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Abstract

Distribution of goods is essential for the economic development of cities but at the same time
it entails several problems to the urban systems and different stakeholders. Carriers spend a
significant portion of their cost in the last-mile distribution due to traffic congestion and lack
of available loading/unloading facilities. In turn, citizens undergo environmental effects like
pollution, noise or space competition.

Collaborative transportation is currently one of the major trends in transportation research
due to its potential benefits with little need for big infrastructure or costly investments. This
thesis deals with three different situations that appear repeatedly in the urban context, which
can be improved by means of collaboration among private companies and/or public author-
ities.

The first part of the thesis studies a mildly disruptive collaboration approach, which is based
on sharing loading/unloading urban facilities via an in-advance booking system, managed by
local public authorities. In this context, the Parking Slot Assignment Problem is the math-
ematical problem that finds assignments of carriers to parking places that satisfy their time
windows requests. We propose a feasibility model first, and then four other models with vari-
ous objective functions that penalize the deviation from the requested time windows in differ-
ent ways. We propose and compare two different formulations: one with time as a continuous
variable and a second one with time discretization. Finally, we evaluate and compare the dif-
ferent proposals with extensive computational experiments in a set of test instances.

An intermediate level of collaboration among carriers is studied in the second part of this
thesis. Urban areas have high customers density and usually there are shared customers (cus-
tomers with demand from different carriers in the same time horizon). We propose an inno-
vative problem: the Shared Customer Collaboration Vehicle Routing Problem, where several
carriers are willing to collaborate transferring part of the demand of their shared customers, if
the overall transportation cost is reduced. A vehicle-based and a load-based formulation are
studied, and experimented over a specifically-generated instance set.

The highest level of collaboration in urban deliveries resorts to Urban Consolidation Cen-
ters, which are normally led by public authorities but need the collaboration of carriers for
a successful implementation. Urban Consolidation Centers are urban terminals where the
load from different carriers is consolidated and then a unique neutral carrier performs last-
mile deliveries. In the third part of the thesis we propose continuous models that analyze the
improvement in efficiency of urban distribution with the use of Urban Consolidation Cen-
ters under different assumptions. Continuous approximation models are known to produce
robust solutions, which are useful to provide guidelines for general cases through sensitive
analysis.

In the three parts of the thesis, innovative models and approaches are proposed and validated
on experiments that use data from real scenarios.






Resum

La distribucié urbana de mercaderies és una activitat essencial pel desenvolupament de les
ciutats. Al mateix temps, pero, comporta diversos problemes als nuclis urbans i als diferents
actors involucrats. Els costos de la distribucié urbana resulten una part molt significativa
dels costos dels transportistes, especialment a causa de la congestié i la manca de zones de
carrega i descarrega. Per altre banda, els ciutadans pateixen els efectes de la pol-lucié, el soroll
o la competicié per I'espai public.

El transport col-laboratiu és actualment una de les principals tendéncies de recerca en trans-
port, doncs ofereix beneficis atractius amb poca inversié. Aquesta tesi tracta tres situacions
que trobem repetidament en el context urba, situacions on diverses formes de col-laboracié
poden representar una millora, i que consideren tant col-laboracié entre empreses privades
com la col-laboracié conjunta d’empreses privades amb les administracions.

La primera part de la tesi estudia un nivell de col-laboraci6 baix, basat en compartir les zones
de carrega i descarrega gracies a un sistema de reserves gestionat per I'administraci6. En
aquest context, sorgeix el Parking Slot Assignment Problem (Problema d’assignacié de places
de parking), com el problema matematic que assigna transportistes a places de parking satis-
fent els seus requeriments a través de finestres temporals. En primer lloc proposem un model
de factibilitat, i després proposem quatre models amb funcions objectius desiguals que penal-
itzen la desviacié de les finestres temporals de formes diferents. Es proposen i comparen dues
formulacions: una amb el temps com una variable continua, i la segona amb discretitzaci6
temporal. Finalment, s’avaluen i es comparen les diferents propostes a través d'uns extensos
experiments computacionals en un conjunt de test basat en dades reals.

Un nivell intermedi de col-laboraci6 entre transportistes s’analitza en la segona part d’aquesta
tesi. Les arees urbanes presenten una alta densitat de clients i és comu trobar clients compar-
tits (és a dir, clients que reben mercaderies a través de diferents transportistes en el mateix
interval temporal). Proposem un problema innovador: el Shared Customer Collaboration Ve-
hicle Routing Problem (Problema de rutes de vehicles amb col-laboracié de clients compar-
tits), on diferents transportistes estan disposats a col-laborar transferint part de la demanda
dels seus clients compartits, si el cost total de transport es redueix. S’estudien dues formu-
lacions: una basada en els vehicles i una altra basada en la carrega, i s'experimenta en un
conjunt d’'instancies generades.

El maxim nivell de col-laboracié en distribucié urbana de mercaderies és 1'tis de centres de
consolidacié urbana. Aquests centres estan normalment liderats per 'administracié ptublica
pero necessiten I'activa col-laboraci6 dels transportistes per aconseguir una implantacié amb
exit. Els centres de consolidaci6 urbana s6n terminals urbanes on es consolida la carrega dels
diferents transportistes i després, un tnic transportista neutral realitza la distribucié d’dltima
milla. En aquesta tercera part de la tesi proposem models continus que analitzen la millora
de l'eficiencia en la distribucioé urbana a través de 1'is de centres de consolidacié urbana amb
diferents hipotesis. Els models continus produeixen solucions robustes, que sén ttils per pro-
porcionar guies en casos generics a través de I’analisi de sensibilitat.

En les tres parts de la tesi es proposen nous enfocs i models que es validen a través d’experi-
ments utilitzant dades obtingudes d’escenaris reals.






Resumen

La distribucién urbana de mercancias es una actividad esencial para el desarrollo de las ciu-
dades, aunque al mismo tiempo conlleva diversos problemas en los ntcleos urbanos y los
distintos actores involucrados. Los costes de la distribucién urbana resultan una parte muy
significativa de los costes de los transportistas, especialmente a causa de la congestién y la
falta de zonas de carga y descarga. Por otro lado, los ciudadanos sufren los efectos de la con-
taminacion, el ruido y la competicién por el espacio publico.

El transporte colaborativo es actualmente una de las principales tendencias en la investi-
gacion en transporte, pues ofrece beneficios atractivos con poca inversiéon. Esta tesis trata
tres situaciones que se reproducen repetidamente en el contexto urbano, donde distintas for-
mas de colaboracién (tanto entre compafiias privadas como con administraciones) pueden
representar una mejora.

La primera parte de la tesis estudia un nivel de colaboracién bajo, basado en compartir las
zonas de cargay descarga a través de un sistema de reservas gestionado por la administracion.
En este contexto surge el Parking Slot Assignment Problem (Problema de asignacién de plazas
de parking), como el problema matemaético que asigna transportistas a plazas de parking sat-
isfaciendo sus requerimientos a través de ventanas temporales. En primer lugar proponemos
un modelo de factibilidad, y después cuatro modelos con funciones objetivo que penalizan la
desviacion de las ventanas temporales de formas distintas. Se proponen y comparan dos for-
mulaciones: una con el tiempo como una variable continua, y la segunda con discretizacién
temporal. Finalmente, se evaliia y compara las distintas propuestas a través de unos extensos
experimentos computacionales en un conjunto de test basado en datos reales.

Un nivel intermedio de colaboracién entre transportistas se analiza en la segunda parte de
esta tesis. Las dreas urbanas presentan una alta densidad de clientes, y es comun encontrar
clientes compartidos (es decir, clientes que reciben mercancias a través de distintos trans-
portistas en el mismo intervalo temporal). Proponemos un problema innovador: el Shared
Customer Collaboration Vehicle Routing Problem (Problema de rutas de vehiculos con colab-
oracion de clientes compartidos), donde los distintos transportistas estan dispuestos a colab-
orar transfiriendo parte de la demanda de sus clientes compartidos, si el coste total del trans-
porte se reduce. Estudiamos dos formulaciones: una basada en los vehiculos y otra basada en
la carga, y se experimenta en un conjunto de instancias generadas.

El méaximo nivel de colaboracién en distribucién urbana de mercancias es el uso de cen-
tros de consolidacién urbana. Estos centros, normalmente liderados por la administracién
publica, necesitan la activa colaboracién de los transportistas para conseguir una exitosa im-
plantacién. Se trata de terminales urbanas donde se consolida la carga de distintos trans-
portistas y, después, un tnico transportista neutral realiza la distribucién de tltima milla. En
esta tercera parte de la tesis proponemos modelos continuos que analizan la mejora de la
eficiencia en la distribucién urbana a través del uso de centros de consolidacién urbana con
distintas hipétesis. Los modelos continuos producen soluciones robustas, que son ttiles para
proporcionar guias en casos genéricos a través del andlisis de sensibilidad.

En las tres partes de la tesis se proponen nuevos enfoques y modelos que se validan con ex-
perimentos utilizando datos obtenidos en escenarios reales.
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Preface

Distribution of goods currently entails several problems to urban systems, including stake-
holders and urban fabric. The urban fabric of most major cities is dense and complex. Fur-
thermore, there is a high heterogeneity of zones: residential, commercial, industrial, recre-
ational and parks, along with different requirements for the transportation of goods. Streets
are unequal, unidirectional or bidirectional, giving different accessibility to the city, and with
small space to unload/load goods. The most emblematic stakeholders are carriers, who spend
most part of their time and a significant portion of their cost in the last-mile distribution.
The main reasons are the increasing levels of traffic congestion, the lack of unloading/loading
zones and other inefficiencies. In turn, citizens as passive stakeholders undergo environmen-
tal effects like pollution, noise or space competition. The other important stakeholders are
customers, that demand good level of service: compliance of time windows, high frequen-
cies and competitive prices. Although disturbances caused are discouraging, it is necessary to
bear in mind that urban distribution is crucial to the city’s economic development.

The above problems are challenging because the market is heterogeneous with multiple types
of products, roles, and opposite objectives. Although they cause great inconveniences in most
of the cities and several types of policies have been tested in different municipalities, there is
still a lack of clear guidelines on the best policies for each context, problem or situation. City
authorities are also becoming aware of the environmental impact of freight activities in their
areas and try to push carriers to find new solutions that improve city logistics. Historical cen-
ters and highly dense commercial areas are specially sensitive and are trying to be protected
from massive freight operations. Alternatives are found through innovative solutions. Thus,
proposing, modeling and evaluating solutions involving public and private agents that pro-
duce attractive benefits for companies and for citizens is essential to overcome the mentioned
difficulties.

Nowadays, collaborative transportation is one of the major trends in transportation research.
Not only in freight transportation but also in passenger transportation, with multiple tools
that allow passengers to contact other passengers or drivers to share the ride. In general, the
collaborative economy is becoming more popular worldwide due to its potential benefits with
little need for organization or facilities. In the case of freight transportation the increasing
costs for carriers combined with a great market competition motivate transport companies to
explore new and more efficient solutions. Some elements of urban systems where collabora-
tion may lead to considerable improvements are highlighted below.

From a merely private business perspective, carriers could take advantage of some type of col-
laboration. Agreements between two or more carriers can be reached to transfer some specific
customers. For instance, the location of a given customer might render the interchanged so-
lution more profitable for both carriers, who then will have to agree on the economic value.
Alternatively, when common customers exist, i.e. customers receiving goods from more than
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one carrier, transfering them among carriers can potentially save costs in the last-mile distri-
bution.

Support from public authorities can further stimulate collaboration if public space is devoted
to goods operation activities. Public space is scarce and needs to be properly assigned and
shared. In the case of loading and unloading areas, public authorities offer private carriers
public space where they can operate. The use of this space can be organized in a collabora-
tive manner, where all private carriers express their needs in advance and a fair allocation is
provided that guarantees space to all of them.

The above forms of collaboration can be enhanced if combined with the consolidation con-
cept. The basic idea of consolidation in urban environments is to gather demand from mul-
tiple origins, which was planned to enter the city with different vehicles with low load factor,
and to ship it together with a lower number of vehicles with higher load factor. Without con-
solidation, vehicles tend to run with low load factors due to small time windows, market split
among carriers and backhauling. Consolidation allows to cut down the number of vehicles-
kilometer to fulfill the freight demand of a particular urban parcel. Reducing the vehicles-
kilometers is beneficial for carriers, who save cost and time, and for citizens who undergo less
impacts. Due to the above issues, consolidation of demand is crucial to reduce the number of
vehicles-kilometer.

This thesis is aimed at proposing, studying, validating, and analyzing consolidation and col-
laborative solutions to three particular problems that appear repeatedly at different levels in
an urban context. The main three problems investigated are not directly related among them.
However, the framework where they arise is similar and the purpose is the same: to propose
solutions that enhance urban deliveries with different levels of collaboration. To that end,
some strategies will be designed and compared to quantify the costs and the benefits, and the
attributes of the problems and the solutions will be examined.

As already mentioned, one conflictive issue in urban distribution is the management of load-
ing and unloading areas. Administrations must face the following related problems: How
many areas to reserve and where they should be allocated; How to assure that carriers make a
good use of the allocated space; and, How to avoid illegal parking, among others. At present,
the evolution of technology and the decrease of the price of technological devices allows new
possible solutions with collaboration among carriers, for the rational and fair use of the space.
In this thesis we propose a prebooked system for loading/unloading areas for carriers. The
system operates in the following way: carriers request some time period for the use of the
loading/unloading areas, and the problem arises trying to comply with all the service requests
for a limited number of parking slots. The objective is to efficiently assign requests to time
slots in order to assure that the system can be implemented in reality. In Part I of this thesis,
we propose different models and objective functions to compare and decide the most suitable
one for the problem. Moreover, the essential problem that we address can be applied to other
transportation problems of resource allocation with time windows. For instance, the admin-
istration of public rechargeable points for electrical vehicles or the use of docks in a freight
terminal. Therefore, the study is not interesting only from its theoretic point of view but also
for its potential applications.

Alternatives for collaboration from a private business perspective may range from punctual
agreements between two companies to cover peaks of demand to the use of a unique com-
mon carrier in the last-mile distribution. At one intermediate level, we propose a strategy
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with high potential benefits, which consists of transferring shared customers among carriers.
In urban environments, where density is high, we find several customers visited by more than
one carrier, or reduced areas with several customers that receive goods from different carriers.
The transfer in advance of this demand between carriers, can greatly reduce the last-mile de-
livery cost, since we allow customers to be visited only once per time horizon. Collaboration
strategies for shared customers are proposed and analyzed in Part II of this thesis.

Consolidation in urban environments can be performed through Urban Consolidation Cen-
ters (UCCs). UCCs operate as transshipment and consolidation points and usually consist of
a small urban terminal that shelters and facilitates load operations between carriers. Multiple
carriers with demand destined to the urban area visit the consolidation center, and transfer
their demand to a unique carrier that performs the last-mile deliveries with higher demand
density. This operation avoids a great number of vehicles entering the urban area to deliver
their loads. In [78] consolidation is seen as one of the major solutions for the city logistics
problematics. In Part III, UCCs are analyzed from a strategic point of view for the improve-
ment of urban deliveries.

In all three parts of the thesis, the current situation as well as alternative systems, potentially
more efficient, are modeled in order to quantify the potential advantages of the proposed so-
lutions. In the case of the UCC, the use of a continuous model provides a general insight of
the performance in a general situation. These types of models allow to detect key variables,
understand relationships among parameters and draw general conclusions about the situa-
tion.

Mixed integer mathematical programming models are used to analyze the other problems
studied in this thesis: collaboration among carriers when it is possible to transfer among a re-
duced set of customers and the fair allocation of loading/unloading requests in a public space
devoted to carriers operations inside the city. These models provide detailed insight for each
specific situation. Nevertheless, depending on the properties of the problem and the specific
formulation, the general solution methodology can become very complex or computationally
unaffordable.

Since the problems addressed in the thesis can be frequently detected in most cities, all pro-
posed models have been tested computationally on instances based on real life data. Data
was collected, mainly from the city of Barcelona, to generate a set of benchmark instances
that could reliably represent real situations. Indeed, the proposed models could be applied
to other context or cities providing particular detailed solutions for other cases. Furthermore,
additional experiments have been run with sets of randomly generated benchmark instances.

1.1 Contributions

The major contributions of this thesis are described below grouped together for each of the
parts.

In Part I, we propose a new problem, the Parking Slot Assignment Problem, that arises in pre-
booking systems for loading/unloading facilities and we propose five different models which
mainly differ in the objective function. We implement two different formulations, one that
considers time as a continuous variables and one with time discretization. We prove with
computational experiments that the earliness/tardiness criterion produces solutions which
are also good for the other models. From a more theoretical point of view, we propose a con-
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dition to check unfeasibility, and we compare the domains of the different models.

In Part I1, we propose a new problem for collaboration among carriers, the Shared Customer
Collaboration Vehicle Routing Problem. For this problem, we propose two different formula-
tions: a vehicle based and a load based formulation. We prove experimentally that the load
based formulation outperforms the vehicle based formulation. The numerical results from
the computational experiments allow us to evaluate the cost reduction that can be attained
using this form of collaboration.

In Part III, we propose an analytic approach to evaluate the efficiency of the UCCs. We prove
that the estimation of benefits assuming equal-market share among carriers is valid since the
effects of different market shares among carriers is not significant. Also, we provide a tool to
limit the participation of small carriers on UCCs by controlling the minimum savings contri-
butions.

1.2 Publications and conferences

Some of the results of this thesis have been published in international journals or presented
at conferences or workshops. The publications and conference participations is listed here:

Publications

¢ M. Roca-Riu, E. Fernandez, and M. Estrada, Parking slot assignment for urban distribution:
models and formulations, in OMEGA - The International Journal of Management Sciences
57,2015.

¢ M. Roca-Riu, M. Estrada, and E. Ferndndez, An Evaluation of Urban Consolidation Centers
through continuous analysis with non-equal market share companies, in Procedia - Social
and Behavioral Sciences, 2016. Ninth International Conference on City Logistics, Tenerife,
Spain.

¢ M. Roca-Riu and M. Estrada, An evaluation of urban consolidation centers through logistics
systems analysis in circumstances where companies have equal market shares, in Procedia -
Social and Behavioral Sciences, 2012. Seventh International Conference on City Logistics,
Mallorca, Spain.

¢ M. Roca-Riu, E. Fernandez, and M.G. Speranza, The Shared Customer Collaboration Vehicle
Routing Problem, in preparation.

Conferences

¢ M. Roca-Riuy, E. Fernandez, and M.G. Speranza, The Vehicle Routing Problem with Shared
Customers, in The fifth Workshop on Combinatorial Optimization, Routing and Location
(CORAL), 2015. Salamanca, Spain.

¢ M. Roca-Riu and E. Ferndndez, Parking Slot Assignment for urban distribution: models and
formulations, in The fourth meeting of the EURO Working Group on Vehicle Routing and
Logistics Optimization (VEROLOG), 2015. Vienna, Austria.

¢ M. Roca-Riu, E. Ferndndez, and M. Estrada, Parking slot assignment for urban distribution:
models and formulations, in IFORS-Conference of the International Federation of Opera-
tional Research Societies, Invited session on City Logistics, 2014. Barcelona, Spain.
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Introduction

Major cities face multiple problems due to delivery operations. Delivery operations are the
final step in the chain of urban distribution. They normally occur on public space and are
known to be a crucial part of urban deliveries [49]. They greatly impact cities, neighborhoods
and sensible areas in terms of air quality, visibility, safety and occupation of space.

In many cases city councils regulate the conditions under which carriers may operate, and
then each carrier acts as its own decision maker, scheduling its operations according to estab-
lished rules and its own resources limitations. In contrast, city councils must act as common
decision makers for all operations carried out with the use of public space, since a criterion on
how to allocate public space among carriers is needed. The adequate management of pub-
lic space is crucial for a successful urban distribution. The lack of parking facilities has been
pointed out among the aspects with higher impact in urban delivery (see, for instance, Ma et
al. [49]).

On the other hand, the advance of technological systems and the decrease of the price of tech-
nological equipment allow the implementation of new solutions, which at reasonable cost
can control and organize loading and unloading areas. Recently, the city of Barcelona has
changed the control system of the loading and unloading areas. From the year 2001, trans-
port companies were using a timely cardboard placed in the vehicle to indicate the beginning
of the operation activity, which had to be completed within 30 minutes. From March 2015,
the control is done by a mobile app in combination with the geolocation of the phone. The
new system allows remote control of the users, and the collection of more information for a
better planning.

Apart from controlling the correct use of the offered resources, the ultimate goal of the city
council is to regulate the use of public space in order to prevent carriers from illegal parking
and to improve urban distribution. Currently in most of the cities, some public space, con-
sisting of a set of parking places, is already allocated for loading and unloading operations at
a given area during some hours each day. This part of the thesis deals with the problem of al-
locating public parking space in the streets during the loading and unloading hours for goods
distribution from an operations research prespective. In particular, we propose a system in
which the city council would ask carriers to express in advance their requests for a parking
time interval and to inform about the duration of their operations. These durations will take
into account not only loading and unloading activities but also movement times between the
parking space and the operation site. Then, each carrier would be assigned a time interval,
based on his preference. Since carriers will know in advance their assigned time interval, they
will be able to re-optimize their routes beforehand so as to arrive on time to the assigned park-
ing space. Thus, we assume that carriers will accept and respect the assigned intervals, even
if they do not fit their requests.



8 Introduction

In the proposed system carriers can only park at designated parking areas and during previ-
ously assigned time periods, which are organized in advance by the city council. Such a system
would eliminate the very negative effects in traffic flow due to carriers double-lane parking
and would also benefit carriers greatly, since available parking space would be guaranteed at
designated time periods. The system is based on the collaboration between the regulating
public entity, and the different carriers to make the best use of a public facility. The public
entity offers space and the allocation of carriers to a spot, and carriers participate obeying
assignments and respecting other carriers in their time slots. Some practical studies have
proven the benefits of establishing a booking system for allocating in advance carriers to time
slots [62, 54, 25]. To the best of our knowledge, however, the existing works have used prior-
ity lists to assign slots to requests. The problem described in this part of the thesis considers
alternative criteria for fairly assigning requests to time slots.

We propose several alternatives to model the Parking Slot Assignment Problem (PAP) that we
introduce. For all of them we discuss alternative mathematical programming formulations,
study some of their properties and design a simple heuristic. Extensive computational ex-
periments have been run to analyze and compare the performance of each of the proposed
models and to evaluate their requirements in terms of computing times.

Chapter 2 revises the existing literature relevant to the problem. The PAP is formally intro-
duced in Chapter 3, and several modeling alternatives for the PAP are also discussed. While
the first model focuses on the feasibility of the problem, the remaining alternatives consider
other optimization criteria. In Chapter 4 two different formulations are proposed and the sim-
ple heuristic is described. Section 4.1 presents a Mixed Integer Linear Programming (MILP)
formulation for the feasibility model, based on the Vehicle Routing Problem (VRP), which
can also be adapted to the alternative models, and some of their properties are studied. In
Section 4.2 MILPs are proposed for the different models, based on the structure of the Assign-
ment Problem (AP). In Section 4.3 the greedy heuristic is described. Chapter 5 describes the
computational experiments we have run, and presents the obtained results together with an
extensive analysis and comparison. The results from both formulations and the heuristic on
the different proposed model are analyzed and compared. We close this part of the thesis in
Chapter 6 with some comments and possible avenues for further research.

Part of this work has given rise to a journal article in OMEGA - The International Journal of
Management Science, see [71].
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Several works point out the advantages of allocating specific parking facilities for carriers in
order to reduce the negative impact of distribution operations. As an example, the results of
[62] illustrate the positive response of most drivers and truck operators to one such initiative
in Kobe (Japan) in 2001. It is however clear that, even if a set of parking places is allocated,
negative effects will prevail when carriers arrive to delivery areas but find no available parking
space. The benefit of establishing some booking system for allocating in advance places has
been assessed in several practical studies. The results of a pilot test carried out in 2005 in Dos
Hermanas, Sevilla (Spain) [54] confirm the effectiveness of the internet booking system im-
plemented for the assignment of parking space in load areas of the city center. An in-advance
booking system was theoretically studied in [51] for the city of Winchester (UK) in the High-
street area. Supported by an EU project [25], a recent eight months pilot test in Bilbao (Spain)
successfully trialled a booking system for carriers in four zones of the city. Free areas could be
assigned to users without pre-booking, and pre-booked carriers could be reassigned if they
were out of schedule, as well.

In the above referenced works priority lists have been used for deciding the assignment of
places to requests. However, alternative criteria or techniques can be applied for establish-
ing the allocation of parking space to carriers. In this part of the thesis we propose the use
of mathematical programming optimization models for solving the PAP. To the best of our
knowledge this problem has not been addressed so far in the literature in the context of ur-
ban distribution. Nevertheless, we can find some similarities with other problems studied in
the literature. For instance, the PAP can be seen as a particular case of a scheduling prob-
lems with time windows (see, for instance, [42]). Further, the concept of earliness/tardiness,
as it has been used in scheduling problems with time windows [41, 86] or other contributions
in flow shop scheduling problems based on the manufacturing industry [64, 85] can also be
exploited in our case as we will see later on.

Apart from the practical focus of the studies mentioned before, the approach of our study
is basically to solve a scheduling problem with time windows. A review of works addressing
this problem or problems with similar features is presented below. The references related to
problems involving scheduling with time windows can be divided according to three consid-
erations: problems with features similar to those of the PAP, scheduling models where the
basic objective is to process the work on-time, or scheduling problems where it is considered
that not doing a task within a given time window incurs an earliness/tardiness penalty, which
has to be minimized.
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2.1 Problems with features similar to the PAP

Problems like the Berth Allocation Problem (BAP) [52], the Aircraft-Gate Allocation Problem
(AGAP) [6], or the allocation of trains to platforms at rail stations (Train Platforming Problem
[10]) also have some similarities with the PAP. In all these problems it is assumed that the ar-
rival times of the vehicles as well as the durations of their operations are known in advance,
and the vehicles have to be assigned to some facility for a given time. The BAP aims to opti-
mally schedule and assign vessels to berthing areas along a quay. The most common objective
in the BAP is to minimize total service time. This objective favors the assignment of higher pri-
orities to vessels with smaller handling volumes than to vessels with larger handling volumes
[66]. Because this type of solution may not satisfy the ocean carrier’ preferences, another stud-
ied objective is the minimization of the deviation from the preferred berth [65]. Some other
works consider, in addition, objective functions with penalties for unsatisfied time windows
[32]. Similar characteristics are present in the AGAP [6], in which the gates where aircrafts will
stop are planned taking into account different criteria: efficiency of flight schedules, passen-
ger walking distance, or robust use of the gates in front of disruptions [56].

The distinctive feature of the PAP with respect to the above problems is that the carriers time
windows are flexible, in the sense that the parking times assigned to the carriers by the city
council may not coincide with the requested ones. Still we assume that carriers accept and
respect the assigned intervals, provided these are known in advance. The reason for this as-
sumption is that carriers can adapt their routes in advance so as to arrive on time to the as-
signed parking space. This assumption does not hold in the BAP, the AGAP or the allocation
of trains to platforms, whose time windows are not flexible and thus must be respected when
making the assignment. In the BAP, while advancing the arrival date to port is usually not fea-
sible, postponing it typically implies very high costs. The same happens with the departure
dates from the port due to contractual agreements between port operators and ocean carri-
ers. Something similar happens with aircrafts, where indeed flight schedules are not planned
according to the availability of gates at the airports.

2.2 On-time jobs problems

The work [26] focuses on on-time jobs while other works like [31] or [42] present models avoid-
ing direct formulations. The work [9] simplifies the problem to the case with equal processing
times, although in reality problems are usually more complex. In practice, scheduling prob-
lems are often tied to other problems, as, for instance, a subsequent delivery phase or the
use of machines with family setup times. Several authors, see for instance [27, 73, 74], have
studied scheduling problems combined with related problems.

The problem of scheduling non-preemptive jobs processed within time windows on identical
parallel machines is presented in [26]. The paper shows first that the problem of determining
if a particular set of jobs can be completed by the available machines is NP-complete. Then,
a model is presented using graph theory and heuristics are used to solve two variations of
the problem: Fixed job Scheduling Problem (FSP), where each job has to be completed at a
fixed start and end times; and Variable job Scheduling Problem (VSP), where each job can be
completed within a time window larger than its processing time. The solution of VSP is based
on the FSP results for a restricted problem.

A simplification of the problem with equal processing times and time windows is faced in [9],
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where Brucker and Kravchenko showed that the problem was solvable in polynomial time.
The algorithm presented is also useful for other problems: the minimization of the mean flow
time or the minimization of the weighted sum of completion times but without deadline re-
striction.

Another approach [31] is to find the minimum number of resources needed for fixed and vari-
able job schedules, i.e. the objective is to minimize the number of machines needed to carry
out all the jobs. Solving this problem determines the feasibility of the problem with a fixed
number of resources. The problem of minimizing the number of machines is introduced as
a special case of Dilworth’s problem [22], and an adaptation of an approximation solution
method based on entropy principle of informational smoothing is presented. Then, the prob-
lem is formulated as a pure integer programming problem and an exact algorithm is given.
The algorithm examines a sequence of feasibility capacitated transportation problems with
job splitting elimination side constraints.

The work of Koulamas in [42] formulates the problem maximizing the weighted number of on-
time jobs in single machine scheduling with time windows. The NP-completeness is proven,
and two lemmas validate the proposed problem decomposition. Regarding the solution meth-
odology, a heuristic is proposed, which proved to give solutions in a reasonable computational
time where the average deviation from the upper bound proposed is about 10%.

Finally, we mention two references that combine scheduling with time windows with addi-
tional features. In [27] the main problem of delivery with time windows is merged with a
production problem in a manufacturing plant. The overall problem is decomposed into two
phases: a production phase and a delivery phase which must be coordinated. The extended
problem is formulated as a MILP, and a tabu search heuristic is implemented and compared
to an exact solution method derived from [3], which is applied only to small problems due to
computation time requirements.

The works [73, 74], based on a real problem, consider that machines can perform different
jobs, but a setup task must be carried before the first task of each job type. The concept of
family setup times is introduced, where the idea is to assume that doing similar jobs together
saves time for setting up the machine. The authors propose a branch-and-bound algorithm
for solving both problems (single machine [74] and parallel machines [73]).

2.3 Earliness/Tardiness problems

The main characteristic of this family of problems is the idea of penalizing the deviation from
the target time (or time window) for a job. In general, the penalty is proportional to the devi-
ation.

A primary problem is considered in [28], which is to schedule tasks with a specified length and
a preferred starting time with non-preemption in one-processor. Two different cost functions
are examined: the sum of the absolute discrepancies (difference) from the preferred starting
times and the maximum discrepancy of any task. The article also contains the NP proof of
the total discrepancy problem, which is used to show the computational difficulty of more
complex problems, like ones similar to the PAP. Finally, an efficient algorithm proposed for
finding the minimum cost schedule in two cases: when all the tasks all have the same length
or when the tasks are required to be executed in a given fixed sequence.
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The work [28] is used in [41] to show the complexity of the single-machine earliness/tardiness
penalties with arbitrary time windows problem. The problem is defined as follows: no costs
are incurred if the job is completed within the time window, but earliness/tardiness penalties
are incurred otherwise. Penalties are defined proportional to the distance between the as-
signed time and the preferred time window. Then, the problem is decomposed into two sub-
problems: first, finding a good job sequence, and second, optimally inserting idle time into
a given sequence. Heuristics are proposed for the former, and an optimal algorithm adapted
from [28] for the latter.

Later, in 2003 [76] presented a branch-and-bound algorithm, which solves efficiently the ear-
liness/tardiness problem based on a Lower Bound (LB) formulation. The formulation of a
LB for the problem is also valid for a generic formulation of cost penalties, and the authors
provide a pseudo-polynomial time algorithm to compute the LB.

