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ABSTRACT 

 

The cumulative impact of technological and social changes has prompted the epidemiological 

transition of the 20th century, in which the leading causes of death shifted from infectious 

diseases to chronic diseases, including an array of neuropsychiatric and metabolic disorders. In 

this context, pesticides have undeniably contributed to improve agricultural productivity. 

However, their extensive use and massive release into the environment has led some authors to 

wonder about the potential contribution of these substances to the emergence of such chronic 

diseases. Currently, organophosphates (OP) – and chlorpyrifos (CPF) in particular - are the most 

widely used insecticides in the world, due largely to their low environmental persistence and 

their high effectiveness. These substances exert they insecticidal activity by inhibiting 

acetylcholinesterase in central nervous system of insects, but the presence of this enzyme in 

many other organisms, including mammals, implies their neurotoxic effects extend to 

unintended targets. The ubiquity of CPF and the wide range of source of exposures entail not 

only crop dusters and farm workers are actually exposed, but also the general population. A 

great body of epidemiological and experimental data have reported neurobehavioural deficits 

upon acute and chronic exposures to CPF. However, most research focuses on learning and 

memory processes, while the assessment of more complex behaviours, such as inhibitory 

control and motivation has received scant attention. Similarly, there is some evidence on the 

contribution of OPs in boostering metabolic disorders, but this area of knowledege has been 

understudied. One of the critical issues is to establish whether there are subpopulations 

particularly susceptible to the detrimental effects of CPF. In regard to this, the three most 

common human apolipoprotein E (apoE) isoforms have been proved to confer varying 

vulnerabilities to metabolic diseases and neurodegeneration on their carriers. Further, there is 

evidence supporting their role in modulating cognition in the absence of a disease condition. In 

fact, while being carrier of the ε4 allele stands as a genetic risk factor for Alzheimer’s disease 

and poor cognitive outcome, the possession of the ε2 has been related to increased longevity 

and better cognitive performance. In the meantime, the APOE3 genotype has been associated to 

confer an intermediate healthy phenotype. To date, no single study exists inquiring about the 

response of these genetic polymorphisms to CPF. The main objective of this doctoral thesis was 
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to assess the behavioural and metabolic effects of both APOE genotype and the pesticide CPF, as 

well as to determine whether the interaction between both factors contributed to the 

expression of these effects. To test this, adult apoE targeted replacement (TR) mice, expressing 

human apoE2, apoE3 or apoE4 isoforms, were chronically or subchronically exposed to 2 

mg/kg/day or 3.75 mg/kg/day CPF depending on the experimental phase. After exposure, male 

mice were behaviourally tested for spatial learning and memory abilities, while female mice 

were tested for attention, inhibitory control and motivation immediately after the exposure and 

following a CPF-free wash-out period. Aditionally, we determined the neurochemical and 

neuropharmacological bases of the potential behavioural differences among apoE TR female 

mice. Moreover, we designed a parallel experiment to respond to the increased weight observed 

in the first study, which focused on evaluating the metabolic changes induced by the pesticide in 

apoE3 male mice. In general, APOE genotype influenced spatial learning and memory, attention 

and inhibitory control during adulthood. Further, apoE TR female mice also show differences in 

brain neuromodulatory system and conditioned responses to GABAergic and cholinergic agents. 

On the other hand, CPF exposure altered overall metabolic functioning in male mice. Specifically, 

it elicited hyperglycaemia and hypercholesterolemia, enhanced food intake, increased insulin 

levels and impaired HOMA-IR index scores. Furthermore, the pesticide induced protracted 

attentional and motivational deficits in female mice. Besides mere treatment effects, the current 

results shed light into gene – toxic interactions. Thus, apoE3 mice were the most vulnerable to 

the metabolic-disruptor role of CPF, as they showed significant weight gain, and displayed 

higher insulin and leptin levels, as well as higher HOMA-IR index scores than their counterparts. 

In terms of behaviour, APOE genotype also modulated the effects of CPF. Indeed, the pesticide 

evoked mild memory impairment in apoE3 male mice, and reversed the lack of inhibitory 

control inherent to female apoE4 mice. Taken together, the results of this doctoral thesis expand 

the existing literature on the behavioural and metabolic effects of CPF, and provide valuable 

information on gene – toxic interactions hitherto unknown.  

 

 

Keywords: Gene – toxic interaction, Apolipoprotein E, Pesticides, Chlorpyrifos, Obesity, 

Hormones, Diabetes, Behaviour, Learning, Attention, Impulsivity, Motivation.
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ABBREVIATIONS 

 

5-CSRTT, 5-Choice serial reaction time task 

5-HT, Serotonin 

ACh, Acetylcholine 

AChE, Acetylcholinesterase 

AD, Alzheimer's disease  

ADHD, Attention deficit hyperactivity disorder  

apoE, Apolipoprotein E 

apoE TR, ApoE targeted replacement 

ARC, Arcuate nucleus 

BChE, Butyrylcholinesterase  

BM, Barnes maze  

BMI, Body mass index 

CNS, Central nervous system 

CPF, Chlorpyrifos 

CYP, Cytochrome P-450  

DA, Dopamine 

DDT, Dichlorodiphenyltrichloroethane 

DEP, Diethylphosphate  

DETP, Diethylthiophosphate 

EPA, Environmental Protection Agency 

EU, European Union 

FAO, Food and Agriculture Organization 

FDA, Food and Drug Administration  

HDL, High-density lipoprotein 

IDF, International Diabetes Federation 

LDL, Low-density lipoprotein 

LDLR, LDL receptor 

mAChRs, Muscarinic receptors  
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MTL, Medial temporal lobe 

MWM, Morris water maze 

nAChRs, Nicotinic receptors  

OC, Organochlorine 

OP, Organophosphate 

PFC, Prefrontal cortex 

PNS, Peripheral nervous system 

PON1, Paraoxonase 

PVN, Paraventricular nucleus 

RBC AChE, Red blood cell AChE 

TCPy, 3,5,6-trichloro-2-pyridinol  

TG, Triglycerides 

VLDL, Very-low density lipoprotein 

WHO, World Health Organization
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1. INTRODUCTION 

 

Throughout the 20th century, a great number of xenobiotics have been developed to 

meet a wide variety of agricultural, industrial, medical, and scientific needs. Despite the 

economic and social benefits, the extensive use of these products has led to the release of large 

amounts of waste into the environment, posing a huge threat to human health and natural 

ecosystems. Indeed, the World Health Organization (WHO) estimated that unintentional 

poisonings kill approximately 346 000 people each year (WHO, 2004). Actually, about 70,000 

chemical compounds are registered in the inventory of the US Environmental Protection Agency 

(EPA), a number that grows annually (US EPA, 2015a). To date, however, less than 1% has been 

categorized as neurotoxic to humans (Miodovnik, 2011). As a matter of fact, the ubiquity of these 

substances, which are ranged from heavy metals, solvents or pesticides, to food additives, 

cosmetics or drugs of abuse, along with the existence of multiple sources of exposure and 

different individual vulnerabilities hinder and delay the process of testing their neurotoxicity. 

Generally, a neurotoxic agent can be defined as any natural or synthetic product capable of 

causing a consistent pattern of adverse effects, whether transient or permanent, in central or 

peripheral nervous system (CNS, PNS), as well as in sensory organs (Simonsen et al., 1994). Thus, 

the spectrum of possible functional changes is very broad and covers from cognitive 

disturbances, including learning, memory and attentional impairments, to dysfunctionality of 

more complex behavioural processes, such as inhibitory control and motivation. 

 

In this recent context of globalization, we are witnessing the homogenization process of the 

behavioural, cultural, socio-economic and political determinants distinctive of a society. It is 

therefore no wonder that such diseases as obesity have become one of the greatest health public 

challenges of the 21st century (Morris et al., 2014). According to the WHO, the worldwide 

prevalence of obesity nearly doubled since 1980, being 13% of the entire population obese in 

2014 (WHO, 2014). From the latest data concerning the European Union (EU), overweight 

affected over 50% of both men and women, while roughly 20% of the adult individuals were 

obese in 2008 (WHO - Regional office for Europe, 2015). Thought there are well-recognized risk 

factors for obesity, such as sedentary lifestyle, excess caloric intake, or genetic inherited 
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predisposition, several studies claimed for a key role of hazardous chemicals to the aetiology of 

this health condition (Arrebola et al., 2015; Jeon et al., 2015).  

 

A gene-environment interaction refers to the differential effect of an environmental exposure, 

whatever its nature, on the risk of developing a disease depending on the gene pool of those 

exposed individuals. It has become generally accepted that it is the interplay of genetic and 

environmental factors that fosters differences in human cognitive and behavioural traits (Lopizzo 

et al., 2015). Likewise, the determination of gene-environment interactions in obesity may stand 

as a promising area for future investigations. In point of fact, knowledge of potentially harmful 

agents and how different populations respond to their toxicity is crucial for public health: 

beyond shedding light on the biological bases of the disease, the identification of vulnerable 

genetics could improve the accuracy and precision of epidemiological risk models, thus allowing 

a substantial reduction of the social and economic costs that chemical compounds exposure 

entail (Grandjean and Landrigan, 2014).  

 

1. 1. PESTICIDES: HELPFUL OR HARMFUL AGENTS? 

Unquestionably, pesticides have contributed to improve agricultural productivity. However, 

their use has been massive and their intentional release into the environment has alerted 

regulatory agencies and governments. Despite the growing eagerness to regulate their 

applicability, pesticide sales in the EU continue to grow steadily (Eurostat, 2015). According to the 

Food and Agriculture Organization (FAO), nearly 2,000 tons per 1000 inhabitants of pesticides 

were used in Spain during the period 2000-2010 (FAO Statistics Division, 2013). 

 

1. 1. 1. Historical contextualization 

About 10,000 years ago came the first form of agriculture, understood as the domestication of 

plants, in the region of the Fertile Crescent of Mesopotamia, current territorial extension 

covering Iraq, Turkey, Syria and Jordan (Tanno and Willcox, 2006). However, until six centuries 

later, no hint of pesticide application was registered. From then until the 1940s, several plant 

and animal-derived compounds (e.g., smokes from burning straw or animal waste, pyrethrum 
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flowers powder, roots of flowering plants belonging to the Tephrosia genus, etc.) as well as 

available mineral and chemical products (e.g., arsenic, boric acid, cooper sulphate, lead, 

mercury, nitrophenols, petroleum oils, salt, sodium chlorate, sulphuric acid, etc.) were used to 

protect crops from pests and diseases (Casida and Quistad, 1998; Jarman and Ballschmiter, 2012).  

 

Due to the low specificity of most of these substances, the development of synthetic pesticides 

gained momentum. In 1939 Dr. Paul Müller discovered the broad-spectrum insecticidal 

properties of the organochlorine (OC) compound dichlorodiphenyltrichloroethane (DDT), 

earning him the Nobel Prize nine years later. Throughout its early years of commercialization, 

DDT mitigated epidemics of such infectious diseases as typhus, malaria and yellow fever, 

powered by the course of the World War II (WWII). Shortly later, from the second half of the 

40s, DDT was gradually introduced in the market for controlling pest crops in developed 

countries (Casida and Quistad, 1998). It became one of the most popular pesticides worldwide due 

to its reasonable price together with its apparent harmlessness.  

 

In parallel, although organophosphates (OP) were discovered and synthetized for the first time 

across the 19th century, it was not until 1937 when Dr. Gerhard Schrader, based on the previous 

work of Lange and Krueger, documented the insecticide power of these substances (Soltaninejad 

and Shadnia, 2013). About 2,000 OPs, including the pesticide parathion and several warfare nerve 

agents of the G series (i.e., tabun, sarin and soman) were developed by Schrader and 

collaborators in the mid-20th century (Chambers et al., 2001). Advances in OPs chemistry were 

evident after the WWII, and allowed the synthesis of other compounds, such as malathion, in 

1950, and chlorpyrifos (CPF), firstly introduced in 1965. The extensive use of OPs as pesticides 

was rapidly consolidated, boosted by the ban of most OC, including DDT, throughout the 70s 

(Miodovnik, 2011).  

 

Later, during the 80s, numerous and increasingly selective pesticides formulations including 

insecticides, herbicides and fungicides came to light. Indeed, the pesticide industry evolved 

significantly, which allowed to focus the use of these substances, thereby reducing their 

application.  
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1. 1. 2. Social awareness 

Over the golden age of synthetic pesticides (1940s and 1950s), both consumers and 

policymakers, overwhelmed by the lowering of food prices and promising productivity levels, 

were unaware of the risk posed by their massive use. However, the first data about the toxicity 

of DDT came quickly and triggered a progressive stigmatization of these substances (Casida and 

Quistad, 1998). In 1962, the book Silent Spring by Rachel Carson stated the end of the DDT era, 

stirring the conscience of readers and sectors of the agricultural industry. From the 70s, 

regulatory agencies, such as the US EPA and the European Environment Agency (EEA) were 

thereupon created.  

 

Over the last years, the rise of social awareness about the environmental pollution and toxicity 

of these compounds has prompted the search for other ways to control pests in agriculture. The 

development of genetically engineered crops able to cope by themselves the pest attack has 

grown notably, more and more formulations are environmentally friendly, and an increasing 

number of people are committed to organic farming (Casida and Quistad, 1998; Dangour et al., 2009). 

Notwithstanding, the sale of pesticides has generally increased across the EU according to data 

from Eurostat Statistics for the period 1997-2008 (Eurostat, 2015). 

 

1. 1. 3. Organophosphates: overview  and main uses 

The OP family encompasses derivatives of phosphoric, phosphonic, phosphinic or 

thiophosphoric acids, all sharing a central phosphorus atom and a characteristic phosphoryl 

bond (P=O) or thiophosphoryl bond (P=S) (Figure 1). 
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Organophosphate compounds 

Although OPs are being still mainly employed as agricultural pesticides, their uses have been 

very diverse. In their most controversial aspect, OP compounds have been used for military 

purposes. Over the course of the WWII, the potential toxicity of the G series agents drawn the 

attention of the German Ministry of Defence which ended up producing several thousand tons of 

tabun and sarin, and slightly less of soman (Watson et al., 2011). Throughout the Cold War, both 

the Soviet Union and the US joined the marketing of these substances, and stored large 

quantities of chemical warfare agents, which continue to accumulate to date in stockpile sites 

(Watson et al., 2011). Chronically in time, the Iraq-Iran war left a record on the use of these 

chemical weapons between 1984 and 1988 (Balali-Mood and Balali-Mood, 2008), while the Gulf war 

did it in the early 90s (Chao et al., 2010). Besides, albeit most countries are members since 1993 of 

the Organization for the Prohibition of Chemical Weapons, and despite the existing regulations 

on the production, stockpiling and use of these substances, there is tangible evidence pointing to 

terrorist purposes. The first report was in 1994, when a sarin attack was conducted in a 

residential area of the city of Matsumoto (Japan). One year later, the same substance was 

released by members of the Aum Shinrikyo religious cult in different trains of the Tokyo 

subway. Both attacks took the lives of 18 people, but about 6,000 were poisoned (Soltaninejad and 

Shadnia, 2013; Tokuda et al., 2006).  

Balali-Mood and Balali-Mood, 2008 

Figure 1 General chemical structure of an organophosphate compound. R1 and R2 are alkyl-, alkoxy-, alkylthio-, 

or amido-groups. X is the acyl residue (labile fluorine-, cyano-, substituted- or branchedaliphatic, aromatic, or 

heterocyclic groups).  

Figure 1 
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Nevertheless OPs have been instrumental in the development of medicine and industry. Within 

the scope of medicine, they have been exploited to treat Alzheimer's disease (AD), myasthenia 

gravis and glaucoma; in veterinary medicine to treat parasitic diseases of farm and domestic 

animals; and in the industry they have been used as oil additives, solvents, varnishes, artificial 

leather, flame retardants and plastic softeners (Adams, 2013; Gupta, 2011).  

 

Organophosphate pesticides 

As stated above, the use of OPs is nowadays focused on agriculture, where they are used as 

pesticides. Lower environmental persistence, compared to such OC compounds as DDT and a 

high effectiveness against different insect species are qualities that place them among the most 

widely used insecticides in the world (De Silva et al., 2006). Among over 100 different substances, 

the most commonly applied are CPF, parathion, methyl parathion, malathion, diazinon and 

dichlorvos. They exert their insecticidal activity by inhibiting acetylcholinesterase (AChE) in 

CNS of insects, thus causing neurotoxicity (Fukuto, 1990). The presence of this enzyme in many 

other organisms, including mammals, implies the neurotoxic effect of these agents extends to 

unintended targets. However, mammals are more efficient in detoxifying OPs, and consequently 

are less sensitive than insects to acute intoxication. Nonetheless, OP pesticides are responsible 

for several cases of poisoning worldwide, including intentional and non-intentional accidents, 

especially in developing countries where adequate preventive and protective measures are 

lacking (Chowdhary et al., 2014; London et al., 2005).  

 

In developed countries, farmers and their families, distributors of plant protection products, 

crop dusters, and even the general population are daily exposed to these substances in a very 

diverse range of doses (Eaton et al., 2008). The current absence of safe driving practices, as well as 

consulting and certification programs; the improper use of protective equipment; deficient 

regulations on transport, storage and waste management, have contributed to an alarming 

situation. Even today, the misuse of pesticides causes acute occupational poisoning requiring 

medical attention (Faiz et al., 2011; Roldán-Tapia et al., 2005). Nonetheless, other milder exposures 
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that do not initially require health care go unnoticed but can lead to the development of a 

chronic exposure. 

In recent years, a large body of epidemiological studies have linked occupational OP exposure 

with an increased risk of developing several diseases, such as different types of cancer (i.e., 

Brest, thyroid, ovarian, colorectal or lung cancers, as well as non-Hodgkin lymphoma, or glioma) 

(Lee et al., 2005, 2004; Lerro et al., 2015), vein thrombosis (Lim et al., 2015), cardiovascular disease 

(Hung et al., 2015), type 2 diabetes (Saldana et al., 2007; Starling et al., 2014), or neurodegenerative 

diseases (Moretto and Colosio, 2013; Sánchez-Santed et al., 2015; Zaganas et al., 2013). In addition, a 

constellation of neuropsychiatric and neuropsychological disorders has been reported after 

both acute and chronic exposures to OP pesticides (London et al., 2005; Mackenzie Ross et al., 2010; 

Povey et al., 2014; Roldán-Tapia et al., 2006).  

 

1. 2. CHLORPYRIFOS 

 

1. 2. 1. Generalities and current main uses 

Chlorpyrifos (CPF) belongs to the OP family of pesticides, and actually serves as an insecticide 

and acaricide. The WHO classifies it within the moderately hazardous compounds (Class II), 

with an LD50 in rats of 135 mg/kg (WHO, 2009). Since its introduction in the marketplace in 

1965, it was extensively used in agricultural areas and for public health maintenance, and even 

for residential purposes. In the home, it was used to control insect pests caused by termites, 

cockroaches and other insects, while it also stood as the active component in tick and flea collars 

for pets. However, following the reconsideration of its neurotoxic potential, the EPA banned its 

homeowner uses in 2001, except baits for ants and cockroaches packaged childproof. In the EU, 

CPF non-agricultural uses are being phased-out, but the situation is fairly complex. Despite the 

evidence supporting its deleterious effects to human health and the efforts of many non-

governmental organizations, such as the Pesticide Action Network along with those of some 

governments, the European authorities were still debating in 2009 banning CPF residential use, 

alleging the lack of conclusive evidence (Saunders et al., 2012).  

 

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



Currently, CPF applications are largely limited to crop protection in both rural and urban areas. 

Nevertheless, it is still used worldwide for mosquito and fire ants control, professional care of 

golf courses, cattle ear tags, non-structural wood treatments (e.g., utility poles), and in green 

houses (US EPA, 2015b), thus implying a pervasive pattern of exposure. Overall, more than 400 

commercial products contain CPF as an active component, but the most popular are those 

marketed by Dow Agro Sciences, named Dursban and Lorsban (Eaton et al., 2008). 

 

In Spain, the use of CPF in agriculture is ubiquitous: cereal and tubers crops; fruit, olive and nut 

trees; vineyards, etc. (Ministerio de Agricultura Alimentación y Medio Ambiente, 2015). According to the 

plant protection products inventory of the Ministry of Agriculture, Food and Environment of 

Spain, CPF is present in varying concentrations in 8 formulations from different suppliers, 

resulting in 40 commercially available products. Although they are mostly intended for an 

agricultural purpose, some of them are used for the fumigation of gardens and parks in urban 

areas, as well as for home gardening. 

 

1. 2. 2. Structure and physicochemical properties 

The chemical structure of CPF is depicted in Figure 2. The molecule has a central 

tetracoordinated pentavalent phosphorus atom, covalently bonded to sulphur. Additionally, 

phosphorus presents two more stable unions with ethyl groups. The other part of the molecule 

is represented by a more complex and unstable aromatic structure that can easily be released 

during the biotransformation process. It is worth pointing out that phosphorothioates (P=S) 

have little or no anticholinesterase activity, and thus require prior activation to the oxon form 

(P=O) to exert their toxic effect (Gupta, 2011) (Figure 2).  

 

According to its physicochemical properties, summarized in Table 1, CPF is a white crystalline 

solid with a slight mercaptan odour. Its high partition coefficient reflects its hydrophobic 

character. In fact, the highest concentrations of CPF in the body are found in the fat and fatty 

tissues, an issue that will be further discussed in  section 1.2.4. 
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Chemical name O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate 

Chemical formula C9H11Cl3NO3PS 

CAS number 2921-88-2 

Molecular weight 350.57 g/mol 

Melting point 41-42ºC 

Boiling point Decomposes at approximately 160ºC 

Solubility  

Water, 20⁰C 0.7 mg/L 

Water, 25⁰C 2.0 mg/L 

Isooctane 79% w/w 

Methanol 43% w/w 

Partition coefficients  

Log KOW 4.82 

Log KOC 3.73 

Conversion factors 1 ppm = 14.3 mg/m3 

 1 mg/m3 = 0.07 ppm 

Adapted from National Center for Biotechnology Information, 2015 

 

 

1. 2. 3. Sources of environmental exposure 

Due to its low solubility in water (Table 1), CPF rapidly binds to soil components and plants once 

released into the environment, where it undergoes a progressive degradation. The half-life of 

the pesticide and its metabolites can vary from 6 h to 3 days, always depending on the sunlight 

availability and the presence of potential degrader microorganisms. In indoor environments 

CPF residues may therefore remain for longer periods of time (Eaton et al., 2008). Strikingly, CPF 

Table 1 Most relevant physicochemical properties of chlorpyrifos  
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residues have been recently found in such remote areas as the Arctic environment, suggesting 

long-range transport and bioaccumulation may also occur in the case of OP pesticides, and not 

only for OC (Vorkamp and Rigét, 2014).  

 

As previously discussed, the ubiquity of CPF implies the risk of exposure to the pesticide is not 

exclusively restricted to the applicators and farm workers, but also to the general population, 

although to a lesser extent. Toxic exposure can occur through the most common ways: ingestion, 

inhalation, and dermal absorption. Dietary exposure to trace levels of CPF appears to be the 

main source of non-occupational exposures (Lu et al., 2008). Nevertheless, secondary ingestion of 

contaminated house dust/soils, and even hand-to-mouth contact may also account for total 

exposures in residential settings of rural areas (Eaton et al., 2008). On the other hand, both the 

inhalation of vapours or aerosols following application, and dermal absorption upon contact 

with skin are the most predominant pathways in occupational exposures. All those individuals 

in direct contact with the exposed workers are included within this pattern of exposure (Eaton et 

al., 2008). 

  

Considering the aforementioned, it seems difficult to estimate a daily reference dose for a typical 

exposure to CPF (Saunders et al., 2012). In the meantime, the US Department of Agriculture along 

with the Food and Drug Administration (FDA) have established a reference value for CPF daily 

intake that varies depending on age (i.e., 0.005 µg/kg body weight/day in adults, 0.014 µg/kg 

body weight/day in toddlers, and 0.009 µg/kg body weight/day in infants) (Eaton et al., 2008). 

 

In addition to the different exposure pathways, other variables may influence the toxicity of CPF. 

Some directly concern the compound (e.g., concentrations applied, formulation stability, 

presence of additives, etc.), while others take into account characteristics of the exposed 

individual (e.g., work practices, metabolism, gender, age, diseases, drug treatments, etc.). 

However, it is the study of the interaction of both (i.e., gene-environment interactions), the 

ecogenetics, that is gaining ground in recent years (Costa, 2006; Costa et al., 2013) (see section 1.2.8).  
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1. 2. 4. Absorption, distribution, biotransformation and excretion  

CPF can be rapidly and efficiently absorbed through the intestine (Nolan et al., 1984; Timchalk et al., 

2002) and lungs (Geer, 2004), and to a lesser extent through the skin (Meuling et al., 2005). Its free 

blood levels are low because it binds to various proteins, such as plasma albumin (Tarhoni et al., 

2008). Due to its lipophilic nature, CPF accumulates mainly in fatty tissues and in the brain. 

Likewise, breast milk also stands as an efficient storage compartment due to its high fat content, 

thus resulting in an additional source of potentially hazardous exposure to the infant. 

Ultimately, CPF reaches the liver and kidneys, where the biotransformation process takes place 

(Chambers et al., 2001).  

 

The biotransformation pathways of CPF are shown in Figure 2. As mentioned earlier, these 

stages are crucial for the expression of CPF-related neurotoxicity. Once entered the body, CPF 

can undergo a cytochrome P-450 (CYP)-dependent oxidative desulfuration to its active oxygen 

analogue, which is a potent ChE inhibitor. The inactivation of the oxon form occurs mainly by 

hydrolysis, primarily mediated by such oxonases as paraoxonase (PON1), and leads to the 

formation of diethylphosphate (DEP) and 3,5,6-trichloro-2-pyridinol (TCPy). Besides, CPF can 

be directly converted to diethylthiophosphate (DETP) and TCPy through CYP-mediated 

dearylation. In either case, both reactions contribute to the formation of TCPy, which is the main 

CPF metabolite found in urine (Timchalk et al., 2007).   

 

In addition to urine, which stands as the major excretion pathway, CPF metabolites can be 

eliminated through other fluids. Indeed, some experimental studies attested their biliary and 

faecal elimination, while measurable levels of CPF were detected in breast milk samples from 

nursing mothers (Sanghi et al., 2003).  
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1. 2. 5. Biomonitoring chlorpyrifos exposure  

Blood biomarkers, such as the ChE enzymes AChE and butyrylcholinesterase (BChE) have been 

traditionally used for monitoring CPF exposure, as they were its first described molecular 

targets. Because BChE is more sensitive than AChE to the inhibitor effect of the oxon metabolite, 

plasma activity of BChE has long served to assess the physiological course of CPF exposure 

(Farahat et al., 2011). In turn, the AChE expressed in red blood cells (RBC AChE) is more reflective 

of the AChE status in CNS and PNS (Eaton et al., 2008).  

 

The Ellman colorimetric assay (Ellman et al., 1961), aimed at determining enzymatic activities of 

BChE and RBC AChE, is still the most widely used method for biomonitoring OP exposures. 

However, in recent years, a more robust approach has gained ground. This technique, further 

detailed in section 2.5.2, relies on the ability of CPF-oxon to create stable, covalently bound 

Adapted from Eaton et al., 2008 

Figure 2 Biotransformation of chlorpyrifos  
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adducts upon the inhibition of BChE. Therefore, the CPF-adducted enzyme has longer half-

periods than most CPF metabolites, thus allowing to extent the detection window for 

biomonitoring the pesticide (Carter et al., 2007; Marsillach et al., 2013). The formation of adducts 

extends to other protein capable of interacting with CPF (e.g., other serine hydrolases, albumin, 

etc.). 

 

On the other hand, the determination of urinary TCPy has been commonly used for CPF 

exposure assessment. Nevertheless, there is enough evidence to suggest that it is an inadequate 

biomarker because it is not exclusively a product of CPF degradation, as it can also be found by 

itself in dietary samples (Eaton et al., 2008).  

 

1. 2. 6. Clinical picture upon chlorpyrifos poisoning  

 

Overview on the cholinergic system 

The cholinergic system is based on the neurotransmitter acetylcholine (ACh), which is widely 

distributed in both CNS and PNS. Briefly, the synthesis of ACh is catalysed by the enzyme choline 

acetyltransferase (ChAT) that transfers the acetyl group from the acetyl-CoA to a molecule of 

choline. The resulting neurotransmitter is stored in vesicles that end up being released into the 

synaptic cleft by exocytosis upon the opening of voltage-dependent Ca2+ channels, and the 

consequent entry of Ca2+ into the neuron. ACh exerts its action on two types of receptors: 

nicotinic (nAChRs) and muscarinic (mAChRs). The nAChRs are ionotropic, thereby presenting 

fast and short-acting mode not requiring second messengers. They are directly linked to an ion 

channel through which the ion transfer (Na+, K+, Ca2+, and Cl-) allows the modulation of the 

depolarization or hyperpolarization of the neuron upon ACh binding. Meanwhile, mAChRs are 

metabotropic, so that their action is slower and long-lasting.  They are coupled to G proteins, 

and following activation they trigger a cascade of responses, including the formation of a second 

messenger that acts on other molecules and channels. The intervention of ChE enzymes brings 

the cycle to a close: ChE are responsible for the breakdown of the ACh into choline and acetic 

acid, and thus allow the restauration of the cholinergic neuron (Karczmar, 2007).  
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As already mentioned, AChE (EC 3.1.1.7) is the key target for OP compounds in both insects and 

mammals (Fukuto, 1990). This enzyme is mainly located in the synapses of central and peripheral 

nerves, where it terminates the cholinergic transmission, but it could also be found on RBC 

membranes.  

 

In turn, BChE (EC 3.1.1.8), often referred to as pseudocholinesterase or plasma ChE, is 

synthesized in the liver and secreted in plasma. Although BChE could also contribute to the 

hydrolysis of ACh, its specific physiological function has not yet been elucidated. However, it is 

well-established that the enzyme exerts a protective role against several exogenous substances 

(e.g., cocaine, acetylsalicylic acid, and procaine) (Duysen et al., 2008; Kolarich et al., 2008; Yuan et al., 

2007). Indeed BChE is crucial to cushion the CPF-related neurotoxic effects, since it prevents or 

at least minimizes CPF-oxon binding to its primary brain target, AChE (Costa, 2006).   

Beyond the above, De Vriese and collaborators demonstrated eleven years ago the critical role 

of BChE in regulating ghrelin levels (De Vriese et al., 2004) (see section 1.5.1).   

 

Acute neurotoxicity 

Following CPF exposure, AChE inhibition elicits the accumulation of ACh at cholinergic 

synapses, thus leading to the overstimulation of both nAChRs and mAChRs. When inhibition 

exceeds 70%, the cholinergic acute syndrome ensues (Savolainen, 2001). Generally, the first signs 

to appear stem from the mAChRs stimulation: the contraction of the pupil (i.e., miosis) emerges 

in 80% of cases, being sometimes the only apparent symptom of toxicity (Lotti, 2001). Lately, the 

clinical picture includes excessive sweating and salivation, bronchoconstriction, tremors, 

increased intestinal motility and subsequent diarrhoea. Ultimately, death may occur, primarily 

due to multifactorial respiratory failure (Lotti, 2001).  

 

From a molecular point of view, AChE inhibition occurs when the oxon form phosphorylates a 

hydroxyl group, which is located on a serine residue in the active site of the enzyme, thereby 

preventing AChE action on its physiological substrate. Thereafter the loss of one of the alkyl 

groups, the enzyme-oxon complex (i.e., adduct) is irreversibly bounded. In this case, it is 
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considered that the AChE is irreversibly inhibited and can only be replaced by a new molecule 

(Marsillach et al., 2013).  

 

Intermediate syndrome and delayed polyneuropathy 

In half of acute poisoning cases, an intermediate syndrome arises approximately 24 h after the 

most severe clinical manifestations. Despite the certainty that the link between the occurrence 

of this syndrome and the AChE inhibition is not causal, evidence suggests that it may be indirect. 

In fact, this characteristic syndrome involves weakness of neck and respiratory muscles, 

combined with paralysis of the proximal members, pointing to a possible desensitization of 

nAChRs upon OP exposure (Lotti, 2001).  

 

The OP-induced delayed polyneuropathy (OPIDP) usually occurs after severe exposures to some 

OPs, when both acute and intermediate episodes have subsided. It is not a direct consequence of 

cholinergic toxicity, but rather appears to be related to the ability of few OP compounds to 

inhibit the neuropathy target esterase (NTE). Indeed, the degree of NTE inhibition is strongly 

correlated with the severity of the clinical picture. Typically, OPIDP is characterized by distal 

axonal degeneration which leads to progressive motor weakness that can be recovered in 

varying degrees (Yang and Deng, 2007). In addition, it is also common to report some peripheral 

sensory disturbances that may persist even years after exposure.  

 

1. 2. 7. Chlorpyrifos and disease  

Both, acute and relatively short-term effects caused by OPs, largely attributed to AChE 

inhibition, have been broadly investigated and are currently well-defined. However, the OP-

related long-term health impacts are still subject to large uncertainties and discrepancies 

(Rohlman et al., 2011). A mounting body of experimental data suggest that CPF impacts on other 

neurotransmitter systems, such as the serotoninergic, dopaminergic, and GABAergic (Pung et al., 

2006; Slotkin and Seidler, 2007; Torres-Altoro et al., 2011). Considering the number of potential targets, 

CPF exposure would be expected to have a wide range of effects. Nowadays, most of the 

population is almost permanently exposed to low doses of CPF. Thus, it is important to clarify to 
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what extent this kind of cumulative exposures is harmful to human health (Ross et al., 2013). 

Chronic low-level exposure to OPs could be defined as such prolonged exposure to doses which 

do not produce recognized clinical symptoms of acute toxicity requiring medical evaluation or 

intervention (Ross et al., 2013).   

 

1. 2. 7. 1. Cognitive and mood disorders 

 

Epidemiological evidence 

Following the Japanese terrorist attacks with sarin in the mid-90s, a great deal of 

epidemiological research emerged to closely monitor the victims’ health evolution. Interestingly, 

most of these studies confirm the persistence of behavioural alterations not only in victims, but 

also in both medical and security staff. These long-lasting sequelae were evident even 7 years 

after the accident, thereby indicating long-term effects on the CNS (Miyaki et al., 2005; Nishiwaki et 

al., 2001). Similarly, the Gulf War veterans showed psychological and psychiatric symptoms that 

persisted even 15 years after returning from combat (Chao et al., 2010; Iversen et al., 2007). 

Additionally, reduced hippocampal volumes were found in victims of both events, thus implying 

sarin induced irreversible structural changes in the CNS (Chao et al., 2010; Yamasue et al., 2007).    

 

From the second half of the 50s, shortly after OP pesticides came into use, early indications of 

neurobehavioural deficits in field workers were reported, including memory impairments, 

anxiety, confusion, fatigue and irritability (Holmes and Gaon, 1956; Tabershaw and Cooper, 1966). 

Thenceforth, the impact of these substances on human health has been assessed from two 

perspectives: resulting impairments as a consequence of acute poisoning or as consequence of 

prolonged exposure. Research focusing on chronic low-level CPF exposures has identified 

deficits in neurobehavioural performance, including an array of cognitive and motivational 

disturbances (Farahat et al., 2010; Mackenzie Ross et al., 2010; Rohlman et al., 2015; Ross et al., 2013; 

Stephens and Sreenivasan, 2004). These findings, unlike those found in victims of war or terrorist 

attacks, may not be due to traumatic experiences.  
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In spite of the complexity of standardized psychometric tests used to assess neuropsychological 

functioning of exposed individuals, the emerging cognitive deficits can be classified into eight 

major functional domains: motor speed and coordination; reaction time; information processing 

speed and executive function; verbal comprehension; sustained attention; attention and short-

term memory; memory; and perception (Rohlman et al., 2011). In this regard, the implementation 

of this battery of tests on English sheep farmers exposed to low-level OPs for 24 years 

concluded the presence of memory deficits, reduced response speed, impaired fine motor 

control and poor cognitive flexibility (Mackenzie Ross et al., 2010). In Spain, greenhouse workers in 

the region of Almeria, exposed throughout their working lives to such OP as CPF showed lower 

performances on both verbal and visual memories. In addition, those who were exposed for 

more than 10 years also displayed worse scores on tests of visuospatial ability (Roldán-Tapia et 

al., 2005).  

It is worth noting that, even if most of the data issued from these investigations concerned 

general pesticide applicators, crop dusters, greenhouse workers, or livestock breeders, some 

authors agree on the risk posed by this kind of exposure for people living with them, or whose 

residence is in surrounding agricultural areas (Coronado et al., 2011; Muñoz-Quezada et al., 2013; 

Valcke et al., 2006). 

 

Although more discreetly, the scientific literature also reflects the onset of affective disorders 

(i.e., anxiety, depression, aggressive behaviour, and social withdrawal) in OP pesticide 

applicators (London et al., 2005; Mackenzie Ross et al., 2010; Roldán-Tapia et al., 2006, 2005; Steenland et 

al., 2000). For example, increased symptoms of psychological distress, including depression, 

anxiety, obsessive-compulsiveness, interpersonal sensitivity and suicidal thoughts, were found 

in Costa Rican banana workers with previous OP poisoning (Wesseling et al., 2010).  

 

Evidence from experimental animals 

Consistently, data issued from animal models of acute or repeated CPF intoxication evidenced 

the development of cognitive and behavioural deficits. To date, however, much of the current 
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scientific literature pays particular attention to the neurodevelopmental effects elicited by CPF, 

being the studies concerning adult individuals less common.  

