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Resum

La democràcia és el sistema de govern més utilitzat al món. No obstant,
en un món cada vegada més globalitzat, la idea de mobilitzar la gent per
votar en un col.legi electoral gestionat per persones resulta antiquada tot
i ser la implementació més comú en l’actualitat. Millorar aquesta situació
mitjançant l’ús de les tecnologies de la informació sembla una evolució òbvia
i molt demanada però, malgrat l’existència d’algunes implementacions en
entorns reals, encara no ha estat utilitzada excepte en comptades ocasions.

Obrir la porta d’unes eleccions a les tecnologies de la informació implica
l’obertura dels protocols de votació a un nou conjunt d’atacs contra aquests.
Tenint en compte els requisits d’una elecció: privacitat del votant i integritat
de l’elecció, les solucions actuals passen per implementar l’elecció seguint un
dels tres paradigmes de vot segurs: barreja de vots, recompte homomòrfic o
signatura cega.

En aquesta tesi, es proposen nous protocols per als diferents paradigmes.
La primera proposta consisteix en un sistema de vot que, basant-se en

una informació redundant enviada pel votant, és capaç de realitzar una
barreja de vots amb cost negligible incrementant lleugerament el cost del
recompte.

Per al paradigma de recompte homomòrfic, es proposa una prova de
validesa del vot basada en les proves utilitzades per demostrar la correctesa
en sistemes amb barreja de vots. Aquesta solució permet utilitzar les mil-
lores realitzades sobre el paradigma de barreja de vots per al seu ús en el
paradigma de recompte homomòrfic.

Finalment, es plantegen dues solucions per a eleccions del paradigma de
signatura cega. La primera utilitza credencials generades amb signatura cega
per permetre als votants vàlids enviar el seu vot sense que es conegui la seva
identitat. La segona resol el problema del vot doble en aquest paradigma
mitjançant una construcció que utilitza un sistema de moneda electrònica
off-line.
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Resumen

La democracia es el sistema de gobierno más usado en el mundo. No ob-
stante, en un mundo cada vez más globalizado, la idea de movilizar a la gente
para votar en un colegio electoral gestionado por personas resulta anticuada
a pesar de ser la implementación más común en la actualidad. Mejorar esta
situación mediante el uso de las tecnoloǵıas de la información parece una
evolución obvia y muy solicitada pero, a pesar de unas pocas adaptaciones,
aún no ha sido usada salvo en escasas ocasiones.

Abrir la puerta de unas elecciones a las tecnoloǵıas de la información
lleva impĺıcita la apertura de los protocolos de voto a un nuevo conjunto
de ataques contra estos. Teniendo en cuenta los requisitos de una elección:
privacidad del votante e integridad de la elección, las soluciones actuales
pasan por implementar la elección siguiendo uno de los tres paradigmas de
voto seguros: mezcla de votos, recuento homomórfico o firma ciega.

En esta tesis, se proponen nuevos protocolos para los distintos paradig-
mas.

La primera propuesta consiste en un sistema de voto bajo el paradigma
de mezcla de votos que, basándose en una información redundante envi-
ada por el votante, es capaz de realizar una mezcla de votos con un coste
negligible incrementando ligeramente el coste del recuento.

Para el paradigma de recuento homomórfico, se propone una prueba
para verificar que el voto es válido basada en las pruebas de correctitud
en sistemas con mezcla de votos. Esta solución permite usar las mejoras
realizadas en el paradigma de mezcla de votos para su uso en el paradigma
de recuento homomórfico.

Finalmente, se proponen dos nuevos protocolos del paradigma de firma
ciega. El primero utiliza credenciales generadas con firma ciega para permitir
a votantes válidos enviar su voto sin que se conozca su identidad. El segundo
resuelve el problema del voto doble en el paradigma de firma ciega mediante
una construcción que utiliza un sistema de moneda electrónica off-line.
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Abstract

Democracy is the most established government system in the world. How-
ever, in an increasingly globalized world, the idea of requiring people to
move in order to cast their vote in the polling station seems outdated, even
though it is, nowadays, the most common implementation. An obvious and
widely demanded evolution is to improve the election framework by enabling
the use of information technologies. Nevertheless, this solution has been im-
plemented few times in real environment elections and the global success of
these solutions have been called into question.

The use of information technologies in voting protocols improves the
quality of the election but, at the same time, it also opens up the voting
protocols to new threats. Keeping this attacks in mind and given the election
requirements: voter’s privacy and election’s integrity, the solutions proposed
up to date are to implement one of the three secure voting paradigms: mix-
type based, homomorphic tally, and blind signature.

In this thesis, we present new protocols for the different paradigms.
Our first proposal, based on the mix-type paradigm, consists in a voting

protocol which is able to perform the ballot mix with negligible cost but
slightly increasing the tally cost. The proposed protocol makes use of a
proper vote generation based on sending secret redundant information with
the ballot when it is cast.

For the homomorphic tally paradigm, we propose a zero knowledge proof
of correctness of the ballot based on the proofs used to demonstrate the
correctness of a shuffle in the mix-type paradigm. This protocol makes
possible to use the improvements on the shuffle correctness proofs in the
homomorphic tally paradigm.

Finally, two different protocols are also proposed for the blind signature
paradigm. The first one uses credentials generated by means of a blind
signature which allow eligible voters to cast their vote without leaking infor-
mation about their identity. The second one is focused on solving the double
voting problem in this paradigm. The protocol proposed uses off-line e-coin
systems to provide anonymity disclosure in case of double voting.
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Chapter 1

Introduction

Human beings have always been arranged according to some social structure.
Nowadays, most civilizations in the world are democratic. Democracy was
born in Athens in the 5th century. The most distinctive aspect of that
democracy was the fact that decisions were taken through a deliberative
assembly in which only Athenian males could participate. This restriction
caused the assembly to include only 25 percent of the city population. The
low population and the small city size allowed this kind of social governance.

When the population increased, the capacity to control the city dimin-
ished significantly and the government structure had to be adapted in order
to handle the new situation.

Nowadays, the most extended solution is a democracy-based approach
in which a government composed of a few citizens is chosen through an
electoral process. These representatives take the government decisions.

An electoral process consists of three phases. The first one is devoted
to the composition of a list containing all the people with the right to par-
ticipate in the election. These people are the eligible voters, and the list
generated is called the electoral roll. Composing this list is a hard task. It
takes considerable time and it is hard to avoid mistakes during its genera-
tion. The use of information technologies has highly improved this process.
Nowadays, the electoral roll can be generated automatically using the ad-
ministration software.

The second phase of an electoral process comprises all the tasks related
to gathering the voters’ choices, usually referred to as their ballots. This
includes the planning of a proper distribution of ballot boxes and their clo-
sure at the moment indicated. This step requires substantial resources. A
great deal people are required to guard the ballot boxes and guarantee that
they have not been improperly manipulated. Moreover, the infrastructure
required is considerable for a city or a country election. The economic cost
of this phase is rather elevated.

The last step focuses on tallying the election results. The ballot boxes

1



2 CHAPTER 1. INTRODUCTION

are opened and each ballot has to be tallied. The time required for this step
depends on the amount of ballots and the amount of people counting. If
the amount of people involved increases, the result of the election can be
gathered faster. However, when the people involved increases, guaranteeing
the correctness becomes harder.

The cost of an election is large in terms of people involved and places and
material required. Moreover, it also requires a large number of trusted indi-
viduals to ensure the correctness of the election. Even with these drawbacks,
the majority of countries use this method to choose the representatives for
their governments.

1.1 Remote electronic voting

Electronic voting systems substitute some components of a traditional elec-
tion with an electronic process. An electronic voting system in which voters
can cast their votes remotely through telecommunication networks will be
referred to as a remote voting system.

In an election, it is essential that voters can prove their identity. In
traditional elections carried out in a polling station, voters usually identify
themselves by showing an ID card. In remote voting systems, the most ap-
propriate identification method is the use of digital certificates. A digital
certificate is a digital set of data containing a public key and some per-
sonal data which identifies the certificate holder. This data is signed by a
trusted authority. A person authenticates herself by transmitting the digi-
tal certificate and demonstrating that she is in possession of the private key
related to the public key in the certificate. This can be done, for example,
by computing a digital signature on some random message.

Traditional paper-based elections offer the opportunity to vote easily and
provide a feeling of transparency. The security of these elections is based on
the supervision of the process carried out by several inspectors. In contrast,
with remote voting, the participants can only see the interface of the voting
software and they are not therefore aware of internal details. This situation
can generate a lack of trust. A remote voting system must guarantee and be
able to prove the correctness of an election result to any suspicious observer.

Both in the traditional and in the remote cases, an election involves a
set of actors with the following roles:

• Voters: Each person whose name appears on the electoral roll is an
eligible voter. These are the only people allowed to cast a ballot. A
voter creates her ballot and deposits (in traditional voting) or trans-
mits (in remote voting) it to the ballot collection authority.

• Electoral roll authority: This authority creates the electoral roll
and makes it publicly accessible so that the voters can check it and
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ask for modifications if needed. After that, the electoral roll is made
available for the election.

• Ballot collection authority: This authority receives voters’ ballots.
It first asks the voter to identify herself and checks whether she is
listed on the electoral roll (authentication). After that, it verifies that
the authenticated voter has not cast a ballot before (unicity). If all
these checks are satisfied, the ballot is stored. In a traditional election,
ballots are put in a ballot box. Remote voting systems make use of a
publicly accessible bulletin board to publish the ballots received in an
encrypted form. This is required for verifiability purposes.

• Vote tallying authorities: At the end of the election, these au-
thorities open the ballots, tally the votes and publish the results. It
is frequent to refer to the set of authorities as Key Storage Trusted
Party (KSTP).

Some remote voting proposals require additional authorities. For in-
stance, in the blind signature paradigm, authentication is not carried out
by the ballot collection authority but by an authentication authority.

There are other authorities which are relevant for a voting system, even
though they are not directly related to it. For example, in remote voting,
voters may authenticate themselves by means of digital certificates issued by
an external certificate authority. A similar entity is also needed in traditional
elections, i.e. the ID card issuer.

These parties are involved in the different phases of an election. The
phases in a remote voting election are very similar to those of a traditional
election. Different remote voting systems implement them in many ways,
but the main actions per phase remain very similar. The phases occur
sequentially: the next phase does not start until the previous one has ended.
They are described below.

1. Setup: During this phase, the parameters needed to run the election
are generated and verified. These parameters include:

• The electoral roll, which is published on a bulletin board so that
anyone can check it and ask the electoral roll authority to correct
possible mistakes.

• The election keys, generated by the tallying authorities. These
keys will be used for vote encryption so that votes can be cast
privately.

Moreover, the voters should check their certificates in order to ensure
their validity, checking, for instance, that they are not out of date.
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2. Vote casting: In this phase, the voters compose and cast their ballots.
A voter first generates a message representing her vote and encrypts
it under the election public key. After that, she signs her ballot and
sends it together with its digital signature and her digital certificate to
the ballot collection authority. Upon reception, this authority checks
that:

• The digital certificate is valid and belongs to a voter on the elec-
toral roll.

• The ballot is signed under the key on the digital certificate.

• The voter has not cast a ballot before.

If all these checks are passed, the ballot collection authority publishes
the ballot, its signature and the voter’s certificate on a publicly acces-
sible bulletin board so that any external entity can perform the same
checks.

3. Tallying: When the vote casting phase has concluded, the vote tal-
lying authorities take the ballots from the bulletin board and decrypt
them. After that, the results of the election can be published. The de-
cryption of each ballot has to be performed verifiably in the sense that
any external entity can check that each cleartext vote really comes
from the decryption of a ballot.

Most remote voting schemes implement these three phases. Nevertheless,
some proposals include some additional phase. For example, one of our
proposals includes an additional vote credential request phase.

1.2 Security requirements

An election is a process designed to gather the opinion of voters. A voting
system must ensure that:

• Only people on the electoral roll can vote (authentication).

• Nobody knows the individual vote of any voter (privacy).

• Nobody can cast more than one ballot (unicity).

The purpose of these requirements is to encourage people to vote. Re-
mote voting provides all the advantages of information technologies to an
electoral process. Making an election accessible through the Internet al-
lows voters to cast their ballots without the need to go to the polling place.
Nevertheless, this does have drawbacks. A plethora of new attacks (denial
of service, voter impersonation, ballot modification,...) is now possible. For
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this reason, the original security requirements have to be more accurately de-
fined and expanded. The use of frameworks [JCPACRV12] and game-based
security definitions [BCG+15] to evaluate remote voting schemes is increas-
ingly demanded as the amount of proposals increases. These frameworks
and security definitions are based on the well-known security requirements
of an election which are detailed below.

1.2.1 Integrity

In remote voting, integrity refers to correctness (only voters on the electoral
roll can vote one time at most) and fairness (the parties involved cannot
successfully misbehave). In order to provide these properties a voting system
must ensure the following:

• Voter authentication: Each vote received and tallied has been cast
by a voter who appears on the electoral roll.

• Unicity: There is at most one tallied vote per voter.

• Fairness: It is not possible to add any fraudulent vote to the tally.
Moreover, the votes received cannot be removed or modified during
the election process.

An electronic voting system must provide integrity so that the result of
the election cannot be altered in any way. This means that all the votes
have been cast as they were intended to be by eligible voters and, after that,
the votes cannot be modified during their processing.

In a traditional election, integrity is provided by means of trusted super-
visors. In remote voting systems, the integrity requirement is highly related
to verifiability. The system has to provide some evidence able to convince
an external verifier that no manipulation has been carried out.

Verifiability

Verifiability is defined as “the quality or state of being capable of being veri-
fied, confirmed, or substantiated”.

An election is verifiable when any entity can check that the election result
really comes from the votes cast by the participants. The election result has
to be proven to be correct even when there is the possibility of misbehaviour
by some party. If a misbehaving act happens, it must be detected.

Traditional elections provide verifiability by means of audit authorities.
However, this solution does not allow anyone but the aforementioned author-
ities to verify anything. The integrity of the election depends on trusting
each of these audit authorities. However, it is not verifiable since some of
them could misbehave without being detected.
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In contrast, remote voting systems can provide public verifiability in the
sense that a misbehaving act will be detected. Current remote electronic
voting schemes are able to provide what it is called end-to-end verifiability.
An election is end-to-end verifiable when all the phases of the election can
be verified.

1.2.2 Privacy

Privacy is defined as “the ability of an individual or group to keep informa-
tion secret”. When something is private to a person, it usually means that
something is inherently special or sensitive to her. Privacy is a key aspect in
elections. It allows the voters to freely express themselves. This is specially
important in elections with confronting options like referendums in which a
voter’s opinion leakage could be harmful to her.

Traditional elections provide privacy by putting the vote into a standard
paper envelope. This vote plus its envelope is the ballot of a voter. When
the voting phase ends, the ballots stored in ballot boxes are mixed in order
to break any link with the voters who cast them.

In a remote voting system, privacy is provided by means of cryptographic
techniques. There are two properties to take into account:

• Confidentiality: The voting process must ensure that the identity of
a voter cannot be linked to her vote. When a voter encrypts her vote,
the resulting ballot leaks no information about the content. However,
an election requires the ballot to be signed in order to authenticate
its caster. In this way, when the ballot is decrypted the vote could
be related to the voter who cast it. Hence, in remote voting systems
the link between a ballot and its signature has to be broken somehow
prior to ballot decryption.

• Coercion resistance: Voters are not able to prove how they voted,
despite being able to provide evidence that they have cast a vote. The
fact that there is evidence of their votes would make them easier to be
coerced. Some coercion-resistance techniques provide tools allowing
voters to cheat the coercers. Coercers are tricked into thinking that
the voter has behaved under coercion.

1.2.3 Robustness

Robustness is defined as “the ability of a system to resist changes without
adapting its initial stable configuration”.

Technically, it cannot be considered a security requirement. Neverthe-
less, even without being a requirement, it is a property of which to be aware.

Some elections have had issues regarding irregular envelopes which failed to provide
confidentiality to voters.
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This property includes the system’s strength against certain kinds of attack.
The system should be able to face situations in which some voters or au-
thorities are misbehaving in order to disrupt the process. A remote voting
system must provide integrity and privacy in order to be secure. However,
these requirements are not enough if the election servers become out of order
due to a Denial of Service (DoS) attack.

Along the same lines, a remote voting system should provide an elevated
Quality of Service (QoS). That is, the software can be executed easily on
several types of device providing an enjoyable experience for the user. Also,
the servers should respond to queries within a short period of time.

1.3 Remote voting paradigms

Nowadays, remote voting schemes provide secure platforms to vote through
the Internet. In order to design a secure e-voting scheme, the distribution of
tasks as well as the configuration of the roles have to be accurate. There are
plenty of critical data distributed among different entities which are sent
and linked to public information. Over the years, three main paradigms
have emerged as suitable solutions. These paradigms are:

• Mix-type voting paradigm: This is the most similar to traditional
elections. During the setup phase, the tallying authorities generate
the private key of the election and publish the corresponding public
key. This public key is used by the voters to encrypt their votes. After
that, the vote casting phase starts, and the voters send their ballots
(encrypted votes) digitally signed to the ballot collection authority.

When this phase has ended and before proceeding with the tallying
phase, there is a mixing phase in which a party of mixers takes the
ballots from the bulletin board and re-encrypts and shuffles them. In
this way, a new set of ciphertexts is generated by the mixers. These
ciphertexts are encrypting the same votes as the ballots cast, but they
cannot be related to the signatures received. Finally, during the tal-
lying phase, the tallying authorities decrypt the mixed ballots and
publish the election result.

• Homomorphic tallying paradigm: This paradigm implements the
election phases (setup, vote casting and tallying) without adding any
additional one. During the setup phase, an election public key is gen-
erated. The public key cryptosystem employed is required to have a
homomorphic property.

When the vote casting phase starts, each voter generates her vote and
encrypts it under the homomorphic cryptosystem. After that, she
signs it and sends the ballot, her signature and her digital certificate
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Figure 1.1: Mix-type paradigm

to the ballot storing authority. If everything is correct, the authority
stores the ballot and publishes it together with the signature on the
bulletin board.

Once all the ballots have been received or the vote casting phase has
ended, the tallying authorities homomorphically aggregate (using the
cryptosystem homomorphic operation) all the ballots and proceed with
the decryption of the resulting ciphertext. An appropriate coding of
election options allows the decryption of this aggregated ciphertext to
result in a new message from which it is possible to gather the election
results. After that, the tallying authorities publish the results. Notice
that, as a result of the homomorphic aggregation, a new ciphertext
which encapsulates the information of all the ballots is generated. In
this way, when decrypted no one is able to distinguish which value
came from each ballot and the link between the identity of a voter and
her vote is broken.

Figure 1.2: Homomorphic tallying paradigm

• Blind signature paradigm: With this paradigm, the authentication
and ballot collection tasks are performed by separate entities. Voter
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authentication is carried out by an authentication authority. This
party must be trusted by all the participants. Implementing it as
a distributed authority provides a better trust in it.

During the setup phase, the following actions are carried out:

– The electoral roll is generated and published.

– A private / public key pair for the authentication authority is
generated. These keys will be used to blindly sign the ballots of
authenticated voters.

– A private / public election key pair for the tallying authority is
generated. This key pair will be used for vote encryption.

During the vote casting phase a voter composes her vote and encrypts
it under the election public key. After that, she authenticates against
the authentication authority who checks that the voter appears on the
electoral roll and has not voted before. After that, the voter and the
authentication authority run a blind signature protocol. As a result,
the voter obtains a signature of her ballot under the authentication
authority public key, while the authentication authority obtains no
information about the voter’s ballot. The voter can check that the
resulting signature is correct by verifying it under the authentication
authority public key.

After that, the voter sends her ballot together with the signature from
the authentication server to the ballot collection authority through an
anonymous channel. The use of an anonymous channel is required to
avoid an eventual tracing of the vote provenance. For instance, the
voter could be identified from her device IP address. An anonymous
channel makes the ballots received untraceable. The vote collection
authority will only store and publish ballots that carry a valid signa-
ture computed by the authentication server.

When the vote casting phase ends, the tallying authorities decrypt
each ballot and publish the election results.

In the previous overview, we have not mentioned that the proposals im-
plementing the aforementioned remote voting paradigms usually require the
use of zero-knowledge proofs that ensure the correctness of the process and
permit its verifiability. The computational cost of these proofs is usually the
most important aspect to take into account when designing new proposals.

1.4 Contributions

In this thesis, several contributions to remote voting are presented. They
are summarized below taking into account the paradigm to which each of
them belong.
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Figure 1.3: Blind signature paradigm

Contribution to the mix-type paradigm

This paradigm accommodates very flexible remote voting systems. Its draw-
back is located in the zero-knowledge proof needed to ensure the correctness
of the mixing process. The proofs proposed in the literature usually have
high computational and conceptual complexities.

Our proposal “Verifiable encrypted redundancy for mix-type remote elec-
tronic voting” [MMS11] provides an efficient method to prove the correctness
of a mixing operation. The proposal follows a “proof of product with re-
dundancy” [GZB+02] approach. Votes are composed using a redundancy
system that permits proof of the correct composition and plaintext aware-
ness of votes at vote reception. Moreover, it also makes it possible to check
the validity of the mixing operation while preventing some privacy or denial
of service attacks that were possible in previous proposals in the literature.

Contribution to the homomorphic tallying paradigm

Vector-based homomorphic tallying remote voting schemes provide an ef-
ficient vote tallying procedure, but they require voters to prove in zero-
knowledge that the ballots they cast have been properly generated. This
is usually achieved by means of the so-called zero-knowledge range proofs
which should be verified by the polling station before tallying. In our pro-
posal: A hybrid approach to vector-based homomorphic tallying remote vot-
ing [MMS15], we present an end-to-end verifiable hybrid proposal in which
ballots are proven to be correct by making use of a zero-knowledge proof of
mixing but still using homomorphic tallying to collect the election results.
Our proposal offers all the advantages of the homomorphic tallying para-
digm while avoiding the elevated computational cost of range proofs. As a
result, ballot verification performance is improved in comparison with the
equivalent homomorphic systems. The proposed voting scheme is suitable
for multi-candidate elections as well as for elections in which the voters have
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different weights.

Contribution to the blind signature-based paradigm

Blind signature-based electronic voting is the simplest paradigm to imple-
ment remote voting platforms due to the fact that it does not employ compli-
cated zero-knowledge proofs. Unfortunately, the existence of a trusted entity
(the “Authentication Server”) that, in case of corruption, would be able to
cast indistinguishable fake votes, reduces the acceptance of the paradigm
in non-fully trusted environments. Trust in the system can be increased by
splitting this entity into of a set of parties that are unlikely to collaborate
in a dishonest manner. Nevertheless, this technique increases the risk of
failure of some of them, causing a service interruption during the voting
period. Better fault tolerance is provided by proposals which make it possi-
ble to anticipate the interaction with the distributed authentication server
before the voting period begins, so that, in case of failure, there is a broad
time margin for system restoration.