A more complex problem is proposed in [4]. It considers a set of jobs and each job con-
sists of more than one task. Since jobs are chains of ordered operations to be processed
in a set of machines, precedence constraints appear inside a job. The authors apply La-
grangean relaxations, in particular the relaxations of the precedence and the resource con-
straints, and evaluate their efficiency. The Lagrangean relaxation of the precedence con-
straints can be decomposed into independent single-machine scheduling subproblems with
earliness/tardiness penalty costs. Although a single machine scheduling problem with earli-
ness/tardiness penalty costs is NP-hard, it can be solved efficiently with an advanced branch-
and-bound procedure designed in [76]. This allows to find efficiently the vector that maxi-
mizes the Lagrangian function for a given multipliers vector and, thus, to solve the Lagrangean
dual with a subgradient algorithm. The relaxation of the resource constraints becomes a prob-
lem where single subproblems consist of scheduling operations of the same job. Then, each
problem can be solved by dynamic programming in time linear on the number of jobs and
the temporal horizon.

Table 2.1 summarizes the above references.
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Problem definition and modelling alternatives

We assume that the city council decides to implement a system where a set of parking places
will be assigned to different carriers at given time slots. Carriers would express in advance
their requests for a parking time interval, and inform about the duration of their operations.
Carriers can be flexible in their time windows, since they will know in advanced their assigned
time interval, and they will be able to re-optimize their routes to take advantage of the re-
served time slot. The duration of the operations will take into account all the activities that
take place while carrier is parked at the loading/unloading area. This time will cover all the
reserved time of parking place for the given carrier.

The main question that we address in this chapter is how to assign the list of carriers requests
to the available places and time slots. Any solution satisfying all requests within their time
windows would be optimal. From this point of view, one would think that the problem we
face reduces to a feasibility problem. However, a given instance may not have an assignment
satisfying all requests. What should the outcome be in this case? What can the decision maker
do if there is no parking slot for everyone? Some fair criterion is needed in order to allocate
carriers requests when their needs can not be satisfied.

As just mentioned, suitable and fair criteria are not easy to decide. There is a public resource
that should be allocated fairly to several operators. If not every request can be satisfied, mean-
ing that the problem is unfeasible, we will allow solutions with non-accomplished requests.
Non-accomplished requests are requests not scheduled within their indicated time windows.
This naturally leads to alternatives aiming to reduce the degree of non-accomplishment of
requests in a fair way. The concept of fairness has been addressed in optimization, associ-
ated with various types of problems, particularly when resources have to be allocated [45].
In our case, we incorporate fairness by resorting to objective functions that penalize unfea-
sible solutions in alternative ways, by using different criteria to quantify their degree of non-
accomplishment of requests. For instance, we can minimize the overall non-accomplishment
by somehow weighting the earliness or tardiness of the requests assignments relative to their
respective time windows, measured in time units. Alternatively, the objective may focus on
the number of non-accomplished requests. When considering the following alternative ob-
jectives, we will extend the domain for feasible solutions allowing for the violation of time
windows constraints, possibly, introducing additional particular constraints.

The objective functions we propose try to cover different aims when minimizing the overall
non-accomplishment. If we consider relevant how far served requests are from the requested
time windows, the earliness/tardiness penalty seems to be the more general and widely used
criterion in the scheduling literature. Even in this case the weighted sum is the most efficient
approach from a system level, even if this criterion might seem unfair from a more individual
perspective, as, for instance, if a small group of requests is largely penalized to make it pos-
sible to satisfy the remaining requests. For that reason, the minimization of the maximum
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earliness/tardiness penalty is considered to represent a more fair criterion from an individ-
ual perspective. When trying to combine both previous objectives together, the maximum
earliness/tardiness penalty can be limited to guarantee that there are not large penalties to
individual requests, and maintain the weighted sum as the general criteria in the benefit of
the system. On the other hand, if we only take into account whether or not the request is
satisfied in the requested time windows, the most straightforward and general formulation
is to minimize the number of unsatisfied requests. Finally, we propose a cost formulation.
This formulation can be useful when the costs of non-accomplished requests could be faith-
fully approximated. In all the previous proposals weights in the considered criterion can be
used to refine the different criteria and prioritize requests of different nature or from different
companies. The detailed optimization criteria are described below. In the next chapter we
formulate the different proposed models with particular formulations.

MOD 0. Feasibility PAP. Solution that fulfills all time windows imposed by requests.

MOD 1. Earliness/tardiness minimization. Minimize an objective in which time windows
violations are penalized in proportion to the earliness or tardiness of the assigned time
in relation to the requested time window. The criteria is to minimize the overall non-
accomplishment.

MOD 2. Minimization of maximum earliness/tardiness. This model focuses again on a mea-
sure of the earliness/tardiness of solutions. Now, instead of considering the overall non-
accomplishment, we focus on the maximum non-accomplishment, measured as the
maximum earliness or tardiness from the requested time windows, among all requests.
This objective can be useful if small deviations from the requested time windows are
not considered important, and the relevant measure of the quality of a solution is the
maximum earliness/tardiness among all requests.

MOD 3. Earliness/tardiness minimization subject to maximum displacement. This model
tries to somehow address jointly the two main concerns of MOD1 and MOD2. MOD3
has the same objective function as in MOD1, the overall non-accomplishment, but lim-
iting the earliness or tardiness in the assignment of any request from its requested time
window to a maximum value fixed in advance, named maximum displacement.

MOD 4. Minimization of number of requests scheduled outside the time window. Models
MOD1, MOD2, MOD3 quantify the time deviations of the solutions from the requests
time windows, but ignore if this non-accomplished demand affects to a small or large
number of requests. In MOD4 we focus on the number of requests scheduled outside
the asked time window, rather than on the magnitude of the non-accomplishment.

MOD 5. Cost minimization. Except for MODO, all previous models allow solutions where
some request is not scheduled within its time window. An alternative to such relaxed
models would be to impose time window constraints, and to outsource additional park-
ing space at the time periods when the city council parking space is insufficient to sat-
isfy the carriers demand. In a realistic scenario, this additional space could be obtained
from a nearby public parking or from parking areas for non-commercial private use,
next to the city council parking places. The outsourced additional parking places would
be reserved for loading/unloading operations for only some hours of the total time hori-
zon.
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We restrict our study to the framework of one one single loading and unloading area with
several parking places and we assume that data is deterministic. This is indeed a simplifying
assumption as the nature of the problem involves some uncertainty, particularly with respect
to vehicle arrival times. However, as we will see, the deterministic formulations proposed are
already complex and difficult to solve.

The PAP is mathematically defined as follows. We consider one loading and unloading area
with ¢ common parking places that can be used by carriers for their loading/unloading oper-
ations. Let [0, T] denote the time interval when loading/unloading operations must be sched-
uled. Let also Q, with |Q| = g, denote the index set of loading/unloading operations, each of
them with a request for parking assignment within time period [0, T]. Associated with each
request i € Q, the parameters [a;, b;] and s; respectively denote the time window for the be-
ginning of the operation i and its duration. Since b; is the latest instant when the beginning
of operation i can be scheduled, operation i can last until b; +s;.

Feasible solutions to the PAP consist of assignments of requests to parking places within the
time period [0, T1, that satisfy the time window for the beginning of each request and such that
at each time slot no more than c parking places are occupied. Figure 3.1 presents a graphical
representation of the problem over a morning time horizontal interval.
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Figure 3.1: Requests of different companies along morning time horizon

3.1 An unfeasibility condition for MODO

Below we present a sufficient unfeasibility condition for MODO. As we have discussed, the
problem can be modeled with the only aim to find a feasible solution, i.e, to find a solution that
satisfies all the time windows. However, as we will see in the computational experiments sec-
tion, detecting its unfeasibility is not always easy, even if large computing times are allowed.
For this reason an effective condition can be very useful for detecting unfeasible instances.

The main idea is to analyze the requests that must be completed within different time inter-
vals and to compare the time needed to satisfy these requests and the overall time offered in
this interval, which depends on the available places. Indeed, if the total time needed for the
requests is greater than the time offered, the instance is unfeasible. Before presenting the suf-
ficient condition we introduce some additional notation. Let Q%# < Q denote the subset of
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requests whose time window is contained in the interval [a, §]. That s, Q“*ﬁ ={ieQllaj, b;l <

la, B1}.

A Lower Bound (LB) on the time requested within a given interval [a, §] is the sum of the
durations of the requests that must be completed inside the given time interval, i.e. L%P =

Y. s;. This bound may not be tight, since there may be additional requests for the time
ieQwh
interval [a, f], when the time window of some request not in Q%# overlaps it, i.e. [a,f]n
la;, b;i] # @ for some i ¢ Q%P.

On the other hand, an upper bound of the time that is offered in the interval [a, B] is U ap
computed as the sum of the duration of the time interval multiplied by the number of places
offered, c(f — ), plus some extra time. For the extra time we take into account that even if
some requests are assigned at the very end of the time interval (time instant §), the assign-
ment will still be feasible since time windows limit the beginning of the service. Indeed, the
operations corresponding to such assignments will totally take place after time interval [, f].
Thus, to compute the extra time we assume that exactly ¢ requests are assigned just at the
end of the interval (one at each place), and that these assignments correspond to the c largest
durations of the requests indexed in set Q®#. That is, the extra time coincides with the c-
centrum [1, 29, 75, 77] of the durations of the requests indexed in Q“'ﬁ , that we denote by

c-s%P . Hence, if s;, = 5;, = -+ = Sija,p, AT€ the sorted duration values of the requests indexed
C

in Q%#, then c-s%f = ¥ si,. Therefore, our upper bound on the time that is offered in the
r=1

interval [, B] can be expressed as U = ¢(B—- a) + c-s*P.
Our unfeasibility sufficient condition is then as follows:

Proposition 1. Let [a, B] < [0, T]. IfL""‘6 > U%P then MODO is unfeasible.

Example 1. The following example illustrates the performance of Proposition 1.

Consider a small instance with ¢ = 1, g = 10, i.e. one loading/unloading area and ten requests,
and the values of a;, b;, s; shown in Table 3.1.

1 2 3 4 5 6 7 8 9 10
a; 480 500 520 520 520 520 640 640 720 720
b; 500 520 560 560 560 560 680 700 740 740
si 20 21 25 18 20 22 15 16 18 22

Table 3.1: Data for an example instance for unfeasibility condition

Let us analyze the interval [a, ] = [520,560]. The subset of requests whose time window is
contained in the interval [a, B], is Q% = {3,4,5,6}. The proposed lower bound on the time
requested within the given interval is L% = 25+ 18+20+22 = 85, i.e., the sum of the durations
of requests in Q¥P. Then, the instance can only be if feasible at least 85 units of time are
offered to service the requests in the interval [a, (].

The proposed upper bound of the time that is offered in the interval is U%*? = c(f—a) + c-s*P.
To compute c-s*P, we order the durations of the requests indexed in Q""fj ,25>22>20=>18,
and add the first ¢ values. Since ¢ = 1, in this case we only consider the largest one. Thus,
1
c-s%P = ¥ s; =25, and the upper bound is U%# = 40 + 25 = 65. example we see that L*f >
r=1
U®*P, so the proposed instance is unfeasible. As in the interval [520,560], the total time needed
to serve the requests in this time period is greater than the total time offered.



Formulations for the Parking Slot Assignment
Problem

The formulations for new combinatorial problems as the one proposed here are usually in-
spired by existing formulations of classical problems in the literature. The basic formulation
depends on the properties and features of the problem, as well as on the objective function.
Based on this, decision variables, constraints and objective functions are chosen for the basic
structure. Then, if necessary, specific features are introduced by new variables or constraints.
The formulation must reliably represent the underlying model. At the same time, good prop-
erties are desirable when testing these formulations under standard solving procedures.

In order to exploit the flexibility of time requests in the described problem, we first consider
that requests can be assigned continuously in time. The different time durations of the load-
ing/unloading operations, and the flexibility of the time windows suggest the suitability of
using assignment times as a continuous variables. If requests are allowed to be assigned to
a continuous point in time, formulations provide more accurate solutions to the problem.
Thus, the PAP is first considered as a scheduling problem with time windows. I.e., what load-
ing/unloading tasks to schedule at each parking place, and at what times. Following previous
work on time constrained routing and scheduling [20], the PAP is formulated as a Vehicle
Routing Problem with Time Windows (VRPTW), where time is considered a continuous vari-
able. This formulation is detailed in Section 4.1.

Given the results of some tests with the VRPTW formulations, we consider a second formu-
lation with time discretization. The coarse approximation of time discretization entails some
loss of accuracy, and it increases the problem dimension notably. But with time discretization,
PAP can be formulated as a variation of an Assignment Problem (AP), (See Section 4.2). As will
be seen, the results obtained with these type of formulations are very good.

Finally, Section 4.3 presents a simple heuristic for the PAP. The aim is not to provide optimal
results but to use the results of the heuristic to assess the results obtained with both formula-
tions.

4.1 The Parking Slot Assignment Problem as a VRP

As mentioned earlier, the loading/unloading requests are considered as tasks that have to be
fulfilled by one of the parking places available, and time is considered as a continuous vari-
able. If possible, satisfying the time windows required. Then, the problem can be seen as a
scheduling problem with time windows. Based on [20], scheduling problems with time win-
dows can be formulated as VRPTWs [79]. Customers represent the carriers requests and each
vehicle represents a parking place. Thus, each route is equivalent to a sequence of carriers
requests which are served consecutively at the same parking space.

To formulate the problem we define an auxiliary complete directed network N = (V, A), with
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set of vertices V = Q U {v4}, where v, plays the role of the depot for these fictitious routes,
but has no real meaning. The arcs of A can be classified in the following types: (a) (vg4, i) with
i€Q; (b)(i,j)withi,je Q;and, (¢) (i, vy) with i € Q. We define two sets of decision variables.
Binary variables x; j, for all (i, j) € A indicate whether or not arc (i, j) is used. The meaning of
these variables is the following. When both i, j € Q, x;; = 1 ifand only if the requests of carriers
i and j are assigned consecutively to the same parking place. When i = vy, x,,; = 1 indicates
that the request of carrier j € Q is the first one in the sequence assigned to some parking space.
Finally, when j = vg4, x;,, = 1 indicates that the request of carrier i € Q is the last one in the
sequence assigned to some parking place. We also define a second set of continuous decision
variables t;, with i € Q, to indicate the starting time for the parking request of carrier i € Q in
the schedule. Then a formulation for the PAP is as follows:

minimize z(x,t) 4.1)
subjectto Y xy,jSc (4.2)
jeQ
Z Xij— Z le-:0 iEQ (4.3)
(i,j)eA (j,EA
Y xij=1 i€Q (4.4)
(i,j)eA
ti+s,~—tjs(1—x,-j)M i,jeQ, (i,j)eA (4.5)
a; <t <b; ieqQ (4.6)
0<t;=T i€qQ 4.7)
xij€1{0,1} (i, j) € A. (4.8)

The objective function z(x, t) will be discussed in the following section depending on the cri-
teria used. In all cases, when the domain defined by Constraints (4.2)-(4.8) contains some
feasible solution the optimal value will be zero. The meaning of the constraints is as follows.
Constraints (4.2)—(4.4) define the routes. In particular, Constraint (4.2) limits the maximum
number of parking places to c, by restricting the number of routes starting at the depot. Con-
straints (4.3) guarantee the flow balance along the hypothetical routes. Constraints (4.4) en-
sure that all requests are allocated to a parking place, by imposing that exactly one route serves
each customer. Constraints (4.5) relate time variables ¢ with flow variables x, to guarantee that
time values respect the sequence of service. M is a big enough value that makes the constraint
redundant when x;; = 0. Note that Constraints (4.5) also prevent subtours. The time window
constraint of each request is imposed in (4.6). Finally, (4.7) and (4.8) define the domain for
the t and x variables. Note that if data parameters are integer values, and x are binary, then ¢
are also integer without the need of explicitly imposing it. The reader is addressed to [79] for
further details of this type of models. The above formulation has (g + 1) g binary variables and
g continuous variables. The number of constraintsis 4+ q(q—1) + 1.

Because it is known that constraints with big M values produce weak linear programming
(LP) relaxation bounds, it is convenient to find tight estimations of M. For instance, we can
use M = max; b; + max; s; —min; a;, (in Section 5.1 alternative values are proposed).

In formulation (4.2)-(4.8) the time when each of the requests is allocated to some parking
place, t;, is explicit, while the specific parking place to which it is allocated is not explicit.
Note, however, that the set of requests allocated to each parking space can be easily identi-
fied by tracing the set of requests of each of the routes. This allocation could have been made
explicit in the formulation by defining decision variables xfj with (i,j) € A, ke {1,..., ¢} indi-
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cating whether or not request i and j are allocated to parking place k, and request j is sched-
uled immediately after request i, at the expenses of a considerably larger number of binary
variables.

In principle, the LP relaxation of the formulation (4.2)-(4.8) could be reinforced with the clas-
sical subtour elimination constraints (SEC):

Y xij=IW|l-1  WceV\{ygh. 4.9)
(i,j)eA
i,jew

However, as shown below, for usual values of the data and the parameter M, the addition of
the SECs (4.9) does not reinforce the LP relaxation of Constraints (4.2)-(4.8), since the result-
ing domain will always contain some feasible solution, even if the original domain with the
integrality constraints is not feasible.

A feasible solution to the LP relaxation of the domain defined by Constraints (4.2)-(4.8) plus
the SEC Constraints (4.9) can be obtained in the following way (see Figure 4.1):

* The flow through arcs connecting the depot with each other node (dashed arcs in Figure
4.1) is ¢/ q in both directions, i.e. xy,; = X;y, = c/q, Vi, j€Q.

. The ﬂow through any other arc connecting two nodes i, j € Q (solid lines in Figure 4.1)
is in both directions, i.e. x;j = xj; = q(qq__cl), Vi, jeQ.

q(ﬂi 1)

¢ All time variables are set to the upper end of their time window, i.e. ¢; = b;, Vi € Q.

By construction it is clear that flow constraints (4.3) are satisfied at the depot and at the rest
of the nodes. To see that constraints (4.9) are always satisfied, let S be a subset of Q \ {v;} with
|S| = r. Since each of the arcs with both endnodes in S has value 1), the left hand side of

Thus the constralnt is satisfied if and only if

the assomated constraint (4.9) is r(r — 1) =1

rir-1)-L

q(q 1)
< r — 1, which always holds since r/g < 1 and q <1

q(q 1) -

Finally, Constraints (4.5) are satisfied if:

q—c¢
bi=zbj+s;—-M|1—-——]. 4.10
j it Si ( q(q_l)) ( )

We have checked that with the data used in the computational experiments (see Chapter 5)
1-(g-c)/1q(q—1)] = 0.95. Thus, if we use the tightest value for M, which is M;; = b; +s; — a;;,
the above condition is satisfied when b; = 0.95a; + 0.05(b; + s;), which is intuitively true in
most cases. In particular, this condition is always fulfilled by all the realistic data we have
used in the computational section.

Therefore the LP value of the different models we will consider will always be zero, indepen-
dently of whether or not Constraints (4.9) are used. For this reason in the following Constraints
(4.9) are omitted.
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Figure 4.1: Feasible solution for LP relaxation of Constraints (4.2)—(4.8)

4.1.1 Alternative models for the PAP

Below we present formulations for the different criteria for the PAP proposed in Chapter 3.
The different optimization criteria considered may require additional modeling changes. For
instance, the value of the big constant M, which often has to be re-computed, since the pro-
posed value above is no longer valid when Constraints (4.6) are relaxed. Instead, we can take
M = T + max; s;, as an upper bound on the maximum allowed time for loading/unloading
operations.

The particular formulation of the objective function of each model is the following:

MODO: Feasibility PAP Here we just look for a feasible solution to Formulation (4.2)—(4.8),
ignoring any other aspect. Any constant objective function z°(x, f) = x is appropriate, so
throughout we use x = 0.

In the following models, Constraints (4.6) are omitted whereas all other constraints, (4.2)-(4.5)
and (4.7)—(4.8), are maintained.

MOD1: Earliness/tardiness minimization In this model we minimize an objective in which
time windows violations are penalized in proportion to their earliness or tardiness. To this end
we introduce one new set of decision variables e;, i € Q, that represent the earliness/tardiness
in the assignment of each request. For i € Q, e; is defined as the time deviation a; — t; between
the lower limit a; and the actual scheduling time of request i € Q, if it is scheduled before a;,
or as the deviation #; — b; between the actual scheduling time of request i € Q and its upper
limit b; if it is scheduled after b;. That is, e; can be determined as the maximum of the three
values: 0, a; — t; and ¢; — b;. This expression is not linear, although it can be easily linearized
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by inclusion of the additional sets of Constraints (4.11)—(4.13).

ei=a;—t; ieqQ (4.11)
ei=t—b; ieqQ (4.12)
e; =0 ieq. (4.13)

The objective in MOD1 is the minimization of the overall non-accomplishment, which is a
weighted sum of the earliness/tardiness (4.14). That is:

2, 0= wie;=) w;ymax{0,a; - t;,t; — b;} (4.14)
i€eQ i€eQ

where w; is the weight associated to request i € Q.

MOD2: Minimization of maximum earliness/tardiness The measure of the earliness/ tar-
diness is considered by the maximum value. This model focuses on the maximum non-
accomplishment, measured as the maximum earliness or tardiness from the requested time
windows, among all requests. This objective can be expressed as:

22(x, 1) = m%xmax{o, a;—ti, ti — bi}. (4.15)
1€

MOD?2 is a bottleneck min-max optimization problem. We minimize the objective function
z%(x, 1), defined as the maximum deviation from its requested time window among all carri-
ers. In its turn, for each carrier i € Q, the value of its deviation is max{0, a; — t;, t; — b;}. This
inner max only guarantees that the deviation from its preferred time window is computed cor-
rectly. Note that when a request is computed inside its requested time window, both a; — t; <0
and t; — b; <0. In this case, however, the correct value of the deviation is 0.

As before, this objective function is not linear, but can be easily linearized by extending the set
of variables and constraints of MOD1 with one additional variable and one additional set of
constraints. Let m denote the maximum non-accomplishment. Thus, the objective in MOD2
is the minimization of m. That is:

22(x, 1) = m. (4.16)

Variable m must be related to the remaining variables in the formulation. This can be done,
for instance, by means of constraints:

m=e; i€qQ. (4.17)

It is possible to simplify the above formulation by removing all the e; variables, and using
directly m in Constraints (4.11)—(4.13). With this we reduce the g continuous variables e;,
and the g Constraints (4.17). We call MOD2b to the resulting model, where the specific set of
constraints is:

m=a; —t; ieQ (4.18)
m=t;—b; ieQ (4.19)
m=0 . (4.20)
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MOD3: Earliness/tardiness minimization subject to maximum displacement This model
has the same objective function as MOD]1, the overall non-accomplishment, but limiting the
earliness or tardiness in the assignment of any request from its requested time window to a
maximum value fixed in advance, d. That is, in MOD3 the objective is:

z3(x, 1) = Z wie; = Z wimax(0,a; — ti, t; — b;). (4.21)
i€eQ i€eQ

Now, in addition to Constraints (4.11)—(4.13), which establish the values of variables e;, i € Q,
we include one new constraint for each request, limiting its maximum possible earliness or
tardiness:

e;<d i€Q. 4.22)

Note that in this formulation, the value of M can be set to M = max; b; +2d +max; s; —min; a;,
because of the new constraint.

MOD4: Minimization of number of requests scheduled outside the time window The num-
ber of requests scheduled outside the requested time window is the objective in MOD4. The
number of affected requests is important in this case, rather than the magnitude of the non-
accomplishment. To compute this value, associated with each request i € Q we define a binary
decision variable ; indicating whether or not request i is scheduled outside its time window.
Now the objective that we consider is:

2, 0= Bi (4.23)
ieQ

In order to activate the new indicator variables we include the set of constraints:

KBi=e; ieqQ (4.24)

where K is a parameter that must be bigger than e; for all i € Q. For instance, we can set
K = max;eqmax{a;, T — b;}.

Note that, similarly to MOD2 the e; variables can be removed from Constraints (4.11)-(4.13)
and use the f; variables instead. By doing so g continuous variables e; and the g Constraints
(4.24) are eliminated. We will call the resulting model MOD4b. The constraints that activate
the B; variables are:

KBiza;—t; ieqQ (4.25)

KpBi=ti—b; ie€q. (4.26)

An extension of MOD4 and MOD4b arises when each non-accomplished request is weighted
by the duration of its associated operation. Then, the objective is:

=Y siBi (4.27)
i€eQ
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MOD5: Cost minimization In this model we impose again time window Constraints (4.6),
and we consider costs to outsource additional parking space at the time periods when the city
council parking space is insufficient to satisfy the carriers demand. The idea of MOD5 is to
minimize outsourcing costs:

T
Y peng. (4.28)
=0

In (4.28) n; represents the excess (relative to c) in the number of requests that are scheduled
at time slot ¢ and y; is the unit cost for each outsourced parking place at time slot ¢ € [0, T'.
Therefore, (4.28) represents the cost for making available additional parking places during
some hours of the day so as to eliminate non-accomplishment. Below we present an extension
of formulation (4.2)—(4.8) suitable for MOD?5.

Consider a new set of decision variables y that will be used to represent the routes associ-
ated with outsourced requests. That is y;; = 1 if request j € Q is scheduled immediately after
request i € Q in some outsourced parking place. Then the extended formulation is:

minimize z° (x,y,0) (4.29)
subject to Z Xy, j=¢C 4.2)
jeQ
Y oxj— ). xi=0 i€Q (4.3)
(i,j)€A (j,)EA
ti+Si—th(1—xij)M (i,j) e Awithi,jeQ (4.5)
a; <t <b; ieQ (4.6)
0<t<T i€Q 4.7)
Y oyij— Y vi=0 ieQ (4.30)
(i,j)EA (j,i)eA
Z (xij+J/ij)=1 lEQ (431)
(i,j)EA
ti+si—tj<(-y;pM  (i,))€ Awithi,jeQ (4.32)
Xij,yij €10,1} (i, j) € A. (4.33)

Constraints (4.2)—(4.7) have been explained before. The new set of flow constraints (4.30)
which are associated with outsourced requests. Constraints (4.31) guarantee that all requests
are scheduled, either to a reserved parking place or to an outsourced place. The assigned time
slots of the outsourced requests are now regulated by means of the set of Constraints (4.32).

Note that with the new set of decision variables, for i € Q the sum }_(; jyea yij, takes the value
0 or 1, and indicates whether or not the request of customer i € Q is outsourced. If we assume
that y; = 1forall £ € {0,..., T — 1}, i.e. the unit cost for outsourced parking space is the same for
all time periods, then

T T
Py D=3 pne=Y =y Y i (4.34)
t=0 t=0

i€Q(i,j)eA

which coincides with the objective of MOD4. That is, objective (4.34) plus Constraints (4.2)—
(4.3), (4.5)-(4.7), (4.30)—(4.33) is also an alternative formulation for MODA4.
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The above formulation, however, as it stands, does not allow to compute the objective func-
tion value z°(x, y, t) = Ztho usn; for the general case when the outsourcing costs p; may vary
among time periods. In this case we need to know the exact number of requests that are
occupying an outsourced parking place at a given time period ¢. For this we can define an
additional set of binary variables O;;, i € Q, t € {0,..., T — 1} to identify the requests that are
occupying an outsourced place at a given time period. These new variables are related to the
original y variables by means of the constraints:

Ojyr=0;—1-yj) i,jeQt,t'€{0,...,T-1}witht' =t+s; (4.35)
0;: < O;y tef0,..,.T-1}t+1<t' <t+s;. (4.36)

While Constraints (4.35) activate the outsourcing indicator variables at the time period when
a request is outsourced, Constraints (4.36) guarantee that the indicator variable of an out-
sourced request is activated during all the time interval in which the operation associated
with this request takes place. Now we can express the objective function as:

T
2 xy,0=) p ), Oir. (4.37)
=0 ieQ

This formulation has qT new binary variables, and q(q—1)T + qTY_; s; constraints, resulting
in many more variables and constraints than the previous ones. Also, the objective function
weights should be defined.

In the Appendix, several tables summarize the details of the presented models and objectives.
Table A.1 presents the parameters and the sets used and Table A.2 summarizes the objective
functions. Table A.3 and A.4, respectively, present all the variables and constraints, grouped
by the formulation they belong to. Finally, Table A.5 counts the number of variables and con-
straints of each formulation.

4.1.2 Relationship among models

The models proposed in Section 4.1.1 focus on solving the same problem under different cri-
teria. Therefore, they present some relationships that will be analyzed in this section through
the comparison of the domains of their respective formulations. We use Q' to denote the fea-
sible domain of MODi. In particular,

QO = {(x, 1) satisfying (4.2)-(4.8)}

Q! = {(x, t, e) satisfying (4.2)-(4.5), (4.7)—(4.8), (4.11)—(4.13)}

Q? = {(x, t, e, m) satisfying (4.2)—(4.5), (4.7)-(4.8), (4.11)-(4.13), (4.17)}

Q3 ={(x,t,e) satisfying (4.2)-(4.5), (4.7)—(4.8), (4.11)—(4.13), (4.22)}

Q* = {(x, t, e, B) satisfying (4.2)-(4.5), (4.7)—(4.8), (4.11)—(4.13), (4.25)—(4.26)}

Q° = {(x, t, y) satisfying (4.2)-(4.3), (4.5)-(4.7), (4.30)-(4.33)}

Observe that, in general, the above domains are defined in different spaces so they cannot be
compared. The exception being Q! and Q3, for which we have Q3 c Q!. In order to compare
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the above domains we consider their respective projections onto the Q! space being:

1
Q(x, 1)

=Q'Ni{e;=0 ieQ}

QL ,=Q*N{im=0,e,=0 i€Q}

Q. ,=0%N{ei=0 ieQ}

Qly=Q*'Nte;=0,pi=0 ieQ)

Q=N {yij=0 (G, )eA i€qQ)

(x,t

Note that when e; = 0 for i € Q, Constraints (4.11)(4.13) reduce to (4.6) and Q° = Q[ , . With

a similar reasoning we can relate Q to the other domains defined above.

Proposition 2. For the restricted domains the following relationships hold:

(1) QO:Q}W 3) Q° :Q?x_n (5) QO:QE”’M.
0_ N2 0_ 4
@ Q=07 , 4 Q"=0f ,

Moreover, given a solution (x, £) € Q°, then the extended solution (x, £,0) € Q', and similar
extended solutions can be built for the rest of the domains. Thus, we have:

Corollary 1. IfQ° # @ then, Q' # ¢ fori=1,...,5.

As a consequence of the previous proposition, we can obtain further relations. For instance,
suppose Q' # ¢ and its optimal value is 0. Let (x, t,e) € Q! bean optimal solution. Then e =0,
and (x, 1) is a solution in Q°. With a similar reasoning, we have:

Corollary 2. IfQ # @ for somei=1,...,5 and its optimum value is 0, then

1) Q°# @, and

©2) QJ # @ and its objectivevalue isO for j=1,...,5 j#i.

4.2 The Parking Slot Assignment Problem as an AP

As already mentioned in the introduction, when we discretize time, the PAP can be considered
as amodified Assignment Problem (AP). The AP is one of the fundamental combinatorial opti-
mization problems [55]. The most general form is as follows. Suppose n tasks are to be carried
out and each must be assigned to a single person. We have a staff of n people available and
each person can be assigned only one task. For each staff member and task, there is a cost
to match them. The problem consists in finding the matching between staff members and
tasks that provides the minimum total cost. Assignment formulations present good proper-
ties when no further constraints are present. It is well-known that the coefficients matrix of
the AP is Totally Unimodular (TU) and, thus, can be solved in polynomial time. The more in-
tuitive formulation of the different PAP models as variations of APs presents some advantages:
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we are able to reduce the symmetry and we can avoid the use of big M parameters, however,
at the expenses of increasing notably the size of the formulations.

