
Universitat Politècnia de Catalunya (UPC)
Departament d’Arquitectura de Computadors (DAC)

Semantic Resource Management and
Interoperability between Distributed

Computing Platforms

Jorge Ejarque Artigas

Advisor

Rosa Maria Badia Sala

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR PER LA UNIVERSITAT POLITÈCNICA DE CATALUNYA

Barcelona November 3, 2015

Acta de qualificació de tesi doctoral

Curs acadèmic: 2015/2016

Nom i cognoms

Jorge Ejarque Artigas
Programa de doctorat

Arquitectura de Computadors

Unitat estructural responsable del programa

Departament d’Arquitectura de Computadors

Resolució del Tribunal

Reunit el Tribunal designat a l'efecte, el doctorand / la doctoranda exposa el tema de la s eva tesi doctoral titulada

” Semantic Resource Management and Interoperability between Distributed Computing Platforms”

Acabada la lectura i després de donar resposta a les qüestions formulades pels membres titulars del tribunal,

aquest atorga la qualificació:

 NO APTE APROVAT NOTABLE EXCEL·LENT

(Nom, cognoms i signatura)

President/a

(Nom, cognoms i signatura)

Secretari/ària

(Nom, cognoms i signatura)

Vocal

(Nom, cognoms i signatura)

Vocal

(Nom, cognoms i signatura)

Vocal

______________________, _______ d'/de __________________ de _______________

El resultat de l’escrutini dels vots emesos pels membres titulars del tribunal, efectuat per l’Escola de Doctorat, a

instància de la Comissió de Doctorat de la UPC, atorga la MENCIÓ CUM LAUDE:

 SÍ NO

(Nom, cognoms i signatura)

President de la Comissió Permanent de l’Escola de Doctorat

(Nom, cognoms i signatura)

Secretari de la Comissió Permanent de l’Escola de Doctorat

Barcelona, _______ d'/de ____________________ de _________

Abstract

Distributed Computing is the paradigm where the application execution is distributed
across different computers connected by a communication network. The first important
distributed computing platforms were Clusters, where a set of computers were working
together in a single location, connected by a Local Area Network. The evolution of the
Internet enabled the connection of computers and users across locations, in such a way that
computers can be connected to each other and accessed from different parts of the world,
resulting in an advanced distributed computing platform called Grid. Grid Computing
focuses on sharing computing resources provided by different entities, creating a global
computing infrastructure which is available to different user communities. During
last years, the Grid Computing has evolved very fast integrating different technologies
resulting in what is currently known as the Cloud. The Cloud Computing paradigm has
become a revolutionary approach in distributed computing, providing computing and data
resources, on demand, in a very dynamic fashion, and following the Utility Computing
model where you pay only for what you consume.

Different types of companies and institutions are exploring the potential benefits of
moving their IT services and applications to Cloud infrastructures, in order to decouple
the management of computing resources from their core business process to become
more productive. Nevertheless, migrating software to Clouds is not an easy task, since
it requires a deep knowledge of the technology and services offered by providers and
how to use them. Among others, developers need to design how to partition the software
into Virtual Machines (VMs), how to build the VM images and how to provision the
computing resources and deploying the VMs and there is no easy solution for performing
all these tasks. Besides this complex deployment process, the current cloud market place
has several providers offering resources with different capabilities, prices and quality,
and each provider uses their own properties and APIs for describing and accessing their
resources. Therefore, when customers want to execute an application in the providers’
resources, they must understand the different providers’ description, compare them and
select the most suitable resources for their interests. Once the provider and resources have

ii

been selected, developers have to inter-operate with the different providers’ interfaces to
coordinate the application execution steps. To do all the mentioned steps, application
developers have to deal with the design and implementation of complex integration
procedures.

This thesis presents several contributions to overcome the aforementioned problems
by providing a platform that facilitates and automates the integration of applications
in different providers’ infrastructures lowering the barrier of adopting new distributed
computing infrastructure such as Clouds. The achievement of this objective has been
split in several parts. In the first part, we have studied how semantic web technologies
can improve the description of applications and how to automatically infer a model for
deploying them in a distributed platform. We propose an ontology that provides a general-
purpose and infrastructure-agnostic model for describing distributed applications. This
model consists on a component topology which describes the application components and
their communication links. Applying reasoning over the semantic application description,
we can classify the components and communication links and infer the implicit affinity
constraints. Once the application deployment model has been inferred, the second step
is finding the resources to deploy and execute the different application components.
Regarding this topic, we have studied how semantic web technologies can be applied in
the resource allocation problem. In this case, we have defined an ontology which models
the concepts involved on the assignment of resources to the computing tasks. Allocation
policies are modeled as horn rules which are applied over a knowledge base composed by
the application and the available resources descriptions.

Once the different components have been allocated in the providers’ resources, it is
time to deploy and execute the application components on these resources by invoking a
workflow of provider API calls. However, every provider defines their own management
interfaces, so the workflow to perform the same actions is different depending on the
selected provider. In this thesis, we propose a framework to automatically infer the
workflow of provider interface calls required to perform any resource management tasks.
This framework includes a Semantic Annotation/De-annotation component which is in
charge of to automatically generating semantic descriptions from interface descriptions
and calls and vice versa. Then, the translation among the different models is done by rule
reasoning and AI planning. On the one hand, the Resource Mapper component converts
data from one provider model applying rules which define the data equivalences. On the
other hand, the Action Planner component is in charge of finding the action equivalence.
To do it, it generates an AI planning problem form the requested management tasks and
the provider model. This problem defines the initial and goal resource states, and an AI

iii

planning domain which models the state transitions with the available provider interface
methods. The result of this AI planning problem provides the sequence of provider actions
which performs the requested management action.

In the last part of the thesis, we have studied how to introduce the benefits of
software agents for coordinating the application management in distributed platforms.
We propose a multi-agent system which is in charge of coordinating the different steps
of the application deployment in a distributed way as well as monitoring the correct
execution of the application in the computing resources. Two types of agents have
been defined: Application Agents which are in charge of the application management;
and Infrastructure Agents which are in charge of the resource management. When
an application is submitted, the Application Agent infers the deployment model and
negotiates with the other Provider Agents a resource allocation for the application
components. After a successful negotiation, the Provider Agents of the assigned
resources are in charge of deploying and running the application components using the
Infrastructure Interoperability Framework. Once the application is running, both agents
are in charge of monitor the correct application execution. The different contributions
have been validated with a prototype implementation and a set of use cases.

iv

Acknowledgements

Elaborating this PhD thesis has required a hard work during a long time. During these
years, several people have help me in such a way and I want to thank all of them with
these few lines.

First of all I want to thank my thesis advisor, Rosa Maria Badia. Her experience and
advice have been really appreciated during the whole life-cycle of the thesis. I also want
to mention all my colleagues at UPC and BSC with whom I have share an enjoyable work
environment. Specially, those who has worked in the same research group (Raül, Marc,
Daniele, Enric, Francesc, Roger, Carlos, Javier, Cristian, Sandra, Pol, Fredy, ...) and those
ones that I have collaborated in the different projects (Iñigo, Ferran, Jordi, Josep, Mario,
Andras, Xabriel, ...). I do not want to forget my family, who have supported me in every
moment, and my wife who has suffer my stress during the last period of the thesis. Finally,
I want to dedicate this thesis to my daughter, Carla, who has become the sense of my life.

In few words, thank you very much.

Jorge

This work has been partially funded by the Ministry of Science and Technology of Spain (contracts CICYT

TIN2007-60625 and TIN2012-34557), by the CoreGRID European Network of Excellence (contract

004265), by the European research projects BREIN (contract 034556) and OPTIMIS (contract 257115), by

the Spanish Avanza NUBA project (contract TSI-020301.1009.3), by Generalitat de Catalunya (contracts

2009-SGR-980 and 2014-SGR-1051) and by the grant SEV-2011-00067 of Severo Ochoa Program, awarded

by the Spanish Government.

vi

Contents

Abstract i

Table of contents vii

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Contribution . 5

1.3.1 Publications related to the thesis 8

2 State of the art 11
2.1 Direct application deployment on Infrastructure providers 11

2.1.1 Infrastructure Interoperability solutions 12
2.2 Application Deployment with Platform Services 13
2.3 Application Model driven development and deployment 14
2.4 Resource Allocation in distributed platforms 15
2.5 Semantic Web in distributed platforms 17
2.6 Multi-agent systems in distributed platforms 19

3 Inferring the Application Deployment Model 21
3.1 Methodology . 21
3.2 Application Deployment Ontology . 22

3.2.1 Component Topology . 22
3.2.2 Quality Description . 23
3.2.3 Installation Configuration and Execution Description 25

3.3 Deployment Model Inference . 27
3.3.1 Topology Elements Classification 27
3.3.2 Determine Component and Link Requirements 30
3.3.3 Infer Component Affinity Constraints 31

3.4 Evaluation and Discussion . 32

viii CONTENTS

3.4.1 Application Model Validation 33
3.4.2 Overhead Evaluation . 46
3.4.3 Comparison to Other Application Models 46

3.5 Conclusion . 50

4 Semantic Resource Allocation 53
4.1 Methodology . 53
4.2 Resource Allocation Ontology . 54
4.3 Rule-driven resource allocation . 56
4.4 Evaluation and Discussion . 57

4.4.1 Applicability . 59
4.4.2 Overhead and Scalability Evaluation 64
4.4.3 Benefit from traditional scheduling approaches 68

4.5 Conclusion . 68

5 Infrastructure Interoperability 71
5.1 Methodology . 72
5.2 Infrastructure Providers Ontology . 73

5.2.1 Semantic Annotation/De-annotation 73
5.3 Resource Mapping . 75
5.4 Action planning . 78
5.5 Evaluation and Discussion . 79

5.5.1 Inferring the Deployment Workflow 79
5.5.2 Interface Translation . 82
5.5.3 Comparison with other approaches 87

5.6 Conclusion . 88

6 Multi-agent Management 91
6.1 Methodology . 92
6.2 Application Agent . 93
6.3 Infrastructure Agent . 94
6.4 Distributed Semantic Resource Allocation 96
6.5 Overhead and Scalability Evaluation . 97
6.6 Comparison with other approaches . 102
6.7 Conclusion . 103

7 Conclusions 105
7.1 Future work . 109

Bibliography 113

List of Figures

1.1 Thesis Contributions summary . 8

3.1 Application Description . 23
3.2 Quality Description Model . 24
3.3 Example of a Component Quality Description. 24
3.4 CommunicationLink Quality Description Example. 25
3.5 Installation, Configuration and Execution Model 26
3.6 Component Installation, Configuration and Execution Description Example. 26
3.7 Application Elements Classification . 28
3.8 Rules to classify the application description elements 29
3.9 Rule to detect deadlocks in the Quality Rules descriptions. 30
3.10 Rule to infer the value of component requirements from Quality Rule

descriptions. 31
3.11 Example of rule to classify Communication Links. 31
3.12 Example of rule to infer implicit affinity constraints. 32
3.13 KOPI Application Overview . 34
3.14 Component Description Snippet. 35
3.15 Component Communication Description Examples. 36
3.16 Fulltext Component Quality Description. 36
3.17 Component Installation, Configuration and Execution Description Example. 37
3.18 Communication Configuration Description Example. 38
3.19 Inferred deployment model for KOPI Application Overview 39
3.20 Gene detection workflow . 40
3.21 Gene detection application description 41
3.22 Inferred deployment model for the Gene detection application 42
3.23 Map-Reduce application description . 43
3.24 Inferred deployment model for a Map-Reduce application 43
3.25 MPI-OpenMP application description 44
3.26 Description of MPI process installation with Autotools 45
3.27 Inferred deployment model for an MPI-OpenMP application 45
3.28 Overhead introduced by the Application Model Reasoner for different

number of components and scenarios . 47

x LIST OF FIGURES

4.1 Resource Allocation Ontology . 55
4.2 Rule-driven Resource Allocation Architecture 56
4.3 Allocation rules examples . 58
4.4 Map of Job scheduling in Grid Computing to the Resource Allocation

Ontology . 59
4.5 Rules to generate possible allocations in the Grid scheduling scenario. . . 60
4.6 Rule to drop allocations which exceeded resource capacity in the Grid

scheduling scenario . 61
4.7 Map of VM deployment allocation in Private Clouds to the Resource

Allocation Ontology . 61
4.8 Rule to generate allocations in the Private Cloud scenario 62
4.9 Rule to drop allocations which exceeded resource capacity in the Private

Cloud scenario. 62
4.10 Allocation selection rules examples for Private Cloud scenario 63
4.11 Map of Application components allocation in Multi-Cloud to the Re-

source Allocation Ontology . 64
4.12 Rules to generate and select the best allocation for the Multi-Cloud

scenario . 65
4.13 Rules to generate and select the best application deployment for the Multi-

Cloud scenario . 65
4.14 Overhead introduced by the Semantic Resource Allocation system for

scheduling jobs in a grid scenario . 66
4.15 Overhead introduced by the Semantic Resource Allocation system for

allocating VMs in a private cloud scenario 67
4.16 Overhead introduced by the Semantic Resource Allocation system for

allocating service component instances in VM Types in a public cloud
scenario . 67

5.1 Infrastructure Interoperability Framework 72
5.2 Infrastructure Providers Ontology . 73
5.3 API Action Description Example. 74
5.4 Example of rule to model a Class-to-Class equivalence 76
5.5 Examples of rules to model a Property-to-Property equivalences 77
5.6 Example of rule to model a Property-to-Class equivalence 77
5.7 Resource Mapper Internal Design. 78
5.8 Action Planner Internal Design. 78
5.9 Usage of the Infrastructure Interoperability Framework for Inferring

Deployment Workflow. 80
5.10 Placement solution for the KOPI Application in Amazon EC2. 81
5.11 KOPI Deployment Workflow Snippet. 82
5.12 Overhead introduced by the Infrastructure Interoperability Framework for

Inferring the Deployment Workflow depending on the number of VMs to
deploy. 83

LIST OF FIGURES xi

5.13 Usage of the Infrastructure Interoperability Framework for Interface
Translation. 83

5.14 Interoperability processes . 84
5.15 Performance Evaluation . 85

6.1 Multi-Agent Management Architecture 92
6.2 Distributed Allocation negotiation protocol 96
6.3 Example of provider’s policy rules to generate allocation proposals. . . . 97
6.4 Example of customer’s policy rules for selection the best allocation

proposals. 98
6.5 Centralized vs. Distributed processes comparison 99
6.6 Centralized vs. Distributed allocation times comparison 100
6.7 Deployment configuration vs allocation time 102

xii LIST OF FIGURES

List of Tables

3.1 Application Model comparison . 48

5.1 Cloud Providers Protocols and Formats. 74
5.2 Cloud Providers Resource Data Mapping. 76
5.3 Overhead Impact . 86

6.1 Application Agent Plans . 93
6.2 Infrastructure Agent Plans . 95
6.3 Negotiation Overhead . 101

xiv LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Distributed Computing is the paradigm where the executions of applications are
distributed across different computers connected by a communication network. The first
important distributed computing platforms were Clusters, where a set of computers were
working together in a single location, connected by a Local Area Network (LAN). The
evolution of the Internet enabled the connection of computers and users across different
locations, so computers can be connected to each other and accessed from different
parts of the world resulting in an advanced distributed computing platform called Grid.
Grid Computing [1] is focused on sharing computing resources provided by different
entities, creating a global computing infrastructure which is available to different user
communities, following a model which is similar to the power Grid. During last years,
the Grid Computing has evolved very fast adopting a Service Oriented Architecture [2],
where technologies such as virtualization and models such as Utility Computing [3]
has been integrated, resulting in what is currently known as the Cloud. The Cloud
Computing [4] paradigm has become a revolutionary approach in distributed computing,
providing computing and data resources, on demand, in a very dynamic fashion, and
following the Utility Computing model where you pay only for what you consume.

This paradigm is becoming more attractive for different types of companies and
institutions. Thus, we observe an increasing interest in exploring the potential benefits
of moving partial or totally their IT services and applications to Cloud infrastructures
in order to decouple the management of computing resources from their core business
process to become more productive. Cloud computing has also provided software vendors
the opportunity to deliver their software in a more effective way. Integrating software
solutions with cloud resources allows software vendors to simplify the distribution and

2 Introduction

maintenance processes since: they do not need to provide solutions for the different client
platforms; the software can be provided in conjunction with the computing resources
that offers better performance; and even applying patches and updates can be done
automatically and transparently to the user. Finally, Cloud Computing is also interesting
for e-science. With cloud computing technologies, scientist do not require to buy and
maintain large infrastructures for launching their computations, they can benefit from
the infrastructure flexibility provided by Clouds, and using and paying just the period of
time they need. In few words, Cloud Computing has emerged as a new way to obtain
computing resources

However, migrating software to clouds is not an easy task, since it requires a deep
knowledge of the technology and services offered by the cloud providers and how to
use them. Among others, developers need to design how to partition the software into
Virtual Machines (VMs), how to build the VM images and how to provision the computing
resources and deploying the VMs, and there is no easy solution for performing all these
tasks. During the last years, a new market of platform services has appeared to provide
solutions to the aforementioned problems. The platform services, that we can find in
the current Cloud market, can be classified into two types: the ones derived from big
alliances among the most important software vendors and major Cloud providers that
offer software in an exclusive way; or small platform providers which focus on the
most used software stacks such as traditional well-known Model-View-Controller (MVC)
frameworks. However, for other type of software, the offer is limited to simple platform
services (such as simple batch job executions) or to the basic infrastructure services which
are complex to use. The integration of automatic resource provisioning or adaptation
mechanism to tailored scientific applications or independent software vendors requires a
lot of programming effort and skills for adapting it to a Cloud provider’s API.

Nowadays, there are several hosting providers which follow the Cloud Computing
approach, offering resources with different capabilities, prices and quality of service
(QoS). In addition to these providers, there are several Grids which also provide
heterogeneous resources for executing computational tasks. All of them create a market
place, where users can get resources for executing their applications. So, depending on
the users’ preferences, the type of application and their requirements, resources from one
or several providers can fit better for executing an application than others.

In these cases, integration procedures are more complex and must be re-designed
and re-implemented for the new providers. Despite these providers offer similar
computing resources, each provider uses different metrics and properties for describing
their resources and they differ from the used by other providers. When customers want

1.2 Objectives 3

to execute an application in the providers’ resources, they must understand the different
providers’ descriptions, compare them and decide which is the most suitable for their
requirements and interests. Once the suitable resources and providers have been selected,
the execution process also arise problems to inter-operate with the different providers’
interfaces in order to coordinate the application execution steps and to react to failures
and unexpected events.

The work presented in this thesis aims to overcome the aforementioned problems
by providing a platform that facilitates and automates the integration of any kind of
applications in different providers’ infrastructures lowering the barrier of adopting new
distributed computing infrastructure such as Clouds.

1.2 Objectives

This section exposes the problems that users have to face for deploying and executing
applications in distributed computing platforms and proposes a set of objectives to
overcome these problems in order to achieve the main thesis goal.

Problem statement

The process of deploying an application to current distributed computing platforms
can be mainly split in three phases: the application deployment model design, the
selection of the resources, and the execution of the provisioning and deployment
processes. In the first phase, the user has to design how to split the application in different
parts and to find the best way to deploy these parts in distributed resources for achieving
a certain performance. This application decomposition is what we refer as deployment
model. The process of finding this deployment model is a complex engineering process
that can be tedious and time-consuming for a common developer. However, developers
with a large experience in distributed computing, based on their know-how, can infer what
can be the best deployment model by evaluating the properties of the different components
of an application. The research question that raises at this point is:

Could the deployment model of an application be automatically inferred by a software

expert system which emulates the evaluations performed by experienced developers?

Once the users have found a proper deployment model for their applications, the
second problem that they have to face is the selection of the best resources for deploying
their application. The resource allocation is not a new problem; it already exists in
every shared computing platform. Nevertheless, the complexity in this case is caused

4 Introduction

by the wide variety of providers, resources and application types that exist in the
current distributed computing platforms market. Due to this heterogeneity, resource
allocation systems must understand what are the capabilities offered by the different
providers and what are existing capabilities requested by applications. Despite providers
and developers are offering and searching for similar capabilities, they use their own
vocabulary for describing resource properties and applications requirements according to
different schemes and models. Therefore, the second research question we set out about
the problem is:

Could an intermediate layer be designed to facilitate the common understand of the

different provider’s resource capabilities and application requirements?

Finally, in the third phase, developers have to perform the provisioning of the selected
resources and the deployment of the application on the selected resources. To perform
these processes, the infrastructure providers offer an interface to create and manage
their resources. Developers have to use this interface to deploy their applications by
implementing a workflow which invokes a set of actions exposed in the providers’
interface. The design and implementation of this deployment workflow can be more or
less complicated depending on the provider. However, the tedious problem appears if
users want to change the provider or combine some of them to perform a more efficient
application execution. In this case, they have to design and implement a new workflow
per provider in order to implement the application deployment to the provider’s interface.
Moreover, if a provider changes its interface, developers have to adapt the deployment
workflow associated to this provider, complicating the maintenance of the application
deployment processes. So, the final research question is:

Could the workflow for deploying an application in a provider be automatically inferred

from rich application and providers descriptions?

According to the different aforementioned research questions, we set out the following
thesis objectives:

Objective 1

The first objective of this thesis is investigating a methodology for facilitating the
integration of the different applications in distributed computing platforms requiring
the minimum effort from the application developers. To be more specific, we aim to
automatically infer how an application must be deployed in a distributed environment
from just a description provided by the application developer.

1.3 Contribution 5

Objective 2

The second objective of this thesis is providing an intermediate layer where users and
providers’ schemes can be uniformly understood and processed for enhancing, facilitating
and automating the allocation and provisioning processes.

Objective 3

Finally, the last objective of the thesis, but not less important, is solving this provider
lock-in, where changing a provider in the market place is transparent to the user and
does not imply an extra effort for the users. We aim to provide a framework where the
application deployment workflow can be automatically inferred from a rich description of
the providers’ interfaces.

1.3 Contribution

Different technologies can help to achieve the aforementioned objectives. The
Semantic Web [5] provides a technology stack composed by a set of languages, tools and
frameworks for specifying and managing the knowledge contained on web resources. As
difference from HTML and XML, the semantic languages provide a formal and machine
understandable and sharable way of describing knowledge. A semantic description is
composed by an Ontology, which provides a common vocabulary to denote the types,
properties and interrelationships of concepts in a domain, and the resource description,
which provides the description of the ontology concept instances as a set of subject-
property-object triples. Moreover, new knowledge can be inferred from semantic
descriptions with the help of ontology reasoners and rule engines.

The problem tackled by semantic web has similarities with the thesis objectives. As
mentioned in previous sections, computing resources available in the cloud market are
a special type of resources which are accessible on the Web. Resource descriptions are
different depending on the provider and the type of applications which can use these
resources is diverse. In this thesis, we propose the usage of Semantic Web languages for
providing uniformed, sharable and machine understandable descriptions of applications
and computing resources as well as the concepts involved in application deployment
processes. Then, the required information for performing the application deployment
model and resource allocation will be inferred by applying ontology and rule reasoning
on these semantic descriptions,

6 Introduction

Contribution 1: Application deployment Model Inference

Therefore, as a first contribution on this topic, we propose an ontology which describes
the concepts about the application deployment domain. This ontology proposes a general
purpose infrastructure-agnostic application model which mainly defines the application
components, the communication required between the components and a set of rules for
defining the required quality. Reasoning on these semantic application descriptions, which
are described according to the ontology, we can extract a deployment model which defines
atomic group of component instances and their affinity and anti-affinity relationships

Contribution 2: Semantic Resource Allocation

A similar approach is followed for the allocation of these components groups on the
available providers’ resources. As a second contribution, we propose extensions on the
existing computing resource ontologies with the resource allocation concepts. According
to these concepts, we propose to define allocation policies as a set of rules which are
evaluated by a rule engine in order to obtain the allocation results.

Once the component-resource allocation is found, it is time to perform the deployment
on the providers of the selected resource. As mentioned before each provider offers their
own interface producing a vendor lock-in, because it is required to implement a different
deployment workflow per provider, complicating the usage of multiple providers. An
interesting technology for solving this issue is the AI planning [6]. AI planners are able
to find the combination of actions which are required to achieve a desired goal. This is
performed by a state-space search where actions are defined as state transitions.

Contribution 3: Infrastructure Interoperability

As a third contribution, we propose to apply AI planning for automatically obtaining
the required workflow for provisioning the computing resources and deploying the
application components. Following this approach, we define the application deployment
as a planning problem. To do it, it is required to define the planning domain, which defines
the environment states and the possible state transitions, and the planning problem, which
describes the initial and goal states. In our case, the planning domain is basically built by
the description of the computing infrastructure available on the resource ontologies and
the actions provided by the provider’s interface to manage them. On the other hand, the
initial and goal state are extracted from the application resource allocation extracted in a
previous step. The sequence of tasks provided by the planner as a solution of the planning
problem is also the required workflow for deploying the application on the providers’

1.3 Contribution 7

resources.

Contribution 4: Multi agent management

Finally, Multi-agent technologies [7] are used to increase the autonomy and self-
management of a system. Agents are proactive, so, they can take decisions by themselves
according to their goals and trigger actions by their own initiative. For these reasons,
agents are suitable for coordinating the allocation and execution of tasks in these
distributed computing environments. Agents can adapt their behavior depending on how
the execution of the application is evolving, detecting execution problems and triggering
the most appropriate actions for reacting to them depending on the system status and
the resource capabilities. Agents are also capable to communicate to each other. They
implement negotiation protocols which are very useful to reach agreements and cooperate
with other agents. These capabilities can be used to put different interests together,
provisioning the resources required by the applications in the most suitable way for users
and providers.

Figure 1.1 shows a summary of the main thesis contributions, the connection between
them and how they are related with the thesis chapters. In the first contribution, we
have designed and implemented an Application Deployment Ontology and an Application
Model Reasoner. The Application Deployment Ontology provides the model to describe
the application and the Application Model Reasoner infers the deployment model for each
application description by applying the rules described in the Application Deployment
Ontology. The inferred deployment model is the input of the second contribution, where
we have designed and implemented a Semantic Resource Allocation which allocates the
application deployment model on the infrastructure resources. To perform it, we have also
defined a Resource Allocation Ontology which provides the knowledge to automatically
perform the resource allocation. Once the resource has been allocated, the Infrastructure
Interoperability framework automatically finds a workflow which provisions the resources
and deploys the application component for the different providers. It is the third
contribution of the thesis, and the final contribution is a multi-agent distribution of the
whole system.

The rest of thesis document is organized as follows. Chapter 2 presents the state of
the art on the topics of the thesis. Then, Chapter 3 focuses on the first contribution of the
thesis, describing the application ontology and the reasoning process to map applications
to a deployment model. Chapter 4 presents the second contribution about the semantic
resource allocation and Chapter 5 explains the work on applying AI planning for the
providers’ interoperability. Afterwards, the last contribution of the thesis about the multi-

8 Introduction

Figure 1.1 Thesis Contributions summary

agent management is presented in Chapter 6. Finally, the thesis is concluded by Chapter 7
where we explain our conclusions and proposes some guides for the future work.