Previous proposals following this approach have been proven to be cryp-
tographically weak or just provide individual verifiability. In Blind Cer-
tificates for Secure Electronic Voting [MSV13], we present a system that
employs blind certificates. Unlike previous proposals, it provides universal
verifiability and permits us to detect double voting without putting voters’
privacy at risk.

Double voting detection for blind-signature remote voting was intro-
duced by Mu and Varadharajan. They proposed a remote voting paradigm
in which participants receive a blindly signed voting credential that per-
mits them to cast a vote anonymously. If some participant tries to cheat
by submitting more than one vote, her anonymity will be lifted. In recent
years, several proposals following this paradigm, including Mu and Varad-
harajan’s, have been shown to be cryptographically weak. In Constructing
credential-based E-voting systems from offline E-coin protocols [MSV14], we
first show that a recent proposal by Baseri et al. is also weak. After that,
we give a general construction that, employing an offline e-coin protocol as
a building block, provides a secure anonymous voting system following the
aforementioned paradigm.

1.5 Structure

The thesis is divided into six chapters. The first one is devoted to the intro-
duction of remote electronic voting. There is a brief historical explanation
of democracy which follows with a description of the roles and phases of an
electronic election in Section 1.1. Section 1.2 is devoted to defining the se-
curity requirements of an electronic election. The main paradigms fulfilling
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these requirements are listed in Section 1.3. Finally, the contributions of the
thesis are summarized in Section 1.4.

In Chapter 2, the mathematical background required to understand the
thesis is explained. It starts with a description of public key cryptography in
Section 2.1, where ElGamal and Paillier cryptosystems are explained. Both
cryptosystems offer a homomorphic encryption, as detailed in Section 2.2,
which is widely used in electronic voting protocols. Section 2.3 is devoted
to digital signature and blind signature schemes. The chapter is concluded
with the definition and description of some zero-knowledge proofs in Section
2.4.

In Chapter 3, the mix-type paradigm is detailed in depth. It starts with a
description of the paradigm in Section 3.1, where some well-known shuffling
protocols are explained. The concept of optimistic mixing is introduced in
Section 3.2, which leads to a novel design of optimistic mixing based on
redundancy proofs presented in Section 3.3.

Next, in Chapter 4, the homomorphic tallying paradigm is described.
In Section 4.1, the protocol involving an election following this paradigm
is introduced. After that, a particular implementation of the paradigm
based on array ballots is detailed in Section 4.2. Finally, in Section 4.3, a
new approach for this implementation using shuffling protocols to prove the
correctness of an array ballot is presented.

The remaining paradigm for secure remote voting, blind signature para-
digm, is explained in Chapter 5. A description of the protocols involved in
the paradigm is introduced in Section 5.1. A modification of these protocols
using credentials to identify voters is explained in Section 5.2. Identifying a
double voter in this paradigm has always been a challenge. In Section 5.3,
the previous proposals which tried to achieve it are presented together with
their respective security breaches. Finally, a new proposal able to identify
double voters by using e-coins as voting credentials is presented in Sec-
tion 5.4.

The last chapter is devoted to analysing the contributions to each para-
digm presented in this thesis. Based on this analysis, the conclusions of the
thesis are presented.



Chapter 2

Preliminaries

Remote voting systems provide security (see Section 1.2) by making use of
public key cryptography. For instance, votes are transmitted encrypted so
as to provide vote confidentiality. Voters have to authenticate themselves
prior to ballot casting, which is usually achieved by making use of digital
certificates and digital signatures. Remote voting systems are required to
break the link between the ballots and the identity of the voters who cast
them, prior to their decryption. This can be done in different ways such as
shuffle and re-encrypt operations, homomorphic aggregation or blind signa-
tures. Last but not least, with some paradigms the actors need to prove they
have performed some action correctly. This has to be done without leaking
any information that could jeopardize participants’ privacy. Zero-knowledge
proofs are an appropriate tool to that end.

In Section 2.1, a description of some public key cryptosystems is pre-
sented. By making use of encryption, a voter can cast her ballot in a confi-
dential way through the Internet without leaking any information about its
content.

All the cryptosystems introduced in Section 2.1 are homomorphic. This
property is really useful in the design of remote voting systems. For this rea-
son, this property and some of its applications are described in Section 2.2.

Public key cryptography also provides digital signature capabilities. Dig-
ital signatures, together with digital certificates, are widely employed for
authentication and integrity preservation purposes. Section 2.3 is devoted
to digital signature schemes.

Verifiability is a challenging requirement. Zero-knowledge proofs allow
the parties involved in an election to prove they have acted honestly with-
out providing any detail about the actions carried out. These proofs are
introduced in Section 2.4.

13
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2.1 Public key encryption

In a public key cryptosystem each user has two keys, one private and one
public. The public key is made publicly available and is used for plaintext
encryption or digital signature verification. The private key is kept secret
and is used to decrypt ciphertexts or to create digital signatures.

Both keys are mathematically linked by a one-way trapdoor function so
that it is computationally easy for an entity to generate a private / public
key-pair, but it is computationally infeasible to determine the private key
from its corresponding public key. Hence, a public key can be published
since, from its knowledge, the private key cannot be obtained. Public key
cryptography, unlike symmetric key cryptosystems, does not require a secure
initial exchange of secret information (keys) between the parties.

The security of public key cryptosystems lies in the assumed intractabil-
ity of some computational hard problems. The two most popular ones are
the integer factorization [RSA78] and the discrete logarithm [ElG85] prob-
lems. The first one is the basis of cryptosystems like RSA or Paillier, while
the second one leads to ElGamal cryptosystem (including its elliptic curve
version). Some remote voting systems further require the employed cryp-
tosystem to be probabilistic. This means that a given plaintext can be
encrypted into many different ciphertexts. The RSA cryptosystem, in its
basic form, does not provide this property, while Paillier and ElGamal do.

2.1.1 ElGamal cryptosystem

ElGamal [ElG85] is a probabilistic public key cryptosystem. As first pro-
posed, its security holds on the assumed intractability of the discrete loga-
rithm problem (DLP) over a subgroup G of the multiplicative group F∗p, p
being prime. The problem is defined as follows. Given a generator g of G
and an element y ∈ G, find an integer x such that y = gx.

In order to make this problem computationally intractable, p has to be
taken such that p− 1 has a large prime factor q and G is taken as the order
q subgroup of F∗p. This prevents the application of the Pohlig-Hellman
method [PH78], which reduces the DLP over G into small instances over
groups whose orders are factors of p− 1.

ElGamal cryptosystem can be implemented over other groups such as
the group of points of an elliptic curve defined over a finite field or the
Jacobian of a hyperelliptic curve.

ElGamal cryptosystem is composed of the following procedures:

Setup and key generation
The setup is performed by choosing a prime p, and a generator g of
a large prime order subgroup G of F∗p. With q being the order of
G, a user U generates her private key by choosing a random integer
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x ∈ [1, . . . , q−1]. The public key is computed as y = gx mod p. Then,
U can publish the system parameters p, q, g and her public key y. The
private key x has to be kept secret.

Encryption
Message m ∈ F∗p is encrypted into a ciphertext that only U will be
able to decrypt. This is done by computing,

Ency(m) = (a, b) = (gr , m · yr)

with r ∈R [1, . . . , q − 1] being chosen at random. If the random value
r is given as input it will be denoted as:

Ency(m, r) = (a, b) = (gr , m · yr).

Decryption
An ElGamal ciphertext c = (a, b) is decrypted, employing private key
x, as follows:

Decx(c) = b/ax = m.

Re-encrypt
An ElGamal ciphertext c can be re-encrypted in order to obtain a new
ciphertext encrypting the same plaintext as follows:

Remr′(c) = (a · gr′ , b · yr′).

There is an alternative way to obtain the cleartext of ciphertext c. This
can be done if the random value r, generated at encryption, is revealed.
First of all, the equality gr = a has to be checked. Next, compute

Revr(c) = b/yr = m.

Notice that r is only known by the entity which generated the ciphertext.

2.1.2 Paillier cryptosystem

Paillier [Pai99] is a public key probabilistic cryptosystem whose security is
based on the decisional composite residuosity assumption. This assumption
states that, given a composite n and an integer z, it is hard to decide whether
y exists such that

z ≡ yn mod n2.

Paillier cryptosystem is composed of the following procedures:

Key generation
A user U creates a private/public key-pair by first choosing two large
primes p and q such that gcd(pq, (p − 1)(q − 1)) = 1. After that,
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the values n = pq and λ = lcm(p − 1, q − 1) are computed. Next, a
random integer g ∈ Z∗n2 whose multiplicative order is divisible by n is
generated. Finally, a value µ is computed as,

µ = (L(gλ mod n2))−1 mod n,

with L(u) = u−1
n .

The tuple (n, g) is the public key while the tuple (λ, µ) is kept secret
by U .

Encryption
A message m ∈ Zn, is encrypted by computing,

Encg,n(m) = gm · rn mod n2,

with r ∈R [1, . . . , n− 1]. If the random value r is given as input it will
be denoted as:

Encg,n(m, r) = gm · rn mod n2.

Decryption
A ciphertext c can be decrypted by computing,

Decλ,µ(c) = L(cλ mod n2) · µ (mod n) = m.

Re-encrypt
Any Paillier ciphertext c can be re-encrypted, or resmasked, to obtain
a new ciphertext encrypting the same plaintext as follows:

Remr′(c) = c · r′n mod n2.

2.1.3 Elliptic ElGamal cryptosystem

An elliptic curve E over a prime finite field Fp is an algebraic curve given
by an equation of the form

y2 = x3 + ax+ b, a, b ∈ Fp,

with non-zero discriminant 4a3 + 27b2 6= 0, called reduced Weierstraß equa-
tion.

We denote by E(Fp) the set of points (x, y) ∈ Fp × Fp that satisfy the
curve equation, along with the point at infinity O.

An addition operation can be defined over E(Fp) using the chord-tangent
method. This operation endows the set E(Fp) with an abelian group struc-
ture in which O is the identity element. Considering this group law, a point
P ∈ E(Fq) can be multiplied by a scalar d as follows

dP = P + · · ·+ P︸ ︷︷ ︸
d times

.
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The point dP can be computed in an efficient way using the double-and-add
algorithm.

The Elliptic ElGamal cryptosystem (EC-ElGamal) [Kob87, Mil86] is an
analogue of the ElGamal cryptosystem using elliptic curves. Its security
holds on the elliptic curve discrete logarithm problem (ECDLP). This prob-
lem is defined as, given two elliptic curve points P and Q such that Q = dP ,
find an integer d that solves the equation. This is a computationally hard
problem.

The main advantage of EC-ElGamal compared with ElGamal cryptosys-
tem defined over Fp is that the Index-Calculus [SS98] algorithm, which al-
lows us to solve the DLP over Fp in subexponential time, cannot be employed
over elliptic curve points. As a result, EC-ElGamal achieves equivalent se-
curity levels using shorter keys. For example, the security of ElGamal cryp-
tosystem over Fp taking 1024 bit keys is equivalent to that of EC-ElGamal
with 160 bit keys.

The algorithms composing EC-ElGamal are decribed below:

Setup and key generation
The cryptosystem setup first requires taking a prime p defining a field
Fp. Next, the two parameters a and b defining an elliptic curve E over
Fp are chosen. The cardinality of the resulting elliptic curve should
be divisible by a large factor q of the same size as p. Next, take an
order q point P ∈ E(Fp).

A user U generates a keypair by choosing her private key d at random
in {1, ..., q − 1}. The corresponding public key is Q = dP .

Encryption
A point V ∈ E(Fp) is encrypted by computing:

EncQ(V ) = (A,B) = (rP, V + rQ),

with r being a random integer in {1, . . . , q − 1}. If the random value
r is given as input it will be denoted as:

EncQ(V, r) = (A,B) = (rP, V + rQ).

Decryption
User U can decrypt a ciphertext C = (A,B), using her private key d.
The cleartext V is obtained as follows:

Decd(C) = B − dA = V.

Re-encrypt
The re-encrypt, or resmask, algorithm takes as input a ciphertext C
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and a random value r′ and outputs a new ciphertext encrypting the
same plaintext of C. The algorithm proceeds as follows:

Remr′(C) = (A+ r′P,B + r′Q).

The EC-ElGamal also provides a reveal algorithm. Given a ciphertext
C = (A,B) generated with a random value r, first check whether rP equals
A and next compute

Revr(C) = B − rQ = V .

The reveal algorithm can only be used when the value r is known.

2.2 Homomorphic encryption

Some public key cryptosystems have an encryption function which offers a
homomorphic property [FG07]

Enc(m1)⊕ Enc(m2) = Enc(m1 �m2),

in which ⊕ is a binary operation defined over the set of ciphertexts and
� is a binary operation defined over the cleartext space. Such a property
establishes that the result of Enc(m1)⊕Enc(m2) is an encryption of m1�m2.

A cryptosystem with a homomorphic property is called a homomorphic
cryptosystem. Depending on the operation �, the homomorphic property
can be additive or multiplicative.

Paillier [Pai99] is an additive homomorphic cryptosystem. As seen above,
its encryption algorithm computes a ciphertext as,

Enc(m) = gm · rn mod n2,

for some random r. In this case, the homomorphic operation ⊕ is the ci-
phertext (modular) product. Notice that,

Enc(m1) · Enc(m2) = gm1+m2 · (r1r2)n = Enc(m1 +m2).

ElGamal is a multiplicative homomorphic cryptosystem. Let us recall
that a message m is encrypted as:

Enc(m) = (gr,m · yr).

The homomorphic operation ⊕ is the component-wise product of cipher-
texts, here represented as⊗ , and the operation� performed on the cleartext
is the multiplication in Z∗p. Then,

Enc(m1)⊗ Enc(m2) = (gr1+r2 ,m1 ·m2 · yr1+r2) = Enc(m1 ·m2).
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ElGamal can be modified in order to provide an additive homomorphic prop-
erty. This is achieved by encrypting gm:

Encadd(m) = Enc(gm) = (gr, gm · yr),

Then, the ciphertext componentwise product behaves as follows:

Encadd(m1)⊗ Encadd(m2) = (gr1+r2 , gm1+m2 · yr1+r2) = Encadd(m1 +m2).

The elliptic ElGamal cryptosystem provides a point addition homomor-
phism. A point V ∈ E(Fp) is encrypted as:

Enc(V ) = (rP, V + rQ).

The homomorphic operation ⊕ is the component-wise ciphertext point ad-
dition, and the resulting operation � on cleartexts is the point addition. It
results in the following homomorphic property:

Enc(V1)⊕ Enc(V2) = ((r1 + r2)P, V1 + V2 + (r1 + r2)Q) = Enc(V1 + V2).

EC-ElGamal can also be adapted to provide an integer additive homo-
morphism. Given an integer m, compute V = mP and encrypt V . Thus,

Enc(mP ) = (rP,mP + rQ),

In this case,

Enc(m1P )⊕ Enc(m2P ) = Enc((m1 +m2)P ).

Notice that the re-encryption algorithm of each cryptosystem can be
viewed as a homomorphic operation combining two ciphertexts, one of them
encrypting the neuter element.

2.3 Digital Signature

A digital signature is a concept introduced in [DH76] which provides the
following security properties for the signed message:

• Authentication: the reader of a signed message knows it was signed by
the claimed signer.

• Non-repudiation: the signer cannot deny having signed a message.

• Integrity: If a signed message is modified, this will be detected.
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2.3.1 Hash functions

A hash function H maps digital information of arbitrary length into a fixed
length string. When used for cryptographic purposes, a hash function must
provide the following properties:

• Determinism: Given an input message, its hash value is always the
same.

• Uniformity: Each hash value in the output range can be generated
with almost the same probability.

• Non-invertibility: It is infeasible to generate a message from its hash.

• Efficiency: Hash computation is a lightweight procedure.

• Collision resistance: Finding two different messages resulting in the
same hash is hard.

Hash functions are a fundamental tool for digital signature. As we will
see next, they are employed to reduce the size of the data to be signed. A
digital signature on message m is computed by signing its hash digest H(m).

2.3.2 Digital signature algorithms

A digital signature scheme consists of three algorithms:

1. Key generation: This algorithm generates a private / public keypair.
Let x and y denote the private and public keys, respectively.

2. Sign: Given a message m, this algorithm generates its signature s
under private key x:

s = Signx(m).

3. Verify: Given a message m, its signature s and a public key y, this
algorithm determines whether s is a digital signature on m computed
using the private key related to x:

Very(m, s) = true/false.

As an example, we show how the RSA [RSA78] digital signature works:

1. Key generation: Generate two large primes p and q of the same size.
After that, compute n = pq and ϕ(n) = (p− 1)(q− 1). Finally, take a
random integer e ∈ {2, . . . , ϕ(n)− 1} and compute its inverse d = e−1

mod ϕ(n).

The public key is the tuple (n, e) and the private key is d.
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2. Sign: The hash of message m, H(m), is signed under private key d as
follows:

s = Signd(H(m)) = H(m)d mod n.

3. Verify: A signature s on messagem is verified by algorithm Ver(n,e)(m, s)
which checks whether the following equation holds:

se mod n = H(m).

Both the signer and the verifier should agree on the hash function H to
be used.

2.3.3 Blind signature protocols

A blind signature protocol involves two parties, a message owner and a
signer. As a result, the message owner obtains a digital signature computed
by the signer over her message while the signer obtains no information about
the signed message. A blind signature protocol is composed of the following
procedures:

1. Key generation: The signer generates a private / public key pair, x, y.

2. Blind: This algorithm disguises the original message m using a random
parameter r generating m′ = Blindr(m) as a result.

3. Blindly Sign: The disguised message m′ is sent to the signer who
computes a digital signture on it. The result, s′ = Signx(m′), is sent
to the message owner.

4. Unblind: The digital signature s′ over m′ is unblinded in order to
obtain a digital signature s over m. This algorithm receives s′ and r
as input and generates s = Unblindr(s

′) as output. The result is the
same as if the signer had computed s = Signx(m).

5. Verify: Given a message m, its signature s and a public key y, the
algorithm checks whether s is a correct signature of m under public
key y:

Very(m, s) = true/false.

The RSA blind signature algorithm is detailed in the following lines:

1. Setup: Generate an RSA keypair, d and (n, e).

2. Blind: The hash digest of message m, H(m), is blinded using a random
factor r by computing

m′ = Blindr(H(m)) = H(m) · re mod n.
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3. Blindly Sign: The blinded message m′ is signed as:

s′ = Signd(m
′) = (m′)d = H(m)d · r mod n.

4. Unblind: The digital signature s′ over m′ is transformed into s as
follows:

s = Unblindr(s
′) = s′ · r−1 mod n.

The resulting signature is s = H(m)d = Signd(H(m)).

5. Verify: The signature s can be verified by means of algorithm

Ver(n,e)(H(m), s).

2.4 Zero-knowledge proofs

Proving that one possesses certain knowledge is in most cases trivial if one
is allowed to simply reveal that knowledge. The challenging task is to prove
such knowledge without revealing it. A zero-knowledge proof [GMR89] is a
method by which a prover can prove to a verifier that a given statement is
true, without conveying any additional information apart from the fact that
the statement is indeed true.

A zero-knowledge proof (ZKP) must satisfy three properties:

• Completeness: if the statement is true, the verifier will be convinced
of this fact by a prover.

• Soundness: if the statement is false, no cheating prover can convince
the verifier that it is true, except with some small probability.

• Zero-knowledge: if the statement is true, no cheating verifier learns
anything other than this fact.

2.4.1 ZKP for discrete logarithm equality

The ZKP for discrete logarithm equality was first designed as a digital sig-
nature verification algorithm by Chaum and Pedersen [CP93]. It can be
used as a tool to provide a verifiable decryption of ElGamal ciphertexts.

The proof states that, given four elements (g, y,m, z), the prover knows
a value x such that gx = y and mx = z. That is, logg y = logmz. In order
to do that, the proof proceeds (in its non-interactive form) as follows:
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Prover

• Choses s at random and computes the tuple (a′, b′) = (gs,ms).

• Generates h = H(m, z, a′, b′).

• Computes r = s+ hx.

• Sends (a′, b′, r) to the verifier.

Verifier

• Computes h = H(m, z, a′, b′).

• Checks that gr = a′yh and mr = b′zh.

Let c = (a, b) be an ElGamal ciphertext. The only party able to decrypt
it is the one in possession of the secret key x. This party is able to prove in
zero-knowledge that a message m is really obtained from the decryption of
c without revealing any information about the secret key. This is done by
proving in zero-knowledge that logg y = loga(b · m−1). In such a case, we
say that c has been verifiably decrypted.

2.4.2 ZKP for message lies in set

Cramer et al. [CDS94] presented an approach to construct proofs of partial
knowledge. This approach has been implemented as range proofs. These
proofs permit us to demonstrate that the cleartext encrypted in a ciphertext
belongs to a given set. Next, we detail its implementation for range proofs
of ciphertexts encrypted under EC-ElGamal.

Prover

Let P be a prover who wants to prove that an EC-ElGamal ciphertext C =
(A,B) is encrypting a point Sk which lies in the set S = {S1, S2, . . . , Sk}.
P would proceed as follows:

1. P randomly generates wj , uj , x for j = 1, 2, . . . , k − 1.

2. P computes

A′j = wjP + ujA forj 6= k,

B′j = wjQ+ uj(B − Sj) forj 6= k,

A′k = xP,
B′k = xQ.

3. P computes chall = H(A′, B′), A′ and B′ being the concatenation of
the values Aj and Bj for 1 ≤ j ≤ k, respectively.
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4. P sends:
w1, w2, . . . , wk u1, u2, . . . , uk,

with
uk = chall −

∑k−1
j=1 uj ,

wk = x− ukr.

Notice that r is the random integer used in the generation of C and it
is only known by the P.

Verifier

The verifier knows C = (A,B) and the set S. When she receives

w1, w2, . . . , wk u1, u2, . . . , uk,

she proceeds with the following checks:

1. The verifier checks that H(A′, B′) =
∑k

j=1 uj .

2. For each j, 1 ≤ j ≤ k, the verifier checks that

A′j = wjP + ujA, B′j = wjQ+ uj(B − Sj).

If all the checks are satisfied, the verifier is convinced that C is an en-
cryption of a point in the set S.



Chapter 3

Mix-type paradigm

This chapter begins with a description of the mix-type remote voting para-
digm. The main idea and its properties are explained in Section 3.1. Mix-
type remote voting offers privacy by breaking the link between the ballots
and the voters who cast them through a mixing process whose correctness
has to be proven in zero-knowledge. One of the approaches is the so-called
optimistic mixing, a description of which is given in Section 3.2. After that,
in Section 3.3, we present a new proposal for optimistic mixing which was
published in [MMS11].