If we divide the whole time interval in a given number of time slots, then for each pair (parking
place, time slot), we have a place and time slot (staff) that can be assigned to a given request
(task). This allows to see the PAP as an AP in which the number of requests does not coincide
with that of time slots, so some time slots will remain empty.

Let t € [0,1,...,T] be the discretized set of possible time moments where parking requests
can be assigned to start. In order to formulate the PAP as a variation of an AP, for each i € N,
t€|0,...,T], we define a decision variable h;;, which is equal to 1 if request i € Q is assigned to
start at time f or 0 otherwise. Given these elements, the following constraints are necessary:

Y hi=1 i€eQ (4.38)
t€l0,...,T]
> Y hip<c 1€l0,...,T] (4.39)

i€Q t'e{i—(s;—1),i—(s;=2),...,7|t'=0}

(4.38) impose that for every request one assignment is active at a given time ¢ from the whole
time interval. (4.39) guarantee that at given time interval 7, at most ¢ requests are being served
simultaneously. Note that in the sum Y. 1c;_(5,-1),~(s;,-2),... 7|0} Pir'» for each time interval
and request i, we add up all the h;; with € {f — (s; — 1), 7 — (s; —2),..., |/ = 0}, meaning that
we consider if request i would still be being served at time interval ¢, if it has been assigned to
start s; units of time before ¢. We also need to limit the sum to values of ¢’ greater than zero,
in order to make the sum of (4.39) valid for any value of 7 € [0,..., T]. This would be the basic
constraint structure that needs to be adapted to each optimization criteria.

4.2.1 Alternative models

Similar to the previous formulation, in this section we adapt the objective function of each
model to the new AP formulation.

MODO: Feasibility PAP  Again, here we just look for a feasible solution to formulation (4.38)-
(4.39). A constant objective function Z22(h) =0is appropriate.

For the rest of the models, we can define a parameter &;; which corresponds to the penalty
value if request i is assigned to start at time ¢. Note that in this section é;; is a parameter, not
a variable, so for any given i and ¢ we can pre-compute the value of the parameter.

MOD1: Earliness/tardiness minimization The objective of this model considered the over-
all non-accomplishment, expressed as a weighted sum of earliness/tardiness penalty. In this
case, the parameter é;; will take the value of the earliness/tardiness penalty of assigning re-
quest i at time t. Then, the objective function is as follows:

Zl(h)=z Z eithiy (4.40)

ieQt'€lo,...,T]

MOD2: Minimization of maximum earliness/tardiness In this model the measure of the
earliness/tardiness is given by the maximum value. Then, the parameter é;; will take the same
value of the previous model, but the objective function will change slightly. Instead of mini-
mizing the weighted sum of the earliness/tardiness penalty, the minimization will be over the



4.2 The Parking Slot Assignment Problem as an Assignment Problem 29

maximum penalty.

Z%(h) =max max &;/h;y (4.41)

ieQ t'€lo,...,T]
Also, we could use an extra variable m directly in the objective function representing the max-
imum earliness/tardiness value, which would be determined by the following equations.

eihivs=m i€Q, t'elo0,...,T] (4.42)

MOD3: Earliness/tardiness minimization subject to maximum displacement For MOD3,

we can use the same value of parameters é;; as in MOD]1, for the earliness/tardiness criterion.

But we need to impose that if the parameter is greater than the given maximum displacement

for some time moments (é;; = d), then, the assignment can only be done at time points when

the parameter is less than d. That is achieved adapting (4.38) for (4.43)
> hir=1 i€Q

t€0,..., T1le; =d

(4.43)

MOD4: Minimization of number of requests scheduled outside the time window In case
of MOD4 the value of the penalty parameter é;; will be computed differently. In this case, the
parameter will be binary, 1 if the assignment is made outside the time window or 0 otherwise.
But, the objective function will be the same as MOD1.

dm=y 3

ieQr'€lo,...,T]

eithiy (4.44)

4.2.2 The coefficient matrix of the assignment formulation

In order to check the properties of the proposed formulation, in this section we will show the
coefficient matrix of the formulation. In the following matrix, we have the coefficients of the
constraints. Each column is associated to a given variable h;;, each row is associated with a
given constraint. The first block of rows correspond to Constraints (4.38), that guarantee that
each request is assigned to start at a given time interval. The second block of rows correspond
to Constraints (4.39), which limits the number of requests that can be using a parking spot at
a given time interval to c. At each given time interval, we make sure that there are at most ¢
requests being served.

hyo hiy hiz hiz hir hyo hoy hoy s hor hyg hay hgy hzz -+ har hqgo ho1 hge hgs -+ hor
[1 11 1 1 ]
11 1 1
1 1 1
1 1 1
1 1 1 1
11 1 1 1
11 1 1 1
11 1 1 1 1 1 1 1
1 1.5+ 1 1 S 1 N | ~8Q- 1
1 .51 1 .51 1 .s3.1 1 ~8Q- 1
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Unfortunately, even all the coefficients have value 1, matrix is not TU. For instance, we select
columns hyg, his,+1 and hyg,, and to rows 1, s; s + 1, where s1 < s», and the associated sub
matrix will be
hio his;+1 has,
1 1 1 0
s 1 0 1 (4.45)
ssi+110 1 1

which has determinant equal to -2. The presented formulation is compact and intuitive but
we can not guarantee the integrality property when using it.

4.3 Aheuristic for the Parking Slot Assignment Problem

As we will see in the following sections, CPLEX can be quite time consuming with the VRP
formulations. Thus, heuristic methods can be of interest, as potentially they could produce
good solutions in smaller computing times. Next we present a simple heuristic to obtain fea-
sible solutions to the PAP. The heuristic consists of a greedy constructive phase, followed by a
simple local search.

For the constructive phase, first requests are ordered by non-decreasing values of their ear-
liest start time, a;. Ties are broken by non-decreasing values of their latest start time, b;. If
ties remain, they are broken by non-decreasing values of the requests durations s;. Possible
remaining ties are broken arbitrarily. Hence we assume that

(i) ai<ain, 1€Q;
(i) bi<biy1 ifa;=a; (4.46)

(iii) s;<sj.1 ifa;=a;s1and b; = bjy;.

In the constructive phase parking places are considered in turn. When a parking place is se-
lected, unassigned requests are explored by increasing order of their indices, and assigned
to the current place provided that they preserve the feasibility of the current assignment to
the parking place. Requests with time window conflict with the current assignment remain
unassigned and will be considered for assignment to subsequent parking places.

When all parking places have been considered the constructive phase enters a final step. Now
unassigned requests are considered in turn and assigned to some parking place outside their
preferred time windows. Each such request is scheduled either at the very begining or the very
end of some parking place schedule, depending on the alternative which incurs the smallest
earliness or tardiness. For a given request, the parking place is selected so as to minimize the
resulting associated penalty. In this final step unassigned requests are considered by increas-
ing values or their time duration, s;. At the end of the algorithm all the requests are assigned
to some parking place. However, the assignment need not be feasible, as some requests may
be scheduled outside their time windows. A pseudocode of the algorithm is presented in Al-
gorithm 1. A(p) contains the indices of all the requests assigned to parking place p. Init, and
End,, respectively denote the starting times of the first and last requests assigned to parking
place p.

In the local search we try to interchange the schedule of two requests. Again the index order of
the requests is the one indicated by (4.46). We consider two different pairs of requests i, j € Q,
i # j: (i) i and j are adjacent in Q, independently of the scheduled parking place p, (ii) i and
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J are not adjacent but in Q there is at most one request between i and j, i.e., |i — j| < 2, again
independent of the scheduled parking place. All possible interchanges are considered until
no more improvements are possible.

Constructive Phase
Input: ¢,Q,a, b, s,
1 Initialize list UNASSIGNED with elements i € Q in non-decreasing order of a;
with ties broken as explained in (4.46);
2 Initialize list of requests assigned to each parking place: A(p) — @,
p=1...c

3 for (p—1...c)do
4 i — FIRST(UNASSIGNED);
5 Inity, — a;
6 t—Inity,
7 while (i #nil) do
8 A(p) — A(p) u i} (Assign request i to parking place p)
9 t—max(t+s;,a;)
10 UNASSIGNED «— UNASSIGNED \ {i}
11 i — NEXT(UNASSIGNED)
12 while (b; < t and i # nil) do
13 | i — NEXT(UNASSIGNED)
14 end
15 end
16 End, —t
17 end

18 Sort elements of UNASSIGNED by non-decreasing values of s;
19 while (UNASSIGNED # @) do

20 i — FIRST(UNASSIGNED);

21 for (p —1...c)do

22 ‘ 6p — Min{la; — Inityl,|b; — End,|}
23 end
2 | peargming,_, (5,)

25 A(p) — A(p) u i}
26 Update Inits, or Endy as appropriate
27 end

Algorithm 1: Constructive Phase.






Computational Experiments

In this chapter we present the results we have obtained in a series of computational experi-
ments we have run to analyze and compare the different models and formulations proposed
and studied in the previous chapters. First, data generation is described in Section 5.1 and
then results are presented in the six subsequent sections. The results from each formula-
tion are presented separately, in Section 5.2 for the VRP formulation and in Section 5.3 for
the AP formulation. Since the primary objective is to solve the feasibility problem, in both
sections we show the results obtained after one hour of execution of MODO, plus the evalu-
ation of the unfeasibility condition of Section 3.1. Furthermore, we analyze the effectiveness
of the models MOD1-MOD4 within the same maximum computing time. In Section 5.4 the
results of the heuristic are presented. In Section 5.5 we compare the results of both formu-
lations and the heuristic. Then, in Section 5.6 we compare the solutions given by each of
the models MOD1-MOD4 with the best formulation. To this end, we cross-evaluate the solu-
tions. That is, for each instance and model, the best solutions obtained by the other models
in the same instance are evaluated. Finally, in Section 5.7 a sensitivity analysis of the max-
imum displacement is carried out with models MOD1 and MOD3, which share the overall
non-accomplishment criteria.

Models have been implemented in the Optimization Programming Language OPL [63] and
solved with the commercial software CPLEX 12.1 [13] . All experiments have been run on a
PClimited to 1 thread running at 2.6GHz and 16GB of RAM. Computing time has been limited
to one hour, so the aim is to compare both formulations under the same computational effort
with CPLEX. We consider that the computing effort is moderate, and it would also be realistic
in practice, when one solution should be obtained by the city council each working day.

5.1 Data generation

Since we are not aware of any benchmark instances that could be used in our experiments,
we generated a set of 60 test instances which follow the patterns observed in an experimental
study in the city of Barcelona (Spain) [67]. All instances have a similar structure with param-
eters randomly generated. Each instance represents an area during a whole day [0,T]. The
number of parking places for each instance is uniformly drawn from [2,8], and we assume re-
quests are only made within a subinterval [, B] < [0, T] corresponding to morning hours from
8h to 14h or afternoon hours from 16h to 20h. We use minutes as time unit. This provides
enough precision and it is operative in practice. Thus, [0, T] = [0,1440] and [a, E] = [480,840]
for the morning or [, b] = [960,1200] if we also consider the afternoon period.

Then, the total number of requests of each instance is computed. Following the patterns ob-
served in reality [67], requests are distributed according to a triangular pattern around a peak
hour that is located either in the center or at the beginning of the morning or afternoon inter-
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val, depending on the goods type. At peak hour, demand is usually higher than the number of
available places. Given these distributions and usage levels, a unique parameter defining the
overall demand density determines the total number of requests. The overall demand density
Y is the number of requests per hour-place, and for each instance it is uniformly drawn from
[1.5, 3.5]. For each instance, given the interval [, E], Y, and the number of places c, the total
number of requests is computed as |Q| = y(E —a)c.

Finally, the data for the requests of each instance are generated: duration of the operation,
and requested time window for the beginning of the service. Following [67], the duration of
an operation is drawn from a normal distribution N(18,5). We assume that the duration of the
operation includes all the time needed for the operator to perform the delivery, including the
time to cover the distance from the parking place to the customer, or the specific activities
related to the shipments that might involve more or less time. The process for generating the
time windows is more complex. As mentioned earlier, [67] shows that requests are distributed
according to a triangular pattern around peak hours, where the peak hour is located either
at the center or at the beginning of the morning or afternoon intervals. Thus, instances have
been divided in three types, depending on the distribution of requests along time intervals: (a)
triangular centered, (b) triangular asymmetric, and (c) double peak. In the first group, only the
morning interval is considered, and the peak hour is located at the middle of the interval (11h).
The second group also considers the morning interval but the peak hour is skewed earlier in
the morning (9h30). Finally, double peak considers morning and afternoon subintervals and
peak hours are centered in the middle of the respective intervals (11h and 18h). Once the
type of demand has been set for an instance, for each of its requests we set the midpoint for
its time window as well as its width. The midpoint is drawn according to the distribution of
its type of demand. Finally, the width of the time windows is set to 20, 40, 60, 80 minutes,
with probability 0.2, 0.2, 0.5, 0.1 respectively. Time windows are built symmetrically, centered
at the middle of the interval, depending on the time window width. Table 5.1 summarizes
the characteristics of the instances. In the Appendix D one instance of each type (triangular
centered, triangular asymmetric and double peak) is graphically represented.

Note that the overall demand density y and the duration of the required requests entail dif-
ferent levels of saturation around peak hour. Parameter v is related to the unfeasibility of the
instance, since the higher the density of demand, the more difficult it becomes to give service
to all requests. In all the experiments the weights coefficients in the objective functions of
MOD1 and MOD3 have been set at value one.

5.2 Numerical results with the VRP formulation

Before presenting the results of the VRP formulation in the different proposed models, we
discuss the different values of M tested for each of the models. For MODO, four different
values of parameter M in Constraints (4.5) were preliminarily considered: (a)the unique value
for each instance proposed in Section 4.1.1, M = max; b; + max; s; —min; a;. Adapted values
for each subset of constraints: (b) M; = b; + s; — @ and (c) M;; = b; + s; — aj. A more general
value for all instances based on generation instance parameters: (d) M=b+ max; s; — a. No
significant differences were observed neither in the results nor in the computational times, so
the more general value M was used in all the experiments presented in this section.

Four different values of M were also tested for MOD3. A more general value for all instances:
(a) M = b- a+ 2d + max; s;; two constraint related values: (b) M; = b; +2d + s; — a and (¢)



5.2 Numerical results with the VRP formulation 35

General data

# Places Requests interval Demand Distribution
() [, b] density (y) Pattern
20 480, 840] Centered (11h)
20 Ul[2,8] [480,840] U[1.5,3.5] | Skewed (9h30)
20 [480,840] U[960, 1200] Centered (11h,18h)
Requests data
Duration of operation (s;) TW width
20 min with probability 0.2
40 min with probability 0.2
N118,5] 60 min with probability 0.5
80 min with probability 0.1

Table 5.1: Instances characteristics

M;j = b; +2d + s; — aj; and the unique value proposed for each instance in Section 4.1.1: (d)
M =max; b; +2d + max; s; —min; a;. Given that only small differences were obtained with the
different values, the general value M was chosen.

In the case of MOD1, MOD2 and MOD4 no tighter values for M are possible and the value
used was M = T + max; s;. As for the parameter K of MOD4, we experimented with value
K; = max(a;, T — b;) but not significant differences were observed and the general value (K =
max; max{a;, T — b;}) was used.

As we will see, the outcome of MODO is closely related to the outcome of MOD1-MOD4, so
we start this section by analyzing the effect of some of the instances parameters in the re-
sults of MODO, and the effectiveness of the unfeasibility check of Proposition 1. Figure 5.1
relates the status of MODO at termination to the value of the demand density parameter y
and the type of requests distribution (triangular centered, triangular asymmetric and double
peak). For this, benchmark instances are partitioned in three sets: (a) Feasible (top); (b) Time
Limit (middle), when time limit was reached without knowing whether or not the instance is
feasible; and (¢) Unfeasible (bottom), detected either by CPLEX or by the sufficient condition
of Proposition 1. Several intervals [a, ] were used in the unfeasibility condition check. The
center of all intervals coincides with the peak hour, whereas the interval widths range from
a minimum of 40 minutes to a maximum of 180 minutes, with checks every 20 minutes. The
computational burden of these tests is negligible as it never never exceeds 0.01 seconds. Slight
differences can be observed in Figure 5.1 among the three types of benchmark instances (tri-
angular centered, triangular asymmetric and double peak). In the first two groups, there are
more instances solved to optimality than in the the double peak ones, where more instances
reached the maximum time limit.

As it was expected, Figure 5.1 shows that instances become more difficult as demand density
increases. At the extreme values of the parameter y instances are either optimally solved when
Y € [1.5,1.75], or unfeasibility is proven when vy € [3.07,3.5]. Moreover, none of the instances
with y € [2.38,3.07] was found to be feasible. Observe the effectiveness of the unfeasibility
check, which was able to detect the unfeasibility of nine instances for which CPLEX 12.1 ter-
minated within the time limit without detecting neither feasibility or unfeasibility.

Next we analyze the numerical results obtained with CPLEX for models MOD0-MOD4 with the
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Figure 5.1: Results from MODO with the VRP formulation

VRP formulation. The results obtained for each model and benchmark instance are presented
in Table 5.2. The meaning of the first five columns is the following. In the first column (Id),
each instance is identified with a numerical label. Column Rq gives the number of requests, ¢
the number of parking places, Hop the length of the time horizon, i.e. the number of operating
hours, and y the density.

Column Type under MODO, indicates the status of MODO at termination: F when a prov-
able optimal solution was found, U when unfeasibility was proven by CPLEX, UC when un-
feasibility was proven by the check of Proposition 1, and TL when the time limit was reached
but the instance could not be classified in any of the former groups. For each model MODjj,
j=0,...,4, column SOL gives the value of the optimal solution, when the value is bold, or the
value of the best solution found when the time limit was reached, otherwise. If no solution
was found within the allowed computing time the entry in column SOL is empty. Negative en-
tries in column SOL of MODO indicate that the unfeasibility of the instance was proven. This
entry is -1 when unfeasibility was detected by CPLEX within the CPU time limit (instances 15
and 30), or -2 when unfeasibility was detected with the test of Proposition 1. For each model,
column TIME gives the CPU time to termination in seconds or 3,600 when time limit was
reached.

Table 5.2 does not include information on LBs at termination because, for all models MODO-
MOD4, these bounds were always zero in all the cases that optimality could not be proven.

As can be seen, MODO found a provable optimal solution for 28 instances and proved that the
instance was not feasible in two cases. The average CPU time for the instances that terminated
with a certificate of optimality or unfeasibility is 148.1 seconds. However, for the remaining
30 instances it terminated without knowing whether or not the instance was feasible, even
if the feasibility check indicates that 9 such instances are unfeasible. The average comput-
ing time over the complete set of benchmark instances rises up to 1,874 seconds. According
to Corollary 1 when MODO is feasible, the optimal value of MOD1-MOD4 will be zero since
there is an assignment of parking places that satisfies the time window requests of all the car-
riers. Conversely, if MODO is not feasible the optimal values to MOD1-MOD4 will be strictly
positive. In this respect, the results in Table 5.2 confirm that, computationally, the outcome
MODO gives valuable information not only with respect to MODO itself but also with respect to
MOD1-MODA4. Indeed, all the 28 instances that are feasible for MODO were optimally solved
by MOD1-MOD3, and 23 such instances were also optimally solved by MOD4. Furthermore,
nomodel MOD}, j =1,...,4 was able to optimally solve any of the unfeasible instances within
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MODO MOD1 MOD2 MOD3 MOD4
1d Rq Hop Y Type SOL TIME SOL TIME SOL TIME SOL TIME SOL TIME
T 111 7 6 264 UC 2 3,600] 1352 3,600 18 3,600 3,600 30 3,600
2 75 4 6 313 UC 2 3,600 1,391 3,600 54 3,600] 1,359 3,600 24 3,600
3 60 4 6 250 TL 3,600 200 3,600 12 3,600 142 3,600 9 3,600
4 58 6 6 161 F 0 1 0 61 0 29 0 32 0 32
5 119 6 6 331 UC 2 36000 2,602 3,600 73 3,600 3,600 55 3,600
6 8 4 6 342| UC 2 3,600 1951 3,600 71 3,600 3,600 26 3,600
792 5 6 307 TL 3,600 629 3,600 28 3,600 675 3,600 16 3,600
8 42 3 6 233 F 0 466 0 3248 0 1,682 0 2017 2 3,600
9 48 5 6 1.60| F 0 5 0 510 0 49 0 46 0 122
10 73 6 6 203 F 0 9 0 933 0 187 0 555 0 420
11 66 6 6 18| F 0 1 0 97 0 146 0 392 0 154
12 74 4 6 3.08 UC 2 3,600 1,069 3,600 44 3,600 1,111 3,600 19 3,600
13 64 5 6 213 F 0 45 0 3,573 0 489 0 3,373 2 3,600
14 36 3 6 200 F 0 2 0 41 0 9 0 8 0 18
15 24 2 6 200 U 1 394 13 3,600 3 3,600 13 3,600 1 3,600
16 87 6 6 242 TL 3,600 428 3,600 19 36000 409 3,600 13 3,600
17 104 8 6 217 TL 3,600 253 3,600 15 3,600 245 3,600 14 3,600
18 146 8 6 304 TL 3,600 1,885 3,600 76 3,600 3,600 49 3,600
9 76 7 6 181 F 0 156 0 3261 0 720 0 42 0 1,703
20 30 3 6 167| F 0 0 0 6 0 9 0 2 0 3
21 69 7 6 164] F 0 7 0 65 0 124 0 94 0 62
2 7 6 6 211 F 0 26 0 3304 0 543 0 37258 0 1,437
23 136 8 6 283 TL 3,600 1446 3,600 71 3,600 3,600 34 3,600
24 54 3 6 3.00| UC 2 36000 495 3,600 35 3,600 531 3,600 11 3,600
25 57 4 6 238 F 0o 11 0 3,369 0 2,651 0 37291 1 3,600
26 8 5 6 273 TL 3,600 995 3,600 44 3600 885 3,600 19 3,600
27 75 8 6 156] F 0 2 0 367 0 73 0 22 0 482
28 45 3 6 250| TL 3,600 9 3,600 3 3,600 13 3,600 2 3600
2 98 7 6 233 TL 3,600 12 3,600 14 3,600 90 3,600 7 3,600
30 21 2 6 175 U 11,022 7 3,600 2 3,600 7 3,600 1 3,600
31 72 4 10 180 F 0 2,074 0 3313 0 190 0 1,402 2 3600
32 109 4 10 273 TL 3,600 1,166 3,600 44 3,600 829 3,600 36 3,600
33 50 2 10 250| TL 3,600 307 3,600 33 3,600 306 3,600 10 3,600
34 106 7 10 151 F 0 3 0 971 0 714 0 223 0 805
3 129 5 10 258 TL 3,600 1431 3,600 221 3,600 1,145 3,600 40 3,600
36 62 2 10 3.10| UC 2 36000 730 3,600 42 3,600 652 3,600 18 3,600
37 51 3 10 170 F 0 2 0 71 0 22 0 7 0 132
38 137 6 10 228 TL 36000 520 3,600 205 3,600 352 3,600 20 3,600
3997 3 10 323 UC 2 3,600( 1,764 3,600 69 3,600 3,600 38 3,600
40 135 5 10 270| TL 3,600 1,980 3,600 121 3,600 1,531 3,600 60 3,600
4 55 2 10 275 TL 3,600 361 3,600 41 3,600 357 3,600 11 3,600
42 170 7 10 243| TL 3,600 1,573 3,600 317 3,600 1217 3,600 65 3,600
43 100 4 10 250| TL 3,600 274 3,600 22 36000 279 3,600 18 3,600
44 220 7 10 3.14] UC 2 3,600| 21,537 3,600 438 3,600 3,600 168 3,600
45 237 8 10 296| TL 3,600 27,701 3,600 419 3,600 3,600 186 3,600
46 77 7 6 18| F 0 23 0 333 0 258 0 323 0 618
47 46 4 6 192| TL 3,600 0 839 0 98 0 459 0 2,010
48 22 2 6 183 F 0 0 0 2 0 2 0 1 0 2
49 23 2 6 192 F 0 1 0 21 0 3 0 3 0 5
50 32 3 6 1.78] F 0 2 0 86 0 6 0 8 0 68
51 31 3 6 172| F 0 0 0 16 0 3 0 4 0 4
52 29 3 6 161] F 0 1 0 16 0 3 0 4 0 4
55 23 2 6 192 F 0 1 0 34 0 4 0 11 0 45
54 60 5 6 200 F 0 7 0 142 0 68 0 208 0 53
55 41 4 6 171 F 0 3 0 69 0 23 0 17 0 23
56 116 6 10 193] F 0 115 0 37385 0 3281 0 623 1 3,600
57 103 6 10 172| F 0 58 0 1,329 0 32064 0 37287 0 3322
58 66 4 10 165 F 0 4 0 173 0 71 0 17 0 270
59 73 4 10 1.83] TL 3,600 2 3,600 2 3,600 3 3,600 1 3,600
60 151 8 10 1.89] TL 36000 286 3,600 194 3,600 273 3,600 17 3,600

Table 5.2: Results of MODO0-MODA4 in the set of instances with the VRP formulation
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the maximum CPU time: neither the ones detected by CPLEX nor the ones detected by the un-
feasibility check. On the other hand, by solving MOD1-MOD4, the feasibility/unfeasibility
with respect to MODO was disclosed for only one instance with status TL (instance 47). This
instance was optimally solved by all MOD1-MOD4 and is feasible with respect to MODO as its
optimal value with respect to MOD1-MOD4 is zero.

MOD1, MOD2 and MOD4 always produced some solution, even if its optimality was not
proven. In contrast, for seven instances MOD3 consumed the allowed computing time with-
out finding a feasible solution. Recall that instances can be unfeasible for MOD3 because of
the maximum displacement constraint (4.22). Four of the instances without a solution for
MODS3 (1, 5, 6, 44) are known to be unfeasible for MODO, whereas for instances 18, 24 and 39
its condition with respect to MODO is unknown.

The average CPU times required by MOD1-MOD4 are considerably larger that those of MODO,
even if we restrict to the benchmark instances that terminate with a certificate of optimality.
It seems, however, that the min-max objective of MOD?2 is somehow less demanding than the
sum-type objectives of MOD1, MOD3 and MOD4.

The effectiveness of MOD1-MOD4 is summarized in Table 5.3, where benchmark instances
have been partitioned relative to their status with respect to MODO in Feasible, Unfeasible,
detected either by CPLEX or by the sufficient condition of Proposition 1, and Time Limit, when
the time limit reached without knowing whether or not the instance is feasible. For each tested
model we further partition each of the above groups of instances according to the possible
outcomes of the tested model: optimum found (OPT), time limit reached with a feasible solu-
tion (TL/S), and time limit reached without a feasible solution (TL/NS). The entries in the table
give the number of instances in each class and the average CPU times over the set of instances
in the class. No clear conclusion can be drawn from Table 5.3 about the effectiveness of the
models in terms of their capability for finding good quality solutions. For instances in Feasi-
ble, MOD4 performs slightly worse than the other models, since in 5 instances non-optimal
solutions were found. But as already mentioned, in terms of their capability of proving feasi-
bility, the other models work exactly as MODO. For Unfeasible and Time Limit instances, the
performance of MOD1, MOD2 and MOD4 is the same, and a little better than that of MOD3.

MODO Status MOD1 MOD2 MOD3 MOD4
Status No. CPU No. CPU | No. CPU | No. CPU | No. CPU
OPT 28 1,028 | 28 522 28 709 23 425

Feasible 28 108 TL/S - - - 5 3,600
TL/NS - - - -
OPT - - - -

Unfeasible | 11 3,512 TL/S 11 3,600 | 11 3,600 6 3,600 | 11 3,600
TL/NS - - 5 3,600 -

OPT 1 839 1 98 1 459 1 2010

Time Limit | 21 3,600 TL/S 20 3,600 | 20 3,600 | 17 3,600 | 20 3,600
TL/NS - - 3 3,600 -

Table 5.3: Results of MOD1-MOD4 in the set of instances with the VRP formulation

For the reasons explained before and justified in Section 4.1, the experiments described above
were run without taking into account the SECs (4.9). Still, we made some tests to confirm
their potential usefulness empirically. First, we checked that, indeed, all 60 benchmark in-
stances satisfied the condition that ensures that the LP relaxation of MODO will be feasible,
even with the addition of the SECs. (For a detailed statement of the condition see expression
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(4.10) ). Note that, in turn, this means that the LP values of MOD1-MOD4 are all zero. Then,
we implemented a callback with a separation procedure for the SECs and run a second set of
experiments. The rationale for these additional tests was that the addition of the SECs could
reinforce the LP relaxation of some nodes of the enumeration tree, even if they had no ef-
fect on the root node. In our second set of experiments, constraints (4.9) were separated at
all the nodes of the enumeration tree with depth up to 15. This strategy was hopeless: while
we appreciated no difference in the number of instances whose unfeasibility was proven, the
number of instances that terminated with a certificate of optimality decreased notably for all
five models MODO0-MOD4. Again, in all cases when optimality could not be proven the LB at
termination was zero.

5.3 Numerical results with the AP formulation

As we will see, the AP formulation provides more optimal solutions under the same comput-
ing time than the VRP based formulations. In particular, within one hour of computing time
all instances of MODO are solved to optimality. Then, we can analyze the feasibility of the in-
stances (with the outcome of MODO) related to some of their features. Figure 5.2 relates for
the different instances the status of MODO at termination to the value of the demand density
parameter y and the type of requests distribution (triangular centered, triangular asymmetric
and double peak). For this, benchmark instances are now partitioned in only two sets: (a)
Feasible (top); and (c) Unfeasible (bottom), detected by CPLEX with formulation AP. We also
maintain a special symbol in the instances where the sufficient condition of Proposition 1
could prove their unfeasibility.

Slight differences can be observed in Figure 5.2 among the three types of benchmark instances
(triangular centered, triangular asymmetric and double peak). In the first two groups, there
are more instances solved to optimality than in the the double peak ones, where more in-
stances are unfeasible.

As it was expected, Figure 5.2 shows that instances tend to be unfeasible as demand density
increases. For the extreme values of the parameter y, instances are either optimally solved
when y € [1.5,1.75], or unfeasibility is proven when y € [2.38,3.5].

