr4/Cxcr7 

In the streams, tangentially migrating interneurons do not invade the CP. 

Avoidance of the CP do not seem to be because of the existence of 

chemorepulsive activity in this region (López-Bendito et al., 2008). The 

mechanisms that control the preferential migration of interneurons through these 

migratory streams are beginning to be elucidated. So far, it seems as if the streams 

are maintained mainly by the positive action of molecules that are secreted by 

cells in these regions, or immediately adjacent. To date, the only molecule that has 

been shown to mediate this process is the chemokine Cxcl12.  

The Cxcl12 (also known as stromal derived factor or SDF1) mediates a 

chemoattractant effect on interneurons in the cerebral cortex. During early 

corticogenesis (up to E14.5), when migratory streams are well defined, Cxcl12 

expression is high in the MZ and SVZ (Stumm et al., 2003; Tiveron et al., 2006) 
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and, to a minor extent, by cells in the SP (Stumm et al., 2007). At later stages, 

however, expression remains high in the MZ but is dramatically reduced in the 

SVZ, consistent with a more diffused stream in this region (Tiveron et al., 2006).  

Cxcl12 acts through two related signaling G-protein-coupled receptor, Cxcr4 and 

Cxcr7, expressed by tangentially migrating interneurons (Sánchez-Alcañiz et al., 

2011). Very recently has been demonstrated that loss of Cxcr7 leads to excessive 

Cxcl12-mediated activation and downregulation of Cxcr4 in interneurons, which 

sequester Cxcl12 through Cxcr7, supporting the concept that Cxcr7 acts as a 

Cxcl12 scavenger in these cells (Abe et al., 2014). The action of Cxcl12 through 

these receptors restricts the migrating cortical interneurons into confined streams 

by suppressing leading process branching and thereby maintaining their tangential 

migratory direction (Caronia-Brown and Grove, 2011; Lysko et al., 2011). 

Cxcl12 is a potent long-range chemoattractant for MGE-derived interneurons (Li 

et al., 2008; López-Bendito et al., 2008), but its limited diffusion properties in 

vivo would explain the relative confinement of interneurons to the migratory 

streams found in the cortex. A gradient of Cxcl12 would be important for the 

regulation of cortical invasion (Wang et al., 2011). The timing of switch from the 

tangential to radial migration and invasion of the CP, correlates with the loss of 

responsiveness to Cxcl12 as an attractant (Li et al., 2008). It appears as if Cxcl12 

masks an unknown chemoattractive activity present in the CP by reducing their 

branching frequency and thus minimizing the potential of interneurons to sense 

cues outside the tangential streams (Lysko et al., 2011). On the other part, 

disruption of Cxcr4 or Cxcr7 function results in premature exit of cortical 

interneurons from their migratory streams and perturbs their laminar and regional 

distribution within the neocortex (Li et al., 2008; López-Bendito et al., 2008; 

Sánchez-Alcañiz et al., 2011; Tanaka et al., 2010; Tiveron et al., 2006; Wang et 

al., 2011). This sophisticated fine-tuning mechanism dynamically adapts 



Introduction 

46 

chemokine responsiveness in migrating neurons, thereby preventing their 

desensitization as they migrate through these routes for a protracted period of time 

(Sánchez-Alcañiz et al., 2011). 

Thus, Cxcl12/Cxcr signaling may play a dual role, initially attracting interneurons 

to the neocortex and control their tangential-to-radial switch entry into the 

developing CP. It is worth noting that, despite the prominent defects observed in 

the intracortical dispersion of interneurons in the absence of Cxcl12 signaling, 

interneurons reach the cortex of Cxcr4 or Cxcr7 mutants mice in normal numbers 

(Li et al., 2008; López-Bendito et al., 2008; Sánchez-Alcañiz et al., 2011; Tiveron 

et al., 2006; Wang et al., 2011). This observation reinforces the idea that the 

mechanisms driving the migration of interneurons from the subpallium to the 

cortex and those controlling their intracortical migration are different (Marín, 

2013). 

1.8.5.3.6 Neurotransmitters 

Neurotransmitters are usually recognized for their central role in synaptic 

transmission and the functionality of cortical networks in the adult brain; 

however, increasing evidence suggests a role in regulating developmental 

processes, including interneuron migration. Several neurotransmitters and their 

corresponding receptors are expressed during migration, either along the 

migratory routes and interneurons (Crandall et al., 2007; Cuzon Carlson and Yeh, 

2010; Cuzon et al., 2006; López-Bendito et al., 2003; Ohtani et al., 2003; Poluch 

et al., 2001; Soria and Valdeolmillos, 2002). In particular, it has been shown that 

they play a multiple role in guiding interneurons across the corticostriatal junction 

and maintaining the migratory distribution within the cortical wall (Crandall et al., 

2007; Cuzon et al., 2006; López-Bendito et al., 2003). 
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Less is known about the cues that instruct an interneuron to stop migration in the 

correct laminar position and to start arborization. Probably this process is 

influenced by multiple mechanisms that have just begun to be identified and 

where neurotransmitters seem to play an important role. GABA and glutamate are 

thought to enhance neuronal migration in the embryo because they both 

depolarize the membranes of interneurons and stimulate the generation of calcium 

transients (Bortone and Polleux, 2009; Cuzon et al., 2006; Inada et al., 2011; 

Manent et al., 2006). However, GABA becomes hiperpolarizing during early 

postnatal development and this change in activity turns ambient GABA into a stop 

signal. Consequently, interneurons stop migrating in response to GABA, but only 

after interneurons have switched their responsiveness from a depolarizing to a 

hyperpolarizing state in response to GABA (Ben-Ari, 2002; Bortone and Polleux, 

2009). Thus, the mechanisms controlling the transition of GABA from 

depolarizing to hyperpolarizing seem to be directly related to the termination of 

interneuron migration. 

Together, these observations suggest that interneurons integrate information about 

their temporal and spatial origin, subtype identity, and extrinsic signals from 

projection neurons and the CP environment to establish their final laminar fate. As 

described above, a vast array of motogenic and chemotactic cues, transcription 

factors and neurotransmitters instruct and guide the tangential migration of the 

interneurons from the ventral telencephalon into the neocortex. Significant 

progress has been made toward defining many mechanisms underlying neuronal 

migration. However, we still do not fully understand how neurons integrate a 

multitude of signals to produce oriented and coordinated patterns of migration 

evident in the developing cerebral cortex. These and many more questions will 

drive the interneuron field into the future, as we are only beginning to understand 

the intricacies of generating the functional balance between pyramidal neurons 

and interneurons. Particularly, in the cerebral cortex, the chemoattractant cues 
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have been more described compared with the chemorepulsive molecules, which 

still remains to be explored. 

 

1.9 Axon guidance 

Neuron migration positions the cells in the correct place but for the brain to be 

wired correctly, axons projecting from these cells must be guided to the correct 

target, many times over long distances, in order to establish functional synapses. 

Four broad axonal tracts exist within the mammalian forebrain that have been 

extensively studied in order to ascertain the cellular and molecular basis of axon 

guidance: the corpus callosum (CC) that connect the two cortical hemispheres, the 

corticospinal tract (CST), that connect the cortex with the spinal cord, the 

corticothalamic projection (Leyva-Díaz and López-Bendito, 2013), that send 

axons from the cortex to the thalamus, and the thalamocortical projection that 

projects in the opposite direction. Other well studied systems in axon guidance 

include the commisural axons and the motorneuron projections in the spinal cord. 

Axon guidance is highly stereotyped and includes several steps until reaching the 

vicinity of the appropriate target region and form a proper connection. As for 

neuron migration, this "axon guidance" depends on the orchestrated action of 

diverse, conserved families of guidance cues present in the environment and their 

neuronal receptors at the neuron surface (Dickson, 2002; Tessier-Lavigne and 

Goodman, 1996). 

Neuronal connections form during embryonic development and rely on a 

structure, at the leading edge of the axon, known as the "growth cone". It is 

composed of a central domain filled with microtubules and a peripheral domain of 

actin-rich filopodia and lamellipodia (Figure 13A). The growth cone is a 
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specialized sensory and motile structure that actively extend and retract in 

response to extracellular cues which allows for the sensing of the environment in 

order to take steering decisions during axon migration (Bashaw and Klein, 2010; 

Carmeliet and Tessier-Lavigne, 2005; Raper and Mason, 2010; Vitriol and Zheng, 

2012) (Figure 13B). 

The expression of guidance cues and receptors is exquisitely tailored to allow 

growth cones to make appropriate pathfinding decisions at specific choice points 

regulated both, temporal and spatially throughout development (Figure 13C). This 

regulation ensures the correct presentation and receipt of guidance signals. 

Determining how these signaling pathways function to regulate axon growth and 

guidance, the integrated information from different cues and how these receptors, 

in turn, signal to the growth cone cytoskeleton to control steering decisions, are 

fundamental questions to understand nervous system wiring specificity 

(O’Donnell et al., 2009). No doubt that their answer will shed light on how to 

design possible therapeutic approaches for many neural developmental disorders.  
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Figure 13. Structure and function of the growth cone in axon navigation. (A) The growth cone 

that tips the axon is a highly motile structure composed of a microtubule-rich central domain and 

an actin-rich peripheral domain, forming lamellipodia and filopodia. (B) During axon navigation, 

the trajectory is defined by environmental cues which exert attractive (in green) and repulsive (in 

red) effects on the growth cone. (C) Axons from different neuron types (here in blue, pink, and 

green) express specific combinations of receptors and thus respond differently to the same cues 

present in their environment and thus navigating distinct pathways. Figure adapted from 

(Castellani, 2013). 

 

The guidance cues, both attractants and repellents, include contact-mediated or 

secreted molecules, acting over short or long distances, respectively. It is clear 

that many individual guidance cues can function both as repellents and attractants 

(Huber et al., 2003). These cues can also be divided into those that are substrate or 

cell membrane-bound, and so act on nearby axons (upon cell contact), and those 

that are secreted from distant sources and form gradients that influence the 

trajectories of extending axons (Huber et al., 2003; Kolodkin and Tessier-Lavigne, 

2011; Tessier-Lavigne and Goodman, 1996) (Figure 14). 
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Figure 14. The diversity of neuronal guidance mechanisms. Neuronal processes are guided by 

cues that can function at long and short distances to mediate either attractive or repulsive guidance. 

Figure adapted from (Kolodkin and Tessier-Lavigne, 2011). 

 

In the 1990s, genetic, biochemical and molecular approaches together identified 

four major conserved families of guidance cues (the “canonical cues”) with very 

well-established roles in neuronal guidance and prominent developmental effects: 

the Netrins, Slits, Semaphorins and Ephrins (Dickson, 2002; Tessier-Lavigne and 

Goodman, 1996). Netrins, Slits and some Semaphorins are secreted molecules 

that associate with cells or the extracellular matrix, whereas Ephrins and other 

Semaphorins are anchored to the cell surface. Of the classic axon guidance cue, 

Slits, Semaphorins, and Ephrins act primarily as repellents but can be attractive in 

some contexts, whereas Netrins can act as attractants or repellents. Recent 

evidence have shown that the activity of a given axon guidance cue depends on 

the cellular context and the status of the receiving neuron so, in certain contexts, 

molecules regarded as archetypal chemorepellents act attractively and vice versa 

(see below for instance in the case of Netrin) (Dickson, 2002; Dudanova and 

Klein, 2013).  
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Probably the best well studied axon guidance cue is Netrin. Netrins are 

bifunctional cues, capable of attracting some axons and repelling others 

(Colamarino and Tessier-Lavigne, 1995), and play major roles in the control of 

axon crossing at the midline (Wadsworth et al., 1996). For instance, Netrin-1 can 

act as a chemoattractant for dorsal commissural neurons in the spinal cord and as 

a repellent for certain classes of motor neurons (Culotti and Merzt, 1998). A 

mammalian Netrin, Netrin-4 (orb-Netrin), is more distantly related, having a 

similar overall structure but showing greater homology to the β chain of laminins 

(Koch et al., 2000). Netrin-5, a new member of the netrin family, was recently 

involved in the control of neurogenesis in the adult brain (Yamagishi et al., 2015).  

The main factor that determines the type of response of an axon to Netrin-1 is the 

relative amount of netrin receptors on the surface of the growth cone (Round and 

Stein, 2007). In all species, the attractive effects of Netrins are mediated by 

receptors of the DCC family (Deleted in Colorectal Cancer) (Chan et al., 1996; 

Keino-Masu et al., 1996; Kolodziej et al., 1996). DCC not only mediates 

attractive signaling through netrin-induced homodimerization of the receptor but 

also has been shown to participate in repulsive axon guidance (Stein et al., 2001). 

The Ig superfamily member DsCAM (Drosophila Cell-Adhesion Molecules) has 

been proposed to function as a co-receptor in Netrin mediated attraction in some 

systems (G. L. Andrews et al., 2008; Ly et al., 2008). Repulsive effects of Netrins 

are mediated by members of the Unc5 family (Hong et al., 1999; Keleman and 

Dickson, 2001). Netrins can induce the association of DCC and Unc5 in the 

cytoplasm, and the formation of this receptor complex result in a switch from 

attraction to repulsion (Hong et al., 1999). The attractive response of an axon to 

Netrin1 can be switched to a repulsive one, or vice versa, by modulating the levels 

of cytosolic cyclic AMP (cAMP) in the growth cone in vitro (Song et al., 1997). 

Thus, the nature of the response of an axon to a particular guidance signal may 
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depend on the receptors present in the growth cone and/or on the recent history of 

second-messenger activation in the growth cone (Butler and Tear, 2007). 

A second well characterized guidance cues are Slits, which include a group of 

large secreted proteins that were implicated in axonal repulsion (Brose et al., 

1999; Kidd et al., 1999; Li et al., 1999; Wang et al., 1999). The repulsive actions 

of Slit proteins are mediated by receptors of the Robo family (Kidd et al., 1998; 

Zallen et al., 1998). There is evidence identifying a critical role for Slit/Robo 

signals to guide pioneer longitudinal axons in the embryonic brain stem. These 

studies indicate that Slit/Robo signals from the floor plate have dual functions: to 

repel longitudinal axons away from the ventral midline, and also to maintain 

straight longitudinal growth. These dual functions likely cooperate with other 

guidance cues to establish the major longitudinal tracts in the brain (Mastick et al., 

2010). A very nice example that demonstrates the importance of Robo in the axon 

guidance, is the phenotype found in patients with horizontal gaze palsy with 

progressive scoliosis, in which were identified three novel homozygous ROBO3 

mutations (Volk et al., 2011). 

A third group of axon guidance cues include the Semaphorins, a large, 

phylogenetically conserved, family that is constituted by both, secreted and 

transmembrane guidance proteins (Yazdani and Terman, 2006). They are 

distributed in dynamic and complex patterns during development and function in 

both long-range and short-range guidance. The major receptors for Semaphorins 

are members of the Plexin family (Tamagnone and Comoglio, 2000). Many 

Semaphorins bind Plexins directly, but several secreted vertebrate Semaphorins, 

including Sema3A, instead bind to the obligate co-receptors Neuropilin-1 or 

Neuropilin-2; Neuropilins, together with a Plexin receptor, form an active 

holoreceptor complex. Different secreted Semaphorins require specific 

combinations of Neuropilin-1 or Neuropilin-2 and a specific Plexin for guidance 
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responses in distinct neuronal subtypes, a conclusion drawn from extensive 

observations both in cell culture and in vivo (Kolodkin and Tessier-Lavigne, 2011; 

Tran et al., 2007). It is believed that Sema3 proteins are among the cues that 

channel extending motor axons into their pathways by surround repulsion. Like in 

cortical neurons, the magnitude of the response to different Sema3s is determined 

by the set of Neuropilin receptors present on the growth cones (Dudanova and 

Klein, 2013). A recent study demonstrated that the balance between Neuropilin-1 

and Neuropilin-2 depends on the levels of Sema3C expressed by motor neurons 

(Sanyas et al., 2012).  

The fourth family of canonical guidance cues is the Ephrins, cell-surface signaling 

molecules that play important roles in a large number of developmental events 

including axon guidance (Klein, 2004). Ephrins have been shown to play an 

essential role in organizing topographic projections that connect, for example, 

retinal ganglion cells in the eye with their target cells in the appropriate portion of 

the optic tectum in lower vertebrates, or the lateral geniculate nucleus of the 

thalamus in higher vertebrates (Feldheim and O’Leary, 2010). These mapping 

functions show the versatility of Ephrins, which can function as attractants for 

some axons and repellents for other, as well as either positive or negative 

regulators of axonal branching (Kolodkin and Tessier-Lavigne, 2011). 

Because ephrins are membrane attached, interactions between ephrins and Ephs 

require intercellular contact. It is remarkable that ephrin/Eph complexes transduce 

signals bidirectionally into both receptor (Eph)-expressing cells and ligand 

(ephrin)-expressing cells in what is known as “forward” and “reverse” signaling, 

respectively (Kullander and Klein, 2002). There is ample evidence to indicate that 

both forward and reverse modes of Ephrin-Eph signaling are critical for axon 

guidance during neural development (Egea and Klein, 2007; Huber et al., 2003). 

More recent observations indicate that Ephrins and their receptors play key roles 
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in the regulation of dendritic morphology and synaptogenesis in the CNS, 

implicating Ephrin mediated receptor tyrosine kinase signaling in the regulation of 

synaptic plasticity (Shen and Cowan, 2010). 

When axons navigate their way in vivo, at every choice point they are probably 

confronted with several different signals acting simultaneously and in a 

coordinated manner, in a permissive or instructive way. Thus, the final decision is 

based on the integration and interpretation that the growth cone does from all the 

guidance cues that are presented at once in each choice point. In some cases, one 

cue might be dominant and suppress responses to the other. Among these 

hierarchical interactions, interesting insights into the regulation of the interplay 

between Slit/Robo and netrin/DCC signaling have been reported for the guidance 

of postcrossing commissural axons (Stein and Tessier-Lavigne, 2001), motor 

neurons of the spinal cord (Bai et al., 2011) and axons of the CC (Fothergill et al., 

2014).  

1.9.1 Signaling mechanisms of axon guidance 

Signaling mechanisms that act downstream of axon guidance cues (Netrins, 

Semaphorins, Ephrins, and Slits) have been extensively studied in both 

invertebrate and vertebrate model systems (Bashaw and Klein, 2010). These cues 

detected by receptors on the axon surface, then activate a variety of downstream 

signaling pathways to cause axon turning and/or changes in growth rate (Zheng 

and Poo, 2007). 

One of the most crucial components of these pathways is calcium and over the 

past few years many new insights have been gained into the role of calcium in 

axon guidance (Borodinsky and Spitzer, 2006; Gomez and Zheng, 2006; 

Sutherland and Goodhill, 2015; Sutherland et al., 2014). Changes in calcium 

concentrations appear to be instructive signals to direct growth cone (Zheng, 
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2000). In general, moderate amplitude increases in calcium favor attraction, 

whereas high or low amplitude increases favor repulsion, although differences in 

neuron type, growth substrate and resting calcium concentrations can affect 

growth cone responses. Like calcium signaling, cyclic nucleotides (cAMP or 

cGMP) can have profound effects on growth cone responses to guidance cues. 

The levels of cyclic nucleotides, specifically the ratio of cAMP to cGMP, can 

determine whether the response to a guidance cue will be attractive or repulsive, 

with high cyclic nucleotide levels (or high cAMP/cGMP ratios) favoring 

attraction and low levels (or low cAMP/cGMP ratios) favoring repulsion 

(Nishiyama et al., 2003; Song et al., 1998, 1997). 

How do changes in intracellular calcium and cyclic nucleotide signaling result in 

directed growth cone turning?. One of the key downstream effectors target is the 

Rho-family small GTPases. Considerable progress has been made in establishing 

direct links between RhoGTPases and guidance receptors. These pathways result 

in growth cone collapse, or axon extension through signaling events that act 

locally to modulate cytoskeletal dynamics in the growth cone to achieve specific 

guidance outcomes (Bashaw and Klein, 2010). 

 

1.10 Neuronal migration and axon guidance. The wiring of the cerebral 

cortex 

Both neuronal migration and axon guidance constitute fundamental mechanisms 

underlying the wiring of the brain. Traditionally, these two processes have been 

studied independently, but it is easy to hypothesize that the normal formation of 

neural circuitry requires an exquisite coordination of both. In this respect, it is not 

surprising to observe that mechansims of migrating neurons shares many features 

with axon guidance, from the use of substrates to the specific cues regulating 
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chemotaxis. There are, however, important differences in the cell biology of these 

two processes. The most evident case is nucleokinesis, which is an essential 

component of migration that needs to be integrated within the guidance of the cell. 

Perhaps more surprisingly, the cellular mechanisms underlying the response of the 

leading process of migrating cells to guidance cues might be different to those 

involved ingrowth cone steering, at least for some neuronal populations (Marín et 

al., 2010). 

Although both neuron migration and axon guidance share common mechanisms 

of cell biology and biochemistry, little is known about their coordinated 

integration during development. There are some examples that illustrate the 

integrationof both mechanisms. Recent studies indicate that neuronal migration 

regulates axonal guidance in the cerebral cortex. Guidepost neurons, cortical 

neurons that are positioned along axonal migration routes, have been shown to 

guide axonal pathways. For example, two transient populations of glutamatergic 

and GABAergic neurons arrive at the CC just before the arrival of callosal axons 

and act together with glial cells to provide attractive cues for axonal navigation 

(Shu et al., 2003). Glutamatergic neurons secrete semaphorin 3C, which attracts 

Neuropilin-1-expressing callosal axons, whereas MGE- and CGE-derived 

GABAergic neurons use Sema3A- and ephrin-signaling pathways, as well as cell-

adhesion mechanisms, to control callosal axon navigation (Niquille et al., 2013, 

2009).  

Thalamocortical projections constitute one of the most prominent higher level 

processing connections in the mammalian brain. It was shown that proper 

pathfinding of thalamocortical axons (TCA) in the ventral telencephalon during 

development, depends on the early tangential migration, from lateral to medial, of 

a population of neurons derived from the SVZ/VZ of the LGE. This tangential 

migration contributes to the establishment of a permissive corridor that is essential 
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for TCA pathfinding. NRG1/ErbB4 signaling is largely responsible for creating 

this permissive corridor (López-Bendito et al., 2006). Importantly, the Slit/Robo 

signaling pathway is instrumental in repelling corridor neurons from the ventral 

MGE and POA, thus controlling oriented migration of these cells and their correct 

positioning within the corridor (Bielle et al., 2011). 

Another aspect of the interplay between neuron migration and axon guidance is 

related to intrinsic programs of the differentiating neuron. It is generally assumed 

that neuronal migration is largely incompatible with differentiation because this 

later process drives cells into the acquisition of morphological features that are 

unsuited for migration. Specifically, neuronal differentiation involves the growth 

of dendrites and axons inspecific patterns, which may restrict their movement and 

break the polarity that cells require to migrate. To prevent this from happening, 

migrating neurons express genes that repress the differentiation program of the 

cell. In migrating cortical interneurons, for instance, Dlx1 and Dlx2 repress the 

expression of other genes involved in axonal growth, synaptogenesis, and axon 

and dendritic branching (Cobos et al., 2007). It is well known, however, that 

certain types of neurons, these are able to migrate as they simultaneously extend 

an axon in the opposite direction. This is the case of pyramidal cells, which 

growtheir axon as soon as they start migrating toward the CP (Marín et al., 2010; 

Noctor et al., 2004; Schwartz et al., 1991). 

Another mechanism shared by either neuronal migration or axon guidance, is the 

role of cytoskeletal remodeling which plays a central role in neuronal polarization 

mechanisms underlying both processes. The cellular and molecular mechanisms 

that underlie neuronal guidance are closely related with cytoskeletal dynamics in 

extending neuronal growth cones and steer axons. I this context and as mentioned 

above, Rho GTPases are key regulators of the actin cytoskeleton in orchestrating 
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cytoskeletal rearrangements and neuronal polarization in different steps of 

development.  

 

1.11 Rho GTPases 

The establishment of precise neuronal cell morphology provides the foundation 

for all aspects of functional neurobiology, during development as well as during 

final refinement of neuronal circuits. Morphology is regulated by cytoskeleton 

dynamics and many factors affecting migration, axon guidance, neuron 

diferentiation and synaptogenesis trigger signaling pathways that ultimately 

modify cytoskeleton components and neuron morphology. The Rho GTPases have 

emerged as critical players in these pathways, regulating the cytoskeleton at the 

leading edge of moving neurons or at the growth cones by linking microtubule 

ends to actin (Hall and Lalli, 2010). 

Rho GTPases constitute one of the five distinct families of the Ras superfamily 

(Hall, 2012; Rojas et al., 2012). The Rho GTPases subfamily consists of small, 

20-30 kDa monomeric GTP-binding proteins that are highly conserved throughout 

evolution in a variety of organisms (Madaule and Axel, 1985). Mammalian Rho 

GTPases comprise a small family of 20 intracellular signalling molecules, 

including RhoA, Ras-related C3 botulinum toxin substrate 1 (Rac1), and cell 

division control protein 42 homolog (Cdc42). These proteinsare known to play 

important roles in various cellular processes, as key cytoskeleton dynamics 

regulators (Dickson, 2001; Hall, 1998; Heasman and Ridley, 2008). 

Like Ras, the majority (although not all) of Rho family members act as molecular 

switches to regulate signal transduction pathways, by interconverting between 

inactive GDP-bound and active GTP-bound conformational states (Hall, 2012). 
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The cycling of Rho GTPases between these two states is regulated by three sets of 

proteins; (a) guanine nucleotide exchange factors (GEFs) that catalyze exchange 

of GDP for GTP to activate the switch (Schmidt and Hall, 2002); (b) GTPase 

activating proteins (GAPs) that stimulate the intrinsic GTPase activity to 

inactivate the switch (Bernards, 2003); and (c) guanine nucleotide dissociation 

inhibitors (GDIs), whose role appears to be to block spontaneous activation 

(Olofsson, 1999) (Figure 15). Although most studies have focused on the so called 

“classically activated” Rho GTPases, the family also includes atypical members 

that are constitutively bound to GTP and do not detectably hydrolyse GTP. They 

are the Rnd (“round”), RhoH, RhoBTB1 and RhoBTB2 proteins. These proteins 

lack amino acids that are critical for GTPase activity, explaining why they do not 

hydrolyse GTP and therefore are not influenced by GEF and GAP activity and are 

constitutively active. Instead, regulation of the activity of these atypical Rho 

GTPases might come mainly from gene expression, protein stability and 

phosphorylation (Aspenström et al., 2007; Berthold et al., 2008; Chardin, 2006; 

Riou et al., 2010).  

