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ABSTRACT 

Several studies have shown that it is possible to substitute a person’s body by a virtual 

one giving rise to illusions of ownership and agency with respect to the virtual body. 

The effects and traces of such body substitution can be measured using subjective 

reporting, behavioural and objective physiological measures. However, considerable 

work remains for uncovering the underlying neurological mechanisms that trigger 

those effects. In this thesis we aim to measure neurophysiological correlates of 

ownership and agency, and by doing so to contribute to a greater understanding of the 

functioning of the body representation in the brain. In order to address this question we 

carried out a series of studies where the representation of the human body and activity 

in which it was engaged were externally manipulated in various ways through 

multisensory stimulation, while measuring the corresponding electroencephalography 

(EEG) responses. Through this multisensory stimulation, healthy humans experienced 

full body ownership and agency illusions over virtual bodies – as if their real bodies 

were perceptually substituted by these bodies. 

Specifically, Virtual Reality (VR) was used to give participants an egocentric view of a 

co-located virtual body, using a Head-Mounted Display. They could move this body 

through real-time motion tracking thus providing synchronous visuo-motor 

stimulation. The combination of the first person perspective and synchronous visuo-

motor stimulation resulted in full body ownership and agency illusions over the virtual 

body, which we refer to as virtual embodiment. Under these circumstances we then 

explored the implications of such bodily perceptual manipulations in the brain with 

EEG.  
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A first study was intended to validate whether a virtual body can be effectively 

recognized as a feasible substitute to the self-body at the unconscious level. A motor 

cortex activation equivalent to what would be expected in a real scenario was found 

after exposing participants’ virtual body to harmful stimuli. This particular result 

provides a measure of response-as-if-real indicating that participants tended to accept 

their given virtual bodies as their own. 

In a second study, the consequences of the agency mechanisms that provide the 

sensation of control over our own body actions were explored through virtual 

embodiment. In this study participants underwent sporadic agency disruptions while 

performing rapid arm movements. In certain conditions, the virtual hand of participants 

moved autonomously in the opposite direction to the participants’ real hand. Results 

provide evidence of specific neural processes responsible for detecting externally 

induced agency disruptions. Moreover, these neural processes were correlated with the 

strength of the subjective embodiment illusion. This study was also aimed at widening 

current perspectives on agency schemas, proposing and demonstrating the existing 

theory of re-afferent and feedback error mechanisms that are concurrently functioning 

in the brain to detect agency disruptions. 

In a third study the implications of the external appearance of the substitute virtual 

body for self-recognition were explored. We designed an experiment in which healthy 

participants were exposed to self, familiar and unknown faces of look-alike avatars. 

Results showed shared underlying mechanisms for self-identification in real and virtual 

faces in the visual cortex. In particular, neurophysiological traces showed that virtual 

faces are classified as real faces – in contrast to what happens with the classification of 

other objects (cars, flowers, etc.). Furthermore, the visual cortex differentiated 
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familiarity levels among virtual faces. These are novel insights contributing to the better 

understanding of why different looking avatars can have an impact on participants’ 

performance or behaviour, thus being useful both for the fields of virtual embodiment 

and of self-recognition. 

Overall the research in this thesis explores brain activity through EEG of the immediate 

experience of having and controlling a body. Empirical evidence is presented to validate 

the use of virtual reality for the research of the body representation in the brain. 

Additionally, novel neural signatures of the bodily perceptual manipulations are 

presented through a set of studies. Results are put into context with an in-depth review 

of literature on self-awareness, body perception, body ownership and agency theories 

at the beginning of this thesis. 

  



18 
 

  



19 
 

RESUMEN 

Múltiples estudios han demostrado que es posible sustituir el cuerpo de una persona 

por uno virtual produciendo ilusiones de posesión y agencia sobre este nuevo cuerpo. 

Los efectos y trazas de esta sustitución de cuerpos se pueden medir de manera 

subjetiva, a través del comportamiento del participante o a través de medidas 

fisiológicas objetivas. Sin embargo, restan por descubrir muchos de los mecanismos 

neurológicos subyacentes que provocan dichos efectos. Esta tesis pretende medir 

correlaciones neurofisiológicas de las ilusiones de posesión y agencia, y de esta manera 

contribuir al mayor conocimiento del funcionamiento de la representación corporal en 

el cerebro. Para ello realizamos una serie de estudios donde la representación del 

cuerpo humano y su actividad son externamente manipuladas de diversas maneras 

mediante estimulación multisensorial mientras se registra la correspondiente actividad 

cerebral mediante electroencefalografía (EEG). La estimulación multisensorial permite 

que humanos sanos puedan tener ilusiones de posesión y agencia sobre avatares (como 

si sus cuerpos hubieran sido perceptualmente sustituidos por cuerpos virtuales). 

Más en concreto, mediante el uso de Realidad Virtual (RV) los participantes tienen una 

perspectiva egocéntrica de un cuerpo yuxtapuesto al suyo (a través de cascos de 

realidad virtual estereoscópicos). A la vez que pueden mover este cuerpo mediante 

sistemas de rastreo del movimiento en tiempo real produciendo una estimulación 

visuo-motora síncrona. La combinación de la perspectiva en primera persona con la 

estimulación visuo-motora da como resultado una ilusión de posesión y control total del 

cuerpo virtual, a la que nos referimos como encarnación virtual. En este escenario 

exploramos las implicaciones de estas manipulaciones perceptuales en el cerebro 

mediante EEG. 
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Planteamos un primer experimento con intención de validar si el cuerpo virtual se 

puede efectivamente reconocer como un sustituto viable del propio cuerpo a nivel del 

subconsciente. Tras exponer el cuerpo virtual a estímulos nocivos se halla una 

activación en la corteza motora de los participantes equivalente a la que sería de 

esperar en un escenario real. Este resultado-como-real hace indicar que los 

participantes ciertamente aceptan sus cuerpos virtuales dados como su propio cuerpo.  

En un segundo experimento se estudian las consecuencias de los mecanismos de 

agencia que nos proporcionan la consciencia de nuestras acciones corporales y motoras, 

a través de tecnologías de substitución virtual del cuerpo. Los participantes se someten 

a disrupciones esporádicas de sus acciones mientras realizan movimientos rápidos con 

su brazo. En algunas ocasiones, la mano virtual del participante se mueve 

autónomamente y en dirección contraria a la mano real del participante. Los resultados 

proporcionan evidencias de procesos neuronales específicos responsables de detectar 

disrupciones de agencia inducidas externamente. Asimismo, estos procesos neuronales 

se correlacionan con la ilusión de posesión del cuerpo medida a través de cuestionarios. 

Este estudio profundiza en las perspectivas actuales de los esquemas de agencia, 

proponiendo y demostrando la teoría existente de mecanismos de errores re-aferentes 

y de retro-alimentación que funcionan concurrentemente en el cerebro para detectar 

disrupciones de agencia.  

Se propone un tercer experimento para explorar las implicaciones de la apariencia 

externa del cuerpo virtual a la hora de auto-reconocerse. Diseñamos un experimento en 

el que los participantes se exponen a caras de avatares que se parecen a ellos, a un 

familiar o a una persona que no conocen. Los resultados muestran mecanismos 

subyacentes compartidos de auto-identificación de caras reales y virtuales en la corteza 



21 
 

visual. En particular, las trazas neurofisiológicas muestran que las caras virtuales se 

clasifican igual que las reales (en contraste con lo que ocurre durante la clasificación de 

otros objetos como coches o flores). Además, la corteza visual diferencia niveles de 

familiaridad entre las caras virtuales. Contribuyendo así de manera novedosa a 

entender porque avatares con diferente apariencia tienen un impacto en el 

comportamiento de los participantes, y por ello siendo útil tanto para el campo de la 

realidad virtual como para el de la auto-identificación.  

Globalmente, la investigación de esta tesis explora las trazas cerebrales mediante EEG 

de la experiencia inmediata de poseer y controlar un cuerpo. Se presentan evidencias 

empíricas para validar el uso de realidad virtual en la investigación de la representación 

del cuerpo en el cerebro. Asimismo, a través de varios estudios mostramos novedosas 

trazas neurofisiológicas relacionadas con las manipulaciones corporales y perceptuales. 

Los resultados y experimentos se contextualizan mediante una revisión en profundidad 

de la literatura existente en consciencia, percepción corporal y teorías de posesión y 

agencia del propio cuerpo.   
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1. INTRODUCTION 

Humans and animals are able to survive in part thanks to the primal reflexes that take 

place unconsciously when they respond to external stimuli automatically. These very 

rapid automatic responses have been a selection advantage for all species, yet as for 

many things in nature, the facts are clear, but the mechanisms responsible are complex 

and hard to isolate from other concurrent events. In the case of the automatic 

responses, the behavioural reactions are easy to predict: i.e. if I accidentally put my hand 

over a fire, with very high probability the outcome will be: I will rapidly remove the hand 

from there; however, the underlying neural mechanisms that trigger the responses to 

this and other stimuli are far more complex and quite unknown. Even less explored is 

the combination of the unconscious and the conscious processes in the brain: I have 

removed the hand so fast (unconsciously) that it isn’t until later that I am aware of the 

action undertaken (consciously). We do know that both cognitive processes are based 

on very fast adaptive models through which the brain controls the body and the body 

sends signals to the brain [Chiel and Beer 1997]. However, given its multiple 

components –sensory input, pre-existing information, multiple effectors– and the fast 

cadence of the processes involved, this integration has traditionally been difficult to 

study. In this thesis we are interested in measuring some aspects of the body 

representation in the brain through to the temporal dynamics of the responses to 

different stimuli using electroencephalography (EEG).  

Most of the previous and current research that explored how the brain integrates bodily 

signals has been based on responses to perceptual stimuli using, in some cases, several 

neuroimaging techniques to study the underlying processes of bodily illusions [Blanke 

2012]. However, as in other scientific fields, sometimes processes need to be isolated or 
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externally modified in order to be able to really understand them, which in our area of 

study would be highly complex since one cannot simply disconnect a part of the brain to 

study the effects of such manipulations for obvious ethical reasons. Therefore some of 

the most drastic investigation in the field has traditionally been carried out on other 

animals (rats) and primates that can be tested under laboratory conditions [Graziano 

1999; Graziano et al. 2002; Ongür and Price 2000]. However humans, unlike primates, 

not only have the ability to report what they are conscious of, but also the capacity to 

focus their attention on demand while taking part in visual experiments. Furthermore, 

while exploring animals’ responses can contribute to the basic research on the 

underlying mechanisms of the brain, when it comes to the study of the neural correlates 

of attention and consciousness, it is also necessary to directly study the functioning of 

the human brain. 

In order to reproduce experiments that are ethically impossible in a real scenario with 

humans and where the intrinsic limitations of manipulating the bodily signals make 

impossible the alteration of spatiotemporal coherences of multisensory stimulations we 

turn to Virtual Reality (VR). Immersive Virtual Environments (IVE) can be used to 

systematically test particular stimuli in humans without compromising their integrity. 

Extensive research has proven that reactions in virtual environments are equivalent to 

the ones in the corresponding real scenario [Sanchez-Vives and Slater 2005; Meehan et 

al. 2002]. This is the major foundation that allows real experimentation with humans to 

take place inside virtual environments obtaining results similar to what would be 

expected if the experiments would take place in reality.  

Additionally, in such technical setups we can “substitute” a human body by a virtual one, 

generating what is known as an embodiment illusion [Kilteni et al. 2012]. This 
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substitution technology provides a reliable platform to study how humans represent 

their bodies in the brain and which are the brain responses to body changes, motor 

actions, and body perception in general. In fact, VR allows us to alter the virtual body in 

ways that would not be achievable in the real world, for example changing body sizes 

[Banakou et al. 2013; Normand et al. 2011], modifying limbs [Kilteni et al. 2012], 

altering the race [Peck et al. 2013] or gender and age [Slater et al. 2010] of experiment 

participants. Further studies have explored the circumstances in which the body 

substitution illusion can be experienced and beyond which thresholds it disappears 

[Kokkinara and Slater 2014; Maselli and Slater 2013]. This previous research has 

confirmed the high plasticity of the human brain and that humans are able to accept 

other bodies as their own even if they are subject to quite radical alterations of the 

body. A more in depth overview of these and other studies will be presented in the 

background section.  

In this thesis we will leverage similar body “substitution” technologies to further 

explore how the brain and the body are connected. 

1.1. Research Problem 

Several studies have shown that it is possible to substitute a person’s body by a virtual 

one and measure the effects and traces of such embodiment via experiments using 

subjective reporting, behavioural and/or objective physiological measures [Llobera et 

al. 2013; Maselli and Slater 2013; Kokkinara and Slater 2014]. However, the underlying 

neurological mechanisms that trigger those effects are not yet clear. In this thesis we 

aim (i) to measure aspects of the neurological responses to body ownership illusions, 

(ii) to contribute to the greater understanding of the functioning of the body 

representation in the brain and (iii) to explore how the perceptual system responds to 
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external/internal stimuli that affect the self-body perception, also known as minimal 

self-awareness [Gallagher 2000; Blanke and Metzinger 2009]. 

To address these three propositions we will dissociate conscious from unconscious 

reactions to the stimuli. While conscious responses in human experimentation are 

easier to measure as they can be reported subjectively, unconscious responses are much 

more difficult to detect but are more objective variables. Physiological measures such as 

heart rate deceleration, respiration rate, galvanic skin response, etc. have been used as 

reliable objective outputs of the autonomic system [Llobera et al. 2013; Maselli and 

Slater 2013; Slater et al. 2010; Meehan et al. 2002]. The challenge is not only 

dissociating unconscious from conscious but also finding some of the brain processes 

that trigger the autonomic system responses. Checking the physiological outputs to a 

stimulus is just the first step to comprehend how the signals are processed, to fully 

understand how these sensory signals from the body are integrated in the brain it is 

necessary to study the neurological temporal dynamics. 

1.2. Research Questions 

This thesis addresses the following three hypotheses under the initial proposition that 

changes to the embodied virtual avatar can be measured through EEG as responses to 

instantaneous stimuli. 

Hypothesis 1: A stimulus directed to the embodied virtual body will result in a brain 

response equivalent to what we would expect if the stimulus happened to the participant’s 

real body. This will be true if people accept their given virtual bodies as if they were 

their own, meaning that virtual body substitutes (avatars) are integrated as the own 

body also at an unconscious level. Chapter 4 of this thesis will focus on an experiment 

that assesses this hypothesis by providing a harm stimulus to the virtual body and 
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measuring the brain processing and reaction of the participants. This particular study 

shows that virtual bodies can be effectively integrated as the own body; providing 

evidence of unconscious motor activity in the motor cortex as a response to a threat to 

the virtual body. 

Hypothesis 2: When somebody is embodied in a virtual avatar and experiences agency of 

that body, any break in that agency (such as hijacking in the movements of the virtual 

body) would be clearly perceived as an externally generated error. The expectation is that 

a higher feeling of embodiment would lead to a stronger perception of the break in 

agency. Chapter 5 will present a second study describing a set of experiments that 

explore the implications at a neurological level of such an experience of control over the 

body and the agency of the actions performed. This second study widens the current 

knowledge on agency schemas, proposing and demonstrating the existing theory of re-

afferent and feedback error mechanisms that are concurrently working in the brain to 

detect agency disruptions. It is also proposing a new way to differentiate among internal 

versus external errors by means of EEG. 

Hypothesis 3: Given a virtual body we can potentially measure different levels of self-

identification: an avatar that looks like the participant is interiorized unconsciously to a 

different level than an avatar that does not look alike. During the embodiment illusion 

avatars are accepted as the self-body through multisensory stimulation. This illusion 

can be induced to avatars of different races and genders that share more or less 

similarities to the participant [Peck et al. 2013]. However, studies have shown that the 

more the avatar looks like the participant the stronger the identification is [Bailenson 

and Segovia 2010]. In Chapter 6 we present an approach to study the underlying 

mechanisms of such self-identification with the avatar’s appearance using EEG. This 
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third study enhances the current perspectives of self-recognition in avatars and shows 

how exteroceptive components may affect the embodiment illusion. 

In the following chapters different experiments specifically developed to address the 

central concern of this thesis are presented. All the different experimental setups 

exploit electroencephalography recording in order to explore and measure the traces of 

the underlying neurological mechanisms that trigger the full-body illusions. 

1.3. Scope 

In the current thesis we are investigating how the brain and the body integrate at a 

neurological level by exploiting IVE and EEG recording. Several experiments are 

presented to widen current perspectives on how humans identify the body as their own 

and how they integrate its sensory signals in the brain. We limited our measures of the 

EEG to the study of Event Related Potentials (ERPs) as response to repeated stimuli 

observation. The setup limited natural movements of the participants in some cases to 

reduce noise on the EEG. Significant findings on the EEG levels were associated to 

underlying mechanisms. Although it is true that some people can learn to control their 

brain activity in real time using Brain Computer Interfaces we will not address such 

cases [Guger et al. 2003]. Subjective questionnaires have been used as dependent 

variables to assess the relationship between conscious and unconscious mechanisms, 

but in general the subjective evaluations are not the focus of this thesis.  

During the experimentation, the real bodies of the participants were substituted by 

avatars using Head Mounted Displays (HMDs) and real time tracking devices when 

necessary. This thesis is based on prior studies on embodiment where the same 

technologies have already demonstrated significant embodiment illusions [Kokkinara 

and Slater 2014; Maselli and Slater 2013; Banakou et al. 2013]. Here we mainly focused 
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on novel research rather than replicating previous embodiment results. I.e. if 

synchronous visual motor correlations have been shown as a good method to induce the 

embodiment illusion we will use it as starting point and tweak the motor control to 

study sudden breaks in the agency of the movement. 

All of the experiments presented in this thesis focused on the virtual body that 

substitutes the participant’s own body. In all of the setups the substituting avatar is the 

only virtual body present in the scene, and since no other avatars are present, the scope 

of the study will not focus on topics such as the interaction with other virtual avatars or 

empathy towards others. Furthermore since the embodiment illusion requires a first 

person perspective, other IVE technology such as the CAVE systems will not be used for 

the purposes of this thesis. 

1.4. Contributions 

This thesis aims to contribute to a better understanding of how the brain and the body 

are connected. We used IVE and novel surrogate technologies to induce strong illusions 

of embodiment in avatars [Slater et al. 2010; Maselli and Slater 2013; Kokkinara and 

Slater 2014]. We then explored the extent to which these new virtual bodies were 

accepted by the participants and found that: 

(i) Neurophysiological traces demonstrated that the virtual body is integrated as a 

feasible substitute for the real one at the unconscious level. These effects were tested on 

healthy participants who were first embodied in a collocated avatar and subsequently 

exposed to a harmful stimulus to their virtual body. Evidence shows that when a sudden 

instantaneous stimulus threatens their embodied virtual avatar there is an unconscious 

motor preparation equivalent to the one that would be expected if the threat were to 

happen to the real body. We introduce an objective measure of response-as-if-real 
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based on cortical activation that determines that if an embodied virtual avatar is 

integrated as the participant's real body, the responses to external stimuli will be 

processed by natural unconscious mechanisms. Yet another evidence that surrogate 

bodies can be effectively integrated as the self-body [Lenggenhager et al. 2007; Slater et 

al. 2009; Petkova and Ehrsson 2008]. Additionally, the results represent another 

validation that humans behave realistically in virtual scenarios when they have the 

illusion of presence [Sanchez-Vives and Slater 2005; Meehan et al. 2002]. 

(ii) As part of the full body experience, visual motor correlations create a strong illusion 

of control over an avatar’s motor actions. We demonstrate that this illusion is also 

integrated at an unconscious level and that any disruption in agency is rapidly 

interpreted in the brain as a violation in the body semantics. These effects were tested 

on healthy participants that were first embodied on a collocated avatar through 

synchronous visual motor correlations while performing an Eriksen flanker task 

[Rodriguez-Fornells et al. 2002]. This kind of motor action task is usually executed to 

study fast decision making and error monitoring. Through a series of experiments, 

participants were exposed to correct trials, internal errors – in which the participant 

made a mistake in the decision making –, and externally induced errors – in which the 

avatar moved the hand incongruently with the participants intended movement. We 

present new neural traces of how the agency mechanisms on surrogates work when 

related to motor actions. These new results provide a new insight on the error 

monitoring systems that match the efferent (intended movement) and re-afferent 

(execution result) signals, providing new evidence to the theories that support the 

existence of a re-afferent feedback model in the brain that compares the executed action 

to an efferent copy to detect incongruences [Grüsser 1995; Tian and Poeppel 2010; 

Sommer and Wurtz 2002]. 
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(iii) The external appearance of the surrogate influences the self-recognition and 

possibly affects the exteroceptive part of the embodiment illusion. An observational 

experiment was carried out in which healthy participants were exposed to self, familiar 

and unknown faces of look-alike avatars. Neurophysiological traces showed that 

different familiarity levels are processed in the visual cortex. These effects replicated 

the findings on real faces [Keyes et al. 2010]. Results also showed that virtual avatar 

faces are classified in the visual cortex as real faces after a fast adaptation phase, 

indicating that avatar faces are just as real to the brain as any other face; in contrast 

with what happens with other object classifications (cars, flowers, etc.) that have 

different voltages than faces [Bentin et al. 1996]. These results contribute to the virtual 

embodiment science that uses avatars to substitute bodies, as it not only shows that 

extereoceptive self-identification of participants with their virtual counterparts is 

possible but also that look-alike avatars may enhance the embodiment illusion. 

These new findings are consistent with the literature on full body ownership illusions, 

agency, consciousness, minimal self-awareness, and body ownership theories. An in-

depth review of all of these concepts is provided in the background section.  
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2. BACKGROUND 

2.1. The body representation in the brain  

R. Descartes described in 1641 the dualism between the mind and the body, proposing 

that the mind controls the body but the body also influences the mind. Although this 

declaration derives from a philosophical standpoint, it can also be described from a 

physiological perspective since the brain and the body are known to interact both ways 

through the Central Nervous System (CNS) – the brain receives signals from the 

receptors (afferent path) and sends actions to the effectors (efferent path).  

As introduced in Chapter 1 this thesis aims to explore how the body is represented in 

the brain, therefore the study of the bodily perception and its theories are of great 

importance for the development of the thesis. This section will first discuss the 

perceptual processing of stimuli in the brain, explaining the top-down and bottom-up 

theories of stimuli driven systems and presenting the basics of multisensory 

integration. We will discuss the implications of external appearance, body ownership, 

and agency for self-awareness. A detailed review exploring the phenomenology of 

owning a body and controlling it including relevant experiments from the literature to 

illustrate the different concepts will follow. Models for motor control will also be 

introduced. Additionally, several pathologies such as Schizophrenia, 

Somatoparophrenia and Alzheimer will be reported at different points for illustration of 

dysfunctional singularities.  

In summary, “The brain and the body” section will introduce several neuroscience 

concepts necessary for understanding the experiments proposed in further Chapters. 

Some of them are of more relevance to the study of the body representation in the brain 
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and the minimal self-awareness [Gallagher 2000; Blanke and Metzinger 2009]: i.e. this is 

me. At the end of this section the reader will have a better understanding of the 

difference between having an experience vs. being aware of having an experience.  

2.1.1. Perceptual processing 

In all of the experiments of this thesis we provide several stimuli to the participants, 

being a major factor the perceptual processing of such. A in detail description of the 

different senses and how they may influence the participants is discussed in this 

section.  

There are multiple sensor modalities that contribute to the afferent inputs of the CNS. 

Some are capable of measuring the environment status (exteroceptive modalities), 

generally known as senses – taste, sight, hearing, smell, touch. Others that remain less 

known provide information about internal aspects of the body such as the 

proprioception that senses the relative position of the parts of the body, or the 

interoception that senses the normal functioning of the body [Berlucchi and Aglioti 

2010].  

The brain combines all these measures to get a global overview of the external and 

internal status of the body and to evaluate complex scenarios. This combination of 

modal inputs is known as multisensory integration and it is believed to be widespread 

in cortical and subcortical regions of the brain [Bavelier and Neville 2002]. Some single 

neurons also related with multisensory integration have super additive firing rates that 

are modulated by two or more sensory inputs, when one sensor modality provides 

information the cell fires at different rates than when two sensor modalities deliver 

coherent information regarding the same stimuli. Therefore, these cells are not only 
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contrasting the input but are also enhancing resolution and likeliness of the perceived 

stimuli when multiple coherent inputs are delivered [Stein and Stanford 2008].  

Generally sensors give coherent and synchronous information, which allows for a 

correct interpretation of the stimuli and the environment. However when one or more 

sensors give incoherent, missing or asynchronous information the interpretation of the 

signals may incur into a breach in perception. For example auditory manipulations have 

been shown to modify the tactile perception of a textured surface: while performing a 

blind tactile exploration on a constant surface, participants estimated smoother 

surfaces when listening to higher frequencies, whereas lower frequencies induced 

rougher perceptions on the same surface [Guest et al. 2002].  

Furthermore, the incoherence between different inputs is likely to induce bodily 

hallucinations. In fact, it is believed that some patients suffering somatoparophrenia, 

asomatognosia or schizophrenia have a reduced multisensory integration in a number 

of sensor modalities, for example during target detection tasks [Williams et al. 2010]. 

Even if the inputs are coherent, the literature has described multiple cross-modal effects 

when one sense influences the others. Sometimes, this influence may be strong enough 

to generate synaesthesias – e.g. between vision and sound: provided only sound as the 

input some people are able to see colours [Ward et al. 2006].  

Additional studies on sensory deprivation on monkeys and cats showed that these 

cross-modal effects are also plastic and malleable. Under deprivation, areas 

predominantly visual are recruited by tactile modalities in monkeys, while in cats an 

improvement in auditory localization was found in such circumstances [Bavelier and 

Neville 2002]. There is evidence that any sense could influence others [Ghazanfar and 

Schroeder 2006], however humans are visual animals and in many situations the visual 
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input tends to dominate other modalities [Posner et al. 1976]. This visual predominance 

has been exploited largely for body ownership manipulation research as we will see 

during this Chapter. Besides, it will have major implications for the hypothesis testing in 

the present work.  

When no perceptual incoherencies are found, both the multisensory integration and its 

processing usually develop into rapid responses, most of the times automatic and 

unconscious. 

Unconscious automatic mechanisms can potentially be used as objective measures of 

the reaction to stimuli in experimental conditions. Since these kinds of processes cannot 

be manipulated easily by participants, subjectivity is reduced to the minimum in the 

results obtained.  

Typically, automatic mechanisms influence heart rate, respiration, electrodermal 

conductance and other physiological measures. All of them have been extensively used 

to account for human responses to experimental stimuli through the field of 

psychophysiology [Andreassi 2000]. Most of the times they are used to measure arousal 

or stress: a heart rate deceleration has been found to be triggered by sudden unpleasant 

stimuli [Maselli and Slater 2013; Bradley et al. 2001; Slater et al. 2010]; while 

electrodermal conductance, also known as galvanic skin response (GSR), generally 

increases for given stressful situations [Meehan et al. 2002; Slater et al. 2006]. Although 

these are clear measures of the unconscious processing of stimuli, they are only 

physiological outputs that tell very little about how the perceptual processing works in 

the brain. Therefore, to better understand how these automatic responses are triggered 

we have to explore the processing of the original stimuli at a neurophysiological level. 
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There are two main approaches that simplify the functioning of the brain as a stimuli-

driven system: the bottom-up and the top-down models [Connor et al. 2004]. In many 

occasions both models work together and may be hard to dissociate from each other.  