 

Focusing on adulthood exposures, it has been confirmed that CPF alters spatial learning and 

memory processes when administered both acutely (Cañadas et al., 2005; Peris-Sampedro et al., 2014; 

Sánchez-Santed et al., 2004) and chronically (López-Granero et al., 2013b; Moser et al., 2005; Yan et al., 

2012). These changes may persist or develop long after exposure, as was described in a work 

carried out by our group (Peris-Sampedro et al., 2014) in which acutely CPF-treated male mice 

showed retention shortfalls in a Morris water maze (MWM) 6 months after exposure. Similarly, 

male rats exposed to CPF every other day for 30 days exhibited difficulty in acquire a MWM 

almost 5 months after exposure (Terry et al., 2012). Besides, Moser and collaborators observed 

that dietary administration of subtoxic CPF doses for 1 year led to long-term spatial learning 

deficits in male rats evaluated in a MWM (Moser et al., 2005). Likewise, male rats exhibited 

impaired spatial memory in the same task immediately after a 4-week intragastric exposure to 

low doses of CPF (Yan et al., 2012).  

 

Furthermore, CPF has also been related to induce deficits in sustained attention. In this regard, 

male rats given an acute CPF dose were less attentive to signals in a visual signal detection task 

(Bushnell et al., 2001). On the other hand, Middlemore-Risher et al. used the 5-choice serial 

reaction time task (5-CSRTT) to demonstrate empirically detrimental effects on sustained 

attention in male rats subjected to a 4-week CPF challenge, alterations that were still evident 

over a period of drug withdrawal (Middlemore-Risher et al., 2010).  

 

With regard to inhibitory control, some studies revealed impulsiveness in male rats tested in a 

delay discounting task 10 weeks, 6 months and 1 year after a single high CPF dose (Cardona et al., 

2011, 2006; López-Granero et al., 2014) or one week after a 31-week dietary exposure to the 

pesticide (López-Granero et al., 2013b). In addition, this lack of inhibitory behaviour has also been 

assessed using the 5-CSRTT under a pattern of repeated exposure, which led to similar results 

(Middlemore-Risher et al., 2010; Montes de Oca et al., 2013). 
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Although occasionally contradictorily, CPF-related anxiety-like behaviours in animal models 

have been well-documented by using an array of tests (Braquenier et al., 2010; López-Crespo et al., 

2009, 2007; Peris-Sampedro et al., 2014; Sánchez-Amate et al., 2001). By cons, the exploration of other 

affective or mood disorders is still lacking. Few empirical data suggested that CPF affects 

motivation, both maternal and social behaviour, and ultrasonic vocalizations (Aldridge et al., 2005; 

De Felice et al., 2014; Venerosi et al., 2015, 2010).   

 

1. 2. 7. 2. Metabolic diseases 

 

Epidemiological evidence 

As previously discussed, the current lifestyle has prompted the worldwide prevalence of obesity 

and type 2 diabetes increases at an unprecedented rate. In the light of this trend, the risk factors 

commonly studied appeared to be insufficient to account for the progress of both diseases. 

Hence, “non-traditional” risk factors have been reconsidered (Thayer et al., 2012), and research 

addressing the role of environmental hazardous agents in both diseases outcomes has rapidly 

expanded in the past several years.  

 

While most investigations traditionally focused on deciphering the contribution of OC pesticides 

in triggering type 2 diabetes and related metabolic dysfunctions (Arrebola et al., 2013; Jaacks and 

Staimez, 2015), some epidemiological approaches have pointed to a neglected role of OPs (Jaacks 

and Staimez, 2015; Montgomery et al., 2008; Saldana et al., 2007; Starling et al., 2014).  

Few clinical studies, mostly case reports including those of Japanese terrorist attacks, collected 

evidence on blood glucose increases after exposure to several OP compounds (Raafat et al., 2012; 

Yanagisawa et al., 2006). A prospective agricultural health study of incident diabetes, consisting in 

a 5-year follow-up interview (1999-2003), revealed that OP applicators had increased odds of 

diabetes (Montgomery et al., 2008). In another study, non-diabetic Egyptian farmers tended to 

develop insulin resistance after exposure to malathion (Rafaat et al., 2012).  
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Nowadays, there is a gap of knowledge on the obesogenic effect induced by OP pesticides. In 

fact, only 20 articles were found upon matching in PubMed "organophosphate" and "obesity" as 

keywords and limiting the results to "humans". From these, only 6 investigations explicitly refer 

to the search terms (This search was conducted on September 13, 2015.) (Camps et al., 2009; Gonzalez et 

al., 2012; Huen et al., 2013; Lee et al., 2014; Meggs and Brewer, 2010; Slotkin, 2011). Strikingly, however, 

only the study by Gonzalez and co-workers provides a direct epidemiological approach on 

pesticide exposure and increased prevalence of obesity (Gonzalez et al., 2012). Furthermore, some 

of them, designed as brief communications, are limited to collect and gather evidence to 

convince public opinion of the need to explore the contribution of OP pesticides to the current 

epidemic of obesity (Meggs and Brewer, 2010; Slotkin, 2011). 

 

Evidence from experimental animals 

Following the same trend, there is a general lack of empirical research assessing the impact of 

OP pesticides on the development of obesity, type 2 diabetes and related metabolic 

disturbances. If already references are not abundant, when focusing solely on CPF, results are 

even scarcer. Furthermore, the bulk of existing CPF investigations refer to the developing brain 

(Lassiter and Brimijoin, 2008; Slotkin et al., 2005), while adulthood assessment largely stays in the 

background. Current knowledge on the latter is limited to four studies carried out in male rats. 

From these, two described a weight gain in treated subjects (Ehrich et al., 2004; Meggs and Brewer, 

2007) and the other two pointed to disturbances of both glucose and lipid homeostasis in 

exposed animals (Acker and Nogueira, 2012; Elsharkawy et al., 2013). In general, these protocols were 

based on high CPF doses.  

 

While hyperglycaemia emerged as an unavoidable consequence following acute doses of 

malathion (Lasram et al., 2009) and diazinon (Teimouri et al., 2006), as well as a consequence of 

prolonged highly-dosed exposures to both OP compounds (Mostafalou et al., 2012; 

Pournourmohammadi et al., 2005), other studies reported no differences at this level (Sadeghi-Hashjin 

et al., 2008).  
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In addition to increased blood glucose, the study conducted by Pournourmohammadi et al. 

revealed hyperinsulinemia in male rats following a 28-day dietary challenge with malathion 

(Pournourmohammadi et al., 2005). In this sense, previous research suggested that some OP can 

induce insulin resistance by promoting the dysfunction of pancreatic β cells, or the decrease of 

insulin action in target tissues (Pournourmohammadi et al., 2005). 

 

On the other hand, a number of experimental studies have endorsed the disruptor role of OPs in 

lipid homeostasis. Thus, increased plasma levels of triglycerides (TG), total cholesterol and low-

density lipoprotein (LDL) were observed in male rats chronically treated with malathion 

(Kalender et al., 2010). Similarly, Ogutcu and co-workers reported increases in cholesterol levels 

after repeated dichlorvos administration (Ogutcu et al., 2008).  

 

1. 2. 8. Genetic susceptibility 

Through this dissertation, it has been recurrently emphasized the importance of identifying 

genetic variations that may condition the risk for adverse health outcomes upon exposure to a 

hazardous agent. In the case of CPF, genetic polymorphisms in biotransformation enzymes or 

target molecules are critical in modulating its toxicity.  

 

Different CYPs (i.e., 1A2, 2B6, 2C9, 2C19, and 3A4) mediate each major pathway for CPF 

metabolism. Thus, while CYP2B6 is the main enzyme responsible for the formation of oxon, 

CYP2C19 is primarily responsible for its detoxification. CYP2B6 is a highly polymorphic enzyme 

and its genetic variants may account for the interindividual differences in toxicity emerged after 

exposure to CPF (Crane et al., 2012).  

 

Concerning PON1, the several allelic variants attributed to its gene differently affect the catalytic 

efficiency of the enzyme and its expression level (Furlong et al., 2005). Hence, the intrinsic ability 

of an individual to detoxify CPF-oxon will largely depend on the polymorphism he carries.  
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In parallel, a large number of genetic polymorphisms have also been described for BChE, of 

which at least 39 present nucleotide alterations in the coding region, entailing lesser enzyme 

activities. While 76% people is homozygous for wild-type BChE, and thus present a normal 

scavenging rate against CPF-oxon, the remaining 24% carry at least one of these genetic 

variants, and thereby are predicted to be more susceptible to CPF toxicity (Lockridge and Masson, 

2000).  

 

1. 3. APOLIPOPROTEIN E  

 

1. 3. 1. Generalities and structural organization 

Apolipoprotein E (apoE) is a prominent constituent of plasma and brain lipoproteins, which 

mainly exerts an anti-atherogenic function primarily upon interaction with members of the LDL 

receptor (LDLR) family. Though apoE synthesis is largely hepatic, its production can be readily 

detected in several tissues, such as the adrenal gland, testis, skin, kidney, spleen, adipose tissue 

and brain (Mahley, 1988). Indeed, beyond its well-established role in regulating lipid homeostasis, 

it has been recurrently speculated that apoE is involved in additional biological processes.  

 

Human apoE is a 299-residue soluble glycoprotein structurally complex. According to 

crystallographic studies, the N-terminal region forms an anti-parallel four-helix bundle 

containing the LDLR-binding site. For its part, the C-terminal residues shape a separately folded 

domain consisting in three amphipathic α-helices that initiate binding of the protein to lipid 

surfaces. Both terminal domains are connected through a hinge region, essential for the full 

LDLR-binding effectiveness, and interact by formation of hydrogen-bonds and salt-bridges 

(Hatters et al., 2006) (Figure 3).  
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1. 3. 2. Apolipoprotein E polymorphisms 

The human apoE-encoding gene is localized on chromosome 19 at locus q13.31 (Das et al., 1985). 

It is polymorphic with two major SNPs (rs429358C>T, rs7412C>T) in the coding region of the 

exon 4. Upon their combination at the APOE locus, three allelic variants emerge: ε2, ε3 and ε4 

(Seripa et al., 2007), accounting for more than 95% of the total genetic variants of the APOE gene 

in Caucasians (Nickerson et al., 2000). At the mature protein level, these nucleotide exchanges are 

reflected by amino acid substitution, Arg per Cys, at positions 112 and 158, resulting in three 

main protein isoforms: apoE2, E3 and E4. ApoE3 contains Cys at position 112 and Arg at 158, 

whereas apoE2 and apoE4 contain Cys and Arg, respectively, at both positions (Weisgraber, 1994) 

(Table 2).  

 

Adapted from Hatters al., 2006 

Figure 3 Model of the apolipoprotein E structure 
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ApoE3 isoform displays lipid-binding ability and high affinity for the LDLR. Consequently, it 

operates optimally in promoting clearance of TG-rich lipoprotein and is associated with normal 

plasma lipid levels. Indeed, apoE3 has been traditionally referred as the healthy phenotype. 

Nonetheless, recent evidence suggests ε3 carriers are more sensitive to diet-induced obesity 

(Arbones-Mainar et al., 2008; Huebbe et al., 2015; Karagiannides et al., 2008) (see section 1.3.4.3). 

 

The amino acid substitution at position 158 in apoE2 is close to the LDLR binding site, which 

makes their interaction notably weaker. As a result, ε2 carriers poorly remove TG-rich 

lipoproteins, and thereby tend to develop type III hyperlipidaemia, a lipid disorder 

characterized by increased plasma levels of cholesterol and TG, and premature atherosclerosis 

(Mahley and Rall, 2000).  

 

Although apoE4 shows high affinity for the LDLR, this isoform is also associated with 

dyslipidemia. In point of fact, the presence of Arg 112 in its protein sequence facilitates a salt 

bridge interaction between its both domains, resulting in a differential C-terminal organization 

and a subsequent enhancing of the lipoprotein-binding affinity. Consequently, apoE4 prefers 

binding to very-low density lipoproteins (VLDL) or LDL, while apoE2 and apoE3 commonly bind 

cholesterol-rich high-density lipoproteins (HDL) (Table 2) (Dong et al., 1994). Therefore, the 

APOE4 genotype is associated with a more pro-atherogenic lipoprotein-cholesterol distribution. 

Furthermore, it has been identified as a major risk factor for AD, by means of an array of 

mechanisms that will be further contemplated in section 1.3.4.1.  

 

Allelic frequency and geographic distribution 

Allelic variation attributed to APOE genotype is inherent to humans. Sequence comparisons 

between species revealed that non-human primate apoE and human APOE4 are perfectly 

matched at positions 112 and 158, indicating the ε4 is the ancestral allele (Hanlon and Rubinsztein, 

1995). After both lineages split, successive single mutations arose and gave rise first to the ε3 

allele and later the ε2. In general terms, the ε3 variant is the most abundant in all human 

population, followed by ε4 and ε2 (Corbo and Scacchi, 1999) (Table 2).  
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 ApoE isoform 

 ApoE2 ApoE3 ApoE4 

Amino acid variation    

112 Cys Cys Arg 

158 Cys Arg Arg 

Allelic frequency range (*) (%) 0-14.5 55.3-91.1 5.2-40.7 

Functional differences    

LDL receptor affinity Low High High 

Lipoprotein-binding preference HDL HDL VLDL/LDL 

Structural differences    

Domain interaction No No Yes 

(*) Allelic frequencies are from Corbo and Scacchi, 1999  

 

 

Interestingly, however, their distribution varies by geographical areas. Accordingly, there is a 

north-to-south gradient of ε3 and ε4 notably in Europe. The ε3 is more frequent in populations 

with a long-established agricultural economy like those of Mediterranean areas, while ε4 

abounds in Northern regions (Egert et al., 2012). Therefore, it has been recently suggested that the 

APOE4 genotype could compensate the lack of Ultraviolet radiation by displaying a better 

vitamin D status (Huebbe et al., 2011). On the other hand, carriers of the ε3 allele exploit more 

efficiently nutrients from the diet, and tend to accumulate fat in adipose tissue, factors that 

could have considerably contributed to its worldwide prevalence (Huebbe et al., 2015).  

 

1. 3. 3. Apolipoprotein E functions 

ApoE operates as part of an anchoring mechanism that aids the transport and deliver of TG, 

phospholipid, cholesteryl esters, and cholesterol into cells and tissues (Mahley and Rall, 2000). To 

Table 2 Human apoE isoforms prevalence and key differences  
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accomplish it, apoE must be biologically active and thus requires prior association to 

lipoproteins (e.g., VLDL, LDL, HDL, and chylomicron remnants) before interacting with members 

of the LDLR family. The interaction between apoE and the LDLR elicits the removal of apoE-

containing lipoproteins from the circulation, thereby ensuring the maintenance of the lipid 

homeostasis in the peripheral system (Hatters et al., 2006). 

 

Neurobiology 

By the mid-80s, early clues pointing to a pivotal role of apoE in neurobiology surfaced. On the 

one hand, apoE was found to be produced in abundance in the brain, notably by astrocytes and 

neurons, and served as the principal lipid transport vehicle in cerebrospinal fluid. On the other 

hand, increasing evidence suggested apoE was involved in neuronal repair: its synthesis was 

strongly fostered upon peripheral nerve injury, where it mediated the redistribution of lipids, 

vital for the structural and functional integrity of cell membranes, to regenerating axons and to 

Schwann cells during remyelinization (Mahley and Rall, 2000). At present, it is well-known that 

apoE is crucial for neuronal plasticity, neurite outgrowth and synaptogenesis, among others 

(Hauser et al., 2011).  

 

Other functions 

In recent years, a considerable amount of literature has inquired about other potential functions 

attributable to apoE (Alata et al., 2014; Huang and Mahley, 2014; Levy et al., 2015; Vance and Hayashi, 

2010). These studies evidenced its role in regulating both neuronal and astrocyte performance, 

including preventing excitotoxicity, promoting neuron survival, protecting neurons against 

oxidative stress, and modulating innate and adaptive immune responses (Huang et al., 2004; Shen 

et al., 2008).  

 

Within the brain, apoE mRNA is found in such areas as the hypothalamus and the olfactory bulb, 

indicating involvement in appetite and regulation of food intake (Nathan et al., 2007; Shen et al., 

2011, 2008). Interestingly, the work conducted by Shen and collaborators revealed that 

intracerebroventricular apoE, but not systemically-administered apoE, significantly decreased 
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food intake in rats. Nevertheless, other studies noted no differences at this level (Chiba, 2003; Gao 

et al., 2007).  

 

In 1991, Zechner and co-workers reported for the first time that adipocyte expressed high 

abundance of apoE (Zechner et al., 1991). Thenceforth, an increasing number of both in vitro and 

animal-based studies supported its key role in inducing adipocyte differentiation and lipid 

storage in adipose tissue (Huebbe et al., 2015; Kypreos et al., 2009; Lasrich et al., 2015), and thus in 

promoting diet-induced obesity and related metabolic dysfunctions. Corroborating these ideas, 

apoE-/- mice have been shown to have less body fat content and to be resistant to diet-induced 

obesity (Huang et al., 2006; Karagiannides et al., 2008).  

 

1. 3. 4. Apolipoprotein E and disease 

 

1. 3. 4. 1. Alzheimer’s disease 

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases worldwide, 

accounting for more than 80% of dementia cases in the elderly (Anand et al., 2014). It is 

characterized by a progressive and irreversible deterioration of cognitive capacity. At the 

anatomical-pathological level, AD patients exhibit an atypical intracellular accumulation of 

hyperphosphorilated tau protein, resulting in neurofibrillary tangles, and extracellular clusters 

of insoluble β-amyloid peptide, named senile or amyloid plaques (Kumar et al., 2015). 

Considerable pieces of evidence have linked impairments of the cholinergic system with loss of 

memory function. Consistent with this, reduced cholinergic activity has been reported, even at 

early AD stages, after post mortem analysis of AD patient brains (Allen et al., 1997). Though the 

familial form of the disease is relatively well-defined, it only accounts for 5% of total AD cases 

(Chin-Chan et al., 2015). By cons, late-onset AD is the most prevalent form, and both genetic and 

environmental factors are key mediators in its not-yet-fully understood aetiology (Godfrey et al., 

2003).  
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The APOE4 genotype is the largest genetic risk for AD accounting for approximately 60% cases 

(Higgins et al., 1997). Indeed, being carrier of one ε4 allele increases the risk for AD in 2–3 folds, 

whereas the risk rises about 12-fold when carrying two ε4 alleles (Roses, 1996). Interestingly, 

several lines of evidence supported an APOE4 – sex interaction in humans. Women carrying ε4 

have been shown to display more pronounced AD-like changes in neuroimaging, 

neuropathological, and neuropsychological measures than men (Beydoun et al., 2013; Ungar et al., 

2014). In contrast, the APOE2 genotype has been traditionally related to confer neuroprotection 

and associated with increased longevity (Reinvang et al., 2013).  

 

Multiple mechanisms have been proposed to explain such increased vulnerability towards 

developing AD, but the exact sequence of events remains a major challenge. Various lines of 

evidence support the premise that apoE4 increases the rate and extent of amyloid plaques 

reflected by poor β-amyloid clearance ability, and contributes to tau pathologies odds (Arold et 

al., 2011; Du et al., 2009; Huang et al., 2004). Furthermore, it has also been suggested that the apoE4 

phenotype might be related to diminished levels of functional apoE required to maintain 

neuronal health (Sullivan et al., 2011). Other potential mechanisms have been contemplated, 

including impairment of the antioxidative defence system, diminished protection against 

environmental insults, dysregulation of neuronal signalling pathways, disruption of cytoskeletal 

structure, and potentiation of neuronal apoptosis (Huang et al., 2004).  

 

1. 3. 4. 2. Cognitive performance and neurobehaviour 

 

Epidemiological evidence 

Following the discovery of its implication in AD outcome, a growing number of studies 

attempted to examine the role of the APOE4 genotype in normal brain function and cognition. 

The first evidence came from the observation of faster and earlier cognitive decline in AD 

patients who had at least one ε4 allele (Reitz and Mayeux, 2009). Lately, epidemiological 

approaches involving mild AD patients concluded that ε4 carriers had significantly greater 

memory retention impairments, and showed sharper medial temporal lobe (MTL) atrophy, 
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while non-carriers obtained worse scores in tests measuring executive control and lexical access 

(Wolk et al., 2010). The APOE4 genotype also affects negatively cognition in the preclinical stages 

of the disease (Reitz and Mayeux, 2009). However, beyond a disease condition, it has been 

demonstrated that old, but non-demented apoE4 individuals had impaired attention and 

working memory relative to non-carriers (Greenwood et al., 2005), and perform worse both object 

recognition and episodic memory tasks, as well as spatial navigation tests (De Blasi et al., 2009; 

Kukolja et al., 2010). More recently, literature has emerged that offers contradictory findings about 

the role of apoE4 in cognitive function of young individuals. Thus, whilst some authors argued 

young ε4 carriers were not able to retain a spatial test task, neither able to spatially learn a 

route (Acevedo et al., 2010), others concluded there were no differences in cognitive skills between 

both carriers and non-carriers (Dennis et al., 2010; Reiman et al., 2004).  

 

In recent years, and despite the controversy, the hypothesis of a possible cholinergic 

dysfunction to explain some of the cognitive deficits related to the APOE4 genotype has gained 

strength. Higher levels of AChE (Eggers et al., 2006), greater number of mAChRs (Cohen et al., 2003) 

or reduced activity of cholinergic neurons (Salehi et al., 1998) have been proposed as potential 

factors contributing to their cognitive shortfalls. 

 

Because of its strong association with AD, a substantial proportion of research has extensively 

focused on deciphering the features of the APOE4 genotype; meanwhile the other two apoE 

isoforms have received scant attention. In this regard, some epidemiological studies highlighted 

not only the neuroprotective role of apoE2, but also the advantageous cognitive condition of its 

carriers (Suri et al., 2013). In agreement, healthy older individuals carrying ε2 had reduced 

cognitive decline, and faster processing of information (Suri et al., 2013; Wilson, 2002). 

Furthermore, it has been suggested that the APOE2 genotype might be protective against 

episodic memory impairments in normal ageing (Wilson et al., 2002).  

 

Evidence from experimental animals 
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Research assessing cognitive functioning in experimental animal models, although largely 

limited to explore learning and memory processes, has reported significant apoE isoform-

dependent effects. Accordingly, both male and female APOE4 transgenic mice showed altered 

acquisition and retention in a MWM, which progressively worsened with age (Pfankuch et al., 

2005). Moreover, old APOE4 transgenic mice were the worst in performing a radial arm maze 

task (Hartman et al., 2001). Human apoE targeted replacement (TR) mice have also provided 

valuable information on APOE behavioural attributes. Indeed, both apoE4 TR male and female 

mice displayed memory impairments in a MWM (Bour et al., 2008; Grootendorst et al., 2005). 

Similarly, several works conducted in our research group disclosed a negative influence of the 

APOE4 genotype in acquiring and retaining a MWM (Reverte et al., 2013, 2012). Focusing 

exclusively on dry mazes, Rodriguez and co-workers found that young apoE4 mice exhibited 

significantly impaired spatial learning and memory in a Barnes maze (BM) task compared to 

apoE3 mice. Such deficits were accompanied by a reduced dendritic spine density in the medial 

entorhinal cortex, an area of the brain which transmits spatial information to the hippocampus, 

and plays a critical role in spatial representation (Rodriguez et al., 2013).  

 

1. 3. 4. 3. Obesity 

 

Epidemiological evidence 

Although the three APOE polymorphisms seem to modulate differently the ability of the protein 

to predispose to obesity, human data are scarce, with the existing evidence being rather 

inconsistent. Data from the Atherosclerosis Risk in Communities study, including 15,000 

individuals, showed that human apoE isoforms are associated with a low-to-high body mass 

index (BMI) following the apoE4 < apoE3 < apoE2 rank order (Volcik, 2006). Accordingly, the 

presence of ε2 allele is predictive for obesity status in a minority population of Croatia (Zeljko et 

al., 2011). However, under specific health conditions, this order may be reversed (Volcik, 2006). 

Besides, ε3 compared to ε4 has often been associated with higher BMI and body weight in both 

children and adults (Ellis et al., 2011; Gottlieb et al., 2004). 
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Evidence from experimental animals 

In line with these findings, some studies with human apoE TR mice have suggested that the 

APOE3 genotype contributes to the development of diet-induced obesity (Arbones-Mainar et al., 

2008; Huebbe et al., 2015; Karagiannides et al., 2008). ApoE3 mice subjected to a western-type diet 

were phenotypically more obese than apoE4 mice, while their total and subcutaneous amounts 

of fat also increased (Arbones-Mainar et al., 2008). In agreement with this, Huebbe and 

collaborators reported that apoE3 mice were heavier than apoE4 not only when they were on a 

high-fat diet, but also on a low-fat diet, arguing that they were more prone to accumulate fat in 

adipose tissue owing to its efficiency at harvesting dietary energy (Huebbe et al., 2015). 

 

1. 3. 5. Apolipoprotein E — toxic interaction 

Several studies have focused on the contribution of APOE genotype to the severity of the toxicity 

caused by environmental insults. The apoE4 isoform has been conventionally reported to confer 

less protection against the effects caused by heavy metals, including mercury and lead, due to its 

reduced ability to bind them (Godfrey et al., 2003; Mutter et al., 2004; Stewart et al., 2002). In contrast, 

a recent study from our research group showed that male apoE3 TR mice were the most 

vulnerable of the three APOE genotypes to the lipophilic compound decabromodiphenyl ether 

(Reverte et al., 2013). Indeed, apoE3 mice postnatally treated with one of the congeners exhibited 

long-lasting spatial learning deficits (Reverte et al., 2013).  Nowadays, no single study exists which 

assess the potential behavioural and metabolic interaction between APOE genotype and the 

pesticide CPF. 

 

1. 3. 6. Transgenic apolipoprotein E animal models 

The apoE effects on disease have been widely investigated using several rodent models. Initially, 

studies with apoE-deficient mice corroborated the suspected implication of apoE in learning and 

memory processes (Oitzl et al., 1997; Raber et al., 1998). Then, the first transgenic mouse lines 

expressing human APOE variants were designed in order to further explore the detrimental role 

of the APOE4 genotype in cognition. However, these early transgenic models, generated from 

apoE-/-, were under human promoters, and often displayed varying levels of transgene 
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expression, or no equitable distribution of the human isoform (Grootendorst et al., 2005). Lately, 

the human apoE TR mouse model was created by replacing the murine apoE gene by one of the 

three most relevant human APOE variants, keeping intact the murine regulatory sequences 

(Sullivan et al., 1997). As a result, apoE TR mice express functional human apoE isoforms at 

physiological levels, being their subsequent phenotype similar to that found in humans (Hauser 

et al., 2011), fact that makes it a suitable model for studying apoE-related diseases.  

 

1. 4. Neurobehavioural endpoints 

Neurobehavioural research has been a very useful tool in neuroscience and toxicology, as it has 

allowed the in vivo evaluation of toxicants related-effects (Weiss, 1994). Rodents share a number 

of neuroanatomical, neurochemical and behavioural commonalities with humans, and therefore 

are widely used for neurobehavioural assessment. Nowadays, a wide range of functional, 

cognitive and emotional abilities can be evaluated in rodent models using customized tests 

(Sartori et al., 2011). 

 

1. 4. 1. Learning and memory 

Neural processes involving learning and memory, modulated by several endogenous systems, 

are crucial to ensure the adaptation of an individual to its environment.  

 

Definitions 

Learning is the process that leads to a permanent change in behaviour as a result of practice and 

subsequent acquisition of knowledge (Kandel et al., 2013). Meanwhile, memory is the process by 

which this knowledge is encoded, stored and later retrieved (Kandel et al., 2013).  

 

There are two main types of memory that differ temporally: short and long-term memory. The 

latter can be divided into declarative (explicit or conscious) or non-declarative (implicit or 

unconscious). The declarative memory encompasses the knowledge of facts and their meaning, 

and can be sub-divided into episodic memory (i.e., association of an event to temporal and 

spatial contexts) and semantic memory (i.e., knowledge of the event regardless of the context). 
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The non-declarative memory refers to the acquisition of motor skills and habits (Sharma et al., 

2010). Episodic memory is especially vulnerable to normal ageing and is more likely to be 

impaired in neurodegenerative processes (Graef et al., 2011).  

Within the short-term memory, the working memory arises as the limited capacity allowing the 

temporary storage and manipulation of information necessary for a complex task (Baddeley and 

Hitch, 2000).  

 

Navigation is the intrinsic ability of organisms to learn to find their way through the 

environment without getting lost. It can be basically divided into spatial (allocentric) and 

egocentric navigation. The first one is characterized by the ability to navigate using distal cues, 

while the second wayfinding involves navigating using internal cues (Vorhees and Williams, 2014). 

Typically, spatial memory stands as a subtype of episodic memory because it stores information 

within the spatio-temporal frame (O’Keefe and Nadel, 1978). 

 

Neurobiology of learning and memory 

The major brain structure involved in declarative memory is the MTL, comprising the 

hippocampus together with surrounding areas (i.e., entorhinal, perirhinal and parahippocampal 

cortex) (Corkin et al., 1997). However, interactions between the MTL and prefrontal cortex seem 

to be critical for successful memory storage (Reber et al., 2002). At first, neocortical associative 

areas send sensorial information to the parahippocampal and perirhinal cortices that in turn 

send afferences to the entorhinal cortex. Lately, this structure gives afferents to the 

hippocampal formation (i.e., dentate gyrus; CA3, CA2 and CA1; and the subiculum). Once there, 

the information flows in reverse to get back to neocortical associative areas (Rudy, 2009). On the 

other hand, non-declarative memory depends largely on the neostriatum, cerebellum and 

amygdala (Sharma et al., 2010).   

 

Spatial navigation involves several brain areas, such as striatum, basal forebrain, and 

neocortical areas. Nonetheless, numerous electrophysiological and lesion studies support that 

the primary region crucial for mediating this ability is the hippocampus (Bird and Burgess, 2008; 
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Buzsáki and Moser, 2013). Indeed, Nadel and O’Keefe observed that hippocampal place cells fired 

when the rat was in a specific location (O’Keefe and Nadel, 1978). During the initial minutes of 

exposure to a novel space, these preferred locations undergo refinement (Hill, 1978; Wilson and 

McNaughton, 1993), and are retrieved when the environment is subsequently revisited. Thereby 

they suggested that upon the use of external cues, the hippocampus creates a neural 

representation of the physical space, they called cognitive map (Eichenbaum et al., 1999). Parietal 

cortex, whose cells provide information about head position and movement, seem to send 

additional information to place cells (Save et al., 2005). It has been shown that basal forebrain 

lesions impair the performance of both the MWM (D’Hooge and De Deyn, 2001) and BM (Greferath et 

al., 2000), likely because it provides innervation to the hippocampus and neocortex. The striatum 

is implicated in the response flexibility, motor control and procedural consolidation in the MWM 

(D’Hooge and De Deyn, 2001), and lesions in this brain area impair spatial learning in the BM 

(O’Leary and Brown, 2013). Furthermore, some authors suggest it is essential for spatial memory 

retrieval (Iaria et al., 2003; Méndez-Couz et al., 2015).  

 

Various neurotransmitter systems are involved in spatial learning and memory, being the 

cholinergic system critical for both processes. During spatial acquisition learning, ACh is 

released into the extracellular space in hippocampus and cortex, enabling its interaction with 

cholinergic receptors. However, during consolidation of spatial reference memory, ACh levels 

are low. These process-dependent requirements explain why the blockade of ACh receptors 

during acquisition impedes subsequent memory formation (Deiana et al., 2011). Although 

controversially, the glutamatergic system has also been related to spatial learning and memory 

processes. Thus, transgenic mice lacking NMDA receptors in the CA1 region of the hippocampus 

show spatial memory impairments (Tsien et al., 1996). The amine system does not play an 

imperative role in spatial navigation, but noradrenaline, dopamine (DA) and serotonin (5-HT) 

do it, as they have been shown to alter various aspects of the MWM performance (Braun et al., 

2015; Du et al., 2007; Warner and Drugan, 2012).  

 

Assessment of learning and memory in rodents 

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



The Barnes maze (BM) test was firstly developed in 1979 by Carol Barnes to assess visuo-spatial 

learning and memory in aged rats (Barnes, 1979). Sixteen years later, Bach and co-workers 

adapted the task for its use in mice (Bach et al., 1995). Thenceforth, the BM has been successfully 

used in different inbred mouse strains (Holmes et al., 2002; Koopmans et al., 2003; O’Leary et al., 2011); 

in transgenic mouse models of AD (O’Leary and Brown, 2009); and in mice carrying targeted 

mutations within genes implicated in learning and memory processes (Seeger et al., 2004).  

 

The dry-land maze consists of an elevated circular platform with many holes (i.e., 12, 20 or 40 

depending on the diameter) evenly spaced around the perimeter. Beneath one of them, there is 

a removable, small, dark escape box designed to allow the animal to hide from adverse stimuli 

(Sharma et al., 2010). This test has been considered appropriate for mice owing to their propensity 

to escape through small holes, and their intrinsic predilection for dark environments over open 

areas (Bach et al. 1995). Furthermore, the BM has a number of advantages over the MWM, also 

aimed at assessing spatial learning and memory. Indeed, the BM avoids stress induced by 

swimming, prerequisite in the MWM, and seems to be less physically taxing (Harrison et al., 2009).  

 

In the standard reference memory task, animals should use distal visual cues in the extra-maze 

environment to locate the escape box that allows them to escape from aversive bright light and 

open space (Harrison et al., 2009). Nonetheless, rodents can use different strategies to locate the 

target hole: a praxic strategy, in which the animal learns the sequence of movements required to 

reach the escape box; a taxic strategy, in which the animal uses proximal cues to the same end; 

or a spatial strategy, in which the animal reaches the escape box by using external cues. To 

prevent the mice using internal or proximal cues, each trial starts by putting them in the middle 

of the arena under a coloured box, thereby ensuring the animals to be in random orientation. 

However, non-controlled proximal cues, such as irregularities in the maze surface, can bring the 

mice additional wayfinding information. To avoid it, the maze can be rotated around its central 

axis in each trial, as long as the position of the escape box with respect to the external cues is 

maintained. Besides, to avoid odour cues, both the surface and the escape box must carefully be 

cleaned with ethanol (Sharma et al., 2010).  
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1. 4. 2. Impulsivity, compulsivity and attention 

 

Definitions 

Impulsivity can be broadly defined as the tendency to act with inadequate degree of 

deliberation, forethought, or control (Moeller et al., 2001). Indeed, for this action to occur, several 

factors must be met: stimulus, strong impulsion and dysfunctional inhibitory processes (Bari and 

Robbins, 2013). By cons, compulsivity is acting persistently and improperly to the situation, 

without apparent relation to the overall objective of the action, often resulting in undesirable 

consequences (Dalley et al., 2011). Both traits appear to be characterized by difficulties in self-

control (Dalley et al., 2011; Robbins et al., 2012) (Figure 4). 

 

The behavioural phenotypes covered by the term impulsivity include: acting without 

forethought, failure to inhibit inappropriate behaviour, altered perception of time, insensitivity 

to negative consequences, propensity to engage in risky actions, or inability to wait for a reward 

(Bari and Robbins, 2013). Therefore, impulsivity cannot be conceived as a unitary construct, but 

rather as a variety of phenomena that could be attributed to different biological bases 

(Winstanley et al., 2004). Notwithstanding, there is some consensus to classify impulsive 

behaviours into two major categories: a) impulsive decision making, or impulsive choice, and b) 

impulsive action, or behavioural disinhibition, or in other words “stopping” versus “waiting” 

(Robinson et al., 2009). Waiting impulsivity is also known as premature or anticipatory responding, 

and can be assessed using the 5-CSRTT (Voon, 2014). 

 

Compulsivity is characterized by highly stereotypical or ritualized behaviours, including 

repetitive thoughts and actions, which generally lead to functional impairment (Dalley et al, 2011). 

Therefore perseverative responses can be considered as an index of compulsiveness, and are 

defined as repeated responses that appear to be inappropriate by not being demanded by the 

situation (Crider, 1997; Sandson and Albert, 1984).   
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According to Sandson and Albert (1984), three major varieties of perseveration ensue: 

continuous, recurrent and stuck-in-set. The continuous form is the inability to terminate a 

discrete response, even if the task is already finished, and can be assessed in the 5-CSRTT. The 

recurrent perseveration is the inability to change to a different motor program, thus keeping in 

repeating the first even though the requirements of the task are different. Finally, the stuck-in-

set form refers to a failure to respond differently to task demands, thus displaying the same 

pattern already learnt (Sandson and Albert, 1984).  

 

Although impulsive and compulsive traits may contribute to adaptive human behaviour, 

disordered regulation of both constructs may be detrimental in the development of several 

psychiatric and mental disorders (Robbins et al., 2012). For instance, excessive impulsivity 

Adapted from Bari and Robbins, 2013 

Figure 4 Impulsivity and compulsivity constructs. In susceptible individuals certain stimuli may activate strong 
urges that are not appropriate in a given environment. When inhibitory processes are functional, those 
impulsions are kept under control. However, strong impulsions and deficient inhibitory control will result in 
impulsive or compulsive acts or thoughts.  

Figure 4 

STIMULUS 

A physical event that 
causes a physiological 

activity in a sense organ 

IMPULSION 

An urge to 
undertake a specific 

action 

INHIBITORY CONTROL 

IMPULSIVITY 

COMPULSIVITY 

Action without delay, 
reflection, or control 

Stereotyped action 
despite conscious intent 
of the contrary 

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



characterizes attention deficit hyperactivity disorder (ADHD), mania, and personality disorders 

(Clark and Robbins, 2002), while compulsivity is a major component of obsessive-compulsive 

disorder, schizophrenia and autism. Both traits are key mediators of substance abuse and eating 

disorders (Robbins et al., 2012). 

