
TRANSPARENT MANAGEMENT OF

SCRATCHPAD MEMORIES IN SHARED

MEMORY PROGRAMMING MODELS

Lluc Álvarez Martí

Barcelona, 2015

ADVISORS: Xavier Martorell Bofill
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center

Miquel Moretó Planas
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center

Marc Casas Guix
Barcelona Supercomputing Center

A thesis submitted in fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33349981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Cache-coherent shared memory has traditionally been the favorite memory organization

for chip multiprocessors thanks to its high degree of programmability. In this organiza-

tion the cache hierarchy is in charge of moving the data and keeping it coherent between

all the caches in the system, enabling the usage of shared memory programming mod-

els where the programmer does not need to carry out any data management operation.

Unfortunately, performing all the data management operations in hardware causes severe

problems, being the primary concerns the power consumption originated in the caches

and the amount of coherence traffic in the interconnection network.

A good solution to these problems is to introduce ScratchPad Memories (SPMs)

alongside the cache hierarchy, forming a hybrid memory hierarchy. SPMs are more

power-efficient than caches and do not generate coherence traffic, but they degrade pro-

grammability. In particular, SPMs require the programmer to partition the data, to pro-

gram data transfers, and to keep coherence between different copies of the data.

A promising solution to exploit the benefits of the SPMs without introducing pro-

grammability difficulties is to allow the programmer to use shared memory programming

models and to automatically generate code that manages the SPMs. Unfortunately, current

compilers and runtime systems encounter serious limitations to automatically generate

code for hybrid memory hierarchies from shared memory programming models.

This thesis proposes to transparently manage the SPMs of hybrid memory hierarchies

in shared memory programming models. In order to achieve this goal this thesis proposes

a combination of hardware and compiler techniques to manage the SPMs in fork-join

programming models and a set of runtime system techniques to manage the SPMs in task

programming models. The proposed techniques allow to program hybrid memory hierar-

chies with these two well-known and easy-to-use forms of shared memory programming

models, capitalizing on the benefits of hybrid memory hierarchies in terms of power con-

sumption and network traffic without harming the programmability of the architecture.

i

Abstract

The first contribution of this thesis is a hardware/software co-designed coherence pro-

tocol to transparently manage the SPMs of hybrid memory hierarchies in fork-join pro-

gramming models. The solution allows the compiler to always generate code to manage

the SPMs with tiling software caches, even in the presence of unknown memory alias-

ing hazards between memory references to the SPMs and to the cache hierarchy. On the

software side, the compiler generates a special form of memory instruction for memory

references with possible aliasing hazards. On the hardware side, the special memory in-

structions are diverted to the correct copy of the data using a set of directories that track

what data is mapped to the SPMs.

The second contribution of this thesis is a set of runtime system techniques to manage

the SPMs of hybrid memory hierarchies in task programming models. The proposed run-

time system techniques exploit the characteristics of these programming models to map

the data specified in the task dependences to the SPMs. Different policies are proposed

to mitigate the communication costs of the data transfers, overlapping them with other

execution phases such as the task scheduling phase or the execution of the previous task.

The runtime system can also reduce the number of data transfers by using a task scheduler

that exploits data locality in the SPMs. In addition, the proposed techniques are combined

with mechanisms that reduce the impact of fine-grained tasks, such as hardware runtime

systems or large SPM sizes.

The forthright accomplishment of the contributions of this thesis is that hybrid mem-

ory hierarchies can be programmed with fork-join and task programming models. Conse-

quently, architectures with hybrid memory hierarchies can be exposed to the programmer

as a shared memory multiprocessor, taking advantage of the benefits of the SPMs in power

consumption and network traffic while maintaining the programming simplicity of shared

memory programming models.

ii

Contents

Abstract i

Contents iii

1 Introduction 1

1.1 Thesis Objectives and Contributions . 4

1.1.1 Automatic Management of SPMs in Fork-Join Models 5

1.1.2 Automatic Management of SPMs in Task Models 5

1.2 Thesis Structure . 6

2 State of the Art 7

2.1 Shared Memory Multiprocessors . 7

2.1.1 Shared Memory Programming Models 8

2.1.1.1 Thread Libraries . 8

2.1.1.2 OpenMP . 8

2.1.1.3 Task Programming Models 10

2.1.2 Cache-Coherent Shared Memory Hierarchies 11

2.1.2.1 Cache Memories . 12

2.1.2.2 Cache Coherence Protocol 13

2.1.3 Inefficiencies of Cache Hierarchies 14

2.1.3.1 Power Consumption 14

2.1.3.2 Coherence Traffic . 17

2.1.4 Future Directions . 19

2.2 Multiprocessors with Scratchpad Memories 20

2.2.1 Embedded Processors . 20

2.2.2 Cell B.E. 22

2.2.3 GPGPUs . 25

iii

CONTENTS

2.2.4 Stream Architectures . 28

2.2.5 Other Architectures . 29

2.2.6 Summary . 31

3 Methodology 33

3.1 Simulation Infrastructure . 33

3.1.1 Simulators . 33

3.1.2 Baseline Architecture . 34

3.1.3 Operating System Support . 36

3.1.4 Runtime Systems . 37

3.2 Benchmarks . 38

3.3 Metrics . 39

4 SPM Management in Fork-Join Models 41

4.1 Tiling Software Caches . 42

4.1.1 Coherence Problem . 44

4.2 Coherence Protocol . 44

4.2.1 Compiler Support . 45

4.2.1.1 Classification of Memory References 45

4.2.1.2 Code Transformation 46

4.2.1.3 Code Generation . 46

4.2.2 Hardware Design . 48

4.2.2.1 Implementation of Hardware Structures 49

4.2.2.2 Execution of Memory Accesses 50

4.2.2.3 Tracking SPMs Contents 54

4.2.2.4 Maintaining Sequential Consistency 56

4.3 Data Coherence Management . 57

4.3.1 Data States and Operations . 57

4.3.2 Data Eviction . 59

4.4 Evaluation . 60

4.4.1 Benchmark Characterization . 60

4.4.2 Coherence Protocol Overheads 61

4.4.3 Comparison with Cache Hierarchies 62

4.4.3.1 Performance Evaluation 63

4.4.3.2 NoC Traffic Evaluation 64

iv

CONTENTS

4.4.3.3 Energy Consumption Evaluation 65

4.5 Summary and Concluding Remarks . 66

5 SPM Management in Task Models 67

5.1 Suitability . 68

5.1.1 Suitability of Other Programming Models 69

5.2 SPM Management in Task Runtime Systems 70

5.2.1 Mapping Data Dependences to the SPMs 70

5.2.2 Overlapping DMA Transfers with Computation 73

5.2.3 Locality-Aware Scheduling . 74

5.2.4 Discussion . 75

5.3 Evaluation . 76

5.3.1 Performance Evaluation . 76

5.3.2 NoC Traffic Evaluation . 78

5.3.3 Energy Consumption Evaluation 79

5.3.4 Mitigating the Effects of Fine-Grained Tasks 80

5.4 Summary and Concluding Remarks . 82

6 Conclusions 85

6.1 Goals, Contributions and Main Conclusions 85

6.2 Future Work . 87

6.3 Publications . 88

6.3.1 Publications of the Thesis . 88

6.3.2 Other Publications . 89

6.4 Financial Support . 90

Bibliography 93

List of Figures 113

List of Tables 115

Glossary 117

v

CONTENTS

vi

Chapter 1

Introduction

The evolution of microprocessors design has changed significantly in the last few decades.

For many years the Moore’s law drove the progress of every new generation of proces-

sors by increasing the number of transistors in the chip and its clock frequency, allowing

to build faster and more complex single-core processors that could exploit the Instruction

Level Parallelism (ILP) of sequential programs. As shown in Figure 1.1, this trend contin-

ued until the early 2000s, when the Moore’s law encountered two fundamental obstacles:

the ever increasing latency of memory accesses due to the speed gap between the pro-

cessor and the main memory, known as the Memory Wall [156], and the ever increasing

power consumption of chips with higher number of transistors and clock rates, known as

the Power Wall [105] or the end of Dennard’s scaling [44].

Figure 1.1: Evolution of microprocessors

1

In the early 2000s, to overcome the stagnation of single-core processors’ performance,

the landscape of microprocessors design entered the multicore era. Multicore processors

can potentially provide the desired performance gains by exploiting the Task Level Paral-

lelism (TLP) of parallel programs, but they have to face problems concerning the orches-

tration of parallel workloads such as the communication between cores or the concurrency

in memory accesses. For this reason, a key element of multicore designs is the memory

hierarchy that connects the different computing elements in the chip.

Cache-coherent shared memory has traditionally been the favorite on-chip memory

hierarchy for multicore processors. The major reason for the success of this approach is its

high programmability, which is achieved by moving data and keeping it coherent between

all the caches of the system at the microarchitecture level, without any intervention from

the programmer. This is accomplished by a hierarchy of caches, that exploit locality to

keep the data close to the core that is accessing it, and by a cache coherence protocol,

which manages the validity of the contents of all the caches in the chip to ensure that

memory accesses are always served with non-stale values. Unfortunately, the cost of

performing these actions in hardware becomes an obstacle to scale up the number of

cores [136], being the primary concerns the power consumption originated in the caches

and the amount of coherence traffic in the interconnection Network on-Chip (NoC) that

is required to maintain all the data in a coherent state.

ScratchPad Memories [14] (SPMs) are a well-known alternative to cache hierarchies

in domains where power-efficiency is of paramount importance. SPMs are simple pieces

of memory with their own address space, directly addressable by the software and in-

coherent with the rest of memories in the chip. These memories are less complex than

caches because they do not implement any mechanism to automatically request data or to

track the state of the data that is being kept, so they can serve memory accesses as fast

as caches but in a much more power-efficient way and without originating any coherence

traffic. However, SPMs suffer from poor programmability as they require the software

to explicitly transfer data between the SPMs and any other memory in the system and to

keep coherence between different copies of the data in different address spaces.

The trend in the High Performance Computing (HPC) domain towards massively par-

allel manycore processors makes not possible to keep relying neither in purely cache-

coherent memory hierarchies, due to their power consumption and scalability issues, nor

in pure SPMs designs, due to their programmability issues. Instead, computer architec-

ture for HPC is exhibiting a trend towards more heterogeneity, which has been shown

2

CHAPTER 1. INTRODUCTION

effective in architectures such as the Cell B. E. [79] or GPGPUs [66]. These designs have

different kinds of cores and hybrid memory hierarchies that combine caches and SPMs

to provide performance under an affordable power budget, but the programmability issue

is still not solved [136]. Processors with hybrid memory hierarchies have very complex

memory models that move away from the shared memory paradigm, which imposes seri-

ous limitations for the widespread usage of these systems. First, redefining the memory

model breaks backwards compatibility, so every new architecture requires adapting sci-

entific and industrial codes. Second, exposing deep and hybrid memory hierarchies to the

programmer significantly degrades programmability, as the programmer needs to parti-

tion the data, explicitly transfer data between memory spaces, and handle potential data

replications. Giving these responsibilities to the programmer complicates the process

of writing the code and, more importantly, requires the programmer to have advanced

knowledge of the architecture to perform the data management operations efficiently.

A promising solution to solve the programmability issues of hybrid memory hierar-

chies is to allow the programmer to use well-known shared memory programming models

and to automatically generate code that manages the memory hierarchy. Shared memory

programming models have been widely used since the first multicore architectures ap-

peared, and they are easy to use because they rely on simple memory models exposed

by multicores with cache-coherent memory hierarchies, so the programmer does not need

to explicitly manage the data. Unfortunately, current compilers and runtime systems en-

counter serious limitations to automatically generate code for hybrid memory hierarchies

from shared memory programming models.

Fork-join models like OpenMP [114] are the most traditional form of shared memory

programming models. In these models sequential execution phases are interleaved with

parallel phases that are specified by the programmer at designated points of the program.

It has been shown in the past that a good way to manage SPMs in fork-join models is

to use tiling software caches [55, 56, 67, 133]. Tiling software caches take advantage of

the predictability of strided memory accesses to efficiently map them to the SPMs, while

unpredictable random memory accesses are served by the cache hierarchy. Even though

compilers succeed in transforming code to use tiling software caches when the compu-

tation is based on predictable memory access patterns, in the presence of unpredictable

memory accesses they encounter important limitations [55, 56, 67]. Due to the incoher-

ence between the SPMs and the cache hierarchy, the compiler cannot generate code for

the SPMs if it cannot ensure that there is no aliasing between two memory references that

3

1.1. THESIS OBJECTIVES AND CONTRIBUTIONS

may target copies of the same data in the SPMs and in the cache hierarchy. This memory

aliasing problem greatly restricts the ability of the compiler to generate code for hybrid

memory hierarchies in non-trivial cases.

The expected heterogeneity of future manycore architectures has caused that, in re-

cent years, task programming models such as the task extensions introduced in OpenMP

4.0 [115] have emerged. In these programming models the programmer exposes the avail-

able parallelism of an application by splitting the code in sequential pieces of work, called

tasks, and by specifying the data and control dependences between them. With this in-

formation the runtime system manages the parallel execution of the workload following a

data-flow scheme, scheduling tasks to cores and taking care of synchronization between

tasks. In addition to the programmability advantages for complex heterogeneous archi-

tectures, a very important benefit of task programming models is that decoupling the

application from the architecture also allows to take advantage of the available informa-

tion in the runtime system to drive optimizations in a generic and application-agnostic

way [146, 28, 119, 100, 101, 61]. Following this trend, a promising solution to man-

age the SPMs of hybrid memory hierarchies without affecting the programmability of

the architecture is to adopt task programming models and to give the runtime system the

responsibility of exploiting task annotations to map the data specified in the task depen-

dences to the SPMs, so memory accesses to this data are served more efficiently during

the execution of the tasks.

1.1 Thesis Objectives and Contributions

The main goal of this thesis is to propose a combination of hardware, compiler and run-

time system techniques to manage the SPMs of hybrid memory hierarchies from shared

memory parallel programming models, transparently to the programmer.

The contributions of this dissertation settle the most important limiting factors for the

widespread usage of hybrid memory hierarchies. The forthright benefit of the proposed

techniques is that they allow architectures with hybrid memory hierarchies to be pro-

grammed with well-known and easy-to-use shared memory parallel programming mod-

els, to keep the simplicity of memory models exposed by cache-coherent shared memory

multiprocessors, and to preserve code portability. This allows to capitalize on the benefits

of hybrid memory hierarchies in terms of power consumption and NoC traffic without

affecting the programmability of the architecture.

4

CHAPTER 1. INTRODUCTION

In order to achieve these goals, this thesis proposes two different approaches for the

automatic management of SPMs in the two most prominent forms of shared memory

programming models: fork-join and task models.

1.1.1 Automatic Management of SPMs in Fork-Join Models

The first contribution of this thesis is a hardware/software co-designed coherence protocol

that allows the compiler to always generate code to manage the SPMs of hybrid memory

hierarchies in fork-join programming models, even if it encounters memory aliasing haz-

ards between memory references to the SPMs and memory references to the cache hier-

archy. On the software side, the proposed solution consists of simple modifications to the

compiler analyses so that it can classify memory references in three categories: strided

memory references, random memory references that do not alias with strided ones, and

random memory references with unknown aliases. The compiler then transforms the code

for the strided memory references to map them to the SPMs using tiling software caches

while, for the random memory references that do not alias with strided ones, it generates

memory instructions that access the address space of the cache hierarchy. For the random

memory references with unknown aliasing hazards the compiler generates a special form

of memory instruction that gives the hardware the responsibility to decide what memory

is used to serve them. On the hardware side, a coherence protocol is proposed so that

the architecture can serve the memory accesses with unknown aliasing hazards with the

memory that keeps the valid copy of the data. For this purpose the hybrid memory hier-

archy is extended with a set of directories and filters that track what part of the data set is

mapped and not mapped to the SPMs. These new elements are checked at the execution

of memory accesses with unknown aliases to divert them to the correct copy of the data,

so all memory accesses can be correctly and efficiently served by the appropriate memory.

1.1.2 Automatic Management of SPMs in Task Models

The second contribution of this thesis is a set of techniques for runtime systems of task

programming models to transparently manage the SPMs of hybrid memory hierarchies.

The proposed extensions in the runtime system exploit the characteristics of task pro-

gramming models to manage the SPMs very efficiently. Since the data dependences of a

task are specified in the source code, the runtime system is aware of what data is going

to be accessed by the task before it is executed, so it can exploit this information to map

5

1.2. THESIS STRUCTURE

the task dependences to the SPM of the core that is going to execute the task. In addi-

tion, the runtime system can take advantage of the execution model of task programming

models to hide the communication costs of the data transfers required by the SPMs, ei-

ther by overlapping them with other execution phases or by exploiting data locality in the

task scheduling decisions. The proposed techniques also take into account that the size

of the SPMs has a direct impact on the granularity of the tasks, so the study contemplates

pairing the proposed SPM management strategies with different SPM sizes and task run-

time systems with hardware support, analyzing the trade-offs of each solution in terms of

performance, power consumption and NoC traffic.

1.2 Thesis Structure

The contents of this thesis are organized as follows:

Chapter 2 reviews the state of the art in cache-coherent shared memory multiproces-

sors and in shared memory programming programming models, exposing their main char-

acteristics and problems. Then it describes the existing multiprocessors with hybrid mem-

ory hierarchies, explaining their architectural details, how each of them is programmed,

and highlighting their programmability issues.

Chapter 3 introduces the simulation infrastructures and software environments used

to perform the experiments described in this thesis, as well as the benchmarks and the

metrics used for the evaluation of the proposals.

Chapter 4 presents the hardware/software co-designed coherence protocol to transpar-

ently manage the SPMs of hybrid memory hierarchies in fork-join programming models.

The chapter first explains the internals of tiling software caches and the coherence prob-

lem they expose to then describe the compiler support and the hardware extensions of the

proposed solution.

Chapter 5 proposes to manage the SPMs of hybrid memory hierarchies from the run-

time system of task programming models. The chapter highlights the suitability of task

programming models for SPMs, describes the extensions in the runtime system to man-

age them and analyses several techniques to minimize the overheads of the runtime system

and the data transfers.

Chapter 6 concludes this dissertation by remarking its main contributions and by pro-

viding a brief summary of the future work.

6

Chapter 2

State of the Art

This chapter gives an overview of the state of the art in the area of chip multiprocessors

and parallel programming models. The first section reviews shared memory multipro-

cessors, explaining the most relevant shared memory programming models that are used

to program them, the cache-coherent shared memory organization that is used to support

these programming models, the inefficiencies of current cache hierarchies, and the solu-

tions proposed in the literature. The second section analyzes multiprocessors that incorpo-

rate SPMs in their memory hierarchies, discussing the architectural details of the different

memory organizations, their implications on the programmability of the architecture, and

the techniques proposed to automatically manage the SPMs without the intervention of

the programmer.

2.1 Shared Memory Multiprocessors

Shared memory multiprocessors are the most genuine representatives of chip multiproces-

sors. This family embraces a wide number of chips, from the first commercial multicore

processors that emerged in the early 2000s such as the IBM POWER4, the Intel Core Duo

or the AMD Opteron, to current high-end manycore architectures for HPC such as the

Intel Xeon Phi or the IBM Blue Gene/Q. The distinctive characteristic of shared memory

multiprocessors is its memory organization, composed by a hierarchy of caches with a

cache coherence protocol. This scheme allows the different cores to share data without

any intervention from the programmer, enabling the usage of shared memory program-

ming models to program the architecture.

7

2.1. SHARED MEMORY MULTIPROCESSORS

2.1.1 Shared Memory Programming Models

Shared memory programming models offer a global virtual address space to allow mul-

tiple tasks to implicitly share data. These programming models have been the preferred

option to program shared memory multiprocessors since they first appeared. Compared

to other parallel programming paradigms, the shared memory approach is usually consid-

ered more productive, more intuitive, easier to learn, and easier to use, since it releases

the programmer from the burden of explicitly distributing the data set of the application

among tasks and explicitly communicating data between them. Instead, data is shared in

the global address space and can be accessed by any task at any time and from any core.

In addition, shared memory programming models are supported in most multicore and

manycore architectures, so the same code can be executed in a broad range of proces-

sors. Although some tuning in the code is required to get the maximum performance of

each particular architecture, code portability is a major advantage for the community as it

drastically reduces development costs.

2.1.1.1 Thread Libraries

The most basic representatives of shared memory programming models are the thread

libraries offered by the Operating Systems (OSs). These libraries are used to expose the

capabilities of shared memory multiprocessors to the software, offering low level func-

tionalities to create threads, assign tasks to threads, and synchronize them. Examples of

thread libraries are POSIX threads [29] as implemented in Linux [106], a slight variation

for SUN Solaris platforms called Solaris threads [140], or the Win32 threads library [23]

available in the different versions of Microsoft Windows.

Some programming languages offer thread libraries with similar characteristics, aim-

ing to provide a low level thread interface that is portable across OSs. For instance, Java

threads [111] are included as part of the standard Java Development Kit, and C++ [139]

includes classes for thread management since its revision from 2011.

2.1.1.2 OpenMP

OpenMP is the most commonly used programming model for shared memory multipro-

cessors. OpenMP allows to specify parallel constructs in C, C++ and Fortran using simple

and portable compiler directives. These directives are supported by the vast majority of

modern compilers and OSs for shared memory multiprocessors.

8

CHAPTER 2. STATE OF THE ART

The core elements of OpenMP are the directives to specify parallel regions, work-

load distribution, data-environment management and thread synchronization. OpenMP

uses a fork-join parallel execution model, where a single thread is used in sequential

regions and the execution branches off in parallel at designated points in the program,

specified by the programmer with the #pragma omp parallel directive. OpenMP

also allows to specify how the work is distributed between threads in a parallel region,

either assigning independent blocks of code to each thread using the #pragma omp

section directive or distributing the loop iterations among threads using the #pragma

omp for directive. The latter form is the one that exploits loop parallelism, which is

the most commonly used parallelization pattern in OpenMP programs. In this model the

schedule directive can be used to control how the iterations are distributed between

the threads: a static assignment of iterations to threads, a dynamic scheme where

threads request fixed-size blocks of loop iterations from a work queue, or a guided ap-

proach where threads dynamically request variable-size blocks of iterations. In addition,

OpenMP allows to specify the sharing attributes of the data in any parallel region, that

can be shared or private between threads, and supports synchronization directives

such as critical for critical sections, atomic to update values in memory atomically

or barrier to synchronize all threads in a point of the program.