During a pure bottom-up experience the brain behaves as a one-way stimuli-driven 

system. One or more of the receptors send signals to the CNS, which coordinates the 

information and sends a reaction to the effectors. This model responds to classical 

theories of perceptual processing where interactions between the brain and the body 

are carried through automatic mechanisms that remain at the unconscious level. In this 

approach, the responses are driven in a reflex-like manner and can be validated through 

single cell recordings in vitro conditions [Connors et al. 1982].  

Nevertheless, sometimes the input cannot be processed by a simple bottom-up model 

since the output is not only influenced by the current information from the receptors 

but is also based on previous experience. Those cases that require an intelligent 

behaviour to the processing are well explained by the top-down models. During a top-

down, an active and selective brain influences the processing of stimuli [Engel et al. 

2001].  

Visual detection tasks have been used to address the validation of both models. Usually 

these tasks present one singleton (the target to be detected) together with other 

identical stimuli with either different colour or shape (Figure 2-1). Participants are 

asked to perform a basic detection in which the singleton has to be dissociated from the 

rest. In this context, the first instinct is valid since there are no other concurrent 

confounding factors and there is no need of a top-down selection (the so called active 

brain). This scenario generates an oddball paradigm in which the bottom-up 

mechanisms dominate [Folk et al. 1992].  
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Figure 2-1 Visual attention tasks that involve only bottom-up mechanisms with two different search 

conditions and only one singleton: Shape-search condition; Colour-search condition. The arrow points at the 

singleton. Adaptation from [Connor et al. 2004]. 

More complex visual detection experiments include two or more different singletons 

within the same dissociation task e.g.: one colour singleton vs. one shape singleton in 

the same scenario. Participants are previously asked to distinguish only for either 

colour or shape. In this case the task performance involves making a decision based on 

prior knowledge: the bottom-up mechanisms have to be controlled by a top-down 

system that finally decides which one of the singletons is the real target (Figure 2-2). In 

the case of the experiment with two singletons it is clear that in order to decide between 

colour and shape there is previous knowledge required on the objective of the trial.  

 

Figure 2-2 Visual attention tasks that involve not only bottom-up but also top-down mechanisms with 

different search conditions and a number of different singletons. The arrow points at the target singleton. 

Adaptation from [Connor et al. 2004]. 

While doing the same visual attention task on monkeys, Ogawa & Komatsu (2004) 

recorded the V4 area of the brain and found a clear modulation of the signal intensity 

depending on the number of singletons, finding electrophysiological signatures of a top-

down modulation. 
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Indeed, the effects of the top-down mechanisms are believed to be even greater than a 

simple input modulation. Engle et al. (2001) proposed that the active brain is also able 

to predict forthcoming events, which explains part of the anticipatory nature of the 

neural activity. This theory assumes that the actions are guided through knowledge 

even before they actually occur, which, for instance, is the main reason why humans 

cannot tickle themselves [Blakemore et al. 2000]. 

Sometimes these top-down predictions can be erroneous and generate perceptual 

illusions: often we feel the mobile phone vibrating in the pocket, but after checking it we 

realize that it really wasn’t [Rothberg et al. 2010; Lin et al. 2013]. While the feeling of the 

vibration seems to be very real, it turns out to be hallucinatory. There are many of these 

top-down illusory sensations happening concurrently in our brain: usually the 

prediction is contrasted with the real sensory input to check whether it is really 

happening or not, and then discarded if it is an illusion. However, schizophrenic patients 

for example are not always able to make this discrimination and therefore suffer from 

hallucinations.  

The mentioned cell phone example is not only of interest to this Chapter for the top-

down triggered illusion, but also because it shows how the perceptual illusion has 

become a conscious experience: we are aware of this hallucination. Having an 

experience and being aware of having an experience are two different things – 

unconscious processes can become conscious.  

Although the mechanisms by which an unconscious experience becomes conscious are 

yet to be explored in depth, significant theories exist in this field. The most relevant one 

was presented by Crick & Koch in 2003. In their framework for consciousness, they 

predict that a consciousness threshold has to be reached in order to transform an 
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unconscious neural process into a conscious one. According to Crick & Koch this 

threshold can be achieved via positive feedback loops in the neurons, firing of 

pyramidal cells, activating essential nodes, generating neural coalitions and other 

mechanisms in the brain. 

Crick & Koch’s framework not only highlights the projections to the frontal cortex 

where much of the experience seems to take place – recent empirical evidences have 

found that it is possible to disrupt consciousness through electrical stimulation of a 

small area at the anterior-dorsal insula region [Koubeissi et al. 2014] –, but also looks at 

the thalamus, the organ of attention, thus emphasizing the importance of attention for a 

conscious experience. They propose a revealing analogy by which attention determines 

our conscious experiences in a similar way to how the media or the polls influence a 

given political election – they will not choose the winner but with their action they can 

modulate the results [Crick and Koch 2003]. Attentional processes are therefore 

important for the conscious experience and they can either be originated by a bottom-

up mechanism or by a top-down one (more volitional).  

Interestingly, humans are able to focus their attention outwards or inwards: we can 

both be consciously aware of events happening around us as well as become objects of 

our own attention through self-consciousness [Gallup 1977]. 

2.1.2. Self-awareness 

When do we develop self-awareness? Is it a uniquely human quality? These and other 

questions have long been discussed among philosophers and scientists when studying 

consciousness. Cogito ergo sum, the well-known philosophical proposition by R. 

Descartes, tried to describe self-consciousness by the capacity to think. But how can self-
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consciousness be tested? In this context, self-recognition has been exploited as an 

empirical technique to validate the existence of self-awareness [Gallup 1977].  

In this thesis theories related with self-awareness are exploited in several occasions to 

unveil the limitations and implications of the external appearance and/or functioning of 

the body in the scope of Chapter 1. More in particular one of the hypothesis is dedicated 

into the observation of avatar faces that look alike the participant, thus exploiting self-

recognition theories. 

Back in 1877, Charles Darwin conducted a report on one of his own infants, where he 

learnt that by the age of 9 months his child was capable of recognizing himself in a 

mirror [Darwin 1877]. In 1931 a more standardized study quantified that 67% of 2-

year-old children identify themselves in a mirror [Stutsman 1931]. However, a large 

number of children react to mirrors as if the mirrored image is a playmate, not revealing 

a self-recognition behaviour and therefore biasing the results. In order to address this 

issue, researchers placed a red spot on the child’s nose. The red spot served as a point of 

reference: self-recognition was assumed if the child touched the actual spot or used the 

mirror to examine his nose [Amsterdam 1972]. Self-awareness has been proven to be 

shared with other primates through similar experiments: chimpanzees are also capable 

of recognizing the red dye mark in their reflection on a mirror; while monkeys do not 

appear to have this capacity [Gallup 1970]. Other animals such as pigs can learn what a 

mirror image represents and use it to obtain information even though those animals 

lack self-awareness [Broom et al. 2009]. Additional attempts have been carried out 

training non-organic entities, such as robots, to self-recognize and pass the mirror test, 

however this does not represent a real self-awareness behaviour [Takeno et al. 2005]. 
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But the more revealing characteristics of self-awareness are actually observed in 

patients with neurodegenerative diseases such as Alzheimer. Patients suffering this 

pathology have deficits to perform self-recognition tasks, related with their loss of self-

awareness. 25% of patients in GDS stage 6 (with a severe cognitive decline) did not 

recognize themselves in a mirror, the percentage being significantly higher when shown 

in a video [Biringer and Anderson 1992].  

This difference between the real-time and the off-line observation indicates that self-

recognition resides not only in the external appearance (picture/video observation), 

but also in the internal corporeal experiences of own motor actions and behaviours in 

real time (mirror observation). Therefore we can assume that one can potentially 

distinguish the self from the others by external appearance as well as by the experience 

of owning a body and having agency of this body. 

In fact, the neural mechanisms involved in self-recognition have different underlying 

origins: they are believed to have a strong contribution of both afferent (the incoming 

signals to the brain, such as the sensorial information: vision, proprioception etc.), as 

well as efferent information (outgoing signals: motor actions etc.) [Tsakiris et al. 2005]. 

As mentioned before, those afferent and efferent inputs are combined through 

multisensory integration, always modulated with prior knowledge (the experience is 

controlled by the top-down mechanisms). The top-down mechanisms are especially 

used when there is no efferent information, for example while observation [Bar et al. 

2006; Bar 2003].  
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2.1.3. Exteroceptive part of the self-recognition 

Humans are able to identify pictures of themselves, play-backs of self-generated actions, 

and determine authorship from kinematic displays based on prior knowledge and 

action-planning structures [Knoblich and Prinz 2001]. Some call this effect a re-efferent 

mechanism [Tays et al. 2011].  

More precisely, whereas in real time the congruence between the afferent and efferent 

channels modulates the experiences of self-awareness, in the picture/video observation 

there is only one functional channel (afferent visual input), which is combined with the 

prior knowledge (re-efferent mechanisms). In the case of the Alzheimer patients the re-

efferent channel is clearly affected, thus their self-recognition and self-awareness is 

significantly reduced during off-line observation. 

With the arrival of new neuroimaging techniques the underlying mechanisms for 

external self-recognition have been widely explored. Using pictures of faces and objects 

and leveraging EEG techniques, researchers have been able to discover the 

neurophysiological processes that classify faces differently from other objects in the 

visual and frontal cortex [Bentin et al. 1996]. Further research has found that those 

processes are also involved in self-recognition [Liu et al. 2002; Keyes et al. 2010].  

Studies with magneto-encephalography (MEG) have revealed that the categorization of 

faces is done via a two stage process: an early mechanism facilitates the discrimination 

of faces from other objects (at approximately 100ms), a later process is in charge of 

identifying the owner of the face (after 170ms) [Liu et al. 2002]. A growing literature 

has documented similar effects taking place when observing self vs. other people’s faces 

using EEG and ERPs. A reduction on the P2 component voltage in the occipito-parietal 
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areas of the brain was detected during self-face observation [Sui et al. 2006; Keyes et al. 

2010].  

These neurophysiological traces will be leveraged in Chapter 6 of this thesis to study 

self-identification in look-alike avatar faces. One of the challenges of the proposed study 

is the lack of prior exposure to computer generated faces, especially since identification 

mechanisms require extensive experience: children of various ages elicit different ERPs 

during observation of faces [Taylor et al. 2004]. Therefore, the processing evolves with 

time and requires exposure and training (for an extended review [de Haan et al. 2003]).  

However, some people seem to have an impaired ability to recognize faces. Patients 

with disorders such as prosopagnosia cannot identify faces, while their skills for object 

discrimination or decision making remain intact [Damasio 1985]. Prosopagnosia 

patients have a healthy sense of self-awareness even though they do not recognize their 

own face, in contrast to patients with severe Alzheimer. Yet, another clear indication 

that self-recognition is not uniquely triggered through external appearance: other 

human characteristics are also key for self-awareness. 

2.1.4. Corporeal part of the self-recognition 

As we have seen in the previous section, self-recognition can be generated through 

mere exteroceptive modalities (i.e. observation) but other components such as the 

proprioception and the interoception also contribute to it through corporeal self-

awareness. More precisely the experience of having and perceiving the body while in 

real time (body ownership) or the control of our own motor actions and kinematics 

(agency) are two related phenomena of the minimal self-awareness [Gallagher 2000].  
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According to Gallagher (2000) the minimal self-awareness refers to the consciousness 

of one-self as the immediate subject of an experience. A minimal self-awareness (this is 

me) involves two related aspects: ownership (I am the one undergoing an experience) 

and agency (I am the one causing the action). In this thesis the concept of minimal self-

awareness will always refer to the above description, even though minimal self-

awareness is not yet a fully agreed term among all authors, e.g. other authors refer to 

different but related terms such as the minimal phenomenological self [Blanke and 

Metzinger 2009].  

2.1.4.1. Body ownership 

While perceiving the own body may seem an obvious experience for a human since we 

integrate our bodies naturally, it is rather complex to study how body ownership works 

in the context of corporeal self-awareness: i.e. how do I accept that this is my body? This 

body acceptance mechanisms are of great interest to this thesis, since we are trying 

substitute participants bodies by virtual ones as stated in Chapter 1. 

Disorders affecting the natural somatognosia – i.e. self-awareness of one’s own body 

parts – produce hallucinations of reduplication or rejection of the owned body that 

include a variety of short lasting illusory experiences about the seen and felt location 

and position of one’s body or body parts in the space [Blanke and Mohr 2005]. Bodily 

experiences influencing body ownership have been reported in patients with 

dysfunctional multisensory integration or brain damage in the temporo-parietal 

junction [Blanke and Mohr 2005]. 

Similar illusory experiences can be produced in healthy participants by manipulating 

the multisensory input and integration for the induction of these states. The stimulation 
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of several afferent sensory signals together can generate body ownership illusions in 

mannequins, avatars or other body parts to better explore the functioning of body 

ownership [Botvinick and Cohen 1998; Petkova and Ehrsson 2008; Lenggenhager et al. 

2007; Slater et al. 2009]. 

This approach was first proven to work through visuo-tactile synchronous stimulation 

with a rubber hand (Figure 2-3) where an illusion of ownership towards a fake arm was 

generated [Botvinick and Cohen 1998]. In the rubber hand illusion, tactile stimulation 

(tapping and stroking) was applied synchronously on the real arm (out of the 

participant sight) and on a visible rubber arm (placed in a feasible anatomical position 

in front of the participant). When the experimenter stroked both the real and the rubber 

arms synchronously the participant experienced the illusion that the fake arm was his 

real arm: i.e. the participant had an illusion of ownership over the rubber hand (Figure 

2-3). When the same stroking was provided asynchronously participants did not 

experience any ownership illusion.  

 

Figure 2-3 The rubber hand illusion. Tactile stimulation (tapping and stroking) is applied on a visible rubber 

arm placed in a feasible anatomical position in front of the participant, while the real arm rests hidden out of 

the participant’s sight. When the experimenter stroked both the real and the fake arms synchronously the 

participant had the illusion of ownership over the rubber hand [Botvinick and Cohen 1998]. 

The illusion, which can be elicited in less than 15 seconds in approximately 80% of the 

people [Lloyd 2007], results in shifts of the real limb’s felt location towards the fake 
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limb. The bias between the real location and the felt location is known as the 

proprioceptive drift [Tsakiris and Haggard 2005]. Furthermore if the rubber hand is 

subjected to sudden harm and the participant has interiorized it as its own, a 

physiological reaction may be found – e.g. GSR increase [Armel and Ramachandran 

2003] or a brain activation [Ehrsson et al. 2007].  

The rubber hand illusion has been reproduced in VR through visuo-tactile stimulation 

[Slater et al. 2008], and more recently also through visuo-motor correlations [Sanchez-

Vives et al. 2010] where the illusion was induced through a synchrony between the 

virtual hand movements and the participants' movements. The rubber hand experiment 

has been replicated extensively with multiple variations, for a broad review check 

[Makin et al. 2008].  

Parallel studies have shown that the rubber hand illusion can also be generated on 

amputated patients by administering synchronous touches to the stump as well as to a 

fake hand [Ehrsson et al. 2008]. Related research with amputee patients that suffer 

from phantom limb pain has used similar body ownership illusions to reduce their pain 

by direct observation of their intact arm through a mirror. The mirror is precisely 

located creating a symmetry such that when patients view it, they have the illusion that 

their missing arm has been resurrected (Figure 2-4) [Ramachandran et al. 1995]. When 

a miscorrelation among multiple inputs is provided the brain disembodies the phantom 

limb. Subsequently, the brain relays strongly in the visual input to recalibrate and 

accepts that the phantom limb is not anymore in a painful posture [Ramachandran and 

Altschuler 2009]. 
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Figure 2-4 Looking at a mirror reduces the phantom pain on an amputated limb. Figure adapted from 

[Ramachandran and Altschuler 2009]. 

Recently, ownership experiments have also been oriented to generate full-body 

ownership illusions with mannequins. Using HMDs, cameras as well as synchronous 

visuo-tactile stimulation participants had a full-body ownership illusion and reacted 

when a knife was directed towards the mannequin [Petkova, Khoshnevis, et al. 2011] 

(Figure 2-5).  

 

Figure 2-5 (A) The participant looks down with an HMD and sees a mannequin body instead of his own body. 

(B) The participant experiences a full body ownership of the mannequin from a first person perspective 

through synchronous tactile stimulation. Figure adapted from [Petkova, Khoshnevis, et al. 2011]. 

The full-body ownership illusion can also take place within virtual reality exploiting 

both visuo-tactile and visuo-motor correlations [Slater et al. 2009; Maselli and Slater 

2013; Banakou et al. 2013; Normand et al. 2011; Kilteni et al. 2012; Kokkinara and 

Slater 2014; Slater et al. 2010]. Using VR technology participants have the feeling that 
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their body has been substituted by a virtual body. Chapter 4 of this thesis provides new 

evidences about the integration of the illusion at the unconscious level measuring the 

brain activity to sudden harming stimuli rendered in the virtual environment while 

exploring the limits of the body representation in the brain.  

Interestingly, the technology to generate body ownership illusions has also been 

exploited to produce out of body illusions in healthy participants. Literature has 

described out of body hallucinatory experiences in patients with dysfunctional 

multisensory integration that suffer from autoscopic phenomena. Such patients feel 

they are outside their own body being able to see it from a distanced perspective 

[Blanke and Mohr 2005].  

Displaying a real-time video stream – recorded 2 meters from the back of the 

participant – in a stereo HMD, healthy participants can experience the detachment from 

their own body [Lenggenhager et al. 2007]. The proposed setup induces the illusions 

through synchronous tactile stimulation (Figure 2-6). 

 

Figure 2-6 Out of body experience. The participant sees through an HMD his own virtual body standing 2 m in 

front. The illusion is generated with a synchronous stroking at the participant's back. Illustration adapted 

from [Lenggenhager et al. 2007]. 

In these illusions participants recognize the body they see as their own, however, the 

body is significantly displaced from the self-perspective (camera position). 
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Experimenters have shown that this illusion can also be induced using virtual avatars 

[Pomés and Slater 2013].  

Even though there are multiple variations and experiments on body ownership and out 

of body experiences, two findings arise in all of them: i) some kind of multisensory 

stimulation is needed to produce the illusions and ii) the illusions are modulated by the 

visual perspective – being inside or outside the body. More precisely, first person 

perspective (1PP) has been found a necessary condition for a full virtual body 

substitution [Petkova et al. 2011; Slater et al. 2010; Maselli and Slater 2013].  

2.1.4.2. Agency  

Most of the experiments presented involving full body ownership illusions on virtual 

bodies and mannequins rely on passive stimulation provided by the experimenter: the 

stimulation of the afferent signals induces the feeling of owning a body – e.g. my body is 

the one being touched, or being moved. However, as remarked before, to have a complete 

experience of a body integration participants need to be controlling the new body – e.g. 

I’m the initiator of the action. In fact, the body ownership illusion can be generated 

leveraging active stimulation through synchronous match of the participant’s 

movements to the ones of the virtual body (providing visuo-motor correlations) 

[Kokkinara and Slater 2014; Gonzalez-Franco et al. 2010].  

The Hypothesis 2 of this thesis explores the implications of such visuo-motor 

correlations and the effects of a break in the agency mechanisms that control the 

movements of the virtual body. In this context, neuroscience relevant concepts such as 

agency, volition and motor control schemas are presented in this section. 
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In essence, having a body (body ownership) is naturally combined with an active 

control of the body (agency), especially since humans are the initiators of many of their 

own movements, being the source of the efferent signals [Gallagher 2000]. In this 

context, agency is a closely related phenomenon to minimal self-awareness – i.e. this is 

me – that depends on the processing of sensory and motor signals involved in almost 

every body activity.  

But, how do we recognize ourselves as initiators of our movements? Tsakiris et al. (2005) 

studied the role of the efferent signals in self-recognition through a rather complex 

experiment in which participants experienced a passive extension of the right index 

finger. This stimulation was triggered in two different ways: either directly by the 

participants moving a lever with their left hand (‘self-generated action’) or induced by 

the experimenter (‘externally generated action’). At the same time, their visual feedback 

(a video streamed in real time) was manipulated and subjects saw either their own 

hand or someone else’s hand that was being extended with the same lever (Figure 2-7). 

Both hands were covered with identical gloves and the discrimination on the basis of 

morphological differences was not evident in their setup. The task for the participants 

was to judge whether the hand they saw was theirs or not. Participants were 

significantly more accurate in the self-generated condition – when they were the 

authors of the stimulation –, while the performance dropped near chance levels in the 

externally generated condition. With this experiment Tsakiris et al. were able to 

determine the specific contribution of afferent (vision and proprioception) and efferent 

information in self-recognition, showing that the mechanisms to produce agency and 

self-recognition are highly dependent on the efferent information [Tsakiris et al. 2005], 
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in contrast to body ownership that is more frequently modulated by the afferent 

information [Tsakiris, Schütz-Bosbach, et al. 2007].  

 

Figure 2-7 Participants have to judge whether the hand they see moving through a video stream is theirs or 

not. The participants’ hand is passively extended via a lever triggered by the participant (‘self-generated 

action’) or by the experimenter (‘externally generated action’). Illustration adapted from [Tsakiris et al. 

2005] 

Volition remains a parallel question to agency: when is a movement considered 

voluntary? In order to study the underlying mechanisms of motor intentions, Libet et al. 

(1983) proposed an experiment using Readiness-Potentials (RP)1; the conscious 

appearance of the intention to act was compared to the time at which the RP originated 

[Libet et al. 1983]. More specifically, participants were asked to stop a round running 

timer whenever they wished. Then participants reported the clock position at which 

they felt they wanted to stop the clock – i.e. their initial awareness of intending to move. 

Libet et al. compared the electrophysiological data – origin of the RP – against the 

reported awareness, finding that the movement was actually initiated 800ms prior to 

the participant reported awareness (Figure 2-8).  

                                                        
1 RPs are measured through scalp EEG, being a lateralization of the voltage between the hemispheres that 
appears in the motor cortex preceding voluntary hand movements [Kornhuber and Deecke 1965]. 
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Figure 2-8 Libet et al. experiment. Top: the sequence of the Libet experiment. Bottom: the corresponding 

readiness potential (RP) taking place in the brain. The time when the RP starts is 800ms ahead to the 

participant reported awareness of his urge to act. Illustration adapted from [Haggard 2008]. 

Libet et al. results indicate that free voluntary acts are indeed originated unconsciously: 

the cerebral initiation of spontaneous acts begins prior to the subjective awareness that 

a decision has been taken to start an action. This discovery has major implications not 

only for the free will theories but also for the fields of agency, consciousness and self-

awareness.  

Consequently, being aware of, initiating and controlling actions is a major component of 

the conscious experience even though many aspects involved actually occur without 

awareness [Blakemore and Frith 2003]. This order of causality is in accordance with 

Crick & Koch (2003) framework for consciousness mentioned previously in the 

perceptual processing section. 
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Some theories in line with the findings of Libet et al. (1983) proposed that humans must 

have mechanisms oriented towards intentional inhibition of involuntary movements 

[Haggard 2008]. Some specific kinds of pathologies that alter significantly the sense of 

agency are precisely associated with failures to perform such movement inhibition. E.g. 

patients suffering the anarchic hand syndrome may perform simple actions (like 

grasping something) that are not intended [Sala 1998]. The non-controlled movements 

by this hand are due to a lesion in the contralateral hemisphere of the supplementary 

motor area. The affected hand may even interfere with the actions that the patient tries 

to perform with the healthy working hand. The existence of this rare pathology can be 

considered tangible evidence supporting the theories of active motor inhibition 

mechanisms that prevent involuntary movements in healthy humans.  

While anarchic hand patients recognize their body as the one performing the action – 

they have a completely functional body ownership –, and they are fully aware that the 

movement was not intended – they do not report agency over the hand [Sala 1998]. On 

the contrary, schizophrenic patients that suffer from delusions of control are not sure 

whether their hand was controlled externally or not [Frith et al. 2000]. Clearly, volition 

is a necessary condition for an experience of agency and thus for a conscious experience 

of the self: This is me, I’m the one performing the action. 

Interestingly, the consequences of events occurring after voluntary and involuntary 

actions are also crucial to better understand the agency of our actions.  

On those lines, Haggard et al. (2002) studied volition and agency reproducing the Libet 

et al. (1983) setup. Haggard et al. asked participants to press a button whenever they 

wanted; a tone would be triggered 250ms later. Meanwhile they would watch a clock 

and judge the onset of both events: the action and the tone. Results showed that 
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participants overestimated the time of the action and underestimated the time of the 

tone, perceiving as if the action and the event were closer in time, thereby 

demonstrating the existence of a mechanism that binds agency of actions to intentions. 

In a second condition magnetic brain stimulation (TMS) was applied in the motor cortex 

to trigger involuntary movements so the participant would press the button 

involuntarily. In this condition the time estimation between the action and the tone was 

divergent: participants perceived as if the action and the tone were more distant in 

time. During involuntary actions the binding mechanism was opposed to it of voluntary 

actions, when the mechanism attached the event from the action [Haggard et al. 2002].  

The objective in Chapter 5 is to exploit the capabilities of VR and body substitution to 

better study these agency and volition mechanisms. We propose an experimental study 

where an Eriksen flanker motor task was performed by healthy participants. In random 

trials a hijack to the avatar introduced some incoherent movements. Brain activity was 

recorded to measure the effects of such breaks in the agency in the minimal self-

awareness experience.  

2.1.4.3. Model for Motor Control 

A neurocognitive model (Figure 2-9) has been proposed to describe immediate self-

awareness during motor actions through forward and feedback comparators [Gallagher 

2000]. Gallagher’s model connects several components that contribute to the minimal 

self of motor control and cognition – from the intention to the actual action. 

Interestingly, the model is not only based on the afferent input (sensory feedback), but 

also on efferent signals. In this context the comparators and the efferent signals from 

the model have also been strongly related to the functioning of the whole motor system 
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being responsible for motor learning, motor prediction and motor correction [Wolpert 

1997].  

 

Figure 2-9 Motor control model including the internal and external error monitoring loops. Adapted from 

[Gallagher 2000]. 

During the execution of most of our actions an internal error-detection loop and a 

prediction based external system (also known as the external error-monitoring loop) 

constantly monitor the correctness of our own behaviour and motor commands (Figure 

2-9). The internal forward model computes the correctness of the efferent action 

whereas the external loop checks for the final output of the action: it contrasts whether 

the afferent input of the executed action is equivalent to the original efferent output and 

predicted state.  