 

Attention is a vast complex psychological concept influencing almost all aspects of cognitive 

behaviour, as it is necessary in tasks requiring stimulus selection, response selection and 

performance monitoring (Lustig et al., 2013). Generally, attention can be divided into two distinct 

constructs: input selection (i.e., the selection of task-relevant inputs for further processing) and 

rule selection (i.e., the process of choosing which rules to use in responding to selected inputs) 

(Luck and Gold, 2008). The input selection covers several models of attention: selective attention, 

divided attention and sustained attention. Selective attention, which was firstly described by 

Donald Eric Broadbent in 1958 (Broadbent, 1958), includes two competing processes: bottom-up 

and top-down. Bottom-up attention occurs when the brain automatically attends to sensory 

cues in the environment that stand out in some way. Conversely, top-down attention involves 

conscious control of attention toward some target. Bottom-up attention has long been 

considered to be dependent on the posterior parietal cortex, whereas top-down attention is 

considered to be dependent on the PFC and its connections. Emerged from the criticism of the 

Broadbent’s theory, the model of divided attention assumes that simultaneous or parallel 

stimuli processing may occur, thus requiring additional demand for number of items attended 

to, and thereby implying additional top-down control (Mahone and Schneider, 2012). Finally, 

sustained attention can be defined as the subject’s readiness to detect unpredictably occurring 

signals over prolonged periods of time, and can be measured in the 5-CSRTT (Lustig et al., 2013; 

Robbins, 2002). Human imaging studies have demonstrated that activation of frontal and parietal 

cortical areas are associated with sustained attention performance. Further, data from 

experimental animal studies have revealed that cholinergic inputs originating in the basal 

forebrain are pivotal components of the neuronal circuitry (Sarter et al., 2001). 

 

Neurobiology of impulsivity and compulsivity 
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Nowadays, it is well-documented that the prefrontal cortex (PFC) is crucial for the modulation of 

inhibitory control. Indeed, selective lesions of the medial PFC impair as simple measures of 

behavioural inhibition as novelty (Dalley et al., 1999), or responding in extinction (Quirk et al., 

2006). Besides, the striatum, which is highly connected to the PFC, remarkably contributes to 

several forms of impulsive behaviour (Dalley et al., 2008). It has been suggested that fronto-

striatial circuits implicated in inhibitory control may somehow overlap in both impulsive and 

compulsive traits (Robbins et al., 2012).  

 

Impulsivity of decision making (stopping impulsivity) depends upon interactions between PFC 

areas (i.e., right inferior frontal gyrus, anterior cingulate cortex, orbitofrontal cortex, and 

cortical motor areas) and the basal ganglia, within which stand out the dorsal striatum, the 

globus pallidus and the subthalamic nucleus (Aron, 2007; Dalley et al., 2011). Thus, selective lesions 

of the orbitofrontal cortex have been reported to disrupt stopping impulsivity, but not 

premature responding in the 5CSRT task, that is waiting impulsivity (Dalley et al., 2008).  

 

On the other hand, waiting impulsivity depends upon top-down PFC interactions with the 

hippocampus, amygdala, and structures in the ventral striatum, including the nucleus 

accumbens. Furthermore, several specific structures of the PFC (i.e., anterior cingulate cortex, 

dorsal and ventral prelimbic cortex, and infralimbic cortex) make distinct contributions to 

waiting impulsivity via independent inputs to the nucleus accumbens (Dalley et al., 2011).  Thus, 

impulsivity on the 5CSRTT is generally most significantly increased upon infralimbic cortex 

lesions (Chudasama et al., 2003). 

 

In addition to the aforementioned, both varieties of impulsivity are also modulated by 

serotonergic neurons in the raphe nuclei, midbrain dopaminergic neurons in the substantia 

nigra or ventral tegmental area, and noradrenergic neurons in the locus coeruleus (Dalley et al., 

2011). Indeed, the alteration of these neurotransmitter systems results in an impairment of 

inhibitory processes. It has been recurrently hypothesized that decreased 5-HT transmission 

correlates with increased premature responding in the 5-CSRTT (Winstanley et al., 2004), even 
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though underlying mechanisms remain unclear. The role of DA in impulsivity, however, has 

been fairly well elucidated. Waiting impulsivity increases, while stopping impulsivity decreases 

upon enhancement of DA signalling (Dalley and Roiser, 2012). In contrast, waiting impulsivity is 

reduced upon challenging noradrenaline transmission (Pattij and Vanderschuren, 2008). Existing 

research also recognizes the, sometimes underestimated, critical role played by the GABAergic 

system in impulsivity (Hayes et al., 2014; Montes de Oca et al., 2013). Besides, it has been 

demonstrated that alterations in central cholinergic function contribute to the aetiology of 

diseases in which decision making is perturbed, such as AD, ADHD, and schizophrenia (Hosking et 

al., 2014). In this regard, while nicotine has been considered as a cognitive enhancer, recent 

experimental data indicate its cognitive benefits may be accompanied by impulsiveness (Hosking 

et al., 2014).  

 

Assessment of impulsivity, compulsivity and sustained attention in rodents 

To date, many behavioural tasks have emerged aiming to assess impulsivity in rodent models 

based on the two main categories of impulsive behaviour previously described. The impulsivity 

of decision making includes behavioural paradigms that assess impulsive choice, occurring 

when the animal tends to choose an immediate but smaller reward over a larger but delayed 

reward (Dalley et al., 2011).  

 

In 1983, Robbins and co-workers designed a test to assess attentional performance in rats, 

which was based on the continuous performance task used for the same purpose in humans 

(Robbins, 2002). The result of an adaptation of the original version, the 5-choice serial reaction 

time task (5-CSRTT) enables various aspects of performance to be assessed simultaneously in 

both rats and mice (Bari et al., 2008). So, the 5-CSRTT stands as a useful tool to assess not only 

sustained attention, but also inhibitory response control, and motivation. When used in mice, it 

may provide valuable information on both the genetic and neural bases of attention, waiting 

impulsivity and compulsivity, and may also help to understand to what extent affective states 

can modulate those processes (Sanchez-Roige et al., 2012).  
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This task is conducted in operant chambers which consist of five operative evenly-spaced holes, 

distributed along a curved wall, equipped with infrared detectors and a bright light. In the 

opposite wall, there is a reward magazine also furnished with an infrared detector, 

automatically delivering a reward (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Sanchez-Roige et al., 2012 

Figure 5 Sequence of a session in a 5-choice serial reaction time task chamber. It should be noted that incorrect 
and premature responses can be performed at any non-illuminated hole.  

Figure 5 

A nose-poke into the illuminated 

magazine initiates the trial. 

Inter-trial interval (ITI) 

Premature response  

Stimulus light ON 

during the stimulus 
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hold (LH) of 5 s 

Incorrect 

response 

Correct response 

Omission 

Perseverative 

response  

REWARD NO REWARD 
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Briefly, mice are progressively trained to detect a brief stimulus that is presented 

pseudorandomly in one of the five holes, in order to trigger a reward. Once reached a stable 

performance, the 5-CSRTT allows manipulating several baseline conditions in order to evaluate 

mice responses, so that mice attentional accuracy, inhibitory control and motivation. For 

instance, premature responding (i.e., responding before the onset of the visual stimulus), which 

reflects the inability to inhibit the response, provides a measure of waiting impulsivity (Robbins, 

2002). On the other hand, perseverative responding (i.e., responding persistently into the hole 

after the extinction of the stimulus) provides a measure of compulsivity (Dalley et al., 2007).   

 

1. 5. Energy homeostasis, feeding behaviour and obesity 

 

1. 5. 1.  Regulation of energy homeostasis 

Despite the obvious disparities in body weight that occur within a population, it is noteworthy 

that intra-individual variations are remarkably stable over time. As expected, such weight 

stability is achieved by adjusting mechanisms of energy homeostasis, which are responsible for 

compensating the compendium of threats to which an individual is exposed from day to day. It is 

now well-recognized that food intake, energy expenditure and body adiposity are 

homeostatically regulated (Keesey and Powley, 2008).  

 

Energy homeostasis requires peripheral (i.e., gastrointestinal system and adipose tissue) and 

central signals to converge in certain brain regions to jointly coordinate the regulation of both 

short-term and long-term balances between energy intake and energy expenditure (Korner et al., 

2009). These brain areas include the hypothalamus, particularly the arcuate nucleus (ARC) that 

stands as the major site for sensing and integrating such signals. The latter houses at least two 

opposite neuronal circuitries: one appetite-stimulator and the other appetite-inhibitor. Both of 

them send signals primarily to the paraventricular nucleus (PVN) of the hypothalamus, which 

directly modulates feeding behaviour (Gale et al., 2004). The appetite-stimulatory circuit consists 

basically of neuropeptide Y (NPY) and agouti-related peptide (AgRP) neurons that promote 

appetite and reduce energy expenditure. NPY directly signals to the PVN, whereas AgRP acts 
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indirectly by blocking the melanocortin type 4 receptor (MC4R), which is an appetite-inhibitory 

receptor in the PVN. The appetite-inhibitory circuit includes cocaine- and amphetamine-

regulated transcript and proopiomelanocortin neurons, the latter producing α-melanocyte–

stimulating hormone that operates mainly through the MC4R to inhibit appetite (Luquet and 

Magnan, 2009; Schwartz et al., 2000).   

 

The currently accepted model of energy intake proposes that intrinsic signals become 

integrated together with other extrinsic regulators of food intake, such as food availability and 

palatability, emotions, habits or social behaviour. Likewise, both meal size and cessation are 

likely to be governed by both intrinsic and extrinsic factors. In either case, such peripheral 

hormonal signals as leptin, insulin and ghrelin are crucial for maintaining energy homeostasis 

(Donovan and Tecott, 2013; Korner et al., 2009; Morris and Rui, 2009).  

 

Leptin 

Leptin is an anorexigenic peptide mainly produced by adipocytes, of which circulating levels are 

positively correlated with the amount of body fat (Harris, 2000). Leptin provides information on 

changes in both energy balance and the amount of fuel stored as fat to the CNS upon its 

interaction with specific leptin receptors widely distributed throughout the brain (Morton, 2007). 

The most abundant leptin receptor, LepRb, is primarily expressed in the hypothalamus and is 

largely responsible for its anorexigenic effects (Park and Ahima, 2015). Under normal conditions, 

leptin inhibits food intake and promotes energy expenditure, while decreased leptin signaling 

induces food intake and fat accumulation (Morton, 2007). About two decades ago, early evidence 

of elevated leptin expression in obese individual aroused (Lönnqvist et al., 1995). Nowadays it has 

been demonstrated that obese individuals not only exhibit high levels of leptin, but also that 

they fail to reduce excess adiposity, thereby indicating leptin resistance (Park and Ahima, 2015). 

The underlying mechanisms are currently under intense investigation as they may serve as a 

potential therapeutic option for treating obesity. It has been suggested that leptin resistance 

may be due to defective transport of leptin into the brain, and/or reduced hypothalamic leptin 

signalling (Gale et al., 2004 Morris and Rui, 2009).    
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Insulin 

Insulin is a peptide secreted by the pancreatic β-cells in response to rising blood glucose levels 

after meals. Though it is primarily known for promoting glucose uptake and utilization by 

peripheral tissues, it also has a prominent role in mediating energy balance within the brain 

(Donovan and Tecott, 2013). In a manner similar to leptin, insulin has been shown to act as an 

anorexigenic hormone. Indeed, its receptors are widely distributed throughout the brain, 

particularly in the ARC (Luquet and Magnan, 2009; Schwartz et al., 2000), and when administered 

centrally it reduces both food intake and body weight (Bruning, 2000; Gale et al., 2004). By cons, 

brain-specific knock-out of the insulin receptor causes an increase in food intake and makes 

individuals more susceptible to diet-induced obesity (Obici et al., 2002). Furthermore, like leptin, 

insulin may be considered as an adiposity signal, as its circulating concentrations are also 

proportional to adiposity. In point of fact, obesity is generally associated with both 

hyperinsulinemia and hyperleptinemia, which are indicative of insulin and leptin resistance, 

respectively (Gale et al., 2004).  

 

Diabetes is a metabolic disease characterized by hyperglycaemia that results from defects in 

insulin secretion or action or a combination of both. Type 1 diabetes represents 3 to 5% of all 

diabetes cases and is caused by a lack of insulin secretion by autoimmune destruction of the β-

cells of the pancreas. On the other hand, type 2 diabetes is the most common form of the disease, 

and gradually develops due to a defect in insulin secretion in the context of a gradual peripheral 

resistance to insulin action (Jeon et al., 2015). It is a complex disease resulting from the 

combination of environmental and genetic factors. Indeed, it has been suggested that excessive 

caloric intake, decreased physical activity, smoking and alcohol consumption, and several 

hazardous agents may play a crucial role in the aetiology of the disease (Bi et al., 2012). As is the 

case in obesity, current type 2 diabetes burden has no specific precedent. According to the 

International Diabetes Federation (IDF), the European prevalence of diabetes was estimated to 

be 7.9% in 2014 (i.e., 52 million people), whilst the predictions point to 68.9 million diabetic 

patients in 2035 (IDF, 2014). Spain actually occupies the fourth place in the European ranking of 

countries with higher rates of the disease with a prevalence of 10.6% (IDF, 2014). 
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Ghrelin 

Ghrelin is an endogenous orexigenic peptide, primarily synthetized in the stomach that was first 

discovered as an endogenous ligand for the growth-hormone-secretagogue receptor (GHS-R). 

Two major forms of ghrelin coexist in the blood: acyl ghrelin and des-acyl ghrelin (Hosoda et al., 

2000), but it has been suggested that only the acylated form binds the GHS-R, and therefore is the 

only to be biologically active. However, increasing evidence points to a neglected metabolic role 

of des-acyl ghrelin (Delhanty et al., 2013; Heppner et al., 2014). The inactivation of acyl ghrelin into 

the deacylated form largely depends on the BChE enzyme (De Vriese et al., 2004). The pattern of 

ghrelin release suggests that it governs feelings of hunger: acyl ghrelin levels increase by fasting, 

while they decrease after the mealtime (Kojima et al., 1999). Accordingly, central or peripheral 

administration of acyl ghrelin stimulates food intake, whereas chronic administration causes 

weight gain by not only stimulating food intake, but also decreasing both energy expenditure 

and the utilization of fat, and increasing utilization of carbohydrates (De Vriese and Delporte, 2008).  

 

1. 5. 2.  Obesity 

From a broad perspective, overweight and subsequent obesity are defined as abnormal or 

excessive fat accumulation that may endanger the healthy status of an individual (Haslam and 

James, 2005). A crude population measure of obesity is the BMI, which is calculated by dividing 

the patient’s weight in kilograms by the square of the individual’s height in meters (kg/m2). 

According to the WHO, adults with a BMI in the range of 25 to 29.9 are classified as overweight, 

while a BMI exceeding 30 is synonymous with obesity (WHO, 2015). The leading cause of obesity 

and overweight is an energy imbalance between calories consumed and calories expended. 

Currently, high-energy and high-fat diets are within everyone’s reach, and the increasingly 

sedentary nature of many forms of work, changing modes of transportation, and increasing 

urbanization has prompted the progressive decrease of physical activity (Bray and Popkin, 2014; 

Mitchell et al., 2011).  

 

Either directly or indirectly, the disruption of any of the mechanisms involved in energy 

homeostasis gives rise to life-threatening conditions, which include obesity and type 2 diabetes, 
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pathologies that are strongly linked. In fact, obesity clearly increases the likelihood of 

developing type 2 diabetes. A great deal of epidemiological studies has confirmed the links 

between excess weight and the development of insulin resistance and diabetes, suggesting that 

patients with excessive weight are at substantial risk for developing diabetes (Brown et al., 2009; 

Haslam and James, 2005). Besides, raised BMI is a major risk factor for such other non-

communicable diseases as cardiovascular disease, musculoskeletal disorders, and several types 

of cancer (e.g., breast, colon, etc.) (WHO, 2014). 

 

A number of authors have considered both impulsivity and compulsivity as potential factors 

contributing to the obesity epidemics (Mole et al., 2015; Schag et al., 2013; Smith and Robbins, 2013), 

and incipient epidemiological data begin to suggest overlaps between disorders of pathological 

food and drug use (Avena et al., 2011; Ziauddeen et al., 2012). A specific subgroup of obese 

individuals suffers from binge eating disorder, defined by the American Psychiatric Association 

as “recurring episodes of eating, in a discrete period of time, an amount of food that is definitely 

larger than most people would eat during a similar period of time [with a]…lack of control 

during the episodes”. Like drug addicts, food-addicted individuals experience a lack of control in 

the face of food, have a continuation of overuse despite severe health consequences, and are 

unable to fight the urge to eat. In addition to similar behavioural traits, substance-dependent 

and obese individuals also show analogies in their brain structure and neurochemical profiles, 

including changes in fronto-striatal circuitry and abnormalities in the dopamine 

neurotransmitter system (Smith and Robbins, 2013).  
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2. RATIONALE 

 

As it has been repeatedly mentioned throughout this dissertation, OPs in general and 

CPF in particular, are extensively used as pesticides. Although efforts have been taken to reduce 

CPF applicability, a great deal of evidence suggests it is still threatening human and natural 

ecosystems. With regard to this, recent data reveal CPF residues are widely distributed 

throughout both rural and urban areas (Ccanccapa et al., 2015; Page et al., 2014; Weldon et al., 2011), 

implying that virtually everyone is exposed to its toxicity, to a greater or lesser extent. The most 

important risk group is made up of those individuals who daily and massively handle these 

substances, including general pesticide applicators, crop dusters, greenhouse workers, and 

farmers. In these cases, workers are steadily exposed to OP pesticides and are susceptible to 

acute poisoning, which still today constitutes a major public and occupational health concern 

(Faiz et al., 2011; Roldán-Tapia et al., 2006). The inhibition of AChE induced by CPF, resulting in an 

accumulation of ACh at cholinergic synapses, is responsible for most of the symptoms observed 

in acute poisonings. Nevertheless, of particular interest are those exposure patterns that initially 

go unnoticed but may progressively contribute to the development of silent chronic exposures 

that may lately trigger undesirable consequences to health. Thus, for example, a considerable 

amount of epidemiological studies has revealed deficits in different domains of cognitive 

function after chronic exposure to OPs (Farahat et al., 2010; Mackenzie Ross et al., 2010; Ross et al., 

2013; Stephens and Sreenivasan, 2004). In addition, albeit less frequently, affective psychiatric 

disorders have also been described in OP pesticide applicators (London et al., 2005; Mackenzie Ross 

et al., 2010; Roldán-Tapia et al., 2006, 2005; Steenland et al., 2000). An array of experimental 

investigations endorses human data. However, research on such cognitive functions as 

attention, as well as on complex behavioural processes including inhibitory control and 

motivation is rather lacking. In addition, in light of the current global prevalence of both obesity 

and diabetes, there has been renewed interest in ascertaining the contribution of OP pesticides 

to the aetiology of both health conditions (Gonzalez et al., 2012; Jaacks and Staimez, 2015; Meggs and 

Brewer, 2010; Montgomery et al., 2008; Saldana et al., 2007; Slotkin, 2011; Starling et al., 2014). 

Nevertheless, evidence remains sparse, and underlying mechanisms are not yet fully elucidated.  
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Given the ubiquity of CPF exposures, one of the critical issues is to establish whether there are 

subpopulations that are particularly susceptible to its detrimental effects. In this context, the 

existing research focuses on exploring genetic polymorphisms in its biotransformation enzymes 

or its target molecules (Costa et al., 2013; Crane et al., 2012; Furlong et al., 2005; Lockridge and Masson, 

2000), whereas less is known about the interaction of CPF with other genetic risk factors.  

 

Human APOE polymorphisms have been shown to confer different vulnerability to 

neurodegeneration: while the APOE4 genotype is considered to be the largest genetic risk for 

AD, ε2 carriers are suspected to be protected from neurodegeneration and have been associated 

to an increased longevity (Higgins et al., 1997; Reinvang et al., 2013; Suri et al., 2013). Notwithstanding, 

apoE seems to further modulate cognitive function in the absence of a disease condition. Thus, 

poor cognitive outcome has also been attributed to the APOE4 genotype, but studies addressing 

the behavioural features of the other two apoE isoforms are scarce. It has been controversially 

hypothesized that APOE4-related cognitive shortfalls may be partly due to a possible cholinergic 

dysfunction (Cohen et al., 2003; Eggers et al., 2006; Salehi et al., 1998). Indeed, it is well-known that the 

cholinergic system is involved in such higher functions as sustained attention and impulse 

action control (Cardona et al., 2006; Middlemore-Risher et al., 2010; Montes de Oca et al., 2013; Paolone et 

al., 2013). In the meantime, the most common apoE isoform has drawn less attention. In fact, the 

APOE3 genotype has been traditionally considered as the healthy one due to the ability of its 

carriers in optimally accomplishing the major biological function of the protein (i.e., maintaining 

lipid homeostasis). However, it has been recently suggested that the APOE3 genotype is the most 

efficient among the three APOE genetic variants at harvesting dietary energy, which could 

explain its vulnerability towards developing diet-induced obesity (Arbones-Mainar et al., 2008; 

Huebbe et al., 2015; Karagiannides et al., 2008). 

 

Based on the above, this dissertation seeks to determine whether APOE genotypic variability 

could differently modulate the toxicity of CPF. Furthermore, it also attempts to further 

characterize the behavioural traits of the three APOE genotypes, mainly in terms of executive 

functioning, about which there are little available data.  
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3. OBJECTIVES 

 

The main objective of this investigation was to assess the behavioural and metabolic effects of 

both APOE genotype and the pesticide CPF, as well as to determine whether the interaction 

between both factors contributed to the expression of these effects. Experiments were 

performed using human apoE TR mice for the three human APOE gene polymorphisms. 

 

The following specific objectives were considered: 

 

❶ To assess the effects of: a) APOE genotype, b) chronic dietary exposure to CPF and c)   

the interaction between both factors on body weight status, and spatial learning and 

memory in a Barnes maze task in apoE TR adult male mice. 

 

❷ To determine the effects of subchronic dietary CPF exposure on metabolism and 

hormonal balance in apoE3 TR male mice, and to compare them with those from 

C57BL/6N male mice.  

 

❸ To characterize the effects of APOE genotype on attentional performance and 

inhibitory control in a 5-choice serial reaction time task in apoE TR female mice. 

 

❹ To explore the neurochemical and pharmacological bases of the potential APOE-

related differences in attentional performance and inhibitory control in apoE TR female 

mice. 

 

❺ To evaluate the effects of subchronic dietary CPF exposure and its interaction with 

APOE genotype on attention, impulsivity, compulsivity, and motivation in a 5-choice 

serial reaction time task in apoE TR female mice.  
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4. RESULTS 

 

Four original articles, either in the process of being published or already available in the 

scientific literature, are part of the results of this thesis. The specific objectives and 

corresponding publications are set out in Table 3.  

 

 

 

Specific objectives Publications 

1 

Peris-Sampedro F, Basaure P, Reverte I, Cabré M, Domingo JL, Colomina MT. 

Chronic exposure to chlorpyrifos triggered body weight increase and 

memory impairment depending on human apoE polymorphisms in a 

targeted replacement mouse model. Physiol Behav 2015; 144:37-45. 

2 

Peris-Sampedro F, Cabré M, Basaure P, Reverte I, Domingo JL, Colomina MT. 

Adulthood exposure to a common pesticide leads to an obese-like phenotype 

and a diabetic profile in apoE3 mice. Environ Res 2015; 142:169-76. 

3 

 

Reverte I, Peris-Sampedro F, Basaure P, Campa L, Suñol C, Moreno M, Domingo 

JL, Colomina MT. Attentional performance, impulsivity and related 

neurotransmitter systems in apoE2, apoE3 and apoE4 female transgenic 

mice. Psychopharmacology (Berl) 2015. DOI: 10.1007/s00213-015-4113-9. 

 

4 

5 

Peris-Sampedro F, Reverte I, Basaure P, Cabré M, Domingo JL, Colomina MT. 

Apolipoprotein E genotype and the pesticide chlorpyrifos 

modulate attention, motivation and impulsivity in female mice in the 5-

choice serial reaction time task. Neurotoxicology 2015. Currently under 

review. 

 

Table 3 Specific objectives of the thesis and corresponding publications 
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Publication 1 Chronic exposure to chlorpyrifos triggered body weight increase and 

memory impairment depending on human apoE polymorphisms in a targeted 

replacement mouse model. 

 
Peris-Sampedro F, Basaure P, Reverte I, Cabré M, Domingo JL, Colomina MT. 

Physiol Behav 2015; 144:37-45. DOI: 10.1016/j.physbeh.2015.03.006. PMID: 25747767.   
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The onset of cognitive deficits and behavioural disorders after exposure to 

OP pesticides, and to CPF in particular, has been recurrently reported in the 

scientific literature. Consistently, data from animal models of repeated CPF 

exposure highlighted learning and memory impairments. The three apoE 

isoforms confer different cognitive skills on their carriers, but no single study 

exists which inquire about potential interactions between APOE genotype 

and CPF. 

The results of this study support the premise that APOE polymorphisms 

condition cognitive abilities in the absence of disease. Furthermore, this 

investigation was the first to demonstrate that APOE genotype modulates the 

toxicity of CPF. Strikingly, the APOE3 genotype conferred on their carriers 

increased vulnerability to become overweighed upon chronic exposure to the 

pesticide. 

 

APOE genotype influenced spatial learning and memory processes in the BM 

task, and modulated the toxic effects of CPF. In particular, apoE3 mice were 

the only to fatten upon the exposure to the pesticide. Moreover, CPF 

increased search velocity in the BM task in apoE2 mice, and led to memory 

impairments in apoE3 mice.  
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Chronic exposure to chlorpyrifos triggered body weight increase and
memory impairment depending on human apoE polymorphisms in a
targeted replacement mouse model
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H I G H L I G H T S

• Repeated adulthood exposure to CPF increased body weight only in apoE3 mice.
• Learning and memory in the Barnes Maze task differed among the apoE genotypes.
• Search velocity in the Barnes Maze task was increased in CPF-exposed apoE2 mice.
• Repeated adulthood exposure to CPF led to a mild memory impairment in apoE3 mice.
• The apoE genotype modulated the toxic effects of the pesticide CPF.
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Despite restrictions on their use, humans are still constantly exposed to organophosphates (OPs). A huge number
of studies have ratified the neurotoxic effects of chlorpyrifos (CPF) and suggested its association with neurode-
generative diseases, but data are still scarce. Human apolipoprotein E (apoE) plays an important role in lipid
transport and distribution. In humans, the apoE4 isoform has been linked to an increased risk of Alzheimer's dis-
ease (AD). ApoE3 is the most prevalent isoformworldwide, and has been often established as the healthful one.
The current study, performed in targeted replacement (TR) adult male mice, aimed to inquire whether genetic
variations of the human apoE respond differently to a chronic dietary challenge with CPF.
At four/fivemonths of age,mice carrying apoE2, apoE3 or apoE4were pair-fed a diet supplementedwith CPF at 0
or 2 mg/kg body weight/day for 13 weeks. Cholinergic signs were monitored daily and body weight changes
weekly. In the last week of treatment, learning and memory were assessed in a Barnes maze task. Dietary CPF
challenge increased body weight only in apoE3 mice. Differences in the acquisition and retention of the Barnes
maze were attributed to apoE genetic differences. Our results showed that apoE4 mice performed worse than
apoE2 and apoE3 carriers in the acquisition period of the spatial task, and that apoE2 mice had poorer retention
than the other two genotypes. On the other hand, CPF increased the search velocity of apoE2 subjects during the
acquisition period. Retention was impaired only in CPF-exposed apoE3 mice. These results underline that
gene × environment interactions need to be taken into account in epidemiological studies. Given that apoE3,
the most common polymorphism in humans, has proved to be the most sensitive to CPF, the potential implica-
tions for human health merit serious thought.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Although pesticides have generally improved agricultural productivi-
ty, their widespread use has resulted in severe environmental pollution,
and endangered human health. The highly-lipophilic organophosphorus
(OPs) compound chlorpyrifos (CPF) is one of the most frequently used
non-persistent pesticidesworldwide, even though the US Environmental
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Protection Agency (EPA) banned it from residential use in 2001, and its
decreasing use in Europe [65]. It is used extensively because of its
effective and cost-competitive broad spectrum of activity, and has often
been selected to replace persistent organochlorinated compounds [41].
Nearly everybody present organophosphate residues in their bodies but
display no symptomatology [11], so most exposures are below the
acute poisoning threshold and are therefore undetected, like a silent
pandemic [28]. In the general population, the dietary intake of pesticides
is the most important source of exposure [4,49,65].

To date numerous studies have endorsed the neurotoxic and behav-
ioral effects of CPF in both human [6,20,21,55,62] and animal models
[10,37,40,63,67]. CPF exerts its insecticidal activity by irreversibly
inhibiting cholinesterases (ChE) and disrupting cholinergic function in
the nervous system. While the acute neurotoxicity of CPF has been
associated with systemic and brain ChE inhibition, an increasing body
of experimental data suggests that CPF also targets non-cholinergic neu-
rotransmitters such as serotonin, dopamine, glutamate and hormones
[54,70,74]. Considering the number of potential targets, CPF exposure
would be expected to have a wide range of effects. Specifically, CPF
has been associated with learning and memory impairment, increased
anxiety, and alterations in activity and impulsivity [9,13,17,51,60].
Heretofore, epidemiological studies have provided enough evidence
supporting the existence of powerful links between OP exposure, long
lasting cognitive impairments, and an increased risk of neurodegenera-
tive diseases [3,23,31,46,78]. Besides, in recent years increasing refer-
ences in the scientific literature point to lasting metabolic disturbances
after perinatal exposure to CPF, and suggest that it is also an “endocrine
disruptor” [43,68,69,76].

Apolipoprotein E (apoE) is a 34.2 kDa glycoprotein which is mainly
involved in the metabolism of lipids, including cholesterol, and
promotes the clearance of atherogenic lipoproteins such as very low
density lipoprotein (VLDL) and chylomicron remnants from the circula-
tion [33]. ApoE is mainly synthesized in the liver, but it is also produced
by such other cell types as adipocytes, macrophages and astrocytes,
which reveals its multiple functions [25,26,73]. Human apoE has three
major allelic variants: ε2, 3 and 4. These result in three main isoforms
(apoE2, E3 and E4), of which apoE3 appears to be the most common
in humans, followed by apoE4 and apoE2 [15]. Each formhas a different
influence on neuronal signal transduction, the properties of transporter
proteins, receptors, and such enzymes as lipoprotein lipase [35]. In this
sense, apoE4 has been related to disturbed lipid homeostasis [53,71]
and decreased cerebral glucose metabolism [35], thus contributing to
the pathophysiology of Alzheimer's disease (AD). Although the apoE3
isoform is commonly known as the “healthful” one, several studies in
rodents have revealed that its carriers tend to be more prone to
developing obesity [2,32,34], and more susceptible to the neurotoxic
long-term effects of the decabromodiphenyl ether compound [56,58].
Human apoE targeted replacement (TR) mice are an appropriate
model for characterizing neurobehavioral and metabolic differences
attributable to the apoE genotype [7,38,66], and testing individual
responses to toxic exposures.

The present study aimed to assess physical effects, spatial learning
and memory in transgenic adult male mice carrying different polymor-
phisms of human apoE (ε2, 3 and 4) after chronic moderate oral
exposure to CPF. It also attempted to establish interactions between
toxic exposure and genetic factors.

2. Materials and methods

2.1. Animals and care

Human apoE TRmice were used for this study. These animals have a
C57BL/6NTac background and express functional human apoE isoforms
at physiological levels, without altering any known endogenous regula-
tory sequences [72]. Adult male mice homozygous for each of the three
apoE human alleles (ε2, 3 and 4) were purchased from Taconic (Taconic

Europe, Lille Skensved, Denmark). They were quarantined for 7 days,
and then properly identified and housed in plastic cages containing
2–6 individuals of the same genotype. The animal roomwasmaintained
at a temperature of 22 ± 2 °C and a relative humidity of 50 ± 10%. The
roomwas equipped with a 12-h light–dark automatic light cycle (light:
08:00–20:00 h). All themicewere allowed free access to food andwater
and given a normal chowdiet (Panlab, Barcelona, Spain) until the begin-
ning of the study. The use of animals and the experimental protocol
were approved by the Animal Care and Use Committee of the Rovira i
Virgili University (Tarragona, Spain).

2.2. Treatment

Fifty-nine male mice between four and five months of age were
weighed and randomly distributed in six experimental groups (n =
8–11): control apoE2, CPF-treated apoE2, control apoE3, CPF-treated
apoE3, control apoE4, and CPF-treated apoE4. Mice were subjected to
pair-feeding and were provided with 4 g of food/animal/day for
13 weeks as follows: the control groups received normal chow while
CPF-treated groups were fed rodent chow supplemented with CPF at a
dose of 2 mg/kg body weight/day. The dose was chosen to achieve a
moderate inhibition of plasma cholinesterase with no clinical effects
[14] in such away that pesticide exposure could be comparedwith con-
tinuous non-occupational exposure in humans. Before the treatment
period started, the baseline weight of the animals was recorded. During
treatment, body weight and the appearance of possible cholinergic
signs were monitored. Following the exposure period, mice were
allowed access to food ad libitum and given normal chow diet. Food
intake was then assessed for one week. The average daily food
consumption obtainedwas divided by the number of animals in the cage.

2.3. Determination of cholinesterase activity

Twelve animals (n = 2/experimental group) were used to assess
plasma cholinesterase activity 8 weeks after the start of the treatment.
Theywere euthanized by cardiac puncture after anesthesia with carbon
dioxide. Plasma was obtained by centrifugation at 3000 rpm for 20 min
at 4 °C. Cholinesterase activity was determined spectrophotometrically
using the Ellman method [19]. The result of the enzymatic activity was
obtained from the activity value of the control subjects, and represented
as a percentage.

2.4. Barnes maze

The effects of CPF on spatial learning and memory were assessed
using a Barnes maze during the last week of treatment. The apparatus
consists of awhitemethacrylate circular arena (92 cmdiameter) elevat-
ed 1m above the floor, with 20 circular holes (4.5 cm diameter) equally
spaced around the perimeter. Each hole was located 2.5 cm from the
edge of the maze, and assigned a number from 1 to 20. A dark escape
box was placed beneath one of the holes. Bright and intense light was
used to encourage them to escape into the dark box. During the acquisi-
tion period, mice were subjected to a daily session of two trials with an
inter-trial interval of 30–60 min for five consecutive days. During each
trial, animals were placed in the center of themaze. Mice were allowed
to move freely, and the trial finished when they entered the escape box
or after 180 s. If an animal failed to find the escape boxwithin this time,
it was guided and placed in it by the experimenter. After each trial, mice
remained in the escape box for 30 s before being returned to their hold-
ing cages. To avoid proximal cues and ensure hippocampus-dependent
learning, the maze was rotated 90° in each trial but the position of the
escape box was maintained with respect to the external cues. The
execution of the task by mice was recorded by a video camera (Sony
CCD-IRIS). A video-tracking program (Etho-Vision©, Noldus Informa-
tion Technologies, Wageningen, The Netherlands) was used tomeasure
the latency of escape to the target hole, the total distance traveled in the
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arena, and the average search velocity. The search strategies used by the
mice to locate the target hole during the training sessions were also
recorded and analyzed. The strategies were scored as “random” when
the mouse displayed a nonsystematic search with multiple crossings
through the center of the maze, as “serial” when the animal moved
around the edge of the maze and past at least three adjacent holes
before entering the target hole, and as “spatial” if the mouse moved
directly towards the target hole from the center of the maze. The
apparatus and escape box were cleaned between each trial to prevent
the mice from using olfactory cues. Retention of the task was evaluated
by a probe trial performed 24 h after the last training session, and
consisting of a 120 s free exploration without the escape box. During
the probe trial, the search time spent in the target quadrant was
recorded, and compared to the time mice would be expected to spend
by chance in each quadrant without any previous learning. Moreover,
preferences for different holes were also analyzed by comparing the
frequency of visits to the target hole and the other holes.

2.5. Statistical analysis

Data were analyzed using the SPSS Statistics 20.0 software. Body
weight and food intake were analyzed by two-way analysis of variance
(ANOVA) using the genotype and treatment as the main factors. A
repeated measure multivariate analysis of variance (RMANOVA) with
the period of time as the within-subject factor was also used when
appropriate. Search strategies were studied by two-way ANOVA
using the genotype and treatment as main factors. A paired t-test
was used to analyze differences in the Barnes maze retention task.
Post-hoc Tukey tests were used for multiple comparisons. The homo-
geneity of variance was determined using a Levene test. Statistical
significance was defined by a probability value lower than 0.05
(p b 0.05).

3. Results

During the treatment period, no cholinergic signs were observed in
any of the groups.

3.1. Body weight profile and food intake

Throughout the thirteen weeks of CPF exposure, body weight was
analyzed by a RMANOVA using time as the within-subjects factor, and
the genotype and treatment as the between-subjects factors. Both the
genotype [F(26,58) = 3.471, p b 0.001] and the treatment
[F(13,58) = 9.226, p b 0.001] were observed to influence the body
weight profile over the experiment. The genotype was found to have
an overall effect [F(2,58) = 4.870, p = 0.011]. Post-hoc analyses
revealed that apoE2 mice had a higher body weight than apoE3 and
apoE4 mice (Fig. 1). Also over the whole treatment period a trend was
noted towards a genotype × treatment interaction [F(26,58) = 1.466,
p=0.098]. In order to define the effects of the treatment, each genotype
was analyzed separately. The effect of CPFwas only observedwithin the
apoE3 group [F(1,20) = 7.853, p = 0.011) from the first week of
treatment until the end. CPF-treated apoE3 mice increased their body
weight more than their respective controls (Fig. 1). These differences
in body weight were also clearly visible on the phenotypic level,
where treated apoE3mice appeared to bemore obese than their control
counterparts.