The directives introduced by the programmer are processed by the compiler to gen-

erate parallel code. In this process the compiler arranges the code so that the parallel

regions are encapsulated in separate functions, it sets up the declaration of the variables

according to its sharing attributes, and it adds function calls to the runtime system in the

points of the code where the parallelism is forked, joined and synchronized. When the

code is executed the runtime system is in charge of managing the threads and the shared

variables. For this purpose the runtime system provides routines to create threads, syn-

chronize them, and destroy them. In order to assign tasks to threads the runtime system

implements schedulers and work queues that support all the forms of parallelism allowed

by the OpenMP directives. In addition, the runtime system maintains the versions of the

shared variables as well as other internal control variables.

This coordinated effort between the compiler and the runtime system is what allows

OpenMP to generate parallel code and to manage the parallel execution from simple di-

rectives. This model has been very successful because it allows to exploit the capabilities

of shared memory multiprocessors with a programming interface that is easy to use for

programmers and portable across many architectures and systems.

9

2.1. SHARED MEMORY MULTIPROCESSORS

2.1.1.3 Task Programming Models

Several task programming models have emerged in recent years to face the expected

complexity of future heterogeneous multicore and manycore architectures. These pro-

gramming models conceive the execution of a parallel program as a set of tasks with

dependences among them.

In task programming models the programmer only has to split the serial code in tasks

and to specify the dependences between the tasks. With this information the runtime

system manages the parallel execution of the tasks, taking care of scheduling tasks to

cores and synchronizing them without any intervention from the programmer. In order

to manage the execution of the tasks the runtime system constructs a Task Dependence

Graph (TDG), which is a directed acyclic graph where the nodes are tasks and the edges

are dependences between them. Similarly to how an out-of-order processor schedules

instructions, the runtime system schedules a task on a core when all its input dependences

are ready and, when the execution of the task finishes, its output dependences become

ready for the next tasks.

Task data-flow programming models are a subcategory of task programming models

where the task dependences are represented with the data sets accessed by each task. In

these models the programmer specifies the tasks and its associated data sets, which define

three types of dependences: input dependences are memory regions read by a task, out-

put dependences are memory regions written by a task, and input-output dependences are

memory regions both read and written by a task. Many task data-flow programming mod-

els have been proposed recently. OpenMP 3.0 [9] provides compiler directives to support

basic tasking constructs, that are extended with data dependences in OpenMP 4.0 [115],

while OmpSs [51] extends OpenMP 4.0 with additional directives to specify task priorities

and special tasking constructs. Other task programming models add language extensions

to specify tasks and its associated data. The Codelets model [164] breaks applications

into tasks with data and control dependences, and relies on this decomposition to improve

load balancing and reduce data motion. Unlike in OpenMP 4.0, in Codelets the program-

mer needs to explicitly specify not only data dependences but also the particular codelet

each dependence is associated with. StarPU [8] is a C API that allows to declare tasks

and assign functions and data to them. Legion [16] programs are decomposed in tasks

that access data partitions manually specified by the programmer, while in Sequoia [58]

tasks have their private address space and it is the programmer who organizes them hi-

erarchically. Charm++ [80] is a C++ based asynchronous message driven programming

10

CHAPTER 2. STATE OF THE ART

model where the programmer decomposes a program into message-driven objects called

chares. Chares are distributed among the processors and the runtime system is in charge

of sending messages to the chares to trigger the execution of the code within them. The

Habanero [134] project proposes language extensions to C and Java to create tasks, ex-

press data locality and explicit communication between tasks.

Other task programming models allow to decompose a program in tasks, but they are

not data-flow since tasks do not have data dependences between them. Intel TBB [126]

is a C++ template library that implements a task execution model where the programmer

splits the serial code into tasks that have implicit control dependences with their parents

and children tasks. Cilk [26] extends C and C++ with keywords to spawn and synchro-

nize tasks, and uses a simple fork-join model enhanced with work-stealing primitives to

balance the load efficiently. Although it is not part of the standard language, Vandieren-

donck et al. [150] propose to extend Cilk with data dependences between tasks to ease

programming parallel patterns such as pipelines. These extensions would turn Cilk into a

task data-flow programming model.

The characteristics of task programming models make them very suitable for current

and future heterogeneous architectures. The main reason is that these models allow the

programmer to specify parallelism in an architecture-agnostic way, hiding to the program-

mer the complex architectural details and enabling the same code to be executed in very

different platforms. In addition, the data dependences of task data-flow programming

models can be used to program not only shared memory multiprocessors but also hetero-

geneous architectures that require explicit data transfer between address spaces, such as

architectures with SPMs. Section 2.2 explains the most representative architectures with

SPMs and also describes how task data-flow programming models are used to manage the

memory hierarchy of some of these architectures.

2.1.2 Cache-Coherent Shared Memory Hierarchies

The cache-coherent memory hierarchy found in shared memory multiprocessors is the key

element to implement a single address space where all the cores in the architecture can

efficiently share data, which is the fundamental requirement to support shared memory

programming models. This memory organization is composed of a set of cache memories

organized hierarchically and a cache coherence protocol.

11

2.1. SHARED MEMORY MULTIPROCESSORS

2.1.2.1 Cache Memories

A fundamental part of cache-coherent shared memory hierarchies are the cache memories,

or simply caches. Caches are pieces of memory that keep data close to the CPU that is

accessing it. Figure 2.1 shows a scheme of a modern cache organization. A cache is

a collection of cache blocks that contain the data, flag bits, and the tag of the block,

which contains part of the address to which the data belongs to. Caches organize the

blocks in different ways, that are accessed in parallel when a cache block is requested. In

addition, since caches are self-managed, they also implement replacement algorithms to

automatically allocate and evict cache blocks.

Figure 2.1: Cache memory organization

Shared memory multiprocessors incorporate multiple caches in a hierarchical organi-

zation. Current cache hierarchies usually implement two or thee levels of caches, where

the first level uses small and fast caches and subsequent lower levels use bigger and slower

caches. For example, the processors based on the Intel Broadwell microarchitecture have

a cache hierarchy of three levels, where each core has separate L1 caches for data and

instructions, each of 32 KB and 8-way associative, and an 8-way associative L2 cache of

256 KB, and all cores share a L3 cache of up to 6 MB that is 16-way associative. On the

other hand, the Intel Xeon Phi uses a cache hierarchy of two levels where every core has

separate 8-way associative L1 caches of 32 KB for data and instructions and an 8-way

associative L2 cache of 512 KB.

12

CHAPTER 2. STATE OF THE ART

2.1.2.2 Cache Coherence Protocol

The cache coherence protocol is the mechanism that ensures that changes in the values of

shared operands are propagated throughout the cache hierarchy. As a result, every core

observes the last produced value and never consumes stale data. Current shared memory

multiprocessors generally implement directory-based cache coherence protocols. In this

scheme the data held in the caches is tracked by a cache directory that maintains coherence

between all the caches.

The cache directory of the cache coherence protocol records the state of each cache

block. As shown in Figure 2.2, the cache directory keeps, for each cache block, its state

and a bit vector of sharer cores that tracks which cores have the cache block in its cache.

Current shared memory multiprocessors typically use the MOESI cache coherence proto-

col, which uses five states for the cache blocks: modified (M), owned (O), exclusive (E),

shared (S) and invalid (I). The cache directory acts as a manager to which the cores ask

permission to request or write back a cache block and notify evictions and updates of a

cache block. When the cache directory receives a message from a core it performs the

actions defined in the cache coherence protocol to ensure coherence. Depending on the

type of the request and the state of the cache block, the actions may involve reading data

from memory or from some other cache, changing the state of the cache block, updating

its sharer cores, invalidating cache blocks in other caches, etc.

Figure 2.2: Directory-based cache coherence protocol

13

2.1. SHARED MEMORY MULTIPROCESSORS

2.1.3 Inefficiencies of Cache Hierarchies

Cache-coherent memory hierarchies present many inefficiencies, specially when a large

number of cores is integrated in the architecture. The primary concerns are the power

consumption originated in the caches and the amount of NoC traffic generated by the

cache coherence protocol to keep all the data in a coherent state.

2.1.3.1 Power Consumption

The power consumption originated in the cache hierarchy is one of the most important

problems of current shared memory multicore architectures. Caches dissipate a significant

fraction of the overall power budget of the whole chip, up to 45% in current manycore

architectures [136], due to their hardware complexity and their high utilization. In order

to alleviate this problem a vast number of techniques have been proposed to reduce both

the static and the dynamic power consumed in the caches.

Numerous works aim to save static power (also called leakage power) by powering

down or off parts of the cache. Powell et al. [122] propose a Gated-Vdd technique to

power off unused cache blocks, which drastically reduces their leakage power at the cost

of losing their contents. Alternatively, Flautner et al. [59, 60] propose Drowsy Caches,

which power down unused cache blocks by putting them in drowsy mode (a kind of sleep

mode) to reduce their leakage power without losing their contents. Agarwal et al. [2]

propose a gated-ground scheme that allows powering off cache blocks but still preserving

their contents at the cost of minor performance and area overheads. The problem of these

mechanisms is that, when a cache block is accessed, a cache miss occurs if the block is

powered down or off, even if the cache has the block in valid state. Many heuristics have

been proposed to overcome this problem, deciding when and which parts of the cache can

be deactivated with minimal performance degradations.

Some heuristics aim to deactivate cache blocks individually. Cache Decay [83, 84]

cuts off the power supply of cache blocks if a pre-set number of cycles have elapsed

since their last access. Zhou et al. [162, 163] propose to deactivate only the data array

of cache blocks so the tag array can be accessed to calculate the increase of the cache

miss rate caused by turning off blocks, allowing fine-grained control of the performance

losses and to re-activate cache blocks if needed. Drowsy Instruction Caches [87] monitor

unconditional branches and subroutine calls and returns to predict and selectively wake

up only the blocks that are going to be accessed in the instruction cache, allowing most

14

CHAPTER 2. STATE OF THE ART

of the cache to stay in drowsy mode without significant performance losses. Li et al. [96]

propose to deactivate L2 cache blocks when their data also exists in the L1 cache.

Other works propose more aggressive heuristics to deactivate complete cache ways.

Albonesi [3] proposes Selective Cache Ways, a cache design that enables only a subset of

the ways when the cache requirements of the running applications are low. In this design

it is the software who explicitly turns on and off the cache ways using special instructions.

C. Zhang et al. [157, 158] show that a very similar technique can be utilized in embedded

processors, and W. Zhang et al. [160] propose two compiler algorithms to apply the same

idea to instruction caches. Totoni et al. [144] use formal language theory to identify

program phases and propose a runtime system that turns off cache ways at the start of

each phase. Without any software support, Balasubramonian et al. [13] propose to detect

program phases in the microarchitecture and to monitor the CPI, cache and TLB usage

of each phase to turn off whole cache ways according to its requirements. Dhodapkar

and Smith [47, 48] refine this approach by introducing a hardware structure that saves the

appropriate configuration for each program phase.

The dynamic energy dissipated in the caches is another important concern in modern

processors. This problem has also been widely studied, and various techniques have been

proposed to alleviate it. In general, these approaches try to minimize the number of

operations or the amount of data read and written on every cache access.

Way prediction is a technique that has been proposed to reduce the dynamic power

consumption of caches. It consists on predicting which way of the cache will contain the

data and accessing only the predicted way instead of all the ways in parallel. Way pre-

diction was initially proposed by Calder et al. [30] to reduce the access time of sequential

associative caches, analyzing different sources for the prediction such as the effective

address, the registers used in the address calculation or the program counter of the in-

struction. Batson and Vijaykumar [15] show that very similar way prediction techniques

can also achieve significant savings in dynamic energy. Inoue et al. [75] propose to keep

the most recently accessed way to perform the prediction, and Powell et al. [123] show

that combining way prediction in L1 instruction caches and selective direct-mapping in

L1 data caches can further reduce the dynamic energy of the first level of the cache hi-

erarchy. The main problem of way prediction is that it adds performance penalties when

the accessed way is misspredicted and, moreover, it is mainly proposed for L1 caches

because they present very predictable access patterns but, for lower level caches, it is not

very effective since locality is hidden by previous cache levels.

15

2.1. SHARED MEMORY MULTIPROCESSORS

Instead of prediction, way caching records the way of recently accessed cache blocks

to reduce the dynamic energy of highly associative caches. Min et al. [102] propose to

use a small Way Cache, a cache that stores the way accessed by previously observed

cache accesses. If there is a hit in the Way Cache the data cache is accessed as a direct-

mapped cache, otherwise it is referenced as a conventional associative cache. Nicolaescu

et al. [109] propose to add coherence between the Way Cache and the data cache, inval-

idating Way Cache entries when blocks are evicted or invalidated from the data cache.

This feature makes the contents of the Way Cache always correct, so the outcome is not a

prediction but a determination. An important problem of these two works is that the Way

Cache is accessed before the cache access, adding delays to the critical path of data ac-

cesses. Zheng et al. [161] propose Tag Check Elision, which determines the correct cache

way early in the pipeline by doing a simple bounds check to decide if a memory access

is to the same block as an earlier access. The bounds check occurs as soon as the virtual

address is available, so it does not add any pipeline delay or performance degradation,

and the TLB access can also be eliminated in a physically-tagged cache.

Other techniques are proposed to filter unnecessary accesses to cache ways. Zhang et

al. [159] propose the Way-Halting Cache, that compares the four least significant bits of

the tag during the index decoding to filter way accesses. This approach performs a fully-

associative search in the first comparison which negatively affects power consumption.

Ghosh et al. [65] propose Way Guard, a mechanism for large associative caches that

employs bloom filters to reduce dynamic energy by skipping the lookup of cache ways that

do not contain the requested data according to the bloom filter. This scheme requires the

addition of a large decoder and two fields per way: one segmented bloom filter, previously

proposed by the same authors to filter accesses to the whole cache [64], and another bloom

filter to filter accesses to ways. Although Way Guard shows performance gains with

respect to the Way-Halting Cache, it suffers from higher overheads in terms of area and

adds significant complexity. The main problem of these techniques is that a new structure

must be accessed serially after the address translation in the TLB and before accessing the

cache, hence either increasing cycle time or adding an extra cycle to the memory access

latency in virtually-indexed physically-tagged caches. In order to overcome this problem,

Valls et al. [147, 148] propose PS-Cache, a mechanism that filters the ways looked up on

each cache access by classifying each block as private or shared, according to the page

table information. On a cache access, only the ways containing blocks that match with

the classification of the requested block are searched. The same authors also propose the

16

CHAPTER 2. STATE OF THE ART

Tag Filter Cache [149], a cache architecture that uses the least significant bits of the tag

part of the address to discern which ways may contain the accessed block.

Including way information in the TLB is another approach to reduce the energy con-

sumed in the caches. The goal is to prevent doing one lookup in the tag array of the cache

to determine the way of the cache block and another lookup in the TLB to provide the ad-

dress translation. Instead, the idea is to do a single lookup in the TLB that provides both

the address translation and the way where the block is located in the cache. In order to do

so each TLB entry is extended with a field that contains, for each cache block belonging

to the page, the way where it is located in the cache. Boettcher et al. [27] propose to use

this scheme to predict or determine the way of the accessed block in the L1 cache, but the

way information in the TLB is not always deterministic, so it is sometimes treated as a

hint and the tag array of the cache has to be kept. The Tag-Less Cache [132] introduces

a valid bit along with the way information to make it deterministic, so the tag array of

the cache can be eliminated. Although these two approaches achieve substantial energy

gains, they require significant area to store the way information for each cache block of

the page (specially if big page sizes are supported), they require changes in the cache

replacement policy, they affect miss ratios and performance in unpredictable ways, and

they need very costly reverse address translation mechanisms to handle cache coherence

and virtual address synonyms because they use virtual indexing. An extension of the Tag-

Less Cache [130, 131] uses a physically-tagged hub per core to handle virtual address

synonyms and external coherence requests and, in addition, they store not only the way

but also the cache where the block is kept, so the whole cache hierarchy can be navigated

with a single lookup.

2.1.3.2 Coherence Traffic

Some research works propose to eliminate the unnecessary coherence traffic that is gen-

erated by memory accesses to private data. The technique consists on distinguishing what

data is private and what data is shared, and deactivating the cache coherence protocol for

the private data. The deactivation of the coherence protocol implies that cache hits to

private data do not send invalidation coherence messages to the other caches, and cache

misses to private data do not request the cache block to the other caches but are directly

served by the main memory. The proposed techniques differ significantly one from each

other, specially in the way the private data is identified, the granularity at which it is

identified and the hardware mechanisms that keep track of the privateness.

17

2.1. SHARED MEMORY MULTIPROCESSORS

Cuesta et al. [40, 41] propose to track private virtual memory pages at the OS level,

extending the functionality of the page fault handler. When a page is accessed for the first

time in an application, the OS sets a private bit in the page table and in the TLB of the core

that is accessing it. Memory accesses from the same core to the private page are served

without requiring any coherence messages to the caches nor to the cache directory of the

cache coherence protocol. When another core accesses the page the OS marks the page as

shared and triggers a flush of the cache blocks and the TLB entries of the page in the first

core. Subsequent accesses by any core to the shared page trigger the coherence actions

defined by the cache coherence protocol. In another paper [39], the authors extend this

mechanism to work also for shared read-only pages. Almost identical data categorization

methods and hardware mechanisms have been proposed to filter snoop requests [86] and

to optimize the data placement in NUCA caches [71, 72]. Although this technique only

requires small changes in the TLB and the OS, changing the state of the data from private

to shared is very costly because it requires to flush the TLBs and the caches. Moreover,

it does not eliminate coherence traffic completely because it suffers from false positives

due to the granularity used to track the memory regions and because, even if some data

is only shared in a small phase of the program, it never transitions from shared back to

private.

Other works propose to track private data at the granularity of memory regions of

arbitrary size that are managed at the microarchitecture level, transparently to any soft-

ware layer. In these works new hardware structures are used to classify a memory region

as private when a core first accesses it, and subsequent accesses by other cores to the

same memory region make it shared. Cantin et al. [31, 32] add a separate hardware struc-

ture called the Region Coherence Array that directly interacts with an ad-hoc coherence

protocol. RegionScount [103, 104] also identifies private and shared memory regions

of arbitrary size at the microarchitecture level, and additional hardware support is used

to filter broadcasts in snoop-based cache coherence protocols. Alisafaee [4] proposes to

extend the cache directory of the cache coherence protocol with special entries to track

private memory regions and, additionally, timing is taken into account to do the data clas-

sification. The reasoning is that, even if the data is shared, coherence is not needed if two

cores do not access it at the same time. The first memory access by a core to a region

makes it private, and subsequent accesses from the same core keep this categorization. A

region is marked as shared when another core accesses it, and it is marked back as private

when all the cache blocks of the region are evicted from the caches of all the cores but

18

CHAPTER 2. STATE OF THE ART

one. On the one hand, the advantage of these mechanisms compared to the ones that use a

fixed page size granularity with OS and TLB support is that they work transparently to the

software, and the size of the memory regions can be dynamically adapted to improve the

accuracy of the data classification. Moreover, transitioning from shared to private further

improves accuracy, although relying on cache block evictions causes that the transition

does not happen immediately when the data stops being shared. On the other hand, these

techniques introduce significant hardware complexity and more power is consumed in the

execution of memory instructions, as they need to access an additional hardware structure.

2.1.4 Future Directions

Although the combination of shared memory programming models and cache-coherent

memory hierarchies has dominated the landscape of parallel computing for many years,

the aforementioned power consumption and scalability problems are becoming a severe

obstacle to scale up the number of cores in future shared memory manycore architec-

tures [7, 136].

The different solutions discussed in the previous sections can reduce the power con-

sumption or the NoC traffic in some cases, but they all have some limitations or introduce

new difficulties. In addition, the solutions target very specific parts of the problem, so

many of them have to be combined to make cache hierarchies power-efficient and scal-

able enough to fulfill the requirements of future shared memory manycore architectures.

Combining the different techniques requires significant complexity, and even some solu-

tions are incompatible between themselves, so it is unclear that these approaches will end

up solving the problems of cache hierarchies in the long term.

A more disruptive way to solve the inherent inefficiencies of cache hierarchies is to

move away from the pure shared memory paradigm [1, 7]. The main reasoning behind this

approach is that, fundamentally, doing an efficient management of the data of a parallel

application is a very challenging problem, and solving it at the microarchitecture level is

very costly. Instead, giving the software layers the responsibility of performing certain

data management operations opens the door to designing much more efficient memory

hierarchies.

19

2.2. MULTIPROCESSORS WITH SCRATCHPAD MEMORIES

2.2 Multiprocessors with Scratchpad Memories

Many commercial processors and research projects have adopted memory organizations

different than cache-coherent shared memory hierarchies. These different memory or-

ganizations are frequent in the embedded domain, where processors have strong power

consumption constraints, and in the HPC domain, where power efficiency and scalability

are of paramount importance.

The key element of the efficient memory hierarchies used in the embedded and the

HPC domain are the ScratchPad Memories (SPMs). SPMs are a simple arrays of mem-

ory exposed to the software layers in a part of the virtual and physical address spaces.

Compared to caches, SPMs provide three main advantages. First, SPMs do not need a tag

array, a hit/miss logic, nor a replacement policy logic, so they are more power-efficient

and they occupy less area than caches. Second, memory accesses to the SPMs never

miss, so performance penalties due to cache misses do not happen and the access time

to the SPMs is deterministic. Third, SPMs are not coherent with the rest of memories

in the system, so memory accesses to them do not generate coherence traffic. Although

these advantages are very appealing to overcome the power consumption and scalability

problems of muliprocessors, the main problem of SPMs is that they have to be managed

by software, which degrades programmability because they require the programmer, the

compiler or the runtime system to perform memory management operations.

Despite their programmability difficulties, SPMs have been successfully adopted by

many architectures in numerous ways, either as the only on-chip memory or alongside a

cache hierarchy. The next subsections explain how SPMs have been integrated in relevant

architectures, with the architectural details of the different memory organizations and their

implications on the programmability of the architecture.