Specifically, the forward part of the model is an incredibly fast error-detection system 

that computes error deviations from our on-going actions even before they have been 

completed. This mechanism generates constant predictions of the consequences of 

one’s actions using an internal copy of the on-going motor command (also called 

efference copy) [Kawato 1999; Frith et al. 2000; Holst and Mittelstaedt 1950].  
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Researchers have associated an Error-Related Negativity (ERN) signal that originates in 

the anterior cingulate cortex with the forward comparator [Rodriguez-Fornells et al. 

2002]. When a participant makes a mistake during a decision making task, such as the 

Eriksen flanker task [Eriksen and Eriksen 1974], ERN components are elicited 

[Rodriguez-Fornells et al. 2002]. If an error signal is triggered in the forward 

comparator the brain can implement fast inhibitory processes and error correction 

commands. 

While the internal error-monitoring loop helps the organism to adapt in a fast and 

flexible way in the ever-changing environment, the external error-monitoring loop plays 

an important role in the agency of our actions. The external loop integrates new sensory 

incoming information about the real consequences of our current action through the re-

afferent feedback. This mechanism helps to attribute the agency of the action to 

ourselves [Frith et al. 2000]. However, even though this external monitoring loop has 

been predicted the brain traces associated to it are yet unknown.  

The model can be adapted to account for the multiple variations on the minimal self-

awareness in psychiatric patients affecting agency and ownership, when one or other 

components of the model are not functioning well. I.e., no match of the forward or 

feedback comparators can deprive the system of a sense of agency or ownership 

[Blakemore et al. 2002]. 

In Chapter 5 we explore the agency and ownership mechanisms in the context of this 

minimal self-awareness model. A fast Eriksen flanker motor task was implemented to 

generate internal errors, whereas hijacks to the avatar were used to induce external 

errors – hijacks were avatar performed animations that did not originate from the users 

tracked body. The study’s objective was to measure the brain activity for the two 
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comparators in the model, searching for the agency and ownership mechanism related 

with the minimal self-awareness experience. 

2.1.5. Summary 

In “The brain and the body” we have explored several neuroscience concepts relevant to 

the study of the body representation in the brain both at unconscious and conscious 

levels. A number of experiments and theories around the perceptual processing of 

stimuli, or self-awareness exteroceptive and corporeal parts have been presented 

together with a detailed review exploring the phenomenology of owning a body and 

controlling it. Models for motor control and minimal self-awareness were also 

introduced. 

Furthermore, the three main hypotheses to be defended in Chapters 4, 5, 6 have been 

contextualized not only among a review of similar experiments but also with several 

pathologies producing similar effects for dysfunctional illustration.  

In conclusion, the conceptual roots upon which this thesis will gravitate have been 

introduced: agency, body ownership, volition, self-recognition, unconscious 

mechanisms, proprioception, afferent and efferent signals, and multisensory 

integration.  

2.2. Virtual Reality 

2.2.1. Presence 

Real time Computer Graphics together with advanced tracking technologies can 

generate IVE in which participants find themselves in a totally new location or scenario. 
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Under such circumstances participants experience a “presence illusion”, the feeling of 

being there (Place Illusion) while also behaving realistically (Plausibility Illusion) 

[Sanchez-Vives and Slater 2005]. People immersed in virtual environments have 

realistic responses to external stimuli: the reactions in virtual environments are 

equivalent to the ones expected if the stimuli were to happen in a real scenario 

[Sanchez-Vives and Slater 2005]. For this reason VR provides a great platform to 

systematically test particular stimuli in humans without compromising their integrity. 

Presence has traditionally been measured via questionnaires [Slater et al. 1994]. 

However surveys alone may not be sufficient for evaluating presence effects, making 

more objective measures necessary [Slater 2004]. Researchers have monitored 

physiological responses to account for objective presence measures and found that 

people exposed to stressful situations in an immersive environment – e.g. walking on 

the edge of a virtual cliff – register strong increases in their heart and respiratory rate 

or galvanic skin response [Meehan et al. 2002].  

Additionally, participants not only respond realistically to the environment but also 

behave genuinely when interacting with avatars. A virtual reprise of the Milgram’s 

obedience to authority study, in which participants are asked to provide electric shocks 

to a virtual learner whenever he answers incorrectly to a question, found that people 

behaved as if the situation was real [Slater et al. 2006]. In another example of social 

psychology inside IVE people immersed as bystanders during violent incidents were 

likely to intervene following realistic behavioural patterns [Rovira et al. 2009; Slater, 

Rovira, et al. 2013].  

Furthermore, the presence illusion can be generated exploiting different modalities of 

immersive technologies – HMDs or CAVEs. The evaluation of the effectiveness of the 
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different systems producing presence is not trivial. Some research has focussed on a 

single characteristic of the technology in order to do so; such as the quality of the image, 

the time delay, the depth perception (3D stereo, vs mono), the head tracking or the field 

of view (FoV), etc. [Chen et al. 2007]. Overall, there is a major agreement that stereo 

rendering with head tracking is necessary to consider an immersive VR effective [Slater 

et al. 2010; Sanchez-Vives and Slater 2005]. 

2.2.2. Virtual Embodiment 

IVE with real-time tracking devices not only transport participants to a totally different 

location or scenario, but also provide a platform in which participants can have their 

body substituted by a virtual body. 

Being inside a virtual body that moves as you move (with real-time tracking) can 

generate a strong full-body illusion. More precisely, the embodiment in a 1PP virtual 

body causes a combination of the previously described phenomena of body ownership 

illusion and agency over the virtual body [Kilteni et al. 2012]. Therefore embodiment 

produces an advanced full body ownership illusion in which the participant not only has 

an egocentric perspective of the body but also has control over it [Slater et al. 2010].  

Using HMDs researchers have shown that is possible to produce functional body 

substitutions in VR [Banakou et al. 2013; Slater et al. 2010]. In those experiments the 

HMD is combined with real-time head tracking that produces a 1PP where the virtual 

view position and orientation is constantly updated according to the participant’s 

tracked head position and orientation [Maselli and Slater 2013]. Simultaneously, full 

body tracking systems provide real-time motor control of the rest of the virtual body 

generating strong multisensory correlations. Synchronous tactile stimulation through 
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vibrators (passive) or touch (active) can also help in inducing visuo-tactile correlations. 

The combination of various kinds of synchronous multisensory correlations strengthens 

the embodiment illusion over the virtual body.  

In fact, studies have shown that both synchronous visuo-motor and visuo-tactile 

correlations can be used to induce the embodiment illusion by providing strong virtual 

body ownership [Kokkinara and Slater 2014]. Kokkinara et al. examined the relative 

contribution and mutual interaction of both stimulations (tactile and motor) on the full-

body ownership illusion. Results show that the illusion is more strongly and positively 

influenced by congruent visuo-motor correlations than visuo-tactile stimulation, 

however the illusion can be broken to the same extent by incongruent stimulation of 

both kinds. Previous research had found that virtual body ownership illusions can be 

enhanced when the participant sees his/her virtual body moving synchronously in a 

mirror [Gonzalez-Franco et al. 2010]. Interestingly, the embodiment illusion may even 

exist when the virtual body and the real body are not perfectly co-located [Blom et al. 

2014; Pomés and Slater 2013]. 

Ultimately, the embodiment illusion provides the means to further explore how the 

brain and the body integrate, especially since computer graphics programming allows 

researchers to alter the virtual bodies beyond what would be physically feasible on a 

real body.  

Experimenters have shown that people embodied in avatars whose hand was elongated 

up to three times the length of the real arm can still perceive the virtual arm as their 

own [Kilteni et al. 2012]. In that experiment participants underwent visuo-tactile and 

visuo-motor multisensory stimulation, which enhanced the ownership illusion and 
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resulted in a proprioceptive drift. Kilteni et al. not only showed how virtual bodies can 

be manipulated to this extreme, but also contributed to the field of brain plasticity.  

Similar proprioceptive drifts were produced in adult males when they experienced a 

larger belly after self-induced visual tactile stimulation, resulting in an overestimation 

of their real belly size after synchronous tactile self-stimulation [Normand et al. 2011]. 

Without doubt, modifications in virtual bodies have contributed to a greater 

understanding of the neuroplasticity and the quick adaptation of the brain to changes in 

the body. 

Further experiments have shown that embodying adults in bodies of children not only 

produces proprioceptive drifts and overestimations of object sizes but also implicit 

attitude changes [Banakou et al. 2013]. Attitude changes were found after embodiment 

exposure to black skinned avatars, in this case participants’ racial bias was significantly 

reduced [Peck et al. 2013]. Interestingly, behavioural responses have also been related 

to the virtual body appearance when in a music scenario, showing that embodiment can 

help modify behaviours [Kilteni et al. 2013]. More intriguing effects have been found in 

participants embodied in look-alike avatars where their behaviour was also modified 

[Bailenson and Segovia 2010]. Even though this is not the focus of this thesis it is 

important to note that there are great implications of these attitude changes induced 

during embodiment experiences used for therapy. Nevertheless the understanding of 

how the self-identification with avatars works will be further explored in Chapter 6. 

2.2.3. Summary 

This section has reviewed a series of experiments that use IVE to study not only human 

behaviour or social psychology but also the body representation in the brain. Such 
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experiments in VR have been possible because participants perceive and respond to the 

virtual stimuli as if the events happening were real. Inside VR participants can be 

embodied in a virtual body while experiencing an illusion of presence.  

The technologies used to generate body substitutions for the hypothesis testing will be 

similar to those exploited in many of the experiments presented in this thesis; HMDs 

with head tracking and body tracking devices.  

In this thesis we are interested in exploiting embodiment to explore how the brain and 

the body are integrated and the underlying brain mechanisms that take place during 

virtual body ownership illusions as well as the nature of virtual body agency.  

More precisely, Chapter 4 is dedicated to explore how the virtual body is integrated in 

the brain. An instantaneous harmful stimulus is presented to the virtual body of the 

participant to measure the brain activity that processes such event. In theory similar 

motor cortex activation would be expected were the threat happen to their real body. 

This Chapter will provide new evidence of the unconscious mechanism that regulate the 

body ownership illusion. 

Chapter 5 will explore how human motor control mechanisms work and how we 

achieve minimal self-awareness and agency of our own bodies. Participants will 

perform a motor task while embodied in a virtual avatar and sporadically experience 

agency breaks in which their virtual body performs some incongruent movement 

(simulating what happens during anarchic hand episodes). This Chapter will provide 

new evidence on the brain mechanisms that control the agency of our own actions. 

Finally Chapter 6 will look at the effects of the virtual body appearance for self-

recognition, presenting an experiment where participants have their brain activity 
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recorded while observing virtual look-alike avatar faces. This research is particularly 

motivated by the studies that find attitude changes when embodied in different looking 

avatars [Peck et al. 2013; Kilteni et al. 2013; Bailenson and Segovia 2010] which may 

also have great implications for the self-recognition field. 

2.3. Measuring the brain activity 

Nowadays, there are several techniques available that can measure the brain activity in 

non-invasive ways, and it is usual that scientists use different techniques for different 

purposes as one may provide a good spatial resolution, whereas another may have a 

good temporal one. At the same time many researchers specialize in more than one 

modality of brain functioning in their research: vision, language, learning, sensory 

integration, motor control, decision making, etc., but try to avoid combining many 

modalities in the same experimental setup, as one may interfere with others. 

2.3.1. Techniques 

In this section we present some of the most common non-invasive brain activity 

recording techniques, to evaluate their compatibility with the use of VR as well as their 

temporal and spatial resolution. 

2.3.1.1. Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) detects changes in the blood flow 

exploiting the magnetization of the blood when the oxygenation level changes. It is quite 

an expensive technology that comprises of a very big magneto-generator device (Figure 

2-10). This technology creates magnetic fields that can localize activity anywhere in the 

brain within millimetres of spatial resolution, which is very good for research focus on 

human brain mapping.  
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Figure 2-10 Left: an fMRI machine from Siemens. Right: results adapted from an auditory perception study 

with fMRI [Wengenroth et al. 2010]. 

However this technique does not provide much information about the temporal 

dynamics since the minimum time window for the fMRI is about a few seconds, which 

also means that since the head has to remain restrained fMRI cannot be used during 

complex motor action scenarios. It is therefore un-efficient to test temporal dynamics of 

instantaneous stimuli or motor control with fMRI.  

Furthermore, given its magnetic fields it is very hard to integrate with other 

technologies such as the HMDs necessary for the VR. However there have been attempts 

towards creating a magnet-friendly VR, where the screens of the HMD were successfully 

replaced with a fiberoptic delivery system [Hoffman et al. 2003] that can be now found 

commercially. 

2.3.1.2. Near Infrared Spectroscopy 

Using Near Infrared Spectroscopy (NIRS) researchers can focus on a specific area of the 

brain. NIRS is based on a source that irradiates infrared light paired to a detector that 

measures the diffused light from the volume of tissue beneath. Different blood 

oxygenation levels have different light diffusion properties, so the light measured at the 

detector depends on the activity of the area (Figure 2-11). NIRS is a widely used 

technology for pulse-oximeter devices but it can also be used for functional 

neuroimaging.  
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Figure 2-11 (A) A grid of fiber optic-based light sources and detectors mounted on a participant. (B) The 

model of light propagation (in log-scale). Figure adapted from [Karim et al. 2012]. 

This technology combines a good temporal resolution (millisecond scale) with a 

reasonable spatial resolution (centimetres). The light can reach approximately 5-8mm 

into the brain cortex at a source-detector spacing of 3.2cm.  

Although NIRS uses infrared exposition instead of magnetic fields it can be considered 

similar to the fMRI since it is based on the detection of blood oxygenation, hence it is 

sometimes used as a partial replacement for fMRI since it offers a much cheaper and 

portable solution. Even though it is a more limited technology it can provide decent 

measures for cortical exploration in specific areas. Furthermore, NIRS can be used with 

VR setups, as it does not interfere with other electronic equipment. 

2.3.1.3. Transcranial Magnetic Stimulation 

It is also possible to explore the functioning of a specific area of the brain (mostly 

cortical) using Transcranial Magnetic Stimulation (TMS) that triggers depolarizations or 

hyperpolarizations of neurons by rapidly changing the magnetic field (Figure 2-12).  
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Figure 2-12 Principles of transcranial magnetic stimulation. The current in the coil generates a magnetic field 

(B) that induces an electric field (E). At the microscopic level, the electric field (E) affects the transmembrane 

potentials and may lead to local membrane depolarization and subsequent neural activation. Macroscopic 

responses can be detected with functional imaging tools, with surface electromyography (EMG), or as 

behavioural changes. Adapted from [Ilmoniemi et al. 1999]. 

This technology is considered non-invasive even though it can cause activity changes in 

the affected area of the brain. Its effects are instantaneous and the brain recovers its 

normal functioning after the controlled pulse.  

TMS has been widely used to evaluate cortical functioning, especially in the study of the 

primary motor cortex, where it produces Motor Evoked Potentials (MEP) that can be 

recorded through EMG. More specifically it can be used to study agency and motor 

control by triggering involuntary movements [Haggard et al. 2002], making it an 

interesting tool to understand how the brain and the body interact.  

2.3.1.4. Magneto Encephalography 

Other technologies are purely measuring devices that do not interact at all with the 

natural activations of the brain by creating magnetic fields (fMRI, TMS) or by infrared 

exposition (NRSI), but rather take direct measurements of the activity voltage or the 

magnetic field created during the synapses. One of these technologies is the Magneto 

Encephalography (MEG).  

MEG consists of a very precise magnetometer based on superconducting quantum 

interference devices (SQUID) that is able to measure the extremely subtle magnetic 

fields created by the brain currents, its working principles are explained in detail here 

[Hämäläinen et al. 1993].  

This technology has a satisfactory spatial and temporal resolution. However, MEG 

devices are very expensive, relatively big and non-portable (Figure 2-13). Additionally, 
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they are also incompatible with other electronic devices such as HMDs or similar that 

can create strong interferences in the magnetic fields. In fact MEG recordings usually 

take place inside magnetically shielded rooms. 

 

Figure 2-13 MEG machine by Elekta Nuromag. 

2.3.1.5. Electroencephalography 

The electroencephalography (EEG) is an innocuous technology based on direct voltage 

recording with electrodes placed in standard positions all over the scalp connected to 

the skin through gel.  

EEG is often used as it is the cheapest portable system for cortical activity recording. 

With a very good temporal resolution (milliseconds) it is a great platform to evaluate 

instantaneous stimuli processing in the brain while remaining reasonably robust to 

interferences of HMDs or other equipment.  

However, the acquired signal tends to be very noisy and the experimentation requires 

multiple repetitions of each stimulus in order to really isolate the underlying processing 

– about 40 to 60 repetitions are necessary in order to record the average brain 

response. The resulting signal of the average response is known as the Event Related 



69 
 

Potential (ERP), which is associated with the processing of the specific stimuli in the 

brain (Figure 2-14). Using offline EEG analysis one can extract the ERPs to different 

stimuli or conditions and answer questions of broad interest in cognitive neuroscience 

and also explore the temporal dynamics of the body representation in the brain. 

 

Figure 2-14 ERPs of a classic oddball paradigm rare stimuli ‘O’ get stronger P3 component amplitudes than 

more frequent stimuli ‘X’. Adaptation from [Luck 2005]. 

2.3.1.6. Summary 

This section has presented several non-invasive technologies for measuring the brain 

activity. In Table 2-1 we present a short summary of the different technologies and their 

features. 

Table 2-1 Review of the technologies for non-invasive measuring the brain activity. 

Technology Spatial 

resolution 

Temporal 

resolution 

Compatibility with VR Size/Price 

fMRI Whole brain 

(millimetres) 

Few 

seconds 

High interference. Magnets 

interfere with electronic 

equipment. 

Very 

big/Expensive(more 

than 1 million €, plus 

high operational costs) 

NIRS Specific area 

of the cortex 

(centimetres) 

Milliseconds Low interference. Portable/Up to 

400.000€ 

TMS Specific area Milliseconds Possible interference. Magnets Small/Approx. 30.000€ 
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of the cortex 

(centimetres) 

can interfere with electronic 

equipment in the range of 

action. 

MEG Whole cortex 

(centimetres) 

Milliseconds High interference in both 

directions, magnets interfere 

with electronic equipment, 

while the electronic equipment 

interferes with the recording. 

Big/ Expensive (more 

than 1 million €, plus 

high operational costs) 

EEG Whole cortex 

(centimetres) 

Milliseconds Low interference.  Portable/Approx. 

30.000€ for 64 channel 

device 

* Cost extracted from manufacturers websites. 

While some of the technologies have better temporal resolution other provide better 

spatial scales. There are also significant differences in interference sensitivity, sizes and 

prices among them. More importantly, some of the devices are very difficult to combine 

with HMDs, such as the fMRI and the MEG, and for this reason these technologies will be 

discarded for the implementation of our work.  

On one hand the objective of this thesis is also to explore the responses to stimuli by 

measuring the whole brain activity, rather than focusing on a specific area, thus NIRS 

will also be discarded since it can only focus on specific parts of the scalp. On the other 

hand we want to interfere as little as possible with the natural stimuli processing, TMS 

will also be rejected as it induces external activations in the brain.  

Consequently, only EEG seems suitable for the aim of this thesis. Even though this 

technology also has limitations, such as its low signal to noise ratio, its sensitivity to 

muscle activity near the head or its limited spatial resolution, it provides a sensible 

platform to explore the temporal dynamics of the external stimuli integration for our 

three hypothesis without incurring into high operational costs (as it would be the case 
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with MEG or fMRI). Therefore Chapters 4, 5, 6 will only present brain activity recorded 

with EEG. 

2.3.2. Brain traces of the body representation in the brain  

In this section recent research on neurophysiological traces of bodily experiences is 

presented. In most of the cases the techniques previously described are employed to 

measure the brain traces for both healthy and clinical populations. However there are 

several limitations and possible errors derived from the use of current measuring 

techniques that need special attention before continuing this section. It is important to 

highlight that not well defined conditions combined with certain measuring techniques 

can make for ridiculous results: see Bennet et al. who using brain imaging (fMRI) found 

significant traces of brain activation on a dead salmon [Bennett et al. 2009]. 

Therefore, and in order to avoid these sort of issues, most of the research on brain 

mapping requires strong conditions and hypothesis. More in particular studies on the 

body representation in the brain usually try to reproduce previous designs by 

comparing two or more conditions showing coherent vs. ambiguous multisensory 

stimulation. This sort of research on body perception with brain activity recording 

provides a unique platform to ultimately study the immediate experience of one’s own 

body, often considered the most fundamental aspect for generating self-consciousness 

[Gallagher 2000; Blanke and Metzinger 2009; Blanke 2012].  

Various research has been able to trace brain activation in regard to bodily signals that 

generate the experience of owning and controlling a body. However different authors 

link bodily experiences to multiple areas of the brain. Certainly it is reasonable to 

believe that such a complex task involving from the processing of multiple sensorial 

modalities to its interpretation requires the implication of several brain areas.  
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Essentially the brain mapping of body ownership experiences has been done mostly 

using fMRI and Positron Emission Tomography (PET), and it has found that many areas 

are implicated: the bilateral premotor cortex (PMC) [Ehrsson et al. 2004; Ehrsson et al. 

2005], the insula [Tsakiris, Hesse, et al. 2007], the somatosensory cortex [Tsakiris, 

Hesse, et al. 2007], the anterior cingulate cortex (ACC)[Ehrsson et al. 2007], the 

posterior parietal cortex [Kammers et al. 2009], the intra parietal sulcus (IPS) [Ehrsson 

et al. 2004], the cerebellum [Ehrsson et al. 2005], and even with some specific gamma 

band oscillations over the sensorimotor area [Kanayama et al. 2009]. All of these areas 

(Figure 2-15) seem to be associated with the illusory limb ownership produced during 

experimentation with the Rubber Hand Illusion.  

 

 

Figure 2-15 Schema of the brain areas that have been identified as relevant for the generation of body 

ownership experiences. ACC: Anterior Cingulate Cortex, S1: Primary Somatosensory Cortex, IPS: Intraparietal 

Suculus, PMC: Premotor Cortex. Figure adapted from [Blanke 2012]. 

In order to make some sense of how all the different parts of the brain implicated on the 

body perception really work, further research has concentrated on finding both the 

connectivity and the functionality behind. Research focused mainly on localizing and 
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understanding the multimodal integration of the tactile, visual and proprioceptive 

signals showed that the multisensory integration happens in the IPS and PMC neurons, 

as these areas are able to respond both to tactile and visual stimuli. For example, those 

areas (IPS and PMC) get activated both when tactile stimulation is applied on the 

contralateral arm as well as when a visual stimuli approaches the same arm [Makin et 

al. 2008]. Furthermore, similar multisensory integration mechanisms have also been 

described in other primates [Bremmer et al. 2001].  

In terms of the connectivity of the different areas, studies on clinical populations that 

are not able of experiencing the RHI have shown the importance of the network, as for 

example the damage of the pathways between the PMC, the prefrontal and the parietal 

cortex seems to prevent experiencing body ownership illusions [Zeller et al. 2011], 

showing that these areas must be connected for a proper functioning. 

Overall studying the brain mechanisms that enable ownership of body parts contributes 

to the fundamental understanding of the unitary experience of self-consciousness 

through the corporeal awareness: this is my body, thus this is me [Blanke 2012]. 

However, as we have mentioned previously in the self-awareness section, there are 

other phenomena crucial for a complete bodily experience that include self-recognition 

in base to the self-location and the viewing perspective. 

Up to date, not many studies have been carried out to map the brain areas that reflect 

self-identification on a body. However some research manipulating visual-tactile 

stimulation while measuring fMRI during a full-body illusion found the PMC and IPS 

areas to increase their activity consistently with the reported self-identification with the 

virtual body [Petkova, Björnsdotter, et al. 2011]. As we just mentioned before these 

areas also play a major role in the ownership illusions of body parts [Ehrsson et al. 
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2004], showing a clear link between the different phenomena related to bodily 

experiences. 

Further experimental studies with EEG have altered participants’ self-location and 

perspective finding alpha band oscillatory modulations in the sensorimotor cortex and 

PMC [Lenggenhager et al. 2011], the alpha power was significantly suppressed during 

visuo-tactile conflict manipulations, i.e. asynchronous stimulation to the virtual body. 

In the current thesis the focus is not so much into the brain mapping but rather on the 

study of the temporal dynamics and early processing in the brain of different sensorial 

inputs, i.e. stimuli perception, (Chapters 4, 5, 6). Further Chapters also dedicate to the 

multisensory integration (Chapter 5), and to the higher level cognitive processes that 

produce self-consciousness and self-recognition: the experience that “this is me” 

through external visual appearance (Chapter 6). 

2.4. Summary 

Firstly, this Chapter has contextualized the current work within previous research 

presenting a set of neuroscience theories and experiments in areas including bodily 

perception, agency, body ownership, volition, self-recognition, unconscious 

mechanisms, proprioception, afferent and efferent signals, and multisensory 

integration. This Chapter is therefore meant to aid the readers throughout this Thesis as 

a theoretical reference. 

Besides, the use of Virtual Reality as a platform to study these and other neuroscience 

topics has also been introduced not only by presenting concepts such as presence or 

embodiment but also by reviewing previous experiments that draw similarities to the 

approaches taken in Chapters 4, 5, 6.  
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Further review has focused on the different brain activity measuring techniques, and 

their adequacy for the purpose of the hypothesis testing. A throughout state of the art 

analysis of non-invasive techniques was presented including a summary of the different 

uses that those technologies have had in the past in the context of body ownership and 

self-recognition. 

In the forthcoming Chapters different experimental designs that employ Virtual Reality 

and EEG are presented in order to validate the hypothesis presented at the beginning of 

the Thesis. Even though, each of the experimental Chapters has a different aim, the 

common materials and methods are summarized in the following Chapter to emphasize 

the shared concepts behind them.  

3. MATERIALS AND METHODS 

This Chapter describes the technologies used to validate the hypothesis of this Thesis. 

Even though each experiment has its own characteristics they all have some materials 

and methods in common. For example some experiments in this Thesis create an 

embodiment illusion of an avatar, and all of them record the brain activity through EEG.  

3.1. Generating the Embodiment Illusion 

In order to place participants inside a virtual body, they were fitted with a stereo NVIS 

nVisor SX111 HMD. This HMD with a refresh rate of 60 Hz provides stereoscopic view 

through dual SXGA displays with 76°H × 64°V degrees FoV per eye. In total the field of 

view is 111° horizontal and 60° vertical, with a resolution of 1,280 × 1,024 per eye 

(Figure 3-1).  



76 
 

 

Figure 3-1 A participant wearing the NVIS nVisor HMD 

HMDs are capable of producing very immersive experiences [Slater et al. 2010]. On one 

hand, the wide FoV provides a strong feeling of immersion, with its corresponding 

Presence illusion (see background section) [Sanchez-Vives and Slater 2005; Slater et al. 

2010]. On the other hand the resolution enhances the quality of the experience by 

making pixels very tiny [Slater and Wilbur 1997]. Thus, the real-time rendering at such 

high resolution also augments the Presence illusion [Slater et al. 1994]. Once put on, the 

HMD “transports” participants to a new environment with high fidelity [Slater et al. 

2010]. 