After the exposure period and under free access to food conditions,
two-way ANOVA analysis revealed that apoE2 mice ate more than
apoE3 or apoE4 mice [F(1,21) = 3.748, p = 0.046]. Interestingly,
animals that had been exposed to CPF tended to increase their food
ingestion [F(1,21) = 3.885, p = 0.066] (Fig. 2).

3.2. Plasma cholinesterase activity

PlasmaChE activity in CPF-exposedmicewas 31.22% of that found in
control groups 8 weeks after the start of CPF dietary exposure.

3.3. Spatial learning and memory in a Barnes maze

3.3.1. Acquisition
Learning performance during the five days of acquisition in the

Barnes maze task was analyzed by a two-way RMANOVA (genotype x
treatment). The session was used as the within-subject factor, while
the dependent variables were the escape latency to the target hole,
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the total distance traveled in the arena, and the average search velocity.
Performance during the acquisition period improved overall: escape
latency to the target hole and total distance traveled in the arena de-
creased over sessions [F(4,56) = 36.766, p b 0.001; F(4, 56) = 19.255,
p b 0.001, respectively] (Figs. 3 and 4). The average search velocity
also changed during acquisition [F(4,56) = 8.830, p b 0.001]. The geno-
type was found to have an overall effect on the escape latency
[F(2,56) = 7.052, p = 0.002] (Fig. 3), the total distance traveled in the
arena [F(2,56) = 6.198, p = 0.004] (Fig. 4), and the average search
velocity [F(2,56)=3.492, p=0.038] (Fig. 5). Post-hoc analyses showed
that both the escape latency and the total distance traveled were higher
for apoE4 mice than apoE2 and apoE3 mice, which suggests that this
genotype has learning deficits in the spatial task (Figs. 3 and 4). Search
velocity was higher in apoE2 than apoE4 mice (Fig. 5). An interaction
between genotype and CPF treatment [F(2,56) = 3.430, p = 0.040]
was also noted for the search velocity. Treatment also tended to
decrease the escape latency [F(1,56) = 3.212, p = 0.079], indicating
better acquisition in exposed animals.

To better analyze the effects of the treatment on latency, distance
and velocity, each genotypewas analyzed separately. CPF was observed
to affect average search velocity in apoE2 mice [F(1,18) = 5.533, p =
0.031]. CPF-treated apoE2 subjects showed a higher velocity during
the acquisition period than their respective controls (Fig. 5). Moreover,
the escape latency in the arena tended to decrease in the CPF-treated
apoE2 group [F(1,18) = 3.481, p = 0.079], suggesting higher levels of
activity in these animals (Figs. 3 and 4).

To determine whether differences in search strategy accounted
for discrepancies in performance among groups, the total
frequency of each strategy used to locate the hidden escape box
during the acquisition period was analyzed by a two-way ANOVA
(genotype × treatment) (Fig. 6). An overall effect of genotype was
found for both random [F(2,58) = 7.319, p = 0.002] and serial strate-
gies [F(2,58) = 4.787, p = 0.012], and a tendency was also noted for
spatial strategy [F(2,58)=3.089, p=0.054]. Post-hoc analyses showed
that the random strategy was more frequent in apoE4 than apoE2 and
apoE3 mice, and the serial strategy was less frequent in apoE4 than
apoE2 mice. No effects of the treatment were noted.

3.3.2. Retention
Retentionwas evaluated by a single probe trial carried out 24 h after

the last training session. A two-way ANOVA (genotype × treatment)
was performed to analyze the total time spent in the target quadrant
in which the escape box was previously located (Fig. 7). Genotype was
observed to have a major effect [F(2,58) = 2.282, p = 0.008]: apoE4
mice spentmore time in the target quadrant than apoE2. To better ana-
lyze retention, the time spent in the target quadrant was compared to
the chance level (30 s) by means of a t-test (Fig. 7). Both control and
treated apoE3 and apoE4 mice showed significant retention because
they expressed a clear preference for the target quadrant. However,
the apoE2 group did not show it, suggesting poorer retention among
these subjects.

A paired t-test was carried out to compare how frequently each
genotype entered the target hole with respect to the other holes in the
maze (Fig. 8). CPF-exposed apoE3 mice were the group that entered
the target hole least [t = −2.360, d.f.9, p = 0.043], indicating a slight
memory impairment in this group.

In summary, genotype clearly affected the spatial task at seven/eight
months of age. The three genotypes had different escape latencies and
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total distances traveled in the arena, being the apoE2 group which
showed best results in the learning process. Treatment with CPF affect-
ed Barnes maze acquisition in apoE2 carriers by increasing their search
velocity. As far as the probe trial is concerned, apoE2 mice showed
poorer retention than apoE3 and apoE4 mice. The effect of CPF on the
probe trial was observed among treated apoE3 mice, which made
fewer entries into the target hole.

4. Discussion

This study was designed to investigate the effects of chronic oral
exposure to low doses of the pesticide CPF on human apoE TR adult
male mice. Despite a moderate inhibition of plasma cholinesterase, no
clinical effect was observed probably because the inhibition came
about gradually throughout the treatment period. The exposure to CPF
induced alterations in bodyweight status, and in learning and retention

in the Barnes maze task. These alterations depended on the apoE geno-
type. CPF increased body weight in apoE3 mice, but not in apoE2 or
apoE4 carriers. After the exposure period, apoE2 mice ate more than
apoE3 or apoE4 mice. Animals that had been exposed to CPF tended to
increase their food ingestion. ApoE4 mice showed the worse learning
performance in the Barnes maze task, and used the random strategy
most frequently. CPF increased the search velocity of apoE2 mice,
which may explain an apparent improvement in these subjects. Geno-
type was observed to have a clear influence in the retention assay:
apoE2 mice showed poorer retention. Moreover, CPF-treated apoE3
animals exhibited slight memory impairment.

Differences in body weight were observed between apoE genotypes
during the 13-week study. ApoE2 mice showed higher body weight
than both apoE3 and apoE4 mice. Body weight differences could be
linked to activity levels, food intake, or differences inmetabolic efficien-
cy [57]. Assuming that apoE2 subjects exhibited higher activity levels in
the Barnesmaze, the increased bodyweight found among this genotype
is related to differences in food intake or in energymetabolism. In accor-
dance with the present results, human apoE isoforms are associated
with a low-to-high mass index following the apoE4 b apoE3 b apoE2
rank order [50,57]. A single amino acid substitution close to the LDL
receptor binding site means that the apoE2 isoform is less able to bind
to the receptor, which leads to a poor clearance of triglyceride-rich lipo-
proteins from plasma [52]. In this regard, ε2 carriers tend to have higher
triglyceride plasma levels so they are more predisposed to Type III hy-
perlipidemia [22], and become a risk of metabolic-associated diseases.
With reference to food intake, it was increased after the exposure to
the pesticide raising the question as to CPF could be disturbing feeding
behavior.

Interestingly, repeated exposure to low doses of CPF significantly
increased body weight only in apoE3 males, which points out that the
apoE3 genotype is more likely to promote obesity. This finding appears
to have no specific precedent. Taking into account that, in the pair-
feeding exposure design, CPF-treated apoE3 mice showed increases in
their body weight, metabolic changes were expected upon CPF
exposure. Previous studies have reported that apoE3 knock-in mice
show higher vulnerability towards developing obesity and related
metabolic disorders after 8 [2] and 24 weeks on a western-type diet
[34]. Both studies reported that apoE3 mice gained more body weight
than apoE4 mice. Arbones-Mainar and collaborators attributed this
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gain to higher amounts of total and subcutaneous fat in apoE3 mice
than in apoE4 mice. They also suggested that apoE3 but not apoE4
isoform expression interfered with insulin sensing pathways, raising
the interesting possibility that metabolic dysfunctions such as insulin
sensitivity may be the result of the qualitative differences in fat depots
observed in mice expressing different apoE isoforms. Along the
same lines, Karagiannides and colleagues described hyperglycemia,
hyperinsulinemia, hyperleptinemia, glucose intolerance, and insulin re-
sistance in apoE3 knock-in mice fed a western-type diet for 24 weeks.

Several epidemiological studies have provided evidence to suggest
that there is a link between exposures to CPF on the one hand, and

higher rates of obesity [68] and diabetes [47,64] on the other. However,
the investigations assessing the metabolic effects arising from exposure
to CPF in animal models have been carried out during development. In
this sense, an increase in body weight at 1 and 2 months after develop-
mental exposure to CPF has been reported in rats [36]. By contrast, only
two investigations have focused on the effects of CPF during adulthood,
both of which found an increase in body weight in adult rats after
repeated subcutaneous exposure to 60 mg/kg [18] and 5 mg/kg [44]. In
the present study, we found an 11% increase in the weights of seven/
eight-month-old apoE3 male mice given 2 mg/kg body weight/day CPF
orally for 13 weeks. Similarly, Meggs and Brewer [44] reported an 8%
increase in nine-month-old female rats after 3 months of subcutaneous
exposure to 5 mg/kg/day CPF. Notwithstanding the interaction between
CPF and the apoE3 genotype, this deserves further investigation.

The apoE genotype was observed to have a strong effect on the
acquisition period in the Barnes maze: apoE4 mice learned worse than
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apoE2 or apoE3 mice at seven/eight months of age. In agreement with
this, the apoE4 genotype has previously been reported to have a
negative influence on learning and memory in young TR mice in both
wet [56,57] and dry [61] mazes. The neural bases or systems involved
in these deficits are still not well understood. For instance, the role of
the cholinergic system in apoE4 learning andmemory deficits is contro-
versial. Although some authors have proposed that impairments in the
cholinergic system could explain these shortfalls [42,77], other investi-
gators have reported no differences [8]. Our results on search strategies
during the acquisition period in the Barnes maze task indicated a
worsening in the hippocampus-dependent learning of apoE4 individ-
uals because of their greater use of the random strategy. In this regard,
Rodriguez et al. [61] found a reduction in dendritic spine density in
the medial entorhinal cortex of 3-month-old apoE4 mice, an area of
the brain which transmits spatial information to the hippocampus,
and plays a critical role in spatial representation. Interestingly, the ento-
rhinal cortex is also a site of early dysfunction and neuronal loss in
Alzheimer's disease [27]. On the contrary, apoE2 mice were the most
active group with considerably lower latency to the target hole and
less total distance traveled in the arena. In line with these results, a pre-
vious study carried out in our laboratory found an increased exploration
of an open-field which disclosed a hyperactive behavior in both apoE2
males and females [57]. While some studies have assessed activity,
learning and memory in apoE TR mice [7,30,56,57], none have focused
on whether CPF may affect these processes differently in carriers of
different apoE polymorphisms. Our present investigation reveals that
chronic oral exposure to CPF increased the search velocity in these
subjects, which may explain their apparent improvement. In animal
models, activity after adult exposure to CPF has been reported to either
increase [51] or decrease [63] in Tg2576 mice. In a recent study,
increased vertical activity and a trend towards an anxiety trait were
observed five months after repeated exposure to CPF in Tg2576 adult
male mice [51]. The authors related this hyperactivity to an elevated
plasma cholinesterase inhibition reached after the exposure. Otherwise,
several other neurotransmitter systems and functions have also been
associated with anxiety-related phenotypes, novelty exploration, and
hyperactive behavior. Numerous epidemiological studies have linked
prenatal exposure to organophosphates with an increased risk of
attention-deficit hyperactive disorder (ADHD) [5,16,24,29,55]. The
investigation carried out by de Cock et al. [16] suggested that both the
disruption of thyroid hormone function and gamma-aminobutyric
acid (GABA)-ergic mechanisms could be at the origin of this disorder.
Nonetheless, because CPF effects have been related to several targets
[1,12,45], the increased activity in the apoE2 genotype noted in this
study cannot be attributed to one particular system.

In the probe trial— a single assay 24h after the last training session—

both control and treated apoE3 and apoE4 mice showed consolidation
because of their clear preference for the target quadrant. ApoE2 mice,
on the other hand, appeared to show poorer retention. Along the
same lines, Reverte et al. [57] also found an impaired retention in
apoE2 mice in a Morris water maze, pointing to an alteration in their
memory consolidation, and they suggested that this could be related
to their hyperactive behavior. In addition, our current results disclosed
that the spatial strategy performed by this genotype over the acquisition
period did not match with a good retention. This indicates that apoE2
mice probably used a contextual or memorized pathway rather than a
spatial-guided learning, which could also reflect their inability to attend
to spatial cues. In this sense, there is increasing evidence to suggest that
the hippocampus not only contributes to spatial memory, but also plays
a role in learning precise sequences and linking specific memories to
context [39].

We also found that repeated exposure to CPF led to slight memory
impairment in seven/eight-month-old apoE3mice, suggesting that spe-
cific CPF effects on the metabolic system of these subjects could also be
altering their memory performance. Although these effects did not
imply a severe impairment, they depleted the advantage provided by

their genetic background. Similarly, Ribes et al. [59] found that repeated
exposure to very low doses of aluminum in the diet impaired themem-
ory of wild-type mice and increased the total number of proliferating
cells in the dentate gyrus of their hippocampus, thus indicating a reac-
tive response of the brain to toxic injury.

Several studies have focused on the contribution of the apoE
genotype to the severity of the toxicity caused by harmful elements. In
this sense, the apoE4 isoform has been reported to be more sensitive
to the effects of mercury, due to its reduced ability to bind metals [48].
Conversely, recent studies showed that apoE3 is the most vulnerable
genotype to the lipophilic compound decabromodiphenyl ether [56,
58]. In this sense, we also found more effects in apoE3 than in apoE4
genotype after CPF exposure, which is also highly-lipophilic. Taking
into account that the apoE genotype can alter the lipid distribution in
both plasma and brain [75], we hypothesized that the vulnerability
associated with the apoE genotype may depend on the lipophilic
characteristics of toxic agents.

In conclusion, the results of the present research show that genotyp-
ic variabilitymay interfere in the detection of toxic effects and should be
taken into account in epidemiological studies. In the other hand, the
behavioral features described for apoE2 mice are of particular interest,
because they open up the possibility that this genotype can be used as
a model to study hyperactive behavior. Likewise, our results provide
sufficient evidence to support the hypothesis that links exposure to
CPF with an increased risk of the apoE3 genotype developing obesity
and other related metabolic dysfunctions. The mechanisms underlying
how CPF contributes to the prevalence of obesity within this genotype
are still unknown, but it probably causes changes in the axis for weight
control or feeding behavior and, amongother things,may alter hormon-
al communications between the hypothalamus and adipose tissue.
These findings should serve as a warning to those institutions responsi-
ble for regulating the use of pesticides with respect to human health.
Notwithstanding these findings, further studies are needed to better
characterize both low level toxicant exposures and the possible link
between CPF exposure and metabolic and/or cognitive dysfunctions.

Disclosure statement

The authors declare that no conflict of interest has influenced the
results presented in this article.

Acknowledgments

The authorswould like to thank Amparo Aguilar for her skillful tech-
nical support. This research was supported by PSI2010-21743-C02-01,
the Ministry of the Economy and Competitiveness (MINECO, Spain),
the European Regional Development Fund (ERDF), the Commission for
Universities and Research of the Department of Innovation, the Univer-
sities and Enterprise of the Generalitat de Catalunya (2013 FI_B 00170)
and the European Social Fund.

References

[1] J.E. Aldridge, A. Meyer, F.J. Seidler, T.A. Slotkin, Alterations in central nervous system
serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neo-
natal chlorpyrifos exposure, Environ. Health Perspect. 113 (8) (2005) 1027–1031.

[2] J.M. Arbones-Mainar, L.A. Johnson, M.K. Altenburg, N. Maeda, Differential modula-
tion of diet-induced obesity and adipocyte functionality by human apolipoprotein
E3 and E4 in mice, Int. J. Obes. 32 (10) (2008) 1595–1605.

[3] M.T. Baltazar, R.J. Dinis-Oliveira, Bastos M. de Lourdes, A.M. Tsatsakis, J.A. Duarte, F.
Carvalho, Pesticides exposure as etiological factors of Parkinson's disease and other
neurodegenerative diseases—a mechanistic approach, Toxicol. Lett. 230 (2) (2014)
85–103.

[4] P.I. Beamer, R.A. Canales, A.C. Ferguson, J.O. Leckie, A. Bradman, Relative pesticide
and exposure route contribution to aggregate and cumulative dose in young
farmworker children, Int. J. Environ. Res. Public Health 9 (1) (2012) 73–96.

[5] M.F. Bouchard, D.C. Bellinger, R.O. Wright, M.G. Weisskopf, Attention-deficit/
hyperactivity disorder and urinarymetabolites of organophosphate pesticides, Pedi-
atrics 125 (6) (2010) e1270–e1277.

43F. Peris-Sampedro et al. / Physiology & Behavior 144 (2015) 37–45

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



[6] M.F. Bouchard, J. Chevrier, K.G. Harley, K. Kogut, M. Vedar, N. Calderon, C. Trujillo, C.
Johnson, A. Bradman, D.B. Barr, B. Eskenazi, Prenatal exposure to organophosphate
pesticides and IQ in 7-year-old children, Environ. Health Perspect. 119 (8) (2011)
1189–1195.

[7] A. Bour, J. Grootendorst, E. Vogel, C. Kelche, J.-C. Dodart, K. Bales, P.H. Moreau, P.M.
Sullivan, C. Mathis, Middle-aged human apoE4 targeted-replacement mice show re-
tention deficits on a wide range of spatial memory tasks, Behav. Brain Res. 193 (2)
(2008) 174–182.

[8] F.C. Bronfman, I. Tesseur, M.H. Hofker, L.M. Havekens, F. Van Leuven, No evidence for
cholinergic problems in apolipoprotein E knockout and apolipoprotein E4 transgen-
ic mice, Neuroscience 97 (3) (2000) 411–418.

[9] P.J. Bushnell, V.C. Moser, T.E. Samsam, Comparing cognitive and screening tests for
neurotoxicity. Effects of acute chlorpyrifos on visual signal detection and a neurobe-
havioral test battery in rats, Neurotoxicol. Teratol. 23 (1) (2001) 33–44.

[10] F. Carvajal, M.D. Sánchez-Amate, J.M. Lerma-Cabrera, I. Cubero, Effects of a single
high dose of Chlorpyrifos in long-term feeding, ethanol consumption and ethanol
preference in male Wistar rats with a previous history of continued ethanol drink-
ing, J. Toxicol. Sci. 39 (3) (2014) 425–435.

[11] J.E. Casida, G.B. Quistad, Organophosphate toxicology: safety aspects of
nonacetylcholinesterase secondary targets, Chem.Res. Toxicol. 17 (8) (2004) 983–998.

[12] W.-Q. Chen, L. Yuan, R. Xue, Y.-F. Li, R.-B. Su, Y.-Z. Zhang, J. Li, Repeated exposure to
chlorpyrifos alters the performance of adolescent male rats in animal models of de-
pression and anxiety, Neurotoxicology 32 (4) (2011) 355–361.

[13] T.B. Cole, J.C. Fisher, T.M. Burbacher, L.G. Costa, C.E. Furlong, Neurobehavioral assess-
ment of mice following repeated postnatal exposure to chlorpyrifos-oxon,
Neurotoxicol. Teratol. 34 (3) (2012) 311–322.

[14] M.F. Cometa, F.M. Buratti, S. Fortuna, P. Lorenzini, M.T. Volpe, L. Parisi, E. Testai, A.
Meneguz, Cholinesterase inhibition and alterations of hepatic metabolism by oral
acute and repeated chlorpyrifos administration to mice, Toxicology 234 (1–2)
(2007) 90–102.

[15] R.M. Corbo, R. Scacchi, Apolipoprotein E (APOE) allele distribution in the world. Is
APOE*4 a “thrifty” allele? Ann. Hum. Genet. 63 (Pt 4) (1999) 301–310.

[16] M. de Cock, Y.G. Maas, M. van de Bor, Does perinatal exposure to endocrine
disruptors induce autism spectrum and attention deficit hyperactivity disorders?
Acta Paediatr. 101 (8) (2012) 811–818 (Oslo, Norway: 1992).

[17] A. De Felice, A. Venerosi, L. Ricceri, M. Sabbioni, M.L. Scattoni, F. Chiarotti, G.
Calamandrei, Sex-dimorphic effects of gestational exposure to the organophosphate
insecticide chlorpyrifos on social investigation in mice, Neurotoxicol. Teratol. 46
(2014) 32–39.

[18] M. Ehrich, S. Hancock, D. Ward, S. Holladay, T. Pung, L. Flory, J. Hinckley, B.S. Jortner,
Neurologic and immunologic effects of exposure to corticosterone, chlorpyrifos, and
multiple doses of tri-ortho-tolyl phosphate over a 28-day period in rats, J. Toxicol.
Environ. Health 67 (5) (2004) 431–457 (Part A).

[19] G.L. Ellman, K.D. Courtney, V. Andres, R.M. Feather-Stone, A new and rapid colori-
metric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7
(1961) 88–95.

[20] S.M. Engel, G.S. Berkowitz, D.B. Barr, S.L. Teitelbaum, J. Siskind, S.J. Meisel, J.G.
Wetmur, M.S. Wolff, Prenatal organophosphate metabolite and organochlorine
levels and performance on the Brazelton Neonatal Behavioral Assessment
Scale in a multiethnic pregnancy cohort, Am. J. Epidemiol. 165 (12) (2007)
1397–1404.

[21] S.M. Engel, J. Wetmur, J. Chen, C. Zhu, D.B. Barr, R.L. Canfield, M.S. Wolff, Prenatal
exposure to organophosphates, paraoxonase 1, and cognitive development in
childhood, Environ. Health Perspect. 119 (8) (2011) 1182–1188.

[22] M. Eto, K. Watanabe, K. Ishii, Reciprocal effects of apolipoprotein E alleles (epsilon 2
and epsilon 4) on plasma lipid levels in normolipidemic subjects, Clin. Genet. 29 (6)
(1986) 477–484.

[23] C. Freire, S. Koifman, Pesticide exposure and Parkinson's disease: epidemiological
evidence of association, Neurotoxicology 33 (5) (2012) 947–971.

[24] T.E. Froehlich, J.S. Anixt, I.M. Loe, V. Chirdkiatgumchai, L. Kuan, R.C. Gilman, Update
on environmental risk factors for attention-deficit/hyperactivity disorder, Curr.
Psychiatr. Rep. 13 (5) (2011) 333–344.

[25] G. Frühbeck, The adipose tissue as a source of vasoactive factors, Curr. Med. Chem.
Cardiovasc. Hematol. Agents 2 (3) (2004) 197–208.

[26] J.R. Gee, J.N. Keller, Astrocytes: regulation of brain homeostasis via apolipoprotein E,
Int. J. Biochem. Cell Biol. 37 (6) (2005) 1145–1150.

[27] T. Gómez-Isla, J.L. Price, D.W. McKeel, J.C. Morris, J.H. Growdon, B.T. Hyman,
Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's
disease, J. Neurosci. 16 (14) (1996) 4491–4500.

[28] P. Grandjean, P.J. Landrigan, Developmental neurotoxicity of industrial chemicals,
Lancet 368 (9553) (2006) 2167–2178.

[29] P. Grandjean, P.J. Landrigan, Neurobehavioural effects of developmental toxicity,
Lancet Neurol. 13 (3) (2014) 330–338.

[30] J. Grootendorst, A. Bour, E. Vogel, C. Kelche, P.M. Sullivan, J.-C. Dodart, K. Bales, C.
Mathis, Human apoE targeted replacement mouse lines: h-apoE4 and h-apoE3
mice differ on spatial memory performance and avoidance behavior, Behav. Brain
Res. 159 (1) (2005) 1–14.

[31] K.M. Hayden,M.C. Norton, D. Darcey, T. Ostbye, P.P. Zandi, J.C.S. Breitner, K.A.Welsh-
Bohmer, Occupational exposure to pesticides increases the risk of incident AD: the
Cache County study, Neurology 74 (19) (2010) 1524–1530.

[32] P. Huebbe, J. Dose, A. Schloesser, G. Campbell, C.-C. Glüer, Y. Gupta, S. Ibrahim, A.M.
Minihane, J.F. Baines, A. Nebel, G. Rimbach, Apolipoprotein E (APOE) genotype
regulates body weight and fatty acid utilization — studies in gene targeted
replacement mice, Mol. Nutr. Food Res. (2014) 1–10.

[33] T.L. Innerarity, R.W. Mahley, K.H. Weisgraber, T.P. Bersot, Apoprotein (E–A-II) com-
plex of human plasma lipoproteins. II. Receptor binding activity of a high density

lipoprotein subfraction modulated by the apo(E–A-II) complex, J. Biol. Chem. 253
(17) (1978) 6289–6295.

[34] I. Karagiannides, R. Abdou, A. Tzortzopoulou, P.J. Voshol, K.E. Kypreos, Apolipopro-
tein E predisposes to obesity and related metabolic dysfunctions in mice, FEBS J.
275 (19) (2008) 4796–4809.

[35] R.M. Lane, M.R. Farlow, Lipid homeostasis and apolipoprotein E in the development
and progression of Alzheimer's disease, J. Lipid Res. 46 (5) (2005) 949–968.

[36] T.L. Lassiter, S. Brimijoin, Rats gain excess weight after developmental exposure to
the organophosphorothionate pesticide, chlorpyrifos, Neurotoxicol. Teratol. 30 (2)
(2008) 125–130.

[37] E.D. Levin, H.A. Swain, S. Donerly, E. Linney, Developmental chlorpyrifos effects on
hatchling zebrafish swimming behavior, Neurotoxicol. Teratol. 26 (6) (2004)
719–723.

[38] O. Liraz, A. Boehm-Cagan, D.M. Michaelson, ApoE4 induces Aβ42, tau, and neuronal
pathology in the hippocampus of young targeted replacement apoE4 mice, Mol.
Neurodegener. 8 (2013) 16.

[39] J.E. Lisman, N.A. Otmakhova, Storage, recall, and novelty detection of sequences by
the hippocampus: elaborating on the SOCRATIC model to account for normal and
aberrant effects of dopamine, Hippocampus 11 (5) (2001) 551–568.

[40] C. López-Granero, D. Cardona, E. Giménez, R. Lozano, J. Barril, M. Aschner, F.
Sánchez-Santed, F. Cañadas, Comparative study on short- and long-term behavioral
consequences of organophosphate exposure: relationship to AChE mRNA expres-
sion, Neurotoxicology 40 (2014) 57–64.

[41] S.A. Mansour, L. Gamet-Payrastre, Ameliorative effect of vitamin E tomouse dams and
their pups following exposure ofmothers to chlorpyrifos during gestation and lactation
periods, Toxicol. Ind. Health (2014)http://dx.doi.org/10.1177/0748233714548207.

[42] N.L. Marchant, S.L. King, N. Tabet, J.M. Rusted, Positive effects of cholinergic stimula-
tion favor young APOE epsilon4 carriers, Neuropsychopharmacology 35 (5) (2010)
1090–1096.

[43] S. Medjakovic, A. Zoechling, P. Gerster, M.M. Ivanova, Y. Teng, C.M. Klinge, B.
Schildberger, M. Gartner, A. Jungbauer, Effect of nonpersistent pesticides on estro-
gen receptor, androgen receptor, and aryl hydrocarbon receptor, Environ. Toxicol.
29 (10) (2014) 1201–1216.

[44] W.J. Meggs, K.L. Brewer, Weight gain associated with chronic exposure to chlorpyr-
ifos in rats, J. Med. Toxicol. 3 (3) (2007) 89–93.

[45] L. Montes de Oca, M. Moreno, D. Cardona, L. Campa, C. Suñol, M. Galofré, P. Flores, F.
Sánchez-Santed, Long term compulsivity on the 5-choice serial reaction time task
after acute Chlorpyrifos exposure, Toxicol. Lett. 216 (2–3) (2013) 73–85.

[46] A. Moretto, C. Colosio, The role of pesticide exposure in the genesis of Parkinson's
disease: epidemiological studies and experimental data, Toxicology 307 (2013)
24–34.

[47] D.P. Morgan, L.I. Lin, H.H. Saikaly, Morbidity andmortality inworkers occupationally
exposed to pesticides, Arch. Environ. Contam. Toxicol. 9 (3) (1980) 349–382.

[48] J. Mutter, J. Naumann, C. Sadaghiani, R. Schneider, H. Walach, Alzheimer disease:
mercury as pathogenetic factor and apolipoprotein E as a moderator, Neuro
Endocrinol. Lett. 25 (5) (2004) 331–339.

[49] A. Nougadère, V. Sirot, A. Kadar, A. Fastier, E. Truchot, C. Vergnet, F. Hommet, J. Baylé, P.
Gros, J.-C. Leblanc, Total diet study on pesticide residues in France: levels in food as
consumed and chronic dietary risk to consumers, Environ. Int. 45 (2012) 135–150.

[50] A.A. Pendse, J.M. Arbones-Mainar, L.A. Johnson, M.K. Altenburg, N. Maeda, Apolipo-
protein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and
beyond, J. Lipid Res. 50 (Suppl.) (2009) S178–S182.

[51] F. Peris-Sampedro, J.G. Salazar, M. Cabré, I. Reverte, J.L. Domingo, F. Sánchez-Santed,
M.T. Colomina, Impaired retention in AβPP Swedish mice six months after oral ex-
posure to chlorpyrifos, Food Chem. Toxicol. 72 (2014) 289–294.

[52] M.C. Phillips, Apolipoprotein E, isoforms and lipoprotein metabolism, IUBMB Life 66
(9) (2014) 616–623.

[53] J. Poirier, Apolipoprotein E, in animal models of CNS injury and in Alzheimer's dis-
ease, Trends Neurosci. 17 (12) (1994) 525–530.

[54] T. Pung, B. Klein, D. Blodgett, B. Jortner, M. Ehrich, Examination of concurrent expo-
sure to repeated stress and chlorpyrifos on cholinergic, glutamatergic, and mono-
amine neurotransmitter systems in rat forebrain regions, Int. J. Toxicol. 25 (1)
(2006) 65–80.

[55] V.A. Rauh, R. Garfinkel, F.P. Perera, H.F. Andrews, L. Hoepner, D.B. Barr, R.Whitehead, D.
Tang, R.W.Whyatt, Impact of prenatal chlorpyrifos exposure on neurodevelopment in
the first 3 years of life among inner-city children, Pediatrics 118 (6) (2006)
e1845–e1859.

[56] I. Reverte, A.B. Klein, J.L. Domingo, M.T. Colomina, Long term effects of murine post-
natal exposure to decabromodiphenyl ether (BDE-209) on learning and memory
are dependent upon APOE polymorphism and age, Neurotoxicol. Teratol. 40
(2013) 17–27.

[57] I. Reverte, A.B. Klein, C. Ratner, J.L. Domingo, M.T. Colomina, Behavioral phenotype
and BDNF differences related to apoE isoforms and sex in young transgenic mice,
Exp. Neurol. 237 (1) (2012) 116–125.

[58] I. Reverte, A. Pujol, J.L. Domingo, M.T. Colomina, Thyroid hormones and fear learning
but not anxiety are affected in adult apoE transgenic mice exposed postnatally to
decabromodiphenyl ether (BDE-209), Physiol. Behav. 133 (2014) 81–91.

[59] D. Ribes, M.T. Colomina, P. Vicens, J.L. Domingo, Effects of oral aluminum exposure
on behavior and neurogenesis in a transgenic mouse model of Alzheimer's disease,
Exp. Neurol. 214 (2) (2008) 293–300.

[60] H. Richendrfer, S.D. Pelkowski, R.M. Colwill, R. Créton, Developmental sub-chronic
exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae,
Neurotoxicol. Teratol. 34 (4) (2012) 458–465.

[61] G.A. Rodriguez, M.P. Burns, E.J. Weeber, G.W. Rebeck, Young APOE4 targeted re-
placement mice exhibit poor spatial learning and memory, with reduced dendritic
spine density in the medial entorhinal cortex, Learn. Mem. 20 (5) (2013) 256–266.

44 F. Peris-Sampedro et al. / Physiology & Behavior 144 (2015) 37–45

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



[62] L. Roldán-Tapia, T. Parrón, F. Sánchez-Santed, Neuropsychological effects of
long-term exposure to organophosphate pesticides, Neurotoxicol. Teratol. 27 (2)
(2005) 259–266.

[63] J.G. Salazar, D. Ribes, M. Cabré, J.L. Domingo, F. Sanchez-Santed, M.T. Colomina,
Amyloid β peptide levels increase in brain of AβPP Swedish mice after exposure
to chlorpyrifos, Curr. Alzheimer Res. 8 (7) (2011) 732–740.

[64] T.M. Saldana, O. Basso, J.A. Hoppin, D.D. Baird, C. Knott, A. Blair, M.C. Alavanja, D.P.
Sandler, Pesticide exposure and self-reported gestational diabetes mellitus in the
Agricultural Health Study, Diabetes Care 30 (3) (2007) 529–534.

[65] M. Saunders, B.L. Magnanti, S. Correia Carreira, A. Yang, U. Alamo-Hernández, H.
Riojas-Rodriguez, G. Calamandrei, J.G. Koppe, M. Krayer von Krauss, H. Keune, A.
Bartonova, Chlorpyrifos and neurodevelopmental effects: a literature review and
expert elicitation on research and policy, Environ. Heal. 11 (Suppl. 1) (2012) S5.

[66] J.A. Siegel, G.E. Haley, J. Raber, Apolipoprotein E isoform-dependent effects on
anxiety and cognition in female TR mice, Neurobiol. Aging 33 (2) (2012) 345–358.

[67] D. Sledge, J. Yen, T. Morton, L. Dishaw, A. Petro, S. Donerly, E. Linney, E.D. Levin, Crit-
ical duration of exposure for developmental chlorpyrifos-induced neurobehavioral
toxicity, Neurotoxicol. Teratol. 33 (6) (2011) 742–751.

[68] T.A. Slotkin, Does early-life exposure to organophosphate insecticides lead to
prediabetes and obesity? Reprod. Toxicol. 31 (3) (2011) 297–301.

[69] T.A. Slotkin, E.M. Cooper, H.M. Stapleton, F.J. Seidler, Does thyroid disruption
contribute to the developmental neurotoxicity of chlorpyrifos? Environ. Toxicol.
Pharmacol. 36 (2) (2013) 284–287.

[70] T.A. Slotkin, F.J. Seidler, Prenatal chlorpyrifos exposure elicits presynaptic serotoner-
gic and dopaminergic hyperactivity at adolescence: critical periods for regional and
sex-selective effects, Reprod. Toxicol. 23 (3) (2007) 421–427.

[71] P.M. Sullivan, B. Han, F. Liu, B.E. Mace, J.F. Ervin, S. Wu, D. Koger, S. Paul, K.R. Bales,
Reduced levels of human apoE4 protein in an animal model of cognitive impair-
ment, Neurobiol. Aging 32 (5) (2011) 791–801.

[72] P.M. Sullivan, H. Mezdour, Y. Aratani, C. Knouff, J. Najib, R.L. Reddick, S.H. Quarfordt,
N. Maeda, Targeted replacement of the mouse apolipoprotein E gene with the com-
mon human APOE3 allele enhances diet-induced hypercholesterolemia and
atherosclerosis, J. Biol. Chem. 272 (29) (1997) 17972–17980.

[73] R. Takemura, Z. Werb, Secretory products of macrophages and their physiological
functions, Am. J. Physiol. 246 (1 Pt 1) (1984) C1–C9.

[74] M.I. Torres-Altoro, B.N. Mathur, J.M. Drerup, R. Thomas, D.M. Lovinger, J.P.
O'Callaghan, J.A. Bibb, Organophosphates dysregulate dopamine signaling, gluta-
matergic neurotransmission, and induce neuronal injury markers in striatum, J.
Neurochem. 119 (2) (2011) 303–313.

[75] M. Vandal, W. Alata, C. Tremblay, C. Rioux-Perreault, N. Salem Jr., F. Calon, M.
Plourde, Reduction in DHA transport to the brain of mice expressing human
APOE4 compared to APOE2, J. Neurochem. 129 (2014) 516–526.

[76] A. Venerosi, L. Ricceri, S. Tait, G. Calamandrei, Sex dimorphic behaviors as markers of
neuroendocrine disruption by environmental chemicals: the case of chlorpyrifos,
Neurotoxicology 33 (6) (2012) 1420–1426.

[77] S.H. Yun, K.A. Park, P. Sullivan, J.F. Pasternak, M.J. Ladu, B.L. Trommer, Blockade of
nicotinic acetylcholine receptors suppresses hippocampal long-term potentiation
in wild-type but not ApoE4 targeted replacement mice, J. Neurosci. Res. 82 (6)
(2005) 771–777.

[78] I. Zaganas, S. Kapetanaki, V. Mastorodemos, K. Kanavouras, C. Colosio, M.F. Wilks,
A.M. Tsatsakis, Linking pesticide exposure and dementia: what is the evidence?
Toxicology 307 (2013) 3–11.

45F. Peris-Sampedro et al. / Physiology & Behavior 144 (2015) 37–45

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



 

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



Publication 2 Adulthood exposure to a common pesticide leads to an obese-like phenotype 

and a diabetic profile in apoE3 mice. 

 
Peris-Sampedro F, Cabré M, Basaure P, Reverte I, Domingo JL, Colomina MT. 

Environ Res 2015; 142:169-76. DOI: 10.1016/j.envres.2015.06.036. PMID: 26162960. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W
h

a
t 

is
 a

lr
e

a
d

y
 k

n
o

w
n

? 
W

h
a

t 
th

is
 s

tu
d

y
 a

d
d

s?
 

