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ABSTRACT 

 

 

New generation heat transfer technologies with less energy consumption and improved 

economy are needed for welfare of the society. In this regard, ionic liquids (ILs) are most 

investigated fluids due to their higher thermal stability and non-volatile nature which 

make them more advantageous than the conventional fluids. In addition, dispersion of  

metal nanoparticles in conventional fluids  are also being investigated  in recent times due 

to their  higher thermal conductivity, easy flow, which reduce pumping cost as well as  

no salt sedimentation. These fascinating features make NFs as a good alternative to the 

conventional salt solutions for heat transfer applications. In this work,  imidazolium 

cation based ILs were prepared with variation in anions such  as  chloride, bromide, iodide 

and tetrafluroborate. Thermal properties as well as density and viscosity of these fluids 

were investigated in detail.  

Nevertheless, in case of such fluids mainly, thermal conductivity and heat capacities have 

been studied while it is also necessary to study other fluid properties such as density and 

viscosity which dramatically influence fluid flow through pipes of heat transfer 

equipment. As there are only a very few reports available on transition metal NPs in ILs 

for heat transfer applications,  this thesis work is focused on first designing the desired 

ILs and then developing composites of transition metal NPs with the prepared ionic ILs. 

For this purpose, NPs of ruthenium (Ru) and silver (Ag) were used. Thermal properties 

of these ILs were improved by in-situ preparation of composites of ILs with ruthenium 

nanoparticles without using capping agents or surfactants at room temperature. For 

preparing Ag containing INFs, readily available NPs of Ag with variable morphologies, 

of  1D, 2 D and 3 D were used. These ionanofluids reduced the viscosity of base ILs along 

with the enhancement in their thermal conductivity.   

Another important aspect of this thesis work comprises the evaluation of the prepared ILs 

and their composites with transition metal NPs for catalytic applications. As development 

of new heat transfer fluids contribute to minimizing energy requirement similarly, new 

materials as catalysts also make the chemical process less energy intensive. From this 

perspective, carbon supported 5% ruthenium catalyst with Bronsted acidic IL 

[Hmim][HSO4] as a co-catalyst was developed for selective hydrogenolysis of bio-

derived levulinic acid (LA)  to -valerolactone (GVL) which is fuel additive. Variation in  

catalyst activity was successfully correlated with  the acidities of ILs studied by Hammet 

acidity function.  
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ABBREVIATIONS 

IL Ionic liquid 

RTIL Room temperature ionic liquid 

PIIL Protic acid ionic liquid 

NHC N-Hetrocyclic carbene 

INF IoNanofluid 

NEIL Nanoparticle enhanced ionic liquid 

NP Nanoparticles 

TB Tribiological property 

K Thermal conductivity 

P Density 
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Cp Specific Heat Capacity 

n Refractive index 

Re Reynolds number 

[C4mim][Cl] 1-butyl-3-methyl imidazolium chloride 

[C4mim][Br] 1-butyl-3-methyl imidazolium bromide 

[C4mim][I] 1-butyl-3-methyl imidazolium iodide 

[C4mim][BF4] 1-Butyl-3-methyl imidazolium terrafluroborate 

Phen Phenanthroline 

TBAB Tetrabutylammonium bromide 

SILP Supported ionic liquid phase 

TC Thermal conductivity 

[Hmim][HCOO] 1-methyl imidazolium formate 

[Hmim][CH3COO] 1-methyl imidazolium acetate 

[Hmim][CH3CH2COO] 1-methyl imidazolium propionate 

[Hmim][HSO4] 1-methyl imidazolium hydrogen sulfate   

UV-Visible Ultraviolet-Visible spectroscopy 

IR Infrared spectroscopy 

NMR Nuclear magnetic Resonance spectroscopy 

XPS X-ray photoelectron spectroscopy 

SEM Scanning electron microscopy 

EDAX Energy Dispersive analysis by X-rays 

TEM Trasmission electron microscopy 

XRD X-ray diffraction Study 

TGA Thermogravimetric analysis 

SDS Sodium dodeycyl sulphate 

Ru-INFs Ruthenium ionanofluids 

HR-TEM High resolution transmission electron microscopy 

1D One dimentional 

2D Two dimentional 

3D Three dimentional 

Choline [NTf2] Choline bis(trifluromethylsulfonyl)imide ionic liquid 

LSPR Localized surface plasmon resonance 

Ag-nanospheres-NF Silver nanospheres nanofluid 

Ag-nanowires-NF Silver nanowires nanofluid 

Ag-nanoplates-NF Silver nanoplates nanofluids 

Ag-nanospheres-INF Silver nanospheres ionanofluid 

Ag-nanowires-INF Silver nanowires ionanofluid 

Ag-nanoplates-INF silver nanoplates ionanofluids 
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LA Levulinic acid 

GVL -valerolactone 

TPPTS tris(3-sulfonatophenyl) phosphine 
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Chapter 1 gives general introduction about ionic liquids their properties, synthesis 

protocols and applications. This chapter also provides general idea about transition metal 

nanoparticles in ionic liquids, their advanced applications in catalysis and heat transfer 

technologies along with literature search on ionic liquid based nanofluids. Justification, 

objectives of the present study and structure of the thesis are presentented at the end of  this 

chapter. 
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1.1 IONIC LIQUID 

Ionic liquids (ILs) are salts with melting point below 100 
o
C. When these salts are in a liquid 

state at room temperature, those are called as room temperature ionic liquids (RTILs). These 

salts in liquid phase are also decribed with other names as molten salt, liquid organic salt, non-

aqueous ionic liquid and fused salt as well [1]. Conventional crystalline salts have symmetrical 

packing of anions and cations  leading to a higher packing efficiency, while in case of ILs with 

unsymmetrical packing of ions leads to lower packing efficiency (Fig. 1.1). The melting point of 

an ionic compound depends on the lattice enthalpy which in turn depends on the size and charge 

of the ions. For larger ions and small charge, the energy requirement is less to break the ionic 

bond. So, organic cations with quaternary ammonium groups (R4N
+
) have low lattice energies 

and much lower melting points than their alkali metal analogues. For example, 1-Ethyl-3-

methylimidazolium chloride melts at ~70 °C where as NaCl melts at 801 °C [2]. 

 

 

Figure 1.1 Structure of ionic solid and ionic liquid (Figure adapted from site ref.[3]) 

1.1.1 Structures of ionic liquids 

IL is a combination of cation and anion. Usually IL cation is an organic structure. Cations 

reported are ammonium, sulphonium, phosponium, imidazolium, pyridinium, pyrrolidinium, 

thiazolium, oxazolium and pyrazolium. Anions structures are either organic (CH3COO
-
, CH3SO3

-

etc.) or inorganic anions (Cl
-
, Br

-
, I

-
, BF4

-
, PF6

-
, NTF2

-
, DCA

- 
etc.). The structure and related 

properties of ILs depend on how cations and anions get blended. Consequently, there are 
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innumerable possible structures that may form ILs. The conceivable cation-anion combinations 

to be evaluated  can be as high as 10
18 

[4]. Some of the examples are shown in Fig.s 1.2 and 1.3. 

 

Figure 1.2 Some common cations used for synthesis of ionic liquids 

 

Figure 1.3 Some common anions used for synthesis of ionic liquids 

 

UNIVERSITAT ROVIRA I VIRGILI 
IONIC LIQUIDS WITH AND WITHOUT TRANSITION METAL NANOPARTICLES FOR ADVANCED HEAT TRANSFER FLUIDS AND CATALYSIS APPLICATIONS. 
Virendra Sudam Patil 
Dipòsit Legal: T 1459-2015



Introduction, justification and objectives Chapter 1 

 

Virendra S. Patil, PhD Thesis, URV SPAIN, June 2015                                     1.5 | P a g e  
 

1.1.2 Properties of ionic liquids 

ILs possess an unique array of physicochemical properties which shifted  them  from laboratory 

curiosity to task-specific applications. Many ILs have desirable properties for such uses, 

including low volatility, thermal stability, good electrical and thermal conductivity, wide 

electrochemical windows, and the miscibility with other organic, inorganic, ionic and molecular 

compounds including polymers and biopolymers. Those properties made these  ILs as ideal 

media for various transformations in solution [5]. General physico-chemical properties of an 

ionic liquid are mentioned  in Table 1.1. A large number of  ILs can be synthesized using various 

combinations of ions, also by modifying the length, branching and/or the number of substituents 

in the cation and anion. Because of this reason, ILs are often referred to as tailor-made designer 

solvents [6-7]. 

Table 1.1 General physico chemical properties of Ionic liquids (Table adapted from ref. [8]) 

Entry Property Measure of property 

1 A salt Cation and or anion quite large 

2 Freezing point Preferably below 100 
o
C 

3 Liquidus range Often > 200 
o
C 

4 Thermal stability Usually high 

5 Viscosity Normally < 100 cP, workable 

6 Dielectric constant Implied < 30 

7 Polarity Moderate 

8 Specific conductivity Usually < 10 mScm
-1

, good 

9 Molar conductivity < 10 Scm
2
 mol

-1
 

10 Electrochemical window >2V, even 4.5 V, except for Brønsted acidic systems 

11 Solvent and/or catalyst Excellent for many organic reactions 

12 Vapor pressure Usually negligible 

 

1.1.3 Synthesis of ionic liquids 

The selection of the synthesis method for IL depends as per the convenience of user and 

necessity to design the aimed IL with choice of particular cation and anion. General routes for 

preparation of an IL are discussed below. 

a) Direct alkylation reaction. In the alkylation reaction, alkyl group is taken  from one molecule 

to another. This is a one way reaction in which the desired IL is produced directly from their 
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starting materials in a single step [9]. General scheme of an alkylation reaction used for 

preparation of IL (scheme 1.1) is as follows 

 

Scheme 1.1 General scheme for direct alkylation reaction of ionic liquids 

b) Quaternization and Metathesis of anion reaction. In this method, IL can be obtained in the 

following two steps: The initial step of synthesis is the quaternization of amines, phosphanes etc. 

with haloalkanes [2]. Reaction of quaternized product with metal salt of the desired anion 

generates the final product as an IL, as shown in Scheme 1.2 below. 

 

Scheme 1.2 Quaternization and metathesis reactions of ionic liquids 

 

c) Synthesis of IL by neutralization of base with Brønsted acid. Protic acid ionic liquids (PIILs) 

can be prepared through a simple and atom economic neutralization of base as amines (e.g. 
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diisopropylmethylamine, diisopropylethylamine) with Brønsted acid HX where (X= HCOO
-
, 

CH3COO
-
, HF2

-
, H2SO4

-
 etc.). These rections are exothermic in nature and are carried out at 0 

o
C 

or less than this temperatures [10]. General example of neutralization reaction of amine as a base 

with acid is shown in Scheme 1.3.  

 

 

Scheme 1.3 Neutralization reaction of amines with acids for preparation of ionic liquids 

c) Synthesis of ILs via N-Hetrocyclic carbene (NHC) intermediates.Carbenes are molecules 

which have lone pair of electrons on a carbon atom. This in turn renders them highly reactive. As 

a result, carbenes are useful intermediates in the synthesis of chemical compounds. The synthesis 

of ILs via carbenes can be achieved either by reaction of NHC adducts with acids or reaction of 

NHC organometallic intermediates with acids as shown in Scheme 1.4. 

 

Scheme 1.4 Synthesis of ionic liquids by N-Hetrocyclic carbene route 

d) Synthesis of ILs with ion-exchange material.Essentially, ion exchange materials are salts 

where, one of the ions is fixed in a stationary (solid/gel) phase and the counter ion (in solution) is 

exchangeable. For anion exchange, when a solution is passed through a column of ion exchange 
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material, the counter ion of the material [A]
-
 will equillibriate with the corresponding ion of the 

solution [B]
-
. Provided  the column is of sufficient length or the equilibrium constant for 

exchange is sufficiently large,  exchange will take place until complete exchange occurs and only 

species [Cation]
+
[A]

-
 is eluted as a pure solution [11]. Exchange of anions in a column of an ion-

exchange material is shown in Scheme 1.5, below. 

 

Scheme 1.5 Synthesis of ionic liquids by ion-exchange in a column of ion-exchange material 

1.1.4 Applications of ionic liquids 

ILs are liquid salts which allow tailor-made synthesis, having stability over a wide temperature 

range, high heat capacity, high density, negligible vapor pressure, and their green credential as an 

alternative to volatile organic solvents make them popular in the scientific community [15]. One 

more advantage of ILs is that they can be used to insitu generate and stabilize metallic 

nanoparticles [14].  

 

Figure 1.4 Applications of ionic liquids (adapted from ref. [12]) 

Classical salts have charge-ordered structures while ILs differ from them in a very important 

aspect that they possess pre-organised structures, mainly through hydrogen bonds. ILs serve both 

as a solvent and as a structure-directing agent. Structural organization of ILs can be used as 

“entropic drivers” for the spontaneous, well-defined and extended ordering of nanoscale 
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structures [5, 16-17]. Due to such properties, ILs have a wide range of applications as shown in 

Figure 1.4. 

 

1.2 TRANSITION METAL NANOPARTICLES IN IONIC LIQUIDS  

Nanoscale materials especially, transition metal nanoparticles have attracted intensive attention 

from scientific community, because of their unique chemical and structural properties. We can 

vary the properties like size, shape and surrounding chemical environment of the nanomaterials 

[13]. It is supposed that nanoparticles less than 100 Å in diameter will have properties 

intermediate between those of bulk and single atom. However, nanoparticles should be stabilized 

against aggregation into bulk form. The main methods used for the stabilization of nanoparticles 

are electrostatic or steric protection by using water-soluble polymers, quaternary ammonium 

salts, surfactants, or polyoxoanions [14].  

1.2.1 Advantages of transition metal nanoparticles in ionic liquids 

IL based nanofluids attracted extensive attention in recent years because of their enhanced 

thermal and catalytic performances compared to the base fluid counterpart [18-19] as IL 

nanofluids can overcome the shortcomings of IL itself. The scientific community  refers IL based 

nanofluids with different names. The name “IoNanofluids” (INFs) was recently proposed by 

Nieto de Castro and co-workers [20],  while Paul et al. pronounce these type of nanofluids as a  

Nanoparticle Enhanced Ionic Liquids (NEILs) [21]. Other attractive features of INFs are that 

they are designable and fine-tuneable through their base ILs for chosen properties and tasks. 

With these fascinating features including high thermal conductivity, high heat capacity, non-

volatality, INFs can be used as advanced heat transfer fluids in numerous cooling, chemical 

engineering and green energy based applications. Noble metal nanoparticles (NPs) may 

constitute an alternative material for the construction of novel biosensors [23]. NPs in ILs have 

prominent applications in  biosensors most likely due to the high conductivity of ILs arising from 

electron trasfer from the metal NPs [24]. Some other applications include the nonaqueous 

microemulsions containing the as-synthesized copper nanoparticles as high performance 

nanolubricants directly, which showed excellent tribological performance and high stability after 

UNIVERSITAT ROVIRA I VIRGILI 
IONIC LIQUIDS WITH AND WITHOUT TRANSITION METAL NANOPARTICLES FOR ADVANCED HEAT TRANSFER FLUIDS AND CATALYSIS APPLICATIONS. 
Virendra Sudam Patil 
Dipòsit Legal: T 1459-2015



Introduction, justification and objectives Chapter 1 

 

Virendra S. Patil, PhD Thesis, URV SPAIN, June 2015                                     1.10 | P a g e  
 

storage for 6 months at ambient conditions [25]. The dispersed metal nanoparticles stabilised in 

ILs are utilized as colloidal catalysts for biphasic fluid reactions or as supported catalysts on 

suitable solid material as a support. These multiphase frameworks allow easy product separation 

from the catalyst and  reuse of the transition metal  NPs without any appreciable loss of activity 

for many of reactions [26]. C-C coupling reaction is one of the most important and investigated 

process in catalysis. Transition metal stabilized in IL is very attractive, especially for Pd metal 

catalyzed C-C bond formation processes with a recycle of catalyst [27].  

1.2.2 Synthesis protocols for transition metal nanoparticles in ionic liquids 

It is possible to synthesize colloidal suspensions of transition metal nanoparticles into ILs by the 

following methods:  

(1) Metal precursors in the form of [M (I-IV] are reduced and dissolved in the IL medium [14]. 

(2) Organometallic complexes are decomposed in the formal zero oxidation state and dissolved 

in ILs [28]. 

(3) Bombardment of metal prucursors in bulk form which generate metal NPs that are deposited 

in  ILs [29]. Figure 1.5 shows the process  of metal NPs deposition from metal foil to IL.   

(4) In phase transfer method, pre-formed NPs in water or organic solvents are transfered to the 

IL phase (Figure 1.6) [30].  

 

Figure 1.5  Simplified model of metal NPs deposition in ILs by the sputtering method. (Figure 

adapted from ref. [26]) 
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Figure 1.6 (a) Gold NPs transferred from the aqueous phase to the BMI.PF6 phase (b) and in 

the presence of HPF6; (c) [Au(0)]n NPs transferred from water to BMI.NTf2 and (d) with 

LiNTf2. (Figure adapted from ref. [31]) 

 

All four methods of  preparation of  transition metal based nanoparticles in IL medium are shown 

in Scheme 1.6.  

 

Scheme 1.6 General methods used to prepare metal nanoparticles in ILs (Scheme adapted from 

reference [26]) 
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1.3 TRANSITION METAL NANOPARTICLES IN IONIC LIQUIDS FOR 

HEAT TRASFER APPLICATIONS  

The suspension of nanoparticles of various morphologies (spheres, rods, tubes, plates etc.) in 

base liquid is commonly called as nanofluids [32]. Ceramic, metallic (Cu, Fe, Ag, Au), carbon 

and polymer (CNT, PVP) based nanofluids have shown  improved thermal conductivity in 

contrast to their base liquids [33-40]. Nanofluids show higher heat conduction, more stability, 

microchannel cooling without clogging, reduced chances of erosion, reduction in power 

compared to microfluids [41-43]. In spite of the fact that nanofluids display improved heat 

trasfer properties, nanofluids designed with traditional base solvents (water, ethylene glycol, oil, 

etc.) have some drawbacks to be  used as  heat trasfer media. 

Eventhough water is easily available, water and ethylene glycol based nanofluids can be utilized 

at moderately low temperatures while, synthetic oil suffers due to its higher vapor pressure. 

Altogether these conventional base liquids have low thermal stability. As a result, it is important 

to create novel nanofluids containing  liquids other than these traditional liquids for designing of 

heat-transfer fluids [44] To design higher energy efficient heat transfer systems, heat transfer 

fluid properties that influence heat and mass transfer should be favorable [45]. For an ideal heat 

transfer fluid, it requires low vapor pressure, high heat capacity, low viscosity, high thermal 

stability and low or no corrosivity.  Besides these, its ecological and human toxicology along 

with its biodegradability are further important requirements. ILs have very low vapor pressure, 

good heat capacity and higher thermal stability. Those unique features make them ideal media 

for potential heat trasfer applications. Very low vapor pressure of ILs allows them to use at very 

low pressure or under vaccum. Furthermore, low vapor pressure of ILs prevents them to 

evaporate at higher temperature unlike  water. Because of this, ILs can also be used in open 

system to store thermal energy. One more interesting aspect in case of IL is that they are tailor 

made hence, we can design them as per the requirement either “hydrophilic” or “hydrophobic” 

which allow to dissolve or disperse other heat transfer media in ILs. It has been demonstrated 

that the ILs based nanofluids (INFs) show improved thermal conductivity as contrasted with the 

clean ILs [46]. Designing of INFs for enhanced trasport properties is the new emerging field of 
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research in the field of chemistry and engineering. INFs synthesis can be possible for desired 

application with tailored thermo-physical properties. 

 

1.4 LITERATURE SURVEY ON STUDY OF PROPERTIES OF IONIC 

LIQUID BASED NANOFLUIDS 

The summary of study of various properties of ILs and / or ionanofluids is presented in Table 

1.2. 

Table 1.2 Literature search on IoNanofluids and their thermophysical properties 

 

Entry 

 

Nanoparticles 

 

Ionic liquid 

 

TrasportProperty 

 

Therotical study 

 

Reference 

 

1 

 

Au 

 

[Bmim][PF6] 

 

TB, K 

 

- 

 

[47] 

2 CuO [C2mim][OAc] 

[C4mim][OAc] 

[P8 8 8 12][OAc] 

 

P 

 

-  

[48] 

 

3 AgI [P6,6,6,14] [Cl] P , n , η ,Cp - [49] 

(Table continue) 

 

4 Al2O3 [C4mim][NTf2] 

[C4mpyrr][NTf2] 

K, Cp, Re                    - [50] 

5 (Ni/C) [HMIM][NTf2] RP - [51] 

6 Al2O3 

SWCNT 

Graphene 

nanofiber 

ZnO 

Fe2O3 

SiO2 

CuO 

Au 

[C4mmim][TN f2] K, η -  

[52] 

7 Al2O [C4mpyrr][NTf2] K,Cp, η - [53] 

 

 

8 Al2O3 

Carbon black  

[C4mmim][NTf2] P, Cp and 

Volumetric Cp 

- [54] 

9  

MWCNT 

[C6mim][BF4] 

[C4mim][CF3SO3] 

K, Cp - [46] 
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[C4mpyrr] 

[(CF3SO2)2N] 

[C4mim][PF6] 

[C6mim][PF6] 

10  

Functionalised 

MWCNT 

 

[Bmim][PF6], 

Rheology TB, 

shear η 

- [55] 

 

 

11  

CNT 

[Cnmim][(CF3SO2)2N] 

[C4mim][BF4] 

 

K - [56] 

 

12 carbon NP Nmethylpiperazinium lactate - Molecular Dynamics Study [57] 

13  

Carbon-

nanotubes 

[C4mim][NTf2] 

[C4mim][CF3SO3] 

[C6mim][NTf2] 

[C8mim][NTf2] 

[C4mim][BF4] 

K, Cp - [58] 

14 MWCNT [C4mim]BF4] [C4mim]PF6] P, Cp - [59] 

15 MWCNT [C4mim][(CF3SO2)2N] 

[C2mim][EtSO4] 

  K - [60] 

16 MWCNT [(C6)3PC14)][Phosph], 

[(C4)3PC1)][C1SO4], 

[(C6)3PC14][NTf2], 

[(C6)3-PC14][FAP]. 