1.75 2.38

FEASIBLE QOB 0D 20 9, o4
| l
: : ¢ Triangular Centered

TIME LIMIT 1 ] TriangularAsymmetric
: : DoublePeak
I | O

UNFEASIBLE : . EERLL M B @ UnfeasCheck
] |
| |
] |

1.00 1.50 2.00 Y 2.50 3.00 3.50

Figure 5.2: Results from MODO with the AP formulation

The numerical results obtained with CPLEX and the AP formulation are presented next. The re-
sults obtained for each model and benchmark instance are presented in Table 5.4. The mean-
ing of the columns is as in Table 5.2.
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MODO MOD1 MOD2 MOD3 MOD4
1d Rq c Hop Y Type SOL TIME SOL TIME SOL TIME SOL TIME SOL TIME

1 11 7 6  2.64| UF -1 5 551 44 52 3,600 551 48 1 69

2 75 4 6 313 UF -1 3 950 3,600 48 3,600 999 80 12 40

3 60 4 6 250 UF -1 2 64 15 6 867 64 12 2 31

4 58 6 6 1061 F 0 3 0 6 0 5 0 8 0 12

5 119 6 6 331 UF -1 5 1,565 52 568 3,600 1,686 110 21 82

6 82 4 6 342 UF -1 4 1,380 92 523 3,600 1,494 716 15 49

792 5 6  3.07( UF -1 6 181 43 27 3,600 183 33 3 49

8 42 3 6 233 F 0 4 0 5 0 15 0 8 0 13

9 48 5 6 160 F 0 3 0 5 0 4 0 7 0 12
10 73 6 6 203 F 0 5 0 8 0 6 0 11 0 15
11 66 6 6 183 F 0 4 0 6 0 5 0 10 0 17
12 74 4 6 3.08 UF -1 5 794 50 35 1,888 797 21 12 65
13 64 5 6 213 F 0 5 0 10 0 23 0 11 0 15
14 36 3 6 200 F 0 2 0 5 0 3 0 5 0 7
15 24 2 6  2.00[ UF -1 2 13 5 4 101 13 5 1 8
16 87 6 6 242 UF -1 5 87 43 6 1,858 87 63 3 54
17 104 8 6 217 F 0 7 0 15 0 43 0 19 0 32
18 146 8 6  3.04 UF -1 9 842 61 828 3,600 852 46 15 114
19 76 7 6 181 F 0 4 0 9 0 9 0 12 0 15
20 30 3 6 167 F 0 2 0 3 0 3 0 5 0 6
21 69 7 6 1064 F 0 5 0 6 0 8 0 10 0 9
2276 6 6 211 F 0 6 0 8 0 8 0 12 0 11
23 136 8 6 283 UF -1 7 432 46 139 3,600 432 49 9 49
24 54 3 6  3.00 UF -1 4 422 36 30 1,273 432 120 7 10
25 57 4 6 238 F 0 4 0 8 0 23 0 9 0 7
26 82 5 6 273 UF -1 6 553 51 27 2716 557 39 11 62
27 75 8 6 156 F 0 6 0 8 0 8 0 10 0 9
28 45 3 6 250 UF -1 3 9 9 2 342 9 6 1 13
29 98 7 6 233 F 0 7 0 13 0 39 0 9 0 17
30 21 2 6 175 UF -1 2 7 4 2 55 7 3 1 3
31 72 4 10 180 F 0 5 0 10 0 29 0 7 0 11
32109 4 10 2.73] UF -1 6 427 24 28 1,757 430 41 1 3,600
33 50 2 10 2.50[ UF -1 3 294 10 33 332 299 8 6 10
34 106 7 10 151 F 0 6 0 11 0 10 0 9 0 12
35 129 5 10 2.58] UF -1 8 422 36 897 3,600 422 18 1 124
36 62 2 10 3.10[ UF -1 4 611 32 42 946 613 11 14 56
37 51 3 10  1.70|] F 0 4 0 6 0 18 0 5 0 7
38 137 6 10 2.28] UF -1 8 62 24 1,038 3,600 62 20 3 27
39 97 3 10 3.23| UF -1 6 1,118 53 64 3,600 1,165 41 18 26
40 135 5 10 2.70|] UF -1 7 715 51 41 3,600 715 42 15 35
41 55 2 10 2.75| UF -1 4 330 17 11 505 344 17 7 13
42170 7 10 243 UF -1 8 224 54 1,047 3,600 224 39 6 35
43 100 4 10 2,50 UF -1 5 153 28 14 998 153 16 4 21
44 220 7 10 3.14| UF -1 10 1,733 185 1,034 3,600 1,822 113 30 150
45 237 8 10 296 UF -1 10 1,338 1,157 1,011 3,600 1,345 183 25 196
46 77 7 6 183 F 0 4 0 9 0 6 0 7 0 9
47 46 4 6 192 F 0 3 0 8 0 15 0 5 0 6
48 22 2 6 183 F 0 2 0 4 0 3 0 3 0 4
49 23 2 6 192 F 0 2 0 4 0 8 0 3 0 4
50 32 3 6 178 F 0 3 0 6 0 4 0 4 0 5
51 31 3 6 172 F 0 3 0 6 0 4 0 3 0 4
5229 3 6 161 F 0 3 0 6 0 11 0 4 0 5
53 23 2 6 192 F 0 2 0 4 0 8 0 3 0 4
54 60 5 6 200 F 0 4 0 10 0 6 0 6 0 9
55 41 4 6 171 F 0 3 0 6 0 12 0 4 0 5
56 116 6 10 193] F 0 6 0 16 0 9 0 11 0 14
57 103 6 10 172 F 0 6 0 15 0 35 0 10 0 15
58 066 A4 10 1.65| F 0 4 0 10 0 6 0 6 0 8
59 73 4 10 1.83] F 0 5 0 13 0 29 0 7 0 12
60 151 8 10 189 F 0 8 0 22 0 52 0 14 0 18

Table 5.4: Results of MODO0-MOD4 in the set of instances with the AP formulation
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As can be seen, MODO found the optimal solution in all the instances, 33 instances being fea-
sible and 27 proved not feasible. The average CPU time is 4.81 seconds. According to Corol-
lary 1 when MODO is feasible, the optimal value of MOD1-MOD4 will be zero since there
is an assignment of parking places that satisfies the time window requests of all the carri-
ers. Conversely, if MODO is not feasible the optimal values to MOD1-MOD4 will be strictly
positive. In this respect, the results in Table 5.4 confirm that, computationally, the outcome
MODO gives valuable information not only with respect to MODO itself but also with respect to
MOD1-MOD4. Indeed, all the 33 instances that are feasible for MODO0 were optimally solved
by MOD1-MOD4, but MODO was fastest in finding the optimal solution with an average of
4.34 seconds, followed by MOD3, MOD1, MOD4 and MOD?2 with averages of: 7.84, 8.37, 10.53
and 14.14 seconds respectively. Regarding unfeasible instances, MOD1, MOD3 and MOD4
performed very well. MOD3 was able to provide the optimal solution for all of the instances;
MOD1 and MOD4 all the optimal solutions except for 1 instance. MOD2, however, even if
tested under different CPLEX parameters it is not able to provide the optimal solution in 14
out of the 27 unfeasible instances.

Even if MOD3 can be unfeasible because its maximum displacement constraint (4.22), this did
not happen. The average CPU times required by MOD1-MOD4 are slightly larger that those
of MODO, even if we restrict to the benchmark instances that terminate with a certificate of
optimality. Contrary to what happened with the VRP formulation, the AP formulation with the
min-max objective of MOD2 is somehow more demanding than with the sum-type objectives
of MOD1, MOD3 and MODA4.

The effectiveness of MOD1-MOD4 is summarized in Table 5.5, where benchmark instances
have been partitioned relative to their status with respect to MODO in Feasible or Unfeasible.
For each tested model we further partition each of the above groups of instances according to
the possible outcomes of the tested model: optimum found (OPT) or time limit reached with
a feasible solution (TL/S). The entries in the table give the number of instances in each class
and the average CPU times over the set of instances in the class. It is clear that MOD1, MOD3
and MOD4 provide optimal solutions in nearly all of the instances, so the AP formulation is
effective in finding optimal solutions for these models. However, MOD2 has some problems
for finding optimal solutions when the instance is not feasible.

MODO Status |___MODI MOD2 MOD3 MOD4

Status | No. CPU No. CPU | No. CPU | No. CPU | No. CPU

rousible | 33 a3a | OPT | 33 837 | 33 1414 | 33 784 | 33 1053
TS | - - ; ;

. OPT | 26 8542 | 13 1,048 | 27 7035 | 26 53.59

Unfeasible | 27 5.39 | /¢ | 1 3600 | 14 3.600 | - 1 3,600

Table 5.5: Results of MOD1-MODA4 in the set of instances with the AP formulation

5.4 Numerical results with the heuristic

As already mentioned, the results of the heuristic are not aimed at providing optimal solu-
tions. The aim is to assess the results of the previous formulations, especially for the VRP
formulation, where CPLEX is quite time-consuming for some of the models. Detailed results
are given in Table 5.6, which contains several columns. The first five columns summarize the
characteristics of the instances. Columns labeled C-HEUR give the objective values obtained
with the constructive phase of the heuristic. Empty entries in column C-HEUR of MODO or
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MOD3 indicate that the heuristic was not able to find a feasible solution for the correspond-
ing instance. Columns labeled I-HEUR give the values obtained with the local search, when
it improved the solution of the constructive phase. Empty entries corresponding to instances
when the constructive heuristic found a feasible solution, indicate that the local search was
not able to improve the solution of the heuristic phase. The constructive heuristic is able to
provide 8 feasible solutions for MODO and 25 solutions for MOD3, for the rest of the models it
provides a feasible solution for all the instances. The improvement heuristic is able to provide
better solutions in some of the instances for MOD1-MOD3. In paricular, some of the non-
feasible solutions for MOD3 build for the constructive heuristics are made feasible with the
improvement. The compared quality of the solutions is analyzed in the following section. The
computing times required by the heuristic are, in general, small. This is not surprising giving
its simplicity. They are on average 0.003 seconds for the first phase and 0.03 seconds for the
improvement phase.
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MODO MOD1 MOD2 MOD3 MOD4
Id Rqg ¢ Hop Yy |CHEUR|CHEUR I_HEUR|C_HEUR I_HEUR| C_HEUR I_HEUR | C_HEUR I_HEUR

T 111 7 6 2.64 1,360 80 24

2 75 4 6 313 1,610 109 21

360 4 6 250 652 97 9

4 58 6 6 1.6l 0 0 0 0 0

5 119 6 6 331 2,577 135 36

6 82 4 6 342 2,402 132 26

7 92 5 6 307 1,435 115 17

8 42 3 6 233 361 95 5

9 48 5 6 1.60 87 28 87 5
10 73 6 6 203 97 53 45 97 2
11 6 6 6 183 0 0 0 0 0
12 74 4 6 3.08 1,476 125 18
13 64 5 6 213 366 57 366 9
14 3 3 6 2.00 84 52 84 2
15 24 2 6 200 182 73 55 3
16 87 6 6 242 830 92 14
17 104 8 6 217 309 69 11
18 146 8 6 3.04 2,048 98 33
19 76 7 6 181 52 44 29 28 52 44 2
20 30 3 6 167 0 0 0 0 0
21 69 7 6 1.64 0 0 0 0 0
2 76 6 6 211 136 81 75 39 162 2
23 136 8 6 283 1,435 100 27
24 54 3 6 3.00 997 115 12
25 57 4 6 238 314 82 6
26 82 5 6 273 1,218 104 19
27 75 8 6 156 0 0 0 0 0
28 45 3 6 250 238 75 53 392 5
29 98 7 6 233 358 68 8
30 21 2 6 175 99 51 49 99 2
31 72 4 10 180 336 84 81 6
32 109 4 10 273 2,436 149 27
33 50 2 10 250 843 147 9
34 106 7 10 151 0 0 0 0 0
35 129 5 10 258 2,493 125 30
36 62 2 10 310 1,683 164 18
37 51 3 10 170 32 32 18 32 1
33 137 6 10 228 1,110 107 17
39 97 3 10 323 3,294 182 28
4 135 5 10 270 2,787 147 34
4 55 2 10 275 933 156 10
42 170 7 10 243 2,333 110 32
43 100 4 10 250 1,098 137 11
44 220 7 10 314 5313 164 56
45 237 8 10 296 5171 154 59
46 777 6 183 21 1 21 1 21 1 1
47 46 4 6 192 75 36 32 75 3
48 22 2 6 183 0 0 0 0 0
49 23 2 6 192 97 48 54 18 97 48 2
50 32 3 6 178 57 35 31 23 57 35 2
51 31 3 6 172 65 51 34 24 65 51 2
52 29 3 6 161 102 57 45 102 2
53 23 2 6 192 90 34 90 3
54 60 5 6 200 45 45 25 45 1
55 41 4 6 171 7 7 7 1
56 116 6 10 193 217 62 42 245 5
57 103 6 10 172 120 45 120 4
58 66 4 10 165 0 0 0 0 0
59 73 4 10 183 422 100 70 8
60 151 8 10 1.89 496 69 10

Table 5.6: Solution obtained with proposed heuristic
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5.5 Comparison of the VRP and AP formulations, and the heuristic

In this section the results of both formulations, and the results provided by the heuristic will
be presented together and compared. The comparison will be done in terms of number of
instances solved to optimality, quality of the solution when optimality has not been proved
and computing time. Tables 5.7 and 5.8 combine together the results presented in the previ-
ous sections. The first five columns correspond to information related to each instance and
described in the previous chapters. Then, for each model we have five columns, two for the
VRP formulation: the value of the obtained solution and the computing time; two more for
the AP formulation: again, the value of the obtained solution and the computing time; and
one last column with the value of the solution obtained with the heuristic. Entries in bold
correspond to values of solutions proven optimal. Shaded entries indicate values whose op-
timality was not proven with the corresponding formulation/method, but which correspond
either to best-known values or to values proven optimal by another formulation/ method.

The AP formulation clearly outperforms the VRP formulation. For MOD0, MOD1, MOD3 and
MOD4, the AP formulation is nearly always able to provide an optimal solution, and in most
of the cases this solution is obtained in less than 200 seconds. MOD?2 has a different perfor-
mance: formulation AP gives 46 optimal solutions for MOD2, while the VRP formulation only
obtains 29. The VRP formulation is able to provide, however, 10 best-known solutions, the
heuristic 5, and the AP formulation only 3. Note that with this model, the AP formulation
finds an optimal solution for instances 15 and 33, even if VRP formulation provides a solution
with lower value of the objective function without proving its optimality. This is possible due
to time discretization. The solutions obtained with the VRP formulations have non-integer
values for time variables, which are unfeasible for the AP formulation. This model presents
an extra difficulty for solving it. Due to the symmetry of the solutions, there are multiple so-
lutions with the same value of the objective function, which makes the solution process more
complex. Solutions obtained with the heuristic are nearly always of poor quality, which was
expected since it is a very simple heuristic with short computing time. The heuristic only per-
forms best in some of the instances for MOD?2. It also outperforms the VRP formulation in
MOD4.



MODO MOD1 MOD2 MOD3 MOD4

VRP AP HEUR| VRP AP HEUR|] VRP AP HEUR] VRP AP HEUR|] VRP AP |HEUR

Id Rq C Hop Y Type SOL TIME|[Type SOL TIME[ SOL | SOL TIME| SOL TIME| SOL |SOL TIME| SOL TIME| SOL | SOL TIME| SOL TIME| SOL |SOL TIME[SOL TIME| SOL
1 1 7 6 264 UC -2 30600 U -1 5 1,352 3,600 551 44 1,360 48 3,600 52 3,600 80) 3,600] 551 48 30 3,600 11 69 24
2 75 4 6 313lUC -2 3600 U -1 3 1,391 3,6001 950 3,600 1,610) 54.5 3,600 48 3,600 109} 1,359 3,600( 999 80 24 3,600( 12 40 21
3 60 4 6 2.50] TL 3,600 U -1 2 200 3,600[ 64 15 652] 12 3,600 6 867 971 142 3,600 64 12 9 3,600 2 31 9)
4 58 6 6 1lol] F 0 11 F 0 3 0 0 61 0 6 o 0 29 0 5 0| 0 32 0 8 o o0 321 0 12 0
5 119 6 6 3311UC -2 3600 U -1 5 2,602 3,600 1,565 52 2,577} 73.5 3,600[ 568 3,600 135 3,600/ 1,686 110 55 3,600 21 82 36
6 82 4 6 3420UC -2 3600 U -1 4 1,951 3,600 1,380 92 2,402 71 3,600| 523 3,600 132 3,600| 1,494 716 26 3,600[ 15 49 20,
792 5 6  3.07) TL 3,600 U -1 6 629 3,600 181 43 1,435]28.5 3,600 27 3,600 115 675 3,600 183 33 16 3,600 3 49 17
8 42 3 6 233 F 0 466 F 0 4 0 3,248 0 5 361 0 1,682 0 15 95 0 2,017 0 8 2 3,600, 0 13 5
9 48 5 6 100} F 0 50 F 0 3 0 510 0 5 871 o0 49 0 4 28] 0 46 0 7 871 o0 122 0 12 5
10 73 6 6 203 F 0 9 F 0 5 0 933 0 8 971 o0 187 0 6 45 0 555 0 11 971 0 420 O 15 2
11 66 6 6 183 F 0 1 F 0 4 0 0 97 0 6 0] 0 146 0 5 0| 0 392 0 10 0] 0 154/ 0 17 0
12 74 4 6 308 UC -2 3,600 U -1 5 1,169 3,600( 794 501 1,476] 44 3,600 35 1,888 125) 1,111 3,600 797 21 19 3,600 12 65 18
13 64 5 6 213 F 0 451 F 0 5 0 3,573 0 10 3660 0 489 0 23 57 0 3,373 0 11 366 2 3,600 0 15 9)
14 36 3 6 200 F 0 20 F 0 2 0 4 0 5 84 o0 9 0 3 52 0 8 0 5 84 0 18 0 7 2
15 24 2 6 200 U -1 394 U 4 2 13 3,600 13 5 182] 3.5 3,600 4 101 55 13 3,600 13 5 1 3,600 1 8 3]
16 87 6 6 242] TL 3,600 U -1 5 428 3,600 87 43 830] 19.5 3,600 6 1,858 92| 409 3,600 87 63 13 3,600, 3 54 14
17 104 8 6 217 TL 3,000 F 0 7 253 3,600, 0 15 309] 15.5 3,600 0 43 69 245 3,600 0 19 14 3,600, 0 32 11
18 146 8 6 3.04 TL 3,600 U -1 9 1,885 3,600 842 61] 2,048 75.5 3,600[ 828 3,600 98 3,600| 852 46 49 3,600 15 114 33
19 76 7 6 181} F 0 156 F 0 4 0 3,261 0 9 4 0 720 0 9 28 0 422 0 12 44 0 1,703) 0 15 2
20 30 3 6 167 F 0 of F 0 2 0 0 6 0 3 o o0 9 0 3 0| 0 2 0 5 o o0 3 0 6 0
21 69 7 6 104 F 0 71 F 0 5 0 0 65 0 6 0] 0 124 0 8 0| 0 94 0 10 o o0 62 0 9 0
2276 6 6 211} F 0 260 F 0 6 0 3,304 0 8 81 0 543 0 8 39 0 3,258 0 12 162 0 1,437 0 11 2
23 136 8 6 283 TL 3,600 U -1 7 1,446 3,600] 432 46| 1,435170.5 3,600 139 3,600 100 3,600] 432 49 34 3,600 9 49 27
24 54 3 6 3000UC -2 30600 U -1 4 495 3,600 422 36 9971 35 3,600 30 1,273 115 531 3,600 432 120 11 3,600 7 10 12]
25 57 4 6 238] F 0 1 F 0 4 0 3,369 0 8 314 0 2,651 0 23 82 0 3,291 0 9 1 3,600 0 7 6
26 82 5 6 273 TL 3,000 U -1 6 995 3,600 553 511 1,218] 44 3,600 27 2,716 104 885 3,600 557 39 19 3,600 11 62 19
27 75 8 6 156 F 0 2f F 0 6 0 0 367 0 8 o o0 73 0 8 0) 0 222 0 10 o] 0 482 0 9 0)
28 45 3 6 250] TL 3,000 U -1 3 9 3,600 9 9 238 3 3,600 2 342 53 13 3,600 9 6 3921 2 3,600 1 13 5
29 98 7 6 233 TL 3,000 F 0 7 12 3,600 0 13 358] 14.5 3,600 0 39 68 90 3,600 0 9 7 3,600 0 17 8
30 21 2 6 1751 U -1.1,022) U -1 2 7 3,600 7 4 99 2 3,600 2 55 49 7 3,600 7 3 99 1 3,600 1 3 2|

Table 5.7: Solutions obtained with the VRP,

the AP formulations and the heuristic
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MODO MOD1 MOD2 MOD3 MOD4

VRP AP HEUR| VRP AP HEUR|] VRP AP HEUR] VRP AP HEUR|] VRP AP |HEUR
Id Rq Hop Y Type SOL TIME[Type SOL TIME[ SOL | SOL TIME| SOL TIME| SOL |SOL TIME| SOL TIME| SOL | SOL TIME| SOL TIME| SOL |SOL TIME[SOL TIME| SOL
31 72 4 10 1.80] F 02074 F 0 5 0 3313 0 10 330 0 190 0 29 81 0 1,402 0 7 2 3,600 0 11 6
32109 4 10 273| TL 3,000 U -1 6 1,166 3,600| 427 24| 2,436] 44.5 3,600 28 1,757 1491 829 3,600 430 41 36 3,600 11 3,600 27
33 50 2 10 2.50) TL 3,000 U -1 3 307 3,600 294 10 843] 32.5 3,600 33 332 147] 306 3,600 299 8 10 3,600 6 10 9)
34 106 7 10 151 F 0 3f F 0 6 0) 0 97 0 11 o] 0 714 0 10 0) 0 223 0 9 0 0 805 0 12 0
35 129 5 10 258] TL 3,000 U -1 8 1,431 3,600 422 36| 2,493 221 3,600[ 897 3,600 125] 1,145 3,600| 422 18 40 3,600[ 11 124 30
36 62 2 10 310 UC -2 3,600 U -1 4 730 3,600 611 32| 1,683] 41.5 3,600 42 946 164] 652 3,600 613 11 18 3,600 14 56 18]
37 51 3 10 170 F 0 21 F 0 4 0 71 0 6 321 0 22 0 18 18 0 7 0 5 321 0 132 0 7 1
38 137 6 10 2.28] TL 36000 U -1 8 529 3,600, 62 24| 1,110] 205 3,600] 1,038 3,600 107] 352 3,600 62 20 20 3,600 3 27 17,
39 97 3 10 3233 UC -2 3,600 U -1 6 1,764 3,600( 1,118 53] 3,294] 69.5 3,600 64 3,600 182 3,600 1,165 41 38 3,600( 18 26 28
40 135 5 10 2.70] TL 36000 U -1 7 1,989 3,600] 715 511 2,787] 121 3,600 41 3,600 1471 1,531 3,600( 715 42 60 3,600( 15 35 34
41 55 2 10 2.75| TL 3,600 U -1 4 361 3,600( 330 17 933] 41 3,600 41 505 156] 357 3,600( 344 17 11 3,600 7 13 10
42170 7 10 243] TL 36000 U -1 8 1,573 3,600 224 54 2,333] 317 3,600( 1,047 3,600 110] 1,217 3,600 224 39 65 3,600 6 35 32
43 100 4 10 250 TL 36000 U -1 5 274 3,600 153 28 1,098] 22.5 3,600 14 998 1371 279 3,600( 153 16 18 3,600] 4 21 11
44 220 7 10 314 U0C -2 36000 U -1 10 21,537 3,600 1,733 185 5,313] 438 3,600( 1,034 3,600 164 3,600( 1,822 113 168 3,600 30 150 56
45 237 8 10 2.96] TL 36000 U -1 10 27,701 3,600| 1,338 1,157 5,171} 419 3,600( 1,011 3,600 154 3,600( 1,345 183 186 3,600 25 196 59
46 77 7 6 183 F 0 23 F 0 4 0 333 0 9 1 0 258 0 6 1 0 323 0 7 1 0 o018 0 9 1
47 46 4 6 1.92] TL 3,000 F 0 3 0 839 0 8 75 0 98 0 15 32 0 459 0 5 75 0 2,010 0 6 3]
48 22 2 6 183 F 0 of F 0 2 0 0 2 0 4 o o0 2 0 3 0) 0 1 0 3 0 0 2 0 4 0
49 23 2 6 192 F 0 1 F 0 2 0 21 0 4 48] 0 3 0 8 18] 0 3 0 3 48 0 5 0 4 2
50 32 3 6 178 F 0 2 F 0 3 0 86 0 6 35 0 6 0 4 23 0 8 0 4 35 0 68 0 5 2
51 31 3 6 172 F 0 of F 0 3 0 16 0 6 51 0 3 0 4 24 0 4 0 3 51 0 4 0 4 2
52 29 3 6 1ol] F 0 1 F 0 3 0 16 0 6 1021 0 3 0 11 45 0 4 0 4 102 0 4 0 5 2
55 23 2 6 192 F 0 1 F 0 2 0 34 0 4 90 o 4 0 8 34 0 11 0 3 9 o 45 0 4 3
54 60 5 6 200 F 0 71 F 0 4 0 142 0 10 45 0 68 0 6 25 0 208 0 6 45 0 53 0 9 1
55 41 4 6 171 F 0 3f F 0 3 0 69 0 6 7 0 23 0 12 7 0 17 0 4 7 0 23 0 5 1
56 116 6 10 193] F 0 115 F 0 6 0 3,385 0 16 217, 0 3,281 0 9 42 0 0623 0 11 245 1 3,600 0 14 5
57 103 6 10 172 F 0 58/ F 0 6 0 1,329 0 15 1201 0 3,264 0 35 45 0 3,287 0 10 120 0 3,322 0 15 4
58 66 4 10 1.65| F 0 4 F 0 4 0 0 173 0 10 o o 71 0 6 0| 0 17 0 6 0 0 270 0 8 0
59 73 4 10 1.83] TL 36000 F 0 5 2 3,600 0 13 4221 2 3,600 0 29 70) 3 3,600 0 7 1 3,600 0 12 8
60 151 8 10 1.89] TL 36000 F 0 8 286 3,600 0 22 496] 194 3,600 0 52 69 273 3,600 0 14 17 3,600 0 18 10

Table 5.8: Solutions obtained with the VRP,

the AP formulations and the heuristic
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MODO MOD1 MOD2 MOD3 MOD4
Opt Opt | Best | Opt | Best | Opt | Best | Opt | Best
VRP 28 29 32 29 40 29 31 24 26
AP 33 59 60 46 49 60 60 59 60
Heur 8 8 8 8 13 8 8 8 8

Table 5.9: Summary of methods results

A summary of the results is given in Table 5.9. Entries in rows VRP, AP and Heur of Table
5.9 give, for each model, the number of instances when each formulation produce an opti-
mal solution (Opt) and the number of instances where the solution is the best-known (Best).
Formulation AP always produces the best results, with optimal solutions in nearly all of the
instances of all models. Formulation VRP gives not so good results with 24-29 optimal solu-
tions, and an extra number of best-known solutions. In some cases the VRP formulation is
able to find the optimal solution but not to prove its optimality. For example, in instance 15
the VRP formulation obtained a solution of value 15 which was not proven optimal. Nonethe-
less, we now know that this solution is optimal given the solution of the AP formulation. Also,
in MOD2, the VRP formulation is able to give some best-known solutions.

The results of Heur are very modest, with 8 optimal solution, and some best-known solutions
for MOD2. Nevertheless, for some instances the heuristic solution was better than that pro-
duced by the VRP formulation for some model. This happens particularly with MOD4, where
the heuristic outperformed VRP formulation for 19 instances. We attribute this poor perfor-
mance to the symmetry of its objective function. Note that in MOD4 the objective just counts
the number of requests scheduled outside their preferred time window. This means that many
alternative optimal solutions may exist and thus, pruning nodes in the enumeration tree may
become an extremely arduos task.

5.6 Cross-evaluation of solutions

In the remainder of this section we further analyze models MOD1-MODA4. In particular, we
evaluate the goodness of the solutions produced by each of the models relative to the other
models. For this comparison we use the AP formulation, which generally outperforms the
VRP formulation as we have seen in the previous section. We restrict our analysis to the 27
unfeasible instances, because the feasible instances are solved by all models and their optimal
values are zero. First we introduce some additional notation that we will use to present our
results. For j =1,...4, let z/ denote the objective function of model MOD j, so for any feasible
solution &, z/(8) is the objective function value of solution § for MODj. Let also & jk be the
best solution obtained with MODj for instance k, when it found some optimal or feasible
solution, with value z/ (5 jk)- As we will see, for a given instance k, sometimes a solution 6 j
produced by MODj is good for another model MOD/, with i # j. Hence, we will also use the
notation v to denote the best-known value for MODj and instance k. That is:

= mi (5

Vik= min {z .

ik i:I,...,4{ @i}

Furthermore for each model MODj and instance k we compute the percentage deviations

of the objective values of the best solutions produced by all four models models, 2 (8ip), i =
1,...4, with respect to the best-known values v, which are denoted by A{ e These deviations
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are computed as ‘
; 2 (6ik) — vk
Al =100——L

! 1+vjr)

where a “1” has been added in the denominator to prevent dividing by zero.

Table 5.10 gives for each model MOD j and instance k, its best-known value, v ik, I bold if this

value is known to be the optimal solution. The table also contains A; o i=1,...,4. Solutions
are always feasible in MOD1, MOD2, and MOD4, but sometimes the solutions produced by
MOD1, MOD2, MOD4, are not be feasible for MOD3. When the solution produced by MODi
for instance k was not feasible for MOD3, the entry A?k is -1. The last two rows of Table 5.10

give average percentage gaps A{ . over the set of all the instances k for which MODi obtained
a feasible solution for MODj, and the total number of best-known solutions for MODj pro-
duced by MOD.

The information of Table 5.10 is summarized in Table 5.11. The entry in row MODi and col-
umn MODj gives the number of tested instances for which the solution produced MODi gives
the best-known value for MODj, i.e. vji = z/(8;x). Row labeled Total Best gives the sum
of the above rows. For each of the models, this is the overall number of best-known solu-
tions obtained for this model, with any of the models MODj, i = 1,...,4. Indeed this value
can be bigger than the number of instances, when more than one model produced a best-
known/optimal solution for some instance k. In the case of MOD2 this may also happen
because some other model produced a better solution than the one produced by MOD?2 itself.
This happens with several instances where the best solution found by MOD2 is much worse
than the optimal solution of MOD3. MOD3 with the maximum displacement constraint fixed
at 60 minutes, guarantees a solution for MOD2 with objective value at most 60. Column ALL
gives the total number of best-known solutions produced by each of the models.

From the results presented in Tables 5.10 and 5.11, it is clear that each model usually produces
the highest number of best-known/optimal solutions for it. Some models give best-known so-
lutions for some of the other models as well. MOD1 and MOD3 are closely related, although
some solutions produced by MOD1 are not feasible for MOD3 since they not fulfill the maxi-
mum displacement constraint. Optimal solutions from MOD3 are sometimes not optimal for
MODI, but usually very close to the optimal ones, as illustrated by the fact that the average
percent deviation is 1.62. The behavior of MOD4 is independent of that of the other mod-
els. In fact the solutions produced by the other models are never optimal, or even close, for
MODA4. This could be expected as its objective function is very different from that of the other
models. MOD2 presents some difficulties, since for 14 instances we did not obtain an optimal
solution. Then, sometimes MOD1 or MOD3 produce better solutions than the one originally
obtained by MOD?2 itself. As already said, the symmetry of this model makes it more complex
to solve.

MOD3 performs in general better than any other model, giving optimal or near-optimal so-
lutions for MOD1, and some competitive solutions for MOD2, as indicated by the percent
deviation gaps. This reinforces the interest of MOD3, which, on the other hand, can be seen
as a good compromise from the modeling point of view, as it guarantees a maximum devia-
tion from the preferred time window for all requests. Since the application framework that
motivates the study of the PAP aims at producing “fair” solutions, the good performance of
MOD3 with respect to the other models increases its relevance.