1.3.1 Publications related to the thesis

The work of the thesis has generated the following publications:

Journals

[CAI11] J. Ejarque, J. Álvarez, H. Muñoz, R. Sirvent, R. M. Badia, “Service
Orchestration in an Heterogeneous Cloud Orchestration”, in Computer and Informatics,
Vol. 31 (1), pp. 45-60, 2012.
(Presents part of the work on Infrastructure Interoperability)

[CCPE10] J. Ejarque, M. de Palol, I. Goiri, F. Julià, J. Guitart, R. M. Badia, J. Torres.
“Exploiting Semantics and Virtualization for SLA-driven Resource Allocation in Service
Providers“. in Concurrency and Computation: Practice and Experience, Vol. 22 (5), pp.
541-572, 2010.
(Presents the part of the work on Semantic Resource Allocation task)

Book Chapters

[OSCCSPP11] J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, “Resource Allocation
for Cloud Computing: A Semantic Approach”, in Open Source Cloud Computing

1.3 Contribution 9

Systems: Practices and Paradigms, pp. 90-112, IGI Global, 2011
(Presents the Multi-agent architecture of our work)

International Conferences

[CLOUD15] J.Ejarque, A. Micsik, R.M. Badia “Towards Automatic Application
Migration to Clouds”, in Proceedings of the 8th IEEE International Conference on Cloud

Computing,pp. 25-32, 2015
(Presents the work on Application Model Reasoning and AI planning for Infrastructure
Interoperability)

[SEKE12] X.J. Collazo-Mojica, J.Ejarque, S.M.Sadjadi, R. M. Badia, ”Cloud Ap-
plication Resource Mapping an Scaling Based on Monitoring of QoS Contraints model
and quality rules“, in Proceedings of the 24th International Conference on Software

Engineering and Knowledge Engineering,pp. 88-93, 2012.
(Presents work related with the Quality rules of the Application Model and its relationship
with the monitoring and the adaptation)

[CloudCom11] J. Ejarque, J. Álvarez, R. Sirvent, R. M. Badia, ”A Rule-based
Approach for Infrastructure Providers’ Interoperability“, in Proceedings of the 3rd IEEE

International Conference in Cloud Computing Technology and Science, pp. 272-279,
2011.
(Presents the work on Infrastructure Interoperability)

[Ibergrid11] J. Ejarque, J. Álvarez, H. Muñoz, R. Sirvent, R. M. Badia, ”Orchestrating
Services on a Public and Private Cloud Federation“, in Proceedings of the 5th Iberian Grid

Infrastructure Conference, pp.61-72, 2011.
(Presents part of the work on Infrastructure Interoperability)

[PDP11] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Kovacs, R. M. Badia, ”Job
Scheduling with License Reservation: A Semantic Approach“, in Proceedings of the

19th Euromicro International Conference on Parallel, Distributed and Network-Based

Processing,pp.47-54, 2011.
(Presents an extension of the Semantic Resource Allocation for supporting software
licenses as another kind of resource)

[CloudCom10] J. Ejarque, R. Sirvent, R. M. Badia, ”A Multi-agent approach for

10 Introduction

Semantic Resource Allocation“, in Proceedings of the 2nd IEEE International Conference

in Cloud Computing Technology and Science,pp. 335-342, 2010.
(Presents the work on the distribution of the Semantic Resource Allocation in a multi-
agent system)

[CCGV10] J. Ejarque, A. Micsik, R. Sirvent., P. Pallinger, L. Kovacs, R. M. Badia,
”Semantic Resource Allocation with Historical Data Based Predictions“, in Proceedings

of the 1st International Conference on Cloud Computing, GRIDs, and Virtualization, pp.
104-109, 2010.
(Presents an integration of the Semantic Resource Allocation with task requirements
predictors)

[e-Science08] J. Ejarque, M. de Palol, I. Goiri, F. Julià, J. Guitart, R. Badia,
and J. Torres, ”SLA-Driven Semantically-Enhanced Dynamic Resource Allocator for
Virtualized Service Providers“, in Proceedings of the 4th IEEE International Conference

on e-Science, pp. 8-15, 2008.
(Presents the work in Semantic Resource Allocation for Grids and private Clouds)

[SCC08] J.Ejarque, M. de Palol, I. Goiri, F. Julià, J. Guitart, J.Torres, R. M. Badia,
”Using Semantic Technologies for Resource Allocation in Computing Service Providers“,
in Proceeding of the 5th IEEE International Conference on Services Computing, pp. 583-
587, 2008.
(Presents the initial work on the Semantic Resource Allocation)

Chapter 2

State of the art

This chapter presents the state of the art on the area of this thesis. In the first sections of
the chapter, we present the current available options for deploying applications on recent
distributed computing platforms such as Clouds. The first option is deploying applications
by using the interfaces offered by infrastructure providers to manage computing resources.
In this section, we describe how developers can use infrastructure services, the complexity
of using several providers and the existing barriers for changing the provider. Afterwards,
we will see how current solutions address the infrastructure interoperability and which are
their benefits and drawbacks. The second option is deploying applications with Platforms
services. In this part, we present the different Platform-as-a-Service alternatives and their
main advantages and drawbacks. Finally, we describe approaches which are also using
semantic-based or model-based descriptions to deploy applications in clouds. In this part
we focus on discussing the advantatges and limitations of these solutions. Then, we will
see the different options for allocating computing resources in the distributed computing
platforms, which is one of the fundamental parts for deploying and executing application
in an efficient way. Finally, the chapter is concluded by describing how the semantic and
multi-agent technologies have been applied in the different distributed platforms.

2.1 Direct application deployment on Infrastructure providers

The main building block of modern distributed platforms is the infrastructure services
layer which is popularly known as Infrastructure as a Service (IaaS). With these services
the Infrastructure Providers offer computing resources in an on-demand and pay-per-
use fashion. Each commercial infrastructure provider has their own implementation of
infrastructure services, however there are also some cloud middleware frameworks such
as OpenNebula [8], OpenStack [9] or CloudStack [10] which allow to any organization

12 State of the art

to easily deploy the infrastructure services for building a private cloud with their own
computing resources. Infrastructure services offer to users a web interface and API to
create and manage Virtual Machines according to their processing requirements. So,
developers have to use this interface to provision and manage the resources required
by their applications. It implies that applications are bound to this provider interface,
and each infrastructure provider develops its own managing interface. Therefore, if for
some reason developers want to switch to another provider or use several providers, it can
be challenging because it requires the adaptation of the application code to support new
providers’ interfaces. This effect is known as vendor lock-in problem.

2.1.1 Infrastructure Interoperability solutions

The approach proposed to solve the vendor lock-in issues can be summarized in two:
the standardization of the management interface, where the main stakeholders of the
infrastructure providers market reach an agreement to implement the same interface, or
other the plug-in solutions, where a community defines an interface for their interests and
the integration with the different infrastructure providers is performed by means of plug-
in or drivers which implements the interface functionalities using the specific provider’s
services. There are several examples of these approaches in the literature; next paragraphs
highlight some of them.

Regarding standardization, several standardization organizations are interested in
defining their own standard cloud interface. For instance, the Open Grid Forum
(OGF) [11] has presented the Open Cloud Computing Interface (OCCI) [12] which
describes an interface with the common management actions for managing the compute,
storage and network resources of the Cloud. Another similar standardization proposal
is vCloud [13] submitted by VMWare in the Distributed Management Task Force
(DMTF) [14] which presents similar functionalities. Standards are very useful to develop
new markets over infrastructure services. However, the adoption of the standards is not as
successful as in other fields. One reason of this is that Cloud Computing is evolving
fast and the standardization process is slow. Moreover, providers have to dedicate
development efforts to implement standard interfaces and small providers do not want
to commit this effort if a clear standard is not broadly adopted. Finally, big vendors
(Amazon, Google, Microsoft, etc.) are reluctant to change their interfaces and the vendor
lock-in is beneficial for their interests due to the fact that they already have most of users.
Keeping this preferential position is easier, if there are barriers in the process of changing
the provider.

For plug-in approaches, we have the examples of the Apache projects jClouds [15]

2.2 Application Deployment with Platform Services 13

and delta-Cloud [16] or the Dasein Cloud API [17]. These examples are open-source
projects which maintain a definition of a common Interface for managing cloud resources
from applications and, the different contributors of the projects are in charge of providing
the plug-ins to interoperate with the different providers’ interfaces. The main drawback
of these solutions is that they are difficult to maintain. A change in the providers API
requires at least a change in the plug-in for this provider, and potentially, it can also require
a change in the common API definition and the reimplementation of all the plug-ins.

Besides the advantages or drawbacks that the mentioned solutions can have, the direct
deployment of applications to infrastructure providers is only recommended when the
application is simple to deploy (just some file copies in very few VMs or when developers
have a deep knowledge of the infrastructure services offered by the providers). However,
current applications have complex deployments than just deploy a VM. They require
several steps to split the application on VMs, create these VMs, install the application
components, configure the infrastructure to communicate VMs and set up a monitor
system for controlling the application execution and the resource adaptation. In pure
infrastructure solutions, all these issues must be performed by the user which is a complex
task for common software developers.

2.2 Application Deployment with Platform Services

An easier option to deploy complex applications is the usage of Platform as a Service
(PaaS) offerings. These options provide services for facilitating the resource provisioning,
application installation and adaptation. Examples of these services are: Heroku [18] or
CloudControl [19]. These platform services have two limitations: first, they focus on a
set of application’s stacks, traditionally MVC applications developed with Spring [20],
Django [21], Ruby on Rails [22], etc. If the application is not using the predefined
stack, the user is not able to use the platform; and secondly, they also hide the underlying
infrastructure, binding to work only with the Infrastructure Provider the company has an
agreement with.

Big vendors also offer their platform services such as Google App Engine [23],
Microsoft Azure App Service [24] or Amazon Cloud Formation [25]. In this case, they
provide a set of APIs to implement the applications which are able to run only their own
computing infrastructure. In both cases, if you are not happy with your platform provider,
you are forced to change the deployment of your application. So, developers have again a
provider lock-in but in another layer of abstraction.

Regarding this issue, we can find two types of solutions: open Platform as a Service

14 State of the art

such as Cloud Foundry [26] or Cloudify [27]; or CloudPier [28], the solution proposed by
the Cloud4SOA project [29]. The Cloud4SOA project has worked in providing semantic
interoperability between different PaaS platforms, which allow users to find and use
platform services which are compatible with the application stack. Cloud Foundry and
Cloudify get a similar approach like the common API solution but at the PaaS level. They
are open PaaS offerings which provide a set of core capabilities and services to enable
the deployment and adaptation of applications for different Infrastructure Providers. The
common problem in both types of solutions is that, at the end, they only provide easy
deployment and adaptation features for the same type of applications, developed with
well-known stacks as other PaaS. In the Cloud4SOA case, the problem is simpler. The
Cloud4SOA platform only acts as a broker, so if the user does not use one of the stacks
supported by other PaaS, the platform will not be able to find and use any available PaaS
offerings.

In the open-PaaS cases, as they are open-source communities, the user could try to
extend the platform to support his/her application stack but it will be similar (or worse)
than trying to use directly cloud providers with one of the available common APIs. These
cases, also inherit the problem of having to change the implementation or definition in
the upper layer services as a consequence of a change in the Infrastructure Services. As a
conclusion, these approaches are not tackling the core of the cloud deployment problem,
i.e. how to deploy applications in the distributed infrastructures in a general way. They
just provide solutions for most used cases or for specific infrastructures.

2.3 Application Model driven development and deploy-
ment

Other recently appeared solutions to improve Cloud interoperability and to facilitate
the cloud deployment are based on extensible and machine-processable models to describe
cloud resources and applications. The main idea behind this is the use of these models to
inter-operate with the cloud services and resources in different phases of the application
life-cycle. The benefits of this idea are that models are not bound to a specific
implementation, can be easily extended and can be used to automate processes. The most
popular definition of cloud applications is the Open Virtualization Format (OVF) [30] that
defines an application as a set of Virtual Appliances through a description of the required
VM properties in terms of CPU, disks and files of the VM image to be loaded. This format
is supported by several hypervisors and cloud middleware and has been used and extended
in several projects like Reservoir [31], OPTIMIS [32], and VENUS-C [33]. However, this

2.4 Resource Allocation in distributed platforms 15

model is close to the infrastructure details, therefore, it is attractive for experienced cloud
developers and system administrators, but not productive for general software developers.

For the aforementioned reason, recent projects like mOSAIC [34], REMICS [35],
PaaSage [36] or MODAClouds [37] are focused on providing high-level applications
models which try to avoid the specification of the infrastructure details. The mOSAIC
project proposed an ontology [38] for the IaaS offering and an application model based on
design patterns for parallel applications. For each pattern or application, developers must
define a set of rules which map the application with the Infrastructure level resources, and
these rules are used to deploy the application. The most extensive model for Clouds is the
CloudML [39] which is developed in conjunction by the projects REMICS, MODAClouds
and PaaSage. The difference with mOSAIC is that instead of matching the application
with rules they define a language to specify the deployment of the application in the
cloud resources. The common drawback in those approaches is that developers must
explicitly specify the details of how the application is deployed in the cloud according
to the infrastructure model. The same happens with the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [40] proposed by OASIS, developers have
to specify the deployment model indicating which components are deployed in each
VM. Describing this deployment model is better than implementing the adaptation of
applications to the cloud. However, it is still too complex for common developers and
it remains as a main barrier to achieve a high-productive deployment of applications for
cloud.

2.4 Resource Allocation in distributed platforms

One of the key topics when deploying an application in distributed platforms is the
allocation of computational tasks on the infrastructure resources. On the application
side, resource allocation is important because it affects on the application execution
performance. Depending on how many resources are assigned to the application it can
take more or less time to perform the same computation. On the other side, resource
allocation is important for providers because it affects on their revenue. They have
the interest of maximizing the number of applications, using the minimum number of
resources. So, there is a trade-off between users’ and providers’ interests which must
be solved by assigning the appropriate resources to an application providing the best
application performance without wasting resources. In the literature, we can find different
approaches for solving the resource allocation problem which varies depending on the
platform and the application. Next paragraphs provide an overview of the existing

16 State of the art

problems and solutions.

Traditional cluster computing allows developers to execute applications in a set of
homogenous resources which is shared by different users. The user applications are
executed in a cluster by submitting batch computations called jobs. Computing clusters
are managed by queue systems which manage the execution of jobs in the cluster’s
resources. Between other management tasks, these systems are in charge of scheduling
the jobs submitted by the users on the different cluster resources. There are several
job schedulers available such as the Portable Batch System (PBS) [41], Load Sharing
Facility (LSF) [42] or Maui [43] just to mention some of them. These schedulers offer
different policies to allocate the resources to jobs by prioritizing some kind of jobs or
users depending on the provider’s interest.

As mentioned in the introduction, another available distributed computing platform
is Grid Computing which allows users to submit jobs at resources belonging to different
organizations. In this distributed platform, each organization manages their own resources
as traditional clusters and, on top of this a Grid middleware, such as the Globus
Toolkit [44], Unicore [45] or gLite [46], is in charge of providing a secure access to
the different organization resources and managing the remote execution of jobs across the
different sites. In this computing paradigm, we have two levels of resource allocation.
In the lower level, organizations have their own local schedulers which are in charge
of scheduling jobs inside the organization cluster as mentioned before. In the upper
level, the Grid middleware provides a meta-scheduler which is in charge of scheduling
jobs across the resources of the different sites. Examples of these meta-schedulers are
the Globus Resource Allocation Manager (GRAM) [47] or GridWay [48]. The GRAM
service is a meta-scheduler which is developed to perform the scheduling of jobs between
the organizations connected by the Globus middleware meanwhile, GridWay is a meta-
scheduler, which is capable to interoperate with different Grid middleware by using
a plug-in approach. Different methodologies have been proposed for solving meta-
scheduling, the first option was to use traditional scheduling policies in grid environments,
whose initial evaluation can be seen in [49]. However, a fundamental difference of
Grids from Clusters is that resources offered by organizations are different and users
can decide where to execute their applications. To take into account these facts, meta-
schedulers require to integrate matchmaking, such as the Condor ClassAds [50], and
selection mechanisms, such as the rank based selection proposed in [51], the reputation
based selection proposed in [52] or market based selection such as [53], between others.
Meta-schedulers are focused on scheduling jobs without taking into account if they belong
to larger applications. In the literature, we can find more complex approaches which try to

2.5 Semantic Web in distributed platforms 17

improve the results of meta-scheduling by defining new components on top of the current
meta-schedulers. One of these components is the application broker, like the GridBus
broker [54], which is in charge of managing the scheduling and execution of all the jobs
of an application. Another interesting proposal is the SA-Layer [55] which proposes a
set of components for introducing scheduling in advance capabilities to Grids. With these
capabilities, users can know how an application will be scheduled on the Grid which is
fundamental to know if the application execution will fulfill the quality required by the
user as proposed in [56].

Similar resource allocation problems happen in Cloud Computing. Cloud computing
also offers a distributed platform where different users can access to resources managed
by different providers. The main difference between both systems is the usage model.
Cloud computing uses a pay per use model where users request resources with a certain
capabilities and the provider gives full access to a virtual machine with the requested
capabilities and charges for the usage time. In grid computing, providers only allowed
batch execution on their resources for a limited period of time. Regarding resource
allocation, the main difference between these computing models is how a computational
task is defined. While in grid computing a job description describes the time constraints, in
cloud computing, the usage time of a VM is undefined. It means that instead of scheduling
jobs at the resources like in Grids, in cloud computing, the cloud middleware has to find
the best placement for the VMs depending on the provider’s interests. In the literature,
we can find several VM placement strategies followed to achieve a certain objective.
The most common objective is maximize the provider profit which can be achieved by
applying a placement policy for overloading the resources [57] or by applying an energy-
efficient placement policy like in [58] or [59] to reduce the operational cost. Another
important objective is maximizing the provider reliability which can be achieved by
applying a placement policy to minimize the number of VM failures [60] [61].

2.5 Semantic Web in distributed platforms

Grid and Cloud providers share a common problem. They offer distributed computing
platforms where heterogeneous computing resources are offered to users for executing
a wide variety of applications and services. Each provider uses their own vocabulary
for describing their resources’ capabilities and the users also describe their applications
according to different schemes and models. For deciding the most appropriate provider
for an application, users and providers have to understand the different vocabularies and
schemes to compare the providers’ capabilities with the application requirements. As

18 State of the art

introduced in the previous chapter, the Semantic Web technologies are mainly used to
allow the specification of semantic meaning to web resource descriptions in a machine
processable way, enabling software components to understand these descriptions, taking
decisions and performing actions based on the knowledge inferred from these semantic
descriptions. The Semantic Grid has been proposed in [62] trying to apply the ideas of the
semantic web approach for Grid resources and services, making them understandable by
the different meta-schedulers and brokers in a structured and uniform way. Following
this approach, the OntoGrid project [63] has proposed a reference model (Semantic
OGSA [64]) for attaching and managing semantic descriptions for grid resources. This
model defines a special type of grid resource, which links a normal Grid resource with
their semantic description, and a set of basic services for managing these special semantic
resources.

Focusing on the area of resource allocation, most of the proposals have been
concentrated on resource discovering and matchmaking. For instance, [65] and [66]
present two similar methodologies for matchmaking, defining a simple ontology for
defining resource adverts and job requirements and a set of rules for selecting which advert
fulfills the requirements. In [67], the authors present another option for resource discovery
based on the evaluation of SPARQL [68] queries in resource descriptions which is simpler
than the previous one. Other approaches solving a similar problem are presented in
[69] and [70] which have been applied in grid resource brokers [71]. However, these
works present two problems. The first problem is that they only address one part of the
resource allocation problem, leaving the scheduling decisions to other services which
can vary depending on the grid middleware used for accessing to the resource. Our
approach is trying to solve this issue applying semantics in the whole resource allocation
process, that is, the resource discovery and matchmaking and the scheduling of jobs
in the discovered resources according to the resource providers’ preferences and the
users’ interests. The second problem is their assumption that resources and jobs are
already semantically annotated and mapped to their ontology but real systems do not
offer annotated resource descriptions. Regarding the latter issue, the GRIP project [72]
has worked on the interoperability between different Grid middleware using semantics.
A result of this project is the work presented in [73]. The authors present a solution for
integrating the Globus and Unicore, defining a common ontology and their equivalences to
the Globus and Unicore models using the OWL notation [74]. So, when a description from
one middleware is provided, it is mapped to an ontology class in the middleware model.
The ontology reasoning infers the equivalent class in the common ontology and the other
middleware models. However, this solution can only perform one-to-one equivalences

2.6 Multi-agent systems in distributed platforms 19

which is valid in this case but insufficient for a general case where other types of mappings
are required.

The semantic web can be also applied in Cloud Computing. The IaaS Cloud layer
has several similarities with Grid Computing because grid resource descriptions and
virtual machine descriptions are very similar. Therefore, discovery and matchmaking
solutions proposed for Grids could be also used for Clouds with few modifications such
as the approaches presented in [75], [76], [77] and [78]. Another current research topics
are focused on providing semantic interoperability at PaaS layer or proposing ontology
and models for describing the deployment of applications in the cloud infrastructures.
Regarding the first topic, the work presented in [79], [80] and [81] propose ontologies
and frameworks for describing and discovering similar PaaS services using semantic web
techniques. Regarding the sementic cloud application deployment, the main models and
ontologies proposed for describing cloud applications have been already explained in
Section 2.3.

2.6 Multi-agent systems in distributed platforms

The idea of using software agents in the management of distributed platforms was
introduced in [82], where Foster et al. describe the benefit of integrating the results
in both research areas. Software agents could improve the autonomy, flexibility and
scalability of current distributed platforms in different areas. However, multi-agent system
researchers have mainly focused on the area of resource allocation and job scheduling.
Regarding this area, several solutions have been proposed, such as the ones based on
market-control, where each agent tries to maximize its benefit and the market mechanism
controls them; the ones based on social welfare, where the multi-agent system tries to
maximize a collective benefit; and the ones based on game theory. There is a lot of
literature about market based allocation solutions. We would like to highlight proposals
Challenger [83], which was one of first proposals to distribute the resource allocation
through multiple agents and Tycoon [84], which is one of the most used systems. The
works on welfare engineering and game theory for multi-agents resource allocation has
been compiled in [85] and [86]. Regarding other studies more focused on Grid computing,
we can highlight TRACE [87], where a set of homogeneous agent are coordinated to
perform a certain volume of tasks; ARAM [88], where different type of agents are in
charge of different parts of the resource allocation; the distributed resource allocation
methodologies proposed by the CatNets project [89] in [90], where the catallaxy theory
of free market systems is applied to allocate the resources to user applications; and finally,

20 State of the art

the Sorma [91] project, where a resource allocation mechanism is proposed based on a
dynamic trading of ICT resources.

Regarding Cloud computing, our contribution was one of the first one to apply
multi-agent systems not only for resources allocation but also to provide an autonomous
management of application and resource in Clouds. Posterior to our contribution, we can
find other solutions for combining agents and clouds. One of these solutions is proposed
by the mOSAIC project. In [92], the authors propose a multi-agent framework for
negotiating and managing the agreements between users and providers. Other solutions
have been focussed on the distributing the allocation of jobs on VMs accorss several
agents such as [93] or [94] solutions, or the monitoring and adaptation such as in [95] and
[96].

Other approaches related to Clouds and multi-agent systems are focused on deploying
multi-agent platforms on top of the cloud computing infrastructure or on developing
distributed applications as a set of software agents. However they are out of the scope
of this thesis.

Chapter 3

Inferring the Application Deployment
Model

Having in mind the main objective of the thesis about proving a platform to facilitate
the deployment of applications in distributed platforms, in this chapter we focus on the
first part which aims at studying how a suitable model for deploying an application can be
inferred with the minimum human intervention. Starting from an application description,
our system must be capable to provide how the different parts of the applications must
be deployed in the distributed platforms. The solution presented and evaluated in this
chapter proposes a methodology which applies some of the ideas of the Semantic Web
area to infer the suitable deployment model. The rest of the chapter is organized
as follows: first, Section 3.1 provides an overview of the proposed methodology;
then, Section 3.2 and Section 3.3 describe in detail the infrastructure-agnostic model
for describing applications; and how the deployment model is inferred. Afterwards,
Section 3.4 provides the evaluation and validation of the methodology and the chapter
is finalized with Section 3.5, where we draw the conclusions about the topic discussed on
this chapter.

3.1 Methodology

A proper execution of applications in distributed platform relies on how the application
is decomposed and allocated into the different available computing resources. This
task is usually time-consuming and, when the application includes a large number of
components, it is also complex and tedious for non-expert developers. Based on their
know-how, developers with a large experience in distributed computing can infer which
can be the best deployment model by evaluating the properties of the different components

22 Inferring the Application Deployment Model

of an application. During this evaluation, the experienced developers implicitly apply
a set of rules to identify the different parts of an application, classify them and based
on this classification decide which components must be deployed together. If we were
able to emulate this reasoning with computers, we would achieve the goal of inferring
a suitable deployment model in an automatic way. This key capability is provided by
Semantic Web technologies. As introduced in previous section, they allow machines
to automatically infer new knowledge from existing data by applying reasoning. In
our case, these reasoning techniques are used to infer the deployment model based on
the application description. More in detail, the methodology consist on an Application
Deployment Ontology which describe the application elements, their types, properties
and relationships and a set of rules to classify the application elements according to
their properties and, based on the classification, infer the affinity constraints to build
the deployment model. Next sections provide more details about this ontology and the
inference process.

3.2 Application Deployment Ontology

The proposed application model aims to provide a generic and infrastructure-agnostic
way to describe distributed applications. In other words, the application model should
be able to describe any kind of distributed application and should not require the re-
implementation of the application neither the inclusion of glue-code to match with a
certain API or specific platform. Based on these principles, an application in the proposed
model is mainly described by component topology, consisting of a set of components
and the links to intercommunicate them. For each topology element (components and
links), developers have to also define the required quality as well as how it is installed,
configured and executed in the computing infrastructure. Figure 3.1 provides an overview
of the proposed application model. Next paragraphs describe in detail the different
parts of the model. In addition to the description provided by the developer, the
Application Deployment Ontology is complemented with a hierarchy of components and
communication link types and a set of description logic rules which enables the inference
of the deployment model. These parts will be described together with the inference
process in Section 3.3.

3.2.1 Component Topology

A Component in our model identifies a part of the application functionality. The model
does not force developers to map components to specific application parts. So, depending

3.2 Application Deployment Ontology 23

Figure 3.1 Application Description

on the stack used to develop the application, a component can be map to a method, a
class, a package, a web service, a database, etc. This property makes our model generic
enough to allow the description of any application, in contrast of other solutions that force
developers to use the description bounded to the supported software stack.

The other important element of the topology is the CommunicationLink. It models
the existing communication between two components and it is mainly defined by the
cardinality, the source and destination components (one-to-one, one-to-many, many-to-
one or many-to-many) and the communication channel, which indicates how the data
is interchanged. The values of the communication channel property can be Memory (e.g.
libraries sharing objects, arrays, etc.), Disk (e.g. processes which communicate by writing
and reading files) or Network (e.g. web services interchanging messages).

3.2.2 Quality Description

For deploying and running a distributed application with a certain quality, there
are several requirements that components and communication links must fulfill. These
requirements include the number of instances, processing capabilities (such as number
of core or the processor speed) and memory and storage usage for components and the
bandwidth and latency constraints for communication links. The value of this requirement
usually depends on the target quality level and the load of the application. For that
reason, we propose the model depicted in Figure 3.2 to describe the quality required by
components and communication links. For each Component and CommunicationLink,
a set of QualityRules describe what should be the requirements for a given target

24 Inferring the Application Deployment Model

Figure 3.2 Quality Description Model

:ExampleComponentQuality rdf:type app:Quality ;
app:definedBy :MetricExprInstancesRule, :StaticCoresRule;

Define an static number of cores
:StaticCoresRule rdf:type app:QualityRule ;

app:defines app:needsCores ;
app:definedBy “4” .

Define number of instances by an Expresion of quality and load metrics
:MetricExprInstancesRule rdf:type app:QualityRule ;##

app:uses :RequestsPerSecond, :Requests;
app:defines app:numberInstances ;
app:definedBy ":Requests/(RequestPerSecond *10)" .

:RequestPerSecond rdf:type app:QualityMetric ;
app:goalValue 20 .

:Requests rdf:type app:LoadMetric ;
app:source "http://$:KOPIPortal[0].vm.ip/ganglia/requests" .
app:expectedValue 100 .

Figure 3.3 Example of a Component Quality Description.

quality and application load. The description to calculate the Component and Link
requirements can be easily specified as a mathematical expression whose variables can
include application quality and load metrics or other component requirements. For
including these mathematical expressions inside quality descriptions, we have reused the
approach described in [97] which embeds mathematical formulas in the RDF objects.