Figure 15. Rho GTPases activation/deactivation cycle. Rho GTPases are molecular switches 

that cycle between an inactive GDP-bound and an active GTP-bound state. Activation of Rho 

GTPases occurs by stimulation with a guanine exchange factor (GEF) that causes the release of 

GDP and the binding of GTP. In the GTP-bound form, Rho proteins undergo a conformational 

change becoming able to interact with effector molecules and thus initiating a downstream 

response. (GAPs) stimulate GTP hydrolysis, leading to inactivation; and guanine nucleotide 
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exchange inhibitors (GDIs) extract the inactive GTPase from membranes. The major feature of 

Rho GTPases, as well as of other small GTP-binding proteins, is the absolute requirement for 

membrane attachment in order to exert their activities. Figure adapted from (Etienne-Manneville 

and Hall, 2002). 

 

Rho proteins interact with and activate downstream targets (effector proteins) 

when bound to GTP, thereby stimulating a variety of processes. It is in the active 

GTP-bound state that Rho GTPases perform their regulatory function through a 

conformation-specific interaction with effector proteins. Over 50 of these 

effectors have been identified so far for Rho, Rac, and Cdc42 that include 

serine/threonine kinases, tyrosine kinases, lipid kinases, lipases, oxidases, and 

scaffold proteins. For the handful of targets that have been examined structurally, 

it appears that they exist in a closed inactive conformation that is relieved through 

GTPase binding (Bishop and Hall, 2000; Jaffe and Hall, 2005). The activation of 

Rho, Rac, or Cdc42 leads to the assembly of contractile actin:myosin filaments, 

protrusive actin-rich lamellipodia, and protrusive actin-rich filopodia, respectively 

(Etienne-Manneville and Hall, 2002). These highly specific effects on the actin 

cytoskeleton point to a series of well-defined signal transduction pathways 

controlled by each GTPase leading to both the formation (actin polymerization) 

and the organization (filament bundling) of actin filaments (Jaffe and Hall, 2005). 

The Rho GTPases regulate many other signal transduction pathways in addition to 

those linked to the actin cytoskeleton. They function in the regulation of 

migration, motility and invasion, adhesion, proliferation and the transduction of 

signals from the outside environment by these proteins have been well 

documented in a variety of cell types, including neurons (Bishop and Hall, 2000; 

Heasman and Ridley, 2008; Ito et al., 2014; Jaffe and Hall, 2005). Rho family 

proteins have been reported to regulate a wide range of neurnal mechanisms and 

functions and their alterations result in different malformations and neurological 



Introduction 

62 

disorders (Ballester-Lurbe et al., 2014; Cappello, 2013; Linseman and Loucks, 

2008; Nadif Kasri and Van Aelst, 2008). As major regulators of the cytoskeleton, 

the family of small Rho GTPases has been shown to play essential functions in 

cerebral cortex development, especially to cortical projection neuron development 

(Azzarelli et al., 2015b). They are the most extensively studied group with respect 

to their function in the remodeling of the cytoskeleton and the establishment of 

polarity during cortical development. Most of the studies have focused on Rho 

(RhoA-C), Rac (Rac1-3), Cdc42 and to some extent Rnd1-3. Rho, Rac, Cdc42 

and Rnd1-3 are highly expressed during cortical development in the VZ and SVZ, 

already suggesting an important role in progenitors (Pinto et al., 2008). 

Particularly for cell migration, polarization in the direction of movement is the 

first crucial step. Experimental data indicating the importance of the Rho family 

of small GTPases in radial migration of excitatory neuron precursors have been 

accumulated and comprehensively reviewed (Govek et al., 2011). Deletion of 

Rac1 in the telencephalic VZ showed surprisingly that Rac1 is not essential for 

neuritogenesis, but that it has important functions in axonal guidance and 

migration. Rac1 deficiency appears to delay the onset or reduce the speed of 

cortical neuron migration rather than inhibit it entirely (Chen et al., 2007). This 

migration defect could be due, at least in part, to defects in RG organization 

resulting from an inability to anchor their pial endfeet to the basement membrane 

(Leone et al., 2010). Although the role of Cdc42 in radial migration has not been 

as extensively examined compared to Rac, studies suggest that Cdc42 is important 

for this process. In the developing neocortex, perturbation of Cdc42 activity 

retards radial migration (Konno et al., 2005). On the other hand, the regulation of 

RhoA levels and activity appears to be required for radial migration successfully 

(Govek et al., 2011). In the developing rodent neocortex, RhoA mRNA expression 

is high in the premigratory cortical VZ and SVZ, and low in cells migrating in the 

IZ, while RhoB mRNA expression is high only in the CP (Ge et al., 2006; Olenik 
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et al., 1999). The members of Rnds proteins also have been implicated in the 

radial migration as we will discuss later on (Heng et al., 2008; Pacary et al., 2013, 

2011).  

In contrast to the radial migration of pyramidal cells, involvement of Rho proteins 

in the migration of interneuron precursors is still enigmatic. Nevertheless, very 

recently, Ito and collaborators, summarize the roles of Rho small GTPases and 

their related molecules in the tangential migration of interneurons (Ito et al., 

2014). To mention some examples: Rac protein have been related with migratory 

defects of LGE- and MGE-derived neural cells (Chen et al., 2007), perturbation of 

cell cycle exit and aggregation of MGE-derived neural cells in ventral 

telencephalon (Vidaki et al., 2012), reduction of relative number of cells that 

migrate to OB (Khodosevich et al., 2009), selective reduction of PV-positive cells 

in cortex and hippocampus and migratory defects in cortical interneuron (Vaghi et 

al., 2014); RhoA is implicated in as well increase and decrease of interneurons 

migration (Wong et al., 2001); ROCK (Rho-associated protein kinase) and Cdc42 

control the number of migrating cells (Shinohara et al., 2012; Wong et al., 2001). 

Development of the nervous system requires efficient extension and guidance of 

axons and dendrites culminating in synapse formation. As we mentioned above, 

axonal growth and navigation during embryogenesis are controlled by 

extracellular cues that affect growth cone morphology in inducing attraction or 

repulsion. Again, in this context, Rho-family GTPases also play an important role 

in regulating intracellular cytoskeletal components that facilitate axonal 

morphological changes and in integrate and propagate signals from various 

guidance cues (Govek et al., 2011; Spillane and Gallo, 2014).  
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1.11.1 Rnd proteins 

The Rnd proteins Rnd1, Rnd2, and Rnd3 (also called RhoE) constitute a unique 

branch of Rho family GTPases that have a low affinity for GDP and very low 

intrinsic GTPase activities. This indicates that in contrast to most other small G 

proteins, Rnds are not molecular switches and they are supposed to be 

constitutively active, insensitive to the effects of classical Rho GTPase regulators, 

including GEFs and GAPs (Fiegen et al., 2002; Foster et al., 1996; Garavini et al., 

2002; Govek et al., 2011; Guasch et al., 1998; Nobes et al., 1998). This suggests 

that the regulatory mechanism of Rnd protein localization is likely to be different 

from those of other Rho family members. Studies in neurons have provided 

important insights into the mechanisms that control the activity of the Rnd 

proteins, and revealed that their expression, localization and phosphorylation 

control their activity, rather than the GDP/GTP switch (Chardin, 2006). Like most 

Rho family members, Rnd proteins are post-translationally modified at the C-

terminus by addition of a 15-carbon farnesyl group, which is important for their 

localization to membranes (Roberts et al., 2008). 

Subcellular localizations of the Rnd proteins are mostly associated with 

membranes, and do not seem to be associated with a GDI (Nobes et al., 1998). 

The Rnd proteins are expressed differently in different tissues: Rnd1 was found in 

the liver, brain and human myometria during pregnancy; Rnd2 expression is 

highest in the testis (Chardin, 2006) and Rnd3 has aubiquitously low expression 

level, which changes with diverse stimuli and conditions (Riou et al., 2010). All 

three Rnd family members are expressed in the brain, and several studies have 

shown they affect multiple aspects of neuronal function, through direct effects on 

RhoA/ROCK signaling and/or through their interaction with plexins (Chardin, 

2006; Ishikawa et al., 2003; Oinuma et al., 2003; Püschel, 2007; Riou et al., 2010; 

Talens-Visconti et al., 2010; Yoshihara et al., 2009). 
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Like in the case of the classical Rho GTPases, a clear role for Rnd proteins has 

emerged from studies in many cell types, in actin cytoskeleton remodelling and 

affecting cell migration, invasion, axon pathfinding, neurite extension and 

branching (Riou et al., 2010). Rnd proteins play important roles in cell migration 

during mammalian cortical development. Among the key regulators of cortical 

neuron migration, the small GTP binding proteins of the Rho family and the 

atypical Rnd members play important roles in integrating intracellular signaling 

pathways into changes in cytoskeletal dynamics and motility behavior (Azzarelli 

et al., 2015a). Interestingly, Rnd proteins might also play a role in neuronal 

remodelling in the adult brain (Marie-Claire et al., 2007). In the nervous system, 

Rnd1 and Rnd2, play a role in neurite formation and retraction. Rnd1 has been 

implicated in process extension in the PC12 pheochromocytoma cell line (Aoki et 

al., 2000) and neurite extension in hippocampal neurons (Ishikawa et al., 2003) by 

a Rac-dependent mechanism involving disruption of cortical actin filaments (Aoki 

et al., 2000), the extension of axons in cultured neurons by regulating microtubule 

stability (Li et al., 2009), and dendrite development in rat hippocampal neurons 

(Ishikawa et al., 2006). Morphological changes induced by Rnd1 are mediated by 

p190 RhoGAP through an antagonistic effect on RhoA (Wennerberg et al., 2003). 

Rnd1 is also involved in axonal guidance and cytoskeleton collapse by interacting 

with the cytoplasmic domains of Semaphorin receptors (Oinuma et al., 2012, 

2003; Yukawa et al., 2010; Zanata et al., 2002).  

It has also been proposed that Rnd2 promotes dendrite branching and inhibits 

axon growth in differentiating neurons (Fujita et al., 2002; Negishi and Katoh, 

2005; Uesugi et al., 2009). Rnd2 regulates neurite outgrowth by functioning as a 

RhoA activator in contrast to Rnd1 and Rnd3 effects whith usually inhibits RhoA 

signaling (Tanaka et al., 2006). Rnd2 is expressed by radially migrating cells, 

which primarily develop to pyramidal neurons, during their stay in the SVZ of 

embryonic cerebral cortex and hippocampus. These results indicate that Rnd2 
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functions in vivo as a regulator of the migration and morphological changes 

associated with the development of pyramidal neurons (Nakamura et al., 2006). 

This hypothesis was recently confirmed indicating that Rnd2 is downstream of a 

neurogenic program of neuron migration (Pacary et al., 2011). 

Neurogenin2 (Ngn2), a proneural factor with a prominent role in neurogenesis in 

the embryonic cortex (Nieto et al., 2001; Schuurmans et al., 2004), coordinates the 

acquisition of the radial migration properties and the unipolar dendritic 

morphology characterizing pyramidal neurons (Hand et al., 2005). It was observed 

that Rnd2 expression is induced directly by Ngn2 (Chardin, 2006) in newly 

generated mouse cortical neurons and that it is, indeed, a major effector of Ngn2 

function in the promotion of migration. In acute loss of function experiments by in 

utero electroporation experiments, the lack of Rnd2 results in an accumulation of 

cells in the VZ and SVZ of the developing cerebral cortex (Heng et al., 2008).  

Pacary and collaborators showed that Rnd2 as well as Rnd3 (see below) promote 

neuronal migration by inhibiting RhoA signaling. Specifically, Rnd2 controls the 

multipolar to bipolar transition in the IZ during radial migration (Heng et al., 

2008; Pacary et al., 2011). This finding was more unexpected because Rnd2 does 

not interfere with RhoA activity in fibroblasts (Chardin, 2006; Nobes et al., 1998). 

The exact mechanism by which Rnd2 inhibits RhoA in neurons is currently 

unknown but it does not involve the interaction with p190RhoGAP and is 

therefore different from that of Rnd3 (Pacary et al., 2011). 

Recently, it was demonstrated that Rnd2 regulates cell migration, including the 

multipolar to bipolar transition within the embryonic cortex (Heng et al., 2015; 

Ohtaka-Maruyama et al., 2013). Rnd2 expression is regulated by other 

transcription factors within the developing cortex including COUP-TFI, which 

directly represses Rnd2 expression at the post-mitotic level along the rostrocaudal 
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axis of the neocortex; so by finely regulating Rnd2 expression levels (Alfano et 

al., 2011).  

1.11.1.1 Rnd3 

Rnd3 was originally defined as a repressor of ROCK1 and initial studies of Rnd3 

focused mainly on this inhibitory effect. Together with Rnd1, Rnd3 was 

subsequently shown to antagonize RhoA/ROCK signaling as a binding partner for 

p190RhoGAP (GAP for RhoA), that involve actomyosin contractility reduction 

and controls the actin cytoskeleton formation, myosin light chain phosphatase 

phosphorylation and apoptosis (Chardin, 2006; Ongusaha et al., 2006; Riento and 

Ridley, 2003; Riento et al., 2005, 2003).  

The understanding of how Rnd3 function is regulated came from the observation 

that Rnd3 is phosphorylated (Riou et al., 2010). Rnd3 phosphorylation is 

important in regulating both its localization and stability. Rnd3 can be 

phosphorylated by at least two kinases, ROCK1 and PKCa. Rnd3 phosphorylation 

leads to its translocation from the plasma membrane to the cytosol (Madigan et 

al., 2009; Riento et al., 2005). In addition, phosphorylation regulates the stability 

of Rnd3 and protects the protein from degradation (Riento et al., 2005).  

Rnd3 is involved in migration of fibroblasts and tumor cells (Chardin, 2006; 

Guasch et al., 1998; Klein and Aplin, 2009; Nobes et al., 1998), regulates cell 

proliferation in different cell types (Bektic et al., 2005; Poch et al., 2007; 

Villalonga et al., 2004) and is important for neurite extension in PC12 cells 

(Talens-Visconti et al., 2010). 
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Figure 16. Regulation of Rnd3 by phosphorylation. ROCKI and PKCa can both phosphorylate 

Rnd3, most likely at the plasma membrane. Phosphorylated Rnd3 subsequently translocates from 

the plasma membrane to the cytosol and/or internal membranes. Rnd3 is degraded in part by the 

proteasome, and phosphorylated Rnd3 is more stable than unphosphorylatable Rnd3. Figure 

adapted from (Riou et al., 2010). 

 

Another main function of Rnd3 is the cell cycle arrest and inhibits the cell 

proliferation (Poch et al., 2007; Villalonga et al., 2004). Rnd3 is down-regulated 

in different cancer cell (Ma et al., 2013; Xia et al., 2013; Zhao et al., 2012). This 

effect seems to be dissociated from its cytoskeletal functions (Riou et al., 2010). 

In fact, Rnd3-mediated cell proliferation is regulated through Notch signaling 

regulation via post-translational modification (Y. Tang et al., 2014). 

To study the role of Rnd3 in vivo, several mice lacking Rnd3 expression were 

generated, including a gene trap allele (gt) and a targeted knockout (KO) (Lin et 

al., 2013; Mocholí et al., 2011). Rnd3 
gt/gt

 mice are significantly smaller at birth 

than their heterozygous or wild-type (WT) littermates, show significant postnatal 

growth retardation and do not survive beyond P29, with anaverage survival of 15 

days (Mocholí et al., 2011). Null mutant mice show important structural and 

behavioral deficits, specially related to the function of the nervous system. They 

perform worse than control littermates in several motor tests and display delayed 
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neuromuscular maturation and reduction in the number of spinal motor neurons. 

Rnd3 
gt/gt

 mice lack the common peroneal nerve and, consequently, show a 

complete atrophy of the target muscles (Ballester-Lurbe et al., 2014; Mocholí et 

al., 2011). Histological analysis of this mutant did not reveal major differences 

between WT and mutant cortex but hippocampal neurons showed a delayed 

polarization, decreased number and length of the neurites and reduction in axon 

outgrowth and delay in the process of neuronal polarization in culture (Peris et al., 

2012). 

On the other hand, the Rnd3 KO mice display aqueduct stenosis and development 

of congenital hydrocephalus caused by an increased Notch signaling and an 

enhanced proliferation of ependymal cells (Lin et al., 2013), a phenotype that was 

not described for the Rnd3 
gt/gt

 mutant. These phenotypic differences among 

different Rnd3 mutants are some how surprising and require further investigation, 

but it may be accounted for differences in the genetic background. A further 

analysis of the targeted Rnd3 KO at earlier stages than investigated so far (Lin et 

al., 2013) may also reveal additional defects. 

The effects of Rnd3 on neuronal development and the underlying molecular 

mechanisms have not yet been extensively investigated. Like Rnd2, Rnd3 has also 

been involved in the radial migration by inhibiting RhoA signaling. However, 

Rnd2 and Rnd3 seem to control distinct steps of the migratory process, and, in 

turn, their gene expression is regulated by different proneural factors, by Ngn2 

and by Ascl1, respectively (Pacary et al., 2011). The idea is that these proneural 

proteins integrate the process of neuronal migration with other events in the 

neurogenic program through the spatiotemporal regulation of Rnd proteins: while 

Rnd2 is involved in the transition from the multipolar to the bipolar stage in the 

IZ, Rnd3 is required later during the migration of bipolar neurons within the CP. 

Ascl1-Rnd3 pathway regulates the migration of cortical neurons by promoting the 
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disassembly of actin filaments. In cortical neurons, however, this effect seems to 

be mediated by antagonizing RhoA activity directly though the interacting with 

the Rho-GAP p190RhoGAP. In contrast, in the case of Rnd2, the mechanism of 

RhoA inhibition remains to be elucidated in vivo (Pacary et al., 2011).  

An interesting recent finding was that Rnd3 function can be regulated by 

extracellular cues which provide mechanisms of how environment influences 

cytoskeleton rearrangements leading to changes in migration. The Semaphorin 

Plexin B2 receptor interacts physically and functionally with Rnd3 and stimulates 

RhoA activity in migrating cortical neurons (Azzarelli et al., 2014). Besides, the 

migration effects on cortical neurons, reduced levels of Rnd3 also disrupts the 

apical attachment of RGC, interferes with interkinetic nuclear migration and 

changes the cleavage plane of their division suggesting a role for Rnd3 in the 

regulation of cell cycle and the early steps of neurogenesis (Pacary et al., 2013). 

Therefore, Rnd3 exerts its pleiotropic functions in early steps of cortical 

neurogenesis by employing distinct mechanisms in RG cells and BP (Pacary et al., 

2013). The inhibition of RhoA by Rnd GTPases is one example for the different 

mechanisms that mediate a crosstalk between GTPases during neuronal migration. 

The function of Rnd1 and Rnd2 in cortical development remains to be analyzed 

genetically (Shah and Püschel, 2014). 

Finally, very recently was showed that Rnd3 
gt/gt 

display a remarkable postnatal 

broadening of the SVZ and of the caudal rostral migratory stream (RMS) 

(Ballester-Lurbe et al., 2014). The SVZ represents an important reservoir of 

progenitor cells in the adult brain. Cells from the SVZ migrate along the RMS and 

reach the OB, where they originate different types of interneurons (Doetsch et al., 

1999). The lack of Rnd3 expression affected mainly the development of CB-

expressing cells in the OB. This adds a new function for Rnd3 on subventricular 

cells because of its role in proliferation and tangential migration, and indicate that 
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it plays an important role in neural stem cells development (Ballester-Lurbe et al., 

2014). 

 

1.12 FLRTs and neuronal development 

The fibronectin leucine rich transmembrane (FLRT) family proteins: FLRT1, 

FLRT2, and FLRT3, comprise a small family of transmemebrane proteins isolated 

in a screen for extracellular matrix proteins expressed in muscle. They are 

conserved among vertebrates but not present in invertebrates such as D. 

melanogaster and C.elegans. Their structure is comprised of a fibronectin type III 

domain (FNIII) and 10 leucine-rich repeats (LRR) in the extracellular part. The 

intracellular part includes around 100 aminoacids with no catalytic activity. 

FLRT1 is mainly expressed in kidney and brain, FLRT2 is expressed in pancreas, 

skeletal muscle, brain, and heart; and FLRT3 is expressed in kidney, brain, 

pancreas, skeletal muscle, lung, liver, placenta, and heart. Moreover FLRT1 and 

FLRT2 are glycosylated (Lacy et al., 1999).  

While the functions of FLRT1 is essentially unknown, different aspects of the 

function of FLRT2 and FLRT3, in different animal models, have been analyzed in 

the last past years (Müller et al., 2011; Yamagishi et al., 2011). During Xenopus 

development for instance, FLRT3 can physically interact with FGF receptors and 

modulate FGF-ERK signalling (Böttcher et al., 2004). This function is dependent 

on an intact FNIII domain and the cytoplasmic tail of FLRT3 (Böttcher et al., 

2004). In a different study, it has been proposed that FLRT3 could mediate 

homotypic cell adhesion and trigger cell sorting, a function that requires, in this 

case, the extracellular LRR domains (Karaulanov et al., 2006). More recently, 

biochemical and bioinformatic analysis through a cell surface binding screen for 
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FLRT3 partners revealed high affinity interactions between FLRTs and the Unc5 

family of Netrin receptors (see below) (Karaulanov et al., 2009).  

In the mouse, FLRT3 KO embryos display defects in ventral closure, headfold 

fusion and definitive endoderm migration (Maretto et al., 2008), as well as 

disorganization of the basement membrane which leads to rupture of the anterior 

visceral endoderm (Egea et al., 2008). This suggests that cell adhesion is affected 

upon FLRT3 ablation, maybe due to the role of this protein in homotypic 

interaction and cell sorting. Moreover, FLRT2 and FLRT3 expression partially 

overlapping in the developing heart. The mouse embryos lacking FLRT2 

expression arrest at mid-gestation owing to cardiac insufficiency (Müller et al., 

2011). Thus, either FLRT2 or FLRT3 contribute similar functional activities in 

the epicardium and anterior visceral endoderm, respectively. Consistent with 

previous reports (Egea et al., 2008; Maretto et al., 2008), it was also demonstrated 

that as for FLRT3, that FLRT2 expression is independent of FGF signaling 

(Müller et al., 2011). 

In the nervous system FLRT3 promotes neurite growth in dissociated neurons in 

vitro, non-cell autonomously or cell autonomously (Robinson et al., 2004; Tsuji et 

al., 2004). Interestingly, FLRT3 was recently identified as an endogenous 

postsynaptic ligand for Latrophilins (LPHNs), specifically LPHN3, the target 

receptor for the black widow spider venom α-latrotoxin. They interact by the 

ectodomains (ECD) with high affinity in trans suggestingan important role for 

FLRT3-LPHN3 in glutamatergic synapse development (O’Sullivan et al., 2012). 

The role of FLRTs as ligands, acting in trans or non-cell autonomously, was also 

supported by the observation that the ECDs of all three FLRTs undergo cleavage 

by metalloproteases and are shed from cultured neurons and from the tissue 

(Yamagishi et al., 2011). The soluble forms of FLRT ECDs are able to bind and 
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activate Unc5 receptors with certain degree of specificity being FLRT2 is the 

preferred binding partner of Unc5D and FLRT3 the preferred biding partner of 

Unc5B. The activation of Unc5 receptors by FLRT ECDs, as it happens upon 

Netrin binding, triggers a repulsive signaling inducing growth cone collapse and 

cell sorting. The relevance of this interaction and the repulsive consequences were 

found in vivo for the FLRT2-Unc5D system and the regulation of radial migration 

in the developing cortex (Yamagishi et al., 2011). During development, FLRT2 is 

expressed by neurons in the CP while Unc5D is expressed in deeper layers, by the 

IP allocated in the SVZ. The fact that FLRT ECDs are shed by neurons in vivo 

raised the possibility that they may act as diffusible repulsive ligands and affect 

the migration of young neurons from the SVZ via its interaction with Unc5D. 

Indeed, the analysis of KO animals of either Unc5D or FLRT2 showed a 

premature departure of neurons from the SVZ which in WT conditions is usually 

inhibited by the ECD of FLRT2 which is shed by cells from the CP (Yamagishi et 

al., 2011). Interestingly, during normal development of the cortex, down 

regulation of Unc5D expression is observed in migrating Svet1
+
 cells which is 

thought to be the mechanism that allows them to be insensitive to FLRT2 ECD 

and trespass the FLRT2 territory to reach the proper layer in the CP. After 

reaching upper cortical layers (mainly layer IV), Unc5D is re-expressed but the 

function of this re-expression in a FLRT2 rich environment is currently unknown. 

From these studies it was proposed that it is possible that repulsive FLRT2 and 

attractive Sema3A signals cooperate in guiding projection neurons to their 

appropriate cortical layers (Yamagishi et al., 2011).  

Very recently were presented structural analysis indicate that FLRTs control 

cortical neuron migration by distinct mechanisms, since distinct FLRT LRR 

surfaces mediate homophilic adhesion and Unc5-dependent repulsion (Seiradake 

et al., 2014). FLRTs can affect both adhesive and repulsive functions in the same 

receiving cell, for example, neurons or vascular cells that co-express FLRT and 
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Unc5. This separation of adhesive and repulsive functionalities allows FLRTs to 

regulate the behavior of migrating pyramidal neurons in distinct ways; FLRT2 

repels Unc5D
+
 neurons and thereby controls their radial migration, while FLRT3-

FLRT3 homophilic interactions regulate their tangential distribution. FLRT3 also 

controls retinal vascularization, possibly involving combinatorial signaling via 

FLRT and Unc5 (Seiradake et al., 2014). 