2.2.1 Embedded Processors

SPMs have been widely used in embedded systems for many years. SPMs provide key

advantages over caches in this domain, as they are more energy- and cost-efficient and

they provide predictable access time, which is critical in hard real-time systems. For

these reasons SPMs have been included in embedded processors in different ways. In

processors such as the Motorola Dragonball, the Infineon XC166 or the TI TMS370CX7X

SPMs are used as the only on-chip memory, while in other embedded processors like the

ARM10E or the ColdFire MCF5 SPMs are introduced alongside caches.

20

CHAPTER 2. STATE OF THE ART

Although in the embedded domain it is common that the programmer explicitly se-

lects data or code to be placed in the SPMs, some works propose techniques to do it

automatically in order to improve code portability. Existing approaches for automatic

SPM management can be divided in two classes: static and dynamic. In static schemes

designated parts of the program are allocated in the SPMs at load time, and their contents

do not change during the execution of the program. In dynamic approaches parts of the

program are mapped to the SPMs during the execution, dynamically changing their con-

tents. Both categories can be further classified into techniques that consider only code,

only data, or both.

Static allocation methods decide at compile time what program objects are allocated in

the SPMs. The main advantage of static allocations is that they do not add any overhead at

execution time. However, the amount of data or code that can be allocated in the SPMs is

constrained by the size of the SPMs so, depending on the characteristics of the workload,

the amount of memory accesses served by the SPMs is limited. Panda et al. [117, 118]

allocate scalar constants and variables in the SPM and use heuristics to allocate those

arrays that minimize cache conflicts. Angiolini et al. [5, 6] propose an algorithm based on

dynamic programming to select code blocks which promise the highest energy savings.

Banakar et al. [14] solve the static assignment with a knapsack algorithm for both code

and data blocks. Verma et al. [151] select memory objects based on a cache conflict graph

obtained through cache hit/miss statistics, selecting the optimal set of memory objects

with an integer linear program variant of the knapsack algorithm. Nguyen et al. [108]

propose to delay the decision of which blocks should be allocated in the SPM until the

application is loaded, making it independent from the size of the SPM at the cost of

embedding profiling information into the application binary.

Another approach is to dynamically map code or data to the SPMs. This method

allows to map to the SPMs as much data or code as desired, but adds overheads to transfer

data or code between the SPMs and the main memory during the execution of the program.

Kandemir et al. [82, 81] propose to map arrays accessed in well-structured loops. Arrays

are split into tiles to allow that parts of the arrays are mapped to the SPM, so arrays

bigger than the SPM size can be mapped to the SPM in chunks. Li et al. [95] also focus

on assigning data arrays to the SPM. To determine the most beneficial set, they first divide

the SPM in partitions of different sizes and, using a conflict graph of live ranges for the

arrays, a graph-coloring algorithm determines which array is mapped to which partition

of the SPM at what program points. Udayakumaran and Barua [145] map data to the SPM

21

2.2. MULTIPROCESSORS WITH SCRATCHPAD MEMORIES

by constructing the control-flow graph of the program, that is annotated with timestamps

to form a data program relationship graph. Using greedy heuristics, the pieces of data that

maximize performance are mapped to the SPM at defined copy points in the program.

Steinke et al. [137] propose to dynamically map blocks of code to the SPM before entering

a loop, determining the optimal set using an integer linear program. The same technique is

proposed by Egger et al. [53] but using a post-pass optimizer that operates on the binary of

the program instead of the source code. Another dynamic SPM management scheme for

code is proposed by Janapsatya et al. [78], where the blocks of code to be mapped to the

SPM are selected based on a metric called concomitance, which indicates how correlated

in time the execution of various blocks of code are. Egger et al. [54] propose to map code

to the SPM using the MMU, in such a way that code is transparently mapped on demand

to the SPM when a page fault happens. Cho et al. [37] apply the same MMU technique to

map data to the SPM on demand.

2.2.2 Cell B.E.

The Cell B.E. [79] is one of the first and more breakthrough heterogeneous multicore

processors for HPC and multimedia workloads. The architecture consists of a general-

purpose core called Power Processor Element (PPE) and eight accelerator cores called

Synergistic Processor Elements (SPEs) connected through a high bandwidth NoC named

Element Interconnect Bus (EIB). A scheme of the architecture is shown in Figure 2.3.

Figure 2.3: Cell B.E. architecture

22

CHAPTER 2. STATE OF THE ART

The memory hierarchy of the Cell B.E. combines a hierarchy of caches and SPMs.

The PPE has a private 32 KB L1 cache and a private 512 KB L2 cache, while each SPE

has a private SPM of 256 KB. The SPMs of the SPEs have their own private virtual and

physical address spaces and are incoherent with the rest of memories in the architecture.

Each SPE can issue load and store instructions only to its private SPM and a DMA con-

troller is used to transfer data from or to the rest of memories in the architecture. The

DMA transfers are coherent with the cache hierarchy of the PPE.

Although the Cell B.E. was able to achieve significantly higher performance than the

rest of processors of its time, obtaining the expected performance was complex due to

the programmability difficulties the Cell B.E. suffered from. First, the programmer is

in charge on distributing the computation between the PPE and the SPEs, writing the

code for each element in a separate source code file. The PPE is in charge of run-

ning the OS and to start processes, which can initiate one or more SPE threads using

an API to create the SPE context (spe_context_create), load the code and the

data for the SPE context (spe_program_load), launch the execution of the SPE

thread (spe_context_run), and finish the SPE thread when the execution finishes

(spe_context_destroy). Second, the programmer has to partition the data between

the tasks. The limited size of the SPMs of the SPEs makes unfeasible to statically par-

tition the data and embed it in the SPE context so, most of the times, SPE threads use

DMA transfers to dynamically transfer the data from the main memory to the SPM, per-

form the computation, and write the data back to the main memory if needed. An API

is offered to trigger asynchronous DMA transfers (mfc_get from the main memory to

the SPM and mfc_put from the SPM to the main memory) and to synchronize them

(mfc_write_tag_mask and mfc_read_tag_status_all). Third, the program-

mer needs to perform explicit thread synchronization, and typical synchronization prim-

itives are not supported in this architecture, so explicit messages have to be exchanged

between threads. The Cell B.E. offers mailboxes to perform inter-thread communica-

tion (spe_in_mbox_write and spe_in_mbox_read), which are 32-bit messages

intended to exchange program status, completion flags or memory addresses.

Several approaches have been proposed to support shared memory programming mod-

els on the Cell B.E., aiming to overcome its programmability issues. The IBM XL com-

piler for the Cell B.E. supports OpenMP constructs [112] in two ways. In both approaches

the idea is to use a software cache on each SPE to automatically transfer data between its

SPM and the main memory. The first technique [55, 56] introduces a software cache

23

2.2. MULTIPROCESSORS WITH SCRATCHPAD MEMORIES

that surrounds every memory reference with a piece of code that mimics the operation

of a cache: lookup of the address, placement, replacement of an old entry, data trans-

fer and synchronization. Although some optimizations such as using asynchronous data

transfers [12] can improve the initial design, the amount of code executed prior to every

memory access imposes severe performance overheads. The second technique [36, 67]

drastically reduces the overheads for strided memory references by applying loop tiling,

in such a way that strided memory references are handled in the outermost loop by a

software cache that tracks data at the granularity of big blocks, while random memory

references are handled by a second software cache at every access in the innermost loop.

COMIC [92] is a low level shared memory interface for the Cell B.E. that can be

used directly by the programmer or as a target of compilers for shared memory program-

ming languages. COMIC uses a centralized coherence protocol on the PPE and wraps all

memory references of the SPE code with a software cache that requests memory pages

if needed, and proposes optimizations to reduce communication for read-only and single

writer pages. Although these optimizations enable important performance improvements

over the techniques introduced in the IBM XL compiler, applying them at compile time

requires the compiler to ensure that there are no memory aliasing hazards between the

memory references of the code. This can be done in simple codes but, in the presence of

pointers and functions, it becomes a very challenging problem for the compiler.

As an alternative, other works propose to program the Cell B.E. using task data-flow

programming models. An initial version of OmpSs for the Cell B.E., called CellSs [17,

120], allows programmers to annotate functions as tasks and to specify their dependences,

and a source to source compiler uses this information to generate code for the PPE and

for the SPEs. Similarly, Sequoia allows to model the memory hierarchy of the Cell B.E.

and to decompose the program in a hierarchy of tasks that are executed on the SPEs. In

both approaches a runtime system manages the execution of the tasks in a data-flow fash-

ion and orchestrates the DMA transfers for the task dependences, transferring the input

dependences of a task to the SPM of the SPE that is going to execute it and writing back

the output dependences to main memory when the task finishes. The runtime system of

the CellSs also uses a locality aware scheduling policy to reduce data motion and ap-

plies renaming on the output dependences to remove Write after Read (WaR) and Write

after Write (WaW) dependences between tasks. Further optimizations for the CellSs in-

clude SPE-to-SPE DMA transfers [18], lazy write back of output dependences [19] or

distributed scheduling among SPEs [20].

24

CHAPTER 2. STATE OF THE ART

2.2.3 GPGPUs

General-Purpose Graphics Processing Units (GPGPUs) are accelerators designed to exe-

cute massively parallel workloads very efficiently. These architectures have received a lot

of attention in the HPC domain during the last years, specially the ones manufactured by

NVIDIA.

In HPC systems GPGPUs are attached to a general-purpose processor (called the host

processor), and they have different address spaces. The host processor is in charge of run-

ning the OS, starting applications and executing the sequential parts of the applications.

The GPGPU executes parts of the applications that expose a high degree of parallelism,

which are encapsulated in kernels. When the application encounters a kernel, the host pro-

cessor transfers the code of the kernel and the data accessed by the kernel to the GPGPU,

triggers its execution, and transfers the data back to the main memory if needed.

A scheme of the architecture of a NVIDIA GPGPU is shown in Figure 2.4. The ar-

chitecture consists of many cores (called Streaming Multiprocessors or SMs in NVIDIA’s

nomenclature) that execute groups of threads in lock-step. The cores have the ability to

perform very fast context switches between groups of threads so that the memory latency

is not a limiting factor for performance. The memory hierarchy of the GPGPU consists of

a main memory and a L2 cache shared between all the SMs. Each SM has a SPM, called

shared memory, and two first level caches: the L1 cache and a read-only texture cache.

The L1 cache, the texture cache and the SPM of every SM are incoherent with the rest

of memories in the system. In order to manage this complex memory hierarchy the main

memory is divided in five memory spaces, that operate as follows:

Figure 2.4: GPGPU architecture

25

2.2. MULTIPROCESSORS WITH SCRATCHPAD MEMORIES

• The global memory is a memory space where the programmer can explicitly trans-

fer data. When a SM issues a memory request to the global memory the data is

cached in the shared L2 cache and either in the L1 or in the texture cache of the

SM. If the request is read-only it is cached in the texture cache, otherwise it is

cached in the L1 cache.

• The constant memory is a read-only memory space where the programmer can ex-

plicitly allocate data. When a SM issues a memory request to the constant memory

the data is cached in the shared L2 cache and in the texture cache of the SM.

• The texture memory is a read-only memory space where the programmer can ex-

plicitly allocate data. When a SM issues a memory request to the texture memory

the data is cached in the shared L2 cache and in the texture cache of the SM.

• The shared memory is a memory space where the programmer can explicitly al-

locate variables that are shared between the threads. The compiler allocates the

necessary space in the SPM of the SM for the variable, and memory requests from

a SM to the shared memory only access its SPM.

• The local memory is a memory space where the compiler can reserve space for

register spilling. When a SM issues a memory request to the local memory the data

is cached in the shared L2 cache and in the L1 cache of the SM.

The most common way to program heterogeneous systems with GPGPUs in HPC is

using CUDA [110]. In this programming language the programmer has to distribute the

computation between the host processor and the GPGPU, synchronize the execution be-

tween the two processing elements, and explicitly manage the memory hierarchy of the

accelerator. CUDA provides language extensions to C, C++ and Fortran to perform these

actions. In order to specify kernels for the GPGPU CUDA provides the __global__

function specifier, and kernels are launched with a special syntax <<< ... >>> to spec-

ify the number of threads that execute the kernel. In addition, the code of the kernels is

not written in traditional imperative form. Instead, the code of the kernel only specifies

the computation that has to be performed by one thread, and this code is replicated among

all the threads in a transparent way, so the parallelism is implicit. For synchronization,

CUDA offers the function __syncthreads to synchronize the threads within a ker-

nel, and methods such as cudaDeviceSynchronize to synchronize the execution

of the kernels with the host code. CUDA also offers functions and variable specifiers

26

CHAPTER 2. STATE OF THE ART

to manage the memory hierarchy of the GPGPU. In order to transfer data to the global

memory the programmer has to allocate space using cudaMalloc, transfer the data us-

ing cudaMemcpy and free the space using cudaFree. CUDA also offers the variable

specifiers __constant and __shared to statically allocate data to the constant mem-

ory and to the shared memory, respectively. To allocate data in the texture memory the

programmer has to define a texture handler that specifies the memory layout of the data,

while the local memory is transparently managed by the compiler. In addition, in order

to decide if the memory accesses to the global memory are cached in the L1 cache or in

the texture cache, the compiler applies alias analyses between the memory references of

the code to guess if the data being accessed is read-only, and generates a different type

of instruction (LDG) for memory accesses to read-only data. In non-trivial cases the com-

piler does not succeed in ensuring the data is read-only so the programmer has to use the

__ldg intrinsic in the memory references to the global memory to enable the usage of

the texture cache for these memory accesses.

Many works aim to ease the programmability of GPGPUs. One approach is to pro-

gram the GPGPUs with CUDA and alleviate the burden of explicitly transfer data between

the host processor and the accelerator, either allowing the compiler to generate code for

the data transfers [77] or transparently moving the data during the execution [62, 63].

Another approach is to use extensions on existing programming languages to program

the GPGPUs, allowing the compiler of the respective programming languages to gener-

ate code for the data transfers. This kind of language extensions have been proposed for

Java [50], Unified Parallel C [35], Global Arrays [143], Chapel [135], Fortran [155] and

C++ [68]. Offload programming models like OpenHMPP [49] and OpenACC [113] take

a similar approach, but using compiler directives instead of language extensions. In ad-

dition, GPGPUs are also supported in languages such as OpenCL [138] or Kokkos [52],

which are not simpler than CUDA but they offer generic abstractions to program acceler-

ators in a portable way.

Another way to solve the programmability issues of GPGPUs is to use shared mem-

ory programming models. OpenMPC [93, 94] does source to source transformations of

OpenMP loops to CUDA kernel functions and adds code to transfer data between the host

processor and the GPGPU. Moreover, some task data-flow programming models such

as OmpSs [121], StarPU [8], Sequoia [58], Legion [16] or Habanero [134] are able to

manage GPGPUs, giving the runtime system the responsibility of scheduling tasks to the

GPGPUs and triggering the data transfers specified in the data dependences of the tasks.

27

2.2. MULTIPROCESSORS WITH SCRATCHPAD MEMORIES

All these approaches automatically perform the memory management operations re-

quired by the GPGPUs or make it easier for the programmer to program them. However,

many of them make a suboptimal use of the memory hierarchy of the GPGPU, as they

only use the global memory. None of the solutions that automatically manage the data are

able to allocate it in the constant memory, the texture cache, or the shared memory. Sim-

ilarly, most of the solutions that extend existing programming languages do not allow to

specify data for these three memory spaces. As a consequence, the advantages provided

by the shared memory and the texture cache of the GPGPU are not exploited in many of

these solutions.

2.2.4 Stream Architectures

Some stream architectures and stream extensions for generic architectures also use SPMs

in their memory hierarchy.

The Imagine [85] is a stream accelerator for media processing. Its architecture consists

of a microcontroller that stores VLIW instructions, eight arithmetic clusters with eight

functional units each, a local register file, and a 128 KB Stream Register File (SRF),

which is an array of memory that works as an SPM. The Merrimac [42] is a stream

accelerator for HPC with a very similar architecture. It has twice the number of arithmetic

clusters with a different mix of functional units that are better suited for HPC workloads,

a correspondingly larger SRF of 1 MB, and hardware support for gather-scatter memory

instructions. In order to operate these accelerators the host processor is in charge of

dividing the size of the SRF in streams, loading data for the input streams from the main

memory to the SRF, loading the code in the accelerator, triggering the execution, and

storing the data of the output streams from the SRF to the main memory. When the host

processor triggers the execution the accelerator performs compound stream operations on

every element of the input streams. Every compound stream operation reads an element

from the input streams in the SRF, computes the arithmetic operations specified in the

code storing the temporary results in the local register file, and writes the outputs to the

output streams in the SRF.

The Imagine and the Merrimac are programmed with the StreamC and the KernelC

programming languages. These are programming languages that offer support for streams

with a syntax similar to C. StreamC is the language for the host processor side, that

provides operations to load streams from the main memory to the SFR, store streams from

the SFR to the main memory, load the code in the accelerator, and trigger the execution.

28

CHAPTER 2. STATE OF THE ART

KernelC is used to program the kernels for the accelerator, and provides special constructs

to read and write elements from the streams to the local register file. In these programming

models the scheduling of kernels and stream memory operations is statically generated at

compile time [43]. The compiler analyzes the structure of the program to estimate the

time spent in kernels and memory operations and generates an schedule that overlaps the

kernel execution with the memory transfers. Moreover, the compiler applies optimizations

such as loop tiling, loop unrolling or software pipelining at the level of kernels and stream

memory operations to optimize the usage of the SRF.

Gummaraju et al. [70, 69]. propose to adopt the stream execution model in general-

purpose processors. In their initial proposal [70] they avoid any change in the architec-

ture. Instead, they use cache locking on the L2 cache to emulate the SRF and two separate

threads to emulate the data transfer engine and the computational engine of stream archi-

tectures. SMT is exploited to run the two threads concurrently on the same core, allowing

to overlap the data transfers to the SRF with the execution of computational kernels. In

their following work [69] the authors propose hardware modifications to general-purpose

processors to better support the streaming model, extending the prefetcher of the L2 cache

with a programmable engine that performs asynchronous bulk memory transfers between

the SRF and the main memory and extra logic to pack data in vectors for the SIMD units.

2.2.5 Other Architectures

The SARC architecture [125] is a heterogeneous architecture with clusters of master and

worker cores. Similar to the Cell B.E., the master cores are general-purpose cores with

private L1 caches that are responsible for running the OS, starting applications and spawn-

ing tasks to the worker cores. The worker cores in charge of running the tasks have dif-

ferent ISAs and pipelines optimized for different HPC computations, and all of them are

equipped with a virtually-indexed virtually-tagged L0 cache, a private L1 cache, and a

SPM. The architecture also has a shared distributed L2 NUCA cache that serves misses

from the L1 caches of all cores and DMA transfers for the SPMs. The L2 cache is in-

clusive of all L1 caches and, in order to maintain coherence between the L2 and the L1

caches, the cache directory keeps per-cluster presence bits instead of per-core presence

bits, and invalidations are broadcast inside each cluster. The SARC architecture is in-

tended to be programmed with task data-flow programming models, where the runtime

system is in charge of scheduling tasks to the most appropriate worker cores and of trans-

ferring the data specified in the task dependences to the SPMs of the worker cores.

29

2.2. MULTIPROCESSORS WITH SCRATCHPAD MEMORIES

The Runnemede [33] is a modular and hierarchical architecture for HPC. The basic

module of the Runnemede is called block, which consists of a general-purpose core, eight

execution engines, an intra-block network and a L2 SPM of 2.5 MB. The general-purpose

cores have a private 32 KB L1 cache and a pipeline optimized for latency-sensitive OS

operations and sequential program phases, while the execution engines are processors op-

timized for throughput with a private 32 KB L1 cache and a 64 KB L1 SPM. Blocks are

organized in units, which consist of 8 blocks, a L3 SPM of 8 MB and an intra-unit net-

work. A Runnamede chip contains 8 units and a 16 MB L4 SPM, all connected through

another network. The Runnemede is programmed with the Codelets task data-flow pro-

gramming model, giving the runtime system the responsibility of scheduling tasks to the

execution engines and triggering the necessary data transfers between the SPMs of the

system. In this hierarchical architecture it is very important that the task scheduling is

performed in such a way that data locality is maximized.

The polymorphus TRIPS architecture [128, 129] consists of four partitionable large

cores and a reconfigurable memory hierarchy. The cores are a group of execution nodes,

which contain a bank of the L1 instruction cache, a bank of the register file, a set of

reservation stations, an integer ALU, a floating point unit, and a bank of the L1 data cache.

This core organization allows to partition them to exploit different forms of parallelism.

The cores are connected to an array of 32 KB memory tiles that can be configured to

behave as L2 cache banks or SPMs. When configured as SPMs the tag array of the

tiles is turned off, and the cache controllers are augmented with DMA-like capabilities to

transfer data between the tiles and the main memory. Under this configuration the TRIPS

architecture is programmed with stream programming models like StreamC and KernelC

to manage the SPMs.

The Smart Memories Architecture [98, 99] is a tiled manycore with a highly config-

urable memory hierarchy. Each tile of the processor contains 16 blocks of 8 KB SRAMs,

and each memory block is equipped with row and column decoders and a write buffer.

Memory blocks can act independently as a SPM or they can be grouped to act as a cache,

devoting some blocks to the tag array and some others to the data array. These features

allow the memory hierarchy of the Smart Memories Architecture to be configured as a set

of SPMs, a set of caches, or a combination of both. The paper focuses on the hardware

details that allow the reconfiguration, but does not specify how the resulting system would

be exposed to the software layers nor how the memory hierarchy would be managed when

it is configured as SPMs.

30

CHAPTER 2. STATE OF THE ART

Cook et al. [38] propose to use cache locking to configure a part of the L1 cache

of every core as a Virtual Local Store (VLS). A portion of the virtual address space is

direct-mapped to a range of the physical address space to access the VLSs and, in order

to overcome some of the drawbacks of the locking mechanism, the authors propose hard-

ware modifications that allow the accesses to the virtual address range of the VLSs to

be done without accessing the TLB nor the tag array of the cache. The architecture also

includes a DMA controller in every core that moves data between the VLS and the main

memory, and an API is provided to the software to trigger the data transfers. In this work

it is the programmer who explicitly writes the code to manage the VLSs, applying tiling

transformations to the loops to trigger the DMA transfers in the outermost loop.