H
ig

h
li

g
h

ts
 

Even though there has been renewed interest in ascertaining the 

contribution of environmental hazards to the global epidemics of obesity and 

type 2 diabetes; to date, very little research has focused on OPs. On the basis 

of our previous study, apoE3 mice are more vulnerable than apoE2 and 

apoE4 to the obesogenic effect of CPF. 

 

Overall, the results of this study expand the scanty existing literature on the 

obesogenic effect of OP exposures, and further demonstrate their 

contribution to the development of metabolic diseases. Consistently with the 

results provided by the first study, current data highlight a markedly 

vulnerability of the APOE3 genotype towards the metabolic-disruptor role of 

CPF. 

 

In general, the exposure to CPF enhanced food intake, induced 

hyperglycemia and hypercholesterolemia, tended to elevate acyl ghrelin 

levels, increased insulin and leptin levels, and impaired HOMA-IR index 

scores. Nonetheless, apoE3 mice were more vulnerable than C57BL/6N to 

the metabolic-disruptor role of CPF. In particular, apoE3 mice exhibited 

higher insulin and leptin levels, as well as higher HOMA-IR index scores.   
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a b s t r a c t

Increasing evidence links the widespread exposure to organophosphate (OP) pesticides to the global
epidemics of type 2 diabetes and obesity. Our recent data highlighted gene� environment interactions:
mice expressing the human apolipoprotein E3 (apoE3) isoform were more prone to develop obesity than
those expressing apoE2 or apoE4 upon dietary challenge with chlorpyrifos (CPF), the most used OP
worldwide. Thus, we aimed to further explore the contribution of the APOE3 genotype on the emergence
of obesity and related metabolic dysfunctions upon subchronic exposure to CPF. Seven-month-old tar-
geted replacement apoE3 and C57BL/6N male mice were orally exposed to CPF at 0 or 2 mg/kg body
weight/day for 8 consecutive weeks. We examined body weight status, food and water intake, lipid and
glucose homeostasis, metabolic biomarkers concentrations, insulin levels and insulin resistance, and
leptin and ghrelin profiles. CPF exposure generally increased food ingestion, glucose and total cholesterol
concentrations, and tended to elevate acyl ghrelin levels. Nonetheless, excess weight gain and increased
leptin levels were inherent to apoE3 mice. Moreover, the propensity towards a diabetic profile was
markedly higher in these animals than in C57BL/6N, as they showed a higher homeostatic model as-
sessment for insulin resistance index and higher insulin levels. Although both genotypes were meta-
bolically affected by CPF, the results of the present investigation revealed that apoE3 mice were the most
vulnerable to developing obesity and related disturbances following CPF administration through the diet.
Since the APOE3 genotype is the most prevalent worldwide, current findings have particular implications
for human health.

& 2015 Elsevier Inc. All rights reserved.

1. Introduction

Over the last two centuries, the human lifespan has increased
markedly because the development of industrialized societies has
led to an improved quality of life. In this context, individuals are
constantly and unconsciously exposed to a wide range of

xenobiotics, the long-term effects of which are often unknown.
Despite its obvious neurotoxic effect (Eaton et al., 2008), chlor-
pyrifos (CPF) is still the most widely used organophosphate (OP)
pesticide in Europe, for both agricultural and urban purposes. It
has been classified as a potent inhibitor of both systemic and brain
cholinesterases (ChE), leading to the onset of acute neurotoxic
symptomatology. However, an increasing body of reports have
suggested that CPF also disrupts the serotonergic neurotransmitter
system (Slotkin et al., 2015), targets serine hydrolase enzymes
(Quistad et al., 2006b) and interferes with the signaling of hor-
mones, some of which – for example, insulin and leptin-are re-
lated to energy homeostasis (Lassiter and Brimijoin, 2008; Slotkin
et al., 2005). In accordance, sundry investigations have shown that
CPF exposure induce a broad spectrum of effects, including me-
tabolic disturbances (Lasram et al., 2014; Peris-Sampedro et al.,
2014).
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Type 2 diabetes accounts for over 90% of all cases of diabetes.
Sedentary lifestyle, obesity, careless dietary habits, low socio-
economic status and genetic vulnerability are well-known risk
factors that contribute to its emergence (Zimmet et al., 2001).
Nowadays, the prevalence of obesity and type 2 diabetes world-
wide is increasing at epidemic rates. According to the World
Health Organization (WHO), 13% of the adult population was obese
(body mass indexZ30 kg/m2) in 2014, while the predictions of the
incidence of type 2 diabetes are not very encouraging, pointing to
366 million type 2 diabetes patients in 2030 (Wild et al., 2004). In
the light of this trend, the risk factors commonly studied fail to
explain by themselves the global boom of both diseases. Hence,
“non-traditional” risk factors have been reconsidered (Arrebola
et al., 2015; Howell et al., 2015). Some epidemiological evidence
links general pesticide exposure (Arrebola et al., 2013, 2015;
Suarez-Lopez et al., 2015) and more specifically OP exposure
(Montgomery et al., 2008; Saldana et al., 2007) to a higher in-
cidence of type 2 diabetes and related metabolic dysfunctions.
Nevertheless, experimental studies are scarce. Very little research
has investigated the metabolic and endocrine effects that emerge
following adulthood exposure to CPF in rodents, being most stu-
dies focused on early-life exposure (Lassiter and Brimijoin, 2008;
Slotkin et al., 2005). Current knowledge of adulthood exposure to
CPF is limited to four studies carried out in rats. From these, two
revealed a weight gain in treated subjects (Ehrich et al., 2004;
Meggs and Brewer, 2007) and the other two pointed to dis-
turbances of both glucose and lipid metabolisms in exposed ani-
mals (Acker and Nogueira, 2012; Elsharkawy et al., 2013). In gen-
eral, these protocols were based on high CPF doses.

Apolipoprotein E (apoE) is a glycoprotein mainly involved in
the maintenance of plasma lipid homeostasis, and is basically
synthesized in the liver, but also in the brain and adipose tissue
(Frühbeck, 2004; Gee and Keller, 2005). The human APOE gene is
polymorphic and presents three major allelic variants (ε2, ε3, ε4),
coding for three main isoforms associated with a low-to-high
prevalence following the apoE2oapoE4oapoE3 rank order
(Corbo and Scacchi, 1999). While apoE3 is accepted as the healthy
phenotype, recent experimental data have shown that it tends to
be more prone to developing diet-induced obesity (Arbones-
Mainar et al., 2008; Huebbe et al., 2015; Karagiannides et al.,
2008), and more vulnerable to decabromodiphenyl ether (Reverte
et al., 2013). In a recent study, we found that apoE3 mice were
more vulnerable to gain excess weight upon CPF exposure than
apoE2 and apoE4 mice (Peris-Sampedro et al., 2015).

The apoE targeted replacement (TR) mouse model was origin-
ally created by Sullivan et al. (1997). These animals have a C57BL/
6N background but their murine apoE gene has been replaced by
one of the three most prevalent human APOE alleles. Thus, apoE TR
mice differ from C57BL/6N in that they carry and express func-
tional human apoE isoforms at physiological levels. It has been
established that this expression does not alter any known en-
dogenous regulatory sequence (Sullivan et al., 1997), being the
subsequent phenotype in mice similar to that found in humans
(Hauser et al., 2011).

Based on our previous results and from evidence gathered in
the literature, the main objectives of the current investigation
were: (a) to provide greater insight into the metabolic dis-
turbances, ranging from hormonal imbalance to disturbed eating
behavior, as a result of CPF exposure, and (b) to investigate how
the human ε3 allele might favor their emergence. For these pur-
poses, the metabolic profile of both apoE3 and C57BL/6N male
mice were assessed and compared after an 8-week period of oral
exposure to CPF.

2. Material and methods

2.1. Chemicals

CPF (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphor-
othioate, purity 99.5%) was supplied by Sigma-Aldrich (Seelze,
Germany). Standard rodent chow (Panlab, Barcelona, Spain) was
supplemented with CPF at a concentration intended to deliver a
dose of 2 mg/kg body weight/day, based on the results of our re-
cent study (Peris-Sampedro et al., 2015). The protease inhibitor 4-
(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF)
was also purchased from Sigma-Aldrich.

2.2. Animal care

Seven-month-old apoE TR male mice and C57BL/6N male mice
were used. Mice homozygous for the human ε3 allele were ob-
tained from Taconic (Taconic Europe, Lille Skensved, Denmark),
and C57BL/6N mice were purchased from Charles River (Charles
River France, L’Arbresle, France). After a quarantine period, the
animals were properly housed in plastic cages containing 2–3 in-
dividuals in an environmentally controlled room equipped with a
12-h light–dark automatic light cycle (light: 08:00–20:00 h), a
temperature of 2272 °C, and a relative humidity of 50710%. Mice
were allowed access to food and fresh water ad libitum and given a
standard chow diet (Panlab, Barcelona, Spain) before the experi-
ment started. The use of animals and the experimental protocol
design were supervised and approved by the Animal Care and Use
Committee of the Rovira i Virgili University (Tarragona, Spain).
Likewise, efforts were made to alleviate animal suffering as es-
tablished by the Spanish Royal Decree 53/2013 and and the Eur-
opean Communities Council Directive (86/609/EEC).

2.3. Treatment protocol

The animals were weighed and then distributed into four ex-
perimental groups (n¼10/group): control apoE3, control C57BL/
6N, CPF-exposed apoE3, and CPF-exposed C57BL/6N. Mice were
fed either a standard or a CPF-supplemented rodent chow (2 mg/
kg body weight/day) for 8 consecutive weeks, and were checked
for cholinergic signs twice a week. After the treatment period,
animals were subjected to a 3-h fast before being anesthetized
with carbon dioxide and euthanized by cardiac puncture. Blood
was immediately collected into 500 mL tubes containing EDTA (BD
Microtainers, Plymouth, United Kingdom), and centrifuged at
3000 rpm for 20 min at 4 °C to obtain plasma, which was aliquoted
and stored at �80 °C.

2.4. Plasma cholinesterase activity

Plasma ChE activity was evaluated as an indicator of the sys-
temic CPF effect (Eaton et al., 2008). It was determined spectro-
photometrically using a commercial available kit, as recommended
by the supplier. Briefly, the cholinesterase enzyme hydrolyzes
butyrylthiocholine to give thiocholine and butyrate. The reaction
between thiocholine and 5,5’-dithiobis-(2-nitrobenzoic acid)
(DTNB) produces 2-nitro-5-mercaptobenzoate, a yellow com-
pound which can be measured at 405 nm. The enzymatic activity
of exposed animals was calculated on the basis of the activity
value of the control mice, and represented as a percentage.

2.5. Body weight status and food and water consumption

The body weight status of the mice was recorded weekly over
the treatment period. Food intake was estimated on a daily basis
for a 7-day period by subtracting the uneaten pellets at the end of
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the week from the total amount of food given at the beginning. To
obtain a more accurate value, we made sure there was no leftover
food scattered around the cage. The average daily food consump-
tion obtained was divided by the number of animals in the cage.
Water intake was estimated in the same way.

2.6. Analysis of metabolic biomarkers

Plasma concentrations of total cholesterol, triglycerides, albu-
min and creatinine, as well as total activity levels of aspartate
(AST) and alanine (ALT) transaminases were determined after 3 h
of food withdrawal as biomarkers of metabolic state in both con-
trol and CPF-fed mice. They were determined with commercially
available kits supplied by QCA (Química Analítica Clínica S.A., QCA,
Amposta, Spain). Briefly, every absorbance measurement was
carried out in duplicate according to the manufacturer’s instruc-
tions at a constant temperature of 37 °C with a semiautomatic
COBAS MIRA analyzer (Hoffman-La Roche & Co., Basel, Switzer-
land). Before sacrifice, fasting glucose was measured by tail
bleeding using a handheld glucometer (Accu-check Performa,
Roche Diagnostics, Sant Cugat del Vallès, Spain). Each parameter
was expressed in the international system of units (SI).

2.7. Measurement of insulin sensitivity

Insulin sensitivity was estimated by determining fasting plas-
ma insulin levels and by computing an insulin resistance score: the
homeostatic model assessment for insulin resistance (HOMA-IR).
Plasma insulin levels were assessed in duplicate with a commer-
cially available ELISA mouse kit supplied by Merck Millipore
(Darmstadt, Germany), following the manufacturer’s instructions,
and were expressed in SI. Insulin resistance was estimated on the
basis of both fasting glucose and fasting insulin values, using the
HOMA-IR index first described by Matthews et al. (1985), as fol-
lows: HOMA-IR¼(fasting insulin� fasting glucose)/22.5, where
insulin and glucose concentrations were expressed in mU/L and SI,
respectively. The conversion factor used for insulin was 1 mU/
L¼6 pmol/L, which was based on the first international standard
for insulin issued by the WHO in 1987 (Vølund, 1993).

2.8. Quantification of plasma leptin, total ghrelin and acyl ghrelin
levels

Plasma leptin levels were determined in order to provide fur-
ther insight into the body weight status, while acyl and total
ghrelin levels were assessed to evaluate more in depth feeding
behavior. The concentration of plasma leptin was measured in
duplicate with a mouse ELISA kit provided by Merck Millipore
(Darmstadt, Germany), as recommended by the supplier, and was
expressed in SI. Prior to storage, plasma aliquots intended for the
determination of total ghrelin and acyl ghrelin levels were sup-
plemented with AEBSF in order to prevent hormone degradation
by proteases. At this point, both ghrelin statuses were also eval-
uated in duplicated with commercially available mouse ELISA kit
from Merck Millipore. Acyl ghrelin and total ghrelin levels were
expressed in pg/mL and ng/mL, respectively.

2.9. Statistical analysis

Data were analyzed with the SPSS statistical package (version
20.0), and reported as mean values7SE. Two-way analysis of
variance (ANOVA) were performed to establish the contribution of
both the CPF and APOE genetic background to the inhibition of
plasma ChE, food and water consumption, metabolic biomarkers,
hormones profiles and HOMA-IR index values. Throughout the
8-week experiment the body weight profile was studied by two-

way repeated-measures ANOVA with the period of time as the
within-subject factor. Tukey’s post hoc test was used for multiple
comparisons. A correlation analysis, determined by linear regres-
sion, was performed to assess the relationship between body
weight and circulating levels of leptin. Statistical significance was
set at po0.05.

3. Results

3.1. Plasma cholinesterase inhibition and signs of toxicity

During the experimental period, we noticed no apparent signs
of cholinergic toxicity in any group. Assessed under fasting con-
ditions at the end of the treatment, plasma ChE activity dropped to
32.12% in CPF-exposed mice.

3.2. CPF triggers body weight gain in apoE3 mice and increases food
intake

Prior to the exposure period, post hoc analyses showed no
significant differences in initial body weight between groups. The
exposure led to gradual weight gain throughout the experiment
[F7,39¼13.662, po0.001]. Thus, CPF-exposed mice showed higher
body weights than their respective controls. A triple interaction
(time� treatment� genotype) was noted during the experiment
[F7,39¼2.355, p¼0.048], and the genotype tended to have an
overall effect [F1,39¼3.128, p¼0.085]. Highest propensity to the
CPF obesogenic effect was observed in apoE3 mice [F1,19¼5.077,
p¼0.037], which weighed more than their control counterparts
from the fourth week until the end of the treatment (Fig. 1A). In
contrast, we found only an upward trend in exposed C57BL/6N
animals [F1,19¼3.443, p¼0.080] (Fig. 1B). While water consump-
tion was not altered over the experiment, CPF exposure increased
food intake [F1,39¼124.361, po0.001] (Table 1).

3.3. CPF increases total cholesterol and fasting glucose levels

The levels of metabolic biomarkers are set out in Table 2. With
regards to plasma lipids, CPF exposure generally increased total
cholesterol levels [F1,39¼4.736, p¼0.036]. There were no sig-
nificant differences in plasma triglycerides between groups. The
genotype affected plasma creatinine levels differently
[F1,26¼10.989, p¼0.003], having apoE3 mice higher concentra-
tions than C57BL/6N animals. As expected, plasma albumin levels
and both ALT and AST activities were unaltered between geno-
types and were statistically indistinguishable among groups, in-
dicating that there was no deterioration of renal and hepatic
functions upon dietary CPF exposure. Both the genotype
[F1,39¼6.214, p¼0.017] and the treatment [F1,39¼4.893, p¼0.033]
altered fasting glucose concentration. The highest levels of glucose
were inherent to the ε3 allele carriers and the CPF-treated mice on
the other hand.

3.4. Insulin levels and insulin resistance are higher in CPF-exposed
apoE3 mice

Hyperglycemia emerged after prolonged exposure to CPF. To
determine if these high levels of fasting glucose were related to
higher rates of insulin resistance, both fasting insulin levels
(Fig. 2A) and HOMA-IR (Fig. 2B) were assessed. Both the genotype
[F1,34¼17.010, po0.001] and the treatment [F1,34¼11.112,
p¼0.002] influenced insulin levels, and a genotype x treatment
interaction was found [F1,34¼4.337, p¼0.046]. Data from both
genotypes were then studied separately. Reanalyses showed that
CPF exposure increased fasting plasma insulin levels in both apoE3
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[F1,17¼8.143, p¼0.011] and C57BL/6N mice [F1,16¼8.892, p¼0.009].
Strikingly, however, post hoc testing revealed that exposed apoE3
mice were more sensitive to CPF as their insulin levels were
54.62% higher than those found in their treated counterparts
(Fig. 2A).

Both the genotype [F1,34¼11.808, p¼0.002] and the treatment
[F1,34¼10.477, p¼0.003] were found to have an overall effect on
HOMA-IR. A significant interaction between genotype and treat-
ment [F1,34¼4.245, p¼0.048] was also found. Further analysis
confirmed an overall effect of the treatment on HOMA-IR in both
apoE3 [F1,17¼7.868, p¼0.013] and C57BL/6N mice [F1,16¼6.382,
p¼0.023], which indicates that CPF exposure leads to higher rates
of insulin resistance. Likewise, post hoc analyses highlighted the
propensity of ε3 allele carriers to develop insulin resistance as
their HOMA-IR values were 59.79% higher than those of C57BL/6N
mice exposed to CPF (Fig. 2B).

3.5. Leptin levels of apoE3 mice are increased by CPF

Both the genotype [F1,33¼11.655, p¼0.002] and the treatment
[F1,33¼11.037, p¼0.002] showed overall effects on leptin levels
(Fig. 3A). In fact, only apoE3 mice were found to have significantly
elevated leptin concentration after CPF exposure [F1,16¼9.356,
p¼0.008], suggesting greater amounts of fat depots in these sub-
jects. In addition, we studied the relationship between body
weight status at the end of the treatment and circulating levels of
leptin, determined in plasma after a 3-h fast period (Fig. 3B). Body
weight and leptin were strongly correlated (r2¼0.729, po0.001).
The linear regression indicated that for each gram of weight gain,
leptin levels increased in 1.827 mg/L.

3.6. CPF tends to increase acyl ghrelin levels

Repeated exposure to CPF tended to increase acyl ghrelin levels
[F1,26¼3.775, p¼0.064], which could explain the elevated rates of
food intake found in the treated animals (Fig. 4A). Furthermore,
total ghrelin levels were dependent upon genotype [F1,28¼4.328,
p¼0.048]: C57BL/6N mice appeared to have higher concentrations
than apoE3 (Fig. 4B).

4. Discussion

The present study aimed to fully explore the metabolic effects
of a subchronic dietary exposure to CPF, as well as to assess
whether the human APOE3 genotype could exacerbate their
emergence. The metabolic disturbances arising out of the 8-week

Fig. 1. The body weight progression was recorded weekly over the 8-week treatment period to evaluate the obesogenic effect of subchronic oral adulthood exposure to
chlorpyrifos in both apoE3 and C57BL/6N male mice (A). The mean body weight of the experimental period was also depicted for each group (B). Asterisks indicate significant
differences between CPF-exposed mice and their corresponding control group (po0.05).

Table 1
Mean daily intake of food and water in both apoE3 and C57BL/6N micea

Food intake (g) Water intake (g)

Control CPF Control CPF

ApoE3 2.6570.06 3.1370.07n 2.0870.04 2.0670.07
C57BL/6N 2.6270.03 3.2070.01n 2.1270.04 2.1970.05

a Statistically different changes versus the corresponding control group are
indicated as npo0.05

Table 2
Plasma concentration of metabolic biomarkers in both apoE3 and C57BL/6N micea

ApoE3 C57BL/6N Overall effects

Control CPF Control CPF Treatment Genotype

FG (mmol/L) 9.0770.46 10.4270.63 8.1070.41 8.9470.45 p¼0.033 p¼0.017
Cholesterol (mmol/L) 4.1470.12 5.6570.86† 4.0770.13 4.4870.13n p¼0.036 p¼0.167
Triglycerides (mmol/L) 1.4170.05 1.9170.35 1.5970.06 1.6370.11 p¼0.155 p¼0.782
Albumin (g/L) 41.9670.93 40.6870.71 41.4670.79 40.8970.58 p¼0.233 p¼0.850
Creatinine (mmol/L) 35.3670.00 35.3674.56 24.3173.24 25.0573.55 p¼0.910 p¼0.003
ALT (U/L) 10.5278.35 23.75712.12 16.7778.17 27.4079.20 p¼0.294 p¼0.658
AST (U/L) 109.94720.54 74.70717.84 91.05715.06 102.12722.97 p¼0.533 p¼0.825

a Statistically different changes versus the corresponding control group are indicated as npo0.05
† The symbol indicates a tendency (p¼0.097) versus the corresponding control group. FG, fasting glucose.
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treatment period were evaluated in both apoE3 and C57BL/6N
adult male mice and then compared. Specifically, body weight
status, food intake, lipid and glucose homeostasis, metabolic bio-
marker concentrations, insulin levels and insulin resistance, and
leptin and ghrelin profiles were investigated. Our results indicated
that repeated dietary doses of CPF, devoid of signs of cholinergic
toxicity, induced metabolic alterations in both genotypes.

Nevertheless, this study shed novel and significant evidence sup-
porting the vulnerability of human ε3 carriers to the development
of obesity and related metabolic disturbances in response to CPF.
Indeed, although CPF broadly increased food intake, weight gain
and higher plasma leptin levels were inherent to CPF-fed apoE3
mice. Furthermore, both exposed groups exhibited hyper-
insulinemia and displayed insulin resistance, but these effects

Fig. 2. The fasting plasma insulin levels (A) and the estimation of insulin resistance, which was based on the HOMA-IR index (B), were evaluated to estimate insulin
sensitivity after subchronic oral adulthood exposure to chlorpyrifos in both apoE3 and C57BL/6N male mice. Asterisks indicate significant differences between CPF-exposed
mice and their corresponding control group (po0.05), while the symbol # indicates significant differences between genotypes on the same treatment (po0.05).

Fig. 3. Effect of subchronic oral adulthood exposure to chlorpyrifos on plasma levels of leptin (A). The correlation of body weight status at the end of the 8-week treatment
period and circulating plasma levels of leptin was also depicted (B). Asterisks indicate significant differences between CPF-exposed mice and their corresponding control
group (po0.05), while the symbol # indicates significant differences between genotypes (po0.05).

Fig. 4. Effect of subchronic oral adulthood exposure to chlorpyrifos on plasma levels of both acyl ghrelin (A) and total ghrelin (B). The symbol # indicates significant
differences between genotypes (po0.05).
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were more prominent in the ε3 carriers. Total cholesterol and
fasting plasma glucose levels increased overall in treated animals.
CPF exposure also tended to increase plasma acyl ghrelin levels.

Despite the growing body of epidemiological data linking
pesticide exposure with increased incidence of obesity (Kim et al.,
2015), little attention has been paid to the contribution of CPF. To
the best of our knowledge, only three experimental studies have
revealed weight gain after early-life (Lassiter and Brimijoin, 2008)
or adulthood exposures to CPF (Ehrich et al., 2004; Meggs and
Brewer, 2007). The present investigation indicated that repeated
exposure to CPF induced a weight gain in both apoE3 and C57BL/
6N mice. Nevertheless, this increase was faster and steeper in ε3
carriers, in agreement with our previous study (Peris-Sampedro
et al., 2015). The present results also revealed an increase in leptin
levels in exposed apoE3 animals. Moreover, body weight status at
the end of the treatment period and circulating leptin levels were
strongly correlated. The concentration of leptin has been positively
correlated with the percentage of body fat in humans (Harris,
2000). This hormone operates as a satiety signal, inhibiting food
intake and promoting energy expenditure (Pan et al., 2014).
Nonetheless, its levels have been found to be elevated in obese
individuals (Harris, 2000). The increase in leptin levels described
here suggests that CPF-treated apoE3 mice had higher amounts of
body fat, thus indicating that CPF exposure could be increasing
their adiposity. Despite no significant changes in leptin levels,
Lassiter and Brimijoin (2008) argued that the excess weight gain
observed after developmental exposure to CPF could be due to an
increased adiposity in rats. Accordingly, Meggs and Brewer (2007)
found that subcutaneous exposure to 5 mg/kg/day CPF for
3 months increased adipose tissue in rats. Therefore, adipose tis-
sue is expected to be a potential target for CPF, which is highly
lipophilic in nature.

In recent years several studies have suggested that the APOE3
genotype contributes to the development of diet-induced obesity
(Arbones-Mainar et al., 2008; Karagiannides et al., 2008). ApoE3
mice subjected to a western-type diet were phenotypically more
obese than apoE4 mice, while their total and subcutaneous
amounts of fat also increased (Arbones-Mainar et al., 2008). In
agreement with this, Huebbe et al. (2015) reported that apoE3
mice were heavier than apoE4 not only when they were on a high-
fat diet, but also on a low-fat diet. When these authors explored
the mechanisms by which the APOE3 genotype could be con-
tributing to increased fat depots, they suggested that the ε3 car-
riers were more efficient at harvesting dietary energy (Huebbe et
al., 2015). In the light of the above, the combination of apoE3
isoform expression with CPF exposure would provoke an additive
effect, and greater body weight would be expected in exposed
apoE3 mice. The present results are consistent with the genotype-
dependent weight gain observed in our previous study (Peris-
Sampedro et al., 2015), raising the issue of whether the human ε3
allele could be promoting fat accumulation and, subsequently,
favouring an obese-like phenotype after CPF exposure.

Increasing epidemiological and experimental evidence suggests
that OPs disrupt glucose metabolism and cause insulin resistance,
leading to type 2 diabetes (Lasram et al., 2014). Nevertheless, the
data are sometimes contradictory and fail to define how they
trigger them. Furthermore, only few studies have investigated
whether adulthood exposure to CPF can contribute to the onset of
insulin resistance or type 2 diabetes, the most frequently studied
OPs being malathion and diazinon (Lasram et al., 2014). In the
current investigation, repeated exposure to CPF induced moderate
fasting hyperglycemia 8 weeks after the treatment started. In this
context, only two studies have explored the role of CPF in dis-
turbing glucose homeostasis throughout adulthood (Acker and
Nogueira, 2012; Elsharkawy et al., 2013). Despite differences in
experimental protocols, our data are in agreement with those

reported by these studies, which found an increase in glucose le-
vels in both Wistar and Sprague-Dawley adult male rats after a
single acute dose of 50 mg/kg CPF (Acker and Nogueira, 2012) and
following a 3 month-period of oral exposure to CPF at 30 mg/kg
body weight (Elsharkawy et al., 2013). The mechanisms by which
OPs exert their hyperglycemic function are the subject of intense
debate. One of the most widely accepted is that they disrupt the
gluconeogenesis and glycogenolysis pathways in the liver, but the
findings are rather varied. The work conducted by Acker and No-
gueira (2012) revealed increased activities of both tyrosine ami-
notransferase and glucose-6-phosphatase enzymes, pointing to
enhanced CPF-related liver glucose production. However, they
found an increase in hepatic glycogen levels, but not a decrease,
which indicates that this route is not associated with hypergly-
cemia upon CPF exposure. A possible explanation for the elevated
glucose levels observed in response to CPF is its cholinergic dis-
rupting effect. It is well-known that acetylcholine (ACh) elicits the
release of adrenaline and noradrenaline in the adrenal medulla
(Butterworth and Mann, 1957). Indeed, it has been suggested that
ChE inhibitors exacerbate this ACh-induced catecholamine release
(Akiyama et al., 2003), which could trigger transient hyperglyce-
mia by decreasing insulin-stimulated translocation of glucose
transporters to the plasma membrane (Mulder et al., 2005). Ulti-
mately, the excessive release of catecholamines could lead to in-
sulin resistance (Ziegler et al., 2012).

OPs are known to generally alter lipid metabolism (Lasram
et al., 2014). Just as found for glucose, repeated exposure to CPF
increased total cholesterol levels in mice 8 weeks after the treat-
ment started. Likewise, Elsharkawy et al. (2013) reported elevated
plasma cholesterol levels following subchronic oral exposure to
CPF in rats. They related this increase to liver cell damage, which
was verified by light microscopic examination. While our exposure
paradigm did not affect triglyceride concentrations, Elsharkawy
et al. (2013) found reduced triglyceride levels in CPF-treated rats,
which were also explained in terms of liver damage. Intrinsic
mechanisms of CPF to promote hypercholesterolemia have not
been yet disclosed. However, it is worth pointing out that CPF has
been shown to target such key enzymes related to lipid metabo-
lism as monoacylglycerol lipase and fatty acid amide hydrolase,
among others (Quistad et al., 2006a).

Without underestimating the importance of exposure to other
OPs for insulin resistance and type 2 diabetes outcomes (Lasram
et al., 2014), the present study combining adulthood CPF exposure
and human apoE3 isoform expression in mice appears to have no
specific precedent. Repeated exposure to CPF led to increased in-
sulin levels and the higher HOMA-IR values pointed to the de-
velopment of insulin resistance, in both apoE3 and C57BL/6N mice.
Hyperinsulinemia is considered to be indicative of insulin re-
sistance, as well as a predictor of developing type 2 diabetes. In-
terestingly, although the insulin pathway was notably disturbed in
both genotypes following CPF exposure, the effect was greater in
apoE3 mice. Visceral obesity has been associated with insulin re-
sistance (Yamashita et al., 1996). Indeed, it has been shown that
leptin plays a role in modulating insulin action and sensitivity, and
has been related to the emergence of insulin resistance and sub-
sequent type 2 diabetes (Söderberg et al., 2007). Taking into ac-
count that the APOE3 genotype appears to more efficiently harvest
dietary energy through fat deposition, we hypothesize that apoE3
isoform expression aggravates insulin resistance and subsequent
type 2 diabetes following CPF exposure.

Contrary to what might be expected, high levels of leptin in
obesity fail to inhibit food intake (Harris, 2000). Our results in-
dicated that repeated exposure to CPF generally increased food
ingestion. In line with these findings, we recently found that CPF
exposure tended to alter feeding behavior (Peris-Sampedro et al.,
2015). In relation to this, the role of ghrelin deserves special
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mention. It is an orexigenic hormone, secreted by the stomach,
which stimulates food intake. Two forms of ghrelin coexist in the
blood: acyl ghrelin and des-acyl ghrelin. However, only the acy-
lated form has been shown to bind the growth hormone secreta-
gogue receptor. The inactivation of acyl ghrelin into the deacylated
form depends on hydrolization by the butyrylcholinesterase
(BChE) enzyme (De Vriese et al., 2004). It is well-established that
CPF inhibits both systemic and brain ChE enzymes. Accordingly,
inhibition of BChE by CPF would be expected to increase acyl
ghrelin levels, thereby leading to increased food intake. In support
of this, we found that acyl ghrelin levels increased, although not
significantly, after repeated exposure to CPF. Likewise, there is
increasing evidence to suggest that acyl ghrelin could be a mod-
ulator of glucose homeostasis, and its elevated circulating levels
could also be a triggering factor for type 2 diabetes (Huang et al.,
2014). This finding shed novel information about how CPF ex-
posure, in terms of BChE inhibition, would elicit type 2 diabetes
outcome.

In conclusion, the results of the present study show that re-
peated exposure to the pesticide CPF can considerably disrupt not
only glucose and lipid homeostasis but also feeding behavior in
adult male mice. Together with recent results (Peris-Sampedro
et al., 2015), the current data provide enough evidence to suggest
that human apoE3 isoform expression increases vulnerability to
developing obesity and related metabolic dysfunctions after CPF
exposure. Although not conclusive, the results of this study sug-
gest that CPF has hormonal targets, such as leptin or ghrelin, on
which, to date, little has been reported in the scientific literature.
The CPF dose used in our experiment, although free from choli-
nergic symptoms, is relatively high when compared with the dose
that would be expected for typical non-occupational exposures.
Therefore, further research is required to provide new insights into
what doses would be exempt from metabolic effects. Given the
wide distribution of the apoE3 phenotype worldwide, as well as
the ubiquitous use of CPF, it is worth asking whether the combi-
nation of the two factors is contributing to the global incidence of
obesity and type 2 diabetes.
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Learning and memory processes have been extensively studied in apoE TR 

mice. However, there is still considerable uncertainty about the extent to 

which APOE genotype contributes to other cognitive and behavioural 

processes, including sustained attention and inhibitory control. 

 

The results of this study further confirm that APOE polymorphisms strongly 

modulate attention and inhibitory control, being the individuals carrying the 

ε4 allele the most behaviourally affected. The influence of apoE isoforms in 

the brain neuromodulatory system may explain the cognitive and 

behavioural differences attributable to the APOE4 genotype. 

 

APOE genotype influenced attention and inhibitory control in the 5-CSRTT. In 

particular, apoE4 mice displayed increased premature and perseverative 

responding, and exhibited a steeper drop in accuracy when attention was 

challenged. Moreover, apoE4 mice showed less DA in the frontal cortex than 

apoE2 mice. Finally, the adverse effects of scopolamine on the 5-CSRTT 

performance were sharper in apoE3 mice relative to the other two groups.  
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Abstract

Rationale The apolipoprotein E (apoE) genotype influences

cognitive performance in humans depending on age and sex.

While the detrimental role of the apoE4 isoform on spatial

learning and memory has been well-established in humans

and rodents, less is known on its impact on the executive

functions.

Objectives We aimed to evaluate the effect of apoE isoforms

(apoE2, apoE3, apoE4) on visuospatial attention and inhibito-

ry control performance in female transgenic mice, and to de-

termine the neurochemical and neuropharmacological basis of

this potential relationship.

Methods Female mice carrying apoE2, apoE3, and apoE4

were trained in the five-choice serial reaction time task (5-

CSRTT). Upon a stable performance, we manipulated the

inter-trial interval and the stimulus duration to elicit impulsive

responding and engage attention respectively. We further per-

formed a pharmacological challenge by administering cholin-

ergic and GABAergic agents. Finally, we analyzed the levels

of brain amino acids andmonoamines by using reversed phase

high-performance liquid chromatography (HPLC).

Results ApoE4 mice showed a deficient inhibitory control as

revealed by increased perseveration and premature

responding. When attention was challenged, apoE4 mice also

showed a higher drop in accuracy. The adverse effect of sco-

polamine on the task was attenuated in apoE4 mice compared

to apoE2 and apoE3. Furthermore, apoE4 mice showed less

dopamine in the frontal cortex than apoE2 mice.

Conclusions We confirmed that the apoE genotype influences

attention and inhibitory control in female transgenic mice. The

influence of apoE isoforms in the brain neuromodulatory sys-

tem may explain the cognitive and behavioral differences at-

tributable to the genotype.

Keywords ApolipoproteinE .ApoE .Visuospatial attention .

Impulsivity . 5-CSRTT . Acetylcholine . Dopamine .

Glutamate . Striatum . Frontal cortex

Abbreviations

5-CSRTT five-choice serial reaction time task

5-HIAA 5-Hydroxy-3-indolacetic acid

AD Alzheimer's disease

ANOVA Analysis of variance

apoE Apolipoprotein E

CNS Central nervous system

DOPAC Dihydroxyphenylacetic acid

DA Dopamine

Glu Glutamate
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GABA Gamma-aminobutyric acid

HPLC High-performance liquid chromatography

HVA Homovanillic acid

ITI Inter-trial interval

LH Limited hold

NE Norepinephrine

5-HT Serotonin

SD Stimulus duration

TR Targeted replacement mice

TO Time-out

Introduction

Apolipoprotein E (apoE), the main apolipoprotein in the brain,

contributes to the synaptic development, integrity, and neural

plasticity in the central nervous system (CNS), where it is

locally synthesized primarily by astrocytes (Hauser et al.

2011).

ApoE in humans is present in three allelic variants (ε2, ε3,

ε4) which modulate cognitive functions throughout the life

span (Davies et al. 2015). Among them, the ɛ4 allele is a

well-established risk factor for Alzheimer's disease (AD)

while apoE3 (the most frequent isoform) is regarded as the

Bneutral form^ and apoE2 as neuroprotective against AD

(Arendt 2001; Raber et al. 2004; Reitz and Mayeux 2009).

However, apoE seems to modulate the cognitive function in

the absence of the disease. Particularly, apoE4 has been asso-

ciated with impaired attention, as well as deficits in verbal and

spatial memory in healthy subjects (Berteau-Pavy et al. 2007;

De Blasi et al. 2009; Greenwood et al. 2005; Kukolja et al.

2010; Marchant et al. 2010). Interestingly, several lines of

evidence supported an apoE4–sex interaction in humans. In

fact, apoE4 women carriers have shown more pronounced

AD-like changes in neuroimaging, neuropathological, and

neuropsychological measures than men (Beydoun et al.

2013; Ungar et al. 2014).

At the preclinical level, initial studies on apoE knockout

mice readily suggested an implication of apoE in learning and

memory (Champagne et al. 2002; Raber et al. 1998).