K and rheology - [61] 

 

 

 

(Table continue) 

 

17 MWCNT [C4mim][dca], [C2mim][dca] 

[C4mpyr][dca] 

K and P - [62] 

18 MWCNT [C4mim][NTf2] K and Cp  [63] 

19 MWCNT [Bnmim][BF4] 

[Bmim][AuCl4]  

Imobilization and 

molecular 

rearrangement 

- [64] 

 

20 Graphene/CNT [HMIM][BF4] K, Cp, η - [65] 

21 Graphene [HMIM][BF4] K, η, CpP, - [66] 

22 Graphite 

Swcnt 

choline benzoate 

choline salicylate 

- molecular dynamics 

simulations 

[67] 

23  

C60 fullerene 

[BMIM][BE] 

[BMIM][BF4] 

[BMIM][LA] 

[BMIM][MS] 

[BMIM][PF6] 

[BMIM][PR] 

[BMIM][SA] 

[BMIM][NTf2] 

[CH][BE] 

 

Solvation 

 

Molecular dynamic study 

 

[68] 
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[CH][BF4] 

[CH][LA] 

[CH][MS] 

[CH][PF6] 

[CH][PR] 

[CH][SA] 

[CH][NTf2] 

[MP][BE] 

[MP][BF4] 

[MP][LA] 

[MP][MS] 

[MP][PF6] 

[MP][PR] 

[MP][SA] 

[MP][NTf2] 

 

 

 

 

 

 

 

 

[TB-Tribiological property, K- thermal conductivity, P- Density, η - Viscosity, Cp- Heat Capacity, n- refractive 

index, Re- Reynolds number] 

 

1.5 TRANSITION METAL NANOPARTICLES IN IONIC LIQUIDS FOR 

CATALYSIS APPLICATIONS 

Transition-metal NPs are well known for catalysis applications also. Transition-metal NPs are 

groups containing from a couple of tens to a few thousand metal atoms, balanced out by ligands, 

surfactants, polymers or dendrimers ensuring their stability in the nano size form. The utilization 

of transition metal nanoparticles in catalysis is for activation of the substarte molecules under 

milder conditions  due to their  nano size character  which brings selectivity and efficiency in 

heterogeneous catalysis [69]. NPs themselves can be utilized as catalysts in homogeneous 

frameworks or on the other hand they can be heterogenized by fixation onto a heterogeneous 

base, for example, silica, alumina, different oxides or carbon, for example carbon nanotubes. It is 

possible to design metal nanoparticle catalyst for a particular reaction. Types of reactions 

catalyzed by transition metal nanoparticles in ILs are given in Table 1.3. 
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Table 1.3 Examples of catalytic reactions promoted by transition metal nanoparticles in ILs 

 

Entry 

 

Reaction 

 

Metal 

 

Ionic liquid  used 

 

Substrate 

 

Product 

                

Conv./sel. (%) 

 

Ref. 

 

1 

 

Hydrogenation 

 

Ru 

 

C4mim.PF6 

 

1-hexene 

 

Hexane 

 

>99/100 

 

[70] 

2 Mizoroki-Heck Pd BBI.Br/BBI.BF4 Iodobenzene/ethyl 

acrylate 

Ethyl cinnamate 87 
(isolated)

 [19] 

3 Suzuki-Miyuara Pd BMI.PF6 Bromobenzene/phen

ylboronic acid 

Coupling product 100 [71] 

4 Suzuki C-C 

coupling 

Pd BMI.PF6/N ligand Bromobenzene/phen

ylboronic acid 

Coupling product 56 
(isolated)

 [72] 

 

5 Stille Pd THeptAB Chlorobenzene/tribut

ylphenylstannane 

Coupling product 75 [73] 

6 Ullmann Pd OMI.BF4 Iodobenzene Homocoupling 99 [74] 

 

7 Fisher-Tropsch Ru BMI.BF4/poly 

[NVP-co-

VBIM.X] 

CO Hydrocarbons 75 [75] 

 

      (Table continue) 

8 Borylation Ir THTdP.MS Benzene/pinacolbora

ne 

Phenylboronic acid 
47 

(isolated)
 

[76] 

 

 

 

9 Isotope 

exchange 

Ru THTdP.DBS Decaborane 10B-decaborane 90 [77] 

10 Hydrosilylation Pt BPy.BF4 1-

hexadecene/siloxane 

B9800 

Organosilicon 

product 

85 [78] 

Generally, ionic liquid based transition metal nanoparticle catalysts are of four types: 

a) Transition metal NPs in nonfunctionalized ILs,  

b) Transition metal NPs in functionalized ILs,  

c) Transition metal NPs with additional stabilizing ligands in ILs, and  

d) Transition metal NPs on IL phase support.  
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a) Transition metal NPs in nonfunctionalized ILs:  

Metal NPs in nonfunctionalised ILs  act as  catalysts for selective hydrogenation of alkenes and 

arenes under atmospheric reaction conditions. They behave as “single-site metal catalyst” for 

hydrogenation of alkenes,  in solvent free conditions for reduction of arenes or in Fisher-Tropsch 

process. Protective layer of IL on metal  NPs surface affects the catalyst activity, selectivity and 

stability. Metal NP surface stabilization is provided by protective layer of supramolecular ionic 

liquid cation aggregates, non-polar side chains, NHC carbene species, surface hydrogen atoms 

and an oxide layer when exist on the Metal NP surface [79], -e.g.  insitu generated Rh 

nanoparticles in 1-Butyl-3-methyl imidazolium terrafluroborate ([C4mim][BF4]) IL efficiently 

catalyzed cyclohexene hydrogenation [80]. Arenes  having various functional groups are 

hydrogenated by Ir metal NPs resulting in the reduction of the aromatic ring and subsequent 

hydrogenolysis of the C-O bond. The hydogenolysis is a classic reaction promoted by traditional 

heterogeneous catalysis [81]. Arene hydrogenation was also fruitfully employed as a probe 

reaction to confirm the presence of metal (0) species on the formation of Ru metal NPs from the 

reduction of a Ru(II) precursor in an imidazolium based IL with NTf2 anion [82]. Some reports 

demonstrate that Ru(0) nanoparticles in ILs are also  effective catalysts for the selective 

hydrogenation of biomass-derived entities [83].  

b) Transition metal NPs in functionalized ILs: 

Functionalized ILs provide enhanced stabilization of the  metal NPs than nonfunctionalized ILs. 

Functionalization of an IL is an important phenomenon to necessarily improve the material 

ability to interact with substrates [26]. Most of the study is focused on functionalization of 

imidazolium cation based IL , although pyridinium and pyrrolidinum cations also have been 

functionalized for catalysis application study NPs [84-85]. In contrast to early reports in which 

only the cation was modified for a desired application, new studies have focused on the synthesis 

of ILs containing both fuctionalized cation and anion -e.g. Ru metal NPs dispersed in 1-

butyronitrile-3-methylimidazolium NTf2 IL exclusively hydrogenate nitrile groups instead of 

arenes, which are typically hydrogenated by Ru metal NPs in nonfunctionalized ILs [86]. 

Therefore, it is possible to modulate the selectivity of the catalyst simply by the presence of a 
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suitable functional group in IL. The selective hydrogenation of alkynes to (Z)-alkenes catalyzed 

by Pd metal NPs stabilized in (BCN)MI.NTf2 IL was also recently reported [87].     

c) Transition metal NPs with additional stabilizing ligands in ILs: 

Another strategy to enhance metal NP stabilization in ILs is the use of additional stabilizing 

ligands. This extra protecting ligands such as N-donar ligands [88], polymers [89], or quaternary 

ammonium salts [90] have been utilized to improve the stability of metal NPs in ILs during the 

catalytic process - e.g. monofunctionalized bipyridine ligand was designed to allow good 

stabilization of Rh metal NPs in (BMI.PF6) IL. The Rh nanoparticles remain stable in solution 

even after hydrogenation of substituted arene [91]. The role of phenanthroline (Phen) as an extra 

ligand was investigated during the hydrogenation of olefins using Pd metal NPs in (BMI.PF6) IL 

[92]. Ligand based on tetraalkylammonium salts are commonly applied for enhanced 

stabilization of metal NPs in ILs. In particular, Pd metal NPs prepared in the presence of 

tetrabutylammonium bromide (TBAB) as a capping agent and then dispersed in (BMI.PF6) IL 

displayed good efficiency and selectivity in hydrogenation reactions [90]. Polymers are another 

type of ligands extensively used for metal NP stabilization. These molecules give electronic 

stabilization by weakbinding to the NP surface, but they mainly provide steric protection against 

agglomeration. PVP-stabilized rhodium metal NPs give an effective and highly stable catalytic 

system in hydroxyl-functionalized ILs for styrene hydrogenation [93]. Bimetallic nanoparticles 

capped with PVP have also been used for the hydrogenation of various substrates in imidazolium 

ILs [94].  

d) Transition metal NPs on IL phase support:  

Metal NPs immobilized in supported ILs have emerged as alternative materials for catalytic 

reactions  which combine  the advantages of classical heterogeneous supports, called as SILP 

(supported ionic liquid phase) catalysis. ILs can be used as a simple thin film necessary to give 

the desired properties like stability, selectivity, etc., thus significantly reducing the mass-transfer 

problems usually associated with reactions performed when ILs are used as solvents and gives 

access to more robust/recyclable catalysts with easy catalyst separation after reactions. The SILP 

concept involves the use of an IL layer on the solid support or IL molecules covalently attached 

to the support surface to immobilize transition metal NP catalysts -e.g. Pd metal NPs synthesized 
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in molecular sieves containing an IL layer were successfully employed in alkene hydrogenation 

[95]. However, these materials showed superior catalytic activity in cyclohexene hydrogenation 

when compared to a biphasic system [92]. Multiwalled carbon nanotubes functionalized by ILs 

are other interesting supports for metal NP immobilization purpose. Indeed, the reduction of a 

Pd(II) precursor affords Pd metal NPs that are deposited in situ in the IL·X·MWCNTs (X is the 

imidazolium counterion) support. The system based on the SbF6 anion demonstrates the best 

activity in trans-stilbene hydrogenation to 1,2-diphenylethane [96]. 

 

1.6  JUSTIFICATION OF THE THESIS 

Previous study on most of the heat transfer properties for various nanomaterials in several ILs (as 

shown in Table 1.2 ) was mainly focused on thermal conductivity (TC) and heat capacity (Cp) of 

INFs. For implementation of INFs in the application of heat transfer, it becomes important to 

investigate other properties along with TC and Cp  such as  density and viscosity. 

Eventhough, INFs displayed enhanced TC and Cp compared to only ILs, sometimes viscosity is 

not studied or occasionally INFs are more viscous in nature. Large viscosity of INFs makes the 

fluid unsuitable to flow easily through pipes of heat transfer system. It further increases pumping 

power consumption of the system, simultaneously also the cost of the instrument which creates 

an obstacle to apply INFs for practical utilization in heat transfer applications. 

For development of new age INFs with improved transport properties it becomes essential to 

know the effect of nanoparticle stabilizing counterpart from ILs especially, in case of in situ 

generated nanoparticles in ILs. It becomes the subject of study that how the hydrogen bonding 

from IL, its anion size, cation size, volume of anion and cation, electrostatic stabilization affects 

on particle sizes and morphologies of in-situ generated metal nanoparticles. Further it is 

necessary to study effect of these factors on transport properties of INFs. 

In general, most of the nanomaterials available in the market are stabilized with agents like PVP, 

thiols with unspecified thickness to overcome the agglomeration of nanoparticles. The effects of 

dispersing, pure and capped nanomaterials in ILs and subsequent influence on heat transport 
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properties would also prove an important topic of research in development of INFs for new 

generation heat transfer fluids. 

For similar type of ILs, dispersed  metal nanoparticles with altered size and shapes are possible. 

How this variation of nanomaterial morphology affects  the transport properties of INFs is 

needed to be addressed. Again lack of reliable thermophysical properties data for some typical 

ILs and newly synthesized INFs prevents to actual utilization of INFs in heat transfer based 

technologies. As we have seen in Table 1.2, carbon based materials like carbon nanofibres, 

nanotubes and graphene show altogether enhanced TC compared to neat ILs. Also,  inclusion of  

trasition metal nanoparticles shows the similar effect. The transport properties of combination of 

transition metal nanoparticles and carbon based support materials in ionic liquids have  not been 

explored yet. 

It is therefore  required  to  explore various ILs and INFs, considering their environmentaly 

favorable properties and wide applicability to the industrial systems. Incorporation of transition 

metal nanoparticles in ILs for reactions of practical importance is a thrust area of research which 

is reflected by number of increasing publications in this field. Tailor made designing of transition 

metal nanoparticles and supported transition metal nanoparticles in ILs possessing the desired 

properties like acidity and/or basicity responsible for selective transformation of substrate to 

valuable products with high yield are not explored very well. It is also required to investigate the 

effect of cation and/or anion counterparts of ILs to tune the acidity and/or basicity for  

establishing the relationship with the catalytic activity. Extensive studies on recycling of 

transition metal nanoparticles and IL based catalysts are also important for successful  

implementation of these materials for catalytic process.  

The proposed investigation in this thesis work, was  to design ILs and develop ILs with transition 

metal nanoparticles and generate reliable data on some thermophysical properties. These  data 

will contribute to design new generation heat transfer fluids and apply those fluids for heat 

transfer applications. New catalyst systems also  were proposed to be developed based on ILs 

and transition metal nanoparticles or transition metal nanoparticles with other support materials 

in ILs for conversion of biomass derived platform molecules to value added chemicals with 

highest conversion and selectivity. 
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1.7 OBJECTIVES OF THE THESIS 

Aim of the present study is to design ILs  and subsequently, modify their  structures by variation 

in cation or anion for enhancing their thermal and flow properties. Initially, several  imidazolium 

cation based ILs were prepared with variation in anions such  as  chloride, bromide, iodide and 

tetrafluroborate. Then these were further  modified by incorporating the NPs of transition metals 

such as ruthenium (Ru) and silver (Ag).  It was also the objective of this work to study the 

catalytic properties of the prepared ILs and of the combination of IL with carbon supported NPs 

of Ru for hydrogenation of levulinic acid (LA) to g-valerolactone (GVL).  

The specific objectives of this work are given below. 

1) To review experimental and theoretical studies dealing with nanoparticles in ionic liquids 

for heat transfer and catalysis applications. 

2) To measure  thermal properties of developed fluids for heat transfer applications 

3) To study the effect of variation of anions with the same cation of ionic liquids on thermal 

and flow properties. 

4) To improve the thermal and flow properties of ionic liquids with addition of or 

development of new transition metal based nanoparticles in ionic liquids. 

5) To screen ionic liquids for the desired fluid transport properties and further modification 

of these ionic liquids by incorporation of transition metal nanoparticles having various 

morphologies and sizes. 

6)  To study the catalytic activity of the prepared  ILs and transition metal nanoparticles  

7) To characterize in detail the above prepared transition metal based functional materials 

by 1H NMR, 13C NMR, XPS, SEM, ESEM, TEM, EDS, IR, UV-Visible, TGA, DTA, 

DSC, XRD. 

 

1.8  STRUCTURE OF THE THESIS 

The research work of this doctorate is organized in different chapters and the outline of its 

contents  is given below.  

Chapter 1 gives general introduction about ionic liquids, their properties, synthesis protocols 

and applications. This chapter again provides general idea about transition metal nanoparticles in 
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ionic liquids their advanced applications in catalysis and heat transfer technologies along with 

literature search on ionic liquid based nanofluids. Justification, objectives of the present study 

and structure of the thesis are also presented at the end in this chapter. 

Chapter 2 presents materials and experimental methods used to develop transition metal and 

ionic liquid based heat transfer fluids and catalyst. This chapter includes characterization 

methods and techniques used to analyze prepared materials. Techniques used to measure 

thermophysical properties and to evaluate activity of the prepared IL based catalysts are also 

described in this chapter.  

Chapter 3  includes development and preparation of imidazolium halide based  ionic liquids. 

Study of effects of variation of anion counterparts of the ionic liquid on density, viscosity and 

thermal conductivity is presented here. In this chapter, ruthenium nanoparticle INFs are 

developed at room temperature and the effect of ruthenium nanoparticles on improvement of 

transport properties are also investigated. Effect of C2-(H) hydrogen atoms of the  ionic liquid is 

correlated with the particle size of ruthenium nanoparticles. 

Chapter 4  presents the study of transport properties of [Choline][NTf2] ionic liquid and silver 

nanoparticles of variable morphologies, such as nanospheres, nanoplates and nanowires in base 

ILs. INFs are developed based on the [Choline][NTf2] ionic liquid as a base fluid with silver 

nanospheres, nanoplates and nanowires. The effect of variation in morphology of silver 

nanoparticles on density, viscosity and thermal conductivity of INFs is also discussed in this 

chapter.  

Chapter 5 deals with a new combination of 5% Ru/C and acidic Brønsted ionic liquids  

developed for the selective hydrogenation of bioderived levulinic acid to γ–valerolactone. Effect 

of variation in acidic anion and its chain length on acidity of ionic liquid is investigated with 

Hammet acidity function. Further correlation of IL Brønsted acidity and catalytic activity study 

is described in this chapter. Effect of process parameters is investigated for the optimization of  

reaction conditions.  

Chapter 6 provides the conclusions of the work done in this thesis and comments for future 

work. 
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Chapter 2  presents materials and experimental methods used to develop transition metal 

and ionic liquid based heat transfer fluids and catalyst. This chapter includes 

characterization methods and techniques used to analyze prepared materials. Techniques 

used to measure thermophysical properties and to evaluate activity of catalyst are also 

described in this chapter.  
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2.1 MATERIALS AND METHODS 

This section 2.1 includes the description of chemicals and materials utilized in designing of ionic 

liquids and development of  ionanofluids. Present section also demonstrates the reaction schemes 

involved in the designing of ionic liquids, their purification and procedures applied for 

development of transition metal based ionanofluids. In Table 2.1 all materials and chemicals 

used for designing of ionic liquids and development of ionanofluids are given along with their 

manufacturer and/or supplier. 

Table 2.1 Materials  used in the preparation  of ionic liquids and ionanofluids 

Entry Chemical and materials Company/supplier 

1 1-bromobutane (98+ %) Alfa Aesar 

2 1-chlorobutane (99+ %) Alfa Aesar 

3 1-Iodobutane (99% stabilized with copper) Alfa Aesar 

4 1- methyl imidazole Alfa Aesar 

5 Sodium tetrafluroborate Alfa Aesar 

6 Methanol (HPLC grade) RANKEM 

7 Dichloromethane (HPLC grade) RANKEM 

8 Ruthenium (III) chloride hydrate Sigma Aldrich 

9 Ethyl acetate Merck 

10 Activated charcoal Merck 

11 Choline bis(trifluoromethylsulfonyl)imide 

(CAS No 827027-25-8) 

io-li-tec 

12 50 nm Econix Silver Nanospheres 

(Lot# DAC 1296-MGM2091B) 

nanoComposix, Inc. USA 

13 550 nm Resonant Silver nanoplates 

(Lot# KJW2047) 

nanoComposix, Inc. USA 

14 Silver nanowires Ref. 200004 Av. Diameter 50 nm, length 

up to 50 um 

EMFUTUR company Europe 

15 Levulinic acid (99%) Sigma-Aldrich 

16 Sodium borohydride Sigma-Aldrich 

17 RuCl3.6H2O Sigma-Aldrich 

18 Acetic acid glacial (100%) Merk 

19 Sulfuric acid (98%) Merk 

20 Activated charcoal Merk 

21 1-Methyl imidazole (99%),   Alfa Aesar 

22 Formic acid (85%),   Himedia 

23 Propionic acid (99%) LOBA Chemie 

24 4-nitroaniline (>98%) LOBA Chemie 

25 Ethanol absolute (99.9%,) AR,CYNPRAN GLUDT BV. 
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2.1.1 Methods used for designing of ionic liquids 

Since ionic liquid is a precursor for development of ionanofluids we first synthesized the 

imidazolium halide based ionic liquids. Synthesis of imidazolium halide ionic liquids was carried 

out in  two steps. 1) 1-butyl-3-methyl imidazolium chloride [C4mim][Cl], 1-butyl-3-methyl 

imidazolium bromide [C4mim][Br], 1-butyl-3-methyl imidazolium iodide [C4mim][I], were 

prepared through direct alkylation reaction. 2) For the synthesis of 1-butyl-3-methyl imidazolium 

tetrafluroborate [C4mim][BF4], already synthesized [C4mim][Br] ionic liquid was reacted with 

sodium tetrafluroborate through anion exchange reaction. Reactions involved in the synthesis of 

imidazolium halide ionic liquids are presented in a Scheme 2.1.  For all the four reactions, 1:1.2 

mole ratios of 1-methyl imidazole and alkyl halides reacted with each other. Excess of halo 

butane was removed by washing with ethyl acetate, separated by decantation and traces of 

solvents removed with rotatory evaporator. 1-butyl-3-methyl imidazolium tetrafluroborate 

[C4mim][BF4] was synthesized according to reference [1]. Obtained ILs were purified again 

before prior use in the development of ruthenium ionanofluids. For purification, gained IL was 

dissolved in 50 mL of deionised water in a round bottom flask. 1g of activated charcoal was 

added into this solution. The reaction mixture was stirred at 70 
o
C for 24 h under nitrogen 

atmosphere. This mixture was then cooled and vacuum filtered on bed of celite powder in 

sintering funnel. Schematic of the purification is shown in Figure 2.2. The as filtered  mixture of 

ionic liquid and water  was heated at 80 
o
C under vaccum on rotatory evaporator for 8h, to 

evaporate water. The remaining water was removed by drying on a vacuum line overnight to 

obtain dry ionic liquid. Digital photographs of the synthesized pure ILs are shown below in 

Figure 2.1. 