Figure 3.3 provides an example of Component quality description, where two
QualityRules are defined to assess the number of component instances and the required
cores. In the first rule, we define a dynamic expression where the number of instances
depends on a QualityMetric (RequestPerSecond) and a LoadMetric (Requests). In the
second rule, we just define a static value for the number cores required by each component
instance. This example also provides an example of QualityMetric description, where the
goal level is defined, and an example of LoadMetric description, where the initial expected
value and the place to get run-time values is defined.

3.2 Application Deployment Ontology 25

:ExampleLinkQuality rdf:type app:Quality ;
app:definedBy :CompPropExprBWRule .

:CompPropertyBWRule rdf:type app:QualityRule ;
app:uses :Requests, :ComponentInstancesProperty ;
app:defines app:needsBW ;
app:definedBy ":Requests / :ComponentInstancesProperty * 10000)" . ## Mbps

:ComponentInstancesProperty rdf:type app:ComponentProperty ;
app:refersToComponent :Component
app:refersToProperty app:numberInstances .

Figure 3.4 CommunicationLink Quality Description Example.

Similarly, Figure 3.4 shows an example of CommunicationLink quality description.
In this example, there is a QualityRule defined for modeling the required bandwidth as
function of a component property. The example also shows how to define the component
property by indicating the component and the referenced property (numberInstances).

3.2.3 Installation Configuration and Execution Description

To finalize the application description, developers have to describe how the com-
ponents are installed, configured, executed and finalized. For describing this part, we
propose to follow a resource state based model similar than the used by dev-ops tools such
as Puppet [98] or LCFG [99](Large Scale Unix Configuration System) to describe the
host configuration. More in detail, we apply a semantic annotated version of the Puppet
model to describe the component installation, the component and link configuration and
the component execution description. The reason of using a semantic version of this
model is to enable the semantic reasoning on top of the descriptions to extract implicit
useful knowledge for inferring the deployment model. Once the deployment model is
inferred we could easily transform the component descriptions into Puppet manifest which
will automatically execute required actions on the computing resources to achieve the
installation, configuration and execution states.

With this model, depicted in Figure 3.5, developers can describe the installation,
configuration and execution of a component, as a set of application resource states. These
resource states indicate the desired status that the different application resources should
have after installing, configuring and starting the execution of a component. Figure 3.5
shows the core resource types (Files, Services, etc.) and its state is represented by
the defined properties. There are some special properties which are used to express
relationships between resources. Developers can describe resource state dependencies
with the requires property or if a restart is required when a resource is updated with the
subscribes property.

Figure 3.6 shows an example of an installation, configuration and execution of
Java component which includes most of the issues commented above. The component

26 Inferring the Application Deployment Model

Figure 3.5 Installation, Configuration and Execution Model

:JavaComponentInstall rdf:type app:Installation ;
app:definedBy :JDKPackage , :ComponentFolder, :JarFile .

:JREPackage rdf:type app:Package ;
app:name "jre" ;
app:ensures "installed" .

:ComponentFolder rdf:type app:Folder ;
app:location "/opt/component/" ;
app:ensures "exists" .

:JarFile rdf:type app:File ;
app:requires :ComponentFolder ;
app:location "/opt/component/" ;
app:name "component.jar" .
app:source "http://...." ;
app:ensures "exists" .

...
:JavaComponentConfig rdf:type app:Configuration ;

app:definedBy :ComponentConfigFile .
:ComponentConfigFile rdf:type app:File ;

app:location “/opt/component/” ;
app:name "component.properties" ;
app:content app:ConfigTemplate ;
app:ensures "exists" .

:ConfigTemplate rdf:type app:Template ;
app:source "http://...." ;
app:hasInput :ComponentsVar .

:ComponentsVar rdf:type app:Variable ;
app:name “Components” ;
app:value“$:Component[0..n].vm.ip” .

...
:ComponentExec rdf:type app:Execution ;

app:definedBy :JavaExecutable .
:JavaExecutable rdf:type app:Executable ;

app:requires app:JREPackage ;
app:subscribes app:ComponentConfigFile ;
app:command “java -jar /opt/component/component.jar Component” ;
app:ensures "started" .

Figure 3.6 Component Installation, Configuration and Execution Description Example.

3.3 Deployment Model Inference 27

installation is described by the installation of the Java Runtime Environment (JRE)
package, the existence of the component folder and JAR file in a certain location. The
component configuration is defined by a configuration file whose content is defined by a
template and an input variable. As you can see in the example, the content of this variable
can be bound to the future IP addresses of the component’s VMs.

As introduced above, one of the benefits of using this kind of model with respect
of using a plain-text script definition is that we can reason over the model to extract
implicit properties. For instance, Figure 3.6 shows that the JavaExecutable subscribes
to ComponentConfigFile, so a change in the ComponentConfigFile will require a JavaEx-

ecutable restart, producing a downtime. So, evaluating the execution and configuration
descriptions, a reasoner can infer if a component can be dynamically reconfigurable or its
configuration should remain static. Next section describes in detail how this reasoning is
performed.

3.3 Deployment Model Inference

Once a developer has described the application, it is time to apply the ontology and
rule reasoning to infer the proper deployment model. Developers have to provide to
the Application Model Reasoner the application description with: the definition of the
component topology, the required quality including the goal and expected values for the
quality and load metrics, and the installation, configuration and execution descriptions.
During the reasoning process, the Reasoner is going to classify the topology elements,
determine the processing and link requirements and the initial number of instances and
infer implicit affinity constraints. The result of this process will be a deployment model
description consisting on a set of groups of component instances which must be deployed
together in the same virtual machine or the same provider location. This model will be
the input for the Semantic Resource Allocation phase described in Chapter 4 where this
groups will be allocated to the different available computing resources. Next paragraphs
provide more details about the different parts of the introduced reasoning process.

3.3.1 Topology Elements Classification

The Application Model Reasoner classifies the different topology elements into the
types depicted in Figure 3.7. This classification is automatically performed by applying
description logic rules on the application description. Figure 3.8 shows some examples
of these rules which infers the different types of CommunicationLink, Component and
Configuration based on the defined element properties.

28 Inferring the Application Deployment Model

Figure 3.7 Application Elements Classification

For instance, a Configuration can be classified as Static or Dynamic by evaluating the
Execution descriptions of the different Components and the Configuration of their Com-

municationLinks. If a link configuration description disables the run-time reconfiguration
of a component, the link configuration will be classified as Static, otherwise it will be
classified as Dynamic. The first rule described in Figure 3.8 shows an rule example to
detect a StaticConfiguration. According to this rule, a link configuration is Static when a
runnable resource, described in a component execution, is subscribed to a resource which
is modified during a link configuration.

Regarding CommunicationLinks, they are classified in different ways. First, they can
be classified depending on the communication channel (Memory, Disk and Network).
They can be also classified as DynamicCommunicationLink or StaticCommunicationLink

according to the type of their Configuration. Another important link classification is
done based on the cardinality of the source and destination components (one or many).
This cardinality classification is the base for the component classification. If the defined
communication links for a component only contains SingleSource and SingleDestination

CommunicationLinks the topology only allows a single component instance, therefore the
component will be classified as Singleton. If the component contains communication links
with multiple cardinality (MultipleSource and MultipleDestination), the topology allows
multiple instances of this component and it can be classified as Replicable, if it has a
StaticCommunicationLink, or Scalable if all links are DynamicCommunicationLinks.

3.3 Deployment Model Inference 29

Example of Configuration classification rule
Rule {

?Component rdf:type app:Component
?Component app:hasExecution ?execution
?Component app:communicatesWith ?link
?link app:hasConfiguration ?configuration
?execution app:hasResourceState ?execResourceState
?configuration app:hasResourceState ?confResourceState
?execResourceState app:definesResource ?execResource
?execResource rdf:type app:RunnableResource
?execResourceState app:definesResource ?confResource
?execResourceState app:requires ?confResource

=>
?configuration rdf:type app:StaticConfiguration

}
...

Examples of CommunicationLink classification rules
Rule {

?link rdf:type app:CommunicationLink
?link app:hasChannel app:Memory

=>
?link rdf:type app:MemoryCommunicationLink
?link rdf:type app:LocalhostCommunicationLink

}
...
Rule {

?link rdf:type app:CommunicationLink
?link app:sourceCardinality “many”

=>
?link rdf:type app:MultipleSourceCommunicationLink

}

...
Rule {

?link rdf:type app:CommunicationLink
?link app:hasSourceConfiguration ?configuration
?configuration rdf:type app:StaticConfiguration

=>
?link rdf:type app:StaticCommunicationLink

}
...

Example of Component classification rule
Rule {

?Component rdf:type app:Component
?Component app:communicatesWith ?link
?link rdf:type app:MultipleSourceCommunicationLink
?link rdf:type app:StaticCommunicationLink

=>
?Component rdf:type app:ReplicableComponent

}
...

Figure 3.8 Rules to classify the application description elements

30 Inferring the Application Deployment Model

Rule {
Quality Rule which defines Requirement1 with Parameter1

?Component1 rdf:type app:Component
?Component1 app:hasQuality ?Quality1
?Quality1 app:definedBy ?QualityRule1
?QualityRule1 rdf:type app:QualityRule
?QualityRule1 app:defines ?Requirement1
?QualityRule1 app:uses ?Parameter1

Quality Rule which defines Requirement2 with Parameter2
?Component2 rdf:type app:Component
?Component2 app:hasQuality ?Quality2
?Quality2 app:definedBy ?QualityRule2
?QualityRule2 rdf:type app:QualityRule
?QualityRule2 app:defines ?Requirement2
?QualityRule2 app:uses ?Parameter2

Check that Parameter2 refers to Requirement1 and Parameter1 refers to Requirement2
?Parameter2 app:refersToComponent ?Component1
?Parameter2 app:refersToProperty ?Requirement1
?Parameter1 app:refersToComponent ?Component2
?Parameter1 app:refersToProperty ?Requirement2

=>
throwFailure(“Deadlock in definition of Quality Rules ?QualityRule1 and ?QualityRule2”)

}

Figure 3.9 Rule to detect deadlocks in the Quality Rules descriptions.

Finally, CommunicationLinks can be also classified as Localhost, LocalArea and
WideArea by evaluating the bandwidth and latency requirements. The results of this
classification are useful to determine the affinity between components. Section 3.3.2
explains in detail how the Component and CommunicationLink requirements are extracted
from QualityRules, and Section 3.3.3 describes how to determine the deployment affinity.

3.3.2 Determine Component and Link Requirements

Once the components have been classified, the Reasoner determines the required
quality for each CommunicationLink, the processing requirements for each component
and in case the component is Replicable or Scalable, the number of instances. These
requirements are inferred by applying the defined QualityRules on the Quality description.
Before applying the rules, the QualityRule descriptions are validated to check they will not
produce a deadlock during the inference. To detect this deadlock, we have defined the rule
described in Figure 3.9 which looks for a pattern in the QualityRule descriptions. This rule
checks: if there is requirement definition in a QualityRule which uses a property defined
by another QualityRule and, at the same time, another QualityRule uses the requirement
defined by the former QualityRule.

Once the defined Quality Rules are validated, it is time to infer the values of
components requirements form the QualityRule descriptions, and this is done by applying
the rule described in Figure 3.10. For each component QualityRule defined it calculates

3.3 Deployment Model Inference 31

Rule {
?Component rdf:type app:Component
?Component app:hasQuality ?QualityRule
?QualityRule app:defines ?Requirement
?QualityRule app:definedBy ?MathExpresion
getMetricsAndParameters(?QualityRule, app:uses, ?Parameters)
calculatesValue(?MathExpresion, ?Parameters ?value)

=>
?Component ?Requirement ?value

}

Figure 3.10 Rule to infer the value of component requirements from Quality Rule
descriptions.

Rule {
?Link rdf:type app:CommunicationLink
?Link app:needsLatency ?value
lowerThan(?value, LH_LATENCY_THRESHOLD)

=>
?Link rdf:type app:LocalHostCommunicationLink

}

Figure 3.11 Example of rule to classify Communication Links.

the value for the defined requirement and includes it to the Component description. A
similar rule is applied to infer the link requirements substituting the Component references
to CommunicationLink.

3.3.3 Infer Component Affinity Constraints

The last step for inferring the deployment model is determining the implicit com-
ponent affinity constraints. A component affinity indicates if the component instances
should be deployed in the same virtual machine, in the same location, or should share
a disk and it is basically determined by evaluating the required quality (explained in
Section 3.3.2) and type of channels of the defined communication links. For instance,
if two components have a memory communication or the required bandwidth and latency
can be only achievable in a intra-host environment, their instances must be deployed in the
same VM. In the case that the required bandwidth and latency can be only achievable in
a local area environment, their instances must be deployed in the same provider location,
in other cases there will not be any implicit affinity constraint.

To infer this, the Reasoner classifies the communication links as LocalhostCommuni-

cationLink, LocalAreaCommunicationLink or WideAreaCommunicationLink according to
the bandwidth and latency requirements. Figure 3.11 shows an example of a rule which
classifies a CommunicationLink as Localhost if the required latency is smaller than a
threshold.

After classifying communication links, the Reasoner infers the implicit affinity
constraints. For components which are communicated by LocalhostCommunicationLink,

32 Inferring the Application Deployment Model

Rule {
?link rdf:type app:LocalAreaCommunicationLink
?link app:hasChannel app:Disk
?component1 app:communicatesWith ?link
?component2 app:isCommunicatedWith ?link

=>
?component1 app:sameLocation ?component2
?component1 app:sharedDiskWith ?component2

}

Figure 3.12 Example of rule to infer implicit affinity constraints.

the reasoner includes a component affinity constraint by defining the sameVM prop-
erty between the components. Similarly, for component which is communicated by
LocalAreaCommunicationLink, the reasoner defines the sameLocation property between
the components. Finally, if a LocalAreaCommunicationLink has a Disk channel, the
reasoner defines the property sharedDiskWith to indicate that a shared disk is required
between components. An example of a Rule for making the reasoner to include an affinity
constraint is shown in Figure 3.12.

After applying all the rules, we can obtain and enriched application description
with the classified configurations, links and components, the inferred requirements, the
number of instances as well as the affinity rules. The final deployment model is built by
defining the different instances for each component according to the type, the processing
requirements and the number of instances. Then, these instances are grouped according
to the sameVM and sameLocation properties, and to finalize the deployment model, the
shared disks are including based on the sharedDiskWith properties. For each group related
by the sameVM property, we can calculate the group requirements by simply aggregating
each component and link requirement. These aggregated requirements will be used as
VM requirements.

3.4 Evaluation and Discussion

A working prototype of the described system has been implemented to validate the
concepts presented in this chapter. The Application Deployment Ontology has been
implemented with Protege. As explained in Section 3.2, it includes the application model
and class hierarchy, which have been described using the OWL2 [100] language, and
component classification and affinity inference rules which have been described using the
Semantic Web Rule Language SWRL [101]. The Pellet Reasoner [102] has been used
to implement the Application Model Reasoner, which applies the rules on the application
descriptions provided by the user. The prototype implementation has been deployed in an
Intel i5 laptop with 8GB RAM.

3.4 Evaluation and Discussion 33

The evaluation performed with the prototype consists of three parts. In the first part,
we have used the proposed application model to describe several applications and infer
its deployment model. This is useful to validate the suitability of the model to describe
different distributed applications as well as to better illustrate the system behavior. In the
second part, we have evaluated the system overhead and its scalability by measuring the
time to obtain the deployment model. Finally, in the third part, we compare the proposed
application model with other available application models highlighting the advantages
provided by our proposal.

3.4.1 Application Model Validation

To perform the validation of the proposed application model, we have selected a set
of applications which represents different types of distributed applications. The first
proposed application, the KOPI Application, is an example of N-tier web application
which combines a typical 3-tier (Model-View-Controller) model with a computational
intensive processing. The second application, Gene Detection, provides an example of a
task-based application implemented with the COMPSs programming model [103]. The
third application provide an example of how to describe a Map-Reduce [104] application
and the last application provides an example of how to describe an hybrid application
which combines the usage of Message Passing Interface(MPI) [105] and OpenMP [106].
The following paragraphs provide more details about how the different applications are
described with the proposed model and what is the inferred deployment model. The
first application includes a graphical representation of the application description and the
semantic serialization of the key parts. For simplicity, in the other applications, we just
include the graphical representation.

N-tier Application

The KOPI [107] is an On-line Plagiarism Search Portal developed by SZTAKI which
implements an innovative cross-language plagiarism detection technique. It gives the
opportunity to compare a reference document to other indexed collections of documents
and search for potentially translated parts. This new technique is costly in terms of
processing and data storage; therefore we sought the service is a potential candidate to
be migrated to the cloud environment.

Figure 3.13 shows the component topology of the KOPI application and Figure 3.14
shows a snippet of the semantic application description. The application contains five
components: the KOPI Portal, where users upload the documents to check; the KOPI

34 Inferring the Application Deployment Model

Figure 3.13 KOPI Application Overview

Engine, which is in charge of managing the document checking life-cycle; a Database to
store documents and plagiarism check results; and the Fulltext Aggregator and Fulltext

Engine to perform various indexed search sub-tasks for KOPI Engines. For each of these
components, the developers have to define the communications with other components,
the required Quality and the installation, configuration and execution description.

Figure 3.15 shows some examples of the communications defined for the KOPI
Application. Each description includes the type of communication (one-to-one, one-to-
many, etc.), its channel, the component which communicates with, and the link to the
Quality description.

As explained in previous sections, the required Quality is defined by a set of
QualityRules. Each QualityRule defines how to infer the quantity of resources consumed
by a component or communication link according to values of quality and load metrics.
In this case, the KOPI QualityRules are expressed as a function of the desired quality
expressed in CharsPerSecond (indicates the document processing speed), and load met-
rics NumberOfDocs (indicates the number of simultaneous documents to be evaluated),
IndexSize (indicates volume of documents to be compared) and CharsPerDocument

(indicates the mean number of chars per document) metrics. Figure 3.16 shows the
Quality description for the Fulltext Engine component, where the number of instances
and the required hardware (CPU, memory, disk) are expressed as functions of some of the
mentioned metrics. Following the same approach, users can define the Quality of the other
components and communication links. In the case of communication links, QualityRules

describe the bandwidth and latency requirements.

3.4 Evaluation and Discussion 35

:KOPIApplication rdf:type app:Application ;
app:hasComponent :KOPIPortal, :KOPIDatabase, :KOPIEngine,

:FulltextAgreegator, :FulltextEngine .

:KOPIPortal rdf:type app:Component ;
app:hasCommunication :PortalDBCommunication ,

:PortalEngineCommunication ;
app:hasConfiguration :PortalConfig ;
app:hasInstallation :PortalInstall ;
app:hasExecution :PortalExec ;
app:hasQuality :PortalQuality .
...

:KOPIDatabase rdf:type app:Component ;
app:hasCommunication :MasterSlaveCommunication ;
app:hasInstallation :DBInstall ;
app:hasConfiguration :DBConfig ;
app:hasExecution :DBExec ;
app:hasQuality :DBQuality .

...
:KOPIEngine rdf:type app:Component ;

app:hasCommunication :EngineAgregatorCommunication ,
:EngineDBCommunication ;

app:hasInstallation :KOPIEngineInstall ;
app:hasConfiguration :KOPIEngineConfig ;
app:hasExecution :KOPIEngineInstall ;
app:hasQuality :KOPIEngineQuality .

...
:FulltextAgreegator rdf:type app:Component;

app:hasCommunication :FTAgregatorAgregatorCommunication ;
:FTAgragatorEngineCommunication ;

app:hasConfiguration :FTAgreegatorConfig ;
app:hasInstallation :FTAggregatorInstall ;
app:hasExecution :FTAggregatorExec ;
app:hasQuality :FTAgregatorQuality .

...
:FulltextEngine rdf:type app:Component ;

app:hasInstallation :FTEngineInstall ;
app:hasConfiguration :FTEngineConfig ;
app:hasQuality :FTEngineQuality .

...

Figure 3.14 Component Description Snippet.

36 Inferring the Application Deployment Model

:FTAgregatorEngineCommunication rdf:type app:CommunicationLink ;
app:sourceCardinality "one" ;
app:destinationCardinality "many" ;
app:communicatesWithComponent :FulltextEngine ;
app:hasChannel app:Memory ;
app:hasQuality :AggregatorToEngineQuality ;
app:hasSourceConfiguration :AggregatorToEngineConfig .
...

:FTAgregatorAgregatorCommunication rdf:type app:CommunicationLink ;
app:sourceCardinality "many" ;
app:numberSourceInstances "many" ;
app:communicatesWithComponent :FulltextAgreegator ;
app:hasChannel app:Disk ;
app:hasQuality :AggregatorToAggregatorQuality ;
app:hasSourceConfiguration :AggregatorToAggregatorConfig ;
app:hasDestinationConfiguration :AggregatorToAggregatorConfig .
...

:MasterSlaveCommunication rdf:type :CommunicationLink ;
app:sourceCardinality "many" ;
app:numberSourceInstances "one" ;
app:communicatesWithComponent :KOPIDatabase ;
app:hasChannel :Network ;
app:hasSourceConfiguration :MasterSlaveConfiguration ;
app:hasQuality :DBToDBQuality .
...

Figure 3.15 Component Communication Description Examples.

:FTEngineQuality rdf:type app:Quality ;
app:definedBy :FTEngineInstancesRule, :FTEngineCoresRule;

:FTEngineMemRule, :FTEngineDiskRule;
:FTEngineInstancesRule rdf:type app:QualityRule ;

app:uses :CharsPerSecond ;
app:defines app:numberInstances ;
app:definedBy":CharsPerSecond/200" .

:FTEngineCoresRule rdf:type app:QualityRule;
app:defines app:needsCores ;
app:definedBy “1”.

:FTEngineMemRule rdf:type app:QualityRule ;
app:uses :CharsPerSecond, :CharsPerDocument ;
app:defines app:needsRAM ;
app:definedBy ":CharsPerDocument / (:CharsPerSeconds * 10000)" . ## MB

:FTEngineDiskRule rdf:type app:QualityRule ;
app:uses :CharsPerSecond, :CharsPerDocument ;
app:defines app:needsDisk ;
app:definedBy ":CharsPerDocument/ 1000000 " . ## GB

:CharsPerSecond rdf:type app:QualityMetric ;
app:goalValue 20 .

:CharsPerDocument rdf:type app:LoadMetric ;
app:source "http://$:KOPIPortal[0].vm.ip/documents/meanCharsNum" ;
app:expectedValue 100 .

Figure 3.16 Fulltext Component Quality Description.

3.4 Evaluation and Discussion 37

:DBInstall rdf:type app:Installation ;
app:hasState :MySQLPackage, :DBFile .

:MySQLPackage rdf:type app:Package ;
app:name "mysql" .
app:ensures "installed" .

:DBFile rdf:type app:File ;
app:requires :MySQLPackage" .
app:location "/usr/mysql/dbs/" ;
app:name "kopi.db".
app:source "http://....";
app:ensures "exists" .

:DBConfig rdf:type app:Configuration ;
app:hasState :MySQLConfigFile .

:MySQLConfigFile rdf:type app:File ;
app:location "file:///etc/mysql/" ;
app:source "http://....";
app:name "mysql_config" .
app:ensures "exists" .

:DBExec rdf:type app:Execution ;
app:hasState :MySQLService .
app:requires app:MySQLPackage
app:subscribes app:MySQLConfigFile
app:ensures "started" .

Figure 3.17 Component Installation, Configuration and Execution Description
Example.

The KOPI Application description is finalized by providing the installation, configu-
ration and execution states for component and communication links. Figure 3.17 provides
these descriptions for the KOPI Database component. The KOPI Database component
installation (DBInstall) requires the installation of the mysql package and the file which
store the initial database DBFile. Its configuration (DBConfig) requires the mysql_config

file (described by MySQLConfigFile) which stores the configuration values. Finally,
the component execution (DBExec) requires to have the mysql service started and it is
subscribed to the MySQLConfigFile resource. It means that, when a change is introduced
in this file, the KOPI Database component must be restarted.

Regarding the rest of components, a similar description is followed for the KOPI

Portal and KOPI Engine where they require the httpd and the tomcat packages instead
of mysql, and require installing some PHP and WAR files instead of the database file. In
the case of the FullText components, they are Java components whose installation mainly
requires to copy some of JAR files and scripts to execute them. Figure 3.6 from sub-
section 3.2.3 already described how the installation, configuration and execution of a Java
component looks like.

Figure 3.18 shows the description of the MasterSlaveCommunication. It is an example
of how to describe the configuration of a communication link. In this case, it is done by
the modification of the MySQLConfigFile, whose content should match with a template
that contains the master and slave addresses as input parameters. The value of master

38 Inferring the Application Deployment Model

:MasterSlaveConfiguration rdf:type app:Configuration ;
app:hasState app:MySQLConfigFile .

:MySQLConfigFile rdf:type app:File ;
app:hasContent :MasterSlaveTemplate .

:MasterSlaveTemplate rdf:type app:Template ;
app:hasInput :MasterDBVariable,

:SlavesDBVariable .
:MasterDBVariable rdf:type app:Variable ;

app:hasValue $:KOPIDatabase[0].host.ip$;
app:name "master-node" .

:SlavesDBVariable rdf:type app:Variable ;
:hasValue $:KOPIDatabase[1...].host.ip$;
:name "slaves-nodes" .

Figure 3.18 Communication Configuration Description Example.

and slave are referenced to the IP address of the machine which hosts the first component
instance (:KOPIDatabase[0]) and the rest of instances (:KOPIDatabase[1...]). The KOPI
application uses properties files to configure the communication between its components,
so a similar pattern is used for describing the rest of communication link configurations.

Finally, note that, as mentioned before, the subscribed property defined in the DBExec,
which indicates that the MySQLService must be restarted each time the MySQLConfigFile

file is updated. So, when a new instance is added, the number of component instances
is modified and the configuration file content is changed. According to the description,
the MySQLService must be restarted, producing a downtime which disables the dynamic
scalability capability. As explained in previous sections, this pattern is searched by the
Reasoner to infer if a component is just Replicable or Scalable.

Once the application is defined, we have submitted the application description to the
prototype including the goal and expected values for NumberOfDocuments, IndexSpace

and CharactersPerSecond. During the reasoning process, the system classifies the KOPI

Portal as Singleton because the link topology only allows one component instance.
The rest can have several instances. However, the system has classified the Database

component as Replicable because of the configuration-installation pattern explained
above. The rest of the components do not follow a similar pattern, they have been
classified as Scalable. Applying the QualityRules, the Reasoner infers the processing,
bandwidth and latency requirements as well as the number of instances. Evaluating these
requirements and the communication channels types, the reasoner deduces that KOPI

Portal, KOPI Database and KOPI Engines must be located in the same provider location
because of bandwidth requirements; Fulltext Engines must be located in the same VM
as Fulltext Aggregators because of the memory communication channel; and Aggregator

instances must be located in the same location because of the required bandwidth and
latency of the disk communication link is not assumable in a wide-area. Based on the
described reasoning, the obtained deployment model for the KOPI application is depicted

3.4 Evaluation and Discussion 39

Figure 3.19 Inferred deployment model for KOPI Application Overview

in Figure 3.19.

Task-based Application

The Gene Detection application [108] implements an algorithm to automatically
identify the relevant genes in a genomic DNA sequence and perform a functional analysis
of these genes, which is faster than scanning the whole DNA. In more detail, the
application finds relevant regions in similar DNA sequences by performing a comparison
with the BLAST [109] software and after that runs the GeneWise [110] program only
on those regions. An overview of the main workflow is depicted in Figure 3.20. Each
box represents a different part of the application, which contributes to the overall process:
Part A performs a genome format translation; Part B obtains a list of amino acid sequences
which are similar to the input sequence; Part C searches the relevant regions comparing the
sequences against the genome using BLAST; and finally, Part D performs the functional
analysis on these regions by running the GeneWise software.

