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Abstract 

 

This thesis aims at quantitatively characterizing the recent (last few decades) and 
future climate variability of marine climate in the Western Mediterranean Sea and 
the North Atlantic Ocean. Namely it focuses on sea level and wind-waves, as 
these are the variables with a larger potential impact on coastal ecosystems and 
infrastructures. We first use buoy and altimetry data to calibrate a 50-year wind-
wave hindcast over the Western Mediterranean in order to obtain the best 
characterization of the wave climate over that region. The minimization of the 
differences with respect to observations through a non-linear transformation of 
the Empirical Orthogonal Functions of the modelled fields results in an 
improvement of the hindcast, according to a validation test carried out with 
independent observations. We then focus on the relationship between the large 
scale atmospheric forcing and our target variables. Namely we quantify and 
explore the cause-effect relations between the major modes of atmospheric 
variability over the North Atlantic and Europe, i.e. the North Atlantic Oscillation, 
the East Atlantic pattern, the East Atlantic Western Russian  pattern and the 
Scandinavian pattern, and both the Mediterranean sea level and the North 
Atlantic wave climate. To do so, we use data from different sets of observations 
and numerical models, including tide gauges, wave buoys, altimetry, hydrography 
and numerical simulations. Our results point to the North Atlantic Oscillation as 
the mode with the largest impact on both, Mediterranean sea level (due to the 
local and remote influence on its atmospheric component) and the North Atlantic 
wave climate (due to its effect on both the wind-sea and swell components). Other 
climate indices have smaller but still meaningful contributions; e.g. the East 
Atlantic pattern plays a significant role in the wave climate variability through its 
impact on the swell component. Finally, we explore the performance of statistical 
models to project the future wave climate over the North Atlantic under global 
warming scenarios, including the large scale climate modes as predictors together 
with other variables such as atmospheric pressure and wind speed. Notably, we 
highlight that the use of wind speed as statistical predictor is essential to 
reproduce the dynamically projected long-term trends.  
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Resumen 

 

Esta tesis caracteriza cuantitativamente la variabilidad climática reciente (las 
últimas décadas) y futura del clima marino en el Mar Mediterráneo y en el 
Océano Atlántico Norte. Concretamente, se centra en el nivel del mar y en el 
oleaje, ya que éstas son las variables con un mayor impacto potencial en 
ecosistemas e infraestructuras costeras. En primer lugar, utilizamos datos de 
boyas y altimetría para calibrar un hindcast de oleaje de 50 años en el 
Mediterráneo Occidental, con el objetivo de obtener la mejor caracterización 
climática del oleaje sobre esta región. La minimización de las diferencias con 
respecto a las observaciones a través de una transformación no lineal de las 
Funciones Empíricas Ortogonales de los campos modelados se traduce en una 
mejora del hindcast, de acuerdo al test de validación llevado a cabo con 
observaciones independientes.  Luego nos centramos en las relaciones entre el 
forzamiento atmosférico de gran escala y nuestras variables de interés. En 
concreto, cuantificamos y exploramos las relaciones causa-efecto entre los modos 
de variabilidad atmosférica más importantes del Atlántico Norte y Europa (la 
Oscilación del Atlántico Norte, el patrón del Atlántico Oriental, el patrón 
del Atlántico Oriental/Rusia Occidental y el patrón Escandinavo) y el nivel del 
mar del Mediterráneo y el oleaje del Atlántico Norte. Para ello, usamos datos de 
diferentes conjuntos de observaciones y modelos numéricos, incluyendo 
mareógrafos, boyas de oleaje, altimetría, hidrografía y simulaciones numéricas. 
Nuestros resultados señalan la Oscilación del Atlántico Norte como el modo de 
mayor impacto, tanto en el nivel del mar del Mediterráneo (debido a la influencia 
local y remota en su componente atmosférica) como en el oleaje del Atlántico 
Norte (debido a su efecto en las componentes de mar de viento y de mar de 
fondo) Otros índices climáticos tienen contribuciones más pequeñas pero todavía 
significativas; e.g. el patrón del Atlántico Oriental juega un papel importante en 
la variabilidad del oleaje a través de su impacto en la componente de mar de 
fondo.  Finalmente, exploramos la capacidad de los modelos estadísticos de 
proyectar el clima futuro del oleaje sobre el Atlántico Norte bajo escenarios de 
calentamiento global, incluyendo los modos climáticos de gran escala como 
predictores junto con otras variables como la presión atmosférica y la velocidad 
del viento.  En particular, destacamos que el uso de la velocidad del viento como 
predictor estadístico es esencial para reproducir las tendencias a largo plazo 
proyectadas de por los modelos dinámicos.  

 



xviii 
 

  



xix 
 

Contents 
 

1  Introduction: The marine climate of the North-east Atlantic Ocean and the 
Mediterranean Sea 1 

1.1 The concept of marine climate 1 

1.2  Wind-wave and sea level climate of the North-east Atlantic Ocean and the Mediterranean 
Sea 3 

1.3 The study of the climate system: observations and numerical modelling 5 

1.4  Framework, objectives and structure of this thesis 8 

Bibliography 10 

2  Calibration of a new wind-wave hindcast in the Western Mediterranean 15 

2.1 Introduction 16 

2.2 Data sets 18 
2.2.1 Buoy observations 18 
2.2.2 Satellite altimetry observations 20 
2.2.3 The Wave hindcast 20 

2.3 Methodology of the wave model calibration 21 
2.3.1 Statistical distribution of SWH 21 
2.3.2 The calibration process 23 

2.4. Results 27 
1.4.1 The calibrated hindcast 27 
2.4.2 Validation with altimetry 30 

2.5 Discussion and conclusions 30 

Bibliography 38 

3  Impact of the atmospheric climate modes on Mediterranean sea level variability 40 

3.1 Introduction 41 

3.2 Data sets 42 
3.2.1 Tide gauge data 43 
3.2.2 Altimetry data 43 
3.2.3 Atmospherically-induced sea level 43 
3.2.4 Hydrographic data and thermosteric sea level 44 
3.2.5 Atmospheric variables 44 
3.2.6 Climate indices 45 

3.3 Methodology 46 

3.4 Results 48 
3.4.1  Observed sea level from tide-gauges 48 
3.4.2  Observed sea level from altimetry 51 
3.4.3 Atmospherically forced sea level 52 



xx 
 

3.4.4 Thermosteric sea level 55 

3.5 Discussion 56 

3.6 Conclusions 65 

Bibliography 67 

4  Response of the North Atlantic wave climate to atmospheric modes of variability 70 

4.1 Introduction 71 

4.2 Data sets 73 
4.2.1 Wind-wave hindcast 73 
4.2.2 Wind-wave observations from buoys. 76 
4.2.3 Satellite altimetry observations 77 
4.2.4 Climate indices 77 
4.2.5 Atmospheric variables 77 

4.3 Methodology 78 

4.4 Evaluation of the wind-wave hindcast 79 

4.5 Impact of atmospheric climate modes on seasonal wave climate 82 
4.5.1 Relation between atmospheric climate indices and seasonal wave climate 82 
4.5.2 Relation between atmospheric climate patterns and seasonal wave climate 86 

4.6 Summary and Conclusions 91 

Supporting Information 93 

Bibliography 98 

5  On the ability of statistical wind-wave models to capture the variability and long-
term trends of the North Atlantic winter wave climate 102 

5.1 Introduction 103 

5.2 Data set and methodology 106 
5.2.1 Dynamical simulations 106 
5.2.2 Statistical regressions using atmospheric variables and climate indices 107 

5.3 Validation of present-day simulated wave climate 112 
5.3.1 Dynamical simulation 113 
5.3.2 Statistical simulations 113 

5.4 Projections of wave climate for the 21st century 117 
5.4.1 Dynamical projection 117 
5.4.2 Statistical projections 121 

5.5 Discussion and conclusions 123 

Supporting Information 125 

Bibliography 129 

6  Discussion and concluding remarks 133 

 

 



xxi 
 

List of abbreviations and acronyms 
 
ISDM Integrated Science Data Management 
AEMET  Agencia Estatal de Meteorología 
AO Arctic Oscillation 
CANDHIS  Centre d'Archivage National de Donnés de Houle In Situ 
DAC Dynamic Atmospheric Correction  
DJF December to February 
DJFM December to March  
DynHist Historical wind-wave simulation 
DynProj Future wind-wave simulation 
EA  East Atlantic pattern 
EA/WR  East Atlantic Western Russian pattern   
ECMWF European Centre for Medium-Range Weather Forecasts  
EN Envisat 
EOF Empirical Orthogonal Function  
ERS-1 European Remote Sensing 1 
ERS-2 European Remote Sensing 2 
G Sea level pressure gradient   
G2 Geosat Follow On 
GCM General Circulation Model  
GHG Greenhouse gas  
GIA Glacial Isostatic Adjustment 
HE40 ERA-40 wind-wave hindcast 
HEI ERA-INTERIM wind-wave hindcast 
IH Instituto Hidrográfico - Portuguese Navy 
IPCC  Intergovernmental Panel on Climate Change  
ISPRA  Istituto Superiore per la Protezione e la Ricerca Ambientale 
J1 Jason-1 
J2 Jason-2 
JJAS June to September  
M Mean 
MAMJ From March to May 
METEO-FRANCE  French National Meteorological Service 
MOI  Mediterranean Oscillation Index 
MPI Max Plank Institute  
MSLP Mean sea level atmospheric pressure  
MWD Mean wave direction 
MWP Mean wave period 
NAM Northern Hemisphere Annular Mode  



xxii 
 

NAO  North Atlantic Oscillation 
P Sea level pressure 
PC Principal Component 
PNA Pacific-North American pattern 
PSMSL Permanent Service for Mean Sea Level  
RLR Revised Local Reference 
RMS Root Mean Squared 
RMSD Root Mean Squared difference 
S Salinity  
SCAN  Scandinavian pattern 
SLA Sea Level Anomaly  
SOND From September to December 
STD Standard deviation 
SWH  Significant wave heights 
T Temperature 
TNH Tropical-Northern Hemisphere pattern 
TP Topex/Poseidon 
U10 10m wind speed 
URMSD Unbiased Root Mean Squared difference 
V Variance 
WP West-Pacific pattern 
XIOM  Xarxa d'Instruments Oceanogràfics i Meteorològics 

 



1 
 

 

 

Chapter 1 

Introduction: The marine climate of 
the North-east Atlantic Ocean and the 
Mediterranean Sea 
 

 
— Y qué importa que lo que yo cuente esté o no                                                                                                      

escrito en algún libro muy sabio? ¿Quién os dice a vosotros que las historias que ponen en los 
libros sabios no sean también inventadas, sólo que nadie se acuerda ya? 

                                         
                                 — Maybe you won't find my stories in any guidebook, but                    

what's the difference? Who knows if the stuff in the guidebooks isn't made up too, only no one 
remembers any more.                                                                                               

 
Michael Ende, Momo (1973)                

 

1.1 The concept of marine climate 
The term marine climate is commonly used to define the statistical properties of 
the state of the atmosphere (weather) and the corresponding state of the oceans 
(marine weather) (Weisse et al., 2010). Changes in marine climate can have 
significant impacts on the coastal and marine environment. For example, small 
variations in water temperature and salinity can induce notable changes on the 
structure and functioning of the ecosystems. Among the set of parameters that 
characterize the marine climate, sea level and wind waves are considered as high 
impact variables due to their high-cost effects on coastal and offshore areas, 
especially in highly developed and populated regions. The term marine climate 
used throughout this thesis will restrict to these high impact variables.  
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    The direct physical effects of sea level variations are coastal erosion, changes in 
the flooding level and salinity intrusion into estuaries and coastal aquifers 
(Sorenson et al., 1984). On the other hand, wind waves affect the stability of 
coastal structures, ship routing and harbour operations; it also affects the 
configuration of beaches and the ecology of shallow waters and low-lying areas 
(Burrows et al., 2008). The considerations that 10% of the world population live 
at less than 10 m above mean sea level (McGranahan et al., 2007) and that 
maritime traffic represents more than 90% of world's trade give by themselves a 
measure of the potential economical and societal impact of sea level and wave 
climate. As populations grow, the knowledge on marine climate becomes critical 
in order to guarantee future successful management strategies.   

    The term marine climate change refers to changes in the marine climate that 
occur over decadal to millennium time scales. These long-term changes are due to 
different factors, such as changes in the Earth's orbit, changes in the solar activity 
and natural or anthropogenic changes in the atmospheric chemistry. These factors 
determine the global climate of the Earth and also strongly influence the climate 
at regional and local scales. Superimposed onto these long-term changes, there is 
also seasonal and inter-annual variability.; e.g. some years have higher than 
normal sea levels and wave heights, as it was the case of the recent winter 2013-14 
over most of the North Atlantic region. These yearly fluctuations above or below 
a long-term average value are called marine climate variability.  

    Although the marine weather may appear to vary randomly, it is related to the 
inter-annual and longer time scales of extra-tropical atmospheric circulation, 
which is organized into well-defined spatial patterns. These large-scale patterns 
mainly consist of atmospheric anomalies (with respect to a spatial average value) 
that have opposite sign over distant parts of the globe and vary between two 
possible states in such a way that they are teleconnected. These patterns or 
modes do not need any forcing to be generated. They occur naturally in the 
climate system due to its own inherent dynamics and constitute major drivers of 
weather and climate variability (Timm et al., 2004). As variations in the 
frequency and intensity of the modes affect large regions, they have major impacts 
on societies and ecosystems. In the North Atlantic, the coordinated variations of 
both mid-latitude pressure centres (i.e. the subtropical Azores-High and the 
Iceland-Low) and the related strength and location of the Westerlies and Trades 
are referred to as the North Atlantic Oscillation (NAO). It is worth noting that 
the term oscillation in the acronym NAO refers to a spatial oscillation of the air 
mass between the Arctic and the subtropical Atlantic, its time variation being 
mostly random (Hurrel and Deser, 2009). Modes are also expressed in the time 
domain as climate indices that represent the overall physical variability of the 
system.  
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    The NAO is not the only mode with a significant impact on the marine 
climate of the Mediterranean and the North Atlantic region; other large scale 
patterns, such as the East Atlantic pattern (EA), the Scandinavian pattern 
(SCAN) and the East Atlantic/Western Russian (EA/WR) pattern have also 
been identified to play a relevant role on, for example, air-sea heat exchanges over 
the Mediterranean (Josey et al., 2011). As climate indices include information of 
large-scale variations in atmospheric and oceanic parameters like temperature, 
pressure or precipitation, they account for a high amount of climate variability. 
The NAO and the other internal modes of atmospheric variability are 
superimposed onto the long-term climate change signal, altogether with shorter 
term events such as volcanic eruptions. For instance, the persistence of positive 
phases of the NAO between the 1960s and 1990s resulted in a significant sea level 
rise differences between the Mediterranean Sea and the global ocean (Tsimplis et 
al, 2005; Marcos and Tsimplis, 2008 and references therein). Likewise, inter-annual 
changes in the NAO can be determinant for mean sea level changes in the 
Mediterranean basin (Gomis et al., 2006; Tsimplis et al, 2013; Landerer and 
Volkov, 2013).  

 

1.2  Wind-wave and sea level climate of the North-east 
Atlantic Ocean and the Mediterranean Sea 
The main features of the marine climate over the North Atlantic Ocean and the 
Mediterranean Sea are determined by the air temperature gradient between the 
North Pole and the Equator, which in turn is due to the meridional variation of 
the Earth's insolation. The meridional air temperature gradient is higher over the 
western North Atlantic than over the eastern North Atlantic and the 
Mediterranean and it is also higher during the winter season (Isemer and Hasse, 
1985). Overall the gradient results in the organization of the atmospheric 
circulation in the well-known three-cell system associated with the Equatorial-
Low, the subtropical Azores-High, the Iceland-Low and the North Pole-High 
pressure centres. The Coriolis force caused by the Earth's rotation makes the air 
to flow clockwise around high pressure centres and counter-clockwise around low 
pressure centres in the Northern Hemisphere, thus leading to three relatively 
persistent wind systems: south-westwards winds at low latitudes (Trades), north-
eastwards winds at middle latitudes (Westerlies) and south-westwards winds at 
high latitudes (Polar Easterlies).  

    The described pattern of surface winds determines the mean wave climate over 
the North Atlantic: highest waves are observed in the extra-tropical regions under 
the influence of the Westerlies and also in the tropical regions affected by the 
Trades. The Westerlies generate higher waves with larger directional variability 
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than those generated by the Trades, which are weaker and more persistent in 
speed and direction (Semedo et al, 2011). Although wind speed is closely related 
to wave heights, the spatial patterns of the two fields are not analogous due to the 
propagation of waves over long distances (over thousands of kilometres, Chen et 
al, 2002). Thus the wave field can be considered as the results of two components: 
the wind-sea and the swell. The first term refers to wind-waves that are locally 
produced when the wind blows over the ocean surface. The swell refers to waves 
propagating away from the generation region and therefore not being related to 
the local wind. During winter, the wind-sea is higher along the Westerly winds 
than along the Trade winds, and the swells generated by the Westerlies at extra-
tropical latitudes travel southwards and become the dominant component of 
equatorial regions. During the summer season, the wind-sea is higher along the 
Trade winds than along the Westerly winds, and the swell component is much 
lower than during winter (Semedo et al., 2011).  

    Regarding the variability of the marine climate of Europe and the 
Mediterranean region, this is dominated by the storm track of the Westerlies in 
winter and by the Azores anticyclone in summer. During spring and autumn 
intermediate conditions prevail. Storm tracks are variable over the eastern North 
Atlantic and the Mediterranean region. In the latter they are highly influenced by 
the complex topography of the basin (Brayshaw et al., 2010). The relative warmer 
conditions of the Mediterranean Sea from fall to spring lead to surface 
cyclogenesis that enhance eastward storms coming from the Atlantic, especially 
over the western sub-basin (Trigo et al., 2012). Thus Mediterranean cyclonic 
activity is mainly associated with strong and persistent north and north-westerly 
winds (locally known as Tramuntana and Mistral) which enter the basin through 
the passage between the Pyrenees and the Alps. The opposite occurs during 
summer months, when the Mediterranean Sea cools the upper atmosphere leading 
to anticyclonic atmospheric conditions over the basin. Trends on storminess and 
wind-wave parameters have been detected using satellite altimetry. However, the 
period is too short to distinguish if they are a consequence of climate change or 
correspond to decadal natural variability (Young et al., 2011).   

    Winds are also one of the major forcing of sea level. Altogether with 
atmospheric pressure they constitute the forcing of the atmospheric component of 
long-term sea level variability. The other components are the variability in the 
density of the water column (referred to as the steric component) and the 
variability in the mass derived from non-atmospheric forcing (referred to as the 
mass component). There are evidences that the atmosphere and the oceans have 
warmed, on average, during the last century. The latest Intergovernmental Panel 
on Climate Change Assessment Report (IPCC AR5, 2013) concluded with a high 
degree of confidence that the human activities have substantially contributed to 
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the increase of global mean surface temperature and the corresponding sea level 
rise (Bindoff et al., 2013). The mean contributors to global sea level rise during 
the last century are the increase in ocean mass due to the melting of glaciers and 
ice sheets and the thermal expansion of the water masses due to the ocean 
warming (Church et al., 2013). Global mean sea level rose at a rate of 1.3-1.9 
mm/year between 1901 and 2010 (Church and White, 2011; Jevrejeva et al 2014; 
Hay et al, 2015) and at 3.2 mm/yr between 1993 and 2010 (Cazenave and Llovel, 
2010). 

    At regional scales changes in sea level can significantly deviate from the global 
mean because of changes in the ocean dynamics and water mass redistribution 
(Stammer et al, 2013). In particular, the atmospheric forcing, which averages to 
zero for global mean sea level, contributes to regional differences. For instance, 
the Mediterranean mean sea level increased at a lower rate than in the 
neighbouring North Atlantic during 1961-2000 due to the increase of atmospheric 
pressure over the region (Tsimplis and Josey, 2001; Marcos and Tsimplis, 2008; 
Gomis et al., 2008; Calafat and Gomis, 2009). Also longer term sea level trends 
are lower in the Mediterranean Sea that at the global scale; they have been 
estimated in 1.2 mm/yr for the 20th century using the longest available tide 
gauges (Tsimplis and Baker, 2000; Marcos and Tsimplis, 2008; Woppelmann et al, 
2014). Other studies used long tide gauge records to explore changes in extreme 
high water levels associated with storminess. They demonstrated the regional 
nature of such variations and found evidence of increased activity either due to a 
enhanced storminess (Menéndez and Woodworth, 2010) or due to the combined 
effect of mean sea level rise with storm surges (Araújo and Pugh, 2008 in Newlyn 
tide gauge; Marcos et al, 2009 in Southern Europe).  

 

1.3 The study of the climate system: observations 
and numerical modelling  
The key methods to study the dynamics of the climate system are the analysis of 
observed data and the numerical experiments with climate models. Regarding the 
former, ocean surface observations can be obtained from different sources. In-situ 
observations of coastal sea level are obtained from tide gauges at high temporal 
(typically hourly) resolution. Tide gauges are one of the oldest measurement 
systems of the ocean surface, some of them spanning more than one century. The 
oldest records of wind-waves are visual observations from ships, although they are 
located only over the major navigation routes. Nowadays in-situ observations of 
wind-waves are obtained from wave buoys anchored on either coastal or deep 
waters. The buoys provide information at high temporal (typically 3-hourly) 
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resolution on height, period and direction of the waves and in some cases also 
their wind-sea and swell components. In-situ observations of other oceanographic 
and atmospheric variables such as atmospheric pressure, wind, temperature or 
salinity are also necessary to study the mechanisms driving the marine climate 
variability. The development of satellite remote sensors during the 1970s 
constituted a revolution in understanding the marine climate due to their quasi-
global spatial coverage. For the key parameters of marine climate the step forward 
was the development of satellite altimeters during the early 1990s, as they provide 
a nearly synoptic view of sea level, winds and wave height over the globe. Their 
counterpart is a low spatio-temporal resolution (tens of kilometres and between 10 
and 30 days, respectively), which limits the understanding of some of the physical 
processes involved in marine climate variability.   

    One way to overcome the problem of limited measurements is to combine 
observations with numerically simulated fields of the target variables. Numerical 
models can realistically simulate a sequence of weather events by solving the 
primitive equations that describe the physical processes of the Earth System, 
including atmosphere, oceans, land and their interactions. When used for 
(atmospheric and/or marine) weather forecasting, numerical models include data 
assimilation from different observational sources. The same models can also be 
forced with historical observations and used to produce reanalysis, which are a 
collection of weather maps during a historical period of typically a few decades. 
When historical series are used only to force the model, but no observations of the 
predicted variables are assimilated during the run, the simulations are referred to 
as hindcasts; the fields of predicted variables are often validated against the 
available observations in order to assess the accuracy of the simulation. Finally, 
when only the radiative forcing is imposed, the model runs freely, without any 
chronological constraint; the interest of these simulations is the study of the 
variability from a statistical point of view, which is actually what defines the 
climate system. These runs are referred to as control simulations when the 
radiative forcing corresponds to either the pre-industrial period or to present day.  

    There are different types of numerical ocean models and the choice depends on 
the processes to be investigated. Barotropic ocean models, for example, represent 
a vertically integrated ocean. They have proved to be adequate in simulating the 
response of sea level to the forcing of atmospheric pressure and wind (see e.g. 
Pascual et al., 2008) and are therefore the basis for short-term operational sea 
level forecasting, as the atmospheric forcing is by far the dominant component at 
scales between one day and one month. Conversely, baroclinic ocean models are 
aimed at simulating the full three-dimensional structure of the ocean. The 
advantage is that they provide information about depth varying oceanographic 
variables like temperature and salinity, which can be useful in understanding some 
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of the processes driving sea level variability. However, for operational applications 
they do not reach the good performance of barotropic models due to the 
complexity of the processes involved in the simulations (Pérez et al., 2012). Hence, 
a comparison between various baroclinic hindcasts covering the Mediterranean 
region has revealed important regional differences (Calafat et al., 2012). Another 
type of models is given by the wind-wave models, forced only with surface winds 
and widely used with operational purposes due to their ability to forecast wind-
wave conditions. Wind-wave hindcasts providing retrospective information of the 
wave climate are often biased with respect the observations because of a poor 
representation of the forcing, limitation of the physics of the model and/or the 
spatial resolution. This problem can be partially overcome by using wind-wave 
observations from buoys and/or satellite altimetry to correct the hindcasted 
output fields. The correction process is commonly called calibration and can be 
carried out following different methodologies (Caires and Sterl, 2005; Tomas et 
al., 2008; Mínguez et al., 2011). 

    Whatever numerical model is used, there is always a trade-off between the 
resolution (spatial and temporal), the spatial coverage and the time span. The 
spatial resolution of global models is often too coarse as to include physical 
processes that can be important for regional climate variability. Therefore, for the 
forcing of ocean (baroclinic, barotropic or wave) models it is common to increase 
the spatial resolution of the atmospheric forcing over the area of interest. This 
process can be carried out either using a regional climate model that includes 
smaller scales for the physical processes and a high resolution topography (in 
which case the process is referred to as dynamical downscaling) or through 
statistical relationships between the global model parameters and regional 
observations (in which case the process is referred to as statistical downscaling).  

    In addition to reproduce past and present-day climate variability, numerical 
models are also a very powerful tool to project future climate under imposed 
forcing conditions. In these climate simulations, referred to as projections, the 
forcing fields are derived from Earth’s radiative conditions that correspond to 
plausible changes in CO2 and aerosol emissions based on different future scenarios 
of social and economic development. A single model run under a single scenario 
does not suffice to provide realistic projections of climate change for a number of 
reasons. First, because long term runs of climate models may suffer from biases 
and drifts, which become evident when the models are forced with a constant 
forcing over time (the control simulations mentioned above). These drifts can be 
corrected, at least to some extent, by comparing the projections with the 
corresponding control simulations. A second reason is that the natural variability 
superimposed onto climate change signals may have comparable or even larger 
amplitudes. These natural variations, with yearly to decadal time scales, have 
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arbitrary time phases and therefore they can be expected to cancel out when 
averaging projections from many different models. Finally, there is also a spread 
of models outputs even if they are run under the same conditions, due to the 
different ways in which the physical processes are formulated or parameterized. 
This altogether makes desirable to use a number as large as possible of individual 
numerical climate simulations to project future climate conditions, particularly to 
estimate their uncertainties. It is common practice to compute the ensemble mean 
and consider it as the best approach to future climate response; the underlying 
assumptions in this approximation are that the errors of the different models 
spread more or less randomly around the true values and that the number of 
simulations is large enough as to cancel out the errors, as it does with the natural 
variability.  

    The generation of a large ensemble of model simulations generally requires a 
high computational effort. However, for some particular variables this limitation 
can be overcome using reliable statistical approaches. This is the case of the wind-
wave climate simulations, for which a vast literature does exist on how to take 
advantage of the close relationship between wind-waves and atmospheric fields to 
design statistical models (Wang et al., 2004; Wang and Swail, 2006; Wang et al., 
2012; Casas-Prat et al., 2014; Wang et al., 2014). A strong assumption in this 
type of models is that the relationship found for present-day climate is stationary 
in time and also holds for other periods under different climate conditions. 
Atmospheric pressure and winds are the most common predictors in such models, 
but not the only possible candidates. For example, given the relationship between 
large scale atmospheric climate indices and temporal variations in wind-wave 
climate, it seems reasonable to enquire about other possibilities based on these 
indices.  

 

1.4  Framework, objectives and structure of this 
thesis 
The present thesis has been developed in the framework of two research projects 
carried out by the Sea Level and Climate research group of the University of the 
Balearic Islands (http://marine-climate.uib.es). Both projects were aimed at the 
generation and analysis of regional marine climate scenarios for the Mediterranean 
Sea and the North-east Atlantic Ocean. The first one, entitled “Development, 
validation and application of oceanic regional models” (ESCENARIOS) was 
carried out during 2009-2012 and was an assignment from the Spanish 
Meteorological Office (AEMET). The second project, entitled “Generation of 21st 
century marine climate scenarios for the Mediterranean Sea and the Northeast 

http://marine-climate.uib.es/


9 
 

Atlantic Ocean” (VANIMEDAT2) was funded by the Spanish National Research 
Program and run during 2010-2013. As a result of the activities developed within 
these two projects a large number of regional marine climate scenarios including 
baroclinic, barotropic and wind-wave simulations were generated and analyzed.  