 

Figure 2.1 Photographs of designed pure ionic liquids A) [C4mim][Cl], B) [C4mim][Br], C) 

[C4mim][I] and D) [C4mim] [BF4] 
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Scheme 2.1 Reaction scheme for synthesis of 1-butyl-3-methyl imidazolium halide ionic liquids 

 

Figure 2.2 Schematic of purification of 1-butyl-3-methyl imidazolium halide ionic liquids 
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For development of catalyst for levulinic acid hydrogenation reactions we designed a series of 

Brønsted acidic ionic liquids. The preparation of these Brønsted acidic ionic liquids was done by 

neutralizing 1-Methyl imidazole base with the selected four types of acids as shown in Scheme 

2.2. 

 

 

Scheme 2.2 Reaction schemes for designing of  Brønsted  acidic ionic liquids 
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All four imidazole based Brønsted acidic ILs viz. 1-methyl imidazolium formate 

([Hmim][HCOO]), 1-methyl imidazolium acetate ([Hmim][CH3COO]), 1-methyl imidazolium 

propionate ([Hmim][CH3CH2COO]), 1-methyl imidazolium hydrogen sulfate  ([Hmim][HSO4]) 

were prepared by mixing equimolar amounts of acid and base [2]. In a typical synthesis, 

dropwise addition of a base to acid was carried out for complete neutralization in an ice bath in 

order to control  heat generation in a reaction,  as shown in schematic of Figure 2.3. The reaction 

mixture was stirred for 6 h at room temperature. The water formed in the neutralization was 

removed by rotavapour at 80 
o
C for 6 h. The last traces of water and volatile impurities were 

removed from ILs under reduced vacuum at 70 
o
C for 10 h. 

 

Figure 2.3 Schematic of synthesis of Brønsted acidic ionic liquids 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
IONIC LIQUIDS WITH AND WITHOUT TRANSITION METAL NANOPARTICLES FOR ADVANCED HEAT TRANSFER FLUIDS AND CATALYSIS APPLICATIONS. 
Virendra Sudam Patil 
Dipòsit Legal: T 1459-2015



 

Experimental, materials and methods Chapter 2 

 

Virendra S. Patil, PhD Thesis, URV SPAIN, June 2015                                         2.8 | P a g e  
 

2.1.2 Methods used for development of ionanofluids and catalyst 

For the development of ruthenium INFs in 1-butyl-3-methyl imidazolium halide ILs, calculated 

amount of ruthenium metal precursor (RuCl3.xH2O) was added to the calculated amount of IL 

which is vacuum dried. In a typical experiment, 0.0082 gms of RuCl3.xH2O was addead to 40 mL 

of dried IL. The metal precursor and IL mixture was stirred for 2 h at room temperature in N2 

environment, to make uniform solution of metal precursor in IL as a solvent. After 2 h of stirring, 

1M NaBH4 solution was added dropwise into the metal precursor solution in IL. For the 

synthesis of ruthenium nanoparticles in [C4mim][Cl] and [C4mim][I] ILs 3 mL of 1M NaBH4 

was utilized while for ruthenium nanoparticles in  [C4mim][Br] and [C4mim][BF4] ILs 1 mL of 

1M NaBH4 was utilized for complete reduction of metal precursor in base ionic liquids. After 

addition of 1M NaBH4, [C4mim][Br] and [C4mim][BF4] ILs based solutions were stirred for 2 h 

to complete the reduction of the metal precursor to metal nanoparticles. In case of [C4mim][Cl] 

and [C4mim][I] IL, the time required to reduce the metal precursor was 72 h. Schematic of 

development of ruthenium INFs is shown in Figure 2.4. The ruthenium metal nanoparticles 

nanofluids in ILs thus obtained are further dried under vacuum before prior use for 

characterization and measurement of their transport properties. Digital photographs of the 

prepared  ruthenium INFs are shown in Figure 2.5. 

 

 

Figure 2.4 Schematic of development of IL based ruthenium ionanofluids 
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Figure 2.5 Photographs of the prepared ionanofluids(A) Ru-[C4mim][Cl], B) Ru-[C4mim][Br], 

C) Ru-[C4mim][I] and D) Ru-[C4mim] [BF4]) 

To develop silver INFs with different morphologies, initially, silver nanofluids were prepared 

and futher used for synthesis of silver INFs. Silver nanoparticles in nanoplates form were in the 

form of dispersion  in water. This nanofluid was used as received from the supplier. To prepare 

spherical silver nanofluid, 0.002 g of spherical silver nanoparticles  were added to 100 mL of 

Millipore water. The obtained solution was sonicated for 20 minutes to obtain dispersion of 

silver nanospheres in water as a base fluid. After that particles were very well dispersed in water 

solution which became faint yellow in color. 0.002 g of silver nanowires were dispersed in 100 

mL of Millipore water. For dipersion of nanowires in water, mixture was sonicate with the help 

of sonicator for 20 minutes. Digital photographs of all the three prepared silver nanofluids are 

given in Figure 2.6 

 

Figure 2.6 Digital photographs of  A) Ag-nanospheres nanofluid B) Ag-nanowires nanofluid  C) 

Ag-nanoplates nanofluids 

To prepare [Choline][NTf2] IL based silver INFs with various morpholgies,  equal amount  of  

IL and Ag nanoparticles based nanofluids were mixed together  in a conical flask. The mixture 
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forms two layes, a viscous layer of IL at bottom and  another immiscible layer above it. The 

obtained mixture was trasfered to a  round bottom flask which was then connected to rota-

evaporator for  mixing the Ag-nanoparticles from water phase to IL phase. This mixture was 

heated at 80 
o
C for 4 h to evaporate water from the fluid mixture. The remaining water was 

removed by drying on a vacuum line for two days to obtain dry silver ionanofluids as shown in 

Figure 2.7. For preparation of all three silver INFs namely Ag-nanospheres INF, Ag-nanowires 

INF, Ag-nanoplates INF, similar prepartion protocol is used in this study. Digital photograph of 

IL and developed silver INFs is shown in Figure 2.8. 

 

Figure 2.7 Schematic of development of IL based silver ionanofluids 

 

Figure 2.8 Digital photographs of  A) [Choline][NTf2]IL B) Ag-nanospheres INF  C) Ag-

nanowires INF D) Ag-nanoplates INF 

Ru supported on carbon support catalyst was prepared by impregnation method as shown in 

Figure 2.9. In a typical procedure, 2 g of the carbon support was suspended in an aqueous 
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medium. Calculated amount of RuCl3.xH2O was added under stirring for 1h for obtaining 5% 

(w/w) loading of ruthenium metal on carbon support. It was subsequently reduced using 5 mL 

(1M solution in water) of NaBH4. Then obtained suspension was filtered off and dried at 110 
o
C 

in an oven for 12 h.  

 

 

Figure 2.9 Development of 5% Ru/C catalyst 

 

2.2 CHARACTERIZATION TECHNIQUES  

Ultraviolet-Visible spectroscopy (UV-Visible): Optical absorptions of imidazolium halide ILs 

and Ru INFs, Choline (trifluromethylsulfonyl) imide IL, silver NFs and its respective silver INFs 

samples were measured with Shimadzu (UV-Vis) MultiSpec-1501 spectrophotometer and 8453 

UV-Vis spectrophotometer respectively. For collecting optical data of imidazolium halide ILs 
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and Ru INFs, a quartz  cell was sealed with teflon during the experiment to avoid moisture from 

atmosphere. The UV-Visible spectra of Brønsted acidic ionic liquids and indicator solutions 

were studied using (JASCO, 196 Corp., Tokyo, Japan, UV–VIS–NIR Spectrophotometer,197 

Model V-670).   

Infrared spectroscopy (IR) : All ATR-IR spectra of ionic liquids, nanofluids and INFs were 

collected in a range 600 cm
-1

 to 4000 cm
-1

 on infrared spectrometer (Fourier Transform Jasco 

FT/IR-600 Plus).  

Nuclear magnetic Resonance spectroscopy (NMR): For all NMR analysis, approximately 10 mg 

of the sample was taken into 2 mm NMR tube. Samples were dissolved in a D2O and CDCl3 

solvents as per solubility of sample. 0.5 ml of tetramethylsilane (TMS) solute was used as a 

internal reference for NMR chemical shift.  

X-ray photoelectron spectroscopy (XPS) : XPS analysis was performed on a ESCA-3000 VG 

Scientific UK, using non-monochromatic, AlKα radiation (1486.6 eV) operating at 150 W with a 

spectral resolution of 0.2 eV. A thin IL film of each samples (ILs, NFs and INFs ) was prepared 

by depositing of corresponding  liquid sample onto planar stud by drop casting and introduced in 

UHV chamber (< 5x10
-8

 Pa), with exposure to air minimized. The binding energy scale was 

calibrated with Au 4f 7/2 peak position (84.0 eV) and the C1s peak at 285.0 eV was used as a 

reference. Measurements were performed at take-off angle 55
o
. Peak deconvolution of C1s was 

accomplished using XPS Peak 4.1. 

Scanning electron microscopy (SEM) : SEM JEOL 6400 (20 KV) machine was used to do SEM 

analysis of silver nanofluids and silver ionanofluids. 

Energy Dispersive analysis by X-rays: (EDAX) : 

Elemental composition of 5% Ru/C catalyst was studied using transmission electron microscope 

(HR-TEM), model JEOL 1200 EX. EDAX analysis of Ruthenium ionanofluids was done with 

(NOVA NANOSEM-450). Elemental mapping of silver ionanofluids was carried out on (SEM 

JEOL 6400 + EDX oxfort instrument)  

Trasmission electron microscopy (TEM): The particle size and morphology of 5% Ru/C catalyst 

were studied using transmission electron microscope (HR-TEM), model JEOL 1200 EX. 

Samples were prepared by the procedure as follows. A small amount of the solid sample was 
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sonicated in 2 mL methanol for 1 min. A drop of prepared suspension was deposited on a Cu 

grid coated with carbon layer and grid was dried at room temperature before analysis. The 

morphology and particle size of as-prepared ruthenium nanoparticle colloids were characterized 

by HR-TEM (JEOL 2010F) at an acceleration voltage of 300 kV. TEM analysis of silver 

nanofluids and silver ionanofluids were carried out using TEM JEOL 1011 at an accelerating 

voltage of 100 kV. 

X-ray diffraction study (XRD): X-ray diffraction of 5% Ru/C catalyst was recorded on a 

PAnalytical PXRD Model X-Pert PRO-1712, using Ni filtered Cu Kα radiation (λ = 0.154 nm)  

as a source (current intensity, 30 mA; voltage, 40 kV) and X-celerator detector. The samples 

were scanned in the 2θ range of 10–80
0
. 

Thermogravimetric analysis (TGA): Thermal analysis of dried imidazolium halide ILs and their 

ruthenium INFs  were carried out in (Perkin Elmer model TGA7 Thermo balance) equipment. 

Thermal stability of Brønsted acidic ILs were studied by thermal gravimetric analysis, which was 

carried out using TG-DTA analyser (TA instruments, SDT 2960). Thermal analysis of Choline 

(trifluromethylsulfonyl) imide IL,  silver nanofluids and silver INFs were analyse with Mettler 

Toledo Model (TGA/DTA 851). Thermal analysis was  carried out in a temperature range from 

30 
o
C to 500 

o
C in N2 atmosphere with heating rate of 5 

o
C/min. 

 

2.3 MEASUREMENT OF THERMOPHYSICAL PROPERTIES  

 

2.3.1 Measurement of Density 

The density of a substance is its mass per unit volume. The symbol most often used for density 

is ρ.  

  
 

 
………………..(2.1) 

Density of the material expressed in S.I unit as kg/m
3
. For measurement of density of 

imidazolium halide ILs and ruthenium INFs “Anton Paar DMA60/512 P density cell” was used.  

This density cell measures the period of harmonic oscillation of the built-in U-tube, which 

contains the sample. Density is obtained by the comparison of the period of oscillations of 
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sample to that of a previous reference fluids used for calibration [3]. For measurement of density 

of Choline bis(trifluoromethylsulfonyl) imide IL, silver NFs and silver INFs an Anton Paar DSA 

5000 density measurement cell was used. Working principle of instrument is similar as per 

(DMA 60/512 P) density cell, but in this case a peltier-effect controller was used to control the 

temperature. Before measurement of density of all ILs and INFs, they were vacuum dried. After 

drying of samples, their water content was measured with the help of Karl-fisher titration to 

ensure proper drying of ILs and INFs. Anton Paar DMA60/51 device was previously calibrated 

with density reference fluids (S20 and S200, Koehler Instrument Company, Inc.) [4]. A Julabo 

F20-ME circulating bath with a water + ethylene glycol mixture was used to control the 

temperature of the experiments. For “Anton Parr DSA 5000”, calibration was carried out using 

certified density liquids provided by company. The displayed density values on the DSA 5000 

density measurement cell were compared with values given on certificate for those standards. 

For (Anton Parr DSA 5000) density measuring cell density was calculated from the quotient of 

the period of oscillations of the U-tube and the reference oscillator. 

                ……….(2.2) 

 

 

For measurement of Density with Anton Parr DMA60/512 P density cell at one single 

temperature and pressure following equation was used. 

 

        ……………………..(2.3) 

 

  
     

     
………………………….(2.4) 

 

  
             

       
…………………(2.5) 

                            

                         

                         

                                    

                                    

UNIVERSITAT ROVIRA I VIRGILI 
IONIC LIQUIDS WITH AND WITHOUT TRANSITION METAL NANOPARTICLES FOR ADVANCED HEAT TRANSFER FLUIDS AND CATALYSIS APPLICATIONS. 
Virendra Sudam Patil 
Dipòsit Legal: T 1459-2015



 

Experimental, materials and methods Chapter 2 

 

Virendra S. Patil, PhD Thesis, URV SPAIN, June 2015                                         2.15 | P a g e  
 

                                  

For “Anton Paar DMA 60/512 P” estimated expanded uncertainty (k=2) was 1 kg/m
3
 for density 

and 0.1 K for temperature and and for “Anton Paar DSA 5000” 0.1 kg/m
3
 for density and 0.01 K 

for temperature. Digital photographs of Anton Paar DSA 5000 instrument is shown in Figure 

2.10. 

 

Figure 2.10 Photograph of (Anton Parr DSA 5000) density measurement unit 

 

 

2.3.2 Measurement of Viscosity 

Viscosity is a quantity expressing the magnitude of internal friction in a fluid, as measured by the force 

per unit area resisting uniform flow. Viscosity (represented by the symbol η "eta") is the ratio of the 

shearing stress (F/A) to the velocity gradient (Δvx/Δzor dvx/dz) in a fluid. η = F/A / dvx/dz. The SI unit of 

viscosity is pascal second [Pa·s], sometimes called dynamic viscosity or absolute viscosity.  

Working Principle of a (Cambridge Visco-Pro 2000): 
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The cambridge applied systems, piston-style viscometer technology uses two magnetic coils 

within a 316 stainless steel sensor with the sensor inserted into the pipe line. The magnetic piston 

inside the chamber is surrounded by the fluid sample deflected into the measurement chamber. 

Two coils inside the sensor body are used to magnetically force the piston back and forth a 

predetermined distance (about 0.2 inches). By alternatively powering the coils with a constant 

force piston’s round trip travel time is measured. An increase in viscosity is sensed as a slowed 

piston travel time. The time required for the piston to complete a two way cycle is an accurate 

measure of viscosity. The defelecting force acts to continuously deflect fresh sample into the 

measurement chamber.  Since measurement of the piston motion is in two directions, variations 

due to gravity or flow forces are annulled. Also, because the piston has very little mass, magnetic 

forces greatly exceed any disturbances due to vibration. Viscosity of all samples (nanofluids, 

ionic liquids and ionanofluids) were measured using a piston-type viscometer (Cambridge Visco-

Pro 2000).  Before measurement of viscosity of all ILs and INFs they were vacuum dried. After 

drying of samples their water content was measured with the help of Karl-fisher titration to 

ensure proper drying of ILs and INFs. A (Cambridge Visco-Pro 2000) was previously calibrated 

with viscosity and density reference fluids (S20 and S200, Koehler Instrument Company, Inc.) 

[4]. Expanded uncertainty (k=2) was estimed as 0.05 mPa·s for viscosity  and 0.1 K for 

temperature.  Digital photographs of instrument used to measure density and viscosity is given as 

follows in Figure 2.11. 
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Figure 2.11 Anton Paar DMA 60/512 P and Cambridge Visco-Pro 2000 instrument set up 

 

2.3.3 Mesurement of Thermal conductivity  

A measure of the ability of a material to allow the flow of heat from its warmer surface to its 

colder surface, is determined as the heat energy transferred per unit of time and per unit of 

surface area divided by the temperature gradient. Mathamatically, it is shown as the temperature 

difference divided by the distance between the two surfaces (the thickness of the material), 

expressed in watts per kelvin per meter. The SI unit of thermal conductivity is watts per meter 

kelvin (W/(m·K)). Before measurement of thermal conductivity of all ILs and INFs they were 
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vacuum dried. After drying of samples, their water content was measured with the help of Karl-

fisher titration to ensure proper drying of ILs and INFs. Thermal conductivity of ILs and INFs 

were measured from 20 
o
C to 30 

o
C using KD2 Pro™ Thermal Properties Analyzer (Decagon 

Devices, Inc.). The principle of the thermal conductivity measurement of KD2 Pro™  is based on 

the transient hot-wire technique. This device measures together the thermal conductivity and 

temperature. A P-Selecta Frigitherm circulating bath, with resolution 0.1 K, was used to control 

the temperature of the experiments. The KD2 was calibrated using distilled water and ethylene 

glycol before use. Expanded uncertainty (k=2) is estimated as the 5 % of the thermal 

conductivity value, and 0.05 K for temperature. Digital photograph of instrument used to 

measured thermal conductivity of all samples is given below in Figure 2.12. 

 

 

Figure 2.12 KD2 Pro Thermal Properties Analyzer 

 

2.3.4 Measurement of acidity of  Brønsted  acidic ionic liquids  

A new combination of 5% Ru/C and acidic Brønsted ionic liquids were developed for the 

selective hydrogenation of bioderived levulinic acid to γ–valerolactone. The acidity of various 

Brønsted acidic ILs was determined using the Hammet method with the help of UV-Visible 

spectroscopy technique. Detailed description of method used for determination of Hammet 

acidity is described as follows. The series of indicator solutions of (4-nitroaniline) from 25 mM 

to 200 mM were prepared in ethanol as a solvent.  The absorption of this solutions were 

measured with UV-Visible spectroscopy. The graph of concentration verses absorption was 
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plotted for present solutions [5]. The graph gives calibration curve with linearity higher than 0.99 

as shown in Figure. 2.13. Solutions for  studying  protonated forms of ILs were prepared by 

adding 1:1 mixture of 4-nitroaniline and IL in 6 mL of ethanol. An amount of indicator was 

dissolved in IL solution with the help of utrasonicator bath for the period of 15 minutes. This 

freshly  prepared solution was used to determine absorption of protonated forms of ILs. Brønsted 

acidities of ILs were determined in terms of  Hammet acidity function as given below [6]. 

     ( )       (            )..............(2.6) 

Where, pK(I)aq is the pKa value of the indicator (4-nitroaniline). [I]s is the molar concentration 

of unprotonated form of indicator, [IH
+
]s is molar concentration of protonated form of indicator. 

UV-Visible spectra of both unprotonated and protonated forms of indicators in ethanol showed a 

specific absorption at 360 nm however, the intensity increases for the protonated form. The 

measured values of absorbance were used to determine [I]s/[IH
+
]s ratio from which value of Ho 

was calculated for Brønsted acidic ILs.   