3.1 Paradigm description

The main phases of an electronic election have been described in Section 1.1.
As has been explained, some paradigms require additional entities and in-
clude additional phases. The mix-type paradigm includes an additional
phase, called mixing, in which the link between each ballot and its caster is
broken by a set of mixing authorities. Usually, a mix-type paradigm voting
scheme is composed of the following four phases:

1. Setup: A public key cryptosystem is chosen and the election keys are
generated by the vote tallying authorities. Next, the election public
key is published on a publicly accessible bulletin board. At the same
time, the electoral roll authority publishes the electoral roll so that
it can be checked. The electoral roll includes information required to
verify the public key of each eligible voter. This information could be
a digital certificate of the voter’s public key or simply the public key
of the accepted certificate authorities. The list of candidates as well
as the instructions for voters are also published.

As a result of this phase, the bulletin board contains the election public
key, the electoral roll and the candidates list. The bulletin board
permissions are then set so that these data can no longer be modified.

25
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2. Vote casting: During this phase, a voter generates a message de-
scribing her choice and encrypts it under the election public key. The
resulting ciphertext is then digitally signed using the private key as-
sociated with her digital certificate. After that, the ballot and its
signature are sent to the vote collecting entity through the Internet.

Upon receiving a ballot, the vote collecting entity must authenticate
the ballot caster and check that she appears in the electoral roll. This
is done by checking the validity of the digital signature using the voter’s
digital certificate. If the caster is an eligible voter and has not cast a
ballot before, then the vote collecting authority publishes the ballot
on the bulletin board so that any entity can perform the same checks.

The vote casting phase ends when the voting period expires or when
all the eligible voters have cast their ballots.

3. Mixing: During this phase, the so-called mixing authorities are re-
quired. These authorities are organized in a sequential manner such
that the first one takes as input the ballots published on the bulletin
board. These ballots are mixed (permuted and re-encrypted). The
second mixer then takes as input the output of the first authority and
performs the same operation. This process is repeated for each mixer.
In the end, a set of mixed ballots is obtained. Each mixing authority
publishes its result together with a zero-knowledge proof proving that
its output really corresponds to a mixing of its input. In this way, any
entity can check its correctness.

4. Tallying: The resulting set of mixed ballots is verifiably decrypted by
the the vote tallying authorities. Once the ballots have been decrypted,
the election result is published on the bulletin board.

Since ballots are individually decrypted, there is no restriction on its
format or coding. Hence, the range of messages that can be encrypted is only
bounded by the cleartext message length. As a consequence, the paradigm
can be used in elections in which vote coding is rather complicated. If, after
decrypting it, some vote is found to have been badly generated, it can simply
be discarded.

The most complex and time-consuming part of this paradigm is the
generation and validation of the zero-knowledge proof of correct mixing.
The next section is devoted to this part.

3.1.1 Mixing processes

Privacy is a fundamental requirement in any election. Vote encryption is
necessary but it is not enough to provide privacy. Encrypting a vote provides
privacy at vote transmission but the link between a voter and her choice
would be revealed after ballot decryption.
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In mix-type remote voting systems, a mixing process is run after all
the ballots have been received at the ballot collection authority. Such a
process takes as input a set of ballots encrypted under some public key
cryptosystem offering a re-encryption operation. A mixing process includes
two operations: ciphertext shuffling using a random permutation π and the
re-encryption of the permuted ciphertexts. Re-encryption is needed so that
the mixed ciphertexts cannot be related to the original non-mixed ones. A
mixing operation generates as output the new set of ciphertexts together
with a zero-knowledge proof of correctness.

Such a mixing process is depicted in Figure 3.1 in which a set of ballots
Cv1 , . . . , Cvn is mixed. As a result, we obtain a set of mixed ciphertexts
C ′1, . . . , C

′
n together with a zero-knowledge proof of correctness.

π
Cv1

Cv2

Cv3

Cvn

C ′1

C ′2

C ′3

C ′n

ZKP

Figure 3.1: Verifiable mixing process.

The idea of using a shuffle operation to break the binding between each
ballot and its caster was first proposed in [Cha81]. In that proposal, a de-
cryption mix-net was employed. A decryption mix-net requires the ballots
to be encrypted under several public keys, one for each mixing authority (or
mixer). Once all the ballots have been cast, the first mixer decrypts the bal-
lots using its private key, so that its encryption layer is removed. Then, the
mixer shuffles the results and sends the result to the next mixer. The next
mixers proceeds in the same manner. The last mixer output corresponds to
the cleartext votes which can now be tallied. Unfortunately, the correctness
of such a mix-net cannot be proven and therefore the integrity property is not
guaranteed. Jakobsson, Juels, and Rivest [JJR02] proposed a different tech-
nique to address that problem and gave heuristic arguments showing that,
in their proposal, it would be difficult to change more than a small number
of ciphertexts without being noticed. That technique, called Randomized
Partial Checking (RPC) [PG10], requires several mixers, as in Chaum’s
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proposal. In this case, if more than just a few ciphertexts are incorrectly
processed by a mixer, the bad behaviour will be noticed with high proba-
bility. That scheme and several of its implementations [CEC+08, CCM08],
which have been used in real elections, have recently been proven insecure
in [KW13] against Pfitzmann’s Attack [Pfi95, PP90].

A slightly different approach requiring homomorphic cryptosystems was
proposed by Park, Itoh and Kurosawa [PIK94]. That proposal was the first
use of a re-encryption mix-net. In that proposal, the mixers collectively
generate the election public key so that the private key required for de-
cryption is distributed among them. During the mixing phase, the mixers
sequentially shuffle the ballots and re-encrypt them. Finally, the resulting
ciphertexts are jointly decrypted. The first universally verifiable mix-net
was a re-encryption mix-net designed by Sako and Kilian [SK95]. In that
proposal, the senders can verify that the entire mixing has been performed
correctly. From then on, the design of new mix-nets with efficiency improve-
ments has been recurrent in the bibliography. It is important to highlight
the performance improvement of the proposals by Neff [Nef01] and Furukawa
and Sako [FS01]. Those proposals employ zero-knowledge proofs (ZKP)
of correct mixing which outperform the previous cut-and-choose proposals.
Currently, the proposals of Telerius and Wikström [TW10] and Bayer and
Groth [BG12] are the most secure and efficient mixing proposals followed by
Peng’s mixnet [Pen11a], which is more efficient in cost but weaker in terms
of security.

A mixing procedure has to meet the following properties:

• Privacy: The permutation π employed to shuffle the ballots remains
secret.

• Correctness: The plaintexts of the output ballots equal the plaintexts
of the input ones.

• Public verifiability: The correctness property can be verified by any
external entity. Each mixer can publicly prove that it performed the
mixing process correctly.

The resulting permutation π applied to the ballots is the composition of
the permutations applied by each mixing authority. In this way, π remains
secret as long as at least one of the mixing authorities does not reveal its
permutation. Hence, the mixing authorities have to be chosen so that each
voter can, at least, trust one of them.

Regarding public verifiability, ensuring the correctness of the election
without leaking sensitive information is mandatory. This is achieved by
making use of the so-called zero-knowledge proofs of mixing.
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3.1.2 Zero-knowledge proofs of mixing

Generally speaking, a zero-knowledge proof of mixing is generated by a pro-
cedure that receives as input a set of input ciphertexts C1, . . . , Cn, the set of
mixed ciphertexts C ′1, . . . , C

′
n, the permutation π and the re-encryption fac-

tors r1, . . . , rn. This procedure generates as output some data that demon-
strate that the set of mixed ciphertexts was obtained from the set of received
ones after performing a correct mixing operation.

As introduced in Section 2.4, a zero-knowledge proof has three main
properties: completeness, soundness and zero-knowledge. These properties
are perfectly suited for the requirements of a proof of mixing. The com-
pleteness and soundness properties guarantee the integrity of the election.
The zero-knowledge property is required for privacy while allowing public
verifiability.

Several proposals of zero-knowledge proofs of mixing exist. Some of them
achieve better performance at the cost of reducing the randomness of the
permutation. The security of these electronic voting systems is weaker than
that of schemes using a completely random permutation, but they are strong
enough. An example of such an approach was proposed by Peng [Pen11a].
During the mixing operation, the ballots are divided into several groups of
the same size. Then, each group is shuffled and re-encrypted using the same
parameters. The zero-knowledge proof of correct mixing is generated for one
group and then, by using batch techniques, the proof is extended to prove
the correctness of the mixing applied to the other groups. This is possible
because the proof bases its correctness on the fact that given a set of integers
si and s′i, for i = 1, . . . , n, it can demonstrate (in zero-knowledge) knowledge
of a set of values ti and t′i, for i = 1, . . . , n, satisfying that:

n∑
i=1

Dec(Cvi) · si =

n∑
i=1

Dec(C ′i) · ti,

n∑
i=1

Dec(Cvi) · s′i =
n∑
i=1

Dec(C ′i) · t′i,

n∑
i=1

Dec(Cvi) · si · s′i =
n∑
i=1

Dec(C ′i) · ti · t′i,

being Dec(Cvi) the decryption function of the Elliptic ElGamal cryptosys-
tem receiving as input the ciphertext Cvi . In [Pen11a], it is proven that
the existence of these integers ti and t′i, for i = 1, . . . , n, implies, with
high probability, that the set {Dec(C ′1), . . . ,Dec(C ′n)} is a permutation of
{Dec(Cv1), . . . ,Dec(Cvn)}.

As can be seen, [Pen11a] proves the correctness of a mixing operation by
demonstrating that a certain condition is met. In this case, the completeness
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and soundness properties are obtained from this condition and not from the
applied permutation and re-encryption. As a consequence, this proof states
that the correctness property is satisfied with high probability.

A different proof is proposed by Hoogh et al. [dHSV09]. In that case,
the permutation is a rotation. They designed a proof which makes use of
the Discrete Fourier Transform (DFT). Based on this proof, Telerius and
Wikström [TW10] proposed a zero-knowledge proof of correct mixing with-
out restrictions on the permutation as occurs in the well known proposals
by Neff [Nef01] and Furukawa and Sako [FS01]. That adaptation opened
the window to more efficient shuffling proofs that can be combined with
the offline computation techniques introduced in [Wik09]. This allows the
proof generation to be divided into two phases. During the first one, the
prover commits to the permutation applied for shuffling. This can be pre-
computed offline, reducing the amount of computations required during the
online part. After that, the prover engages in an online proof in which it
proves that, during the shuffling and re-encryption of the ballots, he used
the permutation he previously committed to. He also proves knowledge of
the random values used for re-encrypting the ballots received.

Following the same approach, Bayer and Groth [BG12] proposed a proof
with a better performance in terms of speed and memory space. As in Wik-
ström’s proposal, it first commits to a given permutation and later engages
in proving knowledge of the re-encryption values, described in the paper as
multi-exponentiation and product arguments. More precisely, given the set
of ciphertexts C1, . . . , Cn received,the set of mixed ciphertexts C ′1, . . . , C

′
n,

the permutation π and the re-encryption factors r1, . . . , rn, it proves knowl-
edge of π and r1, . . . , rn such that:

C ′i = Encpk(1, ri) · Cπ(i),

where Encpk(1, ri) is the cryptosystem’s encryption function with public key
pk of the neuter element 1. Notice that both [BG12] and [TW10] guarantee
correctness of the shuffle. This is because the zero-knowledge proof is gen-
erated from the permutation and the re-encryption values. This means that
a remote voting platform implementing those mixing procedures guarantees
the integrity property.

In Table 3.1 we can see the general improvements to the cost of the zero-
knowledge proofs. It is interesting to notice the small difference between the
cost of the different solutions. In this table the cost of [TW10] does not take
into account the improvements described in [Wik09]; for this reason, the
performance is quite low. However, with the appropriate implementation,
the cost is similar to [BG12].
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Table 3.1: Comparison of ZKP proposals

ZKPs Prover Exponentiations Verifier exponentiations

[FS01] 8n 10n

[Nef01] 8n 10n

[TW10] 9n 11n

[GL07] 5n 4n

[BG12] 2(log m)n 4n

[Pen11a] 4n 2n

3.2 Optimistic mixing

The optimistic mixing approach considers that the mixers will rarely mis-
behave. The idea is to provide an efficient protocol which is able to prove
the mixing’s correctness when all the entities behaved correctly, but which
is also capable of detecting a liable mixer in case of misbehaviour. In that
case, a protocol is run in which the mixers are asked to provide a fully secure
zero-knowledge proof of correct mixing (see Section 3.1.2). A mixer unable
to provide it will be assumed to have cheated.

The first proposal of optimistic mixing was presented by Jakobsson in
[Jak98], with a privately convincing mix-net in which mixers can only con-
vince themselves of correctness. The efficiency of the proposal was better
than any other existing mix-net, but was based on less strict security defi-
nitions. Jakobsson’s proposal was proven insecure in [DK00], but the idea
has later been used in other proposals [JJ01, GZB+02, SMPP10].

The schemes proposed by Golle et al. [GZB+02] and Sebé et al. [SMPP10]
use a technique to prove the correctness of the mixing using the proof of
product with redundancy approach. With these schemes, participants add
some redundancy to their votes prior to encryption. Correctness of mixing
is proven by performing two checks. The first check consists of homomor-
phically aggregating (in a multiplicative way) the ballots received into a
single ciphertext that will be proven to contain the same cleartext as the
aggregation of mixed ciphertexts. Next, redundancy of each vote is checked
at vote decryption. With current proposals, votes are encrypted by means
of a double layer system so that redundancy can be checked after removing
the first encryption layer. In this way, in case of redundancy failure, no
cleartext vote has yet been revealed.

The main advantage of this paradigm is that, when the mixing party is
composed of several mixing elements, the proof of correctness is applied only
between the ballots received and the output of the last mixing authority. In
this way, the system can accommodate a large amount of mixing authorities
without increasing the cost of the proof.



32 CHAPTER 3. MIX-TYPE PARADIGM

3.2.1 Golle et al. proposal

In [GZB+02], ballots are submitted by sending the following tuple of ElGa-
mal ciphertexts:

(Ency(G),Ency(M),Ency(H(G,M)))

with (G,M) = Ency(m) and H being a hash function.
At the end of the vote collecting phase, the ballot collection authority

has stored a set of ballots

L = {(Ency(Gi),Ency(Mi),Ency(Hi))}i.

These tuples are then mixed so that a set of mixed ballots is obtained

L′ = {(Ency(G
′
i),Ency(M

′
i),Ency(H

′
i))}i.

The proof of correct mixing consists of proving that∏
i

Gi =
∏
i

G′i,
∏
i

Mi =
∏
i

M ′i ,
∏
i

Hi =
∏
i

H ′i,

and also checking that, for each i,

H(G′i,M
′
i) = H ′i.

If all these checks are satisfied, ciphertexts (G′i,M
′
i) are finally decrypted,

obtaining the cleartext votes vi.
Wikström presented an attack against this system in [Wik04]. It was

proven that the tracing procedure proposed in [GZB+02] included several
vulnerabilities. The proposed attack could be performed by a malicious
participant who could cast a ballot with a non-matching redundancy, forcing
the execution of the vulnerable tracing procedure. Wikström also describes
some vulnerabilities involving dishonest mixing authorities able to bypass
honest ones.

3.2.2 Sebé et al. proposal

The proposal by Sebé et al. [SMPP10] follows a similar idea, but votes are
composed as follows:

1. Encrypt vote vi using the ECIES elliptic curve cryptosystem Vi =
EncQ(vi).

2. Generate message mi = Vi||H(Vi)||bi, where bi is chosen so that mi is
a quadratic residue of F∗p.

3. Encrypt mi under ElGamal encryption scheme as Ci = Ency(mi).
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The list of votes collected L = {Ci = Ency(mi)}i consists of single ElGamal
ciphertexts. They will be mixed, resulting in L′ = {C ′i = Ency(m

′
i)}i.

Correctness of mixing can be verified by checking that∏
i

mi =
∏
i

m′i

and also checking that, for each i, parsing m′i = Vi||Hi||bi then H(Vi) =
Hi. If this is the case, ECIES ciphertexts Vi will be decrypted. Note
that [SMPP10] takes advantage of the fact that ECIES ciphertexts can be
directly encrypted in a single ElGamal cryptogram.

The family of attacks involving dishonest mixing elements that bypass
honest ones from [Wik04] is avoided in [SMPP10], using a technique in
which each mixer adds some dummy ballots.

In this proposal, as in the previous one, a malicious participant could
send an invalid ballot with a non-matching redundancy. This attack would
not compromise the privacy of the system; however, the vote opening phase
would have to be interrupted and the whole election would have to be carried
out again.

3.3 New proposal

A new mix-type voting system that follows the proof of product with re-
dundancy paradigm will be presented next . The new proposal [MMS11]
includes the following contributions:

• A technique for composing encrypted votes with redundancy whose
correct generation can be proven in zero-knowledge. This prevents
attacks by malicious participants sending badly composed votes or
message relation attacks.

• A dummy ciphertext addition (and subsequent removal) method aim-
ing to detect honest mixing element bypassing.

• A technique for checking redundancy after ballot mixing without in-
formation leakage in case of failure. If this was the case, the dishonest
mixing element(s) would be traced and, after removing it/them, the
process would be able to continue.

The resulting system overcomes the security and operational drawbacks of
previous proposals [GZB+02, SMPP10] and shows that the proof of product
with redundancy paradigm is viable.

The new scheme is composed of four phases beginning with a preliminary
setup in which the cryptosystem parameters are generated. The second one
is the vote casting phase. It is composed of a procedure for ballot generation
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and submission and a zero-knowledge proof in which the participant proves
that the ballot submitted was properly generated. Next, the mixing phase
includes the mixing procedure with dummy ballot addition and the subse-
quent method for tracing and removing dummies. Finally, the tallying phase
checks that the whole procedure has been performed correctly. After that,
the ballots are verifiably decrypted and the election results are gathered.

3.3.1 Setup

This is a preliminary phase in which the key storage trusted party generates
the required cryptographic material. First of all, two multiplicative cyclic
groups for two ElGamal cryptosystems are generated:

1. Generate three large primes q, p and p′ satisfying that p = 2q+ 1 and
p′ = 2p+ 1 (q, p, p′ are a Cunningham chain of length 3).

2. Define an element g ∈ F∗p that is a generator of the order q of the
multiplicative subgroup of F∗p, G = 〈g〉.

3. Define an element g′ ∈ F∗p′ that is a generator of the order p of the
multiplicative subgroup of F∗p′ , G

′ = 〈g′〉.

Next, two private/public key pairs are created:

1. Generate and store secret key x ∈ [1, q − 1] and its related public key
y = gx.

2. Generate and store a secret key x′ ∈ [1, p − 1] and its related public
key y′ = g′x

′
.

Parameters q, p, p′, g, g′ and public keys y, y′ are made public. All these
parameters must be digitally certified by some trusted authority.

3.3.2 Vote casting

A participant P aiming to submit vote m (encoded as an integer), generates
and sends the encrypted redundant vote in the following way:

1. Generate v = m ·2l+t where t is a random l bits integer so that v ∈ G.

2. Generate the following tuple:

(C,R) =
(
Ency(v, r),Ency′(g

′v, r′)
)

=
(

(gr, v · yr), (g′r′ , g′v · y′r′)
)
,

with r ∈ [1, q − 1] and r′ ∈ [1, p− 1] being chosen at random.

3. Send (C,R) (digitally signed) to the ballot collection authority.
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Upon receiving (C,R) and its signature, the ballot collection author-
ity will check that the participant appears in the electoral roll and that
she has not voted yet. Next, the participant will be required to prove in
zero-knowledge that the vote has been properly composed by means of the
procedure described below.

Proving redundancy correctness

Given an encrypted redundant vote (C,R) submitted by participant P (the
prover), next we shown how P convinces the ballot collection authority V
(the verifier) of its correct composition, i.e. P proves in zero-knowledge that

g′Decx(C) = Decx′(R).

1. P generates v′ ∈ G, r′′ ∈ [1, q − 1] and r′′′ ∈ [1, p − 1] at random and
sends

C ′ = Ency(vv
′, r′′) and R′ = Rv

′ · Ency′(1, r
′′′)

to V.

2. V generates a random challenge bit chall that is sent to P.

3. If chall = 0:

(a) P sends z = r′′ − r (mod q) and d = r′′′ to V.

(b) V computes v̂ = Revz(C
′ · C−1) and checks whether

R′ = Rv̂ · Ency′(1, d).

The multiplication operation of C ′ and C−1 is component-wise
and the inverse of C = (a, b) is C−1 = (a−1, b−1).

If chall = 1:

(a) P sends z = r′′ and d = r′v′ + r′′′ (mod p) to V.

(b) V computes v̂v′ = Revz(C
′) and checks whether

g′
ˆvv′ = Revd(R

′).

The previous proof is zero-knowledge. This is proven by showing that
there exists a simulator that can produce a transcript that “looks like” an
interaction between the honest prover and the verifier. An iteration of the
proof for an arbitrary tuple (C,R) can be simulated if the challenge bit is
known in advance as detailed below.

1. Generate k ∈ G, r′′ ∈ [1, q − 1] and r′′′ ∈ [1, p− 1] at random.

2. If the challenge is chall = 0:
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• Compute C ′ = Ency(k, r
′′) · C and R′ = Rk · Ency′(1, r

′′′).

If the challenge is chall = 1:

• Compute C ′ = Ency(k, r
′′) and R′ = Ency′(g

′k, r′′′).

3. Let z = r′′ and d = r′′′.

It is easy to see that the tuple (C ′, R′, chall, z, d) is a good simulation
of the proof (it satisfies the verifier’s checking). In the previous protocol, a
malicious prover could cheat if he correctly guessed the value of the challenge
bit chall sent by the prover in advance. Since this happens with probability
1/2, repeating the previous protocol t times reduces the cheating probability
to 1/2t.

3.3.3 Mixing

Let L = {(Ci, Ri)}0≤i<n be the set of encrypted votes collected by the ballot
collection authority once the vote reception period has ended. The first
mixing element adds some dummy votes and next its content is sequentially
shuffled and re-encrypted by each mixing element. The procedure is detailed
below.

1. The first mixing element, ME1, generates s dummy votes

{(Ĉj , R̂j) = (Ency(1, t1,j),Ency′(1, t
′
1,j))}0≤j<s

for some randomly generated values t1,j ∈ [1, q−1] and t′1,j ∈ [1, p−1].

2. ME1 appends the s dummies to the list of received votes, so that they
will be referred to as

(Cn+j , Rn+j) = (Ĉj , R̂j), for 0 ≤ j < s.

3. ME1 generates a secret n + s elements permutation π1 and a ran-
dom set {r′1,i, r′′1,i}0≤i<n+s and computes a new list of shuffled and
re-encrypted ciphertexts (including dummies) as

L(1) = {(C(1)
π1(i)

, R
(1)
π1(i)

)} = {(Ci·Ency(1, r
′
1,i), Ri·Ency′(1, r

′′
1,i))}0≤i<n+s.