    This thesis is part of the efforts to characterize the recent and future evolution 
of the marine climate in the region of interest. Namely, a major part of the work 
presented here is devoted to the study of the wind-wave fields in the Western 
Mediterranean Sea and the North Atlantic Ocean. In Chapter 2 we present the 
calibration of a new wind-wave hindcast of the Western Mediterranean using buoy 
and altimetry data; the aim was to obtain and describe the best possible 
representation of the wave climate in this region during the last decades. The next 
chapters of the thesis focus on the mechanisms underlying the observed marine 
climate; namely we analyze the impact of the large scale atmospheric modes on 
the wave and sea level climate. Chapter 3 investigates and quantifies the effect 
that the dominant climate modes have on Mediterranean sea level and its 
different contributions, making use of observations from tide gauges, altimetry 
and hydrography, as well as model output fields. In Chapters 4 and 5 the focus is 
put on the wind-wave climate of the North Atlantic Ocean. Chapter 4 quantifies 
the impact of the same large scale climate modes over the current North Atlantic 
wind-wave regime on the basis of two wave hindcasts and buoy and altimetry 
observations; the aim is to determine the wind-wave variability that can be 
explained by the large scale atmospheric forcing. In Chapter 5 the major effort is 
devoted to the evaluation of different methodologies to project the wind-wave 
climate of the 21st century, including the use of climate modes together with 
statistical and dynamical models; the objective here is to determine the strengths 
and weaknesses of the different approaches evaluated. 

    This thesis is presented as a collection of research articles, each one addressing 
specific scientific issues. The state of the art for each of those issues as well as 
specific methodologies are presented within each chapter. Other works carried out 
in the framework of the same projects and led by different authors complement 
those presented here. This is the case of the calibration of a sea level hindcast 
(Jordà et al., 2012a), the generation and analysis of future sea level scenarios 
(Marcos and Tsimplis, 2008; Marcos et al., 2011; Jordà et al., 2012b), the 
quantification of the NAO impact on the Mediterranean sea level (Tsimplis et al., 
2013), the evaluation of the coastal sea level rise along the southern European 
coasts (Woppelmann and Marcos, 2012) or the generation and analysis of future 
wind-wave scenarios in the Mediterranean Sea (still ongoing), among others.  
Therefore, this thesis represents a contribution to the overall efforts of the Sea 
Level and Climate research team to describe the marine climate in the 
Mediterranean and North Atlantic Ocean. 
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Chapter 2 

Calibration of a new wind-wave 
hindcast in the Western 
Mediterranean 
 

                          — Existe una cosa muy misteriosa, pero muy cotidiana. Todo el mundo 
participa de ella, todo el mundo la conoce, pero muy pocos se paran a pensar el ella. Casi todos se 

limitan a tomarla como viene, sin hacer preguntas. Esta cosa es el tiempo. 
 

                             — Life holds one great but quite commonplace mystery. Though shared by 
each of us and known to all, it seldom rates a second thought. That mystery, which most of us take 

for granted and never think twice about, is time. 
 

Michael Ende, Momo (1973) 
This chapter has been published in:  
 

• Martinez-Asensio, A., Marcos, M., Jorda, G., Gomis, D., 2013. Calibration 
of a new wind-wave hindcast in the Western Mediterranean. Journal of 
Marine Systems 121–122, 1–10. 
 

Abstract 

Wave climate in the Western Mediterranean is presented through the calibration 
of an update wind wave hindcast spanning the period 1958-2008. The hindcast 
was obtained with the WAM model (spatial resolution of 1/6º) forced with wind 
fields from the atmospheric model ARPERA. Significant wave heights (SWH) 
provided by the hindcast were calibrated using buoy observations with the aim of 
improving the characterization of the wave climate over the region. The 
methodology is based on a spatial calibration of the statistical distribution of 
SWH performed through a non-linear transformation of the Empirical Orthogonal 
Functions of the modelled data that minimizes the differences with observations. 
This allows the calibration to be implemented not only at buoy locations, but all 
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over the model domain. The resulting fields were validated against satellite 
altimetry observations, showing an average reduction of about 76% in the bias 
and of about 10% in the root mean squared differences with respect to 
observations.  

 

2.1 Introduction 
The study and characterization of wind wave climate is a very relevant issue in 
coastal design and protection strategies (Mínguez et al., 2011). Most approaches 
aimed to the characterization of the wave climate of a given region combine field 
observations from marine buoys (located either at coastal or deep waters) and/or 
altimetric observations with the use of numerical wind wave hindcasts (see e.g. 
Cavaleri and Bertotti, 2004; Caires and Sterl, 2005; Cavaleri and Sclavo, 2006; 
Tomás et al., 2009; Mínguez et al. 2011). While buoys provide high frequency 
time series at a limited number of locations, altimetry provides a more complete 
spatial coverage but with a much smaller sampling frequency (typically with a 
revisiting period between 10 and 30 days). Regarding the time coverage, buoy 
records typically span from a few years to a few tens of years (sometimes with 
significant data voids) and are usually consistent throughout the spanned period. 
Altimetry time series of wave observations along the satellite tracks are available 
since the 1980s; however, unlike for sea level, for instance, the distinct 
characteristics and paths of the different satellites altogether with the high 
temporal variability of the wave field prevent the mapping of the wave field 
regularly in time.  

    Numerical models are especially useful in areas where measurements are not 
available. In addition to a complete and regular spatial coverage they provide 
continuous high-frequency records that can span several decades. However, wave 
hindcasts also have major shortcomings. Probably the most important one is that 
they are often biased with respect to observations because of a poor 
representation of the forcing wind fields, limitation in the physics of the model 
and/or the low spatial resolution of the forcing and/or the wave model (Feng et 
al., 2006). 

    In order to overcome, or at least to reduce, the limitations of wave hindcasts, 
the output fields can be calibrated against measurements. Several methodologies 
aimed at correcting simulated waves through different transformations are 
described in the literature. Caires and Sterl (2005) proposed a non-parametric 
method to correct significant wave height (SWH) from the global ERA-40 re-
analysis using both altimetric and buoy measurements. Their methodology was 
based on the error estimation from “analogs” or “learning” data sets, which 
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conditions the comparisons to the existence of such learning periods. In a different 
approach, Janssen et al. (2007) used simultaneous collocated global observations 
of buoys and altimetry altogether with a model output with data assimilation to 
estimate the errors on SWH. Assuming that individual errors are uncorrelated, 
their estimations were then combined to calibrate the datasets. In the 
Mediterranean Sea, Cavaleri and Sclavo (2006) combined buoys, altimetry and 
model data to calibrate modelled wind and wave fields.  

    A common feature of the methodologies reported above is that all them apply 
single point calibrations and are therefore limited by the spatial distribution of 
observations. Instead, Tomas et al. (2008) followed a different approach, based on 
finding the transformation of the statistical distribution of the hindcasted wave 
heights at each grid point that best fits the distributions derived from buoy 
measurements. The implicit assumptions are that SWH follow a given model 
distribution everywhere in the domain (with different model parameters at 
different points) and that the parameters of the statistical model vary smoothly in 
space. This method was further extended by Mínguez et al. (2011) to account for 
different wave directions and to pay special attention to extreme values by 
minimizing the differences between quartiles instead of minimizing the parameters 
of the statistical distribution. 

    In the present work we calibrate the SWH of a recently released wind wave 
hindcast in the Western Mediterranean spanning the last five decades (1958-
2008). To perform the calibration we followed the methodology proposed by 
Tomas et al. (2008). A major difference with respect to the reference work is the 
extension of the spatial and temporal coverage of our calibration: Tomas et al. 
(2008) focused on a region around the Balearic Islands, while we apply the 
methodology to the entire Western Mediterranean basin. Furthermore, the 
updated hindcast used here spans more recent years, which implies that a larger 
number of buoys with recent observations can be included in the calibration 
process, and has been validated against all the available observations from 
satellite altimetry for the period 1992-2008 as independent data. The enlargement 
of the spatial and temporal coverage also allows us to get more insight on the 
capabilities and limitations of the methodology. 

    The paper is organized as follows: in section 2 we describe the wave hindcast 
and the buoys and altimetric observations used for the calibration and validation. 
In section 3 we present the methodology of the calibration method. Results and 
validation are presented in section 4 and discussed in section 5, paying particular 
attention to the robustness of the solution.  
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2.2 Data sets 

2.2.1 Buoy observations 
Wave observations from several buoy networks deployed in the Western 
Mediterranean Sea were collected from different data providers. The mean depth 
of the storm wave base (the lowest level at which the motion associated with wind 
waves is significant) has been estimated in 20-25 m in the Mediterranean Sea 
(Hernández-Molina et al., 2000). This means that buoys located over shallower 
water depths could be measuring waves disturbed by the local bathymetry and 
therefore not to be representative of the large-scale wave field. To avoid such 
problems, only the 22 buoys located over water depths greater than 50 m were 
selected (Fig. 2.1 and Table 2.1). Buoy data along the southern and eastern 
Spanish coasts and around the Balearic Islands (stations numbers 13-20 in Table 
2.1) were provided by Puertos del Estado (www.puertos.es), whereas those in the 
northeastern Spanish coast (numbers 21-22) were obtained from the observational 
network of the Catalan Government (Xarxa d'Instruments Oceanogràfics i 
Meteorològics, http://www.xiom.cat). Observations from French stations were 
made available through the Centre d'Archivage National de Donnés de Houle In 

Situ (CANDHIS, http://candhis.cetmef.Developpement-durable.gouv.fr, numbers 
1-4) and through the French National Meteorological Service (METEO-FRANCE, 
http://france.meteofrance.com, number 5). Finally, buoys located along the 
Italian coasts (numbers 6-12) were obtained from the Istituto Superiore per la 
Protezione e la Ricerca Ambientale (ISPRA, http://www.idromare.it).  

 

 
Figure 2.1.   Location of the buoys used for the calibration of the Western 
Mediterranean wind wave hindcast. 

http://www.puertos.es/
http://www.xiom.cat/
http://candhis.cetmef.developpement-durable.gouv.fr/
http://france.meteofrance.com/
http://www.idromare.it/
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    The spatial distribution of the buoys is biased towards the northern shores of 
the basin, with a clear lack of data in the southern shores (Fig. 2.1). The location 
of the stations, the water depth at the deployment location and the period of 
operation are all listed in Table 2.1. The length of the time series varies between 1 
and 20 years. The buoy data set includes the main wave parameters, namely 
SWH, mean period and peak period, as well as directional information. The 
percentage of data gaps for two of the main parameters (SWH and wave 
direction) has also been quoted in Table 2.1. Sampling rates vary among buoys 
and also among different time periods for the same instrument, ranging from 30 
min to 3h. All time series were homogenized towards a common temporal 
resolution of 3 h before being used for the calibration.  

 
Table 2.1.  Buoy stations with location, water depth, period of operation and 
percentages of gaps in the SWH and direction records. The wave direction was not 
available for stations 1-5. The location and distance to the closest model grid point 
is also listed.  
 

 Buoys 
 

Closest grid point  

 
N Station Location (º) 

Depth 
(m)  

Period 
SWH 

Gaps (%) 
DIR  

Gaps (%)  
Location (º) 

Distance 
(km) 

 

 1 Cap Corse 43.06 N  09.27 E 140 Mar-99 / Aug-11 51.4 - 
 

43.00 N  9.33 E 8.27  

 2 Banyuls 42.48 N  03.16 E 50 Nov-07 / Aug-11 4.5 - 
 

42.50 N  3.17 E 1.17  

 3 Porquerolles 42.96 N  06.20 E 90 May-92 / Aug-11 32.7 - 
 

43.00 N  6.17 E 4.83  

 4 Nice 43.63 N  07.22 E 270 Jun-02 / Dec-10 33.48 - 
 

43.67 N  7.17 E 9.09  

 5 Lion 42.06 N  04.64 E 250 Dec-01 / Dec-08 14.56 - 
 

42.00 N  4.67 E 7.04  

 6 Mazara 37.51 N  12.53 E 85 Jul-89 / Apr-08 14.74 14.74 
 

37.50 N  12.50 E 3.77  

 7 Capo Gallo 38.26 N  13.33 E 145 Jan-04 / Mar-08 23.9 23.9 
 

38.33 N  13.33 E 8.16  

 8 Capo Comino 40.61 N  09.88 E 130 Jan-04 / Sep-05 20.64 20.64 
 

40.67 N  9.83 E 7.24  

 9 Alghero 40.54 N  08.10 E 85 Jul-89 / Apr-08 8.33 8.33 
 

40.50 N  8.17 E 7.09  

 10 Ponza 40.86 N  12.95 E 115 Jul-89 / Mar-08 13.18 13.18 
 

40.83 N  13.00 E 5.6  

 11 Capo Linaro 42.24 N  11.55 E 62 Jan-04 / Sep-06 32.07 32.07 
 

42.17 N  11.50 E 9.24  

 12 La Spezia 43.92 N  09.82 E 85 Jul-89 / Mar-07 15.26 15.26 
 

44.00 N  9.83 E 8.47  

 13 Dragonera 39.55 N  02.10 E 135 Nov-06 / Oct-10 9.7 9.7 
 

39.50 N  2.17 E 8.28  

 14 Cabo de Palos 37.65 N  00.32 W 230 Jul-06 / Aug-11 4.8 4.8 
 

37.67 N  -0.33 W 1.87  

 15 Valencia I 39.46 N  00.26 E 260 Aug-04 / Sep-05 2.6 2.6 
 

39.50 N  0.33 E 9.29  

 16 Valencia II 39.52 N  00.21 W 50 Sep-05 /  Nov-08 12.6 12.6 
 

39.50 N   0.17 E 5.31  

 17 Mahón 39.71 N  04.44 E 300 Apr-93 /  Aug-11 27.02 27.02 
 

39.67 N  4.50 E 7.61  

 18 Cabo de Gata 36.56 N  02.33 W 536 Mar-98 / Jun-11 65.79 65.79 
 

36.50 N  -2.33 W 7.75  

 19 Tarragona 40.68 N  01.46 E 688 Aug-04 / Aug-11 12.13 12.13 
 

40.67 N  1.50 E 3.58  

 20 Cabo Begur 41.91 N  03.64 E 1200 Apr-01 /  Aug-11 45.36 45.36 
 

41.83 N  3.67 E 9.3  

 
21 

Cap de 
Tortosa 

40.72 N  00.98 E 60 May-84 / Aug-11 21.02 21.02 
 

40.67 N  1.00 E 6.29 
 

 22 Blanes 41.64 N  02.81 E 74 May-84 /  Aug-11 36.68 95.05 
 

41.67 N  2.83 E 2.66  
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2.2.2 Satellite altimetry observations 
Along-track SWH observations with high resolution sampling from satellite 
altimetry processed and distributed by AVISO (http://www.aviso.oceanobs.com/) 
were used in the validation. Data from seven altimeters were collected with 
various spatial and temporal resolutions: Jason-1 (J1), Jason-2 (J2), 
Topex/Poseidon (TP), European Remote Sensing (ERS-1 and ERS-2), Envisat 
(EN), and Geosat Follow On (G2). This data set covers sixteen complete years 
from October 1992 through December 2008. For the detection and removal of 
anomalous values, a 3σ test was applied, i.e., data with a SWH value larger than 
3 times the standard deviation of each satellite track were removed (Queffeulou 
and Bentamy, 2007). Observations from multisatellite missions need to be 
combined and homogenized in order to generate a consistent data set (Cotton and 
Carter, 1994; Challenor and Cotton, 2002; Queffeulou, 2004). Updated corrections 
outlined in Queffeulou and Croizé-Fillon (2011), obtained from the comparison of 
altimetric SHW with buoy data as described in Queffeulou (2004), were applied 
here.   

2.2.3 The Wave hindcast 
The wind wave hindcast was performed with the WAM model (WAMDI, 1988), a 
third generation wave model that explicitly solves the wave transport equation. 
The three source terms (wind input, non-linear energy transfer and white capping 
dissipation) are explicitly prescribed and integrated using an implicit second order 
centred differencing scheme. For the propagation term, a first order upwind 
scheme is applied. More details on the model can be found in WAMDI (1988) or 
Günther et al. (1992). In the framework of this work, the model has been 
implemented in the Western Mediterranean (from the Strait of Gibraltar to 17º 
E) with a spatial resolution of 1/6º (3398 grid points). The model configuration is 
the same used by Ratsimandresy et al. (2008) to generate the HIPOCAS wave 
hindcast and the same implemented in the operational wave forecasting system of 
Puertos del Estado. The wind forcing was obtained from the ARPERA hindcast 
(Herrmann and Somot, 2008; Jordà et al., 2012), a dynamical downscalling of the 
ERA40 reanalysis. 10-m winds provided by ARPERA have a temporal resolution 
of 6 hours, a spatial resolution of ~50km and cover the period 1958-2008. The 
WAM output parameters are stored every 3 hours and include SWH, wave 
direction, mean period and peak period.  

    The grid points of the model closest to each buoy were selected for a first 
comparison with observations. Their location and distance to the corresponding 
buoys are listed in Table 2.1. Figure 2.2 shows two representative examples of the 
comparison between SWH given by the model and buoy observations; both cover 

http://www.aviso.oceanobs.com/
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a period of 3 months and have been plotted with a temporal sampling of 3 h. 
While the temporal variability is well captured by the model, model values show 
an overall underestimation of the observed magnitude of SWH. A similar 
behaviour is obtained at most locations. Correlation and Root Mean Squared 
(RMS) differences between the observations and the output of the model at the 
closest grid points were computed for the overlapping periods. Results, listed in 
Table 2.2, reveal correlations ranging between 0.70 and 0.94 and being 
statistically significant in all cases. RMS differences show a higher dispersion 
among sites, ranging between 0.24 and 0.65 m.  

 

2.3 Methodology of the wave model calibration 
The aim of the calibration is to reduce the differences between the SWH 
hindcasted by the model and the available buoy observations. The major 
advantage of the method, developed by Tomas et al. (2008), is that it allows the 
calibration of the whole domain using time series observed at a limited number of 
points. The assumptions inherent to the method are that SWH follow the same 
statistical model everywhere in the domain and that the parameters of the 
statistical model vary smoothly in space. The methodology is summarized in the 
following for the sake of completeness. 

2.3.1 Statistical distribution of SWH 
SWH time series corresponding to every grid point of the model (hindcasted 
SWH) and to buoy records (observed SWH) were monthly aggregated and fitted 
to a log-normal distribution (Holthuijsen, 2007) whose density function is defined 
as: 
 
 

                                                                                                (1.1) 
 

where µ and σ2 are the location and scale parameters of the distribution, 
respectively. In our application, the random variable of the distribution is SWH 
expressed in meters (though it is treated as a non-dimensional variable in the 
formulation; if other units were used µ would have a different value, while σ2 
would keep the same value). The separation of the distribution into calendar 
months is due to the strong seasonal character of the wave properties.  

    The goodness of the fit was checked for both observations and model data (in 
the latter case at the grid points closest to the buoy locations). Figure 2.3 shows 
an example for the buoy of Nice and the months of July and January, which are 
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Figure 2.2. Time series of significant wave height at Mazara and Dragonera buoys 
(grey line) and at the closest gridpoint of the hindcast (black lines). Units are 
meters. 

 

representative of summer and winter conditions. The plots reveal that the mean 
regimes of SWH follow the log-normal distribution in both seasons, while extreme 
values depart significantly from the theoretical model. A related consequence is 
that the calibration is expected to work properly for the mean regimes (which 
represents a very large percentage of the time period), but might not do so for 
extreme events.  

    Following Tomas et al. (2008), the mean (M) and variance (V) (non-
dimensional) parameters of the log-normal distribution can be expressed in terms 
of the location and scale parameters as: 

 

 

(1.2) 

 

where it is recalled that all parameters, and therefore M and V, are a function of 
the location x and of the calendar month τ. For hindcasted values, x runs over the 
discrete number of grid points, while for the buoys it indicates the location of the 
buoy. In both cases τ runs from 1 to 12.    

    Figure 2.4 shows the spatial distributions of the parameters M and V for 
January and July (i.e., M, V(x, τ = 1) and M,V(x, τ = 7)) obtained from the 
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Table 2.2. Correlations, RMS differences and bias between modelled (non-
calibrated and calibrated) and observed SWH. Buoys for which the RMS difference 
between the calibrated values and observations is larger than for the non-calibrated 
values are marked with an asterisk.  

 
Station 
 

Correlation 
 

RMS (m)    
non-calibrated 

RMS (m) 
calibrated 

BIAS (m)     
non-calibrated 

BIAS (m) 
calibrated 

Cap Corse 0.82 0.63 0.53 -0.34 -0.12 
Banyuls* 0.86 0.33 0.41 -0.02 0.18 
Porquerolles 0.85 0.48 0.4 -0.28 -0.04 
Nice* 0.82 0.39 0.44 -0.05 0.12 
Lion 0.93 0.28 0.25 -0.22 -0.08 
Mazara 0.91 0.3 0.29 -0.15 -0.1 
Capo Gallo* 0.93 0.24 0.27 -0.07 0.15 
Capo Comino 0.89 0.35 0.29 -0.15 -0.02 
Alghero 0.93 0.47 0.38 -0.34 -0.09 
Ponza 0.89 0.41 0.35 -0.18 -0.03 
Capo Linaro 0.87 0.48 0.42 -0.18 -0.02 
La Spezia  0.91 0.58 0.45 -0.27 -0.09 
Dragonera 0.89 0.47 0.36 -0.29 -0.06 
Cabo de Palos 0.89 0.34 0.27 -0.2 -0.03 
Valencia I* 0.76 0.4 0.47 0.03 0.02 
Valencia II 0.88 0.41 0.31 -0.17 0 
Mahón 0.91 0.32 0.27 -0.2 -0.07 
Cabo de Gata* 0.9 0.29 0.31 -0.1 0.16 
Tarragona  0.89 0.39 0.29 -0.21 -0.01 
Cabo Begur 0.94 0.29 0.25 -0.2 -0.06 
Cap de Tortosa 0.74 0.65 0.53 -0.27 -0.1 
Blanes 0.7 0.51 0.51 -0.1 0.07 
MEAN 0.86 0.41 0.37 -0.18 -0.04 

 

    hindcast. The parameters show a smooth behaviour over the entire domain, 
which is one of the assumptions of the method. For both, M and V, maximum 
values are restricted to the North central basin in July and occupy the whole 
central part of the basin in January.  

2.3.2 The calibration process 
The calibration bases on a transformation of the monthly spatial distributions of 
the M and V fields in such a way that: i) they better fit the M and V parameters 
of the log-normal distributions obtained from observations at buoy locations; and 
ii) the calibrated M and V fields keep the same spatial correlation pattern than 
the non-calibrated hindcast. This can be achieved by applying first an Empirical 
Orthogonal Function (EOF) analysis to both the M(x, τ) and V(x, τ) fields and 
subsequently decomposing them into a set of spatial modes and their associated 
temporal amplitudes in the way: 
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      (x))f(A(x))f(A(x))f(A(x)f=)Y(x, N21Y ττττ N21 ...++++             (1.3) 

 

where Y is either M or V, (x)fY  is the time-averaged field,  f1(x),…, fN(x) are the 
spatial modes and A1(τ),…, AN(τ) are the corresponding temporal amplitudes. N is 
the number of modes, which is equal to the smallest dimension of the singular 
value decomposition problem. In our case, the temporal dimension (the 12 
calendar months) is smaller than the spatial dimension (the number of model grid 
points), so that N is equal to 12.  

    An important question is how many of the N modes must be considered. On 
one hand, the variance accounted for by the representation (1.3) formally 
increases with the number of considered modes. On the other hand, part of that 
variance is likely due to errors and to local (spatially uncorrelated) features, so 
that eliminating high order modes (those with the smallest spatial correlation) 
usually  

 

  
 

Figure 2.3.  Empirical (dots) and fitted (straight line) log-normal distributions 
computed for the buoy located at Nice (France) and for the closest grid point of 
the model using January (black) and July (grey) data.  

 

results in an improvement of the field representation. Conventional tests of 
statistical significance such as those described by Overland and Preisendorfer 
(1982) or North et al. (1982) can help to make a decision, but beyond such tests 
the key problem is identifying the modes that contribute significantly to the 
spatial coherence at horizontal scales that can be resolved unambiguously from  
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Figure 2.4. Map of the mean (M) and variance (V) parameters of the log-normal 
distributions fitted to January and July hindcasted data. 

 

the given distribution of observations. After several tests we decided to use 4 
modes (plus the mean field), which altogether account for 99.81% and 99.33% of 
the field variance of M and V, respectively. 

    The transformation from the non-calibrated to the calibrated representation 
bases on a linear and potential parameterization of the mean and variance fields 
as follows: 

+(x))f(Aa+(x)fA)(Aa+(x)fa=)(x,Y 2
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Y0c 221
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                     (x))f(A+a(x)f(A+a3 44433 ) ττ              (1.4) 
 

where Yc is the calibrated field and the coefficients a0, a1, a2, a3, a4 , b0 and b1 are 
to be determined by imposing the minimization of the differences between the 
YB(xi, τ) values inferred from buoy measurements and the modelled values at their 
closest grid point. The role of the lineal coefficients a0, a1, a2, a3 and a4 is to 
increase or decrease the relative importance of the terms in which Y(x, τ) is 
decomposed. Thus coefficient a0 modifies the time-averaged field, while a1, a2, a3 
and a4 modify each of the considered modes. Because a linear transformation is 
usually not enough to significantly improve the calibration, exponential 
coefficients (b0 and b1) are also introduced. The first coefficient, b0, acts only on 
the time-averaged field, so that it distorts (either enhancing or smoothing) the 
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spatial variability of the field. Conversely, the second coefficient, b1, acts on the 
temporal amplitude of the leading mode, which accounts for 98% of the variance 
of the field. It is applied in such a way that the sign of the amplitude A1(τ) is 
always preserved. Subsequent modes account for much smaller percentages of the 
field variance and therefore only the linear correction is applied. That is, further 
corrections such as the exponential coefficient used for the leading EOF can be 
considered of second order when applied to higher order modes.  

    The function to be minimized is expressed as: 
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where Nb is the number of buoys used for the calibration and the top line denotes 
time averaging.  

    Once the calibrated fields MC(x, τ) and VC(x, τ) were obtained, the next step 
was to transform the time series of the original hindcast in such a way that the 
modified time series had mean values and variances equal to MC(x, τ) and VC(x, τ). 
To do so, at each grid point x two sets of 50 random time series of 10 years each 
with a 3-hour sampling rate and following the log-normal distribution were 
generated, the first set using the parameters MC(x, τ) and VC(x, τ) and the second 
set using the non-calibrated parameters M(x, τ) and V(x, τ). For each grid point 
and series the percentiles between the 20th and the 99.5th with a step of –log(-log(

)Pr( SWHSWH ≤ )) (that is, 25 values with separations ranging from 10 to 0.01) 
were computed  and afterwards averaged over the 50 records for both the 
calibrated and non-calibrated series. Finally, the relationship between the 
averaged percentiles of the calibrated (Prn

Cal) and non-calibrated (Prn) time series 
was assumed to be of the form:  

                          )(Pr)(Pr xB
n

Cal
n xA=                                        (1.6)    

which is a linear relationship in a logarithmic scale. The set of parameters A(x), 
B(x) will be those used to transform the SWH series of the original hindcast 
SWH(x,t) into the calibrated series SWHCal(x,t):                                 

       [ ] )(),()(),( xBCal txSWHxAtxSWH =                            (1.7)     

Alternatively, the values of A(x), B(x) could be inferred analytically, by imposing 
that a log-normal distribution with parameters M(x, τ) and V(x, τ) turns into a 
distribution with parameters MC(x, τ) and VC(x, τ). This was however discarded 
due to the complexity of the analytical expressions.  

    A worth noting feature is that the last percentile used for the calibration is the 
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99.5th. The reason for discarding higher percentiles is to avoid the influence of 
extreme events (which have been shown not to follow a log-normal distribution) 
on the fit.   