 

 

Figure 2.13 Extinction coefficient calculation for indicator (4-nitroaniline) 
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2.4 PROCEDURE FOR HYDROGENATION OF LEVULINIC ACID AND 

PRODUCT ANALYSIS  

All the batch hydrogenation experiments were carried out in a 100 mL capacity stirred autoclave 

supplied by Parr Instruments Co. USA. It was equipped with heating arrangement, overhead 

stirrer, thermo well, internal cooling coil, gas inlet and outlet, liquid sampling valve, safety 

rupture disc, pressure gauge as well as transducer for digital pressure display, separate automatic 

controller to control the temperature, agitation speed, solenoid valve and high temperature cutoff 

module. Water circulation through the internal cooling loop equipped with automatic cut-off 

arrangement controlled the temperature inside the reactor with an accuracy of ±1° C.  

A schematic of the batch reactor set-up is shown in Figure 2.14. 

 

Figure 2.14 Parr reactor setup; (1) Reactor (2) stirrer shaft (3) impeller (4) cooling water (5) 

sampling valve (6) magnetic stirrer (7) electric furnace;  TI: Thermocouple PI: Pressure 

transducer TIg: Thermocouple for gas N: Nitrogen cylinder H2: Hydrogen gas cylinder PR: 

Pressure regulator CPR: Content pressure regulator TR1: Reactor temperature indicator PR1: 

Reactor pressure indicator TR2: Reservoir temperature indicator TRg: Gas temperature 

indicator PR2: Reservoir pressure indicator 
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In a typical hydrogenation reaction, The reaction contents were first flushed 2-3 times with N2 

gas for the removal of trapped air and then flushed with H2 gas. Afterwards the temperature was 

ramped for attaining the desired temperature, the system was then pressurized with H2 gas to the 

desired pressure. The reaction were maintained under stirring at 1000 rpm by switching the 

stirrer on for required time.  Initial liquid sample was withdrawn before starting the reaction and 

the progress of the reaction was monitored by observing the pressure drop in the reservoir as a 

function of time. When the reaction was over, as indicated by a constant H2 pressure on the 

pressure display, the reactor was cooled to room temperature and excess H2 gas was vented out 

safely and the reactor contents were discharged.  Digital photograph of a Parr reactor is shown in 

Figure 2.15. 

 

Figure 2.15 Digital photograph of Parr reactor setup 

 

Reaction samples were withdrawn at regular time intervals for the analysis using gas 

chromatography technique and analyzed by GC (Shimadzu GC 2025) having an AB-FFAP 

(30m, 0.53 mm Id, 1um) column coupled with a FID detector.  

The term % conversion and % selectivity used herein are defined as follows: 
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                (2.7) 

 

              
                       

                           
          (2.8) 

 

2.5  CONCLUSIONS   

In conclusion, present chapter focuses on to provide details of instruments and methods involved 

in preparing the  ionic liquids studied in this work. Details of how ruthenium and silver 

ionanofluids were developed along with development details of 5% Ru/C catalyst were also 

described in this chapter. The experimental details of measurement of density, viscosity, thermal 

conductivity and acidity measurement of Brønsted  acidic ionic liquids is described in this 

chapter. Experimental details of hydrogenation reaction set up and product analysis are also 

provided at last. Finally, this chapter gives a general idea about experimental materials, methods 

and procedures involved in designing of ionic liquids and development of transition metal 

nanoparticle based ionanofluids. 
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Chapter 3  includes designing of ionic liquids with common cation and variable anions. 

Study of effects of variation of anion counterparts of the ionic liquid on density, viscosity 

and thermal conductivity of ILs and INFs are presented. In this chapter, ruthenium 

nanoparticle INFs are developed at room temperature and the effect of ruthenium 

nanoparticles on improvement of thermal properties is investigated.  
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3.1 INTRODUCTION 

Considering the importance of ruthenium nanoparticles for various potential applications, recently, 

solute effect on synthesis and stability of ruthenium nanoparticles was studied in IL media [1]. 

Details on the preparation and associated problems of nanofluids have been presented recently [2]. 

Today INFs are mostly prepared with nano additives by two-step method: 1) initial preparation of 

nanomaterial’s and 2) their subsequent addition  into base ILs. However, in the  one-step method,  

the nanoparticles are formed inside the nanofluid, and their morphology (size, aggregation) is 

highly dependent on the reaction media, namely on the structural organization of ILs, which play 

an important role in stabilization of metal nanoparticles. The formation and stabilization of NPs 

occur with the re-organization of the hydrogen bond network, along with the role played by polar 

and non-polar regions in ILs [3]. Protection against aggregation and /or agglomeration of NPs is 

achieved by the formation of IL protective layer composed of imidazolium aggregates at the 

nanoparticle surface – the IL/NP interface. Such protective layer is active both sterically and 

electronically in the ultimate control of NPs size. This effect has been discussed in reference [4] 

for the thermal conductivity of ionanofluids.  There are several evidences indicating that non 

functionalized ILs also interact relatively strongly with the surface of the metal NPs dispersed in 

ILs [5]. In general metal precursors in the form of metal complexes or metal salts dispersed and/or 

dissolved in the desired IL is reduced to metal NPs by any of the suitable reducing agents such as 

ethylene glycol, ascorbic acid, hydrazine [5], hydrogen gas [6], electro reduction [7], and 

photochemical reduction [8].  

Structure of  IL is such that the thermophysical properties change with variation of anions of ILs 

[9]. Particularly Ruthenium nanoparticle colloids in ILs are synthesized by decomposition of 

organometallic precursor [Ru(COD)(COT)] by molecular hydrogen while additional ligands (1-

octylamine, 1-hexadecylamine) is also used during synthesis [10]. Patharkar et al. synthesised 

ruthenium nanoparticles in ILs by chemical reduction of metal precursor with NaBH4  while 

sodium dodeycyl sulphate (SDS) was used as a stabilizing agent [11]. Recently ruthenium 

nanoparticles were prepared at temperature up to 90 oC in dihydroxyl ILs which acts as solvent, 

ligand, stabilizer and reducing agent. NPs thus formed in ILs were reported to be successfully used 

for hydrogenation of unsaturated hydrocarbons [12].   
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In the present work, we prepared ionanofluids (INFs) with ruthenium in 1-butyl-3-methyl 

imidazolium  cation,  by reduction of ruthenium metal precursor with NaBH4 as a reducing agent 

in one step. To the best of our knowledge, this is the first report of single step, room temperature 

synthesis of ruthenium INFs without the use of stabilizing agent. IL plays a dual role; as a 

stabilizing agent and as a solvent. INFs have an emerging future as a new generation heat transfer 

fluid. Considering the application of INFs as heat transfer fluid in mind, the present work was 

taken up. Study of the anion effect on structure, stability and thermo physical properties of INFs 

becomes an essential part of the research for designing new generation heat transfer fluids. In the 

present work, we studied the effect of halide anions, namely, Cl-, Br-, I- and BF4
- anion on 

thermophysical properties like density, viscosity and thermal conductivity of Ru-INFs. For 

comparison anion effects on thermophysical properties of  base ILs are also studied. In turn, the 

anion and cation counterparts’ role in stabilization of Ru-INFs and its effect on thermo physical 

properties are investigated. A possible mechanism of formation (Ru-INFs) has been proposed.  

 

3.2 EXPERIMENTAL 

Four halide based ionic liquids with 1-butyl-3-methyl imidazolium as a cation choosed to study 

effect of anion on structural, morphological and thermal properties of ILs and INFs. With the aim 

to sythesisize more pure ILs we design four ionic liquids namely 1-Butyl-3-methyl imidazolium 

Chloride ([C4mim][Cl]), 1-Butyl-3-methyl imidazolium Bromide ([C4mim][Br]), 1-Butyl-3-

methyl imidazolium Iodide ([C4mim][I]), 1-Butyl-3-methyl imidazolium Tetrafluroborate 

([C4mim][BF4]) in lab. The ionic liquids designed in lab were further purified to achieve more 

pure ionic liquids. First three halide anion based ionic liquids were synthesized by direct alkylation 

reaction while [C4mim][BF4] ionic liquid was sythesied from anion exchange reaction of 1-butyl-

3-methyl imidazolium bromide with sodium tetrafluroborate salt. Designed ionic liquids were 

further used for the development of ruthenium ionanofluids. With aim to study the effect of anion 

on thermal properties of ionic liquids and ruthenium INFs we developed ruthenium ionanofluids 

at room temperature without use of additional stabilizing agents. Reactions and schematic of 

designing of ILs, purification of ILs and development of ruthenium INFs are given in detail in 

subsection 2.1.1 and 2.1.2 of chapter 2.  
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Influence of anions on structures of ILs and INFs were studied with NMR and IR technique. 

Optical absorptions and stabilities of ILs and INFs was investigated with UV-Visible absorption 

spectroscopy.  Thermal stabilities of ILs and INFs were studied with thermal gravimetry analysis 

to study the effect of anion. Effect of anion variation on structure and particle size of Ru 

nanoparticles was studied by high resolution transmission electron microscopy (HR-TEM). X-ray 

photoelectron spectroscopy (XPS) analysis is performed to know the electronic environment of 

Ru-INFsfor different anions. Techniques used to characterize ILs and INFs are described in details 

in section  2.2 of chapter 2. To study the effect of anion variation of ionic liquids and ruthenium 

INFs density, viscosity and thermal conductivity of ILs and Ru-INFs studied at various 

temperatures. Details of the equipment used to measure the properties of ILs and INFs are mention 

in 2.3 of Chapter 2. 

 

3.3 SPECTRAL AND MORPHOLOGICAL CHARACTERISATION AND 

STABILITY OF ILs AND INFs 

Effect of anions on optical absorptions were studied using UV-Visible spectroscopy technique. . 

 

Figure 3.1 UV–Visible absorption spectra of the base ILs and Ru-INFs along with precursor 

RuCl3.xH2O 

Figure 3.1 shows UV-Visible absorption spectra of different ILs and Ru-INFs used in this study 

Nanosized metal particles exhibit unique optical characteristics with an exponential decay of the 
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absorption profile with increasing wavelength. The absorption spectra of most commonly used 

imidazolium ILs show absorbance maxima below 350 nm due to the imidazolium moiety [13]. It 

is also reported that the long absorption tail is observed beyond 400 nm. It can be seen that, in the 

cases of ILs, the profiles of the absorption curves beyond 400 nm, are very consistent with the Mie 

characteristics. Among 4 ILs, [C4mim][I] neat IL shows absorption peaks at 278 and 360 nm while 

its Ru-INF counterpart i.e. Ru-[C4mim][I], the absorption peaks disappear while the Mie 

characteristics continue to show its presence. Various Ru-INFs show colors that depend on the 

formation of Ru nanoparticles after reduction of RuCl3.xH2O and its subsequent interaction with 

ILs. The first significant observation is that the two broad peaks at about 396 and 525 nm shown 

by Ru precursor in ILs are not observed in any INFs [14]. Thus, metal-ligand transition interaction 

signatures of Ru precursors are no more continued after INFs formation. These measurements 

confirm that in each case, the Ru+3 ions are completely reduced to Ru metal nanoparticles.  

Stability of ruthenium ionanofluids further studied using UV-Visible spectroscopy technique. 

Variation in color appearance and optical absorption of INFs are displayed in Figure 3.2 below. 

 

 

Figure 3.2  UV–Visible absorption spectra and inset photograph of Ru-[C4mim][Cl], Ru-

[C4mim][Br], Ru-[C4mim] [I] and  Ru-[C4mim][BF4] after period of aging of ca.one year 

The colloidal dispersion of ruthenium nanoparticles in ILs was stored in vacuum for the period of 

one year. If color of INF is any indication of stability, Ru-[C4mim][Cl] and Ru-[C4mim][I], both 

are incapable to stabilize ruthenium nanoparticles for a period of one year as they change their 
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color from blue to pale yellow and brown respectively as shown in inset photograph of Figure 3.2.  

Ru-[C4mim][Cl] and Ru-[C4mim][I] colloidal solutions are stable up to 1.5 and 2 months 

respectively. Ru-[C4mim][BF4] INF has same color as a color of freshly prepared INF; however, 

salt  sedimentation is observed at the bottom of the fluid. The colloidal dispersion of Ru-

[C4mim][Br] is found to be extremely stable despite the fact that no external surfactant is used for 

stabilization of INF. UV-Visible of Ru-[C4mim][Br] also reflects same absorption as that for fresh 

INF. 

Figure 3.3  displays, thermal degradation temperatures of base ILs and their corresponding Ru-

INFs, indicating the effect of anion variation. 

 

Figure 3.3 Thermal stabilities of ILs and Ru-INFs as a function of anions 

The thermo gravimetric behaviour of  base ILs and Ru-INFs over the temperature range 30 oC – 

500 oC at the heating rate of 5 oC/min in nitrogen atmosphere is shown in Figure 3.4  and Figure 

3.8.  Generally, imidazolium salts have high thermal stability; however, they begin to decompose 

at around 400 oC [15]. Recent report [15] has shown that the presence of a halide anion reduces 

the thermal stability of imidazolium ionic liquids. This occurs due to increased nucleophilic and 

basic character of anions [15] leading to decomposition onset occurring at least a 100 oC below 

the temperature of decomposition of imidazolium salts as observed in the present work.  Thus, the 

thermal stability of Ru-INFs follows the trend [BF4] > [I] > [Br] > [Cl] to show the effect of anions 
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[16]. For ILs and corresponding Ru-INFs, initially, 1 to 4% weight loss occurs up to 100 oC due 

to removal of water molecules. Weight loss assigned to evaporation of water, observed in 

thermogram (Figure 3.5 d)), is understandable as ILs are hygroscopic and water absorption might 

occur during the handling of sample at the time of sample mounting before measurement. Further, 

it can be observed in Figure 3.5., that in case of Ru-INFs further weight loss in TGA occurs at 

temperature 30 oC lower than that of corresponding IL; which shows decreased thermal stability 

in Ru-INFs [17]. Imidazolium based ILs that are substituted with methyl group at C2-position were 

found to be more thermally stable due to removal of the acidic hydrogen [18]. However, this 

generalization is not consistent in case of [C4mim][BF4] which does not seem to decompose at the 

C2-position, suggesting the formation of imidazolium cation  [C4mim]+, methyl fluoride and BF3 

[19]. 

 

Figure 3.4  TGA-DTA graph of [C4mim][Cl], [C4mim][Br], [C4mim][I] and [C4mim][BF4] 
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Figure 3.5 TGA-DTA graph of Ru-[C4mim][Cl], Ru-[C4mim][Br], Ru-[C4mim][I] and Ru-

[C4mim][BF4] 

3.3.1  Influence of anions on bonding of ILs and INFs  

Anion variation from ionic liquid counterparts influences the bondings of ILs and INFs the 

bonding effect of ILs and INFs studied with the help of ATR-IR analysis. Obtained results are 

shown in Figure 3.6. 

 

Figure 3.6 ATR-IR spectrum of a) [C4mim][Cl], [C4mim][C4mim][Br], [C4mim][I], 

[C4mim][BF4] b) Ru-[C4mim][Cl], Ru-[C4mim][Br], Ru-[C4mim][I] and Ru-[C4mim][BF4] 

ATR-IR spectra are useful to find out bonding changes in the ILs and ILs composite materials. IR 

absorption spectra were recorded in the range of 600–400 cm-1 for parent/base ILs and neat Ru-
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INFs. From the Figure 3.6 a) , all ILs show characteristic peaks in the range 3550–3300 cm-1 

assigned to the (quaternary amine salt formation with anion) [20], 3200–2800 cm-1 (C-H stretching 

in the imidazole ring) [21], 1164 cm-1 (imidazole H-C-C and H-C-N bending carbine species [22], 

near 840 cm-1 (C-N stretching vibration) [18], 752 cm-1 (out of plane C-H bending of imidazole 

ring) and 648 cm-1 (imidazole C-N-C bending) [23]. The [C4mim]+ can further be identified by 

spectral features in the range of 700-550 cm-1, 1800-1130 cm-1 and 3200–2800 cm-1 [24]. The peak 

at 1056 cm-1 is due to B-F stretching vibration of [BF4]
- anion [25,26]. Figure 3.6 b)   shows ATR-

IR spectra of all neat Ru-INFs recorded at the same conditions of the base ILs. The peak values 

are given in Table 1 below. It may be noted from Figure 3.6 that the peak intensities of imidazolium 

ring C-H (3200-2800 cm-1 and imidazolium ring (C-H stretch (1600–1500 cm-1) are lowered and 

shifted in comparison to corresponding neat and base ILs respectively. This is attributed to the 

strong interaction between [C4mim]+ cation and Ru metal in the composite materials. The 

characteristic bands and their corresponding vibration mode are tabulated in Table 3.1. 

Table 3.1 ATR-IR spectral assignements of ILs and Ru-INFs 

 

The inference from IR studies is Ru-INFs with various anions are formed as intended and also 

there are specific signatures of Ru interaction with IL reflected in the spectra. This inference is 

consistent with the conclusion drawn from UV-Visible absorption studies. 

 

 

Entry Wavenumber (cm-1) Assignment Reference 

1 3550-3300 Quaternary amine salt [39] 

2 3200-2800 C-H stretching in imidazole ring [40] 

3 1164 Imidazole H-C-C & H-C-N bending 

carbine species 

[41] 

4 Near 840 C-N  stretching vibrations [39] 

5 700-550, 1800-1130, 3200-

2800 

[C4mim]+ [43] 

6 1056 B-F  stretching vibrations [38],[39] 

7 1600-1500 C-H stretching  [43] 
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3.3.2 X-ray photoelectron spectroscopy study of ILs and INFs 

To validate the chemical nature of Ru species in INFs and its interactions within imidazolium 

based ILs, chemical analysis of the Ru-INFs was performed using XPS. The surface sensitive 

technique of XPS can provide important information about the interactions of chemical species 

present near surface of samples [29]. Since this study focuses on the influence of the anion on the 

electronic structure of the imidazolium cation, only the C1s and N1s spectra will be discussed. To 

identify the interaction between imidazolium cation and Ru, a curve-fitting procedure was 

employed to analyze C1s and Ru3d, high resolution XPS results. The samples of Ru-INFs give a 

multi component C1s spectrum with five binding energy components. Observed binding energies 

(B.E.s) are at 280.0, 284.1, 285, 286.4 and 288.5 eV. 

Figure 3.7. shows the XPS spectra within the binding energy range 275-292 eV for all four Ru-

INFs.  
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Figure 3.7  XPS spectra of a), b), c), d) the C1S, Ru 3d 5/2 and Ru 3d 3/2 for four Ru-INFs which 

are deconvoluted to resolve individual components. The dotted lines correspond to nonlinear least-

square fits to the experimental data and e) the N1s spectra of four Ru-INFs 
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The peak at 280.0 and 284.1 eV corresponds to Ru 3d5/2 and Ru 3d3/2 respectively in metallic Ru 

with the energy separation of 4.1 eV [28]. The peak at 285.0 eV is assigned to C atoms in an alkyl 

chain [27] and is denoted as Calkyl. The second feature in the C1s region is the peak /shoulder at 

higher B.E. than that of Calkyl. Such a peak at higher B.E. than that of Calkyl is due to C-N bonds 

formed with more electronegative nitrogen atoms of the imidazolium  ring [48]. Such a bond has 

been reported in the literature and called as Chetero [29]. Further, the peak separation in B.E. of 

Chetero and Calkyl is larger in anion (Cl-) having the high coordinating ability of anion (Cl-) than that 

of (BF4
-) anion, consistent with the earlier results [27]. Still, it cannot rule out the possibility of the 

presence of chemisorbed oxygen, in the form of hydroxyl, carbonyl/carboxyl species on Ru 

surface, as indicated by C1s spectrum showing peaks at 286.3 eV (carbonyl carbon) and 288.0 eV 

(carboxyl carbon) [30]. This suggests the presence of the oxygen-containing contaminants at NP 

surface. The low intensity signal of Ru3d  XPS spectrum is attributed to low content of Ru and 

alternatively can be attributed to the masking of Ru NPs with ILs. The corresponding N1s spectra 

are displayed in Figure 3.7 e). For all ILs a symmetric peak is observed at around 402 eV.  It is 

known that such a peak is due to the presence of two nitrogen atoms of imidazolium ring; however, 

these nitrogen atoms are indistinguishable by XPS [31,32]. Although, the signal for Ru NPs in 

XPS is weak, its presence is ascertained by EDAX (Figure 3.8) studies which show a clear signal 

for Ru.  

 

Figure 3.8 EDAX spectrum of Ru-[C4mim] [Br] 
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To summarize XPS results it can be inferred that for small size and high coordinating ability of 

anions, show the B.E. with lower values. As against this the highest B.E. values are recorded for 

large size and least coordinating anions like [BF4]
-.  The details of qualitative analysis of all spectra 

are given in the Table 3.2 below.  

Table 3.2 Binding energies assignments for ruthenium ionanofluids 

 

 

3.3.3 Morphology of Ru nanoparticles 

The general observations to be noted from TEM are 1) ‘Cl’  anions in INF form particles smaller 

(< 3 nm) and most probably spherical. 2) ‘Br’, I and ‘BF4’ anions in INF form spherical particles 

with increasing size in that order. The respective histograms of Ru NPs in Ru-INFs samples are 

also shown in corresponding insets. 