4. Next, ME1 publishes L(1) on the bulletin board.

5. If the mixing party contains several mixing elements, ME2, taking
L(1) as input, generates a random n+ s elements permutation π2 and
a random set {r′2,i, r′′2,i}0≤i<n+s and shuffles and re-encrypts the ele-

ments of L(1) as described in step 3 generating L(2) as output. The
remaining mixing elements will operate in the same way until the last
mixing element, MEλ, produces as output the list L(λ) containing n+s
encrypted votes (s of them are dummies).
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Dummy tracing and removal

Once the last mixing element has published list L(λ), tracing dummy votes
from L to L(λ) provides evidence that no mixing element has been bypassed
during the shuffling procedure. In a first round, the mixing elements publish
the part of their permutation that makes it possible to trace the path fol-
lowed by dummy votes along the mixing process. After that, in the second
round, the mixing elements progressively reveal the randomness employed
for re-encrypting dummy votes. If all checks are properly satisfied, dummies
will be finally removed. This procedure is formally described below:

1. ME1 publishes the sorted lists

L0 = {n, . . . , n+ s− 1}, L1 = {π1(n), . . . , π1(n+ s− 1)}

and the commitment H1 computed as

H1 = H(r′1,n|| . . . ||r′1,n+s−1||r′′1,n|| . . . ||r′′1,n+s−1).

2. If the mixing party contains several mixing elements, the remaining
ones will perform similarly, so that dummies can be traced up to L(λ).
More precisely, each mixing element MEk publishes

Lk = {πk(Lk−1(0)), . . . , πk(Lk−1(s− 1))}

and the commitment Hk computed as

Hk = H(r′k,Lk−1(0)
|| . . . ||r′k,Lk−1(s−1)||r

′′
k,Lk−1(0)

|| . . . ||r′′k,Lk−1(s−1)).

3. The first mixing element ME1 publishes {t1,j , t′1,j}0≤j<s so that ev-
erybody can generate the dummies

{(Cn+j , Rn+j) = (Ency(1, t1,j),Ency′(1, t
′
1,j))}0≤j<s.

4. Sequentially, for k ranging from 1 to λ, the following steps are per-
formed:

(a) MEk publishes

{r′k,Lk−1(0)
, . . . , r′k,Lk−1(s−1), r

′′
k,Lk−1(0)

, . . . , r′′k,Lk−1(s−1)}.

(b) Everybody checks that hashing the elements in the previous list
provides Hk as a result.

(c) Everybody checks that

C
(k)
Lk(i)

= C
(k−1)
Lk−1(i)

· Ency(1, r
′
k,Lk−1(i)

), for 0 ≤ i < s,

R
(k)
Lk(i)

= R
(k−1)
Lk−1(i)

· Ency′(1, r
′′
k,Lk−1(i)

), for 0 ≤ i < s.

5. If all checks have been properly satisfied, the s dummy votes of L(λ)
located at the positions in Lk are removed from L(λ).
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3.3.4 Tallying

When the last mixing element provides the list of votes without dummies,
everybody can check the correctness of the mixing process. This is done by
verifying the homomorphic aggregation of the ballots and ensuring that the
redundancy in each ballot is still valid.

Homomorphic aggregation checking

First of all, everybody can check that the homomorphic aggregation of the
received votes stored in list L = {(Ci, Ri)}0≤i<n equals the aggregation of

mixed votes in L(λ) = {(C(λ)
i , R

(λ)
i )}0≤i<n. This is done as follows:

1. Everybody computes:

Ctotal =

n−1∏
i=0

Ci and Rtotal =

n−1∏
i=0

Ri

and also

C
(λ)
total =

n−1∏
i=0

C
(λ)
i and Rtotal =

n−1∏
i=0

R
(λ)
i .

2. The key storage trusted party verifiably decrypts the four ciphertexts
so that everybody can check:

Decx(Ctotal) = Decx(C
(λ)
total) and Decx′(Rtotal) = Decx′(R

(λ)
total).

(3.1)

Redundancy checking

The previous checking is a necessary but not sufficient condition to ensure a
proper mixing has been done. Sufficiency is provided by additionally check-
ing that every mixed vote carries a correct redundancy. This redundancy
checking has to be done in such a way that, in case of failure, no information
about votes is leaked.

The next procedure checks that each vote (C
(λ)
i , R

(λ)
i ) in L(λ) satisfies

g′Decx(C
(λ)
i ) = Decx′(R

(λ)
i ).

This procedure requires some previous data to be generated before the
election begins. Prior to the election, each mixing element ME`:

1. Generates x
(`)
i ∈ G, r

(`)
i ∈ [1, p − 1] at random and computes P

(`)
i =

Ency(x
(`)
i , r

(`)
i ).
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2. Publishes the commitment Comm
(`)
i = (A

(`)
i , B

(`)
i ) = (H(P

(`)
i ), g′xi).

The previous step is repeated for 0 ≤ i < n′, where n′ should be taken
ensuring that n ≤ n′ (n is the number of votes received).

Redundancy of mixed vote (C
(λ)
i , R

(λ)
i ) is verified as follows:

1. Each mixing element ME` publishes P
(`)
i .

2. Everybody checks that H(P
(`)
i ) = A

(`)
i for each 1 ≤ ` ≤ λ.

3. Everybody computes

Cchi = C
(λ)
i

λ∏
`=1

P
(`)
i .

4. The key storage trusted party verifiably decrypts Decx(Cchi ) and pub-
lishes the (pseudorandom)cleartext m′i obtained.

5. ME1 computesRch,1i = (R
(λ)
i )xi and proves in zero-knowledge (Chaum-

Pedersen’s proof [CP93]) that log
R

(λ)
i

Rch,1i = logg′ B
(1)
i .

6. The remaining mixing elements sequentially perform the same opera-
tion, taking as input the output of the previous mixing element, until

MEλ finally publishes Rchi =
(
Rch,λ−1i

)xλ
.

7. The key storage trusted party verifiably decrypts Decx′(R
ch
i ) and pub-

lishes the cleartext m′′i obtained.

8. Everybody checks that (g′)m
′
i = m′′i .

Vote decryption

If the checks in the previous steps are successful for each vote in L(λ), the

remaining stage is vote decryption. The mixed vote (C
(λ)
i , R

(λ)
i ) is decrypted

as follows:

1. Each mixing element ME` publishes r
(`)
i .

2. Everybody computes x
(`)
i = Rev

r
(`)
i

(P
(`)
i ) and verifies that g′x

(`)
i equals

B
(`)
i .

3. Everybody computes mi = m′i/
∏λ
`=1 x

(`)
i .

4. Finally, the submitted vote is obtained as vi = midiv2l.

This is done sequentially for every mixed vote.
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3.3.5 Failure recovery

Since participants prove the correct composition of the votes at vote recep-
tion, the only reason why some security checking may fail is due to mixing
element cheating which would be a very rare case, since they are elements
that are part of the voting platform.

In case some checking is not satisfied during dummy tracing (Section 3.3.3)
or integrity checking (Section 3.3.4), every mixing element will be required
to prove the correctness of its permutation using some backup classical zero-
knowledge proof of mixing like [Nef01]. Those mixing elements not being
able to execute a correct proof will be declared guilty. During vote decryp-
tion (Section 3.3.4), the checking of step 2 may fail because ME` has not

provided a proper value for r
(`)
i . In this case, ME` is declared guilty.

After removing the guilty mixing elements, the mixing procedure can
begin again. The important fact is that, in case of failure, no information
about cleartext votes is revealed, so that another mixing operation can be
performed taking the received votes as input and without the need to ask
participants to perform any additional action.

3.3.6 Performance

In this section we analyze the cost of the computations that introduce delay
between the end of the mixing and publication of the results (precomputable
parts will not be addressed), focusing on the amount of exponentiations that
is the most costly operation.

Being s the number of dummy votes, tracing them (Section 3.3.3) (un-
dertaken after mixing) require the verifier to perform 4s plus 4sλ exponen-
tiations for dummy generation (step 3) and tracing (step 4c), respectively.
Mixing elements simply publish data with negligible cost. Homomorphic ag-
gregation checking (Section 3.3.4) involves four verifiable decryptions with
12 and 8 exponentiations for the key storage trusted party and the verifiers,
respectively.

The overall cost of redundancy checking and decryption of votes can
be highly reduced by making use of batch verification techniques [BGR98].
Moreover, the cost of verifiable decryptions can be reduced by generalizing
Chaum-Pedersen’s proof [CP93] to prove the equality of n discrete loga-
rithms in batch. Our analysis will take such optimizations into account.

The proof for redundancy requires the KSTP to perform 2n + 1 expo-
nentiations at step 4 plus the same amount at step 7. Steps 5 and 6 require
each mixing element to perform n exponentiations with n (non aggregatable)
Chaum-Pedersen proofs involving an overall amount of 4n exponentiations
(mixing elements working in a pipeline permits them to work concurrently).
On the side of the verifier, it requires 4(n + 1) exponentiations to verify
steps 4 and 7 and λn verifiable decryptions involving 3λn exponentiations.
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Step 8 can be verified in n/64 exponentiations using [BGR98].

The cost of vote decryption is negligible for mixing elements (they only
publish data) and requires 3λn/64 exponentiations for verification.

3.3.7 Security analysis

In this section, the system presented is formally proven to be secure in the
sense of integrity and privacy.

For our system to be secure, the following assumptions should be met:

1. The Key Storage Trusted Party acts honestly by only decrypting the
aggregated ciphertext.

2. The electoral roll has been properly generated (it only includes eligible
voters).

3. Eligible voters’ public keys have been properly certified by some cer-
tificate authority.

Assumptions 1 and 2 are required by any remote voting system in which
public key certificates are used for authentication.

Under the previous assumptions, our proposal will now be proven to be
secure.

3.3.7.1 Integrity

An e-voting protocol provides integrity if authentication, unicity and fairness
properties are satisfied. The authentication property requires being able to
differentiate between genuine voters and the rest. In our proposal, the ballots
cast by voters are digitally signed and the public keys required to validate
those signatures are correct (Assumption 2) and available in the electoral
roll (Assumption 3). In this way, any entity can validate whether a given
ballot comes from an eligible voter. Ballots without a valid signature are
discarded.

Unicity requires the protocol to be able to detect any double voting
attempt and prevent it. When a ballot is received, the ballot collection
authority checks that the voter casting it has not voted before. Hence, just
one ballot per voter is allowed.

Fairness

The following lemma and theorem prove the proposed voting system satisfies
the fairness condition (no vote has been added, removed or modified during
the mixing process).
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Lemma 3.3.1. Given L = {(Ci, Ri)}0≤i<n with Ci = Ency(vi) and Ri =
Ency′(g

′vi), any entity aiming to generate a list

L(λ) = {(Ency(v̂i),Ency′(g
′v̂i))}0≤i<n

satisfying:

1.
∏n−1
i=0 vi =

∏n−1
i=0 v̂i (mod p),

2.
∑n−1

i=0 vi =
∑n−1

i=0 v̂i (mod p),

3. No n-permutation π satisfies vi = v̂π(i), for 0 ≤ i < n,

succeeds with probability at most 2−h, where h = maxi{H(vi)} with H(vi)
denoting the entropy on the knowledge of vi.

Proof. Trivial solutions where L(λ) contains a permutation of the (possibly
re-encrypted) elements in L are discarded by condition 3. Condition 1 per-
mits us to model v̂i = kivi, for 0 ≤ i < n− 1 and v̂n−1 = (

∏n−2
i=0 ki)

−1vn−1,
for some values k0, . . . , kn−2 6= 0 with at least one of them being different
from 1.

If n = 1, conditions 1 and 2 require k0 = 1 which violates condition 3.
If n = 2, two possibilities exist, namely k0 = 1 or k0 = v1v

−1
0 . The first case

generates v̂0 = v0 and v̂1 = v1, while the second one leads to v̂0 = v1 and
v̂1 = v0, both of them violating condition 3.

In the general case, n > 2, from condition 2 we obtain

n−1∑
i=0

vi =

n−2∑
i=0

kivi + (

n−2∏
i=0

ki)
−1vn−1,

which is equivalent to

n−2∑
i=0

(1− ki)vi =

(
(

n−2∏
i=0

ki)
−1 − 1

)
vn−1. (3.2)

The previous expression is a linear relation of values vi where the con-
stant coefficients depend on ki. Since there exists a value vj with h bits of
entropy, once all values ki have been chosen, vj can be isolated from equa-
tion 3.2 so that the equality will hold with probability 2−h at the most. If
some entropy exists on the knowledge of other values vi, the probability of
success further decreases.

Theorem 3.3.2. If all checks performed in the voting system are satisfied,
a corrupted mixing party that aims to modify the vote submitted by some
honest participant will succeed with probability 2−l at the most, where l is
the parameter described in step 1 of the procedure in Section 3.3.2.
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Proof. The vote submitted by an honest participant contains l random bits,
so that the corrupted mixing party has at least l bits of entropy about
its knowledge. The checks of Formula 3.1 in Section 3.3.4 ensure con-
ditions 1 and 2 of Lemma 3.3.1 are satisfied. Moreover, the redundancy
checks and vote decryption phases ensure each tuple in L(λ) has the form(
Ency(v̂i),Ency′

(
g′v̂i
))

. Within these conditions, the upper bound on the
probability of success follows from Lemma 3.3.1.

Verifiability

The fairness and unicity requirements from the voting scheme can be checked
in each of the steps of the election. For this reason, our proposal can be con-
sidered end-to-end verifiable. The unicity is first checked during the casting
phase. Each ballot cast is digitally signed, allowing any entity to verify that
its caster appears in the electoral roll and that she has not cast more than
one ballot. Fairness can also be verified by checking whether the correct-
ness proof of the shuffle holds. As demonstrated above, the probability of a
cheating mixer modifying the ballots without being noticed during the mix-
ing phase and later providing a valid proof of correct mixing is negligible.
Finally, the ballots are verifiably decrypted, so the results obtained are the
cleartext of the messages received by eligible voters who cast a ballot.

3.3.7.2 Privacy

The privacy property states that it must not be possible to link the content
of any decrypted vote to the identity of the participant who cast it. Since
votes are received in an authenticated manner, the mixing phase is needed
so as to break the relation between the encrypted votes received and the
ciphertexts that will be decrypted. In a mix-type e-voting system (properly
using strong cryptography), privacy could be broken in three ways:

1. Permutation disclosure

If the permutation applied to votes was revealed, it would be possible
to relate each cleartext vote to the identity of the participant who cast
it. When the mixing party is composed of several mixing elements, the
overall permutation stays secret as long as at least one of the mixing el-
ements does not reveal its individual permutation. The voting system
must ensure all the mixing elements have taken part in the shuffling
of the resulting set of mixed votes, i.e. no mixing element has been
bypassed by a dishonest coalition. In our system, the addition and
tracing of s dummy votes (Section 3.3.3) ensures that the probability
of successfully bypassing an honest mixing element is (s/n)s at the
most. The proof in [SMPP10] can be straightforwardly applied to our
system.
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2. Message relation attacks

In a relation attack [Pfi95], a corrupted participant takes the encrypted
vote submitted by some other participant, modifies it in some way,
and then sends it as her own contribution. After vote decryption,
the attacker will search for two related cleartexts that will permit her
to know the contribution of the participant attacked. Some attacks
over [GZB+02] described in [Wik04] follow this approach. These at-
tacks are not possible if participants are required to know the cleartext
of the vote they submit. The following Lemma shows that this is the
case in our system.

Lemma 3.3.3. A prover successfully completing the zero-knowledge
proof of Section 3.3.2 on her submitted vote (C,R) knows the cleartext
of C.

Proof. If the number of rounds is large enough, a successful proof en-
sures there exists some v so that C = Ency(v) and R = Ency′(g

′v).
Also, a successful proof means that when the prover submitted her
commitment, (C ′, R′), she was able to send a good response (z, d)
whatever the value of the challenge chall was. Sending a proper
response when chall = 1 ensures that C ′ = Ency(vv

′) and R′ =
Ency′(g

′vv′) for some v′. Moreover, the value z sent by the prover
can be used to obtain vv′. On the other side, when chall = 0, the
value z can be used to obtain the cleartext of C ′/C which is v′. Mul-
tiplying vv′ by the inverse of v′ gives v as a result, so that the prover
has enough information to obtain v.

3. Vote marking

A vote marking attack is performed by the first mixing element (or
a coalition including it) that incorrectly re-encrypts the vote cast by
some participant so that, after vote decryption, her vote will be iden-
tified due to its corrupted state. If the voting system satisfies the in-
tegrity property this corruption will be detected, but the system must
ensure that no confidential information has been leaked at this point.
A corrupted coalition not including the first mixing element makes no
sense since the set of votes they receive has already lost its link with
the identity of participants, so that the colluders will be caught after
having obtained no benefit. The following lemmas prove our system
is secure against such attacks.

Lemma 3.3.4. Assuming there is at least one honest mixing element,
the redundancy of the votes in L(λ) is verified without revealing any
information on their cleartext.
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Proof. The procedure for checking redundancy is described in Sec-

tion 3.3.4. At step 4, ciphertext C
(λ)
i

∏λ
`=1 P

(`)
i is decrypted, where

each mixing element ME` has contributed with its own

P
(`)
i = Ency

(
x
(`)
i

)
.

The result of this decryption is Decx(C
(λ)
i )x

(1)
i · · ·x

(λ)
i . Next, at step 7,

ciphertext
(
R

(λ)
i

)x̂(1)i ···x̂(λ)i
is decrypted obtaining value(

Decx′(R
(λ)
i )
)x̂(1)i ···x̂(λ)i

.

Cleartexts Decx(C
(λ)
i ) and Decx′(R

(λ)
i ) remain unrevealed as long as at

least one mixing elements keeps its values x
(`)
i and x̂

(`)
i unrevealed.

Note that the protocol states that x
(`)
i must equal x̂

(`)
i but, this is not

checked at this moment. This would permit the following attack in
which the first mixing element, before the election begins, submits two
invalid commitments (see Section 3.3.4):

Comm
(1)
i = (A

(1)
i , B

(1)
i ) = (H(P

(1)
i ), g′xi)

with P
(1)
i = Ency(k

−1x
(1)
i , r

(1)
i ) and

Comm
(1)
j = (A

(1)
j , B

(1)
j ) = (H(P

(1)
j ), g′xj )

with P
(1)
j = Ency(kx

(1)
j , r

(1)
j ).

After the votes have been submitted, ME1 takes the input of two
participants

(C1, R1) = (Ency(v1),Ency′(g
′v1)) and (C2, R2) = (Ency(v2),Ency′(g

′v2))

and modifies them so that, after mixing, C1 and C2 have been trans-
formed into

C ′1 = Ency(kv1) and C ′2 = Ency(k
−1v2),

respectively. This modification will satisfy the homomorphic aggrega-
tion checking (Section 3.3.4).

After mixing, if the mixed ciphertext corresponding to (C ′1, R1) occu-
pies position i of L(λ) and (C ′2, R2) is at the j-th position, which hap-
pens with probability ≈ 1/n2, the redundancy checking in the same
Section will also be satisfied. Fortunately, the probability of success
becomes very small for common values of n (number of participants)
in any election. Moreover, if in spite of its reduced chance the previous
attack succeeded, the corruption would be detected during decryption
and the corrupted mixing element could be identified and punished.





Chapter 4

Homomorphic tallying
paradigm

This chapter begins with Section 4.1, which is a brief description of the
homomorphic tallying remote voting paradigm.

Section 4.2 presents the “array ballot” variant of the paradigm, in which
ballots consist of an array of ciphertexts instead of a single one. After that,
in Section 4.3, we present a novel contribution to the “array ballot” variant of
the paradigm. More exactly, we propose a construction in which the correct
composition of a ballot is proven by making use of a zero-knowledge proof
of mixing. In this way, we avoid the use of the so-called range proofs and
their elevated computational cost. The construction mentioned has been
published in [MMS15].

4.1 Paradigm description

The homomorphic tallying paradigm requires the entities and is composed
of the phases explained in Section 1.1. The only additional requirement of
the paradigm is the use of a homomorphic public key cryptosystem. We
next provide a detailed description of the procedures that take place in each
phase:

1. Setup: A private key for the homomorphic cryptosystem is generated
and distributed among the vote tallying authorities. After that, the
election public key is published on the bulletin board. Next, the elec-
toral roll is published including the identity and digital certificate of
each eligible voter. In this paradigm, the list of candidates includes
a value employed to represent each candidate. In the end, the bul-
letin board contains the election public key, the electoral roll and the
candidate list.

47
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2. Vote casting: During this phase, a voter can generate her ballot
by selecting the value representing her choice and encrypting it under
the election public key. Next, the voter generates a zero-knowledge
proof which proves that her ballot properly represents a valid candidate
choice. After that, the voter digitally signs her ballot using the private
key associated with her digital certificate and sends the ballot, its zero-
knowledge proof of correct composition and its signature to the vote
collecting authority.

Upon receiving a ballot, the vote collecting authority verifies that its
caster appears in the electoral roll. This is done by checking the va-
lidity of the ballot signature using the digital certificate published on
the bulletin board. If the caster is an eligible voter and she has not
cast a ballot before, then the vote collecting authority proceeds with
the verification of the zero-knowledge proof. If the checks performed
hold, the vote collecting authority publishes all the data received on
the bulletin board for public verifiability.

The vote casting phase ends when the voting period expires or when
all the eligible voters have cast their ballots.

3. Tallying: Once the vote casting phase has ended, the vote tallying
authorities compute the ciphertext resulting from the homomorphic
aggregation of all the ballots. The tallying authorities verifiably de-
crypt this ciphertext, gather the result of the election and publish it
on the bulletin board.

Figure 4.1 depicts a set of voters v1, . . . , vn. Each voter vi casts a ballot
Cvi which is an encryption of her cleartext vote Mi. After that, the ballot
collection authority aggregates all the ballots received obtaining ciphertext
T as a result. By decrypting T , we obtain M1 + · · · + Mn (an additive
homomorphic cryptosystem is assumed).

Notice that, if a vote for candidate k was represented by a ciphertext
C = Enc(Pk), a malicious voter could send a ciphertext C ′ = Enc(9Pk)
representing 9 votes for candidate k. This would violate the unicity require-
ment of the election and would invalidate the paradigm. To prevent this,
all the ballots are cast together with a zero-knowledge proof, ensuring the
cleartext of each ballot belongs to a set of valid values.

An approach to construct proofs of partial knowledge was presented by
Cramer et al. in [CDS94]. This approach has been implemented using range
proofs, which demonstrate that the cleartext encrypted in a ciphertext lies
in a known set. Unfortunately, for electronic voting purposes these proofs
are not efficient enough, since their cost increases linearly with the number
of elements in the set and, in some elections, this set can be really large. Re-
cently, more efficient proofs have been proposed for specific cryptosystems
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Voters

v1

v2

v3

vn

Cv1 = Enc(M1)

Cv2 = Enc(M2)

Cv3 = Enc(M3)

Cvn = Enc(Mn)

Ballot Collection Authority

Cv1

Cv2

Cv3

Cvn

T

+

+

+

+

M1 + · · ·+Mn

Figure 4.1: Additive homomorphic tallying remote voting.

like that detailed in [PB09] for the Paillier cryptosystem [Pai99]. Neverthe-
less, it also restricts the configuration of the messages and requires several
rounds of interaction between the prover and the verifier.