Besides these non-cell autonomous functions (in trans), FLRTs have been shown 

to display some cell-autonomous functions in vivo as well. FLRT3 was identified 

as a target gene of Nodal signalling, inhibiting cadherin adhesion in Xenopus early 

development through interaction with the Rho family GTPase Rnd1 (Ogata et al., 

2007). During Xenopus development PAPC (paraxial protocadherin) and FLRT3 

form a functional complex with cadherins for physiological regulation of C-

cadherin adhesion, cell sorting, and morphogenesis. PAPC counteracts FLRT3 

function by inhibiting the recruitment of the GTPase Rnd1 to the FLRT3 

cytoplasmic domain (Chen et al., 2009). Also was shown that FLRT3 functionally 

interacts with Unc5B and the effecton adhesion is mediated by Rnd1, suggesting 

that FLRT3, Unc5B and Rnd1 proteins interact to modulate cell adhesion in early 

Xenopus development (Karaulanov et al., 2009). From these studies it is tempting 

to speculate that FLRT-Rnd could play a role in vivo as well in the development 

of the mouse cortex and could be, like PlexinB (Azzarelli et al., 2014), another 

transmembrane protein involved in the localization of Rnd activity in specific 

domains of the developing neuron for proper migration/differentiation. 

FLRT3 appears to modulate several developmental processes such as cell growth, 

cell migration, and axon guidance by interacting in cis or in trans with distinct 

transmembrane receptors. Furthermore FLRT3 is also involved in axon 

pathfinding. A recent study demonstrates that FLRT3 acts as a co-receptor of the 

Robo1 and that it is required in rTCAs to modulate their Netrin-1 responsiveness. 
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FLRT3 modulates the degree of responsiveness to Netrin-1 from a neutral 

response to attraction, which is crucial for their topographic positioning. The 

absence of FLRT3 produces defects in axon guidance in vivo. This result highlight 

a novel mechanism by which interactions between limited numbers of axon 

guidance cues can multiply the responses in developing axons, as required for 

proper axonal tract formation in the mammalian brain. It constitutes a novel 

mechanism by which crosstalk between axon guidance cues is integrated in 

developing axons (Leyva-Díaz et al., 2014). 
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2. AIMS AND OBJECTIVES 

Functioning of the cerebral cortex relies on the precisely regulated migration of 

newly born neurons from different origins to their final position, to ensure the 

coordinated assembly of circuits involving glutamatergic projection neurons and 

GABAergic interneurons. The cerebral cortex better illustrates how both types, 

radial and tangential migration, are integrated during brain development, 

establishing the basis for the subsequent neural circuitry. Many studies have 

contributed to understanding the molecular mechanisms that control the tangential 

migration of interneurons from the basal telencephalon to the cortex. However, 

the mechanisms controlling their precise integration within the cortex, related with 

proper receptors, ligands and other unknown extracellular factors, are still limited. 

In particular, among the molecules involved in interneuron intracortical migration 

and dispersion along stereotyped routes, mainly chemoattractive factors have been 

identified. 

In this scenario, FLRT proteins are good candidates to contribute to the regulation 

of intracortical interneuron migration. In vivo, FLRTs have been related with 

neuron migration by different mechanisms of action (Seiradake et al., 2014; 

Yamagishi et al., 2011). For instance, it was shown that FLRTs have a repulsive 

function acting as ligands of the Netrin1 Unc5 receptors. In vivo, the 

FLRT2/Unc5D signaling has been implicated in the radial migration of a subset of 

cortical neurons (Yamagishi et al., 2011). In detail, proteolytic shedding of the 

FLRT2 ECD by cells in the CP prevents the premature migration of Unc5D-

expressing neurons located in the SVZ to the CP in the developing cortex 

(Yamagishi et al., 2011). In contrast to this FLRT-Unc5 repulsive function, it was 

reported more recently that FLRT3 protein is implicated in the tangential 

dispersion of pyramidal neurons in a manner that involves FLRT3-FLRT3 

homophilic adhesion (Seiradake et al., 2014). Therefore, FLRTs can regulate the 
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radial migration of pyramidal neurons through a repulsive effect mediated by 

Unc5 receptors, as well as their tangential spread, through an adhesive function 

involving FLRT-FLRT homophilic interactions.  

Besides controlling neuron migration, our group has also recently shown that 

FLRTs have a role in controlling axon guidance in vivo (Leyva-Díaz et al., 2014). 

In this case, it was shown that FLRT3 is a novel co-receptor for Robo1 in rTCAs 

and modulates Robo1 activity for a proper topographic projection of these axons 

into the developing cortex (Leyva-Díaz et al., 2014). If this FLRT3-Robo1 

signaling could also been involved in the regulation of other processes such as 

neuron migration are currently unknown. 

Finally, the intracellular molecular mechanisms regulating FLRT signaling, cell 

autonomously (by homophilic cell adhesion or as co-receptors), or non-cell 

autonomously (acting as ligand for Unc5 receptors), is not very well undertood. In 

this context, Rnd familly of Rho GPTases, have been suggested to play an 

important role in FLRT signaling. For instance, FLRT3, Unc5B and Rnd1 

proteins interact to modulate cell adhesion in early Xenopus development 

(Karaulanov et al., 2009). This effect might be mediated by a direct interaction of 

FLRT3 and Rnd1 which controls the levels of C-cadherin at the cell-surface 

(Ogata et al., 2007). On the other hand, Rnd2 and Rnd3 have been involved in 

several steps of pyramidal neuron migration in the developing cortex, although the 

upstream signaling effectors are currently unknown (Pacary et al., 2011). 

Altogether, it is tempting to speculate that the regulation of Rnd proteins by 

FLRTs could play a role in controlling different aspects of neuron development in 

vivo.  

Considering all these antecedents which reveal that FLRTs are relevant factors 

during cortex development, it was proposed the hypothesis that FLRTs could 
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control the tangential migration of cortical interneurons during development. At 

the intracellular signalling level, it was hypothesized that Rnd proteins could be 

important regulators of the function of FLRTs in vivo. 

The specific objectives are: 

1.) Analyze the role of FLRTs proteins in the tangential migration of cortical 

interneurons during development. 

1.1.) Determine the expression pattern of FLRT2 and FLRT3 in the routes of 

interneuron migration in the mouse telencephalon during development, specially 

around the interneuron migratory streams within the cortex. 

1.2.) Determine the laminar distribution pattern and migration progression of 

tangentially migrating CB
+
 interneurons in WT and nervous system specific FLRT 

KO brains at two different developmental stages, E14.5 and E16.5. This analysis 

will include the single FLRT2 or FLRT3 KOs as well as the double FLRT2/FLRT3 

KOs. 

1.3.) Analyze the morphological parameters and the cortical lamination (with 

specific markers) of pyramidal neurons in the developing cortex of the FLRT 

mutants. 

1.4.) Discriminate the cell autonomous from the non-cell autonomous funcion of 

FLRTs in intracortical interneuron migration in vivo by using the palial-specific 

(cortical pyramidal neurons specific) Cre line, Emx1-Cre. 

2.) Evaluate the possible functional interaction between Rnd3 and FLRT 

proteins. 
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2.1.) Determine the expression pattern of rnd3 by in situ hybridization in the 

developing mouse brain and compared this pattern with those of FLRTs. 

2.2.) Determine the interaction between FLRTs and Rnd3 by in vitro assays in 

heterologous cells. 

2.3.) Assess the similarities of the FLRT phenotype in interneuron migration with 

that of Rnd3 mutants suggesting a possible functional interaction of the two 

proteins in vivo. 
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3. MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Chemicals, reagents, commercial kits and enzymes 

All chemicals and reagents were purchase from Fulka, GE Healthcare, Invitrogen, 

Merck, Sigma, Serva, Roche, Roth and VWR, unless described otherwise in the 

methods section. Water used for buffers, solutions and reactions mixes was 

filtered using a Milli-Q-Water System (Millipore). Restriction endonucleases, 

polymerases and other DNA modifying enzymes were purchase from the New 

England Biolabs, Roche and Takara. Plasmid preparations were done using the 

SIGMA Plasmid Miniprep or the SIGMA Midiprep kits. SIGMA PCR 

purification and QIAquick gel extraction kits were used for molecular cloning 

procedures. 

3.1.2 Mouse lines and animal housing 

Mouse lines Nes-Cre
+
;FLRT3

lx/-
, FLRT2

-/+
, FLRT3

-/+
, FLRT3

lx/lx 
and Sox1-Cre

+ 

(Takashima et al., 2007) were previously described (Egea et al., 2008; Yamagishi 

et al., 2011). FLRT2
lx/lx

 line was obtained from EUCOMM. FLRT2
-/+

;FLRT3
-/+

; 

Sox1-Cre
+
 males were crossed with FLRT2

lx/lx
;FLRT3

lx/lx
 females in order to 

obtain a conditional deletion of FLRT2 and FLRT3 in the nervous system:  

FLRT2
-/lx

;FLRT3
-/lx

;Sox1-Cre
+
, here called FLRT2 and FLRT3 double KO (DKO) 

(F2F3-Sox-DKO). Mouse line Rnd3
+/gt

 (from Dr. Ignacio Pérez) were crossed to 

obtain Rnd3 
gt/gt

 embryos (Mocholí et al., 2011). Brains from FLRT2
-/lx

;FLRT3
-

/lx
;Emx-Cre

+ 
double conditional mutants and the respective controls were kindly 

provided by Dr. Daniel del Toro. 
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3.2 Methods 

3.2.1 Molecular biology 

3.2.1.1 Generation of labeled riboprobes for in situ hybridization 

Digoxigenin labeled riboprobes for mouse and human were generated using the 

plasmids obtained from S. Homma’s Lab. For sense and antisense probe 

synthesis, plasmids were linearized using the respective restriction enzymes. After 

linearization of 10 µg plasmid DNA, the vector was purified by 

phenol/chloroform extraction. The efficiency of the linearization and purification 

was examined using agarose gel electrophoresis, the quantity of purified DNA 

was determined using agarose gel and spectrophotometer (Nanodrop 1000, 

Thermo Scientific) and the linearized plasmid was stored at -20°C. For in vitro 

transcription of  RNA, 200 ng of linearized plasmid was used in 20 µl 

transcription reactions together with 2 µl digoxigenin-RNA labeling mix (Roche), 

2 µl transcription buffer, 2 µl DTT 0.1 M, 1 µl RNase inhibitor, 1 µl RNA 

Polymerase (T3, T7 or SP6) and RNase-free water. After 3 hrs incubation at 37°C, 

the transcription efficiency was assessed using agarose gel electrophoresis and the 

RNA was precipitated by addition of 100 µl TE buffer, 10 µl LiCl 4 M and 300 µl 

EtOH 100% with subsequent centrifugation at 13 000 rpm for 15 min at 4°C. The 

pellet was washed twice with 70% EtOH, dried on ice and resuspended in 100 µl 

TE. The riboprobe were aliquoted and stored at -80°C. For in situ hybridization 10 

µl/ml prehybridization solution was used. 
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3.2.2 Tissue culture 

3.2.2.1 Cell culture 

HEK293T and HeLa cells were grown in DMEN (Invitrogen), 10% FBS, 

antibiotics (Penicillin and Streptomycin), glutamine and divided every 48-36 hrs. 

For HEK293T and HeLa cells transfection experiments, cells were cultivated in 

collagen coated either p60 plates or 24 well plates, respectively. This coating was 

performed by adding 1 ml of 0.1 mg/ml of collagen in 0.02 N acetic acid. The 

cells were maintained at 37°C in a 5% CO2-humidified incubator. 

3.2.2.2 Transfection 

For transfection of HEK293T and HeLa cells, were cultured in p60 plates and 24 

well plates, respectively. The DNA was mixed with OptiMEM: 1 µg DNA per 50 

µl OptiMEM and 4 µg DNA per 600 µl OptiMEM, respectively. In other tube the 

PEI and OptiMEM were mixed: 10 of PEI (1 µg DNA) in 40 µl OptiMEM and 40 

of PEI (4 µg DNA) in 600 µl OptiMEM, respectively. Content of both tubes is 

mixed in one, vortex and kept 10 min at room temperature (RT). Before adding 

the DNA-PEI mix plates where washed two times with OptiMEM. When the 

incubation time has finished, the DNA-PEI mix was further diluted to 1 or 2 ml 

total volume, respectively; then added to the cells and incubated 1 hr at 37°C in 

the 5% CO2-humidified incubator. After that, the media was replaced by fresh 

media and kept in the incubator.  

3.2.3 Biochemistry 

3.2.3.1 Cell and brain tissue lysates  

Lysates of cultured HEK293T cells were obtained by placing culture dishes on 

ice. Then, was removed the media, washed twice with ice-cold phosphate-
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buffered saline (PBS) and incubated cells with ice-cold lysis buffer [LB: 20% 

glycerol, 2% Triton X-100, 40 mMTris pH 7.4, 300 Mm NaCl, 1 mM EDTA, 5 

mM NaPP,  1 mM Na3VO4, 5mM NaF and and inhibitors of proteases (Roche)] 

for 10 min on ice. After the cells scraped, the lysate was rotated for 45 min at 4°C. 

The cellular debris was pelleted by centrifugation at 13 000 rpm for 15 min at 

4°C.  

The telencephalon was separated from the rest of the brain and quickly deposited 

in 2 ml tubes and frozen immediately in liquid nitrogen, then kept at -80 °C. The 

samples were defrosted quickly and the tissue was homogenized with ice-cold LB 

in a glass homogenizer. The lysate was incubated rotating for 45 min at 4°C and 

subsequently treated as cell lysates. The samples were stored at -80°C. The 

protein concentration was determined by a Colorimetric assay kit (BioRad) to 

further perform the Western blotting. 

3.2.3.2 Immunofluorescence assay 

HeLacells were grown on coverslips in 24 well plates and co-transfected with: 

pcDNA3-FLRT
HA

 (JEN055) and pcDNA3-RhoE
FLAG

 (MDN18) (both N-terminal-

tagged), two wells per transfection condition. After 24 hrs one well was incubated 

with a mix: rbb anti-FLRT3 (home-made antibody raised against the ECD) and 

anti-rabbit Cy5 (previously incubated 30 min at RT, in order to promote the 

formation of FLRT3 clusters at the membrane of the transfected cells. After 1 hr 

in the incubator, all cells were washed with PBS and fixed 30 min with 500 µl 4% 

paraformaldehyde (PFA). Then, were washed 10 min with ice-cold NH4Cl 50 mM 

in PBS. After that, permeabilization was performed during 15 min with 500 µl of 

0.1% Triton X-100 in PBS on ice. Then, coverslip was taken out the well and 

processed directly for immunofluorescence. The coverslip was treated 60 min 

with 50 µl of blocking solution (BS: 5% donkey serum in PBS), followed by 2 hrs 
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of incubation with 50 µl primary antibody [rat anti-HA (Roche) and mouse anti-

FLAG (Abcam); 1:250] in BS at RT. The cells were washed twice 5 min with 

PBS and then incubated for minimum 45 min with secondary antibody [donkey 

anti-rat Cy2 and donkey anti-mouse Cy3 (Jackson ImmunoResearch; 1:500] and 

DAPI was included in order to visualize nuclei (1:2000) in BS at RT. Cells were 

finally washed with PBS and the coverslip quickly rinsed with water before 

mounting with slowfade (Invitrogen). This preparation was sealed with polish nail 

and stored at 4°C under the dark until the analysis. 

3.2.3.3 Western Blotting 

Lysates samples were mixed with SDS PAGE, vortexed, centrifuged and boiled 

for 5 min at 95°C before loading them into the polyacrylamide gel (4% stacking 

and 12% concentration gel). Electrophoresis was performed in running buffer (25 

mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3) using the following parameters: 

300 V and 20 mA/gel during 60 min. For transfer, the PVDF (Millipore) 

membrane was first activated 1 min in methanol, washed 1 min in water and 1 

min more in transfer buffer (48 Mm Tris, 39 mM glycine, 0.04% SDS, 10% 

methanol). This step was performed by semi-dry method, applying 300 mV and 

60 mA/membrane current during 60 min. After that, membrane was washed 

withTris Buffer Saline Tween (TBST: 50 mM Tris, 150 mM NaCl, 0.05% Tween 

20) and incubated 45 min with 5% skimmed milk in TBST. Then, membrane was 

washed three times with TBST and incubated with primary antibody [goat anti-

FLRT1, goat anti-FLRT2, goat anti-FLRT3 (R&D System), mouse anti-FLAG 

(Abcam), rabbit anti-EphA4 (Santa Cruz); 1:1000] prepared in TBST. Incubation 

was performed 2hrs at RT or overnight at 4°C in a mixer roller. The excess of 

primary antibody was washed three times with TBST and then the membrane was 

incubated 45 min with the secondary antibody [anti-goat HRP, anti-mouse HRP, 

anti-rabbit HRP (Jackson ImmunoResearch); 1:5000] diluted in TBST. The 
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membrane was washed six times in 30 min approximately. Finally, membrane 

was incubated 3 min in 2 ml of mix of Chemiluminiscent HRP Substrates 

(Millipore) and image was taken in BioRadChemidoc. Quantification of band 

intensity was performed with Image Lab software. 

3.2.3.4 Co-immunoprecipitation 

After 24 hrs from transfection of HEK 293T with: pcDNA3-FLRT
HA

 (JEN055), 

pcDNA3-RhoE
FLAG

 (MDN18), pNEGFP-FLRT3ΔC
GFP

 (JEN192), pcDNA3-

FLRT1 (JEN025), FLRT2 (JEN079); the cells were harvested with LB 

(previously described) and centrifuged to collect supernatant. Then, 50 μl of the 

extract were kept for total cell lysate (TCL) and the rest was incubated 4 hrs with 

10μl of anti-FLAG coupled beads (SIGMA). Finally, beads were washed and left 

with 10 μl of protein loading buffer (reducing). 

3.2.4 Animal handling and experiments 

Pregnant WT mice maintained on a CD1 background and pregnant females from 

the crosses described above were used for protein and gene expression analysis. 

Timed-pregnant dams (day of vaginal plug = embryonic day 0.5) were killed by 

rapid cervical dislocation and mouse embryos were immediately harvested for 

different analysis. Mouse embryos from E14.5 to E 16.5 were used in the present 

study. Tail biopsies were taken from the embryos to obtain DNA as template to 

perform a genotyping PCR in order to identify the mutant embryos. Animals were 

maintained in Specific Pathogen Free (SPF) conditions in the Animal house of the 

University of Lleida under standard conditions and were treated according to the 

laws and regulations of the European Union and Spanish government. 
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3.2.5 Genotyping 

Embryo’s tail obtained in the dissection was washed in PBS and placing in PCR 

tube to dissolve the tail. DNA was obtained by 15min (three times) boiling steps 

of sample in 50 mM NaOH at 94°C, and a neutralization step with Tris pH 8.8 1.5 

M. 

To detect F2F3-Sox-DKO were used the following primers: 

FLRT2 mutant:  

5’-GACTTCTCTTAACAGTACTTCGCATCACGC-3’ (MDN-O-4). 

5’-GTTCATGGGGAACTCATCCAACTGGTTGCC-3’ (MDN-O-5) 

5’-AGTTATATTAAGGGTTCCGGATCAGCAGCC-3’ (MDN-O-6) 

FLRT2
lx

:  

5’-GTGGAAGGAAGGAATTGTCTCAGG-3’ (MDN-O-59) 

5’-GGAGCCAGGTTGGCAGGAGTTGGC-3’ (MDN-O-60) 

FLRT3 mutant: 

5’-GCTTATACTACAAGGGTCTCATGTGAACGC-3’ (MDN-O-42) 

5’-GGCTGCAGGAATTCGATATCAAGCTTATCG-3’ (MDN-O-43) 

5’-CCGGTACTAAGAAAGACAACTCCATCCTGG-3’ (MDN-O-44) 

FLRT3
lx

:  

5’-GATATTTGCCAAAGGAGACAGAAAATACTGGC-3’ (MDN-O-160) 

5’-CTGGGTTCATTGCTGTCTACCAACAAGCAC-3’ (MDN-O-80) 

Cre allel:  
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5’-GCCTGCATTACCGGTCGATGCAACGA-3’ (MDN-O-46) 

5’-GTGGCAGATGGCGCGGCAACACCATT-3’. (MDN-O-47) 

The following PCR program was used in a BioRad T100™ ThermalCycler: 

3 min/94°C + 38 x [1 min/94°C + 1 min/63°C + 1 min/72°C] + 20 min/72°C + 

Infinite x 10°C. 

In the case of genotyping the Rnd3 
gt/gt

, PCR was performed with the following 

primers following a three primer strategy:  

KO-specific primers: 

5’-AAATGGCGTTACTTAAGCTAGCTAGCTTGC-3’ (MDN-O-276) 

Common primer: 

5’-TGAGCTAGGAAGATGCGGATGT-3’ (MDN-O-277) 

WT-specific primer: 

5’-TTTACACAGTAGGCTGACTC-3’ (MDN-O-278). 

The following PCR program was used in a BioRad T100™ ThermalCycler:  

3 min/94°C + 38 x [45 seg/94°C + 1 min/58°C + 1 min/78°C] + 20 min/72°C + 

Infinite x 10°C. 

3.2.6 Brain dissection, cryopreservation and cryosection 

Brains were dissected under a lens microscope in ice-cold PBS, washed and fixed 

in 4% PFA 4 hrs (for immunohistochemistry) or overnight (for in situ 

hybridization). Then, the brains were washed subsequently with PBS to remove 

excess PFA. After that, were cryoprotected in 30% sucrose to avoid any 

desiccation while storage in -80°C till it sinks to bottom and then embedded in 



Materials and Methods 

89 

cryoprotective Tissue Tek. Coronal sections of 20 μm thickness were made in 

cryostat (Leica CM3000) at -24°C. Air dry for 1 hr at RT and then used or stored 

at -80°C. 

3.2.7 Histology 

3.2.7.1 In situ hybridization 

Serial brain 20 μm cryosections stored at -80°C were defrosted for 30 min at RT. 

Hybridization was carried out over night in hybridization buffer containing 

digoxigenin-labeled probe of Rnd3 at 70°C. Sections were rinsed and washed with 

MABT three times for 20 min at RT. Sections were incubated in blocking 

solutions for 60 min at RT. Subsequently, sections were incubated over night at 

4°C with an alkaline phosphatase-conjugated anti-digoxigenin antibody (Roche) 

diluted 1:2000 in blocking solution. Sections were then rinsed and washed six 

times for 20 min with MABT at RT, followed by rinse and wash of 10 min, three 

times with NTMT Buffer at RT. Signal was visualized with NBT/BCIP (Roche) 

diluted in NTMT, developing was carried out in dark at RT until signal appeared 

completely. Developing was stopped by 5 min washes (3 times) with PBT at RT. 

Sections were postfixed in 4% PFA in PBS for 15 min, rinsed and washed with 

PBS for 5 min (2 times). Rinsed and washed with water for 5 min (2 times). Air 

dried under hood. Mounted with glycerol-gelatin and stored at RT. 

3.2.7.2 Immunohistochemistry 

Slices from E14.5 and E16.5 embryos coronal sections brain were let to dry 30 

min at RT. Then, 10 min washes (3 times) with PBS, 10 min wash with 50 mM 

NH4Cl and a final wash with PBST (0.1% Triton X-100 in PBS). Sections were 

permeabilized and unspecific bindings were blocked for 1 hr at RT with blocking 

solution (BS: 5% donkey serum in PBST). Sections were incubated with primary 
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antibodies [goat anti-FLRT2, goat anti-FLRT3 (R&D System), rabbit anti-

Calbindin (Swant), rabbit anti-Tbr1, rabbit anti-Tbr1, mouse anti-Satb2, rat anti-

Ctip2 (Abcam); 1:100] were diluted in BS and incubated overnight at 4°C. After 

washing 15 min with PBST (3 times), the secondary antibodies [donkey anti-goat 

Cy3, donkey anti-rabbit Alexa488, donkey anti-mouse Cy3, donkey anti-rat 

Alexa647 (Jackson ImmunoResearch); 1:300] with DAPI (1:2000) were also 

prepared in BS and incubated for 2 hrs at RT. The slides were washed 15 min 

with PBST (3 times), and coverslipped with an aqueous mounting medium 

Fluoromount-G (SouthernBiotech). Immunofluorescently labeled cryosections 

were imaged on a Olympus Bx51 fluorescence microscope, and micrographs were 

uniformly adjusted for levels, brightness, and contrast in Adobe Photoshop. 

3.2.8 MGE explant assay 

E14.5 WT; FLRT2 KO (F2-Sox-KO); FLRT3 KO (F3-Sox-KO) and F2F3-Sox-

DKO brains were dissected in ice-cold Hank’s Balanced Salt Solution (HBSS) 

with antibiotics (penicillin and streptomycin). MGE pieces were embebed in a 

drop, grown in Matrigel matrix and cultured in p35 plates at 37 °C in a 5% CO2-

humidified incubator in neurobasal medium supplemented with B27 serum and L-

glutamine (Invitrogen), antibiotics (penicillin and streptomycin). Images were 

acquired at 24, 48, 72 and 96 hrs using an Olympus 1x71 microscope and 

analyzed. 

3.2.9 Quantitative and statistical analysis 

3.2.9.1 Cells intracortical distribution 

For the analysis of interneurons migration in vivo, the number of CB-expressing 

cells was quantified. These cells were counted of the dorsal E14.5 and E16.5 
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cortex at intermediate rostrocaudal levels in six different animals in all cases 

(n=6).  

The total cells were counted manually. To determine the distribution of the cells at 

E14.5, the cortex was analyzed with a counting box subdivided into 10 equidistant 

bins that spanned the lower part of MZ (not included) to ventricular surface. Bin 1 

roughly corresponds to the beginning of the CP, and bin 10 corresponds to the 

VZ. The grid was placed systematically in cortical locations approximately in the 

middle of lateral-medial axis of the embryonic cortex. This distribution also was 

determined for cytologically distinct zones (CP, IZ, SVZ/VZ) and two tangential 

streams (SP and IZ/SVZ). At E16.5 the counting box was subdivided in two parts 

containing the CP and the rest of the cortical layers (MZ not included). The 

numbers of cells present in each bin were counted and their percentile 

distributions across all bins were determined for each tissue section. 