Bertran et al. [22] propose to add a SPM alongside the L1 cache of a single core

general-purpose processor. The SPM is exposed to the software using a reserved range in

the virtual and physical address spaces and memory accesses to the SPM bypass the TLB

by performing a range lookup with a set of registers that keep the virtual-to-physical ad-

dress mapping. A DMA controller is also introduced in the core to transfer data between

the SPM and the main memory. In order to manage the SPM a tiling software cache [67]

is used to map strided memory references, while random memory references access the

cache hierarchy. The authors give the compiler the responsibility of doing the code trans-

formations for the software cache, but they do not solve the memory aliasing problem

between memory references to the SPM and to the cache hierarchy. In their design, if

the compiler cannot ensure there is no aliasing between strided and random memory ref-

erences, the code transformations for the software cache are discarded and the SPM is

not used. This problem greatly restricts the effective utilization of the SPM in non-trivial

codes.

2.2.6 Summary

SPMs have been adopted in many commercial processors and research projects in the

fields of embedded computing and HPC, where power efficiency and scalability are very

important factors for the success of the architectures. Although memory hierarchies with

SPMs offer important advantages over cache-coherent shared memory organizations, the

programmability issues they impose are a major concern in current solutions.

The fact that the most relevant architectures with SPMs are coupled to ad-hoc pro-

gramming models and language extensions clearly shows that the programmability bur-

dens introduced by the SPMs still need to be solved. Many proposals attempt to auto-

31

2.2. MULTIPROCESSORS WITH SCRATCHPAD MEMORIES

matically manage the SPMs or to support shared memory programming models in these

architectures, but they all have severe limitations or are only applicable to the specific

architecture they target.

In order to make a step forward in this direction, this first contribution of this thesis

proposes a solution for the memory aliasing problem encountered by compiler techniques

that generate code to manage the SPMs with tiling software caches from fork-join pro-

gramming models. The second proposal of this thesis shows that task data-flow program-

ming models are also very suitable for a memory organization that combines caches and

SPMs, preserving the goodnesses of cache-coherent shared memory hierarchies while

exploiting the benefits provided by the SPMs.

32

Chapter 3

Methodology

This chapter describes the experimental methodology followed in this thesis. The first

section explains the simulation infrastructure, focusing on the simulators used to evaluate

the proposals, the baseline architecture that is modeled in the simulators, and the software

environments for the fork-join and the task programming models that run on top of the

architecture. The second section discusses the benchmarks for both programming models,

with their main characteristics and the setup employed in the experiments. Finally, the

third section defines the metrics used to evaluate the proposals of this thesis.

3.1 Simulation Infrastructure

The simulation infrastructure used in this thesis consists of several pieces. Two simula-

tors are set up to evaluate the performance and the energy consumption of the baseline

architecture and the proposals for fork-join and task programming models. Two runtime

systems run on top of the simulated architecture, one for each programming model, that

manage the execution of the parallel benchmarks used in the experiments.

3.1.1 Simulators

The baseline architecture and the hardware extensions proposed in this thesis are mod-

eled with Gem5 [25]. Gem5 is an execution-driven cycle-accurate full system multicore

simulator that supports various ISAs and includes multiple models for the CPU and for

the memory hierarchy, with different levels of detail. The x86 cycle-accurate detailed

out-of-order core model and the detailed memory hierarchy model are used in this thesis.

The energy consumption and the area of the architecture is modeled with McPAT [97].

McPAT is an integrated power, area, and timing simulator for multicore architectures built

33

3.1. SIMULATION INFRASTRUCTURE

on top of CACTI [141, 142]. It includes high performance and low power models for in-

order and out-of-order cores, NoCs, caches, and memory controllers, and has support

for multiple process technologies and clock gating schemes. In this thesis it is used a

process technology of 22 nm with the default clock gating scheme of the tool, and all the

components of the architecture are modeled with low power designs except those that do

not fit in the cycle time, for which high performance designs are used.

3.1.2 Baseline Architecture

The baseline architecture of the thesis, shown in Figure 3.1, is a multiprocessor with a

hybrid memory hierarchy. The hybrid memory hierarchy assumed in this thesis consists

of extending every core of the shared memory multiprocessor with a SPM and a DMA

controller (DMAC).

Figure 3.1: Baseline architecture

The SPMs are added alongside the L1 cache of every core, and they are accessible by

all the cores. The system reserves a range of the virtual and physical address spaces for

each SPM of the chip, and direct-maps the virtual ranges to the physical ones, as shown

in Figure 3.2. Every core keeps the address space mapping in eight registers, four to store

the starting and the final virtual addresses of the local SPM and of the global range of the

SPMs, and four to keep the physical address space of all the SPMs and of the local SPM.

These registers are used to identify virtual addresses that access the SPMs and to do the

virtual-to-physical address translation, allowing all the cores to access any SPM by issuing

loads and stores to their virtual address ranges. At every memory instruction, before any

34

CHAPTER 3. METHODOLOGY

MMU action takes place, a range check is performed on the virtual address. If the virtual

address is in the range of some SPM, the MMU is bypassed and a physical address that

points to the SPM is generated. Apart from the simplicity of the implementation, an

important advantage of this way of integrating the SPMs [22, 38] is that no pagination is

used, so memory accesses to them do not need to lookup the TLB, minimizing the energy

consumption and ensuring deterministic latency. In addition, the typical size of SPMs is

orders of magnitude smaller than the size of the RAM and the virtual address space of a

64-bit processor, so the virtual and physical address ranges reserved for the SPMs occupy

a very minor portion of the whole address spaces.

Figure 3.2: Address space mapping for the SPMs

The DMA controllers transfer data between the SPMs and the global memory (GM,

which includes caches and main memory). They support three operations: (1) dma-get

transfers data from the GM to a SPM, (2) dma-put transfers data from a SPM to the

GM and (3) dma-synch waits for the completion of certain DMA transfers. The dma-get

and dma-put operations support block transfers and scatter-gather transfers with simple

strides [69]. Every DMA controller exposes a set of memory-mapped I/O registers to the

software so it can explicitly trigger the DMA operations. DMA transfers are integrated

in the cache coherence protocol of the GM [21, 88]. The bus requests generated by a

dma-get look for the data in the caches and read the value from there if it exists, otherwise

they read it from the main memory. The bus requests of a dma-put copy the data from the

SPM to the main memory and invalidate the cache line in the whole cache hierarchy.

The main parameters of the processor configuration are summarized in Table 3.1. The

number of cores and the variations of some parameters are specified in the evaluation of

each proposal.

35

3.1. SIMULATION INFRASTRUCTURE

Table 3.1: Processor configuration

Cores Out-of-order, 6 instructions wide, 2 GHz
Pipeline 13 cycles. Branch predictor 4K selector, 4K G-share,
front end 4K Bimodal. 4-way BTB 4K entries. RAS 32 entries

ROB 160 entries. IQ 64 entries. LQ/SQ 48/32 entries.
Execution 3 INT ALU, 3 FP ALU, 3 Ld/St units.

256/256 INT/FP RegFile. Full bypass.

L1 I-cache 2 cycles, 32 KB, 4-way, pseudoLRU
L1 D-cache 2 cycles, 32 KB, 4-way, pseudoLRU, stride prefetcher

SPM 2 cycles, 32 KB, 64 B blocks
DMA DMA command queue 32 entries, in-order

controller Bus request queue 512 entries, in-order

L2 cache
Shared unified NUCA sliced 256 KB / core

15 cycles, 16-way, pseudoLRU
Cache Real MOESI with blocking states, 64 B block size

coherence distributed 4-way cache directory 64K entries
NoC Mesh, link 1 cycle, router 1 cycle

3.1.3 Operating System Support

The hybrid memory hierarchy requires some changes at the OS level to manage the SPMs.

The contents of the SPMs and the address space mapping registers need to be saved

and restored at context switches. For this purpose, the OS process structure is extended

with the fields necessary to store the address mapping registers for the SPMs. By default,

processes execute with this mapping disabled, so the SPMs are not accessible. Whenever

a SPM-enabled application starts, the OS configures the registers for the address spaces

of the SPMs and stores their values in the process structure. Whenever a process is sched-

uled, the registers are set to the values stored in the process structure. In addition, the OS

must also save and restore the contents of the SPMs whenever a process is scheduled for

execution. In order to keep these overheads low, SPM contents can be switched lazily,

similar to how the Linux kernel does for the floating point register file [76].

Since multiple concurrent applications can be using the SPMs, a register that contains

a single bit for each SPM in the system is added to each core. The Nth bit of this register

identifies whether the Nth SPM can be accessed, and accessing a SPM without that bit set

raises an exception. This mechanism allows to control which SPMs are available to the

running processes, enabling that multiple concurrent processes can safely use the SPMs.

These OS modifications provide backwards compatibility and can also be used by

the OS to improve energy consumption by powering down the SPMs that are not being

actively used. As a result, the only overhead when running in compatibility mode is the

unused area of the SPMs and the DMA controllers.

36

CHAPTER 3. METHODOLOGY

3.1.4 Runtime Systems

Two runtime systems are used to manage the parallel execution in fork-join and in task

programming models.

The runtime system of the fork-join programming model is a library that automatically

does a static distribution of the iteration space of a loop between threads and manages the

SPMs of the hybrid memory hierarchy with a tiling software cache. The initial implemen-

tation of the runtime library [67] is designed for the Cell B.E. processor, which internally

contains two software caches for every core, one for strided memory accesses and another

one for random memory accesses. The runtime library used in this thesis is a modifica-

tion of the initial implementation, adapted to work on the baseline architecture with the

hybrid memory hierarchy. First, the software caches for random memory accesses are

removed from the library, because in the hybrid memory hierarchy these are handled by

the cache hierarchy. The logic of the tiling software caches for the strided memory ac-

cesses is left untouched, but the back-end functions are reimplemented to interact with the

simulator. The address spaces of the SPMs of the cores are defined by the runtime library

as memory regions in the address space of the application, and these memory regions are

registered in the simulator at the beginning of the execution. At simulation time, any load

or store to these address ranges is served by the simulated SPMs. The interfaces for the

DMA controllers are also redefined. The original routines to trigger the DMA transfers

are reimplemented so that they perform stores to the addresses of the memory-mapped

I/O registers exposed by the simulated DMA controllers. At simulation time, the memory

operations to these addresses are captured and sent to the simulated DMA controllers,

which form the corresponding DMA commands. Similarly, the original routine to wait

for the completion of certain DMA transfers is reimplemented to do a polling loop that

performs loads to the addresses of the memory-mapped I/O registers where the simulated

DMA controllers expose the DMA completion flags to the software.

For the task programming model this thesis uses Nanos++ [51] version 0.7a as runtime

system. Nanos++ natively supports the OpenMP 4.0 task directives and the additional

tasks constructs provided by OmpSs. For this thesis Nanos++ is configured to work on a

shared memory multiprocessor and is extended with the mechanisms proposed in Chap-

ter 5 to manage the SPMs of the hybrid memory hierarchy. In the simulated environment

the runtime system runs on top of a Gentoo Linux with a kernel 2.6.28-4.

37

3.2. BENCHMARKS

3.2 Benchmarks

The NAS Parallel Benchmarks (NPB) [10] are used for the evaluation of the proposal on

automatic management of SPMs in fork-join programming models. The NPB suite is a

set of benchmarks designed to evaluate the performance of parallel supercomputers. The

benchmarks are derived from typical HPC applications and consist of several kernels and

pseudoapplications implemented in commonly used programming models. Six bench-

marks extracted from the OpenMP implementation of the version 3.0 of the benchmark

suite are used in this thesis. The benchmarks are compiled using GCC 4.7.3 with the -O3

optimization flag on. Table 3.2 shows the selected benchmarks, their descriptions and the

input sets used in the experiments.

Table 3.2: Fork-join benchmarks

Benchmark Description Input

Estimates the smallest eigenvalue of a sparse symmetric positive-definite
CG matrix using the inverse iteration with the conjugate gradient Class B

method as a subroutine for solving systems of linear equations

EP
Generates independent Gaussian random variates

Class A
using the Marsaglia polar method

FT
Solves a three-dimensional partial differential equation

Class A
using the fast Fourier transform method

IS
Sorts a large amount of small integers

Class A
using the bucket sort algorithm

MG
Approximates the solution of a three-dimensional discrete Poisson equation

Class A
using the V-cycle multigrid method

SP
Solves a synthetic system of nonlinear partial differential equations

Class A
using a scalar pentadiagonal solver method

The evaluation of the proposal on automatic management of SPMs in task program-

ming models uses two parallel applications from the PARSEC suite [24] and a set of rep-

resentative HPC numerical kernels. The benchmarks are compiled with the Mercurium

1.99.0 [11] source to source compiler, which translates the original C/C++ code of the

benchmarks with pragmas for the task annotations to a C/C++ code with function calls

to Nanos++, which is the runtime system used for the task programming model. The re-

sulting code is compiled with GCC 4.7.3 using the -O3 optimization flag to generate the

final binary. Table 3.3 shows the benchmarks used, their descriptions and the inputs used

in the evaluation of the proposal.

38

CHAPTER 3. METHODOLOGY

Table 3.3: Task benchmarks

Benchmark Description Input

blackscholes
Calculates the prices for a portfolio of European options

PARSEC Simlarge
using the Black-Scholes partial differential equation

fluidanimate
Simulates the interaction of particles in an incompressible fluid

PARSEC Simlarge
using the Smoothed Particle Hydrodynamics method

jacobi
Solves a diagonally dominant system of linear equations

2560x2560 floats
using the Jacobi method

kmeans
Partitions elements into clusters in which each element 200K elements

belongs to the cluster with the nearest mean 15 clusters

knn
Classifies elements by a majority vote of its neighbors, 4096 elements

assigning the elements to the most voted class 20 neighbors
among its K nearest neighbors 15 classes

md5
Produces a 128-bit hash value using

6400 32 KB buffers
a cryptographic hash function

raytrace
Generates an image by tracing the path of light through the 1024x1024 image

pixels and simulating the effects of its encounters with objects, 3 ray shots per pixel
and then rotates the resulting image rotation of 3°

tinyjpeg
Decodes JPEG images with fixed encoding of JPEG image of

2x2 MCU size and YUV color 2992x2000 pixels
vecadd Calculates the sum of two vectors 1024M integers

vecreduc Calculates the sum of all the elements of a vector 1024M integers

3.3 Metrics

The outcome of the evaluation of the proposals of this thesis proves that multiprocessors

with hybrid memory hierarchies provide several benefits when compared to shared mem-

ory multiprocessors. Furthermore, it proves that the ideas proposed in this thesis solve the

programmability issues of hybrid memory hierarchies with negligible or very affordable

overheads. In order to do these demonstrations the evaluation of this thesis is based on

three metrics: performance, NoC traffic and energy consumption.

The performance numbers are shown in cycles, since nor the hybrid memory hierarchy

nor any of the proposals have any impact on the cycle time. The evaluation section of each

proposal provides deeper analyses to explain the performance differences, using lower

level metrics such as the execution time overhead imposed by managing the SPMs in

software, the hit ratio of the caches, the congestion in the NoC or the overheads added by

the mechanisms proposed in this thesis.

The NoC traffic is another important metric to be studied, since the introduction of

the SPMs and the DMA controllers drastically changes the way the data is moved inside

the chip. This thesis studies the impact of the hybrid memory hierarchy in NoC traffic,

categorizing the packets generated for fetching instructions, reading data, writing data,

39

3.3. METRICS

moving data using DMA transfers, and performing cache management actions such as

block write-backs and replacements.

Another of the goals of the introduction of the SPMs is to reduce the energy consump-

tion. For this reason, the evaluation of this thesis reports the Joules consumed by a multi-

processor with a hybrid memory hierarchy and with a cache hierarchy, and also shows the

overheads introduced by the different proposals in terms of energy consumption. Detailed

analyses show how the energy consumption is distributed between components, specially

focusing on the CPU, the cache hierarchy, the SPMs, and the NoC, and the causes of the

variations in the consumed energy are also explained.

These are the three main metrics used to evaluate the proposals of this thesis. Detailed

analyses are provided to explain the results shown by these three metrics, taking into

consideration the additional low level metrics that are important in each particular study.

40

Chapter 4

SPM Management in Fork-Join Models

Fork-join programming models are the most commonly used way to program shared

memory multiprocessors. The main reason for the success of this approach is its pro-

gramming simplicity, that is granted by the ability of cache-coherent memory hierarchies

to manage the data transparently to the software. Unfortunately, the introduction of SPMs

in the memory hierarchy imposes a much more complex memory model where data must

be managed by software. As a consequence, multiprocessors with SPMs are usually pro-

grammed with programming models that require the programmer to explicitly manage the

data. In order to alleviate this programming burden, a promising solution is to give the

compiler the responsibility of automatically generating code to manage the SPMs from

fork-join programming models, transparently to the programmer.

Tiling software caches [55, 56, 67, 133] are well-known technique to automatically

manage SPMs. Tiling software caches manage the SPMs by dynamically mapping big

chunks of data accessed by strided memory accesses, taking advantage of their high

spatial locality and predictability. Random accesses, on the other hand, are difficult to

manage by software because of their unpredictability, so they greatly benefit from the

ability of caches to automatically request data and to keep it coherent. This approach is

very suitable for HPC applications, which are dominated by strided accesses to big input

sets [107, 152], so the amount of data mapped to the SPMs and the number of memory

accesses served by them are maximized.

Compilers succeed in generating code to manage the SPMs with tiling software caches

when the computation is based on predictable memory access patterns but, when unpre-

dictable memory access patterns are found, they encounter important limitations [55, 56,

67]. Due to the incoherence between the SPMs and the cache hierarchy, the compiler

cannot generate code to manage the SPMs if it cannot ensure that there is no aliasing

between two memory references that may target copies of the same data in the SPMs and

41

4.1. TILING SOFTWARE CACHES

in the cache hierarchy. This memory aliasing problem greatly restricts the ability of the

compiler to generate code for hybrid memory hierarchies in non-trivial cases.

This chapter proposes a coherence protocol for hybrid memory hierarchies that allows

the compiler to always generate code to manage the SPMs with tiling software caches,

even in the presence of memory aliasing hazards. In a hardware/software co-designed

mechanism, the compiler identifies memory accesses that may access incoherent copies

of data, and the hardware diverts these accesses to the memory that keeps the valid copy of

the data. The proposal allows the compiler to always generate correct code to manage the

SPMs, so architectues with hybrid memory hierarchies can be exposed to the programmer

as a shared memory multiprocessor, maintaining the programming simplicity of fork-join

programming models and preserving code portability.

4.1 Tiling Software Caches

Tiling software caches [55, 56, 67, 133] are a well-known approach to automatically man-

age SPMs without any intervention from the programmer. In order to enable this tech-

nique, the compiler applies a series of analyses and code transformations on the loops of

a code written in a fork-join programming model.

The first step is to identify data suitable to be mapped to the SPMs. In fork-join

programming models the compiler uses analyses and code annotations provided by the

programmer to decide how the data and the computation is distributed among the threads.

Based on this distribution, it identifies array sections [116] that are sequentially traversed

and private to each thread. These array sections are the preferred candidates to be mapped

to the SPMs because the strided accesses used to traverse them are highly predictable and

their privateness avoids costly data synchronization mechanisms on the SPMs.

After identifying the array sections to be mapped to the SPMs the compiler does the

code transformations, inserting calls to a runtime system that will manage the DMA trans-

fers at execution time. For a computational loop the code is transformed into a two-nested

loop that uses tiling to do the computation [55, 56, 67, 133]. As shown in Figure 4.1, each

iteration of the outermost loop executes three phases: (1) a control phase that maps chunks

of the array sections to the SPMs, (2) a synchronization phase that waits for the comple-

tion of the DMA transfers, and (3) a work phase that performs the computation for the

currently mapped chunks of data. These phases repeat until the whole iteration space is

computed.

42

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

Figure 4.1: Code transformation for tiling software caches

Before entering the loop, the runtime divides the size of the SPM in equally-sized

buffers in order to minimize complexity and overheads. One buffer is allocated for each

memory reference that is mapped to the SPM. In Figure 4.1, ALLOCATE_BUFFERS

allocates two buffers to map chunks of a and b, and each buffer occupies half the size of

the SPM.

The control phase moves chunks of array sections between the SPM and the GM.

At every instance of the control phase, in the MAP statement for each array section, the

chunk of data for the next work phase is mapped to its corresponding SPM buffer with a

dma-get, and the previously used chunk is written back to the GM if needed with a dma-

put. Each call to MAP also sets a pointer to the first element of the buffer that has to be

computed (_a and _b), updates the number of iterations that can be performed with the

current mappings (iters) and sets the tags associated to the DMA transfers (tags).

After waiting for the DMA transfers to finish in the synchronization phase, the work

phase takes place. This phase does the same computation as the original loop, but with two

differences. First, the memory references to the array sections (a and b) are substituted

with their corresponding SPM mappings (_a and _b). Second, the iteration space of the

work phase is limited to the number of iterations that can be performed with the chunks

of data currently mapped to the SPM.

43

4.2. COHERENCE PROTOCOL

4.1.1 Coherence Problem

The hybrid memory hierarchy opens the door to incoherences between copies of data in

the SPMs and the GM. When a chunk of data is mapped to some SPM, a copy of the data

is created in its address space, and the coherence between the copy in the SPM and the

copy in the GM has to be explicitly maintained because there is no hardware coherence

between the two memory spaces. This issue restricts the compiler from performing the

code transformation for tiling software caches in non-trivial cases.

Once the compiler has identified the array sections to be mapped to the SPMs, it

changes the memory references in the work phase so that they access the copy in the

SPMs, while the rest of memory references access the GM. This causes that two incoher-

ent copies of the same data can be accessed simultaneously during the computation, one

via strided accesses to the SPMs and the other via random accesses to the GM, resulting in

an incorrect execution. In order to ensure the correctness of the code transformation, the

compiler has to apply alias analyses [45, 46, 73, 74, 90, 91, 153, 154] between the memory

references that target the SPMs and the rest of memory references in the loop body and

ensure there is no aliasing. In the example in Figure 4.1 this implies predicting if any in-

stance of the accesses to c or ptr aliases with any instance of the accesses to a or b. This

problem, that also affects compiler auto-vectorization and auto-parallelization [73, 74],

has not been solved in the general case, especially in the presence of pointers.