Homomorphic tallying proposals

Electronic voting schemes in this paradigm either use additive or multiplica-
tive homomorphisms. Some drawbacks exist in both cases.

Several e-voting proposals [CLW08, DJ01, Gro05] implementing the ho-
momorphic tallying paradigm use the Paillier cryptosystem due to its addi-
tive homomorphic property. Most of the proposals using an additive homo-
morphic cryptosystem generate the set of values representing each candidate
by following a simple pattern: if the election has n eligible voters, and the
amount of candidates is k, the set is as follows:

{n0, n1, . . . , nk−1}.

If the candidate list was {L1, . . . , Lk}, a voter casting a ballot for a can-
didate Ll would send an encryption of nl−1, together with a range proof
demonstrating that the cleartext of its ballot falls in that set. When the
election ends, the ciphertexts are homomorphically aggregated into a single
ciphertext. Any entity can verify that such aggregation has been performed
properly by computing it by itself. After that, the aggregated ciphertext is
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decrypted, resulting in a cleartext of the form

k∑
i=1

xi · ni−1,

in which xi is the amount of votes for candidate Li. Notice that the set
of possible messages has been chosen in a way that, after homomorphically
aggregating all the votes, the decrypted value represents the election result
in a non-ambiguous way (vector (x1, . . . , xk) can be obtained).

The implementation of this paradigm with an additive homomorphic
cryptosystem offers an efficient tallying phase requiring only one decryption
and an easy and fast way to obtain the election result from the cleartext of
the homomorphically aggregated ciphertext.

Efficiency is a very important requirement for e-voting systems, but it
is not the only one. For security, the private key of the election should be
distributed among the tallying authorities. Unfortunately, most of additive
homomorphic cryptosystems use the factorization problem as a trapdoor, so
their distributed key generation algorithms have an elevated cost.

On the other hand, there are several electronic voting proposals [PAB+04,
PB11] implementing the homomorphic tallying paradigm using ElGamal
cryptosystem which offers a multiplicative homomorphic property. In such
proposals, a common solution is to generate the set of values representing
each candidate as a set containing k prime numbers:

{s1, s2, . . . , sk},

being k the number of candidates. Hence, the cleartext obtained after de-
crypting the aggregated ciphertext is of the form

k∏
i=1

sxii ,

with xi representing the amount of votes for candidate Li. With these
proposals, the ciphertexts have to be homomorphically operated in groups.
This measure is required to prevent a cleartext range overflow which would
prevent the election result from being obtained. Hence, instead of a single
aggregated ciphertext, these proposals generate several. Each of them will
be individually decrypted and tallied.

As a result, the amount of verifiable decryptions increases so that its cost
moves from an O(1) cost in additive schemes to O(n) for multiplicative ones,
where n is the number of voters. Despite ElGamal providing an efficient
distributed key generation algorithm, the resulting solutions present a lack
of performance when the amount of candidates increases. This is because
this fact causes a reduction in the amount of ballots per group, so that more
aggregated ciphertexts need to be generated and decrypted.
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Multiplicative homomorphic cryptosystems can be adapted to become
an additive homomorphism. Several proposals, like [HS00, LK03], are based
on the additive modification of ElGamal cryptosystem. Due to the additive
homomorphic property of the cryptosystem, the set of possible values chosen
for these proposals is:

{n0, n1, . . . , nk−1}.

As occurs with additive schemes, the ballot aggregation at the end of the
voting phase generates just one aggregated ciphertext. In the additive mod-
ification of ElGamal cryptosystem, the cleartext obtained after decrypting
the aggregated ciphertext is of the form:

g
∑k−1
i=0 xi·n

i
.

Thus, to obtain the values xi, the ballot collection authority has to solve
a discrete logarithm problem, which is hard to compute when the solution
range increases. This space range grows exponentially with the amount of
candidates k.

In conclusion, it can be stated that, despite the efforts to provide an
efficient homomorphic tallying e-voting scheme, the different approaches, ei-
ther additive or multiplicative, require some improvements permitting their
use in large-scale elections.

4.2 Array ballots

With this variant [AMPQ09], a ballot consists of a ciphertext array in which
each element represents the eventual vote for one of the candidates:

(C1, C2, . . . , Ck) .

Each of the k components of the ballot represents a different candidate. A
voter voting for candidate j generates her ballot so that Cj is an encryption
of a specific point V while the remaining ciphertexts are an encryption of
O. By component-wisely aggregating all the ballots received, we obtain a
vector whose j-th component is an encryption of njV , being nj the amount
of votes for candidate j. Given V and njV , finding nj requires solving a
discrete logarithm problem which is easy to compute when nj is small or
known to fall in a given small range.

A standard e-voting scheme using the array ballot configuration would
be as follows.

4.2.1 Participating parties

The protocol involves the following parties:

The following description assumes the elliptic ElGamal cryptosystem is being used.
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• Electoral roll authority: Publishes the electoral roll on the BB. Let n
be the amount of potential voters in the electoral roll.

• Key Storage Trusted Party (KSTP): Generates and stores a private
key and publishes the election public key on the BB. It will perform a
verifiable decryption when required. It may be a distributed entity.

• Voters: Select a candidate and send an encrypted ballot together with
a zero-knowledge proof proving its correct composition.

• Ballot Collection Authority (BCA): Collects the ballots and verifies
their correctness. It also checks the identity of their caster and verifies
that she appears in the electoral roll. If all the checks are satisfied, the
ballot received is published on the bulletin board so that any external
entity can check its validity.

We assume there exists a publicly readable bulletin board (BB). Ev-
eryone can access the information on the BB but only the electoral roll
authority, the KSTP, and the BCA can write on it.

4.2.2 Protocol

The protocol is divided into three phases. Each one starts when the previous
one ends. The following description assumes an election in which a single
candidate is voted in each ballot. A notation table is given in Table 4.1.

n Number of voters
k Number of candidates
vi i-th voter
Lj j-th candidate
Cvi Ballot generated by voter vi
Ci,j EC-ElGamal ciphertext located at the j-th position

of vi’s ballot
O Elliptic curve point at infinity
V An elliptic curve point
Q Election public key
T Array of aggregated ciphertexts
Tj EC-ElGamal ciphertext located at the j-th position

of T
Rj Cleartext of Tj

Table 4.1: Notation table.
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Setup phase

In this phase, the system is configured and some information is published.
First of all, the electoral roll authority publishes on the BB:

• The electoral roll with all the voters {v1, v2, . . . , vn} authorized to cast
a ballot and their public keys pk1, pk2, . . . , pkn which could be certified
by some certificate authority.

• A sorted list of candidates L = {L1, L2, . . . , Lk}.

The KSTP chooses a secret key d and publishes a point P of prime
order m of an elliptic curve E(Fp) together with the public key Q = dP
on the bulletin board. To improve the reliability on the KSTP , it can be
distributed into a set of entities {KSTP1, . . . ,KSTPt}. Then, each KSTPi
generates its own private key di and publishes Qi = diP . The election public
key is Q =

∑
iQi. A message encrypted under Q can only be decrypted if

all the entities composing the KSTP collaborate.

The BCA publishes a point V of the same curve. Then, it pre-computes
and stores the points {V, 2V, . . . , (n/2)V }. Each point xV is stored together
with the corresponding integer x.

Vote casting phase

When the vote casting phase starts, each voter vi may cast her ballot
for one candidate, taking into account the candidate order published on
the bulletin board. The ciphered ballot consists of an array of ballots
(Ci,1, . . . , Ci,k, Ci,k+1), where each Ci,j is related with the candidate Lj . Ci-
phertext Ci,k+1 refers to the blank vote. In order to generate each ciphertext,
the voter randomly generates ri,1, ri,2, ..., ri,k, ri,k+1 ∈R {1, ...,m− 1}.

After that, vi generates k ciphertexts with an elliptic ElGamal encryption
of V for the non-chosen candidates, and an additional ciphertext with the
encryption of 2V for the chosen candidate. We assume, for simplicity, that
the chosen candidate is the last one, k, so, in the end, vi generates:

Ci,j = (ri,jP, V + ri,jQ), for j 6= k,

and

Ci,k = (ri,kP, 2V + ri,kQ).

After that, vi signs her ballot, which is a message containing all her
ciphertexts, and generates a zero-knowledge proof of correctness for her
ballot, ensuring that her ballot has been coded properly, using the procedure
described in Section 4.2.3. After that, she sends (Ci,1, Ci,2, ..., Ci,k, Ci,k+1),
her signature and the zero-knowledge proof to the BCA.

When the BCA receives a ballot, it proceeds as follows:
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• Verify the signature using the voter’s public key which is available on
the BB.

• Check that the voter has not voted before.

• Check that there is no other ciphertext with the same points of Ci,j
for each j ∈ {1, . . . , k + 1}.

• Verify the zero-knowledge proof of correct ballot composition.

• If all the checks are satisfied, publish the ballot, its zero-knowledge
proof and its signature on the BB. Otherwise, the ballot is discarded.

Tallying phase

When the vote casting phase has ended, the BCA aggregates the ballots
received by computing, for each j ∈ {1, . . . , k + 1}:

Tj =
z∑
i=1

Ci,j =

(
z∑
i=1

Ai,j ,
z∑
i=1

Bi,j

)
,

where z is the amount of voters that have cast a vote. Then, the BCA
asks the KSTP to perform a verifiable decryption of each ciphertext Tj ,
j ∈ {1, . . . , k + 1}, obtaining

Dec(Tj) =

z∑
i=1

yi,jV, yi,j ∈ {1, 2}.

The range of possible values for
∑z

i=1 yi,j is {z, z+1, . . . , 2z}. Therefore, the
ballot collection authority computes Dec(Tj)−zV = xjV and then searches
for xjV in the pre-computed table generated during the setup phase, and
recovers xj . If xjV is not in the table, it means that the candidate Lj
has received more than n/2 votes. In this case the BCA computes x′jV =
xjV − n/2V , which is guaranteed to have been pre-calculated and obtains
x′j . The amount of votes for candidate j is xj = n/2 + x′j .

Value Tk+1 represents the amount of blank votes.

4.2.3 Zero-knowledge proof

During the vote casting phase, a voter must prove in zero-knowledge the
correctness of her ballot. For the standard protocol, a non-interactive proof
presented in [CDS94], also used for Helios 2.0 in [AMPQ09], is adapted for
being used with elliptic curve ElGamal ciphertexts.

Helios 2.0 used the same proof applied to the aggregation of the compo-
nents of each ballot in a way that is only suitable for proving that the voter
has voted for only one candidate.
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The proof presented in this section takes advantage of the reveal oper-
ation. It permits us to prove efficiently that a voter cannot vote for more
candidates than allowed (in a multiple choice election, more than one can-
didate can be chosen).

The main idea is that the prover (voter) convinces the verifier (BCA or
anyone) that each of the components of her ballot is an encryption of either
V or O. Next, she proves that only one of them is encrypting V by revealing
the value of their aggregation. This avoids the need to use a range proof.

Prover

First of all, the prover (voter vi) has to prove in zero-knowledge that each
ciphertext Ci,j in vector

Ci,1 = (Ai,1, Bi,1), . . . , Ci,k+1 = (Ai,k+1, Bi,k+1)

is an encryption of either V or O. In order to do that, the prover makes the
following computations. For each j, if Ci,j is an encryption of V , the prover
proceeds as follows:

1. Randomly generate w′′j , u
′′
j , sj ∈R {1, . . . ,m− 1}.

2. Compute,

A′j = sjP, B′j = sjQ,

A′′j = w′′jP + u′′jAi,j , B′′j = w′′jQ+ u′′j (Bi,j −O),

3. Compute,

challj = H(A′j , A
′′
j , B

′
j , B

′′
j ),

u′j = challj − u′′j ,
w′j = sj − u′jri,j ,

where H is a cryptographic hash function like SHA256 [NIS94]. Notice
that ri,j is the random integer taken in the generation of Ci,j .

If Ci,j is an encryption of O, the prover will generate A′′j , B
′′
j as A′j , B

′
j

and vice versa, taking into account that the computation of B′j will involve
V instead of O. The generation of u′j and w′j will also be swapped with u′′j
and w′′j , respectively.

After that, the prover computes ri = ri,1 + ri,2 + · · · + ri,k+1 (mod m)
and sends

A′j , A
′′
j , B

′
j , B

′′
j , u
′
j , u
′′
j , w

′
j , w

′′
j

for each j, 1 ≤ j ≤ k + 1, together with ri to the verifier.
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Verifier

For each j, 1 ≤ j ≤ k + 1, the verifier checks that

A′j = w′jP + u′jAi,j , B′j = w′jQ+ u′j(Bi,j − V ),

A′′j = w′′jP + u′′jAi,j , B′′j = w′′jQ+ u′′j (Bi,j −O),

H(A′j , A
′′
j , B

′
j , B

′′
j ) = u′j + u′′j .

(4.1)

After that, the verifier aggregates Ci = Ci,1 +Ci,2 + · · ·+Ci,k+1 and uses ri
to reveal Ci = (Ai, Bi), as shown in Section 2.1.1, and checks that

Revri(Ci) = Bi − riQ = V.

All these checks ensure that vi has voted for only one candidate.

4.2.4 Efficiency

The protocol requires the voters to generate k ballots and the corresponding
proofs. Later on, the BCA verifies the proofs, aggregates the ballots and
performs k decryptions. In this way, the most consuming process is the
generation and verification of the proof of correctness. For instance, in an
election in which a single candidate has to be chosen, it has to be proven
that each component of the ballot cast is an encryption of either V or O,
together with an additional proof that just one of the components is an
encryption of V .

This last part can be proven by showing that the homomorphic aggrega-
tion of all the components of the vector is an encryption of V . In an election
where each voter can choose between 0 and `max candidates, the aggrega-
tion of all the vector components has to be proven to be an encryption of an
element in {O, V, 2V, . . . , `maxV }. Computing and verifying a range proof
is expensive in cost, specially when the range of valid cleartexts is large.
For instance, in the adaptation in Section 4.2.3, generating and verifying a
proof showing that the cleartext of a given ciphertext belongs to a set with
(`max + 1) elements requires us to compute 3(`max + 1) and 4(`max + 1)
exponentiations, respectively.

Considering an election in which we can vote for up to `max out of k
candidates, the amount of exponentiations needed for a voter to generate
the k ballot components is 2k (this is the cost of composing k ElGamal
ciphertexts). After that, proving that each ballot component is an encryp-
tion of O or V requires the computation of 6k exponentiations (each binary
range proof involves 6 exponentiations). Finally, proving that no more than
`max candidates have been chosen has an additional cost of 3(`max + 1)
exponentiations.

Verifying the previous proofs requires the computation of 8k+4(`max+1)
exponentiations per ballot. Hence, in an election with n participants, the
amount of exponentiations to be computed by the ballot collection authority
(or an external entity) to verify all the ballots is (8k + 4(`max + 1))n.
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4.3 Mixings on array ballots

A new hybrid proposal for remote voting was presented in [MMS15]. The
proposal works in the same manner as homomorphic tallying systems. Bal-
lots consist of a ciphertext array, but the correctness of proper ballot coding
is not proven by means of range proofs. Instead, proper ballot coding is
proven using a zero-knowledge proof of mixing.

In this way, the proposal offers all the advantages of the homomorphic
tallying paradigm, while it avoids the elevated computational cost of range
proofs. The resulting system takes advantage of the reduced cost of recent
proposals for proving the correctness of a mixing operation.

The proposal is universally verifiable and can accommodate elections
where each voter can vote for more than one candidate (multiple-candidate
elections), as shown in Section 4.3.3. The description given below assumes
an election in which voters choose one candidate out of k.

4.3.1 Participating parties

The parties involved in the protocol are exactly the same as those required
for the standard protocol presented in Section 4.2. We assume that there
is a publicly readable bulletin board on which data such as the ballots re-
ceived are published, so that external entities can verify the correctness of
the process. The following parties are involved in the election: electoral
roll authority, Key Storage Trusted Party (KSTP), voters and the Ballot
Collection Authority (BCA).

The bulletin board is publicly accessible for reading but only the electoral
roll authority, the KSTP and the BCA can write on it.

4.3.2 System description

The protocol is composed of three stages, which are explained below.

4.3.2.1 Setup stage

In this preliminary stage, the system is configured: the electoral roll, the
list of candidates and the required cryptographic keys are generated and
published.

The electoral roll authority publishes (on the bulletin board):

• The electoral roll containing all the eligible voters {v1, . . . , vn} with
their public keys {pk1, . . . , pkn}, which could be certified by some cer-
tificate authority.

• A sorted list of candidates L = {L1, . . . , Lk}.

Meanwhile, the KSTP :
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• Chooses and publishes an elliptic curve E defined over Fp, whose car-
dinality is divisible by a 256 bits prime number m together with an
order m point P ∈ E(Fp).

• Generates a private key d and publishes the public key Q = dP .

The KSTP stores the private key d in a safe place. To provide better security,
the KSTP can be a distributed set of entities {KSTP1, . . . ,KSTPt}. In this
case, each KSTPi generates its own private key di and publishes Qi = diP .
The election public key is Q =

∑
iQi. A message encrypted under Q can

only be decrypted if all these entities collaborate.

Next, the BCA:

• Publishes a point V ∈ E(Fp) generated as V = rP for a random r.
After computing V , the value r can be discarded.

• Assuming an election with k candidates, generates a vector of cipher-
texts C = (C1, C2, . . . , Ck) computed as:

– Generates r1 at random and computes:

C1 = (r1P, V + r1Q),

– For j = 2, . . . , k: generates a random integer rj and computes:

Cj = (rjP, rjQ).

The vector C and the values rj , for 1 6 j 6 k are published.

Next, the BCA pre-computes the points {V, 2V, . . . , nV } and stores them.
Each point aV is stored together with the corresponding integer a.

4.3.2.2 Vote casting stage

During this stage, the BCA is open for ballot reception. Each voter vi
may cast her ballot for one candidate. The ballot consists of a vector of
ciphertexts (Ci,1, . . . , Ci,k), in which Ci,s is an encryption of V if vi is voting
for candidate Ls; otherwise, Ci,j is an encryption of O for j 6= s. The voter
vi proceeds as follows:

1. Verify that the vector C = (C1, . . . , Ck) published on the bulletin
board satisfies Revrj (Cj) returns V for j = 1, and O for 1 < j ≤ k.

2. Generate at random a set of integers {ri,j}1≤j≤k such that 1 ≤ ri,j ≤
m− 1.

3. Create a permutation π satisfying π(s) = 1.
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Cvi = Enc(O)Enc(O)Enc(O) · · · · · · Enc(V )

(1) (2) (3) (k)

C = Enc(V )Enc(O)Enc(O) · · · · · · Enc(O)

(1) (2) (3) (k)

Figure 4.2: Ballot generation in an election with k candidates.

4. Permute C into C ′vi = (C ′i,1, . . . , C
′
i,k) such that C ′i,j = Cπ(j).

5. Re-encrypt each C ′i,j into Ci,j using ri,j as re-encryption factor. Let
Cvi = (Ci,1, . . . , Ci,k) be the resulting vector.

6. Generate a zero-knowledge proof showing that Cvi is the result of
applying a mixing operation to C. Let ZKPvi be the data generated
as a result.

After that, vi generates a message composed of vector Cvi and ZKPvi .
This message is digitally signed and sent to the BCA.

When the BCA receives a ballot from voter vi, it proceeds as follows:

1. Check that vi appears on the electoral roll and she has not voted
before. Then, verify the digital signature of the ballot.

2. Check that the vector Cvi contained on the ballot does not equal the
vector of any previously received ballot.

3. Verify the zero-knowledge proof of mixing ZKPvi .

4. If all the checks are satisfied, publish the ballot on the bulletin board.
Otherwise, the ballot is discarded. All these checks can also be per-
formed by any external entity.

Figure 4.2 shows how vector C would be in an election with k candi-
dates. A ballot for candidate Lk would be generated by permuting (and
re-encrypting) the components of C so that the k-th one is an encryption of
V .
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4.3.2.3 Tallying stage

When the vote casting stage concludes, the BCA has the vectors received
{Cv1 , . . . , Cvz} (for simplicity we assume that the voters who participated
are v1, . . . , vz). The BCA computes an array of homomorphically aggregated
ciphertexts T = (T1, . . . , Tk) where each Tj , 1 ≤ j ≤ k, is computed as:

Tj =
z∑
i=1

Ci,j .

Then, the BCA asks the KSTP to perform a verifiable decryption of each
ciphertext Tj composing T . That is,

Rj = Dec(Tj).

Each point Rj obtained is of the form njV , for some integer nj in the set
{0, . . . , z} (if nj = 0, then Rj is O). Then, the ballot collection authority
searches for Rj in the pre-computed table generated during the setup phase,
and publishes nj as the amount of votes for candidate Lj .

An external entity can check that vector T was properly computed by
performing the computations itself. Next, it can check that the decryption
of each component Tj really generates Rj as output (a verifiable decryption
is performed) and verify that njV equals Rj , for each j.

Figure 4.3 depicts how the ballot collection authority receives the ballots
of the form Cvi = (Ci,1, . . . , Ci,k) which are then aggregated into an array
(T1, . . . , Tk), whose components will be decrypted at the end of the voting
period.

4.3.3 Multi-candidate elections

The scheme presented above is able to run elections in which voters can
select several candidates. We describe two cases:

1. Each voter has to select a fixed amount ` out of k candidates. In such
a case, the vector C = (C1, . . . , Ck) is generated as:

Cj = (rjP, V + rjQ), for 1 ≤ j ≤ `,

and
Cj = (rjP, rjQ), for ` < j ≤ k.

A voter voting for candidates Ls1 , . . . , Ls` generates a permutation π
satisfying π(sj) = j for 1 ≤ j ≤ `.

2. Voters can choose between 0 and `max candidates. In such a case,
vector C has k + `max components. They are generated as:

Cj = (rjP, rjQ), for 1 ≤ j ≤ k,
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Voters

v1

vn

Ballot Collection Authority

C1,1 C1,k

Cn,1 Cn,k

+

+

· · ·

· · ·

T1 Tk· · ·

R1 Rk· · ·

Figure 4.3: Ballot aggregation and decryption.

and

Cj = (rjP, V + rjQ), for k + 1 ≤ j ≤ k + `max.

A voter voting for ` candidates Ls1 , . . . , Ls` generates a permutation π
satisfying π(sj) = k+ j for 1 ≤ j ≤ ` and π(j) = j for k+ `+ 1 ≤ j ≤
k + `max. If 0 candidates are selected, she takes π to be the identity
permutation. At vote tallying, only the first k components of each
vector will be aggregated.

4.3.4 Performance

In this section, we analyze the amount of exponentiations to be computed to
generate and validate a ballot. We will consider a multi-candidate election
in which each voter can choose between 0 and `max out of k candidates. The
cost for single-candidate or multi-candidate with a fixed amount of election
candidates selected is lower.