The combination of this HMD with real-time head tracking produced a 1PP where the 

FoV was constantly updated according to the participant’s head position and 

orientation. To do so, a 6-Degrees of Freedom (DoF) Intersense IS-900 device with an 

update rate of 180Hz was used for the head tracking; allowing participants to look 

around the virtual environment just as they would do in a real environment (Figure 

3-2).  
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Figure 3-2 An array of Intersense IS-900 at Brown University. Figure adapted from [Tarr and Warren 2002]. 

This technology comprises of a source device fixed to the top of the HMD, and a receiver 

which is usually attached to the ceiling of the laboratory. Its working principles, based 

on inertial and ultrasonic technology, provide very smooth, robust and precise position 

and orientation stream, while remaining immune to both occlusions and metallic 

interferences. The steadiness of the head-tracking has been considered a major factor to 

avoid motion sickness and dizziness among participants while in VR [Cobb et al. 1999]. 

Indeed during the experiments carried out in this Thesis none of the participants 

reported to experience such effects. 

In our setup participants experienced an authentic egocentric perspective of the virtual 

body2. When looking towards their own body participants saw a virtual body placed in 

the same location and pose as theirs. Provided that participants would not move other 

parts of their body, besides their head, they could experience the illusion that their real 

body had been substituted by the virtual one. The real-time motor control of the head 

plus the proprioceptive and visual coherent inputs of their virtual body generated 

strong multisensory correlations.  
                                                        
2 See http://youtu.be/029XNWctb4A 
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In order that the virtual body would move synchronously with the real body 

movements when participants were asked to move during the experimentation (as in 

Chapter 5) a full body tracking system had to complement the head-tracking.  

Body movements can be tracked using an optical infrared system (12 camera Natural 

Point OptiTrack setup). A set of reflecting markers placed on different parts of the 

participants’ body were triangulated – from the information recorded by the available 

cameras – in order to find the position and rotations of every join of regard. When 

whole body tracking is necessary participants usually wear a suit with the markers 

already on to facilitate the calibration. However, when only one part of the body needs 

to be tracked an inverse kinematics technique is enough to reproduce the participant 

movements. For example, in the case of Chapter 5 the whole arm kinematics (hand, 

elbow and shoulder positions and rotations) were computed from the hand position 

using Inverse Kinematics. This setup supports the real-time display of the avatar with 4 

DOF in the arm giving the participant strong visuo-motor coherence.  

The virtual environment was programmed in the XVR system [Tecchia et al. 2010] and 

the virtual character rendered using the HALCA library [Gillies and Spanlang 2010]. 

3.2. Electrophysiological recording 

Continuous EEG was acquired for all the experiments with electrodes located according 

to the standard 10-20 positions [Jurcak et al. 2007], although different amplifiers and 

electrodes were used depending on the equipment available for each experiment.  

Trials that were contaminated, i.e. exceeding amplitudes of ±100 μV by any electrode or 

with eye movements (electrooculogram, EOG) were rejected off-line in all of the 

experiments. 
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In Chapter 4 EEG and EMG were recorded with a g.USBamp amplifier connected to 

Matlab at a sampling frequency of 512 Hz. For this experiment the electrodes were set 

to cover the motor cortex area and surrounding: FC3, FC4, C3, C4, CP3 and CP4; the 

reference was set with an ear clip on the left ear lobe; the ground was positioned on the 

forehead. Further electrodes in the face measured ocular activity (EOG). Besides, three 

EMG electrodes were placed in the flexor carpi ulinaris muscle of the right arm to 

measure whether participants moved their hand. All the electrodes were kept to 

impedances below 10 kΩ and the signals were filtered with band-pass of 0.5–100 Hz 

and a 50Hz notch filter. 

In Chapter 5, EEG was recorded at 250Hz from tin electrodes mounted in an elastic cap 

and located at 27 standard positions (Fz, F7/8, F3/4, Fc1/2 Fc5/6, Cz, C3/4, T7/8, 

Cp1/2, Cp5/6, Pz, P3/4, P7/P8, Po1/2, O1/2). All scalp electrodes were referenced 

offline to the mean activity of the left mastoid and the ground was located on the 

forehead. Vertical eye movements (EOG) were monitored with electrodes located above 

and below the right eye. Horizontal EOG was collected from electrodes located at the 

outer canthus of each eye. Both vertical and horizontal EOG were used for artefact 

rejection and corrected with automated ICA-based methods [Joyce et al. 2004]. 

Impedances were kept below 5 kOhm. The electrophysiological signals were filtered 

with band-pass of 0.1–70 Hz (half-amplitude cutoffs) and an AC notch filter.  

In Chapter 6, 64 active electrodes were connected to a g.HIamp multichannel amplifier. 

Active ring electrodes (g.LADYbird) were used in a standardized cap (g.GAMMAcap), 

both from g.tec Medical Engineering. The activity was referenced to the earlobe and the 

ground electrode was located in the frontal area of the head. Signals where digitized at 
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256 Hz frequency rate, a notch Butterworth filter 4th order from 48-52Hz was used to 

eliminate the AC. Ocular movements were detected from FP1, FP2, AF7 and AF8.  

3.3. Procedures 

In all three experiments the experimental protocol was approved by the Universitat de 

Barcelona Ethics Committee (Spain), all the participants gave written informed consent 

according to the declaration of Helsinki and were paid for their participation. 

In the experiments Chapters 4 and 5, participants entered the virtual reality and saw a 

virtual body (avatar) from 1PP that was consistent with their gender and skin colour. In 

both cases the virtual scene consisted of the avatar seated on a chair with its virtual 

right hand placed on a desk. In the laboratory, the participant was seated with his/her 

real right hand collocated with the avatar’s hand and resting on a table. The left hand 

was placed comfortably on the participant’s lap (Figure 3-3).  

 

Figure 3-3 Setup of the participants in the experiments of this Thesis. A, B correspond to the participant and 

its virtual counterpart in Chapter 4, where the participant had EEG and EMG recordings. C, D correspond to 

the setup for Chapter 5 where the participants performed a motor task. 
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In the experiment of Chapter 4 participants were asked to remain still, i.e. not to move 

their hand throughout the whole experiment. An EMG setup controlled that the hand 

was indeed not moving during the observation experiment, contrary to the experiment 

of Chapter 5 where participants were asked to perform a motor task with their hand. In 

this case the real hand position was tracked using an optical infrared system (12 camera 

OptiTrack). The whole arm kinematics were computed from the hand position using 

Inverse Kinematics.  

In both experiments participants were encouraged to freely look around for 60 seconds 

to familiarize themselves with the environment. After the familiarization time, in 

Chapter 4 we told participants to fix their gaze on the virtual hand resting, while in 

Chapter 5 a guided motor task started.  

In the experiment of Chapter 6, related with self-recognition on faces, there was no 

embodiment of avatar, instead the stimuli were shown on a regular screen.  

3.4. Stimuli and EEG analysis 

In order to study the brain response to the different stimuli, participants repeatedly 

experienced the stimuli (minimum 40 times) in each of the experiments while their 

brain activity was being recorded. EEG was segmented offline into epochs starting 

before the stimulus onset. Traditionally in order to overcome the issues derived from 

the nature of EEG, with a very bad signal to noise ratio, researchers have used stimuli 

response averages, also called ERPs. Given a sufficient number of trials time-locked to 

the onset of the stimuli, the averaging technique cleans the noise from the response, 

leaving only the common components that occur as a result of the stimuli. In all of the 

experiments the ERPs were calculated for each condition. Mean amplitudes of 
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components of the ERP waveform were studied at different parts of the cortex relevant 

in each of the experiments. Trials in which ocular movements were found or where the 

absolute amplitude of the signal at any electrode was greater than 150µV were rejected. 

In cases where motor cortex activation was to be expected, the lateralization part of the 

readiness potential (RP) was studied (for example in Chapter 4). The RP has been 

previously related to movement preparation, and it is generally calculated as the double 

subtraction of C3–C4 [Eimer 1998], considering right and left hand movements. 

Frequency bands evolution was also evaluated in experiments involving motor cortex 

activation. To account for variations, the short-time power spectra was calculated as 

described in [Pfurtscheller and Lopes da Silva 1999]. Power spectral density (PSD) 

consisted in the superimposed 1-second power spectra calculated over the event-

related EEG for both the reference and activity periods. 

In the case of self-recognition experimentation (Chapter 6) the occipito-parietal areas of 

the brain were considered. Particularly the amplitude of N170 and P2 components was 

studied, where previous research has found significant activation [Keyes et al. 2010]. 

For the experiments looking for traces of self-generated errors and decision making 

responses clear ERN components were expected [Rodriguez-Fornells et al. 2002]. The 

search of the agency mechanisms in Chapter 5 was exploratory, therefore a large 

number of electrodes was used. 

In some cases the original ERPs for each subject were transformed into reference-free 

Current Source Density (CSD) estimates (µV/cm2 units) using a spherical spline surface 

Laplacian Matlab-based CSD toolbox [Kayser and Tenke 2006] to better explore the 

topographical maps of the brain activation.  
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3.5. EMG data analysis 

EMG data described in Chapter 4 was filtered with a band pass of 20–250 Hz selected 

according to the recommendations of [Fridlund and Cacioppo 1986] and keeping the 

frequency range where the primary energy in the surface EMG signal is located. As is 

common practice, the root mean squared (RMS) processing technique was used 

[Fridlund and Cacioppo 1986]. The RMS of the signal was computed with a sliding 

window of 500 ms in order to detect whether right arm muscles were activated at any 

moment. For the purpose of this experiment, subjects were asked not to move their 

hand under any circumstance, and the plan was that trials showing EMG activation 

would be discarded. 

3.6. Summary 

This Chapter has tried to summarize the materials and methods common to all of the 

forthcoming experimental Chapters 4, 5, 6.  

Furthermore, most of the materials utilized in the hypothesis testing in this thesis are 

also shared with other research that was presented in the Virtual Reality section of the 

Background chapter.  
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4. A THREAT TO THE VIRTUAL BODY 

When someone anticipates that a knife might stab their hand that is resting on a table 

they would be likely to attempt to move the threatened hand out of the way. They would 

expect to feel considerable pain should the knife stab it. In this Chapter we consider 

what happens when a person’s real body is visually substituted by a life-sized virtual 

body, and they see a threat or attack to a hand of this virtual body.  

This Chapter addresses the first hypothesis of this thesis. A stimulus directed to the 

embodied virtual body will result in a brain response equivalent to what we would expect 

if the stimulus happened to the participant’s real body. This will be true if people accept 

their given virtual bodies as if they were their own, meaning that virtual body 

substitutes (avatars) are integrated as the own body also on an unconscious level.  

Our work contributes to the growing field of body representation, how the brain 

integrates the body, as well as presenting results on pain observation. It does so by 

providing a harm stimulus to the virtual body and measuring the brain processing and 

reaction of the participants. This particular study is an important contribution to the 

field, since it shows that virtual bodies can be effectively integrated as the own body; 

providing real evidences of unconscious motor cortex activity as a response to a threat 

to the embodied virtual body. Furthermore, this Chapter provides new evidences of the 

unconscious mechanism that regulates the virtual body ownership illusion. 

The results of this Chapter have been shared with the community in form of 

presentations at the 8th IBRO World Congress of Neuroscience [Gonzalez-Franco et al. 

2011], at the Society for Neuroscience 2013 [Slater et al. 2013], and in form of journal 

publication in Experimental Brain Research [González-Franco et al. 2014]. 
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4.1. Background 

This section will present previous research that has focused on brain activity in 

response to events that would cause pain to the observer were they to occur in reality. 

Introducing novel techniques such as the body substitution in the IVE we can further 

the study of pain observation, and use it as a measure to account for levels of 

embodiment. Furthermore, exploring the underlying mechanisms of the thread 

processing also contributes to the field of body representation. 

Several brain imaging techniques have been used in pain observation experiments to 

understand the associated mental processes. Methods that employ fMRI have found that 

the anterior cingulate cortex and the right insula brain regions are associated with 

nociceptive processing [Jackson et al. 2005; Gu and Han 2007]. Furthermore, ERP 

temporal dynamics involved in empathy, measured as the response to observation of 

pain in others, are especially prominent in the motor cortex area. Researchers have 

found greater P450 responses for painful images compared to neutral images in the 

motor cortex [Fan and Han 2008; Li and Han 2010; Meng et al. 2012; Meng et al. 2013]. 

These effects were modulated by the realism of the presentation and were stronger 

with greater realism [Fan and Han 2008].  

Similarly, in studies using TMS, participants showed a reduction in Motor Evoked 

Potentials (MEPs) when watching a hand undergoing a painful situation [Avenanti et al. 

2005]. Experiments combining both pain observation and electrical stimulation have 

shown modulations in the Somatosensory Evoked Potentials (SEP), particularly 

prominent in the centroparietal locations, with larger amplitudes for the P450 

component when observing a painful situation [Bufalari et al. 2007].  
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This automatic empathy response is elicited involuntarily [Preston and de Waal 2002] 

through a bottom-up process. However it can also be modulated consciously (top-

down), for example under instructions of subjective pain estimation, generating 

stronger P450 responses [Fan and Han 2008]. 

Interestingly, pain observation studies that have focused on Frequency Power Spectra 

(FPS) decomposition have shown a depression in the mu-rhythm during painful 

conditions, using MEG and EEG [Cheng et al. 2008; Yang et al. 2009]. This abolition or 

suppression of the mu-rhythm when observing painful situations has been interpreted 

to be in agreement with previous observations about the involvement of this oscillatory 

activity in the execution of voluntary movements [Neuper et al. 2005]. The mu-ERD is 

described as a circumscribed desynchronization in the upper alpha frequency band (in 

the range of about 9-12Hz) when a participant performs a motor action [Pfurtscheller 

and Lopes da Silva 1999] or motor action observation [Muthukumaraswamy and 

Johnson 2004]. Moreover, previous studies have found that mu-ERD can also be 

triggered as an unconscious mechanism to avoid painful events [Babiloni et al. 2008]. 

When a sound alerted participants 2.5 seconds prior to an electrical painful stimulation 

at the left index finger, a suppression of the mu-rhythm was elicited, as if the participant 

had tried to move the hand to avoid harm. This effect was not elicited during non-

painful stimulation [Babiloni et al. 2008].  

In this Chapter we present a pain observation experiment in the context of a whole body 

illusion in IVR. The IVR was delivered through a wide field-of-view head-tracked stereo 

HMD. This setup substitutes a person’s own body by a virtual body seen from a 1PP, 

such that when participants look down towards their body they would see a virtual 

body replacing their own (Figure 4-1).  
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Figure 4-1 Real: the participant wearing the HMD and EEG cap. Virtual: the IVR with the gender-matched 

collocated virtual avatar. And the two experimental conditions seen by the participant when looking towards 

his hand from the 1PP: HAND) virtual hand stabbed by the knife; TABLE) virtual table stabbed by the knife 

(control condition). 

In the experiment the participant’s stationary right virtual hand, which was collocated 

with the real right hand resting on a table, was repeatedly threatened by a virtual knife, 

thereby reproducing in IVR previously conducted pain observation experiments 

[Avenanti et al. 2006; Bufalari et al. 2007; Gu and Han 2007; Fan and Han 2008; Li and 

Han 2010; Meng et al. 2012; Meng et al. 2013; Ehrsson et al. 2007]. The painful 

stimulation was compared to a control where the same knife attacked only the virtual 

table that was spatially registered with the real table on which the hand was resting 

(Figure 4-1). In short we measured EEG responses, which resulted in similar ERPs 

compared to previous experiments, with greater P450 effects in CP3 for the painful 

condition compared to the control condition [Bufalari et al. 2007; Fan and Han 2008; Li 

and Han 2010; Meng et al. 2013]. 

We used IVR for the study of pain observation due to recent results that show that 

virtual reality can be used to induce an illusion of ownership over a virtual body. This 
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work has its origin in the rubber hand illusion, where it has been shown that 

synchronous tactile stimulation of a visible rubber hand and the experimental subject’s 

corresponding hidden real hand, results in an illusion of ownership over the rubber 

hand [Botvinick and Cohen 1998; Armel and Ramachandran 2003; Ehrsson et al. 2004; 

Tsakiris and Haggard 2005]. Here the rubber hand is placed on a table in front of the 

subject in an anatomically plausible position, with the corresponding real hand out of 

sight behind a screen. When the real and rubber hand are synchronously brushed in the 

same location on each hand then there is typically and quickly an illusion of ownership 

over the rubber hand. This result has been extended to a virtual hand in virtual reality 

[Slater et al. 2008] including, but less strongly, a table-top projection of a hand 

[IJsselsteijn et al. 2006], and the illusion is also reproduced when visuomotor synchrony 

is used rather than visuotactile [Sanchez-Vives et al. 2010; Kalckert and Ehrsson 2012].  

Similar multisensory techniques have been used for whole body ownership illusions – 

both illusions of displacement (or out of the body illusions) [Ehrsson 2007; 

Lenggenhager et al. 2007], and illusions of body substitution [Petkova and Ehrsson 

2008]. Evidence suggests that the dominant factor in such whole body illusions may be 

first person perspective [Slater et al. 2010; Petkova et al. 2011; Maselli and Slater 2013], 

though it is likely that additional multisensory stimulation such as visuotactile and 

visuomotor synchrony would also play a role. For a review of the field see [Blanke 

2012]. 

Typically, however, pain observation experiments present a series of pictures with 

hands or other extremities undergoing painful situations, and they compare the brain 

response of the participants to the activation produced by pictures where the same 

extremities do not undergo painful situations [Avenanti et al. 2006; Bufalari et al. 2007; 
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Fan and Han 2008; Li and Han 2010]. Many of these experiments present scissors and 

needles perforating the extremities as painful stimuli. A potential advantage of IVR, 

however, is that greater ecological validity can be enabled, going beyond the 

presentation of two-dimensional, static stimuli. With IVR there is a life-sized, three 

dimensional virtual body seen in stereo, that visually substitutes the obscured real body 

of the participant, which can be virtually attacked. Hence the level of realism can be 

greatly enhanced. In the present study participants saw a knife attacking the hand of 

their virtual body, the virtual body therefore acting as a surrogate for the real body in 

the context of pain observation.  

4.2. Materials and Methods 

Most of the materials for this experiment are common with the rest of the experiments 

of this thesis, which have been previously described in Chapter 3. More precisely the 

Apparatus, Procedures and EEG recording of this experiment have been already 

described in the mentioned Chapter.  

4.2.1. Procedure 

Nineteen healthy volunteers – 9 male, 10 female; aged 25 ± 4.0(S.D) years – all right-

handed participated in the experiment.  

Participants entered the virtual reality, and saw a virtual body (avatar) from 1PP that 

was consistent with their gender and skin color. The virtual scene consisted of the 

avatar seated on a chair with its virtual right hand placed on a desk. In the laboratory, 

the participant was seated with his/her real right hand collocated with the avatar’s 

hand and resting on a table. The left hand was placed comfortably on the participant’s 
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lap. Participants were asked to relax and keep their arms and hand still throughout the 

experiment (Figure 4-1).  

Participants were encouraged to freely look around for 60 seconds to familiarize 

themselves with the environment while keeping their arms still and collocated with 

those of the virtual body. After the familiarization time, we told participants to fix their 

gaze on the virtual hand resting on the table and to keep their real hand still. We did not 

ask them to perform any other task at all, such as pain judgment, but only to fixate on 

the virtual hand. 

4.2.2. Stimuli 

Participants repeatedly experienced two conditions in a within-group design3: condition 

HAND where the knife stabbed the virtual hand, and condition TABLE where the knife 

stabbed the table, 15 cm away from the participant’s hand (Figure 4-1). The experiment 

consisted of 70 trials repeating the HAND and TABLE conditions (30 HAND and 40 

TABLE). A trial consisted of three parts: 

1. Pre-stimulus: the participant looked at the virtual hand (5-8 seconds). 

2. Stimulus: a knife appeared in the HAND or TABLE (2 seconds). 

3. Black screen: a black screen appeared (2 seconds). 

During the first 10 trials only the TABLE condition was presented to acclimatize 

participants to the trial evolution and the black screen. Then, there were 6 predefined 

blocks of 10 trials each; each block had 5 HAND and 5 TABLE, with the order 

randomized within each block. The order in which these blocks were presented to the 

                                                        
3 See supplementary movie http://youtu.be/029XNWctb4A 
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participants was randomized for each participant. After the 70 trials the screen went 

black and the experiment ended. This virtual reality exposure lasted for 15 minutes.  

4.2.3. Questionnaire 

Participants then completed a questionnaire about their virtual experience, in which 

they answered the following questions: 

1. Ownership: I felt as if the hand I saw in the virtual world might be my hand. 

2. Harm Hand: I had the feeling that I might be harmed when I saw the knife inside 

the hand. 

3. Harm Table: I had the feeling that I might be harmed when I saw the knife 

outside the hand. 

4. No Ownership: The hand I saw was the hand of another person. 

5. Body Threat: I saw the knife as a threat to my body. 

Responses to these statements were on a 5-point Likert-scale where 1 was anchored to 

strong disagreement and 5 to strong agreement. Questions 1 and 4 were related to the 

sense of ownership of the hand, with question 1 expected to record high scores while 

question 4 expected to record low scores. These two questions are similar to those used 

in previous studies to measure ownership illusions [Banakou et al. 2013; Llobera et al. 

2013] for example: “How much did you feel that the virtual body was your body” for the 

ownership question, and “How much did you feel that the virtual body was another 

person?” as a control for the no ownership, or “How much did you feel that the virtual 

body you saw when you looked down at yourself was your own body”, versus “How 

much did you feel as if you had two bodies”. Moreover question 1 is similar to that used 

by the original Botvinick and Cohen (1998) paper “I felt as if the rubber hand were my 

hand”. Questions 2 and 3 were to examine whether there was any feeling of harm in 
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response to the knife being in the condition HAND or TABLE. Question 5 was a 

consistency check to control questions 2 and 3; we expect similar responses to Harm 

Hand. 

4.2.4. EEG Analysis 

In order to study the effects of the stimuli on the pain sensitivity, ERP components were 

analyzed as in [Fan and Han 2008; Li and Han 2010; Meng et al. 2012]. The stimulus 

locked ERP helped us determine the pain related levels of the participants with respect 

to the HAND condition, where a higher P450 activity was expected in case of a pain 

response. 

The ERPs in both conditions HAND and TABLE were averaged separately for each 

subject. The ERPs were also used to better study the lateralization part of the Readiness 

Potential in order to detect which hemisphere was more active. As in our case we only 

used right hand manipulations we report only one side C3 - C4 subtraction. An increase 

in negativity is expected when a movement is prepared with the contra lateral 

hemisphere. Thus, negative amplitude might reflect a right hand movement 

preparation. 

Apart from the ERPs, frequency bands were also evaluated. To account for variations we 

used short-time power spectra as described in [Pfurtscheller and Lopes da Silva 1999]. 

Power Spectral Density (PSD) was calculated as the superimposed 1-s power spectra 

calculated over the event-related EEG for the HAND and TABLE conditions for both the 

reference and activity periods. 
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4.3. Results 

4.3.1. Hand Movements 

A critical question for this experiment was whether participants did actually move their 

threatened hand or not. Real hand movement had to be negligible otherwise it would 

increase activation in the motor cortex. This was assessed using the EMG data. The RMS 

was calculated for the pre-stimuli reference period (-1 to 0 seconds) and the post-

stimuli activation period (0.7 to 1.7 seconds), these periods correspond to the time 

when the motor cortex was found activated. Using a repeated measures ANOVA 

comparing (HAND-BASELINE vs. TABLE-BASELINE) no significant difference nor effects 

were found in the RMS, F(1,18)=2.685, P=0.119. Other timings also did not show any 

activation, and the same ANOVA analysis was later used to analyze the mu-ERD. These 

results suggest that the participants did not move their real hand during the 

experimental period. 

4.3.2. Questionnaire 

Here we consider whether the setup did induce an illusion of ownership over the virtual 

hand, and whether the stabbing knife was subjectively experienced as a threat. Figure 

4-2 shows the box plot (n = 19) for the questionnaire responses that were designed to 

assess this. It is clear that the illusion of ownership was high (the median level of 

ownership is 5), and the no ownership score was comparatively low (the median is 2). 

The Wilcoxon matched pairs sign-rank test (two-sided) comparing Ownership with No 

Ownership shows that this difference is significant (z = 3.89, P < 0.0001). The illusion of 

harm to the hand (Harm Hand) has median 3, and Harm Table has median 1. The paired 

sign rank test again shows these to be significantly different (z = 3.74, P < 0.0002). The 
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threat to the body as a whole (Body Threat) also has median 3, and is significantly 

different from Harm Table (z = 3.59, P < 0.0003). Although the medians of Harm Hand 

and Body Threat are the same, the greater range of the former leads to it being 

significantly greater overall (z = 2.36, P < 0.018). 

 

Figure 4-2 Box plots showing the responses to the questionnaire. The thick lines are the medians, and 

the boxes are the interquartile ranges (IQR). The whiskers follow the standard convention of extending to 1.5 

times the IQR or the maximal/minimal data point 

Table 4-1 shows that Ownership is positively correlated with Harm Hand which is 

positively correlated with Body Threat. Body Threat is also positively correlated with 

Ownership. There are no other significant correlations. This is important since illusory 

ownership of the hand should go along with the feeling of threat to that hand or to the 

body, since without illusory ownership there is no actual threat. These results are 

consistent with the original hypothesis that the stronger the illusion of ownership the 

greater the tendency of participants to give higher ratings to the Harm questions. We 

consider these relationships in greater depth in Section 3.6. 

Table 4-1 Spearman Correlation Coefficients Between the Questionnaire Scores 

 Ownership Harm Hand Harm Table No Ownership Body Threat 

Ownership 1.000     

Harm Hand 0.726 1.000    
 (0.000)     
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Harm Table 0.162 0.302 1.000   
 (0.508) (0.209)    

No Ownership -0.048 0.079 -0.125 1.000  
 (0.844) (0.749) (0.611)   

Body Threat 0.481 0.774 0.418 -0.179 1.000 
 (0.037) (0.000) (0.075) (0.463)  
(P values for test of 0 correlation). P = 0.000 means P < 0.0005, n = 19 

4.3.3. ERP Stimulus-locked activity 

The pain sensitivity levels of the participants for the HAND and TABLE conditions were 

assessed using stimulus-locked ERPs depicted in Figure 4-3. A repeated measures 

ANOVA P450 [condition (HAND/TABLE)  electrode (Frontal/Central/Centro-parietal)  

hemisphere (Left, Right)] in the time window 420 to 620 ms on the original real voltage 

data showed a significant main within subjects effect for Condition (F(2,18)=6.977, 

P=0.017) and for Electrode position (F(2,36)=21.401, P<0.001). A centroparietal 

distribution was observed for the P450 component as reflected by the significant 

interaction between Condition and Electrode (F(2, 36)=7.640, P=0.002) (the peak value 

was observed at CP3, see Figure 4-3. 
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Figure 4-3 Grand averaged stimulus-locked ERPs for six representative front, central and parietal electrode 

locations. A significant increase in the amplitude of the P450 is observed in the HAND condition mainly at C3 

and CP3 locations. Baseline from −200 to 0 ms, time 0 indicates the stimuli onset; a low pass filter 12 Hz half-

amplitude cut-off was applied. 