The application has been implemented with COMPSs which is a task-based pro-
gramming model which extracts the implicit parallelism between the defined tasks and
executes the application in a master-worker mode. With COMPSs developers define the
code where the main workflow is implemented (detectGenes in this case) and the defined
tasks. Following the same definition, we can build the application description using the
proposed model as depicted in Figure 3.21. From the detectGenes component, there will
be a CommunicationLink to all the other components, which represent the different type

40 Inferring the Application Deployment Model

Figure 3.20 Gene detection workflow

3.4 Evaluation and Discussion 41

Figure 3.21 Gene detection application description

of tasks, in order to allow the remote execution and data transfer. The communication
links between task components are required to enable the transfer of results produced by
tasks which are used by the others. The channel for all these CommunicationLink will be
Network.

The quality metric defined for this application is the time to detect the genes. It will
depend on the size of the reference sequence and the genome, the number of sequences
on the database, which are defined as load metrics, as well as the processing requirements
and number of instances of each component which are described by the QualityRules. So,
the processing and communication requirements of formatTranslation and getSequences

components directly depend on the size of the genome and the number of sequences on
the database, and indirectly on the processing time. The processing requirements and
the number of instances of runBLAST and runGeneWise components will be determined
by a combination of both genome and some input parameters such as number of similar
proteins to search. Finally, the mergeBLAST and mergeGeneWise are merging reports
whose size is small and almost constant. Therefore, the processing requirements are
almost constant and the number of instances depends on the number of instances of the
runBLAST and runGeneWise components.

The description of the installation, configuration and execution of this application
is very simple; all components require to have the compss-framework package installed
and the corresponding jars which contains the implementation of the detectGenes and its
defined tasks. The runBlast and runGeneWise components also require having the blast

and genewise packages installed. The genome and the sequences database are simple
files which must be stored in a certain location. The only required configuration is stored
in a project.xml file, which is required to run the main process (detectGenes). This file

42 Inferring the Application Deployment Model

Figure 3.22 Inferred deployment model for the Gene detection application

stores the IP addresses of the hosts containing the component instances. A change in the
configuration does not require a process restart.

Based on the provided topology description, the Reasoner classifies the components
detectGenes, getSequences and formatTranslation as Singleton and the rest as Scalable.
Evaluating results of applying the QualityRules, the Reasoner has introduced a sameVM

affinity property between detectGenes and formatTranslation because the bandwidth
and latency to perform the Genome format translation, and it has also introduced a
sameLocation affinity property between the formatTranslation instance and the runBlast

and runGeneWise instances because the required bandwidth is also high. Figure 3.22
depicts the inferred deployment model for the Gene Detection Application.

Map-Reduce Application

Map-reduce is a recent programming model specialized on developing Big Data
applications for distributed platforms, but its users community has grown very fast during
last years. For that reason, we have considered to use Map-Reduce application to validate
our model. As example of how a Map-Reduce application can be described with our
model, we have selected an application which performs statistical analysis of the data
provided by a set of sensors. Figure 3.23 shows the overview of this map-reduce
application described with the proposed application model. The SensorDataManager

collects the sensor data and periodically starts the map-reduce execution to perform the
data analysis. To describe the Map-reduce application we have defined a Map component
which represent the map implementation and the Reduce component which represents the

3.4 Evaluation and Discussion 43

Figure 3.23 Map-Reduce application description

Figure 3.24 Inferred deployment model for a Map-Reduce application

reduce implementation. All the components are passing the data by means of writing files,
so three Disk communication channels have been defined to model this fact.

Regarding the quality description, the number of Map instances depends on the
number of sensors and the frequency of sensor data collections, and the number of Reduce

instances depends on the number of Map instances. The number of sensors and data
collection frequency will also determine the bandwidth required for disk communication.

Finally, all the components require to have installed the hadoop packages and the JAR
files which contain the implementation of the SensorDataManager component as well as
the Map and Reduce tasks.

Figure 3.24 shows the deployment model inferred by the Reasoner. All components
have been classified as Scalable due to the defined topology. The quality of the disk
communication links had produced the inference of the sameLocation affinity and the
shared disk.

44 Inferring the Application Deployment Model

Figure 3.25 MPI-OpenMP application description

Hybrid MPI-OpenMP application

Traditionally distributed HPC applications have been developed by a combination of
the MPI and OpenMP programming models. This models allow to execute efficiently
applications in clusters by taking profit of shared memory in fast networks. This section
provide the details about how this type of applications can be described with our proposed
application model and what will be the inferred deployment model by applying the
reasoning rules.

The topology of a hybrid MPI-OpenMP application is depicted in Figure 3.25. Two
components have been defined to model the MPI and OpenMP processes. MPI processes
communicate each other through network messages. So a CommunicationLink with a
Network channel is defined to model it. Each MPI process starts a set of openMP sharing
the data stored in memory. To model this fact, two CommunicationLink with a Memory

channel have been defined between the MPI Process to OpenMP Process and between
OpenMP Processes.

The MPI Process component requires to have the mpich package installed which
provides the MPI libraries and scripts, and the OpenMP Process component requires to
have the OpenMP libraries installed. Both MPI and OpenMP are developed as C code so
installation must include the compilation of the code. Figure 3.26 shows how to specify
this installation performed by means of the Autotools.

Regarding the quality description, it is very similar to the other applications. The
quality of an MPI-OpenMP execution is determined by the total execution time and it will
mainly depend on the amount of data to process and the number of parallel processes and
their computational performance. The OpenMP Process and MPI Process QualityRules

3.4 Evaluation and Discussion 45

:MPIProcess rdf:type app:Installation ;
app:definedBy :MPICHPackage, :AutotoolPackage, :MPIProcessFolder .

:MPIPorcessConfigureExec :MPIProcessMakeExec .
:MPICHPackage rdf:type app:Package app:name "mpich" ;

app:ensures "installed" .
:AutotoolsPackage rdf:type app:Package app:name "autotools" ;

app:ensures "installed" .
:ComponentFolder rdf:type app:File ;

app:location "/opt/mpi-process/" ;
app:source "http://...." ;
app:ensures "exists" .

:MPIProcessMakeFile rdf:type app:File ;
app:location "/opt/mpi-process/" ;
app:name “Makefile” ;
app:ensures "exists" .

:MPIPorcessConfigureExec rdf:type app:Executable ;
app:workingDir "/opt/mpi-process/" ;
app:command "./configure –prefix=/opt/mpi-process/" ;
app:generates :MPIProcessMakefile app:ensures “executed”.

MPIPorcessMakeExec rdf:type app:Executable ;
app:requires :MPIProcessMakefile app:workingDir "/opt/mpi-process/" ;
app:command "make" ;
app:ensures “executed”.

Figure 3.26 Description of MPI process installation with Autotools

Figure 3.27 Inferred deployment model for an MPI-OpenMP application

provide the expressions to determine the number instances required and their processing
requirements as a function of the amount of data to process and the target execution time.
Due to the MPI model characteristics, MPI processes require network communication
links with low latency and its bandwidth depends on the amount of data to process.

Figure 3.27 shows the model inferred by applying the reasoning rules on the MPI-
OpenMP application description. Based on the topology, the reasoner has inferred that
both components are Scalable. The sameVM affinity property has been added because of
the memory communication link, and the sameLocation affinity property is set because of
the network requirements.

46 Inferring the Application Deployment Model

3.4.2 Overhead Evaluation

Besides the validation performed in the previous section, we have also evaluated
the overhead introduced by the system prototype. This evaluation has been performed
by measuring the time spent by the Reasoner to infer the deployment model for
different applications. As input for the evaluation, we have defined several application
descriptions with different number of components and communication links. The
number of communication links is closely related to the number of components because
the more components there are, the more links to communicate them there will be.
However, the level of communication can be lower or higher depending on the number
of communication links per component. To take it into account, we have defined
three scenarios: Low Communication where there is one communication link per
two components; Medium Communication where there is one communication link per
component; and High communication where there are two communication links per
component. For each component and communication link, we have defined several
QualityRules and configuration descriptions to ensure that all the types of components
and links are inferred and different numbers of instances per component are required.
Regarding the number of instances, we have also defined three scenarios: No replication

where there is one instance per component; Low Replication where a mean of three
instances per component is inferred; High Replication where a mean of six instances
per component is inferred.

Figure 3.28 shows the results obtained for the reasoning time measurements in each
scenario. As we can see in the figure, the overhead grows linearly with the number
of components in all scenarios. Regarding the effect of communication and replication
scenarios, a growth in the number of links has more effect than a growth in the replication
ratio. The reason of this fact is because the evaluation of communication links are
involved in all the phases of the reasoning process, while the number instances is just
evaluated at the end of the reasoning process in order to build the final deployment model.
Anyway, this overhead can be considered low if we compare it with the time spent for
deploying applications in the cloud which, even for large number of components and high
communication and replication scenarios.

3.4.3 Comparison to Other Application Models

Nowadays, we can find different models to describe applications for Cloud Comput-
ing, they have been briefly introduced in Chapter 2. Some of these models are very simple
but either they can be only used for a single provider or they only focus on describing one

3.4 Evaluation and Discussion 47

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

Low Comm.

Medium Comm.

High Comm.

Component

Ti
m

e
(m

ili
se

co
n

ds
)

(a) Reasoning time in different communication
scenarios (No replication)

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

No Replic.

Low Replic.

High Replic.

Components

Ti
m

e
(m

ili
se

co
n

ds
)

(b) Reasoning time in different replication scenarios
(Medium Communication)

Figure 3.28 Overhead introduced by the Application Model Reasoner for different
number of components and scenarios

48 Inferring the Application Deployment Model

Table 3.1 Application Model comparison

Model Deployment Model Configuration, Installation &
Execution

Quality Description

OVF Manually definition of Virtual
Systems whose images should
contain the application compo-
nents

Not Provided. Require already
created images, where compo-
nents have been installed and
configured in advance.

Statically defined in Virtual
System constraints

TOSCA Manually assignment of com-
ponents Nodes into VM Nodes

Described as Plans (Workflows
of interface invocations). Com-
ponents need to implement a
management interface to allow
the automatic deployment and
configuration

Statically defined in Node ca-
pabilities

CloudML Manually assignment of arti-
facts to VMs

Scripts written in artifact de-
scription

Statically defined in Node ca-
pabilities

mOSAiC Automatic from Parallel Pat-
terns

Not Provided. Require
code modification to
implement components as
Cloudlets whose installation
configuration and execution
process is predefined

Statically defined in SLA re-
quirement description

Proposed Model Automatic Component topol-
ogy and quality rules

Richer model which allows
reasoning to detect inter-
dependencies between
component configuration,
installation and execution.

Defined as rules that dynam-
ically generate the infrastruc-
ture requirements of each com-
ponent depending on the appli-
cation quality and load

type of applications, such as 3-tier web applications.

Therefore, these models do not fulfill the main objective of our model of providing
a portable and general-purpose application model. For performing the comparison
of our model with existing ones, we have selected a subset of portable and general-
purpose application models. Table 3.1 summarizes the comparison between different
models and our proposal. Each column represents the different aspects evaluated in
the comparison: the Deployment Model column describes how the models manage
the application distribution in the cloud; the Configuration, Installation & Execution

describes how the models manage the installation, configuration and execution of the
application; and finally, the Quality Description column describes how the different
models provide the application quality description. The following paragraphs provide
more details about the model comparison.

The Open Virtualization Format (OVF) provides a model to describe cloud applica-
tions as a collection of virtual machine descriptions. With OVF an application must be
manually broken down into different Virtual Systems which will be deployed as VM in the
Cloud infrastructure. For each VM, developers have to indicate the image which contains
the Operating System the application components and the required software. Therefore,
developers have to build the images in advance by manually installing and configuring the
application components that they want to deploy in this VM. Regarding the application
quality, it is indirectly defined by setting the processing properties in the Virtual System

3.4 Evaluation and Discussion 49

descriptions. So developers have to previously calculate the processing requirements for
each Virtual System and set them into the description in a static way.

Trying to provide a higher level description, the OASIS standardization institution has
proposed the Topology and Orchestration Specification for Cloud Applications (TOSCA).
It provides model consisting on a topology of Nodes. Each Node can be a VM or
an application artifact and the node relationships are used to specify dependencies,
communications between artifacts or assignments of artifacts to VMs. Each node has
defined a management interface, and the deployment process is modeled as a Plan,
which describes a workflow of interface calls. Using this model, developers have to
manually specify which component must be deployed in each VM and how the whole
service is deployed. Regarding the application quality, it is defined in the node properties
description, so developers have to specify them in a static way

Similar to the TOSCA model, we can find CloudML which has been implemented in
conjunction of the Remics, MODAClouds and PaaSage projects. Instead of defining only
Nodes, CloudML differentiates between Artifacts, which describe application software
components, and Nodes, which describe VMs. But the assignment of components in the
different VMs must be manually specified by the user. For each Artifact, developers have
to provide the URL to retrieve the artifact and the commands to deploy and run it. As in
the previous approaches, the quality is specified by the processing properties of the Nodes.
So, users have to calculate them in advance and set it in a static way.

Another application model approach was proposed in the mOSAIC project, it proposes
an ontology which describes application according to a set of defined parallel application
patterns. Each component of this pattern is directly mapped to VMs. From the application
description point of view, it describes a very simple model close to the developers’
knowledge, if the application is following one of the supported patterns. Otherwise,
developers have to define the components and the rules to map how components are
deployed in the VMs, and in most cases, it can be complex to define. In any case, the
main drawback of this option is that it does not provide a way to describe how to install,
configure and execute the different components of the application. It assumes that they
have been implemented as Cloudlets which are special abstract classes defined in the
mOSAIC project and they will be deployed using the rest of the mOSAIC toolkit. So,
the mOSAIC model could be a good option for creating new applications but not for
migrating existing ones because it will require major code modifications.

Comparing these approaches with our proposal, we have discovered the following
benefits. First, developers do not have to describe the mapping of components on VMs; it
is automatically inferred by the model reasoner. Regarding the installation configuration

50 Inferring the Application Deployment Model

and execution model, our proposal does not require to make any code change to adapt to
the application model as in TOSCA and mOSAIC models. Moreover, it is richer than the
CloudML model. The resource state model for describing the component deployment,
configuration and execution allows the reasoning to infer if a change in a configuration
affects to the execution of other components. Doing something similar with the script
based descriptions used by CloudML is very complex. Finally, regarding the quality
description, our proposal provides a model which relates the processing constraints to the
quality and load metrics in a component level. It enables the reasoner to dynamically
infer the infrastructure requirements from a target quality and the application load. These
requirements can be easily aggregated according to the affinity constraints in order to
provide the VM requirements. In the other options, these descriptions are set statically
and do not provide a way to relate the infrastructure requirements with the quality and
rule metrics.

3.5 Conclusion

In this chapter, we have presented the first step to achieve an automatic migration
of applications to Cloud Computing platforms, describing a methodology to automati-
cally infer the deployment model by reasoning on a semantically-annotated application
description. First, we have presented an ontology which provides a general-purpose
and infrastructure-agnostic model for describing applications. Following this model,
the application description is composed by three parts: the component topology, which
provides the definition of the application components and their communication links;
the installation, configuration and execution, which describes the desired state of the
application resources after its installation, configuration and during the execution; and
the quality description, which provide a set of rules to infer the processing requirements
and component replicas for a given quality and application load. Once the application
is described, it is loaded to a reasoner which applies the different rules to classify the
components and communication links and the quality rules to extract the component
and link requirements. Based on this classification and the extracted requirements, the
reasoner also infers the implicit affinity constraints.

A prototype of this approach has been implemented, validated and evaluated. To
validate the model, we have described four applications form four types: n-tier, task-
based, map-reduce and MPI/OpenMP. We have evaluated the reasoning overhead by
measuring the time to infer the deployment model in different scenarios. We have
observed the overhead is growing linearly with the number of components and even for

3.5 Conclusion 51

large application the overhead is just few seconds. This overhead can be considered low
compared with the time required to deploy VMs on the Cloud Infrastructures, and much
faster compared with the time spent by a developer to do the same inference manually.

Finally, our proposal has been compared with other cloud application models (OVF,
TOSCA, CloudML and mOSAIC). The main advantage of our approach is that developers
do not have to specify how the application is distributed in VMs because the application
model reasoner infers it. In our approach the application code remains unchanged,
because the model is describing the required installation, configuration and execution
procedure, instead of forcing developers to implement management interfaces, as in
TOSCA, or implementing components as Cloudlets, as in mOSAIC. Regarding the
application quality, other approaches indirectly specify the required application quality
by statically setting the processing requirements of the VM. In our case, the processing
requirements are described by rules, which provides the component requirements as
function of the quality and load metrics.

52 Inferring the Application Deployment Model

Chapter 4

Semantic Resource Allocation

Once a deployment model for an application has been inferred, the next step is
allocating the different components on the available resources. Despite of this work is
used for allocating application components in the available resources within the overall
thesis storyline, it was started as a Grid scheduler because at the time when we started this
work the multi-cloud environments did not exist. Later on, due to the problem similarities,
we extended the scheduler to cover other allocation problems which are present on
the distributed computing platforms, in order to provide an extensible general-purpose
resource allocation solution. For instance, the solution is applied to the already mentioned
allocation of application components in the VM types in a multi-cloud scenario, to the
allocation of VM deployments on the physical resources of a cloud provider data center,
and to the scheduling of jobs in grids or a cluster. Therefore, this chapter of the thesis
tackles the problem of the resource allocation in distributed computing platforms.

The rest of the chapter is organized as following: First, Section 4.1 presents an
overview of the methodology used to achieve the Semantic Resource Allocation and
Section 4.2 and Section 4.3 provide more details about the Resource Allocation Ontology
and the allocation process. Then, Section 4.4 shows how the solution is applied for
different problems, presents the results of an overhead evaluation and discusses about
the benefits provided by these solutions with respect to other allocation solutions. The
chapter is finalized by Section 4.5, where we draw the conclusions about this field.

4.1 Methodology

Distributed platforms such as Grids and Clouds provide an ecosystem where different
providers offer their heterogeneous resources to users which are willing to execute
their applications. The different users’ applications have different constraints while the

54 Semantic Resource Allocation

providers’ resources offer different capabilities. Every entity in the ecosystem has their
own way to express their needs and capabilities which makes difficult to integrate them
in a uniform way to enable a proper assignment of resources to the users’ applications
in an automatic way. In contrast, semantic web technologies provide a framework to
describe web resources in a structured, well-defined and machine understandable way.
In this chapter, we aim at applying semantic web technologies to the resource allocation
problem in order to enable the assignment of resources to applications which are coming
from different sources.

To do it, we have defined a Resource Allocation Ontology to model applications,
resources and other concepts involved on the resource allocations. Despite of users’
applications are different, they can be modeled in a uniformed way as a set of computing
tasks which must be executed on a resource with certain capabilities. The same
happens with resources, despite they are heterogeneous they can be described as a
set of capabilities and properties. Then, allocation policies are modeled as horn rules
which describe how the resources are allocated to computing tasks according to the task
requirements and resource capabilities and properties. The final allocation solution is
obtained by applying these rules on a knowledge base composed by task descriptions and
the available resource descriptions. Next section provides more details about the Resource
Allocation Ontology and the rule-based allocation process.

4.2 Resource Allocation Ontology

Figure 4.1 shows the overview of the proposed Resource Allocation ontology, it is
composed by three main parts: the resource description, which models the capabilities and
properties of the resources; the task description, which models the computation which is
going to use resources; and finally, the allocation description which models the assignment
of resources to the different tasks.

Regarding the first part, there are several schemes and models in the literature which
propose similar descriptions of computing resources such as GLUE [111], the Common
Information Model (CIM) [112] and the Grid Resource Ontology (GRO) [113]. These
proposals describe the capabilities of computing resources in a more o less extended way.
However, they do not describe how the different resource capabilities can be used by
the different tasks. The work presented in [114], provides an ontology to describe the
coordination of resource usage. They propose a set of interesting resource properties
such as sharable, if a resource can be shared by several users, consumable, if the usage
of this resource can make it unavailable and clonable, if the resource can be copied.

4.2 Resource Allocation Ontology 55

Figure 4.1 Resource Allocation Ontology

Another missing concept is the description of images and software resources. Resource
providers describe images and the available software resources as plain text which is easily
understood by users but difficult to be automatically processed by computers. The most
important information that an image should contain, includes the operating system and
the state of its software resources. For that reason, we propose to use the same description
as used in Section 3.2.3 for describing the components installation and configuration.
The resource description part, that we propose for the Resource Allocation Ontology,
combines the basic computing capabilities description and resource definition proposed
by the previous resource schemes, together with a resource classification based on the
defined resource sharing properties. The basic resource description has been extended to
support the cloud resources, such as VMs and images, as mentioned above.

The second part is focused on the tasks’ description. This part should describe the
required resource capabilities and time constraints to perform the computation as users
expect. To perform this description we propose to model these requirements as a definition
abstract resource indicating the minimum required capabilities, such as the minimum
quantity of memory, disk, network and processors. If a task has time constraints, they can
be modeled by the specification the earliest initial time, latest end time and the expected
duration properties.

Finally, the third part is about modeling the allocation of resources to tasks. Each
abstract resource requirement defined in tasks is related by candidateResources property
to the real resources which fulfills its minimum capabilities. At the end of the allocation
process one of this candidate resources, will be finally allocated to a task by means of an

56 Semantic Resource Allocation

Figure 4.2 Rule-driven Resource Allocation Architecture

Allocation description which models usage performed by a task in a selected real resource
(by means of the uses property) during a period of time (by means of plannedStartTime

and plannedEndTime.

The Resource Allocation Ontology is complemented with a set of rules which model
the allocation policies. These rules are in charge of inferring the best resource allocation
according to the defined task requirements and resource capabilities. Next sections
provide more details of this rule-driven resource allocation process and its applicability in
different scenarios.

4.3 Rule-driven resource allocation

Figure 4.2 shows an overview of the semantic resource allocation process which
allocates resources on tasks by means of an ontology and horn rule reasoning. Two
components are involved in this allocation process: the Semantic Metadata Repository
(SMR), which is in charge of storing the resources and tasks descriptions as well as
the previous allocation results; and the Semantic Scheduler (SeS), which is in charge of
allocating and scheduling tasks on the available resources. When a new task arrives to the

4.4 Evaluation and Discussion 57

system, it is stored on the SMR and a SPARQL query is generated to retrieve the available
real resources which fulfill the required abstract resource defined on the task description.

The retrieved resource descriptions are linked to the task description requirements by
setting them in the candidateResources property. Moreover, these resources are already
linked with its current allocations. All this information, together with the Resource
Allocation Ontology, is introduced into the SeS creating an inference model. This model
is attached to a rule engine which will evaluate the allocation policy rules over the
inference model data and stores the inferred data in a deductions graph. The allocation
rules are evaluated in a cascade mode performing the following actions: First, detecting
the shared candidate resources and generating the different possible allocations; then,
resolving the conflicts with existing tasks’ allocations scheduled at the same resource,
and by discarding, sharing or cloning resources according to the resource type (sharable

consumable and clonable); and finally, ranking the remaining allocation and selecting the
best. Figure 4.3 shows an example of each type of rule. The first rule provides an example
of allocation generation rule. The evaluation of this rule will generate an allocation at the
earliest time for each candidate resource. The second rule provides an example of the
conflict resolution. This rule will drop the generated allocation if there is an allocation of
a task on a non-sharable resource. Finally, the third rule provides an example of selection
rule, where the plannedEndTime property of two remaining allocations is compared, and
the allocation with the latest plannedEndTime is removed.

When the inference process has finished, the SeS inspect the deductions graph by
looking for the inferred Allocation instances which includes the selected resource and the
assigned time slot. The SeS interprets the different allocation results appearing in the
deduction graph as a new allocation or reallocation of tasks in resources and updates the
corresponding task and resource descriptions stored in the SMR.

4.4 Evaluation and Discussion

The evaluation of the Semantic Resource Allocation consists of three different aspects:
first, we evaluate how the solution can be applied in different scheduling problems;
second, we have evaluated the overhead and scalability of the solution by calculating
the time to allocate resources to tasks in different scenarios; and third, we will discuss the
benefits and drawbacks of using this technology with respect to current options.

58 Semantic Resource Allocation

Rule { ## Initial Allocation
?task rdf:type rao:Task
?task rao:status rao:Submitted
?task rao:earliestStartTime ?esTime
?task rao:latestEndTime ?leTime
?task rao:hasDuration ?duration
sum(?esTime, ?duration, ?endTime)
lessThan(endTime,leTime)
?task rao:requires ?abstResource
?abstResource rao:candidateResource ?resource
makeNode(?Allocation)

=>
?allocation rdf:type rao:Allocation
?allocation rao:plannedStarTime ?esTime
?allocation rao:plannedEndTime ?endTime
?allocation rao:incarnates ?abstResource
?allocation rao:allocates ?task
?allocation rao:uses ?resource

}
...
Rule { ## Drop collided allocation on non-sharable resources

?newAlloc rdf:type rao:Allocation
?newAlloc rao:allocates ?task
?task rao:status rao:Submitted
?newAlloc rao:uses ?resource
?existAlloc rdf:type rao:Allocation
?existAlloc rao:allocates ?task2
?existAlloc rao:uses ?resource
?task rao:status rao:Scheduled
?resource rao:sharable false

=>
drop(?newAlloc)

}
...
Rule { ## Select the allocation with earliest deadline

?alloc1 rdf:type rao:Allocation
?alloc1 rao:uses ?resource
?alloc1 rao:allocates ?task
?alloc1 rao:plannedEndTime ?endTime1
?alloc2 rdf:type rao:Allocation
?alloc2 rao:uses ?resource
?alloc2 rao:allocates ?task
?alloc2 rao:plannedEndTime ?endTime2
?task rao:status rao:Submitted
lessThan(?endTime1, ?endTime2)

=>
drop(?alloc2)

}

Figure 4.3 Allocation rules examples

4.4 Evaluation and Discussion 59

Figure 4.4 Map of Job scheduling in Grid Computing to the Resource Allocation
Ontology

4.4.1 Applicability

Previous sections have provided an overview of the ontology and the rule-based
approach for resource allocation. It provides a general and extensible solution for
allocation which can be applied in the different allocation problems existing in current
distributed platforms. Next paragraphs provide examples of how the semantic resource
allocation solution can be applied to three different problems: the scheduling of jobs in
computing nodes in a Grid Computing scenario, the allocation of VMs in the Data Center
servers in a private Cloud scenario and the allocation of the application components on
the VM types in a multi-cloud scenario. In each scenario, we show how the different
elements are mapped to the ontology classes and which allocation policy rules are defined
to describe the allocation generation, evaluation and selection rules according to the type
defined tasks and resources.

Scheduling of Jobs in a Grid Computing Scenario

In a Grid computing scenario, applications are composed by a set of batch jobs
which are scheduled in the different computing nodes available in the Grid infrastructure.
Figure 4.4 shows how the different elements of job scheduling are mapped to the
Resource Allocation Ontology. First, a Compute Node is defined as a Sharable and
Consumable resource, but not Clonable because Compute Nodes can not be replicated.
The node computing capabilities (processing, storage and network) are defined as
subclass of Capability. Second, Jobs are defined as a subclass of task and its Job

Requirements are defined as a subclass of Abstract Resources and the earliestEndTime

and duration properties are used to describe the job deadline and the wall-clock limit

60 Semantic Resource Allocation

Rule { ## Allocation after existing allocated tasks
?task rdf:type rao:Task
?task rao:status rao:Submitted
?task rao:earliestStartTime ?est
?task rao:hasDuration ?duration
?task rao:latestEndTime ?leTime
?task rao:requires ?abstResource
?abstResource rao:candidateResource ?resource
?allocation rdf:type rao:Allocation
?allocation rao:plannedEndTime ?peTime
?allocation rao:uses ?resource
?allocation rao:allocates ?task2
?task2 rao:status rao:Scheduled
sum(?peTime, ?duration, ?endTime)
lessThan(endTime,leTime)
makeNode(?newAlloc)

=>
?newAlloc rdf:type rao:Allocation
?newAlloc rao:plannedStarTime ?peTime
?newAlloc rao:plannedEndTime ?endTime
?newAlloc rao:incarnates ?abstResource
?newAlloc rao:allocates ?task
?newAlloc rao:uses ?resource

}

Figure 4.5 Rules to generate possible allocations in the Grid scheduling scenario.

respectively. Finally, Job Schedulings are defined as Allocations where the selected
Compute Node is specified by the uses property and the assigned time-slot is defined
with the plannedStartTime and plannedEndTime properties.