MOD1 MOD2 MOD3 MOD4
Id 'Type | best Al Ay Al Ay best A% A% A% Ay best Ay A’y A’y Ay |best A%, Ay A Ay

1 UF 551 0 373 0 895 52 26 0 13 1,409 551 -1 373 0 -1 1 217 600 225 0
2 UF 950 0 81 5 303 48 114 0 24 841 999 -1 73 0 -1 12 192 308 231 0
3 UF 64 0 132 0 1,477 6 600 0 614 10,900 64 0 132 0 -1 2 233 1,133 200 0|
5 UF 1,565 0 640 8 474 60 113 833 0 1,144 1,686 -1 -1 0 -1 21 145 427 159 0
6 UF 1,380 0 478 8 431 60 151 759 0 1,197 1,494 -1 -1 0 -1 15 144 413 188 0
7 UF 181 0 623 1 803 27 161 0 118 2,204 183 -1 615 0 -1 3 475 2,050 600 0
12 UF 794 0 83 0 595 35 122 0 69 2,011 797 -1 82 0 -1 12 169 362 185 0
15 UF 13 0 93 0 1,650 4 60 0 120 4,800 13 0 93 0 -1 1 150 400 100 0|
16 UF 87 0 136 0 2,401 6 171 0 271 11,900 87 0 136 0 -1 3 325 1,075 275 0
18 UF 842 0 6,232 1 725 59 53 1,282 0 1,207 852 -1 -1 0 -1 15 244 788 225 0
23 UF 432 0 1,546 0 861 48 0 186 6 1,396 432 0 -1 0 -1 9 310 1,030 310 0
24  UF 422 0 100 2 486 30 219 0 94 1,855 432 -1 95 0 -1 188 463 188 0
26 UF 553 0 95 1 772 27 207 0 118 2,864 557 -1 94 0 -1 11 125 408 167 0
28 UF 9 0 180 0 2,500 2 200 0 33 8,567 9 0 180 0 -1 1 50 700 200 0
30 UF 7 0 75 0 8,588 2 167 0 100 23,067 7 0 75 0 -1 1 0 350 50 0
32 UF 427 0 250 1 1,402 28 124 0 110 2,838 430 -1 247 0 -1 1 75 592 125 0
33 UF 294 0 126 2 690 33 94 0 79 1,976 299 -1 122 0 -1 6 100 400 71 0|
35 UF 422 0 8,749 0 1,212 60 0 1,372 0 1,449 422 0 -1 0 -1 1 217 925 233 0
36 UF 611 0 105 0 973 42 84 0 37 1,740 613 -1 104 0 -1 14 87 253 80 0
38 UF 62 0 81,759 0 1,765 17 6 5,672 0 3,061 62 0 -1 0 -1 3 150 3,150 175 0
39 UF 1,118 0 257 4 711 60 70 7 0 1270 1,165 1 1 0 | 18 89 353 11 0
40 UF 715 0 196 0 737 41 79 0 45 2,126 715 -1 196 0 -1 15 169 450 181 0|
41 UF 330 0 182 4 873 1 107 0 45 2,081 344 -1 171 0 -1 7 75 425 100 0
42 UF 224 0 25,976 0 1,323 41 0 2,395 7 2,062 224 0 -1 0 -1 6 271 2,243 300 0
43 UF 153 0 125 0 1,127 14 40 0 73 5,980 153 0 125 0 -1 4 220 1,100 220 0
44  UF 1,733 0 4,469 5 737 60 64 1,597 0 1,577 1,822 -1 -1 0 -1 30 139 597 155 0
45 UF 1,338 0 6,629 1 777 60 44 1,559 0 1,449 1,345 -1 -1 0 -1 25 181 781 192 0|
Avrg 0 5,173.73 1.62 1,306.91 113.98 580.04 73.31 3,813.74 0 171.40 0 175.54 806.43 194.25 0|
No. Best 27 0 12 0 3 17 8 0 10 0 27 0 1 0 0 27

Table 5.10: Percent deviations from best-known/optimal solutions
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MOD1 | MOD2 | MOD3 | MOD4 || ALL
MOD1 27 3 10 1 41
MOD2 0 17 0 0 17
MOD3 12 8 27 0 47
MOD4 0 0 0 27 27
Total Best 39 28 37 28

Table 5.11: Cross evaluation of solution

5.7 Sensitivity analysis of maximum displacement

MOD1 and MOD3 only differ in Constraints (4.22), which limit the maximum non-accomplishment
per request in MOD3. In all the experiments described above the value of this parameter was

set to d = 60 minutes. In this section, we present a sensitivity analysis on the value of the max-
imum displacement per request. To see the effect of Constraints (4.22), MOD3 which nearly
always provides the best solution, has also been solved with the AP formulation for varying
values of the maximum displacement parameter d € {40,50,70,80,00} We use MOD3(d) to
refer to MOD3 with a parameter value d. Note that MOD3(c0)=MODI1. A summary of the
obtained results is presented in Table 5.12. Rows correspond to different values of d.

The first two columns respectively indicate the number of instances for which the optimality
of the obtained solution was proven (#OPT) and was not proven (#7L/S) within the maximum
time limit. In all but one instance MOD3(co) was solved to optimality. The next column in-
dicates the number of feasible instances (Feas). Note that there are six unfeasible instances
for MOD3(40), which have no feasible solution where all requests are assigned less than 40
minutes outside their requested time windows. The last column under quality index (qi) has
been computed as follows: For each instance k € Feas and parameter value d, we denote by
U,‘f its optimal objective function value for MOD3(d). Then, for each value d, we compute the
quality index as the following average of the optimal values:

2_keFeas V]?
(d)= ——— % 5.1
qi(d) | Feas| 6.1

which is an average measure of the quality of the solutions of model MOD3(d) when parame-
ter d is used. These values are given in the last column of Table 5.12.

d | #OPT | #TL/S | Feas | quality index (qi(d))

40 60 0 54 169.09

50 60 0 60 162.91

60 60 0 60 159.87
MODs3 70 60 0 60 158.63

80 60 0 60 158.41

0o 59 1 60 158.15

Table 5.12: Comparison of MOD1 and MOD3

The average results presented in Table 5.12 show that, in general, models perform as ex-
pected. When the maximum deviation parameter decreases MOD3 becomes unfeasible for
some instances. However, the quality of the solutions obtained when the parameter is bigger
increases, as we allow more flexibility in the solutions. For instance, MOD3(40) has an average
optimal objective function of 162.91, that decreases to 158.41 in MOD3(80).



Conclusions

In this part of the thesis we have addressed the Parking Slot Assignment Problem (PAP), a
novel problem motivated by the need of providing parking space to carriers for their load-
ing/unloading operations. The PAP is to find assignments of carriers to parking places that
satisfy their time window requests. We have studied different modeling alternatives for the
PAP, including a feasibility model, which looks for an assignment satisfying all the carriers
time windows requests, and several other models, which allow deviations from the requested
time windows, that evaluate the degree of non-accomplishment with different criteria. An
unfeasibility sufficient condition for the feasibility model has been given, which has proven
to be effective in practice.

Two different formulations have been proposed and implemented for each model. The first
formulation assumes time as a continuous variable, and requests can be assigned to start at
any point in time. Then, the problem is considered as a scheduling problem with time win-
dows that can be formulated as a VRPTW. The domains of the proposed formulations have
been compared. The second formulation discretizes time, which entails some loss of accu-
racy and also makes the problem grow in terms of the number of variables. In that case, the
problem can be considered as a variation of an AP, which is known to have good theoretical
properties. Unfortunately, in our case, the integrality property is lost, due to the additional
constraints characteristic of our specific models.

We have evaluated and compared experimentally the proposed models and formulations by
solving a set of test instances using CPLEX. In our experiments the computing time has been
limited to one hour, to avoid very long runs, but also to adapt to the nature of the PAP, which
demands a solution daily. The obtained results have been presented together with a detailed
analysis and comparison of various indicators.

The results of the two formulations, with continuous and discrete time, have been analyzed
separately and then compared between them and with the results of a simple heuristic. Em-
pirical results have showed that the discrete time formulation outperforms the continuous
time formulation in the tested instances. The discrete time formulation has been able to
provide optimal results in most of the instances, and generally better quality solutions than
the continuous formulation. As could be expected, in general, the quality of the solutions
produced by CPLEX with both formulations is considerably better than that of the heuristic
solutions. Nevertheless, in a few instances of MOD2 and MOD4 the heuristic solution out-
performed CPLEX with the continuous time formulation. We attribute this to the objective
functions of these two models, which may produce very many alternative optima.

The feasibility model and the other models, which evaluate differently the degree of non-
accomplishment, have been compared among them. The solutions produced by each model
have been evaluated for the other models. Furthermore, for MOD3 a sensitivity analysis has
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been performed on the maximum allowed displacement from the requested time window.
Broadly speaking the obtained results indicate that the earliness/tardiness criterion tends to
produce solutions which are also good for the other models.

A promising avenue for research is to further explore some of the more general models that we
have also proposed. This includes considering weights in the terms of the objective function
and testing the cost minimization formulation. On the other hand, incorporating uncertainty
to our data will certainly lead to more realistic models. Moreover, other loading/unloading
planning decisions can be investigated (sizing or location) linked to the optimal results of the
PAP Finally, the proposed formulations can be exploited for other similar transportation prob-
lems of resource allocation with time windows, like the administration of public rechargeable
points for electrical vehicles or the use of docks in a freight terminal.
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Introduction

Most major cities present a dense and complex urban fabric, which difficults considerably
last-mile deliveries. Different transport carriers offer transport services located all over the
city, which, in the end, implies multiple number of trips from the different companies to the
same areas to perform their deliveries. From a system point of view, this operation is likely
to be non-efficient. Performing several trips in the same area means more vehicle kilometers.
In turn, this generates negative effects to all stakeholders involved in last-mile deliveries. It is
more costly for the whole set of transport companies, and, at the same time, it generates more
pollution, traffic and space occupancy in the city, which is a nuisance for citizens.

In particular, we can identify different situations where the same customer has to be visited
by more than one carrier in the given time horizon. Such customers will be referred to as
shared customers. In these cases, the expected potential saving due to collaboration among
these carriers is likely to be attractive since carriers should not modify their own routes to ac-
commodate the service of demand corresponding to other carriers. Furthermore, we believe
that carriers could be willing to collaborate in the presence of shared customers, since the
customers they would not visit are already customers of some competing carrier. In this case,
carrier collaboration considers the opportunity to transfer the demand that one carrier has
to serve to a given customer, to a carrier that is already visiting the same customer. For in-
stance, two carriers can agree to collaborate in the following way: instead of visiting a shared
customer twice in the same time horizon, it could be visited by only one carrier who would
serve the load from both carriers. Hence, the corresponding load should be transferred be-
tween the depots of the carriers before the beginning of the tours, and carriers must agree on
an economic value.

Urban areas usually have high customer density. There are many customers located in a re-
duced area, specially in commercial neighborhoods. Thus, even in situations where there are
not strictly shared costumers from different carriers, we can use an aggregation of different
customers. We can build a macro-customer, which is an aggregation of some customers lo-
cated very close among them, in the same street section or in the same block. In terms of
routing visiting this macro-customer can easily give service to all the implied customers in
one single stop. We can use the term nearby customer, defined as a set of customers with a
given maximum distance between any pair of them. Furthermore, in regular but non-urgent
deliveries, the time horizon can be considered to be more than one day, or even a week. Then,
it's even more common to have shared customers (or nearby customers) receiving goods from
different carriers, which could be sent in the same route by a unique carrier.

Collaboration among carriers can be a controversial topic since it considers collaboration
among stakeholders that inherently compete. The research performed in this part of the the-
sis aims to prove and quantify the benefits of this type of collaboration. This way, carriers (or
administrations) have accurate approximations of the benefits in order to decide to take part
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in (or incentive) this type of collaboration. Agreements among companies on how to com-
pensate for transferred costumers is a very interesting topic, but it is out of the scope of this
thesis. Nonetheless, it is important to have accurate approximations of the costs and savings
for each company, in order to have a fair allocation of the costs.

Potential applications to real situations can be regular deliveries to bars and restaurants with
non-perishable goods (drinks, dry food), daily delivery to offices with parcel deliveries, which
receive several documents, deliveries of textile, shoe or gift shops. As an example, [15] de-
scribes the real case of three Dutch companies of distribution of frozen products. The com-
panies had a considerable amount of overlap between customers, on average 68 %.

From a more general perspective, different levels of collaborative strategies can be considered.
The following framework offers alternatives that can benefit all the stakeholders. The list is
ordered by increasing level of collaboration. In all cases it is crucial that companies share
information.

* One company decides to outsource some customers to another carrier to save some costs.
This problem has been widely studied in the literature, see for instance [21, 7, 30], and the
term Common Carrier has been coined.

« Customers that have to be served by several companies consolidate their demand in only
one carrier. The demand should be transferred between their depots. The transfer is per-
formed in order to reduce the number of stops, and potentially reduces the total travelled
distance. This is the type of intermediate collaboration that we study in this part of the
thesis. To the best of our knowledge it has not yet been studied in the literature.

¢ An Urban Consolidation Center (UCC) for several companies is created. Such a center
would be near the core of the area where demand is concentrated. Every company brings
the goods to the center and common vehicles do the transport jointly between all compa-
nies in the urban environment.

UCCs are studied in the third part of the thesis. As mentioned, in this part the Collabora-
tion among carriers where there are shared customers is proposed as an intermediate level
of collaboration. We consider that in a given area there are some shared customers or nearby
customers, who have demand for several carriers. We consider that these customers can be
transferred before the routing, and the costs of all carriers can be reduced.

This part of the thesis is organized as follows, Chapter 7 revises the existing literature rele-
vant to the problem. Chapter 8 describes the problem and two different formulations are
proposed. The numerical results of computational experiments with both formulations are
analyzed on a set of test instances, based on Cordeau instances [12] in Chapter 9. Some pre-
liminary conclusions are presented in Chapter 10 .



Literature Review

There is a wide and varied literature related to collaboration between carriers in urban dis-
tribution problems. Collaboration among companies at same level of the supply chain is re-
ferred to as horizontal cooperation. As opposed to vertical collaboration, when collaboration
happens among actors from different levels of the supply chain: shippers, carriers and/or
customers. There are few works focusing only on the operational problem of collaborating
carriers, and different approaches devoted to the cost allocation problem; i.e., how to split
among participants the benefits of the collaboration. Even tough the cost allocation problem
is not addressed in this part of the thesis, the cost allocation approach is often related to the
solution of the fundamental operational problem, so we review it here.

The idea of networks of collaborating carriers is used in practice in the European less-than-
truckload market. Six out of the top ten carrier organizations are actually networks of small-
and medium- sized collaborating companies [39]. However, most of the reviewed works are
oriented to collaboration among carriers in line-haul environments. We are not aware of
works focused on intermediate collaboration on last-mile deliveries.

Recently, in [16] an extensive survey focused on the potential benefits and impediments for
horizontal cooperation in the Flandes region of Belgium. Most of Logistic Service Providers
believe in the potentials of horizontal collaboration, in particular the improvement of prof-
itability and/or the improvement on the level of service. At the same time, the impediments
that they agree on the most are finding a reliable party to lead the cooperation and the con-
struction of a fair allocation mechanism for benefits. It is therefore reasonable that most of
the work is devoted to the cost allocation problem.

To the best of our knowledge, from the operational point of view, very few works are available.
The work [83] integrates transshipment into conventional pickup and delivery problem with
collaboration. A MIP model is formulated for a problem that allows exchanging requests be-
tween carriers and the possibility of demand transshipment at pre-specified transshipment
points. One of the more complex features of the problems is the synchronization of vehicles
at transshipment points.

As mentioned, an usual approach to collaboration strategies combines the solution of the
operational model with the cost allocation problem, i.e. how the cost differential of the col-
laborative process is distributed amongst the participants. An extensive review of operational
planing of horizontal cooperation among road transportation carriers, from the carriers per-
spective can be found in [82]. Not only theoretical works are discussed, but it also covers an
overview of several implementations. Works are divided in order sharing or capacity sharing.
In order sharing, most of the works focus on joint route planning or auction based mecha-
nisms, but also bilateral lane changes, load swapping and dispatching policies are discused.
In vehicle sharing, most approaches make use of mathematical programming or negotiating
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protocols.

In the following paragraphs we revise some of the most relevant works. Works of [15, 23, 53]
are oriented from a joint route planning perspective. Instead[43, 44, 81] use the settling of
game theory to model the behavior of collaborating partners, and the solution to the cost
allocation problem. The last group [5, 18, 24, 46] uses different auctions systems to model the
collaboration among transport companies.

7.1 Joint route planning

The work [15] estimates the synergy that can be provided by the combination of outsourcing
and horizontal cooperation. Based on a joint route planning assumption, two situations are
compared: original situation where all entities perform their orders individually or the use of
a unique depot. The problem is modeled as a Vehicle Routing Problem with Time Windows
(VRPTW). Both situations are solved based on heuristics of random insertion criteria con-
sidering time windows tightness, demand, distance and criticality of a given customer. Then
two local search operators (ICROSS and IOPT) are applied. The article also describes the case
of three Dutch companies of distribution of frozen products as a case study. The companies
had a considerable amount of overlap between customers, on average 68 %. In the given case,
they were able to provide a reduction of 30.8% of travelled distance and 50% reduction of fleet.
However, in other initiatives mentioned the benefits range from 15% to 30%.

The work of [23] focuses on the identification of repeatable, dedicated truckload continuous
move tours for companies that regularly send truckload shipments. The fundamental prob-
lem is based on the Lane Covering Problem (LCP). Since time considerations are critical to the
practical viability of the tours, an extension of LCP is solved by specifically developed heuris-
tics. The methodology is applied to a set of randomly generated Euclidean instances, and also
areal-world case study is evaluated.

Also from joint route planning point of view, [53] compares collaborative versus non-collaborative
scenarios from the last-mile perspective. Problems are modeled as Capacitated Vehicle Rout-
ing Problems (CVRP). The objective is to minimize the travel distance, but other metrics are
also evaluated. The solution is based on two hierarchical heuristic approach. Benefits of the
collaboration are clear and are transferred to all indicators evaluated. The methodology is
applied with real data from the city of Bogot4, Colombia.

7.2 Game theory

In [43] the authors proposed a collaboration process between freight forwarding entities in
three phases: preprocessing, profit optimization and profit sharing. In the preprocessing,
each company evaluates its own requests and other collaborating companies requests. In
the profit optimization phase the best joint solution is obtained. Finally, in the profit sharing
phase the benefits of the coalition are distributed among companies based on the collaboration-
advantage-index and the individual residual profit. The game theory formulation guarantees
that collaboration will not imply losses to participants and, usually, benefits should be ex-
pected.

Later, in 2008, [44] proposed another solution for collaborating freight carriers, solely com-
bining features of routing and scheduling problems with cooperative game theory. First, col-
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laborative and non-collaborative scenarios are solved based on a Pickup and Delivery Prob-
lem with Time Windows (PDPTW). In the non-collaborative scenario, for each carrier a single
depot PDPTW is solved by means of a heuristic. For the collaborative scenario, the multi-
depot PDPTWs where all requests from all companies are merged, is solved in the same way.
The solutions are compared to illustrate the potential of collaboration. Secondly, based on
game theory, the use of the Shapely value is justified to propose an structure of profit sharing
amongst collaborating carriers. Its good properties are the fairness, the uniqueness, the ease
of implementation, and the stability of the solution. Finally, the computational results are ap-
plied to three artificial instances and one instance based on real data from a German freight
forwarder with several autonomous profit centers which operate independently of each other.

Recently, [38] has proposed a three step approach to model collaborative logistics systems.
First, a conceptual agent based model is described, second, a game theory method is applied
for supplier and carrier collaboration independently. The correctness of the system is verified
by formulating the problem mathematically.

Finally, [81] extends the study of horizontal logistics alliance when partners adopt a flexible
attitude (allow changes to the terms of their deliveries). Apart from the cost decrease of the
collaboration, the total cost can be further decreased if partners adopt a flexible attitude. The
theoretical proposal is evaluated with a case study in Belgium, where cost gain is allocated
with the Shapely value. Individual gains range from 20% to 37%. The literature review indi-
cates that mistrust about the fairness of the chosen allocation rule has already caused many
alliances to fail. Transparency and simplicity of uncomplicated rules of thumb have proven
to be more likely to be adopted. In the long run, however, participants become frustrated and
leave the collaboration. For that reason, the authors use game theory to provide decision sup-
port. Concepts like Nucleolus [72] or Shapley value [44] are used. The design of the decision
support system, with the use of the Shapely value is proved to give incentives to partners to
behave in a manner that is beneficial for the alliance.

7.3 Auction systems

An auction is a protocol that facilitates agents to indicate their interests in one or more re-
sources. Based on agent indications the protocol determines both an allocation of resources
and an allocation of payments among the agents. Different types of auctions have been pro-
posed for horizontal collaboration in transportation.

The first use of a combined-value auction for transportation services, back in 1993, is reviewed
in [47]. Combined-value auctions allow participants to make a bid of a single amount for a
collection of items. The work combines the LCP with experimental economics. Sears Logistics
Services! was the first company that sought to consolidate its use of trucking services and
reduce costs. The company was using bilateral negotiations, which were time consuming
and expensive. Instead, their experiment proved that combined-value auctions worked and it
opened a door to subsequent applications.

In the case of [5], they propose a framework to maximize the overall profit of the network with
few information and without decreasing the profit of the carriers. The paper concentrates on
a model for pickup and delivery services simplified without considering capacity, which re-
duces to a Traveling Salesmen Problem (TSP) with precedence constraints, even though more

Thttp:/ /www.slslogistics.com/
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general models could be integrated in the framework. The collaborative framework is based
on a decentralized control with auction based exchange mechanism. It consists of a mecha-
nism to exchange requests between carriers and a corresponding cash flow model for the pos-
sible network transactions. It includes a scheme for calculating revenue, cost and profit, but a
simple uniform sharing of the collaboration gains is applied. The framework is based on the
reassignment of requests, based on the following 5-step procedure: form a request candidate
set; compose bundles of candidate set; determine of marginal profits; assignment of bundles
to carriers; and, profit sharing. These steps are repeated until no further improvement is pos-
sible. Steps 1 and 3 are individually autonomously performed by the individual carriers, and
then the rest are centrally performed. Two algorithms are derived from the procedure. The
collaborative situation is compared to the situation without collaboration and with a central-
ized control with full information. Results are evaluated through two performance indicators:
the collaboration gain and the decentralization cost. A set of 90 instances are built and eval-
uated under the three scenarios. The work concludes that decentralized planning clearly di-
minishes the drawback of individual planning, although the cost of decentralization remains
considerable compared to central planning.

Later, [84] presents a similar work where collaborating partners have limited capacities in
their fleets. The route-based exchange mechanism is based on three steps: preprocessing,
route generation process, and final winner determination. They assume, however, that all
carriers offer all their requests for exchange, which is unrealistic in practice.

Based on [33], two main drivers for carrier collaboration are cost reduction and privacy preser-
vation. In their article a double auction mechanism is proposed to enable consolidation
through order sharing, based on single-round sealed-bid double action. It is assumed that
the bidding is thruthful and no collusion is allowed. The auction starts and the carriers: i)
post information about shearable orders (volume, destination,...); ii) inform the auctionneer
their offer prices and the spare capacity in their vehicles; and, iii) search and bid for posted
orders specifying a price. Then the winner determination is performed via a maximization of
the actual cost saving attained by all participating carriers. Sensible information is kept only
for auctioneers but orders are public for all other carriers.

A multi-agent and auction based framework approach is proposed in [18]. The authors state
that the two main issues for carrier collaboration are the optimal reassignment of transporta-
tion requests among carriers and the fair allocation of the profit among the carriers. The prob-
lem each carrier faces is broken down in two problems: the selection of outsourcing requests
(based on minimum profit margin) and the bidding of the outsourcing requests. Then, mul-
tiple auction processes of multiple outsourcing requests can happen at the same time, which
are solved as an outsourcing requests selection problem. The performance of the framework
is evaluated and compared through simulation on 20 random generated instances. Again,
three scenarios are considered: no collaboration, decentralized collaboration and central col-
laboration. Results show that the proposed approach can increase the profit of each carrier
and the total profit of all carriers in most instances through reducing transportation costs.

The work [24] focuses on making the collaborative framework dynamic and incentive com-
patible. The underlying problem is based on the pickup and delivery problem. It is assumed
that shipments, reservation values, and reservation costs are submitted and processed by the
collaborative mechanism in real time. The proposed mechanism is called second-price based
dynamic collaborative, inspired by the one-item second-price auction. This type of auction is
incentive compatible and achieves perfect efficiency. The results are simulated in a hypothet-
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ical square geographic region with four carriers. Three different performance measures are
used to evaluate the performance of the carriers: average empty distance, number of ship-
ments served and sum of individual carriers profit. The collaborative system clearly generates
more profit than the system with independent carriers. Some assumptions were made, how-
ever, that can be difficult to match in practice: all vehicles and loads are compatible, collab-
orative mechanism implementation and operation costs are not considered; implementation
and communication is faultless; and, in real-time, service areas of carriers overlap completely.
In any case, it is clear that there could be substantial benefits from dynamic collaboration.

Stochastic bid price optimization for a carriers is proposed in [46]. They approach the prob-
lem with a simultaneous, independent, single-round, sealed-bid, first-price auctions of lanes
aimed at maximizing the carrier’s expected profit. Each carriers bidding strategy is supposed
to take into account competitors bid pricing based on past bid statistics. The lowest competi-
tor bid on each lane is modeled as a random variable with a particular probability distribu-
tion. Carriers cost are determined by the Length Constraint Lane Covering Problem (LCLCP).
The results of the extension simulation study are promising, both in scientifically but also in
a practical environment.
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8.1 Problem definition

Collaborative economy is currently one of the major trends in innovation and development,
and collaborative transportation is one of the proposals to attain cost reductions in the com-
petitive market of urban transportation. From the private business perspective, collaborative
agreements among transport operators can reduce the overall system cost, which somehow
should be transferred to collaborating transport operators. In particular, with the existence of
shared or nearby customers, the potential savings are promising.

We assume that a set of transport companies that operate in the same area are willing to col-
laborate to save distribution costs of the overall system. We also consider that the set of cus-
tomers is placed in a urban environment with a high customer density. Thus, there will be
a group of shared customers or nearby customers. I.e., there will be either a group of cus-
tomers that receive goods from more than one transport company in the same time hori-
zon, or groups of customers from different transport companies located close enough so one
transport company can serve each group with one stop in the delivery route. In the described
scenario, we consider that each company is willing to transfer a part of its loads to other com-
panies, specifically, the part of its loads corresponding to shared or nearby customers. Cus-
tomers will only be transferred when the transfer decreases the overall distribution costs. For
the overall distribution costs we take into account two different costs: distribution costs of all
carriers performing their routes and the routing costs due to the transportation of the loads
of the transferred customers between the depots of the implied carriers.

We propose formulations to represent the described problem and branch-and-cut algorithms
for solving them. Applying the previous methodology to a set of test instances, reductions
can be estimated to quantify the potentialities of the solutions to the new models in different
scenarios.

In the remaining of this section we give a formal definition of the problem and describe in
detail the necessary assumptions. Let C denote a set of carriers operating in the same area and
willing to transfer shared or nearby customers. Let also N denote the total group of costumers
in the area. We assume that for each customer u € N the subset C, € C is the set of carriers
that serve this customer. If |Cy| = 1 for u € N customer u is only served by carrier i = C,.
On the contrary, if |C,| > 1 there are several carriers that serve customer u. In that case, we
assume that the load for customer u can be served by any carrier j € C,. We call d,; the
demand of costumer u with respect to carrier i (i € C,,). We consider that the demand d,,; for
one customer u, from one carrier i has to be entirely served by one single carrier j € C,. This
means that demand splitting is not allowed. ILe., if the demand for one customer from one
carrier is transferred to another carrier, its total demand is served by only the new carrier. We



64 Problem definition and formulations

also define the set of customers of carrier j € C, Nj ={u€ N, j € Cy}.

As an illustrative example, Figure 8.1 presents a simple case with only two companies (A, B).
In this case we have three types of customers: customers with demand only from company A,
customers with demand only from company B, and customers with demand from both.
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Figure 8.1: Market distribution with common costumers

We consider that each carrier has two types of costumers: a group of exclusive customers and
a group of shared customers. Exclusive customers are customers that only have demand from
one carrier and therefore they are not considered for collaboration, i.e, only their own car-
rier can serve them. Shared customers are costumers whose demand can be transferred and
served by only one of the companies for which the customer has demand. The problem is an
extension of the classical VRP, in which exclusive costumers can only be served by one single
company, from its depot and with its vehicles, and a group of shared customers can be served
by a subset of companies, from their depots and vehicles. In case the demand of a customer
is transferred between two carriers, then there is the need to use some vehicle to transfer be-
tween companies depots the demand before the daily routing. The objective of the problem is
to minimize the total distribution costs of all the companies participating in the collaboration.
This includes: routing costs for each of the carriers and transfer costs among carriers depots
to previously place the transferred demand in the depot of the company that will finally serve
the load to the customer. We call this problem, the Shared Customer Collaboration Vehicle
Routing Problem (SCC-VRP).

We propose two different formulations for the SCC-VRP. The first one is the most intuitive and
it is based on the use of variables that describe explicitly the arcs traversed by the vehicles
routes to serve the demand. This formulation needs to include Subtour Elimination Con-
straints (SEC). Due to the exponential number of this family of constraints, in the proposed
branch-and-cut algorithm they are included in the formulation as lazy constraints. The first
formulation is also strengthened with the reinforced capacity cuts. The second formulation
avoids the use of specific variables for each vehicle and is based on the carriers load at each
visited vertex. This avoids the need of SECs. For the sake of clarity, we first present a load
based model for the single company Capacitated Vehicle Routing Problem (CVRP), and then
the load based formulation is extended for the SCC-VRP.

8.2 Vehicles based formulation for the SCC-VRP

As already mentioned, the problem is a modification of a VRP. We adapt the formulation for
the VRPTW proposed in [20] to the SCC-VRP. The model is based on variables defining the arcs
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traversed by each of the vehicles.

We consider an unlimited fleet of homogeneous vehicles K with capacity Q. Specifically, we
have a set of vehicles K; for each carrier i, and K = U;jec K;. This is indeed a simplifying as-
sumption as carriers only have a limited number of vehicles. Nonetheless, in this first ap-
proach to the problem we make this assumption to disregard this constraint. To formulate
the problem we define an auxiliary complete directed network G = (V, A). V is the set of cus-
tomers and the depots, and A is the set of arcs connecting each pair of customers and each
customer with the depots. The vehicles of each company (i € C) have its origin and destina-
tion in depot d (i) so V = NU;ec{d(i)} and Aistheset V x V. Given u, v € N, ¢y, are the travel
costs between customers u and v. Finally, we denote by c the cost per in advance transfer
between any pair of depots. The main variables are routing variables x’ljy, (u,v) e A, ke Kk,
which take the value 1 if arc (i, v) is used by vehicle k and 0 otherwise. Note that this variable
is indirectly related with a carrier, since each route k € K; for a given carrier. Note also that
this variable can not take value 1 when customers do not have at least one common carrier,
ie,xk, =0ifC,nC, = 9.