We conducted further post-hoc pairwise comparisons between both conditions (hand 

and table) at parietal and central electrodes; the paired samples t-tests were significant 

for the P450 at C3 and CP3 electrodes (t(18)=3.438, P=0.003 and t(18)=3.637, P=0.002, 

respectively). These results are consistent with the P450 effects induced when a pain 

estimation task was performed in previous studies [Fan and Han 2008; Li and Han 

2010; Meng et al. 2012]. 
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4.3.4. Frequency Power Spectral Density 

To determine whether participants showed a different frequency response to the attack 

(HAND) versus the control stimulus (TABLE), we performed a 1-s power spectra 

analysis (see Figure 4-4abc).  

 

Figure 4-4 (A) Time frequency evolution of the two conditions and the difference in the spectral 

activity. (B) Grand averaged 1-s short-time power spectra calculated from EEG data (electrode C3) recorded. 

The baseline corresponds to the range −1 to 0 s before the stimuli and the activity period corresponds to the 

range 0.7–1.7 s after the stimuli. Both the baseline and TABLE frequency spectra show a peak in the mu-

rhythm that is attenuated in the HAND condition. (C) Grand averaged mu-rhythm (9–12 Hz) event-related 

desynchronization for the C3 electrode. (D) Grand averaged RP (C3–C4) subtraction between the brain 

activity in the two hemispheres shows movement preparation effects. Low pass filter 8 Hz, half-amplitude 

cut-off. 

In Figure 4-4a the Time Frequency evolution of the two conditions and the difference in 

the spectral activity can be observed; further representation of the Mu-rhythm 

evolution can be found in Figure 4-4c; and the 1-s power spectral differences between 

the reaction (0.7 to 1.7 seconds) and the baseline (-1to 0 seconds) can be found in 
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Figure 4-4b. The three visualizations show a clear attenuation in the mu-rhythm during 

the HAND condition.  

The 1-s power spectrum of the mu-rhythm (9-12Hz) in both conditions (hand-baseline 

vs. table-baseline) was used for the statistical analysis. A repeated measures ANOVA 

with three factors [condition (HAND/TABLE)  electrode (Frontal/Central/Centro-

parietal)  hemisphere (Left, Right)] was run to analyze the desynchronization. We 

found a significant main within-subject effect for the condition (F(1,18)=12.235, 

P=0.003). The distribution of this component was dependent on the electrode position 

as reflected by the significant interaction (condition  electrode F(2, 36)=8.751, P 

=0.001). Further post-hoc tests comparing the conditions in the parietal and central 

electrodes showed most prominent desynchronizations during the HAND condition in 

C3 (t(18)=-3.482, P=0.003) and CP3 (t(18)=-3.670, P=0.002). These results are similar 

to the mu-ERD effects induced when an imaginary hand movement is performed 

[Pfurtscheller and Lopes da Silva 1999; Neuper et al. 2005]. 

4.3.5. Readiness Potential 

To detect which hemisphere was more activated, and thus if there was any movement 

preparation [Eimer 1998], we calculated the Readiness Potential as C3 - C4. An increase 

in negativity is expected if a movement is prepared with the contra lateral hemisphere.  

Figure 4-4d depicts the response-locked Readiness Potential (C3-C4) activity that was 

analyzed via a paired-samples t-test for time-window 300 to 500 ms. A significant 

difference between conditions was found (t(19)=-2.237, p=0.038). This result shows 

negativity in the contralateral hemisphere (left, C3 electrode) during the HAND 
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condition (Mean=-0.455 Std=1.183), which indicates right hand pre-movement activity 

versus a more positive response during the TABLE condition (Mean = 0.419 Std=1.221).  

4.3.6. Relationship between Questionnaire Scores, P450 and mu 

Here we examine the relationship between the EEG response variables (P450, mu), the 

condition (TABLE, HAND), and the subjective responses from the questionnaire. Table 

4-1 shows strong positive correlations between Ownership and each of P450 and mu, 

and a positive correlation between Harm Hand and P450. There is a negative 

correlation between No Ownership and mu.  

Table 4-2 Spearman Correlation Coefficients Between the Questionnaire Scores and EEG Variables 

 Ownership Harm 
Hand 

Harm 
Table 

No 
Ownership 

Body 
Threat 

P450 mu 

p450 0.287 0.389 0.113 -0.021 0.289 1.0000  
 (0.0000) (0.0000) (0.089) (0.751) (0.0000)   

mu 0.266 0.093 -0.035 -0.169 0.040 0.029 1.0000 
 (0.0000) (0.160) (0.601) (0.011) (0.545) (0.658)  
n = 228. Overall R2 = 0.26, F(5,222) = 15.59.  
Shapiro-Wilk test for normality of residuals: P = 0.10. P = 0.000 means P < 0.0005 

Correlations do not imply causality, but the fact that there are very strong correlations 

between variables obtained in totally different ways (questionnaire and electrical 

recordings from the scalp) suggests that there is something to be explained. It would be 

surprising indeed if these were just coincidental, especially given the underlying 

supposition of this Chapter that the level of ownership would be reflected in brain 

activity in just the way that these correlations suggest. In particular given the setup and 

based on previous results showing that body ownership is likely to be induced as a 

result of 1PP [Slater, Spanlang, Sanchez-Vives, et al. 2010], we would expect that the 

level of ownership would be positively associated with the feelings of threat to the hand 

and the body, which in turn would influence the P450 and mu values. These would also 
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be influenced by the manipulated condition (i.e., whether the knife penetrated the hand 

or was close to it but did not penetrate).  

Conventional approaches would have to treat the different relationships in separate 

linear models (for example, using regression) that cannot assess multiple simultaneous 

effects. For this purpose we turned to path analysis - for example [Kaplan 2009] - which 

can model multiple simultaneous stochastic equations. Although not conventional in 

this domain of research, it is a powerful method that we have used before in the context 

of body ownership studies [Kilteni et al. 2013; Llobera et al. 2013; Maselli and Slater 

2013]. For the path analyses we used Maximum Likelihood estimation, with robust 

standard errors, available in Stata 13 (www.stata.com), and the questionnaire 

responses were modeled as ordinal logit variables. 

We fitted the model as described above, with Ownership influencing Harm Hand, Harm 

Table and Body Threat. In turn these could influence P450 and mu, which were also 

influenced by condition. We fitted the path model and deleted paths with significance 

levels less than 0.05. The resulting path model is shown in Figure 4-5 and associated 

Table 4-3. It can be seen that Ownership is very strongly positively associated with the 

three harm variables. Harm Hand is very strongly positively associated with P450 and 

weakly with mu. Harm Table is weakly negatively associated with P450. Condition is 

strongly positively associated with P450 and negatively with mu. The overall fit of the 

model is good as shown by the last column of Table 4-3 which presents the correlations 

between values fitted by the model and the observed values of the response variables 

P450 and mu. 
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Figure 4-5 Path analysis for P450 and mu and in relation to questionnaire variables Harm Hand, Harm 

Table, Body Threat, Ownership and condition (TABLE = 0, HAND = 1). The values on the paths are the 

coefficients corresponding significance levels. The epsilon represent the random error term. The diagram 

can be interpreted as a set of simultaneous linear prediction equations. For example from Table 4-3 we can 

see that P450 = −1.50 + 1.69*condition + 1.08*(Harm Hand) − 0.46*(Harm Table) + epsilon. The circles are 

the random error terms and the epsilon circles are their variances. The curved path represents a covariance. 

Table 4-3 Path Analysis for P450 and mu 

 Coef. Std. Err. z P r, P (Pearson correlations)
  

P450     0.53, P = 0.0000 
condition 1.69 0.35 4.84 0.000  
Harm Hand 1.08 0.15 7.26 0.000  
Harm Table -0.46 0.23 -1.96 0.050  
Const. -1.50 0.57 -2.63 0.009  

mu     0.45, P = 0.0000 
condition -0.14 0.02 -7.23 0.000  
Harm Hand 0.01 0.01 2.05 0.040  
Const. -0.06 0.02 -2.42 0.015  

Harm Hand      
Ownership 2.71 0.22 12.14 0.000  

Harm Table      
Ownership 0.66 0.22 3.02 0.003  

Body Threat       
Ownership 1.56 0.22 6.95 0.000  
P = 0.00*0 means P < 0.00*05. 

Now turning attention to the Readiness Potential (RP), this is based on a different set of 

data (n = 38) since RP is a bipolar difference of the activity between the C3 and C4 

electrodes in the motor cortex so cannot be considered at the same time as P450 and 

mu. Applying path analysis to this data, only condition and Harm Table are significantly 

related to RP. Hence an ordinary regression can be used (although still we allow robust 
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standard errors). The result is shown in Table 4-4, where condition (Knife in Hand) is 

negatively associated with RP but positively associated with Harm Table. This is 

consistent with a lateralization between hemispheres occurring during the preparation 

of a motor action, the RP (C3-C4) is more negative when there is preparation to move 

the right hand [Eimer 1998], which in the current experiment is the attacked hand. 

Therefore, a reduction in RP for higher scores in Harm Hand question indicates stronger 

preparation of movement. 

Table 4-4 Regression for RP 

 Coef. Std. Err. t P>t 

condition -0.87 .38 -2.28 0.029 
Harm Table 0.34 .16 2.18 0.036 
Const. -0.10 .41 -0.25 0.802 
F(2,35) = 8.48, R2 = 0.17, P = 0.001, n = 38, Shapiro-Wilk (test for normality of residual errors) P = 0.24 
 

4.4. Discussion 

Our results suggest that participants instinctively avoided a virtual knife stab to their 

virtual body, thus activating the motor cortex and generating a mu-ERD, and a 

Readiness Potential, as would be expected if their real hand were threatened. Our study 

reproduced the results of [Fan and Han 2008; Li and Han 2010; Meng et al. 2012; Meng 

et al. 2013] in terms of ERP correlates, showing significant evidence that pain effects 

were found, with the means P450 showing greater amplitudes at the CP3 electrode 

location in the HAND compared to the TABLE condition. 

Importantly, participants were instructed not to move their hand during the whole 

experiment – and this was verified by the EMG analysis. Although, only measuring the 

flexor carpi as in our setup could have not account for very subtle movements, any 

significant movements could be reliably recorded using this technique. Furthermore, if 

there were any instinctive mechanism to avoid the harm that was unconscious to the 
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participants, this would as well enhance our theory that participants felt as if the harm 

was real and they responded accordingly. In fact, when doing the ERP study we found 

motor cortex activation in the HAND condition with a significantly greater negative 

Readiness Potential (C3-C4), associated with the intention of moving the right hand, this 

Readiness Potential was probably an instinctive reaction to the harm that could not be 

controlled consciously by the participants. Additionally, we found that when the virtual 

hand was attacked with the virtual knife, it elicited significant motor cortex activation. A 

significant mu-ERD was found when the knife attacked the hand - especially prominent 

in the C3 electrode - as if the participant were trying to avoid harm. This suppression of 

the mu-rhythm in the hand condition could be interpreted as being in agreement with 

previous observations about the involvement of this oscillatory desynchronization 

when a participant performs a hand motor action [Pfurtscheller and Lopes da Silva 

1999]. Besides, this effect reproduces the results of [Yang et al. 2009; Perry et al. 2010; 

Whitmarsh et al. 2011], although we believe that the empathy level towards the virtual 

body was likely much higher than any previous pain observation experiment. 

Furthermore, illusory ownership over the virtual body provoked more prominent 

responses with greater similarity to those described by [Babiloni et al. 2008] in 

preparation for an electrical painful stimulation of the left index finger.  

A recent paper by [Evans and Blanke 2013] showed that synchronous visuo-tactile 

feedback during the hand ownership illusion generates mu-ERD in the sensorimotor 

cortex similar to the one produced during motor imagery BCI. Although, in our 

experiment no tactile feedback was provided, we postulate that their results are 

compatible with our findings and suggest that the correlations found in the current 

experiment between the mu-ERD and P450 with the ownership illusion question may 

be related by a similar mechanism to the one they describe. Future research could 
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assess whether tactile feedback would enhance the experience in the current scenario 

and inhibit any existing sensory mismatch. In this study tactile feedback was avoided to 

prevent overlaying activities in the sensorimotor cortex between the interpretation of 

tactile sensory information and the efferent motor reactions [Yetkin et al. 1995]. It 

would have been very difficult to dissociate between the effects of the tactile 

stimulation and the subconscious motor reaction to the harm. However, regarding the 

sensory mismatch, some participants reported a strange feeling in their finger at the 

end of the experiment that would indicate that they were having illusions of tactile 

stimulation through a top down mechanism. 

According to [Pfurtscheller and Lopes da Silva 1999] an ERS in the beta-rhythm would 

typically be found in hand motor-imagery when the movement finishes. Nevertheless, in 

the current experiment we could not find significant beta rebound.  

We have shown that automatic neural mechanisms, such as pain responses, that occur 

in reality occurred in this case in response to events in the virtual reality scenario of this 

study. This is in line with previous findings that people do tend to have similar 

responses in IVR as they would to similar situations in reality [Sanchez-Vives and Slater 

2005], except that we believe that this may be the first study to confirm this at the level 

of brain activity as measured by EEG.  

Additionally the results are useful for understanding the neural and cognitive 

mechanisms of body perception. For the first time we have shown that neural responses 

(P450, mu and RP) are correlated with the subjective level of the ownership illusion and 

the subjective illusions of harm and threat to the body. It seems quite remarkable that 

these variables, being in principle totally unrelated to one another (electrical brain 

signals measured from the scalp compared with scores in a questionnaire) are 
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nevertheless apparently strongly related. This correlation provides a cross validation 

that both the questionnaire responses and the electrical signals relate to the same 

underlying brain processes. This correlations are however hard to isolate from all the 

concurrent factors that may be modulating the current effects, as it can be seen in the 

path analysis. The path analysis, on the other hand that gives a wider perspective of 

how subjective responses may be related to the brain processes. More interestingly, the 

path analysis may discover relations that were previously hidden by some preexisting 

correlation. In our case, we observe how body ownership modulates all the rest of the 

subjective scoring, and we can observe how using the path analysis, the correlations 

between body threat disappear, as they were probably only modulated by body 

ownership in this case. The rest of the correlations remain explained through the path 

analysis without further variations. 

A possible caveat in the interpretation of the present results is that we cannot easily 

dissociate some of the intrinsic factors that may be modulating the pattern of ERP 

responses observed as for example, self-location, empathy and ownership. However, 

based on previous empathy related related studies [Fan and Han 2008; Li and Han 

2010; Meng et al. 2012; Meng et al. 2013] we can consider that the P450 component is 

mostly associated to empathy processing. Further studies have combined self-

identification with empathy, studying how racial bias may influence these effects 

[Avenanti et al. 2010], indicating that the empathy increases when the self-identification 

is maximal. The new contribution in our experiment in the empathy processing is to 

enhance the self-identification by producing the illusion of body ownership. The 

relation between empathy and embodiment is certainly a major scientific question in 

the current experiment; we aimed at dissolving the boundaries between the two 

concepts. Even though empathy refers to the capacity to respond and understand 
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experiences of another person [Decety and Jackson 2004], and the sense of embodiment 

has been described as a the experience of our self as being inside a body [Kilteni, Groten, 

et al. 2012], we do believe that they are related one to the other by the perspective 

effects. Embodiment is very dependent on perspective [Slater, Spanlang, Sanchez-Vives, 

et al. 2010], as well as perspective taking is a technique to induce empathy [Lamm et al. 

2007]. Recent studies inside Virtual Reality have shown that Embodiment can itself be a 

technique to reduce racial bias [Peck et al. 2013], meaning that embodiment could 

modulate empathy. We suggest that a maximal level of empathy can be produced during 

embodiment, and that may be a reason why stronger reactions are found in the motor 

cortex in the present Chapter when compared to previous pain observation studies. 

Finally, we want to remark that this experiment emphasizes how much related 

embodiment may be of empathy, to the level of converging when the other person 

becomes one self. 

Furthermore, in the current Chapter we observed new effects (mu-ERD and 

lateralization) that have not been reported before in previous empathy studies. We 

believe that these effects are observed for the first time due to the embodiment illusion 

induced in our experiment. Previous research has shown that embodiment can be 

modulated by different combinations of self-location and body ownership [Maselli and 

Slater 2013]. In our setup the control condition TABLE in which the knife did not appear 

where the hand was located, but 15cm away, did not trigger the brain activation, 

therefore indicating the possibility of harm to the own body is very relevant in the 

current study. Our results show that the exploitation of virtual body ownership illusions 

could be useful for further understanding the underlying neural mechanisms involved 

in cognitive processes of perception. Besides, the measurements of cognitive processes 

provide a promising tool to measure virtual embodiment. 
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This may also have implications not only for the measurement of virtual body 

ownership but also to discriminate strengths of this illusion, so that people reacting 

with a stronger EEG activation – greater P450 amplitude the virtual hand is attacked – 

may have a stronger illusion than people with weaker P450 amplitude. 

The questionnaire responses indicated generally a very strong illusion of ownership 

over the virtual body. This could explain why the brain responses observed – P450, 

Readiness Potential and mu-ERD – were larger in comparison to previous experiments 

reported in the literature.  

4.5. Conclusions 

The present study suggests that when a person is in an immersive virtual reality and 

has a body ownership illusion towards a virtual body that apparently substitutes their 

own body, there are autonomic responses that correspond to what would be observed 

were the events to take place in reality. Overall automatic brain mechanisms—P450—

were found in this variation of the classical pain observation experiment, which is 

consistent with what [Bufalari et al. 2007; Fan and Han 2008; Li and Han 2010; Meng et 

al. 2012; Meng et al. 2013] previously reported. However, our setup was not one 

concerned with participants experiencing empathy towards another person but rather 

experienced direct attacks to their own body, since both subjective and objective data 

point in that direction. The results support our initial hypothesis that a threat to a 

virtual hand, toward which the participant has an illusion of ownership, would 

significantly produce a harm prevention effect (measures using the RP (C3–C4) and 

oscillatory movement-related components, the mu-ERD) such as trying to move it away 

from the source of the harm. The questionnaire also confirmed high levels of ownership 

over the virtual body (see Figure 4-2). In addition, the correlation between the 
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automatic brain mechanisms—P450—and the subjective illusion of ownership opens 

the door for a new promising measure of virtual embodiment. 
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5. DISRUPTING SENSE OF AGENCY OF THE VIRTUAL BODY ACTIONS 

How do we recognize ourselves as the agents of our actions? In this Chapter, using time-

sensitive neurophysiological signatures we identified in humans embodied in a virtual 

body two different error-monitoring loops involved in providing a coherent sense of the 

agency of our actions. While a very fast internal error-loop was observed for evaluating 

the correctness of our own actions, a slower external monitoring loop was triggered 

when participants were deceived regarding their own movements ("avatar errors").  

This Chapter addresses the second hypothesis of this thesis. When somebody is 

embodied in a virtual avatar and experiences agency of the body, any break in that agency 

(such as hijacking in the movements of the virtual body) would be clearly perceived as an 

external error. The expectation is that a higher feeling of embodiment would lead to a 

stronger perception of the break in agency.  

Here we present a second study showcasing a set of experiments to explore the 

implications at a neurological level of such an experience of control over our body and 

the agency of the actions performed. These experiments widen the current knowledge 

on agency schemas, showing evidences of the existence of both re-afferent and feedback 

error mechanisms that are concurrently working in the brain to detect agency 

disruptions.  

At the neurophysiological level, the violation of the sense of agency of our action (“this is 

not my error”) showed a strong similarity in topography and latency to other 

electrophysiological signatures related to semantic or conceptual violations. Distinct 

brain error detection mechanisms are in charge of distinguishing our own errors from 

those imposed by an external agent 
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Our work contributes to the growing field of body representation in the brain. We 

provide strong neural evidence in relation to understanding the integration of internal 

and sensory feedback information while being actors of our own actions.  

The results of this Chapter have been shared with the community in form of 

presentations at the EU Project VERE Reviews. And in form of journal publication 

submitted [Padrao et al. 2016]. 

5.1. Background 

We are usually not aware of the feeling of agency with respect to our actions or 

thoughts [Gallagher 2000]. As expected, in normal circumstances, when no conflicting 

information is experienced from the different re-afferent feedback sources no doubts 

are raised about the agency of the action. Indeed this is the normal experience of 

ourselves, where we typically feel that we are in control of our actions. This in itself 

might reflect the automaticity in the process that elicits this feeling about the 

correctness of the agency of our actions: this action is mine.  

However, when an explicit judgment of agency is demanded or when an unexpected 

consequence of our actions is perceived, we can become aware of our body actions 

[Tsakiris et al. 2005]. A mismatch between the output and the perceived input results in 

a violation of this feeling of agency: this action was not mine. Interestingly, several 

studies have shown that this mechanism of agency attribution is probably affected not 

only in patients suffering the anarchic hand syndrome [Sala 1998] but also in patients 

with schizophrenia where it might explain the problems associated with delusions of 

control, hallucinatory experiences or thought insertion [Daprati et al. 1997; Frith 2005; 

Synofzik et al. 2010].  
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When executing most of our actions, an internal unconscious error-detection and 

prediction system constantly monitors and corrects our own behaviour. This incredible 

fast error-detection system is usually explained using internal forward models of motor 

control [Blakemore et al. 2002; Frith et al. 2000; Jeannerod 2006; Rodriguez-Fornells et 

al. 2002; Wolpert and Miall 1996]. According to such models, a feed-forward 

mechanism is used to generate constant predictions of the consequences of our own 

actions, using an efference copy [Holst and Mittelstaedt 1950]. The efference copy is 

used to compute error deviations from the expected goal of our on-going actions even 

before the action has been completed [Crapse and Sommer 2008]. If an internal error 

signal is triggered, the system might implement fast inhibitory commands, and error 

correction processes. Compensatory mechanisms will be triggered if an error is finally 

produced, e.g., post-error slowdown of the reaction time of the following trials after an 

error [Logan and Crump 2010; Marco-Pallarés et al. 2008; Rabbitt 1966]. Interestingly, 

these processes are independent and dissociable from the awareness of our own errors 

[Nieuwenhuis et al. 2001]; indeed conscious access to our own-errors is much slower 

than what we might actually think (at about, 500-750 ms [Rabbitt 2002]). Interestingly, 

using electroencephalographic (EEG) recordings, it has been found that the Error-

related negativity (ERN) signal, provides an index of this fast internal error-monitoring 

loop [Rodriguez-Fornells et al. 2002; Gehring et al. 1993; Holroyd et al. 2005] most 

probably originating in the anterior cingulate cortex [Marco-Pallarés et al. 2008; Carter 

1998; Holroyd et al. 2004; Ullsperger and von Cramon 2001].  

The internal error-monitoring loop helps the organism to adapt to the ever-changing 

environment. However an external error-monitoring loop might also be important in 

order to further integrate new sensory incoming information about the real 

consequences of our current action (i.e. re-afferent feedback). If there is a coherent 
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bodily perception we will attribute the agency of the action to ourselves. Usually our 

actions are accompanied by multimodal re-afferent feedback information, first from 

proprioceptive receptors, tactile information, and later visual or auditory feedback 

information (when available). When this multisensory information arrives at the visual, 

auditory and somatosensory regions of the brain with different neural transmission 

delays, a further evaluation during the multisensory integration might be conducted to 

inspect the agency of the actions: was the expected outcome reached?. 

For example, when reaching for a cup of water, our internal forward model will help to 

provide the system with the exact parameters needed to adjust the grasping action and 

the corresponding movements needed. While this internal error-monitoring loop 

initially guides this action in an unconscious fashion, the external error loop might 

monitor, later in time, whether the final visuo-, tactile- and proprioceptive-feedback 

information was coherent with the initial goal of our action. Imagine that suddenly the 

expected information coming from grasping the cup of water and moving it to your 

mouth transmits the information that the object is made of rubber instead of a cup-

ceramic or that it was not your hand that is moving but the hand of a different person! 

How is the system assessing whether these violations of the expected sensory 

consequences of your actions are incorrect? Is this external error-monitoring loop 

different from the internal error-monitoring described above and involved in fast-

corrective actions? [Holroyd et al. 2005] 

The objective of our research in this study has been to functionally dissociate both brain 

error-monitoring loops that provide a coherent sense of the agency of our actions and to 

evaluate the neural delays of both mechanisms. In order to study this we used ERP 
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(multichannel EEG recording) in an IVE that allowed us to design an intriguing 

experimental setting (Figure 5-1a; Supplementary Movie 4). 

 

Figure 5-1 A. Participant in the laboratory with the HMD, EEG and the head and hand tracking systems. B. 1PP 

of the arrow flanker task. Participants performed fast movements with their right hand to the button in the 

direction of the central arrow and then go back to the starting position. In the InCM trials the virtual hand 

moved in the opposite direction to the participant real movements, thus generating an external-error. C. 

Virtual body of the participant in the IVE seen from a 3PP. 

5.2. Materials and Methods 

Most of the materials for these experiments are common with the rest of the 

experiments of this thesis, which have been previously introduced in Chapter 1. More 

precisely the Apparatus, Procedures and EEG recording of this experiment have been 

already described in Chapter 3. However some aspects of the experiments proposed to 

test this hypothesis are further described in this section. 

                                                        
4 See the supplementary movie http://youtu.be/lNjucylJxX8 
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5.2.1. Experiment 1 

5.2.1.1. Procedure 

While immersed in the virtual environment participants (n = 18 volunteers, 6 men; 

mean age, 26 years ± 7 SEM) were instructed to perform a standard error-prone 

attention reaction time task [Rodriguez-Fornells et al. 2002]. The Eriksen Flanker task 

consisted of three black arrows oriented horizontally, one central (target) and two 

flanker arrowheads above and below (Figure 5-1b). Participants were instructed to 

move their right hand towards the button in the direction of the central arrow showed 

in the screen and then return to the starting position. They were urged to respond both 

accurately and quickly. The buttons were both in the virtual table and in the real table, 

so the visuo-tactile contingencies were coherent (Figure 5-1). 

Trials where compatible when the central arrow had the same direction of flankers 

(40% of the trials); on the contrary when target and flankers had opposite directions 

the trial was incompatible. Flanker incompatible condition was more frequently 

presented in order to increase the number of self-generated errors. Each stimuli 

presentation lasted 150 ms and the interval between two successive presentations was 

1150 ms. A fixation cross was present during this interval, 1000 ms.  

The movement of the virtual body had no noticeable delays when compared to the 

participant’s real movement and this strong visuo-motor synchrony between the avatar 

and participant’s movements was expected to create a strong feeling of ownership with 

the virtual body [Banakou et al. 2013; Peck et al. 2013; Slater et al. 2009]. During the 

task participants had to give only one response per trial and avoid correcting 

movements, after touching the corresponding button their hand should return to the 

initial position (0,0,0), equidistant to the two buttons. 
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The experiment started with a Congruent Movement (CM) condition when the 

movements of the virtual body were in all cases synchronous to those executed by the 

participant. During this condition participants became familiar with the flanker task 

dynamics. Participants performed 160 trials in total (96 incompatible, 64 compatible 

trials). If the number of errors in this phase was less than 8-10%, participants had to 

repeat the training and were requested to be faster. Importantly, in CM condition the 

movements of the virtual body were matched to those executed by the participant 

inducing a strong illusion of ownership and agency, the extents of the illusions were 

assessed through a questionnaire (see below).  