3.2.9.2 Tangential progression of cells 

For quantification of tangential progression, cortical length was measured from 

the corticostriatal boundary to the cortical hem. The relative streams distance was 

calculated as the distance of both SP and IZ/SVZ streams respect to cortical 

length. Also, cortices were segmented into three equidistant counting boxes to 

count the relative total CB
+
 interneurons. The last bin (III) (see Figure 31A) was 

subdivided in three bins and measured the total CB
+
 interneurons in each bin. 

3.2.9.3 Layer thickness 

The total and relative thickness of different layers of the cortex was measured 

using the fluorescence nuclear staining as a cytoarchitectonic reference. The 

relative thickness of cortical layers labeled with differentiation markers (Tbr1, 
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Tbr2, Ctip2, Satb2) and the respective fluorescence levels were measured using 

ImageJ software. 

3.2.9.4 MGE explants migration 

The interneurons migration from the MGE explants was quantified as the 

migration distance of cells in the half of each explant. The maximum migratory 

distance away from the explant was determined calculating the average of nine 

measures: the ratio between the distance from the explant to the furthest neuron 

migrated from the explant and the explant radius (see Figure 44C). Two tailed 

unpaired Student’ t tests were used to determine statistical differences between 

groups. Significance was considered p<0.05 and p<0.001. Error bars were 

calculated using the standard error of the mean (s.e.m), calculated from standard 

deviation. 
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4. RESULTS 

4.1 Mendelian analysis of the FLRT2 and FLRT3 double knockout progeny 

To begin addressing the objectives derived from the hypothesis of the present 

thesis, a conditional DKO for FLRT2 and FLRT3 in the nervous system, using the 

Sox1-Cre line, was created (Takashima et al., 2007). The breeding strategy was to 

cross a male FLRT2
+/-

;FLRT3
+/-

;Sox1-Cre
+
 with a female FLRT2

lx/lx
;FLRT3

lx/lx 

obtaining the offspring that includes all genetic possibilities (Figure 17A). All the 

litters produced were genotyped by PCR from tail biopsies of E14.5 embryos (see 

Material and Methods for the PCR genotyping conditions and primers). This data 

was analyzed by ANOVA to see if the crossing results complies with the terms of 

the Mendelian distribution and, as observed, the DKO genotype of offspring is 

according with the theoretical ratio expected (~12.5%) (Figure 17B). Only a 

control group gave significative differences, the reason for which is unknown 

(Figure 17B). In all cases “control group” refers to control littermates.  

 

4.2 Migrating Calbindin
+ 

interneurons follow three principals tangential 

routes 

To begin the study, was analyzed the normal distribution of CB-expressing 

cortical interneurons in WT embryos at E14.5, after the initial cohort of 

interneurons have entered the cerebral cortex (E12.5). By E13.5 interneurons have 

crossed the corticostriatal boundary and have migrated approximately half the 

length of the lateral cortical wall (Myers et al., 2014). Thus, at E14.5 is the 

beginning of interneurons tangential migration peak. In mice, CB is a well known 

marker for tangentially migrating interneurons in the cortical rudiment at the 

earliest stages of cortical histogenesis (Anderson, 1997). 
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Figure 17. Generation and Mendelian analysis of FLRT2 and FLRT3 DKO mice. (A) 

Analysis of all progeny derived from mating FLRT2
+/-

;FLRT3
+/-

;Sox1-Cre
+
 and 

FLRT2
lx/lx

;FLRT3
lx/lx

 parents. (B) Distribution of animals generated. “N” value represent the total 

number of litters analyzed and “n” the average of animals per litter. No significant differences 

were obtained by ANOVA analysis. All data are presented as mean ± s.e.m. 

 

Embryos from E14.5 pregnat females were dissected to obtain the brain. These 

embryonic brains were coronally sectioned and the cerebral cortex was sampled at 

three rostrocaudal locations spanning sections containing the MGE until before 

the caudal-most end of the telencephalon. By this, the analysis covers the majority 

of GABAergic migrating interneurons mainly originating in the MGE of the 

embryonic ventral telencephalon and discard the CGE-derived cells (Figure 18D). 

Then, the spatial distribution of WT interneurons within the cortex, in the 

rostrocaudal and mediolateral axes of the cortex (Figure 18A, B, C), was 
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analyzed. At this stage most CB
+
 interneurons were found forming three medially 

oriented large migratory streams: one coursing a superficial route through the MZ, 

another one, more prominent, in the lower IZ/SVZ and a smaller fraction of 

interneurons migrating through the SP (Figure 18E). 

In order to quantify the normal radial distribution during tangential migration of 

CB
+
 interneurons, a binning analysis across the developing wall was performed, 

using a fixed area box positioned in the cerebral wall (as indicated in panels A-C 

of Figure 18). This box was subdivided into ten equidistant bins along the radial 

axis of the lateral cortex (Figure 18E), and the percentage of CB
+ 

cortical 

interneurons appearing in bins 1 (above the MZ) through 10 (VZ) for each tissue 

section was determined.  

The results for this quantifications indicate that, in WT embryos, interneurons 

were predominantly distributed in the SP stream (bins 2-3) and IZ/SVZ stream 

(bins 6-7) (Figure 18F). Same results were obtained with this distribution was also 

determined grouping bins for cytologically similar zones: CP (bin 1), SP stream 

(bins 2-3), IZ (bins 4-5), IZ/SVZ stream (bins 6-7) and SVZ/VZ (bins 8-10) at this 

stage (Figure 18F’). 

 

4.3 FLRT2 and FLRT3 expression in embryos the mouse developing 

telencephalon 

It is well known that FLRT2 and FLRT3 regulate radial migration of a subset of 

projection neurons (Yamagishi et al., 2011) and that the absence of FLRT3 

produces defects in axon guidance in vivo in the developing thalamocortical 

projections in the forebrain (Leyva-Díaz et al., 2014).  
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Figure 18. Normal distribution pattern of tangentially migrating CB
+
 interneurons in the 

cerebral cortex at E14.5. Immunohistochemistry for CB
+
 interneurons expression in coronal 

sections through the rostral (A), intermediate (B) and caudal (C) telencephalic levels of WT brain 

as shown in squeme (D). Insets show a higher magnification of the boxed regions in each panel. 

(E) Boxed area taken from the (B) panel showing the laminar distribution of CB
+
 interneurons 

compared to 10 equidistant bins from the CP (avoidinig the MZ) to the ventricular surface. As 

indicated the main migratory streams are observed in the MZ, SP and IZ/SVZ (red). (F) 

Quantification of the number of interneurons in each bin respect to the total in each selected area 

(values are given in percentage). Numbers in ordinates identify bins for quantification, from the 

CP to the VZ. (F’) Percent distribution of CB
+
 interneurons for cytologically distinct zones: CP 

(bin 1), s.SP (bin 2 and 3), IZ (4 and 5), s.IZ/SVZ (6 and 7), SVZ/VZ (8, 9 and 10). All data are 

presented as mean ± s.e.m (n=3). Abbreviations: CB, calbindin; R, rostral; C, caudal; M, medial; 

L, lateral; D, dorsal; V, ventral; MZ, marginal zone; CP, cortical plate; s.SP, stream subplate; IZ, 
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intermediate zone; s.IZ/SVZ, stream IZ/SVZ; SVZ/VZ, subventricular zone/ventricular zone; WT, 

wild type. Scale bar, 200μm. 

 

However, the extent to which FLRT2 and FLRT3 signaling influences the 

migration of cortical interneurons is unknown. To evaluate the potential 

involvement of FLRT2 and FLRT3 signaling in interneuron migration, the 

expression pattern of FLRT2 and FLRT3 was mapped by immunofluorescence in 

the embryonic telencephalon at E14.5. 

Coronal sections were labeled with anti-FLRT2 and anti-FLRT3 antibodies raised 

against their ECDs. FLRT2 is widely expressed in the developing forebrain, but 

appears to be enriched in the nascent CP and in the mantle region of the LGE (van 

den Berghe et al., 2013; Yamagishi et al., 2011), where the newly generated 

postmitotic neurons reside (Figure 19A). In the case of FLRT3, prominent 

expression is evident in the thalamus, in the boundary between the LGE and 

MGE, and in the IZ of the developing cortex (van den Berghe et al., 2013; 

Yamagishi et al., 2011) (Figure 19B). Both expression patterns are specific since 

the signal dissapear in knockout tissue (see below). This expression analysis 

shows that both of proteins are expressed in different regions traversed by 

tangentially migrating interneurons suggesting that FLRT2 and FLRT3 may play 

a role in the regulation of interneuron migration. To test this hypothesis a double 

labeling of FLRT2 or FLRT3 in conjunction with CB was performed (Figure 

19A’, B’). From this analysis, striking observations were made in the developing 

cortex. Interestingly, these results revealed that CB
+
 interneurons in the MZ and 

IZ/SVZ, at E14.5, avoid the cortical areas with enriched expression of FLRT2 and 

FLRT3, the CP and IZ, respectively. For the CB
+
 interneurons in the SP, these 

avoid the FLRT3 expression in the IZ and avoid the high expression of FLRT2 in 

the CP.  
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Figure 19. FLRT2, FLRT3 and CB expression in the developing brain. Overview pictures of 

coronal section of E14.5 telencephalon. (A) Within the brain, FLRT2 immunoreactivity is strongly 

detected in the CP and LGE. Strong FLRT2 immnoreactivity was also detected in the choroid 

plexus and meninges (indicate meninges in the figure). (B) FLRT3 is expressed in the IZ, in the 

boundary between LGE and MGE, hippocampus and thalamus. Sections in panels A and B were 

co-labelled with CB (A’ and B’, respectively). The three streams of tangential migrating CB
+
 

interneurons (MZ, SP and IZ/SVZ) follow trajectories that do not overlap with the regions of high 

FLRT2 or FLRT3 expression in most cortical regions. * some segregation between the FLRT2 

territories (LGE) and CB
+
 interneurons Abbreviations: CB, calbindin; CP, cortical plate; IZ, 

intermediate zone; LV, lateral ventricle; ChP, choroid plexus; hip, hippocampus; Th, thalamus; 

LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; MNG, meninges. Scale bar, 

200μm. 
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However, they do migrate through a region that still contains detectable amounts 

of FLRT2, since FLRT2 protein expression expands into the IZ region (this issue 

will be discussed in the discussion section) (Figure 20A, B). By contrast, in the 

ventral telencephalon migrating interneurons from the MGE or CGE traverse the 

LGE along the permissive corridor in the SVZ (Flames et al., 2004). In this transit 

they encounter FLRT2 in the LGE, and as it happens in the cortex, some 

segregation also exists between the FLRT2 territories and CB
+
 interneurons. Thus, 

in the developing cerebral cortex, FLRT2 and FLRT3 are expressed in the 

migratory route of the CB
+
 interneurons; thereby these proteins may have a 

functional role during interneuron tangential migration. 

Figure 20. Detail of the laminar distribution of the tangentially migrating CB
+
 interneurons 

in the WT cerebral cortex. High-magnification pictures of the E14.5 dorsal cortex. The CB
+
 

interneurons follow three principals routes that avoid the FLRT2 cortical expression in the CP (A) 

and the FLRT3 expression in the IZ (B). The interneurons forming the SP stream migrate through 

a region that contains detectable amounts of FLRT2. The dashed lines show the demarcation of the 

Pial surface (top) and Ventricular surface (bottom). Abbreviations: CB, calbindin; MZ, marginal 

zone; CP, cortical plate; s.SP, stream subplate; IZ, intermediate zone; s.IZ/SVZ, stream IZ/SVZ; 

SVZ/VZ, subventricular zone/ventricular zone; WT, wild type. Scale bar, 20μm. 
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4.4 Interneurons distribution in the FLRT3 nervous system specific knockout 

To examine whether the absence of FLRT3 function could modulate the migratory 

behavior of CB
+
 interneurons, brains from FLRT3 nervous system specific 

knockouts were analyzed. For this study, a first set of animals were obtained by 

removing FLRT3 using the Nes-Cre
+ 

mouse line (Tronche et al., 1999), which 

inactivates FLRT3 in the entire embryonic CNS already at ~E10.5 (see generation 

of FLRT3
lx
 conditional alleles in Yamagishi et al., 2011). In order to obtain these 

animals a similar crossing protocol as depicted in Figure17 was used. The mutant 

Nestin-Cre
+
;FLRT3

lx/-
 mice, here referred as "F3-Nes-KO", were compared to 

several other genotypes of the rest of the progeny that were used as controls.  

Six E14.5 F3-Nes-KO embryos and six controls were coronally sectioned, and the 

lateral cortical wall was sampled at three rostrocaudal locations, as previously 

described (Figure 18). The Figure 21 shows representatives pictures of the 

immunohistochemical labeling for CB
+
 interneurons at rostral (Figure 21A, A’), 

intermediate (Figure 21B, B’) and caudal (Figure 21C, C’) locations in the dorsal 

cortex of the F3-Nes-KO and control embryos. The immunofluorescence pictures 

do not show any obvious defect in the distribution of CB
+
 migrating interneurons 

in the absence of FLRT3. 

The quantitative analysis shows that the total number of CB
+ 

interneurons is the 

same in the F3-Nes-KO and control embryos suggesting that they reach the dorsal 

telencephalon normally (Figure 22). Moreover, the binning analysis demonstrated 

that F3-Nes-KO mutant animals displayed a cortical bin distribution closely 

matching control embryos, with no significant differences at rostral (Figure 23A, 

A’), intermediate (Figure 23B, B’) and caudal (Figure 23C, C’) locations. 

Therefore, the conclusion from this part of the study is that the number and CB
+ 

interneuron distribution is intact and unperturbed in the absence of FLRT3. 
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Figure 21. Normal laminar distribution of the tangentially migrating CB
+
 interneurons in the 

cerebral cortex of F3-Nes-KO animals. Representative images of the cortical region stained with 

CB, at three different rostro (R)-caudal (C) levels in F3-Nes-KO (bottom panels) and control 

(upper panels) animals. The three principal routes of CB
+
 interneurons in the mutants are similar to 

controls. The dashed lines show the demarcation of the Pial surface (top) and Ventricular surface 

(bottom). Abbreviations: CB, calbindin; MZ, marginal zone; CP, cortical plate; IZ, intermediate 

zone; SVZ/VZ, subventricular zone/ventricular zone. Scale bar, 50μm. 

 

Figure 22. Total number of CB
+
 interneurons within the cortex is similar in F3-Nes-KO than 

in controls. Relative total CB
+
 interneurons from F3-Nes-KO and control embryos at rostral, 
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intermediate and caudal telencephalic levels (controls took value “1” in each region and values in 

mutant animals were expressed as fold induction respect to each control). All data are presented as 

mean ± s.e.m. (n=6 per genotype, p>0.05, two tailed Student’ t test for each region). 

Abbreviations: CB, calbindin. 

 

 
Figure 23. Distribution patterns of tangentially migrating CB

+
 interneurons in the F3-Nes-

KO cerebral cortex at E14.5. Distribution of CB
+
 interneurons from F3-Nes-KO (blue lines) and 

control (black lines) embryos (6 animals, each), as described in Figure 18. In left graphs, numbers 
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in ordinates identify bins for quantification, from the CP (bin 1) to the VZ (bin 10) while in right 

panels, ordinates depict cytologically distinct zones at rostral (A, A’), intermediate (B, B’) and 

caudal (C, C’) telencephalic levels. All data are given as percentage and represented as mean ± 

s.e.m. (n=6 per genotype, p>0.05, two tailed Student’ t test for each pair of data). Abbreviations: 

CB, calbindin; CP, cortical plate; s.SP, stream subplate; IZ, intermediate zone; s.IZ/SVZ, stream 

IZ/SVZ; SVZ/VZ, subventricular zone/ventricular zone. 

 

4.5 Normal CB
+
 interneuron distribution in the FLRT2 single knockout 

animals 

Next, the functional relevance of FLRT2 during interneuron migration in vivo, was 

assessed. In this case, the Nestin-Cre transgene was located in the same 

chromosome and in close vicinity to the FLRT2 gene and therefore was difficult to 

combine both genes in a single animal. For this reason, these experiments were 

performed using a different Cre line instead, the Sox1-Cre line which Cre 

recombination occurs as early as E9.5 (Guo et al., 2000), a bit earlier than the 

Nestin-Cre approach. FLRT3 was also included in this analysis in order to 

confirm the results obtained with Nestin-Cre line and to create DKOs in case 

some kind of functional compensation existed between FLRT2 and FLRT3. The 

crossing protocol used for these experiments is the one depicted in Figure 17 and 

the progeny resulting of this breeding included the single mutants for FLRT2 

(FLRT2
-/lx

;FLRT3
+/lx

;Sox1-Cre
+
; here referred as "F2-Sox-KO") and for FLRT3 

(FLRT2
+/lx

;FLRT3
-/lx

;Sox1-Cre
+
; here referred as "F3-Sox-KO"). The double 

mutants (hereafter referred as "F2F3-Sox-DKO") were also obtained in the same 

way but will be discussed in a different section. 

Foremost, it was confirmed that both FLRT2 and FLRT3 genes were efficiently 

recombined from the entire telencephalon as verified in the KO animals by the 

lack of the characteristic immunoreactivity pattern observed in controls (Figures 

19 and 24). Efficient recombination of both genes simultaneously and ablation of 
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their expression in neuronal tissue was even observed in the F2F3-Sox-DKO at 

two developmental stages, E14.5 (Figure 24) and E16.5 (Figure 25).  

Interestingly, FLRT immunoreactivity was still observed in non-neuronal tissue in 

the KO brains; for example FLRT2 expression in the meninges (connective tissue 

membranes cover all the nervous system) and in the choroid plexus (ventriclular 

vascular structure) (Figure 24A’, 25A’) while FLRT3 was still present in medial 

habenula (Figure 24B’, 25B’). This immunfluorescence approach was also 

validated by biochemical methods using a Western blot analysis (Figure 24C). For 

these experiments, lysates prepared from the whole telencephalon at E14.5, where 

the meninges were removed because of the FLRT2 abundant expression in this 

tissue, were obtained from the single and DKO animals. Then, the samples were 

subjected to a lectin pull-down for the enrichment of glycosylated transmembrane 

proteins and precipitates analyzed by Western blot with specific antibodies against 

FLRT2 or FLRT3. As observed in Figure 24C, the levels of FLRT2 and FLRT3 in 

the mutant brains were entirely absent in the corresponding genotypes, even the 

DKO. 
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 Figure 24. Efficient recombination of FLRT2 and FLRT3 in the developing brain driven by 

Sox1-Cre line at E14.5. Overview pictures of E14.5 telencephalon coronal sections. (A) FLRT2 
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immunoreactivity is mainly detected in the CP, LGE, ChP and MNG in a control section. (B) 

FLRT3 is strongly expressed in the IZ of the developing cortex, in the boundary between LGE and 

MGE, hip and Th. In the F2F3-Sox-DKO brains, FLRT2 (A’) and FLRT3 (B’) immunoreactivity 

is completely absent in neuronal tissue while in not neuronal tissue, FLRT expression is still 

maintained: for instance, expression of FLRT2 in the MNG and ChP (A’) or expression of FLRT3 

in the MHb. (C) FLRT protein expression is strongly reduced in total cell lystes from the 

telencephalon of the FLRT KOs. Protein lysates from single KOs (F2-Sox-KO and F3-Sox-KO) or 

the F2F3-Sox-DKO and from controls were obtained from the whole telencephalon and subjected 

to a lectin pull down in order to enrich the transmembrane protein fraction. Samples were then 

blotted with antibodies against FLRT2 (upper panel), FLRT3 (middel panel) and EphA4 (lower 

panel) as loading control. Note the absence of FLRT2 and FLRT3 proteins in F2 or F3 singles 

KOs, respectively and in the F2F3-Sox-DKO. In these experiments, the meninges were removed 

from the tissue because of the high FLRT2 expression in this tissue that is not abolished using the 

neuron specific Sox1-Cre line and could therefore interfere with the result. Abbreviations: MNG, 

meninges; CP, cortical plate; IZ, intermediate zone; LV, lateral ventricle; ChP, choroid plexus; 

hip, hippocampus; Th, thalamus; MHb, medial habenula; LGE, lateral ganglionic eminence; MGE, 

medial ganglionic eminence. Scale bar, 250μm. 

 

Figure 25. Efficient recombination of FLRT2 and FLRT3 in the developing brain driven by 

Sox1-Cre line at E16.5. Overview pictures of the E16.5 telencephalon coronal sections. (A) 

FLRT2 immunoreactivity is detected in the CP and LGE in the control. (B) FLRT3 is expressed in 
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the IZ, in cells migrating through the CP and in the upper layers of the CP, the CA3 region and 

dentate gyrus of the hip, cp and th. FLRT2 (A’) and FLRT3 (B’) immunoreactivity is absent in 

F2F3 DKO. FLRTs immunoreactivity is present in not nervous tissue, in the case of FLRT2 in the 

MNG (A’) and FLRT3 in the MHb and CP (inespecific antibody labeling). Abbreviations: MNG, 

meninges; CP, cortical plate; IZ, intermediate zone; LV, lateral ventricle; ChP, choroid plexus; 

hip, hippocampus; Th, thalamus; MHb, medial habenula; LGE, lateral ganglionic eminence; cp, 

caudate putamen. Scale bar, 200μm. 

 

These control experiments indicate that Sox1-Cre drives a very robust expression 

of Cre in the nervous system. It is important to emphasize that the above 

immunoflurescence control was performed for most of the brains analyzed in the 

present study in order to validate our PCR genotyping strategy and confirm 

efficient recombination. Therefore, these results evidenced that the selected mice 

for the present analysis were truly knockout for FLRT2, FLRT3 or both. 

Similar to the study with the Nestin-Cre line, six E14.5 knockout embryos for 

FLRT2 or FLRT3 using the Sox1-Cre line were collected and coronally sectioned. 

After that, CB staining was performed and the lateral cortical wall was sampled as 

previously described to check for interneuron migration defects. The Figure 26 

shows representative pictures of the immunohistochemical labeling for CB
+
 

interneurons in the dorsal cortex for FLRT2 (Figure 26B) and FLRT3 (Figure 

26C) single mutants compared to controls (Figure 26A). In this case only the 

intermediate sections of the telencephalon were analyzed since we considered that 

there were not differences in the distribution from rostral to caudal locations (see 

Figure 18).  
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Figure 26. Normal laminar distribution of the tangentially migrating CB
+
 interneurons in the 

developing cortex of FLRT2 and FLRT3 single KOs. The CB
+
 interneruons follow three 

principals routes in the E14.5 dorsal cortex of the FLRT2 KO (F2-Sox-KO) (B) and in the FLRT3 

KO (F3-Sox-KO) (C) similar to control (A). The dashed lines show the demarcation of the Pial 

surface (top) and Ventricular surface (bottom). Abbreviations: CB, calbindin; MZ, marginal zone; 

CP, cortical plate; IZ, intermediate zone; SVZ/VZ, subventricular zone/ventricular zone. Scale bar, 

50μm. 

 

As expected, and according to previous results with the Nestin-Cre line, the 

distribution of CB
+
 cells showed no obvious defects in the F3-Sox-KOs respect to 

control (Figure 26). In addition, the absence of FLRT2 did not affect either the 

ditribution pattern of CB
+
 interneurons in the developing cortex (Figure 26). In 

order to quantify these images, a similar analysis was performed as previously 

described in Figure 23 where bin distributions were averaged across sections. This 

analysis revealed that there are not differences in the total CB
+
 cells reaching the 

dorsal cortex and confirmed that there are no differences in the laminar 

distribution through the different migratory streams respect to controls (Figure 27 

for F2-Sox-KO and Figure 28, for F3-Sox-KO). In summary, all these results 

indicate that the single FLRT2 or FLRT3 mutants did not display deficits in the 
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migration and positioning of interneurons within the cortex, so the loss of one of 

these proteins did not compromised the migration of cortical interneurons in vivo. 

Figure 27. Distribution pattern of tangentially migrating CB
+
 interneurons in the FLRT2 KO 

cerebral cortex at E14.5. Percent distribution of CB
+
 interneurons in each bin (A) or in each 

cortical layer (B) across the cortical wall in FLRT2 KO (F2-Sox-KO, orange labels) and control 

embryos (black labels) (6 animals, each). (A) Numbers in ordinates identify bins for 

quantification, from the CP (1) to the VZ (10). (B) Percent distribution of CB
+
 interneurons for 

cytologically distinct zones. (C) Relative amount of total CB
+
 interneurons in the cortex where the 

total number of CB
+
 cells in controls was given the value "1" and the value found in the FLRT2 

KO tissue was referred as fold induction respect to control. All data are presented as mean ± s.e.m. 

(n=6 per genotype, p>0.05, two tailed Student’ t test for each pair of data). Abbreviations: CB, 

calbindin; CP, cortical plate; s.SP, stream subplate; IZ, intermediate zone; s.IZ/SVZ, stream 

IZ/SVZ; SVZ/VZ, subventricular zone/ventricular zone. 
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Figure 28. Distribution patterns of tangentially migrating CB
+
 interneurons in the FLRT3 

KO cerebral cortex at E14.5. Percent distribution of CB
+
 interneurons in each bin (A) or in each 

cortical layer (B) across the cortical wall FLRT3 KO (F3-Sox-KO, purple labels) and control 

embryos (black labels) (6 animals, each). (A) Numbers in ordinates identify bins for 

quantification, from the CP (1) to the VZ (10). (B) Percent distribution of CB
+
 interneurons for 

cytologically distinct zones. (C) Relative amount of total CB
+
 interneurons in the cortex where the 

total number of CB
+
 cells in controls was given the value "1" and the value found in the FLRT3 

KO tissue was referred as fold iniduction respect to control. All data are presented as mean ± 

s.e.m. (n=6 per genotype, p>0.05, two tailed Student’ t test for each pair of data). Abbreviations: 

CB, calbindin; CP, cortical plate; s.SP, stream subplate; IZ, intermediate zone; s.IZ/SVZ, stream 

IZ/SVZ; SVZ/VZ, subventricular zone/ventricular zone. 