To adapt the formulation to our problem we need to define some additional variables: z5 ij

with value 1 if demand of costumer u € N from carrier i € C,, is served by company j € C, in
route k € K; and 0 otherwise. We consider that there are some vehicles that carry out round
trips between pairs of companies depots with transferred demand. We use the following vari-
ables to check whether or not a trip takes place between an specific pair of depots. Let y;; with
i,j € C:j>ibeabinary variable that is activated if there is some demand of carrier i served
by carrier j or vice versa . We call v, the overall number of in advance transfers between pairs
of carriers depots. Then, the formulation based on vehicles variables for the CSS-VRP:
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minimize Z Z cu,,xuv +cu, 8.1)
keK (u,v)eA
subjectto Y. Y Y Xk =1 ueN (8.2)
ieCy, keK; ve Nu{d(i)}
Xy =1 ieC kek 8.3)
veNu{d(i)}
xk - xk =0 ieCkeK, veN (8.4)
ue Nu{d(i)} ue Nu{d(k)}
Y A=l uEN, i€Cy (8.5)
JjeCy k(—:Kj
Xy = 20 ueEN, i,jeC, keK; (8.6)
veNu{d(j)}
Y X ail=Y Y ey j€C, ke K;\{minkK;} 8.7)
ueNieC, ueNieCy, k
Y Y duizy;<Q jeC, keC; (8.8)
ueNieCy,
’ljij+z§jisyij ueN, i,jeC,j>i, keK; (8.9)
ve=), ). Yij (8.10)
ieC jeC,j>i
) = 256 w) WcV\{vg), keK, ue w (8.11)
x¥, binary, je€C, uveN;, keK; (8.12)
u” binary, ueN,i,jeCy,keK; (8.13)
Vij binary, i,jeC, j>i (8.14)
vc integer (8.15)

This is a MILP formulation where the objective function (8.1) represents the total cost. Total
cost is the sum of the distribution costs of all companies, plus a fixed unit cost (c) per transfer
between each pair of carriers depots. Constraints (8.2) impose that each costumer is visited
at least once by the a vehicle of some company serving the customer. Constraints (8.3)—(8.4)
describe the flow on the path used by vehicle k. Constraints (8.5)—(8.6) relate variables x and z.
They guarantee that the demand for customer u from company i is assigned to one company
j and vehicle k. If demand for customer « from company i is served by its own company, then

zk ; is equal to one, and there is no transfer. Furthermore, we guarantee that if the assignment

is made to a given company and route (z’C ), some corresponding routing variable (xﬁy) is
activated. Constraints (8.7) avoid symmetry in the solution. We have an ordered set of vehicles
per company, and we do not allow to use a new one if the previous one is not being used.
Moreover, we order the routes by the number of customers visited. We force that if a vehicle is
used, the next vehicle of the company has fewer customers. Constraints (8.8) ensure that the
capacity of the vehicles is not exceeded. Constraints (8.9)—(8.10) check the need of number of
in advance transfer between pairs of carriers depots between depots in order to compute this
transfer cost in the objective function. Constraints (8.11) eliminate subtours. The domains
of the variables, and binary/integer conditions are given in (8.12)-(8.15). In the Appendix
B, several tables summarize the details of the presented formulation. Table B.1 presents the
parameters and the sets used and Table B.2 summarizes the variables. Finally, Table B.3 counts
the number of variables and constraints of the formulation.
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8.3 The single company VRP

The solution for a single company VRP is the classical CVRP with only one depot. In the fol-
lowing formulation, we avoid the use of index for vehicles (k). Instead, we use variables that
control the load of the routes at the different arcs. This was inspired by the work of [48, 2],
with different formulations for the CVRP and the Multi-period Vehicle Routing Problem with
Due-dates.

Again, we define an auxiliary complete directed network G = (V, A), where V is the set of cus-
tomers plus the depot (D), in this case a unique depot for the single company, and A is the
set of arcs connecting each pair of customers and each customer with the depot. The main
design variables are x,,,, (1, v) € A, which takes the value one if some route uses arc (u, v).
Then, [, is the load of the vehicle through arc (1, v). We use load variables to keep track of
the load on the routes. The CVRP can be formulated as follows:

minimize Z CuvXuy (8.16)
(u,v)EA
subject to Z Xyup=1 ueN (8.17)
veNUD
Y Xuw— Y. Xpu=0 VEN (8.18)
ue NuD ue NuD
luy < Qxyy (u,v)e A (8.19)
> lyu- Y lw=dy, ueN (8.20)
veNUD ve NUD
2 Iov=2 lip=} du (8.21)
veN veN ueN
Xy binary, (y,v)eA (8.22)
luy=0 u,ve N (8.23)

This is a MILP where the objective function (8.16) represents the distribution cost. Constraints
(8.17) impose that each costumer has to be visited exactly once. Constraints (8.18) describe
the flows of the routes for the single company. Constraints (8.19) make sure via load variables
that the capacity of the vehicles is not exceeded. Constraints (8.20)—(8.21) guarantee the ful-
fillment of the demand for each customer, and relate load variables arriving and leaving each
node with the demand at the given node. Definition of the variables, and binary conditions
and bounds are given in (8.22)—(8.23). The summary of the parameters and sets of this formu-
lation can be found in the Appendix B in Table B.6.

8.4 Load based formulation for the SCC-VRP

The load formulation of the previous section is extended below to the SCC-VRP. We avoid the
use of an specific index for vehicles (k), and use instead load variables to control the load
of the routes. In addition, we use assignment variables that keep track of the company that
carries out the service to a given customer demand.

Again, we define an auxiliary complete directed network G = (V, A), where V is the set of cus-
tomers plus depots, and A is the set of arcs connecting each pair of customers and each cus-
tomer with the depot. Each company has its own depot, and its vehicles have their origin and
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destination at this given depot (d(i)), i € C. Then, N = V{J{U;jec{d(i)}} and Ais V x V. Again,
cyy denotes the cost of traveling between customers u, v € N.

The main design variables are x/,,,, (1, v) € A, i € C, which take the value 1 if arc (u, v) is used
by a route of company i and 0 otherwise. Note again, that if customer u and customer v do
not have common companies serving them (C, n C, = @), this variable can not take value 1.
We use load variables to keep track of the load on the arcs. Let I/, be the load through arc
(u, v) € Aofavehicle from company i € C,nC,. We also use variables that assign the demand
of customer u from company i, to the company that finally serves that demand j. Let these
variables be: z,;j, where u€ N and i, j € Cy.

Finally, similarly to the vehicle based formulation, we consider that there are some vehicles
that perform a round trip between the depots of pairs of companies that need to transport in
advance the transferred demand. We use such variables to check if the trip between depots is
performed or not. Let y;; with i, j € C;nC; # @ : j > i be a binary variable that is activated if
part of the demand of carrier i will be served by carrier j or vice versa. As before, we denote by
vc the number of transfers needed between depots to transport goods in advance. The load
based formulation is the following:

minimize Z Cuv Z x;,, +cve (8.24)
(u,v)eA ieC
subjectto Y. Y xl,=1 ueN (8.25)
ieC, ve Nu{d(i)}
Yo ox, =1 ueN, ieCy, (8.26)
veNU{d (i)}
= Y xb,=0 vEN, ieC, (8.27)
ue NU{d(i)} ue NU{d(i)}
Y zuij=1 ueN, ieCy, (8.28)
jECu
Xy = Zuij ueN, i jeC, (8.29)
veNU{d()}
Il <Qxi, (V) €A icC (8.30)
.~ Y 1l,=Y dyzui ueN,ieC (8.31)
veNU{(i)} veNU{ (i)} jeCy
> Lagiyy — 2 Law = > 2 Aujzuji ieC (8.32)
VEN veEN ueN jeCy
Zyuijt Zuji = Yij uEN,i€C,j€C|j>i (8.33)
ve=Y. Y. Yij (8.34)
ieC jeClj>i
x,iv binary, ieC, u,ve Nj, (8.35)
zy;j binary, ueN, i,jeCy (8.36)
Il,=0 i€C,u,veN;, (8.37)
Yyij binary, i,jeC, j>1i (8.38)
vc integer (8.39)

This is a MILP where the objective function (8.24) represents the total distribution cost. Con-
straints (8.25)—(8.26) impose that each costumer is visited at least once by some company,



8.4 Load based formulation for the SCC-VRP 69

and that each company can visit each customer at most one. Constraints (8.27) describe the
flows on the routes for each company. Constraints (8.28)—(8.29) relate variables x and z. Fur-
thermore, we guarantee that if the assignment is made to a given company (zy;;), some of
the corresponding flow variables (x! ) is activated. Constraints (8.30-8.32) make sure that the
capacity of the vehicles is not exceeded, using load variables. Constraints (8.33)—(8.34) check
the need of vehicles connecting depots, in order to compute this transfer cost in the objective
function. The domains of the variables is given in (8.35)—(8.39). In the Appendix B, several
tables summarize the details of the presented formulation. Table B.1, similarly to the previ-
ous formulation presents the parameters and the sets used, except sets K and KT that are not
used here. Table B.4 summarizes the variables and Table B.5 counts the number of variables
and constraints of the formulation.






Computational Experiments

In this chapter we describe the computational experiments we have run to analyze and com-
pare the two formulations proposed in the previous chapter. First, data generation is de-
scribed in Section 9.1. Then, the branch-and-cut for the vehicle based formulation is ex-
plained in Section 9.2, where we explain the separation procedure of capacity constraints. The
results are analyzed in Section 9.3. In Section 9.4 the numerical results obtained with the ve-
hicle based formulation and the load based formulation are presented and analyzed. Finally,
the optimal results with collaboration are compared to the solutions without collaboration in
Section 9.5.

Models have been implemented in the Optimization Programming Language OPL and solved
with the commercial software CPLEX 12.1. All experiments have been run on a PC limited to
1 thread running at 2.6GHz and 60GB of RAM. In all the experiments the computing time has
been limited to one or two hours. We consider that the computing effort is low, given our
problem is a variation of the well-known complex VRP. In this case our priority is not to solve
instances to optimality but to provide a context for comparison with no collaboration policy.

9.1 Data generation

Since we are not aware of any benchmark instances that could be used in our experiments, we
generated a set of 12 test instances based on the instances proposed by Cordeau [12] for the
Multiple Depot Vehicle Routing Problem (MDVRP). For the experiments, we used two carriers,
thus, we selected the instances with two depots, to assign one depot to each carrier. To obtain
instances of sizes that we could afford, we limited the number of customers to values between
18 and 30, and used the corresponding data from the original instances. Then, we set 25%
of customers as shared. Their demand is split between the two carriers. The first half of the
remaining customers is assigned to the first carrier, and the second half to the second carrier.
The characteristics of the instances are summarized in Table 9.1, and Figures E.1 and E.2 in
the Appendix E give the plots of the 12 instances.

The above set of 12 instances has been used to test the different formulations and the effi-
ciency of the procedures applied to separate the large families of constraints. To further dis-
cuss the potential savings under different situations a larger set of instances was randomly
generated with different characteristics, as described below.

We consider two types of instances: a set of instances where customers are randomly located
in a square of 100 units of side, and a set of instances with clustered customers, where each in-
stance has between 3 and 5 clusters in a square of 100 units and customers are located around
one of the clusters. The total number of customers is either 10, 15, 20, 25 or 30, and each
customer has a probability of 0.25 of being a shared customer. Each customer has an integer
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Instance | Q | Y;endia Xiendip  Xiendia+dip | INI(IA],|B]) | Shared
1 100 152 (42) 176 (39) 328 23(12,17) 6
2 100 | 201 (55) 196 (53) 397 29 (16, 19) 6
3 100 163 (15) 110 (13) 273 20 (14, 9) 3
4 100 176 (37) 136 (34) 312 23 (16, 14) 7
5 100 179 (53) 173 (52) 352 24 (16, 16) 8
6 200 61 (25) 213 (22) 274 21 (8,17) 4
7 200 93 (50) 180 (48) 273 20 (10, 16) 6
8 200 189 (57) 210 (54) 399 30 (17,19) 6
9 500 | 585(113) 325 (111) 910 20 (14,9) 3
10 500 | 524 (56) 386 (54) 910 20 (14, 10) 4
11 60 56 (20) 112 (20) 168 18 (8, 14) 4
12 60 40 (20) 136 (20) 176 20(8,17) 5

Table 9.1: Data summary of the instances

uniform demand between 5 and 50, with groups of instances with lower demand per cus-
tomer and groups of instances with higher demand per customer. In particular, the demand
of customers has been generated randomly from a uniform distribution. Three different types
of instances have been generated, uniform in [5, 20], [10, 35] and [25, 50]. Accordingly, capac-
ity is: 100, 200, 300, 400 or 500. Depots are located at two different extremes of the square, i.e.
one is located at position (0,0) and the other one at (100,100). The transport costs between
two given customers is the Euclidean distance and the transfer costs between the depots is
fixed at 50. The specific details of each of the instances can be found in Tables E.1 and E.2 of
the Appendix E.

9.2 Branch-and-cut for the vehicle based formulation

The vehicle based formulation for the SCC-VRP will be solved with a branch-and-cut algo-
rithm where the exponential family of inequalities will be sequentially separated when they
are identified. Also capacity constraints will be separated as we next explain.

9.2.1 Separation of Subtour Elimination Constraints

In the vehicle based formulation, we need to impose constraints (8.11) to avoid the creation of
cycles in the solution. There is, however, an exponential number of such constraints, so they
are not included in the initial formulation, but they are separated as lazy constraints whenever
an integer solution is found. Then, in order to know whether a subtour exists, it is enough
to check the connected components of each route. If some connected component does not
contain the corresponding depot, there is a violated SEC. An algorithm based on Recursive
Deep First Search is used for computing the connected components. Being S a connected
component of route k that does not contain the depot, the associated lazy constraint is:

Y Xk, =<181-1 9.1)

u,ves
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9.2.2 Separation of capacity inequalities

The vehicle formulation contains capacity constraints (8.8) which can be seen as knapsack
constraints. The usual procedure to separate these constraints has been implemented. We
define the knapsack problem and some necessary concepts. Then, the procedure to separate
cover inequalities based on knapsack constraints is presented. And finally the application of
the procedure in the constraints of the formulation is discussed.

The knapsack problem is a classical problem in combinatorial optimization. Given a set of
items, each with a mass and a value, determine the items to include in a collection so that the
total weight is less than or equal to a given limit and the total value is as large as possible.

The general formulation is as follows:

maximize Z CjXj 9.2)
JEN
subject to:
Z ajxj < ap (9.3)
JEN
xj€{0,1}, jeN 9.4)

where N = {1,2,3,...,n}; a = (ay,ay,...,a), ap. And, we assume, without loss of generality
that:

aj < ap, JEN (9.5)
cj=0,a;=0,VjeN (9.6)
ar=zax=...=2ay 9.7)

A cover for N is a subset S € N that fulfills the following condition }_ jesaj > dp. The cover
subset, generates a cover constraint. For each subset S, we have the following constraint:
Y jesxj =S| —1. Minimal covers are covers that if we delete any element of the set, they are
no longer a cover. Le., if S is a cover, we say it is minimal <= S\ {k} is not a cover Vk € S.
It is proven that inequalities associated to minimal covers dominate other covers. Given a
minimal cover S, we can build an extension of this set, S, called E(S). The set is enlarged by
the elements where its associated weight is greater than the weight of all elements in the set.
E(S) = SU{j e N\S:aj = a, Vk € S}. With this extension, the canonic inequalities can be
builded: }_ jeg(s) x; <151 - 1.

In order to separate inequality covers from a given solution that has to fulfill a knapsack con-
straint, we have the following procedure based on [60]:

Given X a fractional solution, there is a subset S € N that }_ jesXj=ISI-1 =

v = minimize Z (1-x5)s;<1 (9.8)
JEN
subject to:
Y ajsjzap+1 9.9)
JEN

sjef0,1}, jEN 9.10)
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So, if sx* is the optimal solution of the previous problem. When v < 1, any minimal cover S
{j € N:sjx =1} defines a violated cover inequality }_ jesXj =18l —1. From cover inequalities,
we can further obtain facets. Given S € N a minimal cover. Then, }_ jesXj=|Sl—1is facet of
conv(P)N{x€{0,1}": x; =0, j € N\ S}. We can find the facet of conv(P), lifting the constraint,
which needs the solving the following sequence of problems:

Let S € N be minimal cover, and N\ S = {j1, jo,..., js} (s =N\ S|) arbitrarily ordered set. If we
consider, the following set of problems:

j=Jji-1
zjl.=m§1xej+ Z Bjx; (9.11)
jes j=i
subject to:
Jj=ji-1
Zajxj+ Z ajxj < ap—aj 9.12)
jES j:jl
s;€10,1}, jESULj1, jor- -, i1} 9.13)

The solutions determine the subsequence values §; = |S| —1 - z;. Then, the following con-

straint is a facet of conv(P).
j:js
Y xj+ ) Bjxj<ISI-1 (9.14)

Jjes J=h

The vehicle formulation (8.1)—(8.15) contains capacity constraints (8.8), which can be seen as
knapsack constraints. In order to separate these constraints in our problem, we use the previ-
ous procedure. Given a solution of the LP relaxation, CPLEX enters a user cut callback where
we solve the associated problem to find a violated cover constraint. To solve the associated
problem, we use a heuristic proposed by [14] where items are inserted in S, in non-decreasing
order of (1 - x;)/a; until a cover is obtained. The heuristic is proved to be O(nlog(n)). Then,
the cover is checked for the minimal property, and if not, it is reduced. Once we have the
minimal cover constraint, we try to lift it and obtain a facet of conv(P) solving the sequence
of small problems with CPLEX solver in the callback. Then, we add the facet and let CPLEX
continue with the solving procedure.

9.3 Experiments for the vehicle based formulation

In this section we evaluate the effect of separation of knapsack constraints of the vehicle based
model to decide how often the separation procedure should be applied. CPLEX tries to apply
different types of cuts whenever it believes it might be useful. For that reason, we first check
the effect of CPLEX cuts in the vehicle based model. In Table 9.2, the vehicle formulation with
SECs implemented as lazy constraints is tested with different cut parameter values for CPLEX.
The results where CPLEX applies cuts freely, are compared to the results where CPLEX does
not use cover cuts, and the performance of CPLEX without the application of any type of cuts.
Under the column OPT R, the status at the end of the optimization is given. In this case TL
means that all instances reach the time limit before proving optimality of the current best
solution. Under the column Obj, the value of the best feasible solution found is presented. As
can be seen, better feasible solutions are obtained when generating no cuts at all. Therefore,
for the following experiments CPLEX cuts are deactivated.
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Cuts applied freely | Cover cuts forbidden | All cuts forbidden
Inst | OptR Obj OptR Obj OptR Obj

1 TL 650.82 TL 421.37 TL 416.97
2 TL NoSolEx TL 858.48 TL 578.22
3 TL 279.45 TL NoSolEx TL NoSolEx
4 TL 824.36 TL 478.46 TL 466.65
5 TL 580.44 TL NoSolEx TL 430.87
6 TL 280.19 TL 289.83 TL 297.47
7 TL 174.75 TL 269.1 TL 162.22
8 TL 582.55 TL 870.64 TL 424.22
9 TL 837.01 TL 644.74 TL 716.98
10 TL 1040.29 TL 670.01 TL 727.81
11 TL 524.87 TL 522.93 TL 507.10
12 TL 839.02 TL 957.08 TL 820.92

Table 9.2: Results from vehicle based formulation with different cut parameter for CPLEX

Then, the vehicle based formulation is tested on the 12 instances with different strategies
for separating the knapsack type constraints. Results are summarized in Table 9.3, where
columns have the following information. Now the entries of Column Opt R are either TL,
when the time limit was reached without proving optimality of the best solution found, or K,
which means that the process was killed, in most of the cases due to lack of available mem-
ory. The second column (Obj) shows the value of the best solution found when the processed
finished, or "Memo" when the process was killed due to lack of available memory. Column
T(s) shows the computing time in seconds. The last column, UC, is the number of user cuts
applied with CPLEX before the end of the process (including lazy constraints). Note that to
perform this test, all CPLEX cuts have been deactivated. Results show that the best strategy is
to only separate the knapsack type constraints at the root node.

We also compared value of the linear relaxation at the root node when knapsack constraints
were separated and when they were not. We could even observe that for some instances the
value of the linear relaxation did not change if knapsack constraints were separated. We can
conclude that the best performance of vehicle based formulation is achieved when CPLEX
cuts are deactivated and when we separate knapsack type constraints only at the root node.



Every Node Every 100 nodes Every 500 nodes Only root node
Inst | Opt Obj T(s) UC | OptR  Obj T (s) UC | OptR  Obj T (s) UC | OptR  Obj T (s) ucC
1 K 71 K Memo 1,016 9,420 TL 397.46 3,600 15,086 TL 368.15 3,600 13,862
2 K Memo 106 278 K 998 K 2,640 TL 555.56 3,600 15,992
3 K Memo 198 2,726 K Memo 760 K 328.9 3,600 19,209 TL 345.29 3,600 20,274
4 K Memo 123 700 TL 695.26 3,600 19,279 TL 610.55 3,600 22,552 TL 552.38 3,600 20,197
5 K Memo 146 966 K 396 TL Memo 2,113 10,219 TL 425.65 3,600 10,676
6 TL 334.34 3,600 9,901 TL 330.74 3,600 11,548 TL 330.74 3,600 12,209 TL 326.16 3,600 12,202
7 TL 162.40 3,600 5,806 TL 162.22 3,600 6,018 TL 162.22 3,600 6,155 TL 162.22 3,600 6,166
8 K 3,600 K 1,585 K Memo 2,659 10,724 TL 424.22 3,600 11,239
9 K Memo 289 2,907 K 1,265 K 732.87 3,600 TL 716.98 3,600 11,422
10 K Memo 485 2,264 TL 854.13 3,600 9,969 TL 598.24 3,600 13,081 TL 727.81 3,600 11,351
11 K 1,534 TL 509.32 3,600 1,941 TL 509.06 3,600 2,066 TL 507.10 3,600 1,819
12 TL 801.68 3,600 8,817 TL 797.59 3,600 10,873 TL 820.92 3,600 10,937 TL 820.92 3,600 11,017

Table 9.3: Results from vehicle based formulation with different frequencies of knapsack separation constraints

9L

sjuaurradxy jeuoneinduio)



9.4 Vehicle based formulation vs load based formulation 77

9.4 Vehicle based formulation vs load based formulation

The results of the vehicle based formulation are compared to results of the load based formu-
lation in Table 9.4. New columns r 4, rp indicate the number of vehicles needed by each carrier
in the optimal/best-known solution. The results of load based formulation clearly outperform
the vehicle based formulation. The load based formulation is able to provide 10 optimal solu-
tions, and better feasible solutions for the two instances where it reaches the time limit. The
number of variables in the load based formulation is lower since we eliminate the (k) index,
thus we decrease by k the number of variables. Furthermore, the load variables avoid the need
of subtour elimination constraints. As we have seen, the number of subtour elimination con-
straints is exponential. As a consequence, if the formulation can avoid them but still produce
optimal solutions, it is preferable. For the instances of the problem proposed, the load based
formulation can with fewer variables produce optimal solutions.

Vehicle based form Load based form

OptR Obj ra rg | T(s) | OptR Obj ra|rg| T(s)
1 TL 368.15 2 2 | 3,600 Opt | 293.77 | 2 2 | 175.93
2 TL 555.56 2 2 | 3,600 TL 34132 | 2 2 3,600
3 TL 345.29 2 2 | 3,600 Opt | 253.02 | 2 1 | 19591
4 TL 552.38 2 2 | 3,600 Opt 342.3 2 2 14.31
5 TL 425.65 2 2 | 3,600 Opt | 340.28 | 2 2 | 843.39
6 TL 326.16 1 2 | 3,600 Opt | 250.08 2 35.1
7 TL 162.22 1 1 | 3,600 Opt 170.5 1 1 4.92
8 TL 42422 2 2 | 3,600 Opt 257.83 | 1 1 16.13
9 TL 716.98 2 2 | 3,600 Opt | 412.06 | 1 1 4.97
10 TL 72781 2 1 | 3,600 Opt | 475.71 | 1 1 16.09
11 TL 507.10 1 2 | 3,600 Opt 506.9 1 2 4.41
12 TL 82092 1 2 | 3,600 TL 769.79 | 1 2 3,600

Table 9.4: Solutions for vehicle based and load based formulation

9.5 Collaboration vs non-collaboration policies

Below we compare the results of the 12 instances solved by the load based formulation to the
solutions of the same instances when no collaboration exists, so each company serves all its
customers independently from the other company. The formulation proposed in Section 8.3
is used to solve the same instances with two individual carriers. Table 9.5 presents the solu-
tions for the 12 instances with the load based formulation for the CSS-VRP (with an extended
time limit of 6 hours for instances 2 and 12). The results of the load based formulation for the
independent carrier are also presented in Table 9.5, solved independently for each company
A and B. Cost savings range from a maximum of 19.1 % until a minimum of 0, when no collab-
oration happens even it is possible. The average cost reduction is 7.5%. In terms of number of
vehicles, the collaborative solution allows to reduce the fleet size in several instances, never
increasing it.



Inst Non-collaboration (A,B) Collaboration

OptR Obj ra rg time (s) OptR Obj ra | rg | time(s) | -%
1 Opt, Opt | 171.38+168.02=339.4 2 2 1.88+2.51 Opt 293.77 | 2 2 204.92 | 15.5
2 Opt, Opt | 173.37+179.8=353.17 3 2 1.31+3.61 TL 33742 | 2 2 21,600 4.7
3 Opt, Opt | 158.56+113.45=272.01 2 2 | 25.74+0.18 Opt 253.02 | 2 1 218.7 7.5
4 Opt, Opt | 194.97+173.14=368.11 2 2 1.56+0.72 Opt 342.3 2 2 16.9 7.5
5 Opt, Opt | 171.94+191.66=363.6 2 2 0.26+7.32 Opt | 340.28 | 2 2 59.42 6.9
6 Opt, Opt | 107.48+145.87 =253.35 1 2 0.03+0.10 Opt 250.08 2 21.23 1.3
7 Opt, Opt 65.8+104.7 =170.5 1 1 0.04+0.42 Opt 170.5 1 1 6.52 0
8 Opt, Opt | 118.65+161.41 =280.06 1 2 0.12+0.12 Opt 25783 | 1 1 26.74 8.6
9 Opt, Opt | 296.37+194.45=490.82 2 1 0.18+0.04 Opt | 412.06 | 1 1 2.64 19.1
10 | Opt, Opt | 293.45+230.38 =523.83 2 1 0.14+0.16 Opt | 475.71 1 1 12.31 10.1
11 | Opt, Opt | 203.49+329.21=532.7 1 2 0.02+0.75 Opt 506.9 1 2 7.73 5.1
12 | Opt, Opt | 243.27+556.01 =799.28 1 3 0.05+3.46 Opt 769.8 1 2 6,117 3.8

Table 9.5: Solutions for collaboration and non-collaboration policies
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The extended set of test instances has been solved under the same assumptions. Unfortu-
nately in these instances, the formulation obtains less optimal solutions, especially when the
size of the problem grows. Table 9.6 shows the aggregate results with the collaboration load
based formulation. Each row corresponds to 20 instances generated with the number of cus-
tomers given under the first column (), 10 random and 10 clustered. Under the column
Opt R there is the number of optimal obtained solutions with the formulation. Under Avrg.
Obj, there is the average value of the objective function (either the optimal value or the best-
known solution at termination time). The last column of each block contains the average time
in seconds devoted to each instances.

Random Clustered
N | OptR Avrg.Obj T(s) | OptR Avrg.Obj T (s)
10 10 586 15 8 442 1,438
15 10 666 59 8 470 4,400
20 4 796 4,696 0 539 7,200
25 2 931 6,100 0 700 7,200
30 0 1051 7,200 0 816 7,200

Table 9.6: Summary of solutions for the extended set

Random instances of 10 and 15 customers are always solved to optimality, but in the clustered
set not all of them can be solved. Instances with a higher number of customers can not be al-
ways optimally solved. Only 4 and 2 random instances with respectively 20 and 25 customers
have been solved to optimality. These results indicate that additional research should be ded-
icated to improve the proposed load formulation so as to make it possible to solve instances
of bigger sizes.

Still, the obtained results allow us to compare the potential savings that could be obtained
via collaboration. For this, the solutions obtained previously with the collaboration model
are compared with the solutions of the individual companies. In the cases where no provable
optimal solution is found, the value used for the comparison is the value of the best-known
solution found within the time limit. The instances are nearly always optimally solved. The
model without collaboration could optimally solve 194 of the 200 benchmark instances con-
sidered. Table 9.7 summarizes the percentage savings obtained in each group of instances.
Note that this is a lower bound on the potential savings, since some collaborative solutions
are not proven to be optimal. The number of optimal solutions obtained in each set of in-
stances is again under column Opt R. Column Opt Indi gives the number of instances solved
to optimality. For each collaborative instance, we need to solve two "individual" instances,
one for each company. Column -% gives the average cost savings in the set of instances.

Random Clustered
N | OptR OptIndi -% | OptR Optlndi -%
10 10 20 2.2 8 20 14
15 10 20 6.0 8 20 2.7
20 4 20 9.2 0 20 7.6
25 2 20 7.8 0 19 5.8
30 0 17 9.2 0 18 8.0

Table 9.7: Solutions for collaboration and non-collaboration policies in the extended set
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The results of the smaller instances show small savings (1.2-6%). The number of customers
is reduced and sometimes does not compensate to have transfers between depots. Potential
savings increase, however, with the number of customers. Recall, in addition, that these are
lower bounds on the potential savings since some solutions for the collaborative case were
not been proven optimal.



Conclusions

In this part of the thesis we have presented the Shared Customer Collaboration Vehicle Rout-
ing Problem (SCC-VRP), an innovative problem in the context of collaboration in urban deliv-
ery. The SCC-VRP is an extension of the VRP with multiple carriers and depots (one associated
with each carrier) and where a subset of customers receive demand from more than one car-
rier. The subset of customers receiving service from more than one carrier are called shared
customers, and they can be transferred among carriers to save overall distribution costs. The
objective is to minimize overall distribution costs taking into account that transferring cus-
tomers among carriers will require additional transfers of goods between the depots of the
involved carriers.

Two different formulations have been proposed for the SCC-VRP. The first one is based on the
vehicle description of carriers routes. The formulation contains SECs which are implemented
as lazy constraints. To improve the performance of the formulation a separation procedure
is implemented for the capacity constraints based on the knapsack problem. The second
formulation is based on a flow-type expression of the load on the routes of the carriers.

A small set of test instances has been generated, based on classical multi-depot vehicle rout-
ing instances to evaluate and compare the proposed formulations using branch-and-cut algo-
rithms with CPLEX. The computation time has been limited to one hour to allow easy compar-
isons. The load based formulation clearly outperforms the results of the vehicle based formu-
lation. Finally, the results of the SCC-VRP with the load formulation on the test instances have
been compared with the solutions obtained when each carrier solves its CVRP independently.
Preliminary results indicate that cost reductions can reach up to 19.1 %.

An extended set of larger instances randomly generated has been also tested with the load
based formulation. Unfortunately, when instances are bigger the load formulation is also not
able to produce optimal solutions. Therefore, we believe that the future work should focus
on the improvement of such formulation, in order to be able to solve some medium-sized
instances.

In any case, the obtained results allow us to estimate the potential savings that could be ob-
tained when carriers collaboration is applied. When comparing best-known solutions to the
model with collaboration to optimal solutions the with model without collaboration, we ob-
serve percentage savings of up to 18%. On average, the observed savings are around 9%. Note
that these are only lower bounds on the potential savings, since some of the solutions for the
collaboration model were not proven optimal.
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Introduction

Urban Consolidation Centers (UCCs) are logistics facilities located closely to the geographic
area that they serve, from which deliveries are carried out by a neutral carrier. UCCs combine
consolidation of goods and collaboration between freight carriers through the use of a public
freight terminal. The key element of UCCs is to avoid the need for all vehicles to deliver part
loads into urban centers. Long haul transportation vehicles of different companies visit the
UCC to unload their goods. Long haul operators can use bigger vehicles and have less time
restrictions to perform their deliveries. Loads are then sorted and consolidated to other vehi-
cles adapted for urban distribution. Finally, a neutral freight carrier does the local delivery in
the area with higher costumer density.

UCCs are aimed to reduce, through collaboration, the negative effects of urban distribution. It
is crucial, however, to obtain cost-efficiency in order to implement them in reality. Individual
transportation companies are able to reduce operational costs when they deliver the goods to
UCCs. These costs should at least compensate the costs of the neutral carrier in the last-mile
distribution. In the following chapters a system without consolidation center is compared
in terms of operational costs with a system where a consolidation center is implemented.
Logistic System Analysis [17] is used to define an accurate model for estimating costs and
benefits. Continuous approximation models with robust solutions provide tendencies in the
sensitive analysis and give us more insights about the solutions in order to gain knowledge for
general cases. To the best of our knowledge, this is a novel approach to the problem.