After a short break participants continued with the InCongruent Movement (InCM) 

condition when in some infrequent trials the virtual hand movements incongruent with 

the intended movement of the participant. In these trials participants’ correct 

movements were replaced by a movement of the virtual embodied arm in the opposite 

(incorrect) direction thus violating their internal intentions and causing an external-

error. During the external-errors participants did not notice anything until they started 

moving. To accomplish this effect we calculated the symmetrical position of the hand 

respect the yz plane, and the real movement of the participant was flipped towards the 

opposite direction. This means that correct responses, self-generated and external-

errors were all performed exactly at almost the same speed and timing (without 

noticeable delay). The InCM condition was divided in two blocks of 640 trials in each 

block (approximately 15 minutes each). The total amount of external-errors matched 

approximately the percentage of natural self-generated errors in compatible trials 

(approx. 5-6% of trials).  
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We then compared the ERP responses for the correct responses; for the external-errors; 

and for situations in which the participant really performed an error (self-generated 

errors). 

5.2.1.2. Movement Onset 

The hand tracker movements were later analysed offline to calculate participants’ 

reaction times and response accuracy. The onset of the movement was vital to this 

study since the ERP needed to be response-locked. Participants’ hand position was 

projected over the x axis – which represented the Euclidean distance between the two 

buttons. Using the first derivative of the position the initiation of the movement was 

calculated. Each trial was then classified into one of four different types: correct, error, 

correction and not responded (Figure 5-2). 

 

Figure 5-2 Six seconds of hand movement of a participant showing 5 trials; the first three are correct 

responses, the next one is a correction and the last one is a real error. Notice that the last of the correct trials 

is an InCM trial: the virtual hand went in the opposite direction, which resulted in an external-error. 

5.2.1.3. EEG Analysis 

ERPs were averaged for epochs of -300 to 600 ms with baseline set from -50 to 0 ms 

locked to the onset of the response. Mean ERP voltages were analysed by a three-way 
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repeated measures ANOVA with factors Correctness (correct responses, self-generated 

errors, external-errors) x anterior-posterior location (Frontal, Central, Parietal) x lateral 

location (left, midline, right). Voltages of ERPs for the statistical analysis were calculated 

for selected time windows: at about 80-120 ms after self-generated errors and about 

310-360 ms after external-errors. These epochs were selected based on visual 

inspection. The Greenhouse-Geisser epsilon correction was applied when necessary. A 

low pass filter (10 Hz, half-amplitude cut-off) was applied in all ERP computations. 

5.2.2. Experiment 2  

5.2.2.1. Procedure 

Nine participants (6 women; mean age, 25 years ± 8 SEM) that had previously taken 

part in Experiment 1 returned to the laboratory two weeks after to participate in this 

control experiment where participants observed of their own pre-recorded 

performance while remaining immobile. Prior to this observation the recorded 

movements were cleaned off-line from corrected movements by substituting them for 

complete movements of the same participant. I.e. participants either visualized errors 

or correct trials. In order to avoid errors of the observer, only the middle arrow 

remained in the screen and the flanker arrows were removed [van Schie et al. 2004]. 

Participants were asked to count the number of times the virtual body movement was 

an error, so they would remain attentive during the task.  

5.2.2.2. EEG Analysis 

Time-locked ERPs were averaged for epochs of -300 to 600 ms, with baseline set from -

100 to 0 ms. Since participants were not moving in this experiment, the ERPs were 

locked to the onset of the observed movement. The differences related with observed 

internal vs external error responses were first studied, however participants were 
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unable to distinguish self-generated errors and external-errors. Therefore a bin of 

Observed Errors contained both type of errors for the analysis presented in the Results 

section. Mean ERP voltages were statistically analysed by a three-way repeated 

measures ANOVA with factors Correctness (Observed Correct, Observed Error) x 

Anterior-posterior location (Frontal, Central, Parietal) x Lateral location (left, midline, 

right). A low pass filter (10 Hz, half-amplitude cut-off) was applied in all computations. 

5.2.3. Questionnaire 

The subjective illusion of body ownership, localization and agency towards the virtual 

body in both experiments was evaluated through a questionnaire at the end of each of 

the condition. The questionnaire was adapted from previous studies [Botvinick and 

Cohen 1998; Longo et al. 2008] and contained a set of statements that had to be scored 

with a 7-point Likert scale ranging from “strongly disagree” (-3) to “strongly agree” 

(+3). The questions were:  

- Related to the sense of body ownership: 

Q1. It felt as if the virtual body was my body (my Body) 

Q3. It seemed as if I might have had more than one body (more Than One Body). 

An increase in body ownership should be related to high scores in Q1 and low scores in 

Q3. 

- Related to the sense of proprioception: 

Q2. I felt as if my hand was located where I saw the virtual hand to be (collocated Hand) 

Q4. It seemed as if the position of the hand I was feeling came from somewhere 

between my own hand and the virtual hand (dislocated Hand). 

- Related to the sense of agency: 
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Q5. Most of the time, the movements of the virtual hand seemed to be my movements 

(my Movements). 

Q7. Sometimes, the virtual hand seemed to be moving by itself (not My Movements). 

Q5 and Q7 were related with visuo-motor integration processes, important for the 

evaluation of the effectiveness of our experimental manipulation. Higher scores were 

expected in Q5 and lower scores in Q7 in the CM condition when compared to the InCM 

condition. 

Q6. Sometimes, I felt that the movements of the virtual hand were influencing my own 

.movements (Influence). 

- Exploratory and consistency check: 

Q8. It sometimes felt as if my real hand was turning ‘virtual’ (my Hand Virtual). 

Q9. It seems sometimes that the errors were not caused by myself (not My Errors). 

Q9 was evaluating if participants were able to differentiate their own errors from the 

external errors expected to be higher in the InCM than the CM condition.  

5.3. Results 

5.3.1. Experiment 1 

5.3.1.1. Questionnaire 

The results of the questionnaire accounting for the experiences of body ownership, 

agency and during the conditions CM and InCM can be observed in Figure 5-3. Non-

parametric Wilcoxon matched-pairs signed-rank tests were used to statistically analyse 

the questionnaire scores. 
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Figure 5-3 Results (medians and interquartile ranges) of the questionnaire assessing the feeling of 

ownership and agency during CM and InCM conditions [7-point Likert scale: “strongly disagree”(-3) to 

“strongly agree”(+3)]. Global illusory ownership and violation of the sense of agency of the virtual body were 

corroborated by the scores on relevant questionnaire items for ownership (Q1 and Q2) and agency (Q5, Q6 

and Q9). Significant differences were tested with non-parametric Wilcoxon signed-rank tests. 

In both CM and InCM conditions a similarly strong feeling of ownership was induced 

(Q1, Z = 1.519, p = 0.13). Additionally, the control question for body ownership Q3 had 

significantly lower scores than Q1 in both CM and InCM conditions (Z = 3.682, p = 

0.0002; Z = 2.489, p = 0.013, respectively). These results are consistent with previous 

findings [Banakou et al. 2013; Kalckert and Ehrsson 2012; Peck et al. 2013; Sanchez-

Vives et al. 2010; Slater, Spanlang, Sanchez-Vives, et al. 2010].  

However, the external-errors that occasionally diverged between real and virtual hand 

locations in the InCM condition, produced a significant proprioceptive drift between the 

two locations (Q2 significant differences CM vs InCM, Z = 2.902, p = 0.004). 

This another effect of the external-errors was the break on agency in the InCM 

condition. Participant’s sense of agency was reported significantly lower in the InCM 
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condition, see questions Q5, Q6, Q7 and Q9 (Figure 5-3). Participants showed a greater 

sense of agency in CM when compared to InCM (Q5, Z = -3.266, p = 0.0012). In contrast 

the control question for agency had higher scores in the InCM condition (Q7, Z = 3.648, 

p = 0.0003) indicating an impaired sense of agency due to the external-errors produced 

during the InCM condition 

In fact, the external-errors also influenced significantly more the participants’ feeling 

about their movements (Q6, Z=1.978, p = 0.048). Even though, participants were aware 

that the external-errors introduced by the virtual body were not their own errors (Q9, 

Z=3.543, p = 0.0004).  

5.3.1.2. Behavioural performance 

Participants were faster and more accurate when responding to compatible trials 

compared to the incompatible ones: accuracy (compatible trials: mean + SD, 91.5 ± 

6.9%; incompatible trials: 77.1 ± 10.5%, t (17) = 11.302 p < 0.001), this is consistent 

with findings in previous Erikson flanker tasks [Rodriguez-Fornells et al. 2002]. A 

consistent reaction time was also found for correct responses (compatible: 259 ± 36 ms; 

incompatible trials: 273 ± 44 ms, t (17) = -4.48, p < 0.001).  

The percentages of self-generated errors produced by the participants were equivalent 

both in the CM (17 ± 9%) and in the InCM conditions (17 ± 8%) (t(17) < 1); thus the 

inclusion of external-errors did not have a major impact on overall performance.  

The compensatory cognitive control mechanisms involved on the post-error slowing 

[Logan and Crump 2010; Marco-Pallarés et al. 2008; Rabbitt 2002] were triggered both 

after self-generated and external-errors (270 ± 46 ms; 292 ± 51 ms, respectively). 

Whereas the normal timing between correct trials was of 262 ± 42 ms (compared to 
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self-generated errors: t (17) = 2.7, P = 0.027; compared to external-errors t (17) = 7.1, P 

< 0.001).  

Interestingly, larger post-error slowing effects were found after external-errors (~30 

ms) than after self-generated errors (8 ms). This is a surprising effect considering that 

during external-errors participants were actually performing a correct movement. In 

sum, external-errors had a great impact in participant’s performance. The expected 

(correct) output of their motor command and the observed (incorrect) movement 

performed by their virtual body self-representation induced large compensatory 

cognitive control mechanisms. 

5.3.1.3. ERP Stimulus-locked activity 

ERP responses for correct, self-generated errors and external-errors were compared 

through a repeated measures ANOVA.  

A Error-related negativity (ERN) component at frontocentral locations [Gehring et al. 

1993; Rodriguez-Fornells et al. 2002] was found about 100 ms after the onset of the 

movement in the self-generated errors (see blue line in Figure 5-4). The ERN is a neural 

signature of the internal error-monitoring system taking place in the medial-frontal 

cortex, which uses internal forward models of the motor plan (efference copy) to detect 

errors in on-going actions [Coles et al. 2001; Holroyd et al. 2005; Rodriguez-Fornells et 

al. 2002]. 

The repeated measures ANOVA on the ERN epoch voltage (80-120 ms) for the three 

types of responses (correct, self-generated error, external-error) showed a main effect 

of Correctness (F(2,34) = 12.9, P < 0.001) as well as a significant interaction between 

Correctness x Antero-posterior location (F(4,68) = 6.6, P < 0.001) indicating a maximal 

effect of the ERN signal at frontal electrodes of the scalp for self-generated errors.  
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Surprisingly and in contrast to real errors, when external-errors were compared to 

correct responses in the CM condition, no clear traces of the ERN component were 

registered at frontocentral locations. Instead, we observed the development of a large 

negative ERP component, a N400 (see green line, Figure 5-4), which peaked later at 

about 350-400 ms, with maximum at parietal electrode locations (ANOVA: Correctness, 

(F(2,34) = 14.4, P < 0.001; Correctness x Electrode (midline), F(4,68) = 11.8, P < 0.001; 

maximum effect at the parietal electrode).  

 

Figure 5-4 Response-locked grand average ERPs for the difference waveforms computed subtracting the 

correct responses from the self-generated errors (blue line) or the external-errors (green line). For 

Experiment 2 results, the observed correct trials were subtracted from the observed errors (red line). The 

self-generated errors (blue line) show the standard ERN that appeared at frontocentral sites immediately 

after the erroneous response (at about 100 ms). In contrast, to external-errors (green line) show a larger 

negative activity at 400 ms (N400). During Experiment 2, the observed errors (red line) show a delayed ERN-

like component at frontal electrodes. 
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This result is important as it clearly suggests a neurophysiological dissociation between 

the internal error-monitoring loop and the external one, which is involved in evaluation 

of the sense of agency of our own actions in conflicting contexts (contrasting the 

internal proprioceptive and efference copy representations of the current action 

executed with the incorrect visual feedback of the avatar performing a different action). 

In ERP analysis, different topographical distributions and latencies of two ERP 

components provide direct evidence of the necessary involvement of at least different 

neurophysiological mechanisms [Picton et al. 1995].  

In order to test more accurately whether the scalp distribution of both components 

differed, we carried out an additional statistical analysis considering all the 27 electrode 

locations registered and testing for the interaction between Condition [ERN (real Error 

minus Correct difference) - N400 (false Error – Correct difference)] x Electrodes at 27 

locations. A significant interaction was obtained (F(1,17)=5.3, P < 0.001) demonstrating 

the implication of distinct neural sources in the generation of both ERP components 

associated respectively to the internal-error loop (ERN) and the external-error 

monitoring loop (N400).  

5.3.2. Experiment 2 

5.3.2.1. ERP Stimulus-locked activity 

In order to rule out the possibility that the observed N400 effects could be due to the 

mere observation of an avatar performing a wrong action instead of the output of the 

external-error monitoring loop, we carried out a control ERP experiment 

(Experiment 2). Participants were invited back to the laboratory but on this occasion 

they were only asked to observe the avatar movements. We were particularly interested 

on the ERP response to trials with an erroneous action. 
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The ERP analysis on the observation of erroneous actions did not show the parietal 

N400 component observed during the external-errors in Experiment 1. Instead a 

delayed frontal ERN-like component was elicited about 300 ms after occurrence of the 

avatar’s erroneous action, at the frontal electrode (see red line Fz electrode Figure 5-4). 

The present results are in agreement with previous experiments showing error-related 

brain activity when participants have been exposed to errors performed by other agents 

(i.e. observational errors), where no parietal N400 was reported [van Schie et al. 2004]. 

This result rules out the possibility that the parietal N400 component elicited under 

violations on agency could be due to mere observational effects.  

5.3.2.2. Questionnaire 

During the Experiment 2 participants were instructed to observe how the avatar 

performed the movements in direction to the target, while resting their two hands on 

the table. At the end of the Experiment 2 participants answered the same questionnaire 

as in Experiment 1 (Figure 5-5). 

 

Figure 5-5 Score of the questionnaire after the observation task (Experiment 2). The embodiment illusion 

was decreased during the observation task: Q1, Q2 and Q5 compared with control questions Q3, Q4 and Q7 

respectively (all P values > 0.05). The Boxplot shows the medians and interquartile ranges. 
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The questionnaire scores were statistically tested with non-parametric Wilcoxon 

signed-rank tests. When comparing the scores to the ones in the Experiment 1 CM 

condition, participants showed a decreased experience of body ownership (Q1, Z= -

2.032, p = 0.042), suggesting that the experience of body ownership had been disrupted 

by the visuo-motor asynchrony.  

The proprioceptive sense was also significantly diminished in Experiment 2 when 

compared to Experiment 1 (Q2, Z= -2.687, p < 0. 007). Scores were also divergent when 

comparing the scores between the real and the virtual hand localizations as if the 

participant was having illusions of a dislocated limb (Q2 vs. Q4, Z= 1.807, p < 0. 071).  

Additionally, the sense of agency was also lost (comparison Exp 2 vs. Exp 1, Q5, Z= -

2.536, p < 0. 011), participants noticed that they could not control the virtual 

movements (Q5 vs. Q7, Z= -2.570, p = 0.012).  

Overall, these results show a decreased level of embodiment in the Experiment 2 since 

the three most commonly described aspects of embodiment -body ownership, 

localization and agency [Kilteni et al. 2012]- had lower scores than in Experiment 1.  

5.3.3. Relationships between the ownership illusion and the agency 

breaks 

In order to further explore the implication of the agency breaks in the embodiment 

illusion, the external-error monitoring loop (N400) amplitude was further explored.  

A negative correlation of the N400 voltage with the subjective strength of virtual body 

ownership (computed as the difference Q1-Q3) was found (r(18) = -0.6, P < 0.009) 

(Figure 5-6). This correlation indicated that stronger subjective feelings of body 

ownership derived on stronger the amplitude of the N400 following agency violations. 
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Figure 5-6 The body ownership towards the virtual body was negatively correlated with the N400 parietal 

activity (r(18) = -0.6, P < 0.009). The amplitude of this ERP signal was computed subtracting the correct 

responses voltage from the external-errors one in parietal electrodes (Pz, P3, P4 electrodes). The subjective 

strength of virtual body ownership was computed as the difference Q1-Q3. 

5.4. Discussion 

Overall, the present study shows the comparison between real performance errors in 

which the internal error-monitoring loop operated at very fast velocity against those 

situations in which a violation of their own actions was perceived (an avatar or external 

error). This experimental condition impaired the feeling of agency and also disrupted 

the feeling of ownership induced by the 1PP in IVE.  

As shown in the post-error slowing phenomena, the impact of external-errors was 

larger o than the slowing effect elicited after the self-generated errors, suggesting that 

compensatory cognitive control mechanisms were activated as well, even when no real 

errors were produced. Two different neurophysiological signatures appeared 

associated to internal and external error monitoring, the ERN and the N400 component, 

respectively.  
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While the appearance of the first component (ERN) was predicted considering previous 

literature on internal error monitoring [Gehring et al. 1993; Holroyd et al. 2005; 

Rodriguez-Fornells et al. 2002], the appearance of the N400 during the false avatar 

errors was unpredicted. As mentioned earlier, our ability to recognize ourselves as 

agents of our own behaviour depends on constantly monitoring the sensory 

consequences of our actions. In normal everyday circumstances and running in the 

background of our consciousness, we experience an implicit and diffuse sense of 

coherence regarding the feeling of agency, mostly because there is a perfect congruence 

between the internal representations of our actions (e.g., efference copy), the expected 

effects of the actions executed and the flow of resulting sensory events (multimodal 

reafferent feedback) [Pacherie 2001]. When a mismatch is detected between any of 

these internal and re-afferent signals a violation of the sense of agency might be 

triggered. Thus the N400 could be reflecting the output of this comparison process, 

which might lie at the core of the external-error-monitoring loop.  

Interestingly and in agreement with the previous statement, a significant association 

was observed between the amplitude of the N400 component (external-error minus 

correct responses) and the subjective feeling of body ownership (Figure 5-6). The larger 

the subjective feeling of body ownership the strongest the N400 amplitude or the 

electrophysiological signature of agency violation.  

Furthermore, the timing of this comparison process (with approx. 350-400 ms delay 

after the error) is slower than that needed for the internal-error monitoring loop (in 

between 60-150 ms) which depends exclusively on the efference copy information. As 

the external error-monitoring loop requires the processing of different feedback 

information arriving at the somatosensory, visual and auditory regions with different 
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neural delays, this comparison process might not finished until the degree of coherence 

is computed and a coherent multimodal representation is built. More importantly, the 

parietal distribution of the N400 component converges with the results of functional 

neuroimaging and studies in lesions with a diminished feeling of agency in which the 

importance of the inferior parietal cortex has been highlighted [Farrer et al. 2008] to be 

responsible for the comparison processes between intentions and action consequences 

[Desmurget et al. 2009].  

An intriguing question to be explored is the exact computational nature of this 

comparison process. The N400 component discovered in the present study associated 

to the external error monitoring resembles, in terms of scalp distribution and latency, to 

the well-known N400 component associated to semantic and conceptual violations. This 

component has been classically attributed to the violation of semantic or conceptual 

information [Kutas and Federmeier 2011] (e.g., when listening to the sentence “I am 

going to eat a house”) and it has also been found to occur as a result of observing 

incorrect motor plans (e.g., inserting screwdriver versus key into a keyhole) [Bach et al. 

2009]. Thus an interesting question is the extent to which the clash in the feeling of 

agency (this is not my action) reflects a violation in the process of understanding our 

own actions (or our own body movement semantics). In this sense, the comparison 

process underlying linguistic inputs or conceptual representations might not be too 

different from that carried out when comparing the ability to recognize ourselves as 

agents of our actions, as it might rely as well on the congruence of our own actions and 

their external consequences.  

In sum, using ERPs, we dissociated both internal and external error-monitoring 

controllers and we unravelled the timing of both monitoring processes associated to the 
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violation of the feeling of agency. We believe the present results might provide crucial 

evidence about how to distinguish at the neurophysiological level own- vs. alien-

mistakes in non-humans agents governed by remotely and distantly located minds, e.g. 

in scenarios where humans are embodied in robots5. 

  

                                                        
5 For an example of this see http://www.bbc.co.uk/news/technology-18017745 
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6. SELF-RECOGNITION IN COMPUTER GENERATED FACES 

Within virtual reality through multisensory integration we can make participants 

believe that their body has been substituted by a virtual body that they control. Indeed, 

avatars are a growing basis for research in different fields, including Psychology, Social 

Sciences and even Neuroscience. Recently with the look-alike avatar pipelines we can 

create virtual characters that look like the participants in a matter of minutes. But will 

that have a real impact into the participant identification with the virtual body?  

This Chapter addresses the third hypothesis of this thesis. Given a virtual body we can 

potentially measure different levels of self-identification: an avatar that looks like the 

participant is interiorized unconsciously to a different level than an avatar that doesn’t 

look-alike. It is well known that during the embodiment illusion avatars are accepted as 

the self-body through multisensory stimulation [Banakou et al. 2013; Llobera et al. 

2013; Kilteni et al. 2012]. This illusion can be induced to avatars of different races and 

genders that share more or less similarities with the participant [Peck et al. 2013; Slater 

et al. 2010]. However, other research has shown that the more the avatar looks like the 

participant the stronger the identification is [Bailenson and Segovia 2010; Blom et al. 

2014].  

Here we present the last study of this thesis that explores the neural basis of self-

recognition. We assess the implications of the subconscious mechanisms that may be 

processing self-identification with avatars by investigating the temporal dynamics of 

the brain activity during observation of computer generated faces compared to real 

faces in an ERPs study.  
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Our work contributes to the field of self-recognition. We provide strong neural evidence 

that avatar faces may be integrated as real faces and that look-alike avatars can be 

recognised as the self to a greater extent than other avatars. 

The results of this Chapter have been shared with the community in form of 

presentations at the 2nd VERE PhD Symposium [Gonzalez-Franco et al. 2014]. And in 

form of journal publication submitted [Gonzalez-Franco et al. n.d.]. 

6.1. Background 

Computer generated characters, or avatars, are becoming increasingly important in 

society and are also a growing basis for research in different fields ranging from gaming 

to neuroscience. In the field of neuroscience avatars can be used to substitute the bodies 

of people, thus being a convenient technology for research purposes as they can be 

manipulated in a controlled manner and made to take on characteristics even beyond 

human limits [Normand et al. 2011; Kilteni et al. 2012]. Such technologies can also be 

used to explore the neural traces of the body representation in the brain [González-

Franco et al. 2014; Padrão et al. n.d.]. Furthermore, evidence suggests that avatars, at 

least under certain conditions, evoke reactions in people who treat them as if they were 

real [Pan et al. 2012; Rovira et al. 2009; Llobera et al. 2010; Slater et al. 2006]. Moreover 

when avatars are used to substitute the bodies of people behavioural and attitude 

changes have been reported [Banakou et al. 2013; Peck et al. 2013].  

Even though avatars are obviously not real, they tend to elicit similar responses as if 

they were real [Sanchez-Vives and Slater 2005]. In fact, physically similar avatars 

influence people’s behaviour inducing changes in their task performance [Bailenson and 

Segovia 2010]: participants increased their physical activity after being exposed to a 

fatter doppelganger [Fox and Bailenson 2009]. A strong identification with look-alike 
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avatars, that is avatars that have a facial appearance that is similar to the actual person, 

has also been described to induce changes to participants’ physiological responses [Fox 

et al. 2012]. Other research has focused on the participant’s perceived resemblance 

between themselves and a set of virtual avatars finding that there is a significant 

tolerance for self-recognition in computer generated faces [Blom, Bellido Rivas, et al. 

2014]. Here we exploit EEG to find neurophysiological evidence of this visual perception 

processing in the context of such look-alike avatars. In particular we consider whether a 

virtual face that is looks alike to the real face might generate electrical brain activity that 

is similar to what occurs when seeing the real face. In other words are we unconsciously 

able to distinguish whether an avatar looks like us? 

It has been shown that processing of faces differs from that of other objects in terms of 

brain activity through the use of EEG [Bentin et al. 1996; Allison et al. 1999; Eimer 2000; 

Caldara et al. 2003], MEG [Liu et al. 2002], and fMRI [Vuilleumier et al. 2001]. 

Furthermore, TMS studies have also demonstrated that the Occipital Face Area (OFA) is 

necessary for some face computations [Rossion, Caldara, et al. 2003], where healthy 

participants experienced an impairment in a face discrimination task during TMS 

similar to the deficiencies showed by patients with prosopagnosia who cannot 

recognize faces [Pitcher et al. 2008; Pitcher et al. 2011]. Largely the observer expertise 

over the presented object affects the brain potentials: after a period of observational 

training of nonface objects the responses of N170 significantly decreased (20%) when 

compared to subjects that were untrained for those objects [Gauthier et al. 2003; 

Rossion et al. 2004]. A similar training effect is found for faces, younger children that do 

not have the expertise of an adult show different brain potentials during face 

observation tasks [Taylor et al. 2004]. 
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In fact, these brain mechanisms seem to play an important role not only in the 

distinction between faces and other objects, but also with respect to the evaluation of 

the emotional state of the face [Eimer and Holmes 2007; Vuilleumier et al. 2001], and in 

the classification of faces with different degrees of familiarity (self, familiar, unfamiliar) 

[Bentin and Deouell 2000; Sui et al. 2006; Platek and Kemp 2009; Keyes et al. 2010; 

Ramasubbu et al. 2011]. Therefore, these mechanisms are sensitive to the owner of the 

face such that images of our own face are processed differently than the faces of others, 

i.e. familiarity of the face impacts its processing (see [Devue and Brédart 2011] for a 

recent review in self-recognition mechanisms). Results have shown that the visual 

processing of faces induces specific Event Related Potentials (ERPs) modulations on 

early visual components (just 200ms after the stimuli is presented): the appearance of a 

occipito-parietal negative N170 component followed by a positive P200, which is 

accompanied with a frontal Vertex Positive Potential (VPP) followed by a negative N200 

[Rossion, Joyce, et al. 2003; Keyes et al. 2010; Sui et al. 2006; Bentin and Deouell 2000].  