Subsequently, transgenic lines expressing human apoE iso-

forms under the control of neuron-specific enolase (NSE) or

the glial fibrillary acidic protein (GFAP) promoter revealed

impaired spatial learning and increased anxiety in apoE4 mice

relative to apoE3 and wild-type controls (Hartman et al. 2001;

vanMeer et al. 2007). Then, the human apoE targeted replace-

ment (TR) mouse model was created to emulate the human

condition since it allows the expression of the apoE protein in

the same pattern and level as non-demented humans (Sullivan

et al. 1997). Consistently with earlier studies, apoE4-TR mice

showed alterations in spatial learning tasks as well as de-

creased locomotor activity and increased anxiety relative to

apoE3 (Reverte et al. 2012; Reverte et al. 2014; Siegel et al.

2012). Notably, preclinical studies reported a decreased learn-

ing performance in female apoE4 mice relative to the male

counterparts, similarly to that reported in humans

(Grootendorst et al. 2005; Reverte et al. 2012; van Meer

et al. 2007).

While spatial learning and memory have been extensively

studied in apoE transgenic mice, other executive functions

such as visuospatial attention and inhibitory control have not

been systematically investigated. The aim of the present study

was to characterize the differences in attention and inhibitory

control between the three major isoforms for the apoE found

in humans (apoE2, apoE3, apoE4). We first assessed impul-

sivity in the context of general attentional abilities by using the

five-choice serial reaction time task (5-CSRTT) (Robbins

2002) in female apoE transgenic mice (apoE2, apoE3, and

apoE4). Subsequently, we investigated the neuropharmaco-

logical basis of these effects. Based on recent evidence

supporting abnormal neuronal maturation caused by the dys-

function of GABAergic interneurons in the hippocampus (Li

et al. 2009) and a deficient cholinergic system (Yun et al.

2005) in apoE4 mice, we assessed the effects of a

GABAergic agonist (alprazolam), a GABAergic antagonist

(picrotoxin), and a cholinergic antagonist (scopolamine) in

female apoE-TR mice pretrained in the 5-CSRTT. Finally,

on a separate cohort of female apoE-TR mice, we further

determined the levels of brain amino acids, monoamines,

and their metabolites in the frontal cortex, striatum, hippocam-

pus, and thalamus.

Material and methods

Subjects

The human apoE targeted replacement (TR) mice are gener-

ated by replacing the murine apoE gene with one of the three

apoE human alleles in the C57BL/6 N mice (Sullivan et al.

1997). Adult homozygous (ε2, ε3, and ε4) apoE-TR female

mice were obtained from Taconic (N=35, Taconic Europe,

Lille Skensved, Denmark). Awild-type group was not includ-

ed because our goal was to determine differences in impulsiv-

ity and attentional control between the three apoE genotypes

so to recapitulate the human spectrum. It is also worth noticing

that several studies confirmed a very similar phenotype be-

tween apoE3 and the wild-type (WT) or an intermediate phe-

notype between apoE3 and apoE4 in the WT; please refer to

(Bour et al. 2008; Grootendorst et al. 2005; Li et al. 2009; Levi

et al. 2003). Subjects were housed in pairs in a room at con-

trolled temperature (22±2 °C) and humidity (50±10 %) and

under a 12-h light/dark automatic cycle (light ON at 08:00–

20:00). Mice were fed with standard rodent chow (Panlab,

Barcelona, Spain). During the behavioral training, mice were

food-restricted to achieve the 80–85 % of their free feeding
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weight, while water was available ad libitum. Nine animals

were removed from the experiments because of poor health or

poor performance (apoE2=2, apoE3=4, apoE4=2). Another

group of adult female apoE transgenic mice (N=21, Taconic)

was housed in groups of two to four per cage with food and

water available ad libitum until killing for neurochemical anal-

yses. Experimental procedures complied with the Animal

Care and Use Committee of the Universitat Rovira i Virgili

(Tarragona, Spain), the Spanish Royal Decree 53/2013 on the

protection of experimental animals, and the European

Communities Council Directive (86/609/EEC).

5-CSRTT

Apparatus

Mice were trained in operant chambers (24×20×15 cm)

placed inside ventilated sound-attenuating cubicles (Med

Associates Inc., St. Albans, VT, USA). Each chamber

consisted of a curved wall containing nine round apertures

equipped with infrared detectors and bright yellow led

(1.7 W) at the rear. Four of the nine apertures were blocked

with a metal plate, thus allowing five functioning apertures

equally spaced 2.5 cm apart. Amagazine was located centrally

in the opposite wall, equipped with an infrared detector and

connected to a liquid dipper delivering 0.01 ml of grape juice

(grape juice and 15.13 % sugar, López Morenas, SL, Spain).

The chambers were controlled by a PC using a Fader Control

interface and Med Pc software (Med Associates Inc., St.

Albans, VT, USA).

Habituation to the reinforcer (grape juice)

and to the 5-CSRTT apparatus

Prior to training, the preference for the grape juice was tested

in a two-bottle choice procedure (Bachmanov et al. 2001).

One bottle containing water and one bottle containing grape

juice were placed in the home cage. The position of the bottles

was counterbalanced across mice. The water and grape juice

intakes were recorded after 24 h.

Mice were also habituated to the 5-CSRTTchambers with a

20-min session in which the magazine light remained illumi-

nated and each nose-poke in the magazine triggered the liquid

dipper (available for 3 s).

5-CSRTT training

The behavioral training was carried out during the light phase.

The training consisted of a 20-min daily session for 5 days a

week over a period of 20 weeks. All sessions in the 5-CSRTT

were conducted with the houselight of the apparatus

extinguished (Humby et al. 2005).

Pretraining and training procedures were adapted from pre-

vious studies (Moreno et al. 2010; Oliver et al. 2009; Robbins

2002) (Supplementary Table S1). During the pretraining 0

stage, the five apertures remained illuminated throughout the

session and a drop of grape juice was placed in each aperture

to elicit exploration. A nose-poke in one of the apertures trig-

gered the liquid dipper delivering the grape juice in the mag-

azine, which was available until collection. Mice were trained

at this stage until they performed five nose-pokes in 20min. In

pretraining 1 stage, three random apertures remained illumi-

nated throughout the session. A response into an illuminated

aperture triggered the liquid dipper delivering the grape juice

in the magazine, which was available until collection. Mice

were trained at this stage until they performed 20 correct re-

sponses in 20 min.

During training stages, mice learned to detect the location

of a brief visual stimulus (cue light) presented in one of the

five apertures in a pseudo-random order. During the acquisi-

tion of the task, the stimulus duration (SD) was progressively

reduced from 30 to 1 s in ten stages. Each session consisted of

20-min or 70 discrete trials. Each trial started with the mouse

nose-poking into the illuminated magazine. After an inter-trial

interval (ITI) of 5 s, the stimulus was presented.

A correct response was recorded upon successful detection

of the spatial location of the visual stimulus, and it was

rewarded with 0.01 ml of grape juice. A failure to respond

within a limited hold period of 5 s was recorded as an omission

and was signaled by a 5-s time-out period during which the

houselight was illuminated. Similar feedback was given on

trials when mice responded in an adjacent aperture (an

incorrect response), or prior to the onset of the light stimulus

(a premature response). Furthermore, an additional response

to an aperture occurring after a correct response but before the

reward collection was recorded as a perseverative response.

Mice were trained until they showed for 5 consecutive days

a stable performance: correct trials >50 %, accuracy>80 %,

and omissions<25 %.

Behavioral challenge

The behavioral testing spanned over a period of 8 consecutive

weeks and started upon stable baseline response (Robbins

2002; Sanchez-Roige et al. 2012). A total of 27 female mice

were tested (apoE2=9, apoE3=9, apoE4=9). The mean age at

the beginning of the challenge was 7.9±1.6 months.

Impulsivity and attentional performance were assessed

once a week, typically on Wednesday. Monday, Tuesday,

Thursday, and Friday mice were trained with standard base-

line parameters. The challenge to elicit impulsive responding

consisted in increasing the ITI from 5 s (baseline) to 7 s

(weeks 1 and 2) and 10 s (weeks 3 and 4), respectively. The

attentional performance was assessed by reducing the

Psychopharmacology

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



stimulus duration from 1 s (baseline) to 0.8 s (weeks 5 and 6)

and 0.5 s (weeks 7 and 8), respectively (Fig. 1).

Pharmacological challenge

All drugs were injected intraperitoneally (i.p.) according to a

Latin square design. During the testing weeks, 0.9 % saline

was injected i.p. on Tuesdays and Thursdays (baseline condi-

tion), while on Wednesdays and Fridays, a given drug/dose

was administered 30 min (alprazolam, scopolamine) or

10 min (picrotoxin) before the session (Fig. 1). Mice were

subjected to standard sessions of the 5-CSRTTwith the same

parameters used for the assessment of baseline responding.

Mice received infusions of 0.9 % saline, the GABAergic ag-

onist alprazolam (0.06 and 0.12 mg/kg), the GABAergic an-

tagonist picrotoxin (0.25 and 0.5 mg/kg), and the cholinergic

antagonist scopolamine (0.8 and 1.6 mg/kg). The dose selec-

tion was based on previous studies (Kulkarni and Sharma

1993; Sanchez-Roige et al. 2012; Siegel et al. 2010). Mice

were habituated to the i.p. injection (0.9 % saline) daily

20 min before the training session over a period of 1 week.

We further performed a pilot study to ensure that the selected

doses of picrotoxin did not induce convulsion and the doses of

alprazolam did not induce high sedation in mice of any geno-

type (data not shown).

Neurochemical analyses

A group of naïve female mice (apoE2=5, apoE3=7, apoE4=

9; age 7±2 months) were used for this study. Mice were killed

by rapid decapitation and the brains were quickly removed

and dissected. The frontal cortex, striatum, thalamus, and hip-

pocampus were frozen in liquid nitrogen and stored at −80 °C

before processing. Brain region samples were weighed and

homogenized in 0.4 N perchloric acid with 0.1 %

metabisulfite, 0.01 % EDTA, and 1 mg/ml cysteine. The ho-

mogenates were centrifuged at 15,000 rpm for 20 min at 4 °C,

and supernatants were collected, filtered (Millipore filters 0.45

micron), and stored at −80 °C until biochemical analyses. The

levels of glutamate (Glu), gamma-aminobutyric acid

(GABA), norepinephrine (NE), dopamine (DA), serotonin

(5-HT), and the metabolites dihydroxyphenylacetic acid

(DOPAC), homovanillic acid (HVA), and 5-hydroxy-3-

indolacetic acid (5-HIAA) were measured using reversed

phase high-performance liquid chromatography (HPLC).

Monoamine measurements

Levels of norepinephrine (NE), dopamine (DA), serotonin (5-

HT), and their metabolites dihydroxyphenylacetic acid

(DOPAC), homovanillic acid (HVA), and 5-hydroxy-3-

indolacetic acid (5-HIAA) were measured by reversed phase

HPLC with amperometric detection (+0.7 V). The mobile

phase, containing 0.1 M KH2PO4, 0.1 mM Na2-EDTA, and

2.1 mM 1-octane sulfonic acid, plus 15 % methanol, adjusted

to pH 2.65 with 85 % H3PO4, was delivered at 1 ml/min flow

rate. Monoamines were separated on a 3-μm particle size col-

umn C18 (10 cm×0.46 cm).Tissue contents of the mono-

amines are given as picomoles per milligram of tissue. As

indices of DA and 5-HT turnover, DOPAC/DA, HVA/DA,

and 5-HIAA/5-HT ratios were calculated.

Amino acid measurements

Levels of glutamate and GABA were measured by reversed

phase HPLC with fluorescence detection using excitation and

Fig. 1 Experimental design of the behavioral and pharmacological

challenges in the 5-CSRTT. Upon training completion, once the animals

showed a stable performance in the task, the inter-trial interval (ITI) was

increased (7–10 s) and the stimulus duration (SD) was decreased (0.8–

0.5 s) to challenge impulsivity and attention, respectively. Each parameter

was manipulated once a week during 8 weeks: first and second weeks,

ITI=7 s; third and fourth weeks, ITI=10 s; fifth and sixth weeks, SD=

0.8 s; and seventh and eighth weeks, SD=0.5 s. After the behavioral

challenge, mice were habituated to saline injections for 1 week. During

the pharmacological challenge, alprazolam (APZ, 0.06 and 0.12 mg/kg),

picrotoxin (PTX, 0.25 and 0.5 mg/kg), and scopolamine (SCP, 0.8 and

1.6 mg/kg) were injected twice a week before the testing session. The

order of drug administration was assigned to each mouse using a Latin

square design
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emission wavelengths of 360 and 450 nm, respectively. The

mobile phase consisted of two components (solution A, con-

taining 0.05 M Na2HPO4, 28 % MeOH, adjusted to pH 5.65

with 85 % H3PO4; and solution B, MeOH/H2O 8:2 ratio) and

was delivered at 0.8 ml/min. Glutamate and GABAwere sep-

arated in a 5-μm particle size C18 column (10 cm×0.4 cm).

The samples were precolumn derivatized with OPA reagent

and injected after a 2.5-min reaction time. A gradient was

established from 100 % solution A to 100 % solution B.

After washing out late eluting peaks, the mobile phase

returned to initial conditions. The total gradient programmed

time was 20 min.

Statistical analyses

Data were analyzed with the SPSS Statistics 17.0 software.

One-wayANOVA (genotype) was used to analyze the number

of sessions required at each stage of the training. Repeated-

measure ANOVA (genotype) was used to analyze the perfor-

mance in the 5-CSRTT during baseline, ITI, SD, and pharma-

cological manipulations. For the behavioral and pharmacolog-

ical challenges, two measures of each variable taken in two

different sessions (5-, 7-, and 10-s ITI; 1-, 0.8-, and 0.5-s SD;

vehicle and each drug dose) were used as within-subjects fac-

tor and the genotype as the between-subjects factor. A post

hoc Tukey test was used to follow-up significant main effects

and interactions. Amino acid and monoamine levels in each

brain region were analyzed by one-way ANOVA (genotype).

The homogeneity of the variance was determined by the

Levene’s test. Statistical significance was set at p<0.05.

The variables considered in the analysis of the performance

in the 5-CSRTT were as follows: trials completed (correct

responses+incorrect responses+omissions),%accuracy (cor-

rect responses/(correct+incorrect responses)×100), % of

omissions (omissions/trials completed×100),% of premature

responses (premature responses/trials completed x 100), per-

severative responses (number of responses made after a cor-

rect response and before the collection of the reward), correct

latency (latency to made a correct response after the onset of

the stimulus), and reward latency (latency to collect the re-

ward after a correct response).

Results

Habituation to the reinforcer and 5-CSRTT acquisition

phase

In the two-bottle choice procedure, mice of each genotype

strongly preferred grape juice over water (p<0.05, data not

shown). Importantly, we did not observe differences between

genotypes in water or grape juice total intake (genotype

p>0.1, data not shown). Notably, no differences between

genotypes were observed on the total number of sessions re-

quired to acquire the task (p>0.1). However, we observed an

effect of the genotype at stage 5 [F(2,34)=8.920, p<0.01]. A

post hoc analysis revealed that apoE3 mice were significantly

slower at this stage relative to apoE2 and apoE4 mice

(p<0.01; Table 1).

5-CSRTT baseline performance

No differences between genotypes were observed in any of

the behavioral variables measured, with the exception of per-

severative responses [main effect of the genotype, F(2,26)=

3.542, p<0.05]. A post hoc analysis revealed that persevera-

tive responses were significantly higher in apoE4 than in

apoE3 mice (Fig. 2 and Supplementary Table S2). The num-

ber of trials completed during baseline is provided in

Supplementary Table S3. A main effect of the genotype was

observed [F(2,26)=4.099, p<0.05]; however, the post hoc

analyses failed to show significant differences between

groups.

Behavioral challenge

Behavioral attributes of the three genotypes during the chal-

lenge sessions on the 5-CSRTT are depicted in Figs. 3 and 4.

ITI

A significant increase in premature responding [F(2,26)=

26.218, p<0.001] (Fig. 3c), perseverative responding [F(2,

26)=4.260, p<0.05] (Fig. 3d), and omissions [F(2,26)=

4.211, p<0.05] (Fig. 3b) was observed when the ITI was

lengthened from 5 to 7 or 10 s.We also observed a main effect

Table 1 Number of sessions to criteria per training stage of the 5-

CSRTT in apoE-TR female mice

Stage apoE2 apoE3 apoE4

Mean S.D. Mean S.D. Mean S.D.

1 4.5 3.8 4.3 2.2 3.8 1.7

2 1.1 .3 1.7 1.2 1.2 .6

3 1.3 .6 2.3 2.5 1.6 1.1

4 2.3 1.6 6.1 9.3 6.3 4.3

5 5.7 3.0 13.2* 7.7 4.8 3.3

6 7.3 5.0 9.4 10.6 10.4 8.1

7 5.6 9.9 5.0 7.5 5.0 4.4

8 3.8 3.6 3.4 3.0 3.1 2.3

9 4.8 4.8 7.6 7.2 9.8 12.9

10 5.3 5.0 9.1 8.4 8.9 11.3

The asterisk indicates that in stage 5 apoE3 mice required more sessions

than apoE2 and apoE4 to reach the criteria (p<0.01)
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of the genotype on both premature [F(2,26)=3.716, p<0.05]

and perseverative responding [F(2,26)=3.625, p<0.05]. A

post hoc analysis revealed that apoE4 mice showed higher

premature and perseverative responding relative to apoE2

and apoE3 mice (Fig. 3c, d).

SD

A significant decrease in accuracy [F(2,26)=23.357,

p<0.001] and an increase of omissions [F(2,26)=14.451,

p<0.001] were observed when the SD was decreased from 1

to 0.8 or 0.5 s (Fig. 4a, b). Furthermore, both response latency

and collection latency were reduced [F(2,26)=5.454, p<0.05;

F(2,26)=4.349, p<0.05, respectively] (data not shown). We

also observed a main effect of the genotype on accuracy [F(2,

26)=4.089, p<0.05] (Fig. 4a) and perseverative responses

[F(2,26)=3.833, p<0.05] (Fig. 4d). A post hoc analysis re-

vealed that apoE4 mice showed a steeper drop in accuracy

(p<0.05) and increased number of perseverative responses

(p<0.05) relative to apoE2 and apoE3 genotypes. An interac-

tion session × genotype was also found in omissions [F(4,

26)=2.941, p<0.05]. A post hoc analysis revealed a

significant increase in apoE3 relative to apoE4 mice when

the SD was 0.8 s (Fig. 4b). The maintenance of vigilance in

the short SD session (0.5 s) was analyzed during ten-trial bins.

A general effect of the trial period was observed on omissions,

showing that mice performed more omissions by the end of

the session [F(5,25)=6.113, p<0.01]. However, no effect of

trial period or trial period × genotype interaction was observed

in accuracy, which suggest that the deficit observed in apoE4

was present throughout the session (data not shown).

Pharmacological challenge

Behavioral attributes of the three genotypes during the phar-

macological challenges on the 5-CSRTT are shown in Fig. 5

and Supplementary Figs. S1 and S2.

Scopolamine

Scopolamine produced a significant decrease in accuracy, an

increase in omissions, and an increase in premature

responding [main effect of dose, F(2,23)=18.686, p<0.001;

F(2,23)=14.456, p<0.001; F(2,23)=10.451, p<0.001,

Fig. 2 Baseline performance of

apoE-TR female mice in the 5-

CSRTT. a Percentage of accuracy,

b percentage of omissions, c

percentage of premature

responding, and d number of

perseverative responses, during

baseline sessions. Data is

expressed as mean±S.E.M. The

asterisk indicates differences

between apoE4 and apoE3 at

p<0.05
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Fig. 3 Inter-trial interval (ITI)

challenge in the 5-CSRTT in

apoE-TR female mice. a

Percentage of accuracy, b

percentage of omission, c

percentage of premature

responding, and d number of

perseverative responses,

concurrent with inter-trial interval

increments. Data is expressed as

mean±S.E.M. The asterisk

indicates differences between

genotypes at p<0.05

Fig. 4 Stimulus duration (SD)

challenge in the 5-CSRTT in

apoE-TR female mice. a

Percentage of accuracy, b

percentage of omission, c

percentage of premature

responding, and d number of

perseverative responses,

concurrent with stimulus duration

decrements. Data is expressed as

mean±S.E.M. The asterisk

indicates differences between

genotypes at p<0.05
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respectively]. Amain effect of the genotypewas also observed

on accuracy [F(2,22)=4.370, p<0.05]. A post hoc analysis

revealed differences in accuracy between apoE3 and apoE4

during the scopolamine challenge (p<0.05; Fig. 5a). An inter-

action dose × genotype was evident in omissions and prema-

ture responding [F(4,23)=2.837, p<0.05; F(2,22)=2.768,

p<0.05, respectively]. Scopolamine-induced omissions were

significantly higher in apoE2 relative to apoE4 (p<0.05),

while the increase in premature responding was higher in

apoE3 relative to the other genotypes (p<0.05; Fig. 5b, c).

We also observed a main effect of the dose and a dose ×

genotype interaction in the latency to collect the reward

[F(2,23)=21.891, p<0.001; F(4,23)=4.381, p<0.01, respec-

tively] which increased more in apoE4 than in apoE3 at the

high dose of scopolamine (data not shown). The effect of the

genotype previously reported in perseverative responses was

not observed during the scopolamine challenge (Fig. 5d).

Alprazolam

Alprazolam decreased omissions and increased premature

responding [main effect of the dose, F(2,23)=6.364,

p < 0.01 ; F (2 ,23) = 5 .959 , p < 0.01 , respec t ive ly ]

(Supplementary Fig. S1b, c). An effect of the genotype on

perseverative responding was also observed [F(2,23)=4.033,

p<0.05]. Post hoc analysis showed that perseverative

responding was significantly higher in apoE4 mice relative

to the other genotypes (p<0.05), as observed at baseline and

during the behavioral challenge (Supplementary Fig. S1d).

Picrotoxin

Picrotoxin showed an effect on perseverative responding

[dose effect, F(2,23)=5.174, p<0.05] which was reduced with

the low dose. Although perseverative responses were higher

in apoE4, we did not observe a significant main effect of the

genotype (Supplementary Fig. S2d).

Neurochemical analyses

The amino acid and monoamine baseline levels of female

apoE transgenic mice are shown in Tables 2 and 3. ApoE2

mice showed significant higher levels of GABA in the frontal

cortex [F(2,18)=4.819, p<0.05] and glutamate in the striatum

[F(2,17)=4.119, p<0.05] relative to apoE3 mice, as well as

the highest levels of glutamate in the thalamus [F(2,16)=

9.151, p<0.01]. However, no differences in the GABA/Glu

ratio were observed in any brain region (Table 2).

Genotype differences in DA and DA turnover were ob-

served in several brain regions. Levels of DA in the frontal

Fig. 5 Effect of scopolamine on

the 5-CSRTT performance in

apoE-TR female mice. a

Percentage of accuracy, b

percentage of omissions, c

percentage of premature

responding, and d number of

perseverative responses, after

saline and scopolamine

injections. Data is expressed as

mean±S.E.M. The asterisk

indicates differences between

genotypes at p<0.05
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cortex differed between apoE2 and apoE4, being lower in

apoE4 mice [F(2,20)=3.663, p<0.05]. In the striatum, the

levels of DAwere higher in apoE2 mice than in apoE3 [F(2,

16)=6.683, p<0.001] and the ratio HVA/DA was higher in

apoE3 than in mice of other genotypes [F(2,16)=13.744,

p<0.001]. In the hippocampus, the DOPAC/DA and

DOPAC+HVA/DA ratios were higher in apoE2 mice [F(2,

19)=4.848, p<0.05; F(2,19)=4.880, p<0.05]. The levels of

NA in the striatum were lower in apoE2 than in apoE3 mice

[F(2,17)=5.875, p<0.05] (Table 3).

Discussion

In the current study, we first characterized impulsivity in the

context of visuospatial attention by using the 5-CSRTT in

apoE2, apoE3, and apoE4 transgenic female mice. The main

finding was that apoE4 female mice showed a deficit in inhib-

itory control on the 5-CSRTT as revealed by the increased

premature responding during the inter-trial interval challenge.

Importantly, we further observed an increased number of per-

severative responding under baseline conditions considered a

measure of cognitive inflexibility (Dalley et al. 2002). We

second investigated the role of a GABAergic agonist (alpraz-

olam), a GABAergic antagonist (picrotoxin), and a choliner-

gic antagonist (scopolamine) on the 5-CSRTT performance.

The second main finding was that scopolamine-induced atten-

tional impairment was significantly less pronounced in apoE4

than in apoE2 and apoE3 female mice. We finally performed a

neurochemical analysis of naïve apoE females. We found that

apoE4 female mice showed lower levels of dopamine in the

frontal cortex relative to apoE2 female mice.

Attention and inhibitory control performance of apoE-TR

female mice on the 5-CSRTT

The 5-CSRTT has been extensively used to determine the

neural basis of visuospatial attention and inhibitory control

prevalently in rats (Robbins 2002). In this study, apoE-TR

mice were able to learn the 5-CSRTT, as revealed by a stable

performance with minimal differences among genotypes.

Notably, no differences in the acquisition of the task between

apoE3- and E4-TR mice were observed in a previous study

(Siegel et al. 2010). This is consistent with the idea that learn-

ing and memory impairments associated to apoE4 are limited

to hippocampal-dependent tasks (Acevedo et al. 2010; De

Blasi et al. 2009).

ApoE4 mice showed an impaired inhibitory control in the

5-CSRTT as revealed by increased premature and persevera-

tive responding. This is generally considered to reflect a fail-

ure of the Bexecutive system^ represented by frontal cortical

areas exerting a top-down control to limbic and paralimbic

areas (Dalley et al. 2011). In rodents, lesions of the ventral

hippocampus, prefrontal cortex, and disconnections of the

medial prefrontal cortex from the ventral striatum increase

impulsivity in the 5-CSRTT (Abela et al. 2013; Dalley et al.

2008). Based on the above, it could be speculated that alter-

ations in the fronto-temporal network associated with the ε4

allele could account for the deficits in inhibitory control. In

fact, brain imagining studies reported that human apoE4 car-

riers show abnormal activity in the fronto-temporal and

fronto-parietal systems (Dennis et al. 2010; Filippini et al.

2009; Reiman et al. 2004). Consistently, a recent imaging

study in apoE-TR mice showed a volume loss in the cortex

and hippocampus associated to age in apoE4 in comparison to

wild-type mice (Yin et al. 2011). Furthermore, an abnormal

synaptic plasticity in the hippocampus and the amygdala of

young apoE4 mice has been reported (Dumanis et al. 2013;

Klein et al. 2010; Rodriguez et al. 2013).

High impulsivity is negatively correlated to attentional ac-

curacy (Dalley et al. 2008). Likewise, apoE4 mice displayed a

greater drop in accuracy when attention was challenged.

Interestingly, this effect was present during the whole session,

indicative of a deficit in selective attention rather than diffi-

culty to maintain sustained attention. Similarly, in apoE-TR

mice that also overexpress the human amyloid precursor pro-

tein (APP), those carrying apoE4 showed poor accuracy in a

two-choice operant visual discrimination task (Kornecook

et al. 2010). We observed in apoE3 mice a higher rate of

omissions than in apoE4 mice when the stimulus duration

was decreased. A similar finding was reported by Siegel

et al. who reported a higher number of omissions in apoE3

than in apoE4 mice at baseline and after scopolamine injec-

tions in the 5-CSRTT (Siegel et al. 2010).

Comparatively, human studies have found a worse execu-

tion of apoE4 carriers in neuropsychological tests with a great-

er attention load (Caselli et al. 2001; Rosen et al. 2002;

Wisdom et al. 2011). As far as we know, only the group of

Pasuraman used a specific task to compare visuospatial atten-

tion in subjects with different apoE genotypes. They observed

selective attentional deficits in apoE4 carriers with an additive

effect of ε4 allele dosage, and an effect of age. While the

attentional deficit was evident in middle-aged and old apoE4

individuals, it was not present in very old individuals without

dementia (Greenwood et al. 2000; Greenwood et al. 2005;

Negash et al. 2009). Whether the attentional and inhibitory

control deficits in apoE4 individuals could be indicators of

higher risk for AD is a future venue of investigation.

Effects of scopolamine, alprazolam and picrotoxin

on the 5-CSRTT performance in apoE-TR female mice

The basal forebrain cholinergic system is involved in

sustained attention (Paolone et al. 2013; Sarter and Paolone

2011), and the muscarinic antagonist scopolamine disrupts

accuracy and increases omissions in both rats and mice in
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the 5-CSRTT (Sanchez-Roige et al. 2012). In the current

study, apoE4 showed a lower sensitivity to scopolamine-

induced attentional impairment. Specifically, the negative ef-

fect of scopolamine on attentional performance was more pro-

nounced in apoE2 and apoE3 than in apoE4 mice.

An interaction between apoE and the cholinergic system

has been suggested to underlie the cognitive deficit associated

to apoE4 in humans. In fact, several indicators of a cholinergic

dysfunction have been reported in apoE4, ranging from de-

creased neuronal activity in the basal nucleus of Meynert,

which is the main source of cholinergic projections to the

cortex (Salehi et al. 1998), to decreased hippocampal and

cortical choline acetyltransferase activity (Allen et al. 1997;

Lai et al. 2006; Poirier et al. 1995; Soininen et al. 1995a),

higher levels of acetylcholinesterase (Eggers et al. 2006;

Soininen et al. 1995b), and higher levels of muscarinic recep-

tors (Cohen et al. 2003). The presence of the ε4 allele has also

shown to modulate the response to cholinergic agents. Young

and healthy apoE4 carriers benefit more of the cognitive ef-

fects of nicotine (Evans et al. 2013; Marchant et al. 2010),

while the prolonged use of anti-cholinergic medications have

a worse cognitive effect in non-demented apoE4 carriers

(Nebes et al. 2012; Pomara et al. 2008; Pomara et al. 2004).

On the other hand, anticholinesterase medications used to im-

prove cognitive function in AD patients seem to be less effec-

tive in those carrying apoE4 (Braga et al. 2014; Farlow et al.

1996).

In rodents, the blockade of nicotinic acetylcholine recep-

tors has shown to suppress hippocampal long-term potentia-

tion in wild-type but not in apoE4-TR mice (Yun et al. 2005).

Remarkably, decreased levels of choline acetyltransferase

have also been reported in apoE4 mice (Buttini et al. 2002)

while the exposure to the pesticide chlorpyrifos, a cholinester-

ase inhibitor, impaired memory in apoE3 mice but not in

apoE4 mice (Peris-Sampedro et al. 2015). However, the al-

leged cholinergic hypo-function related to apoE4 remains

controversial since some studies failed to find cholinergic al-

terations in both human apoE4 carriers (Corey-Bloom et al.

2000; Reid et al. 2001; Svensson et al. 1997; Uusvaara et al.

2009) and apoE4 transgenic mice (Bronfman et al. 2000;

Siegel et al. 2010). Overall, our results suggest that the antag-

onism of muscarinic receptors has a less pronounced effect on

visuospatial attention in apoE4 mice compared to apoE2 and

apoE3 mice.

Higher anxiety in apoE4 mice has been previously reported

(Reverte et al. 2012; Siegel et al. 2012). Here we inquired

whether the administration of anxiolytic or anxiogenic drugs

would induce a differential effect in apoE-TR mice depending

on the genotype. However, we did not observe a genotype

effect on the 5-CSRTT performance after alprazolam and pic-

rotoxin administration. Accordingly, the effects of lorazepam

on attention and reaction time were similar in human apoE4

carriers and non-carriers (Stonnington et al. 2009). The

systemic administration of alprazolam improved attention by

decreasing omissions, but slightly increased premature

responding. On the other hand, picrotoxin decreased persev-

eration. Similarly, GABAergic agonists have shown to in-

crease impulsivity in several mouse strains (Oliver et al.

2009). Increasing GABAergic activity in the PFC increases

impulsivity, probably because of the disinhibition of down-

stream areas such as the ventral striatum (Hayes et al. 2014).

Coupled with this, the reduction of GABA in the NAc in-

creases impulsivity in low impulsive rats (Caprioli et al.

2014). However, the levels of GABA in the PFC and the

striatum did not differ in apoE4 mice compared to the other

genotypes.

Neurotransmitters in apoE-TR female mice

Cortico-striatal and cortico-limbic networks involved in atten-

tion and inhibitory control are modulated by dopaminergic,

serotonergic, and noradrenergic neurons originating in the

midbrain (Dalley et al. 2011). We observed lower levels of

dopamine in the frontal cortex in apoE4 mice than in apoE2

and apoE3 mice. Consistently, the depletion of dopamine in

the medial prefrontal cortex (mPFC) induces impulsive choice

in a delay discounting task (Freund et al. 2014), and reduced

cortical dopamine levels have been reported in patients with

ADHD (Del Campo et al. 2011). Furthermore, reduced mPFC

dopamine activity levels also correlate with poor attention

outcome (Logue and Gould 2014). Taken these results togeth-

er, the lower levels of dopamine in the frontal cortex found in

apoE4 mice may account for both the decreased accuracy and

increased premature responding.

Dopaminergic and noradrenergic alterations in the striatum

play a key role in the expression of impulsivity (Caprioli et al.

2013; Caprioli et al. 2015; Dalley et al. 2007; Economidou

et al. 2012; Moreno et al. 2013). In the present study though,

we did not observe in apoE4 mice deficiencies in the levels of

dopamine and norepinephrine in the striatum relative to apoE2

and apoE3, but quite the opposite. The reasons for these dis-

crepancies are unclear and obviously require further investi-

gation. A possible explanation for this discrepancy could de-

rive from the fact that we analyzed the entire striatum (nucleus

accumbens, shell and core, and caudate putamen) while in the

previous studies the main differences were confined to the

nucleus accumbens.

Glutamate and GABA are the main excitatory and inhibi-

tory neurotransmitters in the brain. ApoE2 mice showed sig-

nificant higher levels of glutamate in the striatum relative to

apoE3 mice and in the thalamus relative to both apoE3 and

apoE4 mice. GABA in the frontal cortex was also higher in

apoE2, which would account for a trend toward an increased

sensitivity of this genotype to picrotoxin. However, no differ-

ences in the ratio of GABA/glutamate were observed in any

brain region, which indicates that the balance of brain
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excitation/inhibition was not compromised in apoE2 female

mice. Higher levels of glutamate in the whole brain of apoE2

mice were reported by Dumanis et al. which might be related

to the neuroprotective role attributed to the apoE2 isoform

(Dumanis et al. 2013).

Concluding remarks

The results from the present study demonstrate that the human

apolipoprotein E isoforms impact visuospatial attention and

inhibitory control as measured in the 5-CSRTT, as well as

the underlying neuromodulatory brain systems. Finally, fur-

ther studies are needed to determine to what extent these re-

sults generalize to male apoE-TR and human population. The

current findings have relevance because they provide valuable

information on the underlying neural basis of the cognitive

dysfunction related to apoE4 before the onset of neurodegen-

erative patterns.
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modulate attention, motivation and impulsivity in female mice in the 5-choice serial 

reaction time task. 

 
Peris-Sampedro F, Reverte I, Basaure P, Cabré M, Domingo JL, Colomina MT. 

Neurotoxicology 2015. Currently under review. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W
h

a
t 

is
 a

lr
e

a
d

y
 k

n
o

w
n

? 
W

h
a

t 
th

is
 s

tu
d

y
 a

d
d

s?
 

H
ig

h
li

g
h

ts
 

There is some epidemiological evidence on the impact of CPF in executive 

functioning and motivational status, but these relationships have been 

scarcely addressed in an experimental setting. The poor cognitive outcome 

associated with the APOE4 genotype has sometimes been attributed to a 

hypothetical cholinergic dysfunction. To date, no experimental studies have 

evaluated the impact of CPF on attention, inhibitory control and motivation 

in apoE TR mice. 

Besides giving support to the behavioural apoE phenotypes reported in the 

third study, these results strengthen existing evidence, and point to 

protracted detrimental effects on sustained attention and motivation upon 

CPF exposure. Moreover, they support the conceptual premise of close links 

between the cholinergic system and the APOE4 genotype. 

 

APOE genotype influenced the 5-CSRTT acquisition and baseline 

performance. The exposure to CPF increased omissions, worsened 

processing speed, diminished premature responding, reduced the number of 

trials completed and increased reward latency. Strikingly, the lack of 

inhibitory control inherent to apoE4 mice was reversed by the treatment.  
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Abstract 

It is well-established that organophosphate (OP) pesticides contribute to a wide range of 

neurobehavioural disorders. Among the most commonly OPs used, chlorpyrifos (CPF) has been 

reported to elicit learning and memory impairments. Likewise, there is some epidemiological 

evidence on the impact of CPF in executive functioning, but this relationship has scarcely been 

addressed in an experimental setting. The three isoforms of the human apolipoprotein E (apoE) 

confer different cognitive skills on their carriers, but research on this topic remains limited. The 

current study was performed to assess whether the APOE genotypic variability differently 

modulate the effects of CPF on attentional performance, inhibitory control and motivation. 

Human apoE targeted replacement adult female mice (apoE2, apoE3 and apoE4) were trained to 

stably perform the 5-choice serial reaction time task (5-CSRTT). Animals were then subjected to 

daily dietary doses of CPF (3.75mg/kg body weight) for 4 consecutive weeks. After CPF 

exposure, we established a 4-week CPF-free period to assess recovery. Although all individuals 

acquired the task, apoE2 mice showed enhanced learning, while apoE4 mice displayed increased 

premature and perseverative responding. Strikingly, this genotype-dependent lack of inhibitory 

control was reversed by CPF. Overall, the pesticide induced protracted impairments in sustained 

attention and motivation, and it reduced anticipatory responding. ApoE3 mice exhibited delayed 

attentional disruptions due to motivational factors throughout the wash-out period. Taken 

together, these findings attest potential links between the APOE4 genotype and the cholinergic 

system, and provide notable evidence of the emergence of CPF-related attentional and 

motivational deficits.   
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1. Introduction 

 

The onset of cognitive deficits and behavioural disorders after exposure to organophosphate 

(OP) pesticides – in particular to the widely-used chlorpyrifos (CPF) – has been reported in the 

scientific literature (Mackenzie Ross et al., 2010; Roldán-Tapia et al., 2005). In the last decade, 

environmental agencies have taken steps to reduce the non-agricultural uses of CPF. In 2006, 

however, its residues were still present in 78% of randomly-selected homes in the United States 

(US) (Stout et al., 2009), being also recently detected in both urban (Ccanccapa et al., 2015; 

Weldon et al., 2011) and rural areas (Page et al., 2014), so that implying a pervasive pattern of 

exposure. Although CPF may be absorbed by inhalation or through the skin, dietary intake 

appears to be the most common source of exposure for the general population (Lu et al., 2008). 