From HR-TEM image, the planes of crystal growth of the Ru-INFs nanoparticles is ascertained 

from the fringes observed (shown in the corresponding insets). In the insets of  Figure 3.9., very 

clear lattice fringes with the fringe spacing of 0.23 nm is observed, which is in good agreement 

with the space between the Ru (100) lattice planes (JCPDS File No. 01-1253). The conventional 

double layer formation mechanism of stabilization of NPs in ILs (DLVO theory) does not explain 

many experimental results. Also, we have mentioned above that a metal particle in IL is a complex 

system as IL itself behaves as a ‘supramolecular’ entity.   

Entry      Compound Assignments of XPS binding energies (eV) 

C-C C=N C-O Ru 3d 5/2 Ru 3d 3/2 

1 Ru-[C4mim][Cl] 284.6 285.9 288.2 280 284.1 

2 Ru-[C4mim][Br] 284.6 285.9 288.2 279.8 283.9 

3 Ru-[C4mim][I] 284.6 286.3 288.6 280.4 284.4 

4 Ru-[C4mim][BF4] 284.6 285.9 288.2 279.9 284 
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Figure 3.9 TEM, HR-TEM micrographs and particle size histogram of a) Ru-[C4mim][Cl], b) 

Ru-[C4mim][Br], c) Ru-[C4mim][I],  d) Ru-[C4mim][BF4] 

The recent theoretical studies suggest that Ru(0) nanoparticles in imidazolium-based ILs 

preferentially get solvated by the charged moieties of the ions, forming one layer thick interface 

[33]. This has been observed for MWCNT’s also in [C4mim][BF4] [4]. Consequently, it implies 

that both cations and anions are in actual contact with the particle surface, forming a ‘capping’ and 

thus protecting it from further growth. Such observation is reported in case of Pd(0) nanoparticles 

surface in close contact with IL [34]. In our XPS study, a possibility of the formation of N-

heterocyclic carbenes is suggested. This is consistent with the suggestion where alkyl-imidazolium 

salt interacts with metal NP surface [35]. Moreover, the possibility of an oxide layer on metal NP 

was suggested in XPS studies which also can be a cause of the stabilization of metal nanoparticles 

[36]. The oxide formation can also be reasoned out as a consequence of the hygroscopic nature of 

IL and its subsequent effects as shown in TGA-DTA studies.   

3.3.4 Effect of hydrogen bonding on particle size of ruthenium nanoparticles  

The data from the characterization of Ru-INFs and imidazolium salt are expected to be compatible 

with the structures of IL salt and Ru-INF. We have used non functionalized ILs to develope Ru-
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INF and studied the effect of anion on base ILs and Ru-INFs. The characteristics of base IL salts 

are well reported by Du pont and Scholten [6]. We make use of this model to explain the data 

collected in the present study. The model proposes IL to be supramolecular structure formed by 

the effective contribution of hydrogen bonds, polar and nonpolar entities of ILs along with a 

contribution of Van der Waal forces. 

 

 

Figure 3.10 Chemical structure of typical imidazolium cation and anions associated with it 

 

In order to evaluate the nature of different interactions such as hydrogen bonding  between cation 

and anion in any given IL, 1H and 13C NMR spectra of the base and neat ILs were recorded [29]. 

The H/D and D/H labeling measurements were also useful to assess the interaction between 

imidazolium ILs and metal NPs. 

For all ILs, the spectra arising from the H2, H4 and H5 protons and the corresponding C2, C4 and 

C5 carbon atoms of the cation ( labeled in Figure 3.10) are shown Figure 3.12 and Figure 3.13. 

Both the 1H and 13C NMR spectra show anion dependant shifts. The C(2)-H proton showed the 

chemical shift of  9.48, 9.28, 8.78 and 8.71 ppm, respectively for [C4mim] X (X=Cl, Br, I and 

BF4). All peaks shift towards lower ppm values when going from small size to larger size anions. 

Other important criteria for possible hydrogen bonding are basicity and strongly coordinating 

capability of anions. 
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Figure 3.11 Plot of 1H NMR chemical shift of C(2)-H proton from Ru-INFs versus their average 

particle size obtained for their respective ruthenium ionanofluids 

Lower basicity and weaker coordinating anions also show NMR shift of low ppm. This is an 

indication of lowering of hydrogen bonding in the formation of supramolecular structure of the IL 

around Ru NPs. Such a trend is in good agreement with previous work [29]. As per the differential 

functional theory (DFT) ion-pair model calculations, halide anions are expected to be in plane of 

imidazolium ring while BF4
- is believed to be located above the imidazolium ring and thus farther 

away from C(2)-H hydrogen, resulting into weak hydrogen bonding [37]. This is in support of our 

inference stated above.  

Obtained results suggets that particle size of Ru nanoparticles can be monitored by the use of 

specific anion. Figure 3.11 shows the observed relation between chemical shift of C(2)-H proton 

and particle size. Thus, the average particle size increases in the order (2 nm) Cl < (4nm) Br < 

(7nm) I < (9 nm) BF4. However, we are aware of the fact that particle size of ruthenium NPs is 

also dependent on the stabilizing factors (electrostatic or steric stabilization) as proposed in 

reference [38]. 
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1H NMR and 13C NMR analysis of ionic liquids 

Figure 3.12 ( a), b), c), d) ) shows 1H NMR spectra of 1-Butyl-3-methyl imidazolium halide ionic 

liquids used in present research study. The NMR peak assignments were made on the basis of 

chemical shifts and peak integrals of 1H NMR spectrum and verified with 13C NMR spectra as 

shown in Figure 3.13 ( a), b), c), d) ).  

 

Figure 3.12 1H NMR spectra of a) 1-Butyl-3-methyl imidazolium Chloride ([C4mim][Cl]), b) 1-

Butyl-3-methyl imidazolium Bromide ([C4mim][Br]), c) 1-Butyl-3-methyl imidazolium Iodide 

([C4mim][I]), d) 1-Butyl-3-methyl imidazolium Tetrafluroborate ([C4mim][BF4]) 

 

a) 1H NMR of 1-Butyl-3-methyl imidazolium Chloride ([C4mim][Cl]), 1H NMR(400MHz: D2O; 

δ/ppm relative to TMS): 0.86 (3H, t, but-CH3), 1.23 (2H, m, CH2), 1.74 (2H, m, CH2), 3.46 (2H, 

t, NCH2), 4.16 (3H, s, NCH3), 7.78 (1H, s, NCH), 7.86 (1H, s, NCH), 9.48 (1H, s, NCHN) 

b) 1H NMR spectra of 1-Butyl-3-methyl imidazolium Bromide ([C4mim][Br]), 1H NMR 

(400MHz: D2O; δ/ppm relative to TMS): 0.84 (3H, t, but-CH3), 1.42 (2H, m, CH2), 1.74 (2H, m, 
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CH2), 3.40 (2H, t, NCH2), 3.84 (3H, s, NCH3), 7.70 (1H, s, NCH), 7.78 (1H, s, NCH), 9.28 (1H, 

s, NCHN) 

c) H1 NMR spectra of 1-Butyl-3-methyl imidazolium Iodide ([C4mim][I]), 1H NMR (400MHz: 

D2O; δ/ppm relative to TMS): 0.93 (3H, t, but-CH3), 1.35 (2H, m, CH2), 1.86 (2H, m, CH2), 3.93 

(2H, t, NCH2), 4.23 (3H, s, NCH3), 7.47 (1H, s, NCH), 7.53 (1H, s, NCH), 8.78 (1H, s, NCHN) 

d) H1 NMR spectra of 1-Butyl-3-methyl imidazolium Tetrafluroborate ([C4mim][BF4]), 
1H NMR 

(400MHz: D2O; δ/ppm relative to TMS): 0.90 (3H, t, but-CH3), 1.31 (2H, m, CH2), 1.83 (2H, m, 

CH2), 3.88 (2H, t, NCH2), 4.18 (3H, s, NCH3), 7.41 (1H, s, NCH), 7.47 (1H, s, NCH), 8.71 (1H, 

s, NCHN) 

 

Figure 3.13 13C NMR spectra of of a) 1-Butyl-3-methyl imidazolium Chloride ([C4mim][Cl]) b) 

1-Butyl-3-methyl imidazolium Bromide ([C4mim][Br]) c) 1-Butyl-3-methyl imidazolium Iodide 

([C4mim][I]) d) 1-Butyl-3-methyl imidazolium Tetrafluroborate ([C4mim][BF4]) 
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a) 13C NMR spectra of 1-Butyl-3-methyl imidazolium Chloride ([C4mim][Cl]) 13C NMR (200 

MHz: CDCl3; δ/ppm relative to TMS): 12.98 (3H, but-CH3), 18.97 (2H, CH2), 31.70 (2H, CH2), 

36.08 (3H, NCH3), 49.25 (2H, NCH2), 121.73 (1H, NCH), 123.39 (1H, NCH), 137.08 (1H, 

NCHN) 

b) 13C NMR spectra of 1-Butyl-3-methyl imidazolium Bromide ([C4mim][Br]) 13C NMR (200 

MHz: CDCl3; δ/ppm relative to TMS): 12.87 (3H, but-CH3), 18.82 (2H, CH2), 31.53 (2H, CH2), 

36.16 (3H, NCH3), 49.17 (2H, NCH2), 121.71 (1H, NCH), 123.30 (1H, NCH), 136.31 (1H, 

NCHN) 

c) 13C NMR spectra of 1-Butyl-3-methyl imidazolium Iodide ([C4mim][I]) 13C NMR (200 MHz: 

CDCl3; δ/ppm relative to TMS): 12.12 (3H, but-CH3), 19.34 (2H, CH2), 31.91 (2H, CH2), 36.31 

(3H, NCH3), 49.81 (2H, NCH2), 122.02 (1H, NCH), 123.33 (1H, NCH), 136.07 (1H, NCHN) 

d) 13C NMR spectra of 1-Butyl-3-methyl imidazolium Tetrafluroborate ([C4mim][BF4])
 13C NMR 

(200 MHz: CDCl3; δ/ppm relative to TMS): 12.50 (3H, but-CH3), 18.34 (2H, CH2), 31.07 (2H, 

CH2), 36.13 (3H, NCH3), 48.81 (2H, NCH2), 121.58 (1H, NCH), 122.90 (1H, NCH), 135.27 (1H, 

NCHN) 

3.4 INFLUENCE OF ANION ON THERMAL PROPERTIES 

In this study we vary the anions of ILs and INFs and studied their properties density, viscosity and 

thermal conductivity for investigation of anion influence on heat transport properties. This section 

describes in detail the effect of anions on heat transport properties of designed ionic liquids and 

developed ruthenium ionanofluids. 

Effect on density of ILs and INFs 

Knowledge of density of ILs and INFs is important from the viewpoint of applications, especially 

for future process and equipment design. Figure 3.14 shows the experimental densities of [C4mim] 

halides and tetrafluroborate ionic liquids along with their corresponding  Ru-INFs at temperatures 

from 20 ºC to 70 ºC. Experimantal values are collected in Table 3.3. 
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Table 3.3 Density variation with temperature for pure ionic liquids and for IoNanofluids 

(IL+Ru), at atmospheric pressure 

T/K 293.15 303.16 313.14 323.14 333.14 343.14 

Fluid /g·cm-3 

[C4mim][Cl] 1.0869 1.0824 1.0777 1.0732 1.0684 1.0637 

Ru-[C4mim][Cl] 1.0931 1.0872 1.0811 1.0752 1.0695 1.0637 

[C4mim][Br] 1.2977 1.2898 1.2822 1.2745 1.2670 1.2591 

Ru-[C4mim][Br] 1.2760 1.2670 1.2626 1.2569 1.2516 1.2447 

[C4mim][I] 1.4890 1.4836 1.4762 1.4693 1.4637 1.4563 

Ru-[C4mim][I] 1.4372 1.4250 1.4133 1.4011 1.3894 1.3771 

[C4mim][BF4] 1.2712 1.2688 1.2623 1.2541 1.2486 1.2398 

Ru-[C4mim][BF4] 1.2546 1.2476 1.2406 1.2336 1.2227 1.2198 
 

 

Figure 3.14.  Experimental densities of the dried ionic liquids and their respective Ru-INFs as a 

function of temperature: (■), [C4mim][Cl] ; (--), Ru-[C4mim][Cl] ; (●), [C4mim][Br]; (-○-), Ru-

[C4mim][Br]; (▲), [C4mim][I]; (--), Ru-[C4mim][I]; (), [C4mim][BF4]; (--), Ru-

[C4mim][BF4] 

 

Obtained densities are decreasing linearly with rise in temperatures. As the molar mass of an anion 

increase, densities also increase [39]. As the molar mass of the anion grows with similar cation it 

significantly enhances the density of ILs [40].  From Figure 3.14., it can be seen that densities of 
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halides based ILs significantly rises from Cl- to I- anions due to increase in molar mass of ILs. 

Consistent with this trend, it was expected that the density of [C4mim][BF4] should be more than 

[C4mim][Br], as against that it is clearly observed that densities of [C4mim][Br] are higher that 

[C4mim][BF4]. The higher density of [C4mim][Br] than [C4mim][BF4] is assigned to compactness 

between cation and anion [41]. For all ILs and INFs shown in Figure 3.14, it is observed that 

densities linearly decrease with increasing temperature which is consistent with the literature 

[42,43]. The smallest chloride anion in [C4mim][Cl] INF shows the same density as that of base 

IL. However, as size of halide anion increases in the order Cl- < Br- < I- 
,
 the densities of Ru-INF 

turn out to be lower than that of base IL.  

Effect on viscosity of ILs and INFs 

The viscosity is related to the internal resistance of a fluid to a shear stress and the rheological 

measurements can provide useful information about the microstructure of fluids. Viscosities of 

pure imidazolium based ILs and their respective Ru-INFs measured at different temperatures from 

30 ºC to 100 ºC  are presented in Table 4 and Figure 3.15. 

Table 3.4 Viscosity variation with temperature for pure ionic liquids and for IoNanofluids 

(IL+Ru), at atmospheric pressure 

T/K 303.15 313.15 323.15 333.15 343.15 353.15 363.15 373.15 

Fluid /mPa·s 

[C4mim][Cl]    545 272 147 88.2 56.2 

Ru-[C4mim][Cl] 566 290 155 82.2 52.3 37.6 26.5 17.4 
[C4mim][Br] 215 118 73.8 47.6 31.9 22.1 16.1 12.3 
Ru-[C4mim][Br] 58.9 35.3 24.6 17.5 12.2 9.9 7.3 5.9 
[C4mim][I] 379 202 119 73.7 47.3 32.4 23.1 17.3 
Ru-[C4mim][I] 54.5 34.2 23.8 14.4 10.5 8.1 6.2 4.8 
[C4mim][BF4] 76.9 50.0 34.3 24.5 18.0 13.7 11.0 8.9 
Ru-[C4mim][BF4] 40.0 25.1 14.8 10.1 7.0 4.9 3.4 2.6 
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Figure 3.15. Experimental viscosities of the ionic liquids and their Ru-INFs as a function of 

temperature: (■), [C4mim][Cl] ; (--), Ru-[C4mim][Cl] ; (●), [C4mim][Br]; (-○-), Ru-

[C4mim][Br]; (▲), [C4mim][I]; (--), Ru-[C4mim][I]; (), [C4mim][BF4]; (--), Ru-

[C4mim][BF4] 

 

Viscosities of ILs and INFs decreased with increase in temperature, as expected. Also, the present 

experimental data show that the viscosities of ILs get lowered following the trend [C4mim][Cl] > 

[C4mim][I] > [C4mim][Br] > [C4mim][BF4].  The important parameters that decide the viscosity 

of IL are hydrogen bonding, symmetry of the ions,  interaction of cation and anion and van der 

Waals forces. Considering the structures of ILs with anions under consideration, i.e. Cl-, Br-, and 

I-, hydrogen bonding, symmetry of the ions and interaction of cation and anion, would be 

qualitatively same. However, the particle size of anions would change the quantitative contribution 

of each parameter. As plotted in Figure 3.15., the viscosity of INFs (0.003 M Ru) dramatically 

decreases with increasing temperature [44,45]. Since, increase of temperature has weakened the 

effect of the parameters mentioned above, leads to lowering of viscosity [46]. The extent of 
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lowering of viscosity of Ru-INFs shows the trend in the order, Ru-[C4mim][Cl] > Ru-

[C4mim][BF4] > Ru-[C4mim][Br] > Ru-[C4mim][I]. In fact, the viscosity of the resulting Ru-INFs 

was found to be lower than that of base ILs, because of the lower density and  the lubricating 

properties of NPs [47]. Normally, it is desired to have low viscosity, heat transfer fluid in industrial 

applications as it lowers the pumping cost. Low viscosity of ruthenium INFs as compared to base 

ILs is favorable for their potential application as heat transfer fluids.  

Effect on thermal conductivity of ILs and INFs 

Thermal conductivity data from 20 ºC to 60 oC at atmospheric pressure for ILs and Ru-INFs (0.003 

M Ru) are shown in Table 3.5 and Figure 3.16. 

 

Table 3.5 Thermal conductivity variation with temperature for pure ionic liquids and for 

IoNanofluids (IL+Ru), at atmospheric pressure 

T/K 293.15 303.16 313.14 323.14 333.14 

Fluid (W·m-1·K-1) 

[C4mim][Cl] 0.176 0.176 0.174 0.173 0.173 
Ru-[C4mim][Cl] 0.177 0.176 0.175 0.175 0.174 
[C4mim][Br] 0.160 0.160 0.159 0.158 0.155 
Ru-[C4mim][Br] 0.161 0.160 0.160 0.159 0.158 

[C4mim][I] 0.131 0.130 0.130 0.130 0.129 
Ru-[C4mim][I] 0.135 0.134 0.134 0.133 0.133 
[C4mim][BF4] 0.162 0.162 0.161 0.161 0.160 
Ru-[C4mim][BF4] 0.168 0.166 0.165 0.164 0.163 
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Figure 3.16. Experimental thermal conductivities of the dried ionic liquids and their respective 

Ru-INFs as a function of temperature: (■), [C4mim][Cl] ; (●), Ru-[C4mim][Cl] ; (▲), 

[C4mim][Br]; (▼), Ru-[C4mim][Br]; (◄), [C4mim][I] ; (►), Ru-[C4mim][I]; (♦), [C4mim][BF4] 

 .Ru-[C4mim][BF4] ,(٭) ;

 

The low thermal conductivity values in base ILs indicate that these ILs are relatively poor thermal 

conductors. However, the thermal conductivity for Ru-INFs shows an enhancement of thermal 

conductivity of about 4% with addition of just 0.003 M Ru precursor. It may be pointed out from 

Figure 3.16, that smaller the anionic size, higher the thermal conductivity values. The experimental 

values show the thermal conductivity decreases, following the order [C4mim][Cl] > [C4mim][Br] 

> [C4mim][BF4] > [C4mim][I]. The thermal conductivity enhancement in traditional nanofluids 

and ionanofluids has been discussed in numerous papers [5, 4, 48-52]. The thermal conductivity 

of the Ru-INFs composite depends on thermal conductivity of base ILs and thermal conductivity 

of solid Ru NP and its volume fraction in composite [53]. Various mechanisms have been proposed 

to account for the enhancement in thermal conductivity of the suspensions. The most important 

points which need consideration are (i) Brownian motion of the nanoparticles suspended in fluid, 
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(ii) liquid stacking at the particle / liquid interface, and its extension in space (iii) heat transport 

within the nanoparticles, nanoparticle clustering [54] and particle surface chemistry [53-55].  

Deviation of imidazolium halide ionic liquids data with literature data: 

Experimental data of density , viscosity  and thermal conductivity  of the ionic liquids studied 

were fitted with temperature T using polynomial equations (Eq 3.1-3.3). 

 /kg·m-3 = a1 + a2·(T/K) (3.1) 

 Ln(/mPa·s = b1 + b2·(T/K) + b3·(T/K)2 (3.2) 

 /W·m-1·K-1= c1 + c2·(T/K) (3) 

where a1, a2, b1, b2, b3, c1 and  c2 are the fitting coefficients.   

Density values from this study and literature were compared using Eq.(3.1), and the deviations are 

shown in  Figure 3.17. for the pure ionic liquids. In the case of the [C4mim][BF4] ionic liquid, 

only some references were selected, because the number of them in literature is large, and the 

deviations were lower than 0.4 %. For the other ionic liquids the literature data are scarce and 

scattered. For [C4mim][Cl], our data agree with refs.[65,67] but less with refs.[64,66]. All of them 

used the vibrating-tube technique. For [C4mim][I] our data agree with ref.[68] how used the 

vibrating-tube technique, but do not agree with refs.[56,67,69] who used a pycnometer to 

determine the density. Finally, for [C4mim][Br] only two references were found [15,69], using the 

vibrating-tube and pycnometer techniques, respectively.  Deviations were lower than 1 %. 
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a) 

 

b) 

 

c)  

 

d) 

 

Figure 3.17. Deviations in density data between this study and literature as a function of 

temperature: a) [C4mim][BF4]; b) [C4mim][Cl] ; c) [C4mim][I]; d) [C4mim][Br] 
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For viscosity comparison, literature data are scarce and scatterered (Figure 3.18). For 

[C4mim][BF4], most of the data compared agree with deviations lower than 10 %, except refs. 

[67,70] which show high deviations at low temperature. Probably this is due to the different water 

content in the samples. For the other ionic liquids, the comparison is not so decisive. For 

[C4mim][Cl] only two references were found [74,75] showing deviations lower than 20 %.  In the 

case of the [C4mim][I] three references were found [56,61,69] and the results are very different. 