4.3.4.1 Ballot generation

First of all, a voter has to check that vector C was properly generated. This
involves 2(k + `max) exponentiations (two per component). After that, the
ballot components have to be shuffled and re-encrypted. Re-encrypting each
component involves 2 exponentiations, hence 2(k + `max) additional expo-
nentiations are computed. Finally, the cost of generating a zero-knowledge
proof of correct mixing requires the computation of 5(k+`max) using [GL07]
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or 4(k+ `max) using [Pen11a]. Hence, a ballot can be generated by comput-
ing 8(k + `max) exponentiations.

As shown in Section 4.2, generating a ballot for an equivalent election
using range proofs would require the computation of 8k+ 3(`max + 1) expo-
nentiations.

Hence, the cost of generating a ballot in our proposal is slightly higher
than using range proofs. Nevertheless, each voter just needs to generate one
ballot per election so the cost of this step is not relevant.

4.3.4.2 Ballot correctness verification

With our proposal, verifying the correct composition of a ballot requires the
verification of a proof of correct mixing of k+`max ciphertexts. This requires
the computation of 4(k+ `max) or 2(k+ `max) exponentiations using [GL07]
or [Pen11a], respectively. Hence, the ballots in an election with n eligible
voters can be verified by computing 2(k+`max)n exponentiations (assuming
all the voters have participated).

As shown in Section 4.2, verifying the ballots cast in an equivalent elec-
tion using range proofs would require the computation of (8k+4(`max+1))n
exponentiations.

Hence, our proposal provides a more efficient (four times faster if k �
`max) way to verify the correctness of the ballots cast. Furthermore, if a
new zero-knowledge proof of mixing provided a better performance, then
our proposal would also benefit from that.

4.3.4.3 Overall performance

If k � `max, the amount of exponentiations required to verify all the ballots
collected can be simplified to O(kn). The cost of homomorphically aggre-
gating n ballots is O(kn), the cost of decrypting the aggregated ballot (it is
composed of k ciphertexts) is O(k) and the cost of decoding the cleartexts
obtained is also O(k).

Hence, the overall cost of our system is O(kn). Since the amount of
voters is usually much larger than the amount of candidates, that is n� k,
we can conclude that our system has a cost which is linear with the number
of voters.

Note that, with any remote voting system, the ballot collection authority
receives an O(n) amount of ballots that have to be authenticated, usually by
means of digital signature checking. The number of signatures to be checked
is O(n), which turns out to be a lower bound on the performance of such a
system.

4.3.5 Security analysis

A secure electronic voting system has to fulfill the security requirements.
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For our system to be secure, the following assumptions should be met:

1. The Key Storage Trusted Party acts honestly by only decrypting the
aggregated ciphertext.

2. The electoral roll has been properly generated (it only includes eligible
voters).

3. Eligible voters’ public keys have been properly certified by some cer-
tificate authority.

Note that Assumption 3 is required by any voting system belonging to
the homomorphic tallying paradigm. Assumptions 1 and 2 are required
by any remote voting system in which public key certificates are used for
authentication.

Under the previous assumptions, our proposal will now be proven to be
secure.

4.3.5.1 Integrity

An e-voting protocol provides integrity if authentication, unicity and fairness
properties are satisfied. The authentication property requires being able to
differentiate between genuine voters and the rest. The ballots cast by voters
are digitally signed and the public keys required to validate those signatures
are correct (Assumption 3) and available in the electoral roll (Assumption 2).
In this way, any entity can validate whether a given ballot comes from an
eligible voter. Ballots without a valid signature are discarded.

Unicity

When a ballot is received, the ballot collection authority checks that the
voter casting it has not voted before. Hence, just one ballot per voter is
allowed.

In homomorphic tallying remote voting, the previous check is not enough
to ensure the unicity property. This property also requires that a malicious
voter is not able to cast an improperly generated ballot including several
votes for some candidate (if some component included, for instance, an en-
cryption of 2V or 3V ) or votes for more candidates than allowed. This is the
reason why this paradigm requires a proof showing that cast ballots have
been properly generated.

With our proposal, this is proven by showing that a ballot Cvi was ob-
tained after mixing the components of the vector C published by the ballot
collection authority during the setup stage. The next lemma addresses this
issue.

Lemma 4.3.1. If the proof of mixing provides correctness, our proposal
provides unicity.
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Proof. Let us assume that our proposal does not provide unicity. That is,
an adversary A can run two algorithms Alg1, Alg2 that generate a valid
ballot which is not the result of mixing the ciphertexts of vector C. More
formally, Alg1(C)→ Cvi where Cvi is a vector whose component cleartexts
do not equal those of C, and Alg2(C,Cvi) → ZKPi where ZKPi is a valid
zero-knowledge proof of mixing between vectors C and Cvi .

Under that assumption, let us consider a mix-type voting system em-
ploying the previous proof of correct ballot mixing. Let C be the set of
ballots cast by the voters. A misbehaving mixer could change the votes of
an election as follows: The mixer would use Alg1(C) → C ′, generating a
set of ballots C ′ that are not a mixing of C. After that, the misbehaving
mixer would use Alg2 to generate a valid zero-knowledge proof of the mix-
ing by running Alg2(C,C

′) → ZKP . Any entity verifying ZKP would be
convinced that C ′ is a correct mixing of C, which is not the case. Hence the
proof of mixing would not provide correctness and the claim follows.

Fairness

Ensuring that partial results cannot be known depends on the privacy of
the system and the correct behaviour of the KSTP (Assumption 1). From
the already proven privacy property, we know that no information about
the votes can be obtained from the cast ballots. Hence, fairness is provided
as long as the KSTP behaves correctly and only decrypts the aggregated
ballot at the end of the election. For a greater security, the KSTP can be a
distributed entity as explained in Section 4.3.2.1.

Verifiability

The correctness of the whole voting process can be checked. Our proposal
offers end-to-end verifiability. The votes cast are digitally signed so that
any entity can verify that they come from people in the electoral roll and
that no more than one ballot per eligible voter has been received. The proof
of correct ballot composition and the ballot aggregation step can also be
verified. Finally, decryption of the aggregated ballot is performed verifiably.

4.3.5.2 Privacy

The privacy property states that it must not be possible to link the content
of any decrypted vote with the identity of the participant who cast it. In
homomorphic tallying remote voting, only the aggregated ciphertext is de-
crypted (Assumption 1). In this way, just the global vote tally is obtained.
In our proposal, the ballots are generated by mixing a publicly known vector
of ciphertexts. The following lemma shows that the privacy of our proposal
is ensured as long as the proof of mixing employed also provides privacy.
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Obviously, we are assuming that the elliptic ElGamal cryptosystem is se-
mantically secure, so that no information is obtained from ballot ciphertexts.

Lemma 4.3.2. If the proof of mixing provides privacy, our proposal also
provides privacy.

Proof. We are going to show that if an adversary A was able to obtain any
information about the permutation π used by some voter vi to generate her
ballot, then A would be able to obtain the identity of a voter’s vote in a
mix-type voting system using that proof of mixing.

Let us assume that our proposal does not provide privacy. This means
that an adversary A is able to obtain some information about some of the
cleartexts in some components of vector Cvi . Since the elliptic ElGamal
cryptsystem is assumed to be semantically secure, this information can only
consist of information on permutation π. Let Alg(C,Cvi , ZKPvi) be the
algorithm that generates such information.

Under that assumption, any observer of a mix-type voting system em-
ploying the above proof of mixing would obtain information about some of
the mixed ballots as follows. Let C be the set of ballots cast by the voters,
let C ′ be the set of mixed ballots and let ZKP be the corresponding proof
of correct mixing. The observer would run Alg(C,C ′, ZKP ) and from the
information obtained about the permutation π, it could link some ballots in
C ′ with those in C, which are linked to the identity of the voters who cast
them. After the decryption of the ballots in C ′, the observer could link the
cleartext votes of some ballots in C ′ with the identity of some voters, and
the privacy of the voting system would be compromised. Hence, the proof
of mixing would not provide privacy and the claim follows.

Notice that, with our proposal, ballots whose array equals that of a
previously cast ballot are not allowed. This fact, together with the shuf-
fling parameter awareness of the proof of mixing, prevents message relation
attacks [Pen11b, MS11] against the privacy of the system.





Chapter 5

Blind signature paradigm

This chapter begins with a brief summary of previous work on the blind
signature paradigm for remote voting. Some of the open challenges to be
addressed will be highlighted. These challenges have motivated our proposal
detailed in Section 5.2.1, which was published in [MSV13].

In Section 5.3, the problem of anonymity revocation in case of double
voting is presented. Several proposals are analyzed in depth in order to
highlight their security flaws. A new proposal using e-coins to solve the
double voting issues [MSV14] is detailed in Section 5.4.

5.1 Paradigm description

With this paradigm, the ballots are cast anonymously without an attached
voter’s signature. In this way, the need for a mechanism that breaks the
link between a ballot and the voter casting it disappears. Instead, each
ballot comes with a digital signature computed by a trusted party, the Au-
thentication Server. Even though the ballot is not linked to the identity of
its caster, that identity could be disclosed by tracing the source address of
IP datagrams. To avoid that, the ballots are sent through an anonymous
channel which keeps source addresses secret.

The first electronic voting scheme using an anonymous channel was pro-
posed in [Cha88]. Later, [OMA+99] presented a proposal using blind signa-
tures. The inclusion of an anonymous channel and the properties of blind
signatures slightly changed the entities required to provide authentication
and unicity.

Apart from the entities that were introduced in Section 1.1 (Voters,
Electoral Roll Authority, Vote Tallying Authorities), this paradigm requires
an additional entity that handles the authentication of the voters. We will
refer to this entity as the Authentication Server. When contacted by a voter,
it checks that the voter appears in the electoral roll and then computes a
blind signature of her ballot. That blindly signed ballot will then be cast by
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the voter through an anonymous channel. Hence, the Authentication Server
guarantees that all the ballots received by the Ballot Collection Authority
are cast by eligible voters. It also prevents double voting by checking that
voters have not voted before.

The blind signature paradigm includes an additional phase in which
ballots are blindly signed prior to being cast. A voting scheme implementing
the blind signature paradigm consists of the following phases:

1. Setup: The vote tallying authorities create the election public key and
publish it on a publicly accessible bulletin board. With this paradigm,
the Authentication Server publishes its public key so that any entity
can check its signatures. At the same time, the electoral roll authority
publishes the electoral roll so that it can be modified in case of errors.
The electoral roll contains the digital certificate of each eligible voter.
The candidates’ list as well as the instructions for the voters are also
published.

At the end of this phase, the bulletin board contains the election public
key, the Authentication Server public key, the electoral roll and the
candidates’ list. From now on, these data can not be modified.

2. Ballot authentication: During this phase, each voter generates and
encrypts her vote under the election public key. Next, the resulting
ballot is blinded. The blinded ballot is signed by the voter and sent
to the Authentication server.

Upon receiving a signed blinded ballot, the Authentication Server au-
thenticates the voter by verifying her digital signature and checks
whether she is in the electoral roll. If this is the first time the voter
contacts it, the Authentication Server proceeds by signing the blinded
ciphertext and then sends the result back to the voter. The voter will
unblind the data received, obtaining a valid digital signature on her
ballot.

3. Vote casting: Once a voter has her ballot signed by the Authentica-
tion Server, she transmits it to the Ballot Collection Authority. This
is done through an anonymous channel.

Upon receiving a ballot, the Ballot Collecting Authority verifies that
it has been properly signed by the Authentication Server. In such a
case, the ballot and its signature are published on the bulletin board
for its public verifiability.

The vote casting phase ends when the voting period expires or when
all the eligible voters have cast their ballots.

4. Tallying: When the vote casting phase has ended, the vote tallying
authorities perform a verifiable decryption of each ballot in the bulletin
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board. After that, the election result is published.

For usability purposes, the ballot authentication and the vote casting
phases are performed in parallel. In this way, a voter can cast her ballot
just after having had it signed.

An advantage of this approach is that it does not require the use of zero-
knowledge proofs. If, after decrypting a ballot, the resulting vote turned out
to have been incorrectly generated, it could simply be discarded without dis-
rupting the process. Unfortunately, this paradigm provides only individual
verifiability. A voter can verify that her vote has been counted but she
has no evidence about the correctness of the rest of the ballots other than
the signature from the authentication server. If the authentication server is
completely trusted, public verifiability can be considered to be achieved to
some extent.

The central component of this paradigm is the Authentication Server.
This server must be a completely trusted party. If corrupted, it would be
able to generate fake signed ballots and submit them anonymously. Since the
only check performed by the polling station at vote reception is signature
validation, all those ballots would be accepted as valid. Moreover, they
would be indistinguishable from ballots cast by valid participants. This
could be detected by forcing the Authentication Server to publish some
proof of participant authentication (like a digitally signed request for the
blind signature) and then checking that the amount of ballots collected does
not exceed the number of blind signature requests. Unfortunately, after
detecting this, the only solution would be to replace the corrupted server
and repeat the election.

For this reason, the blind signature paradigm requires the Authentication
Server to be trusted. This server also needs to be accessible throughout
voting period.

5.1.1 Anonymous channel

Anonymity on the Internet is mostly achieved by using pseudonyms. Even
though a pseudonym can not be directly related to the person behind it, the
level of anonymity provided by this solution does not fulfill the anonymity
requirements of an electronic election. This is because the identity of a vote
caster could be obtained by tracing her IP address. In the blind signature-
based paradigm, ballots are directly decrypted so that, after decryption, the
source IP address could be linked to the cleartext of the vote. Taking that
into account, the blind signature paradigm requires an anonymous channel
[DDS09], preventing dishonest parties from tracing the source address of IP
datagrams.

Anonymizing services can be implemented in two different ways:
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• Centralized: The messages are sent to a server. This server (also known
as the anonymizer) takes a set of received messages, adds some random
messages to them, and then shuffles the resulting set. These systems
usually require the sender to encrypt the message under an encryption
algorithm that allows re-encryption. At the end, it will send the mixed
and re-encrypted messages to the appropriate receivers.

• Distributed: A distributed anonymizer provides anonymity through a
network of routers which randomize and send the messages to other
peers of the network, following a protocol guaranteeing that each mes-
sage will finally arrive at its intended receiver. It provides a higher
degree of security than the centralized approach.

With security being one of the most important requirements for remote
electronic voting, the use of distributed anonymous channels instead of cen-
tralized ones is highly recommended. These distributed anonymous channels
can also be classified in two types:

• Low-latency [DMS04]: The main property of these anonymous chan-
nels is the fact that the messages are not delayed. The most well-
known proposals are based on a technique called onion routing. With
this technique, a circuit of routers is defined between the sender and
the responder. The messages are encrypted in a way that every router
can add or subtract a layer of encryption. Since the communication is
not delayed, adversaries who can monitor the input and output of the
anonymous channel are able to find traffic patterns which can be used
to break the anonymity.

• High-latency [RMPAFD14]: These anonymous channels do not estab-
lish a bi-directional circuit between the communicating nodes. Instead,
this solution is based on the idea of grouping the messages to mix and
send them. Usually, a set of mixes delays and reorders messages to
provide anonymity between the input and output messages. This so-
lution provides more guarantees of anonymity than low-latency ones.
However, it is not suitable for interactive services where delays affect
the quality of service.

Given that electronic voting is not a fully interactive service and the im-
portance of preserving voters’ privacy, the most commonly used anonymous
channels for the blind signature paradigm in remote electronic voting are
the high-latency ones.

5.1.2 Authentication Server: trust and availability

Remember that the Authentication Server ensures that only ballots cast
by eligible voters will be accepted by the Ballot Collection Authority and
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prevent voters from casting more than one ballot. Both requirements must
be fulfilled by a voting platform, hence the Authentication Server must be
trusted. Voters require that server to be available so that it can blindly
sign their ballots. Hence, it should be available throughout the election pro-
cedure. Trust in the authentication server can be increased, as proposed
in [HMP95], by splitting it into a set of n entities which are unlikely to
collude (for instance, each political party may be in charge of one). After
that, by employing a blind multi-signature scheme, each entity is in pos-
session of a secret key share so that computing a blind signature over an
encrypted vote requires the participation of each of them. These entities are
assumed to work properly at signing participants’ valid votes but none of
them would accept to participate in the generation of fake votes benefiting
the opponent’s choice. Having a distributed Authentication Server, whose
components have to all be available throughout the voting period, increases
the risk that some of them become out of order due to technical failures, de-
nial of service attacks or intentional malfunctioning. Such a situation would
play havoc with the election. Replacing the multi-signature scheme with a
threshold signature one, like in [JLL02], provides some fault tolerance, but
the trust in the server decreases, since it could act dishonestly without the
need to corrupt all its components.

The fact that blind signatures are computed over already composed votes
forces them to be generated during the voting period (participants cannot be
required to make up their decision before), so this entity has to be available
during this period. Any blind signature-based voting platform deployment
needs to provide trust (requiring the Authentication Server to be split into
a large amount of entities) and system availability (better achieved with a
reduced server), so that a solution fulfilling both requirements may not be
achievable.

5.2 Credential-based protocols

Instead of blindly signing the ballots, there is another approach consisting
of the generation of a credential for each voter. This approach was first
presented in [Rad95]. It proposed a variant of the blind signature paradigm
in which the voters have to go to a voting authority office (acting as the
Authentication Server) and ask for a pseudonym. Later, each voter will
attach her blindly signed pseudonym (credential) to her vote and will send
it to the polling station through an anonymous channel. If some voter tried
to cheat by casting two or more votes, her identity could be disclosed. With
this proposal, the vote is not blindly signed. Instead, a credential which has
been blindly signed by the Authentication Server is needed. By means of this
credential, the voter can demonstrate that she appears in the electoral roll.
This approach increases the robustness of the protocol to attacks against the
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Authentication Server because the blind signature can be performed before
the election begins.

In [MV98], the need for the voters to obtain a pseudonym at the author-
ity office is removed. With this proposal, a participant in an election au-
thenticates to the Authentication Server, which provides her with a blindly
signed voting ticket. After that, the voter will be able to decide and gener-
ate her vote, authenticate it employing the voting ticket and cast it at the
polling station. In case some participant voted twice, the proposal provides
a protocol for anonymity revocation. Unfortunately, [MV98] and some im-
provements on it [LHC03, YLY04, HWH05, RHOAGZ07, AJ09, BMA+11],
have all turned out to be weak because they do not provide all the se-
curity properties claimed. It is worth noting that revoking double voters’
anonymity may not be necessary, since a solution permitting such a situa-
tion to be detected and the votes involved eliminated would be enough in
most cases.

A similar solution is presented in [AS08], in which the participants receive
a blindly signed anonymous credential from the authentication server. This
credential is attached to the vote cast, so that the polling station can check
and store it in order to detect double voting. With this solution, a malicious
polling station could take any vote-credential pair and replace its vote with
a fake one. This fact could only be detected by the participant involved,
who would have to complain. Consequently, this solution does not provide
the universal verifiability property.

The proposal in [LLCC06] uses a distributed authentication server that
issues voting tickets. Although the Authentication Server is distributed, the
private keys are generated by a central dealer who, in case of corruption,
could issue fraudulent voting tickets. Moreover, like in [AS08], the voting
ticket is not verifiably linked to the vote cast, so that universal verifiability
is not provided here either.

With these solutions, participants can contact the Authentication Server
prior to deciding the content of their votes. Hence, voter authentication can
be undertaken before the voting period begins, so that it is possible to
have a longer authentication period that makes the system more reliable,
since there is time to solve possible Authentication Server malfunctioning
(especially when it has been distributed among a large set of entities).

With these proposals, it is possible that some participants that requested
a voting credential in advance (maybe some days before the beginning of the
voting period) decide not to cast a ballot. This would enable a corrupted
Authentication Server to check the difference between credentials requested
and votes cast, and, close to the end of the voting period, generate and send
such an amount of fake votes. Since this malicious behaviour would remain
undetected, any solution implementing anticipated blind signature compu-
tation strongly requires a distributed and completely trusted Authentication
Server.
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In [HS98], the use of a blindly certified public key as a voting credential
is proposed, but the use of a non-distributed authentication server makes it
vulnerable to the aforementioned attack.

5.2.1 New Scheme

A new blind signature-based e-voting system permitting anticipated inter-
action with the authentication server is presented below. With our pro-
posal [MSV13], the participants obtain a voting credential by generating an
anonymous private/public key pair that is blindly (multi)signed by the au-
thentication server. During the voting period, each participant will cast her
vote together with a digital signature computed under her anonymous certi-
fied key. The resulting system provides universal verifiability (not provided
in [LLCC06, AS08]), double voting detection (so that double-cast ballots can
be discarded) and the possibility of deploying a highly trusted distributed
authentication server (not considered in [HS98]).

Entities

The entities involved in the system are the ones described in Section 5.1.
Moreover, a new entity is required to issue certificates and some of the
original ones have acquired new functionalities:

• Certificate Authority (CA): Completely trusted external entity that
issues public key certificates to citizens and institutions. It is not
part of the voting platform but its certificates are needed for remote
authentication.

• Key Storage Trusted Party (KSTP): Like in [OMA+99], we assume the
votes are cast encrypted under some public key cryptosystem whose
private key is distributed employing some threshold scheme. This en-
tity (or set of entities) is in charge of storing the secret key material
required to decrypt votes. Our scheme could also accommodate the
approach [FOO93], in which a participant first sends her encrypted
vote and, once the voting period has concluded, she sends the decryp-
tion key. In this latter case, no trusted entity for storing decryption
keys is needed.

• Authentication Server (AS): Entity that authenticates voters, checks
the electoral roll and provides an anonymous voting credential (con-
sisting of a blindly signed public key certificate) to each of them.
With our proposal, this is a distributed entity composed of n enti-
ties {AS1, . . . , ASn}. A voting credential can only be issued if every
component of the Authentication Server participates.
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• Voters: People listed in the electoral roll are those able to cast a vote.
Each voter first authenticates and asks the Authentication Server for
a voting credential. Afterwards, during the voting period, she will
generate and cast a vote. We assume that each participant has a
personal public key certified by the Certificate Authority.

• Polling station (PS): During the voting period, it receives encrypted
ballots cast by voters. At the end of the voting period, it asks the
KSTP to verifiably decrypt ballots and tally them.

Setup

This stage is devoted to the generation of public key material. New key
material has to be generated for each election and should never be reused.

The entities composing the AS, {AS1, . . . , ASn}, set up a multi-signature
scheme. Each ASi generates its private/public key pair (xi, yi). After that,
the collective public key y is generated from y1, . . . , yn. Finally, the set of
keys {y1, . . . , yn, y} is certified by the CA.

In a similar manner, the KSTP generates a public key, Y , so that its
secret key is distributed among the entities composing it. Public key Y ,
which will be employed for vote encryption, is also certified by the CA.

From now on, we will assume that all entities verify certificate validity
prior to making use of these public keys.