Based on this research, we aim to find out the extent to which computer generated faces 

are processed as real faces in the brain, and also whether self-recognition of a physically 

similar avatar may elicit measurable neurophysiological effects. In this context previous 

research with ERPs has found that caricaturing familiar and unfamiliar faces with 

distortions of up to 30% did not affect the processing of the familiar faces whereas the 

unfamiliar faces elicited significant effects of the caricaturing [Kaufmann and 

Schweinberger 2008]. Furthermore, in that research the familiarity differences (familiar 

vs. unfamiliar) remained prominent and similar in both veridical and caricature faces 

[Kaufmann and Schweinberger 2008]. 
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We exploit previous research on self, familiar and unfamiliar faces to compare the 

temporal dynamics of the processing of computer generated (virtual) and real faces. To 

do so an ERP study was prepared with three different levels of familiarity: self, familiar 

and unfamiliar other, similar to previous research on real faces [Keyes et al. 2010; Sui et 

al. 2006]. The comparison is two-fold: we inspect the differences when processing 

virtual avatar faces and their real counterparts, in addition to the three familiarity 

levels. The aim is both to study the time course of the computer generated faces’ visual 

processing as well as the possible adaptation mechanisms after longer exposure. With 

ERPs not only can we study the effects of look-alike computer generated avatars, but 

also track on-line adaptive changes without requesting participants to provide 

constantly behavioral judgments. In this way, beyond the insights of the present study, 

the methodology presented may provide a new objective measure to evaluate the 

appearance effects across time as well as to determine the likeness of an avatar to its 

real counterpart. 

6.2. Materials and Methods: 

6.2.1. Participants 

Seventeen neurologically healthy male subjects between the ages of 25 and 41 

(M=33.05, SD=4.83), with normal or corrected vision participated in the experiment. 

They were recruited by email from the laboratory mailing list. Subjects gave informed 

consent according to the declaration of Helsinki, and the experiment was approved by 

the ethics committee of Universitat de Barcelona.  
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6.2.2. Look-alike avatars 

We took three photographs (front, left and right profile) of each participant in order to 

create their look-alike avatars. In all cases participants were requested to hold a neutral 

face to avoid emotion processing during the observation, as it has been shown emotions 

on faces generate different brain traces and even activate the mirror neuron system 

[Likowski et al. 2012]. Avatars were generated using the fast creation of look-a-like 

avatars pipeline described in [Blom, Bellido Rivas, et al. 2014]. The resultant virtual 

avatars were tweaked manually to make minor improvements to the visual likeness, 

and the avatars were bald due to limitations of the pipeline. We used the original frontal 

picture and a frontal capture of the resulting avatar for the observation task (Figure 

6-1). 

 

Figure 6-1 a) Creation of the look-alike avatar, the three pictures used for the avatar generation on the top. 

The final pictures used for the experiment as real and virtual. b) Experimental execution. The six faces (S, SV, 

F, FV, U, UV) were randomly ordered in blocks of 10. Each face was displayed for 300 ms, followed by a 

variable time of 740 - 1340 ms in which a fixation cross appeared. After each block there was a short resting 

period of 2 seconds for blinking. 

Both images (the real and the computer generated one) were processed to equalize 

pupil-pupil distance across all images and to ensure that the vertical midline of the 

image bisected the face; this involved a minor scaling of the entire image, and left the 
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normal proportions of the face invariant. The images were saved at 520 x 520 pixels, in 

colour and with averaged luminance to avoid effects of uncontrolled interstimulus 

perceptual variance that have been found to influence the N170 component [Thierry et 

al. 2007]. Controlling this particular variance corrects the N170 face sensitivity [Bentin 

et al. 2007]. All the faces were in a neutral emotional state.  

6.2.3. Stimuli 

The experimental design included two factors: Virtuality and Familiarity. The Virtuality 

factor consisted of either a photographic image of the real person (R) or an image of the 

look-alike virtual avatar (V). The Familiarity factor consisted of the three levels: self (S), 

familiar (F) or unfamiliar other (U). The unfamiliar person (U) had no previous relation 

to any of the participants, and he consented to use his real and virtual pictures for the 

purposes of this experiment. Since we wanted to study the effects of self-specific 

processing rather than habituation to the face – e.g. participants see themselves in 

mirrors very frequently – the familiar faces (F) were extracted from work mates seen 

every day by the participants.  

In total subjects were exposed to the six images 200 times in a classical ERP setup 

summing to a total of 1200 faces to be observed by each participant during the 

experiment that lasted approximately 30 minutes. The Familiarity factor was based on 

the existing literature on ERPs and self-face processing.  

The visual stimuli were displayed using XVR [Tecchia et al. 2010] on an Intel Core i7 at 

screen resolution 1920x1080 pixels. The six faces (SR, SV, FR, FV, UR, UV) were 

randomly ordered in blocks of 10. Each face was displayed for 300 ms, followed by a 

variable time of 740 - 1340 ms in which a fixation cross appeared (Figure 6-1b). After 

each block of 10 pictures there was a short resting period of 2 seconds for blinking. 
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Participants were instructed to maintain the focus on the fixation point and to minimize 

blinks and eye movements.  

6.2.4. Questionnaire 

Before mounting the EEG cap and starting the experiment we administered a short 

questionnaire in which each of the participants had to rate the realism of both the real 

and avatar pictures from 1 (not alike at all) to 5 (totally looks like the real person). 

Specifically they were asked to answer whether: “The picture looks like the real person”. 

The realism of the faces when compared to the real person were not available for the 

unfamiliar case as participants did not know the real person. Instead they were asked to 

compare the similarity of the avatar face to the picture face (from 1 to 5): “The computer 

generated face looks like the real face”. This similarity rating was performed for all 

familiarity pairs of real-avatar pictures. 

In order to detect changes in the scoring that were due to the experimental exposure or 

adaptation effects, participants were asked to rate again all the faces and avatars after 

the experiment.  

6.2.5. EEG Recording 

Continuous EEG was acquired from 64 active electrodes located at standard 10-20 

positions with a g.HIamp multichannel amplifier manufactured by g.Tec Medical 

Engineering. Active ring electrodes (g.LADYbird) were used in a standardized cap 

(g.GAMMAcap), both from g.tec. The activity was referenced to the earlobe and the 

ground electrode was located in the frontal area of the head. Signals where digitalized at 

256 Hz frequency rate, a notch Butterworth filter 4th order from 48-52Hz was used to 

eliminate the AC. Ocular movements were detected from FP1, FP2, AF7 and AF8.  
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The EEG was segmented offline into 1200 ms epochs starting 200 ms before the 

stimulus onset. Trials where the faces were consecutively repeated were rejected off-

line. There was a repetition rate of 2.99%. Trials in which ocular movements were 

found (EOG greater than 50µV) or the absolute amplitude of the signal at any electrode 

was greater than 150µV were rejected. The average acceptance rate was of 74% trials 

per participant. 

ERPs time-locked to the onset of the stimuli for each condition and participant were 

averaged for epochs of -200 to 900 ms with the baseline set from -200 to 0 ms. Mean 

amplitudes were calculated where there were discernible peaks in the average ERP 

waveform for each of the 17 participants; these included the epochs N170 (170-210ms) 

and P200 (250-300ms) of the right and left occipito-parietal cortex. Which are 

consistent with those proposed in previous experiments [Sui et al. 2006; Keyes et al. 

2010] . 

The original ERPs for each subject were transformed into reference-free Current Source 

Density (CSD) estimates (µV/cm2 units) using a spherical spline surface Laplacian 

Matlab-based CSD toolbox [Kayser and Tenke 2006] to better explore the topographical 

maps.  
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6.3. Results 

6.3.1. Faces Evaluation 

Participant rated of the realism of the faces by answering the question “the face looks 

like the real person”; and the similarity between the computer generated face and the 

photograph by answering the question “the computer generated face looks like the face 

in the photograph” (Figure 6-2). After the experiment, participants were asked to rate 

again all the faces, in order to detect changes in the scoring due to the experimental 

exposure. There were no significant differences between any of the real or virtual faces 

in the pre-post scoring for the realism question (Wilcoxon signed-rank tests, all p>.45), 

nor for the similarity pre-post (Wilcoxon signed-rank tests, all p>.55). The real images 

scores served as a consistency control, none of the real pictures scored less than a four. 

Furthermore, there were not significant differences among the scores for all the 

computer generated faces, which indicates that all of them were perceived similarly 

realistic (Friedman, p>.368).  

 

Figure 6-2 Scores for the different faces, at the pre and post questionnaires. From 1 (not alike at all) 

to 5 (totally looks alike), participants rated the faces through two questions: realism, similarity. a) 
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Realism: compared the pictures to the real person that they knew. b) Similarity: compared the 

real picture to the virtual picture independently if they knew or not the person on the picture.  

There were significant differences when comparing the realism scores between the 

virtual and the real faces (Wilcoxon signed rank tests, all p<.001). This indicates that 

even though all the participants did recognize themselves and their confederates in the 

avatar faces, the avatars were not perceived as overly realistic as the real faces (Figure 

6-2a). To the similarity question all avatars were rated equally similar to their real 

counterparts (Figure 6-2b).  

6.3.2. EEG Analysis 

In order to explore how the faces were processed in the brain we proceeded to study 

well-defined visual processing-related ERP components in occipito-parietal cortex, such 

as the N170 and the P200 components (see, [Sui et al. 2006; Keyes et al. 2010]). Visual 

inspection of Figure 6-3 shows a clear negative voltage during the N170 and a positive 

voltage during the P200 in both hemispheres.  

The amplitude of each component was extracted for each participant in the specified 

time-windows (N170: 170-210ms; P200: 250-300ms) and analysed via a repeated 

measures ANOVA with three within-subject factors: Hemisphere (left, right; please 

specify which electrodes did you use here) x Familiarity (self, familiar, other) x 

Virtuality (real, virtual). Importantly, only the first 100 trials of each condition are taken 

into account for this section to avoid the effects of adaptation (see below for the analysis 

of fast adaptation). Mauchly test was run to account for significant differences on the 

variances. In cases where the test was positive (<0.05) we applied and noted the 

corresponding correction for sphericity. 
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Figure 6-3 Grand average ERPs for the 17 subjects of the parietal electrodes (PO7, P7) and (PO8, P8) elicited 

during the first 100 trials by a) Real faces: self, familiar, and other. b) Virtual faces: self, familiar, and other. 

The CSD topographical plots show how the difference between others-self for the P200 component is mainly 

located in the occipito-parietal cortex. A low pass filter (15 Hz, half-amplitude cut-off) was applied in these 

grand averaged graphs. 

The same repeated measures ANOVA was run on the P200 component. This analysis 

showed a significant main effect of Familiarity (F(2,32)=7.253, p<0.003) (Figure 6-3). 

Post-hoc pairwise comparisons with the Bonferroni adjustment (pooling together the 

amplitude in all electrode locations for both hemispheres) showed significant 
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differences between self (2.681 ± 0.319 µv) vs. familiar (3.147 ± 0.298 µv) (t=5.618, 

p=0.046) and self vs. unfamiliar (3.277 ± 0.298 µv) (t=5.618, p=0.011) but not between 

familiar vs. unfamiliar (t=5.618, p=1), indicating the existence of a self-oriented 

processing (Figure 6-3). 

A visual exploration of the grand average ERP (Figure 6-3) shows stronger voltage 

differences in the right hemisphere locations both for the real and virtual faces. More 

precisely the virtual-self (2.768 ± 0.291 µv) was processed in a significantly different 

voltage than the virtual-familiar (3.186 ± 0.260 µv) or the virtual-unfamiliar (3.357 ± 

0.338 µv) (t=3.757, p<0.25). However, when comparing the virtual-self (2.767 ± 0.291 

µv) to the real-self (2.522 ± 0.353 µv) voltage no significant differences were found 

(t=1.180, p=0.255). Indicating that the self-avatar was classified differently than the 

others, in the same way than the self-real face was classified differently from the other 

faces. In contrast, the pairwise comparison familiar vs. unfamiliar was not significant for 

all cases (t<0.8, p>0.3), indicating that the neural mechanisms related to the P200 

component are oriented mainly towards self-recognition and not so much towards 

others’ faces recognition (Figure 6-4).  

Interestingly, regarding the nature of the face presented, we can see a significant main 

effect of Virtuality (F(1,16)=7, 946, p=0.012); and an interaction was also found 

between Hemisphere x Virtuality (F(1,16)=4.335, p=0.05). Virtual faces (3.212 ± 0.249) 

elicited larger amplitudes when compared to real faces (2.816 ± 0.360) in the left 

hemisphere (t=4.430, p<0.001). The same effect was not found in the right hemisphere 

locations (t=0.722, p=0.480). This clear difference between virtual and real faces in the 

P200 component is depicted in Figure 6-4. 
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Figure 6-4 Grand average ERPs of the 17 subjects in the parietal electrodes (PO7,P7) and (PO8,P8) 

elicited by the real and the computer generated faces for the first 100 trials. There is a significant 

difference in the P200, mainly in the parietal left electrodes. A low pass filter (15 Hz, half-

amplitude cut-off) was applied in these grand averaged graphs. 

Overall these results suggest that the amplitude of the P200 component is sensitive to 

the nature of the face, whether it is a computer generated or a real face, as well as the 

familiarity level of the face. It as though the P200 is clearly oriented to self-recognition 

in faces as the neural processing seems to distinguish self from other faces. This 

particular effect of self-identification and familiarity works for both the virtual and the 

real faces, indicating that avatars that look alike the self are recognized as the self to a 

higher extent than other avatars.  

6.3.3. Rapid Adaptation Effects 

In the previous section, we have seen how the P200 component was sensitive to both 

Virtuality and Familiarity, whereas in this section we want to investigate the modulation 

of these effects over time. In Figure 6-5 we can see the evolution of the amplitude of the 
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P200 component for the Virtuality parameter across the whole experiment. The 

amplitude of the P200 component was computed in bins of 30 trials for both virtual and 

real faces (pooling together all the conditions) in the left hemisphere, where the effect of 

Virtuality was stronger. An important observation in this Figure 6-5 (top panel) is the 

clear tendency of the amplitude of the P200 component to be progressively reduced in 

the virtual condition, tending to merge with the real face condition. In Figure 6-5 (lower 

panel) we show also the grand average ERP for the first 50 and last 50 trials of each 

condition showing a clear reduction of the P200 amplitude differences in the last trials. 

 

Figure 6-5 The top panel shows the time evolution of the P200 amplitude in the left tempo-parietal 

cortex (P07, P7); presenting the cumulative voltage over blocks of 30 trials (the error bars show 

the standard error of the different participants ERPs). We observe how in the first trials the 

virtual and the real faces are processed as different objects; however, this effect is reduced after 

the overexposure. In the panel below we observe the grand averaged ERPs of the first and last 50 

trials, and a clear reduction of the P200 component is also observed. The topographical plots show 
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the CSD of the P200 component difference (virtual-real) in the scalp, we can see how the 

difference decreases over the last trials. A low pass filter (15 Hz, half-amplitude cut-off) was 

applied to these grand averaged graphs. 

In order to analyse these effects statistically, we conducted a repeated measures ANOVA 

with factors Time (bins, 1 to 6) x Virtuality (real, virtual) focused on left-hemisphere 

electrodes (PO7, P7) where the effect was observed to be larger (Figure 6-4). 

The analysis showed a significant main effect on Virtuality (F(1,16)=18.407, p=0.001). 

Importantly and coherent with our expectations of the results presented in Figure 6-5 

(top), a clear significant interaction effect was found (Time x Virtuality (F(5,80)=2.865, 

p=0.02), indicating a significant decay of the P200 amplitude over time. Further 

pairwise comparisons showed that while a significant Virtuality effect was present in 

the first 50 trials (t=4.037 p=0.001), no significant effects were observed in the last 50 

trials (t=1.169 p=0.26).  

These findings suggest that the virtual faces are initially processed as different from the 

real faces, as if they were not faces but another kind of objects, which is analogous to 

what happens with exposure to faces vs. flowers or other objects [Keyes et al. 2010; 

Bentin et al. 1996; Allison et al. 1999]. Nevertheless, this effect is reduced overtime, and 

both real and virtual faces finally converge to be classified as the same class of objects: 

faces.  

A similar analysis was run to study Familiarity effects over time at the P200 component. 

For that purpose bins of 30 trials were used for a repeated measures ANOVA with 

factors Time (bins, 1 to 6) x Familiarity (self, familiar, other). A significant main effect 

was found for Familiarity (F(2,32)=5.308, p=0.010); however, no interaction effects 

were observed for Time x Familiarity on the P200 component (F(10,160) < 1). These 
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results suggest that the effect of familiarity did not significantly decay over time in the 

present design. The analysis was also done with the virtual faces alone and there was no 

interaction of Time. This indicated that the self-recognition mechanisms are still 

functioning after longer exposures and both the look-alike avatar and the real face are 

processed as belonging to different familiarity levels when compared to the other faces. 

6.3.4. Self-identification subjective scores match the unconscious 

responses 

In the previous sections we have shown that the P200 amplitude was dependent on the 

Familiarity factor, and in this section we wanted to explore whether that voltage could 

be related to the subjective self-identification score.  

Since different participants may have different amplitudes in their components we 

normalized the amplitude by calculating the voltage difference from the self-virtual 

avatar to the self-real face for each participant (SV-SR) pooling together all the occipito-

parietal electrodes in both hemispheres (PO7, PO8, P7,P8). Closer to zero values would 

indicate a greater self-identification, while more positive values would mean a lesser 

self-identification with the avatars, since in general a more reduced voltage in the P200 

is associated with self-identification [Keyes et al. 2010; Sui et al. 2006].  

The resulting voltage difference was then contrasted to the initial reported score of 

realism for the self-virtual face. In that question participants rated whether the avatar 

looked like themselves. A significant Spearman Correlation was found between the 

resulting voltage (SV-SR) and the subjective score (r(17)=0.49, p=0.045), Figure 6-6.  
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Figure 6-6 Correlation between the virtual self-face identification scores in the realism question 

and the P200 voltage difference between the virtual-self - real-self (SV-SR). The closer the voltage 

difference is to zero the greater the identification. 

6.4. Discussion 

Novel effects related to computer generated virtual faces have been presented in form 

of early neural processes able to dissociate levels of Familiarity not only for the real 

faces but also for the virtual faces. The P200 component showed traces of self-

recognition aligned with previous research on real faces [Keyes et al. 2010]. The novelty 

in this case is that the self-recognition brain mechanisms seem to work also for 

computer generated faces that look alike the self, which could be interpreted as if the 

self-avatar was recognized as the self to a higher extent than others’ avatars. This 

interpretation is also in agreement with previous studies that found how a caricatured 

distortion of up to a 30% on a familiar face did not affect the OFA recognition 

mechanisms [Kaufmann and Schweinberger 2008] (granting that Kaufmann et al. did 

not include self-images as familiar faces). Our results support Keyes et al. (2010) 

findings in terms of differences in P200 for Familiarity. In the current experiment we 

found that the P200 component was differentiated for self vs. others in both the 
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computer generated and real faces. Even though Keyes et al. also found differences by 

face owner in N170 components, we did not find significant effects in that early 

component. This is not a major caveat to our interpretations since other studies have 

found the N170 component to be strongly influenced by perceptual variances [Thierry 

et al. 2007], and there has been some controversy on the correct use of the N170 for 

face sensitivity [Bentin et al. 2007; Thierry et al. 2007]. Overall, our findings are 

consistent with previous results showing a rapid identification of faces in early stages 

involving the OFA visual cortex (occipito-parietal electrodes). All these effects can be 

observed well in the real voltage and current source density maps (Figure 6-3).  

Additionally our results showed that the amplitude of the P200 component is also 

sensitive to the nature of the face, whether it is computer generated or a real face. We 

found evidence in the left parietal electrodes that the Virtuality of the faces affected the 

voltage of the P200 component only in the first trials of the experiment, but not in later 

trials (Figure 6-5). In contrast with previous research that found faces to be distinctly 

processed from other objects (flowers, cars etc.) during observation tasks [Keyes et al. 

2010; Bentin et al. 1996; Allison et al. 1999; Caldara et al. 2003; Rossion et al. 2004], our 

results seem to indicate that both computer generated and real faces elicited equivalent 

ERP components after a fast adaptation process. In the current experiment virtual faces 

were processed as a different category than the real faces only at the beginning of the 

exposition, with a rapid adaptation effect: in later trials the P200 categorizing effect 

disappears and both virtual and real faces are processed as the same class of objects. 

This effect of modulation by visual expertise has also been described before in unknown 

objects observation where after a greater familiarity with the objects the components 

are modulated accordingly [Gauthier et al. 2003; Rossion et al. 2004]. Furthermore, 

studies with children of different ages also showed how expertise influences face 
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processing [Taylor et al. 2004]. We suggest that in a similar way since participants were 

not previously exposed to the computer generated faces they required a small number 

of trials to gain visual expertise. The results of our experiment provides evidence that 

virtual faces were internally processed in a similar way to real faces after such 

adaptation. The initial Virtuality effect in P200 diminished and was not significant after 

a longer exposure indicating a rapid adaptation effect. This result is also in accordance 

with the findings on caricatured distortions on faces [Kaufmann and Schweinberger 

2008], in which the brain also indistinctly processed caricatured and veridical faces as 

equivalent.  

Overall, our results suggest that the brain is not only capable of accepting a computer 

generated look-alike face as his/her own but also of distinguishing it from others’ 

virtual faces. Thus, virtual faces seemed to have been processed at a low level (ERPs) in 

congruence with higher-level functions (subjective questionnaire): a significant 

correlation was found between the subjective score of self-identification and the 

occipito-parietal voltage in P200. A correlation between the subjective scoring and the 

self-identification mechanism of P200 suggests that conscious self-reporting is 

somehow influenced by the underlying unconscious visual processing of the faces. This 

correlation can be interpreted also as a validation that P200 to be indeed related to self-

recognition, as it has been previously suggested by other authors [Keyes et al. 2010]. 

6.5. Conclusions 

Avatars have been used successfully as feasible substitutes of the body to study issues in 

neuroscience and psychology [Banakou et al. 2013; Maselli and Slater 2013; Kilteni, 

Normand, et al. 2012; González-Franco et al. 2014]. Some studies have found that 

behavioural responses may be modulated when such avatars look like the participants 
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indicating that there are some self-identification effects [Bailenson and Segovia 2010; 

Fox and Bailenson 2009]. The current research found neural traces of such self-

identification in avatars at an unconscious level: differences in ERPs were prominent for 

the Familiarity levels in the P200 component, showing that the look alike avatars were 

indeed self-recognized. Furthermore, a significant correlation was found between the 

self-identification scoring and the P200 component presumably related with self-

recognition mechanisms [Keyes et al. 2010].  

The current findings have implications both for the field of embodiment as well as for 

the field of neuroscience and self-recognition. For the field of embodiment we provide 

objective evidence that avatars may be regarded as real people and that look-alike 

avatars can be recognized as the self and processed very similarly to self-images. In 

general, this finding has important implications for future and existing research as it 

validates previous studies that have shown a change in the participant’s behaviour 

when avatars have similarities to the participant [Bailenson and Segovia 2010; Fox and 

Bailenson 2009]. 

Regarding the field of neuroscience, the present study contributes towards expanding 

the frontiers of self-recognition and face processing. More precisely, we provide 

evidence of the link between higher level functions and the internal low level processing 

of faces. Furthermore, these EEG results open new avenues in the area of self-reporting 

as they be used as a new method for self-recognition of computer generated faces, 

especially when dealing with complex scenarios such as the exploration of the uncanny 

valley [Seyama and Nagayama 2007], where very realistic computer generated faces 

may produce a drastic rejection of the face. Or also for the reporting of subtle 

differences among faces that are not consciously perceived by the participants while 
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their brain may be able to discriminate more detailed self-identification levels [Blom, 

Bellido Rivas, et al. 2014].  
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7. CONCLUSIONS 

In this thesis we carried out a series of studies where the representation of the human 

body and activity in which it was engaged was externally manipulated in various ways 

while the corresponding electroencephalography (EEG) responses were measured. A 

series of hypotheses and experiments have been presented and the conclusions 

extracted from these can be summarized into two main blocs: 

- On one hand, this work endorses the capabilities of body substitution technologies 

(i.e. virtual embodiment) for the empirical study of neuroscience theories related to 

agency, body ownership and other bodily experiences (Chapters 4 and 5). It does so 

by providing neurophysiological insights that validate the use of virtual reality for 

producing full body ownership illusions in virtual bodies. Besides, this thesis also 

widens the understanding of identification mechanisms over the surrogate virtual 

bodies (in Chapter 6). 

- On the other hand, this research provides new objective evidence of response-as-if-

real to virtual stimuli under the grounds that humans behave realistically when they 

experience presence illusions in virtual reality [Sanchez-Vives and Slater 2005]. 

Significant brain activation was registered when certain experimental conditions 

were reproduced in virtual reality (Chapters 4, 5 and 6).  

Overall, this thesis provides new neurophysiological evidence of the body 

representation in the brain by exploring the traces of the bodily perception using virtual 

reality. More detailed conclusions per experimental Chapter follow. 

7.1. A threat to the virtual body  

In line with Hypothesis 1 – A stimulus directed to the embodied virtual body will result in 

a brain response equivalent to what we would expect if the stimulus happened to the 
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participant’s real body – we found automatic brain traces in participants who 

underwent direct attacks to their embodied virtual bodies similar to the ones that 

would be found if the events were to take place in a real scenario.  

During the experimentation participants were instructed to refrain from moving, 

however the attacking to the substitute body resulted on an automatic harm prevention 

effect in the motor cortex (significant Readiness Potential and mu-rhythm 

desynchronization). Furthermore, the brain mechanisms associated with pain 

perception – P450 component in the CP3 electrode location – were correlated with the 

subjective illusion of body ownership, indicating that stronger illusions derived in 

stronger pain perception. 

Overall, this study has provided a measure of response-as-if-real indicating that 

participants accepted their given virtual bodies as their own also at unconscious levels – 

this is me –, thus seconding existing and future experimentation on the self-body 

perception that use mannequins and virtual bodies [Ehrsson 2007; Slater et al. 2009]. 

Furthermore, the methodology presented has opened new avenues for novel measures 

of virtual embodiment based on objective neurophysiological data, thus being an 

important contribution to the field of virtual embodiment.  

7.2. Disrupting sense of agency of the virtual body actions  

In line with Hypothesis 2 – When somebody is embodied in a virtual avatar and 

experiences agency of that body, any break in that agency (such as hijacking in the 

movements of the virtual body) would be clearly perceived as an externally generated 

error – results showed that disruptions in the agency while controlling the virtual body 

were rapidly interpreted in the brain as a violation in the body semantics.  
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While self-produced errors showed a classical error-related negativity (ERN), 

externally-generated errors elicited a stronger and delayed negativity (at about 400 ms, 

N400) with a parietal distribution. Interestingly, the N400 component elicited by the 

external-errors showed a very similar scalp topography to the classical N400 related to 

language semantic-conceptual violations (e.g., “this chair is drinking”) [Kutas and 

Hillyard 1980]. Thus, these brain-related signatures are a clear evidence of the violation 

or disruption in the sense of agency (“this was not my planned action”).  