 

2.4. Results  

1.4.1 The calibrated hindcast 
The values of the calibration parameters that minimize expression (1.5) when the 
22 buoys from Table 2.1 were used are listed in Table 2.3 for the M and V fields. 
Examples of the observed, the non-calibrated and the calibrated monthly M and 
V values are shown in Fig. 2.5 for three buoys, namely Cabo de Palos (station 
14), Mahón (station 17) and Nice (station 4). In order to make the modelled and 
observed parameters directly comparable, the observed M and V have been scaled 
to the period covered by the model. To do so, the modelled M and V have been 
first computed for both the entire (Mmodel and Vmodel) and the overlapping (Mmodel

over 
and Vmodel

over) periods; then the observed M and V have been multiplied by the 
ratios Mmodel /Mmodel

over and Vmodel /Vmodel
over, respectively. In the first two stations, 

Cabo de Palos and Mahón, the calibrated M and V values are closer to the 
observed ones than the non-calibrated values. This is especially true for the mean 
value M, which indicates that the calibration method is able to solve a clear 
problem of the hindcast: the underestimation of observed SWH (reflected in the 
bias quoted in Table 2.2).  

    The improvement is less important for the variance V, indicating that the part 
of the RMS that is not due to the bias can only be partially overcome by 
modifying the log-normal distribution.  At Nice the result is the opposite: the 
calibrated values display slightly larger RMS differences with respect to 
observations than the non-calibrated values. Those stations where the calibration 
does not improve the hindcast in terms of RMS have been marked with an 
asterisk in Table 2.2. A common feature of such stations is that the bias of the 
non-calibrated hindcast is very small (see Table 2.2).  
 
Table 2.3. Calibration parameters obtained for the mean (Mc) and variance (Vc) 
fields. 
 

 

 

 

 a0 a1 a2 a3 a4 b0 b1 
Mc 1.26 0.33 1.69 2.02 -0.11 0.96 1.42 

Vc 0.92 1.16 0.30 0.90 0.88 0.92 0.87 
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Figure 2.5. Annual cycle of the monthly mean (M) and variance (V) parameters 
of the log-normal distributions computed from the buoy records of Cabo de Palos, 
Mahón and Nice (dots) and from the non-calibrated (black lines) and calibrated 
(grey lines) model data at the closest grid point to each buoy.  
 

    The parameters A, B that define the relationship between hindcasted and 
calibrated SWH time series were calculated as expressed in equation (1.6).  Two 
examples of the fit of the percentiles at two given locations (Mahón and Lion) are 
shown in Fig. 2.6. The plots illustrate the goodness of the fits; the highest 
percentiles shown in the Figure depart from the fit because they are actually not 
considered in the fitting process. Several tests (not shown) demonstrated that the 
inclusion of the highest order percentiles (99.5< Pr<99.999) in the fit resulted in 
a distortion of the calibration of the mean regime.   
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Figure 2.6. (Above) QQ plot of calibrated (Ycal) and non-calibrated (Y) averaged 
random time series for two stations, Mahón and Lion (dots). The fitting of 
equation (1.6) is also shown (gray line). Percentiles in the range 20 - 99.999 are 
plotted, although only those in the range 20 - 99.95 were used for the fit. (Below) 
Corresponding QQ plots of averaged random time series (non-calibrated (gray 
dots) and calibrated (black dots)) and observed time series at the two stations. 

 

    The spatial distributions of the parameters A and B are mapped in Fig. 2.7. 
The plots indicate that the calibration does not dramatically modify the 
hindcasted fields, since both parameters A and B are close to 1 everywhere in the 
domain. Parameter A is particularly close to 1 in areas where the mean and 
variance of SWH are low (e.g. near the coast) and higher than 1 where M and V 
are higher (in the middle of the basin). This parameter is responsible for the 
SWH increase that intends to overcome the underestimation of the hindcast. 
Parameter B shows a smoother behavior over the whole basin, ranging from 0.81 
near the Iberian Peninsula to 0.83-0.84 over most of the domain. It departs 
significantly from 1 near the Iberian Peninsula, while it is closer to 1 in the rest of 
the domain.  

    The improvement of the calibrated hindcast with respect to the non-calibrated 
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one was quantified in terms of the reduction of the bias and the RMS differences 
between the hindcasted SWH and the observed SWH at each buoy location for 
their overlapping periods. Results are listed in Table 2.2. Overall (considering all 
the buoys) the calibration resulted in a very significant reduction of the bias (by 
about 76%). At the very few buoys where the bias was initially smaller (in 
absolute value) than -0.10 m (e.g. Banyuls, Nice, Capo Gallo and Cabo de Gata) 
the calibration resulted in an overestimation of the SWH and an increase of the 
initial RMS. On average, the total RMS differences between observed and 
modelled SWH were reduced by 10%. The overall improvement resulting from the 
calibration process is illustrated in Fig. 2.8 for the buoy of Cabo de Palos.  

2.4.2 Validation with altimetry 
SWH from satellite altimetry averaged over the period 1992-2008 is mapped in 
Figure 2.9a. Values are higher (about 2m) in the middle of the basin and decrease 
towards the coasts. The SWH averaged over the domain was 1.26 m. Modelled 
gridded data were interpolated at the same times and locations of satellite track 
observations for comparison. Non-calibrated and calibrated SWH fields are 
mapped in Figures 2.9b and 9c respectively. Both show a pattern similar to the 
observations, but before the calibration SWH was significantly smaller than the 
observed value (mean value of 0.89 m). The underestimation of the hindcast is 
similar to that inferred from the comparison between hindcast and buoys. After 
the calibration, modelled SWH became closer to altimetry observations 
everywhere in the domain, with a mean value of 1.15 m and maximum values of 2 
m in the centre of the basin. 

    The bias and RMS differences between altimetric observations and modelled 
data are mapped in Figure 2.10 for both non-calibrated and calibrated SWH. 
Before the calibration, the bias was negative over the entire domain, with an 
average value of -0.34 m but reaching -0.5 m in the middle of the basin. Bias was 
significantly reduced after calibration, resulting in an average value of -0.08 m. 
The improvement in the RMS differences was less dramatic, changing from 0.75 m 
to 0.68 m on average. Overall, the comparisons with altimetric observations 
indicated that both the bias and RMS differences between the hindcast and 
altimetry data were reduced by about 80% and 9%, respectively. 

 

2.5 Discussion and conclusions 
The calibration of SWH following the methodology proposed by Tomas et al 
(2008) has resulted in a significant improvement of the wind-wave hindcast over 
the entire domain. Major differences with respect to the results presented by  
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Figure 2.7. Spatial distribution of parameters A and B linking the SWH of the 
calibrated and non-calibrated wave fields (see Equation (1.7)). 

 

Tomas et al (2008) are the larger domain (the whole Western Mediterranean 
basin) and the extended temporal coverage (1958-2008). Both conditions allowed 
increasing the number of buoys used in the calibration (up to 22), which is 
expected to improve the results. Nevertheless the impact of the number of buoys 
used in the calibration process was checked by using different subsets of buoys 
containing from 2 to 22 buoys. All possible combinations were considered, 
implying a different number of subsets depending on the number of buoys (e.g. 
231 combinations of 2 buoys, 1540 combinations of 3 buoys, ... , 22 combinations 
of 21 buoys and 1 single combination of 22 buoys). For each combination, the 
RMS differences between the calibrated parameters (Mc and Vc) and those 
calculated from buoy data were computed. Then, for each group of n buoys (with 
n ranging from 2 to 22) the averaged RMS difference was obtained for all buoys  

 

 



32 
 

 
 

Figure 2.8.  Comparison between SWH observed by the buoy of Cabo de Palos 
(grey line) and SWH at the closest grid point as given by the non-calibrated (black 
dashed line) and calibrated (black line) hindcasts during September 2007. Units 
are meters. 

 

and also separately for those buoys used in the calibration and for those not used 
in the calibration (independent buoys). These averages together with the standard 
deviations of the RMS differences of each group of n buoys are plotted in Figure 
2.11 for the parameter M. The parameter V is not shown, since results were very 
similar and led to the same conclusions. Results show that the overall RMS 
difference decreases on average with increasing number of buoys used for 
calibration (blue dots), as expected intuitively. It is noteworthy that the standard 
deviation of RMS differences for the independent buoys (green dots) is larger 
when either very few buoys are used for calibration, due to the poor fit in the rest 
of locations, or when a large number of buoys are used for the calibration, due to 
the spatial variability of observations of the remaining independent buoys that 
leads to a smaller sample size and thus to greater uncertainty.  

    For each group of n buoys, the optimum subset (defined as the one resulting in 
the highest reduction of the RMS difference in M, although not necessarily in the 
highest reduction of the bias) was determined. These optima combinations were 
then used to generate calibrated SWH time series that were finally compared with 
altimetric observations. Mean bias and RMS differences for selected groups are 
listed in Table 2.3. Despite the highest RMS reduction was found for the largest  



33 
 

 
 

Figure 2.9. (a) SWH observed by satellite altimetry averaged over the period 1992-
2008. (b) Hindcasted SWH at the same locations of satel lite observations and 
averaged over the same period. (c) As in (b), but for calibrated SWH. The mean 
values for each field are also quoted. 

 

number of buoys (22), comparable solutions were obtained with a smaller number 
of buoys. This result suggest that, in order to apply a spatial calibration of a 
wind-wave hindcast, a small number of single-point records would suffice, 
provided that the buoys have an optimum spatial coverage. Conversely, when the 
worst subset of buoys (in terms of RMS reduction) is chosen, the result of the 
calibration can even worsen the non-calibrated SWH. This is illustrated with the 
results using the worst combination with 10 buoys included in Table 2.4. These 
tests help to detect those buoys that have a negative impact in the calibration  
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Figure 2.10. Bias and RMS differences between altimetry observations and 
modelled data before (upper panels) and after (lower panels) the calibration 
process. The mean values of the fields are given inside the maps. 

 

process. Figure 2.12 represents the location of corresponding buoys to the best 
(above) and worst (below) combination of 10 buoys, showing a significant 
difference between them. The buoys corresponding to the best combination are 
spatially distributed over the basin, while the worst combination presents the 
buoys grouped at northwest of the basin.  

    As a general rule and on the basis of these results, therefore, the use of the 
maximum number of records is advised.  

    In addition to the subset of buoys used for the calibration, the eventual impact 
of the number of EOFs considered in the decomposition of the M and V fields was 
also tested. Thus, by considering an additional mode the reduction of the RMS 
barely increased in 0.11%. This supports the robustness of the results.  

    Perhaps the most important limitation of the method is the assumption of a 
log-normal distribution. It has been shown that the mean wave regime obeys such 
a distribution, but also that extreme events depart from it. This made that when 
inferring the calibration parameters A(x), B(x), the highest percentiles were 
eliminated in order to avoid a distortion of the fit. An obvious, related 
consequence is that the calibration is only valid for the mean regime, not for 
extreme events. The exploration of other statistical distribution models is left for 
further applications. A further eventual improvement could come from allowing 
the parameters of the distribution to depend not only on the location and time, 
but also on the mean wave direction.  
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Figure 2.11. Averaged values (dots) and standard deviations (bars) of RMS 
differences between the calibrated parameter Mc and the parameter inferred from 
buoy data for different subsets of n buoys (with n ranging from 2 to 22). Values 
are computed for all buoys (blue), for buoys used in the calibration process (red) 
and for independent buoys (green).  

 
Table 4. Mean value of the calibrated hindcast and bias and RMS differences with 
respect to altimetric observations when the calibration is performed with different 
subsets of n buoys. The average values obtained from the optima combinations on 
N buoys are quoted. For the subset of 10 buoys, results for the worst (in terms of 
RMS reduction) combination are also quoted.   

 

N         
 
                                     

Mean value of the 
calibrated SWH (m) 
(Observed mean = 1.26m) 

RMS (m) 
 
 

BIAS (m) 
 
 

Before calibration 0.89 0.75 -0.34 

5 1.04 0.69 -0.2 

10 1.05 0.7 -0.18 

15 1.11 0.69 -0.12 

20 1.13 0.69 -0.1 

22 (all buoys) 1.15 0.68 -0.08 

10  (worst) 1.35 0.77 0.13 
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Figure 2.12. Maps of boys corresponding to the best (above) and worst (below) 
combination of 10 buoys, in terms of RMS reduction.  
 

The overall improvement brought in by the calibration can be summarized in 
terms of the reduction of the bias and of the total RMS differences between the 
hindcasted SWH and the observations averaged over the overlapping periods. 
Since the original hindcasted SWH underestimated observations, the effect of the 
calibration has been in the sense of increasing SWH values. When compared with 
independent altimetric observations the reduction of the negative bias was of 76%, 
whereas the reduction in the RMS differences was 10%. When compared with 
buoys, the bias was also significantly reduced in the vicinity of most of them (78% 
on average), the exception being those with a very small bias in the original 
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hindcast. For these ones, the RMS differences between model and observations 
either slightly increased or remained unchanged after calibration (see Table 2.2). 
Likewise, for about 4% of satellite locations, corresponding to those areas with 
initial small biases, the calibration process had a slightly negative impact in terms 
of bias and RMS differences. The smooth variation in space of the calibration 
parameters does not enable to obtain a similar improvement in those buoys that 
show significant differences in terms of bias and are close to each other. This is for 
example the case of Valencia I and II stations. 

    Errors in the estimation of SWH from buoy observations have been quantified 
in about 5 cm including both the instrumental and statistical uncertainties 
(Puertos del Estado, 1996). Hindcasted SWH time series underestimate buoy 
observations in the Western Mediterranean by an average value of 18 cm, reaching 
around 30 cm at several sites. After calibration, the bias between model and 
observations becomes closer to the error bars, being in general smaller than 10 cm 
(except for those locations where the calibrated SWH overestimates the 
observations).  

    The ultimate result of this work is a more realistic characterization of the wave 
climate of the Western Mediterranean during the last five decades, which is 
intended to be distributed to the community of scientists and coastal managers.  
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Chapter 3 

Impact of the atmospheric climate 
modes on Mediterranean sea level 
variability 

                                                
                                                       Momo sabía escuchar de tal manera que a la gente tonta 

se le ocurrían, de repente, ideas muy inteligentes. 
        

Momo listened in a way that made slow-witted people                                                                                                                                 
have flashes of inspiration.      

 
Michael Ende, Momo (1973)       

 
This chapter has been published in:  

 
• Martínez-Asensio, A., Marcos, M., Tsimplis, M. N., Gomis, D., Josey, S., 

Jorda, G., 2014. Impact of the atmospheric climate modes on 
Mediterranean sea level variability. Global and Planetary Change, 118, 1-
15.  

 
Abstract 

The relationships of Mediterranean sea level, its atmospherically driven and 
thermosteric components with the large scale atmospheric modes over the North 
Atlantic and Europe are explored and quantified. The modes considered are the 
North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the 
Scandinavian pattern (SCAN) and the East Atlantic/Western Russian (EA/WR). 
The influence of each mode changes between winter and summer. During winter 
the NAO is the major mode impacting winter Mediterranean sea level (accounting 
for 83% of the variance) with SCAN being the second (56%) mode in importance. 
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Both NAO and SCAN effects are partly due to direct atmospheric forcing of sea 
level through wind and pressure changes. However NAO and SCAN are correlated 
with each other during winter and they explain the same part of variability. The 
EA/WR also affects the atmospheric sea level component in winter (13%), acting 
through atmospheric pressure patterns. In winter, the thermosteric contribution is 
correlated with the SCAN in parts of the Eastern Mediterranean (9%). The rate 
of change of the thermosteric component in winter is correlated with the EA 
(24%). During the summer season, the sea level variance is much reduced and the 
impact of the large scale modes is in most parts of the Mediterranean Sea non 
significant.  

 

3.1 Introduction 

Sea level integrates changes in the thermohaline characteristics of the ocean 
waters due to heat fluxes and water advection, changes in the ocean mass either 
due to redistribution of water in response to the atmospheric mechanical forcing 
or due to the addition or removal of water from the land and the criosphere, and, 
depending on the reference system, may also include land movements and changes 
in the oceanic configuration. With the exception of land movements and changes 
in the shape of the oceanic basin the other two sea level components 
(thermohaline and mass) are influenced by the large scale atmospheric climate 
modes through their effect on atmospheric pressure gradients, wind, heat and 
freshwater fluxes and changes in the oceanic circulation.  

    Mediterranean sea level rise observed in the longest tide gauges during the last 
century (1.1-1.3 mm/year) was significantly lower than the global rate (1.5-
1.9mm/year) (Tsimplis & Baker 2000; Church and White, 2011). An increase of 
the averaged atmospheric pressure over the basin during the period 1960-1990 
resulted in negative trends of Mediterranean sea level, while in the Atlantic 
stations the positive trends were lower for this period (Tsimplis & Baker 2000; 
Tsimplis & Josey 2001). Global and Mediterranean rates significantly increased 
during the period 1993-2010 (Church and White, 2011; Cazenave et al.2001; 
Fenoglio-Marc 2001).    

    For the Mediterranean Sea, the North Atlantic Oscillation (NAO) is known to 
affect, primarily, winter sea level variability (Tsimplis and Josey, 2001; Gomis et 
al 2008; Tsimplis and Shaw, 2008; Criado-Aldeanueva et al., 2008; Tsimplis et al, 
2013). In addition to dominating the atmospheric component of sea level, a 
smaller influence of the NAO has also been suggested on the thermosteric 
component (Tsimplis and Rixen, 2002; Tsimplis et al., 2006; Tsimplis et al., 2013), 
and on the net evaporation (Tsimplis and Josey, 2001; Mariotti et al., 2002;  
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Fenoglio-Marc et al., 2013) of the Mediterranean Sea. The Mediterranean 
Oscillation Index (MOI) has been successfully correlated with mean sea level 
changes, especially during the winter season (Gomis et al 2006; Tsimplis and 
Shaw, 2008); namely it has been shown to explain 46% of the winter sea level 
variance for the period 1993-2001 (Suselj et al, 2008). It is worth noting, however, 
that the NAO index and the MOI are not independent and are significantly 
correlated in winter.  

    Raicich et al (2003) found that summer sea level atmospheric pressure in the 
Mediterranean region is correlated with the Indian monsoon and the Sahel rainfall 
indices, attributed to particular wind regimes over the area which in turn 
influenced coastal sea level. Tsimplis and Shaw (2008) identified the East Atlantic 
pattern (EA) as an additional atmospheric mode impacting sea level, but they 
only found significant correlations in the Adriatic and once the atmospheric 
pressure effect was removed. Josey et al (2011) suggested that at least in some 
parts of the Mediterranean Sea there is a distinct contribution to heat fluxes 
linked with climatic indices different from NAO, such as the East Atlantic (EA) 
and the East Atlantic/Western Russian (EA/WR) patterns. In particular they 
identified correlations between the winter basin averaged heat fluxes and EA, 
especially at Northwestern Mediterranean and Southern Adriatic, while the 
correlations between each winter subbasin averaged and EA/WR were in opposite 
sense in each region, with major values at Aegean Sea. The influence of these 
modes on heat fluxes necessarily poses the question whether such modes affect at 
least the steric component of sea level.  

    The present paper assesses and clarifies the influence of the four major 
atmospheric modes over the North Atlantic, namely the NAO, the EA the 
EA/WR and SCAN, on Mediterranean sea level as well as its component driven 
by wind and atmospheric pressure changes and on the thermosteric component. 
The analysis is performed for different periods dictated by the availability of tide 
gauge data and altimetry data. The paper is organized as follows: Section 2 
introduces the data sets to represent sea level and its components and the climate 
indices. In Section 3 we present the methodology of the analysis and in Section 4 
we show the main results. Finally, a discussion and some concluding remarks are 
presented in Sections 5 and 6.  

 

3.2 Data sets 
Sea level observations and estimates of the various contributions to sea level 
variability have been obtained from the following data sources. 
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3.2.1 Tide gauge data 
Monthly mean sea level values with benchmark history (Revised Local Reference, 
RLR) were retrieved from tide gauge records archived at the Permanent Service 
for Mean Sea Level (PSMSL; Woodworth and Player, 2003). We selected 12 tide 
gauges distributed along the Mediterranean coasts, each of them spanning more 
than 35 years of the last decades of the 20th century. The tide gauge stations and 
their periods of operation are listed in Table 3.1. Finally, a set of atmospherically-
corrected tide gauge records was obtained through removing the atmospheric 
contribution as given by a sea level hindcast, at the closest grid point to each tide 
gauge. The VANI2-ERA hindcast used is described later. 

3.2.2 Altimetry data  
Gridded Sea Level Anomaly (SLA) fields were obtained from the merged AVISO 
products available at http://www.aviso.oceanobs.com. The data consist of 
monthly multimission (up to four satellites at a given time) gridded global sea 
surface heights spanning the period 1993-2010, with a spatial resolution of 
1/4°×1/4°. This version comes with all the standard geophysical corrections 
applied including the so called Dynamic Atmospheric Correction (DAC; Volkov et 
al 2007) that accounts for the effect of atmospheric pressure and wind on sea 
level. This dataset will be referred to as DAC-altimetry. The DAC correction, as 
supplied by AVISO, was added back to altimetry in order to create a second data 
set accounting for the atmospheric pressure and wind effects on sea level. This 
will be called altimetry. Note that because the dataset is a combination of 
observations from different platforms there is significant uncertainty for the trends 
derived especially for the last mission. In addition, the applied GIA corrections 
also introduce significant errors in trends (Ablain et al., 2012). However we do not 
consider these uncertainties as capable of affecting the correlation with the 
various atmospheric modes because the variance linked to long term trends is 
much smaller than the interannual variability analized here.  

3.2.3 Atmospherically-induced sea level 
The meteorological contribution to sea level caused by the combined action of 
atmospheric pressure and wind was quantified from the VANI2-ERA data set  
(Jordà et al., 2012). VANI2-ERA data are 6-hourly sea surface heights obtained 
with a barotropic version of the HAMSOM model forced with atmospheric 
pressure and winds from a dynamical downscaling of the ERA40 reanalysis. The 
data span the period 1958-2008 and cover the Mediterranean Sea and a sector of 
the NE Atlantic Ocean with a spatial resolution of 1/6°×1/4°. Two additional 
 

http://www.aviso.oceanobs.com/


44 
 

Table 3.1. List of tide gauges, location, periods of operation and percentage of gaps 
 

 Station Name 
 

Area 
 

Latitude  
(º, Min) 

Longitude  
(º, Min) 

Period 
 

Gaps  
(%) 

 

 Malaga             W. Med. 36 43 N 04 25 W 1950-2010 15.00  
 Alicante    W. Med. 38 20 N 00 29 W 1960-1997 2.70  
 Marseille          W. Med. 43 18 N 05 21 E 1950-2011 0.00  
 Genova             W. Med. 44 24 N 08 54 E 1950-1997 6.38  
 Venice    Adriatic 45 26 N 12 20 E 1950-2000 2.00  
 Trieste            Adriatic 45 39 N 13 45 E 1950-2011 1.64  
 Rovinj             Adriatic 45 05 N 13 38 E 1955-2008 1.89  
 Bakar              Adriatic 45 18 N 14 32 E 1950-2008 1.72  
 Split I            Adriatic 43 30 N 16 23 E 1952-2008 1.79  
 Split II           Adriatic 43 30 N 16 26 E 1954-2008 1.85  
 Dubrovnik          Adriatic 42 40 N 18 04 E 1956-2008 1.92  
 Alexandria  E. Med. 31 13 N 29 55 E 1950-1989 2.56  

 

runs were also performed: one forced only by wind and the other forced only by 
atmospheric pressure variations. Model hourly outputs were converted into 
monthly fields at each grid point. 

3.2.4 Hydrographic data and thermosteric sea level 
Ocean temperature (T) fields from Ishii and Kimoto (2009; version 6.12) were 
used to compute thermosteric sea level in the Mediterranean Sea (download 
website: http://rda.ucar.edu/datasets/ds285.3/). The data set consists of monthly 
T fields over a 1ºx1º global grid down to 1500m and spanning the period 1950-
2011. Thermosteric sea level was computed at each grid point over the 
Mediterranean Sea by vertically integrating the specific volume anomaly at each 
grid cell down to 300 m. The reference level at 700 m was also sued for 
comparison, but the results did not differ. Therefore the 300 m reference level was 
preferred because there are a higher number of observations at upper levels. 
Depths deeper than 700 m were not considered due to the scarcity of 
observations. Salinity (S) values are also available in the same dataset. However, 
because S measurements are highly sparse and uncertain over the entire basin 
(Jordà and Gomis, 2013), thermosteric sea level was preferred instead of steric sea 
level. For the calculation of the thermosteric height changes S was considered 
constant to the 1950 value at each depth. 

3.2.5 Atmospheric variables 

Mean sea level atmospheric pressure, 2m air temperature, net heat fluxes and  

http://rda.ucar.edu/datasets/ds285.3/
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Figure 3.1. Winter (Dec-Mar) NCEP 2m air temperature anomalies (coloured 
field, ºC), 10m wind speed anomalies (vectors) and sea level pressure anomalies 
(contours) for a unit value of the positive index of: (a) NAO, (b) EA, (c) EA/WR 
and (d) SCAN. Note that the horizontal vector (red arrow) is for scale and 
indicates a wind speed of 5m/s. 
 

10m wind velocity, were obtained from NCEP/NCAR atmospheric reanalysis 
(Kistler et al., 2001). We used monthly mean values obtained from the 6h output 
fields with a spatial resolution of 2.5ºx2.5º over the period 1950-2011.   

3.2.6 Climate indices 
The leading atmospheric climate modes used, namely NAO, EA, EA/WR and 
SCAN, as computed for the period 1950-2011 were downloaded from the NOAA 
Climate Prediction Centre                                                                      
(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml). These modes 
were obtained through a rotated principal component analysis (Barnston and 
Livezey, 1987) of the monthly mean standardized 500-mb height anomalies in the 
Northern Hemisphere. This ensured that they are orthogonal (independent) to 
each other at a monthly scale. The source of the data is the same as that used by 
Josey et al (2011) although the period covered in this study is longer.  Our  
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Table 3.2. Correlation coefficients between winter (upper right triangle of the 
matrix) and summer (lower left triangle of the matrix, in italic) climate indices 
for the period 1950-2012. Boldface values denote statistical significance at 95% 
level.  

 

 

 
 
 
 

approach has considered the sea level impacts of the four leading modes of 
atmospheric variability that have an influence in the Mediterranean Sea region as 
identified by the NOAA Climate Prediction Centre analysis. Other patterns can 
be defined but they are likely to reflect a combination of the modes that we have 
already employed. Hence, our focus has been on these four modes. Future research 
that considers Mediterranean sea level impacts of other patterns of variability 
should be careful to identify the extent to which the other patterns are dependent 
on those already considered here.  

 

3.3 Methodology 
Winter and summer averages, defined as the mean values over the period 
December to March and June to August, respectively, were computed for each 
climate index. The correlations among the seasonal averages of the climate indices 
used are listed in Table 3.2. The NAO and SCAN are anticorrelated in winter. In 
the summer the EA, EA/WR and SCAN are all correlated with each other.  

    Composite fields of 2m air temperature, sea level pressure and wind anomalies 
were used to develop spatial patterns of the relevant atmospheric field 
corresponding to the high and low values of each index. The composite fields were 
built as follows: first, monthly fields of the atmospheric variables coinciding with 
a climate index larger than 1.5 (or lower than -1.5) were selected. Each monthly 
field was then multiplied by the corresponding index value and the resulting time 
series was weighted averaged. The pattern obtained in this way can be considered 
associated with a unit positive value of the climate index. Using different 
thresholds for the climate indices did not alter significantly the results. The   
resulting patterns for the positive phase of each index are shown in Figure 3.1. 
 

    NAO  EA EA/WR  SCAN   

 
NAO  1 0.11 0.05 -0.42 

 
 

EA  -0.2 1 0.02 0 
 

 
EA/WR  0.2 -0.37 1 -0.16 

   SCAN  0.17 -0.27 0.25 1   
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Table 3.3. Mean and standard deviation of winter and summer variance of each 
data set.  For tide gauges and atmospherically-corrected tide gauges the variance 
of each tide gauge was calculated and then the average value and the STD are 
shown.  For sea level altimetry, DAC-Altimetry, atmospheric component, pressure-
only and wind-only components and thermosteric sea level the variance at each 
grid point has been calculated and then the average and STD are shown.  The 
lowest and highest variances of each data set are also shown (in brackets). (*) The 
units for the thermosteric rate of change are cm/month. 
 