The US Environmental Protection Agency stated a reference value for a typical CPF daily intake 

of 0.005µg/kg/day in adults, below which no deleterious effects on human health are expected 

(Eaton et al., 2008). Nonetheless, the additive effect of all routes of exposure, as well as the 

variety of human behaviours and activities make difficult to estimate the total daily exposure to 

the pesticide (Saunders et al., 2012).  

A constellation of epidemiological investigations has demonstrated that OPs induce deficits in 

cognitive processes, such as sustained attention, memory, and processing speed (De Silva et al., 

2006; Mackenzie Ross et al., 2010; Miyaki et al., 2005; Roldán-Tapia et al., 2005). Consistently, 

data from animal models of acute or repeated CPF exposure highlighted learning and memory 

impairments (López-Granero et al., 2014; Peris-Sampedro et al., 2015a, 2014; Salazar et al., 

2011), deficits in sustained attention (Middlemore-Risher et al., 2010; Samsam et al., 2005), 

destabilized inhibitory control (Middlemore-Risher et al., 2010; Montes de Oca et al., 2013), and 

anhedonia (Aldridge et al., 2005). 

Once CPF has entered the body, it undergoes an oxidative desulfuration to its active metabolite 

CPF-oxon, which expresses a potent anticholinesterase activity. The inhibition of 

cholinesterases (ChE) elicits the accumulation of acetylcholine (ACh) at the synapses of both the 

central and peripheral nervous systems (CNS, PNS), leading ultimately to acute cholinergic 

neurotoxicity (Chen, 2012). In addition, an increasing number of reports have endorsed the 

involvement of other neurotransmitter systems, such as the GABAergic system, in the 
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neurotoxicity of CPF (Cardona et al., 2006; Montes de Oca et al., 2013; Sánchez-Amate et al., 

2002). Thus, Cardona et al. (2006) reported that the administration of diazepam – a GABAergic 

agonist – potentiates the long-term CPF-related effects observed in a schedule-induced 

polydipsia paradigm in rats. Interestingly, recent data have claimed for a neglected role of GABA 

in impulsivity (Hayes et al., 2014).   

In 1983, Robbins and co-workers designed a test to assess attentional processes in rats, which 

was based on the continuous performance task used for the same purpose in humans (Robbins, 

2002). Nowadays, the 5-choice serial reaction time task (5-CSRTT) enables various aspects of 

performance to be assessed simultaneously (Bari et al., 2008; Sanchez-Roige et al., 2012). To 

date, only two studies have used this paradigm to evaluate the detrimental effects of CPF on 

cognition (Middlemore-Risher et al., 2010; Montes de Oca et al., 2013). Both studies, carried out 

in male rats, found disturbed inhibitory control in the short (Middlemore-Risher et al., 2010) 

and the long-term (Montes de Oca et al., 2013) after relatively high doses of CPF. Moreover, 

Middlemore-Risher et al. (2010) also reported impairments in sustained attention with no signs 

of altered motivation that were still evident one month after the intoxication.  

Although apolipoprotein E (apoE) synthesis is largely hepatic, it is also produced in the brain, 

primarily by astrocytes (Poirier et al., 2014). In addition to its well-characterized role in 

maintaining lipid homeostasis, apoE also contributes to several neurological phenomena in the 

CNS (Hauser et al., 2011), and its three major isoforms (apoE2, apoE3 and apoE4) confer 

different neurobehavioural attributes on their carriers. Although other mammals express apoE, 

allelic variation (ε2, ε3 and ε4) is unique to humans. Sullivan et al., (1997) designed the apoE 

targeted replacement (TR) mouse model by replacing the murine apoE gene by one of the three 

human APOE allelic variants, thus allowing them to systemically express functional human apoE 

isoforms.  

Learning and memory processes have widely been studied in apoE TR mice (Bour et al., 2008; 

Grootendorst et al., 2005; Peris-Sampedro et al., 2015a; Reverte et al., 2013, 2012). However, 

there is still considerable uncertainty about the extent to which APOE genotype contributes to 

other cognitive and behavioural processes, such as sustained attention, inhibitory control and 

motivation. Most studies have focused on deciphering the behavioural attributes inherent to the 

APOE4 genotype, since it is the largest genetic risk for Alzheimer’s disease (AD) (Raber et al., 

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



2004). Particularly, the APOE4 genotype has traditionally been associated with poor cognitive 

outcome (Peris-Sampedro et al., 2015a; Reverte et al., 2012; Siegel et al., 2012), which has 

sometimes been attributed to a hypothetical cholinergic dysfunction (Yun et al., 2005). 

Furthermore, recent experimental evidence has revealed that only the APOE4 genotype confers 

on its carriers deficient inhibitory control and impaired attentional accuracy on the 5-CSRTT 

(Reverte et al., 2015). On the other hand, the most common isoform in humans, apoE3, has 

recently been linked to an increased risk of developing obesity and a diabetic profile upon 

exposure to CPF (Peris-Sampedro et al., 2015a, 2015b). In this regard, a growing body of 

evidence has considered both impulsivity and compulsivity as potential feeding behaviour 

disruptors contributing to the obesity epidemics (Schag et al., 2013; Smith and Robbins, 2013).  

To the best of our knowledge, no information is available on the use of the 5-CSRTT to assess the 

impact of dietary exposure to CPF on attention, inhibitory control and motivation in apoE TR 

mice. Hence, this investigation seeks (a) to determine whether CPF alter the 5-CSRTT baseline 

performance of apoE TR female mice previously trained, (b) to investigate whether such CPF-

related effects persist over time, and (c) to assess the extent to which human APOE genetic 

variations modulate the effects of both CPF and alprazolam. 

 

2. Material and methods 

 

2.1 Animals and care 

 

Adult apoE TR female mice, homozygous for the human ε2, ε3 or ε4 alleles, were purchased 

from Taconic (Taconic Europe, Lille Skensved, Denmark). They were housed in pairs under a 12-

h light-dark cycle (lights off at 8 pm) in an environmentally controlled room held at 22±2°C and 

at a relative humidity of 50%±10%. Food (Panlab standard rodent chow, Barcelona, Spain) and 

water were available ad libitum. Before the behavioural task started, mice were gradually food 

deprived to approximately 80-85% of their free feeding weight. These feeding conditions were 

maintained until the end of the study. All experiments took place five days a week and were 

carried out during the light phase (Reverte et al., 2015). Five animals failed to reach criterion 

performance and were excluded from the 5-CSRTT training (apoE2 = 1, apoE3 = 3, apoE4 = 1). 
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Experimental procedures were conducted in accordance with the Animal Care and Use 

Committee of the Rovira i Virgili University (Tarragona, Spain). Likewise, in conformity with the 

Spanish Royal Decree 53/2013 and the European Communities Council Directive (86/609/EEC) 

efforts were made to alleviate animal suffering. 

 

2.2 Drugs 

 

Standard rodent chow was supplemented with CPF (purity 99.5%, Sigma-Aldrich, Seelze, 

Germany) at a concentration intended to deliver a dose of 3.75mg/kg body weight/day (see 

2.4.1 for further information about the dosing procedure). The dose of CPF was chosen on the 

basis of earlier work (Peris-Sampedro et al., 2015a, 2015b), being  expected to be below the 

range of non-observed cholinergic effects. The GABAergic agonist alprazolam was supplied by 

Pfizer (Pfizer, S.A., Alcobendas, Spain) and was used for the pharmacological challenge at a dose 

of 0.12mg/kg (Reverte et al., 2015).  

 

2.3 Five-choice serial reaction time task (5-CSRTT) 

 

2.3.1 Apparatus 

 

The behavioural training was carried out in two identical acrylic operant chambers 

(24x20x15cm) (Med Associates Inc., St. Albans VT, USA), provided with steel grid floors and 

enclosed in ventilated wooden sound-attenuating boxes. Each chamber consisted of a curved 

aluminium wall containing nine equally-spaced holes. Four of the initial round apertures were 

closed off with metal inserts. Thus, only five evenly-spaced 2.5cm holes were operative and 

equipped with infrared detectors and a bright yellow led (1.7W) at the rear. The magazine, 

located centrally in the opposite metallic wall, was equipped with an infrared detector and 

automatically delivered 0.01ml of grape juice (commercially available grape juice containing 

15.13% sugar, López Morenas, SL, Spain) via a liquid dispenser. The record of the behavioural 

task was controlled by a Fader Control interface and MED-PC software (Med Associates Inc., St. 

Albans VT, USA).  
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2.3.2 5-CSRTT training  

 

Pre-training and training procedures in the 5-CSRTT were performed as previously described 

(Reverte et al., 2015). Briefly, mice were first habituated to the liquid reinforcer and 5-CSRTT 

chambers. Then, two 20-min pre-training stages were established to gradually introduce the 

mice to the task. In these phases, animals were required to learn to poke their noses into an 

illuminated hole in order to trigger a reward in the magazine entry. Subsequently, they were 

progressively trained to detect a brief visual stimulus presented pseudo-randomly in one of the 

five operating holes. The stimulus duration (SD) was reduced from 30 to 1s throughout 10 

acquisition stages. A nose-poke into the illuminated magazine initiated each trial, which 

consisted of a fixed 5-s inter-trial interval (ITI) set prior the random presentation of the visual 

stimulus. If the mice responded in the illuminated hole within the SD or before the end of the 

limited hold (LH) (5s), 0.01ml of grape juice was delivered in the magazine dispenser and a 

correct trial was recorded. On the contrary, they were not rewarded when incorrect responses 

(nose-pokes made within a non-illuminated aperture), omissions (failure to respond within the 

SD and/or the LH) or premature responses (responses made in any of the five holes during the 

ITI) were recorded. Furthermore, these responses were all punished with a 5-s brightness 

period (time-out, TO), in which no new trials could be started. Additional responses in a hole 

after a correct response and before the reinforcer collection (perseverative responses) were 

also recorded, but were not punished. In either case, each training session lasted for 20min or a 

maximum of 70 discrete trials. Once the mice reached a stable baseline performance for 5 

consecutive days (final parameters: SD = 1s, ITI = 5s, LH = 5s, TO = 5s; criteria: > 50% of the 

total trials, > 80% accuracy, < 25% omissions), they were tested under experimental conditions 

involving behavioural manipulation and pharmacological challenge. 

 

2.3.3 Behavioural manipulations  

 

The behavioural testing was initiated after successful and stable acquisition of the task and 

lasted for 4 weeks. In brief, impulsivity and attentional performance were estimated once a 

week (i.e., Wednesday)  for two consecutive weeks, by increasing the ITI (7s) and shortening the 

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



SD (0.5s), respectively (Reverte et al., 2015; Sanchez-Roige et al., 2012). Every other day of the 

week, mice were trained with standard baseline parameters (for more details, please refer to 

Reverte et al., 2015). 

 

2.3.4 Pharmacological challenge  

 

Following behavioural manipulations, we tested the effects of the GABAergic agonist alprazolam 

on the 5-CSRTT performance. Twice a week, typically on Wednesday and Friday, alprazolam 

was i.p. injected 30min before the 5-CSRTT training. To provide a control injection condition, 

0.9% saline was i.p. injected on Tuesday and Thursday 30min before the training started. In 

either case, mice were trained with standard baseline parameters.    

 

2.4 Treatment procedures 

 

After both behavioural and pharmacological challenges, mice were trained in standard 

conditions in order to restore their baseline level. A total of 20 female mice were exposed to CPF 

(apoE2 = 8, apoE3 = 6, apoE4 = 6). At the beginning of the treatment, the mean ages of apoE2, 

apoE3 and apoE4 mice were 11.19±0.53, 12.25±0.25 and 13.17±1.01 months, respectively.  

 

2.4.1 Effects of repeated exposure to CPF on 5-CSRTT performance, impulsive condition, sustained 

attention and GABAergic system functioning  

 

To investigate the effects of repeated exposure to CPF, mice were fed a supplemented rodent 

chow for 4 consecutive weeks. Specifically, the daily intake of CPF was estimated to be 0.075mg, 

which corresponds to a dose of 3.75mg/kg body weight/day. When administration of CPF 

began, animals were assessed daily for signs of acute cholinergic toxicity. Throughout the 

treatment period, mice continued to perform the task daily with standard baseline parameters, 

allowing the assessment of the CPF impact on their basal 5-CSRTT performance.  

To determine whether CPF exposure elicited impulsive responding or impaired sustained 

attention, behavioural manipulations were carried out once a week during the last two weeks of 
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treatment, typically on Wednesday. In particular, the session in which the ITI was increased (7s) 

took place in the third week, while the SD was shortened (0.5s) in the fourth week.  

In order to provide further insight into the interaction between the GABAergic and cholinergic 

systems, mice were subjected to a single i.p. dose of alprazolam, administered 30min before the 

last session started (i.e., Friday).    

 

2.4.2 Assessment of the recovery period  

 

A 4-week wash-out period followed CPF exposure. Mice were again fed standard rodent chow 

and subjected to daily 5-CSRTT training with standard baseline parameters. The ability of the 

mice to overcome the treatment with CPF was then assessed by analysing their task 

performance. We used the same procedure above described (see 2.4.1) to investigate whether 

both impulsive and attentional statuses returned to their previous state by manipulating both 

the ITI and the SD.  

 

2.4.3 Cholinesterase (ChE) activity assessment 

 

ChE activity was tested in plasma and frontal cortex in a second cohort of naïve females. Mice (n 

= 18) were distributed into three groups, according to the experimental conditions of the study: 

controls (n = 2/genotype), CPF exposure (n = 2/genotype), and wash-out (n = 2/genotype). 

Brain ChE activity was determined in all these individuals, while plasma ChE activity was 

randomly assessed in 6 mice as an indicator of acute systemic CPF effect (controls = 3, CPF-

exposed = 3) (Eaton et al., 2008; Peris-Sampedro et al., 2015a). Enzymatic assays procedures, as 

well as detailed description of sample processing can be found elsewhere (Montes de Oca et al., 

2013; Peris-Sampedro et al., 2015a, 2015b; Salazar et al., 2011). Briefly, at the end of each 

treatment condition, mice were anesthetized with carbon dioxide before being euthanized. 

Blood was obtained by cardiac puncture and immediately centrifuged to obtain plasma, which 

was stored at -80ºC until use. After the blood draw, mice were rapidly decapitated and the 

whole brains were removed, dissected, homogenized and ultimately centrifuged. In both cases, 

enzyme activity was determined spectrophotometrically using the Ellman method (Ellman et al., 
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1961), and was calculated relative to protein concentration contained in the sample using the 

Bradford method (Bradford, 1976). Finally, ChE activity of exposed animals was estimated on 

the basis of the activity value of the control mice, and represented as a percentage. 

 

2.5 Data collection 

 

The following variables were recorded throughout the experimental procedures. Attentional 

performance was assessed by the percentage of accuracy (number of correct responses divided 

by the sum of correct and incorrect responses x 100), the percentage of omissions (number of 

omissions divided by the total number of trials completed x 100) and by a measure of 

processing speed (correct latency: time required to respond correctly after the onset of the 

stimulus) (Sanchez-Roige et al., 2012). To evaluate inhibitory control, both impulsivity and 

compulsivity were recorded in terms of percentage of premature responses (premature 

responses divided by the total number of trials completed x 100) and perseverative responses 

(number of reiterative responses made into the holes after a correct response), respectively 

(Sanchez-Roige et al., 2012). The total number of trials (the sum of correct, incorrect and 

omitted responses), and the reward latency (time needed to retrieve the reward after a correct 

response) were recorded as motivational parameters (Dalley et al., 2007). The total number of 

trials was not analysed for the sessions in which the ITI was lengthened because the session 

duration was increased to 25 min to ensure mice had enough time to perform at least 50% of 

the trials.  

 

2.6 Statistical analyses 

 

Data processing was performed using the SPSS statistical package (version 20.0). We used one-

way analysis of variance (ANOVA) (genotype) to determine the number of sessions required at 

each stage of the training. The animals performance on the 5-CSRTT during baseline, CPF 

exposure, and wash-out period, as well as data from the behavioural and pharmacological 

challenges in each treatment condition were all analysed by one-way repeated-measures 

(RMANOVA). The genotype was used as the between-subject factor, while weeks or days were 
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used as the within-subject factor. A two-way ANOVA was performed to establish the 

contribution of both CPF exposure and APOE genetic background to brain ChE activity. Plasma 

ChE activity was analysed by means of one-way ANOVA (CPF treatment). When appropriate, 

Tukey’s post-hoc comparisons were used. Statistical significance was set at p < 0.05, and results 

are reported as mean values ±SE. 

 

3. Results 

 

3.1 Acquisition of the 5-CSRTT 

 

During acquisition, all mice progressed at similar rates during the first four training levels. 

However, when attentional demands were higher, some differences between genotypes 

emerged. We observed that the genotype affected the average number of sessions required to 

achieve the performance criterion on training stages 5 [F2, 19 = 13.778, p < 0.001], 6 [F2, 19 = 

6.966, p = 0.006], 7 [F2, 19 = 12.242, p = 0.001], 8 [F2, 19 = 8.440, p = 0.003], and 9 [F2, 19 = 7.105, p 

= 0.006] (Fig. 1). ApoE2 mice were generally faster learners than both apoE3 (stages 5 to 9, p < 

0.05) and apoE4 (stages 7 to 9, p < 0.05). Ultimately, mice fully acquired the task, and there were 

no differences between genotypes in the total number of sessions they took (Fig. 1). Moreover, 

once the baseline state was reached, the animals attained and maintained high levels of accuracy 

(Fig. 2A). 

 

- Insert Figure 1 over here – 

 

3.2 5-CSRTT performance under standard conditions 

 

3.2.1 Baseline  

 

The baseline performance on the 5-CSRTT is illustrated in Figure 2 and Table 1. No differences 

between genotypes were noted for the percentages of accuracy (Fig. 2A), omissions (Fig. 2B) 

and premature responses (Fig. 2C), nor for the total number of trials and correct latency (data 
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not shown). In contrast, the genotype did affect perseverative responding [F2, 19 = 5.833, p = 

0.012]. ApoE4 mice persevered more than apoE2 (p = 0.011) and apoE3 mice (p = 0.053) (Fig. 

2D). The apoE4 group also showed an upward trend in latency to collect the reward [genotype: 

F2, 19 = 3.435, p = 0.056], which might be partly explained in terms of increased perseverative 

responding. Post-hoc analyses revealed that apoE2 mice were faster at retrieving the reward 

than apoE4 (p = 0.054) (Table 1).  

 

- Insert Figure 2 over here – 

- Insert Table 1 over here – 

 

3.2.2 CPF exposure 

 

The exposure to CPF led to a progressive reduction in both the percentage of premature 

responses made [weeks: F3, 19 = 3.571, p = 0.040] and the total number of trials completed 

[weeks: F3, 19 = 8.631, p = 0.001] (data not shown). No differences between genotypes were 

observed in any of the 5-CSRTT performance variables measured. Therefore, the effect of the 

genotype previously reported on perseverative responses during baseline was not noted during 

the exposure period.  

 

3.2.3 CPF-free wash-out period 

 

During the 4-week wash-out period there was a gradual recovery of both affected parameters: 

the percentage of premature responses [weeks: F3, 19 = 11.919, p < 0.001] and the total number 

of trials [weeks: F3, 19 = 3.960, p = 0.029] (data not shown). As previously found during CPF 

exposure, the genotype did not affect any of the performance variables measured. 

 

3.3 Longitudinal characterization of the intoxication and detoxification periods 

 

In order to assess the potential impact of exposure to dietary CPF on the 5-CSRTT baseline 

performance, we looked at the progression in mice performance over the three treatment 
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conditions (Fig. 3). The genotype did not show any significant effect on the variables analysed. 

Considering the three experimental phases as a longitudinal study, we found that five variables 

varied: omissions [F2, 19 = 11.158, p = 0.001] (Fig. 3B), correct latency [F2, 19 = 6.876, p = 0.007] 

(Fig. 3F), premature responses [F2, 19 = 4.738, p = 0.024] (Fig. 3C), total number of trials [F2, 19 = 

11.460, p = 0.001] (Fig.3E), and reward latency [F2, 19 = 16.091, p < 0.001] (Fig. 3G). In 

agreement with the results presented in the above subsections (see 3.2.2 and 3.2.3), an 

interaction time x period was found for the percentage of premature responses [F6, 19 = 5.700, p 

= 0.005], and the total number of trials [F6, 19 = 4.670, p = 0.011]. 

 

- Insert Figure 3 over here – 

 

As for attentional performance, post-hoc analyses revealed that CPF exposure resulted in a 

significant increase in omissions compared to the baseline period (p < 0.001) (Fig. 3B). 

Moreover, CPF also worsened the processing speed, manifested by higher correct latencies (p = 

0.009) (Fig. 3F). Both parameters were not recovered during the wash-out period (Fig. 3B, 3F). 

With regard to inhibitory control, the exposure to CPF significantly reduced the percentage of 

premature responses compared to baseline (p = 0.005) (Fig. 3C).  

In terms of motivation, mice exposed to CPF appeared to be less likely to perform the 5-CSRTT. 

In particular, CPF-fed mice completed fewer trials than at baseline (p < 0.001) (Fig. 3E), and 

were slower to retrieve the subsequent reward (p = 0.001) (Fig. 3G). These two parameters not 

only remained unchanged during wash-out, but also continued to increase in the case of reward 

latency (CPF vs wash-out, p = 0.031) (Fig. 3E, 3G).  

 

3.4 Behavioural manipulations 

 

Figure 4, Figure 5 and Table 2 provide an overview of the behavioural effects on the 5-CSRTT 

described for the three genotypes throughout the challenge sessions.  

 

3.4.1 Inter-trial interval challenge 
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Baseline: Significant increases in both omissions [day: F1, 16 = 5.292, p = 0.037] (Fig. 4B) and 

premature responses [ITI: F1, 16 = 19.308, p = 0.001] (Fig. 4C) were observed when the ITI was 

increased from 5- to 7-s. We also found that the genotype considerably affected premature 

responses [F2, 16 = 6.943, p = 0.008], with a trend towards a significant ITI x genotype interaction 

[F2, 16 = 3.474, p = 0.060]. Further analyses revealed that apoE4 mice generally showed higher 

premature responding relative to apoE2 (p = 0.009) and apoE3 mice (p = 0.042) (Fig. 4C). 

Specifically, after lengthening the ITI, apoE4 mice continued to display more premature 

responses than apoE2 mice (p = 0.012) (Fig. 4C). 

 

CPF exposure: CPF counteracted the increase in omissions caused by lengthening the ITI during 

the baseline period (Fig. 4B). Although significant increases in premature responding were 

again found as a result of lengthening the ITI [ITI: F1, 19 = 14.041, p = 0.002], the exposure to CPF 

neutralized the effect of the genotype noted at baseline (Fig. 4C). Furthermore, the correct 

latency decreased during the ITI challenge in the treatment period [ITI: F1, 19 = 9.741, p = 0.006] 

(Table 2).  

 

Wash-out: Just as during CPF treatment, manipulating the ITI had no effect on the percentage of 

omissions during wash-out (Fig. 4B). As was the case in the other two periods, significant 

increases in premature responding were again found after lengthening the ITI [ITI: F1, 19 = 7.705, 

p = 0.013] (Fig. 4C). Similarly to CPF exposure, mice subjected to a challenged ITI showed 

reduced correct latencies during wash-out [ITI: F1, 19 = 12.199, p = 0.003] (Table 2). We observed 

a main effect of the genotype on accuracy [F2, 19 = 11.492, p = 0.001], which was not found for the 

other two periods (Fig. 4A). A post-hoc analysis indicated that accuracy in apoE4 mice 

decreased more steeply than in apoE2 (p = 0.001) and apoE3 (p = 0.010).  

 

- Insert Figure 4 over here – 

- Insert Table 2 over here – 

 

3.4.2 Stimulus duration challenge 

UNIVERSITAT ROVIRA I VIRGILI 
APOE PHENOTYPE EXPRESSION AND ITS MODULATION BY CHLORPYRIFOS: NEW INSIGHTS INTO GENE - TOXIC INTERACTIONS 
Fiona Peris Sampedro 
Dipòsit Legal: T 198-2016 



Baseline: A significant decrease in accuracy [SD: F1, 14 = 25.544, p < 0.001] (Fig. 5A) and an 

increase in omissions [SD: F1, 14 = 22.125, p = 0.001] (Fig. 5B) were observed when the SD was 

reduced from 1- to 0.5-s. Moreover, correct latencies fell throughout the SD challenge [SD: F1, 14 

= 13.757, p = 0.003] (Table 2). We also found that the genotype mainly affected accuracy [F2, 14 = 

4.688, p = 0.031] and the total number of trials [F2, 14 = 6.707, p = 0.011]. Further analyses 

revealed a more pronounced drop in accuracy in apoE4 mice than in apoE2 (p = 0.026) (Fig. 5A), 

and generally fewer completed trials in the apoE4 group relative to the apoE2 group (p = 0.010) 

(data not shown).     

 

CPF exposure: Overall, manipulating the SD during CPF exposure period did not affect accuracy 

(Fig. 5A), omissions (Fig. 5B), or latency to respond correctly (Table 2). Furthermore, CPF 

neutralized the effect of the genotype found at baseline on both accuracy (Fig. 5A) and the total 

number of trials (data not shown). The SD challenge during the exposure to CPF, however, led to 

a decline in perseverative responses [F1, 19 = 6.172, p = 0.024] (Fig. 5D).  

 

Wash-out: As at baseline, a significant decrease in accuracy [SD: F1, 19 = 11.211, p = 0.004] (Fig. 

5A) and an increase of omissions [SD: F1, 19 = 8.354, p = 0.010] (Fig. 5B) were again found when 

the SD was reduced from 1- to 0.5-s. The genotype significantly influenced the total number of 

trials performed [F2, 19 = 6.756, p = 0.007], and tended to do so for percentage of omissions [F2, 19 

= 2.944, p = 0.080]. Overall, further post-hoc analyses pointed to a markedly deterioration in 

performance in apoE3 mice: they completed fewer trials (p = 0.005) (data not shown) and made 

more omissions (p = 0.041) than apoE2 mice (Fig. 5B).   

 

- Insert Figure 5 over here – 

 

3.5 Pharmacological challenge 

 

Figure 6 and Table 2 summarize the behavioural effects on the 5-CSRTT described for the three 

genotypes throughout the administration of the GABAergic agonist alprazolam.  
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Baseline: Alprazolam improved overall performance. Specifically, it increased the number of 

trials completed [day: F1, 12 = 14.980, p = 0.003] (Table 2), decreased omissions [drug: F1, 12 = 

68.273, p < 0.001] (Fig. 6B) and decreased both correct [drug: F1, 12 = 3.876, p = 0.077] and 

reward latencies [drug: F1, 12 = 6.280, p = 0.031] (Table 2). However, it increased premature 

responding [drug: F1, 12 = 13.427, p = 0.004] (Fig. 5C). The genotype was also observed to have 

an effect on perseverative responding [F2, 12 = 6.436, p = 0.016]: apoE4 mice persevered more 

than apoE2 (p = 0.038) and apoE3 (p = 0.020) mice, as already observed under standard 

conditions at baseline (Fig. 6D, 2D). However, no interaction genotype x alprazolam was 

observed.  

 

CPF exposure: During the treatment period, alprazolam-associated improvements were more 

discreet. Although omissions continued to decrease [drug: F1, 19 = 6.486, p = 0.021] (Fig. 6B), no 

effect was observed on either correct or reward latencies, or on the total number of trials (Table 

2). Alprazolam continued to increase premature responding in CPF-exposed mice [drug: F1, 19 = 

9.668, p = 0.006]. As above noted, no interaction genotype x alprazolam was observed. 

 

- Insert Figure 6 over here – 

 

3.6 ChE activity 

 

During the course of CPF exposure, we noticed no apparent signs of cholinergic toxicity in any 

group. Relative to controls, plasma ChE activity of CPF-exposed animals dropped to 22.06%. On 

the other hand, ChE activity in brain homogenates assessed immediately after the 4-week 

exposure to CPF was decreased to 76.54% of controls, and was totally recovered after the 

incorporation of the 4-week wash-out period. No differences between genotypes were observed 

in brain ChE activities.  

 

4. Discussion 
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The aim of the current study was primarily to characterize the immediate and delayed effects 

caused by the exposure to CPF on attention, inhibitory control and motivation in pre-trained 

human apoE TR adult female mice. Although all the individuals eventually acquired the task, ε2 

carriers learned it more efficiently than their peers. The increases in premature and 

perseverative responses found in the baseline performance analysis were genotype-dependent, 

pointing to deficient inhibitory control in apoE4 mice. Strikingly, this impulsive- and 

compulsive-like trait was no longer found during the CPF treatment, suggesting a specific 

interaction between the ChE inhibitor agent and the APOE4 genotype. Overall, the 4-week 

dietary administration of CPF, devoid of signs of cholinergic toxicity, gradually compromised 

attentional accuracy and motivation, while it reduced premature responding. These effects 

persisted over time, as they were mostly maintained throughout the 4-week wash-out period, 

even if brain ChE activities were totally recovered. Furthermore, and contrary to expectations, 

apoE3 mice showed attentional disruptions due to motivational factors one month after CPF 

exposure. The pharmacological challenges with the GABAergic agonist alprazolam, covering 

both baseline and CPF exposure periods, improved overall performance and generally increased 

impulsivity. However, interactions with the APOE genotype were not observed. 

In this study, all the mice were able to cope with the 5-CSRTT. Moreover, as in previous 

investigations (Reverte et al., 2015; Siegel et al., 2010), there were no distinguishable 

differences in accuracy between genotypes after they reached the required level. 

Notwithstanding, throughout the acquisition process the rates of learning were different, with 

the APOE2 genotype being the most gifted learner. These results match those recently reported 

by Reverte et al. (2015), and seem to further support the idea of an enhanced learning process 

among apoE2 female mice in the 5-CSRTT. Nevertheless, acquisition in apoE2 male mice was 

also faster than in the two other human apoE TR groups in a Barnes maze spatial task (Peris-

Sampedro et al., 2015a). Thus, ε2 carriers were the most frequent users of direct or serial 

pathways to the target hole, which implied they made a reflective choice (Peris-Sampedro et al., 

2015a). In addition, apoE2 female mice exhibited the lowest reward latencies during the 

baseline period in the 5-CSRTT, indicating increased motivation. In a recent study carried out in 

our laboratory (Reverte et al., 2012), apoE2 female mice showed sustained exploratory 

behaviour in an open-field task. Despite the paucity of epidemiological data, the aforementioned 
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results suggest an advantageous cognitive outcome of the APOE2 genotype. Learning to 

associate specific actions with rewards and being able to remember them are higher-order 

executive functions mostly dependent on prefrontal cortex (PFC) areas (Puig et al., 2014), which 

are highly innervated by dopaminergic neurons. Indeed, dopamine (DA) is involved in motor 

and reward systems and it contributes to adaptive behaviours, such as attention, learning and 

motivation (Nieoullon, 2002; Tye et al., 2012). It has been further shown that its depletion from 

PFC triggers poor attentional outcome and impulsivity (Puig et al., 2014; Puumala and Sirviö, 

1998). Recently, Reverte et al. (2015) found that DA levels in the frontal cortex were higher in 

apoE2 than in apoE4 mice. Hence, increased basal levels of DA in certain brain areas intrinsic to 

the APOE2 genotype may account for its privileged cognitive condition. 

In agreement with our recent study (Reverte et al., 2015), the APOE genotype strongly 

influenced the baseline period in the 5-CSRTT. ApoE4 mice displayed impaired inhibitory 

control, manifested by higher levels of premature and perseverative responses, and also a 

decrease in accuracy when attention was challenged. In recent years, and despite some 

controversy, the hypothesis that a cholinergic dysfunction explains some of the cognitive deficits 

associated with the APOE4 genotype has gained strength. In relation to this, higher levels of 

AChE (Eggers et al., 2006), a greater number of muscarinic receptors (mAChRs) (Cohen et al., 

2003) and a reduced activity of cholinergic neurons (Salehi et al., 1998)  have been considered 

as potential contributors to their cognitive failure. The current results suggest that CPF was able 

to match the attentional ability of the three genotypes, thereby mildly improving the 

deteriorated attentional condition of the APOE4 genotype. Besides, existing research recognizes 

the critical role played by the cholinergic system in impulsivity (Cardona et al., 2006; 

Middlemore-Risher et al., 2010; Montes de Oca et al., 2013), but the underlying mechanisms are 

not yet fully understood. In the present investigation, apparently unprecedented, we found that 

CPF was surprisingly able to restore the impaired inhibitory control inherent to apoE4 mice. 

Similarly, being carrier of the ε4 allele has been shown to condition the response to other 

cholinergic agents. Thus, ChE inhibitors used in the treatment of AD seem to be less effective in 

APOE4 patients (Braga et al., 2014), and CPF itself impaired memory in apoE3 but not in apoE4 

mice (Peris-Sampedro et al., 2015a). In our recent study (Reverte et al., 2015), apoE4 mice were 

the least affected by scopolamine - a muscarinic antagonist -, while ε3 carriers showed increased 
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premature responding upon its administration. Recently, Potter et al., (2012) pointed out that 

the inhibitory behaviour of highly impulsive human subjects was improved by the interaction of 

nicotine with nAChRs. Interestingly, carriers of the apoE4 isoform benefit more from the 

improving effect of nicotine on cognition (Evans et al., 2013). Based on the above, it could be 

hypothesized that CPF improve the poor inhibitory control of apoE4 mice upon interacting with 

nAChRs. 

The anxiogenic character of the APOE4 genotype has extensively been addressed (Reverte et al., 

2014; Siegel et al., 2012), and may partly explain its impulsive condition in the 5-CSRTT (Loos et 

al., 2009). Several studies have used GABAergic pharmacological approaches to test the 

hypothesis that impulsivity is associated with anxiety (Sanchez-Roige et al., 2012). However and 

just as previously reported (Reverte et al., 2015; Stonnington et al., 2009), ε4 carriers did not 

show higher response to benzodiazepines (e.g., alprazolam and lorazepam).  

A review of the literature shows that the 5-CSRTT is a useful tool for assessing not only 

attentional and motivational processes but also inhibitory behaviours (Robbins, 2002; Sanchez-

Roige et al., 2012). A considerable amount of epidemiological data has confirmed that CPF 

contributes to boosting neuropsychological and psychiatric impairments (Mackenzie Ross et al., 

2010; Roldán-Tapia et al., 2005). However, experimental studies on attention, motivation and 

inhibitory control using the 5-CSRTT are scant and rather conflicting. As for attention, while 

Montes de Oca et al. (2013) found no variations seven months after a single dose of 250mg/kg 

CPF, Middlemore-Risher and co-workers (2010) revealed deficits during and after prolonged 

treatment with CPF. In the present investigation, repeated dietary exposure to CPF produced 

protracted attentional disturbances in apoE TR female mice that had stable baseline 

performance, as revealed by increased number of omissions and deteriorated processing speed. 

Despite differences in experimental protocols, our results partially agree with those reported by 

Middlemore-Risher et al. (2010) who found decreased accuracy and increased omissions 

throughout both 14-day and 30-day every other day exposures to 18mg/kg CPF. In line with our 

results, the effects they observed were maintained over a 30-day period of detoxification. The 

mechanisms by which CPF exerts its detrimental effect on attention may be multifactorial. For 

instance, several studies have attributed these effects to the ability of CPF to inhibit AChE 

(Middlemore-Risher et al., 2010; Samsam et al., 2005), but they also emphasized a possible role 
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of nAChRs (Hoyle et al., 2006; Middlemore-Risher et al., 2010). With regard to anticipatory 

behaviour, an array of research has demonstrated that CPF increases premature responding 

(Cardona et al., 2011, 2006; López-Granero et al., 2013; Middlemore-Risher et al., 2010). The 

current findings though, suggest that it has the opposite effect: the exposure to CPF gradually 

reduced premature responses in apoE TR female mice. It is worth noting that basal premature 

responses were notably low in these individuals. Accordingly, the level of premature responding 

in mice has been suggested to be lower than that seen commonly in rats (Humby et al., 1999). 

Nonetheless, the reasons for these discrepancies are not clear and deserve further investigation. 

One explanation may be the substantial differences between protocols. Indeed, all these studies 

were performed using male rats, while we used female mice. In addition, all but one (López-

Granero et al., 2013) are based on single high (Cardona et al., 2011, 2006) or repeated relatively 

high (Middlemore-Risher et al., 2010) CPF doses. Furthermore, there are some differences 

between our dosing schedule and the others: CPF-related effects on the impulsive behaviour of 

the mice were evaluated once they had reached a stable baseline performance and they were 

followed up in the 5-CSRTT during exposure. 

To date, little research has attempted to clarify the role of OPs in inducing motivational deficits. 

Epidemiological data on the subject reported emotional impairments (i.e., anxiety, depression, 

and irritability) as a consequence of occupational exposure to OPs (Bazylewicz-Walczak et al., 

1999; Mackenzie Ross et al., 2010). In the present study, although food was restricted and a 

liquid reinforcer was used to prevent mice from becoming satiated, the reduction in the number 

of trials completed, as well as the increase in reward latencies here found indicate a loss of 

motivation in mice treated with CPF.  