Furthermore, these results reflect an internal clash between the efference copy (sensory 

predictions) and the unexpected visual feedback of the embodied avatar performing an 

incorrect action. In this sense, prior representations of the virtual body (sensory 

predictions) have to be coherent with the resulting body action, which in normal 

circumstances provides us with the sensation of being in control of our actions. In 

agreement with this idea we observed that the amplitude of the N400 following 

external-errors was correlated with the subjective feeling of body ownership with the 

avatar.  

In sum, the findings revealed an electrophysiological signature associated with body 

agency disruptions. These results shed new light on the timing required by the human 

brain to differentiate self-generated and external-errors, providing new neural 

evidences regarding the integration of internal and sensory feedback information in the 

build-up of a coherent sense of agency.  

These findings have implications for the current perspectives on agency schemas, 

proposing and demonstrating the existing theory of re-afferent and feedback error 

mechanisms that are concurrently functioning in the brain to detect agency disruptions 

– I was the one controlling the action [Gallagher 2000]. Additionally, these results 
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endorse virtual reality technologies for empirical research in neuroscience as we 

provide objective evidence that avatars can be used as a platform to study theories in 

agency and body ownership. 

7.3. Self-recognition in computer generated faces 

In line with Hypothesis 3 – Given a virtual body we can potentially measure different 

levels of self-identification: an avatar that looks like the participant is interiorized 

unconsciously to a different level than an avatar that does not look alike – results showed 

shared underlying mechanisms for self-identification in real and virtual faces in the 

visual cortex.  

Strong evidence that virtual faces are internally processed in a similar way to real faces 

are provided. A rapid adaptation effect was found: even though virtual faces were 

initially classified as different from the real faces – P200 component [Keyes et al. 2010] 

– the Virtuality effect diminished and was not significant anymore after a longer 

exposure.  

Besides, neural signatures suggest that the brain is capable of accepting a computer 

generated look-alike face as the self and distinguish it from other virtual faces. 

Additionally, we provide evidences of the link between higher level functions (top-down 

driven subjective questionnaire) and the internal low level processing of faces – P200 

component. A significant correlation was found between the subjective score of self-

identification and the occipito-parietal voltage in P200, linking the automatic 

mechanisms to the higher cognitive functions used for self-reporting. 

The current findings have implications both for the field of embodiment as well as for 

the field of neuroscience and self-recognition. For the field of embodiment we provide 
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objective evidence that avatars may be regarded as actual people and that look-alike 

avatars’ faces can be recognized as selves and processed very similarly to self-images. In 

general, these results have important implications as they validate previous studies that 

have shown changes in people’s behaviour when avatars bear similarities to the 

participant [Bailenson and Segovia 2010; Fox and Bailenson 2009]. 

Regarding the field of neuroscience, the present study contributes to expand the 

frontiers of self-recognition and face processing. Furthermore, the EEG results may be 

used as a new method to replace self-reporting in the context of self-identification, 

especially when dealing with complex scenarios, where subtle differences among faces 

may not be consciously perceived by the participants, while their brain may be able to 

discriminate more detailed self-identification levels.  

7.4. Future Work 

Each of the studies conducted in this Thesis suggests areas for future investigation, 

which are detailed in the following paragraphs. 

In “a threat to the virtual body” a very strong illusion of ownership over the virtual body 

was postulated to be an explanatory factor of the larger brain responses observed –

P450, Readiness Potential and mu-ERD– in comparison to previous experiments in 

empathy triggered by pain observation in others [Bufalari et al. 2007; Meng et al. 2012]. 

A future experiment could explicitly account for this comparison by reducing the level 

of ownership through a third person perspective and comparing it to the results 

obtained in the 1PP condition. This would involve observing the brain reactions to 

seeing somebody else being attacked in an IVE.  
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The current results could also be further studied by focusing on the effects of self-

location with respect to the threat-stimuli to test the importance of the visuo-

proprioceptive congruency in the current setup. This could be done by varying the 

location of the real hand from respect to the virtual one and searching for the threshold 

where the virtual hand is no longer perceived as the participants own. 

The experimental setting offered by “violating agency of the virtual body” also raises 

new questions. This setup not only provides a unique opportunity to study the 

experience of agency while being embodied in a virtual body controlling, but also opens 

new avenues to current research focused on the mental processes underlying agency 

attribution in both healthy and clinical populations. In fact the results found in this 

study could be further compared with the neurophysiological responses of patients 

suffering of the anarchic hand syndrome [Sala 1998] or delusions of control [Frith et al. 

2000] in future experiments. 

Furthermore, the neural responses could be used as a non-subjective measure of 

embodiment, therefore future studies may explore the extent in which EEG may be 

exploited as an objective measure of embodiment. 

There is also future work to be explored in the context of the results of the “Self-

recognition in computer generated faces”. For example, future studies could exploit 

these EEG results for the exploration of the uncanny valley [Seyama and Nagayama 

2007], where a very realistic yet not perfect human avatar observation results on the 

rejection of the characters by the observers – i.e. some people experienced this effect in 

movies when observing characters such as the Benjamin Button or Gollum. There are 

several neuroscience theories about the cause such rejection, and using a similar 

approach to the present one researchers could explore this curious effect, whether it 
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depends on the external appearance or more on the behavioural part and the 

animations applied to them.  

In conclusion, this thesis has contributed in a complementary way to fields as diverse as 

neuroscience and real-time computer graphics, grounded on the ideal of 

multidisciplinary approaches to address and demonstrate prevailing hypothesis and 

theories in science. Therefore, the findings and collection of studies in this thesis 

contribute to future investigations in fields going from virtual substitution technologies 

to neuroscience. In effect, this thesis particularly advances research in neuroscience by 

converging the use of electrophysiological recording and body substitution technologies 

in Virtual Reality for exploring the body perception and representation in the brain.  
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EEG Electroencephalography 

EMG Electromyography  

ERD  Event Related Desynchronization 
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ERP  Event Related Potential 
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fMRI Functional Magnetic Resonance Imaging  

FoV Field of View 

FPS Frequency Power Spectra 

HMD Head Mounted Display 

IRB  Institutional Review Board 

IVE Immersive Virtual Environment 

IVR Immersive Virtual Reality 

MEG Magnetoencephalography 

MEP Motor Evoked Potentials 

PET Positron Emission Tomography 

RP Readiness Potential 

SEP  Somatosensory Evoked Potentials 

TMS Transcranial Magnetic Stimulation  

VR Virtual Reality 

1PP  First Person Perspective 

3PP Third Person Perspective  



179 
 

  



180 
 

List of Tables 

Table 2-1 Review of the technologies for non-invasive measuring the brain activity. ......................................... 69 

Table 4-1 Spearman Correlation Coefficients Between the Questionnaire Scores ................................................. 95 

Table 4-2 Spearman Correlation Coefficients Between the Questionnaire Scores and EEG Variables ....... 100 

Table 4-3 Path Analysis for P450 and mu ............................................................................................................................... 102 

Table 4-4 Regression for RP .......................................................................................................................................................... 103 

  



181 
 

  



182 
 

List of Figures 

Figure 2-1 Visual attention tasks that involve only bottom-up mechanisms with two different search conditions and 
only one singleton: Shape-search condition; Colour-search condition. Adaptation from [Connor et al. 2004]. ................ 38 

Figure 2-2 Visual attention tasks that involve not only bottom-up but also top-down mechanisms with different 
search conditions and a number of different singletons. Adaptation from [Connor et al. 2004]. ............................................. 38 

Figure 2-3 The rubber hand illusion. Tactile stimulation (tapping and stroking) is applied on a visible rubber arm 
placed in a feasible anatomical position in front of the participant, while the real arm rests behind a hidden curtain 
out of the participant’s sight. When the experimenter stroked both the real and the fake arms synchronously, the 
participant had the illusion of ownership over the rubber hand [Botvinick and Cohen 1998]. ................................................ 46 

Figure 2-4 Looking at a mirror reduces the phantom pain on an amputated limb. Figure adapted from [Ramachandran 
and Altschuler 2009]. ...................................................................................................................................................................................................... 48 

Figure 2-5 (A) The participant looks down with an HMD and sees a mannequin body instead of his own body, both the 
participant and the mannequin get synchronous tactile stimulation. The participant experiences a full body 
ownership of the mannequin from a first person perspective (B), and reacts to an attacking knife as if the attack was 
directed to his own body (C). Figure adapted from [Petkova, Khoshnevis, et al. 2011]. ............................................................... 48 

Figure 2-6 Out of body experience. The participant sees through an HMD his own virtual body standing 2 m in front. 
The illusion is generated with a synchronous stroking at the participant's back. Illustration adapted from 
[Lenggenhager et al. 2007]. ......................................................................................................................................................................................... 49 

Figure 2-7 Participants have to judge whether the hand they see moving through a video stream is theirs or not. The 
participants’ hand is passively extended via a lever triggered by the participant (‘self-generated action’) or by the 
experimenter (‘externally generated action’). Illustration adapted from [Tsakiris et al. 2005] ................................................ 52 

Figure 2-8 Libet et al. experiment. Top: the sequence of the Libet experiment. Bottom: the corresponding readiness 
potential (RP) taking place in the brain. The time when the RP starts is 800ms ahead to the participant reported 
awareness of his urge to act. Illustration adapted from [Haggard 2008]. ............................................................................................ 53 

Figure 2-9 Motor control model including the internal and external error monitoring loops. Adapted from [Gallagher 
2000]. ...................................................................................................................................................................................................................................... 56 

Figure 2-10 Left: an fMRI machine from Siemens. Right: results adapted from an auditory perception study with fMRI 
[Wengenroth et al. 2010]. ............................................................................................................................................................................................. 65 

Figure 2-11 (A) A grid of fiber optic-based light sources and detectors mounted on a participant. (B) The model of 
light propagation (in log-scale). Figure adapted from [Karim et al. 2012]. .......................................................................................... 66 

Figure 2-12 Principles of transcranial magnetic stimulation. The current in the coil generates a magnetic field (B) that 
induces an electric field (E). At the microscopic level, the electric field (E) affects the transmembrane potentials and 
may lead to local membrane depolarization and subsequent neural activation. Macroscopic responses can be detected 
with functional imaging tools, with surface electromyography (EMG), or as behavioural changes. Adapted from 
[Ilmoniemi et al. 1999]. .................................................................................................................................................................................................. 67 

Figure 2-13 MEG machine by Elekta Nuromag. ................................................................................................................................................. 68 

Figure 2-14 ERPs of a classic oddball paradigm rare stimuli ‘O’ get stronger P3 component amplitudes than more 
frequent stimuli ‘X’. Adaptation from [Luck 2005]. ......................................................................................................................................... 69 

Figure 2-15 Schema of the brain areas that have been identified as relevant for the generation of body ownership 
experiences. ACC: Anterior Cingulate Cortex, S1: Primary Somatosensory Cortex, IPS: Intraparietal Suculus, PMC: 
Premotor Cortex. Figure adapted from [Blanke 2012]. ................................................................................................................................. 72 

Figure 3-1 A participant wearing the NVIS nVisor HMD ............................................................................................................................... 76 

Figure 3-2 An array of Intersense IS-900 at Brown University. Figure from [Tarr and Warren 2002]. ................................ 77 



183 
 

Figure 3-3 Setup of the participants in the experiments of this Thesis. A, B correspond to the participant and its 
virtual counterpart in Chapter 4, where the participant had EEG and EMG recordings. C, D correspond to the setup for 
Chapter 5 where the participants performed a motor task. ........................................................................................................................ 80 

Figure 4-1 Real: the participant wearing the HMD and EEG cap. Virtual: the IVR with the gender-matched collocated 
virtual avatar. And the two experimental conditions seen by the participant when looking towards his hand from the 
1PP: HAND) virtual hand stabbed by the knife; TABLE) virtual table stabbed by the knife (control condition). ............. 88 

Figure 4-2 Box plots showing the responses to the questionnaire. The thick lines are the medians, and the boxes are 
the interquartile ranges (IQR). The whiskers follow the standard convention of extending to 1.5 times the IQR or the 
maximal/minimal data point ...................................................................................................................................................................................... 95 

Figure 4-3 Grand averaged stimulus-locked ERPs for six representative front, central and parietal electrode locations. 
A significant increase in the amplitude of the P450 is observed in the HAND condition mainly at C3 and CP3 locations. 
Baseline from −200 to 0 ms, time 0 indicates the stimuli onset; a low pass filter 12 Hz half-amplitude cut-off was 
applied .................................................................................................................................................................................................................................... 97 

Figure 4-4 (A) Time frequency evolution of the two conditions and the difference in the spectral activity. (B) Grand 
averaged 1-s short-time power spectra calculated from EEG data (electrode C3) recorded. The baseline corresponds 
to the range −1 to 0 s before the stimuli and the activity period corresponds to the range 0.7–1.7 s after the stimuli. 
Both the baseline and TABLE frequency spectra show a peak in the mu-rhythm that is attenuated in the HAND 
condition. (C) Grand averaged mu-rhythm (9–12 Hz) event-related desynchronization for the C3 electrode. (D) Grand 
averaged RP (C3–C4) subtraction between the brain activity in the two hemispheres shows movement preparation 
effects. Low pass filter 8 Hz, half-amplitude cut-off. ........................................................................................................................................ 98 

Figure 4-5 Path analysis for P450 and mu and in relation to questionnaire variables Harm Hand, Harm Table, Body 
Threat, Ownership and condition (TABLE = 0, HAND = 1). The values on the paths are the coefficients corresponding 
significance levels. The epsilon represent the random error term. The diagram can be interpreted as a set of 
simultaneous linear prediction equations. For example from .................................................................................................................. 102 

Figure 5-1 A. Participant in the laboratory with the HMD, EEG and the head and hand tracking systems. B. 1PP of the 
arrow flanker task. Participants performed fast movements with their right hand to the button in the direction of the 
central arrow and then go back to the starting position. In the InCM trials the virtual hand moved in the opposite 
direction to the participant real movements, thus generating an external-error. C. Virtual body of the participant in 
the IVE seen from a 3PP. ............................................................................................................................................................................................. 114 

Figure 5-2 Six seconds of hand movement of a participant showing 5 trials; the first three are correct responses, the 
next one is a correction and the last one is a real error. Notice that the last of the correct trials is an InCM trial: the 
virtual hand went in the opposite direction, which resulted in an external-error. ........................................................................ 117 

Figure 5-3 Results (medians and interquartile ranges) of the questionnaire assessing the feeling of ownership and 
agency during CM and InCM conditions [7-point Likert scale:“strongly disagree”(-3) to “strongly agree”(+3)]. Global 
illusory ownership and violation of the sense of agency of the virtual body were corroborated by the scores on 
relevant questionnaire items for ownership (Q1 and Q2) and agency (Q5, Q6 and Q9). Significant differences were 
tested with non-parametric Wilcoxon signed-rank tests. ........................................................................................................................... 121 

Figure 5-4 Response-locked grand average ERPs for the difference waveforms computed subtracting the correct 
responses from the self-generated errors (blue line) or the external-errors (green line). For Experiment 2 results, the 
observed correct trials were subtracted from the observed errors (red line). The self-generated errors (blue line) 
show the standard ERN that appeared at frontocentral sites immediately after the erroneous response (at about 100 
ms). In contrast, to external-errors (green line) show a larger negative activity at 400 ms (N400). During Experiment 
2, the observed errors (red line) show a delayed ERN-like component at frontal electrodes. ................................................. 124 

Figure 5-5 Score of the questionnaire after the observation task (Experiment 2). The embodiment illusion was 
decreased during the observation task: Q1, Q2 and Q5 compared with control questions Q3, Q4 and Q7 respectively 
(all P values > 0.05). The Boxplot shows the medians and interquartile ranges. ............................................................................ 126 

Figure 5-6 The body ownership towards the virtual body was negatively correlated with the N400 parietal activity 
(r(18) = -0.6, P < 0.009). The amplitude of this ERP signal was computed subtracting the correct responses voltage 
from the external-errors one in parietal electrodes (Pz, P3, P4 electrodes). The subjective strength of virtual body 
ownership was computed as the difference Q1-Q3. ...................................................................................................................................... 128 

Figure 6-1 a) Creation of the look-alike avatar, the three pictures used for the avatar generation on the top. The final 
pictures used for the experiment as real and virtual. b) Experimental execution. The six faces (S, SV, F, FV, U, UV) were 



184 
 

randomly ordered in blocks of 10. Each face was displayed for 300 ms, followed by a variable time of 740 - 1340 ms 
in which a fixation cross appeared. After each block there was a short resting period of 2 seconds for blinking. ........ 137 

Figure 6-2 Scores for the different faces, at the pre and post questionnaires. From 1 (not alike at all) to 5 (totally looks 
alike), participants rated the faces through two questions: realism, similarity. a) Realism: compared the pictures to 
the real person that they knew. b) Similarity: compared the real picture to the virtual picture independently if they 
knew or not the person on the picture. ................................................................................................................................................................ 141 

Figure 6-3 Grand average ERPs for the 17 subjects of the parietal electrodes (PO7, P7) and (PO8, P8) elicited during 
the first 100 trials by a) Real faces: self, familiar, and other. b) Virtual faces: self, familiar, and other. The CSD 
topographical plots show how the difference between others-self for the P200 component is mainly located in the 
occipito-parietal cortex. A low pass filter (15 Hz, half-amplitude cut-off) was applied in these grand averaged graphs.
.................................................................................................................................................................................................................................................. 143 

Figure 6-4 Grand average ERPs of the 17 subjects in the parietal electrodes (PO7,P7) and (PO8,P8) elicited by the real 
and the computer generated faces for the first 100 trials. There is a significant difference in the P200, mainly in the 
parietal left electrodes. A low pass filter (15 Hz, half-amplitude cut-off) was applied in these grand averaged graphs.
.................................................................................................................................................................................................................................................. 145 

Figure 6-5 The top panel shows the time evolution of the P200 amplitude in the left tempo-parietal cortex (P07, P7); 
presenting the cumulative voltage over blocks of 30 trials (the error bars show the standard error of the different 
participants ERPs). We observe how in the first trials the virtual and the real faces are processed as different objects; 
however, this effect is reduced after the overexposure. In the panel below we observe the grand averaged ERPs of the 
first and last 50 trials, and a clear reduction of the P200 component is also observed. The topographical plots show 
the CSD of the P200 component difference (virtual-real) in the scalp, we can see how the difference decreases over 
the last trials. A low pass filter (15 Hz, half-amplitude cut-off) was applied to these grand averaged graphs. ............... 146 

Figure 6-6 Correlation between the virtual self-face identification scores in the realism question and the P200 voltage 
difference between the virtual-self - real-self (SV-SR). The closer the voltage difference is to zero the greater the 
identification. .................................................................................................................................................................................................................... 149 

 

 

  



185 
 

  



186 
 

Materials for the experiments 

Participant Informed Consent 

To be completed by volunteers. We would like you to read the following questions carefully. 

Have you read the information sheet about this study?  YES/NO 

Have you had an opportunity to ask questions and discuss this study?  YES/NO 

Have you received satisfactory answers to all your questions?  YES/NO 

Have you received enough information about this study?  YES/NO 

Which investigator have you spoken to about this study?                                Mar González Franco 

Do you understand that you are free to withdraw from this study? 

- At any time  YES/NO 

- Without giving a reason for withdrawing  YES/NO 

Do you understand and accept the risks associated with the use of virtual reality equipment? YES/NO 

Do you agree to take part in this study?   YES/NO 

Do you agree to be video taped?   YES/NO 

Do you agree to be audio taped?   YES/NO 

Do you agree to wear the EEG cap and have gel put in your hair?  YES/NO  

Do you agree to be contacted in two weeks to answer some questions about your experience? YES/NO 

 

I certify that I do not have epilepsy. I certify that I will not be driving a car, motorcycle, bicycle, or use other types 

of complex machinery that could be a danger to myself or others, within 3 hours after the termination of the study. 

Signed…………………………………...…………  Date……………………………... 

Name in block letters.……………………………..…………………………………... 

In case you have any enquiries regarding this study in the future, please contact: 

Mel Slater 

EVENT Lab for Neuroscience and Technology  

Facultat de Psicologia, Universitat de Barcelona, Departament de Personalitat, Avaluació i Tractaments Psicològics, Campus 

de Mundet - Edifici Teatre 

Passeig de la Vall d'Hebron 171, 08035 Barcelona, Spain 

Tel. +34 93 403 9618      www.event-lab.org 

 

Information that we collect will never be reported in a way that individuals can be identified. Information will be 

reported in aggregate, and any verbal comments that you make, if written about in subsequent papers, will be 

presented anonymously. 

http://www.event-lab.org/
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Demographic information 

Your Given ID Number 
 

Your Age  
 

Your Gender  Male    Female 

Handedness      Right    Left          

How fluent is your English? 

Basic  

Proficient  

Fluent  

Occupational status 

Undergraduate Student  

Master Student  

PhD Student  

Research Assistant/Fellow  

Staff –system, technical  

Faculty   

Administrative Staff  

Other  

Are you taking any medication? 
       Yes   No 

If yes, please specify:  
 

Did you consume more than 2 units of alcohol within the last 6 hours?  
(2 units of alcohol = 1 pint of beer or 2 glasses of wine) 

Yes     No 

Please state your level of computer literacy on a scale of (1...7)  

(novice)   1  2  3  4  5  6  7  (expert)            

Please rate your level of experience with computer programming: 

(novice)   1  2  3  4  5  6  7  (expert)  

Have you ever experienced 'virtual reality' before? 

              (no experience)   1  2  3  4  5  6  7  (extensive experience) 

How many times did you play video games (at home, work, school, or 
arcades) in the last year? 

Never  

   1 - 5  

   6 - 10  

   11 - 15  

   16 - 20  

   21 - 25  

   > 25   

How many hours per week do you spend playing video games? 

0  

   < 1  

   1 - 3  

   3 - 5  

   5 - 7  

   7 - 9  

   > 9    
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Experiment information  

“A threat to the virtual hand” 

This experiment is part of a series where we are attempting to learn about people’s responses to virtual reality 

experiences.  

In this experiment you will wear EEG cap to read your EEG brain activity. The cap has electrodes that require gel 

to be put in your hair. EMG will also be recorded to measure your muscle activation during the experiment. 

Additionally you will wear a head-mounted display (HMD) that will show you a virtual world.  

For the duration of the experiment you will sit in front of a table and put your right hand on the table. The left hand 

will remain on your lap. It’s crucial that you look at your hand during the whole experiment, and that you don’t 

move your hand at any moment.  

Below, you can see a person wearing all the equipment. On the upper-left corner a view of the avatar in the 

Virtual Reality. 

 

The experiment consists of approximately 15 minutes preparing the EEG and EMG and 30 minutes in a virtual 

world. Then you will be asked to fill out a questionnaire. The whole experiment should take approximately half an 

hour. We will pay you for your participation. 

If you have any questions now, please ask. 
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Remember that you are free to leave the experiment at any time without giving reasons. 

“Violating agency of the virtual body” 

This experiment is part of a series where we are attempting to learn about people’s responses to virtual reality 

experiences.  

In this experiment you will wear EEG cap to read your EEG brain activity. The cap has electrodes that require gel 

to be put in your hair. Additionally you will wear a head-mounted display (HMD) that will show you a virtual world.  

For the duration of the experiment you will sit in front of a table and put your right hand on the table. The left hand 

will remain on your lap. You will complete a task with your right hand as it is explained in the image below.  

 

The task consists on moving the hand from an initial point towards the direction that the middle arrow indicates. 

Try to do your best at the maximum velocity. You should try to avoid corrections once you’d chosen a direction. 

The arrows appear every 1.5 seconds. You have to go back to the initial point after each trial. 

The experiment consists of a training phase before starting, followed by two blocks of tasks of approximately 15 

minutes each. You will be asked to fill out a questionnaire. The whole experiment should take approximately half 

an hour.  

If you have any questions now, please ask. 

 

Remember that you are free to leave the experiment at any time without giving reasons. 
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“Self-recognition in computer generated faces” 

This experiment is part of a series where we are attempting to learn about people’s responses to virtual reality 

experiences.  

In this experiment you will wear EEG cap to read your EEG brain activity. The cap has electrodes that require gel 

to be put in your hair.  

We will first take 3 pictures of you to generate a virtual avatar. Then for the duration of the experiment you will sit 

in front of a table and observe a total of 200 faces that will appear in the screen in intervals of 1 to 2 seconds. 

Please try your best to only blink only when indicated.  

The whole experiment should take approximately half an hour.  

If you have any questions now, please ask. 

 

Remember that you are free to leave the experiment at any time without giving reasons. 
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Virtual Reality Experience Questionnaire 

“A threat to the virtual hand” 

The following questions will be given to the participant at the end of the experience. 

How much do you agree with the following statements about your experience?  

1. On a scale from 1 to 10 assuming that 10 is that the hand was yours, I felt as if the hand I saw in the 

virtual world might be my hand. 

 

2. On a scale from 1 to 10 assuming that 10 is the feeling that the knife would definitely harm you, I had 

the feeling that I might be harmed when I saw the knife inside the hand. 

 

3. On a scale from 1 to 10 assuming that 10 is the feeling that the knife would definitely harm you, I had 

the feeling that I might be harmed when I saw the knife outside the hand. 

 

4. On a scale from 1 to 10 assuming that 10 is that the hand was of another person, The hand I saw was 

the hand of another person. 

 

5. On a scale from 1 to 10 assuming that 10 is the feeling that the knife would definitely harm you, I saw 

the knife as a threat to my body. 

 

 

7. What do you think about the experience? How did you feel during the experiment? 
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“Violating agency of the virtual body” 

Now please answer few questions about your experience in the virtual environment and the task you 

performed. 

How much do you agree with the following statements about your experience? Each statement should be 

answered with: 

Be honest with your responses.   

-3: totally in disagreement ------------------ 3: totally in agreement 

1. It felt as if the virtual body was my body. 

-3      -2      -1      0      1      2      3  

2. I felt as if my hand was located where I saw the virtual hand to be 

-3      -2      -1      0      1      2      3 

3. It seemed as if I might have had more than one body 

-3      -2      -1      0      1      2      3 

4. It seemed as if the position of the hand I was feeling came from somewhere between 

my own hand and the virtual hand 

-3      -2      -1      0      1      2      3 

5. Most of the times, the movements of the virtual hand seemed to be my movements 

-3      -2      -1      0      1      2      3 

6. Sometimes, I felt that the movements of the virtual hand were influencing my own 

movements. 

-3      -2      -1      0      1      2      3 

7. Sometimes, the virtual hand seemed to be moving by itself 

-3      -2      -1      0      1      2      3 

8. It sometimes felt as if my real hand was turning ‘virtual’ 

-3      -2      -1      0      1      2      3 

9. It seems sometimes that the errors were not caused by myself 

-3      -2      -1      0      1      2      3 
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“Self-recognition in computer generated faces” 

Now you will rate the faces that the experimenter will show you in a scale from 1 to 5 to 

two different questions: 

The picture looks like a real person: 1 (not alike at all) to 5 (totally looks like a real 

person) 

The computer generated face looks like the real face: 1 (not alike at all) to 5 (totally looks 

like the real person) 

 

 

 

  

 