 

  Winter Variance (cm2) Summer Variance (cm2) 

Tide gauges 32±10 (17-44) 7±2 (2-10) 
Atm-Corr. Tide gauges 11±2 (5-15) 5±2 (1-10) 
Altimetry 19±7 (6-73) 6±6 (1-64) 
DAC-Altimetry 11±7 (3-81) 6±6 (1-63) 
Atmospheric component 6.1±2.1 (2.2-13.7) 0.6±0.1 (0.2-1.2) 
Pressure-only component 3.3±1.5 (0.5-6.3) 0.4±0.1 (0.1-0.6) 
Wind-only component 0.7±0.2 (0.4-2.8) 0.1±0.0 (0.1-0.4) 
Thermosteric component 0.9±0.5 (0.0-2.5) 1.5±0.8 (0.0-4.6) 
Thermost. rate of change* 0.2±0.1 (0.0-0.5) 0.4±0.1 (0.0-0.5) 

 

    Seasonal averages were calculated for the tide gauge records for the period 
December to March (winter) and for the period June to August (summer). For 
the gridded data, seasonally basin averaged time series, for the same periods, were 
obtained by calculating averages over the whole Mediterranean basin as well as 
over the eastern and western sub-basins (the Sicily Strait has been used as the 
separation line between the eastern and western basins).  Seasonal variances of 
the different data sets are listed in Table 3.3. The values correspond to the basin 
averaged variance and its standard deviation. The lowest and highest value for 
each data set is also shown for comparison.  

    All time series were detrended and the seasonal cycle was removed before the 
regression analysis. The relationship between the various climate indices and sea 
level was explored on the basis of the correlation and linear regression values 
between the seasonal (winter and summer) anomalies of each variable and the 
corresponding seasonal time series of each index. The trend removed corresponded 
to the common period of the time series and the corresponding index. Significance 
was set at the 95% level. 

    Multiple linear regression analysis was, in addition, performed with sea level or 
one of its components as the dependent parameter and all four indices as 
independent parameters. Note that the correlation between the seasonal values of 
the indices (Table 3.2) indicates that there is the possibility that the same 
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variance in sea level can be accounted for by more than one index. Forward 
stepwise multiple linear regression analysis (Draper and Smith, 1998) was used to 
select the statistically significant contributors. This procedure selects the most 
correlated dependent variable and removes its influence through a regression 
analysis. Then it checks for correlation between the rest of the dependent 
parameters and the residual signal, until the correlation becomes non-significant. 
Where more than one index can account for the same part of variability the 
regression model favours the index that accounts for the highest percentage of 
total variability. 

 

3.4 Results 

3.4.1  Observed sea level from tide-gauges  
Correlations between seasonal climate indices and tide gauge records and 
atmospherically corrected tide gauge records are shown in Figure 3.2. For some of 
the indices significant differences can be found between eastern and western 
basins. The winter NAO is found to be correlated with observed winter sea level 
at all sites. In the Adriatic it was also correlated during summer at most stations. 
SCAN was positively correlated during winter in the Adriatic stations as well as 
in Marseille and Genova. These similarities are in agreement with the negative 
correlation of -0.47 found between winter NAO and SCAN (Table 3.2). EA/WR 
was correlated with sea level during winter, in the Adriatic Sea and Alexandria at 
the Eastern Mediterranean. The removal of the atmospheric forcing component 
using VANI2-ERA hindcast reduced the correlation coefficients but did not make 
the correlations statistically insignificant.  

    During the summer season the NAO is correlated with sea level in some 
Adriatic stations. The EA is correlated in the Adriatic stations and Genova. The 
removal of the atmospheric forcing component increased the correlation with the 
EA in the Adriatic. 

    The variance accounted for by the indices at each tide gauge record and the 
corresponding atmospherically corrected tide gauge record are listed in Table 3.4.  

    The results of the regression analysis against the four modes are shown at 
Table 3.4. The results for the multiple regression are shown in parenthesis. Note 
that  although SCAN accounts for a significant amount of the variance for the 
Adriatic stations and Genoa and Marseille in the multiple regression model it is 

 



49 
 

 

                       
 

Figure 3.2. Dec-Mar (triangles and stars) and Jun-Aug (circles and squares) 
correlation coefficients between NAO (a), EA (b), EA/WR (c), SCAN (d) and 
tide gauges (black) and atmospherically corrected tide gauges (grey) for the 
common period 1958-2008. Fil led symbols denote statistical ly significance at 95% 
level. Site names are listed in Table 3.1. 
 
 

considered redundant by the selection process at most of the tide gauges except in  
Venice and Rovinj. This is probably a consequence of the  inter-dependence of 
winter averaged NAO and SCAN. 

    The results of multiple regression indicate that the NAO is the leading mode 
for winter sea level in the Mediterranean Sea, accounting for 13% to 47% of the 
variance of observed sea level and for 7% to 26% of the variance of 
atmospherically corrected sea level. The EA/WR accounts for 6% to 22% in the 
Adriatic and the eastern sub-basin and conserves similar values when the 
atmospheric correction is applied (8% to 19%). The EA accounts for 6%-18% of 
the variance of corrected sea level. Overall, the climate indices account for 39%-
56% of the total inter-annual sea level variability in winter and for 14%-41% when 
the atmospheric correction is applied. The multiple regression models are shown 
in  Fig.3.3.   
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Table 3.4. The percentage of the variance accounted for by each climatic index at 
each tide gauge  for winter (above) and summer (below) for a regression model in 
which only one index is the independent parameter. In brackets the corresponding 
variance for the multiple regression model.  

 
Variance accounted for 

  Winter sea level 
 

Winter atmospherically-corrected sea level 

NAO EA EA/WR SCAN   NAO EA EA/WR SCAN 

Málaga 40 (40) 3 (0) 0 (0) 1 (0) 
 

7 (0) 4 (0) 4 (0) 1 (0) 
Alicante 47 (47) 5 (0) 0.4 (0) 7 (0) 

 
20 (15) 14 (9) 0 (0) 2 (0) 

Marseille 32 (29) 10 (7) 1 (0) 12 (0) 
 

10 (7) 22(18) 0 (0) 4 (0) 
Genova 44 (43) 10 (0) 8 (6) 24 (0) 

 
19 (14) 19 (14) 0 (0) 8 (0) 

Venice 24 (13) 1(0) 25(18) 25 (9) 
 

14 (0) 5 (0) 26 (19) 21 (14) 
Trieste 33 (33) 5 (0) 20 (20) 20 (0) 

 
14 (11) 9 (6) 15 (14) 7 (0) 

Rovinj 35 (26) 5 (0) 16 (14) 22 (5) 
 

18 (16) 11 (7) 11 (11) 11 (0) 
Bakar 32 (32) 4 (0) 22 (22) 19 (0) 

 
18 (18) 6 (0) 17 (17) 7 (0) 

Split 1 39 (39) 1 (0) 17 (17) 18 (0) 
 

24 (24) 3 (0) 9 (9) 7 (0) 
Split 2 39 (39) 2 (0) 15 (15) 18 (0) 

 
21 (21) 5 (0) 8 (8) 7 (0) 

Dubrovnik  40 (40) 0 (0) 17 (17) 18 (0) 
 

26 (26) 2 (0) 14 (14) 12 (0) 
Alexandria 17 (16) 1 (0) 16 (15)  0 (0) 

 
7 (0) 2 (0) 14 (14) 2 (0) 

            Summer sea level 
 

Summer atmospherically-corrected sea level 

  NAO EA EA/WR SCAN   NAO EA EA/WR SCAN 

Málaga 3 (0) 2 (0) 7 (0) 1 (0) 
 

3 (0) 4 (0) 8 (0) 0 (0) 
Alicante 0 (0) 1 (0) 0 (0) 18 (18) 

 
0 (0) 4 (0) 0 (0) 7 (0) 

Marseille 2 (0) 6 (0) 0 (0) 2 (0) 
 

1 (0) 11 (11) 0 (0) 0 (0) 
Genova 3 (0) 16 (16) 2 (0) 0 (0) 

 
0 (0) 14 (14) 2 (0) 2 (0) 

Venice 5 (0) 6 (0) 6 (0) 1 (0) 
 

2 (0) 6 (0)  5 (0) 0 (0) 
Trieste 15 (15) 8 (0) 5 (0) 1 (0) 

 
10 (0) 13 (13) 7 (0) 0 (0) 

Rovinj 13 (10) 11 (8) 5 (0) 0 (0) 
 

7 (0) 16 (16) 7 (0) 1 (0) 
Bakar 13 (13) 7 (0) 4 (0) 0 (0) 

 
6 (0) 9 (9) 5 (0) 1 (0) 

Split 1 14 (14) 10 (0) 5 (0) 0 (0) 
 

11 (1) 14 (11) 6 (0) 2 (0) 
Split 2 15 (15) 10 (0) 2 (0) 0 (0) 

 
11 (7) 15 (11) 2 (0) 2 (0) 

Dubrovnik 5 (0) 5 (0) 2 (0) 0 (0) 
 

4 (0) 8 (8) 3 (0) 2 (0) 
Alexandria 2 (0) 0 (0) 1 (0) 1 (0)   1 (0) 0 (0) 1 (0) 2 (0) 

 

    During summer the influence of climates modes in sea level variability from 
tide gauges is smaller. In the Adriatic the NAO accounted for 13% to 15% of the 
variance. The correlation with the other indices seems random (Table 3.4 and 
Figure 3.3). However, the summer EA accounts for 8% to 16% of the variance at 
Genova, Marseille and the Adriatic tide gauges when the atmospheric contribution 
is removed.  



51 
 

  
 
Figure 3.3. Winter (left) and summer (right) sea level at tide gauges (in grey) and 
time series reconstructed using the multiple regression model (black lines) with the 
corresponding indices (Figure 3.2 and Table 3.4).  

 

3.4.2  Observed sea level from altimetry  
Statistically significant winter correlations between the climate indices and 
altimetry are mapped in Figure 3.4 (left column).  The corresponding basin 
averaged correlation and the variance accounted for is listed in Table 3.5. Summer 
maps are not shown because no statistically significant correlation has been 
identified.  The correlations with tide gauges, but computed for the same period 
as the altimetry are also mapped for completeness (Figure 3.4, left). The highest 
correlation for basin average was found between altimetry and NAO (-0.91). The 
correlation with SCAN was slightly lower (0.75).  

    The multivariate regression model selects the NAO as the independent 
parameter while the SCAN mode becomes redundant. For this reason the variance 
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accounted for by SCAN is zero in Table 3.5. The winter NAO accounts for 77% of 
the variance followed by EA/WR (7%) (Table 3.5 and Figure 3.5 top). These 
values are consistent with the variances of tide gauges accounted for by the 
indices. However, the NAO accounts for more variance during the altimetric 
period than for the tide-gauge period whereas the opposite is true for EA/WR.    

    Note that the EA/WR correlations are below the significance level for most of 
the domain. Nevertheless it accounts for a small fraction of the variability. The 
multiple regression model accounts for 83% of the basin averaged winter variance 
of sea level. 

    Winter correlations between climate indices and DAC-altimetry are 
represented in Figure 3.4 (right). The correlations with atmospherically corrected 
tide gauges are also mapped over the DAC-altimetry maps. Basin and sub-basin 
averages of correlations and variances accounted for by the indices according to 
the multiple regression model are listed in Table 3.5. No significant correlations 
were found in summer (not shown). The highest correlation (in absolute values) 
was obtained with NAO (-0.9) SCAN having the second largest (0.6). The 
correlation with EA was also significant over part of the western sub-basin, with 
an average value of 0.5.  

    The multiple regression model considered SCAN redundant. The contribution 
of each independent mode to winter atmospherically-corrected sea level variability 
averaged over the entire basin is represented in Figure 3.5 (bottom), being the 
NAO the only significant mode, accounting for 78% of the variance. In the 
western sub-basin EA accounted for around 12% of the variance.  

    It is worth to clarify that the difference in winter variances found between tide 
gauges (32±10 cm2) and altimetry (19±7 cm2) listed in Table 3.3 is attributed to 
the different periods considered and to the fact that the altimetry average covers 
the whole basin, while the tide gauge value is point-wise. Indeed, when the winter 
variance of altimetry is calculated by averaging only the closest grid points to tide 
gauges and limiting the tide gauge average to the altimetry period this difference 
is significantly reduced (11±4 cm2 and 14±9 cm2, respectively). 

3.4.3 Atmospherically forced sea level 
Seasonal correlations between climate indices and atmospherically-induced sea 
level as given by the barotropic hindcast forced by pressure and wind are mapped 
in Figure 3.6 for winter (a-d) and summer (i-l). Basin averaged correlations and 
the corresponding variances accounted for are listed in Table 3.6. With the 
exception  
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Figure 3.4. Maps of the correlation coefficient between winter climate indices and 
winter altimetry (left) and DAC-altimetry (right) for the period 1993-2010. Dotted 
areas denote significant correlation at 95% level. Correlations with tide gauges are 
also shown for the same period (coloured circles). Only those tide gauges longer 
than 10 years of data during 1993-2010 are shown.  
 

of the EA, all other are correlated with the winter atmospheric component of sea 
level. The highest correlation (-0.7) is with NAO. For the winter season about 
50% of the variance is accounted for by the NAO index and 11% by the EA/WR. 
The correlation with SCAN was found redundant. Overall the variance accounted          
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Table 3.5. Correlation coefficients and the variance accounted for, by the 
regression model in which each climate index has been regressed against the 
corresponding sea level parameter. Results for winter are shown. The variance 
accounted for by the multiple regression model is shown in brackets.  Boldface 
values denote statistically significance at 95% level. Western and Eastern 
Mediterranean values are also shown.  
 

 

    for by the climate modes was about 60%. The statistical model for the 
averaged basin sea level for the NAO alone and the NAO and EA/WR are shown 
in Figure 3.7 (top).  It must be remarked however, that the atmospherically-
induced sea level variability is much smaller in summer than in winter; thus, the 
impacts of the climate modes are also smaller in absolute terms.  

    During summer, SCAN explains 14% of the variance; the other modes do not 
show statistically significant correlations (Table 3.6). Despite the low correlation 
obtained with NAO (-0.19 over the basin), this mode accounts for 8% of the 
variability in the eastern sub-basin, according to the regression model. The 
corresponding time series of the summer atmospherically-induced sea level and 
the regression model are plotted in Figure 3.7 (bottom).  

    Regression and correlation analysis was also performed for wind-only and 
pressure-only forced sea level (Table 3.6). Seasonal correlations for wind-only 
forced sea level are mapped at Figure 3.6 for winter (e-h) and summer (m-p). 
During winter, the NAO is the leading mode for wind and pressure only forced 
sea level with very similar basin averaged correlations (–0.67 and 0.68) and 
corresponding variances accounted for between 45% and 49%.  

    For the multiple regression model of pressure-only forced sea level all four 
independent modes contribute to winter basin-averaged sea level variability, 
reaching an overall value of 60%.   

    For the multiple regression model for wind-only forced sea level the EA/WR is 
the only pattern which, together with NAO, contributed to the winter variance 

     NAO   EA   EA/WR   SCAN 

      Corr EV (%)   Corr EV (%)   Corr EV (%)   Corr EV (%)   
Altimetry Med  -0.91 83 (77) 

 
0.1 1 (0) 

 
-0.36 13 (7) 

 
0.75 56 (0) 

 
 

WMed  -0.9 81 (76) 
 

0.19 4 (0)  
 

-0.35 12 (7) 
 

0.78 61 (0)  

 
 

EMed  -0.89 79 (73) 
 

0.08 1 (0) 
 

-0.36 13 (7) 
 

0.73 53 (0)  

 DAC Altimetry Med  -0.89 79 (79) 
 

0.26 7 (0)  
 

-0.2 4 (0) 
 

0.57 32 (0) 

 
 

WMed  -0.8 64 (52) 
 

0.49 24 (12) 
 

-0.05 0 (0) 
 

0.48 23 (0) 

   EMed  -0.89 79 (79)   0.21 4 (0)   -0.23 5 (0)   0.6 36 (0)    
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(51%). Although both EA and SCAN were correlated with wind sea level 
component at western subbasin and overall the basin, respectively, they were 
considered redundant.  

 

 

 
Figure 3.5. Overall contribution of independent modes to winter basin average 
altimetry (top) and winter basin average DAC-altimetry (bottom).  

 

    Results for the summer season are different. The pressure only forced sea level 
is correlated with NAO at some areas of northern Adriatic and at 20-30ºE area of 
Eastern sub-basin, while SCAN is correlated at western sub-basin. Interestingly, 
sea level forced by wind only in summer is correlated only to the EA mode in 
almost all of the basin. However the variance accounted for is only 9%.  

3.4.4 Thermosteric sea level  
Thermosteric sea level has much smaller variance than the observed sea level and 
the atmospherically-corrected sea level (Table 3.3). Thus any significant 
correlation found should be interpreted in this context.  

    The results for winter correlations between climate indices and thermosteric 
sea level are represented in Figure 3.8 (left) and Table 3.7. During winter, SCAN 
is the index that displays higher correlation, concentrated over the central and 
eastern regions of the Mediterranean, with an average value of 0.30. SCAN 
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explains about 9% of the winter basin averaged thermosteric sea level variance. 
NAO is also correlated with the thermosteric sea level over a fraction of the 
eastern sub-basin. The time series of the averaged thermosteric sea level and the 
resulting regression models are plotted in Figure 3.9. No significant correlations 
were found for the summer.   

    Changes in thermosteric sea level, at each part of the basin, result from 
atmospheric heat fluxes and lateral heat advection. Significant correlation (0.59) 
was found between net heat fluxes and the seasonal average of the time derivative 
of thermosteric sea level (0.59) averaged over the basin for the period 1950-2008. 
Note that the seasonal average of the time derivative of thermosteric sea level is 
the change in thermosteric sea level between November and March divided by 
four, and between August and May divided by three.   The correlations with 
indices during winter and summer are mapped in Figure 3.8 (center and right 
columns) and the averaged correlations and variances accounted for are listed in 
Table 3.7. During winter, only EA is correlated over most of the western sub-
basin and over the Adriatic with an average value of 0.49 over all the basin. 
EA/WR shows correlations in the most western and eastern parts of 
Mediterranean. However, the averaged values have opposite sign depending on the 
sub-basin (0.30 and -0.22, respectively). SCAN show correlations only in the 
central parts of the eastern sub-basin (0.30). EA is the only mode that explains 
part of the variance of the winter basin averaged rate of change of thermosteric 
(17%). However, combined with EA/WR account for a 21% of the variability of 
the basin, while combined with EA/WR and SCAN account for the 23% of the 
eastern averaged. These results are consistent with Josey et al (2011) who showed 
that EA is the mode driving air-sea net heat fluxes variability over the 
Mediterranean, especially over western sub-basin, while the NAO and SCAN play 
much smaller role; EA/WR also plays an important role, but generates a dipole 
with opposite signal on western and eastern sub-basins. During summer only 
EA/WR is correlated with thermosteric rate of change at the south part of the 
eastern sub-basin, however it is correlated with the basin averaged (-0.35) 
accounting for 12% of the variance. SCAN appears correlated at southern part of 
the western sub-basin (-0.29), where it explains about 9% of the variance. 

 

3.5 Discussion  
The Mediterranean Sea level variance is larger in winter than in the summer. 
According to altimetry it is about three times larger; according to coastal tide 
gauge records it is about five times larger. The statistical modelling of this
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Figure 3.6. Dec-Mar and Jun-Aug maps of correlation coefficients between climate modes and atmospherically-induced sea level 
and wind-only induced sea level for the period 1958-2008. Dotted areas denote significant correlation at 95% level.  
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Table 3.6. Correlation coefficients and the variance accounted for, by the 
regression model in which each climate index has been regressed against the 
atmospherically-induced sea level, pressure only-induced sea level and wind only-
induced sea level. Results for winter (above) and summer (below) are shown. The 
variance accounted for by the multiple regression model is shown in brackets.  
Boldface values denote statistically significance at 95% level. Western and Eastern 
Mediterranean values are also shown.  

 

variance on multiple regression models both for tide gauges and altimetric data 
show that the NAO can account for most of the winter variability. The use of the 
atmospherically forced sea level hindcast shows that the NAO influence is due 
both to the atmospheric pressure forcing and to wind forcing. The sea level 
correlation with the NAO remains after the DAC correction is applied. This 
means that the NAO influence on the Mediterranean is not restricted to the local 
atmospheric pressure and wind effects. 

    Although SCAN and NAO are monthly independent, they are correlated in 
winter. All modes show influence in the pressure driven part of the atmospheric 
forcing, hardly surprising as they are determined on the basis of pressure changes. 
However only  the NAO and SCAN are correlated with the wind driven part of 
sea level in the winter. The EA is the only mode influencing the wind driven sea  

   NAO  EA  EA/WR  SCAN 

     Corr EV (%)  Corr EV (%)  Corr EV (%)  Corr EV (%) 

Winter Atmospheric Med  -0.71 50 (50)  -0.01 0 (0)   -0.32 10 (11)  0.47 22 (0) 
 Wmed  -0.73 53 (42)  0.03 0 (0)  -0.26 7 (5)   0.49 24 (4) 

 Emed  -0.67 45 (45)  -0.04 0 (0)  -0.35 12 (13)  0.43 18 (0) 

Winter Pressure-only Med  -0.68 46 (49)  -0.12 1 (4)  -0.33 11 (12)  0.47 22 (0) 
 Wmed  -0.70 49 (38)  -0.06 0 (0)  -0.30 9 (7)  0.51 26 (5) 
 Emed  -0.63 39 (44)  -0.15 2 (6)  -0.35 12 (13)  0.4 16 (0) 
Winter Wind-only Med  -0.67 45 (45)  0.21 4 (0)  -0.25 6 (7)  0.42 18 (0)  

 Wmed  -0.67 45 (45)  0.28 8 (0)  -0.10 1 (0)  0.34 12 (0)  

 Emed  -0.65 42 (42)  0.17 3 (0)  -0.30 9 (9)  0.44 19 (0) 
Summer Atmospheric Med  -0.19 4 (0)   -0.1 1 (0)    0.09 1 (0)    0.38 14 (14) 
 Wmed  -0.09 1 (0)    -0.18 3 (0)    0.12 1 (0)    0.41 17 (17) 
 Emed  -0.22 5 (8)  -0.07 0 (0)    0.07 0 (0)   0.35 12 (16) 
Summer Pressure-only Med  -0.30 9 (13)  0.03 0 (0)    0.04 0 (0)    0.34 12 (16) 
 Wmed  -0.21 4 (8)  -0.08 1 (0)  0.09 1 (0)    0.42 18 (22) 
 Emed  -0.32  10 (14)  0.07 0 (0)    0.02 0 (0)    0.31 10 (13) 
Summer Wind-only Med  0.14 2 (0)  -0.31 10 (10)  0.12 1 (0)    0.21 4 (0)   
 Wmed  0.19 4 (0)    -0.29 8 (8)  0.13 2 (0)    0.18 3 (0)   
 Emed  0.12 1 (0)    -0.31 10 (10)  0.12 1 (0)    0.22 5 (0)   
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Figure 3.7. Overall contribution of independent modes to winter (top) and 
summer (bottom) basin average atmospherically induced sea level variability.  
 

    level in the whole of the Mediterranean Sea during the summer season. 

    The relationship between thermosteric sea level and the other large scale 
climate modes considered in this study is not clearly demonstrated and the results 
found are spatially restricted to certain areas. Changes in the seasonally averaged 
rate of change of the thermosteric sea level can be partly accounted for by the EA 
(21% in winter and 12% in summer) but with differences between the western and 
eastern sub-basins. The physical mechanisms through which the atmospheric 
climate modes impact on Mediterranean sea level and its contributions can be 
discussed further using composite maps of anomalies of sea level components, 
wind speed and mean sea level pressure for each pattern corresponding to index 
values higher than 1.5 or lower than -1.5.    

    Figure 3.10 shows the composite maps of atmospherically forced winter sea 
level during the positive and negative NAO phases and the corresponding map for 
EA/WR, the only two indices we found accounting for the variance in the 
relevant multiple regression model. Note that pressure and winds mapped here are 
not anomalies as in Figure 3.1. The spatial pattern of the atmospheric component  
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Figure 3.8. Dec-Mar and Jun-Aug maps of correlation coefficients between the 
climate indices and the thermosteric sea level (left) and the rate of change of 
thermosteric sea level (center and right) for the period 1950-2011. Dotted areas 
denote significant correlation at 95% level.  
 
of sea level reflects that of the atmospheric pressure: during a positive phase 
atmospheric pressure displays a meridional gradient with lower values in the 
eastern sub-basin mimicked by the sea level response. On the contrary, during a 
negative NAO phase, atmospheric pressure is lower and more homogeneous within 
the basin and consequently sea level values are higher. The winds associated with 
the NAO mode contribute in the same sense than atmospheric pressure to the 
atmospherically-induced winter sea level. Fukumori et al. (2007) have shown that 
winds around the Strait of Gibraltar can produce significant basin-wide 
oscillations in the Mediterranean. Winds associated to the NAO negative phase 
are prone to induce a net mass flux through the Strait of Gibraltar, so inducing a 
sea level increase in the basin (Fukumori et al., 2007). 
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Table 3.7. Correlation coefficients and the variance account for, by the regression 
model in which each climate index has been regressed against the thermosteric sea 
level and the monthly rate of change of thermosteric sea level. Results for winter 
are shown. Results for summer are shown only for the rate of change of 
thermosteric. The variance accounted for by the multiple regression model is 
shown in brackets.  Boldface values denote statistical ly significance at 95% level. 
Western and Eastern Mediterranean values are also shown.  
    
  NAO  EA  EA/WR  SCAN 

    Corr EV (%)  Corr EV (%)  Corr EV (%)  Corr EV (%) 

Winter Thermosteric Med -0.23 5 (0)  -0.20 4 (0)  -0.04 0 (0)  0.30 9 (9) 
 Wmed -0.02 0 (0)  -0.10 1 (0)  0.05 0 (0)  0.15 2 (0) 

 Emed -0.28 8 (0)  -0.21 4 (6)  -0.06 0 (0)  0.32 10 (12) 
Winter Rate of change Med -0.18 3 (0)   0.49 24 (17)  -0.22 5(4)  0.21 4 (0) 
 Wmed 0.09 1 (0)  0.44 19 (16)  0.10 1 (0)  -0.14 2 (0) 
 Emed -0.25 6 (0)  0.40 16 (11)  -0.30 9 (6)  0.30 9 (4) 
Summer Rate of Change Med 0.06 0 (0)  0.13 2 (0)  -0.35 12 (12)  -0.19 3 (0) 
 Wmed -0.05 0 (0)  -0.06 0 (0)  -0.09 1 (0)  -0.29 9 (9) 
 Emed 0.09 1 (0)  0.18 3 (0)  -0.37 14 (14)  -0.09 1 (0) 

 
 

 

 
 

Figure 3.9. Dec-Mar contribution of the SCAN to the winter basin averaged 
thermosteric sea level. Averaged thermosteric sea level of the highest correlated 
area is also shown for comparison (light-grey line). 

 
    The second mode correlated with winter sea level and its atmospheric 
component, in the multiple regression model, was the EA/WR. This mode was 
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Figure 3.10. Winter (Dec-Mar) atmospherically-induced sea level (cm) and 10m 
wind speed (vectors) averaged for a winter NAO (top) and EA/WR (bottom) 
indices: (a,c) positive state, (b,d) negative state. Corresponding averaged sea level 
pressures are contoured in intervals of 1 mb. Note that the horizontal vector (red 
arrow) is for scale and indicates a wind speed of 2m/s.  

 

not significant for the atmospherically-corrected sea level (Table 3.5), indicating 
thus that the influence on sea level was exclusively through the atmospheric 
pressure and the local wind forcing. Wind anomalies composites (Figure 3.1) 
suggested that positive phases of EA/WR favour northerly strong winds, over the 
eastern basin. During a positive phase of EA/WR, the atmospherically-induced 
sea level associated with this mode displays an E-W gradient in response to the 
atmospheric pressure pattern over the Mediterranean (Figure 3.10c). During the 
negative phase of EA/WR (Figure 3.10d), the spatial pattern of atmospherically-
induced sea level is more uniform and dominated by westerly winds.  

    In Figure 3.11 composite maps for the anomalies in the rate of change of  
thermosteric sea level are shown. As seen previously (Fig. 3.8), the NAO is only 
correlated with parts of the Eastern Mediterranean. The winter EA is the mode 
most closely correlated with the rate of change of thermosteric sea level. This is 
despite the fact that the EA does not correlate with atmospherically-induced sea 
level in general but does correlate with the wind driven part of the sea level. The 
underlying correlation between the wind field over the Mediterranean and the EA 
is important for the heat fluxes. In its positive phase, EA is characterized by an 
atmospheric pressure anomaly pattern with very weak gradients over the 
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Figure 3.11. Winter (Dec-Mar) rate of change of thermosteric sea level anomalies 
(cm) and 10m wind speed (vectors) averaged for winter NAO (a,b), EA (c,d), 
EA/WR (e,f) and SCAN (g,h) indices under a positive state (left) and a  negative 
state (right). Corresponding averaged sea level pressures are contoured in intervals 
of 1 mb. Note that the horizontal vector (red arrow) is for scale and indicates a 
wind speed of 2m/s. 
 