According to Middlemore-Risher et al. (2010), almost all the behavioural features described 

during the exposure to CPF in the 5-CSRTT were still apparent throughout the 4-week wash-out 

period. Strikingly, the APOE3 genotype developed delayed attentional impairments, probably 

due to motivational factors, during the course of the detoxification. In previous studies, we 

found that being carrier of the ε3 allele increases vulnerability to developing obesity and related 

metabolic dysfunctions after CPF exposure (Peris-Sampedro et al., 2015a, 2015b). Furthermore, 

apoE TR mice that had been exposed to CPF ate more than their control counterparts (Peris-

Sampedro et al., 2015a, 2015b). It is difficult to establish whether there are any links between 
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the present and the previous results, and therefore they must be examined more closely in 

further investigations.   

In recent years, there has been renewed interest in ascertaining the role of GABA in impulsivity 

(Hayes et al., 2014). Pharmacological interventions that target GABA receptors (e.g., 

benzodiazepines) have been shown to increase impulsive behaviour (Oliver et al., 2009). 

Moreover, alprazolam improves cognitive function in human volunteers (Bentué-Ferrer et al., 

2001). The current results show that alprazolam improved the overall mice performance in the 

5-CSRTT, notably by increasing the total number of trials and decreasing not only omissions but 

also both correct and reward latencies. Furthermore, the GABAergic agonist increased the 

percentage of premature responses. However, administering the drug during CPF treatment did 

not have any relevant effect. 

 

In summary, the present study demonstrates that the APOE genotype affects attentional 

performance and inhibitory behaviour in the 5-CSRTT. Together with recent data (Peris-

Sampedro et al., 2015a, 2015b), the current findings attest that the three apoE isoforms respond 

differently to a CPF challenge, highlighting the fact that genetics of the population must be taken 

into account in epidemiological studies. According to the current results, a fruitful area for 

further research should be to assess whether the three genotypes differ in terms of the brain 

expression and distribution of mAChRs and nAChRs. It would also be interesting to assess 

whether such genotype-related differences could elicit an array of therapeutic responses upon 

cholinergic treatment. The results of the present investigation provide some support for the 

conceptual premise of potential close links between the cholinergic system and the APOE4 

genotype. Overall, the results described strengthen existing evidence, and point to protracted 

detrimental effects on sustained attention following repeated exposure to CPF. Furthermore, 

this research provides a framework for the exploration of motivational deficits that emerge after 

the administration of CPF, which could subsequently lead to appetite and emotional 

disturbances.  
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Figure captions 

 

Figure 1  

 

 

 

 

 

 

 

 

 

 

Cumulative representation of the total number of sessions required to successfully learn the 5-

CSRTT throughout the 10 acquisition stages for each APOE genotype. Symbols indicate: apoE2 

differs from apoE3 mice (*), and apoE2 differs from apoE3 and apoE4 mice (&) at p < 0.05.  
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Figure 2  

 

 

 

 

Baseline performance of apoE TR female mice on the 5-CSRTT under standard conditions. 

Percentage of accuracy (A), percentage of omissions (B), percentage of premature responses (C), 

and number of perseverative responses (D) are depicted. The symbol ° indicates differences 

between apoE2 and apoE4 mice at p < 0.05.  
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Figure 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance progression of apoE TR female mice on the 5-CSRTT over the three experimental 

periods: baseline, CPF exposure, and wash-out. Percentage of accuracy (A), percentage of 

omissions (B), percentage of premature responses (C), number of perseverative responses (D), 

total number of trials (E), and both correct (F) and reward (G) latencies are illustrated.  
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Figure 4 

 

 

 

Effects of inter-trial interval (ITI) manipulation on the 5-CSRTT performance of apoE TR female 

mice for the three experimental periods: baseline, CPF exposure, and wash-out. Percentage of 

accuracy (A), percentage of omissions (B), percentage of premature responses (C), and number 

of perseverative responses (D) are depicted. Symbols indicate: differences between genotypes 

(°), and effects of the ITI increase (*) within each period at p < 0.05.  
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Figure 5  

 

 

Effects of stimulus duration (SD) manipulation on the 5-CSRTT performance of apoE TR female 

mice for the three experimental periods: baseline, CPF exposure, and wash-out. Percentage of 

accuracy (A), percentage of omissions (B), percentage of premature responses (C), and number 

of perseverative responses (D) are depicted. Symbols indicate: differences between genotypes 

(°), and effects of the SD reduction (*) within each period at p < 0.05.  
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of alprazolam administration on the 5-CSRTT performance of apoE TR female mice for 

the two periods considered: baseline and CPF exposure. Percentage of accuracy (A), percentage 

of omissions (B), percentage of premature responses (C), and number of perseverative 

responses (D) are illustrated. Symbols indicate: differences between genotypes (°), and effects of 

the GABAergic agonist (*) within each period at p < 0.05. 
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5. DISCUSSION 

 

The main objective of the present project was to assess the impact of APOE genotype on 

the one hand, and the pesticide CPF on the other, on both metabolism functioning and cognitive 

performance during adulthood. In addition, it also attempted to shed light whether there are 

human subpopulations particularly susceptible to the detrimental effects of the toxic. To meet 

these objectives, adult apoE TR mice were subjected to repeated dietary doses of CPF, under a 

pattern of moderate dosing, being expected to cause any cholinergic sign of toxicity. In this 

chapter, the results are discussed as a whole, offering a logical sequence of events regarding 

metabolic findings first, a global perspective on the neurobehavioural effects found later, and 

finally, an overview of the implications of these findings. Ultimately, the main limitations of the 

study and future perspectives of work are further discussed.  

 

5. 1. GENERAL DISCUSSION 

When we addressed for the first time the approach of the objectives of the current doctoral 

thesis, we relied on an initial idea evolved around the APOE4 genotype and its vulnerability to 

neurodegeneration. Earlier research by our group (Peris-Sampedro et al., 2014; Salazar et al., 2011) 

had already demonstrated back then that high doses of CPF, either acutely or subchronically 

administered, exacerbated some of the signs observed in the course of AD. In particular, these 

investigations, which were performed in Tg2576 transgenic male mice carrying the Swedish 

mutation responsible for a familial form of AD, revealed increases in β-amyloid levels (Salazar et 

al., 2011), and delayed memory impairments (Peris-Sampedro et al., 2014) after exposure to the 

pesticide.  

 

With these findings as background, we considered the possibility of studying the 

neurobehavioural effects of CPF in individuals with different vulnerability to AD. As it has been 

repeatedly stated throughout this dissertation, APOE gene is polymorphic and its three major 

alleles confer on their carriers increased vulnerability to AD following the ε4 > ε3 > ε2 rank 

order (Roses, 1996). Therefore, we decided to include the apoE TR mouse model in our studies, 
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aiming at approaching the worsening of the disease from a different perspective. Furthermore, 

we were also encouraged by the fact that, at that time, there was no study investigating the 

behavioural response of apoE TR mice to CPF. On the other hand, we also believed it  

appropriate to reduce the dose of treatment, with the intention of matching experimental 

exposures to what would be a more or less real everyday exposure in humans. That was how the 

first experiment comprised within this thesis dissertation arose, in which we sought to assess 

the effects of repeated dietary doses of CPF on spatial learning and memory in apoE TR male 

mice.  

 

During the course of treatment, we proceeded to routine weight control as an essential 

procedure in any toxicological study. To our surprise, we noted that apoE3 mice considerably 

fattened upon CPF exposure and, moreover, were the only ones to do so. This fortuitous 

discovery made us setting a later study aimed at determining more in-depth the metabolic 

effects of repeated exposure to CPF in these animals. To assess the net contribution of the 

APOE3 polymorphism, we decided to include its background model (i.e., C57BL/6N mice) in the 

study. Overall, the results of this second experimental phase stressed that both mice strains 

were metabolically affected by CPF. Nonetheless, in agreement with the results of the first study, 

apoE3 mice were more prone than C57BL/6N to become overweighed upon repeated dietary 

CPF, and exhibited increased levels of leptin. In addition, we also found that exposed apoE3 mice 

displayed a sharper diabetic profile, as indicated by higher insulin levels and HOMA-IR values. 

Intriguingly, CPF generally increased food intake. Having succeeded in replicating the previous 

findings in this second study, we were able to categorically affirm that the possession of the ε3 

allele conferred increased vulnerability to develop obesity and related metabolic disorders 

following CPF exposure. In parallel, in our laboratory we were tuning up the 5-CSRTT in order to 

initiate a series of experiments aimed at characterizing attention, inhibitory control and 

motivation in apoE TR female mice, and at evaluating the effects of dietary CPF on such 

cognitive domains and behaviours. Within these experimental phases, we took advantage of the 

strength of this task to explore whether the APOE3-dependent CPF-induced weight gain and 

general increases in food intake could be due to a deficient inhibitory control. However, the 
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results found failed to associate the exposure to CPF in apoE3 mice with increased impulsive 

and/or compulsive behaviour.  

 

The ε3 has become the most frequent APOE allele in all human populations, but appears to be 

particularly common (>87%) in those that have had a long-established agricultural economy, 

such as those of the Mediterranean region (Corbo and Scacchi, 1999; Egert et al., 2012). It is well-

documented that the transition from hunting-gathering to agriculture promoted prolonged 

episodes of mass starvation due to recurrent crop failures and diminished dietary diversity 

(Prentice et al., 2005). There is also widespread evidence that starvation and famines must have 

exerted a strong selection effect on the human genome, even if that effect has been occasionally 

considered exaggerated (Speakman, 2007). Therefore, an advantage for individuals carrying a 

thrifty APOE allele favouring fatty acid deposition and curbing fatty acid mobilization and 

energy dissipation - such as ε3 – may be reasonable. It could be then argued that such 

advantageous condition against the other two APOE genotypes may have contributed to the 

worldwide expansion of the ε3 allele. Notwithstanding, Western countries are presently facing 

the biggest epidemic of obesity in history. Hence, beyond the advantageous evolutionary 

condition provided by this allele, it stands to reason that the worldwide frequency of the APOE3 

genotype may be currently aggravating the global prevalence of obesity.  

 

A limited number of experimental studies have inquired about the increased vulnerability of 

apoE3 TR mice to diet-induced obesity and related metabolic dysfunctions (Arbones-Mainar et al., 

2008; Huebbe et al., 2015; Karagiannides et al., 2008). Consistently with the results derived from the 

first two experimental phases, apoE3 mice fed either normal (Huebbe et al., 2015) or western-type 

diet (Arbones-Mainar et al., 2008; Karagiannides et al., 2008) were phenotypically more obese and 

exhibited increased fat depots than apoE4 mice. Coupled with this, Huebbe and collaborators 

empirically demonstrated that apoE3 mice had reduced fatty acid mobilization relative to 

apoE4, while apoE4 mice showed increased fatty acid oxidation (Huebbe et al., 2015). 

Karagiannides and co-workers also described hyperglycaemia, hyperinsulinemia, 

hyperleptinemia, glucose intolerance and insulin resistance following a 24-week high-fat regime 

(Karagiannides et al., 2008). Despite the existing experimental evidence, human data are scarce. 
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Indeed, only few studies have attempted to link human APOE genetic variability to obesity and 

related metabolic dysfunctions, and findings are sometimes conflicting. Nonetheless, a recent 

case-control study has associated being homozygous for the APOE3 polymorphism to an 

increased risk of type 2 diabetes in Turkish patients (i.e., ε3/ε3 frequency: 81% in diabetic 

patients vs. 38% in healthy subjects) (Mehmet et al., 2015).  

 

Even though there has been renewed interest in ascertaining the contribution of environmental 

hazards to the global epidemics of obesity and type 2 diabetes; to date, very little research has 

focused on OPs. Epidemiological studies, although being scarce, have successfully linked 

exposure to OPs to type 2 diabetes outcome (Montgomery et al., 2008; Raafat et al., 2012; Saldana et 

al., 2007). However, there remains a paucity of human data on the role played by OP pesticides in 

the aetiology of obesity. Similarly, the same trend is observed in investigations involving 

experimental animals: while research on type 2 diabetes has been more or less recurrent 

(Lasram et al., 2014), the obesogenic effect of OPs has been scarcely addressed in an experimental 

setting. Furthermore, as it has been highlighted in the introductory chapter, evidence is even 

scarcer when focusing solely on CPF. It is important to bear in mind that, once presumed that 

OPs act beyond their ability to inhibit cholinesterases, it can no longer be assumed that they will 

all act alike, since the various compounds belonging to this class may diverge in their actions 

mediated by other mechanisms. Unfortunately, current knowledge of adulthood exposure to 

CPF is limited to four highly-dosed studies carried out in male rats (Acker and Nogueira, 2012; 

Ehrich et al., 2004; Elsharkawy et al., 2013; Meggs and Brewer, 2007), being the bulk of the research 

focused on early life stages and/or on other OP compounds.  

 

Overall, the results of the current project expand the scanty existing literature on the obesogenic 

effect of OP exposures, and further demonstrate their contribution to the development of 

metabolic diseases. In particular, besides exacerbating genotype-dependent insulin and leptin 

increases, body weight gain, and insulin resistance, subchronic exposures to CPF broadly 

induced hyperglycaemia and hypercholesterolemia in adult male mice. These results are in line 

with those from previous studies (Acker and Nogueira, 2012; Ehrich et al., 2004; Elsharkawy et al., 2013; 

Meggs and Brewer, 2007). Data reported by Meggs and Brewer attested increased body weight and 
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fat depots upon chronic exposure to moderate CPF, although they failed to confirm CPF-induced 

adipocyte differentiation (Meggs and Brewer, 2007). On the other hand, the investigations 

conducted by Acker and Nogueira first, and Elsherkawy and co-workers after, also revealed 

disturbances of both glucose and lipid homeostasis in exposed animals (Acker and Nogueira, 2012; 

Elsharkawy et al., 2013). Nevertheless, without underestimating the relevance of these three 

experimental works, none of them examined the hormonal changes elicited by adulthood CPF 

administration. Indeed, only two studies explored the imbalance caused by CPF in hormones 

related to energy homeostasis, but both involved neonatal CPF exposures (Lassiter and Brimijoin, 

2008; Slotkin et al., 2005). It is important to mention that health consequences of environmental 

insults are time dependent, entailing a great difference between effects observed and structures 

affected depending on the age at which exposure occurs. It is well-known that some chemicals 

induce developmental toxicity at doses not affecting adult individuals (Grandjean and Landrigan, 

2014, 2006). Indeed, it has been suggested that the developing brain is more vulnerable to toxic 

injuries, as it is within this period that CNS structures differentiation occurs. Surely this is the 

reason why most scientific research has focused on establishing the impact of early-life 

exposures to toxicants on health, rather than adulthood exposures. By the same token, however, 

assessing the detrimental effects of these substances later in life must also be regarded as 

crucial to elucidate the full range of mechanisms of action inherent to these hazardous agents.  

 

Increased food intake was observed following subchronic exposure to CPF in both, apoE3 and 

C57BL/6N male mice. Accordingly, male rats subjected to a single acute dose of CPF showed 

enhanced food intake (Carvajal et al., 2014). Additionally, the results from the 5-CSRTT indicate 

that these feeding disruptions were not due to altered inhibitory control. In particular, pre-

trained apoE TR female mice subchronically administered CPF did no manifest increased 

premature and/or perseverative responses in the 5-CSRTT. However, it should be taken into 

account that behavioural assessment in the 5-CSRTT involved female mice, whilst male mice 

were used for the first two experimental studies of this thesis. Moreover, as it is commonly seen 

in experimental approaches using the 5-CSRTT, females were food deprived in order to 

stimulate their motivation to perform the task. Consequently, these remarkable differences 

between experimental protocols imply this assumption needs to be interpreted with caution, 
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deserving to be more accurately addressed. It is worth noting that, even if apoE3 female mice 

did not show impaired inhibitory control upon CPF exposure, they did so after being treated 

with scopolamine, a mAChRs antagonist.  

 

For the first time, the results of the present project underscore a markedly vulnerability of the 

APOE3 genotype towards the metabolic-disruptor role of CPF. As it has been previously 

discussed throughout this chapter, the APOE3 polymorphism has been recently associated to 

confer increased efficiency at harvesting dietary energy on their carriers (Huebbe et al., 2015). 

Despite the fact that this inherent characteristic may have accounted for the worldwide 

expansion of this phenotype, it can be now playing a detrimental role to the current prevalence 

of obesity. Although there remains a lack of empirical research concerning the impact of CPF on 

the development of this health condition, the existing evidence points to increased adiposity in 

treated subjects. In the light of the above, it is reasonable to expect an additive effect upon 

combining APOE3 and CPF. Hence, it could be speculated that individuals carrying the apoE3 

isoform and being susceptible to be exposed to CPF would constitute a subpopulation at risk. 

Besides, as most noticeable findings encompassed a worsening of both, insulin and leptin 

statuses in apoE3 mice upon CPF exposure, it is thereby likely to suggest that insulin and leptin 

pathways certainly stand as a future venue of investigation. Although underlying mechanisms 

may be diverse and obviously remain to be elucidated, some hypotheses can be raised, 

including: genotype-dependent CPF-induced differences in adipocyte differentiation, β-cell 

functioning, or key enzymes activities involved in fatty acid uptake, among others.  

 

Returning to the initial approach of this dissertation, three studies were designed to 

characterize the effects of APOE genotype on several cognitive functions, including spatial 

learning and memory, attention, and inhibitory control, as well as its contribution on 

motivational status. Furthermore, we also attempted to assess the impact of dietary CPF in all 

these behavioural processes. Finally, we wanted to establish potential interactions between 

exposure to the pesticide and the three APOE genetic variants, as there was no single study 

inquiring about the response of these genetic polymorphisms to the toxic. When we raised the 
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first study, aimed at assessing spatial learning and memory in apoE TR male mice, previous 

research had already reported back then the anxiogenic character of the APOE4 genotype 

(Reverte et al., 2014; Siegel et al., 2012). Therefore, we decided to replace the MWM for the BM to 

avoid stress induced by swimming. Although references alluding to the use of this task were 

lower than was the case for the MWM, we felt this protocol update was appropriate in view of 

the animal model we were going to use. Subsequently, we became interested in other cognitive 

and behavioural processes, of which there were little published data on: attention, inhibitory 

control and motivation. Thereafter, we designed a set of experiments in female mice that were 

performed using the 5-CSRTT. Besides mere behavioural assessment, we sought to determine 

the neurochemical and neuropharmacological bases of the potential behavioural differences 

among the three APOE genotypes. Thus, we carried out pharmacological challenges using 

GABAergic and cholinergic agents, and we analysed the levels of brain amino acids, 

monoamines, and their metabolites in several brain regions.  

 

It is worth briefly recalling on why the use of different sexes in this three studies. Needless to 

say, experimental investigations involving male individuals are to date much more abundant 

that those using females; does not matter the scientific scope they are focusing on. Female’s 

estrous cycle is often singled-out as the driving reason researchers prefer to use male subjects, 

but this selective discrimination is to blame for the lack of empirical data regarding the 

differences between both sexes. Nowadays, it is well-recognized that they differ in such several 

behavioural processes as emotion (Girbovan and Plamondon, 2013), impulsivity (Bayless et al., 2012; 

Weafer and de Wit, 2014), basal activity (Simpson and Kelly, 2012), learning and memory (Jonasson, 

2005; Li and Singh, 2014), or attention (Bayless et al., 2012). In addition, as it has been suggested on 

many occasions, sex differences are evident when analysing the prevalence and severity of AD. 

In fact, clinical and pre-clinical studies have shown that women not only are more prone to 

develop AD than men, but also show significantly age-related faster decline and greater 

deterioration of cognition than they actually do (Cornutiu, 2015; Li and Singh, 2014; Raber et al., 

2004). On the other hand, it is well-founded that AD patients frequently exhibit deficits on 

executive function and attention, being even proposed as the earliest features of the disease 

(Belleville et al., 2007; Nedjam et al., 2004). Interestingly, a growing body of reports have pointed out 
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the existence of APOE4 – sex interactions, suggesting a detrimental additive effect on the course 

of the disease by combining both the fact of being a woman and carry the ε4 allele (Raber et al., 

2004; Ungar et al., 2014). In the light of the above, we believed it suitable to undertake the 5-CSRTT 

experimental phases with females, instead of males. Nonetheless, we are aware of the 

constraints posed by this decision, and thus consider they merit to be further discussed in 

section 5.2.  

 

In general, behavioural differences among genotypes were noted at the three experimental 

stages, in both male and female mice. This observation supports the existing data (De Blasi et al., 

2009; Greenwood et al., 2005; Suri et al., 2013; Wilson, 2002), and strengthens the idea that the three 

APOE polymorphisms not only condition metabolism, but also cognition in the absence of 

disease.  

 

On the basis of the current results, it could be asserted that the three apoE phenotypes strongly 

modulated cognitive performance during adulthood. Specifically, both spatial learning and 

memory in the BM task and attention in the 5-CSRTT were dependent upon APOE 

polymorphisms. In particular, apoE4 mice displayed the worst acquisition of the BM, and exhibit 

poor attentional abilities in the 5-CSRTT. On the contrary, apoE2 mice showed the best 

performance in the BM, and acquired the 5-CSRTT faster than the other two groups. In between 

the two extremes, the APOE3 genotype appears to be basally favouring the expression of an 

intermediate phenotype. Similarly, previous studies carried out by our group have come to the 

same pattern of findings (Reverte et al., 2012). However, it is noteworthy the paucity of research 

simultaneously evaluating these processes in the three genotypes.  

 

Sometimes referred to as the forgotten allele (Suri et al., 2013), ε2 has often been attributed to 

confer neuroprotection and better cognitive function on their carriers. Accordingly, healthy 

older individuals carrying this polymorphism show reduced cognitive decline, and faster 

processing of information (Suri et al., 2013; Wilson et al., 2002). Nevertheless, underlying 

mechanisms through which the apoE2 isoform acts to improve cognitive performance remain 

poorly understood. The results provided by this thesis, however, offer a valuable contribution 
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into this field. As a matter of fact, adult apoE2 female mice showed higher levels of DA than 

apoE4 in the frontal cortex, which could at least partly explain their privileged cognitive 

outcome. Conversely, the APOE4 genotype has been thoroughly examined because of its 

implication in AD. In this context, its negative influence on several cognitive processes, including 

spatial learning and memory, and attention, has been widely endorsed by a large amount of 

experimental (Pfankuch et al., 2005; Reverte et al., 2013, 2012; Rodriguez et al., 2013) and 

epidemiological reports (De Blasi et al., 2009; Kukolja et al., 2010; Reitz and Mayeux, 2009; Wolk et al., 

2010). When we adapted the protocol of the BM, we decided to rotate the maze 90° between 

each trial in order to avoid any proximal cue in the maze that could potentially facilitate the 

finding of the escape box by non-spatial strategies. This procedure also forced the mice to 

discriminate between relevant and irrelevant cues, thereby adding difficulty to the acquisition of 

the task. With this protocol update, we conditioned the attentional demand, as it was essential 

for the animals to rule out strategic searches to focus on a mapping strategy, by detecting distal 

visual cues. Considering the results found, it is reasonable to expect that the poor attentional 

ability inherent to the APOE4 genotype observed in the 5-CSRTT could be a trigger for the 

impaired learning of the BM task. Similarly, the attentional deficits observed in AD patients are 

sometimes predictors for the disease (Stopford et al., 2012).  

 

Inhibitory control was also differently modulated by APOE polymorphisms. Under basal 

conditions, apoE4 female mice showed increased premature and perseverative responding in 

the 5-CSRTT. In line with this finding, few epidemiological investigations revealed deficits in 

behavioural inhibition in non-demented humans carrying the ε4 allele (Wetter et al., 2005). 

Furthermore, AD patients also display a lack of inhibitory control, but causal factors leading to 

this behavioural deficit remain speculative (Crawford et al., 2013).  

 

Over recent years, an escalating body of research has identified a great number of 

neurobehavioural deficits, including cognitive and motivational disturbances in humans 

exposed to OPs (Farahat et al., 2010; Mackenzie Ross et al., 2010; Rohlman et al., 2015; Ross et al., 2013; 

Stephens and Sreenivasan, 2004). At the experimental level, most of the research has focused on the 

contribution of CPF on boosting deficits in spatial learning and memory. Notwithstanding, more 
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and more evidence is pointing to a disruptor role of CPF in attentional processes (Bushnell et al., 

2001; Middlemore-Risher et al., 2010). In support of this tendency, the current results indicate that 

subchronic exposure to CPF impaired attention in adult apoE TR female mice specifically by 

increasing omissions, and reducing processing speed in the 5-CSRTT. However, the results 

concerning inhibitory control are much more controversial. Indeed, while most studies report a 

diminished inhibitory control upon acute CPF administration (Cardona et al., 2011, 2006; López-

Granero et al., 2013a), our results in the 5-CSRTT seem to point to an improvement of this 

behaviour. The basis of this controversy may lie in the substantial differences between 

experimental protocols. On the one hand, in these studies, animals were behaviourally tested 

long-term after the administration of the pesticide. On the other hand, all of these investigations 

have been performed in males, whereas we used females. In this regard, it has been confirmed 

that both sexes differ in terms of impulsiveness. In particular, it has been suggested that males 

have increased waiting impulsivity than females (Weafer and de Wit, 2014), and thus, 

comparatively, they would show higher premature responding in the 5-CSRTT than females. 

Considering all results, it is plausible that CPF could be differently modulating impulsivity 

according to sex: while it would be contributing to further increase impulsivity in males, it 

would be conversely acting in females. However, supplementary research needs to be carried 

out in order to validate this hypothesis and to assure better understanding of sex differences in 

pathways controlling impulsivity. 

 

Although more discreetly, the scientific literature also reflects the onset of affective disorders 

upon exposure to OPs both in humans (London et al., 2005; Mackenzie Ross et al., 2010; Roldán-Tapia et 

al., 2006, 2005; Steenland et al., 2000) and experimental animals (Aldridge et al., 2005; De Felice et al., 

2014; Venerosi et al., 2015, 2010). Following the same trend, the results of the current thesis 

dissertation prove the emergence of motivational deficits after subchronic exposure to CPF in 

adult apoE TR female mice. Comparisons with previous works lead us to state that the observed 

effects were not due to general malaise or deficits in locomotor activity (Middlemore-Risher et al., 

2010; Montes de Oca et al., 2013; Samsam et al., 2005). Consistently with our observations, male and 

female rats postnatally exposed to 1 mg/kg/day CPF showed anhedonia later in life in a 

chocolate milk preference test (Aldridge et al., 2005). Authors attributed such blunted behaviour to 
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a reduced serotoninergic synaptic function. Intriguingly, apoE3 female mice exposed to CPF 

showed delayed attentional impairments surely due to motivational effects, as revealed by an 

increase in omissions and diminished number of trials completed in the 5-CSRTT across the 

wash-out period.  

 

The results of the present doctoral dissertation demonstrate that the three APOE 

polymorphisms confer on their carriers varying cognitive performance during adulthood. 

Furthermore, the three APOE genotypes have been proved to differently modulate the toxicity 

produced by dietary CPF. Indeed, this APOE-dependent modulation of toxicity might ultimately 

being masking potential effects of OPs in epidemiological approaches not including genetic 

polymorphisms as variables of study. Interestingly, some of the most striking effects reported 

here are observed in those individuals conceptually protected by an apparently healthy 

intermediate phenotype, apoE3. Coincidentally, this phenotype appears to be the most frequent 

in all human population. It should be highlighted that there is a vast number of potential 

chemicals that are currently widespread in the environment, being able to produce by 

themselves both metabolic and neurobehavioural disturbances in humans. Therefore, this fact 

represents an added value, as these toxicants may exacerbate the adverse effects caused by the 

exposure to CPF. Although I am aware of the limitation imposed by the doses used in the current 

study, I firmly believe that, collectively, these results support the imperative need to review 

policies on the use of pesticides and other environmental hazardous agents in view of the 

increasing emergence of mental and metabolic disorders.  

 

5. 2. LIMITATIONS OF THE STUDY 

Despite the relevance and strengths of the results provided by this thesis, several limitations 

need to be addressed.  

 

The first one deals with the doses of CPF we used. The FDA issued a reference value for CPF 

daily intake in adults of 0.005 µg/kg body weight/day, being even higher when toddlers and 

infants are concerned (Eaton et al., 2008). Nonetheless, even if our dosing schedule is relatively 
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low relative to that employed in other similar studies, we must admit that it is still too high to 

directly compare these experimental exposures with what would be the average daily intake in 

humans. However, given the wide range of sources exposure, much uncertainty still exists 

about what would be the total daily exposure to CPF. Therefore, it is not so unreasonable to 

expect that our selected dose itself may reflect to some extent the total human exposure to the 

pesticide. 

 

The second one lies in the use of animals of different sexes throughout the experimental phases. 

As it has been mentioned in more than one occasion, in the first two experiments of this thesis 

we used male mice, whereas in the last two we used female mice. Actually, when we started 

working on the idea of evaluating the behaviour of apoE mice and their responses to CPF, we 

decided to start working with males, because of the benefits that entails. However, as we 

progressed in that way, we decided to embark on a parallel investigation on the effects of the 

pesticide on different cognitive processes, beyond the already exploited spatial learning and 

memory. In this second phase, we decided to use females in view of the reasons already stated 

above. The chance finding of increased weight in apoE3 male mice slightly destabilized the 

initial approach, but we still believe it necessary to delve into the mechanisms by which CPF 

differentially acted in these individuals. So, we decided to continue using male mice in the 

metabolic study, in order to be able to replicate the earlier findings. However, given the strength 

of the 5-CSRTT, we considered the possibility of investigating whether the APOE3 genotype had 

poorer inhibitory control, although females were evaluated. Certainly, the ideal scenario would 

have been running all the tests in both males and females. However, this meant much economic 

cost and animal lives, and unfortunately by that time this was not viable. 

 

The third one refers to the imperative condition of food deprivation in the 5-CSRTT. Although it 

seems logical to use this restrictive condition to ensure animals' motivation to perform the task, 

I do not know to what extent this may have influenced the results, or may have interacted with 

either the OP agent or APOE genotype.  

 

5. 3. FUTURE PERSPECTIVES 
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The results of the current investigation stress the importance of studying genetic vulnerability 

to toxic agents, and point to a more vulnerable phenotype – apoE3 -, which has been so far 

considered as the healthy one. Nonetheless, these findings have thrown up many questions in 

need of further investigation. Basically, research should henceforth focus on the following 

points: a) to provide more face-validity to the experimental exposure to CPF compared to that 

seen in humans, b) to delve into the neurobehavioural and metabolic effects observed, c) to 

elucidate the underlying mechanisms through which CPF acts, d) and to assess whether these 

results can be epidemiologically extrapolated.  

 

The following proposals offer some direction for the development of future research that will 

substantially extend the knowledge provided by the results of this thesis.  

 

· The doses of CPF used in these studies, albeit cholinergic symptom-free, were relatively high 

when compared with those that would be expected for typical non-occupational exposures in 

humans. Therefore, I propose reducing the treatment dosing in order to shed light into what CPF 

doses would be exempt from behavioural and/or metabolic effects.  

 

· Furthermore, potential metabolic alterations were assessed immediately after exposure to the 

pesticide, period during which there was still plasma ChE inhibition. Certainly, it would be very 

interesting to include a wash-out period to better characterize the net contribution of acute ChE 

inhibition on CPF-related metabolic consequences. On the other hand, the results of this thesis 

attest differences between genotypes, as well as APOE – CPF interactions at punctual life stages, 

but they fail to follow their time course. Bearing in mind the lack of consistent data concerning 

long-term behavioural effects of CPF exposures, I consider it crucial to evaluate them in a 

further study involving the three APOE genotypes.  

 

· The current results confirm a set of behavioural differences between the three APOE 

genotypes: spatial learning and memory, inhibitory control, and attentional processes depended 

upon APOE polymorphisms. To go beyond, additional experimental investigations are needed to 

appraise the involvement of APOE genotype in other behavioural processes, of which little 
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evidence is actually available, such as aggressiveness, social hierarchy, social motivation, or 

feeding behaviour.  

 

· The effects of dietary CPF on metabolism and especially the increased vulnerability of the 

APOE3 genotype towards them constitute one of the cornerstones of this thesis. 

Notwithstanding, these results need to be further corroborated by using in vivo approaches. In 

particular, it would be worthwhile to examine both glucose and insulin sensitivities by means of 

oral glucose and insulin tolerance tests, respectively. Additionally, it is necessary to clarify 

whether there is a direct relationship between the weight gain observed and a greater amount 

of fat deposited. I thereby suggest a parallel follow-up study in which animals could be non-

invasively subjected to whole body composition analysis by means of periodic scans using 

nuclear magnetic resonance technology. This system is extremely useful as it enables lean, fat, 

and total body water to be assessed simultaneously. Besides, to the extent possible, it would be 

compelling to include the three apoE TR mice groups within these studies, in order to 

investigate the different metabolic responses of the three genotypes after CPF exposure.  

 

· Coupled with the latter, increased leptin levels inherent to apoE3 male mice seem to further 

support the idea of genotype-dependent increases in adiposity upon CPF exposure. 

Nevertheless, this statement must be further validated by in vitro studies. In this regard, it is 

well-established that apoE induces in vitro adipocyte differentiation. However, the extent to 

which the different protein isoforms modulate this process has not yet been demonstrated, nor 

is the case for CPF, implying that it is a promising area for future research.  

 

· Further on, it has been suggested that developmental exposures to some neurotoxicants could 

contribute to a subsequent preference for a high-fat diet later in life (Slotkin, 2011). On the other 

hand, a recent cross-sectional study revealed that diary dietary patterns (i.e., processed energy-

dense food, rich in refined carbohydrates, sugar and fat vs. balanced diet) are associated with 

cognitive performance in children (Park et al., 2012). On the basis of the above, it could be 

interesting to inquire about potential interactions between APOE genotype, CPF exposure, 

dietary choices and learning disabilities.  
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· Emotional disturbances ensued upon subchronic exposure to CPF in female mice. I therefore 

propose to investigate these outcomes more thoroughly. This intention requires the 

implementation of a battery of tests mainly aimed at evaluating the depressive component of 

CPF exposure, such as the hotplate (i.e., a simple test to grade pain response in mice), forced 

swim test (i.e., an established paradigm to measure the tendency to give up on attempts to 

escape from an unpleasant environment), or saccharine/chocolate preference test (i.e., a test to 

estimate anhedonia, a depressive-like behaviour). Moreover, considering the growing body of 

studies supporting the CPF impact on other neurotransmitter systems, including the 

serotoninergic system, it would be of interest to assess whether the three APOE genotypes 

basally differ in the functioning of this system.  

 

· Finally, it should not be forgotten that it is essential to relate the findings in experimental 

animals with observations at the population level. In regard to this, it has been shown that 

carriers of the 1914G allelic BChE variant, besides having a lower enzyme activity, exhibit the 

highest rates of obesity and TG levels, which may cause an imbalance in lipid metabolism, and 

ultimately lead to an increased predisposition to obesity and to a lower ability to maintain 

metabolic homeostasis (Lima et al., 2013). At the same time, it is widely accepted that CPF inhibits 

BChE. So, it would be of interest to study whether the obesity-like phenotype imposed by the 

genetic 1914G variant is aggravated by the fact of being carrier of the ε3 allele within a 

population highly exposed to CPF.  
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6. CONCLUSIONS 

 

APOE genotype effect 

 

❶ APOE genotype affects spatial learning and memory during adulthood. ApoE4 male mice 

display the worst acquisition of the BM task, followed by apoE3, and apoE2, which show the best 

acquisition performance. On the other hand, apoE2 male mice exhibit the worst retention of the BM 

task.  

 

❷ APOE genotype conditions the acquisition of the 5-CSRTT during adulthood. ApoE2 female mice 

acquire the task faster than apoE3 and apoE4 female mice.  

 

❸ APOE genotype modulates inhibitory control and sustained attention during adulthood. ApoE4 

female mice show a lack of inhibitory control and an impaired sustained attention in the 5-CSRTT. 

 

❹ Dopamine levels in the frontal cortex of adult apoE2 female mice are higher than those found in 

apoE4.   

 

❺ The muscarinic antagonist scopolamine rises premature responding in adult apoE3 female 

mice, but not in apoE2 or apoE4. 

 

CPF effect 

❻ Subchronic dietary exposure to CPF during adulthood alters metabolic functioning in male 

mice. Specifically, it elicits hyperglycaemia and hypercholesterolemia, increases insulin levels and 

impairs HOMA-IR index scores. 

 

❼ Subchronic dietary exposure to CPF during adulthood enhances food intake, and tends to 

increase acyl ghrelin levels in male mice. 
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❽ Subchronic dietary exposure to CPF during adulthood induces protracted attentional and 

motivational deficits in female mice. 

 

❾ Subchronic dietary exposure to CPF during adulthood reduces waiting impulsivity in female 

mice. 

 

APOE – CPF interaction effect 

❿ Chronic and subchronic dietary exposures to CPF during adulthood lead to significant body 

weight gain in apoE3 male mice. 

 

⓫ Chronic dietary exposure to CPF during adulthood impairs spatial memory in apoE3 male mice. 

 

⓬ Adult apoE3 male mice are more vulnerable than C57BL/6N to the metabolic-disruptor role of 

CPF. In particular, apoE3 mice have higher insulin and leptin levels, as well as higher HOMA-IR 

index scores.  

 

⓭ Subchronic dietary exposure to CPF during adulthood reverses the lack of inhibitory control 

inherent to apoE4 female mice.  
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“A black cat crossing your path signifies that the animal is going somewhere.” 

~ Groucho Marx 
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