 

4.6 Loss of both FLRT2 and FLRT3 disrupts specifically the intracortical 

distribution of interneurons 

The previous data shows that the distribution during tangential migration of CB
+
 

cortical interneurons is not affected by the absence of FLRT2 or FLRT3 

suggesting that either FLRT2 or FLRT3 alone not do not affect tangential 

distribution and progression of cortical interneurons in vivo. However, we 
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observed that both proteins are coexpressed around the SP migratory stream of 

interneurons, specifically, underneath the SP stream (Figure 20). This observation 

suggests that both proteins, FLRT2 and FLRT3, could eventually cooperate in the 

migration of the SP interneurons and that the lack of any of the two genes in the 

single KO animals could be compesanted by the presence of the other gene. To 

test this hypothesis, double FLRT2 and FLRT3 KO (FLRT2
-/lx

;FLRT3
-/lx

;Sox1-

Cre
+ 

or "F2F3-Sox-DKO") were generated as previously described (see also 

Figure 17). 

To evaluate the redundant role of these two proteins during tangential migration, 

brains from F2F3-Sox-DKO deficient embryos were processed and analyzed as 

previously performed, based on CB staining. In the F2F3-Sox-DKOs, the CB
+
 

interneurons invaded the lateral cortical rudiment by tangential migration and as 

they enter the cortical rudiment they navigate through the three characteristic 

migratory streams (SP, MZ and lower SVZ/IZ). However, it was very interesting 

to notice that CB
+
 interneuron distribution seemed to be more disorganized in the 

mutants; in particular, with a tendency to observe more CB
+
 interneurons in the IZ 

of the F2F3-Sox-DKO compared with controls. In addition, the lateral to medial 

progression distance of CB
+
 interneurons through the SP stream was reduced in 

the F2F3-Sox-DKO cortices (Figure 29).  

With the images taken from the CB immunofluorescence of six independent 

F2F3-Sox-DKOs and sibling controls, at E14.5, a similar quantification was 

performed as previously described for the single mutants. This analysis first 

revealed that the total number of CB
+
 cells in the lateral neocortex of the F2F3-

Sox-DKO was not different from controls, indicating that interneurons arrive 

normally from the subpallium to the cortex in the mutant embryos (Figure 30C). 
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Figure 29. Interneuron distribution phenotypes in the double FLRT2 and FLRT3 KOs. 
Representative coronal sections at comparable rostro-caudal levels through the telencephalon of 

E14.5 control (A) and F2F3-Sox-DKO (B) embryos showing immunofluorescence for CB. Insets 

show a higher magnification image of the boxed areas. Arrowheads in B inset show the ectopic 

CB
+
 neurons located in the IZ of the F2F3-Sox-DKO compared to control. The arrows point to the 

front of the SP migratory stream which in the case of the F2F3-Sox-DKO brains is shorter than in 

controls. Abbreviations: CB, calbindin; CP, cortical plate; IZ, intermediate zone; SVZ/VZ, 

subventricular zone/ventricular zone. Scale bar, 100μm. 

 

However, the binning analysis of the CB
+
 migrating interneurons within the 

cortex confirmed our observations and that important difference exist between 

F2F3-Sox-DKO and controls. Specifically, when compared statistically, 

distributions of CB
+
 migratory interneurons within bins 1-10 were significantly 

altered between F2F3-Sox-DKO and controls with the largest shifts occurring in 

bins 2-3 and 4-5 (Figure 30A). These bins correspond to the SP and IZ, 

respectively, indicating that a significant reduction of the number of CB
+
 

interneurons in the SP stream exits (Figure 30A, control: 31.4%; F2F3-Sox-DKO: 

24.1%, n=6) with a concomitant increase of CB
+
 cells in the IZ (Figure 30B, 

control: 16.49%; F2F3-Sox-DKO: 24.31%, n=6). Thus, complete loss of both 

FLRT2 and FLRT3 leads many migrating interneurons fail to maintain their 

normal route of migration through the SP stream. Instead, many interneurons were 

found to be abnormally located within the IZ. From these results, it seems as if 
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interneurons deviate from their normal route of migration within the SP stream 

and tend to accumulate within the IZ in the mutant embryos (Figure 30A, B and 

see discussion). In any case, this abnormal intracortical distribution of CB
+
 

interneurons in the double FLRT2 and FLRT3 KOs highlights therefore the 

significance of FLRT proteins in the proper migration of interneurons during 

cortical development. 

Figure 30. Distribution patterns of tangentially migrating CB
+
 interneurons is altered in the 

cerebral cortex of FLRT2 and FLRT3 DKO at E14.5. Percent distribution of CB
+
 interneurons 

in each bin (A) or in each cortical layer (B) across the cortical wall of FLRT2 and FLRT3 double 

KO (F2F3-Sox-DKO, red labels) and control embryos (black labels) (6 animals, each). (A) 

Numbers in ordinates identify bins for quantification, from the CP (1) to the VZ (10). (B) Percent 

distribution of CB
+
 interneurons for cytologically distinct zones. (C) Relative amount of total CB

+
 

interneurons in the cortex where the total number of CB
+
 cells in controls was given the value "1" 

and the value found in the F2F3-Sox-DKO tissue was referred as fold induction respect to control. 

All data are presented as mean ± s.e.m. (n=6 per genotype, *p<0.05, two tailed Student’ t test for 

each pair of data). Abbreviations: CB, calbindin; CP, cortical plate; s.SP, stream subplate; IZ, 

intermediate zone; s.IZ/SVZ, stream IZ/SVZ; SVZ/VZ, subventricular zone/ventricular zone. 
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Another interesting observation was that the CB
+ 

interneurons were in general 

more loosely organized in F2F3-Sox-DKO cortices, leading to frequent gaps 

between them, mainly within the SP stream. Considering this observation, we 

aimed to determine the extent of progression of interneuron tangential migration 

within the streams in the dorsal telencephalon. First, to ensure that potential 

differences in brain size did not influence interpretation of our results, we 

measured relative cortical length from every section that was analyzed. This 

analysis showed no statically significant differences in cortical length between 

mutants and controls, indicating that the cortex is well shaped and no important 

structural differences exist within the two group of embryos (Figure 31B, see also 

Figure 32A, A').  

Next, the distance progressed by the SP and IZ/SVZ streams, starting from the 

pallial-subpallial boundary to the foremost tangentially migrating CB
+
 neurons 

detected, was quantified. Although no differences in cortex size were observed, 

the stream distance value was expressed relative to the cortical length (measured 

from the pallial-subpallial boundary to the dorsal-most aspect of the cortex, the 

cortical hem) (Figure 31A). Interestingly, the distance progressed by CB
+
 

interneurons within the SP stream in the F2F3-Sox-DKO embryos was 

significantly smaller to that seen in controls: interneurons in the SP stream 

migrated 70.26% of the cortical length, whereas in the F2F3-Sox-DKO mutants 

CB
+
 interneurons migrated only 48.07% of the cortical length (n=6) (Figure 31C). 

Importantly, this defect was specific for the SP stream interneurons since no 

significant changes were detected in the advancement of the interneurons in the 

IZ/SVZ stream in the double mutants compared to controls. At this point we 

considered the possibility that this phenotype was already present in any of the 

single FLRT mutants and that one or the other molecule would be responsible for 

this effect. However, and in contrast to F2F3-Sox-DKO embryos, tangential 
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progression of CB
+
 interneurons in the SP stream was completely unperturbed in 

neither FLRT2 nor FLRT3 single mutants (Figure 31C). 

To better characterize this effect in migration progression, the cortical rudiment 

was subdivided into three equidistant areas: the lateral cortocostriatal boundary 

(area I), a middle position (area II) and the medial cortical arch (area III) (Figure 

31D). Then, the percentage of CB
+
 interneurons found in each of these cortical 

areas was determined for each section and averaged across all embryos of the 

same genotype. Since placement of equidistant areas was done with respect to the 

length of each cortical hemisphere, our sampling strategy accounts for variations 

in cortical length that might occur between sections. As shown in Figure 31E, 

there was a shift in the proportion of CB
+
 interneurons in the mutant embryos 

where it was observed an increase in the lateral parts (areas I and II) with a 

concomitant decline in medial parts (area III). These differences were statistically 

significant in area III (Figure 31E, control: 33.89%; F2F3-Sox-DKO: 23.48%, 

n=6). 

Further, the area III was subdivided in three internal bins corresponding 

morphologically with the SP stream, IZ/SVZ stream and SVZ/VZ part, to analyze 

if the reduction observed in this area affects specifically any of these layers. As 

seen in Figure 31F, the total number of the most advanced CB
+
 interneurons, 

corresponding to area III, was significantly and specifically reduced in the SP 

stream (Figure 31F, control: 9.89; F2F3-Sox-DKO: 4.39, n=6). 
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Figure 31. Reduced CB
+
 interneuron tangential migration in FLRT2 and FLRT3 DKO. (A) 

The extent of interneuron tangential progression in the F2F3-Sox-DKO and control littermates at 

E14.5 in the dorsal cortex was measured as indictated where tangential interneuron progression of 

the SP and IZ/SVZ interneuron streams within the cortex was measured and quantified as a 
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relative distance respect to the cortical/subcortical boundary to cortical hem distance (total cortical 

lenght, value "a"). Values were expressed as percentage of the total distance. (B) Relative total 

cortical lenght (value "a" in A panel) comparing controls (black bar) and F2F3-Sox-DKOs (red 

bar) where the total lenght in controls was given the value "1" and the value found in the FLRT2 

and FLRT3 DKO tissue was referred as fold induction respect to control. (C) Relative stream 

distance (SP, left bars; IZ/SVZ, righ bars) as measured in A showing a significant reduction of the 

tangential migration distance through the s.SP in the F2F3-Sox-DKO (red bar) respect to the 

controls (black bar). No statistical differences (NS) in the progression of this SP stream were 

found in the single FLRT2 or FLRT3 mutants (orange and purple bars, respectively). NS where 

found in the progression of the IZ/SVZ stream of any of the genotypes analyzed. (D) Tangential 

interneuron migration was also measured in three equidistant areas from the lateral to the medial 

part of the cortex between the cortical/subcortical boundary (area I) to the cortical hem (area III), 

as indicated. The area III was further subdivided in three bins: SP stream, IZ/SVZ stream and 

SVZ/VZ to analyze intra-area distribution differences. (E) Percentage of CB
+
 interneurons in the 

three areas depicted in D (ordinate axis) in controls (black bars) and mutants (red bars). (F) Total 

CB
+
 interneurons in controls (black bars) and mutants (red bars) in the three bins in which area III 

was subdivided as shown in panel D. All data are presented as mean ± s.e.m. (n=6 per genotype, 

*p<0.05, ***p<0.001, two tailed Student’ t test for each pair of data). Abbreviations: CB, 

calbindin; CP, cortical plate; s.SP, stream subplate; IZ, intermediate zone; s.IZ/SVZ, stream 

IZ/SVZ; SVZ/VZ, subventricular zone/ventricular zone. 

 

Taken together, these data demonstrate that F2F3-Sox-DKO interneurons 

developed abnormal and perturbed distribution of CB
+
 interneurons, especially in 

those located in the SP stream. The results suggest that these SP interneurons are 

not longer restricted to their stream and since total numbers are not different, it 

seems as if they get redistributed into other cortical compartments with an 

apparent shift of CB
+
 cells toward the IZ at the expense of the integrity of the SP 

stream. This redistribution may account for the reduced advancement observed of 

the SP stream (both, in distance and number of cells) during tangential 

progression. Thus, FLRT2 and FLRT3 cooperate in maintaining interneuron 

streams and therefore are important regulators of tangential interneuron migration 

during cortex development.  
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4.7 Normal cortical structure and development of the F2F3-Sox-DKO 

The above data indicate that interneuron distribution is altered in the F2F3-Sox-

DKO cortex. In order to assess if the observed phenotypes were specific or were 

due to a general defect in cortex development we performed the following 

analysis. First, in the inspection of the gross brain morphology at E14.5, 

differences in the appearance and size of the cerebral hemispheres of the F2F3-

Sox-DKO respect to controls were not detected suggesting that cortex develops 

normally in the mutants (Figure 32A, A’; see also Figure 31). At this point, the 

effect of the lack of FLRT2 and FLRT3 in the normal corticogenesis was 

addressed more specifically by the expression of well acknowledged cortical 

layers markers. For that, coronal sections from mutant and control embryos were 

immunostained for a panel of layer-specific markers: Tbr1, Satb2, and Ctip2; to 

label developing cortical post-mitotic projection neurons. 

At E14.5, higher Tbr1 expression was observed in the CP and SP. Cells in the IZ 

expressed lower levels of Tbr1 protein, as has been shown previously (Hevner et 

al., 2001). Ctip2 is highly expressed by cells in the CP at E14.5, but not by cells in 

the VZ or SVZ (Arlotta et al., 2005). Satb2 cells are present in the upper part of IZ 

and CP (Britanova et al., 2006) (Figure 32C-E). All these markers, showed a 

normal expression pattern in the FLRT2 and FLRT3 DKO deficient cortex 

(Figures 32C'-E') indicating that corticogenesis and lamination was not defective 

and that differentiation of pyramidal cells occurs normally in these mutant 

embryos. Quantification of these images was performed taking in consideration 

the pixel intensity (Figures 33G) and the thickness of each stained region (Figure 

33D-F) and no significant differences were obtained between controls and DKOs 

brains. Accordingly, the double mutants did not exhibit significant reductions in 

the layers thickness or in the cortical width (Figure 33A, B).  
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Figure 32. Normal brain structure and cortical lamination in the FLRT2 and FLRT3 DKO 

at E14.5. (A, A’) Dorsal views of freshly dissected E14.5 brains showing normal diencephalon 

appearance of F2F3-Sox-DKO (bottom) compared with control (top). (B, B’) DAPI staining 

(nuclear staining) of representative coronal sections through the cortex showing normal cortical 

layer organization in F2F3-Sox-DKOs (B') compared to control (B). (C, C’, D, D’, E, E’). 

Representative images of immunofluorescence stainings against the indicated markers (Tbr1, 

Ctip2 and Satb2) on coronal sections through the cortex of F2F3-Sox-DKOs (C'-E') and control 

mice (C-E) showing the preservation of cortical layer organization in the double mutant. The 

dashed lines show the demarcation of the Pial surface (top) and Ventricular surface (bottom). 

Abbreviations: MZ, marginal zone; CP, cortical plate; IZ, intermediate zone; SVZ/VZ, 

subventricular zone/ventricular zone. Scale bar, 0.5mm (A, A’) and 50μm (B-E’). 

All these results suggest that the laminar allocation and the differentiation of 

projection neurons is not affected by the absence of FLRT2 and FLRT3 at this 

stage and therefore rule out the possibility that abnormal distribution of CB
+
 

interneurons in the F2F3-Sox-DKO is an indirect effect, as a consequence of the 

misslocation of projection neurons. 
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Figure 33. Quantification analysis of the layer-specific markers in F2F3-Sox-DKO cerebral 

cortex at E14.5. (A, B, C) Relative total cortical thickness (A) or relative thickness of each 

specific layer (B), based on DAPI staining and measured in the middle position through the 

mediolateral axis (position 2 in panel C). Control, black labels; DKO, withe bars. Values in A are 

expressed as fold induction respect to control, where cortical thickness took vaue "1". Values in B 

are expressed as percentage respect to the total thickness of the cortex. (D, E, F) Percentage of the 

thickness of Tbr1
+
 (D), Ctip2

+
 (E) and Satb2

+
 (F) layers respect to total cortical thickness in the 

three positions (1 to 3) along the mediolateral axis depicted in C. (G) Quantification of Tbr1
+
, 

Ctip2
+
 and Satb2

+
 staining (positive pixels) in the whole cortical wall respect to DAPI intensity. 

All data are presented as mean ± s.e.m. (n=6 per genotype, *p<0.05, two tailed Student’ t test for 

each pair of data). Abbreviations: CP, cortical plate; IZ, intermediate zone; SVZ/VZ, 

subventricular zone/ventricular zone. 



Results 

121 

4.8 Analysis of interneuron migration in the F2F3-Sox-DKO at E16.5 

Next, we explore further the relevance of FLRT2 and FLRT3 in CB
+
 interneuron 

migration in the cortex at later stages of development. For this purpose, mutant 

embryos were collected at E16.5. The CB interneuron labeling at this stage 

revealed that still some positive cells can be detected. However, the stream pattern 

is different from the one observed at E14.5. Firstly, the three migratory streams 

are not as well defined probably because at this moment, many interneurons have 

started the radial migration towards the CP. At this stage, the tangential migration 

of CB
+
 cells is happening mainly through the MZ and lower SVZ (Figure 34A). 

However it cannot be discarded the presence of the SP stream of migrating 

interneurons, because in these pictures the prominent label of thalamo-cortical and 

corticofugal projections, may mask the SP CB
+
 cells. In contrast to E14.5, in the 

case of the double FLRT2 and FLRT3 KO brains, the overall density of CB-

immunoreactive interneurons seemed to be less compared to controls, although 

the differences are not significatives (Figure 34 and see also Figure 35A). 

Figure 34. CB staining in E16.5 brains in control and F2F3-Sox-DKO. Representative images 

of coronal sections through the cortex of controls (A) and F2F3-Sox-DKOs (B) at E16.5 stained 

with CB. Comparable rostro-caudal levels are shown. Insets show a high magnification of the 

boxed area in each panel. In inset of panel A, arrowhead point to the interneuron streams still 

identifiable at this statge, through the MZ and the lower IZ, respectively. Asterisk in panel A 

marks an unspecific staining of the CB antibody which probably are thalamo-cortical and 

corticofugal projections. Abbreviations: CB, calbindin; CP, cortical plate; IZ, intermediate zone; 

SVZ/VZ, subventricular zone/ventricular zone. Scale bar, 200μm. 
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The quantification of these types of images revealed that, although the DKO 

mutants displayed a decrease in the total CB
+
 cells in the DKO relative to controls 

mice, the difference was not statistically significant (Figure 35A). A similar 

distribution analysis was performed at this stage as it was done at E14.5 but due to 

the reduced amount of CB
+
 cells, in this case, only two regions spanning the width 

of the cortex were considered: the CP region and the rest, the IZ/SVZ/VZ region 

(Figure 35C). The early cortical GABAergic neurons (E13.5) only invade the CP 

after E15.5, and also at E16.5, and therefore the number of CB
+
 interneurons 

present in the CP substantially increased at this stage, compared with those found 

at E14.5 (López-Bendito et al., 2008). The results obtained in this analysis, 

indicate that, compared to controls, the F2F3-Sox-DKOs exhibit a small but 

significant reduction in the number of CB
+
 interneurons within the CP (Figure 

35B, control: 64.89%; F2F3-Sox-DKO: 59.71%, n=6). It seems as if this 

difference is due to an accumulation of CB
+
 interneurons in the mutants, in the 

region comprising the IZ, SVZ and VZ since an increase of the number of these 

cells, although not significant, is observed in the mutants (Figure 35B). 

Figure 35. Distribution of cortical CB
+
 interneurons is affected in the F2F3-Sox-DKOs at 

E16.5. (A) Relative total number of CB
+
 interneurons where in controls (black bar), the mean 

value was equal to "1" and the value for the mutants (red bar) was expressed as fold induction. (B) 

Distribution of CB
+
 interneurons for the two cytologically distinct zones depicted in panel C (CP 

and the rest, IZ/SVZ/VZ), for F2F3-Sox-DKOs (red bars) and control embryos (black bars). 

Values are expressed as percentage respect to the total number of CB
+
 in the boxed area. All data 

are presented as mean ± s.e.m. (n=6 per genotype, *p<0.05, two tailed Student’ t test for each pair 
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of data). Abbreviations: CB, calbindin; CP, cortical plate; IZ, intermediate zone; SVZ, 

subventricular zone; VZ, ventricular zone. 

 

In summary, the analysis of CB
+
 interneuron distribution at these two different 

developmental stages reveals important differences in their intracortical 

distribution when the expression of FLRT2 and FLRT3 are deleted. At E14.5, it 

was observed a specific effect on the distribution of SP stream interneurons at the 

same time that these interneurons progressed, tangentially, a shorter distance 

within the cortex. At E16.5, instead, it was observed a significant reduction of 

CB
+
 internerons within the CP which may suggest a defect in radial invasion of 

this region in the mutants. It is possible that these observations reflect independent 

functions of FLRT proteins but it is tempting to speculate that, indeed, the 

reduction of CB
+
 interneurons in the SP stream at E14.5, may affect the switching 

from tangential-to-radial oriented migration towards the CP at E16.5, leading to 

the perturbation of laminar interneuron organization in the F2F3-Sox-DKOs. 

 

4.9 FLRT2 and FLRT3 are required for proper layering of projection 

neurons at late stages of brain development 

Similarly to E14.5 stage, the F2F3-Sox-DKO brains were analyzed for 

morphological parameters and layer specific markers in the cerebral cortex later in 

development. The relative cortical length (measured as indicated in Figure 36A), 

cortical thickness, as well as the thickness of each histological layer based on 

DAPI staining, were measured and no significant differences were noticed 

between F2F3-Sox-DKOs and control groups (Figure 36B, C, D). According to 

these results, the gross morphology of the cortex of these mutant mice is normal at 

these late developmental stages. 
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Next, sections were stained for Tbr1, Tbr2, Ctip2 and Satb2 layer-specific 

markers to perform a more accurate analysis of cerebral cortex formation in the 

mutants, since these four markers are related with neurogenesis and neuronal 

differentiation. Particularly, Tbr1 labels layer 5/6 (Hevner et al., 2006), Tbr2 

staining is localized in the SVZ (Arnold et al., 2008), Ctip2 is expressed in the 

layer 5 (Arlotta et al., 2005), and Satb2 is expressed in the upper layers of the 

cerebral cortex (Britanova et al., 2008) (Figure 37). The immunofluorescence 

staining shows a similar distribution of the Tbr1
+
 and Ctip2

+
 cells in the F2F3-

Sox-DKO compared to controls (Figure 37B, B’, D, D’). However, the Tbr2
+
 area 

seem to be expanded in the F2F3-Sox-DKOs suggesting that some Tbr2
+
 cells are 

located ectopically above the SVZ in the mutants. On the other hand, the Satb2
+
 

area is also expanded with many Satb2
+
 cells located at deeper layers in the F2F3-

Sox-DKOs (Figure 37C, C’, E, E’ ).  

The relative thickness and pixel intensity of Tbr1
+
, Tbr2

+
,
 
Ctip2

+
 and Satb2

+
 

region was measured in regard to the entire cortical thickness (in three cortical 

areas) or the the DAPI intensity, respectively (Figure 38). No statistical 

differences were found in the case of Tbr1
+
 and Ctip2

+
 stained regions (Figure 38 

C, E); however, for Tbr2
+
 and Satb2

+ 
layers, the area of positive staining was 

significantly wider in the F2F3-Sox-DKOs, compared to controls (Figure 38D, 

Tbr2; control: 37.75%, F2F3-Sox-DKO: 42.29%, n=6) (Figure 38F, Satb2; 

control: 38.10%, F2F3-Sox-DKO: 44.82%, n=6). Interestingly, and in contrast to 

the distribution area, the quantification of fluorescence (pixels intensity) revealed 

no significant differences between control and F2F3-Sox-DKO in any case 

(Figure 38A). These results suggest that there is not a change in cell fate of the 

Tbr2 and Satb2 population of neurons in the F2F3-Sox-DKOs but rather a 

migration defect of these neurons. 
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Figure 36. Morphological analysis of the F2F3-Sox-DKO cerebral cortex at E16.5. (A,B) The 

distance between the cortical/subcortical boundary to the cortical hem (red dotted line in A) was 

measured in six different animals for each group, F2F3-Sox-DKO (red bar) and controls (black 

bar). The values were expressed relative to controls as fold induction where controls took the value 

"1". (C) Cortical thickness was measured as in A, taking in consideration the distance between the 

pial and ventricular surfaces in a middle position through the mediolateral axis of the cortex as 

shown in B. (D) Specific layer thickness (CP, IZ and SVZ/VZ based on DAPI staining) was 

measured in a middle position through the mediolateral axis of the cortex as shown in B and values 

were given in percentage respect the total cortical thickness. All data are presented as mean ± 

s.e.m. (n=6 per genotype, p>0.05, two tailed Student’ t test for each pair of data). Abbreviations: 

CP, cortical plate; IZ, intermediate zone; SVZ/VZ, subventricular zone/ventricular zone. 

 

Previously, was proposed that FLRT2 and FLRT3 functions in the E14.5 dorsal 

cortex regulate interneuron migration without having a detectable effect on the 

position of cortical projection neurons, however, at E16.5 it was found a 
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premature migration of the Tbr2
+
 cells and a delay in the Satb2

+
 cells failed to 

migrate properly towards upper layers. Particularly, in two of the four examined 

mice was observed that effect which means a penetrance percentage of 50%. 

Although this was only a first approach, this observation suggests that it could be 

a problem in the cerebral cortex upper layers expressing Satb2. Furthermore, the 

conserved distribution of the other differentiation markers, Tbr1 and Ctip2, point 

out a specific effect on the upper layers. 

 

4.10 Migrating cortical interneurons express low levels of FLRT2 and 

FLRT3  

From the previous experiments, it seems clear that FLRT2 and FLRT3 are not 

required for interneuron migration intrinsically and that the phenotypes we 

observed in the double FLRT2 and FLRT3 KO is due to the action of FLRTs as 

ligands to some receptor expressed in interneurons. Nevertheless, we wanted to 

study the expression of FLRT2 and FLRT3 in the migrating interneurons of the 

SP stream, the ones that are significantly more affected in the mutants. For this, 

high-magnification immunofluorescence images double stained with FLRT2 or 

FLRT3 antibodies (those that recognize the ECD) and CB were analyzed. 