 

    Mediterranean Sea and the nearby Atlantic (Figure 3.1). The circulation 
associated with the positive EA state involved westerly winds coming from the 
Atlantic, while the negative phase northerly winds coming over the Gulf of Lions, 
in agreement with the results presented by Josey et al (2011). As heat fluxes are 
always negative in winter, this translates into smaller than average heat losses, 
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Figure 3.12. Summer (Jun-Aug) atmospherically induced sea level (cm) averaged 
for a summer SCAN positive and negative phases (above). Rate of change of 
thermosteric sea level anomalies (cm) averaged for a summer EA/WR positive 
and negative phases (below). Corresponding 10m wind speed (vectors) and sea 
level pressure are contoured in intervals of 1 mb. Note that the horizontal vector 
above Figure 3.12a is for scale and indicates a wind speed of 2m/s. 

 

especially over the western sub-basin (Figure 3.11c). Likewise, the EA negative 
phase in winter is associated with northerly winds and colder air T, resulting in 
larger than average ocean heat losses and more negative anomalies of the rate of 
change of thermosteric sea level (Figure 3.11d). The rates of change of 
thermosteric sea level were found to be also related with EA/WR and SCAN at 
some areas of the basin (Table 3.7 and Figure 3.11).  

    The associated with EW/WR winter wind fields show that during the positive 
phase of  EA/WR northerly winds bring cold air over some areas of the eastern 
sub-basin resulting in a higher than normal heat loss (Figure 3.11e) while in the 
western part of the basin winds coming from the west contributes to a lower than 
normal heat loss. The opposite effect occurs during the negative phase of 
EA/WR, when a westerly flow of warmer air contributes to decreasing the rates 
of change of the thermosteric component (Figure 3.11f). The positive phase of 
SCAN is associated with a westerly flow of warm air that induces lower than 
normal decreasing of thermosteric sea level, mostly over the central-eastern 
Mediterranean. In its negative phase,  there is a pattern of warmer north-westerly 
winds due to the absence of the low-pressure conditions over the western sub-
basin and the result is a much lower decreasing of thermosteric sea level than in 
the positive phase. 
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Table 3.8. Variance accounted for by the regression model in which each climate 
index has been regressed against the sea level and its components for the altimetry 
period (1993-2008). The variances of the altimetric sea level accounted for by the 
atmospheric and thermosteric components are also shown. Results for winter and 
summer are shown. The variance accounted for by the multiple regression model is 
shown in parentheses. The lowest and highest variances accounted for by each tide 
gauge are also shown for the altimetry period (in brackets).  
 

  Altimetry   
DAC- 
Altimetry   

Atmospheric 
component   

Thermosteri
component   Tide gauges   

Atm-corrected tide 
gauges 

 
Win Sum 

 
Win Sum 

 
Win Sum 

 
Win Sum 

 
Win Sum 

 
Win Sum 

NAO (%) 86(86) 0(0) 
 

72(72) 0(0) 
 

70(0) 1(0) 
 

2(0) 6(0) 
 

[31-64]([0 45]) [0-15] 
 

[7-56]([0-54]) [0-2](0) 

EA (%) 0(0) 5(0) 
 

1(0) 3(0) 
 

3(0) 0(0) 
 

0(0) 6(0) 
 

[0-4](0) [0-16] 
 

[2-14](0) [0-7](0) 

EA/WR (%) 1(0) 0(0) 
 

0(0) 1(0) 
 

2(0) 2(0) 
 

19(0) 2(0) 
 

[0-7](0) 0 
 

[0-5](0) [0-3](0) 

SCAN (%) 60(0) 0(0) 
 

25(0) 1(0) 
 

80(80) 10(0) 
 

2(0) 0(0) 
 

[10-65]([0 63]) [0-18] 
 

[1-37](0) [0-5](0) 
Atmospheric 
Component (%) 74 42 

 
- - 

 
- - 

 
- - 

 
- - 

 
- - 

Thermosteric 
Component (%) 0 0 

 
0 1 

 
- - 

 
- - 

 
- - 

 
- - 

 

    During the summer season, SCAN was the only relevant mode for summer 
atmospherically-induced sea level, accounting for only 14% of the variance 
(1.0±0.2 cm2) on average over the basin. Figure 3.12a and 2.12b show that the 
mechanism through which the SCAN pattern impacts on the atmospheric 
contribution is its associated atmospheric pressure pattern for both the positive 
and negative phases, as the atmospherically-induced pattern follows that of the 
atmospheric pressure. EA/WR and, to a lesser extent, SCAN patterns influenced 
the rates of change of thermosteric sea level during summer. For both positive and 
negative phases, EA/WR induce northerly winds over the Mediterranean (Figure 
3.12c, d); however, air T over Europe is colder (warmer) than average during the 
summer positive (negative) phase (not shown), which explains lower (higher) rates 
of change of thermosteric sea level.  

 

3.6 Conclusions 
The four independent large scale modes dominating the atmospheric variability 
over the North Atlantic and Europe (NAO, EA/WR, SCAN and EA), impact 
differently on sea level and its components. Table 3.8 summarizes the results 
presented throughout the paper for each sea level contribution. 

The major conclusions of this work are summarized in the following: 

- The NAO is the main mode in terms of impacts on winter Mediterranean sea 
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level variability (-5.6 cm of altimetry sea level per unit NAO with a correlation of 
-0.91) as a result of two physical processes that contribute to amplify the 
atmospheric signal: i) the direct forcing of atmospheric pressure and wind within 
the basin (-2.9 cm per unit NAO with a correlation of -0.71) which induces 
changes in the flux through Gibraltar, and ii) the forcing of Gibraltar mass 
exchanges caused by winds near the Strait. In addition Calafat et al. (2012) 
demonstrated that wind driven baroclinic circulation in the Atlantic also impact 
on Mediterranean sea level. Positive/negative winter NAO phases induce 
lower/higher Mediterranean sea level as a result of these two mechanisms.  

- The SCAN pattern is significantly correlated with winter Mediterranean sea 
level (0.89). However, it has been found to be redundant with winter NAO, as the 
atmospheric patterns associated with these two modes are very similar over the 
Mediterranean (confirmed by the correlation between winter NAO and SCAN 
modes). Otherwise, SCAN is the only mode that contributes to the winter 
thermosteric sea level with 0.4 cm per unit index. 

- EA/WR is the second large scale mode in importance for Mediterranean sea 
level (-2.2 cm of altimetry sea level per unit index and a correlation of -0.36) , 
and acts mainly by forcing the atmospheric sea level component, more 
particularly by atmospheric pressure changes.  

- The EA mode impacts on the rate of change in winter thermosteric sea level. 

- In summer the variance of atmospherically induced sea level is much lower than 
in winter (1.0±0.2 cm2). SCAN is correlated with atmospheric summer sea level 
(0.38, 0.6 cm/unit ) and the effect is solely attributed to pressure. The EA is the 
only mode that contributes to the wind-only induced sea level (-0.31) with -0.2 
cm per unit index but the correlation is not significant for the atmospheric 
component as a whole or for the observed sea level.  

    This work demonstrates that the study of the large-scale atmospheric 
variability can help to understand sea level changes at a regional scale, at least for 
some of the sea level components. Most notably, this is the first study that offers 
a complete overview of the relationships between the major large-scale 
atmospheric patterns and Mediterranean sea level and its components over the 
last decades. Our results provide both the relative and overall contribution of 
atmospheric patterns to sea level variability in Mediterranean Sea, an information 
that could be used for the study of past and future scenarios. 
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Chapter 4 

Response of the North Atlantic wave 
climate to atmospheric modes of 
variability  

                                                                 
                                                          —Además, ¿a qué os referís con verdadero y falso? 

¿Quién puede saber lo que ocurrió aquí hace mil o dos mil años? ¿Lo sabéis vosotros? 
 

                                                    — Besides, what do you mean by true and untrue?  
Who can be sure what happened here a thousand or two thousand years ago?  Can you?   

                                                                                             
 Michael Ende, Momo (1973)       

 
This chapter has been published in:  
 

• Martínez-Asensio, A., Tsimplis, M.N., Marcos, M., Feng, X., Gomis,  D., 
Jordà, G.  & Josey, S. (2015). Response of the North Atlantic wave climate 
to atmospheric modes of variability. International Journal of Climatology 
(accepted). 

 
Abstract 
This study investigates the relationship between the wind wave climate and the 
main climate modes of atmospheric variability in the North Atlantic Ocean. The 
modes considered are the North Atlantic Oscillation (NAO), the East Atlantic 
pattern (EA), the East Atlantic Western Russian pattern (EA/WR) and the 
Scandinavian pattern (SCAN). The wave data set consists of buoys records, 
remote sensing altimetry observations and a numerical hindcast providing 
significant wave height (SWH), mean wave period (MWP) and mean wave 
direction (MWD) for the period 1989-2009. After evaluating the reliability of the 
hindcast, we focus on the impact of each mode on seasonal wave parameters and 
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on the relative importance of wind-sea and swell components. Results 
demonstrate that the NAO and EA patterns are the most relevant, whereas 
EA/WR and SCAN patterns have a weaker impact on the North Atlantic wave 
climate variability. During their positive phases both NAO and EA are related to 
winter SWH at a rate that reaches 1 m per unit index along the Scottish coasts 
(NAO) and Iberian coasts (EA). In terms of winter MWD the two modes induce a 
counter-clockwise shift of up to 65º per negative NAO (positive EA) unit over 
West European coasts. They also increase the winter MWP in the North Sea and 
in the Bay of Biscay (up to 1s per unit NAO) and along the western coasts of 
Europe and North Africa (1s per unit EA). The impact of winter EA on all wave 
parameters is mostly caused through the swell wave component. 
 

4.1 Introduction 
Changes in the wave climate, represented by significant wave height, dominant 
wave direction and wave period, can modify erosion and accretion processes at the 
shore, cause serious damages to coastal and offshore structures and influence 
navigation and harbour operations. Changes in the wave climate parameters are 
related to changes in the wind forcing, either locally orremotely. Due to its large 
potential impact along the coast, the influence of atmospheric variability on wave 
climate has been investigated in many different regions worldwide and using quite 
different methodologies such as visual observations from ships (Gulev and 
Grigorieva, 2006),  wave hindcasts or re-analysis (Kushnir et al., 1997; Cotton et 
al., 1999; Bauer, 2001; Tsimplis et al., 2005; Dodet et al., 2010;  Le Cozannet et 
al., 2011; Semedo et al., 2011; Charles et al., 2012; Bertin et al., 2013; Shimura et 
al., 2013), satellite altimetry (Cotton and Challenor, 1999; Woolf et al., 2002; 
Tsimplis et al., 2005; Izaguirre et al., 2011), in situ observations from wave buoys 
(Dupuis et al., 2006) and ocean weather stations (Feng et al., 2014a, 2014b). At 
climate scales, the understanding of the links between the large-scale atmospheric 
variability and the regional wave climate is indeed a necessary step to describe 
the processes that have an impact on the wave parameters.  

    The North Atlantic Ocean is one of the regions that have been extensively 
investigated due to the relatively large amount of available observations, its 
importance for navigation and the fact that changes in the Atlantic wave climate 
affect the highly populated and developed coastal regions of both North-eastern 
America and Western Europe. In one of the first works, Bacon and Carter (1993) 
identified a positive correlation between the north-south gradient of sea level 
atmospheric pressure and the annual averaged wave height at particular sites of 
the North Atlantic. Likewise, the significant increase in the wave heights recorded 
between the 1960s and the early 1990s in the North Atlantic has received much 
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attention due to its associated risks for the marine and coastal environment 
(Carter and Draper, 1998; Woolf et al., 2001; Gulev and Grigorieva, 2006; Semedo 
et al, 2011). After the 1990s, trends in North Atlantic mean wave height are no 
longer clear (Young et al, 2011), although an increase in the extreme regime has 
been reported for the period 1985-2008. 

    The main mode of atmospheric variability over the North Atlantic is the North 
Atlantic Oscillation (NAO, see e.g. Rogers et al., 1990) and it has already been 
reported to have a strong influence on storm tracking and wave climate, especially 
during the winter season (Woolf et al., 2002; Bertin et al., 2013). The NAO 
consists of an oscillating pattern with a positive phase characterized by a stronger 
and northward displaced latitudinal pressure gradient and a negative phase 
characterized by a weaker and south-westward displaced pressure gradient.  Woolf 
et al. (2002) found evidence that, over the eastern North Atlantic, the inter-
annual variability of significant wave height (SWH) during the period 1985-1997 
was influenced by the NAO and probably by the East Atlantic pattern (EA), 
especially along the continental shelves of Western Europe (up to 0.3-0.4m/unit of 
winter NAO index). The EA pattern is the second mode in atmospheric 
variability over the North Atlantic (Rogers et al., 1990). Its positive phase is 
associated with a strong latitudinal pressure gradient located at about 36-48ºN, a 
region where there is no impact of the NAO in any of its phases.  

    The influence of climate modes on the mean wave direction (MWD) and mean 
wave period (MWP) has received less attention so far. The influence of the NAO 
on MWD (rotation of 20 degrees clockwise/ unit of winter NAO index) has been 
demonstrated around southern England on the basis of a wave model (Tsimplis et 
al., 2005). The influence of the NAO on MWP was established in the Bay of 
Biscay using a 20-year wave buoy record (Dupuis et al., 2006).  

    Subsequent studies covering the same areas have confirmed the previous 
results: Dodet et al. (2010) showed that the winter NAO significantly contributes 
to the inter-annual variability of SWH, MWD and MWP over the Northeast 
Atlantic on the basis of a wave hindcast of the last five decades; Charles et al. 
(2012) have shown that inter-annual variability of SWH, MWD and MWP is also 
related to the EA patterns; and Le Cozannet et al. (2011) have shown that the 
occurrence of different sea states during winter is related to the NAO, the EA and 
also to the East Atlantic-Western Russian pattern (EA/WR). Izaguirre et al. 
(2011) used altimetry to link extreme events of SWH with the Arctic Oscillation 
(AO), NAO, EA, EA/WR and Scandinavian pattern (SCAN) indices over the 
North Atlantic during 1992-2010. More recently, Shimura et al. (2013) have 
established the relationship between winter SWH and the first nine modes of 
atmospheric variability in the Northern Hemisphere and the El Niño 3.4 index 
using a hindcast covering 1960-1990. Bertin et al. (2013) have established the 
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relationship between the NAO and the annual mean of SWH during the whole 
20th century using a hindcast of the North Atlantic. 

  Our study focuses on the relationships between the large scale atmospheric 
patterns with major influence over the North Atlantic (NAO, EA, EA/WR and 
SCAN) and wave climate parameters (SWH, MWD and MWP) during the last 
two decades (1989-2009). In particular, we aim at establishing the relationships 
for both the swell and wind-sea components, as well as for total wave height. The 
earlier studies mentioned above have partly addressed these issues; however, no 
one has so far provided a complete picture including the four major climate 
indices, the three wave parameters and the separation between wind-sea and swell 
components over the entire North Atlantic and for the four seasons separately.  

    The paper is organized as follows: Section 2 introduces the data sets used to 
represent the wave climate, to obtain the climate indices and to evaluate the wave 
hindcast. Section 3 is dedicated to the methodology and Section 4 to the hindcast 
evaluation. Results are presented in Section 5 and discussed in Section 6. 
Conclusions are outlined in Section 7. 

 

4.2 Data sets 

4.2.1 Wind-wave hindcast 

Wave fields over the North Atlantic region were simulated with the state of the 
art WAM model (WAMDI, 1988), a third generation wave model that explicitly 
solves the wave transport equation. The three source terms (wind input, non-
linear transfer, and white capping dissipation) which are prescribed explicitly, are 
integrated by means of an implicit secondorder,  centered difference scheme. For 
the propagation term, a first order upwind scheme is applied. For further details 
of the model, readers are referred to works of the WAMDI (1988) and Günther et 
al. (1992). The model domain and the varying spatial resolution employed to 
generate the wind-wave hindcast are mapped in Figure 4.1. This is the 
configuration routinely used by the Spanish Port Authority for operational 
purposes; the model implements different nested grids, with spatial resolution 
ranging from 2.5 km to 50 km, linked through a two-way nesting scheme. The 
highest resolution has been set along the Spanish coasts because the wind-wave 
hindcast is part of a set of numerical simulations developed in the framework of a 
project aimed at investigating changes in marine variables along the Spanish 
coasts (ESCENARIOS project).  
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Table 4.1.  Buoy stations with location, water depth, period of operation and 
percentage of gaps in the SWH, MWD and MWP records. The wave direction was 
not available for stations 12-14. The location and distance to the closest model 
grid point are also listed. 
 

  Buoys   Closest grid point 
  

  

N Station Location (º) 
Depth  
(m)  Period 

SWH 
Gaps 
(%) 

MWD  
Gaps 
(%) 

MWP 
Gaps 
(%)   Location (º) 

Distance 
(km) 

  

 1 Bilbao Vizcaya 43.64 N   03.05 W 600 Nov-90 / Jul-12 28.21 34.17 28.11  43.75 N  03.00 W 12.89  
 2 Cabo de Peñas   43.74 N   06.17 W 615 Jun-97 / Jul-12 20.83 21.35 20.79  43.75 N  06.25 W 6.52  
 3 Cabo Silleiro   42.12 N  09.43 W 600 Jul-98 / Jul-12 13.62 46.73 13.62  42.00 N  09.50 W 14.55  
 4 Estaca de Bares 44.12 N  07.67 W 1800 Jul-96 / Jul-12 25.98 29.1 25.98  44.00 N  07.75 W 14.81  
 5 Golfo de Cádiz 36.48 N  06.96 W 450 Aug-96 / Jun-12 13.48 57.04 12.62  36.50 N  07.00 W 4.21  
 6 Mar de Alborán 36.27 N  05.03 W 585 Feb-97 / Feb-06 49.13 80.39 28.76  36.25 N  05.00 W 3.49  
 7 Gran Canaria    28.20 N  15.80 W 780 Jun-97 / Jul-12 13.66 63.43 13.65  28.17 N  15.83 W 4.94  
 8 Tenerife Sur    27.99 N  16.58 W 710 Apr-98 / Jul-12 17.91 55.13 15.28  28.00 N  16.58 W 1.16  
 9 Villano Sisargas    43.50 N  09.21 W 386 May-98 / Jul-12 27.14 27.14 27.14  43.50 N  09.25 W 3.22  
 10 Faro  36.90 N  07.90 W 93 Sep-86 / Jan-96 11.1 13.78 0.04  36.92 N  07.92 W 2.37  
 11 Sines 37.92 N  08.93 W 97 May-88 / Jan-96 0.18 0.01 0.01  38.00 N  09.00 W 10.81  
 12 SW Grand Banks 44.30 N  53.60 W    1412-1500 Nov-98 / Mar-12 2.04 100 5.91  44.00 N  54.00 W 46.2  
 13 Tail of the Bank 43.30 N  51.45 W 70 -1500 Sep-90 / Sep-12 9.08 100 2.62  43.00 N  51.00 W 49.46  
 14 MEDS016 47.64 N  52.47 W 168 Jun-72 / Feb-97 4.55 100 6.3  48.00 N  53.00 W 58.1  

  
 

    The wave model was forced with 6-hourly surface wind fields obtained from 
the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-
Interim Re-Analysis (Dee et al. 2011) spanning the period 1989-2009. The spatial 
resolution of the wind forcing was 0.75x0.75 degrees except in a region covering 
Southern Europe (marked in Fig. 4.1) where a dynamical downscaling was carried 
out with the regional atmospheric model RCA3.5 (Samuelsson et al., 2011). In 
that region the resolution was set to 25 km.  

    The output of the simulation consisted of 3-hourly SWH, MWP and MWD of 
total waves as well as of wind-sea and swell components. The separation of the 
wind-sea and swell components of the wave field is performed as in Hasselmann et 
al. (1996): the peaks (local maxima) of the directional wave spectrum are 
identified and attributed either to the sea or to the swell component depending on 
the period and direction of each peak. When the peak is in the same direction of 
the wind stress and the period is lower than 10 s, the waves are considered to be 
part of the wind-sea component; otherwise they are identified as swell. Since this 
study focuses on climate scales, the output fields were first interpolated onto a 
regular 1x1 degree grid and they were then monthly averaged.  
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Figure 4.1.  Domain of the wind-wave hindcast in the North Atlantic and location 
of the buoys used for the evaluation (red circles). Grid points of the wind-wave 
hindcast in the North Atlantic, with the different resolutions used in different 
regions (black dots). The squared region is the domain where the spatial resolution 
of the winds around Europe has been increased to 25 km through dynamical 
downscaling. Bathymetry is also shown (units are meters). 
 
 
    It must be mentioned that a second wind-wave hindcast carried out with the 
same model configuration but forced with fields from ERA-40 Reanalysis (Uppala 
et al. 2005) (1958-2002) was also obtained. The longer period covered by ERA-40 
could make it more suitable for climate studies; however, the short overlap with 
observations prevented a proper evaluation of the hindcast. In addition to this, 
ERA-40 is known to underestimate high wind speeds (Caires and Sterl 2003). 
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This altogether has prevented an extensive use of the hindcast forced with ERA-
40, but it will be used to check the robustness of some of the results obtained 
with ERA-Interim (see below and Supplementary information). 

4.2.2 Wind-wave observations from buoys.  
Wave observations from buoys deployed in the North Atlantic were collected 
from various data providers (Fig. 4.1 and Table 4.1). Data from buoys along the 
Spanish coasts (station numbers 1-9 in Table 4.1) were provided by the Spanish 
Port Authority (Puertos del Estado; www.puertos.es). Observations from 
Portuguese stations (numbers 10-11 in Table 4.1) were obtained from the 
Instituto Hidrográfico - Portuguese Navy (IH, www.hidrografico.pt/). Finally, 
stations located along the east coast of Canada (numbers 12-14 in Table 4.1) were 
obtained from the Integrated Science Data Management (ISDM, www.meds-
sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/index-eng.htm). The location of 
buoy stations and the distance to the closest grid point of the wave model are also 
listed in Table 4.1. All wave observations are freely-available from the operators 
except those corresponding to stations 10 and 11.  

    The quality control of buoy observations was as follows. First, all time series 
were homogenized to a common temporal resolution of 3h and then they were 
monthly averaged, discarding those months with a percentage of data gaps larger 
than 30%. In order to identify the influence of the atmospheric forcing modes on 
the observed wave climate, winter (DJFM) averages were obtained by selecting 
those winters with at least three (out of four) months of data. The evaluation of 
the hindcast consisted of comparing observed and modelled monthly wave 
parameters (from buoys and from the corresponding closest model grid points, 
respectively) for the overlapping periods.  

    Note that during their deployment period two of the three Canadian buoys 
were moved between different locations. The distance of the various deployment 
sites with respect to their average position ranged between 55 and 91 km for the 
Tail of the Bank Station (station number 13) and between 46 and 69 km for the 
SW Grand Banks station (station number 12). These distances are considered 
small, taking into account that the deployment sites are located well offshore and 
that monthly time scales are analysed. Correlations between the closest grid point 
of the hindcast to the average position and the closest grid point to the different 
deployment sites were calculated, resulting in averaged values of 0.97 for SWH 
and 0.82 for MWP. Because of the significant correlation and the fact that we use 
a 1x1 degree grid which, at the latitude of the mean position, corresponds to 
111.3 km, a single time series combining all observations was considered for each 
of these buoys.  

http://www.puertos.es/
http://www.hidrografico.pt/
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4.2.3 Satellite altimetry observations 
The along-track high resolution SWH used to validate the wave hindcast were 
obtained from the Ifremer altimeter Hs database (Queffeulou and Croizé-Fillon, 
2010; ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves), 
which is regularly updated and calibrated as described in Queffeulou (2004). The 
altimeter-derived SWH combine measurements from seven altimeters with various 
spatial and temporal resolutions, namely Jason-1, Jason-2, Topex/Poseidon, ERS-
1, ERS-2, Envisat and Geosat Follow-On. The data set used covers the period 
January 1991 to December 2009. The along–track observations were averaged to a 
regular 1x1 degree grid covering the model domain. Only grid points with more 
than 10% of the maximum number of available observations per cell were selected. 

4.2.4 Climate indices  
Monthly climate indices associated with the leading atmospheric modes in the 
North Atlantic (NAO, EA, EA/WR and SCAN) and spanning the period 1950-
2012 were downloaded from the NOAA Climate Prediction Centre  
(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml). The indices are 
obtained through a rotated principal component analysis (Barnston and Livezey, 
1987) of the monthly mean standardized 500-mb height anomalies in the Northern 
Hemisphere in such a way that the orthogonality (independence) of the modes is 
ensured at a monthly scale. The Northern Hemisphere Annular Mode (NAM, also 
known as Arctic Oscillation, AO) is the major mode of atmospheric variability 
over the entire Northern Hemisphere. However the NAM is highly correlated with 
the NAO, especially in winter (Thompson and Wallace, 1998). Some researchers 
have questioned the physical sense of the NAM (Deser et al, 2000) and a debate 
on whether NAM and NAO can be considered as different expressions of the same 
physical phenomenon has arisen (Itoh et al., 2007). This close relationship 
between both modes (monthly correlation of 0.63) led to the exclusion of the 
NAM mode for the present study.  

4.2.5 Atmospheric variables 
Mean sea level atmospheric pressure (MSLP) and 10m wind speed (U10) were 
obtained from the NCEP/NCAR atmospheric reanalysis (NCEP) (Kistler et al., 
2001). Monthly fields with a spatial resolution of 2.5x2.5 degrees over the period 
1989-2009 were used to characterize the atmospheric circulation in the different 
phases of the indices. This atmospheric re-analysis was preferred instead of ERA-
Interim because it is the one used to compute the climate indices by the NOAA 
CPC. Nevertheless, this choice is not critical, as both atmospheric re-analyses are 
in a very good agreement: the correlation is higher than 0.85 over 80% of the 
domain for monthly U10 values, while it is higher than 0.85 over 99% of the 

ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves
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domain for monthly MSLP values.   

 

4.3 Methodology 
Winter averages of buoy records, grid point wave model parameters,  
climate indices and grid point of MSLP and U10 were computed by  
averaging the monthly values from December to March (DJFM). We used  
extended winters (four months) because this is the period when the NAO  
has the strongest signature (Hurrell et al., 2003). We also used an  
extended summer average, from June to September (JJAS), for coherence. 
Averaged directions were calculated by treating each directional observation as a 
unit vector. First, zonal and meridional components of the unit vectors were 
obtained by calculating both sine and cosine components of each observational 
direction. Second, averaged sine and cosine were obtained and then divided to 
calculate the tangent. Finally, the mean direction was given by the quadrant-
specific inverse of the tangent. It is worth mentioning that although climate 
indices are uncorrelated at a monthly scale, they are not necessarily at seasonal 
scale. In particular, winter averaged NAO and SCAN indices are significantly 
anti-correlated (-0.36). Seasonal averaged anomalies were also computed for 
modelled and observed wave parameters. They were obtained first removing the 
climatological monthly mean from the monthly values and then computing the 
seasonal average.  

    The relationship between wave parameters and climate indices was studied 
using correlations and linear regressions between seasonal anomalies of wave 
parameters and seasonal averaged climate indices which approximately vary from 
-2 to 2. All seasonal averaged time series were detrended for the common period 
before any correlation and regression coefficient was estimated. The level of 
significance used for the correlation and regression coefficients was always 95%. 
For completeness, a linear regression model including the four seasonal climate 
indices was carried out at each grid point in order to fit the seasonal wave 
parameters. To do that, a forward/backward stepwise regression was applied at 
each grid point in order to determine the number of climate indices to be included 
(Draper and Smith, 1998) and their corresponding coefficients.  