Voting credential request

A voter P, owning a private/public key pair (xP , yP) with its public key
certificate CertCA(yP ,P), requests a voting credential as follows:

1. P generates a private/public key pair (xt, yt) at random.

2. P generates a public key certificate data structure, M = CertData(yt, ∅),
for public key yt with the information about its owner left blank.

3. P generates a random blinding factor r and computesM ′ = Blindr(M).

4. P sends M ′ its digital signature SignxP (M ′) and CertCA(yP ,P) to
each authentication server component ASi.

5. Each ASi verifies the validity of certificate CertCA(yP ,P) and the
digital signature P on M ′ (using public key yP).

6. Each ASi checks that P appears in the electoral roll and that she has
not yet requested a voting credential.
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7. Each ASi computes the blind signature σ′i = Bsignxi(M
′) and pub-

lishes

(M ′, SignxP (M ′), CertCA(yP ,P), σ′i)

on its publicly accessible bulletin board.

8. P receives the signature σ′i from each ASi, unblinds it σi = Ublindr(σ
′
i)

and checks V erif(M,σi, yi).

9. P composes σ from {σ1, . . . , σn}, which is a signature on CertData(yt, ∅)
verifiable under public key y.

10. P appends σ to CertData(yt, ∅), obtaining CertAS(yt, ∅). The result-
ing credential can be viewed as an anonymous public key certificate.

The resulting structure CertAS(yt, ∅) is a certificate on public key yt
blindly issued by the AS. With our proposal, this certificate (and knowledge
of secret key xt) is the voting credential that will permit P to cast her vote.

Any external verifier can check that the request comes from a citizen
listed in the electoral roll by verifying the signed voting credential request.
The response given by each ASi can also be checked by verifying the signa-
ture σ′i on M ′ under public key yi. We conclude that the voting credential
request procedure is universally verifiable.

Since all partial signatures σ′i issued by ASi are verifiable under the same
public key yi, they can be verified in batch.

Voting

When the voting period begins, each participant P, who previously re-
quested a voting credential, decides her vote and casts it. The following
procedure is performed:

1. P composes her vote m.

2. P encrypts m under public key Y , obtaining C = EY (m).

3. P computes the signature Signxt(C).

4. P casts her vote by sending the tuple

(C, Signxt(C), CertAS(yt, ∅))

to the polling station through an anonymous channel.

5. Upon reception, the polling station (PS) verifies that CertAS(yt, ∅) is
a valid certificate (by verifying its signature by the AS).

6. PS verifies the signature Signxt(C) on C using public key yt.
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7. PS also checks that the certificate CertAS(yt, ∅) has not been used
together with any previous vote.

8. PS publishes the tuple received on the public list of received votes.

Any external entity wishing to verify the process simply has to carry out
the same checks performed by the polling station, so that vote casting is
universally verifiable.

The computational cost of this phase can be reduced by verifying a set
of the voting credentials from different participants (step 5) in batch, since
all verifications are to be performed using the public key of the AS.

Tallying

At the end of the voting period, the components of the KSTP make their
secret key material public so that any entity is able to decrypt all the ballots
received by herself (making the process verifiable). The decrypted votes are
tallied and the results are finally published.

5.2.2 Security

The security analysis holds on the assumption that the Authentication
Server is distributed in such a way that its components will not collabo-
rate to issue fraudulent credentials.

Integrity

Integrity is the hardest security property to fulfill when dealing with a voting
scheme using the blind signature paradigm. There are three main threats
to address:

• Authentication: Every ballot received has to be cast by a valid voter.
With this scheme, the Authentication Server asks the participants to
authenticate themselves prior to issuing a blind signature on their
anonymous public key certificate. By authenticating them, it can
check whether they appear in the electoral roll and that they have
not requested a voting credential before.

By making the signed requests publicly available, any entity is able
to verify that each request comes from a valid participant. Also, by
publishing the blind signature σ′i computed over M ′, each ASi can
defend against participants claiming that their request was not served.

• Vote modification: No vote can be modified during the voting process.
In this case, the protocol ensures that the vote cast by a voter carries
a digital signature verifiable under a public key that is certified by the
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AS. Any manipulation of the vote would cause a signature validation
failure.

• Unicity: A voter cannot cast more than one ballot. Under the assump-
tion that the AS cannot misbehave, a participant in the electoral roll
cannot obtain more than one voting credential. Hence, if a voter casts
more than one vote, she would be using the same credential. This
fact is easy to detect, since both voting tuples will share the same
certificate issued by the AS.

An appropriate policy should be implemented to deal with these cases:

– Invalidate multiple ballots by the same (anonymous) voter

– Consider only the last one cast (this policy allows vote changing).

Privacy

The use of a blind signature scheme ensures that the voting credential ob-
tained by a participant cannot be related with the data that she sends to
request it. In this way, the voting credential is anonymous. Sending the bal-
lot through an anonymous channel ensures that the source of votes received
by the polling station cannot be traced.

Verifiability

Given the bulletin board and the electoral roll, which are public, anyone
can check that all the ballots have been cast together with a valid creden-
tial signed by the Authentication Server. This ensures the authentication
property as well as the unicity property, as explained before.

Apart from that, all the ballots on the bulletin board are verifiably de-
crypted in order to obtain the results of the election. In this way, any voter
can check that her ballot has been counted in the final tally and she can
even check that the content of her ballot was correctly decrypted. These
two validations ensure for any voter that the ballot has been correctly cast
(cast-as-intended). Any auditor can check the correctness of the decryptions
and the validity of the certificates. Hence, our solution provides universal
verifiability.

5.3 Double voting perception

Designing a secure electronic voting scheme which uses an anonymous chan-
nel is challenging work. The solution proposed in Section 5.2.1 manages to
fulfill the security requirements, also offering good performance. However,
in some scenarios it could be necessary to identify a misbehaving voter.
Given that privacy is mandatory, the opportunity to provide privacy up to



78 CHAPTER 5. BLIND SIGNATURE PARADIGM

a certain point in which the identity of a voter can be disclosed opens a
window of possibilities. Taking that into account, several proposals have
been presented in recent years.

5.3.1 Mu and Varadharadjan scheme

The first approach to handle double voting with anonymity revocation was
presented in [MV98]. It proposed an improvement over the variant of [Rad95],
in which the interaction between the Authentication Server and the voters
can be carried out remotely. The proposal of [MV98] involves five parties:
the voters, the Authentication Server (AS), voting servers (VS) that collect
voting tickets from the voters, a ticket counting server (TCS), and trusted
certificate authorities. The protocol is composed of four steps:

Setup

During this phase, the AS generates an RSA modulus nAS (the product of
two large primes) and a public/private key pair eAS , dAS . Each voter Vi also
generates an RSA modulus nVi and her own pair of RSA keys eVi and dVi .
As the system also uses a variant of ElGamal signature scheme, a finite field
Fp, with p being a large prime, is also generated. After this information has
been generated, a voter can cast a ballot as described below.

The anonymous ticket acquiring phase

A voter Vi chooses a blind factor b ∈ ZnAS , and picks up three random
numbers g ∈ Fp and r, k1 ∈ [1, . . . , p − 1]. After that, Vi prepares the
following parameters to request an anonymous ticket:

a = gr mod p, w1 = gbeAS mod nAS ,

w2 = gk1beAS mod nAS , and w3 = abeAS mod nAS .

The voter Vi sends {CertVi , (w1||w2||w3||t)dVi mod nVi} to the AS. Value t
denotes a timestamp.

Upon receiving the request, the AS first verifies the voter’s certificate and
validates the voter’s signature (w1||w2||w3||)tdVi . If the verification succeeds,
the AS chooses a random number k2 ∈ [1, . . . , p− 1] , and computes:

w4 = (k2||t)eVi mod nVi ,

w5 = (w3k2
1 w2

2w3)
dAS = (y1y2a)dASb3(k2+1) mod nAS ,

with y1 = gk1+k2 and y2 = gk1+2k2 . Then, the AS stores k2 and Vi’s identity
in its database. The parameter k2 is different for each voter, so that it can
be used to trace the owner of a ballot if the voter casting it voted more than
once. Finally, the AS sends message {w4, (w5||t)eVi mod nVi} to Vi.
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After that, Vi decrypts w4 to obtain k2 , and computes y1 = gk1+k2 and
y2 = gk1+2k2 . Next, Vi removes b3(k2+1) from w5 to obtain the signature
s = (y1y2a)dAS mod nAS . Then Vi computes

s1 = (k1 + k2)
−1(ma− r) mod p− 1,

s2 = (k1 + 2k2)
−1(ma− r) mod p− 1,

with m being Vi’s voting intention in clear form. The voting ticket T is
constructed as T = {a||g||y1||y2||s||s1||s2||m}.

The voting and ticket collecting phase

After generating the anonymous ticket in the previous phase, Vi can cast
the voting ticket T with the Voting Server as follows:

1. Vi sends (T ||t)eV S mod nV S to the VS.

2. Upon receiving the message, the VS decrypts it to obtain the voting
ticket T . Then, the VS verifies the AS’s signature by checking whether

seAS = (y1y2a) mod nAS .

In that case, the VS further validates the correctness of the signatures
s1 and s2 by checking whether ys11 a = gma mod p and ys22 a = gma

mod p.

If all the verifications succeed, the VS accesses its database to check whether
the entry {a, g, y1, y2} already exists. If it does not, it accepts the voting
ticket. Finally, the VS sends all the voting tickets in a batch to the TCS.

The ticket counting phase

When the voting period has ended and all VS’s have sent their voting tickets,
the TCS checks whether there are two voting tickets

T = {a||g||y1||y2||s||s1||s2||m} and T ′ = {a′||g′||y′1||y′2||s′||s′1||s′2||m′}

such that (a, g, y1, y2) = (a′, g′, y′1, y
′
2). If some duplicate entry is found, the

TCS can find the identity of the double-voting voter by computing

k1 + k2 = (m′a−ma)/(s′1 − s1) mod p− 1,

and
k1 + 2k2 = (m′a−ma)/(s′2 − s2) mod p− 1.

From the above two equations, TCS can obtain k2 and identify the voter.
After validating all the tickets, the TCS tallies the tickets and announces
the result.
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Security issues

The proposal of Mu and Varadharadjan [MV98] was proven to be insecure
when several security flaws were shown [CJT03, LHC03, YLY04]. These
flaws allowed attackers to forge valid anonymous tickets without being au-
thenticated. The attack is as follows.

The attacker chooses three random numbers k1, k2 and r ∈ [1, . . . , p− 1]
and computes:

a = greAS , y1 = gk1eAS , y2 = gk2eAS ,

s = gk1+k2+r mod nAS ,

s1 = (k1 + k2)
−1(ma− r) mod p− 1,

s2 = (k1 + 2k2)
−1(ma− r) mod p− 1.

Next, the attacker can construct the ticket T = {a||g||y1||y2||s||s1||s2||m}.
This ticket will pass the verifications of VS and TCS with very high proba-
bility, since it passes the signature verification and the probability of ticket
collision is very low. Moreover, since the attacker can arbitrarily choose the
parameters, it can forge many distinct valid tickets without being detected.

5.3.2 Lin et al. scheme

In [LHC03], an improvement of [MV98] is proposed. The phases remain the
same but the system is slightly changed in order to be secure against ticket
forgery:

The anonymous ticket acquiring phase

A voter Vi computes w1 and w2:

w1 = grbeAS1 mod nAS and w2 = gkbeAS2 mod nAS

with b1, b2 being two blind factors, r, k1 ∈ [1, . . . , p − 1] being randomly
chosen by the voter and g ∈ Fp being the system’s public parameter. Then,
the voter sends {CertVi , t, w1, w2, ((w1||w2||t)dVi mod nVi)} to the AS.

The AS verifies the certificate and checks the correctness of the voter’s
signature ((w1||w2||t)dVi mod nVi). If the verification succeeds, the AS
chooses a random number k2 ∈ [1, . . . , p− 1] and computes:

w3 = (k2||t)eVi mod nVi

w4 = wdAS1 = adASb1 mod nAS ,

w5 = (w2 · gk2)dAS = ydAS1 b2 mod nAS ,

w6 = (w2
2 · gk2)dAS = ydAS2 b22 mod nAS ,
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with a = gr, y1 = gk1+k2 , and y2 = g2k1+k2 . The AS stores k2 together with
the identity of Vi in its database and sends {w3, (w4||w5||w6||t)eVi mod nVi}
to Vi.

Vi obtains k2 from w3, and calculates y1 and y2. Next, Vi generates s1,
s2 and s3, removing the blind factors as follows:

s1 = w4 · b−11 = adAS mod nAS ,

s2 = w5 · b−12 = ydAS1 mod nAS ,

s3 = w6 · b−22 = ydAS2 mod nAS .

After that, the voter Vi signs the vote content m using ElGamal digital
signature scheme. Let x1 = k1 + k2 and x2 = 2k1 + k2 be the secret keys of
the ElGamal cryptosystem, with y1 and y2 being the corresponding public
keys. The voter generates the signatures of message m: (a, s4) and (a, s5)
as follows:

s4 = x−11 (ma− r) mod p− 1,

s5 = x−12 (ma− r) mod p− 1.

Finally, the voter Vi generates the ticket T = {s1||s2||s3||s4||s5||a||y1||y2||m}.

The voting and ticket collecting phase

After generating the anonymous ticket in the previous phase, Vi casts the
voting ticket T with the Voting Server as follows:

1. Vi sends T to the VS.

2. The VS verifies whether a, y1 and y2 are valid by checking the following
equalities:

a = seAS1 mod nAS ,

y1 = seAS2 mod nAS ,

y2 = seAS3 mod nAS .

3. If everything is correct, the VS verifies the correctness of signatures
(a, s4) and (a, s5) on m by checking:

gma = ys41 a mod p,

gma = ys52 a mod p.

4. The VS checks that it has not stored a previous entry {a, y1, y2}.

If the verifications succeed, the VS sends all the voting tickets in a batch
to the TCS.
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The ticket counting phase

After receiving all the tickets from the VS, the TCS runs a double voting
detection process:

1. The TCS checks the existence of a double voting by locating a dupli-
cate entry (a, y1, y2) in T .

2. If a duplicate entry exists with a different vote, the TCS can find the
identity of the double-voting voter by computing

x1 = (m′a−ma)/(s′4 − s4) mod p− 1,

and
x2 = (m′a−ma)/(s′5 − s5) mod p− 1.

3. The TCS can compute k1 = x2 − x1 = (2k1 + k2)− (k1 + k2). Now, it
is easy to obtain k2 = x1− k1; hence, the TCS can find the identity of
the illegal voter.

After validating all the tickets, the TCS tallies the tickets and announces
the result.

Security issues

An attack on [LHC03] was presented in [HWH05]. The attack allows the AS
to identify the owner of any ticket cast. Assuming that the TCS publishes
all the tickets cast, the AS could trace the identity of the sender of a ticket
Ti = {s1||s2||s3||s4||s5||a||y1||y2||m} belonging to voter Vi. The AS would
proceed as follows:

1. Compute x = (y2/y1) = gk1 mod p.

2. Select a record (V ′, k′2) from the database and check

x · gk′2 = y1,

x2 · gk′2 = y2.

if the previous equalities hold, the identity of Vi is V ′.

3. Repeat step 2 until a database record satisfies these equalities.

Following this easy procedure, the AS can identify all the voters and
their votes. Hence, the proposal fails on providing anonymity.

5.3.3 Hwang et al. scheme

The scheme proposed in [HWH05] is an improvement on the broken scheme
[LHC03]. It simply adds a few more computations. For simplicity, we just
detail the additional or modified computations.
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Anonymous ticket acquiring phase

A voter Vi computes w1, w2, w
′
1, w

′
2 :

w′1 = hrbeAS1 mod nAS and w′2 = hkbeAS2 mod nAS

with h ∈ Fp being another public parameter of the system so that h 6= g.
The voter sends {CertVi , t, w1, w

′
1, w2, w

′
2, ((w1||w′1||w2||w′2||t)dVi mod nVi)}

to the AS.

The AS verifies the certificate and voter’s signature ((w1||w′1||w2||w′2||t)dVi
mod nVi). If the verification succeeds, the AS chooses a random number
k2 ∈ Fp and computes w3, w4, w5, w6, w7:

w5 = (w′1)
dAS = (a′)dASb1 mod nAS ,

w6 = (w2 · gk2)dAS = ydAS1 b2 mod nAS ,

w7 = ((w′2)
2 · hk2)dAS = ydAS2 b22 mod nAS ,

with a′ = hr, and y2 = h2k1+k2 . The AS stores k2 together with the identity
of Vi in its database and sends {w3, (w4||w5||w6||w7||t)eVi mod nVi} to Vi.

Vi obtains k2 from w3, and calculates y1 and y2. Next, Vi generates s1,
s2, s3 and s4 by removing the blind factors:

s2 = w5 · b−11 = (a′)dAS mod nAS ,

s3 = w6 · b−12 = ydAS1 mod nAS ,

s4 = w7 · b−22 = ydAS2 mod nAS .

After that, the voter Vi signs the vote m using the ElGamal digital
signature scheme. Let x1 = k1 + k2 and x2 = 2k1 + k2 be the secret keys of
the ElGamal cryptosystem, with y1 = gx1 and y2 = hx2 . The voter generates
the signatures of the message m: (a, s5) and (a′, s6) as follows:

s5 = x−11 (ma− r) mod p− 1,

s6 = x−12 (ma′ − r) mod p− 1.

The voter Vi generates the ticket T = {s1||s2||s3||s4||s5||s6||a||a′||y1||y2||m}.

The voting and ticket collecting phase

After generating the anonymous ticket in the previous phase, Vi can cast
the voting ticket T with the Voting Server as follows:

1. Vi sends T to the VS.
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2. The VS verifies whether a, a′, y1 and y2 are valid by checking the
following equalities:

a = seAS1 mod nAS ,

a′ = seAS2 mod nAS ,

y1 = seAS3 mod nAS ,

y2 = seAS4 mod nAS .

3. If the previous equalities hold, the VS verifies the correctness of the
signatures (a, s5) and (a′, s6) on m by checking:

gma = ys51 a mod p,

gma
′

= ys62 a mod p.

4. The VS checks that it has not previously stored an {a, a′, y1, y2} entry.

After the voting time expires, the VS sends all the voting tickets in a
batch to the TCS.

The ticket counting phase

After receiving all the tickets from the VS, the TCS runs a double-voting
detection process:

1. The TCS checks whether double voting exists by locating a duplicate
entry (a, a′, y1, y2) in T .

2. If a duplicate entry with a different vote exists, the TCP can compute

x1 = (m′a−ma)/(s′5 − s5) mod p− 1,

x2 = (m′a′ −ma′)/(s′6 − s6) mod p− 1,

k1 = x2 − x1,

k2 = x1 − k1.

3. The TCS can find the identity of the illegal voter by asking the AS
about k2.

After validating all the tickets, the TCS tallies the tickets and announces
the result.
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Security issues

An attack on the anonymity of this scheme can be performed by the AS.
Taking into account that the parameters w1 and w′1 are blinded with the
same blinding factor, when a voter sends

{w1, w
′
1, w2, w

′
2, ((w1||w′1||w2||w′2||t)dV ) mod nV }

to the AS, it can compute the value z1 = w1/w
′
1 = gr/hr and store it

together with the voter’s identity. In this way, when the TCS publishes all
the tickets, the AS can compute the value z2 = a/a′ = gr/hr for each ticket
published and locate a z1 with the same value in its database.

5.3.4 Rodŕıguez-Henŕıquez et al. scheme

Rodŕıguez-Henŕıquez et al. presented a new proposal [RHOAGZ07] based
on [LHC03]. It offered better performance and security against the success-
ful anonymity attacks for [HWH05]. These improvements are obtained by
replacing ElGamal signature scheme with DSA. The system is modified to
accommodate this replacement.

Setup

The setup remains the same, but some new parameters are added. Apart
from the RSA key generation, it also requires the generation of DSA pa-
rameters: two large public primes p and q so that q|(p − 1), a generator
g ∈ Z∗p−1, together with a value α = g(p−1)/q mod p. A DSA private key x
for voter Vi is also generated.

The anonymous ticket acquiring phase

A voter Vi generates two blind factors b1, b2, a random value k1 < q/3 and
her DSA private key x ∈R Z∗q−1. After that, she computes:

y = αx mod p,

w1 = ybeAS1 mod nAS ,

w2 = αk1beAS2 mod nAS ,

and sends {CertVi , t, w1, w2, ((w1||w2||t)dVi mod nVi)} to the AS.
The AS validates the voter’s signature ((w1||w2||t)dVi mod nVi) and ver-

ifies the certificate. If the verification succeeds, the AS chooses a random
number k2 < q/3 and computes w3, w4, w5, w6:

w3 = (k2||t)eVi mod nVi ,

w4 = wdAS1 = ydASb1 mod nAS ,
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w5 = (w2 · αk2)dAS = (αk1+k2)dASb2 mod nAS ,

w6 = (w2
2 · αk2)dAS = (α2k1+k2)dASb22 mod nAS .

The AS stores k2 together with the identity of Vi in its database and sends
{w3, (w4||w5||w6||t)eVi mod nVi} back to Vi.

Vi obtains k2 by decrypting w3 and computes s1, s2, s3 by removing the
blind factors:

s1 = w4 · b−11 = ydAS mod nAS ,

s2 = w5 · b−12 = (αk1+k2 mod p)dAS mod nAS ,

s3 = w6 · b−22 = (α2k1+k2 mod p)dAS mod nAS .

The voting and ticket collecting phase

Voter Vi casts her ballot consisting of message m signed under DSA. In order
to do that, she computes:

x1 = k1 + k2,

x2 = 2k1 + k2,

r1 = (αx1 mod p) mod q,

r2 = (αx2 mod p) mod q,

and generates the signatures (r1, s4) and (r2, s5) with:

s4 = x−11 (m+ xr1),

s5 = x−12 (m+ xr2).

Additionally, voter Vi must compute:

l1 = (αk1 mod p) · (αk2 mod p) mod nAS ,

l2 = ((αk1 mod p)2 mod nAS) · ((αk2 mod p) mod nAS).

The voting ticket T is generated as:

T = {s1, s2, s3, s4, s5, r1, r2, l1, l2,m}

When the VS receives a ballot, it checks three digital signatures:

y mod nAS = seAS1 mod nAS ,

l1 = seAS2 mod nAS ,

l2 = seAS3 mod nAS .

After that, the VS runs the DSA verification algorithm for pairs (r1, s4) and
(r2, s5). If all the signatures are valid, the VS accepts and stores the ticket.
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The ticket counting phase

When the voting phase ends, the VS sends all the tickets to the TCS. After
receiving all the tickets, the TCS runs a double voting detection process:

1. The TCS checks whether double voting exists by locating a duplicate
entry (y, r1, r2, l1, l2) in T .

2. If duplicate entries with different voting content exist, the TCS can
find the double-voting voter’s identity by computing

x1 = (m′ −m)/(s′4 − s4) mod q,

x2 = (m′ −m)/(s′5 − s5) mod q,

k1 = x2 − x1,

k2 = x1 − k1.