This chapter proposes an efficient mechanism that ensures coherence in hybrid mem-

ory hierarchies. The solution avoids the limitations stemming from the inability to solve

the memory aliasing problem, bringing the optimization opportunities to a new level

where compilers no longer have to discard the code transformations for tiling software

caches due to memory aliasing hazards.

4.2 Coherence Protocol

The main idea of the coherence protocol is to avoid maintaining two coherent copies of the

data but, instead, ensure that memory accesses always use the valid copy of the data. The

resulting design is open to data replication between the SPMs and the cache hierarchy.

The system guarantees that, first, in case of data replication, either the copies are identical

or the copy in the SPMs is the valid one and, second, always a valid copy of the data

is accessed. For data transfers this is ensured by using coherent DMA transfers and by

44

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

guaranteeing that, at the eviction of replicated data, always the invalid copy is discarded

and then the valid version is evicted. For data accesses, the compiler identifies memory

accesses that may access incoherent copies of data and emits a special form of memory

instruction for them. On the hardware side, a set of SPM directories are introduced to track

what data is mapped to the SPMs. The execution of these special memory instructions

triggers a lookup in the SPM directories, diverting the access to the memory that keeps

the valid copy of the data.

4.2.1 Compiler Support

The goal of the compiler in the coherence protocol is to identify memory accesses that

may access incoherent copies of data. In order to do this, the compiler support consists

on simple modifications to the algorithms of three compiler phases that take part in the

process of generating code for tiling software caches: classification of memory references,

code transformation and code generation.

4.2.1.1 Classification of Memory References

In this phase the compiler identifies which memory accesses are suitable to be mapped to

the SPMs and which others to the GM. It does so by classifying the memory references

according to their access patterns and possible aliasing hazards. This last analysis is

done using the alias analysis function, which receives two pointers as inputs and gives

an outcome with three possible values: the pointers alias, the pointers do not alias or the

pointers may alias. The information generated in this phase is added to the intermediate

representation of the compiled code and is used in the next phases. The classes of memory

references are:

• Strided accesses are those that expose a strided access pattern. They are managed

by a tiling software cache to access the SPMs.

• Random accesses are those that do not expose a strided access pattern and the com-

piler determines they do not alias with any strided access. They access the GM.

• Potentially incoherent accesses are those that do not expose a strided access pattern

and the compiler determines they alias or may alias with some strided access. They

look up the SPM directories and are diverted to the GM or to some SPM.

45

4.2. COHERENCE PROTOCOL

Figure 4.2: Classification of memory references

In the example shown in Figure 4.2 the compiler classifies a and b as strided accesses

because they expose a strided access pattern. Accesses c and ptr do not follow a strided

access pattern so, depending on the outcome of the alias analysis, they are categorized

as random or as potentially incoherent accesses. The example assumes the compiler suc-

ceeds in ensuring that c does not alias with any strided access, so it is classified as a

random access, and that the compiler is unable to determine that ptr does not alias with

any strided access, so it is classified as a potentially incoherent access.

4.2.1.2 Code Transformation

In this phase the compiler performs the code transformations to manage the SPMs using

tiling software caches [55, 56, 67, 133]. The code transformations are performed as ex-

plained earlier in Section 4.1 and shown in Figure 4.1. The code transformations only op-

erate on the strided accesses, while random accesses and potentially incoherent accesses

are not taken into account in this phase. As a consequence, the introduction of the new

class of potentially incoherent accesses has no implications in the code transformations.

4.2.1.3 Code Generation

In this phase the compiler takes the transformed code and emits the assembly code for the

target architecture, operating on the memory accesses as follows:

• For regular accesses the compiler emits conventional memory instructions that di-

rectly access the SPMs. This is accomplished by using as source operands the base

address of a SPM buffer and an offset.

• For irregular accesses the compiler emits conventional memory instructions that

directly access the GM. This is accomplished by using as source operands a base

address in the GM and an offset.

46

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

• For potentially incoherent accesses the compiler generates guarded memory in-

structions with an initial GM address. This is accomplished by using as source

operands a base address in the GM and an offset. When they are executed, guarded

memory instructions look up the SPM directories using the GM address and are

diverted to the GM or to some SPM. The implementation of the guarded memory

instructions is discussed later in this section.

Figure 4.3: Code generation

Figure 4.3 shows the assembly code that the compiler emits for the body of the inner-

most loop. In the statement that uses strided accesses (line 10), a conventional load (ld in

line 11) and a conventional store (st in line 12) are emitted to, respectively, read a value

from _b and write it in _a. When these instructions are executed, their addresses will

guide the memory accesses to the SPMs. Similarly, in the statement that uses a random

access to store the zero value in random positions of c (line 13), the compiler emits a con-

ventional store (st in line 15) with an address that will access the GM at execution time.

Finally, to increment the value that is accessed via potentially incoherent accesses (line

16), the compiler emits a guarded load (gld in line 17) to read the value and a guarded

store (gst in line 19) to write the value after incrementing it. When these two guarded

memory instructions are executed, the initial GM addresses based on ptr will be used to

look up the SPM directories and they will be changed to addresses of some SPM if a copy

of the data exists there.

47

4.2. COHERENCE PROTOCOL

The implementation of the guarded memory instructions highly depends on the archi-

tecture. The trivial implementation is to duplicate all memory instructions with a guarded

form. As this might produce many new opcodes, it may be unacceptable for some ISAs,

specially in RISC architectures. One alternative is to take unused bits of the binary rep-

resentation of memory instructions, as happens in PowerPC [124]. Another option is to

provide a fewer range of guarded memory instructions and restrict the compiler to these.

In CISC architectures like x86 [76], where most instructions can access memory, instruc-

tion prefixes can be used to implement the guard. A generic solution for any ISA is

to extend the instruction set by only a single instruction that performs the computation

of the address using the SPM directories and leaves the result in a register that is con-

sumed by the memory instruction, conceptually converting the guarded memory access

to a coherence-aware address calculation plus a normal memory operation.

4.2.2 Hardware Design

The goal of the hardware support for the coherence protocol is to check if the data ac-

cessed by a potentially incoherent access is mapped to some SPM and, in case it is, divert

the access to the SPM. With this approach the architecture does not maintain the different

copies of the data in a coherent state but, instead, it ensures that the valid copy of the data

is always accessed.

The proposed hardware design aims to exploit a key characteristic of the applications:

it is extremely rare that, in the same loop, the same data is accessed at the same time

using strided and random accesses. The data of a program is kept in data structures, and

the internal organization of the data structures is what defines the way the data is accessed,

thus defines what kind of memory access are used to do so. In addition, although some

data structures (e.g., arrays) can be accessed in different ways, it is unnatural to access

the same data using strided and random accesses in the same computational parallel loop.

This implies that strided accesses almost never alias with potentially incoherent accesses,

although the compiler is unable to ensure it using alias analyses. For this reason, the

hardware support for the coherence protocol is designed to not penalize the latency of

potentially incoherent accesses that do not access data that is mapped to the SPMs, which

is the most common case.

The hardware support for the coherence protocol consists on tracking what data is

mapped to the SPMs and what data is known to be not mapped to the SPMs. Figure 4.4

shows the hardware extensions in one core and in one slice of the cache directory of the

48

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

cache coherence protocol. Every core tracks what data is mapped to its SPM in its SPM

directory (shown as SPMDir in the figure), so all the data mapped to all SPMs is tracked

in a distributed way. Chunks of data that are not mapped to any SPM and that have been

recently accessed by guarded memory instructions are tracked in a hierarchy of filters.

Similar to the operation of a directory-based cache coherence protocol, every core tracks

some chunks of unmapped data in its filter and the filter directory tracks the contents of all

the filters. Placing the filters and the SPM directories close to the core allows fast access

to the information needed to divert potentially incoherent accesses.

Figure 4.4: Hardware support for the coherence protocol

The next subsections explain the implementation of these hardware structures, how

they are operated in the execution of memory operations, and how they track what data is

mapped to the SPMs and what data is not mapped.

4.2.2.1 Implementation of Hardware Structures

The hardware structures added for the coherence protocol are implemented as follows:

• The SPM directory is a CAM array that tracks the base GM address of the chunks

of data mapped to the SPM of the core.

• The filter is a CAM array that keeps base GM addresses not mapped to any SPM.

• The filter directory is an extension of the cache directory that consists of a CAM

array that keeps base GM addresses and a RAM array with a bitvector of sharer

cores that tracks which cores have the address in their filters.

49

4.2. COHERENCE PROTOCOL

Note that the hardware structures track data at a fixed granularity using 64-bit virtual

base addresses. This can be done because, in loop parallelism, all threads work with the

same SPM buffer size. As explained in Section 4.1, prior to the execution of a loop,

the size of the SPM is divided among equally-sized SPM buffers. This buffer size is

notified to the hardware, that sets the values of the Base Mask and Offset Mask internal

configuration registers that are used to decompose any address into a base address and

an address offset. This allows that, first, base addresses can be used to operate all the

hardware structures and, second, the SPM directories do not need a RAM array to store

the SPM base addresses for every entry, since the index of the entry is equivalent to the

buffer number and, thus, the base address of the SPM buffer.

In other forms of parallelism such as parallel sections, where different threads can

simultaneously execute parts of the code that require managing the SPMs at different

granularities, range lookups would be required in the proposed hardware structures.

4.2.2.2 Execution of Memory Accesses

The hardware design of the coherence protocol tracks all the data that is mapped to the

SPMs in the SPM directories, and the data that has been recently accessed by potentially

incoherent accesses that is not mapped to any SPM is tracked in the hierarchy of filters.

This information is used in the execution of memory accesses.

Strided accesses are served by the SPM, as shown in Figure 4.5. These kind of mem-

ory accesses are the most frequent in HPC applications [107, 152], and they are served in

a very power-efficient way because they do not require any CAM lookup in the TLB, the

tag array of the caches, the SPM directory or the filter.

Figure 4.5: Strided access to the SPM

50

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

Random accesses are served by the cache hierarchy, as shown in Figure 4.6. These

kind of memory accesses operate like in a shared memory multiprocessor without SPMs,

accessing the TLB and the L1 cache in parallel. The SPM directory and the filter are not

accessed, so no overhead is added.

Figure 4.6: Random access to the cache

Potentially incoherent accesses behave as a normal random access to the cache hi-

erarchy, accessing the TLB and the L1 cache. In addition, and in parallel to these two

operations, the GM base address is looked up in the filter and in the SPM directory to

check if the data being accessed is mapped to some SPM. Different situations can arise

depending on the results of the lookups.

Figure 4.7 illustrates the situation where a potentially incoherent access accesses data

that is not mapped to any SPM and the address is present in the filter. When this happens

the lookup in the SPM directory misses and the lookup in the filter hits 1 . The TLB

translates the address and the L1 cache is accessed to serve the memory access 2 .

Figure 4.7: Guarded access to data not mapped to the SPMs with filter hit

51

4.2. COHERENCE PROTOCOL

Figure 4.8 shows the situation where the data accessed by a potentially incoherent

access is not mapped to any SPM, but the address is not cached in the filter of the local

core. In this case the lookup in the SPM directory misses and the lookup in the filter

misses 1 , so it has to be checked if the data is mapped to a remote SPM. The cache access

is buffered (in the MSHR for loads and in the write buffer for stores) and a request is sent

to the filter directory, that looks up the address 2 . If the lookup in the filter directory

hits it is known that the address is not mapped to any SPM, so the filter directory sends

a response to the local core. If the lookup in the filter directory 2 misses it has to be

checked if the address is mapped to some SPM, so a request is broadcasted to all the

remote cores to check if the address is in their SPM directories 3 . The lookup misses in

all the cores because the data is not mapped to any SPM, and the remote cores respond

to the filter directory and this to the local core. When the local core receives the response

the buffered cache access is used to serve the memory access 4 and the GM base address

is used to update the filter as explained in the next section.

Figure 4.8: Guarded access to data not mapped to the SPMs with filter miss

The situation shown in Figure 4.9 corresponds to the case where the data accessed

by a potentially incoherent access is mapped to the SPM of the local core. When this

happens the lookup in the filter misses and the lookup in the SPM directory hits 1 . The

SPM base address corresponding to the SPM directory entry that returned the hit is added

to the offset of the address of the guarded instruction, resulting in the SPM address where

the data is mapped to. This address is used to access the SPM, which serves the memory

access 2 . If the potentially incoherent access was a store the data is also written in the

L1 cache while, if it was a load, the output of the TLB lookup and the cache access are

discarded 3 .

52

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

Figure 4.9: Guarded access to data mapped to the local SPM

Figure 4.10 shows the situation where the data accessed by a potentially incoherent

access is mapped to the SPM of a remote core. The lookups in the filter and in the

SPM directory miss 1 , so the cache access is buffered and a request is sent to the filter

directory, that also misses 2 , and the request is broadcasted to all the remote cores. In

this case, one of the remote cores has the data mapped to its SPM, so the lookup in its

SPM directory hits 3 . The SPM is accessed to serve the remote access 3 , calculating the

SPM address by adding the offset of the remote access to the base address corresponding

to the index of the SPM directory that returned the hit. Then the remote core responds to

the filter directory, sending the data if the remote access was a load or an ACK if it was a

store, and the filter directory forwards the response to the local core. When the response

arrives to the local core the buffered cache access is discarded 4 if it was a guarded load,

or the data is written to the L1 cache if it was a guarded store.

Figure 4.10: Guarded access to data mapped to a remote SPM

53

4.2. COHERENCE PROTOCOL

4.2.2.3 Tracking SPMs Contents

In order to use the SPM directories, the filters and the filter directory to divert the po-

tentially incoherent accesses to the valid copy of the data, the contents of these hardware

structures have to be updated to always track what data is mapped to the SPMs and what

data is not mapped.

When a core maps data to its SPM, its SPM directory is updated and the filters are

invalidated. Figure 4.11 shows how this process is performed. In order to update the SPM

directory 1 the source GM address and the destination SPM address of the dma-get are

used to calculate the GM base address and the SPM base address, and the SPM directory

entry associated to the SPM base address is updated with the GM base address. In order

to invalidate the filters, first an invalidation message is sent for the GM base address to

the filter directory 2 , that triggers a lookup of the address 3 . If the address is not found

no core has the address in its filter, so no more actions take place. If the GM base address

is found in the filter directory the entry is invalidated 4 and a filter invalidation message

is sent to all the cores in the sharers list 5 . When the sharer cores receive the invalidation

message they look up the address in the filter and invalidate the matching entry 6 .

Figure 4.11: SPM directory update and filter invalidation

The filters and the filter directory are updated when the data accessed by a potentially

incoherent is not mapped to any SPM, but the address is not present in the filter of the

local core. This situation is illustrated in Figure 4.8. The mechanism to update the filters

and the filter directory is shown in Figure 4.12, and is very similar to how caches operate

on a cache miss. When a lookup of a GM address misses in the filter, it has to check if

the GM address is mapped to some SPM. First, a request for the GM address is sent to

the filter directory 1 , that generates the GM base address and triggers a lookup 2 . If

54

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

the base address is in the filter directory it means the address is not mapped to any SPM,

so the requestor core is added to the sharers list 3 and a NACK is sent as a response 4 .

When the requestor core receives the NACK it inserts the GM base address in the filter

5 . If the lookup in the filter directory 2 misses, the GM address may be mapped to some

SPM. The filter directory broadcasts a request of the address to all the cores 6 . When

the cores receive the request, they calculate the GM base address, look it up in their SPM

directory 7 and respond to the filter directory either with a NACK if the lookup misses or

with an ACK if the lookup hits 8 . If all the cores respond NACK, the data is not mapped

to any SPM, so the filter directory inserts the GM base address 3 , sets the local core in

the bitvector of sharer cores and sends it a response with NACK 4 . When the local core

receives the NACK it inserts the GM base address in its filter 5 . If a remote core responds

to the broadcast request with an ACK 8 it means it the data is mapped to its SPM, so the

address cannot be filtered. The filter directory responds with a ACK to the local core 4

and this does not update its filter.

Figure 4.12: Filter update

Note that the filter of every core and the filter directory are associative buffers with a

replacement policy so, when they are updated, an older entry can be evicted. When an

entry of the filter of a core is evicted, a message is sent to the filter directory to notify

of the eviction, and this removes the core from the sharers list. When the filter directory

is updated and an older entry is evicted, an invalidation message is sent to all the sharer

cores, that invalidate their filter, like in step 2 of Figure 4.11.

55

4.2. COHERENCE PROTOCOL

4.2.2.4 Maintaining Sequential Consistency

Another important problem that affects the ability of the compiler to generate code for

the SPMs of the hybrid memory hierarchy is the memory consistency model provided by

the architecture. The memory consistency model defines what is the expected behaviour

of a sequence of memory operations. Fork-join programming models, as well as the vast

majority of shared memory programming models, rely on memory models that imply

sequential consistency [1], which ensures that a sequence of memory operations will hap-

pen in program order inside the same thread, while a sequence of memory operations

from different threads can happen in any order. For this reason, the programmer has to

use synchronization mechanisms to avoid data races between the threads, but not between

the memory accesses of each thread. In order to allow the compiler to transform the code

to manage the SPMs of the hybrid memory hierarchy it is mandatory that the architecture

respects the sequential consistency rules.

The coherence protocol for the hybrid memory hierarchy breaks the sequential con-

sistency rules between potentially incoherent accesses and strided accesses of the same

thread. The problem is that the virtual address of potentially incoherent accesses is ini-

tially a GM address, and it is changed to a different SPM virtual address if the lookup

in the SPM directory determines that the data is mapped to the SPM. This causes that,

when a thread accesses the same data using strided and potentially incoherent accesses,

an out-of-order core can re-order the instructions and the LSQ will not detect an order-

ing violation has happened because the virtual addresses of the two memory accesses are

different. When the potentially incoherent access is sent to the memory hierarchy and its

address is changed to point to the SPM it results in the same address of the strided access

so, if at least one of the two accesses was a store, the re-ordering breaks the sequential

consistency rules. In order to solve this problem, when a potentially incoherent access

hits in the SPM directory, the new SPM address is notified to the LSQ to re-check the

ordering for the new address, and the pipeline is flushed if a violation is found. If the po-

tentially incoherent access aliases with the contents of a remote SPM it is responsibility

of the programmer to synchronize the accesses between the threads, just like it is done for

any other type of memory accesses.

56

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

4.3 Data Coherence Management

The previous sections describe how memory operations are diverted to one memory or

another when replication exists, considering that the valid copy of the data is in the SPMs.

This section shows this situation is always ensured. First, the different states and actions

that apply to data in the system are described. According to this, it is shown that whenever

data is replicated in a SPM and in the cache hierarchy, only two situations can arise: either

both versions are identical, or the version in the SPM is always more recent than the

version in the cache hierarchy. Then it is shown that whenever replicated data is evicted

to main memory, the version in the SPM is always the one transferred, invalidating the

cache version. This is always guaranteed unless both versions are identical, in which case

the system supports the eviction indistinctly.

4.3.1 Data States and Operations

Figure 4.13 shows the possible actions and states of data in the system. The state diagram

is conceptual, it is not implemented in hardware. The MM state indicates the data is in

main memory and has no replica neither in the cache hierarchy nor in any SPM. The SPM

state indicates that only one replica exists, and it is located in a SPM. In the CM state only

one replica in the cache hierarchy exists. In the SPM-CM state two replicas exist, one in

a SPM and the other in the cache hierarchy.

Actions prefixed with “SPM-” correspond to SPM control actions, activated by soft-

ware. There is a distinction between SPM-map and SPM-unmap although both actions

correspond to the execution of a dma-get, which unmaps the previous contents of a SPM

buffer and maps new contents instead. SPM-map indicates that a dma-get transfers the

data to the SPM. The SPM-unmap indicates that a dma-get has been performed that over-

writes the data in question, so it is no longer mapped to the SPM. The SPM-writeback

corresponds to the execution of a dma-put that transfers the data from the SPM to the

GM. Actions prefixed with “CM-” correspond to hardware activated actions in the cache

hierarchy. The CM-access corresponds to the placement of the cache block that contains

the data in the cache hierarchy. The CM-evict corresponds to the replacement of the cache

block, with its write-back to main memory if needed.

The MM→SPM transition occurs when the software triggers a dma-get, causing a

SPM-map action. Switching back to the MM state occurs when a SPM-unmap action

happens due to a dma-get mapping new data to the SPM buffer. A SPM-writeback action

57

4.3. DATA COHERENCE MANAGEMENT

does not imply a switch to the MM state, as transferring data to the main memory does

not unmap the data from the SPM.

MM

start

SPM CM

SPM-CM

SPM −
map CM

− access

SPM −
unm

ap

CM
− access

SPM − writ
ebac

k

CM
− evict

SP
M −

map

CM
− evict

SPM
− writeback

SPM
−
unm

ap

Figure 4.13: State diagram of the possible replication states of the data

Transitions between the MM and CM states happen according to the execution of

random accesses to the GM, which cause CM-access and CM-eviction actions. Note that

unless the data reaches the SPM-CM state, no coherence problem can appear due to the

use of a SPM. DMA transfers are coherent with the GM, ensuring the system coherence as

long as the data switches between the SPM and MM states. Similarly, the cache coherence

protocol ensures the system coherence when the data switches between the MM and CM

states. In both cases, never more than one replica is generated.

The SPM-CM state is reachable from both the SPM and the CM states. In the SPM

state it is impossible to have random memory accesses to the GM because the compiler

never emits them unless it is sure that there is no aliasing, which cannot happen in this

state. Potentially incoherent loads never generate a replica in the cache hierarchy since the

access goes through the SPM directories, and these divert the access to the SPM. So, in

the SPM state, only the execution of a potentially incoherent store can cause the transition

to the SPM-CM state. The execution of a potentially incoherent store writes the data in

the SPM and also in the cache hierarchy, so a replica of the data is generated and updated

in the cache. Since the same value is written in the two memories, two replicas of the data

generated through a SPM→SPM-CM transition are always identical.

The transition CM→SPM-CM happens due to an SPM-map action, and the DMA

coherence ensures the two versions are identical. Once in the SPM-CM state, potentially

incoherent stores updates both versions with the same value, while strided write accesses

modify the SPM version and random write accesses are never generated.

58

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

In conclusion, only two possibilities exist for having two replicas of data. Each one

is represented by one path reaching the SPM-CM state from the MM state. In both cases,

the two versions are either identical or the version in the SPM is the valid one. The next

section shows the valid version is always selected at the moment of evicting the data to

main memory.