    Composite fields of wave anomaly parameters, MSLP and U10 were used to 
obtain the spatial patterns that represent the atmospheric forcing associated with 
high and low values of each index. The composite fields were obtained by first 
selecting the monthly fields of wave anomaly parameters, MSLP and U10 (from 
the corresponding season) coinciding with an index value higher than 1.5 (or 
lower than -1.5). Next, a weighted mean was calculated multiplying each selected 
field by the corresponding monthly value of the index. The spatial pattern  
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Table 4.2. Monthly correlation, RMS differences and bias between hindcasted and observed SWH, 
DIR and MWP during the overlapping period. Winter correlation (in brackets). Monthly mean and 
standard deviations of observed SWH, DIR and MWP are also shown. Positive mean DIR values 
indicate clockwise direction from north and negative values indicate a counter-clockwise direction. 

 
 

    SWH         MWD         MWP         

 
Station Corr. 

RMSD  
(m) 

Bias 
(m) 

Mean/  
St. Dev.(m) 

 
Corr. 

RMSD  
(º) 

Bias  
(º) 

Mean/  
St. Dev.(º) 

 
Corr. 

RMSD 
 (s) 

Bias 
 (s) 

Mean/ 
St. Dev.(s) 

 
 

Bilbao Vizcaya 0.98 (0.91) 0.3 -0.24 1.93 ± 0.67 
 

0.85 (0.95) 5.07 0.26 132.87 ± 9.22 
 

0.94 (0.97) 0.47 0.26 6.23 ± 0.96 
 

 
Cabo de Peñas 0.98 (0.57) 0.25 -0.19 1.96 ± 0.63 

 
0.86 (0.96) 6.91 -0.11 147.82 ± 10.68 

 
0.85 (0.63) 0.62 0.31 6.23 ± 0.99 

 

 
Cabo Silleiro 0.98 (0.97) 0.29 -0.22 2.29 ± 0.71 

 
0.93 (0.73) 7.16 1.2 131.16 ± 13.72 

 
0.96 (0.98) 0.27 0.05 6.32 ± 0.84 

 

 
Estaca de Bares 0.99 (0.77) 0.4 -0.35 2.44 ± 0.77 

 
0.95 (0.99) 7.03 0.62 140.30 ± 20.86 

 
0.95 (0.95) 0.31 0.16 6.22 ± 0.83 

 

 
Golfo de Cádiz 0.96 (0.99) 0.12 -0.06 1.19 ± 0.36 

 
0.78 (-) 24.78 0.06 74.38 ± 39.36 

 
0.94 (0.90) 0.37 0.22 4.54 ± 0.68 

 

 
Mar de Alborán 0.83 (-) 0.15 -0.09 0.71 ± 0.18 

 
0.87 (-) 20.82 -9.92 -26.68 ± 25.11 

 
0.28 (-) 0.43 0.13 3.74 ± 0.30 

 

 
Gran Canaria 0.89 (0.97) 0.38 -0.37 1.62 ± 0.23 

 
0.94 (-) 4 -0.11 -165.80 ± 11.46 

 
0.60 (0.38) 0.79 -0.56 5.56 ± 0.63 

 

 
Tenerife Sur 0.63 (0.78) 0.43 -0.41 0.92 ± 0.17 

 
0.61 (-) 18.25 -0.39 -69.07 ± 21.22 

 
0.41 (0.22) 0.51 -0.45 4.14 ± 0.23 

 

 
Villano Sisargas 0.99 (0.98) 0.38 -0.33 2.42 ± 0.73 

 
0.92 (0.95) 9.21 4.14 143.95 ± 19.82 

 
0.95 (0.91) 0.29 0.12 6.13 ± 0.79 

 

 
Faro 0.97 (-) 0.12 -0.09 0.96 ± 0.33 

 
0.75 (-) 18.37 -1.92 46.28 ± 23.81 

 
0.94 (-) 0.36 -0.11 4.69 ± 0.62 

 
 

Sines 0.98 (-) 0.21 -0.14 1.72 ± 0.60 
 

0.88 (-) 6.95 -0.02 120.87 ± 6.35 
 

0.97 (-) 0.52 -0.41 6.69 ± 1.20 
 

 
SW Grand Banks 0.83 (-) 0.75 0.48 2.51 ± 0.86 

 
- - - - 

 
0.73 (-) 3.13 -3.06 9.79 ± 0.81 

 

 
Tail of the Bank 0.96 (0.78) 0.63 -0.55 2.57 ± 0.83 

 
- - - - 

 
0.81 (0.65) 4.62 -4.58 10.15 ± 0.99 

 

 
MEDS016 0.91 (-) 0.33 0.05 2.17 ± 0.60 

 
- - - - 

 
0.87 (-) 4.2 -4.15 10.13 ± 1.25 

 

 
MEAN 0.92 (0.86) 0.38 -0.29 1.81 ± 0.58 

 
0.84 (0.92) 16.71 -0.04 61.46 ± 21.62 

 
0.80 (0.73) 1.32 -0.94 6.47 ± 0.86 

 
 
 

 obtained in this way can be considered as the one associated with a unit positive 
(or negative) value of the climate index. The use of other thresholds different from 
±1.5 did not significantly alter the results. 

 

4.4 Evaluation of the wind-wave hindcast  
The wave hindcast was explored and compared with buoy and altimetry 
observations in order to ensure its reliability prior to the investigation of the  

relationships with large scale climate modes. The correlation coefficient at 95% 
level of significance, the root mean squared difference (RMSD) and the bias 
between observed and modelled monthly wave parameters were calculated for 
each buoy and for each altimetry grid point for their respective overlapping 
periods. Results, listed in Table 4.2, revealed significant correlations for SWH 
(from 0.63 to 0.99) and MWP (from 0.61 to 0.95) for all buoys. Lower but still 
significant correlations were found for MWD (from 0.28 to 0.96). RMSD displays 
a larger spread of values among sites. Higher RMSD values were found where 
standard deviation is higher. The highest values correspond to Canadian stations, 
especially for MWP (from 0.27 to 4.62 s). 
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    It is worth noting that a considerable part of the RMSD between modelled and 
observed SWH (0.38m on average) and MWP (1.32s) is accounted for by the bias 
(-0.29m and -0.94s, respectively). For MWD the contribution of the bias (-0.04º) 
to the RMS differences (16.71º) is much lower (Table 4.2). The negative SWH 
bias found at all sites points to an overall underestimation of the observed SWH 
by the model.  

    When altimetry observations were used, high correlations between modelled 
and observed SWH were found over all the domain (0.79 on average) except in 
the Gulf of Guinea, where lower but still significant values were found (see 
Supplementary information, Fig. 4.S1). The lower quality in that region is 
probably induced by the lack of appropriate lateral boundary conditions at the 
southern boundary. The RMSD (is 0.55 m when averaged over the whole domain, 
ranging from 0.1 to 1.3 m at individual grid points; the averaged bias is -0.43 m, 
ranging from -1.2 to 0.2 m at particular grid points. Highest RMSD and most 
negative SWH bias were found at the northern sector of the North Atlantic, 
where the variability of SWH is higher, in agreement with the results derived from 
the buoys.  

    The spatial patterns of the climatological fields of wave parameters were also 
explored and compared with earlier works. Climatological winter means and 
standard deviations (std) of SWH, MWP, MWD, U10 and wind direction are 
shown in Fig. 4.2. The winter wave climate (Figs. 4.2a,b) shows a northern sector 
influenced by the westerly winds and characterized by high (up to 4.0 m), long-
period (up to 7.9 s) waves that turn to be more north-easterly above 60ºN (Fig. 
4.2h,g), coinciding with the winter averaged wind speed (Fig. 4.2c). These 
patterns and values are comparable to those shown by Dodet et al. (2010) by 
forcing the wave model WAVEWATCH (Tolman, 2009) with wind fields from the 
NCEP/NCAR Reanalysis (Kalnay et al., 1996) and Semedo et al. (2011) by using 
wave fields from ERA-40. The southern sector is dominated by the trade winds 
and shows lower SWH (up to 2.4 m), slightly shorter periods (up to 7.4 s) and 
southerly waves, also in agreement with earlier works (Dodet et al., 2010; Semedo 
et al., 2011). The northern sector is also where the standard deviations of SWH 
and wind speed are higher during the winter season (Figs. 4.2d,f). The maximum 
winter inter-annual variability of SWH is found to the northwest of the British 
Isles, with std values of up to 0.8 m (Fig. 4.2d). Overall, the MWP std is larger in 
the eastern sector of the North Atlantic, especially in the Bay of Biscay, Strait of 
Gibraltar, Canary Islands and in the latitudinal band 0ºN-12ºW, showing values 
of up to 1.1 s (Fig. 4.2e). The inter-anual variability of winter MWD is larger over 
the north-western sector of the Atlantic, where std approaches 90º (Fig. 4.2g). 
The variability of MWD does not necessarily correspond to changes in the 
direction of collocated winds (Fig. 4.2h), because MWD reflects the effect of both  
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Figure 4.2. Winter averages of SWH (a), MWP (b) and U10 (c) (coloured areas 
denote the averaged U10 speed) and white lines denote winter averaged SLP. 
Winter standard deviation of deseasonalized SWH (d), MWP (e) and U10 (f) 
(coloured areas denote the standard deviation of U10 speed). Winter averaged 
MWD (arrows) and standard deviation of deseasonalized winter MWD (coloured 
areas) (g). Standard deviation of deseasonalized winter wind direction (coloured 
areas) (h).  
 
 

local and remote wind forcing.  

    Overall, the performance of the wind-wave hindcast during the winter season 
shows a good agreement with observations for all wave parameters, particularly 
for SWH. Likewise, the climatological patterns are consistent with earlier results. 
Moreover, it is worth noting that model biases do not affect the conclusions of 
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this study as we mainly work with correlations, which are independent of biases. 

    During the summer season (JJAS), spatial patterns of wave climate are similar 
to those obtained for winter but with larger SWH values in the region affected by 
the trade winds and lower SWH values in the region affected by the westerlies 
(not shown). Overall, the mean values of SWH (1.4 m) and MWP (5.1 s) are 
lower than in the rest of the seasons.  

 

4.5 Impact of atmospheric climate modes on seasonal 
wave climate 

4.5.1 Relation between atmospheric climate indices and 
seasonal wave climate  
With the aim of establishing how the large-scale atmospheric climate modes 
influence wave fields, correlations and regression coefficients between seasonally 
averaged wave anomaly parameters and climate indices were computed.  

    Regression coefficients of winter SWH, MWP and MWD with the climate 
indices are mapped in Fig. 4.3. Dots correspond to grid points that are 
significantly correlated. The NAO and EA are the patterns with the largest 
influence on North Atlantic winter wave climate, both having an impact over 
most of the region. The regression patterns between the NAO and both SWH and 
MWP are very similar: positive values (of up to 0.9m and 0.8s per unit NAO) 
were found over the north-eastern sector, while negative values (of up to -0.5 m 
and -0.7 s per unit NAO) were found over the western and southern sectors. For 
the MWD, positive values (up to 65º per unit NAO) were found over the southern 
sector and negative values (up to -69º per unit NAO) were found over the 
northern sector except at the highest latitudes (above 60ºN), where values turn to 
be positive (up to 88º per unit index). The regression coefficients between EA and 
both SWH and MWP show a similar pattern, with positive significant values (up 
0.4 m and 0.5 s per unit EA, respectively) over mid-latitudes. For MWD the 
correlation is negative over most of the domain, with some positive areas in the 
north-western sector. Significant values between EA/WR and SWH were found 
only at lower latitudes, reaching values of up to -0.3 m per unit EA/WR along 
the coasts of the Iberian Peninsula and Northwest Africa. Finally, SCAN has 
some influence on SWH and MWP only over the north-easternmost part of the 
domain (up to -0.8 m and -0.6 s per unit SCAN, respectively) and in some areas 
along the north-western coasts of Africa (up to 0.3 m and 0.5 s per unit SCAN). 
In order to check the influence of the limited length of the hindcast in these 
results, the same computations were carried out using the 1958-2002 hindcast  
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Figure 4.3. Winter (DJFM) regression coefficient between climate indices and 
hindcasted SWH, MWP and MWD anomalies for the period 1989-2009. Black 
dots and black arrows denote a minimum 95% level of significance. Arrows 
indicate winter averaged MWD and coloured areas denote the change in direction 
from the winter averaged value in both clockwise (red) and counter-clockwise sense 
(blue). Units are m per unit index, s per unit index and degrees per unit index.  
  

     

forced with ERA40. The results obtained were very similar in terms of magnitude 
and patterns (Fig. 4.S2), thus suggesting that the regressions mapped in Fig. 4.3 
are robust. 

    Similarly to the results presented for winter, the relationships were also 
explored for the summer (JJAS) season for completeness (Fig. 4.S3). Although 
the wave parameters show some sensitivity to climate indices, this is statistically 
significant only over small areas and in any case it is much lower than during the 
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winter season: by a factor 1/4 in the case of SWH and MWP and by a factor 1/2 
for MWD. This is a direct consequence of the lower summer wave climate 
variability, whereas indices variability remains nearly unchanged. For this reason, 
the summer season will not be discussed. The relationships for spring and autumn 
were also explored for completeness, finding intermediate characteristics between 
those found for winter and summer. (see Figs. 4.S4 and 4.S5 in Supplementary 
information). 

    An important feature to be commented is that the sensitivity of the wave 
climate to different phases of climate indices is asymmetric in terms of magnitude. 
This is reflected in the composite Figures 4.4-4.6 for winter SWH, MWP and 
MWD, respectively. The impact of the indices on winter SWH is shown in Fig. 
4.4. During its positive phase, winter NAO induces higher than average SWH over 
the northeast Atlantic, with maximum values near the Scottish coasts of up to 1.0 
m per positive unit NAO (Fig. 4.4a). Conversely, between 30-40ºN SWH are 
smaller than average during positive NAO phases. The pattern is almost the 
opposite during the negative phase, with increasing SWH (up to 0.6 m per 
negative unit NAO) between 30-40ºN and decreasing SWH at higher latitudes, 
mainly to the northeast (Fig. 4.4b). The positive phase of EA induces higher than 
average SWH between latitudes 36ºN and 48ºN, mostly affecting the Iberian 
Peninsula, France and the south of the British Isles (values of up to 0.9 m per 
positive unit EA, see Fig. 4.4c). Conversely, the impact of the negative phase of 
EA on SWH is smaller (Fig. 4.4d). SWH decreases (of up to 0.9m per positive 
unit EA/WR) are induced during the positive phase of EA/WR along the western 
European coasts (Fig. 4.4e) while SWH increases (of up to 0.4m per negative unit 
EA/WR) over are induced during its negative phase at higher latitudes. During 
its winter positive phase, SCAN induces positive SWH anomalies (up to 0.5 m per 
positive unit SCAN) at the coasts of the Iberian Peninsula and Canary Islands 
and negative anomalies in the Northern sector of the domain (Fig. 4.4g). During 
its negative phase SCAN induces positive anomalies over most of the domain, 
with maximum values (0.9 m per negative unit SCAN) to the west of the British 
Isles and in the Gulf of Biscay (Fig. 4.4h). 

    The impacts of NAO and EA on MWP (Fig. 4.5) have spatial patterns similar 
to those of SWH. Winter NAO induces maximum departures from the mean 
MWP (up to 1.7s per positive unit NAO) to the west of the British Isles and in 
the Bay of Biscay (Figs. 4.5a,b). For negative phases the largest increase is 
obtained at lower latitudes, especially around the Canary Islands (up to 0.8 s per 
negative unit NAO). Major changes associated with a positive EA phase are 
found between latitudes 24ºN and 36ºN (Fig. 4.5c) with up to 1.1 s per positive 
unit EA. Winter EA/WR induces negative MWP anomalies (up to -0.8m per 
negative unit EA/WR) over Western European coasts. During its winter positive  
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Figure 4.4. Winter (DJFM) SWH anomalies (m per unit index) and 10m wind 
speed (vectors) averaged for winter NAO (a,b), EA (c,d), EA/WR (e,f) and 
SCAN (g,h) indices under a positive state (left) and a  negative state (right). 
Corresponding averaged sea level pressures are contoured (black lines). The 
horizontal red vector is for scale and indicates a wind speed of 10m/s. 
 
 

phase, SCAN induces positive MWP (up to 0.6s per positive unit SCAN) at the 
coasts of the Iberian Peninsula and Canary islands, and negative anomalies in the 
Northern sector of the domain (Fig. 4.5g). During its negative phase SCAN 
induces positive MWP anomalies over most of the domain, with maximum values 
at the European and African coasts (up to 0.8 s per negative unit SCAN).     

    Finally, the impact on MWD is also explored. Over most of the North Atlantic 
positive phases of winter NAO induce clockwise rotations with respect to the 
mean direction over most of the domain but especially at 30º N and 60ºN 
latitudes (Fig. 4.6a). Conversely, negative NAO phases are related to counter-
clockwise anomalies in MWD over most of the North Atlantic (Fig. 4.6b), with 
values of about 40º (60º) per negative unit NAO around 30ºN (60ºN) (Fig. 4.6b).      

    The pattern associated with positive phases of EA (Fig. 4.6c) shows that they 
induce counter-clockwise changes of around 20º per positive unit EA along the 
European coasts, reaching 60º at 60ºN. Also, clockwise changes of more than 60º  
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Figure 4.5. The same as at Figure 4, but for MWP anomalies (s per unit index).  
 

per positive unit EA are found in the northwestern North Atlantic. Also negative 
phase of EA induce significant changes in MWD (Fig. 4.6d), e.g. more than 40º 
per negative EA unit in the Bay of Biscay. No significant changes in MWD 
anomalies induced by EA/WR and SCAN are found, except in some areas over 
open waters.   

The values mapped in these Figures must be carefully interpreted, particularly if 
they are to be compared with simple regressions such as those of Fig. 4.3. A 
difference, already pointed out in the methodology section, is that the composites 
are produced selecting the winters with the highest (lowest) indices values (i.e. 
considering only strong and well defined phases of each index), whereas the 
regression coefficients were computed considering all winters.  

4.5.2 Relation between atmospheric climate patterns and 
seasonal wave climate   
During the winter period, the NAO is the climate mode that has the highest 
influence on the North Atlantic wave climate.  The positive phase of winter NAO 
is characterized by a northward displacement of the Icelandic Low and a pressure 
gradient increase between 36°N and 60°N (Fig. 4.4a). This effect results in strong 
(and long duration) westerly winds and in a consequent increase in the SWH and 
MWP of the waves, which propagate eastwards towards North-western Europe  
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Figure 6. Winter (DJFM) MWD anomalies (º per unit index) (colours), 10m 
wind speed (vectors) and MWD (black triangles) averaged for winter NAO (a,b), 
EA (c,d), EA/WR (e,f) and SCAN (g,h) indices under a positive state (left) and 
a  negative state (right). Corresponding averaged sea level pressures are contoured 
(black lines). The horizontal red vector is for scale and indicates a wind speed of 
10m/s. 
 

(Figs. 4.4a, 4.5a and 4.6a). The negative phase of winter NAO is characterized by 
a south-westward displacement of the meridional pressure gradient, which in this 
situation is located between 30ºN and 40ºN (Fig. 4.4b). The increase in SWH and 
MWP observed between these two latitudes during the negative phase derives 
from the southward displacement of the maximum gradient (Figs. 4.4b, 4.5b, 
4.6b), not from their strengthening (the pressure gradient is slightly weaker than 
during the positive phase). An increase in the MWP is also observed at low 
latitudes (24ºN), coinciding with the position of the high pressure centre during 
the negative phase (Fig. 4.4b) and explaining the high inter-annual variability of 
MWP observed in that region (Fig. 4.2e). One possible explanation for the 
positive MWP anomalies at the Azores High (between 20ºN and 30ºN) is that in 
presence of weaker winds the swell waves,  coming from the North (between 30ºN 
and 40ºN), dominate over wind-seas. At high latitudes (above 60ºN) the easterly 
winds resulting from the southern displacement of the Icelandic Low induce 
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significant changes in MWD; this region is where the highest winter variability of 
MWD is observed (Fig. 4.2g).  

    The second mode of atmospheric inter-annual variability over the North 
Atlantic, the EA pattern, is also related to the displacements of the Icelandic Low 
and subtropical High. During its winter positive phase the southward 
displacement of the Icelandic Low makes that the maximum meridional pressure 
gradient associated with this mode is located between 36ºN and 48ºN, an area 
where strong westerly winds induce an increase in SWH and MWP (Figs. 4.4c, 
4.5c) and waves propagate eastwards towards the coasts of Southern Europe (Fig. 
4.6c). This is a similar behaviour to that of the NAO, but the pressure gradient is 
now located between 36ºN-48ºN, where the NAO does not show any impact in 
any of its phases (Fig. 4.4a). The pattern of the negative phase of winter EA is 
significantly different from the former patterns, as the high pressure centre is 
much wider and the pressure gradient is weaker (Fig. 4.4d). This results in the 
absence of strong winds and, in turn, in important changes in MWD, especially 
along the coasts of southern Europe (Fig. 4.6d). 

    The positive phase of winter EA/WR presents a high pressure centre over the 
Iberian Peninsula and a low pressure centre to the south of Greenland, which 
results in a weak NW-SE pressure gradient to the west of the British Islands and 
hence on waves propagating north-eastwards (Figs. 4.4e, 4.6e). During its negative 
phase, the pressure gradient is more zonal, resulting in the eastward propagation 
of waves (Fig. 4.6f). During the positive phase of winter SCAN, the pressure 
gradient decreases and moves westwards, leading to a slight increase in SWH and 
MWP over the coasts of the Iberian Peninsula, and to a northwards shift of 
MWD in the North Sea (Figs. 4.4g, 4.5g, 4.6g). On the contrary, during the 
negative SCAN phase the pressure gradient moves eastwards and waves propagate 
westwards in the North Sea (Fig. 4.6h).    
 
4.5.3 Impact of climate modes on wind-sea and swell 
components  
Correlations between climate indices and wave parameters were significant also in 
areas away from the larger pressure gradients. For instance, the EA is related to 
SWH, MWD and MWP at low latitudes, whereas the winter NAO is related to 
MWP and MWD but, surprisingly, not to SWH (except in a small area in the 
Gulf of Guinea). This behaviour was also noted by Semedo et al. (2011), who 
showed that the leading mode of variability of SWH corresponding to wind-sea 
(SWHw) had a NAO-like structure, while the leading modes of SWH 
corresponding to total-sea (SWH) and swell (SWHs) had not. In order to 
investigate whether the absence of correlation between the indices and SWH is a  
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Figure 7. Winter (DJFM) regression coefficient between hindcasted wind-sea and 
swell parameters and NAO and EA indices for the period 1989-2009 (the 
regression coefficient for total wave parameters and NAO and EA indices have 
already been shown in Fig. 3). Black dots and black arrows denote a minimum 
95% level of significance. Arrows indicate winter averaged MWD and coloured 
areas denote the change in direction from the winter averaged value in both 
clockwise (red) and counter-clockwise sense (blue). Units are m per unit index, s 
per unit index and degrees per unit index.  
 

consequence of the different behaviour of wind-sea and swell, regression 
coefficients between winter NAO and EA leading indices and wave parameters 
were obtained at each grid point for both wind-sea and swell separately (Fig. 4.7), 
in the same way that it was done before for total SWH. The other two climate 
indices, EA/WR and SCAN, were not included as their relevance is much smaller.  

    Above 24ºN, the regression coefficients between winter NAO and SWH, SWHw 
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and SWHs show similar patterns (Figs. 4.3a and 4.7a,b). The lower values 
obtained for SWHs indicate that the impact of winter NAO on total SWH is 
mainly through wind-sea and, to a lower extent, through swell. Below 24ºN, 
however, winter NAO is not related to SWH (see Fig. 4.3a), while it has a 
significant but opposite impact on SWHw and SWHs related to the Trade winds 
displacement between NAO phases (Figs. 4.7a,b): while the NAO index is 
positively correlated with SWHw due to the stronger Trade winds induced during 
the positive NAO phase, it is negatively correlated with SWHs due to southward 
propagation of swell waves from higher latitudes (30ºN-40ºN) induced during the 
negative NAO phase.   

    The interaction between wave components is even more complex for MWP. 
The dominant periods are always in between those of wind waves (shorter) and 
swell (longer). In the north-eastern sector, where both components are important, 
there is a positive relationship between winter NAO and MWP (Fig. 4.3e) as a 
result of the positive sensitivity of both MWPs and MWPw to winter NAO (Figs. 
4.7e,f). At low latitudes the relation is more cumbersome. During positive phases 
of the NAO there is swell generated by the Trade winds, while during negative 
phases there is swell coming from the north and generated by the Westerly winds. 
This results in the absence of sensitivity of low latitude MWPs to the winter 
NAO index (see Fig. 4.7f). Conversely, wind waves show a clear sensitivity to 
winter NAO: they are the dominant component during positive phases of the 
winter NAO due to the Trade winds (Fig. 4.7e). This makes that the periods 
observed during positive NAO phases are shorter than those observed during 
negative phases (when only the swell component coming from the north remains). 
This results in the negative correlations (positive NAO-shorter periods) observed 
at low latitudes in Fig. 4.3e). 

    The impact of NAO on MWD for swell (MWDs) and for total MWD is very 
similar over most of the domain, indicating that the NAO impact on MWD is 
mainly through its effect on swell propagation (Figs. 4.7i, j). 

    When the impact of winter EA on wind-sea and swell parameters was 
explored, it was found that the spatial structure of swell was very similar (in 
terms of sign) to that of total waves (Figs. 4.7 c,d,g,h,k,l and Figs. 4.3 b,f,j). This 
indicates that the impact of EA on North Atlantic waves is mainly through the 
swell component. It is likely related to the dominance of swell component during 
the negative phase of the EA, which corresponds to a situation of weakening 
Westerlies and expansion of the Azores High (thus reduction of SWHw). The 
values of the regressions though, are smaller.  

    All the findings discussed so far address the relative importance of the 
atmospheric climate modes on wave climate variability over the North Atlantic. 
However, it is worth noting that climate modes account for only a part of this  
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Figure 4.8. Variance accounted for by the regression model in which the four 
indices (NAO, EA, EA/WR and SCAN) has been regressed against the winter (a, 
b, c) and summer (d, e, f), SWH (a, d), MWP (b, e) and MWD (c, f) (units in 
%). Coloured areas denote model statistical significance at 5% level. Averaged 
values are also shown. 

  
 
variability. In order to estimate how much of the total variance can be related to 
large scale climate modes, a multiple regression model has been built in which the 
four indices (NAO, EA, EA/WR and SCAN) were used as predictors and were 
regressed against SWH, MWP and MWD. The results, mapped in Fig. 4.8 for the 
four seasons, show that during the winter season the four climate modes 
accounted for the highest percentage of variance of SWH (46% on average), MWP 
(43% on average) and MWD (35% on average) (Figs. 4.8a,b,c). Finally, during  
summer the variance accounted for the climate modes was much smaller and only 
significant in some reduced areas (Figs. 4.8d,e,f).  
 

4.6 Summary and Conclusions 
In this study we have investigated and quantified the relationships between the 
wave climate parameters SWH, MWD and MWP and the four major atmospheric 
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climate modes over the North Atlantic using a wind-wave hindcast covering the 
period 1989-2008. The hindcast has been evaluated against buoy and altimetry 
observations.  The present study completes earlier works that had either focused 
only on one of the wave parameters (usually SWH) or had investigated only one 
of the major climate indices (usually the NAO) or have given only a partial view 
in terms of the covered area and time period.  

    The overall conclusion of the present work is that the NAO and EA modes 
have a major impact on North Atlantic SWH during the winter season. When 
winter NAO is in its positive phase, it induces higher than average SWH in the 
northern sector of the domain, especially to the northwest of the British Isles (up 
to 1.0 m per unit positive NAO). Conversely, during its negative phase it 
produces higher than average SWH in the central North Atlantic (up to 0.6 m per 
unit negative NAO), nearby Azores and the Iberian Peninsula. The separation 
between the wind sea and swell components has uncovered that in the southern 
sector of the North Atlantic (below 24ºN), where the wave climate had been 
reported to be uncorrelated with winter NAO, there is in fact a significant 
correlation with each of the components. What happens is that the combination 
of the positive correlation with the wind-sea component with the negative 
correlation with the swell component results in a non-statistically significant 
correlation with total SWH. Regarding the wave direction, winter NAO shifts 
MWD counter-clockwise over the whole basin, reaching 65º per unit NAO at 
60ºN. The MWP is positively correlated with the winter NAO index in the area 
between the North Sea and the Bay of Biscay (up to 1.7s per unit positive NAO).  