3. The TCS can find the identity of the illegal voter by cooperating with
the AS, as it knows k2.

After validating all the tickets, the TCS tallies the tickets and announces
the result.

Security issues

A malicious voter can replace the original values of a1, s1 with y1, s3, re-
spectively, and compute a new value for s5 as s5 = r−1(m · y1 − (k1 + k2))
mod (p−1). In this way, she is able to create a forged ticket which passes all
the validations. In a similar way, by replacing the values of a2, s2 with y2,
s4, respectively, and computing s6 = r−1(m · y2 − (2k1 + k2)) mod (p− 1),
she can create another forged ticket.

5.3.5 Baseri et al. scheme

This scheme [BMA+11] is the last previous contribution to the paradigm. In
this case, the amount of computations is reduced and the resulting system
is resistant to all the previous attacks found against the paradigm.

Setup

The AS generates:

• (eAS , nAS), dAS and (e′AS , n
′
AS), d′AS : Two RSA public/private key

pairs, with eAS > e′AS .

• g, h public elements of prime order l in Z∗nAS .
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Each voter Vi has:

• (eVi , nVi), dVi : Her RSA public/private key pair.

• CertVi : Certificate of Vi’s public key.

• uVi : A unique value, only known by Vi.

• IDVi : The public identity of Vi, which corresponds to guVi in Z∗nAS .

The anonymous ticket acquiring phase

The voter Vi selects two blind factors b1 and b2 and computes:

A = guVih mod nAS ,

A′ = As mod nAS ,

B = gx1hx2 mod nAS ,

w1 = Bb
e′AS
1 mod nAS ,

w2 = (A′ +B)beAS2 mod nAS ,

with x1, x2 ∈R Z∗e′AS and s ∈R Z∗eAS .

The voter sends {CertVi , A,w1, w2, t, ((A||w1||w2||t)dVi ) mod nVi} to the
AS.

The AS verifies the certificate and the correctness of the value A and the
signature. After passing all the verifications, the AS computes:

w3 = AdAS mod nAS ,

w4 = w
d′AS
1 mod nAS ,

w5 = wdAS2 mod nAS ,

and sends {((w3||w4||w5||t)eVi ) mod nVi} to Vi.
Upon receiving it, Vi decrypts it and obtains w3, w4 and w5, which is

unblinded as follows:
s1 = ws3 mod nAS ,

s2 = w4/b1 mod nAS ,

s3 = w5/b2 mod nAS .

With all these values, Vi only needs to choose her vote and generate:

d = H(A′, B, s1, s2, s3, vote, nonce) mod eAS ,

r1 = duVis+ x1 mod eAS ,

r2 = ds+ x2 mod eAS .

Finally, the voting ticket

T = {A′, B, vote, s1, s2, s3, d, r1, r2, nonce}

can be sent to the VS.
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The voting and ticket collecting phase

When the VS receives a ticket, it proceeds as follows:

• Verifies the signatures s1, s2 and s3.

• Checks the equation: gr1hr2 = (A′)dB mod nAS .

If the ticket passes these validations, the VS stores it in its database.

The ticket counting phase

Once the voting phase has ended, the VS sends its tickets to the TCS. The
TCS verifies whether or not double voting has occurred. This is done by
checking parameters A′ and B of the tickets. If the TCS finds the same
values A′ and B on two or more tickets it will obtain the identity of the
double voter by computing:

uVi =
r1 − r′1
r2 − r′2

mod eAS ,

IDVi = guVi mod nAS .

Finally, the TCS counts the valid tickets and publishes them in the bulletin
board.

Security issues

The scheme of [BMA+11] consists of an RSA-type cryptosystem whose
security holds on the assumed intractability of the integer factorization and
discrete logarithm problems (see Section 2.1).

As pointed out in [MSV13], during the setup phase, the authentication
server publishes two RSA keys sharing the same modulus n = pq, being p
and q two large primes, and two elements g, h having the same large prime
order l in Z∗n. Factoring n is assumed to be hard.

The failure is due to the publication of the large prime order elements g
and h. Being g an order l element in Z∗n means that gl ≡ 1 (mod n), which
is only possible if l divides ϕ(n) = (p− 1)(q− 1). Since l is a large prime, it
will probably divide (p− 1) or (q − 1), but not both of them. In the former
case, gl ≡ 1 (mod n) implies that gl ≡ 1 (mod p) and gl ≡ 1 (mod q).
Since l probably does not divide (q − 1), gl ≡ 1 (mod q) is only possible
if g ≡ 1 (mod q), so that q = gcd(g − 1, n). This proves that n is easily
factored from public parameters by simply performing a greatest common
divisor (gcd) computation. A description of similar failures on RSA-type
cryptosystems is presented in [ML98].
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5.4 E-coins in e-voting

As mentioned in the previous section, the solutions proposed to achieve
double voting anonymity revocation in the blind signature paradigm do not
fulfill the security requirements of electronic voting.

The anonymity environment provided by the anonymous channel in the
blind signature paradigm is somehow similar to the scenarios in which e-
coins are used. Moreover, the security properties and the protocols used
by e-coin systems make them suitable for use in electronic voting in case of
double voting.

In this section, a new construction presented in [MSV14] is going to be
detailed. The construction uses e-coins to validate the voters and is able to
provide anonymity disclosure in case of double spending.

5.4.1 E-coins

E-coin systems provide an anonymous way to implement payments on the
Internet. The participants involved in such a system are:

• Bank: Entity that provides e-coins to payers.

• Payer: Entity that asks the bank for e-coins that will later be spent
with some merchant.

• Merchant: Entity receiving payments that will then deposit the e-coins
received to the bank.

In such systems, the payer authenticates with the bank and obtains
an e-coin through the withdrawal protocol. This protocol ensures that the
bank obtains no information about the e-coin generated so that it can later
be spent anonymously. E-coins are spent with the merchant through the
payment protocol. Since e-coin systems are anonymous, it is mandatory
that a dishonest payer cannot forge new valid coins or spend the same e-
coin more than once.

An e-coin system must provide the following security properties:

• Independence: The security of the system does not depend on users,
time, medium or location.

• Unforgery: Coins cannot be created without the bank’s collaboration.

• Untraceability: It is not possible to identify the honest spender of an
e-coin.

E-coin systems prevent double-spending in different ways. With online
systems, prior to accepting a payment, the merchant contacts the bank and
checks that the e-coin received has not yet been spent. On the other hand,
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with offline systems the payment protocol does not involve the bank. Such
systems require anonymity revocation in case of double spending so that,
if some e-coin is spent twice, the identity of the dishonest payer becomes
disclosed.

In the literature, there are several offline e-coin systems [Bra94, LTW05]
in which the payment protocol follows a three-move format. Given an e-coin,
the payer (whose identity is kept secret) first sends a commitment message
CMT to the merchant, containing some data that was blindly signed by the
bank during the withdrawal protocol. By verifying this signature, the mer-
chant is sure the e-coin received was issued by the bank, then the merchant
returns a random challenge CH and the payer provides a proper response
RSP . Computing this response requires knowledge of some private key ma-
terial only known by the person who withdrew that coin. A dishonest payer
spending the same e-coin twice will have to provide two valid responses to
two different challenges. Some offline e-coin protocols are designed so that
the identity of the double-spender can be obtained from a pair of responses
to two different challenges related to the same e-coin. In other proposals,
anonymity revocation is carried out by a trusted authority.

There are a strong similarity between the security requirements of e-
voting and e-coin systems. In an election, a voter can vote only once while
an e-coin cannot be spent more than one time. With e-voting, the identity
of a voter cannot be linked to the vote she cast, while e-coin systems do
not make it possible to know the identity of the person who spent a given
e-coin. Moreover, in the remote voting paradigm based on blindly signed
credentials, if a voter voted several times, her anonymity would be lifted, as
occurs in offline e-coin systems in case of double-spending. The unforgery
property of e-coins is also required for voting credentials, otherwise dishonest
entities could forge them and cast invalid votes that would be considered
valid.

5.4.2 E-voting scheme using e-coins

In this section, our proposal published in [MSV14] is detailed. More pre-
cisely, it is shown how a (three-move format) offline e-coin protocol can be
employed to construct a blindly signed credential-based e-voting system.

Entities

The following entities are involved in the protocol:

• Voter: Person listed in the electoral roll. In our construction, she plays
a role similar to that of a payer in an e-coin system.

• Authentication server: Authenticates participants by checking whether
they appear in the electoral roll and blindly signs voter credentials. Its
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role is similar to that of the bank in an e-coin system.

• Polling station: Receives ballots cast by participants and checks their
validity. It plays a role similar to that of a merchant. We are assuming
that the polling station has been distributed between several servers
so as to gain fault tolerance.

• Key Storage Trusted Party (KSTP): This entity publishes the public
information needed to encrypt the votes and stores the secret key
material required for their decryption. The cryptosystem employed
must provide a publicly verifiable decryption.

Protocol steps

We assume the existence of an underlying offline e-coin system which is
untraceable and unforgeable. For simplicity, we will refer to the polling
station as the server on which the voter is going to cast her ballot. The
system defines an election protocol consisting of three steps.

1. Obtaining a voting credential: Participants contact the authentication
server and request a voting credential. This is done by executing the
withdrawal protocol in the underlying e-coin payment system. The
authentication server, acting as the bank, first checks that the authen-
ticated participant has not yet received her voting credential. If this
is the case, the withdrawal protocol is completed and, as a result, the
participant obtains an e-coin. This e-coin is the voting credential that
will permit her to cast a vote.

2. Voting process: In order to balance the amount of ballots in each
polling station server, each participant is assigned one of them. The
communications between a participant and the polling station are car-
ried out through an anonymous channel as is usual in blind signature
based e-voting. During the voting period, the participant (in the payer
role) first composes her vote v, encrypts it (under KSTP’s public key),
obtaining ciphertext V , and then contacts the polling station (playing
the merchant role) through the anonymous channel. The participant
sends her voting credential CMT (commitment message of the pay-
ment protocol). Next, the polling station checks that CMT is a valid
credential generated by the authentication server and that it has not
been received before. If the voting credential is correct, it returns a
random value S (which could be obtained by composing a polling sta-
tion identifier, a timestamp and some additional random data). After
that, the participant computes the challenge CH = H(CMT ||S||V ),
with H being some cryptographic hash function like SHA256 [NIS94],
and generates the response RSP to CH. The participant sends the



5.4. E-COINS IN E-VOTING 93

tuple (V,RSP ) to the polling station which computes CH by itself
(from CMT , S and V ) and verifies the response RSP . If all checks
are satisfied, it stores the authenticated vote (CMT, V, S,RSP ) and
publishes it on the public list of votes received. Any entity can check
the validity of this tuple, ensuring that only voters with a valid e-coin
are allowed to vote.

3. Tallying: When the voting period ends, the polling station servers
check the list of votes received published by the other servers. If a
credential CMT has been used in different polling station servers, the
ballots are removed from both lists and the identity of the double voter
can be disclosed. After that, the polling station servers ask the KSTP
to perform a verifiable decryption of the remaining ballots and publish
the resulting cleartexts (the votes) together with the proofs of correct
decryption on a publicly accessible bulletin board.

Comments

Our construction makes use of the Fiat-Shamir construction [FS87] by com-
puting the challenge from a hash computation that takes the encrypted vote
V as input. In this way, the tuple (CMT,RSP ) becomes a digital signa-
ture on S||V . A random seed S generated by the polling station is included
as input, so that a malicious voter casting the same vote V twice will be
required to respond to two different challenges.

If a participant is detected to have voted twice (by observing two votes
sharing the same value for CMT ), her identity will be obtained by means
of the anonymity revocation procedure provided by the underlying e-coin
system.

5.4.3 Security

The main issue with the previous proposals providing double-voter anonymity
revocation was the lack of security. For this reason, it is specially important
to prove that the construction presented provides the security requirements
described in Section 1.2. One of the main advantages of the scheme is its
capacity to run with different e-coin protocols. For this reason, the secu-
rity of the whole e-voting scheme depends on the security of the underlying
e-coin used.

Privacy

This property guarantees that the relation between a vote and the identity
of the person who cast it remains unknown. In our protocol, voters cast their
ballots through an anonymous channel. Several proposals exist for anony-
mous channels. In our construction, the anonymous channel is required to
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allow bidirectional communications, keeping the identity of the communi-
cation establisher secret [RMPAFD14]. Since the votes are received by the
polling station through an anonymous channel, the only way to identify the
caster of a vote would be to trace the attached e-coin. If the underlying
e-coin system is untraceable, this is not possible.

More formally, let ECoin be the offline e-coin system used in the protocol
described. Let EVoteCoin be the e-voting system presented in the previous
section. Let us assume that A is an adversary who wants to know the
identity of the voter who cast a given ballot received by the polling station.
The adversary A could be a party of voters jointly with a group of external
viewers. They are also able to collude with the polling station. Taking that
into account, the adversary A has information on the private information of
some voters, and also on the public information generated for the election.

Lemma 5.4.1. If ECoin is untraceable, EVoteCoin guarantees privacy.

Proof. We will show that, if an adversary A were able to identify the voter
who cast a given ballot, he could also trace the identity of the spender of
a given e-coin for ECoin. Let us assume that EVoteCoin did not provide
privacy. That would mean that A can run an algorithm Alg1 that is able
to find the identity of the voter who cast a given ballot. In order to obtain
the identity of the voter who cast a given ballot (CMTi, Vi, Si, CHi, RSPi),
A would run an algorithm Alg1(CMTi, Vi, Si, CHi, RSPi, I), which would
return the identity of the voter, where I is all the public information of
EVoteCoin, and the private information of the party of voters who con-
stitute A. Under that assumption, A could use Alg1 to trace the iden-
tity of the spender of an e-coin in ECoin by running the algorithm in this
way: Alg1(CMTi, ∅, ∅, CHi, RSPi, I), which would return the identity of the
spender so that ECoin would be traceable.

Integrity

An e-voting protocol provides integrity if authentication, unicity and fairness
properties are satisfied.

The authentication property requires being able to differentiate between
genuine voters and the rest. We use an authentication server which provides
a voting credential only to participants listed in the electoral roll. Voters who
are not in the electoral roll will not receive an e-coin from the authentication
server so they would have to forge one. If our e-coin system is unforgeable
and the withdrawal protocol is secure, the only chance for an adversary is to
collude with the authentication server. In our protocol, the authentication
server is a trusted entity so, as long as our e-coin system is secure against
forgery, our voting protocol will not allow votes from people not listed in
the electoral roll.
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In order to prevent a malicious voter from voting more than once, the
authentication server must provide only one voting credential (e-coin) to
each voter. A malicious voter could use her e-coin to cast more than one
vote, but this situation would be detected (all those votes would share the
same CMT ) by the polling station, which would proceed accordingly (for
instance, revoking that voter’s anonymity). Voters could still cast more than
one vote if they were able to collude with the authentication server, but as
long as authentication server is honest, the only way to do that is by forging
e-coins.

Let us assume the adversary A, as defined in Section 5.4.3, tries to cast a
valid vote for a participant who does not appear in the electoral roll. This is
similar to trying to vote twice. The definition of A allows the use of private
information of several voters so that, in our case, proving that A cannot
vote as a participant not in the electoral roll, is the same as proving that A
cannot cast more than one vote for each voter.

Lemma 5.4.2. Assuming that the authentication server is honest, EVote-
Coin provides integrity as long as ECoin is unforgeable.

Proof. We will show that an adversary able to cast a vote without being in
the electoral roll could also forge a valid e-coin. Let us assume that EVote-
Coin did not provide authentication. That is, the adversary A can run two
algorithms Alg1, Alg2 that can generate a valid vote without using private
information of any voter or of the authentication server. More formally,
Alg1(I)→ CMT , where I is the set of all the available public data together
with the private information from A, and CMT is a valid commitment for
the e-voting protocol. Besides, Alg2(CMT,CH, I) → RSP , where RSP is
a valid response for the given CMT and CH = H(CMT ||V ||S).

Under that assumption, the adversary could use Alg1 and Alg2 to forge
a valid coin for ECoin, behaving as follows: The adversary A would send
Alg1(I) = CMT to the merchant, where I is the public information of the
system. The merchant would answer with a challenge CH or some values
needed to generate it, and after that A would run Alg2(CMT,CH, I) to
obtain RSP , which would be a valid response for the payment protocol of
ECoin. Hence, ECoin would be forgeable and the claim follows.

Verifiability

The proposed system provides individual verifiability, since a voter can check
that her vote has been taken into account by checking that it appears on
the public list of votes received. A voter can also check that the other votes
are part of a valid (CMT, V, S,RSP ) tuple and verify that their decryptions
were performed correctly by checking the published decryption proofs.

End-to-end verifiability in blind signature-based voting systems would
require the use of a verifiable anonymous channel. However, the efficiency
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of the proposal would be severely affected by the verification proofs of such
a channel.

Robustness

Credential-based e-voting is more robust than the classical blind signature-
based approach. This is because the voters can ask for their credentials
before having decided their vote. In this way, credentials can be provided
during a long time period before the day of the election, so that there is time
to recover from eventual attacks against the authentication server. More-
over, the use of a distributed polling station also increases robustness.



Chapter 6

Conclusions and future work

In this thesis we focus on the study of secure protocols for remote electronic
voting. As mentioned throughout this document, the systems for remote
electronic voting can be classified into three paradigms: mix-type, homo-
morphic tallying and blind signature-based. Each of them provides different
advantages and drawbacks that have to be studied in order to find an ap-
propriate solution for each election. The proposals presented in this thesis
provide novel solutions to each of the existing voting paradigms.

In Chapter 3, the performance issues of the mix-type paradigm are in-
troduced. Based on the fact that these performance issues are caused by
a time-consuming zero knowledge proof of a shuffle, we propose a new ap-
proach to guarantee the correctness of a shuffle. The resulting scheme is a
secure and fully operable mix-type remote voting system belonging to the
“proof of product with redundancy” type. This scheme takes advantage of
the homomorphic property of the cryptosystem used to validate the equal-
ity of the input and output ballots. The system requires the ballots to be
properly cast and, for this reason, additional proofs are required during the
ballot casting phase. This way, the proposal considerably reduces the time
required to obtain the results but increases the interaction between voters
and the ballot collection authority.

This proposal was presented in the Electronic Government and the In-
formation Systems Perspective (EGOVIS) conference in 2011 and published
in the LNCS proceedings under the title “Verifiable encrypted redundancy
for mix-type remote electronic voting” [MMS11].

A novel contribution is also presented for the homomorphic tallying pa-
radigm in Chapter 4. The proposal makes use of a zero-knowledge proof of a
shuffle to guarantee the integrity of the election without using range proofs.
By avoiding the need to employ range proofs, the resulting system reduces
the computational cost required to prove that a ballot has been properly
generated. This new hybrid remote voting system bases its efficiency on the
shuffle proofs instead of the commonly used range proofs.

97
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The proposal was described in the paper entitled “A hybrid approach to
vector-based homomorphic tallying remote voting” [MMS15], published in
the International Journal of Information Security in 2015 .

The last paradigm introduced in Chapter 5 is the blind signature-based
paradigm. Two contributions to this paradigm are presented. In the first
one, a novel blind signature-based remote voting scheme is presented. The
system provides anticipated voter authentication and allows a highly dis-
tributed (and trusted) authentication server, together with universal verifi-
ability. The use of cryptography over gap Diffie-Hellman groups is studied
as a solution which avoids the need for a trusted private key dealer and
gives the possibility of speeding up signature validation employing batch
techniques.

This proposal was presented in the Information Technology: New Gen-
erations (ITNG) conference in 2013 under the title “Blind Certificates for
Secure Electronic Voting” [MSV13].

The second proposal focuses on the problem of identifying double voters
in the blind signature-based paradigm. We first show that the contribution
[BMA+11] to credential-based remote voting is weak. Its security flaw, pre-
sented in Section 5.3.5, left that variant of blind signature-based voting as
an insecure paradigm. Next, we present a construction that, employing an
offline e-coin protocol, builds a secure electronic voting system that follows
this variant. The security of our construction holds on the security prop-
erties provided by the underlying e-coin system. Basically, the properties
required in the e-coin system are unforgeability and untraceability.

This proposal was published in the Journal of Network and Computer
Applications in 2014 under the title “Constructing credential-based E-voting
systems from offline E-coin protocols” [MSV14].

Electronic elections have a critical impact when used for critical deci-
sions. Even though the aforementioned contributions are secure, in order
to prevent attacks caused by malicious software in the voter’s computer it
would be interesting to study, in the future work, the compatibility of our
proposals with well-known cast-as-intended techniques. Moreover, it would
be interesting to study the inclusion of Groth-Sahai proofs in [MMS11], so as
to increase performance. In addition, an adaptation to provide everlasting
privacy in each scheme proposed would be interesting, not only for security
purposes but also to analyze the restrictions of everlasting privacy in terms
of verifiability and performance.
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credential-based e-voting systems from offline e-coin proto-
cols. Journal of Network and Computer Applications, 42:39–
44, 2014.

[MV98] Yi Mu and Vijay Varadharajan. Anonymous secure e-voting
over a network. In 14th Annual Computer Security Applica-
tions Conference (ACSAC), pages 293–299. IEEE Computer
Society, 1998.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application
to e-voting. In Proceedings of the 8th ACM Conference on
Computer and Communications Security (CCS), pages 116–
125. ACM, 2001.

[NIS94] NIST. Standard, secure hash. Federal Information Process-
ing Standard, 180-2:57–71, 1994.

[OMA+99] Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fu-
jioka, and Tatsuaki Okamoto. An improvement on a practi-
cal secret voting scheme. In Information Security Workshop
(ISW), volume 1729 of LNCS, pages 225–234. 1999.

[PAB+04] Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson, and By-
oungcheon Lee. Multiplicative homomorphic e-voting. In
Progress in Cryptology – INDOCRYPT, volume 3348 of
LNCS, pages 61–72. 2004.

[Pai99] Pascal Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In Advances in Cryptology –
EUROCRYPT, volume 1592 of LNCS, pages 223–238. 1999.

[PB09] Kun Peng and Feng Bao. Efficient vote validity check in
homomorphic electronic voting. In Information Security and
Cryptology – ICISC 2008, volume 5461 of LNCS, pages 202–
217. 2009.



BIBLIOGRAPHY 105

[PB11] Kun Peng and Feng Bao. Efficient multiplicative homomor-
phic e-voting. In Information Security Conference – ISC
2010, volume 6531 of LNCS, pages 381–393. 2011.

[Pen11a] Kun Peng. An efficient shuffling based evoting scheme. Jour-
nal of Systems and Software, 84(6):906–922, 2011.

[Pen11b] Kun Peng. A general and efficient countermeasure to rela-
tion attacks in mix-based e-voting. International Journal of
Information Security, 10(1):49–60, 2011.

[Pfi95] Birgit Pfitzmann. Breaking efficient anonymous channel. In
Advances in Cryptology – EUROCRYPT 1994, volume 950
of LNCS, pages 332–340. 1995.
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