Our data were around 40 % lower than those reported in ref. [69], but 10 % higher than those 

reported in ref. [56]. Deviations with ref. [61] were higher than 50 %.  Finally, the only reference 

found for [C4mim][Br] were a plot reported in ref. [15] who did not show data or equations. Data 

were obtained directly from the plot. Deviations at low temperature are small but increase with 

temperature. 

Finally, for thermal conductivity of [C4mim][Cl], [C4mim][Br] and [C4mim][I] IL no data 

available in literature were found. Only in ref. [76] thermal conductivity data for [C4mim][BF4] 

are presented.  Deviations are shown in Figure 3.18, and it can be seen that our experimental data 

agree with reported data in ref.[76]. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.18. Deviations in viscosity data between this study and literature as a function of 

temperature: a) [C4mim][BF4]; b) [C4mim][Cl] ; c) [C4mim][I]; d) [C4mim][Br] 
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Figure 3.19.  Deviations between our thermal conductivity data and ref.[76]. 

 

3.5 MECHANISM OF Ru NANOPARTICLES STABILIZATION IN ILs 

Pure imidazolium-based ILs should be considered as a 3 dimensional network of cation and anion 

(hydrophobic and hydrophilic) link by weak interactions (such as hydrogen bonds and van der 

walls and coulomb forces) regarded as supramolecular polymeric structures with a high degree of 

self-organization. Thus, IL can be used as a fine-tuning tool in nano synthesis of NPs [77]. The Ru 

NP size obtained with IL depends on the volume of the IL anion. NPs are considered stabilized 

from growth-agglomeration in the ILs by the formation of protective anionic and cationic layer 

around them in a core-shell system [78,79]. We believe that the thickness of the stabilizing shell 

around RuNP depends on the IL molecular ion volumes. According to DLVO theory [80] the first 

inner shell must be anionic, and then the IL anion will have the highest influence of the size and 

the electrostatic stabilization of the Ru NP. The anion molecular volume determines the region of 

the nanoparticle size. At a constant concentration of Ru precursor, the nanoparticle growth is 
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probably controlled by the size of polar domain. The Ru NPs are obtained by NaBH4 reduction of 

Ru salts dissolved in ILs. The presence of n-butylimidazole Ru particles has a narrow size 

distribution in the diameter range of 2-10 nm, which increased with molecular volume of the IL 

anion [81]. Thus, the size of Ru(0) NPs prepared by reduction of RuCl3 in C4mimX (X= Cl, Br, I 

and BF4) ILs increases with the anion volume. In this case the NPs size increases with the decrease 

of the anion coordination ability. Thus, ~ 2-10 nms Ru particle in ILs reveal that the nanoparticles 

are solvated preferentially by the charged species of the IL ions and both the cation and anion are 

in contact with the nanoparticles [33]. The molecular hydride (NaBH4) is most frequently used as 

reducing agents for the generations of metal NPs (Scheme 1). However, hydride sources are not 

likely to be used in ILs, due to their basic character, leading to deprotonate the imidazolium cation 

and generate carbenes that may bind to metal surface. The reducing agent produces various by-

products, such as Na and B compounds, that are difficult to remove from the ILs. 

 

 

 

Scheme 3.1  Ru NP synthesis in ILs using sodium borohydride as reducing agent in the presence 

of nitrogen 

3.6 CONCLUSIONS 

Ionic liquids offer possibilities for the preparation, stabilization and investigations of the structural 

and surface properties of ruthenium metal without the use of the external stabilizing agent which 

makes this synthesis protocol as simple and energy intensive. A stable dispersion of Ru NPs with 

small size and narrow distributions, can be prepared from ruthenium metal precursor in the 

presence of ILs in one step method. ILs provide a protective layer, with the Ru nanoparticle surface 

through cation and anionic species and by the formation of carbene fragment together with an 

oxide layer on the metal surface. The density and viscosity of Ru-INFs decreases with increase 

mass of anion which reflects that small anion more compactly situated with Ru nanoparticle than 

large size anions. Viscosity of Ru-INFs is smaller compare to base ILs at low concentration of Ru 

precursor. The nanoparticle/ILs/stabilizer combination usually exhibits an excellent synergistic 

   RuCl3 + 3NaBH4 + 9H2O                     [Ru(0)]n + 3NaCl + 3H3BO3 + 3HCl + 9H2………(3.1) 
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effect that enhances the thermal conductivity of the material and reduced viscosity for new 

generation heat transfer applications.  
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Chapter 4 

Structural and morphological influence of nanoparticles on 

thermal properties of Ag-nanofluids and Ag-ionanofluids 
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Chapter 4 presents the investigation of heat transport properties of [Choline][NTf2] ionic 

liquid and silver nanoparticles of variable morphologies, such as 1dimentional (nanowires), 

2 dimentional (nanoplates) and 3 dimentional (nanospheres) in base ILs. The effect of 

variation in morphology of silver nanoparticles on thermal conductivity, density and 

viscosity of INFs  is demonstratded in this chapter.  
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4.1 INTRODUCTION 

It is current need of the society to develop more efficient heat transfer fluids for use in cars and 

industrial equipment. Novel fluids are needed with improved thermal properties as well as with 

improved economics [1]. Such oils and coolants would make possible more efficient engine with 

smaller size, cheaper cost having their fuel demand at a much lower level causing emissions with 

less damage to the environment. Addition of nanosize materials in conventional fluids were 

investigated to improve thermal properties of the fluids [2]. The traditional fluids like water, 

ethylene glycol and synthetic oil containing nanoparticles of different materials utilize as a heat 

transfer media have some drawbacks like low operating tempearature, high vapor pressure and 

poor thermal stability [3-5]. To overcome these obstacles researchers have been studying ILs 

which can be employed as a new generation heat transfer fluids due to their low vapor pressure, 

improved thermal conductivity, which make it possible to apply them at high temperature 

operating conditions [6]. To utilize ILs as a new genearation heat transfer fluids it is necessary to 

investigate first their various properties such as density, viscosity and more particularly, their 

thermal conductivity. The combination of nanoparticles and ILs further showed more improved 

thermal properties as compared to IL itself, to be utilized in small volume heat exchangers and 

microchannels [7].          

Now a days with improved thermophysical properties, we can imrove the economy of process 

designing but simultaneously it is necessary that dsigned or developed materials should be more 

ecofriendly. With fascinating properties of ILs and to develop more environmentally benign IL 

choline is utilized in the development of ILs. In addition, the presence of hydroxyl group in 

choline cation for example, further improves the biodegradability of the respective IL [8]. Silver 

(Ag) is well known metal for it’s highest thermal conductivity. Silver metal nanoparticles in 

conventional solvents has previously shown  the enhacement in thermal conductivity [9]. Among 

the ammonia based ILs, due to its bioderived nature choline [NTf2] IL, was screened as a 

suitable IL in the application of IL in NH3 absorbtion system [10]. To develop new class 

ionanofluids (INFs) it is necessary to investigate their essential  properties such as density, 

viscosity and thermal conductivity.   
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In near future the heat transfer fluids will be developed with the available nanoparticles in 

combination with base ILs. However,  it is necessary to explore the effect of variation in particle 

morphology on various properties of such fluids. Eventhough the dispersing  materials with 

higheser thermal conductivity and also a variety of ionic liquds are available it is difficult to 

disperse the desired nanoparticles in the desired base ionic liquids. With this background, we 

developed a protocol for dispersion of silver nanoparticles with one dimentional (1D), two 

dimentional (2D) and three dimentional (3D) nanostructures of silver in Choline [NTf2] IL with 

the aim to develop new generation ionanofluids with improved thermal properties. The effect of 

variation in nanoparticle morphology on density, viscosity and thermal conductivity of silver 

nanofluids and silver ionanofluids were studied to explore  the role of  nanoparticle morphology 

on heat transfer properties of INFs.  

 

4.2  EXPERIMENTAL 

In order to develop INFs specifically, transition metal nanoparticles in base ionic liquids choline 

[NTf2] IL was studied in this work. More particularly, silver nanoparticles with three different 

morphologies namely, nanospheres, nanowires and nanoplates were investigated. Material 

specifications of the purchased IL and silver nanofluid (NF) and silver nanoparticles are given in 

section 2.1 of chapter 2. Silver NFs and silver INFs were developed in our laboratory. The 

preparation protocol and schematic of development are described in detail in section 2.1 and sub 

section 2.1.2 of chapter 2. Freshly prepared silver NFs, vacuum dried choline [NTf2] IL and 

silver INFs further utilized for structural, morphological, optical absorption, thermal stability 

characterization with various characterization tools and techniques. Details for material 

characterization and characterization techniques utilized for analysis of Ag NFs and Ag INFs are 

given in detail in section 2.2 of chapter 2. Equipments procedures utilized for the measurement 

of density, viscosity and thermal conductivity of  silver NFs and silver INFs are mentioned in 

section 2.3 of chapter 2. 
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4.3  EFFECT OF NANOPARTICLE  MORPHOLOGY ON STRUCTURES OF Ag-INFs 

Structural characterization of Choline bis(trifluromethylsulfonyl)imide ionic liquid was analyzed 

with 
1
H and 

13
C NMR spectroscopy to ensure the purity of purchased ionic liquid. Samples of 

silver INFs with  silver nanoparticles of  three different morphologies in base ionic liquids were 

also studied with NMR to detect the structural variation in ionic liquids after interactions with 

nanoparticle surfaces. 

 

Figure 4. 1 Chemical structure of Choline bis(trifluromethylsulfonyl) imide ionic liquid 

 

Figure 4.2 
1
H NMR spectrum of a) Choline [NTf2] IL, b) Ag-spheres-INF, c) Ag-nanowires-INF, 

d) Ag-nanoplates-INF 
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Figure 4.3 
13

C NMR spectrum of a) Choline [NTf2] IL, b) Ag-spheres-INF, c) Ag-nanowires-

INF, d) Ag-nanoplates-INF 

Structural elucidation of ionic liquid was done by 
1
H and 

13
C NMR and obtained peak 

assignments shown in Figure 4.2 a) and Figure 4.3 a). The obtained 
1
H NMR peak assignments 

are in good agreements with the literature data [11]. However one peak at 3.41 ppm obtained in 

the spectrum was due to traces of water present in IL. With curiosity to understand the structural 

variation in the structure of IL we analyze the silver ionanofluids (Ag-INF) namely Ag-spheres-

INF, Ag-nanowires-INF, Ag-nanoplates-INF. It was observed that in case of all three INFs the 

peak obtained at 5.23 ppm of hydroxyl proton (-OH) in case of choline [NTf2] was disappeared 

which reveals that there is an interaction of (-OH) group from ionic liquid cation in the solvation 

and stabilization of dispersion of Ag-nanoparticles in ionic liquid medium. All neat NMR 

spectral assignments of base ionic liquid and silver ionanofluids are shown in Table 4.1. For 
13

C 

NMR no any major changes observe which is remarkable that in the stabilization of 

nanoparticles in IL medium major role played by hydrogen bonding from choline cation. 
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Table 4.1 
1
H and 

13
C NMR assignments of IL and silver INFs 

Entry Sample Name 
1
H and 

13
C NMR spectroscopy (400 MHz CDCl3) (shift ppm) 

1 [Choline][NTf2] 
1
H NMR: 3.09 (s, 6H, N(CH3)3,-CH2-CH2-OH), 3.37 (t, 2H, N(CH3)3,-

CH2-CH2-OH), 3.82  (m, 2H, N(CH3)3,-CH2-CH2-OH), 5.27 (t, 1H, 

N(CH3)3,-CH2-CH2-OH) 

13
C NMR: 54.28 (s, 6H, N(CH3)3,-CH2-CH2-OH), 67.86 (s, 2H, 

N(CH3)3,-CH2-CH2-OH), 56.48 (s, 2H, N(CH3)3,-CH2-CH2-OH) 

2 Ag-nanospheres-INF 
1
H NMR: 3.18 (s, 6H, N(CH3)3,-CH2-CH2-OH), 3.47 (t, 2H, N(CH3)3,-

CH2-CH2-OH), 4.05 (m, 2H, N(CH3)3,-CH2-CH2-OH) 

13
C NMR: 54.28 (s, 6H, N(CH3)3,-CH2-CH2-OH), 67.87 (s, 2H, 

N(CH3)3,-CH2-CH2-OH), 56.47 (s, 2H, N(CH3)3,-CH2-CH2-OH) 

3 Ag-nanowires-INF 
1
H NMR: 3.18 (s, 6H, N(CH3)3,-CH2-CH2-OH), 3.46 (t, 2H, N(CH3)3,-

CH2-CH2-OH), 4.04  (m, 2H, N(CH3)3,-CH2-CH2-OH) 

13
C NMR: 54.20 (s, 6H, N(CH3)3,-CH2-CH2-OH), 67.78 (s, 2H, 

N(CH3)3,-CH2-CH2-OH), 56.49 (s, 2H, N(CH3)3,-CH2-CH2-OH) 

4 Ag-nanoplates-INF 
1
H NMR: 3.18 (s, 6H, N(CH3)3,-CH2-CH2-OH), 3.47 (t, 2H, N(CH3)3,-

CH2-CH2-OH), 4.05 (m, 2H, N(CH3)3,-CH2-CH2-OH) 

13
C NMR: 54.28 (s, 6H, N(CH3)3,-CH2-CH2-OH), 67.86 (s, 2H, 

N(CH3)3,-CH2-CH2-OH), 56.47 (s, 2H, N(CH3)3,-CH2-CH2-OH) 

 

4.4  INFLUENCE OF NANOPARTICLES MORPHOLOGY ON OPTICAL  

ABSORPTION 

The UV-Visible absorption spectrum of silver NFs, base ionic liquid and silver INFs with three 

different geometries nanospheres, nanorods and nanoplates are shown in Figure 4.4. The UV-

Visible absorptions of all silver NFs and INFs samples were recorded without further dilution of 

the samples. The colors of silver nanoparticle colloids in water as a solvent media are distinct 

from each other. It is clearly observed in inset photograph of Figure 4.4 a). UV-Visible optical 

absorption spectrum of Choline [NTf2] IL and silver INFs with various geometries is shown in 

Figure 4.4 b). 
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Figure 4.4 UV-Visible absorption spectra of  a) silver nanofluids b) [Choline][NTf2] IL and 

silver INFs with various geometries 

Silver colloidal solution containing nanospheres displays yellow color while silver colloidal 

solution containing nanowires and silver nanoplates colloidal solution show transparent white 

and blue color, respectively in water as a base solvent. It is well known that metal nanoparticles 

show localized surface plasmon resonance (LSPR) due to the coherent oscillation of conduction 

electrons on the surface of metal nanoparticles in resonance with the electromagnetic waves at 

the metal–dielectric interface [12-13]. Surface plasmonic resonance of silver nanoparticles is 

well-known at 400 nm. However absorption of silver nanoparticle colloids varies with variation 

of particle size or morphology [14]. Silver nanospheres nanofluids (Ag-nanospheres-NF) shows 

absorption maximum at 421.91 nm. While silver nanowires nanofluids (Ag-nanowires-NF) 

shows small absorption maximum at 375.40 nm and long tail absorption peak above 400 nm. 

Silver nanoplates nanofluids (Ag-nanoplates-NF) has two distinct optical absorptions one at 

398.75 nm and another at 555.34 nm which is due to resonant silver nanoplates. Small absorption 

at 398.75 corresponds to presence of few small size of silver nanoplates. Choline cation has no 

any aromatic character or conjugation whereas [NTf2] anion has no chromophores in the 

structure which is resulted into no absoption for Choline [NTf2] IL in UV-Visible region. Also 

IL do not have any color as clearly observes in the inset photograph of the Choline [NTf2] ionic 

liquid [15]. After dispersion of silver nanoparticles into IL phase from water phase it is found 

that UV-Visible absorptions are more shifted towards the red shift after interactions with ionic 
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liquids. Silver nanospheres ionanofluid (Ag-nanospheres-INF) shows red shift from 421.91 nm 

to 432.42 nm. Silver nanowires ionanofluid (Ag-nanowires-INF) shows shit from 375.40 nm to 

380.46 nm and silver nanoplates ionanofluids (Ag-nanoplates-INF) indicates red shift from 

398.75 nm to 431.35 nm compare to Ag-nanoplates-NF. The Ag-nanoplates-NF was resonant in 

nature after interaction of silver nanoplates with ionic liquids it changes it’s color from blue to 

black as clearly observe from the inset photograph of Figure 4.4 a) and b). However in case of 

Ag-nanospheres-INF its color becomes faint yellow compare to Ag-nanospheres-NF. Ag-

nanowires-INF show similar color with negligible turbidity due to viscous IL, compare to Ag-

nanowires-NF. 

 

4.5  EFFECT OF NANOPARTICLE MORPHOLOGY ON BONDING OF 

ILS AND INFs  

Effect of silver nanoparticles morphologies on bonding of silver NFs and INFs was studied with 

the help of ATR-IR analysis. ATR-IR spectra of silver NFs are given in Figure 4.5 a). ATR-IR 

spectra of neat choline [NTf2] IL and its respective silver INFs are shown in Figure 4.5 b). 

 

Figure 4.5 ATR-IR spectra of a) silver nanofluids b) [Choline][NTf2] IL and silver INFs with 

various geometries 

The sharp peak obtained at 1638 cm
-1

 (Figure 4.5 a)) was originated from silver nanoparticles 

stabilized with PVP as a stabilizing agent.  N. giri et. al reported the single peak at 1645 cm
-1

 in 

UNIVERSITAT ROVIRA I VIRGILI 
IONIC LIQUIDS WITH AND WITHOUT TRANSITION METAL NANOPARTICLES FOR ADVANCED HEAT TRANSFER FLUIDS AND CATALYSIS APPLICATIONS. 
Virendra Sudam Patil 
Dipòsit Legal: T 1459-2015



 

Structural and morphological influence of ……………… Chapter 4 

 

Virendra S. Patil, PhD Thesis, URV SPAIN, June 2015                                       4.10 | P a g e  
 

case of PVP nano silver matrix [16]. We observe same peak at 1638 cm
-1

 in case of all three 

nanofluids of silver nanoparticles for three different morphologies. Ag nanoparticles namely 

nanospheres, nanowires and nanoplates were dispersed in the water as a solvent. The IR peak 

observed in the range of (3200-3500 cm
-1

) generated for the water molecule [17]. In case of 

choline [NTf2] IL the strong and sharp peak at 3550 cm
-1 

was assigned to (-OH) group present in 

choline cation. In case of Ag-nanospheres-INF and Ag-naowires-INF the present peak shows 

displacement towards 3545 cm
-1 

and Ag-nanoplates-INF show same peak at 3540 cm
-1

. These 

results are consistent with 
1
H NMR results of silver INFs (Figure 4.2). Both results reveal that 

the (-OH) group from choline cation has crucial role in stabilization and dispersion of silver 

nanoparticles in IL medium. The common peaks for IL and INFs at 1476 cm
-1

 and 737 cm
-1 

was 

due to small structural chain of alkane present in choline cation. The another common peaks 

observed in Figure 4.5 b) at 1174 cm
-1

 , 1132 cm
-1 

and 1048 cm
-1  

was for (C-N strech). Other 

peaks observe in all IR spectra of Figure 4.5 b) at 657 cm
-1 

and
 
867 cm

-1
 is for C-F stretch 

present in [NTf2] anion. 

 

4.6  THERMAL STABILITY STUDY  

Figure 4.6 shows thermal stabilities of IL, water based silver NFs and Choline [NTf2] IL based 

silver ionanofluids with silver nanoparticles of various morphologies (spheres, wires, plates). 

The temperates at which the degradation of sample starts (T (onset)) and temperatures at which 

the compound degrade totally (T (deg)) are displayed  in Table 4.3.  
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Figure 4.6 Thermal gravimetric analysis of [Choline][NTf2] IL, silver NFs and silver INFs 

Table 4.2 Thermal stabilities of IL, silver nanofluids and silver ionanofluids 

Entry Sample Name T(onset) T (deg) 

1 [Choline][NTf2] 376.67 
o
C 428.00 

o
C 

2 Ag-nanospheres-NF 59.78 
o
C 93.84 

o
C 

3 Ag-nanowires-NF 74.73 
o
C 106.75 

o
C 

4 Ag-nanoplates-NF 70.46 
o
C 104.21 

o
C 

5 Ag-nanospheres-INF 391.62 
o
C 443.67 

o
C 

6 Ag-nanowires-INF 365.29 
o
C 430.46 

o
C 

7 Ag-nanoplates-INF 399.04 
o
C 460.00 

o
C 

 

Nowaday’s metal nanoparticle in conventional solvents like water becomes point of attention 

from scientific communities due to the advantages such as reduced pumping power and 

enhanced heat conduction in heat transfer technologies [18]. An especially metal nanoparticles in 

water as a fluid has thermal volatility above 100 
o
C is the major problem to apply those 

nanofluids where heat transfer requires at elevated temperatures. The water as a solvent based 
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Ag-nanospheres-NF, Ag-nanowires-NF and Ag-naoplates-NF has similar trend and instability 

above 100 
o
C as clearly observe for their thermogram in Figure 4.6.  The various morphologies 

of these NFs affect the thermal stability of NFs. Thermal stability of NFs are observed in this 

trend Ag-nanowires-NF > Ag-naoplates-NF > Ag-nanospheres-NF. Ionic liquids are well known 

for their thermal stability. We found that the Choline [NTf2] IL is thermally stable up to 376.37 

o
C in N2 environment for thermal gravimetric analysis. When we dispersed same amount of 

commercially available silver nanoparticles with various morphologies in Choline [NTf2] ionic 

liquid after interaction of nanoparticles with ionic liquids it shows difference in their thermal 

stabilities compare to base IL.  Ionic liquid and its respective ionanofluids show thermal stability 

in the trend as follows: 

Ag-naoplates-INF > Ag-nanospheres-INF > Choline [NTf2] > Ag-nanowires-NF.  In case of 

silver INFs and Choline [NTf2] IL we found that the small amount of residues remains in a 

sample pan from 2-5 weight % which was not degrade near to 400 
o
C temperature we continued 

the scan upto 500 
o
C but it remains same without any weight loss afterwords. 