Regarding allocation rules to perform the job scheduling, we need to define a set of
rules which model the allocation policies. First, a set of rules is needed to generate the
possible allocations. In this case, a possible allocation is generated for each candidate
resource at the earliest time and after the end time of tasks previously allocated in the
same resource. They are generated by applying the first example rule of Figure 4.3 in
Section 4.3 and the rule described in Figure 4.5, which generates the allocations after the
end of the previously allocated task in the candidate resources.

Due to the resources in this situation are always Sharable and Consumable but no
Clonable, conflicts are solved by dropping the allocations which collide with previous
allocation and the resource capacity is exceeded. Figure 4.6 describes the rule which
implements this feature. In this case, we have implemented two rule built-ins, which
are parts of code to perform some validation or calculation over the rule facts. The
first one, overlapped, evaluates if two allocations are overlapped on time and returns
the overlapped time slot. The other one, capacityExceeded, checks if the capacity of a
resource is exceeded in a given time slot. It is calculated by summing the abstract resource
requirements of the allocated tasks. Finally, we select the best remaining allocation as the
one which is planned to end before. The description of this rule can be found in the third
example rule of Figure 4.3 in Section 4.3.

4.4 Evaluation and Discussion 61

Rule { ## Drop allocation which exceeded capacity when collide with another overlapped allocation
?newAlloc rdf:type rao:Allocation
?newAlloc rao:uses ?resource
?newAlloc rao:allocates ?task
?task rao:status rao:Submitted
?existAlloc rdf:type rao:Allocation
?existAlloc rao:uses ?resource
?existAlloc rao:allocates ?task2 ?task2 rao:status rao:Scheduled
?resource rao:sharable true
?resource rao:consumable true
?resource rao:clonable false

Check if overlapped by evaluating plannedEndTime and plannedStarTime
overlapped(?newAlloc, ?existAlloc, ?startOverlap, ?endOverlap)

Check if resource capacity is exceeded during newAlloc interval
capacityExceeded(?resource, ?startOverlap, ?endOverlap)

=>
drop(?newAlloc)

}

Figure 4.6 Rule to drop allocations which exceeded resource capacity in the Grid
scheduling scenario

Figure 4.7 Map of VM deployment allocation in Private Clouds to the Resource
Allocation Ontology

Allocation of VMs in a Private Cloud Scenario

The Semantic Resource Allocation can be also applied in a Private Cloud Scenario
where the deployments of VMs are allocated in the different servers of the provider’s data
center. Figure 4.7 shows how the elements of the scenario are mapped to the defined
classes of the Resource Allocation Ontology. In this case, a VM Deployment is defined
as a subclass of Task. The difference with grid jobs, is that the time that a VM remains
deployed is undetermined. Therefore, there are no time constraints defined for this type
of task and as consequence no time slots are defined for the VM allocation. On the other
hand, Servers are defined as Sharable an Consumable resources, but not Clonable because
they can not be replicated, in the same way that we have done for the Compute Nodes in
the Grid scenario.

62 Semantic Resource Allocation

Rule {## Generate Allocation per Candidate Resource
?task rdf:type rao:Task
?task rao:status rao:Submitted
?task rao:requires ?abstResource
?abstResource rao:candidateResource ?resource
makeNode(?Allocation)

=>
?allocation rdf:type rao:Allocation
?allocation rao:incarnates ?abstResource
?allocation rao:allocates ?task
?allocation rao:uses ?resource

}

Figure 4.8 Rule to generate allocations in the Private Cloud scenario

Rule { ## Drop allocation which exceeded capacity when collide with another overlapped allocation on
?newAlloc rdf:type rao:Allocation
?newAlloc rao:uses ?resource
?newAlloc rao:allocates ?task
?task rao:status rao:Submitted
?existAlloc rdf:type rao:Allocation
?existAlloc rao:uses ?resource
?existAlloc rao:allocates ?task2 ?task2 rao:status rao:Scheduled
?resource rao:sharable true
?resource rao:consumable true
?resource rao:clonable false

Check if resource capacity is exceeded with scheduled tasks
capacityExceeded(?resource)

=>
drop(?newAlloc)

}

Figure 4.9 Rule to drop allocations which exceeded resource capacity in the Private
Cloud scenario.

Regarding the rules to allocate VM Deployments on Servers, they are more simple than
the used in the Grid job scheduling case because they do not have to deal with the time
slots. To generate the possible allocations, we just need a rule which creates a possible
allocation per real resource selected as candidateResource, as described in Figure 4.8.

Once the allocations have been generated, we have to remove the allocations that
exceeds the resource capabilities when sharing the resource with current allocations. The
rule to perform it is almost the same than the used for Job Scheduling (Figure 4.6) with
the difference that there is no need to check the overlap between allocations because there
are not time slots defined. The rule used in this case is shown in Figure 4.9.

Finally, a last rule should decide which is the best of the remaining allocations. This
rule will depend on what is preferred policy for the provider. It can prefer to balance
the VM distribution or allocate them in the minimum of servers. Figure 4.10 shows the
rules which implements those policies. The first one drops the allocation which already
contains more allocations, and the second one drops the allocation to resources where
there are no previous allocations.

4.4 Evaluation and Discussion 63

Rule { ## Select the resource with less allocations
?alloc1 rdf:type rao:Allocation
?alloc1 rao:uses ?resource1
?alloc1 rao:allocates ?task
?resource1 rao:usedBy all(?allocs1)
listLength(?allocs1, ?length1)
?alloc2 rdf:type rao:Allocation
?alloc2 rao:uses ?resource2
?alloc2 rao:allocates ?task
?resource2 rao:usedBy all(?allocs2)
listLength(?allocs2, ?length2)
?task rao:status rao:Submitted
lessThan(?length1, ?length2)

=>
drop(?alloc2)

}

Rule { ## Select the resource which already has allocations
?alloc1 rdf:type rao:Allocation
?alloc1 rao:uses ?resource1
?alloc1 rao:allocates ?task
?resource1 rao:usedBy ?alloc)
?alloc2 rdf:type rao:Allocation
?alloc2 rao:uses ?resource2
?alloc2 rao:allocates ?task
noValue(?resource2 rao:usedBy)
?task rao:status rao:Submitted

=>
drop(?alloc2)

}

Figure 4.10 Allocation selection rules examples for Private Cloud scenario

Allocation of VMs in a Multi-Cloud Scenario

The final applicability example is the allocation of the components belonging to an
application deployment in the VM types offered by Infrastructure providers. Figure 4.11
shows how the elements in this scenario map with the classes of the Resource Allocation
Ontology. For this scenario, an Application Deployment is mapped as subclass of Task.
Each application will require a set of Components which describe the abstract resources
required by each of the application components. In the real resource description part, we
have defined VM Types as a Clonable, Sharable and Consumable real resource which in
addition to the computing capabilities, it also has other properties such as the price or the
location which will be used to select which is the best allocation. Finally, the Component

Allocation is defined as a subtask of Allocation which incarnates a Component using a
VM Type. For the same reason as in the private cloud scenario, Application Deployments

do not define time constraints and Component Allocation neither define time slots.

Regarding how to get the solution for a component allocation problem, we can follow
the same procedure as in the other cases to generate a possible allocation per candidate VM

Type and select the best allocation, for instance, by evaluating the price. In this case, we
do not need to have any rule to evaluate capabilities exceed because VM Type resources are
defined as Clonable, and each allocation will have their own VM Type instance. So, rules,

64 Semantic Resource Allocation

Figure 4.11 Map of Application components allocation in Multi-Cloud to the Resource
Allocation Ontology

defined in Figure 4.12, model the allocation of components in the multi-cloud scenario as
explained above.

The evaluation of these rules will provide the best allocation for each component.
However, a better assignment could be found if some components are assigned together
in the same VM type. To include this feature in the allocation, we just need to add another
set of rules to generate new application deployments by merging two components and
another to compare two application deployments and drop the one which provide a worse
allocation. This rules are described in Figure 4.13.

4.4.2 Overhead and Scalability Evaluation

The second part of the Semantic Resource Allocation evaluation focuses on the
analysis of the overhead introduced by the system. We have measured the time to make
the allocation in different scenarios and how it grows with the number of tasks and
resources. To perform this analysis, a prototype of the Semantic Resource allocation
system has been implemented using the Apache Jena [115]. It is a Java semantic web
framework which provides a repository for semantic RDF description, a set of API to
manage RDF documents and make SPARQL queries and an ontology reasoner and rule
engine to perform the semantic reasoning. The Semantic Metadata Repository has been
implemented as a Jena RDF repository using the SPARQL API to make the queries to get
the candidate resources, and the Semantic Scheduler has been implemented by creating
a Jena Model with the RDF descriptions and Resource Allocation Ontology which is
attached to a the Jena Forward Rule reasoner which implements the RETE algorithm [116]
for performing an efficient rule evaluation. The implemented prototype has been deployed

4.4 Evaluation and Discussion 65

Rule { ## Generate Allocation per Candidate Resource
?task rdf:type rao:Task
?task rao:status rao:Submitted
?task rao:requires ?abstResource
?abstResource rao:candidateResource ?resource
makeNode(?Allocation)

=>
?allocation rdf:type rao:Allocation
?allocation rao:incarnates ?abstResource
?allocation rao:allocates ?task
?allocation rao:uses ?resource

}

Rule { ## Select the resource with less price
?alloc1 rdf:type rao:Allocation
?alloc1 rao:uses ?resource1
?resource1 rao:hasPrice ?price1
?alloc1 rao:incarnates ?abstResource
?alloc1 rao:allocates ?task
?alloc2 rdf:type rao:Allocation
?alloc2 rao:uses ?resource2
?resource2 rao:hasPrice ?price2
?alloc1 rao:incarnates ?abstResource
?alloc2 rao:allocates ?task
?task rao:status rao:Submitted
lessThan(?price1, ?price2)

=>
drop(?alloc2)

}

Figure 4.12 Rules to generate and select the best allocation for the Multi-Cloud scenario

Rule { ## Generate new Application Deployments by merging components
?appDeploy rdf:type mc:ApplicationDeployment
?appDeploy rao:status rao:Submitted
?appDeploy rao:requires ?abstResource1
?appDeploy rdf:type mc:ApplicationDeployment
?appDeploy rao:requires ?abstResource2
cloneNode(?appDeploy, ?newAppDeploy)
mergeResources(?abstResource1,?abstResource2, ?newAbstResource)

=>
drop(?newAppDeploy rao:requires ?abstResource1)
drop(?newAppDeploy rao:requires ?abstResource2)
?newTask rao:requires ?newAbstResource

}

Rule { ## Select the Application with less price less allocations
?appDeploy1 rdf:type mc:ApplicationDeployment
calculateTotalPrice(?appDeploy1, ?price1)
?appDeploy2 rdf:type mc:ApplicationDeployment
calculateTotalPrice(?appDeploy2, ?price2)
lessThan(?price1, ?price2)

=>
drop(?appDeploy2)

}

Figure 4.13 Rules to generate and select the best application deployment for the Multi-
Cloud scenario

66 Semantic Resource Allocation

(a) Allocation time depending on the number of
resources

(b) Allocation time depending on the number of jobs

Figure 4.14 Overhead introduced by the Semantic Resource Allocation system for
scheduling jobs in a grid scenario

in a laptop with an Intel Core i7 processor and 8GB of RAM with Java 7 and the Apache
Tomcat installed to run the semantic repository and semantic scheduler processes.

To evaluate the behavior of the Semantic Resource Allocation system, we have
generated different task and resource descriptions for each of the scenarios presented in
the previous section, and we have measured the time to allocate tasks on resources for
different number of tasks and resources in order to know the time scales and compare it
with other overheads and the duration of computational tasks

Figure 4.14 shows the evaluation results for the Grid scheduling scenario. In the plots
of the figures, we can see the allocation time grows almost linearly with the number
of tasks and resources. The time scale for this range of tasks is about milliseconds for
small applications with few jobs and can take seconds for very large applications. These
overheads can be assumable if we compare with the job duration and other overheads
introduced by grid middleware. Grid jobs are coarse-grained batch executions, whose
duration must be in the order of minutes to compensate large-distance data transfers and
queue waiting times. So, adding some milliseconds for a single job or some seconds for
large applications will not have a very big impact in the application performance.

Note that when a large number of tasks and resources is scheduled, the time is starting
to be increased very fast. This is because the memory allocated to the Java Virtual
Machine is exhausted and the Java Runtime Environment is spending a lot of time trying
to make garbage collection which considerably slows the scheduling process. In this
situation, the overhead can reach not assumable boundaries.

Similar results are found for the private cloud scenario which are depicted in
Figure 4.15. In this case, the slope of the growth is smaller due to the number of possible
allocations per resource is smaller. So, in the case of a private cloud, the scheduler only
has to evaluate an allocation per resource and task, while in the grid scheduling, we have

4.4 Evaluation and Discussion 67

(a) Allocation time depending on the number of
resources

(b) Allocation time depending on the number of VM
deployments

Figure 4.15 Overhead introduced by the Semantic Resource Allocation system for
allocating VMs in a private cloud scenario

(a) Allocation time depending on the number of VM
types

(b) Allocation time depending on the number of
service component instances

Figure 4.16 Overhead introduced by the Semantic Resource Allocation system for
allocating service component instances in VM Types in a public cloud scenario

to evaluate the allocation proposed after each job scheduled at a resource. For the same
reason, the allocation is faster and consumes less memory, therefore we do not observe
the memory issues in the plots of the figures.

The last scenario is the public cloud, in this case the allocation time grows linearly for
resources but polynomially for the tasks. It is because of the merge rule which merges
component instances in order to find better solutions than just allocating each instance in
a VM type. Despite the polynomial growth, the overhead is still assumable compared to
the application deployment. For small and normal applications (up to 200 instances) the
allocation overhead is about in the order of milliseconds or few seconds. However, the
deployment of application VMs and booting the Operating System will easily take some
minutes. For larger applications, the allocation overhead will grow up to taking minutes,
but the deployment is also growing due to the number of application VMs. Just in the case

68 Semantic Resource Allocation

of very large applications, with thousands of components, the allocation overhead can be
important.

4.4.3 Benefit from traditional scheduling approaches

The semantic resource allocation solution proposed in this thesis has several benefits in
comparison with the traditional scheduling solutions. Most of schedulers are tailored for
a specific problem with the specific workload and platform such as batch job schedulers
for clusters and grids or VM schedulers in data centers. They do not allow extensions
or it must be done by means of implementing plug-ins. Benefiting from semantic web
technologies, our solution provide a way to easily integrate resources and tasks from
different sources and the same engine can extended and used without requiring any code
modifications or plug-in implementation. As we have seen in previous sections, users just
need to map the allocation problem in the tasks and resource and provide the rules which
model the allocation policies. Moreover, rules can be loaded and unloaded at runtime,
so according to the type of tasks and resources, we can select the rules which provide
scheduling results enabling the adaptation of the scheduling to the current load.

4.5 Conclusion

In this chapter, we have studied how semantic web technologies can be applied in the
problem allocating application components in computing resources which is the second
part for achieving an automatic application deployment. In this case, we have defined a
Resource Allocation Ontology, which models the concepts involved on the assignment of
resources to the computing tasks. Allocation policies are modeled as horn rules which are
a knowledge base composed by the available resources and requested task descriptions.

The evaluation of the proposed solution has been focused in two parts. First, to
validate that the solution can be easily used in different scenarios, we have applied it in the
scheduling of jobs in Grid environments, the allocation of VM deployments in a Private
Cloud environment, and the allocation of application components in the different VM
types in a multi-cloud environment. Second, we have measured the overhead introduced
by the system in the different scenarios and how it grows with respect of the number of
tasks and resources. The overhead is directly related to the complexity of the allocation
but in all the cases it is assumable when we compare to other expected overhead or task
durations such as queue waiting times and deployments. However, in situations such as
grid environments, where the number of available resources and tasks is high, we start to
run out of memory and the overhead will increase fast reaching not assumable boundaries.

4.5 Conclusion 69

A solution for this problem is found in Chapter 6, where a distributed resource allocation
approach is proposed.

Comparing our solution with other scheduling approaches, it easily integrates re-
sources and tasks from different sources and the same engine can extended and used
without re-implementations or plug-ins. Moreover, rules can be loaded and unloaded at
runtime, so it enables the adaptation of the scheduling to the current load by selecting the
proper scheduling rules for the type of tasks and resources

70 Semantic Resource Allocation

Chapter 5

Infrastructure Interoperability

Once the deployment model and placement for an application has been inferred, the
last step for achieving the automatic deployment is the provisioning and configuration
of the resources needed to execute the application components. To perform this step
for a single provider, developers have to know which kind of resources are offered by the
infrastructure provider, learn how to use its’ API and implement a workflow for deploying
the computing resources as well as installing and configuring the application components
in the deployed resources. Despite it is a complex process, it could be assumable for
a single provider. However, each provider offers their own interface. So, if for any
reason, developers want to change the provider or combine some of them to perform a
more convenient deployment for their applications, they should learn how to use the new
API, introduce changes in their deployment code to support the new providers’ APIs,
multiplying the required development effort and its associated cost. This fact dissuades
developers to change the infrastructure provider producing a vendor lock-in.

Solving this provider lock-in issues relies on the ability of making different cloud
infrastructures work together. One key issue in this topic is the knowledge and the correct
interpretation of the interfaces offered by infrastructure providers. These interfaces are
composed by a set of remote methods which exposes the available provisioning and
management actions, and a data model which describe the offered resources and the
method input and output parameters. When users want to perform a remote action
exposed in the API, they have to exchange messages with the provider’s services using
the protocol, format and model specified by the provider. Despite most of providers
offer similar functionalities, protocols, methods and data models defined are different.
Therefore, to enable the interoperation between different providers and solving the vendor
lock-in, we should be capable to automatically find and invoke the correct methods in each
provider’s API, which performs the desired resource management tasks.

72 Infrastructure Interoperability

Figure 5.1 Infrastructure Interoperability Framework

5.1 Methodology

To achieve the aforementioned capabilities, we have designed an Infrastructure
Interoperability Framework, depicted in Figure 5.1, which applies different Artificial
Intelligence (AI) techniques to facilitate the interoperation with different infrastructure
providers. This framework includes: the Infrastructure Provider Ontology, which
provides a model to uniformly describe the resources and methods offered by the
different providers’ interfaces; the Semantic Annotation/De-annotation component, which
is in charge of automatically create semantic descriptions from the providers interfaces
description and messages (a.k.a. semantic annotation) and also create the interface
messages from a semantic description (a.k.a semantic de-annotation); the Resource
Mapper component, which converts the data descriptions between the different providers’
models; and finally, the Action Planner component, which is in charge of inferring
the required sequence of providers’ actions in order to achieve the desired resource
management task. The data translations performed by the Resource Mapper are performed
by applying rule reasoning and the action inference performed by the Action Planner is
achieved by applying AI planning techniques. Our solution allows any user or piece
of software to exploit all available cloud infrastructures, even when they have different
APIs defined, by using their preferred API. The translation from this API to the others is
automatically done by our system.

The following sections describe in detail the different Infrastructure Interoperabil-
ity Framework components. Afterwards, Section 5.5 provides examples of how the
framework is applied in different situations, evaluates the introduced overhead and
compares our framework with another interoperability solutions. Finally, Section 5.6
draws conclusions about this research topic.

5.2 Infrastructure Providers Ontology 73

Figure 5.2 Infrastructure Providers Ontology

5.2 Infrastructure Providers Ontology

Figure 5.2 gives an overview of the Infrastructure Provider Ontology, which focuses
on describing the computing resources offered by infrastructure providers (VM types,
storage, network). In the literature, we can find several models for describing computing
resources such as [117], [112],[34]. Therefore, our contribution has focused on extending
these models for including the description of images and the providers’ APIs. In the
case of images, we propose to use the same resource state model used for the component
installation and configuration. In current approaches, image descriptions are provided
in plain text which are hard to be processed by machines. Our Infrastructure Ontology
provides a model for describing the current status of an image which can be easily
processed by computers in order to check if an image totally or partially contains the
resources required by the application components, and infer what are the required changes
in order to fulfill the resource status required by the component deployment and execution.
On the other hand, we propose to model providers’ API following OWL-S [118] concepts
where different actions are described by indicating the input and output parameters
and the prerequisites and effects on the infrastructure state as variables and predicates.
Figure 5.3 shows the description of the Amazon EC2 createInstance action with the
defined parameters, preconditions and effects.

5.2.1 Semantic Annotation/De-annotation

One of the key aspects of Cloud Computing is the exposition of providers’ function-
alities as web services. These services exchange messages to invoke methods which
implement the requested functionalities in the provider’s infrastructure. Unfortunately,

74 Infrastructure Interoperability

ec2:createInstance rdf:type owls:Action;
owls:hasInput “?instanceType xml:String” ,

“?location xml:String”;
owls:hasOutput “ ?instanceID xml:String” ;
owls:hasPrecondition “ ”;
owls:hasEffect “ ?vm rdf:Type infra:VMInstance” ,

“?vm instantiates ?instanceType” ,
“?vm location ?location”,
“?vm id ?instanceID”,
“?vm status created”;

Figure 5.3 API Action Description Example.

Table 5.1 Cloud Providers Protocols and Formats.

API OCCI v1.1 Amazon Flexiant Rackspace ElasticHosts
Protocol HTTP/REST HTTP/REST HTTP/SOAP HTTP/REST HTTP/REST

HTTP/SOAP
Format HTTP Hdrs. XML XML XML/JSON JSON

XML

the protocols and formats of these messages vary depending on the provider, so, the aim
of the Semantic Annotation/De-annotation component is to solve the protocol and format
heterogeneity unifying them into a machine understandable format such as RDF.

Table 5.1 shows the different protocols and formats used by several infrastructure
provider’s APIs. They mainly use SOAP and REST on top of the HTTP request and
response messages. The SOAP protocol exchanges messages whose content include the
method name and input parameters in the request messages and the output data in the
response messages. On the other hand, REST is an architectural style for implementing
Web Services which defines the set of possible actions (HTTP verbs) performed in a
resource (URI). In this case, the method is determined by the HTTP verb and the URI
path, the input data can be included in the URI as query parameters or in the request
message content, and the output is returned in the response message. Another difference
between REST and SOAP is the format. While SOAP only uses XML format, the content
format in the REST implementations varies depending on the provider (Table 5.1). The
main APIs use HTTP headers, XML or JSON and, in all cases, they are used to describe
the cloud entities specifying their properties and values.

The RDF is also valid for this propose as it is based on a set of triples which define
resource’s property values. Moreover, this format also is able to bind resource and
properties to semantic concept defined in an ontology. So, RDF graphs can be easily
generated extracting these resources, properties and values from the selected API format
applying some format translation method such as [119] for XML or other tools which
converts other data formats to RDF [120].

In an initialization phase, the Annotation/De-annotation component generates the
semantic descriptions for the providers’ service descriptions to describe the different

5.3 Resource Mapping 75

types of actions and data. As explained in 5.2, the interface methods are modelled
by using the OWL-S ontology. These methods are defined as subclasses of the
owls:simpleProcess and the input and output datatypes are set in the range of the
owls:hasInput and owls:hasOutput properties. These ontologies are automatically
extracted from WSDL [121], WADL [122] or hREST [123] documents, parsing different
key parameters for identifying the actions and datatypes. In the SOAP case, the operations
and their input and output datatypes defined in the WSDL determine the provider’s action
type and input and output data ranges similarly to [124]. In the REST services, the HTTP
verb and URI path (defined in the WADL or hREST) determine the provider’s action type,
and the query parameters, the content type and the schemas determine the input and output
range.

During operation, the protocol messages are annotated to RDF graphs following the
generated providers’ ontologies. For achieving it, the Annotation/De-annotation compo-
nent automatically captures the network message and parses the same key parameters
as used in the service description for identifying the requested action type contained
in the protocol message. Moreover, it also extracts the input and output data from
the message content, getting the entities types, properties and values described in the
providers’ formats and annotates them in RDF graphs. Once a message is annotated, the
extracted RDF graph contains two parts: one part describing the requested action and
another part describing the input data. The data part will be processed by the Resource
Mapper to translate it to the target model and the action part will be treated by the Action
Planner to find the equivalent actions. The execution of these equivalent actions in the
target provider generates response messages describing the output data which must be
annotated and translated back to the source model following the same process that for the
input data. Once the data has been translated, the A/D de-annotates the RDF graphs to
the format expected by the provider. For doing this process, the action is translated to
the corresponding XML tag (in the SOAP case) or the HTTP verb and URI path (in the
REST case) and the input and output data are included in the message content with the
corresponding provider format.

5.3 Resource Mapping

Once the source provider data has been unified in RDF graphs, they could be translated
to other provider’s concepts, defining equivalences between similar concepts. There are
several options to express equivalences and mappings in the literature. One option is
the Ontology Web Language (OWL) which contains primitives to define equivalences

76 Infrastructure Interoperability

Table 5.2 Cloud Providers Resource Data Mapping.

API OCCI v1.1 Amazon Flexiscale Rackspace ElasticHosts

Virtual
Machine

Compute (Class) Instance (Class) Server (Class) Server (Class) Server (Class)
compute.cores (int)
compute.speed (int)
compute.arch (int)
compute.mem (int)

Instance.Type
(string)

server_product_offer
(int)

Server.flavor
(string)

Server.smp (int)
Server.cpu (int)

Server.mem (int)
StorageLink (Class) Optional:

blockDevice
(Volume)

Optional:
disk_product_offer
(int)

Server.ide (string)

NetworkInterface
(Class)

subnetId (string) vlan_id (string) (public network) Server.nic (string)

Storage Disk (Class) Volume (class) Disk (Class) (machine disk) Drive
compute.size (int) size (int) capacity (int) size (int)

Network Network (class) Subnet(class) VLAN(class) (public net) VLAN(class)
address (string) cidrblock (block) ip_address(string) - -

Rule { ## Compute-to-Server
(?resource rdf:type occi:Compute)

=>
(?resource rdf:type flexiscale:Server)

}

Figure 5.4 Example of rule to model a Class-to-Class equivalence

between classes (owl:equivalentClass) and properties (owl:equivalentProperty). How-
ever, it only allows one to one equivalences, so property to class equivalences can not
be modeled with this approach. The RDTL [125] extends the one to one mappings
with new mapping types, however it only treats mappings between ontology concepts
(classes, properties and datatypes) but it does not consider the property values which are
required for mapping different providers’ concepts. In our proposal, the equivalences
between providers’ concepts are modeled by rules. A rule is composed by the body,
which contains a set of conditions (premises), and the head which defines the inferred
facts (conclusions) when the body conditions are fulfilled. So, a rule definition can be
easily interpreted for defining equivalences and mappings. Classes, properties and values
from the source model are easily expressed as body conditions,; meanwhile the equivalent
classes, properties and values in the target model are mapped to head facts. Moreover,
rules can contain built-ins which are useful for comparing and operating with the property
values, increasing the number of possible mappings expressed with rules.

Table 5.2 shows the relationship between the main concepts defined in different
providers’ interfaces. Rows in this table group concepts which have similar meaning
where a kind of equivalence or mapping can be defined to translate them. Based on these
rows, different types of mappings have been identified. In Figure 5.4 , we enumerate
them presenting examples about how users can express them as rules. The first type of
mappings defines equivalences between classes, which model the same concept. (e.g.
Compute in OCCI is equivalent to Instance in Amazon or Server in Flexiscale).