Considering the immunofluorescence results, the expression of FLRT2 and 

FLRT3 by the vast majority of tangentially oriented CB
+ 

interneurons in the 

cortical wall was relatively small (although detectable) compared with their 

expression in the projection neurons and in the extracellular compartment (Figure 

39).  
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Figure 37. Marker analysis of cortical lamination of the F2F3-Sox-DKO at E16.5. 
Representative images taken from coronal sections of the developing brain of F2F3-Sox-DKOs 

(bottom panels) and control littermates (upper panels). (A, A’) DAPI staining. (C, C’, D, D’, E, E’) 

Immunofluorescence against Tbr1 (C, C'), Ctip2 (D, D') and Satb2 (E, E'). Arrowheads in C’ point 

to ectopic postive cells, outside of the SVZ. Arrowheads in E’ point to ectopic positive cells in 

deep layers of the developing cortex. The dashed lines show the demarcation of the Pial surface 

(top) and Ventricular surface (bottom) Abbreviations: MZ, marginal zone; CP, cortical plate; IZ, 

intermediate zone; SVZ/VZ, subventricular zone/ventricular zone. Scale bar, 50μm. 
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Figure 38. Quantification of the staining of the layer-specific markers in F2F3-Sox-DKO 

cerebral cortex at E16.5. (A) Relative pixel intensity of the indicated stainings related to DAPI, 

in controls (black bars) and mutants (white bars). (B) Scheme of the position of the sections 

analyzed in panels C-F. (C-F) Relative thickness of the staining of Tbr1 (C), Tbr2 (D), Ctip2 (E) 

and Satb2 (F) along the mediolateral axis, at the indicated positions (1-3) in panel B. All data are 

presented as mean ± s.e.m. (n=6 per genotype, *p<0.05, two tailed Student’ t test for each pair of 

data). Abbreviations: CP, cortical plate; IZ, intermediate zone; SVZ/VZ, subventricular 

zone/ventricular zone. 
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Figure 39. FLRT2 and FLRT3 expression in CB
+
 interneurons of the SP stream. (A,B) 

Representative high magnification images of the SP stream in the cortex at E14.5 (coronal 

sections) stained with CB (green) and FLRT2 (red in A) or FLRT3 (red in B). Arrowheads show 

the overlapped staining between the FLRTs and CB. Dashed line indicates the boundary between 

the CP and the IZ. Abbreviations: CB, calbindin; CP, cortical plate; IZ, intermediate zone. Scale 

bar: 10 μm. 

 

4.11 Abnormal interneuron laminar distribution in F2F3 DKO using Emx1-

Cre line 

The previous analysis revealed that FLRT2 and FLRT3 function are required for 

the migration of cortical interneurons. Since we used Cre lines that recombine in 

the whole nervous system, the abnormal distribution of migrating interneurons 

that was observed could be caused by the loss of FLRT2 or FLRT3 in the cortical 

rudiment (non-cell autonomous function), in migrating interneurons (cell-

autonomous function), or in both. 
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In order to distinguish among these possibilities, the migratory behavior of CB
+
 

interneruons was analyzed in animals where FLRT2 and FLRT3 were deleted 

specifically from cortical pyramidal neurons. This specific deletion was achieved 

by using a well-established Cre line, Emx1-Cre line (Guo et al., 2000). Emx1 is a 

transcription factor which expression starts around E9.5 and is exclusively 

confined to the pallial progenitor populations in the developing and adult cerebral 

cortex and hippocampus (Guo et al., 2000; Simeone et al., 1992). Although the 

Nestin-Cre-mediated recombination commences as early as E10.5, complete 

recombination is achieve only perinatally; in contrast to Emx1-Cre where about 

90% of recombination is achieved by as early as E12.5 (Liang et al., 2012). 

As it was done for Sox1-Cre and Nestin-Cre lines, before beginning the analysis, 

it was ensured the efficiency of the FLRT2 and FLRT3 genes deletion in the F2F3-

Emx-DKO with Emx1-Cre line. As shown in Figure 40, at E14.5, FLRT2 and 

FLRT3 staining with specific antibodies demonstrated, indeed, that both genes are 

effectively deleted specifically in the cerebral cortex, whereas other areas, such as 

the subpallial telencephalon and thalamus remain stained with the expected 

pattern (Figure 40). As expected, deletion of FLRT2 and FLRT3 did not affect the 

gross morphology of the cortex and the relative cortical/subcortical boundary to 

cortical hem distance was similar in the mutants compared to controls (Figure 

43A).  
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Figure 40. Efficient recombination in the developing cortex of FLRT2 and FLRT3 driven by 

Emx1-Cre line. Overview representative pictures at E14.5 of coronal sections of the developing 

telencephalon. (A, B) FLRT2 (A) and FLRT3 (B) immunoreactivity in control brains show the 

expected pattern of expression as previously observed in Figure 3. (A’, B') FLRT2 (A') and 

FLRT3 (B') immunoreactivity in F2F3-Emx-DKO. Expression is absent in the cortical region but 

remains in extracortical regions suchs as the basal telencephalon and thalamus. The arrow 

indicates the expression of FLRT3 in the LGE-MGE boundary is still present in the F2F3-Emx-

DKO. Abbreviations: MNG, meninges; CP, cortical plate; IZ, intermediate zone; LV, lateral 

ventricle; ChP, choroid plexus; hip, hippocampus; Th, thalamus; MHb, medial habenula; LGE, 

lateral ganglionic eminence; MGE, medial ganglionic eminence. Scale bar, 250μm. 

 

 

Next, it was asked how the conditional and specific deletion of FLRT2 and FLRT3 

exclusively in the cortex, but not in the migrating interneurons, affects the 

migration/distribution of CB
+
 neurons. For this, a similar analysis as the one 

previously performed for the F2F3-Sox-DKO embryos (Figures 29 and 30), was 

performed. Interestingly, the results showed that in these mutants CB
+
 

interneurons were found to distribute abnormally within the cortex of the F2F3-
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Emx-DKO mutants embryos in a patteern that resemble very closely that observed 

in F2F3-Sox-DKO mutant embryos (compare Figure 41 and Figure 29). As in the 

case of F2F3-Sox-DKOs, the total number of CB
+
 cells that reached the dorsal 

cortex was not significantly different between control and conditional F2F3-Emx-

DKOs (Figure 42C). However, the CB
+
 cortical interneurons were significantly 

disorganized compared to control littermates, as they were no strictly confined to 

the migratory streams, especially in the SP stream, and substantially more 

interneurons were found into the IZ (Figure 41 and Figure 42A, B). The bin 

distribution analysis of CB
+
 interneurons showed statistically significant 

differences between F2F3-Emx-DKO and controls with the largest shifts 

occurring in bins 2-3 and 4-5 corresponding to the SP and IZ regions respectively 

(Figure 42A, B). The proportions of CB
+ 

interneuron located in the SP stream 

(bins 2-3) were diminished in the F2F3-Emx-DKO compared with control cortices 

(Figure 42B, control: 33.45%; F2F3-Emx-DKO: 24.72%, n=4). Moreover, the 

percentage of CB
+
 interneurons in the IZ (bins 4-5) was elevated in conditional 

double mutants compared with controls (Figure 42C, control: 11.60%; F2F3-

Emx-DKO: 18.77%, n=4).  

Figure 41. Abnormal interneuron distribution in double FLRT2 and FLRT3 KOs using 

Emx1-Cre line. Representative images of coronal sections through the telencephalon of E14.5 of 
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control (A) and F2F3-Emx-DKO brains (B) showing immunofluorescence for CB in the cortex. 

Comparable rostro-caudal levels are shown. Insets show a magnification of the boxed area in each 

image. The arrowheads in B point to ectopically localized interneurons in the IZ region of the 

F2F3-Emx-DKO brains. The arrows show reduced extent of the migration front through the SP 

stream in the F2F3-Emx-DKO. Abbreviations: CB, calbindin; CP, cortical plate; IZ, intermediate 

zone; SVZ/VZ, subventricular zone/ventricular zone.Scale bar, 100μm. 

 

In addition to perturbed laminar distribution, the tangential progression of CB
+
 

interneurons through the SP stream was also altered, as they accumulated laterally 

and diminished medially within the F2F3-Emx-DKO cortices (Figure 43B). In 

brains of control groups, interneurons in the SP stream migrated (69.43%; n=4) of 

the cortical length, whereas in the F2F3-Emx-DKO mutants CB
+
 interneurons 

migrated only (55.26%; n=4) of the cortical length. In contrast, there were not a 

significant reduction in the advancement of the IZ/SVZ stream in these double 

mutant compared to control. 

Collectively, these results are reminiscent to those found in the F2F3-Sox-DKO 

embryos, strongly suggesting that the dispersion of cortical interneurons during 

tangential migration is regulated by extracellular FLRT proteins and rule out the 

possibility of a cell-intrinsic requirement for both FLRT2 and FLRT3 signaling in 

interneurons during early development. Therefore, FLRT2 and FLRT3 may not be 

required by cortical interneurons to sense or respond to environmental cues 

located in the cerebral cortex, but rather they act as molecular guiding cues for 

migrating interneurons; in other words, act non-cell autonomously. These results 

also indicate that FLRT2 and FLRT3 are required when cortical interneurons enter 

into the cerebral rudiment and not before, while interneurons migrate through the 

ventral telencephalon. 
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Figure 42. Distribution patterns of tangentially migrating CB
+
 interneurons is altered in the 

cerebral cortex of F2F3-Emx-DKO brains at E14.5. Percent distribution of CB
+
 interneurons in 

each bin (A) or in each cortical layer (B) across the cortical wall of FLRT2 and FLRT3 double KO 

(F2F3-Emx-DKO, green labels) and control embryos (black labels). (A) Numbers in ordinates 

identify bins for quantification, from the CP (1) to the VZ (10). (B) Percent distribution of CB
+
 

interneurons for cytologically distinct zones. (C) Relative amount of total CB
+
 interneurons in the 

cortex where the total number of CB
+
 cells in controls was given the value "1" and the value found 

in the F2F3-Emx-DKO was referred as fold induction respect to control. All data are presented as 

mean ± s.e.m. (n=4 per genotype, *p<0.05, two tailed Student’ t test for each pair of data). 

Abbreviations: CB, calbindin; CP, cortical plate; s.SP, stream subplate; IZ, intermediate zone; 

s.IZ/SVZ, stream IZ/SVZ; SVZ/VZ, subventricular zone/ventricular zone. 

 

Thus FLRT2 and FLRT3 deletion in the embryonic cortex, disrupts an established 

molecular mechanism for interneuron migration in which FLRTs act as ligands for 

a yet unknown interneuron receptor which signaling is necessary for the proper 

migration and distribution of a subset of interneurons (especially those in the SP 

stream) during develpoment.  
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Figure 43. Shorter SP stream of CB
+
 interneurons in F2F3-Emx-DKO at E14.5. (A) Relative 

cortical length, where the total length from cortical/subcortical boundary to cortical hem in 

controls was given the value "1" and that in the mutants was referred as fold induction. (C) 

Significant reduction of the relative tangential migration distance through the SP stream, but not in 

the IZ/SVZ stream, in the F2F3-Emx-DKO respect to the controls (tangential migration distance 

was measured as explained in Figure 31A).All data are presented as mean ± s.e.m. (n=4 per 

genotype, *p<0.05, two tailed Student’ t test). Abbreviations: CB, calbindin; s.SP, stream subplate; 

s.IZ/SVZ, stream IZ/SVZ. 

 

4.12 FLRT2 and FLRT3-deficient interneurons are intrinsically able to 

migrate from MGE explants in culture 

The results presented above demonstrate that cortical interneuron normally reach 

the dorsal cortex in the absence of FLRT2 and FLRT3, since the total number of 

CB
+
 interneurons are the same in controls and mutants. Moreover the results 

indicate that the effect of FLRTs is non-cell autonomous, suggesting a ligand 

function of these proteins through a yet-unknown receptor. These observations 

could mean that interneurons in the double mutants have not an apparent intrinsic 

defect in motility due to the lack of FLRT2 and FLRT3 expression. In order to 

better address this aspect, the intrinsic capacity of double FLRT2 and FLRT3 
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deficient interneurons was tested in culture. In detail, explants of MGE tissue 

from WT and from the single, F2-Sox-KO and F3-Sox-KOs as well as from the 

F2F3-Sox-DKOs, obtained from E14.5 brains (Figure 44C), were cultured in vitro 

in a 3D Matrigel according to (Wichterle et al., 1999). In this assay, interneurons 

spontaneously migrate out of the explant and it is possible then to measure the 

migration distance to assess if there is any intrinsic migration defect (Figure 44A-

C). 

Migratory outgrowth in our experiments was measured blind to genotype for 

several days in culture (2, 3 and 4 DIV) as shown in quantifications of Figures 

44D. Similar migration distance compared to controls was achieved by all the 

mutant explants analyzed, even in the case of the F2F3-Sox-DKOs. However, it 

was noticed that during these DIV, just a slight increase of interneuron migration 

was observed, suggesting that they already reached maximum migraton distance 

after 48 hrs (Figure 44D). At this point in an independent set of experiments, 

comparison of migration distance between mutants and controls was performed at 

earlier time points, after 1 and 2 DIV. In this case, a clear increase in migration 

distance was observed at 2 DIV, compared to 1 DIV. However, neither in this case 

it was observed statistically differences in the explant growth between mutants 

and controls (Figure 44E). 
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Figure 44. The FLRT2 and FLRT3-deficient interneurons have not intrinsic motility 

problems in vitro. (A, B) Representative images of MGE explants from control (A) and F2F3-

Sox-DKO (B) showing the radial dispension of interneurons from the explants (48h in culture). 

Only half of an explant is shown. Images are in phase-contrast and cells that migrated out formed 

bright (white) regions surrounding the explants (in black). (C) Schematic representation of how the 

explant was obtained (grey small box in the MGE region, left cartoon) and of the experimental 

design for distance quantification. Arbitrary lines were taken every 20o angle to systematically 

quantify the migration distance and obtain an average distance throughout the entire explant. (D, 

E) Quantification of migration of MGE cells from the edge of the MGE explants at the indicated 

times in culture (h). The migration was quantified by measuring the distance from the edge of the 

explant to the most foremost migrating cell relative to the radius of the explant (in other words, 

ordinates express the times that interneurons migrate the radius distance of the explant). Values 

reflet the average among at least nine measures, each 20° distance, to cover at least the half explant 

area, as described in C. All data are presented as mean ± s.e.m. (n=4 per genotype, p>0.05 for each 

pair of data, two tailed Student’ t test). Abbreviations: MGE, medial ganglionic eminence; LGE, 

lateral ganglionic eminence. Scale bar, 100 μm.  

 

In summary, the normal dispersion of interneurons from mutant MGE explants 

suggests that FLRT2 and FLRT3 are not required intrinsically for cell motility and 



Results 

138 

migration. These results, together with the observation that the cells arrive 

correctly to the cortical rudiment during early development in the F2F3-Sox-DKO 

mice, confirm the idea of a non-cell autonomous action of FLRTs in interneuron 

migration.  

 

4.13 Relationship between FLRTs and Rho GTPases in brain development 

RhoGTPases, as key cytoskeleton dynamic regulators, are candidates to control 

the accurate migration of neurons from their origin to the final destination. In the 

nervous system, Rnd3 has been involved in neurite outgrowth (Talens-Visconti et 

al., 2010) and in radial migration of cortical neurons (Pacary et al., 2011). In this 

regard it is noteworthy that FLRT and Rnd proteins have been individually 

implicated in neurite outgrowth regulation (Aoki et al., 2000; Chardin, 2006; 

Karaulanov et al., 2009; Robinson et al., 2004; Tsuji et al., 2004) and migration 

(Pacary et al., 2011; Yamagishi et al., 2011). Moreover, Karaulanov and 

collaborators provide evidence that FLRT3 and Unc5B functionally interact in 

modulating cell adhesion during early Xenopus development and that the Unc5B 

effect on adhesion is mediated by Rnd1 (Karaulanov et al., 2009). Finally, FLRT3 

has been shown to regulate gastrulation in Xenopus embryos through the 

regulation of the surface expression of cadherin, a mechanism that involves Rnd 

function and the binding of Rnd to FLRT3 (Chen et al., 2009; Ogata et al., 2007). 

All these data suggest that Rnd3 and FLRT3 might function together in vivo 

during brain development. 

4.13.1 Rnd3 expression in the developing brain 

Previous studies have shown the expression pattern of FLRT2 and FLRT3 in the 

developing forebrain by in situ hybridization (Yamagishi et al., 2011). In 



Results 

139 

particular, FLRT3 expression in the cerebral cortex is detected in the IZ, in cells 

migrating towards the CP and in the upper layers of the CP at E15.5 (Yamagishi 

et al., 2011) (Figure 45D). To verify if there is any spatiotemporal co-expression 

of FLRT3 and Rnd3, the distribution of Rnd3 mRNA at E15.5 was analyzed by in 

situ hybridization. Rnd3 was strongly expressed in the SVZ of the GE, specially in 

the LGE (Figure 45A-C). Rnd3 was also expressed in other regions including the 

cerebral cortex (mainly confined to CP and SVZ/VZ), hippocampus, and thalamus 

(Figure 45A-C). Comparison of the expression pattern of FLRT3 and Rnd3, 

revealed that their expression overlapped in similar regions like for instance, the 

cerebral cortex, thalamus and hippocampus suggesting that they could be related 

functionally during brain development.  

4.13.2 FLRT3 and Rnd3 interact by co-immunoprecipitation assays in 

transfected cells 

Next, the possible relationship between FLRT3 and Rnd3 was addressed by 

biochemical and cellular methods in heterologous cells. Co-immunoprecipitation 

experiments were carried out in HEK293T cells transiently transfected with 

FLRT3 and Rnd3 cDNAs (Figure 46). As a control, a deletion mutant of FLRT3 in 

which the entire intracellular domain (ICD) was substituted by EGFP (FLRT3∆C-

GFP), was used. As observed in Figure 30A, FLRT3 and Rnd3 are able to co-

immunoprecipitate. The amount of co-immunoprecipitated FLRT3 was 

approximately 3.4 times weaker in the case of FLRT3∆C-GFP (Figure 46A, A'), 

suggesting that the interaction is specific and requires an intact ICD region in 

FLRT3. This result also suggests that interaction between FLRT3 and Rnd3 

happens in cis and not through a putative triple complex with endogenous Unc5 

proteins. Interestingly, co-immunoprecipitation with either FLRT2 or FLRT1 was 

not detected in these experiments, when Rnd3
FLAG 

was immuniprecipitated 

(Figure 46B, C) which supports the specificity of the interaction and the 

preference of Rnd3 to bind only FLRT3.  
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Figure 45. Rnd3 and FLRT3 expression in the developing mouse cortex at E15.5. (A-C) 

Representative images of in situ hybridization analysis of the expression of Rnd3 on coronal brain 

sections from rostral to caudal (R-->C) at E15.5. Rnd3 expression is detected in the cerebral cortex 

(CP, SVZ/VZ), in the basal telencephalon (VZ, SVZ), the th and the hip as indicated. FLRT3 

expression is detected in the cerebral cortex at this stage in the indicated areaas (from Yamagishi 

et al., 2011). Abbreviations: CP, cortical plate; IZ, intermediate zone; SVZ, subventricular zone; 

Th, thalamus; hip, hippocampus. Scale bar: 250 μm. 

 

4.13.3 FLRT3 with Rnd3 co-localize in transiently transfected HeLa cells 

The interaction between FLRT3 and Rnd3 was also examined by co-localization 

using immunofluorescence methods in transfected HeLa cells. HeLa cells were 

chosen in this assay to avoid artifacts due to the massive protein expression that 

occurs in HEK293T cells. When HeLa cells were cotransfected with FLRT3 and 

Rnd3, many of the spots where FLRT3 was localized at the plasma membrane, as 
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revealed by confocal imaging, also contained Rnd3, at basal levels (Figure 47A-

C). 

Figure 46. FLRT3 and Rnd3 interact specifically in vitro in tranfected HEK293T cells. (A-C) 

HEK293T cells were transiently transfected as indicated, with HA-tagged FLRT3, FLRT3∆C-

GFP, FLAG-tagged Rnd3, FLRT1 or FLRT2. Protein lysates were immunoprecipitated with anti-

FLAG beads (to pull-down Rnd3) and the immunoprecipitates were analyzed by Western blot with 

the antibodies against FLRT3, FLRT2, FLRT1 and FLAG as indicated on the right side of the each 

panel. The lower panel shows the levels FLRT proteins in the total cell lysates (TCL). The 

arrowheads on the right side of the panels indicate the position of the specific proteins and the 

reference molecular weight is shown on the left side. (A') Quantification of the data shown in (A) 

about the relative amount of FLRT3 full-length compared with FLRT3∆C-GFP co-

immunoprecipitated with Rnd3 (the amount of FLRT3∆C-GFP was taken as value "1"). The data 

are presented as mean ± s.e.m. (n=3, *p<0.05, two tailed Student’ t test). Abbreviations: IP, 

immunoprecipitation; TCL, total cell lysates; WB, western blotting. 
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Next we asked if we could increase the interaction by clustering the surface 

FLRT3 with a home-made antibody raised against the ECD (see Figure 47E-F and 

Materials and Methods). After this sort of stimulation, cells were fixed and 

processed for immunofluorescence detection. In this case, the amount of co-

localization between the two proteins increased around 20% after induction with 

the antibodies (Figure 47A'-C' and D). These results suggest that FLRT3 binds to 

Rnd3 in mammalian cells and that the interaction is inducible upon FLRT3 

clustering, a situation that can resemble better the in vivo regulation of the activity 

of FLRT proteins.  

4.13.4 Interneuron entry into the cortical rudiment requires Rnd3 signaling 

To investigate the role of Rnd3 during interneuron migration, the distribution of 

CB
+
 interneurons in the Rnd3 

gt/gt
 mutant brains (see introduction for details of this 

transgenic line) at E14.5 was examined in coronal sections by a similar bin 

analysis as previously performed for the F2F3-DKOs. Of notice, the first 

observations of these sets of staining showed that in the mutant brains fewer CB
+
 

cells were found in the cortex respect to controls (Figure 48). In addition, these 

mutant embryos displayed severe axon guidance phenotypes specially affecting 

the trajectory of the TCAs, a phenotype that is currently being analyzed in our 

laboratory. 

Quantification of these images demonstrated that, indeed, the total number of CB
+
 

cells arriving he lateral cortex was significantly lower in the Rnd3 mutants as 

compared to controls (Figure 49C). Among the CB
+
 cells that reached the cortex, 

their laminar distribution by binning analysis was also examined. Interestingly, it 

was observed a phenotype with a similar tendency to that observed in our previous 

analysis in the FLRT2 and FLRT3 DKOs. 
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Figure 47. Co-localization of FLRT3 and Rnd3 in the HeLa cells is induced upon FLRT3 

clustering. (A-C, A'-C') Representative confocal images of transiently transfected HeLa cells with 

HA-tagged FLRT3 and FLAG-tagged Rnd3, as dindicated; unstimulated (A-C) or stimulated with 

anti-FLRT3 antibodies (A'-C'). Localization of FLRT3 is shown in green (A, A'), Rnd3 in red (B, 

B') and the merged images with DAPI in blue (C, C’). (E) Scheme of the stimulation protocol used 

in HeLa cells to precluster anti-FLRT3 antibodies with a fluorescently-coupled secondary 

antibody. (D) Percentage of co-localization FLRT3 and Rnd3, before (black bar) and after 

stimulation (white bar) with the FLRT3 antibodies. Data are presented as mean ± s.e.m. (n=3, 

*p<0.05, two tailed Student’ t test). Scale bar: 10 μm. 
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Figure 48. Rnd3 mutant mice exhibit deficient tangential migration towards the cerebral 

cortex. Representative images of coronal sections through the telencephalon of E14.5 control (A) 

and Rnd3 
gt/gt

 (B) showing immunofluorescence for CB in interneurons. Comparable rostro-caudal 

levels are shown. The total number of CB
+
 cells in the dorsal cortex is reduced in the Rnd3 

mutants. Arrowheads in B inset show the ectopic CB
+
 neurons located in the IZ of the Rnd3 

gt/gt
 

compared to control. The asterisk shows the absence of TCA that are unspecifically labelled with 

CB in controls. Abbreviations: CB, calbindin; CP, cortical plate; IZ, intermediate zone; SVZ/VZ, 

subventricular zone/ventricular zone; LV, lateral ventricle; Th, thalamus. Scale bar, 200μm. 

 

The quantification revealed that a reduced proportion of CB
+
 cells was observed 

in the SP stream with a concomitant increase in the IZ (Figure 49A, B). Although 

the differences were not statistically significant, it is important to mention that 

these are preliminary results obtained from only two animals for each group. 

Collectively, these results confirmed that Rnd3 is necessary for the correct 

migration of CB
+
 interneurons towards the cortex and that, perhaps, an interaction 

with FLRT proteins, directly or indirectly, through the Unc5 receptors, is involved 

in this process, especially in the intracortical distribution of interneurons. 



Results 

145 

Figure 49. Total number of CB
+
 interneurons in cortex and their intracortical distribution 

seem to be altered in the cerebral cortex of the Rnd3 mutants at E14.5. Percent distribution of 

CB
+
 interneurons in each bin (A) or in each cortical layer (B) across the cortical wall in Rnd3 

gt/gt
 

(grey labels) and control embryos (black labels). (A) Numbers in ordinates identify bins for 

quantification, from the CP (1) to the VZ (10). (B) Percent distribution of CB
+
 interneurons for 

cytologically distinct zones. (C) Relative amount of total CB
+
 interneurons in the cortex where the 

total number of CB
+
 cells in controls was given the value "1" and the value found in the Rnd3 

gt/gt
 

tissue was referred as fold induction respect to control. All data are presented as mean ± s.e.m. 

(n=2 per genotype, p<0.05, two tailed Student’ t test for each pair of data). Abbreviations: CB, 

calbindin; CP, cortical plate; s.SP, stream subplate; IZ, intermediate zone; s.IZ/SVZ, stream 

IZ/SVZ; SVZ/VZ, subventricular zone/ventricular zone. 
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5. DISCUSSION 

The understanding of the integrated cellular and molecular mechanisms involved 

in the migration as well as the specification of interneurons is based on decades of 

research. Questions relating to elucidate the molecular mechanisms controlling the 

preferential tangential migration of interneurons are beginning to be addressed 

overthe past few years. Many signals responsible for the guidance of cortical 

interneurons from the GE toward the cortex have been more described in 

comparison with the molecules controlling the guidance of interneurons within the 

developing cortex (Evsyukova et al., 2013; Marín et al., 2010). However, it seems 

that chemoattractive cues preferentially mediate the tangential dispersion of 

interneuron throughout the cortex than the chemorepellent molecules. So far, only 

one molecule, the chemokine Cxcl12, a potent chemoattractant for MGE-derived 

cells, is responsible for maintaining the streams of migrating interneurons within 

the MZ and SVZ. The interaction between the Cxcl12 and its interneuron 

receptors Cxcr4 and Cxcr7 are the main mechanism that control the normal 

laminar and regional distribution preventing the prematurely invasion into the CP 

(Abe et al., 2014; Li et al., 2008; López-Bendito et al., 2008; Sánchez-Alcañiz et 

al., 2011; Stumm et al., 2003; Tiveron et al., 2006; Wang et al., 2011). 