4.3.2 Data Eviction

The state diagram shows that the eviction of data can only occur from the SPM and CM

states. There is no direct transition from the SPM-CM state to the MM state, which means

that eviction of data can only happen when one replica exists in the system. This is a key

point to ensure coherence. In case data is in the SPM-CM state, its eviction can only occur

if first one of the replicas is discarded, which corresponds to a transition to the SPM or

CM states. As seen in the previous section, it is ensured that in the SPM-CM state the two

replicas are identical or, if not, the version in the SPM is the valid one. Consequently, the

eviction discards the cache version unless both versions are identical, in which case either

version can be evicted. This behavior is guaranteed by the transitions exiting the SPM-

CM state. When a SPM-writeback action is triggered by a dma-put the associated DMA

transfer invalidates the version of the data that is in the cache hierarchy. The CM-evict

transition is caused by an access to some other data in the GM that causes a replacement of

the cache block that holds the current data, leaving just one replica in the SPM. So, when

transitioning to the SPM state, always the replica in the cache is discarded first. Once

the SPM state is reached, at some point the program will execute a dma-put operation to

write-back the data to the GM. In the other path, the transition SPM-CM→CM caused

by a SPM-unmap action corresponds to the case where the program explicitly discards

the copy in the SPM when new data is mapped to the SPM buffer that holds it. The

programming model imposes that this will only happen when both versions are identical,

because if the version in the SPM had modifications it would be written-back before being

replaced. So, after the SPM-unmap, the only replica of the data is in the cache hierarchy

and it is valid, and the cache coherence protocol will ensure the transfer of the cache block

to the main memory is done coherently.

In conclusion, the system always evicts the valid version of the data. When two repli-

cas exist, first the invalid one is discarded and, then, the DMA and the cache coherence

mechanisms correctly manage the eviction of the valid replica.

59

4.4. EVALUATION

4.4 Evaluation

This section evaluates the overheads of the proposed coherence protocol and compares

the performance, the NoC traffic and the energy consumption of a multicore with 64 cores

and the resulting hybrid memory hierarchy against one with a cache hierarchy. Table 4.1

shows the configuration of the hardware structures added for the coherence protocol.

Table 4.1: Configuration of the hardware structures for the coherence protocol

SPM directory 32 entries
Filter 48 entries, fully associative, pseudoLRU

FilterDir Distributed 4K entries, fully associative, pseudoLRU

4.4.1 Benchmark Characterization

Table 4.2 shows the main characteristics of the benchmarks used in the evaluation. For

each benchmark it is shown the input class, the number of kernels, the number of strided

and potentially incoherent memory references and the sizes of the data sets accessed by

each type of accesses. These benchmarks allow to study many different scenarios re-

garding the number of memory accesses of each type and the sizes of the data sets they

access. CG and IS use few strided references to traverse big input sets and few potentially

incoherent references to access a smaller data set, so the ratio of potentially incoherent ac-

cesses with respect to the total number of accesses is high. In EP the amount of references

of each type is low and the data sets are small and, in addition, its kernels use many scalar

temporal values that cause register spilling, so the majority of memory accesses are to

the stack. FT and MG traverse big input sets with many strided references and use a few

potentially incoherent references to access much smaller parts of the data set, while SP

traverses a small input set in a series of 54 different kernels that only use strided accesses.

Table 4.2: Benchmarks and memory access characterization

Benchmark Strided references Guarded references
Name Input Kernels # Data Size # Data Size

CG ClassB 1 5 109 MB 1 600 KB
EP ClassA 2 3 1 MB 1 512 KB
FT ClassA 5 32 269 MB 4 1 MB
IS ClassA 1 3 67 MB 2 2 MB

MG ClassA 3 59 454 MB 6 64 B
SP ClassA 54 497 2 MB 0 0 B

60

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

Like in real HPC applications [107, 152], the characteristics of the benchmarks fulfill

the motivation for the introduction of SPMs. In all benchmarks the number of strided

references is higher than the number of potentially incoherent references, and the data set

accessed by strided accesses is much bigger than the one accessed by potentially inco-

herent accesses. Furthermore, the data sets accessed by strided and potentially incoherent

accesses are disjoint, though the compiler is unable to ensure it using alias analyses.

4.4.2 Coherence Protocol Overheads

This section analyses the overheads of the proposed coherence protocol. In this study the

coherence protocol is compared with an ideal coherence protocol that diverts potentially

incoherent accesses to the correct copy of the data without the need of SPM directories,

filters, the filter directory nor any NoC traffic to maintain them. Figure 4.14 shows the

overheads in performance, energy consumption and NoC traffic of the hybrid memory

hierarchy augmented with the proposed coherence protocol with respect to the hybrid

memory hierarchy with ideal coherence.

CG EP FT IS MG SP0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ov
er
he

ad
 (x

)

Execution time Energy NoC traffic

Figure 4.14: Coherence protocol overheads

The coherence protocol adds performance overheads of 1% to 11%. These overheads

are caused by the increase in NoC traffic and by the filter misses at the execution of poten-

tially incoherent accesses. The filter hit ratio for each benchmark is shown in Figure 4.15.

In SP the performance overhead is negligible because no potentially incoherent accesses

are generated and very few DMA transfers are issued, so the filters are not used and the

overhead in NoC traffic is only 2%. CG, EP, FT and MG present performance overheads

between 2% and 7%. Even though the filter hit ratio for these benchmarks is at least 97%,

the NoC traffic added by the coherence protocol, between 4% and 11%, slightly penalizes

performance. In IS the performance overhead is 11% because the filter hit ratio is lower,

61

4.4. EVALUATION

92%, which penalizes the latency of potentially incoherent accesses and adds higher over-

heads in NoC traffic, 15%. In all benchmarks the contention in the filter directory is very

low due to the low rate of DMA transfers and filter misses. In addition, potentially inco-

herent accesses never alias with SPM accesses and the filter directory can track the whole

data set accessed by potentially incoherent accesses, so filter invalidations and pipeline

squashes due to ordering violations never happen.

CG EP FT IS MG SP0
10
20
30
40
50
60
70
80
90
100
110

Hi
t r
at
io
 (%

)

Figure 4.15: Filter hit ratio.

In terms of energy consumption, the overheads range from 3% to 14%. In SP the

overhead is only 3% because the filters are gated off and only the SPM directories and

the filter directory consume some extra energy at every DMA transfer. In the rest of

benchmarks the overheads range between 7% and 14%. Almost half of the overhead is

due to static energy consumption, where the SPM directories, the filters and the filter

directory add overheads of less than 3%, and the performance overheads add another 2%

to 5% in the whole chip. In dynamic energy the SPM directories add up to 3% overhead,

while less than 2% is added by the filters and the filter directory. The extra NoC traffic

causes overheads of less than 1% in the NoC in all cases except in IS, where it adds 3%.

The overhead in area added by the hardware structures for the coherence protocol is 4%.

In conclusion, the coherence protocol introduces very low overheads in performance,

energy consumption and NoC traffic, with respective averages of 4%, 9% and 8%.

4.4.3 Comparison with Cache Hierarchies

This section compares the hybrid memory hierarchy against a cache hierarchy in a 64-core

multicore architecture. The processor configurations with the hybrid memory hierarchy

and with the cache hierarchy have the same characteristics, shown in Table 3.1, but with

one difference. For fairness, the L1 D-cache of the architecture with the cache hierarchy

is augmented to 64 KB without affecting access latency, matching the 32 KB L1 D-cache

plus the 32 KB SPM of the hybrid memory hierarchy.

62

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

4.4.3.1 Performance Evaluation

Figure 4.16 shows the performance of the cache hierarchy (Cache) and the hybrid memory

hierarchy (Hybrid). Both bars are normalized to the execution time of the cache hierarchy,

and show the time spent in each execution phase.

CG EP FT IS MG SP AVG0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
iz
ed
 c
yc
le
s Cache

Hybrid

Control
Sync
Work

Figure 4.16: Reduction of execution time

The hybrid memory hierarchy reduces the execution time of all benchmarks by 3% to

18% (or speedups of 1.03x to 1.22x). EP is dominated by cache accesses to the stack and a

very small data set is mapped to the SPMs, so the performance differences are negligible.

In the rest of benchmarks the execution time is reduced by 12% to 18% (or speedups of

1.12x to 1.22x) because the hybrid memory hierarchy is able to serve memory accesses

more efficiently than the cache hierarchy. In FT, MG and SP strided accesses dominate,

and the hybrid memory hierarchy is able to serve these accesses with the SPMs without

performance penalties while, in the cache hierarchy, cache misses happen because the

prefetchers are not able to provide all the data for the strided references on time, and also

the big amount of data brought and prefetched to the L1 caches causes conflict misses.

In benchmarks with potentially incoherent accesses, specially IS and CG but also FT

and MG, performance benefits come from exploiting their temporal locality. The hybrid

memory hierarchy serves the strided accesses with the SPMs so the data brought to the

L1 cache for the potentially incoherent accesses is much less often evicted, while in the

cache hierarchy it is quickly evicted to bring and prefetch data for the strided accesses.

Moreover, the filters of the coherence protocol present hit ratios of more than 92% in all

cases, so the latency of potentially incoherent accesses is not penalized neither. These

factors allow the hybrid memory hierarchy to serve data more efficiently than the cache

hierarchy, reducing the execution time of the work phase by 25% to 43%. These speedups

in the work phase overweight the overheads added in the control and synchronization

phases in all cases, resulting on an average reduction in execution time of 13% (or an

average speedup of 1.14x).

63

4.4. EVALUATION

4.4.3.2 NoC Traffic Evaluation

Figure 4.17 shows the NoC traffic generated by the cache hierarchy (Cache) and by the hy-

brid memory hierarchy (Hybrid). Both bars are normalized to the NoC traffic of the cache

hierarchy and categorize the packets in groups: data cache read, data cache writes (these

two groups include data requests, prefetch requests, data and acknowledgment packets),

write-back and replacements of cache blocks (WB-Repl, which includes write-back re-

quests, replacements, invalidations, data and acknowledgment packets), DMA transfers

(including DMA requests, data and acknowledgment packets) and the coherence traffic

introduced by the proposed coherence protocol (CohProt).

CG EP FT IS MG SP AVG0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
iz

ed
 p

ac
ke

ts

Cache
Hybrid

CohProt
DMA
WB-Repl
Write
Read

Figure 4.17: Reduction of NoC traffic

The hybrid memory hierarchy reduces the NoC traffic by 20% to 34% in all bench-

marks except EP. In these benchmarks most of the data set is mapped to the SPMs and

moved using DMA transfers, so many cache accesses, misses and prefetches are avoided,

along with their associated NoC traffic. On the one hand, this eliminates between 58%

and 75% of the NoC traffic due to data cache reads, between 61% and 74% of the NoC

traffic due to data cache writes, and between 41% and 71% of the NoC traffic in the WB-

Repl group. On the other hand, the DMA transfers used to move the data add 32% to 37%

to the total NoC traffic. Moreover, the runtime system of the tiling software cache causes

a higher number of instruction fetches, adding up to 3% of NoC traffic. The proposed

coherence protocol also adds NoC traffic, 1% in SP where there are no potentially inco-

herent accesses, 4% to 7% in CG, FT and MG and up to 10% in IS. EP maps a very small

data set to the SPMs and does an intensive utilization of the caches, so the small NoC

traffic reductions achieved by mapping data to the SPMs are compensated with the small

overhead added by the coherence protocol and the extra code. On average, the hybrid

memory hierarchy reduces the NoC traffic by 23%.

64

CHAPTER 4. SPM MANAGEMENT IN FORK-JOIN MODELS

4.4.3.3 Energy Consumption Evaluation

Another benefit of the hybrid memory hierarchy is that it consumes less energy than the

cache hierarchy, as shown in Figure 4.18. The bars show the energy consumption of the

cache hierarchy (Cache) and the hybrid memory hierarchy (Hybrid). Both bars are nor-

malized to the energy consumed by the cache hierarchy, and they also show how the con-

sumed energy is distributed between the CPUs, the caches (including MSHRs, prefetchers

and the directories of the cache coherence protocol), the NoC and the memory controllers

(NoC + MC), the SPMs and the DMA controllers (SPMs + DMACs), and the structures

of the proposed coherence protocol (CohProt).

CG EP FT IS MG SP AVG0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
iz

ed
 e

ne
rg

y Cache
Hybrid

CohProt
SPMs + DMACs
NoC + MC
Caches
CPUs

Figure 4.18: Reduction of energy consumption

Results show that the hybrid memory hierarchy achieves energy savings of 13% to

24% in CG, FT, IS, MG and SP. The main reason is the difference in the amount of en-

ergy consumed in the caches, which contributes with more than 41% of the total energy

consumed in the cache hierarchy and is reduced by a factor of 2.3x to 6.7x in the hybrid

memory hierarchy. This happens because most of the memory accesses are served by the

SPMs, that consume between 10% and 16% of the total energy to do so. The hardware

structures of the proposed coherence protocol consume between 6% and 12% of the total

energy except in SP, where it represents only 1% because no potentially incoherent ac-

cesses are used. The energy consumed in the CPUs is also reduced, between 5% and 21%

depending on how many instruction re-executions due to cache misses are avoided, while

the reduction in NoC traffic also reduces by 18% to 32% the energy consumed in this

component. In EP the SPMs of the hybrid memory hierarchy are underutilized and the

static energy of the added structures causes an overhead of 3%. On average, the energy

saved by the hybrid memory hierarchy in all benchmarks is 15%.

65

4.5. SUMMARY AND CONCLUDING REMARKS

4.5 Summary and Concluding Remarks

This chapter proposes a coherence protocol that allows the compiler to automatically

generate code to manage the SPMs of the hybrid memory hierarchy from fork-join pro-

gramming models. SPMs are more power-efficient than caches and they do not generate

coherence traffic but they impose programmability difficulties. Giving the compiler the

responsibility of generating code to manage the SPMs is a promising solution to overcome

this programmability issues.

Tiling software caches are a well-known technique to efficiently manage SPMs. In

this approach the data accessed by strided accesses is mapped to the SPMs, taking advan-

tage of the predictability of these memory accesses to manage the data in software with

low overheads. However, unpredictable random accesses are very difficult to manage by

software, so they are served by the cache hierarchy. Although compilers can generate

code to manage the SPMs with tiling software caches in trivial cases, they are unable to

do so in the presence of pointers with unknown memory aliasing hazards.

In order to avoid this problem, this chapter proposes a hardware/software co-designed

coherence protocol where the compiler identifies potentially incoherent memory accesses

that may access incoherent copies of data, and generates a special form of memory in-

struction for them. On the hardware side, the coherence protocol consists of a set of

directories and filters that track what data is mapped to the SPMs and what data is not

mapped to any SPM. These structures are used to determine if the potentially incoherent

accesses have to be served by the SPMs or by the cache hierarchy, ensuring the valid copy

of the data is always accessed.

With the proposed coherence protocol the compiler can always generate code to man-

age the SPMs of the hybrid memory hierarchy from fork-join programming models, so

the architecture can be exposed to the programmer as a shared memory multiprocessor

and the goodnesses of the hybrid memory hierarchy can be capitalized without any pro-

gramming burden. The ability of the hybrid memory hierarchy to serve memory accesses

with the SPMs and to efficiently move the data with DMA transfers provides important

benefits when compared to a cache hierarchy. In a multicore with 64 cores, an average

speedup of 1.14x is achieved due to the efficiency on serving memory accesses without

performance penalties. In addition, using DMA transfers leads to an average reduction in

NoC traffic of 23%, and serving most of the memory accesses with the SPMs instead of

the caches is the biggest factor to reduce the energy consumption by an average 17%.

66

Chapter 5

SPM Management in Task Models

Task programming models are a very appealing approach to program future heteroge-

neous architectures. In these programming models the programmer exposes the available

parallelism of an application by splitting the code in tasks and by specifying the data

and control dependences between them. With this information the runtime system man-

ages the parallel execution of the workload, scheduling tasks to cores and taking care of

synchronization between tasks.

Another benefit of task programming models is that decoupling the application from

the hardware allows to apply many optimizations at the runtime system level in a generic

and application-agnostic way [146, 34]. For instance, the task scheduler can not only

ensure load balancing, but also aim for a locality-aware schedule [28]. Moreover, in the

task data-flow paradigm the runtime system knows what data is going to be accessed

by the tasks before they are executed, which enables multiple optimizations like data

prefetching [119, 61] or efficient data communication between tasks [100, 101].

This chapter proposes to take advantage of the performance, scalability and power

consumption benefits of hybrid memory hierarchies in task data-flow programming mod-

els, using the task annotations to manage the SPMs in the runtime system without affect-

ing programmability. To do so, the runtime system exploits the characteristics of task

data-flow programming models to map the data specified in the task dependences to the

SPMs, so memory accesses to this data are served in a power-efficient way and without

generating coherence traffic, while the rest of memory accesses are served by the cache

hierarchy. The runtime system can also perform locality-aware scheduling, minimizing

the data movements in the memory hierarchy by assigning tasks to the cores that already

have the data of the task dependences mapped to their SPMs. In addition, the runtime

system incorporates mechanisms to mitigate the communication costs of the DMA trans-

fers for the SPMs, overlapping them with useful computation such as the task scheduling

67

5.1. SUITABILITY

phases or the execution of previous tasks. Since the size of the SPMs has a direct impact

on the granularity of the tasks, the study also contemplates pairing the proposed SPM

management strategies with different SPM sizes and task runtime systems with hardware

support.

5.1 Suitability

Task data-flow programming models are specially well suited for SPMs. The specification

of the input and output dependences for the tasks provide the runtime system with the

information of what data is going to be accessed, which allows to map the tasks input

and output dependences to the SPMs. As a consequence, memory accesses to inputs and

outputs will always access the SPMs during the execution of tasks. Figure 5.1 shows

the distribution of memory accesses for a set of representative benchmarks. The figure

shows, for each benchmark, the percentage of loads and stores that access data specified

in task dependences (Dep loads and stores) and the percentage of loads and stores that

access other memory locations (Other loads and stores). The benchmarks present a wide

range of percentages of memory accesses to task dependences, from 0% in raytrace

and fluidanimate to 76% in md5. On average, 40% of the memory accesses are to

task inputs and outputs, so a significant amount of memory accesses can be efficiently

served by the SPMs. In particular, compared to cache accesses, memory accesses to the

SPMs do not suffer performance penalties in the form of cache misses, they consume less

power because they do not trigger lookups in the tags of the caches nor in the TLBs, and

they do not generate coherence traffic.

bla
ck

sch
ole

s

flu
ida

nim
ate

jac
ob

i

km
ea

ns kn
n

md5

ray
tra

ce

tin
yjp

eg

ve
ca

dd

ve
cre

du
c

0
10
20
30
40
50
60
70
80
90

100

%
 o

f m
em

or
y

ac
ce

ss
es

Dep loads Other loads Dep stores Other stores

Figure 5.1: Percentage of memory accesses to tasks dependences

68

CHAPTER 5. SPM MANAGEMENT IN TASK MODELS

The memory model of task data-flow programming models is another very important

factor for the suitability of SPMs. The memory model of task programming models guar-

antees that, during the execution of a task, its inputs will not be modified by another task

and its outputs will not be accessed by another task. This property effectively eliminates

the data races to the input and output dependences, so there is no need to maintain co-

herence for this data during the execution of a task. This allows that the data specified in

the task dependences can be safely mapped to the SPMs during the execution of a task

without requiring any costly synchronization mechanism in these non-coherent memories.

Additionally, the execution model of task programming models offers the possibility

to hide the communication costs of DMA transfers. First, the runtime system can perform

scheduling decisions to exploit data locality, aiming to reduce data motion by assigning

tasks to a core that already has the dependences mapped to its SPM. Second, when lo-

cality cannot be exploited, the runtime system can trigger the DMA transfers for the task

dependences before the task is executed, so the communication is overlapped with other

execution phases such as the task scheduling phase or the execution of the previous task.

5.1.1 Suitability of Other Programming Models

Besides purely task models, other programming models designed for heterogeneous ar-

chitectures are good candidates to transparently manage the SPMs of hybrid memory

hierarchies. Offload models like OpenHMPP [49] or OpenACC [113] also use source

code annotations and clauses that allow to specify what data has to be copied from the

host processor memory to the accelerator memory, they expose similar memory models

in terms of the privateness of the data during the execution of the kernels and they also

use a runtime system to orchestrate the data transfers and kernel executions. Thanks to

these properties, the code annotations can also be exploited in these models to map data

to the SPMs of a hybrid memory hierarchy. Moreover, opportunities to hide the cost of

the data transfers are also found in offload models, like in OpenAcc, that supports clauses

to allow asynchronous data transfers and to specify at which point the execution should

wait for all the asynchronous data transfers to be completed.

Although the proposal of this chapter focuses on how to automatically manage the

SPMs of a hybrid memory hierarchy from the runtime system of task data-flow program-

ming models, the proposed ideas can be easily adapted to other parallel programming

models with similar characteristics, so the contributions are applicable to a wide range of

programming models and applications.

69

5.2. SPM MANAGEMENT IN TASK RUNTIME SYSTEMS

5.2 SPM Management in Task Runtime Systems

The goal of the runtime system is to transparently manage the SPMs of the hybrid mem-

ory hierarchy. This section describes what data structures are added in the runtime system

and how they are operated to map task dependences to the SPMs. In addition, it is ex-

plained how the runtime can perform optimizations such as locality-aware scheduling and

overlapping of DMA transfers with computation.

5.2.1 Mapping Data Dependences to the SPMs

The typical behaviour of a thread in a task runtime system for shared memory multipro-

cessors is an iterative process that consists on requesting a task to the scheduler, executing

the task and waking up its dependent tasks. This behaviour is shown in Figure 5.2 in the

timeline labeled as Cache.

Figure 5.2: Timeline of a task application with the Cache behaviour

In the scheduling phase the thread running on a core requests a new task to the sched-

uler. The scheduler selects a task from the ready queue based on a certain policy1, removes

the task from the ready queue and passes its associated task descriptor to the requesting

thread. The task descriptor includes information about the task such as a pointer to the

function that encapsulates the code or the addresses of the dependences, that are passed

to the function as parameters when the task is executed. When the task finishes, the

scheduler wakes up its dependent tasks. The scheduler locates in the TDG the node that

represents the task that has just been executed and, for every out-going edge representing

an output dependence, marks as ready the in-going edge of the neighbour node, which

represents an input dependence of a dependent task. When an input dependence of a task

is marked as ready the scheduler checks if all the other input dependences of the task are

1The default policy is First-In First-Out (FIFO), but Section 5.2.3 presents other policies aware of data
locality

70

CHAPTER 5. SPM MANAGEMENT IN TASK MODELS

also ready, so it can be woken up. In the Cache behaviour the scheduler wakes up ready

tasks by inserting them in the ready queue.