 

4.7  MORPHOLOGY STUDY OF SILVER NANOPARTICLES FLUIDS IN 

WATER AND IL  

The scanning electron microscopy and transmission electron microscopy techniques were 

employed to characterize the dispersion, clustering and morphological variation in nanoparticle 

structures after dispersion in water and IL medium. 

Scanning electron microscopy analysis 

Figure 4.7 presents results of dipersions of commersially purchased silver NPs in water and 

Choline [NTf2] ionic liquid as a solvents. 
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Figure 4.7 SEM micrograph of a) Ag-nanospheres-NF, b) Ag-nanowires-NF, c) Ag-nanoplates-

NF, d) Ag-nanospheres-INF, e) Ag-nanowires-INF and  f) Ag-nanoplates-INF 

The sample of colloidal suspension of silver NPs was used  to form a very thin layered film on 

the surface of the SEM sample holder stud. For silver nanospheres when it dispersed in water it 

is found that they show very good dispersion (Figure 4.7 a)) while in case of ionic liquid silver 

nanospheres are embedded in ionic liquid matrix as observed from (Figure 4.7 b)). The 

nanowires again show the dispersion in an ionic liquid medium  a thick layer of ionic liquid over 

the surface of silver nanowires clearly observed  from Figure 4.7 d). The SEM micrograph of 

silver nanoplates in water and ionic liquid are shown in Figures 4.7 e) and Figure 4.7 f). After 

dispersion of silver nanoplates in water, it is found that they are very well dispersed in water and 

their morphology remain the same. However in SEM micrograph of silver nanoplates in IL did  

not resolve very well as observed  from Figure 4.7 f). In order to study the morphologies of silver 

nanoparticles in water and IL in more details, trasmission electron microscopy characterization 

was also performed. 
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Transmission electron microscopy analysis 

 

Figure 4.8 TEM micrograph of a) Ag-nanospheres-NF, b) Ag-nanowires-NF, c) Ag-nanoplates-

NF, d) Ag-nanospheres-INF, e) Ag-nanowires-INF and  f) Ag-nanoplates-INF 

For TEM analysis, one drop of silver NF diluted in 3 mL of millipore water and  silver INF 

solution diluted in 3 mL of acetone was dropcasted on a carbon coated copper grid. The sample 

loaded TEM grids were dried at ambient temperature conditions for 24 hrs and futher utilized for 

TEM analysis. For Ag nanopheres in water and choline [NTf2] ionic liquid (Figure 4.8 a) and b)) 

the silver nanospheres particles are well dispersed in both the solvents. Only in case of silver 

nanospheres in IL, the ionc liquid matrix is observed as shown in  Figure 7 b).  For Ag-

nanowires-NF, a good dispersion of nanowires in a water was observed. While TEM 

micrographs of Ag-nanowires-INF as shown  in Figure 4.8 d) found to have similar morphology 

in water and in IL phase. Ag-nanoplates-NF shows very good dispersion of nanoplates but sizes 

of nanoplates were found to vary  in the range of 30 nm-50 nm. This may be the effect of 

ultrasonication used for dispersing the nanoparticles in a solvents. While in case of Ag-

nanoplates-INF particles are agglomerated which is clearly observed in Figure 4.8 f). This 
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agglomeration results into more red shift of Ag-nanoplates-INF in UV-visible spectrum observed 

in Figure 4.4 b) 

4.8  XPS AND EDAX STUDY OF SILVER NFs AND SILVER INFs 

Electronic environment of the dispersions of silver nanoparticles with various morphologies in 

water and IL solvents were studied with X-ray photoelectron spectroscopy study. For analysis of 

samples fluid samples dropcast on sample mounting stud of XPS which forms thin film of NF 

and INF sample. After mounting sample immediately introduced into high vaccum sample 

chamber of XPS. The samples scanned for the Ag metal with in binding energies of  361-379 eV. 

XPS spectra of Ag 3d spectra for Ag nanofluids, base IL and Ag INFs are shown in Figure 4.9 

below. 
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Figure 4.9 XPS Ag 3d spectra of a) Ag-nanospheres-NF, b) Ag-nanowires-NF, c) Ag-

nanoplates-NF, d) Ag-nanospheres-INF, e) Ag-nanowires-INF, f) Ag-nanoplates-INF 
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Table 4.3 Binding energy assignments for silver NFs 

 

 

 

It is observed that for silver NFs the Ag 3d5/2 and Ag 3d3/2 peaks could be attributed  to Ag
o
. In 

case of silver INFs the metal surface was covered with one layer thick IL. XPS is a surface 

sensitive technique in which because of IL covering  the nanoparticles surface, it is not possible 

to reach the X-rays upto silver metal surface due to less penetration depth of X-rays. Hence, to 

confirm the presence of silver in INFs, we employed EDAX mapping. From EDAX mapping 

results, it is clearly observed that silver was present  in INF samples (Figure 4.9) which ensured 

the successful transfer of silver nanoparticles from water phase to IL phase.   

 

Figure 4.10 EDAX mapping of a) Ag-nanospheres-INF, b) Ag-nanowires-INF, c) Ag-

nanoplates-INF 

 

Entry Sample Ag 3d 5/2 Ag 3d 3/2 

1 Ag-nanospheres-NF 374.18 eV 368.18 eV 

2 Ag-nanowires-NF 374.31 eV 368.17 eV 

3 Ag-nanoplates-NF 373.56 eV 367.69 eV 
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4.9 EFFECT OF MORPHOLOGIES OF NANOPARTICLES ON 

THERMAL PROPERTIES 

Water impurity appears to have adverse effect on thermo physical properties of ILs and INFs [7]. 

Considering the adverse impact of water content on measurement of thermal properties of ILs 

and INFs, we checked the water content of [Choline][NTf2] IL and respective silver INFs 

samples before and after measurement of density, viscosity and thermal conductivity which gave 

more accuracy in measurement.  All samples were vacuum dried for 2 days prior to measurement 

of their thermal properties. The water content of samples was measured with Karl Fisher 

equipment. The water contents of IL and INFs samples before and after measurements are given 

in Table 4.4. 

Table 4.4 Measurement of water content  

Entry Sample Name Measured    

property 

Water content 

before 

measurement 

(ppm) 

Water content 

after 

measurement 

(ppm) 

1 [Choline][NTf2]  

        Density 

50.95 746.8 

2 Ag-nanospheres-INF 43.4 847.3 

3 Ag-nanowires-INF 36.05 765.1 

4 Ag-nanoplates-INF 65.65 743.9 

5 [Choline][NTf2]  

      Viscosity 

47.85 785.2 

6 Ag-nanospheres-INF 41.9 801.3 

7 Ag-nanowires-INF 30.9 799.1 

8 Ag-nanoplates-INF 39.1 736.5 

9 [Choline][NTf2]  

     Thermal  

   conductivity 

36.7 646.65 

10 Ag-nanospheres-INF 40.7 888.4 

11 Ag-nanowires-INF 30.12 793.1 

12 Ag-nanoplates-INF 35.3 734.0 
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Effect on density  

Density of freshly prepared silver NFs was measured in the range of 20 
o
C to 70 

o
C with Anton 

Paar DSA 5000 measuring unit and the results are shown in Figure 4.11 a) below. 

 

Figure 4.11 Density measurement of a) silver NFs and b) silver INFs with various morphologies 

from 20 
o
C to 70 

o
C 

Each NF sample contain equal amount of silver nanoparticles which were dispersed in an equal 

amount of water as a solvent. The  variation in morphology displays considerable variation in 

density of NFs (Figure 4.11a)). It was found that Ag-nanowires-NF which is one dimensional in 

nature shows less compactness between nanoparticle surfaces which results into decrease in 

density compared to the other two morphologies of silver nanoparticles. While silver nanoplates 

NFs which are two dimensional in nature show highest density among all three morphologies of 

silver nanoparticles. While three dimensional structures of silver Ag-nanospheres-NFs show 

density in between the Ag-nanowires-NF and Ag-nanoplates-NF. To study the effect of 

nanoparticles morphology on base IL, we first measured the density of dried [choline][NTf2] IL. 

Obtained results are in a good agreement with the reported values of density for [choline][NTf2] 

IL [11]. Silver NFs showed  similar trend for the silver INFs.The trend of density observed for 

Ag nanoparticles density trend with respect to morphology as seen from in Figure 10 b) is found 

to be 1D < 3D < 2D structures of silver nanoparticles in [Choline] [NTf2] IL. 
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Effect on viscosity 

Viscosity is one of the important properties to apply NFs and INFs for designing of instrument. 

Less viscous fluids can reduce the pumping cost of the instrument to flow the liquid through heat 

transfer based equipments. We measured the viscosities of silver NFs and silver INFs in 

temperature range of  20 
o
C to 70 

o
C. 

 

Figure 4.12 Viscosity measurement of a) silver NFs and b) silver INFs with various 

morphologies from 20 
o
C  to 70 

o
C 

We studied the effect of nanoparticle morphology on viscosity of base solvents used for 

dispersion of nanoparticles with different morphologies as shown in Figure 4.12 a) and b). For 

silver NFs the Ag-nanowires-NF shows very less viscosity compared to the Ag-nanospheres-NF, 

while Ag-nanoplates-NF shows highest viscosity. The obtained results demonstrated that 2D 

structures responsible for increase in viscosity of NFs. ILs and INFs are more viscous compared 

to NFs but the thermal stability is the considerable advantage of INFs as observe in Figure 5. We 

found that all three silver INFs displays increase in viscosity of base IL after addition of 

nanoparticles, as thess results are consistant with the addition of SiO2 and TiO2 nanoparticles in 

silicon oil as a base fluid reported by murshed et al [19]. Ag-nanospheres-INF and Ag-

nanowires-INF shows similar viscosities with negligible difference. Among IL and INFs 2D 

silver nanoplates shows highest viscosity while at 20 
o
C it is too high that we not obtain data 

point at this temperature. The TEM image of Ag-nanoplates-INF also shows the agglomeration 
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of nanoparticles in base ionic liquids which resulted into increase in viscosity for Ag-nanoplates-

INF as observe in Figure 4.8 f). 

Effect on thermal conductivity  

Thermal conductivity of  silver NFs samples and silver INFs samples were measured in the 

temperature range of  20 
o
C to 60 

o
C. Compared to all NFs samples thermal conductivity of 

choline [NTf2] IL and silver-INFs was found to be almost double. As observed from Figure 4.12 

a) and b), the Ag-nanowires-NF sample show the highest thermal conductivity compared to other 

morphologies of silver like Ag-nanospheres-NF and Ag-nanoplates-NF. Simillar trend was 

observed for silver-INFs. After dispersion of silver nanoparticles in base ionic liquids, for all the 

INFs the enhancement in thermal conductivity was observed.  

 

Figure 4.13 Thermal conductivity measurement of a) silver NFs and b) silver INFs with various 

morphologies from 20 
o
C to 60 

o
C 

4.10 CONCLUSIONS 

The NMR study shows that the –OH functional group present in cation has played crucial role in 

the dispersion of silver nanoparticles in ionic liquid medium. IL and Ag-INFs are found to be 

more thermal stable than that of silver NFs samples. Silver nanoplates 2D structures shows 

highest density and viscosity due to agglomeration of nanoplates during phase transformation of 

nanoparticles from water to IL phase. One dimentional silver nanowires has highest thermal 

conductivity compare to two dimentional silver nanoplates and three dimentional silver 
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nanospheres. Enhanced thermal conductivity, reduced viscosity of Ag-nanowires-INF make this 

fluid as a potential heat transfer fluid . 
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Chapter 5 deals with a novel combination of 5% Ru/C and acidic Brønsted ionic 

liquids developed for the selective hydrogenation of bioderived levulinic acid to γ–

valerolactone. Effect of variation in acidic anion and its chain length on acidity of 

ionic liquid is investigated with Hammet acidity function. Further correlation of IL 

Brønsted acidity and catalytic activity study is discussed in this chapter. Effect of 

process parameters is investigated for optimization of  the reaction conditions. 
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5.1 INTRODUCTION 

Replacing petroleum feedstock with renewable resources such as lignocellulosic biomass is 

inevitable in near future for sustainable process development. Lignocellulosic biomass is 

composed of cellulose, hemicellulose and lignin [1-2] among which pentoses as well as hexoses 

derived from carbohydrate feedstock are processed to obtain important C5-C6 platform 

molecules such as levulinic acid (LA) and/or furfural [3-5]. Considerable research over the past 

few years has been focused on the catalytic conversion of biomass to LA by both batch and 

continuous technologies, which resulted into potential commercial production of LA. Further 

downstream processing of levulinic acid (LA) involves its selective hydrogenation to -

valerolactone (GVL) which is a much more value-added having applications in the production of 

perfumes, food additives, as a solvent and precursor for other green solvents [5-6]. Additionally, 

GVL can be used as fuel additive to current fuels derived from petroleum in similar way as 

ethanol. For instance, Horvath et al. [4] have compared mixtures of 90 vol% gasoline with 10 

vol% ethanol or 10 vol% GVL that shows similar octane numbers. It has combustion energy 

similar to ethanol (35 MJ L
−1

) and a higher energy density which confers GVL potential as a 

liquid fuel.  

Levulinic acid (LA) hydrogenation proceeds through the formation of an intermediate, 4-

hydroxy LA which then undergoes cyclization to give GVL.  LA has been hydrogenated to GVL 

under relatively mild conditions using homogeneous Ru complexes such as RuCl2 (PPh3)3,[7]  

Ru(acac)3 ligated with PBu3 or tris(3-sulfonatophenyl) phosphine (TPPTS) [8] and RuCl3 

combined with TPPTS [9]  or PPh3 [10]  in excellent yields of  99%. Nevertheless, homogeneous 

catalysts obviously have the practical disadvantage of their separation and recyclability along 

with multistep ligand synthesis which discourage their commercial exploitation. Therefore, LA 

to GVL hydrogenation has been attempted on various supported noble metal catalysts such as 

Ru, Pd, Pt, Ni, Rh, Ir and Au. Among these metals, reasonable success was achieved over 5 wt%  

Ru/C catalyst with  GVL yield as high as 97% at 423 K [11]. While in a continuous process in 

supercritical CO2 over a Ru/SiO2 catalyst, 99% yield of GVL could be obtained [12]. Selective 

hydrogenation of levulinic acid to GVL has been efficiently performed in 1, 4-dioxane with Ru, 

Pt and Pd supported on carbon among which, 5 wt% Ru/C gave complete conversion with  100% 

UNIVERSITAT ROVIRA I VIRGILI 
IONIC LIQUIDS WITH AND WITHOUT TRANSITION METAL NANOPARTICLES FOR ADVANCED HEAT TRANSFER FLUIDS AND CATALYSIS APPLICATIONS. 
Virendra Sudam Patil 
Dipòsit Legal: T 1459-2015



Selective hydrogenation of levulinic acid………………… Chapter 5 

 

Virendra S. Patil, PhD Thesis, URV SPAIN, June 2015                                         5.4 | P a g e  
 

selectivity to GVL [13]. The higher catalytic activity and selectivity of the Ru/C catalyst was 

attributed to the higher dispersion of nano-metallic Ru particles over carbon compared to Pt and 

Pd catalysts. However, few systems involved other metal catalysts in combination with acidic 

co-catalyst achieving better activity and catalyst stability for hydrogenation of LA with highest 

selectivity to GVL under mild reaction conditions [14-15].  Some of these include use of TiO2 or 

ZrO2, Sn, Amberlyst 15, niobium phosphate/oxide or use of supercritical CO2 medium [14,16-

18]. Recently, Nadgeri et al. reported the addition of solid acid catalysts to Ru/graphite enhanced 

the formation of GVL from methyl 4-hydroxyvalerate [19].
  

Our own efforts in this direction 

proved that non-noble metal catalyst in combination with ZrO2 having acidic characteristic could  

afford quantitative hydrogenation of LA and its methyl ester with complete selectivity to GVL 

[20].
 
In another variations also where H-donors have been employed in place of external 

hydrogen for LA to GVL conversion, use of acidic catalyst was inevitable for the step of ring 

closure of the intermediate to form GVL [21-23]. In continuation of our work on LA 

hydrogenation, we found that in aqueous medium; imidazole based Brønsted acidic ionic liquid 

(IL) as a co-catalyst with 5% Ru/C catalyst gave > 90% LA conversion with 98% selectivity to 

GVL and 2% pentanoic acid (valeric acid). The later also has wide spread applications in flavors, 

perfumes and cosmetics.  

In this work, we systematically varied the acidity of imidazole based IL by varying the anions 

which dramatically affected both LA conversion and GVL selectivity. The acidity of various ILs 

was determined using the Hammet method with UV-visible spectroscopy. In addition, effects of 

process parameters like, concentration of ILs and catalyst and H2 pressure have been studied to 

achieve maximum LA conversion and GVL selectivity. IL and Ru/C are easily separable by 

means of simple filtration and can be reused up to several cycles with consistent results.  

 

5.2 EXPERIMENTAL 

5.2.1 Preparation of 5% Ru/C catalyst  

Ru supported carbon catalyst was prepared by impregnation method. In a typical procedure, 2 g 

of the carbon support was suspended in aqueous medium containing calculated amount of 
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RuCl3.6H2O for 5% loading under stirring for 1h. It was subsequently reduced using 5 mL (1M 

solution in water) of NaBH4. Then suspension was filtered and dried at 110 
o
C for 12h. 

5.2.2 Synthesis of imidazole based Brønsted acidic ILs 

All four imidazole based Brønsted acidic ILs viz. 1-methyl imidazolium formate 

([Hmim][HCOO]), 1-methyl imidazolium acetate ([Hmim][CH3COO]), 1-methyl imidazolium 

propionate ([Hmim][CH3CH2COO]), 1-methyl imidazolium hydrogen sulfate  ([Hmim][HSO4]) 

were synthesized by mixing equimolar amounts of acid and base [24].  In a typical synthesis, 

dropwise addition of base to acid was carried out for complete neutralization in an ice bath in 

order to avoid heat generation. The reaction mixture was stirred for 6 h at room temperature. The 

water formed in the neutralization was removed by rotavapour at 80 
o
C for 6 h. The last traces of 

water and volatile impurities were removed from ILs under reduced pressure at 70 
o
C for 10 h 

[25].   

5.2.3 Procedure for hydrogenation of levulinic acid and product analysis 

In a typical hydrogenation reaction, levulinic acid (1.25 g), 5% Ru/C catalyst (0.1 g), IL (0.025 - 

0.1 g) and solvent (23.75 mL), were mixed together in a 50 mL capacity autoclave (Parr 

Instruments Co., USA). The autoclave was heated at 100 
o
C under H2 pressure of about 500 psi, 

the reaction were maintained under stirring at 1000 rpm for 5 h. Samples were withdrawn 

periodically with 1 h. interval and analyzed by GC (Shimadzu GC 2025) having an AB-FFAP 

(30m, 0.53 mm Id, 1um) column coupled with a FID detector.  

5.2.4 Catalyst recycling 

To test the recyclability, the catalyst combination was reused for four subsequent runs. After 

each experiment, the catalyst combination was separated from the mixture by simple filtration 

and the residue containing Ru/C was dried in oven at 120 
o
C for 2 h prior to reuse and mother 

liquor was extracted with ethyl acetate (25mL x 2). The aqueous layer separated was 

concentrated on a rotavapor at 80 
o
C for 2 h to remove water and was then used for the next 

reaction. The reaction condition for each cycle was identical, as follows: levulinic acid (1.25 g), 

5% Ru/C catalyst (0.1 g), [Hmim][ HSO4] ( 0.1 g) and H2O (23.75 mL), were mixed together in 

a 50 mL capacity autoclave (Parr Instruments Co., USA). The autoclave was heated at 100 
o
C 
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under H2 pressure of about 500 psi, the reaction was maintained under stirring at 1000 rpm for 5 

h. 

 

5.3 RESULTS AND DISCUSSION 

Selectivity to GVL could be improved by the stronger acidity of ILs which protonates the 

ketonic functional group of LA making it facile for ring closing by intramolecular esterification. 

The subsequent dehydration leads to the formation of - angelica lactone which on 

hydrogenation forms GVL.  If hydrogenation function dominates, it hydrogenate ketonic group 

to form unstable intermediate  4- hydroxy pentanoic acid which converted into GVL by ring 

closing via intramolecular esterification  and eliminate water molecule. 4-hydroxy pentanoic acid 

furthermore converted to pentanoic acid via dehydration to olefinic acid (3-pentenoic acid) in 

acidic medium and subsequent hydrogenation (Scheme 5.1).  