5.3 Resource Mapping 77

Rule { ## Compute_mem-to-Server_mem
(?resource occi:mem ?value)

=>
(?resource elasticHosts:mem ?value)

}

Rule { ## Compute_properties-to-Server_product_offer
(?resource occi:cores ?cores)
(?resource occi:mem ?memory)
lessEqual(?cores, 2),
lessEqual(?memory, 512),

=>
(?resource flexiscale:server_product_offer 6)

}

Figure 5.5 Examples of rules to model a Property-to-Property equivalences

Rule { ## Server.ide-to-StorageLink:
(?resource elasticHost:ide ?storage)
makeNode(?link)

=>
(?link rdf:type occi:StorageLink)
(?link occi:source ?resource)
(?link occi:target ?storage)

}

Figure 5.6 Example of rule to model a Property-to-Class equivalence

Another type of mapping is related to property equivalences, where a value of one
property is used to infer the value of another property (e.g. the mem property of Compute

is equivalent to the mem property of Server in ElasticHosts), or where the value of a
group of properties determine another property value (e.g. Compute’s properties values
determine the server_product_offer value and vice versa). Examples of these type of
equivalences can be found in Figure 5.5.

Finally, there are also mappings between classes and properties which define equiv-
alences where classes are equivalent to properties and vice versa. Figure 5.6 shows
an example of these equivalences where the ide property of Server in ElasticHosts is
equivalent to a StorageLink class in OCCI.

Finally, the Resource Mapper uses a rule engine to apply data mappings and translate
data to the target provider. This mapping process is depicted in Figure 5.7. The source
data, provided by the A/D component in an RDF graph is loaded into an Inference
Model which is created with the source and target data ontologies and the rule engine.
Afterwards, the rule engine applies the translation rules over the input graph, which
generates a deductions’ graph. This graph contains the facts generated by the rules, which
correspond to the data translated from the input graph. As a result of the data mapping
process, the deductions’ graph is serialized in an RDF file which can be also converted to
the target provider’s format applying the de-annotation process explained in Section 5.2.1.

78 Infrastructure Interoperability

Figure 5.7 Resource Mapper Internal Design.

Figure 5.8 Action Planner Internal Design.

5.4 Action planning

The Action Planner is in charge of finding a workflow to perform the desired resource
management action in a selected provider by applying AI planning. AI planners are
systems which try to find a sequence of actions which are required to achieve a goal state
from an initial state. An AI planning problem is defined by an initial and goal states and a
planning domain which models how to describe the states and what are the possible state
transitions. The planning problem is basically solved by applying an state-space search.

Figure 5.8 shows how the AI Planning is used in the Action Planner component. The
management actions that users want to perform can be modeled as a planning problem
whose initial state describes the current status of the resources to manage and the goal
state describes what will be the desired status of the resources once the actions have been
applied. The semantic description of the provider models how the resources are described
and the possible actions of the provider interface. The information stored in the Provider

5.5 Evaluation and Discussion 79

model matches with the information provided by a planning domain definition where the
interface description could model the available as state transitions in the planning domain.
So, with the management actions and the provider model, the Action Planner builds
a planning problem. The generated planning problem is introduced to a Partial Order
Planner [126] which performs the search and provides a sequence of partially ordered
actions which produces the goal state from the initial state.

Finally, the Workflow Enactor executes the solution of the planning problem. This
component will make use of the Semantic Annotation/De-annotation component which
transforms the semantic description of the required interface methods to the real interface
invocations.

5.5 Evaluation and Discussion

A working prototype of the described system has been implemented to validate
the concepts presented in this chapter. The Infrastructure Provider Ontology has
been described using OWL [100] and the Apache Jena [115] is used to describe data
mapping rules and to perform the rule reasoning described in the Resource Mapper.
For implementing the Action Planner, we have used Planning4J [127] to generate the
planning domain and problem which is solved using the FF planner [128] which is an
efficient implementation of a Partial Order Planner. The prototype has been deployed in
an Intel i5 laptop with 8GB RAM and we have evaluated different aspects of it. First, we
have applied the Infrastructure Interoperability Framework in two scenarios. In the first
scenario, the framework is applied to infer the workflow for deploying the components of
an application. In the second scenario, the Infrastructure Interoperability Framework is
applied to translate interfaces between providers. In both cases, we evaluate the system
overhead and its scalability. In the last part of the section, we have compared our solution
with other interoperability solutions.

5.5.1 Inferring the Deployment Workflow

Following the overall storyline of the thesis, the Infrastructure Interoperability
Framework can be used to transparently deploy the required resources to run the
application components in the infrastructure providers. In this case, the framework is in
charge of finding a workflow to provision the required resources (VMs, shared disks and
networks), configuring the communication links and installing, configuring and running
the components on the provisioned resources. To achieve it, the framework components
are used in the way as depicted in Figure 5.9.

80 Infrastructure Interoperability

Figure 5.9 Usage of the Infrastructure Interoperability Framework for Inferring
Deployment Workflow.

In an initialization phase, the different infrastructure providers interfaces and re-
sources are described semantically with the Semantic Annotation/De-annotation and
Resource Mapper components. Then, the application placement solution, obtained
following the methodology explained in Chapters 3 and 4, can be seen as the desired
infrastructure state and the providers’ actions exposed in the interface define the state
transitions in a planning domain. Therefore, we use the Action Planner to generate the
AI planning problem whose initial state is empty state and the application placement is
goal state. As explained in Section 5.4, it also generates the planning domain from the
infrastructure provider model. Then, the generated problem is introduced to a Partial
Order Planner which performs the search and provides a sequence of actions which
produces the goal state from the initial state. For the installation, configuration and
execution of components, we have defined a set of extra common action to apply changes
on the image resource status. The Planner will inspect the resource status of the images
assigned to each VM and compares it with the installation, configuration and execution
description of the components assigned to these VMs. The required resources changes
will be the input of this action, which will generating a manifest to automatically apply
the VM configuration changes by using dev-ops systems like Puppet [98]. Finally, the
Workflow Enactor executes the deployment workflow obtained from the Action Planner
by invoking the required actions of the providers’ API. This component uses the Semantic
Annotation/De-annotation to semantically de-annotate the deployment workflow actions
converting them to the real infrastructure provider calls.

5.5 Evaluation and Discussion 81

Figure 5.10 Placement solution for the KOPI Application in Amazon EC2.

Overhead and Scalability

To validate the system capabilities in this scenario, we have inferred the deployment
workflow of the KOPI application, described in Chapter 3, to Amazon EC2 provider. The
deployment placement solution obtained for the KOPI application in the EC2 provider
is depicted in Figure 5.10, this placement result is passed to the Action Mapper of
the Infrastructure Interoperability Framework which returns a plan for deploying the
KOPI application in EC2. This plan is composed by a sequence of provider API calls
to provision the computing resources, and a set of Puppet manifests for deploying the
components in each VM. Figure 5.11 shows a snippet of the deployment workflow where
a Disk volume and a VM are created and the disk is attached to this VM. Then, the VM
is started and the IP address is obtained from its description. Finally, the installation
configuration and execution manifest is applied.

For this example, the Action Planner has taken 65 milliseconds for getting the
workflow which deploys the placement solution. To evaluate how the system performs
for larger applications, we have generated synthetic application placement descriptions
with different number of VMs to deploy. We have measured the time spent by the
system to infer the deployment workflow for the different placements. The result of
these measurements are depicted in Figure 5.12 where we can see how the inference
time is related with the number of VMs. As we can see in the figure, the processing
times grow polynomially with the number of VMs. In terms of time scale, inferring the
deployment for large applications whose deployment requires hundreds of instances and
VMs is obtained in several seconds. Despite, the time can be large for other problems; in
the case of application deployment it is acceptable for the users because the deployment,
booting, installation, configuration and execution of applications in the Cloud with a large

82 Infrastructure Interoperability

sequence{
...
action{ ec2:createVolume

input{ size = 50; location = us-east;};
output{ volumeID = ?ID_2;};

};
action{ ec2:createInstance

input{ type = m3.2xlarge; location = us-east;};
output{ instanceID = ?ID_4;};

}
action{ec2:attachVolume

input{volumeID = ?ID_2; instanceID= ?ID_4;};
}
action{ec2:startInstance

input {instanceID= ?ID_4;};
};
action{ec2:describeInstance

input {instanceID= ?ID_4;};
output{ description= ?InstanceDescription_4};

};
(?InstanceDescription_4 ec2:ip ?ip)
action{puppet:applyManifest

input {node= ?ip ; manifest=node4.pp};
};
...

}

Figure 5.11 KOPI Deployment Workflow Snippet.

number of VMs can take several minutes or even hours.

5.5.2 Interface Translation

The second scenario, where the Infrastructure Interoperability framework is applied,
is the translation of interfaces. In this scenario, the calls performed in one provider API
are transparently translated to another API. Figure 5.13 shows how the Infrastructure
Interoperability Framework is used in this scenario. The Semantic Annotation/De-
annotation component generates the semantic descriptions from the interface descriptions
and the requested methods calls and vice versa. The Resource Mapper translates the
data from one provider’s model to another provider’s model by applying the defined
data mapping rules. The Action Planner infers the target provider’s actions which are
equivalent to the invoked provider call. Finally, the Workflow Enactor is in charge
of executing the translated actions and getting the output data which will be translated
back to the source model by using the Semantic Annotation/De-annotation and Resource
Mapper components.

Figure 5.14 shows in detail how the framework components are invoked in the
different phases. In the initialization phase (Figure 5.14.a), each interface description
is semantically annotated creating a provider ontology which models the actions offered
by each provider and the data model used to describe action data and resources. In
addition to the descriptions, a set of Data Mapping Rules is provided to model the

5.5 Evaluation and Discussion 83

0 250 500 750 1000
0

50

100

150

200

250

300

350

400

450

500

Application VMs

T
im

e
 (

se
co

n
d

s)

Figure 5.12 Overhead introduced by the Infrastructure Interoperability Framework for
Inferring the Deployment Workflow depending on the number of VMs to deploy.

Figure 5.13 Usage of the Infrastructure Interoperability Framework for Interface
Translation.

84 Infrastructure Interoperability

(a) Initialization Phase

(b) Operation Phase - Request Message (c) Operation Phase - Response Message

Figure 5.14 Interoperability processes

equivalences between data descriptions from different provider’s interfaces. During the
operation phase, actions are requested using a source provider interface (Figure 5.14.b).
These calls are captured and semantically annotated following the source provider model,
extracting the requested actions and their input data. Then, the input data is sent to the
Resource Mapper which automatically converts the input parameters to the corresponding
descriptions in the target model by applying the data mapping rules. Then, the Action
Planner creates a planning problem with whose initial state are the translate input and
preconditions of the requested actions and the goal states are the translated description of
the source action request. The state transitions are described by the available actions
of the target provider model. The solution of the planning problem is the sequence
of target provider’s actions which has the same effect as the invoked source action.
Once the requested action and the input parameters have been converted to the target
model, they are sent to the Workflow Enactor, which extracts the actions to execute,
transforming the converted parameters in the format required by the target provider using
the Semantic Annotation/De-annotation component, and invokes the equivalent process
using the supported protocol. Finally, the invocation of the workflow actions produce
output data which must be translated into the source data model applying the inverse rules
and de-annotating the data in the source format (Figure 5.14.c).

Overhead and Scalability

For validating and evaluating the Interoperability system, we have implemented
translations between OCCI towards Amazon, FlexiScale or ElasticHosts. We have chosen

5.5 Evaluation and Discussion 85

Figure 5.15 Performance Evaluation

these three commercial providers because they use different formats and contain different
data and action mapping types. The mapping type complexity is closely related to the
number of required rules for translating the APIs. So, few rules are required when APIs
are very similar or when the rules used in one way can be used for the inverse translation.
This is the case of the OCCI and ElasticHosts where Compute-Server classes are almost
the same. On the other hand, mappings such as the OCCI’s Compute to Flexiscale’s Server

Product Offers or Amazon’s InstanceTypes require more rules because several instance
types can be defined depending on the compute properties values.

Figure 5.15 shows the time spent for translating actions. It includes the time spent in
translating input data with the translation rules, the inference of the equivalent actions, and
the output data evaluating again the data translation rules. The translation time has been
measured for different number of rules, which model different degrees of complexity;
and the number of actions involved in a cloud application deployment. The 20 Rules case
models easy data translations; The 60 Rules case models medium complexity translations.
Finally, the 120 Rules case models high complex translations. As we can see in the figure,
the translation time grows faster with the translation complexity but almost linearly with
the number of actions. When the complexity is low, the number of rules to evaluate is
low and the equivalent actions are more or less one or two, so the time to infer this kind
of translations is small. If we increase the translation complexity, the number of rules
grows and the equivalent actions also grow. The reason why the growth with respect of

86 Infrastructure Interoperability

Table 5.3 Overhead Impact

OCCI Interop. + Flexiscale Relative Interop. + Amazon Relative
FlexiScale Overhead Amazon Overhead

Post Compute 37488 ms 37439 ms 0.13% 2346 ms 2297 ms 2.13%
Get Compute 1030 ms 1078 ms 4.66% 279 ms 231 ms 20.78%
Delete Compute 1462 ms 1415 ms 3.32% 322 ms 275 ms 17.09%
Post Storage 23869 ms 23819 ms 0.44% 448 ms 398 ms 12.56%
Get Storage 1146 ms 1097 ms 4.47% 336 ms 287 ms 17.07%
Delete Storage 1001 ms 949 ms 5.48% 340 ms 289 ms 17.65%
Post Network 10958 ms 10910 ms 0.44% 313 ms 265 ms 18.11%
Get Network 1195 ms 1145 ms 4.37% 256 ms 206 ms 24.27%
Delete Network 1282 ms 1233 ms 3.97% 266 ms 217 ms 22.58%
Post StorageLink 1173 ms 1125 ms 4.27% 566 ms 508 ms 9.45%
Post NetworkInterface 2363 ms 2310 ms 2.29% - - -
Shared Storage (Post Compute
x2 + Storage +

86580 ms 86512 ms 0.08% 5418 ms 5350 ms 1.27%

StorageLink x2)
Shared Network (Post Com-
pute x2 + Net. + NetIf.x2)

75394 ms 75324 ms 0.09% 4594 ms 4524 ms 1.55%

Service Deployment (Post
Compute x3 + Net.

154051
ms

153931
ms

0.08% 9198 ms 9078 ms 1.32%

+ Storage + NetIf.x3 + Stor-
ageLink x3)

the actions is almost lineal, it is because treating several actions is almost repeating the
same procedure for the different actions. In this scenario, where we translate API calls,
the planning problem is simpler than the previous scenario because equivalences can be
found with very few actions, and therefore it also affects to the scale of the inference time,
that is considerably smaller in this scenario.

To have an idea about how important the overhead is, we have compared the
response times obtained from the invocation of different actions through the Infrastructure
Interoperability Framework with the direct invocation of the translated actions. On one
hand, different actions supported by the OCCI API have been submitted to the system
which has been translated and executed at Flexiscale and Amazon. On the other hand,
the translated actions have been directly invoked using the providers’ APIs. The response
time of these processes has been measured and compared, and the results are shown in
Table 5.3. Observing the relative overhead (%), they are not very significant for creating
resources, but it can be very important in actions for getting or deleting resources because
the response time in these cases is very small. However, the absolute values (calculated as
the difference between the direct executions and the interoperability columns) are more
or less the same (50 milliseconds) for single actions, so the final user will not appreciate
the difference between executing directly or by means of the system.

5.5 Evaluation and Discussion 87

5.5.3 Comparison with other approaches

Several solutions for solving the vendor lock-in were introduced in Chapter 2. One
of these solutions is defining a standard interface and one example of this solution is
Open Cloud Computing Interface proposed by Open Grid Forum. The main drawback
of this solution is that all the providers have to implement this interface for managing
their resources. Despite small vendors be interested on developing this implementation
to attract more users if the standard is broadly adopted, big vendors are reluctant to offer
standard interfaces because vendor lock-in is beneficial for their interests due to they
control the most important part of users. Another type of solutions is the plug-in/driver
approaches such as jClouds, deltaCloud or DaseinCloud. They define an open API or
interface and the interoperability with the infrastructure providers are done by means
or plug-ins or drivers which implements the translation from the common interface to
the specific provider’s API. Our approach presents several benefits with respect of these
proposals which are explained in the following paragraph.

Plug-in approaches define interfaces which must be implemented by programmers.
The implementation of a plug-in requires: the knowledge of the plug-in interface (model,
technology used, programming language, etc.), the identification of the data and action
mappings between both APIs, the implementation of these mappings using the driver’s
programming model and language, and finally, invoking the interface calls fighting with
protocols and formats used in the providers’ interfaces. In our case, this complexity is
reduced to only identify the mappings and express them as logic rules, without writing
code and hiding all protocol and formats issues.

Rule languages provide an easier way to describe equivalences and mappings than
implementing them with current programming languages. For implementing data
mappings in plug-in approaches, the plug-in programmer has to parse the required
properties and classes navigating through the input data and coding the generation of
the output data. With rules, only the required source data and equivalent target data must
be specified in the rule. The rule and planning engines will automatically detect when the
required data is contained generating the equivalent data and the equivalent method calls.

Regarding aforementioned benefits with respect to plug-in approaches, we have com-
pared the complexity of implementing a jClouds plug-in for EC2 with our Infrastructure
Interoperability Framework. The available implementation of the compute plug-in for
Amazon EC2 has 76 classes with bit more than 2200 lines of code. To develop an
equivalent plug-in implementation with our framework, we have defined 84 rules for
translating instance types and other data types defined in the EC2 interface used by
the jClouds plug-in. The size of the rule definition is about 515 lines. Therefore, our

88 Infrastructure Interoperability

implementation just require around the 20% of the development and maintenance effort
that a plug-in requires.

Moreover, plug-in approaches are statically bound to a specific source interface which
is implemented by the different plug-ins and drivers. Our system is more flexible than
these approaches, we do not force the user to learn a new interface and data model, we
bring the opportunity to use the interface which he/she is more familiar.

Our approach is also easier to maintain, in current approaches a change in a provider’s
interface will require to update the code of the provider’s plug-in. However, in our
approach, there is no need to change any code; the user just needs to update mapping
rules, if the interface changes affects to data descriptions. The rest is automatically
updated by the system. The A/D component will update the semantic description of
the providers’ interface, and the Action Planner will automatically generate the action
equivalences according to the updated descriptions in an on-demand way. So, next time
we require to do a resource management action, the updated equivalences will be applied.

Moreover, our approach can support different interoperability scenarios changing only
the defined mapping rules. We can support the most common scenario addressed by plug-
in approaches, where a user want to deploy resources in different providers. In this case,
the framework can be configured only defining mapping rules from the interface used by
the user to the provider’s ones. In addition to this, if we redefine the rules in an inverse
way, the system can support the case where a provider want to support different APIs for
facilitating the portability of clients which were using other providers without modifying
their original API. Finally, if we charge both sets of rules, the system can also support a
brokerage scenario making translations between different interfaces using an intermediate
model.

Finally, despite we are using semantic technologies for doing the translation, most
of these semantic issues (annotation/de-annotation, ontologies, etc.) are automatically
performed and hidden to final users. They only have to use a small set of properties during
the rule definition to refer to common properties such as the rdf:type for identifying the
entity type or the owls:hasInput and owls:hasOutput for defining action input and output
parameters.

5.6 Conclusion

In this chapter, we have proposed a framework for solving the vendor lock-in
problem and facilitating the infrastructure provider interoperability. We have presented
a methodology to automatically infer the set of provider’s interface calls required to

5.6 Conclusion 89

perform any resource management tasks by applying different AI techniques. This
framework includes a Semantic Annotation/De-annotation component which is in charge
of generating semantic models from interface descriptions and calls and vice versa.
Then, translations between the different models are performed by rule reasoning and AI
planning. Users define data equivalences by means of rules which are applied by the
Resource Mapper component, and the Action planner generates an AI planning problem
from the requested resource management tasks and the provider’s model. This problem
defines the initial and goal resource states from the management tasks and the planning
domain which models the state transitions from the available provider’s interface actions.
The result of this AI planning problem provides the sequence of actions in the provider’s
interface which performs the requested management action.

The proposed Infrastructure Interoperability Framework has been applied in two
scenarios. The first scenario is about inferring the workflow of required provider’s actions
for deploying the resources for running the application components, and the second
scenario is about translating interfaces between providers. In both scenarios, we evaluate
the overhead introduced by the framework. For the first scenario, the most important part
of the overhead is produced by the Action Planner to infer the deployment workflow.
Despite it grows polynomially, it is still reasonable because the deployment of large
applications can take several minutes or even hours. The overhead in the case of interface
translation, is smaller an grows almost linearly because the problems solved by the Action
Planner are simpler and applying the translation rules takes less time.

Finally, we have compared our solution with similar interoperability solutions which
are based on open interfaces which interoperate with different infrastructure providers by
means of plug-ins. Our approach reduces the complexity of plug-in implementation and
maintenance by just defining and maintaining a set of rules for defining equivalences
between data models. The rest of the translation is automatically performed by the
system. Moreover, plug-in approaches are statically bound to a specific interface which is
implemented by the different plug-ins and drivers. Our system is more flexible than these
approaches, it does not force users to learn a new interface and data model and it brings
the opportunity to use the interface which they are more familiar.

90 Infrastructure Interoperability

Chapter 6

Multi-agent Management

Previous chapters of the thesis have studied how to automate the different steps
involved in a deployment of applications in distributed computing platform. We have seen
their benefits and evaluated the overhead and the scalability. During this evaluation, we
have seen that, in some scenarios, when the number of tasks and resources to evaluate is
large, some issues appear which limit the scalability of the resource allocation process
within a single node. Therefore, we require to find a mechanism to distribute the
deployment across the different actors involved in the application deployment in order
to solve the scalability issues. Besides, once the application deployment has finished
and the application users can start to use it, the computational load of the application
components can vary depending on the usage performed by these users. If a certain
quality of service must be guaranteed, we require a mechanism to modify the number
of resources assigned to serve the users request accordingly to the computational load
variation. Finally, distributed applications are prone to suffer resource failures or a
network outage can happen making part of the resources inaccessible, etc. To reduce
the application downtime, we require to have some self-healing features which enable
the application to recover from these failures. This chapter aims to develop a system
to improve the scalability issues and provide self-adaptation features to control the
application execution. To achieve it, we propose a multi-agent autonomous management
system which coordinates the different steps of the deployment processes in an scalable
way and monitors the application execution detecting and solving failures as well as
adapting the number of resources to the computational load. The rest of the chapter is
organized as follows: first, Section 6.1 presents the overall solution and Sections 6.2, 6.3,
6.4 provide more details about the features of the implemented software agents. Then,
Section 6.5 provides the evaluation results and Section 6.6 compares our solution with
other approaches. Finally, Section 6.7 draws the conclusions about the topic.

92 Multi-agent Management

Figure 6.1 Multi-Agent Management Architecture

6.1 Methodology

Multi-agent technologies [7] are used to increase the autonomy and self-management
of a system. Agents are proactive, so they can take decisions by themselves according to
their goals and trigger actions by their own initiative. For these reasons, agents are suitable
for coordinating the deployment and execution of applications in distributed computing
environments. Agents can adapt their behavior depending on how the execution of the
application execution is evolving, detecting execution problems and triggering the most
appropriate actions for reacting to them depending on the system status and the resource
capabilities. Agents are also capable to communicate to each other. They implement
negotiation protocols which are very useful to reach agreements and cooperate with other
agents. It is also very useful for distributing the work and responsibility of deploying
applications between a group of software agents, keeping the benefits of the semantics
proposed in the former chapters, but adapting the process to a Multi-Agent Resource
Allocation (MARA) approach [129].

Figure 6.1 shows the architecture of the distributed management system across
multiple agents. Users’ applications and provider’s resources are represented in the
system by software agents which are in charge of performing application and resource
management respectively. Moreover, they also share the functionality of semantic
resource allocation which has been split into two parts. On one hand, the Application
Agent (AA) is in charge of requesting proposals for allocating applications and selecting
the best one for the customer’s interest. On the other hand, the Infrastructure Agent (IA)

6.2 Application Agent 93

Status Active Goals Plan

Submitted Get Resources Infer Deployment Model
Negotiate Allocation

Scheduled Find Better Scheduling Monitors Application Ends
Negotiate Allocation

Running Monitor Execution Check Performance
Recover Degradation Update Deployment Model

Increase/decrease Resources
Stopped Recover Stopped Negotiate Allocation
No Scheduled Recover Non Scheduled Negotiate Allocation
Canceled Cancel Job Notify Cancellation to resources

Table 6.1 Application Agent Plans

is in charge of making allocation proposals for applications in its resources according to
the provider’s interest.

In this approach, agents have been implemented using a Belief-Desire-Intention (BDI)
model [130]. For each type of agent, a set of data (Beliefs), goals (Desires) and plans
(Intentions) are defined to model the behavior of the agent. At runtime, the agents BDI
engine monitors the values of the data. According to these values, it activates the goals to
achieve and execute plans with the actions to reach these goals. The following paragraphs
describe in detail the Application and Infrastructure Agent functionalities and how the
BDI model is applied for implementing them.

6.2 Application Agent

The main beliefs for an Application Agent are the Application descriptions. They have
been described following the Application Deployment Ontology presented in Section 3.2
which includes: the different resource requirements, the time constraints and the Quality
Rules of the application components and links; the application components’ execution
status; and other customer’s properties such as level of preference, customer’s reputation,
etc. which can be important for solving conflicts during the application execution.
The main goal of an Application Agent is managing the execution of the application
components in the resources of the system. This execution has different states. Some
of them indicate that the execution is running in a normal way, while others indicate that
the execution could not be finalized. Depending on the state, the Application Agent has
to act in a different way to reach its main goal.

Table 6.1 lists subgoals and plans for implementing the Application Agent features.
When an application reaches one of the status listed on the table, the Application Agent
activates one or several subgoals and triggers the execution of plans to achieve the subgoal.
These plans model how the agent behaves for each situation. For instance, when an
application is submitted for deployment, it starts with a Submitted state, the Application

94 Multi-agent Management

Agent actives the Get Resources goal which triggers the execution of Infer Deployment

Model Plan which perform the ontology and rule reasoning over the semantic application
description as described in Chapter 3. The inference result modifies the application
description indicating how many instances of the application components must be
deployed and their affinity. Once this plan has finished, the application agent executes
the Negotiate Allocation plan which starts a negotiation with the Infrastructure Agents
in order to find the most appropriate resources to execute the application component
instances. This negotiation is explained in detail in Section 6.4. A successful negotiation
changes the status to scheduled and the Application Agent will activate new goals and
plans.

Once the application is running, the Application Agent activates the goal for
monitoring the execution. This goal periodically triggers the mechanism for evaluating
if the required performance is fulfilled. It is performed by monitoring the load metrics
defined in the application description and evaluating the Quality Rules with the collected
values of the load metric and the quality level defined for the application. The evaluation
of these rules will provide the required number of resources per component. If it is differs
from the actual values, the Application Agent activates the Recover Degradation goal
which triggers the appropriate plans for adapting the resources to the current load by
deploying or removing resources.

The Application Agent also applies fault-tolerance techniques to recover itself from
status which can alter the normal execution of the application (stopped, no scheduled). In
the situations where a running application component has been stopped, it will execute
plans for redeploying the component. An application can also reach a No Scheduled

state because the allocated resource has rejected the application component. Then, the
Application Agent tries to recover from this status negotiating a new allocation for this
component. If the plans for recovering from status stopped, and no scheduled do not
achieve the recovery goal, the plan will be executed again when a system event indicates
that some resources have been released (new resource added or an application execution
has finished).

6.3 Infrastructure Agent

The main goal of an Infrastructure Agent is the management of resource capabilities
for executing the applications requested by the customer. For achieving it, a set of beliefs
have been defined: the resources descriptions, where the properties and capabilities of
the resources controlled by the agent are described; the allocation of the application

6.3 Infrastructure Agent 95

Beliefs Active Goals Plans

Schedule Application Components Monitor Scheduled Applications Components Evaluate Scheduled Application Components
Perform Application Component Execution

Running Application Components Monitor Running Application Components Evaluate Running Application Components
Treat Status change

Failed Recover Resource Failure Try Local Reschedule
Notify Application Agents

Running Register Resource Annotate resource description

Table 6.2 Infrastructure Agent Plans

components assigned to the resources controlled by the agent; and the status of each
resource. These beliefs are described following the Resource Allocation Ontology
described in Section 4.2. In Addition to the beliefs, a set of subgoals and plans have
been defined to model the Infrastructure Agent behavior. They are shown in Table 6.2.