For the hybrid memory hierarchy, four phases are added to this execution model to

map the task dependences to the SPM of the core. The phases are map inputs and syn-

chronize inputs before the execution of a task and map outputs and synchronize outputs

after the execution of a task. In addition, several data structures are added in the runtime

system to operate in these phases. Figure 5.3 shows the extensions in the runtime system,

where added data structures are shaded in gray. Apart from the described ready queue and

TDG, the scheduler requires a Dependents List to perform data locality-aware schedul-

ings. Section 5.2.3 further describes this extension. Next, each core abstraction in the

runtime system has an associated thread that is pinned to a physical hardware thread, and

a task descriptor of the currently executing task. A new per-core data structure, the SPM

directory, is added to manage the mapping of inputs and output to the SPM. The SPM

directory keeps, for every dependence mapped to the SPM of the core, the base address

of the copy of the data in the SPM. Finally, a Next Task Descriptor is required to perform

double buffering of DMA transfers with task execution, as described in Section 5.2.2.

Figure 5.3: Runtime system extensions to support hybrid memory hierarchies

Figure 5.4 shows the behaviour of a task workload on the hybrid memory hierarchy

when DMA transfers are not overlapped with any computation, labeled as SPM-NoOv.

In the map inputs phase, once a task has been scheduled on a core, the task dependences

are mapped to the SPM of the core. First, for each entry in the SPM directory of the core,

it is checked if the mapping matches any dependence of the task. If there is no match the

SPM directory entry is erased and the space in the SPM is freed while, if a match is found,

the task dependence is marked as already mapped. Then, for every task dependence that

is not already mapped to the SPM, the necessary space is allocated for it in the SPM, the

71

5.2. SPM MANAGEMENT IN TASK RUNTIME SYSTEMS

new mapping is recorded in the SPM directory and a DMA transfer is issued to copy the

data to the SPM. Note that the data for an output dependence is also brought to the SPM

because, if only some parts of the chunk of data are modified, the write-back at the end

of the task execution will update the copy of the data in GM with wrong values. Once all

the dependences are mapped to the SPMs the pointers that are passed to the task for the

inputs and outputs are changed, substituting the original pointers in the task descriptor for

the pointers to the data in the SPM.

Figure 5.4: Timeline of a task application with the SPM-NoOv behaviour

In the synchronize inputs phase, just before the task starts executing, the thread waits

for the DMA transfers of the task dependences to finish. When these DMA transfers have

finished the thread jumps to the code of the task to start its execution. During the execution

the new pointers to the SPM mappings ensure that memory operations to the inputs and

outputs access the address space of the SPM, so this memory serves the accesses.

At the end of the task execution the map outputs phase takes place. In this phase the

thread consults the SPM directory and, for each output dependence of the task, a DMA

transfer is triggered to write back the results to the GM. Note that, even in the case that

the output dependence is going to be reused as input by the following task executed on

the core, the DMA transfer to write back the data to the GM is still done because other

tasks that also reuse the output dependence as input may be executed on other cores.

While the data of the output dependences is written back, the scheduler wakes up the

tasks that depend on these dependences using the TDG. The main difference with the

already explained behavior is that new ready tasks are kept apart from the ready queue

until the write-back DMA transfers finish.

Finally, in the synchronize outputs phase, the thread synchronizes with the write-back

DMA transfers for the output dependences of the task that has just been executed. When

the DMA transfers have finished, the scheduler finally inserts the tasks that were woken

up in the previous phase in the ready queue. Then the thread repeats the whole process to

execute the next task.

72

CHAPTER 5. SPM MANAGEMENT IN TASK MODELS

5.2.2 Overlapping DMA Transfers with Computation

The DMA transfers triggered by the runtime system to manage the SPMs may impose

high overheads in the synchronization phases if they are not overlapped with any compu-

tation phase. This section explains two mechanisms to reduce the impact of the commu-

nication cost of the data transfers for the SPMs. The solutions consist on overlapping the

DMA transfers with the scheduling phase, denoted SPM-RT, and double buffering with

the execution of the previous task, denoted SPM-DB.

For both approaches the runtime system needs to assign two tasks per core instead of

one. For this purpose a new element Next Task Descriptor is added in the core abstraction

of the runtime system, which keeps the task that is going to be executed by the core after

the Current Task Descriptor.

Figure 5.5: Timeline of a task application with the SPM-RT behaviour

The first approach consists on overlapping the DMA transfers with the task wakeup

and scheduling phases. This behaviour is shown in Figure 5.5 in the timeline labeled as

SPM-RT, which shows how the phases for the execution of two tasks T1 (the current task)

and T2 (the next task) are interleaved. Task T1 starts by copying its dependences to the

SPM of the core in the map inputs phase. While the data for T1 is being transferred using

DMA transfers the wakeup phase of the previous task T0 takes place, which marks as

ready the tasks that depend on T0. Then the thread requests a task to be executed after

T1 to the scheduler, which assigns task T2 to the core. This task T2 is kept in the next

task descriptor field of the core abstraction in the runtime system. Note that, since the

map inputs phase of T1 has already happened, the mappings for T1 are already present in

the SPM directory of the core when the next task T2 is requested, so the locality-aware

scheduler takes into account the data mapped by T1 although it has not been yet executed.

Once T2 has been scheduled as the next task on the core, the synchronization with the

inputs of T1 takes place and the task is executed normally. Just after the task T1 finishes

its execution, its outputs are written back to GM in the map outputs phase and the thread

73

5.2. SPM MANAGEMENT IN TASK RUNTIME SYSTEMS

waits for the write-back to finish in the synchronize outputs phase. At this point the

runtime system triggers the DMA transfers of the map inputs phase of the next task T2,

so they are overlapped with the wake-up phase of T1 and the scheduling phase of the task

that is going to be executed after T2.

The second approach is a double buffering technique that overlaps the DMA transfers

for a task with the execution of the previous task. The timeline labeled as SPM-DB in

Figure 5.6 shows this behaviour for the execution of two tasks, the current task T1 and

the next task T2. The timeline shows that the succession of phases is the same as in the

SPM-NoOV behaviour, with the only difference that the map input phases are not for the

task that is about to be executed but for the following one. The timeline starts with the map

inputs phase of the next task T2. While the dependences for T2 are being transferred to

the SPM, the thread waits for the inputs of the current task T1 (its map inputs phase is not

shown because it happened before the execution of the previous task), executes the task,

copies the outputs, calls the scheduler to wake up its dependent tasks and to schedule

a new task T3 and synchronizes with the output DMA transfers. Then, this process is

repeated for T2, which gets executed while the inputs of T3 are transferred, and for the

subsequent tasks.

Figure 5.6: Timeline of a task application with the SPM-DB behaviour

5.2.3 Locality-Aware Scheduling

The task scheduler is a fundamental part of a task runtime system. As explained in the

previous section, when a thread wants to execute a task it first requests a new task to the

scheduler, which selects a task from the ready queue based on a given policy. The locality-

aware scheduler selects tasks for execution aiming to minimize the amount of data that has

to be moved in the memory hierarchy. This scheduler can be used to minimize the number

of DMA transfers in the hybrid memory hierarchy and also to improve data locality in

traditional cache hierarchies.

74

CHAPTER 5. SPM MANAGEMENT IN TASK MODELS

The locality-aware task scheduler uses an additional data structure, the dependents

list, as shown in Figure 5.3. The dependents list tracks, for a given dependence, what

are the ready tasks that depend on it. This data structure is used by the locality-aware

scheduler to quickly identify tasks in the ready queue that depend on a given dependence,

avoiding a traversal of the ready queue.

The dependents list is updated when a task is inserted or erased from the ready queue.

When the scheduler inserts a task in the ready queue it checks, for all the dependences of

the task, if they are present in the dependents list. If the dependence is found the task is

inserted in the list associated to that entry, otherwise a new entry for the dependence is

created along with an empty list, in which the task is then inserted. When the scheduler

assigns a task to a core it removes the task from the ready queue and traverses, for each

dependence of the task, its associated dependents list to remove the task from the list.

When a core requests a new task to the scheduler this selects from the ready queue the

task that already has more data mapped to the SPM of the core. In order to do this the SPM

directory of the core is traversed and, for every dependence already mapped to the SPM,

its dependents list is accessed to obtain a list of ready tasks that reuse the dependence.

The scheduler selects from this list the ready task that has more data mapped to the SPM

to be executed on the core. If the data present in the SPM is not a dependence of any

ready task the scheduler selects the task at the head of the ready queue.

5.2.4 Discussion

The proposed mechanisms allow the runtime system to map task dependences to the SPMs

of the hybrid memory hierarchy. As a first approach, the proposal assumes that the size

of the task dependences is always smaller than the available space in the SPMs for them.

Under this assumption it is the programmer who has to ensure that the data for the task

dependences fits in the SPMs so, when the application is divided in tasks, this restriction

has to be taken into account. To allow programmers to taskify their codes without this

restriction several solutions can be applied at the runtime system level. An straightforward

solution is to discard mapping the data for the dependences that do not fit in the SPM, so

they are served by the cache hierarchy. Since this solution may end up underutilizing

the SPMs, some other approaches could be studied, such as performing automatic task

coarsening in the runtime system to fuse or split tasks according to the available space in

the SPM, or including a lightweight pagination mechanism for the SPMs so parts of the

input and output dependences are mapped and unmapped on demand.

75

5.3. EVALUATION

The two proposed overlapping techniques have different trade-offs. On the one hand,

the execution of a task is usually longer than only the wake-up and scheduling phases, so

the double buffering with the previous task has more time to overlap the DMA transfers.

On the other hand, doing double buffer with the previous task imposes that the available

space in the SPM has to be shared by two tasks. Due to this restriction, and depending

on how the application is split in tasks, more tasks may be needed to perform the same

amount of work, which can incur in higher runtime system overheads [57, 89, 127].

Finally, task programming models themselves have some limitations. Data structures

with pointers and indirections are hard to handle by task programming models, specially

in those where dependences are statically declared using pragmas. In addition, in shared

memory multicores it is not strictly necessary to specify all the data produced and con-

sumed by the tasks as dependences, so programmers some times only specify the mini-

mum amount of dependences that ensure the execution is correct, or introduce additional

variables to synchronize tasks manually. This kind of bad programming practices can also

cause an underutilization of the SPMs in some cases.

5.3 Evaluation

This section evaluates the proposed runtime system techniques to manage the SPMs, com-

paring a multicore with 32 cores and a hybrid memory hierarchy against one with a cache

hierarchy. For fairness, the L1 D-cache of the architecture with the cache hierarchy is

augmented to 64 KB without affecting its access latency, matching the 32 KB L1 D-cache

plus the 32 KB SPM of the hybrid memory hierarchy.

5.3.1 Performance Evaluation

The normalized execution time of the hybrid memory hierarchy with respect to the cache

hierarchy is shown in Figure 5.7. The execution time of the three proposed data transfer

strategies (SPM-NoOv, SPM-RT and SPM-DB) are evaluated and, moreover, an ideal

configuration (SPM-Ideal) where DMA transfers occur instantaneously is also shown.

All results are normalized against the cache configuration, so values below 1 represent

reduction in execution time. This figure further distinguishes how the execution time

is distributed between phases: execution of tasks (Task), synchronization with DMA

transfers (Sync), which includes the synchronize inputs and outputs phases, and runtime

(Runtime), that includes the wake-up, scheduling and map inputs and outputs phases.

76

CHAPTER 5. SPM MANAGEMENT IN TASK MODELS

bla
ck
sch
ole
s

flu
ida
nim

ate
jac
ob
i

km
ea
ns kn

n
md
5

ray
tra
ce

tin
yjp
eg

ve
ca
dd

ve
cre
du
c

AV
G

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

No
rm

al
iz
ed
 c
yc
le
s

Cache SPM-NoOv
Runtime

SPM-RT
Sync

SPM-DB
Task

SPM-Ideal

Figure 5.7: Reduction of execution time

The task execution phases are accelerated in all benchmarks except fluidanimate,

raytrace and tinyjpeg, achieving an speedup of up to 22% (md5). This happens

because task dependences are served by the SPMs in the hybrid memory hierarchy, so

performance penalties due to cache misses are minimized. When the cache hierarchy

presents close to 100% hit ratio in the L1 D-cache (tinyjpeg) no performance im-

provements are observed in the execution of tasks. In benchmarks that do not map data

to the SPMs (fluidanimate and raytrace) the performance in the task execution

phases decreases because of the augmented L1 D-cache in the cache hierarchy baseline.

These performance improvements in the task execution phases allow the hybrid mem-

ory hierarchy to achieve up to 5% speedup if DMA transfers are not overlapped. In this

SPM-NoOv approach, when big amounts of data are mapped to the SPMs, the synchro-

nization time adds overheads of up to 11% (tinyjpeg), limiting the performance of

the hybrid memory hierarchy. On average, the cache hierarchy and the hybrid memory

hierarchy offer the same perfomance if DMA transfers are not overlapped. The SPM-RT

strategy achieves an average speedup of 6%, reaching up to 16% in md5. In the SMP-RT

approach the time spent in the synchronization phases becomes negligible in all cases,

so the performance is very close to the one of the ideal configuration. For SPM-DB the

synchronization time also becomes negligible but the number of executed tasks increases

together with the runtime system overhead in some cases. As a consequence, the time

spent in runtime phases increases significantly in some benchmarks (jacobi, kmeans,

vecadd and vecreduc) and neglects the performance benefits of using the SPMs. In

other benchmarks (md5) the double buffering does not cause a big increase of the runtime

system overhead, resulting in a speedup of 6%.

77

5.3. EVALUATION

5.3.2 NoC Traffic Evaluation

Another important benefit of hybrid memory hierarchies is the reduction of NoC traf-

fic. Figure 5.8 presents the reduction in NoC traffic with respect to the cache hierarchy.

Each bar shows the percentage of traffic originated by different actions: cache reads and

writes (which include packets for data requests, prefetch requests, data and acknowledge-

ments), write-back and replacement of cache lines (Wb-Repl, which includes packets for

write-back requests, replacements, invalidations, data and acknowledgements), and DMA

transfers (which include packets for DMA requests, data and acknowledgements).

bla
ck
sch
ole
s

flu
ida
nim

ate
jac
ob
i

km
ea
ns kn

n
md
5

ray
tra
ce

tin
yjp
eg

ve
ca
dd

ve
cre
du
c

AV
G

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

al
iz
ed

 p
ac
ke
ts

Cache SPM-NoOv
DMACs

SPM-RT
WB-Repl

SPM-DB
Write

SPM-Ideal
Read

Figure 5.8: Reduction of NoC traffic

The hybrid memory hierarchy reduces the Noc traffic related to cache reads, writes

and WB-Repl in all configurations. This reduction is proportional to the percentage of

mapped accesses to the SPMs, reaching up to 62% reduction of read traffic in md5 as

most of the loads access task dependences. Similarly, the NoC traffic originated by cache

writes is reduced if output dependences are mapped to the SPMs, achieving savings of up

to 39% in jacobi in this category, although the average reduction is 18% as the portion

of writes mapped to the SPMs is smaller than in the case of loads. The reduced activity

in the caches also reduces cache misses, replacements and invalidations, so the traffic in

the WB-Repl group is reduced between 17% (blackschoes) and 59% (md5). In the

hybrid memory hierarchy all this NoC traffic is saved thanks to the introduction of SPMs,

that needs DMA transfers to move the data. The NoC traffic generated by DMA transfers

to move the task dependences contributes with less than 30% of the original traffic in all

cases, and never overweights the traffic saved in the other categories. Consequently, an

average reduction in NoC traffic of 15% is obtained with the hybrid memory hierarchy.

78

CHAPTER 5. SPM MANAGEMENT IN TASK MODELS

5.3.3 Energy Consumption Evaluation

Figure 5.9 shows the reduction in energy consumption of the hybrid memory hierarchy

with respect to the cache hierarchy. Two bars are shown for each benchmark, one for

the cache hierarchy (Cache) and one for the hybrid memory hierarchy (SPM-NoOv). All

results are normalized to the energy consumption of the cache hierarchy, so values below

1 represent a reduction in energy consumption. All the data mapping techniques (SPM-

NoOv, SPM-RT and SPM-DB) present the same trends, so only one bar is shown for

the hybrid memory hierarchy. The figure also shows how the energy consumption is

distributed among the different components of the architectures: cores (CPUs), caches,

prefetchers, MSHRs and cache directories (Caches), the network-on-chip and the memory

controller (NoC + MC), and the SPMs and the DMA controllers (SPMs + DMACs).

bla
ck
sch

ole
s

flu
ida
nim

ate
jac
ob
i

km
ea
ns kn

n
md
5

ray
tra
ce

tin
yjp
eg

ve
ca
dd

ve
cre
du
c

AV
G

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
iz
ed

 e
ne

rg
y

CPUs
Cache
Caches

SPM-NoOv
NoC + MC SPMs + DMACs

Figure 5.9: Reduction of energy consumption

Results show that the energy consumed by the CPUs is nearly the same in both ar-

chitectures. It can be observed a reduction of the energy consumed in the caches, with

savings of up to 50% in benchmarks that map a significant portion of accesses to the

SPMs (jacobi, kmeans, knn and md5). The big energy savings in these components

happen because, in the hybrid memory hierarchy, many memory accesses are served by

the SPMs instead of the caches. SPMs are able to serve these memory accesses in a much

more energy-efficient way, contributing with less than 10% of the total energy consumed

for all benchmarks. In all cases, the overall energy consumption in the components of the

memory hierarchy (Caches and SPM+DMACs) is lower in the hybrid memory hierarchy

than in the cache hierarchy, resulting in an average reduction in energy consumption of

12%.

79

5.3. EVALUATION

The speedup in Energy Delay Product (EDP) of the hybrid memory hierarchy with

respect to the cache hierarchy is shown in Figure 5.10. The hybrid memory hierarchy

achieves speedups in EDP in almost all configurations, with average improvements of

14%, 29% and 0% for SPM-NoOv, SPM-RT and SPM-DB, respectively. These improve-

ments are particularly significant in the benchmarks that map more data to the SPMs,

achieving up to 59% improvement in EDP in knn with the SPM-RT configuration. Some

benchmarks present slowdowns in EDP caused by the performance overheads in the run-

time system in the SPM-DB configuration and by the synchronization time spent in SPM-

NoOV configurations.

bla
ck
sch
ole
s

flu
ida
nim

ate
jac
ob
i

km
ea
ns kn

n
md
5

ray
tra
ce

tin
yjp
eg

ve
ca
dd

ve
cre
du
c

AV
G

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

No
rm

al
iz
ed

 E
DP

Cache SPM-NoOv SPM-RT SPM-DB SPM-Ideal

Figure 5.10: Speedup in EDP

5.3.4 Mitigating the Effects of Fine-Grained Tasks

It has been shown that the overhead in the runtime system can degrade performance when

fine-grained tasks are required. This is an important factor for the hybrid memory hierar-

chy, as the size of the SPMs determines the granularity of the tasks.

One way to alleviate the runtime system overheads is to increase the size of the SPMs.

Figure 5.11 shows the average reduction in execution time of all the benchmarks with

different SPMs sizes for the proposed data transfer strategies, and each bar also shows the

time distribution among program phases. Four SPM sizes are studied: 32, 64, 128 and

256 KB with access times of 2, 3, 4 and 6 cycles, respectively. The ROB is augmented to

192 entries in the experiments with 256 KB SPMs to tolerate the latency.

Results show that, for all the data transfer strategies, the average execution time of all

the benchmarks decreases as the size of the SPMs increase. The size of the SPMs has

a big impact in the runtime phases, that represent more than 15% of the total execution

80

CHAPTER 5. SPM MANAGEMENT IN TASK MODELS

32 64 128 256
SPM size (KB)

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

No
rm

al
iz

ed
 c

yc
le

s
Cache SPM-NoOv

Runtime
SPM-RT
Sync

SPM-DB
Task

SPM-Ideal

Figure 5.11: Reduction of execution time for different SPM sizes

time with 32 KB SPMs and is reduced to less than 10% with 256 KB SPMs. This happens

because bigger SPMs allow to use coarser-grained tasks in 6 of the 10 benchmarks, so less

tasks are needed to perform the computation and the runtime overhead is lower. In the rest

of benchmarks the task granularity is fixed by the way the benchmark is decomposed in

tasks, so having bigger SPM sizes does not decrease the runtime overhead. Another effect

of augmenting the size of the SPMs is that the synchronization time increases in the SPM-

RT approach for some benchmarks due to the reduced length of the runtime phases and

the bigger DMA transfers. This causes that, for SPM-RT, the percentage of time spent in

synchronization phases goes from less than 1% in all benchmarks with SPMs of 32 KB to

an average 3% with SPMs of 256 KB, reaching up to 8% in md5. It can also be observed

that the size of the SPMs has a negligible effect on the execution time of the tasks, as the

additional latency of bigger SPMs can be hidden with the execution of other instructions.

All together, increasing the size of the SPMs from 32 KB to 256 KB provides average

execution time reductions of more than 7% in all cases.

Another solution to mitigate the runtime system overheads is to add a hardware run-

time system that manages the execution of the tasks [57, 89, 127]. These solutions report

speedups of 2 to 3 orders of magnitude for the runtime system phases, effectively elimi-

nating the overheads caused by fine-grained tasks.

Figure 5.12 shows an estimation of the performance benefits provided by the hybrid

memory hierarchy when combined with a task runtime system with hardware support.

In order to estimate the performance in this kind of systems the execution time of the

runtime system phases is accelerated by a factor of 100x. The SPM-RT configuration is

not considered in the study because the runtime phases are too short to hide the cost of

the DMA transfers.