 

Scheme 5.1 Reaction pathways to GVL and Pentanoic acid (Valeric acid) 

5.3.1 Activity measurement 

LA hydrogenation reaction in absence of IL gave 99% conversion but selectivity to GVL was 

only 62% and remaining 38% was the intermediate,  4-hydroxy pentanoic acid (entry 1, Table 

UNIVERSITAT ROVIRA I VIRGILI 
IONIC LIQUIDS WITH AND WITHOUT TRANSITION METAL NANOPARTICLES FOR ADVANCED HEAT TRANSFER FLUIDS AND CATALYSIS APPLICATIONS. 
Virendra Sudam Patil 
Dipòsit Legal: T 1459-2015



Selective hydrogenation of levulinic acid………………… Chapter 5 

 

Virendra S. Patil, PhD Thesis, URV SPAIN, June 2015                                         5.7 | P a g e  
 

5.1). Thus, the role of IL was crucial in achieving selective formation of GVL in LA 

hydrogenation. In order to understand the role of acid sites in the LA hydrogenation several 

Brønsted acidic ILs (Table 5.1, entries 2-6). [Hmim][HSO4], [Hmim][CH3CH2COO], 

[Hmim][CH3COO] and [Hmim][HCOO] ILs were tested along with 5% Ru/C. To understand the 

role of only [Hmim][HSO4] IL as a catalyst a control experiment was perfomed with only IL  

without 5% Ru/C catalyst (entry 7, Table 5.1). The results of this run showed that conversion of 

LA was very poor 26% while selectivity to GVL was  64.23% which was much less than that for 

the combination of 5% Ru/C and [Hmim][HSO4] IL catalyst (entry 5, Table 5.1). While 

selectivity to PA  marginally increased upto 22%  but the selectivity to other products increased  

to 13.24% . 

Table 5.1. IL Screening results for hydrogenation of LA
 

Entry  

IL  

Hammet 

Acidity 

(Ho) 

 

Conversion (%)  

(%) Selectivity 

GVL PA Other 

1 Without IL ----- 99.92 61.93 0.05 38.00 

2 [Hmim][HCOO] -0.036 19.38 22.28 55.57 22.14 

3 [Hmim][CH3COO] -0.17 82.68 86.21 7.46 6.32 

4 [Hmim]][CH3CH2COO] -0.224 74.69 86.25 8.01 5.72 

5 [Hmim][HSO4] -0.708 89.84 96.90 2.18 0.90 

6 [Hmim][HSO4]* -0.708 86.57 92.52 5.73 1.74 

7 Without 5% Ru/C** -0.708 26.77 64.23 22.51 13.24 

Reaction conditions: levulinic acid, 1.25 g; 5% Ru/C, 0.2 g ; [Hmim][HSO4],0.075 g ; H2O, 

23.75 mL; H2 pressure, 500 psi; temperature, 100 
o
C, *200 

o
C;  reaction time, 5 h.,** Only IL 

[Hmim][HSO4] 

Among all four ILs studied in this work, [Hmim][HSO4] showed the best performance in terms 

of  90%  LA conversion and 97% selectivity to GVL (entry 5, Table 5.1) at 100 
o
C. However, as 

the temperature increased to 200 
o
C for the same IL, both LA conversion  and GVL selectivity 

marginally decreased to 86% and  92%, respectively. For  [Hmim][HCOO] conversion dropped 

down to 20% but surprisingly selectivity to PA enhanced to 55% at the cost of  GVL (22%;  
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entry 2, Table 5.1). Chain length increment in anionic counterpart of ILs influenced their acidity 

and substantially improved conversion of LA upto 83% and selectivity of GVL upto 86%. 

[Hmim][CH3CH2COO] and [Hmim][CH3COO] ILs showed almost the same acid strength and 

GVL selectivity (entries 2, 3; Table 5.1). In order to further enhance the acidity of IL, the anion 

contrepart was changed to HSO4 and the resulting IL,  [Hmim][HSO4]  gave the highest activity 

of ~ 90% LA conversion and maximum selectivity of 97% to GVL.   

The catalytic activity observed for various ILs was found to be consistent with their Brønsted 

acidity which was determined in terms of  Hammet acidity function as given below [26].  

Ho = pK (I) aq + log ([I]/ [IH
+
])………………. (5.1) 

Where, pK (I) aq is the pKa value of the indicator which is (0.99), [IH
+
] is the protonated form of 

indicators, [I] is the molar concentration of unprotonated form of indicator, [IH
+
] is molar 

concentration of protonated form of indicator. UV-Vis spectra of both unprotonated and 

protonated forms of indicator showed a specific absorption at 360 nm in ethanol however, the 

intensity increases for the protonated form. The measured values of absorbance were used to 

determine [I]/[IH
+
] ratio from which value of Ho was calculated for all four ILs. As shown in 

Table 1, acidity trend of ILs was in the following order, [Hmim][HSO4] > 

[Hmim]][CH3CH2COO] > [Hmim][CH3COO]  > [Hmim][HCOO] which was also consistent 

with their catalytic activity.  

5.3.2 Characterization of ILs 

Thermal stability of the prepared Brønsted acidic ILs was studied by thermal gravimetric 

analysis over a temperature range from of 30 
o
C – 500 

o
C (Figure 5.1). This thermo gravimetric 

analysis of ionic liquids conducted in N2 atmosphere with an heating rate 5
 o

C/min. The onset of 

thermal decomposition  varied with  different  ILs such that for [Hmim][HCOO] decomposition 

started at 98 
o
C, [Hmim][CH3COO] at 80 

o
C, [Hmim][CH3CH2COO] at 82 

o
C and  

[Hmim][HSO4] at 230 
o
C,  respectively. Total degradation temperatures also varied for all the  

ILs as follows:  [Hmim][HCOO] at 172 
o
C, [Hmim][CH3COO] at 154 

o
C, 

[Hmim][CH3CH2COO] at 153 
o
C, while [Hmim][HSO4]  at 363 

o
C. It was observed that 

increased chain length reduced the thermal stability of IL. [HSO4] anion based IL showed the 

UNIVERSITAT ROVIRA I VIRGILI 
IONIC LIQUIDS WITH AND WITHOUT TRANSITION METAL NANOPARTICLES FOR ADVANCED HEAT TRANSFER FLUIDS AND CATALYSIS APPLICATIONS. 
Virendra Sudam Patil 
Dipòsit Legal: T 1459-2015



Selective hydrogenation of levulinic acid………………… Chapter 5 

 

Virendra S. Patil, PhD Thesis, URV SPAIN, June 2015                                         5.9 | P a g e  
 

highest thermal stability.  The  first weight loss occured up to 11%, 4%, 4%, and 4% for formate, 

acetate, propionate and hydrogen sulphate anions, respectively which was because of 

evaporation of water absorbed at the time of sample mounting before the measurement. 

[Hmim][HSO4] IL that showed the highest activity and selectivity was also found to be the most 

stable IL. 

 

Figure 5.1 Thermo gravimetric analysis of ILs 

The structural elucidation of the prepared ILs was done by 
1
H and C

13
 NMR. 

1
H and C

13
 NMR 

spectra of the prepared ILs are shown in Figure 5.2 and 5.3. NMR spectroscopic data is given as 

follows:  

N-Methyl imidazolium formate. 
1
H

 
 NMR (CDCl3, 200 MHz, ): 3.75 ( m, 3H, N-CH3), 6.96 ( t, 

1H, CH, J=6.19 Hz), 7.10 ( t, 1H, CH, J=6.19 Hz), 7.75 ( t, 1H, CH), 8.37 ( m,1H, HCOO), 

11.83 ( t, 1H, NH), (Figure 5.2 a)).
   13

C NMR (): 33.58, 120.48, 125.86, 136.56, 165.39, (Figure 

5.3 a)).
  
 

N-Methyl imidazolium acetate.
  1

H
 
 NMR (CDCl3, 200 MHz,): 2.06 (t, 3H, CH3COO), 3.71 ( m, 

3H, N-CH3), 6.9 (t, 1H, CH, J=8.97Hz), 7.09 (t, 1H, CH, J=8.97Hz), 7.67 (t, 1H, CH), 13.52 (t, 

1H, NH), (Figure 5.2 b)).
   13

C NMR (): 21.23, 33.27, 119.94, 126.96, 137.00, 174.66, (Figure 

5.3 b)). 

N-Methyl imidazolium propionate.
 1

H
 
 NMR (CDCl3, 200 MHz,): 1.15 (t, 3H, CH3CH2COO), 

2.37 (q, 2H, CH3CH2COO), 3.70 (s, 3H, N-CH3), 6.89 (t, 1H, CH), 7.08 (t, 1H,CH), 7.64 (s, 1H, 
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CH) 13.59 (s, 1H, NH), (Figure 5.2 c)).
    13

C NMR (): 9.36, 28.07, 33.68, 120.31, 127.70, 

137.53, 178.28, (Figure 5.3 c)).
   

 

N-Methyl imidazolium hydrogen sulfate:
  1

H
 
NMR (CDCl3, 200 MHz, ):  3.77 (s, 3H, N-CH3), 

7.19 (s, 1H, CH), 7.24 (s, 1H, CH), 8.28 (s, 1H, CH), 11.15 (s, 1H, NH), (Figure 5.2 d)).
 13

C 

NMR ():134.72, 123.24, 119.84, 35.87, (Figure 5.3 d)).
   

 

 

Figure 5.2 
1
H NMR of a) 1-Methyl imidazolium formate b) 1-Methyl imidazolium acetate, c) 1-

Methyl imidazolium propionate, d) 1-Methyl imidazolium hydrogen sulfate 
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Figure 5.3 
13

C NMR of a) 1-Methyl imidazolium formate b) 1-Methyl imidazolium acetate, c)  

1-Methyl imidazolium propionate, d) 1-Methyl imidazolium hydrogen sulfate 
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5.3.3 Catalyst characterization 

The hydrogenation catalyst, 5% Ru/C was prepared in our laboratory hence, its characterization 

was also carried to study the extent of metallic phase formation and the particle size. XRD 

pattern of as prepared 5% Ru/C catalyst showed an average crystallite size of Ru to be ~ 2 nm 

(Figure 5.4). Two peaks at 2θ = 24.95
o
 and at 2θ = 72.6

o
 represented the (4 0 0), (10 4 2) planes, 

respectively of  carbon support  with  fcc structure (JCPDS File No. 82-0505). A reflection at 2θ 

= 44
o
 represented (1 0 1) plane from hexagonal primitive structure of metallic ruthenium (JCPDS 

File No. 06-0663) confirming the complete reduction of ruthenium precursor to its metallic form.  

 

 

Figure 5.4 XRD pattern for 5% Ru/C Catalyst 

HR-TEM of 5% Ru/C shows that Ru nanoparticles were spherical in shape with a particle size of 

1.7-4.2 nm (Figure 5.5). Inset particle size histogram in Figure 5.5 shows that Ru nanoparticles 

were very well dispersed over the surface of carbon.  
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Figure 5.5 HR-TEM micrograph and histogram of 5% Ru/C catalyst 

Elemental composition of as prepared catalyst characterized with the Energy Dispersive X-ray 

Spectroscopy (EDS) technique. Chemical composition of 5% Ru/C catalyst presented in Figure 

5.6 shows peaks for carbon, ruthenium and copper. Copper peak was obtained from copper grid 

used to mount sample of catalyst.  

 

Figure 5.6 EDS spectrum of 5% Ru/C catalyst 
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5.4 PARAMETERS EFFECT STUDY 

5.4.1 Effect of time  

To achieve the maximum conversion of levulinic acid and GVL selectivity effect of reaction 

time on LA conversion and selectivity to hydrogenation products of LA  was studied in water as 

a solvent. Within first h of the reaction, LA conversion observed was 73% with ~ 95% selectivity 

to GVL both of which increased  to 89.84%  and 96.90%, respectively,  as shown in Figure 5.7. 

While the selectivity to PA decrease from 3.17% to 2.18% with increase in reaction time to  5h. 

Formation of other products also decreased from 2.23% to 0.90% with increased reaction time.  

 

 

Figure 5.7 Conversion and selectivity vs. time profile for LA hydrogenation 

Reaction conditions: levulinic acid, 1.25 g; catalyst, 5% Ru/C, 0.2 g; ionic liquid, 

[Hmim][HSO4],  0.1 g; solvent, H2O, 23.75mL;  H2 pressure, 500 psi; temperature, 100 
o
C; 

reaction time, 1-5h. 
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5.4.2 Effect of IL concentration  

Since [Hmim][HSO4] IL was found to be the best among others, effect of its concentration on 

conversion and selectivity results is presented in Figure 5.8. Dependence of LA conversion and 

GVL selectivity was studied by varying the concentration of [Hmim][HSO4] in the range of 

0.025g to 0.1g at 100
o
C with H2 pressure of 500 psi. LA conversion decreased from 99.9 to 

89.84 % with increase in IL concentration from 0.025g to 0.1g. Selectivity to GVL marginally 

decreased from 98.34 to 96.9% with simultaneous increase in selectivity to PA (from 0.03 to 

2.18%) with increase in concentration of IL. Increase IL concentration increased the acidic sites 

available for reaction which resulted in increase in PA selectivity. At the same time, selectivity 

to  other byproducts decreased substantially from 1.54 to 0.9%. 

 

 

Figure 5.8 Effect of IL concentration on hydrogenation of LA 

Reaction conditions: levulinic acid, 1.25 g; catalyst, 5% Ru/C, 0.2 g; ionic liquid, 

[Hmim][HSO4], 0.025-0.1 g;, solvent, H2O, 23.75mL; H2 pressure, 500 psi; temperature, 100 

o
C; reaction time 5 h. 
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5.4.3 Effect of catalyst concentration 

The effect of 5% Ru/C catalyst concentration on the conversion of LA and GVL selectivity was 

studied in the range of 0.05 to 0.2g at 100 
o
C (Figure 5.9). It was found that conversion of LA 

decreased from 99.8 to 89.84% with increase in catalyst concentration from 0.05 to 0.1g while, 

the conversion again enhanced from 89.84 to 99.52%  with further increase in catalyst 

concentration from 0.1 to 0.2g. Selectivity to GVL increased marginally from 96.37 to 97.24% 

with an increase in catalyst concentration. Increasing the  catalyst concentration from 0.05 to 

0.1g caused an increase in PA selectivity from 1.18 to 2.18%  while further increase in catalyst 

concentration  decreased the PA selectivity up to 0.55% with increase in selectivity toother 

byproducts (up to 2.19%).  

 

 

Figure 5.9 Effect of catalyst concentration on hydrogenation of LA 

Reaction conditions: levulinic acid, 1.25 g; catalyst, 5% Ru/C, 0.05-0.20 g; ionic liquid, 

[Hmim][HSO4], 0.075 g; solvent, H2O, 23.75 mL; H2 pressure, 500 psi; temperature 100 
o
C, 

reaction time 5 h. 
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5.4.4 Effect of H2 pressure 

Figure 5.10 shows the effect of hydrogen pressure on LA hydrogenation at 100 
o
C. The 

conversion of LA first decreased from 99 to 89 % for the initial increase in H2 pressure from 250 

psi to 500 psi beyond which it increased noticeably up to 100% at 750 psi of H2 pressure. The 

selectivity to GVL hardly varied with increase in hydrogen pressure. Increase in activity with 

increase in hydrogen pressure beyond 500 psi was obviously due to higher dissolved 

concentration of hydrogen according to Henry’s law [27]. The selectivity to PA increased first 

from 1.47 to 2.18% and then decreased to 0.91% with increase in hydrogen pressure from 250 to 

750 psi. However, selectivity to other products first decreased from 2 to < 1% and then increased 

to > 1 %. 

 

 

Figure 5.10 Effect of hydrogen pressure on hydrogenation of LA 

Reaction conditions: levulinic acid, 1.25 g; solvent H2O, 23.75 ml; H2 pressure, 250-750 psi; 

catalyst, 5% Ru/C, 0.1g; ionic liquid [Hmim][HSO4], 0.1g; reaction time, 5 h; temperature, 100 

o
C. 
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5.4.5 Effect of solvent 

Figure 5.11 shows the effect of different solvents on hydrogenation of levulinic acid. In polar 

solvent like methanol,  higher conversion of LA and higher  selectivity to GVL were obtained. 

While in case of non-polar solvent like toluene both LA conversion and GVL selectivity were 

affected adversely due to formation of other products to the extent of  > 21%. For methanol and 

water solvents,  selectivity to other products was only 1.21% and 0.90 %,  respectively. Methanol 

solvent gave 98% LA conversion while GVL selectivity was 97% compared to water and toluene 

solvents. In methanol solvent selectivity to PA was 1.62 % while  selectivity to other products 

was 1.21%. In case  of water as a solvent, selectivity to PA increased from to 2.18% while that to 

other product slightly decreased to 0.90 %.  Considering the less selectivity to other products 

water was considered as  more efficient solvent for LA hydrogenation than methanol. 

 

Figure 5.11 Effect of solvent on hydrogenation of LA 

Reaction conditions: levulinic acid, 1.25 g; solvent, 23.75 mL;  H2 pressure, 500 psi; catalyst, 

5% Ru/C, 0.1g; ionic liquid, [Hmim][HSO4], 0.1g; temperature 100  
o
C; reaction time, 5 h.  
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5.5 CATALYST RECYCLE STUDY 

In order to establish the stability of the catalyst, a series of recycle experiments were also 

conducted with 5% Ru/C and [Hmim][HSO4] combination (Figure 5.12). Fresh catalytic 

combination showed 90% LA conversion and GVL selectivity of 97%. There was slight decrease 

in the conversion of LA from 90% to 86 % at the end of the 4
th

 reuse. However LA conversion 

marginally decreased below 80% after the  4
th

 cycle, but selectivity of GVL (97%) remained 

same. As the catalyst loading was 0.2 g, there could be considerable handling losses for the 

subsequent recycles which caused the decrease in activity after the 4
th

 recycle experiment. 

 

Figure 5.12 Recycling experiments catalyzed by 5% Ru/C and [Hmim][HSO4] 

Reaction conditions: levulinic acid, 1.25 g; catalyst, 5% Ru/C,  0.2 g; ionic liquid, 

[Hmim][HSO4],  0.075 g; solvent, H2O, 23.75mL; H2 pressure, 500 psi; temperature 100 
o
C; 

reaction time 5 h. 
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5.6 CONCLUSIONS 

A combination of 5% Ru/C and [Hmim][HSO4] was found to be highly efficient for the selective 

hydrogenation of LA to GVL in a aqueous medium. Variation in anion and the chain length 

influenced the acidities of ILs as shown by Hammet acidity function. Increase in IL acidity 

resulted in the enhancement in both LA conversion and GVL selectivity. The optimum 

concentrations of both IL and Ru/C catalyst were determined to give 90% LA conversion with  

 > 96% selectivity to GVL. Combination of 5% Ru/C and [Hmim][HSO4] catalyst effectively 

used up to four recycles with same selectivity to GVL.  
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Chapter 6 

Conclusions and future recommendations 

6.1 CONCLUSIONS 

In this doctoral thesis, designing of imidazolium halide ionic liquids and trasition metal 

nanoparticles ( of ruthenium and silver) containing  ionanofluids was successfully carried out as 

novel fluids for heat transfer and catalysis applications. For this purpose, imidazolium cation 

based ILs were prepared with variation in anions such  as  chloride, bromide, iodide and 

tetrafluroborate. Thermal properties as well as density and viscosity of these fluids were 

investigated in detail. Main conclusions are:   

 Ruthenium nanoparticles were prepared with a simple protocol without using any 

external stabilizing agent at room temperature and used for in-situ  preparation of 

ionanofluids (INFs). The density and viscosity of Ru-INFs decreases with increase in 

mass of anions of the corresponding ILs.  Thermal properties of these INFs  were also 

found to be improved than those of base ILs.    

 Silver (Ag) NPs with variable morphologies, of  1D, 2 D and 3 D directly procrred  were 

also used for developing INFs. Silver nanoplates  with 2D structure shows highest density 

and viscosity due to agglomeration of nanoplates during phase transformation of 

nanoparticles from water to IL phase. One dimentional silver nanowires has the highest 

thermal conductivity compared to two dimentional silver nanoplates and three 

dimentional silver nanospheres. Enhanced thermal conductivity, reduced viscosity of Ag-

nanowires-INF make this fluid as a potential heat transfer.  

 A combination of 5% Ru/C and IL, [Hmim][HSO4] was found to be highly efficient for 

the selective hydrogenation of levulinic acid (LA) to -valerolactone (GVL) in an 

aqueous medium. Variation in anion and its chain length influenced the acidities of ILs as 

shown by Hammet acidity function. Increase in IL acidity resulted in the enhancement in 

both LA conversion and GVL selectivity. The optimum concentrations of both IL and 

Ru/C catalyst were determined to give 90% LA conversion with  > 96% selectivity to 
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GVL. Combination of 5% Ru/C and [Hmim][HSO4] catalyst effectively used up to four 

recycles with same selectivity to GVL.  

 

6.2 FUTURE RECOMMENDATIONS 

 Development of functionalized ILs and INFs with better thermal and flow properties, as 

heat transfer fluids and catalysts  

 Development of scale up strategies of these ILs and INFS for higher scale testing for heat 

transfer applications. 
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