In our approach UCCs are analyzed as a strategic solution from an aggregated point of view.
We first propose a model, which assumes that carriers have homogeneous market shares. We
then consider the general case with heterogeneous (non-equal) market shares. Both formula-
tions are presented in Chapter 12, with a tool that evaluates the trade-off between savings in
the system and a minimum market share per company in a consolidation center. In Chapter
13, general results, and sensitivity analysis are discussed, and the case study of LHospitalet
de Llobregat (Metropolitan Area of Barcelona) is analyzed. Results show that market share
distribution does not affect cost savings significantly. Results from the case study show a 12-
14% of operational cost savings in a general (non-homogeneous) case. From the case study
we can also conclude that the commitment of the 40% of demand allows covering the costs of
terminal implantation.

This work has given rise to presentations in the City Logistic Conference in 2011 and 2015.
The full conference papers are publicly available in [69, 70].






Literature Review

Urban Consolidation Centers (UCCs) have been widely studied from both theoretical and
practical points of view. We will review some of the relevant practical implementations and
case studies as well as more theoretical or modeling works.

According to [8] a UCCs is "a logistics facility that is situated in relatively close proximity to the
geographic area that it serves, be a city center, an entire town or a specific site (e.g. shopping
center), from which consolidated deliveries are carried out within that area. A range of other
value-added logistics and retail services can also be provided at the UCCs."

An extensive literature review of UCCs initiatives, an analysis of specific examples of differ-
ent UCCs types, discussions related to the concept with a sample of interested supply chain
parties, and a preliminary evaluation of different types of consolidation centers can be found
in [8]. More recently [80] reproduced a similar work with particular focus on the UK Retail
Sector.

11.1 Practical implementations

Works like [34] and [40] report practical experiences in Japan and Germany, respectively. As
described in [34] a Multi-Carrier Joint Delivery Service (MCJDS) was started in central Fukuoka
(Japan) in 1977, as an agreement-based activity among trucking companies. It was promoted
by the Local Office of the Japanese Ministry of Transport in order to rationalize unnecessary
movements of small trucks in each company and to reduce the traffic and environmental
impacts in the city. This system was enlarged in 1987, and in 1994 it was restructured by a
fully private company for providing a joint delivery/pick-up service. It now covers a pick-
up/delivery area of 70 ha having around 5,600 potential customers. 36 trucking companies
are committed to the MCJDS for the delivery and pick-up of their parcels in the area at a par-
ticular fare payment and consolidate around 100,000 parcels monthly. Ten large carriers take
approximately 90% of the market. MCJDSs have been introduced in several other cities in
Japan after the Fukuoka system. However, the transport share of the Fukuoka MCJDS is no
more than one third of the parcels of the total distributed goods and it is still facing financial
difficulties because of the insufficient number of parcels commissioned by trucking compa-
nies. Nevertheless, it seems beneficial from a traffic and an environmental viewpoint.

To analyze the possible reasons of the system inconveniences, [35] presents an economic
model of the behaviour of the different transportation roles in the presence of a voluntary
MCJDS, like the one in Fukukoa (Japan). Shippers, carriers and the MCJDS act in function of
their own interests. Shippers are assumed to stochastically choose the carriers according to
the utility function of the different carriers, which depends on: the level of fare, the frequency
of service, and the sales potential of the carrier. Carriers try to maximize their expected prof-
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its subject to the number and size of trucks, and the drivers’ shifts, offering the best possible
frequency in order to maximize their number of customers. The MCJDS plays a role similar to
carriers but with less motivation to maintain high frequency since their revenues are not di-
rectly related to carriers. The application of this model with some experimental data does not
coincide with reality. Therefore, the authors assume that the motivation of carriers to commis-
sion parcels is social reputation, and include a negative logarithmic component that depends
on the commissioned parcels in the objective function. Once the model has been adjusted to
the real situation in Japan some conclusions are drawn. Even if MCJDSs are contributing to
the improvement of traffic and environmental conditions, there is a lack of parcels commis-
sioned to make it financially feasible. The commission fare should be adjusted accurately to
attract more carriers and to minimize the financial loss. Alternatively, some public subsidies
can be considered to extend the sweet zone !. Another issue that should be considered is the
carriers sales potential: using drivers to also act as commercial agents is an impediment to
MC]JDSs, since this activity is blocked by the commission. The authors suggest that the use of
the ITS can leave this motivation out and improve the performance of MCJDSs.

In [40] some German projects related to cooperation in distribution are described and some
data is presented. Different systems were implemented: city terminal and neutral freight
carrier in Freiburg, split of delivery area in Munich, and central neutral cooperation agency
in Kassel amongst others. After describing the experiments, some economical conditions to
achieve a positive result are described. The authors suggest that the local incentives for carri-
ers are still too low to make cooperation viable.

In 2014 the city of Barcelona carried out a pilot test in the Ciutat Vella district. The last-mile
deliveries of parcels and small shipments were performed by a new system that combined the
use of electric tricycles and a transshipment terminal [59] . One of the main achievements
of the pilot test was that different transport companies collaborated using a last-mile neutral
company, as the close collaboration between competing carriers is still not common. Even
tough the potential benefits have been assessed by different theoretical models. The key fac-
tors for the success of the pilot test are: the features of the area where it was implemented
(dense commercial activity, access control, and historical quartier), the active involvement of
all affected stakeholders, and the use of a neutral carrier for last-mile deliver, which did not
enter in competition with the other carriers. The economic equilibrium was still not easy to
reach, however.

11.2 Theoretical modeling

From a more theoretical viewpoint the work of Kawamura [37] analyzes UCCs from a prespec-
tive similar to the one proposed in this thesis. The paper presents an evaluation of Delivery
Consolidation in U.S. Urban Areas with logistics cost analysis. The aim of the paper is to es-
tablish whether the consolidation through cooperation and coordination among business is
able to overcome the current system based on peddling. The current system is characterized
by retailers? distribution centers located far from stores, together with a distribution scheme
with several "peddle-runs”, covering different urban areas. The strategy may be effective from
the companies viewpoint, but puts a large number of trucks in the urban areas creating so-
cial and environmental problems. The evaluated new system is based on the work of Kéhler
[40], and the strategy with urban consolidation consists of building a consolidation center in
the city and using a neutral freight carrier in the urban distribution. Using continuous ap-

ISweet zone: Ranges of values of the commission fare that can justify the social and financial viability.
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Parameter Ranges of Values (US)  Ranges of Values (Eur)
Population density 1500 to 20000 pax/ mi¢ 576 to 7692 pax/ km?
Demand' 200 to 800 200 to 800
Service Area 50 mi® to 500 mi° 130 km? to 1300 km?
Average distance to depot® 370 mi 595 km

Big 78000 [b* 35 Tn
Trucks (GVW) Medium 35000 b 16 Tn

Small 16500 /b 75Tn
Average Speeds Expressways 44 mph 70.8 km/h

Arterial 17 mph 27.35km/h
Value of Time 28.1€/h 224€/h

1 In cartoons per store per week 2 Round trip 31 1b = 0.45359237 kg

Table 11.1: Kawamura data

proximations from Logistics Cost Analysis, both strategies are analyzed. The input data was
based on Europe and US cities. The most relevant data is presented in Table 11.1. The meth-
odology to build the Logistics Cost Function is based on finding the optimal number of dis-
patches, and the optimal distance traveled, that minimize holding costs plus, in the case of
consolidation, terminal costs. The results of the study show that the one-to-many-delivery-
without-transshipment system using 780007b Gross Vehicle Weight (GVW) trucks has the least
expensive logistics costs, regardless of population density and service area. At higher densi-
ties, consolidation reduces the cost improvement relative to the peddle-run with small trucks.
The cost advantage of consolidation, which mainly comes from economies of scale, is suffi-
cient to overcome the additional cost associated with the terminal and transshipment. The
authors suggest that only a combination of the following factors: severe congestion, narrow
streets, large number of firms sharing the city terminal, high retail rent costs, and high de-
mand rate, could make consolidation attractive to businesses.

Even if the work of Kawamura is similar to the approach of this part of the thesis with similar
cost formulation, the ranges of the parameters may vary substantially to represent dense ur-
ban european areas. The main difference is that we assume that companies could use larger
vehicles to bring the goods to the consolidation center and do it during the night, which are
two essential elements for reducing costs.

Later in 2012, [68] presented a more general model considering the European context in terms
of customer density, facility location or vehicle type. However, modelling hypotheses differ-
ences remain. In particular, it is assumed that all transport companies serve all customers,
which seems unrealistic from a practical point of view. In contrast, our approach encom-
passes any market distribution among companies.






Analytical Formulation

The purpose of this section is to propose a compact model to quantify the effects of the imple-
mentation of a Urban Consolidation Center (UCC) to regulate urban distribution in an area of
a city and to study under which circumstances it is globally beneficial for all participants. To
do so, we propose a methodology which determines accurate approximations of all the costs
involved.

The main idea behind our approach is that during certain time periods (preferably at night),
carriers from all companies will bring the goods to the center with the possibility of using
larger vehicles. During the day, with higher costumer density due to the consolidation of de-
mand from several carriers, local deliveries will be performed more efficiently by a neutral
freight carrier.

12.1 Assumptions and problem description

To easily describe the service area, we assume that several parameters of the zone are homo-
geneous, such as zone dimension, demand density, truck capacities, distance to closest depot,
unit costs, number of carriers, and location of the center, among others. We further assume
that the center will not be a warehouse, so goods will be received and shipped every day. We
finally assume that carriers are willing to collaborate and use an UCC to perform last-mile
deliveries.

The key definition variables are the dimensions of the vehicle zone delivery partition, which
is assumed to be rectangular, vehicle load and the number of the trips per vehicle in the time
horizon. The resulting cost decision function, traveled distance and vehicles-hour, can be
simply formulated from the above variables and the parameters. Then, the model will be able
to predict costs related to time and distance and any other interesting system metric.

We use the methodology of Logistic System Analysis [17] to define an accurate model for pre-
dicting costs and benefits of UCCs. Continuous approximation models produce robust solu-
tions, particularly useful when dealing with strategic problems. This approach and the use
of sensitive analysis allows us to study general tendencies and give more insight about the
solutions.

In the following section, a basic model is formulated to find the optimal strategy that one
company alone uses to serve from a depot, its clients spread over a delimited area. Then, the
model is used as a basis to formulate and compare two alternative scenarios, (A) the inde-
pendent transport companies performing last-mile delivery without UCC, and (B) a last-mile
delivery system with collaboration among companies and consolidation through a UCC. In
Section 12.2, we compare both situations where we further assume that companies have the
same market share in the region, i.e. the number of customers per company is the same. Then,
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we relax the assumption in Section 12.3, and study the effect of non-homogeneous market-
share. In Section 12.3.2, we model the trade-off between the participation of small carriers and
its contribution to the savings of the UCC. The model can be used to determine a threshold on
the minimum demand of a company to produce minimum desired savings in the operation
costs of the consolidation center system. The general results, sensitivity analysis of the model
and a case study are presented in Chapter 13

12.1.1 General Model Description

Let us assume that one company has to serve N customers located in a rectangular zone of
area A from a depot located at distance p from the center of the service area, with vehicles
of capacity C. Let § be the customers density. The company designs the tours with the ob-
jective of minimizing a weighted sum of distance costs (minimum tours) and temporal costs
(minimum time consumption). As typical routing strategies do, first the region is partitioned
in groups of approximately S points each. Note that S will be limited by time and capacity
constraints. Then vehicle tours within the time horizon are designed. Vehicles travel from the
depot to some point in its zone, serve the clients and return to the depot. We will call line-haul
distance to the distance from the depot to the nearest point in its zone plus the distance from
the last visiting point to the depot. And local distance is the distance covered during the deliv-
ery of the items. Let m be the average number of vehicles trips. Given the density of streets in
urban areas we use the square grid metric to determine distances in the service area. Thus, S
points should be located in a connected area. We assume that zones are rectangles with sides
2w and P, which form a partition of the whole delivery region. We next compute the total
distance traveled to give service to a costumer by computing two different components: local
and line-haul. The local traveled distance is independent of the point where the route starts
or ends the delivery. [61] proposed a simple (non-optimal) strategy for visiting the points in
each zone and showed that if we use nearly rectangular partitions of the region, the partitions
should be elongated towards the depot. If vehicles carry a full load, the number of points in
the rectangle should be C, which expressed in terms of density should be equivalent to 2w P§.
However, we might be interested in reducing the average number of points to S. So we will de-
note the number of expected customers inside a rectangle as S and use the equality 2w P = S
to eliminate one variable. To estimate the local length of a tour as a function of w and S,
we extend Daganzo’s proposal [17] and divide the rectangle into two bands each of width w.
Then, each route visits points in non-decreasing coordinate x along the length of the rectan-
gle on the way out and decreasing x on the way back (See Figure 12.1). If points are randomly
distributed in space, one can evaluate the expected total distance. We divide the distance
into the traverse and the longitudinal, since we use square grid metric to approximate the dis-
tance. The average traverse travel distance per point is simply the average distance between
two random points on an interval of width w, that is w/3. The total longitudinal travel in the
rectangle is 2P or 2P/S per point and using the equality 2wPé = S, we obtain 1/0w. The av-
erage line-haul distance for a vehicle will be 2p — P or ((2p — P))/S per point. We subtract P to
the distance of the depot due to the relative position of the service areas with the depot and,
again replacing P using the equality, we obtain ((2p—S/26 w))/S . Finally, adding the line-haul
and local distances we obtain an approximation of the total distance traveled per point:

S
w 1 2p—3555
d=—+— 2w
3 ow S
Apart from costs derived from the covering of distance, costs also come from the time spent
during the delivery. Using v4,vp and 7 as urban speed inside the service area, interurban
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Figure 12.1: Local Strategy to cover all points

speed from the depot to the service area, and time lost per customer’s unloading/loading of a
vehicle respectively, the total time per vehicle trip is:
20-P 2P wS
+

+—+4+—+18.
UB vqa 3vgp

Then, the time devoted to each customer can be obtained from the above equation, dividing
by the customers served by one vehicle (S).

2p-P 1 1 w
- + +—+T.
vgS 2woévg wdvay 3va

The objective function (12.1) is obtained as a weighted sum of distance costs and time related
costs, with unit cost parameters ¢4 and ¢;, . The resulting model is, thus:

.. ct\2p0 [(cq ¢ cr | 1 cr\w
minimize Nllcg+—|—=+|—F+———|—+|ca+— | =+c7T (12.1)
w,S,m vg) S 2 vya 2Up wod va) 3
S<C (12.2)
2 S S wS Y
L _ + + 22 L rs<l (12.3)
vg 2wdvg wdvay 3va m
w,S, m=0 continuous (12.4)

Constraints (12.2)-(12.3) model the limitations on the capacity of the vehicles, C, or on the
time horizon, Y. We can solve the problem (12.1)-(12.4) analytically due to the nature of its
variables. As m can become as small as needed, constraint (12.3) can be omitted making m
equal to Y/ (20/vg — S/2wsvg + S/wsv, + wS/3v, + TS) which is, obviously, positive. Then, in order
to minimize the objective function, S should be as big as possible, which makes S equal to C,
and from minimum conditions we obtain w* = \/ (3(cal2+ ctlvy—ci/2v5) 16 (cq + ¢ilv,)). Let us
call A = ((¢al2+ ci/ vy — cil2v5)) | ((cq + €/ v,4)), and so w* = v/34/5. The most important metrics are
summarized in Table 12.1.

The costs of the system are proportional to N, the total number of customer of the system.
The square root of customer density is dividing the terms in the total cost expression regard-
ing local distribution, whereas capacity is dividing the terms regarding line-haul distribution.
Finally, there is a constant time cost of stopping.
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. _ A+3
Local distance Dp=N 3007 1/2
Line-haul distance | Dy =N %p - (%2,2

. o 2 1 (11 A2
Time T=N e+ g (v~ 25) (%) 9t
Cost cq(Dr+Drg)+c,T

Table 12.1: Summary of the most important metrics of the general model

12.2 UCCs with equal market share companies

In this section two models are proposed for each type of delivery strategy. The models ap-
proximate the costs of both situations: (A) the total costs of the system where each company
performs their last-mile delivery independently, and, (B) the costs of a system where the com-
panies collaborate and consolidate demand through a UCC. We assume that each company
has the same market share in the delivery area. In the next section, this assumption is relaxed.

We assume that M = 1 equal-market share companies give service to N costumers, with the
same number of customers each N = N/M. Therefore, 5=6IM , which is smaller than §. In
the collaborating strategy, we consider that companies can use bigger trucks with capacity
B = kcC (k¢ = 1), and that the UCC is located at distance ¢ from the center of the service
region (¢ = kpp with k, < 1). Note that k¢ represents the enlargement of vehicle capacity in
the line-haul distribution. We will call capacity enlargement to this parameter. Similarly, k,
represents the reduction of the distance from the closest depot to the final destinations. We
call depot distance reduction to this parameter.

The two strategies will be compared in terms of costs, distance, and time consumption, as-
suming that all the companies try to minimize their costs. As mentioned before, in the system
without a UCC it is assumed that each company carries the distribution to its customers in-
dependently with its own fleet. The total costs are the sum of the costs of each individual
company. On the contrary, in the UCC system it is assumed that the costs are split in two de-
livery phases: the costs that each company undergoes to bring the goods to the consolidation
center with its own fleet and the costs of the neutral freight carrier for last-mile distribution.
It is further assumed that the distribution center is not a warehouse and that goods are re-
ceived and shipped on the same day. Thus, no holding costs are incurred. Table 12.2 sum-
marizes the results for strategy A, when each transport operator acts independently from the
others, whereas Table 12.3 shows the results for strategy B, when operators act in collaboration
through the use of a UCC.

; _AMN_AF3 A+3  _ agqli2p7_A+3

Local distance Dira= MNg(&)uz = Ng(i/l)uz =M NS
: : S[20 _6o™ 3"
Line-haul distance | Dyga= MN fp - (25;2 = M3/2N(25§,2

Time Ta=M N

A PRFAREY
UBC 31@”2 va 2vp 36 va

1/2
204 M2 - L
e M ((316)“2(VA 2v ) ( ) )+T

Cost Cci(Dra+Drpa) +¢:Txa

N

Table 12.2: Summary of for the model without consolidation (strategy A)

The critical parameters to decide if the consolidation is benefitting in terms of distribution
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Table 12.3: Summary of metrics for the model with consolidation (strategy B)

costs are: the number of companies collaborating, the capacity enlargement and the depot
distance. It is clear that the total local distance is reduced by the proportion of the square root
of the companies participating. The line-haul distance has two main components. The first
one has been computed for different values of k¢ and k. If (k, + 1/kc) = 1 the first line-haul
distance component is kept. If the value is less than one, more savings can be obtained pro-
portionally to this value. The second component is negligible as it is one order of magnitude
less than the first one. Distribution time has a more complex formulation than distance; in
fact, time is a reformulation of distance with speed parameters. In any case, most of the dis-
tance is traveled with interurban speed, so time is also reduced in the model for consolidation.

12.3 UCCs with non-equal market share companies

Similarly to the previous section, we assume there is a delivery zone of area A, where M com-
panies operate and a total of N customers are uniformly distributed within the area A. We
now assume that each company gives service to N; customers, i = 1,..., M, not necessarily
equal, with N=3;_; » N;. The customer density of each company is denoted by §; = N;/A,
i=1,...,M. Note that §; is smaller than the overall demand density 6 = N/ A. We use the same
parameters as in the previous section. The distance from the depot to the geographical center
of the service area is denoted by p. We further assume a fixed capacity C for the vehicles that
perform urban distribution. In the case where no UCC exists, those vehicles traveling from
the depot to the service area also have capacity C. Instead, we assume that companies use
(bigger) trucks with capacity B = kcC, ( k¢ = 1) when they use the consolidation center. The
parameter k¢ represents the relative increment of vehicle capacity in line-haul distribution
and it is called capacity enlargement. We further assume that the UCC is located at distance
¢ from the geographic center of the service region with ¢ = k,p, k,<1, i.e. the UCC is closer
than the company’s depot to the geographic center of the service region. The parameter k,, is
called depot distance reduction. It relates two distances: the distance p from the geographical
center of the service area to the depot of the carrier and the distance ¢ from the geographical
center of the service area to the UCC.

Next, we present with the same methodology as in the previous section a continuous model
for different market share distributions, which allows again the comparison of two alterna-
tive urban delivery strategies, when carriers have non-equal market-shares: A) a system with-
out the UCC and B) a system with the UCC. Both strategies are compared in terms of costs,
distance, and time consumption, under the assumption that all the companies are trying to
minimize their costs. In strategy A the total costs are the sum of the costs of each individual



96 Analytical Formulation

company. On the contrary, in strategy B it is assumed that the costs are split in two deliv-
ery phases: the costs that each company undergoes to bring the goods to the consolidation
center with its own fleet and the costs of the neutral freight carrier for last-mile distribution.
Again, no holding costs are incurred since the distribution center is not a warehouse. Table
12.4 summarizes the results for strategy A, when each transport operator acts independently
from the others, whereas Table 12.5 shows the results for strategy B, when operators act in
collaboration through the use of a UCC. Note that we use Dypa, Dra and Ty, and Dyyp, Dip
and Tp to refer to the metrics of Strategy A and B respectively, but in this case with non-equal
market share company.

Local distance Dia= —3’1/;?2 ™ 31
L
. . ~a20 BN <M N;
Line-haul distance | Drya= NE - =5—31, —5?fz
172
. _ 2p M N; 1 1 _ 1 A 1
Time TA_N[UBC +T] +Zi:1 5}/2 ((3/1)1/2 (VA 2v3)+(36) UA)

Table 12.4: Summary of for the model without consolidation (strategy A)

Local distance Dip= 2434
. . _ 2p 1 (31)1/2 N
Line-haul distance | Drgp= N& ( o+ k_c) — 5o
172
i =N|2% L N1 (L __1 A 1
Time Tp —N[UBC (kp + kc) +T] + 572 GO (VA ZUB) + (3) o

Table 12.5: Summary of metrics for the model with consolidation (strategy B)

When analyzing the potential benefit of a consolidation center under the non-equal market
share assumption, the new critical aspects in terms of distribution costs are the number of col-
laborating companies and the market share distribution, i.e. which portion of the customers
has each of the carriers.

12.3.1 Analysis for several market share distributions

Some data of transport companies registered in Barcelona (Spain) was analyzed to check the
heterogeneity of real markets [57]. Transport companies were classified by sales revenue and
the number of employees, which are two variables closely related to market share. Figure 12.2
depicts the number of companies in each class . We can observe that the more significant
group was the one of small companies, i.e., the group with smallest values both in sales and
employees.

The difficulty to obtain reliable data of market share in a particular area lead us to analyze
different possible distributions. In the following section, we formulate some possible market
distributions based on some analytically simple functions. Since we cannot guarantee that in
reality the market adjusts to some known functions, in the subsequent section an extended
set of distributions is proposed, which covers any possible distribution of customers among
carriers.

12.3.1.1 Non-equal market share structures.

We analyze four families of market share distributions based on the most simple functions.
We assume that the total demand N is distributed among M companies. For each class, we
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Number of Companies
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Figure 12.2: Number of transport companies in Barcelona (Spain) classified by sales revenue
and number of employees

Sales revenue (in millions€) Number of employees

1-until 0.3 € 1-from1to5
2-from 0.3 t0 0.6 € 2-from 6 to 10
3-from0.6to 1.5€ 3-from 11 to 25
4-from1.5t03 € 4-from 26 to 50
5-from3to 6€ 5-from 51 to 100
6-from 6 to 15 € 6-from 101 to 250

7-from 15 to 30 €
8-from 30 to 60 €

Table 12.6: Legend of Figure 12.2

choose one particular representative by further setting an additional condition..

1. Grouped. There are two types of companies, one with many customers and the other
with far fewer. Equations (12.5) describe this distribution, for a given set of parameters
(a,b) . In our case, we assume that big companies have twice as many customers as
smaller companies (2a = b).

N;=a=2N/3M, i=1,..,M/2
{ i=a /3 i / (12.5)

Ni=b=4N/3M, i=M/2+1,. M

2. Lineal. Each company has a different number of customers and the distribution among
them follows a lineal increase. (12.6) describes the distribution for a set of parameters
(a, b). In our case, we assume that any other company smaller than the smallest of this
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distribution, would have zero demand (i.e., imposing a = 0).

Ni=a+bi=2N/MM+1)i,i=1,..M (12.6)

. Exponential. Each company has a different number of customers and the distribution

among them follows an exponential increase. The number of customers per company
is more diverse than in the lineal case, and there can be bigger and smaller companies
than in that case. (12.7) represents the distribution, and we set b = 3/ M to bend the
distribution and distinguish it from the lineal one. Then a = (N/M) / Zﬁ.":[ Lexp@Bi/M).

(N/M)

o -expBi/M),i=1,.,M (12.7)
2= exp(3i/M)

Nj = aexp(bi) =

. Uniform. All companies have the same number of customers. This is the equal market

share assumption developed in the previous section that can be treated as a particular
case. It is easy to check that the formulae presented in the previously mentioned work,
coincide with the ones presented in (12.8) under uniform demand.

Ni=a=N/M,i=1,.,.M (12.8)

In Figure 12.3 we plot the distribution of the customers demand for the proposed functions for
N=400 customers and M=50 companies. Each value on the x axis represents one company,
and each value on the y axis, the corresponding number of customers.
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Figure 12.3: Distribution of customers among companies for functions proposed in 12.3.1.1

12.3.1.2 Extended set of potential market distributions

In a general case, the structure of the market is unknown. On the other hand, the structures
presented previously can seem rather limited. Hence, we propose an extended set of distri-
butions, which can represent any possible distribution of customers among carriers. For this
we enumerate all the possibilities for distributing N customers among M companies. Using
combinatorics, we can think of this as an assignment of an integer number in {1,..., N} to M
carriers with some restrictions, as not all combinations represent meaningful distributions of
customers. In particular, we should take into account the following:
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* Exact coverage of the total demand. That is, each customer is assigned to one company.

* No combination of customers is repeated. The order in which the number of customers
is assigned to a company is not important since the resulting distribution is the same.

* Assignment of at least one customer per company. Each company should have at least
one customer, otherwise the assignment would not have M companies.

To obtain all possible distributions of customers among carriers, we have designed an it-
erative algorithm that enumerates and generates all of them. Each possible distribution is
uniquely represented by a code defined by M integer numbers of customers sorted increas-
ingly. For instance, if in one distribution the companies have 5,7,3,1, and 6 customers each,
the unique code is: {1,3,5,6,7}. Thus, companies are implicitly ordered by increasing number
of customers, so that the "first" and the "last" companies have the smallest and the largest
number of customers, respectively.

The algorithm defines H;, as the set of all possible combinations of numbers of customers
among the first i companies, when N customers are distributed among M companies. H; is
easy to generate. Its possible values range in {1, ..., L%J}. If we assign more than [ N/M] cus-
tomers to the first company, we have to assign at least the same value to all the companies
to keep the increasing order of the code. That would represent exceeding the total demand.
|x] denotes the maximum integer number no greater than x. Then, fori =1,...M -2, H; is
recursively built from H;_;. Since we keep the non decreasing order in the values of the as-
signed customers, feasible assignments must leave enough unassigned demand for the M — i
remaining companies. Thus, the maximum demand we can assign to company i cannot ex-
ceed the demand not yet assigned among companies 1,...,i — 1 divided by the number of
remaining companies. Finally, H), is obtained by completing each distribution in Hy;—; with
the remaining uncovered demand. Now the maximum possible value for the customers as-
signed to company i is which must be divided by the number of the remaining companies.
See Algorithm 2 for details.

As an example of the results of Algorithm 2, in Figure 12.4 we show the 34 possible distribu-
tions of a total of 16 customers among 4 carriers (C1, C2, C3 and C4).

12.3.2 Trade-off between minimum carrier dimension and savings

Due to a highly competitive market, a system with a UCC could be objected by medium-size
and large carriers. The reason for which large carriers would like to limit the participation of
very small carriers is that small carriers do not significantly increase the number of customers,
but are greatly benefitted from the consolidation center. We present a new tool to determine
a threshold on the minimum demand of a company to join the UCC.

Let N, 6t denote the total number of customers and demand density of the collaborating
companies, respectively; and Ng, s, the corresponding values for the individual company
that wants to join the collaborative system. Using the same methodology of the previous sec-
tion we can derive the formulae for this case. We will compute the costs of the two situations:
C) the current situation where the individual company distributes independently, (see Table
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Combination Generation
Hy — {1}, {2}, {3},.. {LN/M]}}
for(i—1...M-2)do
for (h € H;) do
Generate new possible distributions of H;.; based on h (i.e. with
the first i elements equal to 7).
Ifh= {hi, ho, hs, ..., h;} with hy < hy < hs <... < h; define all the
possible r distributions of H; ;.
@1 ={h1, ho, h3,..., hi, h;}
hg = {hl,hg,hg,...,hi,hl’ + 1}
hs = {hy, hy, hs,..., hi, h; +2}

iy = (I o | st

end

end

or (he Hy_1)do

h=1{hy, ho, hs,...,hpr-1} generate the final distribution
h={h1, hy, hs,...,hp-1, N — (Xj=1..m-1hj)}

-y

end
Algorithm 2: Combination Generation
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Figure 12.4: Potential distributions of customers among companies (16 customers, 4 carriers)

12.7), and D) the situation where the individual company joins the collaborative system, (see
Table 12.8). Thus, we can establish a trade-off between the dimension of the individual car-
rier, and the savings of the hypothetic collaboration system. Note that we use subscript C to
refer to the metrics of state C, and subscript D, respectively, for state D. Note that the formulae
presented in the above tables allow us to decide the threshold for the minimum demand of a
company to join the consolidation center, depending on its corresponding savings.
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Table 12.7: Summary of the metrics for strategy C
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Table 12.8: Summary of the metrics for strategy D






General results, Sensitivity Analysis and Case
Study

In this section we will present several of the previous models for various sets of parameter
values based on European cities (see Table 13.1). The parameters that refer to the area (A) and
distance to the nearest depot (p) have been evaluated within an interval of possible alternative
situations. Speeds are approximate realistic values for urban trips based on [58] database.
Capacity of vehicles and time lost per stop are taken from [36, 67]. Unit cost parameters are
taken from [19, 11]. The study of the parameters k¢ and k,, is detailed in the sensitivity analysis

Section 13.2. These are average values and are realistic as design parameters for the existing
UCC.

Parameters Values Units Parameters Values Units
A (1,20  [km?] C [5,15]  [stops]
5 [2,100] [stores/km?] | cg4 0.3 [€/km]
0 [5,50] (km] ct 26.36 [€/h]
va 25 [km/h] kc 1.4 [-]

UB 50 [km/h] ko 0.1 [-]

T 0.3 (h] M 10 [-]

Table 13.1: Summary of the most important parameters regarding European cities

13.1 Non-equal market assumption

In this section we will analyze the effect of the non-equal market assumption of the previous
model. First, we present the results of the trade-off between minimum carrier dimension
and savings of the Section 12.3.2. The reason is that we will further use these results in the
application of the extended set of potential market structures of Section 12.3.1. Then, we will
analyze the results for several market share distributions. In Section 13.2 a sensitivity analysis

of the parameters will be presented. Finally, general results for a given case study are discussed
in Section 13.3

13.1.1 Trade-off between minimum carrier dimension and savings

This analysis will be done through the analysis of a parameter that relates Nt to Ns (number
of customers of the consolidation center and number of customers of the carrier that wants to
join the UCC, respectively). We use the expression Ng = ky Nt with kye€ [€,0.5], where € > 0,
i.e. the new carrier has a number of customers that is a portion of the customers that receive
goods from the UCC. The model in Section 12.3.2 provides a useful tool that companies can
use to limit the participation of very small carriers. For a new carrier to be admitted to join
the system, the consolidation center may require that its incorporation will imply a minimum
percentage reduction on the unit cost per customer. In Figure 13.1 (a), we present the unit
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cost of distribution per customer as a function of ky for: i) the independent carrier, ii) the
current UCC system, iii) the case where the independent carrier joins the UCC. In Figure 13.1
(b), we present the savings between the current costs of the UCC and the UCC plus the new
carrier. We compare the unit cost per customer in both scenarios using the difference of these
values expressed in percentage.
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Figure 13.1: Cost and savings for several market share structures, as a function of ky. (a)
Total cost for each market structure and (b) Savings in percentage depending on the market
structure and the number of companies.