Infrastructure Agents contain two subgoals for monitoring the scheduled and running
application components assigned to their resources. They are periodically activated while
the resources have scheduled or running components. Every time the subgoals are
activated, the Infrastructure Agent executes a plan for checking the scheduled or running

application components. The plan executed for the scheduled components (Evaluate

Scheduled Application Components) checks if the start time has been reached and, if
that is the case, the agent proceeds with the deployment and execution of the component
at the selected resource. In the case of running components, the plan (Evaluate Running

Application Components) checks their status and, if a deadline has been defined for the
component, the agent checks if it has been reached. If it is the case, the Infrastructure
Agent cancels the component execution and notifies the cancellation message to the
corresponding Application Agent.

Additionally, the Infrastructure Agent is also prepared to react to resource failures.
The plan for recovering the failure communicates the failures sending a stopped noti-
fication message to agents whose components were scheduled at the failed resources.
The Application Agents treat these notifications according to the plans explained in
Section 6.2. Once the resource is running, the Infrastructure Agent annotates the resource
description and registers it in the SMR for enabling the execution of applications in the
resource. Semantic Resource Annotation and the actions for deploying and executing the
application components are performed by using the Interoperability Framework described
in Chapter 5.

Finally, the Infrastructure Agent contains plans for responding to the call for
scheduling proposal in order to collaborate in the resource allocation decisions. This
distributed allocation process is explained in detail in Section 6.4.

96 Multi-agent Management

Figure 6.2 Distributed Allocation negotiation protocol

6.4 Distributed Semantic Resource Allocation

Chapter 4 has described a centralized semantic approach for allocating computational
tasks on resources. This centralized approach could have scalability issues when
the number of tasks and resources is large. Taking profit of the sociability features
of software agents, we have distributed resource allocation functionality across the
Application and Infrastructure Agents. When a resource allocation for a particular
application component or task is requested, a negotiation between the Application
Agent and a set of Infrastructure Agents is initiated by using the Contract Net Protocol
(CNP) [131]. Figure 6.2 shows the message exchange between these agents for allocating
the computational tasks on the resources. When an Application Agent has activated a goal
for allocating resources (Get resources), it builds a query for selecting candidate resources
based on the application component description (1). This query will return the providers
which contains resources matching with the component requirements. Once a set of
Infrastructure Agents has been selected, the Application Agent initiates a negotiation
sending them a call for allocation proposals (2). Each Infrastructure Agent makes its
own proposal according to their load and interests and returns it to the Application Agent
(3). Finally, the Application Agent evaluates all the received proposals (4) selecting the
best one for its interests and rejecting the others (5).

Infrastructure Agent proposals and Application Agent evaluations are done using the
Semantic Scheduler module of the Semantic Resource Allocation presented in Chapter 4.
In the Infrastructure proposal, the Rule Engine of the module is populated with the

6.5 Overhead and Scalability Evaluation 97

Rule { ## Select the allocation with earliest deadline
?alloc1 rdf:type rao:Allocation
?alloc1 rao:uses ?resource
?alloc1 rao:allocates ?task
?alloc1 rao:plannedEndTime ?endTime1
?alloc2 rdf:type rao:Allocation
?alloc2 rao:uses ?resource
?alloc2 rao:allocates ?task
?alloc2 rao:plannedEndTime ?endTime2
?task rao:status rao:Submitted
lessThan(?endTime1, ?endTime2)

=>
drop(?alloc2)

}

Rule { ## Select the resource with allocations first
?alloc1 rdf:type rao:Allocation
?alloc1 rao:uses ?resource1
?alloc1 rao:allocates ?task
?resource1 rao:usedBy ?alloc)
?alloc2 rdf:type rao:Allocation
?alloc2 rao:uses ?resource2
?alloc2 rao:allocates ?task
noValue(?resource2 rao:usedBy)
?task rao:status rao:Submitted

=>
drop(?alloc2)

}

Figure 6.3 Example of provider’s policy rules to generate allocation proposals.

possible allocation based on provider’s resource descriptions and components already
scheduled on them. This module will apply the rules for generating the Allocation
proposals according to the current load, eliminating the allocations which do not fulfill
the provider’s interest. Figure 6.3 shows examples of rules for evaluating time constraints
such as a deadline or a green provider’s policy for allocating first resources already in use
in order to save energy switching off empty resources.

In the case of the Application Agent proposal selection, the rule engine module is
populated with the application description and the allocation proposals received from
the selected Infrastructure Agents and apply the rules for selecting the best allocation
according to customer’s interest, eliminating the others. Figure 6.4 shows examples of
these rules. An earliest start date policy can be expressed as described in the first rule
of the figure. In a similar way, a rule for selecting the best proposal according to the
provider’s preference can be defined as shown in the second rule of the figure.

6.5 Overhead and Scalability Evaluation

The multi-agent management system is implemented using different existing Java
frameworks. The system agents have been developed with the Jadex framework [132]
which offers an easy interface for implementing agent beliefs, goals and plans. It is

98 Multi-agent Management

Rule { ## Select the allocation with earliest start time
?alloc1 rdf:type rao:Allocation
?alloc1 rao:uses ?resource
?alloc1 rao:allocates ?task
?alloc1 rao:plannedStartTime ?startTime1
?alloc2 rdf:type rao:Allocation
?alloc2 rao:uses ?resource
?alloc2 rao:allocates ?task
?alloc2 rao:plannedStartTime ?startTime2
?task rao:status rao:Submitted
lessThan(?startTime1, ?startTime2)

=>
drop(?alloc2)

}

Rule { ## Select the resource with preferable provider
?alloc1 rdf:type rao:Allocation
?alloc1 rao:uses ?resource1
?resource1 rao:isProvidedBy biz:ResourceProviderA
?alloc1 rao:incarnates ?abstResource
?alloc1 rao:allocates ?task
?alloc2 rdf:type rao:Allocation
?alloc2 rao:uses ?resource2
?resource2 rao:isProvidedBy biz:ResourceProviderB
?alloc1 rao:incarnates ?abstResource
?alloc2 rao:allocates ?task
?task rao:status rao:Submitted

=>
drop(?alloc2)

}

Figure 6.4 Example of customer’s policy rules for selection the best allocation
proposals.

deployed on top of the JADE agent platform [133] which allows us to build a multi-agent
platform distributed across several computing nodes. Semantic annotations, queries and
reasoning components are implemented with the Jena 2 Semantic Web framework [115].
It provides an API for managing RDF files and SPARQL queries as well as a semantic
reasoner with rule engine support.

In a first qualitative evaluation of the architecture, we can see the following benefits:
agents and the BDI engine facilitates the execution of complex tasks such as the resource
and application management and the reaction to unpredictable events such as failures.
With BDI agents, this kind of problems can be solved in a high level view instead
of entering in detailed mechanisms for implementing a specific solution. Agents also
implement negotiation and coordination protocols which allow the distributed resource
allocation to integrate the customer’s and infrastructure providers’ interests in the same
scheduling mechanism. Moreover, the different agents can be deployed across multiple
locations deploying agent containers on different machines. Each container implements a
messaging system which allows the communication between agents located on different
containers. The distributed configuration of the agent platform can improve the scalability
of the Semantic Resource Allocation because the different parts can be processed in
parallel on agents deployed in multiple hosts.

6.5 Overhead and Scalability Evaluation 99

Centralized Approach

User

SMR

SeS

t

Select
Cands. D

o
w

n
lo

a
d

D

e
s
c
ri

p
ti

o
n

s

U
p

d
a
te

C

h
a
n

g
e
sInfer

Scheduling

Distributed Approach

AA

SMR

IA 1

t

Select
Cands.

Infer Sched.
Proposal

IA 2 Infer Sched.
Proposal

Eval.
Props

T dd
T T T

T T

sc

isp

is uc

T
sc ep

N
e
g

.
O

v
e
rh

e
a
d

N
e
g

.
O

v
e
rh

e
a
d

N
e
g

.
O

v
e
rh

e
a
d

T
oh

T
oh

T
oh

Figure 6.5 Centralized vs. Distributed processes comparison

Finally, we have performed a quantitative evaluation of the overhead and performance
of the distributed approach comparing them with the centralized approach. Figure 6.5
compares both resource allocation approaches. The first part in both approaches is almost
the same, since queries to select the candidate resources or the candidate resource agents
need to evaluate the same resource requirements. So, there is no difference in this
overhead. The time for getting the candidate resources depends only on the number of
resources, and it is low compared to the other processes. In the centralized approach, the
Semantic Scheduler (SeS) required the SMR for getting candidate resources and allocated
computational tasks, as well as for updating the allocation results. In the distributed
approach, the SMR is only needed to advertise the resources because Infrastructure
Agents only evaluate their local resources and tasks assigned to them, and these
descriptions are stored locally. In contrast, a negotiation overhead has been introduced.
So, the time for negotiating an allocation between Application and Infrastructure Agents
is max(Tisp) + Tep + Toh, meanwhile the allocation time with the centralized approach is
Tdd + Tis + Tuc. We have evaluated the system in the same scenarios where we evaluated
the centralized approach in Chapter 4: the Grid Scheduling, Private Cloud and Multi-
cloud. Figure 6.6 shows the comparison between the total allocation times in the different
scenarios using the centralized approach and the multi-agent approach distributed across
different number of agents.

The most important issue we can see in Figure 6.6 is the trade-off between the
granularity of the distribution and the time for getting the resource allocation. If the
number of resources and tasks is small, the distributed approach performs worse than the

100 Multi-agent Management

(a) Allocation time comparison for Grid Scheduling scenario

(b) Allocation time comparison for Private Cloud scenario

(c) Allocation time comparison for Multi-Cloud scenario

Figure 6.6 Centralized vs. Distributed allocation times comparison

6.5 Overhead and Scalability Evaluation 101

Agents 1 3 5 7 9
Time(msec) 804 1192 1585 1996 2510

Table 6.3 Negotiation Overhead

centralized one. This is due to the behavior of the different times in the different situations.
With small number of resources in the system, Tdd, Tis and Tuc are small, meanwhile, the
negotiation overhead (Toh), which is produced by the message exchanges and the BDI
engine, is very important (see Table 6.3). On the other case (big number of resources),
Tdd, Tis and Tuc grows faster with the number of resources and tasks than Tisp, Toh and
Tep, because the inference work in Tisp is distributed across the Infrastructure Agents and
Toh and Tep keeps almost invariant with the increment of resources because they depend
on the number of agents.

The time for inferring the allocation proposal with multi-agents (Tisp) has a similar
behavior than the time for inferring the allocation in the centralized approach (Tis).
Infrastructure Agents make the same inference than the Semantic Scheduler but only with
the local data instead of the global number of resources and tasks. The inference of the
scheduling proposals is done in parallel on the selected Infrastructure Agents. The time
to perform it varies on each resource depending on the number of resources controlled
by the agent and tasks scheduled on these resources. The best performance of this part
is found when all Infrastructure Agents control the same number of resources and the
resource allocation is well balanced. In this situation, the selected Infrastructure Agents
evaluate the maximum number of resources and tasks with the minimum cost in time.

Finally, we have evaluated the effect of deploying several agents on the same machine.
Figure 6.7 shows the allocation time deploying different agents to the same node. The
allocation time is similar if the number of agents per host is small. The gain in exchanging
messages is more or less compensated by the share of resources during the parallel
computation in the same node. However, when we deploy several agents in the same node
the allocation time starts to grow considerably. It is caused by implementation details
of the agent platform. Each agent is implemented as a Java thread, so when the number
of threads is bigger than the number of cores of the machine (8 cores in our case), the
allocation inference time is degraded because several agents have to share the processing
and memory resources which starts to be more important than the network overhead.
As a consequence, deploying too many Infrastructure Agents on the same host produces
performance degradation in the allocation process.

102 Multi-agent Management

Figure 6.7 Deployment configuration vs allocation time

6.6 Comparison with other approaches

The idea of using software agents in the management of distributed platforms was
introduced when in [82] where Foster et al describe the benefit of integrating the results
in both research areas. Software agents could improve the autonomy, flexibility and
scalability of current distributed platforms in different areas, however multi-agent system
researchers have mainly focused on the area of resource allocation and job scheduling.
Regarding this area, several solutions have been proposed, such as the ones based on
market-control, where each agent tries to maximize its benefit function and the market
controls them,; the ones based on social wellfare, where the multi-agent system tries
to maximize a collective benefit,; and other ones based on game theory. There is a
lot of literature about market based allocation solutions. We would like to highlight
proposals like Challenger [83], Tycoon [84], other studies more focused on Grids such
as TRACE [87] or ARAM [88] and the projects CatNets [89] and Sorma [91]. The works
on wellfare engineering and game theory for multi-agents resource allocation has been
compiled in [85] and [86].

Our work does not aim to implement or improve the existing algorithm to solve
the multi-agent allocation problem, each of the mentioned solutions have their own
advantages and drawbacks. However, they have been tailored for specific problems and
systems, so the integration and adaptation to new computing environments is complex.
To make this adaptation, developers and system administrator have to adapt descriptions
of tasks and resources to the schemes supported by these systems. In contrast, our
solution combines the multi-agent resource allocation with the benefits of semantics on
interoperability, facilitating the integration of applications and infrastructure resources

6.7 Conclusion 103

coming from different customers and providers. We have introduced the multi-agent
solution in the Semantic Resource Allocation leaving users the possibility of extending
or changing the policies. In our system, customers and providers can describe the most
convenient scheduling rules for their interests. Those policies will be combined during the
negotiation, trying to get a solution to satisfy all of them. Moreover, Infrastructure agents
are integrated with different Infrastructure Interoperability Framework which allow us to
semantically annotate the different provider’s resources and interfaces.

Finally, our multi-agent system also integrates fault-tolerance and adaptation capa-
bilities. Our solution was the first solution to introduce multi-agent systems in the
semantic resource allocation and to use software agents for managing the application
monitoring, adaptation and fault tolerance in an integrated way. Currently, other cloud
middleware also include monitoring, fault tolerance and adaptation services. However,
these solutions are based on central services which must be configured by the user using
the provider’s interface. In contrast, the software agents of our multi-agent approach
already have integrated the self-adaptation and fault-tolerance features, so they are
inherently distributed across the agents and do not require extra configuration steps.

6.7 Conclusion

In this chapter, we have studied how to introduce the benefits of software agents in the
application management in distributed platforms. We have designed and implemented a
multi-agent system which is in charge of coordinating the different steps of the application
deployment introduced on the previous chapters in a distributed way as well as monitoring
the correct execution of the application in the computing resources. Two types of
agents have been defined: Application Agents, which are in charge of the application
management; and Infrastructure Agents, which are in charge of the resource management.
Moreover, these agents also share the functionality of semantic resource allocation
described in Chapter 4 which has been split into two parts. On one hand, the Application
Agent is in charge of requesting proposals for allocating applications and selecting the best
one for the customer’s interest. On the other hand, the Infrastructure Agent is in charge of
making allocation proposals for applications at its resources according to current resource
load and the provider’s interest.

When the application is submitted to the system, an Application Agent starts to
manage it taking different actions according to the application status. The application
starts in a submitted status, at this state, the Application Agent performs the deployment
model inference as presented Chapter 3 and negotiates an allocation for these deployment

104 Multi-agent Management

model with the other Infrastructure Agents. After a successful allocation negotiation,
the Infrastructure Agent of the assigned resource is in charge of deploying and running
the application components by means of the Infrastructure Interoperability Framework
described in Chapter 5. Once the application is running, the software agents monitor the
application execution reacting to unexpected events. From one hand, the Application
Agent is in charge of monitoring the application load and recalculating the required
components and resources and adapting the deployed application according to the new
requirements. On the other hand, the Infrastructure Agent is in charge of monitoring their
resources and in case that a failure happens notify the affected agents in order to recover
the application from failures.

We have implemented a prototype of this system, and we have measured the overhead
in different situations. We have compared the distributed semantic resource allocation
approach with the centralized approach described in Chapter 4. We have identified the
most important processes and overheads in both approaches. As a result of this evaluation,
we have detected the centralized approach performs better when the number of resources
and tasks is low due to an important negotiation and agent engine overhead while the
distributed approach is a better option when the number of resources is big.

Comparing our solution with other approaches, our solution was the first one to
integrate different features in the same management system. First, our system integrated
the semantic technologies in a distributed resource allocation process, facilitating the
integration with applications and resources coming from different sources as well as
integrating the customer’s and provider’s policies in the same allocation processes.
Second, we have taken profit from software agents to integrate adaptation and fault-
tolerance capabilities. Current middleware solutions has recently added fault tolerance
or adaptation services. These solutions are based on central services which must be
configured by the user. In contrast, the software agents of our multi-agent approach
already have integrated the self-adaptation and fault-tolerance features, so they are
inherently distributed across the agents and do not require extra configuration steps.

Chapter 7

Conclusions

The work presented in this thesis has focused on providing a platform that facilitates
and automates the integration of any kind of applications in different providers’ infras-
tructures lowering the barrier of adopting new distributed computing infrastructures such
as Clouds. The achievement of this overall objective has been split in several parts which
have been treated in the different chapters of the thesis.

In the first part, we have studied how to describe applications and how to automatically
infer a model for deploying any kind of application in a distributed platform. It has
been performed taking benefit from semantic web technologies. First, we have presented
an ontology which provides a general-purpose and infrastructure-agnostic model for
describing distributed applications. Following this model, the application description
is composed by three parts: the component topology, which provides the definition of
the application components and their communication links; the installation, configuration
and execution, which describes the desired state of the application resources after its
installation, configuration and during the execution; and the quality description, which
provides a set of rules to infer the processing requirements and component replicas for
a given quality and application load. Once the application is described, it is loaded to a
rule reasoner which applies different rules to classify the components and communication
links and the quality rules to extract the component and link requirements. Based on
this classification and the extracted requirements, the reasoner also infers the implicit
affinity constraints. A prototype of this approach has been implemented, validated and
evaluated. To validate the model, we have described four applications from four types: n-
tier, task-based, map-reduce and MPI/OpenMP. We have evaluated the reasoning overhead
by measuring the time to infer the deployment model in different scenarios. We have
observed the overhead is growing linearly with the number of components and, even for
large applications, the overhead is just few seconds. This overhead can be considered

106 Conclusions

low compared with the time required to deploy VMs on the Cloud Infrastructures,
and much more faster compared with the time spent by a developer to do the same
inference. Finally, our proposal has been compared with other cloud application models
(OVF, TOSCA, CloudML and mOSAIC). The main advantage of our approach is that
developers do not have to specify how the application is distributed in VMs because
the application model reasoner infers it. In our approach, the application code remains
unchanged, because the model is describing the required installation, configuration and
execution procedure, instead of forcing developers to implement management interfaces,
as in TOSCA, or implementing components as Cloudlets, as in mOSAIC. Regarding the
application quality, other approaches indirectly specify the required application quality
by statically setting the processing requirements of the VM. In our case, the processing
requirements are described by rules, which provides the component requirements as
function of the quality and load metrics.

Once the application deployment model has been inferred, the second step is finding
the resources to deploy and execute the different application components. This step
has been studied in Chapter 4. In this chapter, we have studied how semantic web
technologies can be applied in the problem of allocating application components in
computing resources which is the second part for achieving an automatic application
deployment. In this case, we have defined a Resource Allocation Ontology, which models
the concepts involved on the assignment of resources to the computing tasks. Allocation
policies are modeled as horn rules which are applied over a knowledge base composed
by the available resources and the already allocated task descriptions. The evaluation of
the proposed solution has been focused in two parts. First, to validate that the solution
can be easily used in different scenarios, we have applied it in the scheduling of jobs in
Grid environments, the allocation of VM deployments in a Private Cloud environment,
and the allocation of application component instances in the different VM types in a
multi-cloud environment. Second, we have measured the overhead introduced by the
system in the different scenarios and how it grows with respect of the number of tasks
and resources. The overhead is directly related to the complexity of the allocation but
in all the cases it is assumable when we compare to other expected overhead or task
durations such as queue waiting times and deployments. However, in situations such as
grid environments, where the number of available resources and tasks is high, we start to
run out of memory and the overhead will increase fast reaching not assumable boundaries.
Comparing our solution with other scheduling approaches, it easily integrates resources
and tasks from different sources and the same engine can be extended and used without
re-implementations or plug-ins. Moreover, rules can be loaded and unloaded at runtime,

107

so it enables the adaptation of the scheduling to the current load by selecting the proper
scheduling rules for the type of computing tasks and resources.

Once the application model has been inferred and the different components have been
allocated in the different providers resources, it is time to provision the selected resources
as well as deploying and executing the application components on these resources. These
tasks are achieved by invoking a workflow of calls exposed in the Infrastructure Provider
interfaces. However, every provider defines their own interfaces, so the workflow to
perform the same actions will be different depending on the provider, complicating
the usage of different providers. In Chapter 5, we have proposed a framework for
solving this problem and facilitating the Infrastructure provider interoperability. We have
presented a methodology to automatically infer the set of provider interface calls required
to perform any resource management tasks by applying different AI techniques. This
framework includes a Semantic Annotation/De-annotation component, which is in charge
of automatically generating semantic descriptions from interface descriptions and calls
and vice versa. Then, translations between the different models are performed by rule
reasoning and AI planning. From one hand, users define data equivalences by means
of rules, and these rules are applied by the Resource Mapper component to convert
data from one provider model to another one. On the other hand, the Action Planner
component is in charge of finding the action equivalence. To do it, it generates an AI
planning problem form the requested management tasks and the provider model. This
problem defines the initial and goal resource states, and an AI planning domain which
models the state transitions with the available provider interface methods. The result of
this AI planning problem provides the sequence of provider actions which performs the
requested management action. The proposed Infrastructure Interoperability framework
has been applied in two scenarios. The first scenario is about inferring the workflow
of required providers’ actions for deploying the application components, and the second
scenario is about translating interfaces between providers. In both scenarios, we have
evaluated the overhead introduced by the framework. Despite it grows polynomially
it is still reasonable for the size of the problem and most of the management actions.
Finally, we have compared our solution with similar interoperability solutions which are
based on open interfaces that allow the operation with different infrastructure providers
by means of plug-ins. Our approach reduces the complexity of plug-in implementation
and maintenance by just defining and maintaining a set of rules for defining equivalences
between data models. The rest of the translation is automatically performed by the system.
Moreover, plug-in approaches are statically bound to a specific source interface which
contains the different plug-ins and drivers implementations. Our system is more flexible

108 Conclusions

than these approaches, it does not force users to learn a new interface and data model; it
brings the opportunity to use the interface which they are more familiar.

In the last part of the thesis, we have studied how to introduce the benefits of software
agents in the management of applications in distributed platforms. We have designed
and implemented a multi-agent system which is in charge of coordinating the different
steps of the application deployment in a distributed way as well as monitoring the correct
execution of the application in the computing resources. Two types of agents have been
defined: Application Agents, which are in charge of the application management; and
Infrastructure Agents, which are in charge of the resource management. Moreover, these
agents also share the functionality of semantic resource allocation described in Chapter 4
which has been split into two parts. On the one hand, the Application Agent is in
charge of requesting proposals for allocating application and selecting the best one for
the customer’s interests. On the other hand, the Infrastructure Agent is in charge of
making allocation proposals for applications at its resources according to the provider’s
interests. When the application is submitted to the system, an Application Agent starts
to manage it taking different actions according to the application status. The application
starts in a submitted status, at this state, the Application Agent performs the deployment
model inference as presented Chapter 3 and negotiates with the other Infrastructure
Agents an allocation for the application component instances according to the inferred
deployment model. After a successful allocation negotiation, the Infrastructure Agent of
the assigned resource is in charge of deploying and running the application components by
means of the Interoperability framework described in Chapter 5. Once the application is
running, the software agents monitor the application execution and react to unexpected
execution events. From one hand, the Application agent is in charge of monitoring
the application load and recalculating the required resources and adapting the deployed
application according to the new requirements. On the other hand, the Infrastructure
Agent is in charge of monitoring their resources and in case that a failure happens notifies
the affected agents in order to recover the application from failures. We have implemented
a prototype of this system, and we have measured the overhead in different situations. We
have compared the distributed semantic resource allocation approach with the centralized
approach described in Chapter 4. We have identified the most important processes and
overheads in both approaches. As a result of this evaluation, we have detected the
centralized approach performs better when the number of resources is low due to an
important negotiation overhead while the distributed approach is a better option when the
number of resources is big. Comparing our solution with other approaches, our solution
was the first one to integrate semantics technologies in the resource allocation, facilitating

7.1 Future work 109

the integration with applications and resources coming from different sources as well as
integrating the customer and provider policies in the same allocation processes. Moreover,
current middleware solutions have recently added fault tolerance or adaptation services.
These solutions are based on central services which must be configured by the user. In
contrast, the software agents of our multi-agent approach already have integrated the self-
adaptation and fault-tolerance features, so they are inherently distributed across the agents
and do not require extra configuration steps.

7.1 Future work

Despite of applying the results of this thesis we can facilitate the deployment of
applications to distributed computing platforms, there are still some parts were an
important improvement can be achieved. One of these parts is the Application Model.
We have proposed a general-purpose and infrastructure-agnostic model for describing
distributed applications which includes all the required information to automatically
deploy the application in the computing infrastructure. However, the description of
some parts of this model is not trivial for non-expert developers like scientists. One of
these parts is the definition of Quality Rules. They model the relationship between the
application load, quality level and the resource requirements. Expert developers could
discover this relationship by executing a set of execution with different configuration in
order to profile the application and manually estimate the relationship. Machine Learning
techniques could replicate this process helping the users to automatically extract the
application Quality Rules. With supervised learning, the system could infer a model to
estimate the number of required resources depending on the application computational
load from the monitoring data extracted from previous executions. Then, the model
obtained from machine learning system can be translated to the application Quality Rules.
This automatic process for extracting the Quality Rules can considerably simplifies the
application description as well as saves a lot of time to developers.

Another drawback of current Quality Rule description solutions is the adaptation
solution. The Quality Rules are expressed based on a previous experience, however if
the infrastructure provider, where the application is finally deployed is not giving the
performance expected from its description, the quality-load-requirements relationship
expressed by Quality Rules must adapted to cover the new kind of instances. Following
the machine learning approach introduced before, the quality-load-requirements model
could be recalculated at runtime using the monitoring data once the application is
deployed. Applying a on-line supervised learning algorithm, we could update the Quality

110 Conclusions

Rule within a short processing time. Applying this update mechanism, we could reduce
the effect of possible estimation problems and a better application adaptation.

Another part of improvement could be the Semantic Resource Allocation and
Infrastructure Interoperability reasoning. In the thesis, we have seen reasoning algorithms
are capable to solve current type of problems with the current amount of data and the
complexity of the reasoning. However, the current trends in computer architecture is to
have more and more small computing resources instead of having bigger resources and,
on the side of applications, the trend is to have applications which combines more and
more components specially with the appearance of new paradigms such as Internet of
Things [134]. Therefore, we could have much more data to evaluate and the processing
capabilities for traditional semantic reasoning algorithms could not grow with the same
scale. In the near future, we will require adapting the semantic reasoning algorithms to
work with big amount of data. This is a problem that big data researchers are tackling, they
are proposing efficient distributed storage techniques and new frameworks for in-memory
computation, so another important topic for future research is to improve the reasoning
performance by applying big data techniques to the semantic reasoning computation.

The last part where we see a window for future research is the area of image
management. Current infrastructure providers just offer a set of pre-defined images or
allow the users to import an image. In the thesis, we have proposed a model to describe
these images and how the application components are installed, configured and executed,
comparing the image description with the application components description assigned
to each resource, we can extract the required modification and apply them at deployment
time by using dev-ops tools. The main drawback of this model is that installation steps
can require too much time to apply them at deployment time. An initial deployment time
do not have too much effect to the application performance, but the adaptation mechanism
requires fast deployment mechanisms. To achieve it, we should apply the large changes
before deployment, but until now, the only way to do it was to modify the image by
hand and upload the modified image to the provider and recent research project like
Optimis [32] or ASCETiC [135] are working on providing services to perform image
changes at both construction an deployment time. This image management service could
be added to the provider description in order to enable the Infrastructure Interoperability
framework to infer deployment workflows with a more efficient image management.