    Also the EA pattern has a significant influence on North Atlantic wave 
climate. During positive phases of winter EA, SWH increases between the British 
Isles and the Iberian Peninsula (up to 0.86 m per unit positive EA), the MWP 
increases between the western coasts of Europe and North Africa (1.09s per unit 
positive EA) and MWD rotates counter-clockwise along the European coasts (by 
up to 60º per unit positive EA). A new result is that the impact of winter EA on 
all wave parameters is mostly caused through the swell wave component. The 
winter SCAN and EA/WR indices have a lower impact in terms of both intensity 
and areas with significant correlation. 

    These findings extend the results found by Woolf et al. (2002), Tsimplis et al. 
(2005), Dodet et al. (2010), Charles et al. (2011) and Feng et al. (2014a,b) and 
confirm the impact of the NAO and EA modes on SWH, MWP and MWD for 
both wind-sea and swell in the various areas of the North Atlantic. Our results 
are also in good agreement with Shimura et al. (2013), who showed the 
correlation patterns over the North Atlantic between winter SWH and the same 
four climate indices, although for a different period (1960-1990). They are also 
consistent with those of Charles et al. (2012), who focused on the Bay of Biscay. 
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The only discrepancy with that work is that we found a significant link between 
EA and MWD during summer and they did not; the discrepancy is likely related 
to the use of MWD (in our work) instead of the peak direction used in Charles et 
al. (2012). 

    The results presented here can be useful to infer wave changes derived from 
eventual future changes in the regional modes, under the assumption that the 
relationships between climate indices and wave parameters will remain stationary 
in time. Future work should consider a non-stationary approach to identify those 
changes.  
 
 

Supporting Information 
 
The following supporting information is available as part of the online article:  
 
 

 

Figure 4.S1. Bias (units in meters) (a), RMSD (units in meters) (b) and 
correlation coefficient between altimeter and hindcasted monthly SWH during the 
period 1991-2009. Averaged values are also shown.  
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Figure 4.S2. Winter (DJFM) regression coefficient between climate indices and 
ERA40-hindcasted SWH, MWP and MWD anomalies for the period 1958-2002. 
Black dots and black arrows denote a minimum 95% level of significance. Arrows 
indicate winter averaged MWD and coloured areas denote the change in direction 
from the winter averaged value in both clockwise (red) and counter-clockwise sense 
(blue). Units are m per unit index, s per unit index and degrees per unit index.  
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Figure 4.S3. Summer (JJAS) regression coefficient between hindcasted wave 
parameters and climate indices for the period 1989-2009. Black dots and black 
arrows denote a minimum 95% level of significance. Arrows indicate winter 
averaged MWD and coloured areas denote the change in direction from the winter 
averaged value in both clockwise (red) and counter-clockwise sense (blue).  
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Figure 4.S4. Spring (MAMJ) regression coefficient between climate indices and 
hindcasted SWH, MWP and MWD anomalies for the period 1989-2009. Black 
dots and black arrows denote a minimum 95% level of significance. Arrows 
indicate winter averaged MWD and coloured areas denote the change in direction 
from the winter averaged value in both clockwise (red) and counter-clockwise sense 
(blue). Units are m per unit index, s per unit index and degrees per unit index.  
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Figure 4.S5. Autumn (SOND) regression coefficient between climate indices and 
hindcasted SWH, MWP and MWD anomalies for the period 1989-2009. Black 
dots and black arrows denote a minimum 95% level of significance. Arrows 
indicate winter averaged MWD and coloured areas denote the change in direction 
from the winter averaged value in both clockwise (red) and counter-clockwise sense 
(blue). Units are m per unit index, s per unit index and degrees per unit index.  
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Chapter 5 

On the ability of statistical wind-wave 
models to capture the variability and 
long-term trends of the North Atlantic 
winter wave climate 
 
                             —Le he contado todas estas cosas—dijo—,      

como si ya hubieran ocurrido. También hubiera podido contarlas como si fueran a ocurrir                                       
en el futuro. Para mí, no hay demasiada diferencia. 

                                                                    
                                                                        —I've described all these events —he said—

,       as if they'd already happened. I might just as well have described them as if they still lay                        
in the future. To me, there's very little difference. 

                                                                                              
 Michael Ende, Momo (1973) 

 
This chapter has been published in:  
 

• Martínez-Asensio, A., Marcos, M., Tsimplis, M.N., Jordà, G., Feng. X., 
Gomis, D., 2015. On the ability of statistical wind-wave models to capture 
the long-term trends in winter wave climate. Ocean Modelling (in revision)  
 

Abstract 

A dynamical wind-wave climate simulation covering the North Atlantic Ocean 
and spanning the whole 21st century under the A1B scenario has been compared 
with a set of statistical projections using atmospheric variables or large scale 
climate indices as predictors. As a first step, the performance of all statistical 
models has been evaluated for the present-day climate; namely they have been 
compared with a dynamical wind-wave hindcast in terms of winter Significant 
Wave Height (SWH) trends and variance as well as with altimetry data. For the 
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projections, it has been found that statistical models that use wind speed as 
independent variable predictor are able to capture a larger fraction of the winter 
SWH inter-annual variability (68% on average) and of the long term changes 
projected by the dynamical simulation. Conversely, regression models using 
climate indices, sea level pressure and/or pressure gradient as predictors, account 
for a smaller SWH variance (from 2.8% to 33%) and do not reproduce the 
dynamically projected long term trends over the North Atlantic. Investigating the 
wind-sea and swell components separately, we have found that the combination of 
two regression models, one for wind-sea waves and another one for the swell 
component, can improve significantly the wave field projections obtained from 
single regression models over the North Atlantic.  

 

5.1 Introduction 
Changes in wave climate have received much attention in recent years due to their 
impact on coastal and offshore structures and ecosystems. Numerous wave climate 
simulations under different future scenarios of greenhouse gases (GHGs) emissions 
have been generated at both global and regional scales using numerical wave 
models.  The North Atlantic is one of the most widely studied regions. Many 
earlier works have pointed to a decrease in wave heights as a consequence of 
global warming. For example, Mori et al. (2010) projected future decreases in the 
wave heights over the North Atlantic at mid-latitudes by using wind fields 
generated by the MRI-JMA General Circulation Model (GCM) run under the 
A1B scenario. Likewise, Hemer et al. (2012) projected future decreases in wave 
heights during winter and changes in wave directions over all the North Atlantic 
by using the ECHAM5 GCM and CSIRO Mk3.5 GCM wind fields, both under 
the A2 climate scenario. Semedo et al. (2013) projected decreases in both wave 
heights and periods over the North Atlantic during the winter season by using 
ECHAM5 GCM wind fields under the A1B scenario. Fan et al. (2013) projected 
decreases of wave heights during winter over the North Atlantic and increases over 
the north-eastern sector by using a three member ensemble forced by CM2 GCM, 
HadCM3 GCM and ECHAM5 GCM wind fields under the A1B scenario. In a 
subsequent paper, Fan et al. (2014) used the same model ensemble to obtain 
winter trends for the wind-sea and swell components separately. Andrade et al. 
(2007) projected decreases of wave heights and clockwise changes in wave 
directions and investigated their effects along the Portuguese coast. More local 
studies also exist in the region. In particular, Charles et al. (2012) projected very 
similar winter wave height decreases over the Bay of Biscay by using the 
ARPEGE-Climat GCM under three different future climate scenarios (B1, A1B, 
A2). All the simulations referred above are based on dynamical models forced 
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with the surface wind fields from atmospheric models. The simulated wave 
parameters defining the wave climate are significant wave height (SWH), mean 
wave period (MWP) and mean wave direction (MWD), as well as their separation 
into local (wind sea) and remotely-forced (swell) waves. Both components can be 
properly modelled when using global wind-wave models. Regional models can also 
be suitable to model the swell component, although they require to be nested into 
larger domains to account for remotely generated swell; in turn, they usually 
provide higher spatial resolution. 

    Alternative approaches to explore wave changes in future climates cover a wide 
variety of statistical methods that can be classified into three main types (Wilby 
et al., 2004): i) regression methods, ii) weather generators and iii) weather typing 
schemes. Each method has its own advantages and shortcomings. Briefly, weather 
generators are stochastic models that replicate the statistical properties of the 
observed sequences of events, such as mean value and variance (Ailliot et al., 
2014; Wilks, 1998). Weather typing schemes establish the relationship between 
atmospheric and wave parameters based on a division in weather classes, as shown 
for instance in Camus et al., (2014). Among these, the analogue method (Lorenz, 
1969; Zorita et al., 1995) and the Monte Carlo method are also weather typing 
methods.  

    Among the regression methods, the canonical correlation analysis used by 
Wang et al., (2004) to simulate future SWH changes is a first example. Some of 
the most frequently used regression methods are based on transfer functions, 
which represent the relationship between observed wave parameters, usually 
SWH, and atmospheric variables such as the squared wind speed (W=u2+v2), sea 
level pressure (P) and/or the squared sea level pressure gradient (G) representing 
the geostrophic wind (that is the sum of the squared zonal and squared 
meridional SLP gradients). The atmospheric parameters obtained from model 
output under increased GHG scenarios can then be used to estimate the changes 
in the wave field through the statistical relationship between them obtained for 
the present-day period, assuming that such relationship holds also for the future 
period. Examples of application of such methodology can be found in Wang and 
Swail (2006), who used global anomalies of P and G as predictors in different 
regression models to simulate future SWH. Likewise, Wang et al. (2010) compared 
both dynamical and regression models to simulate future SWH changes over the 
North Atlantic at hourly and seasonal scales. They tested the inclusion of W as a 
predictor in a set of regression models, but they concluded that it was preferable 
to use P and G predictors to simulate future changes on SWH due to the bias in 
the winds produced by the atmospheric models. Wang et al., (2012) and Wang et 
al., (2014) improved the regression model predictability by including the Principal 
Components (PCs) of P and G as predictors, which result in a better 
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representation of the swell component at hourly time scales. More recently, Casas-
Prat et al. (2014) have developed a more complex regression model that better 
accounts for the swell component to simulate future changes in the wave climate 
of the Western Mediterranean. In a similar way to atmospheric variables, large 
scale climate indices can also in principle be used as proxies for the statistical 
projections of waves (Woolf et al., 2002; Tsimplis et al., 2005;  Feng et al., 2014a). 
The obvious constraint is that they must be correlated for present-day climate 
with both wind sea and swell wave parameters (Shimura et al., 2013; Martínez-
Asensio et al., accepted).  

    The statistical techniques offer low computational effort relative to dynamical 
modelling, which in turn permits the generation of larger ensembles resulting in a 
better understanding and quantification of uncertainties. Wang and Swail (2006) 
carried out an analysis of the uncertainty in SWH projections over the North 
Atlantic by running a set of statistical simulations forced with three different 
climate models  (CGCM2, HadCM3 and ECHAM4/OPYC3) and three different 
scenarios (IS92a, A2 and B2) at a seasonal scale. They found that the uncertainty 
associated with the GCM used to feed the statistical model was much larger than 
that associated with the emission scenarios. Similar conclusions were pointed out 
by Charles et al. (2012). Hemer at al. (2013) went further into the uncertainty 
analysis by taking into account five independent studies projecting future changes 
in wave climate (namely those carried out by Wang and Swail, 2006; Mori et al., 
2010; Hemer et al., 2012; Semedo et al., 2013; and Fan et al., 2013). They 
considered a total of four climate scenarios (A2, A1B, B2 and IS92a), six GCMs 
(ECHAM5, CSIRO-Mk3.5, GFDL-CM2.1, HadCM3, ECHAM4 and CGCM2), an 
ensemble mean of three CGCM2 simulations produced with different initial 
conditions, two ensemble means of 18 and 23 CMIP3 members, a set of three 
dynamical wave models (WaveWatch III, SWAN and WAM), one statistical model 
and three wave parameters (SWH, MWP and MWD). They found that the 
method used to obtain regional wave climates (the regional climate model, the 
downscaling technique, the wave model approach and the use of different 
predictors in statistical models) is also a high source of uncertainty.  

    In our study the accuracy of a set of transfer function statistical models to 
project the future wave climate over the North Atlantic Ocean is studied. Our aim 
is to compare a wide set of these statistical models against a reference dynamical 
model and quantify their performances. The chosen statistical models are based 
on some of the most widely used transfer functions; the set was complemented by 
other, more specific models as well as by models based on large scale climate 
indices.  

    A wind-wave hindcast and an atmospheric reanalysis are used to calibrate all 
the statistical models for the period 1958-2002. Altimetry SWH observations are 



 106 

used to validate both the dynamical and statistical models. Conversely, altimetry 
is not an option to calibrate the statistical models because of the short period 
spanned by observations. Then, the atmospheric output of a climate model 
(ECHAM5) run under the A1B emission scenario for the period 2000-2100 is used 
to obtain the changes in the atmospheric parameters used as statistical predictors 
and hence for the prediction of the winter SWH fields of the future. ECHAM5 is 
considered one of the best CMIP3 GCMs in simulating the recent past climate 
conditions in terms of inter-annual variability over the North-East Atlantic (Pérez 
et al.,2014). 

    The same output is used to force a dynamical regional wave model to project 
winter SWH, MWP and MWD fields. The differences between the dynamical and 
statistical approximations of the future wave field as well as their respective 
limitations are discussed.  

    The paper is organized as follows: the dynamical and statistical models and 
their forcing are presented in section 2. The models are validated for present-day 
climate in section 3. Projections of wave climate are presented in section 4. In the 
last section results are discussed and conclusions are outlined.  

 

5.2 Data set and methodology 
The set of dynamical and statistical simulations and the procedure to generate all 
them is schematically shown in Fig. 5.1, while the details are given in the sections 
below.  

5.2.1 Dynamical simulations 
Two wind-wave hindcasts over the North Atlantic (hereinafter HE40 and HEI) 
were obtained by forcing a third generation wave model that explicitly solves the 
wave transport equation (the WAM model, see WAMDI, 1988; Günther et al., 
1992) with 6-hourly surface wind fields from the atmospheric reanalysis ERA-40 
(1958-2002) with a spatial resolution of 2.5x2.5 degrees and ERA-INTERIM 
(1989-2009) with a spatial resolution of 0.5x0.5 degrees, respectively. HE40 was 
used for the calibration of the statistical models, whereas HEI was used as a basis 
for validation purposes (more details are given in section 3). In a third simulation 
the WAM model was forced with 6-hourly surface wind fields (1.875x1.875 degrees 
of spatial resolution) from the Max Plank Institute (MPI) ECHAM5 atmospheric 
GCM (Roeckner et al., 2003) run for the period 1950-2100. The period 1950-2000 
is a historical run forced with observed GHG concentrations (the corresponding 
wave simulation will be referred to as DynHist), while the period 2001-2100 is a 
projection under the A1B emission scenario (the corresponding wave simulation 
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will be referred to as DynProj).  

    The domain of the WAM model was set to cover the North Atlantic region 
(from 1ºN to 67ºN and from 59ºW to 8ºE) with spatial resolution varying 
between 2.5 km and 50 km (see Fig. 5.S1 in Supplementary information). Wind 
fields were bi-linearly interpolated onto the described model grid. This is the 
configuration routinely used by the Spanish Port Authority for operational 
purposes. The temporal resolution of the output is 3 hours. The separation of the 
wind-sea and swell components of the wave field is performed as in Hasselmann et 
al. (1996): the peaks (local maxima) of the directional wave spectrum are 
identified and attributed either to the sea or to the swell component depending on 
the period and direction of each peak. When the peak is in the same direction of 
the wind stress and the period is lower than 10 s, the waves are considered to be 
part of the wind-sea component; otherwise they are identified as swell.  

    For the present study, all 3-hourly fields of wave parameters (SWH and its 
wind and swell components) corresponding to the two hindcasts HE40 and HEI 
and to the ECHAM simulation, were monthly averaged and bi-linearly 
interpolated onto a regular grid of 1x1 degree over the North Atlantic domain. At 
each grid point, the mean seasonal cycle of each wave parameter was obtained by 
averaging each calendar month during the period 1961-1981 and removed from all 
the simulations. The resulting anomalies were used for all purposes.  

5.2.2 Statistical regressions using atmospheric variables and 
climate indices 
Winter (DJFM) anomaly fields (i.e., the temporal anomalies at each grid point 
defined above) of SWH from the HE40 run and of atmospheric variables from the 
ERA-40 reanalysis were used to estimate the regression parameters of the 
statistical models. Prior to the regression, 6-hourly W and P fields from ERA40 
reanalysis were interpolated onto the same 1x1 grid as HE40. Subsequently, P 
fields were used to obtain 6-hourly G fields, i.e., as the squared sum of the zonal 
and meridional SLP gradients (equation 4 in the Appendix of Wang et al, 2008).  

    The regressions followed the most commonly used models in the literature and 
were completed with additional models. Recently developed statistical models 
appropriate for higher temporal resolution fields (6-hourly or daily) have not been 
considered here (e.g. those developed by Casas-Prat, 2014 or Camus et al., 2014) 
as far as we focus on seasonal to interannual time scales. The models are listed in 
the following with the corresponding reference and an identification code that will 
be used throughout the paper:  
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M1: SWH = a + b*P (Wang et al., 2004) 
M2: SWH = a + b*G (Wang et al., 2004) 
M3: SWH = a + b*W (Wang et al., 2010) 
M4: SWH = a + b*P + c*G (Wang and Swail, 2006) 
M5: SWH = a + ∑ bi PCin

i=1 (P) (Wang et al., 2004) 
M6: SWH = a + ∑ bi PCin

i=1 (G) (Wang et al., 2004) 
M7: SWH = a + ∑ bi PCin

i=1 (W)  
M8: SWH = a + b*P+ ∑ ci PCin

i=1 (P) (Wang and Swail, 2006) 
M9: SWH = a + b*G+ ∑ ci PCin

i=1 (G) (Wang and Swail, 2006) 
M10: SWH = a + b*W+ ∑ ci PCin

i=1 (W)  
M11: SWH = a + b*P + c*G + ∑ di PCin

i=1 (P) + ∑ ei PCin
i=1 (G) (Wang et al, 

2012; 2014) 
M12: SWH = a + b*NAO (Woolf et al., 2002) 
M13: SWH = a + b*EA  
M14: SWH = a + b*NAO + c*EA + d*EA/WR + e*SCAN  
M15: SWHw = a + b*W  
M16: SWHs = a +  ∑ bi PCin

i=1 (W)  
M17: SWH = �(< 𝑆𝑊𝐻w2 > +< 𝑆𝑊𝐻s2 >) 
 

where PC in M5-M11 and M16 stands for the Principal Components obtained 
from a singular value decomposition of the covariance matrix (see e.g. Wallace, et 
al., 1992) of the winter anomalies of ERA40 P, W and G fields spanning the 
period 1958-2002; n is the number of PCs included in the model, sorted by 
decreasing explained variance. They were used by Wang et al. (2012; 2014) as 
large-scale predictors in order to account for changes in the swell component, 
which is related to remote atmospheric forcing. Namely, Wang et al (2012) used 6-
hourly time series and found that the inclusion of a large number of PCs (n~30) 
did not have an impact on trends, but resulted in a better representation of the 
large-scale patterns that generate swell.  Another worth noting point is that 
model M11 corresponds to the particular case of no autoregressive process 
explained in Wang et al (2012) (their equation 2). We chose this simplified case 
because we deal with seasonal data, in contrast with the 6-hourly temporal 
resolution used by Wang et al (2012), and we do not expect significant time-lag 
correlations between seasons. 

    For each model with at least two predictors, a forward/backward stepwise 
regression was applied at each grid point in order to determine the number of 
predictors to be included (Draper and Smith, 1998) and their corresponding 
coefficients (see Appendix 5.A). This procedure selects the most correlated 
independent variable and removes its influence through a regression analysis. 
Then it checks for correlation between the rest of the independent parameters and
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Figure 5.1. Dynamical and statistical simulations flowchart. Green colours indicate atmospheric fields and yel low colours indicate wave 
fields.
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the residual signal, until the correlation becomes non-significant. When more than 
one predictor account for the same part of variability the regression model favours 
the predictor that accounts for the highest percentage of total variability. In other 
words, the statistical fit calculates the value of the coefficients and defines the 
number of parameters that optimise the fit to SWH data at each point. This also 
applies to the models using PCs as predictors. We have established a maximum 
number of PCs n=6 because for larger values the increase in explained variance 
was negligible (the fact that a small number of PCs is requested is due to working 
with seasonal values). The linear trends from all dependent and independent 
variables were removed before the estimation of the regression parameters.  

    The regression coefficients estimated for the historical period were then used to 
project winter SWH along the 21st century using the projected atmospheric fields 
of the ECHAM5 GCM. Winter (DJFM) anomaly fields of P, G and W from 
ECHAM5 and their corresponding PCs were used as predictors to obtain 
projections of winter SWH for the period 1950-2100. It is worth noting that the 
projected atmospheric fields are not detrended and therefore the underlying 
assumption is that the correlation at inter-annual scales, which determines the 
regression parameters, remains unaltered at lower frequencies. This means that a 
long term trend in the predictor will result in a trend in winter SWH with the 
sign and intensity given by the regression. The PCs in M5-M11 were obtained 
using a fixed-pattern projection approach, which consists of projecting winter 
anomaly fields from ECHAM5 onto the PCs obtained from the ERA-40 reanalysis 
used for the regression (Wang et al., 2004). In this way, the correspondence of the 
regression coefficients between these so called pseudo-PCs and the original PCs 
used to train the model is ensured. An eventual disadvantage of the fixed-pattern 
projection approach is that the percentage of hindcast variability explained by 
each original PC is not necessarily the same than for the corresponding pseudo-
PC. To check this point, we have compared the percentage of winter SWH 
variance accounted for in HE40 and in DynHist by the 6 leading PCs and pseudo-
PCs, respectively. For HE40 we obtained variance fractions of 50% (M5 model), 
41% (M6 model) and 68 % (M7 model); for DynHist the fractions were 36%, 33% 
and 45%, respectively.  

    The climate indices considered in this work correspond to the most relevant 
modes of atmospheric variability over the North Atlantic, namely the North 
Atlantic Oscillation (NAO), East Atlantic Pattern (EA), East Atlantic/Western 
Russian Pattern (EA/WR) and Scandinavian Pattern (SCAN). The climate 
indices were obtained for the same period than the atmospheric parameters (1958-
2002) using P fields from ERA-40. Monthly anomalies of P fields over the 
Northern Hemisphere (20ºN-90ºN) were first computed removing the mean 
seasonal cycle at each grid point and then averaged for the winter season  
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Figure 5.2. Validation process flowchart. Green colours indicate atmospheric fields 
and yel low colours indicate wave fields.     

  

 

(DJFM). The EOFS were obtained from a singular value decomposition of the 
covariance matrix of P fields. Finally, the first ten EOFs were orthogonally 
rotated applying a “Varimax” rotation (Richman, 1986). The aim of the EOFs 
rotation was to reduce the mode complexity in order to obtain a more physical 
interpretability of the modes. The percentage of P variance accounted for by the 
ten selected rotated EOFs was 90.1%.  Seven of them (accounting for 72% of the 
variance) were similar to those found by the NOAA Climate Prediction Center 
(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml) using monthly 
Z500 fields from NCEP/NCAR atmospheric reanalysis (Kistler et al., 2001) 
spanning the period 1950-2010. These were the SCAN (19%), NAO (16%), West-
Pacific (WP) (10%), EA/WR (9%), Pacific-North American (PNA) (7%), 
Tropical-Northern Hemisphere (TNH) (6%) and EA (5%). The corresponding PCs 
of the leading rotated EOFs with a strong signal over the North Atlantic wave 
climate (Izaguirre et al, 2011; Shimura et al., 2013) were finally selected; they 
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correspond to the indices NAO, EA, EA/WR and SCAN, which were used as 
independent variables to obtain the parameters of the regression models M12, 
M13 and M14. A model including the ten PCs was rejected because it did not 
result in any significant improvement. The same fixed-pattern method described 
in section 2.2 was used to obtain projections of the climate indices during 1950-
2100. That is, simulated winter anomaly fields of P from ECHAM were projected 
onto the selected rotated PCs derived from the ERA40 reanalysis. The resulting 
climate indices were finally introduced in models M12 to M14 to obtain SWH 
anomalies during 1950-2100.  

    Models M1-M14 simulate total SWH. We further used two additional models: 
M15, describing the wind sea (SWHw) field, and M16, describing the swell 
component (SWHs). Winter (DJFM) anomalies of SWHw and SWHs were 
obtained from HE40 in the same way as for SWH and regressed against 
atmospheric variables from ERA40. The independent parameters used as 
predictors were winter anomaly W for SWHw (adequate to describe the local 
character of the field) and the corresponding PCs of W (accounting for large-scale 
processes) for SWHs. In order to provide estimates for total SWH, the 
relationship between this field and its components SWHw and SWHs was used. 
At quasi-instantaneous (3h) scales SWH, SWHw and SWHs from HE40 verify:  

 

                             SWH2 =  SWHw2 + SWHs2                                      (1) 

 

The winter (DJFM) average was applied to the 3-hourly squared fields. In this 
way the monthly averages < 𝑆𝑊𝐻w2 > and < 𝑆𝑊𝐻s2 > simulated with M15 and 
M16 can be combined to obtain winter SWH as: 

 

< 𝑆𝑊𝐻 >= �(< 𝑆𝑊𝐻w2 > +< 𝑆𝑊𝐻s2 >)                    (2) 
 
 

5.3 Validation of present-day simulated wave climate   
The performance of all (dynamical and statistical) models was first evaluated for 
the present climate, using HEI as the basis for the evaluation. Altimetry SWH 
was also used for completeness, but only for some representative models (see 
Appendix 5.B and Suplementary information, in particular Fig. 5.S2). The 
validation process is schematically shown in Fig. 5.2, while the details are given in 
the sections below. 
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Figure 5.3. Mean value and variance of winter (DJFM) SWH fields for DynHist 
(a, c) and HE40 (b, d) for the common period 1958-1999. Spatial ly averaged 
values are also shown. 

 

5.3.1 Dynamical simulation 
The means and variances of winter (DJFM) averaged SWH fields derived from 
the historical run (DynHist) and the hindcast (HE40) are shown in Figs. 5.3a-d. 
The spatial patterns of the means are broadly similar, but DynHist shows higher 
values (differences of up to 0.5-1m) over most of the domain. The origin of such 
differences is that the winds in DynHist are stronger (0.9 m/s on average) than in 
HE40 over the North Atlantic (not shown). Regarding the variances, both 
DynHist and HE40 show maximum values of similar magnitude in the north-
eastern sector of the domain (Fig. 5.3c-d). Also the spatial averaged variance is 
similar (0.1m2), though the two distributions show some differences at regional 
scale (e.g. in the Bay of Biscay).    

5.3.2 Statistical simulations  
The stability of the regression parameters of the statistical models was tested by 
estimating the parameters for the period 1958-1988 (using HE40) and then using 
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Figure 5.4.  Winter SWH trends (cm/yr) inferred from the statistical models (a-n) 
for the period 1989-2009. Coloured areas denote model statistical significance (F-
test) at 5% level. Spatial ly averaged values are also shown. 

 

the parameters to predict SWH for the HEI period 1989-2009. Models M10, M11, 
M14  and M17 describing the period 1989-2009 were also compared with altimetry 
(spanning the period 1991-2009) in terms of bias, unbiased root mean square 
differences (URMSD) and variance accounted for (Fig. 5.S2). The comparison 
revealed that, in terms of bias, statistical models M17 and M10 were in better 
agreement with altimeter data than HEI, while HEI accounted for the highest 
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percentage of variance.  

    Figure 5.4 shows linear trends of statistically simulated winter SWH during the 
period 1989-2009 fed with ERA-Interim. Coloured areas denote statistical 
significance (F-test) of the regression model at a 5% level. They must be 
compared with the trends obtained from HEI (Fig. 5.6a), which show negative 
values of up to -4 cm/yr over the northern sector of North Atlantic. Such negative 
trends had already been obtained by other authors, e.g. Young et al. (2011) 
obtained negative trends of up to -2.5 cm/year for the period 1985-2008, although 
they used annual SWH values from altimeter observations over large regions of 
the North Atlantic. Most of the models based on statistical downscaling (M1-
M11) are able to reproduce the HEI trend pattern; the exceptions are those 
including P and/or its PCs as unique predictors: M1, M5 and M8 (Figs. 5.4a, e, 
h). The models based on climate indices (M12-M14) show only weak negative 
trends over the northern sector (Figs. 5.4l-n).  