In Figure 13.1 (a), we can observe the decrease in unitary costs as the number of customers
of the independent carrier increases (ky). Something similar happens as the new carrier in-
creases the overall UCC demand, by incorporating its customers. Costs of the current UCC
system remain fixed as they are not affected by the demand of the independent carrier. Figure
13.1 (b) shows the increase in savings of unitary costs as the demand that the new indepen-
dent carrier brings to the system increases. Potential savings range from 5% if the indepen-
dent carrier has 5% of the customers of the consolidation center up to a 32.5% if the indepen-
dent carrier brings 50% of the demand of the UCC.

13.1.2 Results for several market share distributions

We now analyze how the number of companies affects the costs of the four market share dis-
tributions based on simple functions proposed in the previous section. In Figure 13.2 (a), we
present the total costs for each of the considered market share structures, as well as the total
distribution costs costs when the companies operate within the UCC. We can see that total
costs are similar in the four market share distributions and that UCC costs are slightly lower.
As could be expected, the difference in cost increases as more companies are considered. In
Figure 13.2 (b), we present the percentage savings of UCC costs with respect to the costs of
each market share structure. We observe that the uniform distribution is the one that pro-
vides more savings; other distributions, however, present the same range of savings, with a
maximum difference that is smaller than 0.5%.

From the above figures, it is evident that the more companies collaborate, the more demand is
consolidated, and thus, there are more savings. We can conclude that different market struc-
tures do not affect the operational savings of an UCC significantly. However, to extensively
check this conclusion, we will present the results with the extended set of potential market
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distributions proposed in the previous section.

The size of the extended set of potential market distributions for N customers among M com-
panies grows quickly with N. Thus, it is not possible to analyze the complete set, even when N
and M take small values. In order to reduce the number of distributions, we have limited the
participation of companies with a small number of costumers, as they would not be accepted
by medium-large carriers. Using the analysis of the results of the previous section, we can de-
termine the minimum demand per company to obtain a given percentage of savings. We set
the threshold to a 5% of cost reduction, which limits the minimum demand per company to
5% of the total demand of the service area.
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Figure 13.2: Costs and savings for several market share structures. (a) Total cost for each mar-
ket structure and (b) Savings in percentage depending on the market structure and the num-
ber of companies.

We generate all market distributions with Algorithm 1 for a total of 80 customers distributed
among 10 companies. The minimum demand per company is 4 customers, resulting in a
total of 16,928 possible market distributions. For each distribution we compute the savings
between the current situation with no collaboration and a total collaborative situation.

In Figure 13.3, we present a histogram of savings for the extended set of potential market
distributions. The savings range between 6.3% and 7%. The differences in savings in the
extended set of potential market distributions are not significant: the mean is 6.79 and the
variance is 0.0067. Therefore, we can conclude that market structure does not affect savings
in UCC strategy.

13.2 Sensitivity analysis

This section aims to provide insight on the effect of some parameters of the system, and their
effect in the costs. The crucial parameters to assure savings when the consolidation centers
used are k¢ and k,. Context parameters like A or 6 are also considered, since they are set at a
planning level and they have a great influence on the behavior of the resulting system. On the
contrary, parameters like C, p, ¢4, ct, V4, Vg, and 7 are less dependent on planning decisions
and tend to be linked to the characteristics of each commodity, city, or region.

Since we have seen that market share distribution does not significantly affect savings, in this
section we will work with the equal market share distribution from Section 12.2
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Figure 13.3: Savings expressed in percentage of the extended set of potential market distribu-
tions for 80 customers distributed among 10 companies.

Parameters will be analyzed one at a time, meaning that all other parameters will be fixed. In
Figure 13.4, the effect of the number of companies is related to the percentage of local distance
savings. The square root relationship can be clearly observed. The percentage savings are
important for the first committing companies, but then the increments become rather small.

The predominant term of the total cost is line-haul cost, which can be significantly reduced
by an appropriate combination of k, and kc. In Figure 13.5, line-haul distance savings in per-
centage are related to (k,, kc). For instance, a 0.2 reduction in the distance of the depot to the
UCC and a capacity enlargement of factor 2 yields a line-length saving of approximately 20%.
The difference between percentage savings and percentage losses can be clearly observed in
the intersection of the surface with the plane z = 0. This is exactly the hyperbolic curve de-
termined by (kp +1/ kC) = 1. Moreover, for smaller values of k, and larger values of k¢, more
savings can be obtained.
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Figure 13.4: Local distance savings in percentage depending on the number of companies

As an example, in Figure 13.6 we present the unit cost for each of the two strategies with
k, = 0.1, kc = 1.4. Note that in this case, such cost can be quite large since the data used
is aggregated. The costs of the current system appear above and the values for the system
with the consolidation center are below. We can observe savings around 12-14%. In general,
operational cost savings in these ranges can be guaranteed.
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Figure 13.5: Line-haul distance savings in percentage depending on the value of the parame-
ters ky, kc (Depot distance reduction, capacity enlargement)
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Figure 13.6: Unit cost of distribution depending on the area size and customer density

13.3 Case study

The city council of 'Hospitalet de Llobregat (Spain) expressed its interest in testing the poten-
tial improvements in a pilot test: the reduction in operation costs, the number of transporta-
tion vehicles in the area, congestion, pollution, noise, etc. thus the proposed methodology
has been applied to define an optimal system and its benefits.

The main commercial area of LHospitalet de Llobregat, which is the most congested one and
has narrow streets can be roughly delimited by a rectangular zone of approximately 0.64km?.
We consider that the city center is p=10 km away from the closest depot. Since the UCC can
be built on the perimeter on the area, ¢=0.08. Regarding trucks, we assume that the average
capacity is 3 Tn of GVW for urban delivery (Madrid Municipality, 2004). With the UCC we
assume that the capacity will be 5.4 Tn on average. The defining parameters of the zone are
summarized in Table 13.2.

Different types of establishments exist, which can be classified in: personal consumption (A),
hospitality and catering (B), leisure (C), construction or home materials (D), collective es-
tablishments (E), food stores (F), and others (G). We assume that each transport carrier only
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Parameters Values Units Parameters Values Units

A 0.64 [km?] cq 0.3 [€/km]
P 10 (km] cr 26.36  [€/h]
VA 25 [km/h] ke 1.8 -]
vB 50 [km/h] k, 0.08 [-]

Y 12 (h]

Table 13.2: Summary of the most important metrics of the model with consolidation for the
city of LHospitalet de Llobregat

Code Stores Shipments Companies M N N 6 Stops (C)
A 80 2.5 52 11 4 43 67 7
B 126 2.7 51 11 7 74 115 7
C 128 2.5 14 3 23 69 107 10
D 133 5.3 28 6 25 151 236 15
E 136 1.9 30 6 9 52 81 4
F 154 2.2 53 11 6 71 111 15
G 252 1.9 30 6 16 97 151 4

Table 13.3: Basic features of the stores in LHospitalet de Llobregat

serves one of these types of establishments, so the savings analysis will be done separately.
The city council of LHospitalet de Llobregat provided us with the number of stores of each
type (Table 13.3). Table 13.3 has been completed using the information in the surveys of
[50, 67] . For each type of establishment we have collected the following data: the average
shipments received, the number of transport companies in the area, the number of compa-
nies participating in the UCC (M), the demand per company (N), the total demand in the area,
the store density, and the stops per trip. (Note that stops per trip are equivalent to capacity).

The results are presented in Figure 13.7. As can be seen, depending on the percentage of com-
panies participating in the UCC percentage savings between 10% and 12% can be achieved
with respect to the current situation. We compare the total savings with an estimated cost for
the UCC. The cost estimation should account for the infrastructural cost (rent, improvements,
and maintenance), terminal personnel cost, technical machines, and information technolo-
gies. The results obtained for this case study indicate that with the participation of transport
carriers that serve 40% of the demand, operational cost savings can be around 5% including
the funding of the operation costs in the UCC.
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Conclusions

In this last part of the thesis we have proposed a continuous model that analyzes the improve-
ment in the efficiency of urban distribution that can be achieved with the use of consolidation
centers. The proposed methodology can be easily applied to more than one service area to
obtain accurate approximations of the savings. Moreover, the sensitive analysis gives a better
understanding of the tendencies with the evolution of the parameters, specifically with the
key metrics involved: cost, distance and time.

We have proposed a tool to determine the minimum number of customers from all the com-
panies participating in the consolidation center needed to reach target percentage savings.
This can be very useful for planning purposes, when defining the companies that can partici-
pate in the consolidation center.

We have assumed that companies with different market shares within the service area act col-
laboratively through a UCC. However, the different market assumption does not substantially
impact savings in percentage of the resulting center, when compared to a uniform market
share distribution situation. Thus, we can conclude that the distribution of customers among
the companies does not significantly affect the savings of the consolidation center.

The results obtained with data, based on densely populated urban areas such as European
cities, show that benefits can reach up to a 12-14% in cost savings. The results are clearly
differentiated from those in[37, 68], due to the differences in the modeling hypothesis. More-
over, a case study for LHospitalet de Llobregat has been presented, where we show with more
detailed data that such savings can be reached. We have also seen that, in the collaborative
strategy, the commitment of approximately 40% of the transport companies is needed to cover
the UCC costs..

Future research on this topic could focus on by adding constraints to make the model even
more realistic. Such constraints could include the time windows imposed by customers or
the possibility of temporary storage in the consolidation center. Another possible avenue of
research would study additional aspects of the system. For instance, the approximation of
the costs incurred in UCCs and its financial possibilities. Or from a more general perspective,
the distribution of the new costs and the benefits of a UCC system among all stakeholders
involved.






General Conclusions

Transport collaboration in urban deliveries is the transversal topic. We have studied different
forms collaboration, combining multiple perspectives and tackling different problems. The
common aim was to study three particular problems, arising within different decision making
frameworks, and provide models to quantify the potential benefits of the collaboration sce-
narios. We believe we have proved the potentialities of these types of collaboration. Ideally
our analysis could encourage stakeholders (private companies, as well as public authorities)
to establish or stimulate collaboration. From a methodological perspective, we have shown
that the suitable formulation of the problem plays a key role on the problem approach.

Indeed, the research performed in this thesis is somehow limited. Unfortunately, private com-
panies are extremely reluctant to share data. Nonetheless, the use of aggregate data to gen-
erate different instances gives a comprehensive test in the thesis. Furthermore, the different
parts of the thesis are definitely connected but do not build on each other. Thus, the broader
view of the thesis, with three different parts, somehow limits the depth in some sections.

We believe that the contributions of this thesis can be applied to other fields of research. The
modeling of PAP provides a comprehensive approach to fair solutions in the presence of time
windows. The different proposals and the obtained solutions can give some insight on how to
address other problems with time windows when instances are not necessarily feasible. The
use of time-discrete approach has proven to be valid for the PAP, which indicates an alternative
for other similar problems when a time-continuous approach presents limitations. In turn,
the modeling of the SCC-VRP with its different variants can inspire other related work. Finally,
the continuous approach has proven to be valid in another field, which can contribute to
make more visible the use of this type of models in different fields.

This thesis opens multiple opportunities for future work. The problems of the first two parts
of the thesis, the PAP and the SCC-VRP are both new in the literature. Research can be contin-
ued in both topics from different perspectives: the proposal of other models that differently
quantify the benefits of the collaboration, the assumption of other conditions that modify the
problem, the design of exact-procedures or other algorithms to provide optimal solutions for
the instances proposed or the study of the model properties, to mention just a few.

In the case of the PAP, the assignment problem is only a part of the whole urban planning
challenges related to loading/unloading activities. The related problems (sizing, location, ...)
can now be studied with the assumption that a fair allocation model exists to assign requests
to parking places. In particular, the sizing of the loading/unloading areas can be revised since
amore adjusted solution could be provided thanks to the in advanced assignment. In the case
of the SCC-VRP, the problem can be extended under various assumptions. The conditions
of the collaboration can be modified: possibility to transfer customers with low demand or
inconvenient locations, possibility to transfer customers, etc. On the other hand, the way the
benefits are split among the participants can be determinant for convincing stakeholders.
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Parking Slot Assignment Problem. Summary
Tables

A.1 ThePAP as a VRP

Parameters and sets: || Description
[0,T] Time interval for the assignment of parking slots

c Number of parking places for vehicles to load/unload goods
Q Index set of requests

q Number of requests (g = |Q|)

a; Earliest starting time for request i € Q

b; Latest starting time for request i € Q

Si Duration of operation i € Q

Vg Fictitious depot

v Set of vertices for the fictitious routes: V = QU {v,}

A Set of arcs for the fictitious routes

d Maximum allowed displacement from requested time window in MOD4
M Big- M used in Constraints (4.5) relating variables

K Big- M used in Constraints (4.25)—(4.26) of MOD3

wi Weight of request i € Q in the objective function of MOD1 and MOD3
U Unit cost for outsourced parking place at time slot ¢ € {0,..., T — 1}
K Constant value of objective function in MODO

Table A.1: Parameters and sets of the models for PAP as a VRP

Model Objective function

0 Feasibility 2(x, 1) =x

1 Min ET Z2H(x, 1) = YieqWie; (4.14)
2 Min-Max ET (a&b) Z2(x,t)=m (4.16)
3 Min ET st Max 22 (x,1) = Yieq Wie€i 4.21)
4 Min Num (a&b) Z2'(x, 1) = Yieq Pi (4.23)
4 Min Num weight(a&b) 2 (x, 1) = Yicq SiBi (4.27)
5 Cost function 2,y 0=x1_n; (4.34)
5" Cost function time dependent 22 (x, »t)= Ztho WY ieqOir (4.37)

Table A.2: Objective functions for PAP as a VRP
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MOD Common variables | Description

All Xij If request j is performed exactly after request i (binary)
All ti The time when request i begins being served (continuous)
MOD Specific variables Description
1/2/3/4 || e; Earliness/tardiness associated with request i (continuous)
2/2b m Maximum earliness/tardiness (continuous)
4/4b Bi Indicator for request i if performed on time (binary)
5/5b n; Number of outsourced requests scheduled at time slot ¢ (in-
teger)
5/5b Yij If request j is performed exactly after request i in out-
sourced parking space (binary)
5b O Indicator for request i occupying an outsourced space at

time slot ¢ (binary)

Table A.3: Decision variables for the PAP as a VRP



MOD

H Common Constraints

€cl

All Parking places (4.2) | XjegXxvj=c
All Connectivity (4.3) | X jeaXij—2(neaXji=0 1i€Q
All Request completion (4.4) | X jeaxij=1 ieQ
All Time (4.5) t,~+s,~—tjs(1—xij)M i,jeQ, (i,j)eA
All Domain ¢ 4.7 |0<s<T ieQ
All Domain x (4.8) | x;;€1{0,1} (i,j)e A
None Subtour elimination (4.9) | X, pearxij<IW|-1 WcV
i,jeW
MOD Particular Constraints
Feasibility Time window 4.6) | a;<t;<Db; ieqQ
Min ET ET (4.11) | ej=a;—t; ieqQ
" (4.12) | e;=t;— b; ieqQ
" (4.13) | ;=0 ieqQ
Min-Max ET (a) || ET +
MET 4.17) | m=e; i€q
Min-Max ET (b) || MaxET (4.18) | m=a; - t; ieQ
" (4.19) | m=t;—b; i€q
" (4.20) | m=0
Min ET st Max ET +
Maximum displacement (4.22) | e; <d i€eqQ
Min Num (a) ET +
Num (4.24) | BiK=e; ieqQ
Min Num (b) NumET (4.25) | BiK=a;—t; i€eqQ
" (4.26) | B;K=t;—b; i€eq
Cost (a) Connectivity y (4.30) | X jjealij—2(ineayji=0 1€Q
Request assignment y (4.31) Z(i,j)eA(x,-j + yij) =1
Time y (4.32) ti+Si—tj < (l—y,‘j)M ,jeQ, (i,j)eA
Domain y (4.33) | yij€i0,1} (i,j)e A
Cost (b) Cost (a) +
Outsourcing (4.35) | Ojy =0 —(1-y;)) i,jEQ,t,t'€[0, TIwith ' =t+s;
Outsourcing (b) (4.36) | Oj; < Ojyp tel0, T t+1<st' <t+s;

Table A.4: Constraints of the models for the PAP as a VRP




MODO MOD1 MOD2 MOD3 MOD4 MOD5
Feasibility | Min ET Min-Max ET Min ET st Max Min Num Outsource
a b a b a b

Variables q°+2q G*+3q | ¢°+3qg+1 | g*>+2q+1 q°+3q q°>+4q g°+3q g°+3q q*+3q+qT
Commo.n Num Const
Constraints
Parking places (4.2) X X X X X X X X X 1
Connectivity (4.3) X X X X X X X X X q
Request
completion (4.4) X X X X X X X q
Time (4.5) X X X X X X X X X qg-1)
Domain ¢ 4.7 X X X X X X X X X [2q]
Domain x (4.8) X X X X X X X X X [2q(qg—-1)]
Particular
Constraints
Time window (4.6) X X X 2q
ET (4.11-4.13) X X X X 2q
MET (4.17) X q
MaxET (4.18-4.19) X 2q
Maximum

. X q
displacement (4.22)
Num (4.24) X q
NumET (4.25-4.26) X 2q
Connectivity y  (4.30) X X q
Request
y 4.31) X X q
Time y (4.32) X X q
Domain y (4.33) X X [2g]
Outsource (4.35) X qT
Outsourceb (4.36) X qTy;si
Constraints G°+3qg+1 | g°+4q+1 | g*+5q+1 | g*+4q+1 G°+5q+1 q*+5q+1 | g°+3g+1 | 2¢g°+3g+1 | g*°QR+T)+1+q

B-T+T%;si)

Table A.5: Variable and constraint count for the PAP as a VRP

vl

s9[qe], Arewrtung gvd
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A.2 ThePAP as an AP

Parameters and sets: || Description

[0,1,..., 7] Discretized set of possible time for the assignment of parking slots
c Number of parking places for vehicles to load/unload goods
Q Index set of requests
Si Duration of operation i € Q
d Maximum allowed displacement from requested time window in MOD4
&t Penalty value if request i € Q is assigned to start at time t € [0, 1,..., T

Table A.6: Parameters and sets of the models for PAP as an AP
MOD | Common variables | Description
All hi; If request i is performed at time interval ¢ (binary)

Table A.7: Decision variable for the PAP as an AP

Model Objective function
Feasibility 22h)=0
Min ET z'(h) = YieQYrep,., 1 Cithir (4.40)

Min-Max ET || z?(h) = max;eomaxpep,.., 1) &ithir  (4.41)

Min ET st Max || 2°(h) =Y ;eq X e, Cirhir

BWIN =IO

Min Num Z4(h) = ZiEQZt’E[O,...,T] é\i[hit’ (4.44)

Table A.8: Objective functions for PAP as an AP







Shared Customer Collaboration VRP.
Formulations. Summary Tables

Parameters and sets: || Description
C Set of carriers collaborating
N Set of customers
Cu Set of carriers serving customer u € N
K; Set of unlimited vehicles for carrier i € C
K =UjecK; Total set of vehicles for all carriers
dyi Demand for customer z € N from company i € C,,
G=(V,A) Graph between customers
d (k) Depot of route k € K, same for all routes of same company
V = NUgex {d(k)} Set of nodes
AcCVxV Set of arcs
Cuv Cost of arc (u,v) € A
Q Capacity of vehicles k € K
c Fixed charge for one transfer between depots

Table B.1: Parameters and sets of the models

Variables: || Description

x,’jv equals 1 if vehicle k € K uses arc (u, v) €A

zﬁ ij equals 1 if demand of customer u € N from carrier i is served by a vehicle of
company j, inroute k € Kj.
Note that zzii equals 1 if demand from customer u € N from carrier i is
served by the same company, not transferred.

YVij Binary variable that checks if there is the need to transfer demand between
carriersiand j.ieCand jeC|j>1

Ve the number of transfers needed between depots to transport goods

Table B.2: Variables of the vehicle based formulation

Variable: || Count
xﬁv (n(n=-1)+2nok
z’ljij nc’k
Yij ct+(c-1)+(c-2)+..+1
vc 1

Table B.3: Variable count of the vehicle based formulation
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SCC-VRP. Summary Tables

Variables: || Description
X, equals 1 if a vehicle from company i € C uses arc (u, v) €A.
Zuij equals 1 if demand of customer u € N from carrier i is served by a vehicle of
company j.
Note that z,;; equals 1 if demand from customer u € N from carrier i is
served by the same company, not transferred.
1, equals the load of a vehicle from company i € C upon the arc (1, v) €A
YVij Binary variable that checks if there is the need to transfer demand between
carriersiand j.ieCand jeC|j>1i
ve the number of transfers needed between depots to transport goods
Table B.4: Variables of the load based formulation
Variable: || Count
x{w (n(n-1)+2nc)c
2uij n02
1, (n(n—-1)+2nc)c
Yij c+(c-1)+(c-2)+..+1
vc 1
Table B.5: Variable count of the load based formulation
Parameters and sets: || Description
N Set of customers
Cy Set of carriers serving customer u € N
dy Demand for customer uz € N (no need to specify carrier, only one)
G=(V,A) Graph between customers
D Depot of the company
V=NuD Set of nodes
AcCVxV Set of arcs
Cuv Costofarc (u,v)e A
Q Capacity of vehicles

Table B.6: Simplified parameters and sets for the single company VRP




Abbreviations

AGAP Aircraft-Gate Allocation Problem

AP Assignment Problem

BAP Berth Allocation Problem

CVRP Capacitated Vehicle Routing Problem

FSP Fixed job Scheduling Problem

GVW Gross Vehicle Weight

LB Lower Bound

LCP Lane Covering Problem

LCLCP Length Constraint Lane Covering Problem
LP Linear Programming

MCJDS Multi-carrier Joint Delivery Service
MDVRP Multiple Depot Vehicle Routing Problem
MILP Mixed Integer Linear Programming

NP Nondeterministic Polynomial time

PAP Parking Slot Assignment Problem

PDPTW Pickup and Delivery Problem with Time Windows
SEC Subtour Elimination Constraints

TSP Traveling Salesmen Problem

TU Totally Unimodular

TL Time Limit

TW Time Window

UCC Urban Consolidation Centers

Abbreviations



130 Abbreviations

VRP Vehicle Routing Problem
VRPSC Vehicle Routing Problem with Shared Customers
VRPTW Vehicle Routing Problem with Time Windows

VSP Variable job Scheduling Problem



PAP. Test Instances

PAP. Test instances

In this Appendix we represent graphically three instances for the PAP, one of each type. We
present instance 210 (triangular centered), instance 217 (triangular asymmetric) and instance
237 (double peak). Each request is represented in a row of the vertical axis with a blue rectan-
gle and a red line. The rectangle shows the time window requested for starting the service. As
described in Section 5.1 the durations are of 20, 40, 60 or 80 minutes. The red line is placed in
the beginning of the interval and the length corresponds to the duration of the request. Note
that since the time window corresponds to the request for starting the service, the duration
can be longer than the time window.
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PAP Test Instances
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Figure D.3: Instance 237



SCC-VRP. Test Instances

SCC-VRP. Test instances

In this Appendix additional information is given about the instances for the SCC-VRP used in
the experiments of Section 9
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Instance | R/IC | Q | Yiendia Xiendip Yiendia+dip | INI(ALIB|) | Shared
1001 R 100 126(97) 250(111) 376 10 (5,9) 4
1002 R 200 67(29) 164(38) 231 10 (4, 8) 2
1003 R 300 198(98) 271(104) 469 10 (6, 7) 3
1004 R 400 | 233(110) 202(95) 435 10 (7, 6) 3
1005 R 500 309(92) 267(91) 576 10 (6, 6) 2
1006 R 100 239(84) 116(87) 355 15 (13, 6) 4
1007 R 200 | 200(105) 166(40) 366 15 (9, 10) 4
1008 R 300 | 317(132) 347(108) 664 15 (8, 10) 3
1009 R 400 314(67) 309(77) 623 15 (9, 8) 2
1010 R 500 248(55) 499(48) 747 15 (5,11) 1
1011 R 100 221(73) 249(77) 470 20 (12,12) 4
1012 R 200 | 281(116) 239(88) 520 20 (13, 13) 6
1013 R 300 | 413(213) 505(219) 918 20 (12, 14) 6
1014 R 400 | 411(242) 594(268) 1005 20 (11, 16) 7
1015 R 500 | 681(357) 634(355) 1315 20 (15, 13) 8
1016 R 100 | 336(131) 328(128) 664 25 (16, 15) 6
1017 R 200 366(46) 258(79) 624 25 (16, 12) 3
1018 R 300 | 540(150) 536(159) 1076 25 (14, 15) 4
1019 R 400 | 545(169) 637(159) 1182 25 (13, 16) 4
1020 R 500 865(69) 529(28) 1394 25 (16, 10) 1
1021 R 100 | 447(195) 277(152) 724 30 (24, 15) 9
1022 R 200 | 460(212) 423(276) 883 30 (22, 19) 11
1023 R 300 | 816(143) 486(151) 1302 30 (21, 13) 4
1024 R 400 | 793(373) 776(344) 1569 30 (20, 19) 9
1025 R 500 | 1063(442) 863(425) 1926 30(19,19) 8
1026 C 100 126(97) 250(111) 376 10 (5,9) 4
1027 C 200 67(29) 164(38) 231 10 (4, 8) 2
1028 C 300 198(98) 271(104) 469 10 (6, 7) 3
1029 C 400 | 233(110) 202(95) 435 10 (7, 6) 3
1030 C 500 309(92) 267(91) 576 10 (6, 6) 2
1031 C 100 239(84) 116(87) 355 15 (13, 6) 4
1032 C 200 | 200(105) 166(40) 366 15 (9, 10) 4
1033 C 300 | 317(132) 347(108) 664 15 (8, 10) 3
1034 C 400 314(67) 309(77) 623 15 (9, 8) 2
1035 C 500 248(55) 499(48) 747 15 (5,11) 1
1036 C 100 221(73) 249(77) 470 20(12,12) 4
1037 C 200 | 281(116) 239(88) 520 20 (13, 13) 6
1038 C 300 | 413(213) 505(219) 918 20 (12, 14) 6
1039 C 400 | 411(242) 594(268) 1005 20 (11, 16) 7
1040 C 500 | 681(357) 634(355) 1315 20 (15, 13) 8
1041 C 100 | 336(131) 328(128) 664 25 (16, 15) 6
1042 C 200 366(46) 258(79) 624 25 (16, 12) 3
1043 C 300 | 540(150) 536(159) 1076 25 (14, 15) 4
1044 C 400 | 545(169) 637(159) 1182 25 (13, 16) 4
1045 C 500 865(69) 529(28) 1394 25 (16, 10) 1
1046 C 100 | 447(195) 277(152) 724 30 (24, 15) 9
1047 C 200 | 460(212) 423(276) 883 30 (22, 19) 11
1048 C 300 | 816(143) 486(151) 1302 30 (21, 13) 4
1049 C 400 | 793(373) 776(344) 1569 30 (20, 19) 9
1050 C 500 | 1063(442) 863(425) 1926 30(19,19) 8

Table E.1: Data summary of the extended set of instances 1001-1050



Instance | R/IC | Q | Yjendia Yiendip Yiendia+dip | INI(AlIB|) | Shared
1051 R 100 90(52) 76(31) 166 10 (7,7) 4
1052 R 200 80(17) 43(11) 123 10 (6, 5) 1
1053 R 300 114(26) 74(30) 188 10 (7, 5) 2
1054 R 400 76(41) 137(38) 213 10 (4, 8) 2
1055 R 500 | 151(100) 284(107) 435 10 (5, 8) 3
1056 R 100 118(38) 81(23) 199 15 (10, 8) 3
1057 R 200 133(56) 104(59) 237 15 (11, 8) 4
1058 R 300 186(64) 162(68) 348 15 (10, 8) 3
1059 R 400 241(88) 138(97) 379 15(13,7) 5
1060 R 500 | 227(125) 401(151) 628 15 (7,12) 4
1061 R 100 127(55) 192(92) 319 20 (12, 14) 6
1062 R 200 136(62) 167(53) 303 20 (11, 14) 5
1063 R 300 242(82) 176(86) 418 20 (14,11) 5
1064 R 400 190(82) 245(75) 435 20 (11, 14) 5
1065 R 500 373(87) 411(109) 784 20 (12,11) 3
1066 R 100 228(61) 166(90) 394 25 (18, 13) 6
1067 R 200 172(15) 171(35) 343 25 (14, 13) 2
1068 R 300 | 345(192) 251(193) 596 25 (21, 15) 11
1069 R 400 | 291(130) 246(112) 537 25 (16, 16) 7
1070 R 500 | 547(189) 446(138) 993 25 (15, 15) 5
1071 R 100 | 323(144) 210(128) 533 30 (24, 16) 10
1072 R 200 | 282(119) 198(102) 480 30 (22,17) 9
1073 R 300 | 470(177) 243(143) 713 30 (24, 15) 9
1074 R 400 | 286(135) 375(133) 661 30 (16, 22) 8
1075 R 500 | 518(151) 643(153) 1161 30 (16, 19) 5
1076 C 100 87(34) 56(37) 143 10 (8, 5) 3
1077 C 200 21(0) 91(0) 112 10 (2, 8) 0
1078 C 300 51(18) 129(11) 180 10 (3, 8) 1
1079 C 400 99(46) 115(27) 214 10 (5,7) 2
1080 C 500 150(24) 174(31) 324 10 (6, 5) 1
1081 C 100 74(9) 97(8) 171 15(7,9) 1
1082 C 200 125(30) 102(21) 227 15 (9, 8) 2
1083 C 300 166(36) 140(30) 306 15 (9, 8) 2
1084 C 400 162(83) 211(71) 373 15(8,11) 4
1085 C 500 | 300(181) 337(147) 637 15(9,11) 5
1086 C 100 153(84) 151(89) 304 20 (14, 13) 7
1087 C 200 204(91) 119(86) 323 20 (16, 11) 7
1088 C 300 200(78) 233(95) 433 20 (13,12) 5
1089 C 400 180(80) 230(66) 410 20 (10, 14) 4
1090 C 500 366(47) 375(69) 741 20(11,11) 2
1091 C 100 193(44) 154(37) 347 25 (14, 14) 3
1092 C 200 202(57) 212(44) 414 25 (14, 15) 4
1093 C 300 324(71) 185(57) 509 25(18,11) 4
1094 C 400 | 373(126) 167(119) 540 25 (22, 10) 7
1095 C 500 | 416(197) 597(230) 1013 25 (14, 18) 7
1096 C 100 210(61) 236(64) 446 30(17,19) 6
1097 C 200 | 223(86) 244(95) 467 30 (19, 19) 8
1098 C 300 254(96) 372(73) 626 30 (15, 21) 6
1099 C 400 | 390(139) 328(122) 718 30 (19, 18) 7
1100 C 500 | 543(144) 618(155) 1161 30(17,18) 5

Table E.2: Data summary of the extended set of instances 1051-1100
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Instance 1 Instance 2
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Figure E.1: SCC-VRP test instances 1-6 with 18-30 customer obtained from MDVRP [12]
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Figure E.2: SCC-VRP test instances 7-12 with 18-30 customer obtained from MDVRP [12]
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