 

Having observed that FLRT2 and FLRT3 are a novel family of chemorepellent 

cues for radial migrating neurons (Yamagishi et al., 2011) and also that they are 

expressed in the cortical layers adjacent to the trajectories of cortical interneurons, 

it was proposed to investigate the function of these proteins in the tangential 

migration of interneurons during the developing cortex. Here we show that the 

single genetic disruption of FLRT2 or FLRT3 is not sufficient to disrupt the 

pattern of tangential migration during development, as they navigate through the 

normal intracortical routes. However, simultaneous deletion of both genes, affects 

the correct lamination and intracortical distribution of interneurons leading to a 
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specific phentoype affecting mainly the SP stream: a decreased number of cells 

migrating through this stream and an increase of interneurons within the IZ which 

may lead the decrease number of migrating cells in the CP at posterior stages 

(E16.5). Given the fact that FLRT2;FLRT3-deficient interneurons migrate 

normally in vitro and also that F2F3-Emx-DKOs displayed very similar 

phenotypes, strongly suggest that cortical interneurons do not have an intrinsic 

requirement for FLRT2 and FLRT3 in vivo. Therefore, these proteins may act cell 

non-autonomously, as ligands for unknown receptors that ultimately control 

interneuron tangential trajectories throughout the cerebral cortex. Thus, the 

reported phenotypes demonstrate a novel and essential role for FLRT2 and 

FLRT3 as guidance cues for migrating interneurons within the cortex. Finally, in 

the current study we are showing preliminary results related to the function of 

Rnd3 in the signaling mechanisms downstream of FLRTs. Rnd3 is a protein that 

regulates the actin cytoskeleton organization and is therefore a potential candidate 

to regulate neuron migration.  

 

5.1 Effects of FLRT2 and FLRT3 ablation in the cortical interneurons 

migration through the SP stream  

During the last past years, functional studies of the FLRT (FLRT1-3) proteins 

have revealed different functions in different systems including the mature and 

developing brain, early embryogenesis and vascular development (Egea et al., 

2008; Leyva-Díazet al., 2014; Maretto et al., 2008; Müller et al., 2011; Ogata et 

al., 2007; O’Sullivan et al., 2012; Yamagishi et al., 2011). In the developing brain, 

FLRTs have been specifically related to the migration of excitatory neurons by 

different mechanisms: by a repulsive effect triggered by FLRT2-ECD on Unc5D 

expressing neurons in the SVZ, that control the timing of radial migration towards 

the CP and by an adhesive function triggered by FLRT3 homotypic interactions 
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that regulate tangential dispersion of excitatory neurons (Seiradake et al., 2014; 

Yamagishi et al., 2011). All these results demonstrate the relevance of FLRT 

proteins in radial and tangential patterns of migration of pyramidal neurons during 

development. However, so far no published work has particularly focused to 

elucidate the function of FLRT proteins during migration of cortical interneurons. 

We hypothesized that, given the important differences existing between the 

migration of these two types of neurons, a function of FLRTs in interneuron 

migration would be relevant to understand their development and might reveal 

new mechanisms of action of these proteins.  

 

Most cortical inhibitory interneurons arise from MGE, CGE and POA within the 

ventral telencephalon, and migrate tangentially (orthogonal to the radial glial 

scaffold) into the developing neocortex (Anderson et al., 1997, 2001; Batista-

Brito and Fishell, 2009; Faux et al., 2012; Gelman and Marín, 2010; Kriegstein 

and Noctor, 2004; Lavdas et al., 1999; Marín and Rubenstein, 2001; Miyoshi et 

al., 2010; Nery et al., 2002; Wichterle et al., 1999, 2003; Yozu et al., 2005). They 

migrate toward the cortex in response to a combination of chemoattractive and 

chemorepulsive cues that prevent interneurons entering the striatum (Marín et al., 

2010; Métin et al., 2006). Once in the cortex, they follow three long and tortuous 

tangential migratory streams, located at the MZ, SP and IZ/SVZ (Hernández-

Miranda et al., 2010; Marín et al., 2013; Marín and Rubenstein, 2003; Métin et al., 

2006). Final areal laminar positioning of interneurons involves a shift between 

tangential and radial migration and depends on the ventral germinal zone of 

origin, interactions with developing axonal fibers and RG scaffold, and local 

interactions with projection neurons (Evsyukova et al., 2013). So far, only 

chemoattractive cues, like Cxcl12 (discussed below), have been suggested to be 

involved in the maintenance of the tangential streams of migration and 

downregulation of this signal seems to be key for the tangential-to-radial 
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migration shift in the later steps of interneuron development (Meechan et al., 

2012; Sanchez-Alcañiz et al., 2011; Wang et al., 2011). Although chemorepellent 

cues have been proposed to work together with chemoattractive signals in the 

cortex, to date, no evidence for these signals has been provided. 

 

FLRT2 and FLRT3 expression pattern by immunofluorescence revealed that they 

are expressed in an interesting pattern within the cortical layers of the brain at 

E14.5. Particulary, FLRT2 is mainly expressed in the CP, whereas FLRT3 is 

expressed in the IZ. Interestingly, the in situ hybridization pattern of FLRT2 

mRNA is confined to the CP (Yamagishi et al., 2011), whereas FLRT2 

immunoreactivity was detected in the CP and more apical regions such as the IZ. 

This can be because of the anti-FLRT2 antibody was raised against the ECD and 

therefore it is labelling as well the soluble ECD of FLRT2 into the IZ. The co-

labeled of FLRTs and CB, showed that the interneuronal population reaching the 

pallium and disperse tangentially through determined routes (through the MZ, SP 

and IZ/SVZ) actively avoid the CP and the IZ, FLRTs enriched zones. This 

observation pointed to the idea that FLTRs could function as inhibitory cues to 

maintaining the distribution of these cells, considering the antecedents of FLRTs 

as chemorepellent molecules that control the neuronal radial migration 

(Yamagishi et al., 2011).  

 

To start addressing this hypothesis in vivo, single and double FLRT2 and FLRT3 

mutant mice, using the Nes-Cre and Sox1-Cre lines in order to conditionally 

delete the expression of these genes during the nervous system development, were 

generated. Embryos from these mutants were obtained at different developmental 

stages and brain sections stained for CB. The results of this analysis evidenced 

that the single abolishment of FLRT2 or FLRT3 do not affect the laminar 

distribution of CB
+
 interneurons within the cortex and they follow the established 
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normal tangential routes found in control embryos. However, when double mutant 

mice were analyzed, the results showed two significant phenotypes related to the 

intracortical tangential dispersion pattern of interneurons: first, less CB
+
 

interneurons were found in the SP stream and more CB
+
 interneurons were 

detected in the IZ; second, the progression of the SP stream into the cortex was 

significantly reduced in the mutant brains. These effects were specific because the 

IZ/SVZ stream was not affected. Our interpretation of all this data is that 

interneurons, mainly transiting through the SP stream, are unable to keep their 

normal trajectory in the absence of FLRT2 and FLRT3 once they enter the cortical 

rudiment. Instead, they deviate and acquire an abnormal laminar distribution with 

a tendency to invade the IZ resulting in the shifted regional distribution. As a 

consequence, less interneurons proceed in the SP stream which is significantly 

smaller in the mutants.  

 

Interestingly, the interneurons deviation from tangential route only appear when 

both genes were removed at the same time, since the single mutants did not show 

disrupted migration. This suggests that the function of FLRT2 and FLRT3 in 

interneuron migration is redundant and that both cooperate in keeping the 

tangential migration of the SP stream and explain why the single deletion of any 

of the two genes do not have any effect. So far, individual functions have been 

assigned to either FLRT2 or FLRT3 in the developing nervous system, but our 

findings are the first genetic evidence that both genes can cooperate functionally 

in vivo.  

 

It is worth noting that, despite the defects observed in the intracortical dispersion 

of interneurons in the absence of FLRT2 and FLRT3, interneurons reach the 

mutant cortex in normal numbers; which has been also observed in the Cxcl12, 

Cxcr4 and Cxcr7 mutant mice (Abe et al., 2014; Li et al., 2008; López-Bendito et 



Discussion 

152 

al., 2008; Sánchez-Alcañiz et al., 2011; Tiveron et al., 2006; Wang et al., 2011). 

This observation reinforces the idea that the mechanisms driving the migration of 

interneurons from the subpallium to the cortex and those controlling their 

intracortical migration are different (Marín, 2013). It is surprisingly that the 

interneurons do not seem to invade the CP in the F2F3-DKO. While it is true that 

FLRTs function affects the laminar allocation of interneurons, they are not 

sufficient to maintain these cells away from the CP, as in the case of Cxcl12; 

suggesting that necessarily other molecules are ensuring that interneurons do not 

prematurely invade the CP, what it is known as a highly controlled process.On the 

other part, there is no reduced neurogenesis in the basal forebrain progenitors 

pools as was not found significant decrease in the total number of interneurons 

arriving and migrating toward the dorsal cortex, away from the GE in the F2F3- 

DKO when compared with controls. Thus, the observed phenotype not is exactly a 

tangential progression delay, if is considering that the total number reaching is the 

same; it is more a stack in a most lateral part because of interneuron deviate from 

tangential route, affecting more their advancement through the SP stream.  

 

5.2 Regulation of the interneurons migration through the SP stream 

One of the most striking observations of the present study is the fact that the 

ablation of FLRT2 and FLRT3 has revealed a specific mechanism of regulation of 

migration for the SP stream of interneurons. Revisiting the expression pattern of 

FLRT2 and FLRT3 at the protein level (see Figure 20 in Results section) this is 

not surprising since both, FLRT2 and FLRT3 protein expression, overlap 

specifically only in the SP stream. Indeed, several lines of evidence suggest that 

the interneurons are not distributed randomly across these streams. Thus, the 

specific guidance requisites that support the migration of interneurons through 

each of these routes are partially divergent, and so it is likely that the interneurons 
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that travel through each of these routes express a different complement of 

guidance receptor (Marín et al., 2013). 

 

The SP is a transient cortical structure that forms during mammalian brain 

development (Allendoerfer and Shatz, 1994). SP neurons are a heterogeneous 

population of neurons that are among the earliest generated in the cerebral cortex 

(Allendoerfer and Shatz, 1994; Hoerder-Suabedissen and Molnár, 2013; Price et 

al., 1997; Rakic, 1974; Robertson, 2000) and has numerous developmental 

functions (Hoerder-Suabedissen and Molnár, 2015). A recent study identified a 

further source of tangentially migrating SP neurons (rostro-medial telencephalic 

wall), although these are non-GABAergic (Pedraza et al., 2014). All this 

demonstrate that the SP zone is a complex scenario where converge various 

neuronal components that might be involved in the migration through this 

interneuron stream, that or could be the cause or otherwise could be affected by 

this defect in the F2F3-DKO mice.  

 

The mechanisms that control the preferential interneuron migration through the 

migratory streams are beginning to be elucidated. Most of the studies have been 

focused on the larger streams, the MZ and the SVZ/IZ ones but little is known 

about the migration mechanisms occurring in the less populated, SP stream. Here 

is proposed that interneurons avoid the cortical layers where is expressed FLRT2 

and FLRT3 as they first enter the developing cortex, and the suppressed 

expression of two proteins leads a misplacement of interneurons migrating 

through the SP stream suggest that different mechanisms should mediate the 

highly stereotyped dispersion of interneurons throughout the embryonic cortex. 

All of this, pointing the idea that the Cxcl12 and the Cxcr receptors are not the 

hierarchical dominating mechanism that controls the GABAergic interneurons 

dispersion specifically in the SP stream. These results suggest that FLRTs can be 
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an entry point to analyze the molecular mechanisms that control the interneuron 

migration through this specific route. 

 

5.3 Late developomental consequences of FLRT2 and FLRT3 ablation on the 

distribution of cortical interneurons and pyramidal layer formation 

At this point, was necessary asked whether the interneurons accumulated in the IZ 

and decreased progress through the SP stream is transient or sustained. Then was 

followed the progression of phenotype over different developmental stages, in this 

case E16.5.  

 

It is well known that switching from tangential to radial migration during CP 

invasion of interneurons, is a temporally regulated process. These cells actively 

avoid the CP~48 hrs after reaching the pallium, starting their invasion after E15.5, 

suggesting that a change in the cortical environment around this stage may 

coordinate the entry of migrating interneurons into the CP (López-Bendito et al., 

2008). For that, was interesting to analyze the number of cells located in this 

lamina. The results at E16.5 showed a significantly less CB
+
 interneurons in the 

CP respect to the control mice. In the F2F3-DKO animals is affected the laminar 

distribution of interneurons since the radial migration toward more superficial 

layer is delayed compared with control. This could be explained because the 

redistribution of interneurons toward the IZ at previously stage, delay the rising of 

these cells to the CP. Is tempting to speculate that these interneurons have left 

their proper context in the SP stream, where they are prepared to receive the 

necessary signals that propel them to invade the CP. 

 

Ablation of FLRT2 and FLRT3 did not affect the normal cortical development at 

E14.5 stage, as the gross brain morphology and lamination of postmitotic neurons 
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were normal. The cortical layers markers (Tbr1, Ctip2 and Satb2) were still 

present in their appropriate cortical layers in the F2F3-DKO embryos. 

Surprisingly, at E16.5 was noted that, compared with cortices of control, cortices 

of F2F3-DKO showed abnormal subsequent migration and lamination of Satb2
+
 

and Tbr2
+
 postmitotic neurons.  

 

Satb2 is a gene that is expressed predominantly in young upper layers neurons 

but not in SVZ progenitors. Its expression pattern suggests that Satb2 may be 

involved in the control of early aspects of upper layers neuron specification 

(Britanova et al., 2008). Satb2
+
 late born cortical neurons start their migration 

immediately after mitotic cycle exit and arrive in the CP early in developing at 

E14.5-E15.5 (Britanova et al., 2008). In F2F3-DKO Satb2
+
 neurons failed to 

migrate to the superficial CP and instead settled in the deeper CP and IZ.  

The Tbr2
+
 cells are confined to the SVZ and they are rarely found in the IZ or CP. 

The results show that in the F2F3-DKO is observed a premature departure of these 

cells, toward upper layers compared with controls. Previous results described a 

Tbr2 phenotype in the Unc5D
-/-

 embryos that could be related with the lack of 

FLRT2. Although these results are preliminary, because more animals need to be 

analyzed at this stage, they suggest that these subpopulations of Satb2
+
 and Tbr2

+
 

cells are influenced by the presence of FLRT2 and/or FLRT3.  

 

The F2F3-DKO conditional mutants survive into adulthood. To evaluate the 

outcome of FLRT2 and FLRT3 supression on interneuronal organization in vivo is 

necessary analyze the positioning of interneurons in the postnatal or adult cerebral 

cortex, when active interneuronal migration comes to an end. Since cortical 

interneurons include different subtypes that are classified according to their origin, 

morphology, and function, will be necessary analyze whether different subgroups 

of interneurons displayed neuron layered defects for CB
+
, CR

+
, SOM

+
, NPY

+
, and 
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PV
+
 cortical cells. This could allow the study of the postnatal consequences of the 

abnormal intracortical migration of embryonic interneurons found in the F2F3-

DKO, which underlines the relevance of this process in the development of 

inhibitory circuitries in the cerebral cortex. Thus, further immunolabelled 

subpopulations of interneurons in the motor, somatosensory, and visual cortices, 

will indicate the influence of FLRTs in the appropriate migration and positioning 

of distinct subsets of interneurons within the developing cerebral cortex.  

 

5.4 Non-cell autonomous action of FLRT2 and FLRT3 regulating 

intracortical interneuron migration through the SP stream 

Analysis of interneuron distribution in the F2F3-Emx-DKO shows a very similar 

defect previously developed by the F2F3-Sox-DKO; where the interneurons failed 

to migrate into the SP stream and invading the IZ. Thus, mice with conditional 

loss of FLRT2 and FLRT3 only in the cortical layers phenocopy the interneuron 

defects observed these proteins are not expressed neither in the cortex nor in the 

interneurons, establishing that the migration phenotype is probably non cell-

autonomous. 

The previous results indicated that, independently of its possible function of 

FLRT2 and FLRT3 if they could be expressed in the interneurons, FLRT2 and 

FLRT3 presence in the cortex are both indispensable for their correct intracortical 

migration. However, a preliminary exploration was assessed by co-labelled 

FLRTs and CB interneruons by immunofluorescence. The pictures showed that 

interneurons do express FLRT2 and FLRT3 although the levels are not 

speciallyhigh. It is worth to note that is necessary to demonstrate the expression of 

FLRTs in interneurons in order to interpret our current working model by other 

means. For example, analyze gene expression of FLRTs in the cortical 
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interneurons labeled with GFP using for instance a Nkx2.1-Cre line together with 

a GFP reporter, that have been previously FACS sorted. 

Apart, but continuing with the FLRTs cell-autonomous signaling question, was 

checked the intrinsic capacity of interneurons migration by in vitro explants assay. 

Apparently, FLRT2 and FLRT3 not affect the intrinsically migratory capacity of 

interneurons, as the total CB
+
 cells transiting in the dorsal cortex were not 

decreased in the F2F3-DKO cortices. That means that the tangential migration of 

cortical interneruons from the subpallium to the dorsal cortex is not affected in the 

F2F3-DKO, suggesting that this phase of the migration of cortical interneurons 

does not depend on FLRTs signaling. 

The F2F3-deficient MGE-derived interneurons showed a normal radial 

propagation and migration compared with the controls. Thus, the capacity of 

MGE-derived interneurons to ove into the cerebral cortex in the F2F3-DKO 

mouse model is not compromised and did not disrupt CB
+
 interneurons migration. 

Therefore, changes in interneuron migratory trajectories are not related with 

interneuron motility during midgestation. These studies point to cell autonomous 

mechanisms through which FLRT2 and FLRT3 control neuronal migration. 

FLRT2 and FLRT3 are expressed in the cerebral cortex layers during 

development, and the suppression of their expression in the whole telencephalon 

results in the interneurons migration disruption. To establish whether the observed 

phenotype are based on the cell-autonomous functions of FLRT2 and FLRT3 in 

the interneurons, were selectively removed these two proteins in the dorsal 

telencephalon but not in the interneurons arriving from the subpallium and 

transiting through the tangential streams using Cre recombination regulated by the 

Emx1 promoter. 
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5.5 Possible scenarios of FLRT function 

Currently it is not known the exact mechanisms by which FLRT2 and FLRT3 

regulate SP stream interneuron migration. Defects in the intracortical interneuron 

distribution have been observed in other mutants, with other mutations in both 

extracellular cues and receptors (Liodis et al., 2007; López-Bendito et al., 2008; 

Sánchez-Alcañiz et al., 2011), and also during interneuron migration and 

placement (Meechan et al., 2012; Myers et al., 2014); that resembles to the defects 

observed in the F2F3-DKOs. Considering these data, we can envision several 

scenarios of FLRT2 and FLRT3 action in the context of interneuron migration. 

5.5.1 FLRTs and Cxcl/Cxcr interaction 

It is known that interneurons that travel through each of these intracortical routes 

express a different set of guidance receptors that support the different trajectories 

(Marín, 2013). It has been widely reported that interneurons seek the cortical MZ 

and SVZ/IZ, where their migration depends on Cxcl12 emanating from meningeal 

cells and pyramidal cell progenitors (Sessa et al., 2010; Tanaka et al., 2009; 

Tiveron et al., 2006; Zarbalis et al., 2012). Cxcl12 (also known as Sdf1) is 

strongly expressed in the MZ and SVZ, and to a minor extent, by cells in the SP 

(Daniel et al., 2005; Stumm et al., 2003, 2007; Tiveron et al., 2006; Tham et al., 

2001). Cxcl12 via Cxcr4 and Cxcr7 interneurons receptors, facilitates the neurons 

trajectories through these permissive and attractive territories. Cxcl12, Crcx4 and 

Cxcr7 mutants show similar interneruons positioning defects. The number of cells 

transiting through the MZ and IZ/SVZ streams decreasing and increase in the 

lower CP/SP stream with a premature invasion of the CP (Abe et al., 2014; Li et 

al., 2008; López-Bendito et al., 2008; Sánchez-Alcañiz et al., 2011; Stumm et al., 

2003; Tiveron et al., 2006; Wang et al., 2011). The regulation of CP invasion by 

GABAergic interneurons is a key event in cortical development, because it 
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directly influences the coordinated formation of appropriate glutamatergic and 

GABAergic neuronal assemblies. This sophisticated fine-tuning mechanism to 

ensure the waiting period preceding the CP invasion also serve to give 

GABAergic interneurons the time required to disperse tangentially and colonize 

those regions of the cortex that are located furthest away from their origin in the 

subpallium (Sánchez-Alcañiz et al., 2011). However, it has been shown that the 

timing of exit from the migratory streams correlates with the loss of 

responsiveness to Cxcl12 as an attractant (Li et al., 2008). This is consistent with 

the cellular function attributed to Cxcl12, which minimizes the potential of 

interneurons to sense cues outside the tangential streams by reducing their 

branching frequency (Lysko et al., 2011). Although CP does not contain a non-

permissive activity for MGE-derived interneurons; an unknown factor present in 

the CP that only becomes perceptible by GABAergic interneurons after they have 

stopped responding to Cxcl12. That implies that additional cues, either on the 

routes of migration or expressed by pyramidal cells, control their final laminar 

allocation of GABAergic interneurons (López-Bendito et al., 2008). 

 

The disruption in the laminar distribution in the F2F3-DKO cortex resembles the 

phenotypes seen in the Cxcr4 and Cxcr7 mutants (Abe et al., 2014; Li et al., 2008; 

Sanchez-Alcañiz et al., 2011; Wang et al., 2011), suggesting that FLRTs and 

Cxcrs could work together. Since we found that FLRTs act in a non-cell 

autonomous fashion, we thought that FLRTs could act as ligands for Cxcrs. This 

idea was tested in our laboratory by in vitro binding assays where Cxcr4- or 

Cxcr7-transfected HEK293T cells were incubated with a recombinant fusion 

protein containing the FLRT-ECD with alkaline phosphatase which activity can 

be revealed with specific colorimetric substrates provided that binding has 

ocurred. However, these experiments gave negative results suggesting that Cxcr 

receptors do not interact physically with FLRTs. Although we cannot rule out that 



Discussion 

160 

the signaling mechanisms triggered by FLRTs and Cxcrs cooperate at the 

intracellular level, this finding suggests that another receptor, different from 

Cxcrs, could be expressed specifically in the interneurons transiting through the 

SP stream in order to mediate FLRT signaling.  

 

It is worth noting that, in the Cxcl12, Crcx4 and Cxcr7 mutants the interneurons 

migration through the MZ and SVZ stream is disrupted and in concordance they 

then redirected to the SP stream and CP (Abe et al., 2014). So far, has not been 

reported the importance of the Cxcl12-Cxcr4/7 signaling in maintained the 

integrity of the SP stream, on the contrary the interneurons has a preference to 

transit through the SP stream when the Cxcl12 or Cxcr4/7 are abolished. This, 

together with the fact that Cxcl12 is less abundant in this stream, suggest that 

others mechanisms regulate the preferential interneurons migration through the SP 

stream. Thus, migrating interneurons may respond to other cues regulating their 

confining to this stream and we suggest that FLRTs play a prominent role in this 

specific mechanism. 

5.5.2 FLRTs and Unc5 receptors 

FLRTs proteins have recently been shown to bind in trans to Unc5 receptors 

(Karaulanov et al., 2009; Söllner and Wright, 2009). FLRT2 and FLRT3 act as 

repulsive guidance molecules for Unc5 receptor-expressing neurons. The relative 

binding affinities between FLRTs and Unc5 were previously measured by cell-

based binding assays (Karaulanov et al., 2009; Yamagishi et al., 2011). The 

results revealed a specific and high-affinity interactions between FLRT2 and 

Unc5D (and to a lesser extent Unc5B) and between FLRT3 and Unc5B receptors 

(Yamagishi et al., 2011). Recently, more accurate experiments using surface 

plasmon resonance (SPR) confirmed the previous data but also revealed a possible 

FLRT3 and Unc5D interaction, although the affinity is lesser compared with 
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Unc5B (Seiradake et al., 2014). FLRT ECDs are shed by neurons in vivo raising 

the possibility that they may act as diffusible ligands for Unc5 receptors on 

opposing cells (Yamagishi et al., 2011). Indeed, the proteolytic shed FLRT2-ECD 

has been shown to control the pyramidal neuron migration within the developing 

cortex by inducing a repulsive signal through Unc5D receptors expressed by the 

SVZ cells (Seiradake et al., 2014; Yamagishi et al., 2011). The role of Unc5 

receptors in interneuron migration is not clear. It is known that Netrin-1control the 

migration of GABAergic interneurons and their consequent positioning in the 

developing cerebral cortex (Stanco et al., 2009). Although this effect is mediated 

by α3β1-integrin, it cannot be discard the involvement of Unc5 receptors. Also, it 

has been observed that the regulation of precise Unc5B levels by the transcription 

factor Sip1 represents a way of sorting the different MGE cells, which changes 

their direction of migration without influencing their differentiation into cortical 

interneurons. The genetic ablation of Sip1 induces an increase of Unc5B 

expression in interneurons leading to a dramatic reduction of cortical interneurons 

(Van den Berghe et al., 2013).  

All these data, suggest that the candidate receptor through which FLRT2 and 

FLRT3 are mediating their repulsive effect could be Unc5. To test this hypothesis, 

first it will be necessary to verify that definitely the intermneurons express Unc5 

receptors. Moreover, to determine whether these receptors are involved in the 

observed phenotype the Unc5B and Unc5D DKO could be analyzed subsequently. 