Besides the possible improvements, distributed computing platforms are continuously
evolving and our proposed system should take into account these new proposals. One of
the latest proposals for managing the application resources is the introduction of software
containers such as Docker [136] or the Google Container Engine [137]. As mentioned in

7.1 Future work 111

the previous paragraph, the deployment time is very important for application adaptation
because the reaction to short peak of computational load requires a fast deployment
of new VMs. Depending on the duration of the peak, the deployment of VMs could
be slow because, for a complete VM deployment, the cloud middleware has to move
and boot images with a complete Operating System. The container solutions have
improved the deployment time by making an efficient system boot and keeping just the
interesting capabilities of virtualization for the application execution. For this reason, the
container approach is substituting the traditional VMs for providing an elastic application
resource management. To integrate container providers with our system, we should map
containers as a subclass of resources and describe the interface to manage containers with
the providers’ models. Due to the similarities with VMs, this task should not be too
complicated. A more complicated integration could be the case of the image management.
Despite the image description could be reused, the VMs and containers perform a different
image management; so, further investigation is required in this field.

112 Conclusions

Bibliography

[1] Ian Foster and Carl Kesselman, editors. The Grid: blueprint for a new computing

infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.
1.1

[2] Thomas Erl. Service-oriented architecture. Concepts, Technology, and Design,
2004. 1.1

[3] Michael A Rappa. The utility business model and the future of computing services.
IBM Systems Journal, 43(1):32–42, 2004. 1.1

[4] L. Vaquero, et al. A break in the clouds: Towards a cloud definition. ACM

SIGCOMM Computer Communications Review, 39(1):50–55, 2009. 1.1

[5] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific

american, 284(5):28–37, 2001. 1.3

[6] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning: theory &

practice. Elsevier, 2004. 1.3

[7] Jacques Ferber. Multi-agent systems: an introduction to distributed artificial

intelligence, volume 1. Addison-Wesley Reading, 1999. 1.3, 6.1

[8] Open Nebula.
Web page at: http://opennebula.org/,
Date of last access: September 2015. 2.1

[9] Open Stack.
Web page at: https://www.openstack.org/,
Date of last access: September 2015. 2.1

[10] Apache Cloud Stack.
Web page at: https://cloudstack.apache.org/,
Date of last access: September 2015. 2.1

114 BIBLIOGRAPHY

[11] The Open Grid Forum.
Web page at: http://www.ogf.org/,
Date of last access: September 2015. 2.1.1

[12] Open Cloud Computing Interface.
Web page at: http://occi-wg.org/,
Date of last access: September 2015. 2.1.1

[13] vCloud API Specification v1.0.
Available at: http://communities.vmware.com/docs/DOC-12464/,
Date of last access: September 2015. 2.1.1

[14] Distributed Management Task Force.
Web page at: http://www.dmtf.org,
Date of last access: September 2015. 2.1.1

[15] Apache jCloulds.
Web page at: http://jclouds.apache.org/,
Date of last access: September 2015. 2.1.1

[16] Apache Delta-Cloud .
Web page at: https://deltacloud.apache.org/,
Date of last access: September 2015. 2.1.1

[17] The Dasein Cloud API.
Web page at: http://dasein-cloud.sourceforge.net/,
Date of last access: September 2015. 2.1.1

[18] Heroku.
Web page at: http://www.heroku.com/,
Date of last access: September 2015. 2.2

[19] Cloud Control.
Web page at: https://www.cloudcontrol.com/,
Date of last access: September 2015. 2.2

[20] Spring MVC Framework.
Web page at: https://spring.io/,
Date of last access: September 2015. 2.2

BIBLIOGRAPHY 115

[21] Django Web Framework.
Web page at: https://www.djangoproject.com/,
Date of last access: September 2015. 2.2

[22] Ruby on Rails Web Framework.
Web page at: http://rubyonrails.org/,
Date of last access: September 2015. 2.2

[23] Google App Engine.
Web page at: https://cloud.google.com/appengine,
Date of last access: September 2015. 2.2

[24] Microsoft Azure App Service.
Web page at: https://azure.microsoft.com/services/app-service/,
Date of last access: September 2015. 2.2

[25] Amazon Cloud Formation.
Web page at: http://aws.amazon.com/cloudformation/,
Date of last access: September 2015. 2.2

[26] Cloud Foundry.
Web page at: http://cloudfoundry.org,
Date of last access: September 2015. 2.2

[27] Cloudify.
Web page at: http://getcloudify.org/,
Date of last access: September 2015. 2.2

[28] Cloud Pier.
Web page at: http://www.opencloudpier.org,
Date of last access: September 2015. 2.2

[29] N. Loutas, et al. Towards a Reference Architecture for Semantically Interoperable
Clouds. In Int. Conf. on Cloud Computing Technology and Science, pages 143–150,
2010. 2.2

[30] Distributed Management Task Force. Open Virtualization Format Specification.
DSP0243, 2013. 2.3

[31] B. Rochwerger, et al. The Reservoir model and architecture for open federated
cloud computing. Journal of Research and Development, 53(4):535–545. 2.3

116 BIBLIOGRAPHY

[32] Ana Juan Ferrer, Francisco Hernández, Johan Tordsson, Erik Elmroth, Ahmed Ali-
Eldin, Csilla Zsigri, RaüL Sirvent, Jordi Guitart, Rosa M Badia, Karim Djemame,
et al. Optimis: A holistic approach to cloud service provisioning. Future

Generation Computer Systems, 28(1):66–77, 2012. 2.3, 7.1

[33] Venus-C project.
Web page at: http://www.venus-c.eu/,
Date of last access: September 2015. 2.3

[34] mOSAIC Cloud project.
Web page at: http://www.mosaic-cloud.eu/,
Date of last access: September 2015. 2.3, 5.2

[35] Remics Project.
Web page at: http://www.remics.eu/,
Date of last access: September 2015. 2.3

[36] PaaSage Project.
Web page at: http://www.paasage.eu/,
Date of last access: September 2015. 2.3

[37] MODA Clouds Project.
Web page at: http://www.modaclouds.eu/,
Date of last access: September 2015. 2.3

[38] Francesco Moscato, Rocco Aversa, Beniamino Di Martino, Dana Petcu,
Massimiliano Rak, and Salvatore Venticinque. An ontology for the cloud in mosaic.
Cloud Computing: Methodology, Systems, and Application, pages 467–486, 2011.
2.3

[39] Cloud ML.
Web page at: http://cloudml.org/,
Date of last access: September 2015. 2.3

[40] Dereck Palma and Thomas Spatzier. Topology and Orchestration Specification for
Cloud Applications Version 1.0. Organization for the Advancement of Structured

Information Standards(OASIS), 2013. 2.3

[41] Robert L Henderson. Job scheduling under the portable batch system. In Job

scheduling strategies for parallel processing, pages 279–294. Springer, 1995. 2.4

BIBLIOGRAPHY 117

[42] Load Sharing Facility.
Web page at: http://www.ibm.com/systems/platformcomputing/products/lsf,
Date of last access: September 2015. 2.4

[43] Maui Cluster Scheduler.
Web page at: http://www.adaptivecomputing.com/products/open-source/maui/,
Date of last access: September, 2015. 2.4

[44] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 11(2):115–128, 1997. 2.4

[45] Dietmar W. Erwin and David F. Snelling. Euro-Par 2001 Parallel Processing,
chapter UNICORE: A Grid Computing Environment, pages 825–834. Springer,
2001. 2.4

[46] E. Laure, S. M. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hemmer, A. Di Meglio, and
A. Edlund. Programming the Grid with gLite. Computational Methods in Science

and Technology, 12(1):33–45, 2006. 2.4

[47] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin,
Warren Smith, and Steven Tuecke. A resource management architecture for
metacomputing systems. In Job Scheduling Strategies for Parallel Processing,
pages 62–82. Springer, 1998. 2.4

[48] Eduardo Huedo, Ruben S. Montero, and Ignacio M. Llorente. A framework for
adaptive execution in grids. Software: Practice and Experience, 34(7):631–651,
2004. 2.4

[49] Volker Hamscher, Uwe Schwiegelshohn, Achim Streit, and Ramin Yahyapour.
Evaluation of job-scheduling strategies for grid computing. In Proceedings of

the First IEEE/ACM International Workshop on Grid Computing, pages 191–202.
Springer-Verlag, 2000. 2.4

[50] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum. Mechanisms for
high throughput computing. SPEEDUP journal, 11(1):36–40, 1997. 2.4

[51] Ivan Rodero, Francesc Guim, Julita Corbalan, Liana Fong, and S Masoud Sadjadi.
Grid broker selection strategies using aggregated resource information. Future

Generation Computer Systems, 26(1):72–86, 2010. 2.4

118 BIBLIOGRAPHY

[52] Farag Azzedin and Muthucumaru Maheswaran. Towards trust-aware resource
management in grid computing systems. In Proceedings of the IEEE/ACM

International Symposium on Cluster Computing and the Grid, pages 452–452.
IEEE, 2002. 2.4

[53] Rich Wolski, James S Plank, John Brevik, and Todd Bryan. Analyzing market-
based resource allocation strategies for the computational grid. International

Journal of High Performance Computing Applications, 15(3):258–281, 2001. 2.4

[54] S. Venugopal, R. Buyya, and L. J. Winton. A Grid service broker for scheduling
e-Science applications on global data Grids. Concurrency and Computation:

Practice and Experience, 18(6):685–699, 2006. 2.4

[55] Luis Tomás, Agustín C. Caminero, Carmen Carrión, and Blanca Caminero.
Network-aware Meta-scheduling in Advance with Autonomous Self-tuning
System. Future Generation Computer Systems, 27(5):486–497, 2011. 2.4

[56] Javier Conejero, Blanca Caminero, Carmen Carrión, and Luis Tomás. From
volunteer to trustable computing: Providing qos-aware scheduling mechanisms for
multi-grid computing environments. Future Generation Computer Systems, 34:76–
93, 2014. 2.4

[57] Anton Beloglazov and Rajkumar Buyya. Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of service
constraints. Parallel and Distributed Systems, IEEE Transactions on, 24(7):1366–
1379, 2013. 2.4

[58] Íñigo Goiri, Josep Ll Berral, J Oriol Fitó, Ferran Julià, Ramon Nou, Jordi
Guitart, Ricard Gavaldà, and Jordi Torres. Energy-efficient and multifaceted
resource management for profit-driven virtualized data centers. Future Generation

Computer Systems, 28(5):718–731, 2012. 2.4

[59] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud computing.
Future generation computer systems, 28(5):755–768, 2012. 2.4

[60] Eyal Bin, Ofer Biran, Odellia Boni, Erez Hadad, Eliot K Kolodner, Yosef Moatti,
and Dean H Lorenz. Guaranteeing high availability goals for virtual machine
placement. In Proceedings of the 31st International Conference on Distributed

Computing Systems, pages 700–709. IEEE, 2011. 2.4

BIBLIOGRAPHY 119

[61] Fumio Machida, Masahiro Kawato, and Yoshiharu Maeno. Redundant virtual
machine placement for fault-tolerant consolidated server clusters. In Proceedings

of the IEEE Network Operations and Management Symposium, pages 32–39. IEEE,
2010. 2.4

[62] David De Roure, Nicholas R Jennings, and Nigel Shadbolt. The semantic grid: A
future e-science infrastructure. Grid Computing-Making the Global Infrastructure

a Reality, pages 437–470, 2003. 2.5

[63] EU OntoGrid project.
Web page at: http://www.ontogrid.net. 2.5

[64] Oscar Corcho, Pinar Alper, Ioannis Kotsiopoulos, Paolo Missier, Sean Bechhofer,
and Carole Goble. An overview of s-ogsa: A reference semantic grid architecture.
Web Semantics: Science, Services and Agents on the World Wide Web, 4(2):102–
115, 2006. 2.5

[65] Hongsuda Tangmunarunkit, Stefan Decker, and Carl Kesselman. Ontology-based
resource matching in the grid–the grid meets the semantic web. In The Semantic

Web-ISWC 2003, pages 706–721. Springer, 2003. 2.5

[66] NV Neela and S Kailash. Resource matchmaking in grid-semantically. In
Proceedings of the 9th International Conference on Advanced Communication

Technology, volume 3, pages 2051–2055. IEEE, 2007. 2.5

[67] Zoi Kaoudi, Iris Miliaraki, Matoula Magiridou, Erietta Liarou, Stratos Idreos, and
Manolis Koubarakis. Semantic grid resource discovery in atlas. In Knowledge and

Data Management in Grids, pages 185–199. Springer, 2007. 2.5

[68] SPARQL Query Language for RDF.
Web page at: http://www.w3.org/TR/rdf-sparql-query,
Date of last access: September 2015. 2.5

[69] Balachandar R Amarnath, Thamarai Selvi Somasundaram, Mahendran Ellappan,
and Rajkumar Buyya. Ontology-based grid resource management. Software:

Practice and Experience, 39(17):1419–1438, 2009. 2.5

[70] Thamarai Selvi Somasundaram, Kumar Rangasamy, and Kannan Govindarajan.
Intelligent semantic discovery in virtualized grid environment. In Proceeding of

the International Conference on Trends in Information Technology, pages 644–649.
IEEE, 2011. 2.5

120 BIBLIOGRAPHY

[71] Thamarai Selvi Somasundaram, Kannan Govindarajan, Usha Kiruthika, and
Rajkumar Buyya. Semantic-enabled care resource broker (secrb) for managing grid
and cloud environment. The Journal of Supercomputing, 68(2):509–556, 2014. 2.5

[72] Grid Interoperabilty Project.
Web page at: http://www.grid-interoperability.eu/. 2.5

[73] John Brooke, Donal Fellows, Kevin Garwood, and Carole Goble. Semantic
matching of grid resource descriptions. In Grid Computing, pages 240–249.
Springer, 2004. 2.5

[74] Ontology Web Language (OWL).
Web page at: http://www.w3.org/TR/owl-features. 2.5

[75] Amir Vahid Dastjerdi, Sayed Gholam Hassan Tabatabaei, and Rajkumar Buyya.
An effective architecture for automated appliance management system applying
ontology-based cloud discovery. In Proceedings of the 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing, pages 104–112.
IEEE, 2010. 2.5

[76] Le Duy Ngan and Rajaraman Kanagasabai. Owl-s based semantic cloud service
broker. In Proceedings of the IEEE 19th International Conference on Web Services,
pages 560–567. IEEE, 2012. 2.5

[77] C Pittaras, C Papagianni, A Leivadeas, P Grosso, J van der Ham, and
S Papavassiliou. Resource discovery and allocation for federated virtualized
infrastructures. Future Generation Computer Systems, 42:55–63, 2015. 2.5

[78] Yu Deng, Michael R Head, Andrzej Kochut, Jonathan Munson, Anca Sailer,
and Hidayatullah Shaikh. Introducing semantics to cloud services catalogs. In
Proceedings of the IEEE International Conference on Services Computing, pages
24–31. IEEE, 2011. 2.5

[79] Teodor-Florin Fortiş, Victor Ion Munteanu, and Viorel Negru. Towards an ontology
for cloud services. In Proceedings of the 6th International Conference on Complex,

Intelligent and Software Intensive Systems, pages 787–792. IEEE, 2012. 2.5

[80] Beniamino Di Martino, Giuseppina Cretella, and Anna Esposito. Towards a unified
owl ontology of cloud vendors’ appliances and services at paas and saas level.
In Proceedings of the 8th International Conference on Complex, Intelligent and

Software Intensive Systems, pages 570–575. IEEE, 2014. 2.5

BIBLIOGRAPHY 121

[81] Eleni Kamateri, Nikolaos Loutas, Dimitris Zeginis, James Ahtes, Francesco
DâĂŹAndria, Stefano Bocconi, Panagiotis Gouvas, Giannis Ledakis, Franco
Ravagli, Oleksandr Lobunets, et al. Cloud4soa: A semantic-interoperability paas
solution for multi-cloud platform management and portability. In Service-Oriented

and Cloud Computing, pages 64–78. Springer, 2013. 2.5

[82] I. Foster, N. Jennings, C. Kesselman. Brain meets brawn: Why grid and agents need
each other. In Porceedings of the 3rd International Conference on Autonomous

Agents and Multiagent Systems, 2004. 2.6, 6.6

[83] A. Chavez, A. Moukas, and P. Maes. Challenger: A multi-agent system for
distributed resource allocation. In Proceeding of the 1st International Conference

on Autonomous Agents, 1997. 2.6, 6.6

[84] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B.A. Huberman. Tycoon:
An implementation of a distributed, market-based resource allocation system.
Multiagent and Grid Systems, 1(3):169–182, 2005. 2.6, 6.6

[85] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Welfare engineering in
practice: On the variety of multiagent resource allocation problems. Engineering

Societies in the Agents World V, pages 335–347, 2005. 2.6, 6.6

[86] S. Parsons and M. Wooldridge. Game theory and decision theory in multi-agent
systems. Autonomous Agents and Multi-Agent Systems, 5(3):243–254, 2002. 2.6,
6.6

[87] S.S. Fatima and M. Wooldridge. Adaptive task resources allocation in multi-agent
systems. In The 5th International Conference on Autonomous Agents, 2001. 2.6,
6.6

[88] SS Manvi, MN Birje, and B. Prasad. An agent-based resource allocation model for
computational grids. Multiagent and Grid Systems, 1(1):17–27, 2005. 2.6, 6.6

[89] CatNets Project.
Web page at: http://www.catnets.org,
Date of last access: September 2015. 2.6, 6.6

[90] Oscar Ardaiz, Pau Artigas, Torsten Eymann, Felix Freitag, Leandro Navarro,
and Michael Reinicke. The catallaxy approach for decentralized economic-based
allocation in grid resource and service markets. Applied Intelligence, 25(2):131–
145, 2006. 2.6

122 BIBLIOGRAPHY

[91] Sorma Project.
Web page at: http://sorma-project.org/,
Date of last access: September 2015. 2.6, 6.6

[92] Salvatore Venticinque, Rocco Aversa, Beniamino Di Martino, Massimilano Rak,
and Dana Petcu. A cloud agency for sla negotiation and management. In Euro-Par

2010 Parallel Processing Workshops, pages 587–594. Springer, 2011. 2.6

[93] Gopal Kirshna Shyam and SunilKumar S Manvi. Resource allocation in cloud
computing using agents. In Advance Computing Conference (IACC), 2015 IEEE

International, pages 458–463. IEEE, 2015. 2.6

[94] Jakub Gąsior and Franciszek Seredyński. A decentralized multi-agent approach to
job scheduling in cloud environment. In Intelligent Systems’ 2014, pages 403–414.
Springer, 2015. 2.6

[95] Fernando De la Prieta, Sara Rodríguez, Javier Bajo, and Juan M Corchado. + cloud:
A virtual organization of multiagent system for resource allocation into a cloud
computing environment. In Transactions on Computational Collective Intelligence

XV, pages 164–181. Springer, 2014. 2.6

[96] Mahmoud Al-Ayyoub, Yaser Jararweh, Mustafa Daraghmeh, and Qutaibah
Althebyan. Multi-agent based dynamic resource provisioning and monitoring for
cloud computing systems infrastructure. Cluster Computing, 18(2):919–932, 2015.
2.6

[97] Ken Wenzel and Heiner Reinhardt. Mathematical Computations for Linked Data
Applications with OpenMath. In Proceedings of the 24th Workshop on OpenMath,
pages 38–48, 2012. 3.2.2

[98] PuppetLabs.
Web page at: https://puppetLabs.com,
Date of last access: September 2015. 3.2.3, 5.5.1

[99] Large Scale Unix Configuration System.
Web page at: http://www.lcfg.org,
Date of last access: September 2015. 3.2.3

[100] B. Motik, et al. OWL 2 Web Ontology Language. W3C Recommendation, 2012.
3.4, 5.5

BIBLIOGRAPHY 123

[101] I. Horrocks, et al. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission, 2004. 3.4

[102] E. Sirin, et al. Pellet: A practical owl-dl reasoner. Web Semantics: science, services

and agents on the World Wide Web, 5(2):51–53, 2007. 3.4

[103] Enric Tejedor and Rosa M. Badia. COMP Superscalar: Bringing GRID Superscalar
and GCM Together. In Proceedings of the 8th IEEE International Symposium on

Cluster Computing and the Grid, pages 185–193, 2008. 3.4.1

[104] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008. 3.4.1

[105] The Message Passing Interface standard.
Web page at: http://www-unix.mcs.anl.gov/mpi/,
Date of last access: September 2015. 3.4.1

[106] The OpenMP Homepage.
Web page at: http://www.openmp.org/drupal/,
Date of last access: September 2015. 3.4.1

[107] András Micsik, Péter Pallinger, and Dávid Siklósi. Scaling a plagiarism search
service on the bonfire testbed. In Proceedings of the 5th International Conference

on Cloud Computing Technology and Science, volume 2, pages 57–62, 2013. 3.4.1

[108] R. Royo, J. López, D. Torrents, and J.L. Gelpi. A BioMoby-based workflow
for gene detection using sequence homology. In Proceeding of the International

Supercomputing Conference, 2008. 3.4.1

[109] BLAST Home Page. http://www.ncbi.nlm.nih.gov/BLAST/. 3.4.1

[110] Ewan Birney, Michele Clamp, and Richard Durbin. Genewise and genomewise.
Genome research, 14(5):988–995, 2004. 3.4.1

[111] S. Andreozzi, et al. GLUE Schema Specification. Open Grid Forum
Recomendation GFD-147, 2009. 4.2

[112] Distributed Management Task Force. Common Information Model v.3.0.
DSP0004, 2013. 4.2, 5.2

[113] Grid Resource Ontology.
Web page at: http://www.unigrids.org/, Date last access: September 2015. 4.2

124 BIBLIOGRAPHY

[114] B. Lithgow Smith, C. van Aart, M. Wooldridge, S. Paurobally, T. Moyaux, and
V. Tamma. An Ontological Framework for Dynamic Coordination. In Proceedings

of the Fourth International Semantic Web Conference, 2005. 4.2

[115] Apache Jena Semantic Web Framework.
Web page at: https://jena.apache.org/, Date last access: September 2015. 4.4.2,
5.5, 6.5

[116] Charles L Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial intelligence, 19(1):17–37, 1982. 4.4.2

[117] J. Ejarque, et al. Using semantics for resource allocation in computing service
providers. In Proceeding of the IEEE International Conference on Services

Computing, volume 2, pages 583–587, 2008. 5.2

[118] D. Martin, et al. OWL-S: Semantic markup for web services. W3C member

submission, 2004. 5.2

[119] C Michael Sperberg-McQueen and Eric Miller. On mapping from colloquial xml
to rdf using xslt. In Proceedings of Extreme Markup Languages, 2004. 5.2.1

[120] Converters to RDF .
Web page at: http://www.w3.org/wiki/ConverterToRdf,
Date of last access: September, 2015. 5.2.1

[121] Web Service Description Language.
Web page at: http://www.w3.org/TR/wsdl,
Date of last access: September 2015. 5.2.1

[122] Web Application Description Language.
Web page at: http://www.w3.org/Submission/wadl,
Date of last access: September 2015. 5.2.1

[123] J. Kopeckỳ, K. Gomadam, T. Vitvar. hrests: An html microformat for describing
restful web services. In Proceedings of the International Conference on Web

Intelligence and Intelligent Agent Technology, 2008. 5.2.1

[124] Massimo Paolucci, Naveen Srinivasan, Katia Sycara, and Takuya Nishimura.
Towards a semantic choreography of web services: from wsdl to daml-s. In
Proceedings of the First International Conference on Web Services, pages 22–26,
June 2003. 5.2.1

BIBLIOGRAPHY 125

[125] M. Hert, G. Reif, H. C. Gall. Personal Knowledge Mapping with Semantic
Web Technologies. In Proceedings of the International Workshop on Personal

Knowledge Management, 2009. 5.3

[126] Anthony Barrett and Daniel S Weld. Partial-order planning: Evaluating possible
efficiency gains. Artificial Intelligence, 67(1):71–112, 1994. 5.4

[127] Planning4J - Java API for AI planning.
Web page at: http://code.google.com/p/planning4j,
Date of last access: September 2015. 5.5

[128] Bernhard Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research, 14:253–302, 2001. 5.5

[129] Y. Chevaleyre, et al. Issues in Multiagent Resource Allocation. Informatica, 30:3–
31, 2006. 6.1

[130] A.S. Rao and M.P. Georgeff. BDI agents: From theory to practice. In Proceedings

of the 1st International Conference on Multi-agent Systems, 1995. 6.1

[131] RG Smith. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers, 100(29):1104–1113,
1980. 6.4

[132] Jadex active components.
Web page at: http://www.activecomponents.org. 6.5

[133] Java Agent DEvelopment Framework.
Web page at: http://jade.tilab.com/,
Date of last access: September 2015. 6.5

[134] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787–2805, 2010. 7.1

[135] Karim Djemame, Django Armstrong, Richard Kavanagh, Ana Juan Ferrer,
David Garcia Perez, David Antona, Jean-Christophe Deprez, Christophe Ponsard,
David Ortiz, Mario Macias, et al. Energy efficiency embedded service lifecycle:
Towards an energy efficient cloud computing architecture. In CEUR Workshop

Proceedings, volume 1203, pages 1–6. CEUR Workshop Proceedings, 2014. 7.1

126 BIBLIOGRAPHY

[136] Docker.
Web page at: https://www.docker.com,
Date of last access: September 2015. 7.1

[137] Google Container Engine.
Web page at: https://cloud.google.com/container-engine/,
Date of last access: September 2015. 7.1

	Abstract
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contribution
	1.3.1 Publications related to the thesis

	2 State of the art
	2.1 Direct application deployment on Infrastructure providers
	2.1.1 Infrastructure Interoperability solutions

	2.2 Application Deployment with Platform Services
	2.3 Application Model driven development and deployment
	2.4 Resource Allocation in distributed platforms
	2.5 Semantic Web in distributed platforms
	2.6 Multi-agent systems in distributed platforms

	3 Inferring the Application Deployment Model
	3.1 Methodology
	3.2 Application Deployment Ontology
	3.2.1 Component Topology
	3.2.2 Quality Description
	3.2.3 Installation Configuration and Execution Description

	3.3 Deployment Model Inference
	3.3.1 Topology Elements Classification
	3.3.2 Determine Component and Link Requirements
	3.3.3 Infer Component Affinity Constraints

	3.4 Evaluation and Discussion
	3.4.1 Application Model Validation
	3.4.2 Overhead Evaluation
	3.4.3 Comparison to Other Application Models

	3.5 Conclusion

	4 Semantic Resource Allocation
	4.1 Methodology
	4.2 Resource Allocation Ontology
	4.3 Rule-driven resource allocation
	4.4 Evaluation and Discussion
	4.4.1 Applicability
	4.4.2 Overhead and Scalability Evaluation
	4.4.3 Benefit from traditional scheduling approaches

	4.5 Conclusion

	5 Infrastructure Interoperability
	5.1 Methodology
	5.2 Infrastructure Providers Ontology
	5.2.1 Semantic Annotation/De-annotation

	5.3 Resource Mapping
	5.4 Action planning
	5.5 Evaluation and Discussion
	5.5.1 Inferring the Deployment Workflow
	5.5.2 Interface Translation
	5.5.3 Comparison with other approaches

	5.6 Conclusion

	6 Multi-agent Management
	6.1 Methodology
	6.2 Application Agent
	6.3 Infrastructure Agent
	6.4 Distributed Semantic Resource Allocation
	6.5 Overhead and Scalability Evaluation
	6.6 Comparison with other approaches
	6.7 Conclusion

	7 Conclusions
	7.1 Future work

	Bibliography