    The percentages of variance of winter SWH from HEI accounted for by each 
statistical model are mapped in Fig. 5.5. Models M3, M7 and M10 account for a 
considerable amount of variance over large areas; on the contrary, M1 shows 
values lower than 50% everywhere. The spatial averaged fractions of variance 
captured by the best models are 44% (M3), 51% (M7) and 68% (M10); local 
values reach up to 97% in some areas, especially at mid and high latitudes.      

    Figure 5.6 shows the trends (computed over the validation period 1989-2009) 
of winter SWH, SWHw and SWHs for the HEI hindcast, the statistical models 
M15, M16 and the combination of both models according to equation 2. Similarly 
to M5-M11, a value of n=6 PCs was used to run M16. Hindcasted winter SWH 
and SWHw trends (Figs. 5.6a, b) are very similar in magnitude, especially at high 
latitudes, while the contribution of SWHs to the total trend is much lower, with 
maximum values of 2 cm/yr over reduced areas at high and mid latitudes, 
particularly in the Bay of Biscay (Fig. 5.6c). 

    Statistical models for the two components were able to represent the main 
features of the observed winter SWH, SWHw and SWHs trends (see Figs. 5.6d-f). 
Regarding the accounted variance, M15 was able to recover a high percentage 
(77% on average) of the hindcasted SWHw, while M16 recovered a small 
percentage (37% on average) of the hindcasted SWHs. The agreement for the 
wind component was high over all the domain, reaching 99% of explained variance  
in some regions (Figs. 5.6g, h). The agreement for the swell component was higher 
over the SW sector of the domain, where M16 reached a 93% of explained 
variance coinciding with swell-dominated areas (sometimes referred to as 'swell 
pools', see Semedo et al., 2011). However, along a significant part of the European 
coasts, particularly to the North of the Bay of Biscay, the swell component is 
poorly recovered by the M16 model. This is a key issue, since swell is the  
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Figure 5.5.  Percentage of variance of hindcasted winter SWH accounted for by 
each of the statistical models (a-n) for the period 1989-2009. Coloured areas 
denote model statistical significance (F-test) at 5% level. Spatially averaged values 
are also shown. 
 
 

dominant component of the wave climate in those areas (Semedo et al., 2011). 
Overall, the models M10 and M17 explained the highest percentages of winter 
SWH variance, with values of 70% (Fig. 5.5j) and 67% (Fig. 5.6g). 
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Figure 5.6. Linear trends (cm/yr) of winter SWH, SWHw and SWHs for HEI 
(a-c), M17 (d), M15 (e) and M16 (f) obtained for the period 1989-2009. The 
percentage of HEI winter SWH, SWHw and SWHs variance accounted for M17, 
M15 and M16 respectively (g-i). Coloured areas denote model statistical 
significance (F-test) at 5% level. Spatially averaged values are also shown. 

 

5.4 Projections of wave climate for the 21st century   

5.4.1 Dynamical projection  
Winter SWH trends for 2000-2100 obtained from the DynProj simulation under 
the A1B scenario are shown in Fig. 5.7a. White dots denote statistically non-
significant (F-test) trends at the 5% confidence level. The projection shows 
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Figure 5.7. Linear trends of winter SWH (a), SWHw (b), SWHs (c) MWP (e) 
and MWD (f) obtained from DynProj for the period 2000-2100. White dots denote 
no statistical significance (F-test) at 5% level. Spatially averaged values are also 
shown. 

 

negative (significant) trends over the North Atlantic, with values of -0.7 cm/yr 
above 30ºN latitude. Below 30ºN latitude trends are also negative, with values of 
-0.3 cm/yr, These results are consistent with previous studies based on dynamical 
approaches. For instance, Hemer et al. (2012) obtained a decrease of up to ~0.7m 
in annual SWH over the North Atlantic between 1979 and 2099, with higher 
decreases (~1m) during winter season (they used ECHAM5 wind fields under a 
SRES A2 scenario to force the WaveWatch III model; see Tolman, 2009 for details 
on the model). In the same line, Semedo et al. (2013) showed a decrease of up to 
10% (~0.5m) in winter (DJF) SWH between 1959 and 2100 over the North 
Atlantic (they used high-resolution surface winds from ECHAM5 under A1B 
scenario to force the WAM model). 

    The linear winter trends of the two components of SWH (Figs. 5.7b, c) show 
different spatial patterns. SWHw shows negative changes in excess of -0.6 cm/yr 
at mid latitudes and in the NW sector of the North Atlantic, and positive 
(although non-significant) trends between 20-30ºN, mainly in the eastern sector, 
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Figure 5.8. Linear trends (cm/yr) of winter SWH obtained from the statistical 
models (a-n) for the period 2000-2100. Coloured areas denote model statistical 
significance (F-test) at 5% level. White dots denote no statistical significance (F-
test) of the trend at 5% level. Spatially averaged values are also shown. 

 

in the area under the influence of the Trade winds. SWHs shows smaller (in 
absolute value) trends than SWHw; they are between -0.1 cm/yr and -0.2 cm/yr 
over most of the domain, reaching -0.4 cm/yr around 38-40ºN and 45ºW. All  
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Figure 5.9. Percentage of variance of the DynProj winter SWH accounted for each 
of the statistical models (a-n) for the period 2000-2100. Coloured areas denote 
model statistical significance (F-test) at 5% level. Spatial ly averaged values are 
also shown. 

 

these trends (Figs. 5.7a-c) will be used in the following as the basis for 
comparison with the statistical models.  

    In order to give a more complete description of the future wave projections 
provided by DynProj, the trends of both winter mean wave period (MWP) and 
mean wave direction (MWD) are also shown in Figs. 5.7d and 5.7e. The 



 121 

Table 5.1. Spatial ly averaged percentages of variance of DynProj winter SWH 
(2000-2100, A1B scenario) accounted for by the statistical simulations (M1-M17). 
Spatial ly averaged winter SWH trends and the corresponding standard deviation 
(cm/year). Differences between averaged winter SWH trends of statistical 
simulations and DynProj (with an averaged value of-0.29cm/year). 

 Model 
 

Variance  
account (%)  

Mean trend  
(cm/year) 

Std trend  
(cm/year) 

Trend diff.  
(cm/year) 

 

 M1 5.9 -0.04 0.04 0.25  
 M2 15.1 -0.06 0.10 0.23  
 M3 43.7 -0.11 0.16 0.18  
 M4 19.5 -0.07 0.09 0.22  
 M5 27.4 -0.03 0.04 0.26  
 M6 22.0 -0.07 0.09 0.22  
 M7 51.4 -0.17 0.11 0.12  
 M8 28.1 -0.03 0.05 0.26  
 M9 27.7 -0.09 0.11 0.20  
 M10 67.7 -0.19 0.14 0.10  
 M11 33.1 -0.08 0.10 0.21  
 M12 2.8 0.01 0.05 0.30  
 M13 8.7 -0.01 0.01 0.28  
 M14 23.2 -0.02 0.05 0.27  
 M15 80.3 -0.12 0.19 0.01  
 M16 33.8 -0.09 0.05 0.09  
 M17 63.8 -0.20 0.19 0.09  

 

simulation shows small but statistically significant negative MWP trends over the 
North Atlantic (-0.4 s/century, on average) reaching maximum values (-0.7 
s/century) over the Canary Islands. These results are in agreement with Semedo 
et al.(2013), who showed an overall decrease in DJF MWP of up to 5% (~0.5s ). 
Significant clockwise trends in MWD of about 10 deg/century are projected at 
24ºN-36ºN latitudes reaching maximum values of 35 deg/century over the western 
sector. Conversely, counter-clockwise trends of about -10deg/century are projected 
over the north-western sector, reaching maximum values of up to -35 deg/century 
at 36ºN-48ºN latitudes. This trend pattern is in agreement with those projected 
by Hemer et al. (2012) and Andrade et al., (2007).  

5.4.2 Statistical projections  
Winter SWH trends during 2000-2100 (A1B scenario) obtained using the 
statistical models M1-M11 are mapped in Fig. 5.8 (a-k). Averaged values of 
explained variance and trend differences with DynProj are listed in Table 5.1. 
Most of the models show very weak trends over most of the domain. The 
exceptions are the models including W as a predictor, namely M3, M7 and M10, 
which show trend patterns and values closer to DynProj (Figs. 5.8c, g, j). The 
variance accounted for by each statistical model is shown in Fig. 5.9. It is worth 
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Figure 5.10. Linear trends (cm/yr) of winter SWH, SWHw and SWHs for M17 
(a), M15 (b) and M16 (c) for the period 2000-2100. Percentage of variance of 
DynProj winter SWH, SWHw and SWHs accounted for M17 (d), M15 (e) and 
M16 (f). Spatially averaged values are also shown. 

 

noting that models were detrended before the calculation of the explained 
variance, so that the latter does not include the variance associated with the 
trend. The variance accounted for is highest for M10, with an average value of 
68% (Table 5.1) and a maximum of 95% in the north-central part of the basin, 
followed by M7 (51% on average and a maximum of 94%), M3 (44% on average 
and a maximum of 91%) and M11 (33% on average and a maximum of 90%).  

    Models based on climate indices (M12-M14) yielded very weak winter SWH 
trends (Figs. 5.7l-n) and only accounted for a small fraction of the variance (Figs. 
5.9l-n). For example, M14, which includes all four climate indices as independent 
parameters, accounted for 23% of the variance on average (Table 5.1), with 
maximum values of 72% (Fig. 5.9n). Climate indices accounted for SWH variance 
regionally.The EA index-based model (M13) accounted for 78% of the variance at 
48ºN latitude (Fig. 5.9m) and the NAO index-based model (CM1) for 71% over 
the North Sea (Figs. 5.9l).   

    Models based on climate indices (M12-M14) yielded very weak winter SWH 
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trends (Figs. 5.7l-n) and only accounted for a small fraction of the variance (Figs. 
5.9l-n). For example, M14, which includes all four climate indices as independent 
parameters, accounted for 23% of the variance on average (Table 5.1), with 
maximum values of 72% (Fig. 5.9n). Climate indices accounted for SWH variance 
regionally.The EA index-based model (M13) accounted for 78% of the variance at 
48ºN latitude (Fig. 5.9m) and the NAO index-based model (CM1) for 71% over 
the North Sea (Figs. 5.9l).   

    The results of the statistical models that address separately winter SWHw and 
SWHs are mapped in Fig. 5.10, together with the total winter SWH estimated 
from the combination of the two components. The M15 and M16 models 
reproduce the spatial patterns of winter trends obtained from the dynamical 
model (Figs. 5.7b-c) but with slightly smaller values in the case of M16 (Figs. 
5.10b-c). Regarding the explained variance, M15 accounts for a large amount of 
winter SWHw variance (80% on average, with maximum values of up to 98%, Fig. 
5.10e), while M16 accounts for a smaller fraction (34% on average, with large 
values only in the SE sector of the domain, where it accounts for up to 83% (see 
Table 5.1). When both contributions are combined (Figs. 5.10a,d), the spatial 
patterns of the trends and the variances accounted for are very similar to those 
obtained with M3 and M10. The negative trends obtained for SWH (reaching -0.9 
cm/yr) are stronger than those obtained with DynProj. In terms of variance, the 
combined model (M17) accounted for 64 % of the DynProj variance on average 
(Table 5.1), reaching values of up to 96% in some areas. These results suggest 
that the statistical modelling of the wave field benefits from a separate modelling 
of the wind and swell components.  

 

5.5 Discussion and conclusions 
The ability of a statistical downscaling method based on 17 different combinations 
of predictors to project future changes in the wave climate of the North Atlantic 
Ocean has been explored. Statistical models have been calibrated during the 
period 1958-2002 by using atmospheric fields from ERA-40 reanalysis and wave 
fields from a dynamical hindcast (HE40). Another dynamical wave hindcast (HEI) 
and altimetry observations have been used to validate the statistical models. The 
changes projected by a dynamical wave model run for the period 2000-2100 are 
used as reference for the comparison. The reference dynamical projection (an 
ECHAM5 simulation run under the emission scenario A1B) shows a decrease of 
SWH over the North Atlantic, especially at high latitudes, which is in agreement 
with other works (e.g. Hemer et al., 2012, Semedo et al., 2013, Wang et al., 2014).  

    Previous works like the one by Wang and Swail (2006) had found that wave 
climate projections are sensitive to the choice of the forcing (in particular the 
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selected GCM), while others like the one by Hemer et al (2013) pointed to the 
downscaling method (including the regional climate model) and to the choice 
between dynamical or statistical approach as major uncertainty sources. Our 
study complements these results by demonstrating three main issues pointed out 
in the following.  

    The first one is that the statistical models used in our study (transfer functions 
of the seasonally averaged wave fields) resulting in better agreement with the 
dynamical simulation (in terms of winter inter-annual variability and trends) are 
those using the wind as predictor. Namely, the use of wind speed as independent 
variable makes that statistical models can account for a significant part of the 
winter SWH inter-annual variability (68% on average for the model M10) and 
correctly reproduce the long term changes shown by dynamical projections. 
Regression models that use sea level pressure and/or its gradient as independent 
variables can also account for a part of the inter-annual variability of winter SWH 
(from 6% to 33% on average), but they cannot reproduce the dynamically 
projected long term trends over the North Atlantic. It is important to note, 
however, that wind is a difficult variable to project. The latest Intergovernmental 
Panel on Climate Change Assessment Report (IPCC AR5, 2013) states that there 
is a high uncertainty associated with future winds and storms (Bindoff et al., 
2013). This is the reason why many statistical models use SLP fields to project 
SWH, instead of winds (e.g. Wang et al., 2010; Wang et al., 2012; Wang et al., 
2014; Casas-Prat et al., 2014). The point to be underlined from our work is that 
efforts in reducing the uncertainties on projected wind fields would translate into 
more reliable statistical projections of wave climate. 

    A second issue dealt with in this work is the use of climate indices as 
predictors. The most important climate pattern over the North Atlantic is the 
NAO (Rogers et al., 1990) and its influence on wave climate has been discussed 
for more than a decade (Woolf et al., 2002; Bertin et al., 2013; Feng et al., 
2014a,b). Hemer et al. (2013), for instance, forecasted negative SWH changes over 
almost the entire North Atlantic by the end of the 21st century using a CMIP3 
ensemble, while at the same time they forecasted increases in the NAO index. 
This is consistent with observational studies (for example Woolf et al., 2002) that 
show a negative correlation between SWH and the NAO index at mid latitudes, 
but it is contradictory for the northern sector of the North Atlantic, where they 
are positively correlated. It should be noted, however, that dynamical models run 
with increasing GHG are not in agreement with each other regarding the future 
behaviour of the NAO index: while Feng et al. (2014a) did not find a significant 
NAO trend during the 21st century using the MSLP fields of the CMIP5 
ensemble under a RCP85 scenario, Cattiaux et al. (2013) found negative NAO 
trends using a different method. Even though a negative trend of the NAO index 
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could be related to the negative SWH changes projected by Wang et al. (2014) 
over the northern sector of the North Atlantic, it could not explain the negative 
SWH changes projected at middle latitudes. What we have shown is that the 
NAO index alone is not capable of describing the wave field over the north 
Atlantic. Even when the four major regional climate indices over the North 
Atlantic are used, the statistical modelling is not sufficiently good. The same 
applies to the present climate, when it has been shown that the four climate 
indices account for only a part of winter SWH variability (Martínez-Asensio et al., 
accepted. The non-stationarity of the relationships between wave parameters and 
climate indices may also be relevant. In this line, Hemer et al. (2012) found 
significant changes in the SWH-NAO relationships under warming conditions, 
especially over the Bay of Biscay. 

    The third issue demonstrated in this work is that the combination of two 
regression models, one for wind waves and another one for swell, based on 
different independent parameters, can improve the projected wave fields. And this 
is in spite of the limited performance of the statistical models for the swell 
component over a large part of the domain. 

    Summarizing, this study highlights the importance of the selection of the 
independent variables in the statistical models and demonstrates the uncertainty 
involved in simulating future wave climate on the basis of such statistical models. 
It must be noted that all regression models were tested using seasonal statistics of 
wave climate. If higher frequency processes were analyzed (e.g. storm events) the 
conclusions of the comparison may differ. The conclusions of this study are also 
relevant for future studies involving the results from the new developed CMIP5 
models. A way to reduce the uncertainties would be to rely only on those 
statistical methods that use winds as a predictor. The problem in this case is that 
there is a significant spread in the projections of winds, so the use of a large 
number of GCMs (i.e. from the new developed CMPI5 or the on-going CMIP6) 
would be recommended in order to reduce the uncertainties. 

 

Supporting Information 
The following supporting information is available as part of the online article: 
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Figure 5.S1.  Domain of the WAM model in the North Atlantic. Grid points with 
the different resolutions used in different regions (black dots). 
 
Appendix 5.A 
The Stepwise regression method used for statistical models with more than one 
predictor is illustrated with an example (see Table 5.S1): the fitting of model M7 
at a specific grid point (-40ºW, 50ºN). The method first selects the most 
correlated dependent variable (the one with the less p-value of an F-statistics) 
and removes its influence through a regression analysis. Then it checks for the p-
values of the rest of the dependent parameters. The term with a smallest p-value 
(lower than a value of 0.05) is then included in the model, assuming that there is 
sufficient evidence that this term has a non-zero coefficient (i.e. the null 
hypothesis is rejected). Conversely, if a p-value of any term included in the model 
is higher than 0.1 it is then excluded from the model. It means that there is 
sufficient evidence that this term has a zero coefficient. This forward/backward 
procedure is repeated until the model is not improved in terms of its p-value (note 
that the p-value reflects the total model performance and not that of the 
individual terms). Three different models are fitted at each step in the example 
(see Table 5.S1):  
 
Step 1:  SWH= - 5.7e10-4 PC1 
Step 2:  SWH= - 6.2e10-4 PC1 - 8.4e10-4 PC2  
Step 3:  SWH= - 6.5e10-4 PC1 - 8.4e10-4 PC2 + 2.9e10-4 PC3  
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The p-values and explained variances for each of these models are shown in Table 
5.S1. 
 
Table 5.S1. P-value of each independent variable of the model M7 throughout the 
stepwise regression procedure at grid point (-40ºW, 50ºN).  The percentage of HEI 
winter SWH variance accounted for M7 at each step is also shown.  

 
     Before stepwise regression   

Step 1: PC1 
included   

Step 2: PC2 
included   

Step 3: PC3 
included 

 

   Corr. Coef. 
 

Pvalue of an F-statistic   

 PC1 -0.63 
 

0.000007 
 

0.000007 
 

0.000000 
 

0.000000  
 PC2 -0.54 

 
0.000213 

 
0.000000 

 
0.000000 

 
0.000000  

 PC3 0.12 
 

0.437032 
 

0.216563 
 

0.032044 
 

0.032044  
 PC4 0.10 

 
0.507104 

 
0.573319 

 
0.092025 

 
0.063947  

 PC5 0.30 
 

0.048526 
 

0.531827 
 

0.951542 
 

0.841806  
 PC6 0.00 

 
0.998939 

 
0.708841 

 
0.425440 

 
0.388856  

 Var.acc. (%)         40.9   79.5   82.2  

 

 
Appendix 5.B 
The along-track high-resolution SWH observations used to calibrate the hindcasts 
were obtained from the Ifremer altimeter Hs database (Queffeulou and Croizé-
Fillon, 2010). This database consists of calibrated (Queffeulou, 2004) SWH 
measurements from seven altimeters (Jason-1, Jason-2, Topex/Poseidon, 
European Remote Sensing (ERS-1 and ERS-2), Envisat and Geosat Follow-On) 
spanning the period from January 1991 to December 2009. Along-track SWH 
observations were first aggregated onto a regular 2x2 degree grid and monthly 
averaged. Only those grid points with more than a 10% of the maximum number 
of available observations per cell (N = 96412) were selected. Gridded SWH data 
were then linearly interpolated onto a 1x1 degree grid. Finally, winter (DJFM) 
averaged fields were calculated. The comparison between altimeter and modelled 
winter SWH fields was done in terms of bias, URMSD and percentage of variance 
accounted for during the period 1991-2009 (see Fig. 5.S2).  
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Figure 5.S2. Bias (in meters) (a-e), URMSD (in meters) (f-j) and variance 
accounted for (in %) (k-o) between winter altimeter SWH and HEI (a, f, k), M17 
(b, g, l), M10 (c, h, m), M11 (d, i, n) and M14 (e, j, o) for the period 1991-2009. 
Coloured areas denote that the statistical regression of the model is significant (F-
test) at a 5% level. Spatially averaged values are also shown.  
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Chapter 6 

Discussion and concluding remarks 
 
 

                    —Nunca se ha de pensar en toda la calle de una vez, 
¿entiendes? Sólo hay que pensar en el paso siguiente, en la inspiración siguiente, en la siguiente 

barrida. Nunca nada más que en el siguiente. 
                                                    

                                                      —You must never think of the whole street at once, 
understand ? You must only concentrate on the next step, the next breath, the next stroke of the 

broom, and the next, and the next. Nothing else. 
                                                                                            

  Michael Ende, Momo (1973) 

 

 

The sea level and wave climate play an important role on coastal societies, assets 
and ecosystems. At present, the amplitude of the inter-annual variability of these 
high impact marine variables is at least as large as the forcing signal derived from 
the increasing greenhouse gas concentrations. This makes that, in some regions, 
the interannual marine climate variability can mask the signal resulting from 
global warming, while in others it can increase its magnitude.  

    The work presented in this thesis was aimed, first, at improving the 
understanding of the processes driving the interannual variability of the high 
impact marine variables observed over the North Atlantic Ocean and the 
Mediterranean Sea during the second half of the 20th century. Further, it has also 
explored the future responses of these key variables to the atmospheric climate 
variability and change during the 21st century. Particular attention has been paid 
to characterize their responses in terms of the large-scale modes of atmospheric 
circulation.   

    The results are based on the analysis of different types of data. Regarding 
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observations we have used tide gauge records describing total sea level, wave buoy 
observations giving the different wave parameters, satellite altimetry giving 
remote estimations of sea level anomalies and significant wave heights, and 
hydrographic data bases giving the steric component of sea level. These 
observations are complementary to the outputs from different types of numerical 
models (reanalyses, hindcasts and climate projections) describing atmospheric 
parameters such as sea level pressure and winds and marine parameters such as 
the atmospheric component of the sea level and waves.   

    This final chapter intends to highlight the most relevant results presented 
throughout the thesis, as well as to place them in a common thread defined by 
the research projects that have framed the work. It is worth stressing that we do 
not intend to give a complete view of the marine climate over the domain of 
interest. Instead, we have worked out specific issues that have resulted in a 
collection of four related, but independent research articles that constitute the 
nucleus of the work. Nevertheless, the major findings summarized in the following 
are presented in terms of their topic, rather than just pointing out the major 
conclusions of each paper.  

Characterization of the present wind-wave climate of the Western 
Mediterranean  

A new calibrated product of SWH over the Western Mediterranean spanning the 
last five decades has been generated and is now freely distributed to the users 
through the web site of the Sea Level and Climate Research Group. This work 
was identified as a relevant added value for the wind-wave hindcast generated in 
the framework of the ESCENARIOS project. The calibration of hindcasted SWH 
has proven satisfactory in correcting, to a great extent, the differences between 
the model output and the point-wise observations from buoys, as well as remote 
observations from altimetry. A key lesson to learn from the results obtained is 
that, although the best results in terms of similarity with observations were 
obtained using the highest number of buoys available in the calibration, it is 
possible to obtain a similar performance with a number of buoys significantly 
lower, as far as these are evenly distributed. This result highlights the importance 
of considering the available observations when planning an increase of the 
instrumental network. The main limitation of the method developed for the 
calibration is the use of a log-normal distribution, which only allows the 
calibration of the mean regime (the log-normal distribution does not take into 
account the extreme values). Therefore, the calibrated fields must be used with 
caution when extreme waves are concerned. 

    The obtention of an accurate, calibrated hindcast allows a better 
characterization of the present wind-wave climate of the Western Mediterranean, 
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which is essential for the design of coastal infrastructures and coastal management 
in general. While there were previous validated hindcasts in the region, this is the 
first one that covers the entire basin and extends until present time (which has 
allowed the use of a larger number of buoys for the calibration).     

Large scale climate modes and Mediterranean sea level 

Sea level variability in the Mediterranean Sea has been the focus of most of the 
research developed by the Sea Level and Climate Research Group during the last 
decade. The availability of new regional marine simulations generated in the 
framework of the VANIMEDAT2 project has represented a step forward in these 
investigations. One of the topics dealt with in this thesis and not addressed in 
earlier studies is the influence of the large scale atmospheric climate modes onto 
Mediterranean total sea level and and onto its different components.  

    The investigation of the relationships between the large-scale atmospheric 
patterns over the North Atlantic and Europe (NAO, EA, EA/WR and SCAN) 
and Mediterranean sea level has confirmed that the NAO is the atmospheric 
pattern having the largest overall impact and particularly during winter. The 
winter season is mostly considered because of its larger sea level variability. Some 
influence of the climate modes has also been detected in summer, but it is less 
important than in winter. The way the NAO acts onto Mediterranean sea level is 
through two processes which, combined, amplify the atmospheric signal: i) the 
direct forcing of atmospheric pressure and wind over the basin; and ii) the remote 
forcing produced by changes in the winds over the North Atlantic sector close to 
the Strait of Gibraltar, which induce mass exchanges throughout the Strait that 
obviously affect sea level within the basin. 

    The other three indices have a smaller impact: the SCAN index is redundant 
with the NAO since they are significantly anti-correlated in winter over the 
domain of interest; the EA/WR pattern significantly contributes to the winter 
Mediterranean sea level variability through its impact on atmospheric pressure 
changes; and the EA pattern is related to the rate of change of the thermosteric 
sea level overall the basin through its impact on surface heat fluxes. This 
altogether has contributed to clarify the main drivers of the observed variability, 
as the climate indices altogether explain more than 80% of the winter sea level 
variability (less than a half in summer).  

Large scale climate modes and North Atlantic wave climate 

Given the expertise developed with large scale climate patterns and the 
availability of several decades of simulated wind-wave fields over the North 
Atlantic Ocean, the same argument as for regional sea level was followed to study 
the relationships between large scale patterns and the wave climate in that region.  



 136 

    In a first step, the relationships were established for present-day wave climate 
using a wind-wave hindcast of the last decades. The results underline that the 
NAO and the EA are the patterns that have the largest impact in this region and 
that this influence is most important in winter. The higher impact of the NAO on 
wave heights and periods occurs over two areas located at different latitudes 
(namely, the northern and central sectors of the North Atlantic Ocean) while the 
higher impact of the EA is located among them and reaches the southern sector, 
mainly due to the response of the swell component to this pattern. Surprisingly, 
the impact of the NAO over the southern sector is masked by an opposite 
response of both the local (wind sea) and remote (swell) components of wave 
climate to the NAO. Wave directions respond to both patterns over almost all the 
basin. SCAN and EA/WR patterns are less important for the wave climate, as 
they have a lower impact in terms of intensity and areas of significant correlation. 

    A dynamical projection of the 21st century wind-wave climate over the North 
Atlantic was also generated in the framework of the ESCENARIOS project. This 
was used, first, to test whether the projected climate indices are good indicators 
of the changes projected for the wave climate. In addition to this, the dynamical 
projection was used to test different statistical wave models; these comprised both 
the models most commonly used in the literature and new models using different 
predictors, such as wind or separating wind-sea and swell components. The 
comparison of the whole set of wind-wave climate statistical simulations with the 
dynamical model revealed that only those statistical models using wind speed as 
predictor were capable of reproducing the winter wave climate variability and 
trends simulated by the dynamical model during the 21st century. This is not a 
surprising result, as in these cases both the statistical and the dynamical models 
were forced by the same wind fields. Moreover, the use of the wind speed as a 
predictor raises the question of the reliability of the wind fields produced by 
climate projections in comparison with other better behaved variables such as the 
atmospheric pressure. What our results point out, therefore, is that future wave 
projections would largely benefit of improved projections of wind fields.  

    Finally, our work also showed that another way to improve future wave 
projections is through the combination of two statistical regression models, one 
for the wind-sea component and other for the swell component, based on different 
predictors. If in a near future statistical models demonstrate to project the wave 
climate with the same accuracy than dynamical models it would be a big step 
forward. The reason is these models are much cheaper in terms of computational 
cost, which would allow to obtain a large number of simulations and hence a 
better estimation of the uncertainties associated with the projection ensemble.  
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