5.5.3 Robo-FLRT interaction 

Although the cellular processes involved in cell migration and axon guidance are 

fundamentally different, similar molecules may be involved. Robo1 is indeed 

involved in both cell migration, and axon growth and guidance events (Andrews 

et al., 2006). Very recently our laboratory has shown that FLRT3 is a novel co-
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receptor for Robo1 in rTCAs and that this interaction is required for a proper 

topographic projection of these axons into the developing cortex (Leyva-Díaz et 

al., 2014). Therefore, it is important to consider the possibility that FLRT3-Robo1 

signaling could be involved in the regulation of interneuron migration. 

Considering that both Robo1 and Robo2 are expressed in cortical interneurons 

during corticogenesis and also in the MZ, SP, as well as in the tangential 

migratory routes travelled by interneurons, and specially within the IZ/SVZ (W. 

Andrews et al., 2008), it could be suggested that these receptors may play a role 

during interneuron migration. Robo1 KO mice, for instance, showed abnormalities 

in the formation of the corticothalamic and thalamocortical pathfinding and in the 

migration of interneurons to the neocortex from the ventral forebrain resulting in 

an increased number of cells that persisted to adulthood due to an increase of 

proliferation (Andrews et al., 2006, W. Andrews et al., 2008). However, the 

analysis of Robo1 and Robo2 Kos animals showed no change in the positions of 

the streams of migrating interneurons (W. Andrews et al., 2008). Moreover, since 

the phenotype of the F2F3-DKO does not show differences in the number of 

intracortical interneurons, in any case what appears is a decrease at E16.5, this 

suggests that FLRTs do not affect proliferation of interneurons as Robo1 does. 

Altogether, these data suggest that the cis interaction between the Robo1 and 

FLRT3 does not seem to be the primary mechanism that explain FLRTs function 

during interneuron tangential migration. 

5.5.4 Adhesion 

Another important aspect that should be considered is the role of FLRTs in cell 

adhesion. FLRTs proteins can interact physically, and specifically FLRT3 was 

implicated in the cell homotypic cell sorting through its LRR domain that was 

suggested to be important for cell adhesion during development of Xenopus 
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embryos (Karaulanov et al., 2006). Recently, a structural study demonstrated the 

FLRT-mediated adhesion function during neuronal development where FLRT3-

FLRT3 homophilic interactions are implicated in the tangential dispersion of 

migrating pyramidal neurons during cortex development (Seiradake et al., 2014). 

Since the FLRT-FLRT homophilic binding affinity is weak, FLRTs are ideal 

candidates for providing the finely tuned adhesive cell-cell traction required for 

cell migration. In contrast to, repulsive FLRT-Unc5 interaction is a low-affinity 

adhesive binding and also is mediated through a distinct binding surface on the 

FLRT LRR domain. This parallel signaling of membrane-associated (adhesion) 

vs. soluble FLRT ectodomains (repulstion) in vivo controls the delicate balance of 

adhesion/repulsion necessary for the adhesive properties of migrating cells. Thus, 

it cannot be rejected the possibility that the interneurons progress through the SP 

stream by using this dual mechanism. In fact, very recently, stripe assay 

experiments made in our group revealed that both FLRT2 and FLRT3 ECDs act 

as a repellent cues for MGE-derived interneurons (data no shown); however, the 

repulsion induced by FLRT3 was much less evident than in the case of FLRT2. 

This could be explained because these interneurons coexpress FLRT3 and Unc5, 

and FLRT3-FLRT3-mediated adhesion could counteract and attenuate FLRT3-

Unc5-mediated repulsion.  

5.5.5 Working model 

In summary, the results of this study so far demonstrate that FLRT2 and FLRT3 

are important in controlling the cortical tangential migration of interneurons. 

Specifically they cooperate in the maintenance of the interneurons confinement 

through the SP stream, by a non-cell autonomous compensatory mechanism. 

Previous results have revealed that FLRTs are powerful and versatile guidance 

factors with structurally encoded repulsive and adhesive surfaces that allow them 
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to act as bimodal guidance systems for homophilic adhesion or heterophilic 

repulsion (Seiradake et al., 2014; Yamagishi et al., 2011). For instance, the shed 

ECDs of FLRT2 and FLRT3 act as soluble repulsive cues for Unc5-positive 

neurons, in both, the soma and the growth cone of cortical neurons (Yamagishi et 

al., 2011). In vivo, FLRT2 ablation induces a premature migration of Unc5D
+
 SVZ 

cells toward the CP, consistent with FLRT2 acting as a repulsive cue for Unc5D
+
 

cells (Yamagishi et al., 2011). On the other hand, FLRT3 has been also shown to 

be involved in pyramidal neuron adhesion and the spatial arrangement of these 

neurons in the tangential axis. However, in contrast to the FLRT-Unc5 repulsive 

effect, this adhesive function is based on a FLRT3 homotypic interaction 

(Seiradake et al., 2014). While until now, these FLRTs functions have been 

described in relation with the projection neurons, nothing related to this bi-

functional effect of FLRTs has been reported for the case of interneurons. Very 

recent in vitro results from our laboratory showed by stripe assays that both 

FLRT2 and FLRT3 ECDs act as repellent cues for MGE-derived interneurons 

(data no shown). 

 

In an effort to integrate all of this information with the experimental results 

obtained so far in this thesis, we propose the following model: FLRT2 and FLRT3 

cooperate in the control of interneuron migration through the SP by a non-cell 

autonomous mechanism, via their interaction with the Unc5 receptors. First, is 

important to consider that there is a functional compensation between FLRT2 and 

FLRT3 proteins in the observed phenotype which correlates with the fact that 

FLRT2 and FLRT3 are indeed co-expressed only in the SP zone, where 

interneurons show the clearer defect in migration. In this model it is considered 

that interneurons migrating through the SP express Unc5 receptors. In normal 

conditions the Unc5-expressing interneurons are confined to navigate through the 

SP stream due to an inhibitory function coming from the IZ region which, 
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according to our data, is triggered by the shed form of FLRT2 ECD (that 

accumulates in the IZ) and the FLRT3 ECD present in the IZ, although it cannot 

be dismissed that the non-soluble FLRT3 present at the membrane of projection 

neurons may also be involved. In this model, both FLRT2 and FLRT3 present in 

the IZ act cooperatively as repulsive cues to keep the interneurons in the SP 

stream (Figure 50A). In addition, it cannot be excluded that the FLRT3-FLRT3 

adhesion mechanism operates in this system (Figure 50A). In this model, when 

FLRT2 is removed the SP interneurons follow their normal trajectory because the 

repulsive action of FLRT3 present in the IZ (Figure 50B). It is remarkable that the 

interneurons do not redirect into the CP, despite the lack of FLRT2. This can be 

explained because the FLRT2 present in the CP, even if it could be repulsive for 

interneurons in vitro or from the IZ, is probably masked by another molecule 

(Figure 50A). This is consistent with the well stablished idea in the field that the 

CP does not contain a repulsive activity for MGE-derived interneurons and that, 

instead, these routes of tangential interneuron migration contain powerful 

attractive activities (Cxcl12 for instance) that contribute to maintain these cells 

away from the CP (López-Bendito et al., 2008). Furthermore, it is important to 

consider that the CP invasion by GABAergic neurons is temporal, tightly 

controlled, process and probably more of one mechanism exists to ensure the right 

moment for the CP invasion. 

 

It is interesting that in Cxcl12 mutants, migrating interneurons in the cortex have 

the tendency to move and migrate through the SP stream suggesting that another 

attractive molecule, apart from Cxcl12, is mediating the stereotyped transit 

through the SP stream (Abe et al., 2014). Together with the fact that in the 

FLRT2/FLRT3 DKO only the SP stream seems to be affected, suggests that this 

stream has different molecular properties from the other two streams. In this 

sense, FLRT3 for instance could trigger an adhesive/attractive signal to direct the 
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interneurons through the SP stream. Thus, opposite signals might need to be 

integrated in order to control the migration of these SP interneurons which may 

combine the FLRT3-triggered adhesion and the FLRT3-triggered repulsion 

depending on its binding partner (FLRT3 and Unc5, respectively). When FLRT3 

is removed, the interneurons do not redistribute to the IZ which, in this case, is 

governing the well documented repulsive action of the soluble ectodomain of 

FLRT2 shed from the CP as was described for the radial migrating neurons 

(Yamagishi et al., 2011) (Figure 50C). Finally, when is removed both FLRT2 and 

FLRT3, the IZ is deprived of all repulsive action, and the interneurons 

redistributed to the permissive IZ. At this point, it cannot be ruled out whether 

other mechanisms are involved, where other receptors or attractive molecules in 

the SP stream, apart from Cxcl12, might be involved and explain the questions 

emerged from these results.  

 

5.6 Rnd3 in tangential interneuron migration 

Significant progress has been made in identifying individual molecules and 

mechanism that regulate neuronal migration, specifically which guidance cues and 

cell-cell adhesion, transcriptional, and post-transcriptional mechanisms modulate 

migration. However, the modes of coordination between these mechanisms and 

how they converge on the cytoskeleton to drive neuronal navigation from their 

site of birth to their target locations in the cerebral cortex remain to be fully 

elucidated (Evsyukova et al., 2014). As major regulators of the cytoskeleton, the 

family of small Rho GTPases has been shown to play essential functions in 

cerebral cortex development. The Rho GTPases have been implicated in the 

regulation of neurogenesis, neuronal differentiation and migration regulating 

cytoskeletal dynamics, cell shape and migration (Hall and Lalli, 2010; Heasman 

and Ridley, 2008). 
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Figure 50. FLRT2 and FLRT3 cooperate in the control of tangential migration of 

interneuron through the SP stream. (A) In normal mice, FLRT2 protein (light pink) is expressed 

in the CP while FLRT3 (light blue) is expressed in the IZ, both are co-expressed in the SP. 

Migrating interneurons through the SP stream avoid entering the IZ due to the combination of the 

inhibitory action (negative signs) of FLRT2ECD (shed from the CP cells), FLRT3 bound to the 

membrane of migrating pyramidal cells and FLRT3ECD (present in the IZ). We postulate that this 

repulsion is produced by the interaction between FLRTs and the Unc5 receptors expressed in the 

interneurons. In addition, in the transit through the SP stream it could be that FLRT3-mediated 

adhesion mechanism also plays a role (positive signs and question marks in the panel). The 

inhibitory function of the membrane-bound FLRT2 in the CP is masked by an unknown molecule. 

(B) In the FLRT2-KO mice the interneurons are inhibited by the FLRT3 and FLRT3ECD present 

in the IZ. (C) In the FLRT3-KO mice the interneurons are inhibited by the FLRT2ECD present in 

the IZ. (D) In the FLRT2 and FLRT3-DKO the interneurons redistributed to the IZ which is 

devoid of these two important repulsive signals. Abbreviations: CP, cortical plate; IZ, intermediate 

zone; KO, knockout; DKO, double knockout. 
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Although the role of Rnd proteins in cortical neuron migration has been 

thoroughly investigated only in the last few years (Azzarelli et al., 2014; Heng et 

al., 2008; Nakamura et al., 2006; Pacary et al., 2011), it is becoming evident that 

Rnd proteins play important roles in cell migration during mammalian cortical 

development (Azzarelli et al., 2015a). Whereas the cellular and molecular 

functions of Rnd proteins have been thoroughly described n cortical projection 

neuron development, very little is known about their role in tangentially migrating 

cortical interneurons. This would be a fertile territory for future research. 

Nonetheless, the critical function of Rnd proteins in the control of neuronal 

migration has been further highlighted by a recent study showing the requirement 

of Rnd3 for the tangential migration of newborn olfactory neurons from the SVZ 

to the OB in the postnatal brain (Ballester-Lurbe et al., 2014). 

 

Specifically, the Rnd functions in radial migration of projection neurons have 

been recently summarized (Azzarelli et al., 2015a). Respects to this, recently in 

vivo studies have shown that silencing Rnd3 in the embryonic cerebral cortex 

interferes with the interkinetic nuclear migration of RG stem cells, disrupts their 

apical attachment and modifies the orientation of their cleavage plane (Pacary et 

al., 2013). Also, Rnd2 and Rnd3, have crucial roles in different phases of cortical 

neuron migration through inhibition of RhoA signalling in different subcellular 

locations. Rnd2 controls the transition from the multipolar to the bipolar stage and 

the extension of the leading process while Rnd3 regulates locomotion (Heng et al., 

2008; Pacary et al., 2011). Since Rnd proteins do not undergo the classical 

GTPase cycle, gene expression, protein post-transcriptional modifications and 

subcellular localization are predominant mechanisms that control Rnd activity 

(Chardin, 2006). In relation with last aspect, it has been recently shown that Rnd3 

binds to a member of the Plexin family of axon guidance receptors, Plexin B2 

(Azzarelli et al., 2014). The Semaphorin receptor, Plexin B2, has been implicated 
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in various aspects of cortical development, although its specific contribution to 

cortical neuron migration has been difficult to address because of earlier defects in 

Plexin B2 mutant cortices (Hirschberg et al., 2010). Rnd3 and Plexin B2 

functionally interact in migrating neurons at the plasma membrane, and this 

interaction controls RhoA activity and cortical neuron migration in vivo (Azzarelli 

et al., 2014). Therefore, Rnd proteins finely orchestrate the levels of RhoA 

activity in migrating neurons, by directing its inactivation to specific subcellular 

compartments. This suggests that Rnd3 could intercat with other proteins at the 

plasma membrane, like FLRT3, to control the migratory behaviour of cortical 

neurons. In fact, FLRT3 was also identified as a target gene of Nodal signalling, 

inhibiting cadherin adhesion in Xenopus early development through interaction 

with the Rho family GTPase Rnd1 (Ogata et al., 2007). Moreover, Unc5B/FLRT3 

complex regulates cell adhesion through the Rnd1 (Chen et al., 2009; Karaulanov 

et al, 2009; Ogata et al, 2007); however, all of these evidences have been tested 

during early Xenopus development but its role in neural development is unknown.  

 

FLRTs function as homophilic CAMs (Karaulanov et al., 2006; Maretto et al., 

2008; Müller et al., 2011), and very recently have been described the FLRT3-

FLRT3 adhesive function in the neuronal migration context. As the small GTPase 

Rnd1 was shown to bind to FLRT3 and to mediate its effect on cell adhesion 

(Ogata et al., 2007), it is possible that other members of this family of Rho 

GTPases, such as Rnd3, could be potential downstream effectors of FLRT 

proteins. On the other hand and since Rnd1 acts downstream of Unc5B to mediate 

its cell deadhesion activity, it could also be that Rnd3 proteins interact with Unc5 

and exert some of its effects in the nervous system, especially when Unc5 bind to 

FLRTs in trans (Yamagishi et al., 2011). Considering all these data, it is possible 

that during neuronal migration Rnd proteins are involved in the downstream 

pathways activated by FLRT homotypic interaction to control adhesion as well as 



Discussion 

170 

in the repulsive signaling triggered by Unc5s when activated by FLRTs. In the 

present work, we studied the possible functional interaction between FLRT3 and 

Rnd3, and also the pattern of tangential migrating interneurons in the developing 

brain of Rnd3 mutant embryos. 

 

When comparing expression pattern of Rnd3 and FLRT3 at E15.5, they are both 

expressed in thalamus, hippocampus and in the cerebral cortex, indicating that 

both proteins might be functionally related controlling the neuronal migration 

that, along with axon guidance are forming the complex neuronal circuitry. First, 

was assessed the physical interaction between these two proteins by in vitro 

assays. The co-immunoprecipitation assay revealed that Rnd3 interact specifically 

with the ICD domain of FLRT3 but does not interact with either FLRT2 or 

FLRT1. Moreover, Rnd3 and FLRT3 co-localize in transfected HeLa cells and the 

co-localization is increases upon stimulation of FLRT3 with specific antibodies, 

suggesting that the interaction can be regulated. These results, suggest that at least 

these two proteins can interact in vitro, and evidence that they may potentially 

function together in vivo.  

 

Next, we analyzed the distribution pattern of tangentially migrating interneurons 

in the developing cortex of Rnd3 mutant brains at E14.5. Surprisingly, it was 

found that there is a significant decrease in the number of CB
+
 interneurons 

reaching the dorsal cortex from the basal telencephalon and a shifted laminar 

distribution in the mutant cortices respect to controls; although is necessary to 

analyze more animals to corroborate these observations. These findings highlight 

the necessity of further studies that focus on the importance of Rnd3 in tangential 

migration of interneurons during development. Furthermore, during the study of 

these mutant brains, we observed an absence of TCAs crossing through the 

striatum, a phenotype that is currently being analyzed in our laboratory and that 
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confirms the important role of Rnd3 in neuron migration and axon guidance. 

Interestingly, the absence of FLRT3 produces abnormal pathfinding of TCAs in 

vivo (Leyva-Díaz et al., 2014). Thus, considering that both proteins can interact 

and that they also are co-expressed in the thalamus it is probably that FLRT3 and 

Rnd3 could be cooperate in the TCA projections.  

 

Both neuronal migration and axon guidance are frequently studied as independent 

processes; however their coordination is required for establishing functional brain 

circuitry. Over the past few years, we have learned a great deal about the 

integrationof both mechanisms in some aspects of neural development, in 

particular in relation to the role of intermediate targets in axon guidance (Marín, 

2010). Earlier studies have suggested that axons can provide a substratum for non-

radial neuronal migration in the developing CNS including the cerebral cortex 

(Gray et al., 1990; Rakic, 1985). In the case of the tangentially migrating 

GABAergic interneurons derived from the MGE, this substratum has been 

suggested to be the developing axons of the corticofugal fiber system (Parnavelas, 

2000). These cells use the corticofugal system as a scaffold to reach their 

positions indifferent layers of the cortex. According to this, it has been 

demonstrated that the adhesion molecule TAG-1, expressed by corticofugal axons, 

provides a substrate for the migrating neurons, lending support to the notion of 

common cues for axon guidance and neuronal migration (Denaxa et al., 2001). 

However, on the other hand, there were some other published results that reveals 

that the population of tangentially migrating cells within the ventral telencephalon 

are essential for TCAs navigation through this part of the developing brain, a 

process apparently mediated by Neuregulin-1/ErbB4 short- and long-range 

signaling (López-Bendito et al., 2006). More in detail, TCAs projection depends 

on the tangential migration of apopulation of the LGE-derived interneurons, 

which create permissive corridor forTCAs navigation in an otherwise inhibitory 
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MGE environment (López-Bendito et al., 2006; Molnar et al., 2012). Also, MGE- 

and CGE-derived GABAergic neurons use Sema3A- and ephrin-signaling 

pathways, as well as cell-adhesion mechanisms, to control callosal axon 

navigation (Niquille et al., 2009, 2013).  

Therefore, having found a tangential migration and TCA navigation defects 

simultaneously in the Rnd3 KOs, it is tempting to suggest that the analysis of 

these mutant embryos may clarify some crucial questions about the mechanism 

governing these two processes closely related. Also, FLRT3 functions have been 

shown in the radial migration together with Unc5B (Yamagishi et al., 2011), in 

TCA pathfinding together with Robo1 (Leyva-Díaz et al., 2014) and in tangential 

migration of interneurons, as it has been shown in the present work. These 

observations encourage us to keep investigating the possible relation between 

Rnd3 and FLRT3 both in vitro and in vivo and analyze the consequence to 

eliminate both Rnd3 and FLRT3 by a mouse model. 
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6. CONCLUSIONS AND FUTURE OUTLOOK 

1.) FLRT2 and FLRT3 are expressed in the E14.5 mouse cerebral cortex, 

specifically in the CP and IZ, respectively; overlapping their expression in the SP.  

2.) The CB
+
 interneurons disperse tangentially through the three mainly streams 

(MZ, SP and IZ/SVZ), following routes that mainly avoid the CP and IZ, where 

FLRT expression is enriched. 

3.) The single disruption of FLRT3 by the nervous specific Cre lines, Nestin-Cre 

or Sox1-Cre, does not affect the tangential migration of CB
+
 interneurons at 

E14.5.  

4.) The single disruption of FLRT2 by the nervous specific Cre line, Sox1-Cre, 

does not affect the tangential migration of CB
+
 interneurons at E14.5. 

5.) The simultaneous disruption of both FLRT2 and FLRT3 with the nervous 

system specific Cre line, Sox1-Cre, leads to a phenotype that affects the 

intracortical distribution of CB
+
 interneurons with a decrease in the number of 

CB
+
 cells through the SP stream and an increase of CB

+
 cells in the IZ, at E14.5. 

6.) The tangential progression of CB
+
 interneurons along the SP stream is 

decreased in the F2F3 DKO at E14.5. 

7.) The total number of CB
+
 interneurons migrating into the CP at E16.5 in the 

double FLRT2 and FLRT3 KOs is reduced.  

8.) Morphology and laminar pyramidal-cell structure of the cortex of the double 

FLRT2 and FLRT3 KO brains is largely unafected. 
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9.) Deletion of both FLRT2 and FLRT3, with the palial (pyramidal neurons) 

specific Cre line, Emx1-Cre, shows similar intracortical migration phenotypes as 

the whole nervous system deletion of the two genes. 

10.) FLRT2 and FLRT3 deficient interneurons migrate normally in vitro compared 

to controls. 

11.) Rnd3 is expressed in the cerebral cortex (CP, VZ) and in the basal 

telencephalon (VZ, SVZ), thalamus and hippocampus of the developing mouse 

brain.  

12.) Expression pattern of Rnd3 overlaps with that of FLRT3 in several regions 

including, the cerebral cortex, thalamus and hippocampus.  

13.) Rnd3 interact physically and specifically with FLRT3 in vitro, in 

heterologous cells. This interaction takes place in cis and requires the intracellular 

domain of FLRT3. 

14.) The Rnd3 
gt/gt 

mutant mice have a decrease in the total number of CB
+
 

interneurons reaching the dorsal cortex. 

15.) Prelimiar results indicate that the distribution of tangentially CB
+
 

interneurons migrating within the cortex is disrupted at E14.5.  
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6.1 Future outlook 

Although lot of questions remains to be elucidated the current study demonstrate 

that there is a wide range of molecular cues and complex mechanism controlling 

the interneurons journey during cerebral cortex development. Importantly, points 

to that the attractive mechanism is not exclusively guiding the interneurons, 

instead here it is shown that inhibitory mechanisms may also contribute to ensure 

the proper allocation of the neurons in the cerebral cortex. Arriving here with 

these findings it is important to note that, nevertheless, further experiments are 

necessaries to elucidate the molecular signaling pathways triggered by FLRTs that 

regulates interneuron migration and distribution within the developmental cortex. 

Indeed, in our laboratory we are already performing in vitro studies as for 

example the stripe assay to demonstrate the tentative proposal that FLRTs are 

chemorepulsives cues. The preliminary results show that in fact, FLRTs act as 

inhibitory molecules for MGE-derived interneurons in vitro. Besides this, it would 

be interesting to study the morphology of the affected interneurons in the F2F3-

DKO cortices and see how the lack of FLRTs modifies some morphological 

parameters of the leading process. This could be easily studied (even by live 

imaging) by by doing a conditional deletion of FLRTs in the MGE (Nkx2.1-Cre 

line, for instance) together with an IRES-GFP if such line would be available or 

crossing with a lox-STOP-lox-GFP reporter mouse line. Thus, it could be studied 

the angle of leading processes, their branching morphology, if they are polarized 

along the dorsal tangential dimension or are non-continuous with their cell bodies, 

suggesting changes in the orientation respect to the cortical plane of section as in 

the Myers and collaborators study (Myers et al., 2014). Also, the speed of these 

affected interneurons could also be analyzed in these mice. In addition to these 

experiments, the analysis of the Unc5B/Unc5D-DKO, would be important to 

address the hypothesis if these candidate receptors are involved in this system. 

Also, the analysis of the distribution of interneuron subtypes in the F2F3-DKO 
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postnatal cortices will provide a more complete understanding of the molecular 

mechanism and the consequences behind the phenotype found. 

 

Another important aspect which necessarily must be considered is the balance 

between the repulsion and cell adhesion in cortical development by FLRTs 

proteins (Seiradake et al., 2014). Recently has been described that the adhesive 

FLRT3-FLRT3 interaction in trans is required for the spatial arrangement of 

pyramidal neurons in the tangential axis. This separation of adhesive and 

repulsive functionalities allows FLRTs to regulate the behavior of migrating 

pyramidal neuronsin distinct ways; FLRT2 repels Unc5D
+
 neurons and thereby 

controls their radial migration, while FLRT3-FLRT3 homophilic interactions 

regulate their tangential distribution. We speculate that these cell-cell 

communication mechanisms operating during radial and tangential patterns of 

migration of pyramidal neurons, suggest that also interneurons integrate these 

adhesive and repulsive effects. First, we have seen that cortical interneurons 

express certain levels of FLRTs proteins. If we can confirm this expression then, it 

would be interesting to check whether FLRT3 is involved in the adhesive 

properties of migrating interneurons and thereby participates in the delicate 

balance of adhesion/repulsion necessary for cell migration (Cooper, 2013). Since, 

the adhesive FLRT interaction reduces the repulsive response triggered by FLRT-

Unc5 interaction in a combinatorial way; it could be studied whether the repulsive 

effect ofFLRTs on MGE-derived interneurons in the stripe assay is enhanced in 

interneurons lacking FLRT3. 

The possibility that FLRTs regulate adhesion in migrating interneurons open the 

possibility that they could trigger, in a cell-autonomous manner, some 

intracellular signaling pathways in these cells. It would be therefore interesting to 

analyze gene expression in the GFP labeled cortical interneurons and compare 

gene expression using microarrays of FACS purified cells. In addition, to assess 
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the non-cell autonomous role of these two proteins, it will perform the crossing 

between the FLRTs conditional KOs mice and Nkx2-1-Cre line in order to remove 

FLRT2 and FLRT3 from the MGE-derived interneurons destined to the cortex.  
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7. PUBLICATIONS AND MEETINGS 

Spinet, C., Gonzalo, H., Fleets, C., Menal, M.J., Elea, J., 2015. Oxidative Stress 

and Neurodegenerative Diseases: A Neurotrophic Approach. Current Drug 

Targets. 16, 20-30.  

9th FENS Forum of Neuroscience, Milan Italy, July 2014. FLRT proteins are 

chemorepellents cues for migrating cortical interneurons 
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