81

5.4. SUMMARY AND CONCLUDING REMARKS

black
sch

oles

flu
idanim

ate
jaco

bi

km
eans

kn
n

md5

raytra
ce

tin
yjpeg

veca
dd

vecre
duc

AVG
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

Cache SPM-NoOv SPM-DB SPM-Ideal

Figure 5.12: Speedup with a hardware runtime system

It can be observed that the results for SPM-NoOv are very similar to the ones presented

in Figure 5.7, as the impact in performance of the hardware runtime system is equal for

both the baseline cache hierarchy and the SPM-NoOv configuration. In contrast, the

hardware runtime system completely eliminates the runtime overhead introduced by the

bigger amount of tasks in the SPM-DB approach, and provides close to ideal performance

because DMA transfers are completely overlapped with the execution of the tasks. On

average, an speedup of 8% is achieved against the cache hierarchy, reaching up to 22%

for md5. These estimated results indicate that SPM-DB is the appropriate solution for

future multicores with hardware support for the runtime system.

5.4 Summary and Concluding Remarks

This chapter proposes to give to the runtime system of task data-flow programming mod-

els the responsibility of automatically managing the SPMs in a hybrid memory hierarchy

with caches and SPMs. SPMs are more power-efficient than caches and they do not gen-

erate coherence traffic but they impose programmability difficulties. In task programming

models the task dependences can be exploited to manage the SPMs in the runtime system,

transparently to the programmer and in a generic way.

Task data-flow programming models are very well suited for SPMs, since the task de-

pendences specify what data is going to be accessed during the execution of the tasks, and

the programming model ensures that no data races will happen on the data dependences

during the execution of the tasks. In addition, the DMA transfers can be overlapped with

different phases of the execution model. These properties are exploited in this chapter to

82

CHAPTER 5. SPM MANAGEMENT IN TASK MODELS

map the input and output dependences of the tasks to the SPMs of the hybrid memory

hierarchy and to apply optimizations like locality-aware scheduling and overlapping of

DMA transfers with computation.

Results show that, in a multicore with 32 cores, the hybrid memory hierarchy out-

performs cache hierarchies by up to 5%, consumes up to 27% less energy and reduces

NoC traffic by up to 31% when DMA transfers are not overlapped with useful work.

Overlapping the DMA transfers further improves performance, achieving speedups of up

to 16% when overlapping with the task scheduler. Double buffering with the previous

task increases the runtime system overheads, so it is better suited for architectures with

hardware runtime systems or SPMs of hundreds of kilobytes.

83

5.4. SUMMARY AND CONCLUDING REMARKS

84

Chapter 6

Conclusions

This chapter summarizes the main conclusions and contributions of this thesis and presents

the future research lines opened by this work. Then it shows the list of publications pro-

duced during the realization of this thesis and acknowledges the financial support.

6.1 Goals, Contributions and Main Conclusions

Traditionally, cache-coherent shared memory has been the most commonly used memory

organization for chip multiprocessors. The main advantage of this solution is that the ar-

chitecture can be programmed with shared memory programming models, given that the

cache hierarchy is able to move the data and to keep it coherent between all the caches

without any intervention from the programmer. Unfortunately, performing these opera-

tions in hardware limits the scaling of the number of cores in the architecture due to the

power consumption originated in the caches and the amount traffic in the interconnection

network needed to maintain coherence.

Combining ScratchPad Memories (SPMs) and caches in a hybrid memory hierarchy

is a good solution to alleviate these problems, as SPMs are more power-efficient than

caches and they do not generate coherence traffic. However, since SPMs are managed

by software, they require the programmer to partition the data, to explicitly program data

transfers, and to keep coherence between different copies of the data.

A promising solution to solve the programmability issues of hybrid memory hier-

archies is to allow the programmer to use shared memory programming models and to

automatically generate code that manages the SPMs, so the programmer does not need

to explicitly manage the data. Unfortunately, current compilers and runtime systems en-

counter serious limitations to automatically generate code for hybrid memory hierarchies

from shared memory programming models.

85

6.1. GOALS, CONTRIBUTIONS AND MAIN CONCLUSIONS

The goal of this thesis is to propose a combination of hardware, compiler and runtime

system techniques to manage the SPMs of hybrid memory hierarchies in fork-join and

task programming models. The proposed techniques allow to program hybrid memory

hierarchies with these two well-known and easy-to-use forms of shared memory pro-

gramming models, capitalizing on the benefits of hybrid memory hierarchies in terms

of power consumption and network traffic without harming the programmability of the

architecture.

The first contribution of this thesis is a coherence protocol to automatically manage

the SPMs of hybrid memory hierarchies in fork-join programming models. The pro-

posed techniques allow the compiler to always generate code to manage the SPMs with

tiling software caches, even in the presence of unknown memory aliasing hazards be-

tween memory references to the SPMs and memory references to the cache hierarchy. In

a hardware/software coordinated mechanism, the compiler identifies memory references

with possible aliasing hazards and generates a special form of memory instruction for

them. On the hardware side, a set of directories track what data is mapped to the SPMs

and divert these memory accesses with unknown aliases to the correct copy of the data.

The second contribution of this thesis is a set of techniques for runtime systems of task

programming models to manage the SPMs of hybrid memory hierarchies. The character-

istics of these programming models are exploited by the runtime system to map the data

specified in the task dependences to the SPMs of the core where the tasks are executed.

The runtime system also applies optimizations to hide the communication costs of the

data transfers, overlapping them with either the runtime system phases or the execution

of the previous tasks, and schedules tasks to cores aiming to exploit data locality in the

SPMs. In addition, the proposed techniques are combined with mechanisms that reduce

the impact of fine-grained tasks, such as hardware runtime systems or big SPM sizes.

These two contributions make feasible that the SPMs of hybrid memory hierarchies

are managed transparently to the programmer in fork-join and task programming models,

achieving the main goal of this thesis. The immediate benefit of this accomplishment is

that the advantages in power consumption and network traffic provided by hybrid memory

hierarchies can be exploited maintaining the programming simplicity of shared memory

programming models.

86

CHAPTER 6. CONCLUSIONS

6.2 Future Work

The proposals presented in this thesis open the door to new research topics that could be

explored in the future. Among others, three main research lines can be of great interest.

• Optimization of cache hierarchies for hybrid memory hierarchies. This thesis has

shown that adding SPMs alongside the cache hierarchy provides important benefits,

but this scheme could be further optimized by adapting the configuration of the

cache hierarchy. The introduction of the SPMs drastically changes the way the

data is accessed and moved in the chip, so the design of the cache hierarchy could

be revisited to better fulfill the requirements of this new scenario. In particular,

in the hybrid memory hierarchy the strided accesses are served by the SPMs, so

some elements of the cache hierarchy such as the L1 D-cache or the L1 prefetcher

could be optimized for random accesses. In addition, since most of the data set

is moved from the main memory to the SPMs without using the cache hierarchy,

the size of the big last level caches that are used nowadays could be scaled down to

further reduce the power consumption or to make a better utilization of the available

transistors in the chip.

• Automatic task coarsening in task programming models. The main problem of au-

tomatically managing the SPMs of the hybrid memory hierarchy in task program-

ming models is that the size of the SPMs limits the size of the tasks. As a first

approach, this thesis assumes that the code is written in such a way that the size of

the task dependences is always smaller than the size of the SPMs. In order to re-

lease the programmer from this responsibility, many solutions to perform automatic

task coarsening could be explored: a pure static approach where the compiler uses

analyses to determine the task size and generates code to fuse or split tasks accord-

ingly, a pure dynamic approach where it is the runtime system that fuses or splits

tasks during the execution, a hybrid approach where the compiler and the runtime

system cooperate to adapt the task size, or even other techniques such as using a

lightweight pagination mechanism on the SPMs.

• Automatic management of 3D-stacked DRAM memories. Upcoming architectures

like the Intel Knights Landing are going to incorporate 3D-stacked DRAM memo-

ries. These memories offer a much higher bandwidth than traditional off-chip main

memories, and they are expected to be widely used in the future. However, it is

87

6.3. PUBLICATIONS

still unclear how the 3D-stacked DRAM memories will be architected as part of

the system. The Intel Knights Landing will offer three possible configurations: (1)

giving the 3D-stacked DRAM its own address space and provide an interface so

that programmers explicitly manage the memory, (2) using the 3D-stacked DRAM

as a hardware-managed cache, and (3) a hybrid scheme that combines the two pre-

vious approaches. The configuration that exposes the 3D-stacked DRAM to the

programmer in a separate address space raises the same programmability difficul-

ties than integrating SPMs in the memory hierarchy, so the techniques proposed in

this thesis could be revisited to automatically manage 3D-stacked DRAM memories

in shared memory programming models, transparently to the programmer.

6.3 Publications

The publications derived from the research done during this thesis are listed below. The

first list contains the publications directly related to the thesis, while the second list shows

the publications from works on other topics done during the realization of this thesis.

6.3.1 Publications of the Thesis

• Lluc Alvarez, Miquel Moreto, Marc Casas, Emilio Castillo, Xavier Martorell, Jesús

Labarta, Eduard Ayguadé and Mateo Valero, “Runtime-Guided Management of

Scratchpad Memories in Multicore Architectures”, to appear in PACT ’15: Pro-

ceedings of the 24th International Conference on Parallel Architectures and Com-

pilation Techniques, 2015.

• Lluc Alvarez, Lluís Vilanova, Miquel Moreto, Marc Casas, Marc Gonzàlez, Xavier

Martorell, Nacho Navarro, Eduard Ayguadé and Mateo Valero, “Coherence Pro-

tocol for Transparent Management of Scratchpad Memories in Shared Memory

Manycore Architectures”, in ISCA ’15: Proceedings of the ACM/IEEE 41st In-

ternational Symposium on Computer Architecture, pp. 720-732. IEEE Computer

Society, 2015.

• Lluc Alvarez, Lluís Vilanova, Marc Gonzàlez, Xavier Martorell, Nacho Navarro

and Eduard Ayguadé, “Hardware-Software Coherence Protocol for the Coexistence

of Caches and Local Memories”, in IEEE Transactions on Cumputers, vol. 64, no.

1, pp. 152-165. IEEE Computer Society, 2015.

88

CHAPTER 6. CONCLUSIONS

• Lluc Alvarez, Lluís Vilanova, Marc Gonzàlez, Xavier Martorell, Nacho Navarro

and Eduard Ayguadé, “Hardware-Software Coherence Protocol for the Coexistence

of Caches and Local Memories”, in SC ’12: Proceedings of the International Con-

ference on High Performance Computing, Networking, Storage and Analysis, article

no. 89. IEEE Computer Society, 2012.

• Lluc Alvarez, Nikola Vujic, Lluís Vilanova, Ramon Bertran, Marc Gonzàlez, Xavier

Martorell, Nacho Navarro and Eduard Ayguadé, “Hardware/Software Coherence

in Hybrid Memory Models”, Technical Report UPC-DAC-RR-CAP-2011-21, De-

partament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya.

2011.

6.3.2 Other Publications

• Marc Casas, Miquel Moreto, Lluc Alvarez, Emilio Castillo, Dimitrios Chasapis,

Timothy Hayes, Luc Jaulmes, Oscar Palomar, Osman Unsal, Adrian Cristal, Edu-

ard Ayguadé, Jesús Labarta and Mateo Valero, “Runtime-Aware Architectures”, in

Euro-Par 2015: Parallel Processing, pp. 16-27. Springer Berlin Heidelberg, 2015.

• Nikola Vujic, Lluc Alvarez, Marc Gonzàlez, Xavier Martorell and Eduard Ayguadé,

“DMA-Circular: an Enhanced High Level Programmable DMA Controller for Op-

timized Management of On-chip Local Memories”, in CF ’12: Proceedings of the

9th International Conference on Computing Frontiers, pp. 113-122. ACM, 2012.

• Lluc Alvarez, Ramon Bertran, Marc Gonzàlez, Xavier Martorell, Nacho Navarro

and Eduard Ayguadé, “Design Space Exploration For Aggressive Core Replication

Schemes in CMPs”, in HPDC ’11: Proceedings of the 20th ACM International

Symposium on High Performance Distributed Computing, pp. 269-270. ACM,

2011.

• Nikola Vujic, Lluc Alvarez, Marc Gonzàlez, Xavier Martorell and Eduard Ayguadé,

“DMA-based Programmable Caches For On-chip Local Memories”, Technical Re-

port UPC-DAC-RR-CAP-2011-20, Departament d’Arquitectura de Computadors,

Universitat Politècnica de Catalunya. 2011.

89

6.4. FINANCIAL SUPPORT

• Lluc Alvarez, Ramon Bertran, Marc Gonzàlez, Xavier Martorell, Nacho Navarro

and Eduard Ayguadé, “Design Space Exploration of CMPs with Caches and Local

Memories”, Technical Report UPC-DAC-RR-CAP-2011-19, Departament d’Arqui-

tectura de Computadors, Universitat Politècnica de Catalunya. 2011.

• Julio Merino-Vidal, Lluc Alvarez, Nacho Navarro and Marisa Gil, “Cetra: A Trace

and Analysis Framework for the Evaluation of Cell BE Systems”, in ISPASS ’09:

Proceedings of the 2009 IEEE International Symposium on Performance Analysis

of Systems and Software, pp. 43-52. IEEE Computer Society, 2009.

• Nikola Vujic, Lluc Alvarez, Marc Gonzàlez Tallada, Xavier Martorell and Eduard

Ayguadé, “Adaptive and Speculative Memory Consistency Support for Multi-Core

Architectures with On-Chip Local Memories”, in LCPC ’09: Proceedings of the

22nd International Workshop on Languages and Compilers for Parallel Computing,

pp 218-232. Springer Berlin Heidelberg, 2009.

• Lluc Alvarez, Marc Gonzàlez, Marisa Gil, Nacho Navarro, Xavier Martorell and

Eduard Ayguadé, “Thread-Level Speculation in Heterogenous Multicore Architec-

tures”, in ACACES 2009 Poster Abstracts: Advanced Computer Architecture and

Compilation for Embedded Systems. 2009.

• Julio M. Merino-Vidal, Lluc Alvarez, Marisa Gil and Nacho Navarro, “An intro-

duction to Cetra: A tool-set for the evaluation of Cell systems”, in ACACES 2008

Poster Abstracts: Advanced Computer Architecture and Compilation for Embedded

Systems. 2008.

• Marisa Gil, Lluc Alvarez, Xavier Joglar, Judit Planas and Xavier Martorell, “Oper-

ating System Support For Heterogeneous Multicore Architectures”, Technical Re-

port UPC-DAC-RR-CAP-2007-40, Departament d’Arquitectura de Computadors,

Universitat Politècnica de Catalunya. 2007.

6.4 Financial Support

This thesis has been financially supported by the Spanish Government (grant SEV-2011-

00067 of the Severo Ochoa Program), by the Spanish Ministry of Science and Innovation

(contracts TIN2007-60625, TIN2012-34557 and CSD2007-00050), by the Generalitat de

90

CHAPTER 6. CONCLUSIONS

Catalunya (contracts 2009-SGR-980, 2014-SGR-1051 and 2014-SGR-1272), by the Ro-

MoL ERC Advanced Grant (GA 321253), by the HiPEAC Network of Excellence (con-

tracts EU FP7/ICT 217068 and 287759), and by the BSC-IBM collaboration agreement.

91

6.4. FINANCIAL SUPPORT

92

Bibliography

[1] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking Parallel

Languages and Hardware. Communications of the ACM, 53(8):90–101, Aug. 2010.

[2] A. Agarwal, H. Li, and K. Roy. DRG-cache: A Data Retention Gated-ground

Cache for Low Power. In Proceedings of the 39th Annual Design Automation

Conference, DAC ’02, pages 473–478, 2002. ACM.

[3] D. H. Albonesi. Selective Cache Ways: On-demand Cache Resource Allocation.

In Proceedings of the 32nd Annual ACM/IEEE International Symposium on Mi-

croarchitecture, MICRO 32, pages 248–259, 1999. IEEE Computer Society.

[4] M. Alisafaee. Spatiotemporal Coherence Tracking. In Proceedings of the 45th

Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 45,

pages 341–350, 2012. IEEE Computer Society.

[5] F. Angiolini, L. Benini, and A. Caprara. Polynomial-time Algorithm for On-chip

Scratchpad Memory Partitioning. In Proceedings of the 2003 International Con-

ference on Compilers, Architecture and Synthesis for Embedded Systems, CASES

’03, pages 318–326, 2003. ACM.

[6] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri. A Post-compiler

Approach to Scratchpad Mapping of Code. In Proceedings of the 2004 Interna-

tional Conference on Compilers, Architecture, and Synthesis for Embedded Sys-

tems, CASES ’04, pages 259–267, 2004. ACM.

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, K. Keutzer, D. A. Patterson,

W. L. Plishker, J. Shalf, S. W. Williams, K. A. Yelick, M. J. Demmel, W. Plishker,

J. Shalf, S. Williams, and K. Yelick. The Landscape of Parallel Computing Re-

search: A View from Berkeley. Technical Report UCB/EECS-2006-183, Electri-

93

BIBLIOGRAPHY

cal Engineering and Computer Sciences Department, University of California at

Berkeley, 2009.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified Plat-

form for Task Scheduling on Heterogeneous Multicore Architectures. In Proceed-

ings of the 15st International Conference on Parallel and Distributed Computing,

Euro-Par 2009, pages 863–874, 2009. Springer-Verlag.

[9] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,

P. Unnikrishnan, and G. Zhang. The Design of OpenMP Tasks. IEEE Transactions

on Parallel and Distributed Systems, 20(3):404–418, Mar. 2009.

[10] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,

P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and

S. Weeratunga. The NAS Parallel Benchmarks. International Journal of High

Performance Computer Applications, 5(3):63–73, Sept. 1991.

[11] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and J. Labarta. Nanos

Mercurium: a Research Compiler for OpenMP. In Proceedings of the 6th European

Workshop on OpenMP, EWOMP ’04, pages 103–109, 2004.

[12] J. Balart, M. González, X. Martorell, E. Ayguadé, Z. Sura, T. Chen, T. Zhang,

K. O’Brien, and K. M. O’Brien. A Novel Asynchronous Software Cache Imple-

mentation for the Cell-BE Processor. In Proceedings of the 20th International

Workshop on Languages and Compilers for Parallel Computing, LCPC ’07, pages

125–140. Springer-Verlag, 2007.

[13] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Mem-

ory Hierarchy Reconfiguration for Energy and Performance in General-purpose

Processor Architectures. In Proceedings of the 33rd Annual ACM/IEEE Interna-

tional Symposium on Microarchitecture, MICRO 33, pages 245–257, 2000. IEEE

Computer Society.

[14] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad

Memory: Design Alternative for Cache On-chip Memory in Embedded Systems.

In Proceedings of the Tenth International Symposium on Hardware/Software Code-

sign, CODES ’02, pages 73–78, 2002. ACM.

94

BIBLIOGRAPHY

[15] B. Batson and T. N. Vijaykumar. Reactive-Associative Caches. In Proceedings

of the 10th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’01, pages 49–60, 2001. IEEE Computer Society.

[16] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing Locality

and Independence with Logical Regions. In Proceedings of the 2012 ACM/IEEE

International Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’12, pages 66:1–66:11, 2012. IEEE Computer Society.

[17] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: A Programming Model

for the Cell BE Architecture. In Proceedings of the 2006 ACM/IEEE Conference

on Supercomputing, SC ’06, pages 86:1–86:11, 2006. ACM.

[18] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. Exploiting Locality on the

Cell/B.E. Through Bypassing. In Proceedings of the 9th International Workshop on

Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS

’09, pages 318–328, 2009. Springer-Verlag.

[19] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. Just-in-Time Renaming and

Lazy Write-Back on the Cell/B.E. In Proceedings of the 2009 International Confer-

ence on Parallel Processing Workshops, ICPPW ’09, pages 138–145, 2009. IEEE

Computer Society.

[20] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. A Study of Speculative

Distributed Scheduling on the Cell/B.E. In Proceedings of the 2011 IEEE 25th

International Parallel and Distributed Processing Symposium, IPDPS ’11, pages

140–151, 2011. IEEE Computer Society.

[21] T. B. Berg. Maintaining I/O Data Coherence in Embedded Multicore Systems.

IEEE Micro, 29(3):10–19, May 2009.

[22] R. Bertran, M. Gonzàlez, X. Martorell, N. Navarro, and E. Ayguadé. Local Mem-

ory Design Space Exploration for High-Performance Computing. The Computer

Journal, 54(5):786–799, May 2011.

[23] J. Beveridge and B. Wiener. Multithreading Applications in Win32: The Complete

Guide to Threads. Addison-Wesley Longman Publishing, 1997.

95

BIBLIOGRAPHY

[24] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:

Characterization and Architectural Implications. In Proceedings of the 17th Inter-

national Conference on Parallel Architectures and Compilation Techniques, PACT

’08, pages 72–81, 2008. ACM.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. Hill, and D. A. Wood. The Gem5 Simulator. SIGARCH Computer Architure

News, 39(2):1–7, Aug. 2011.

[26] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. In Proceedings of the

5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, PPoPP ’95, pages 207–216, 1995. ACM.

[27] M. Boettcher, G. Gabrielli, B. M. Al-Hashimi, and D. Kershaw. MALEC: A Mul-

tiple Access Low Energy Cache. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’13, pages 368–373, 2013. IEEE Computer

Society.

[28] J. Bueno, X. Martorell, R. M. Badia, E. Ayguadé, and J. Labarta. Implement-

ing OmpSs Support for Regions of Data in Architectures with Multiple Address

Spaces. In Proceedings of the 27th ACM International Conference on Supercom-

puting, ICS ’13, pages 359–368, 2013. ACM.

[29] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Longman

Publishing, 1997.

[30] B. Calder, D. Grunwald, and J. Emer. Predictive Sequential Associative Cache. In

Proceedings of the 1996 IEEE 2nd International Symposium on High-Performance

Computer Architecture, HPCA ’96, pages 244–253, 1996. IEEE Computer Society.

[31] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving Multiprocessor Performance

with Coarse-Grain Coherence Tracking. In Proceedings of the 32nd Annual Inter-

national Symposium on Computer Architecture, ISCA ’05, pages 246–257, 2005.

ACM.

96

BIBLIOGRAPHY

[32] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving Multiprocessor Performance

with Coarse-Grain Coherence Tracking. SIGARCH Computer Architecture News,

33(2):246–257, May 2005.

[33] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning, J. Fryman,

I. Ganev, R. A. Golliver, R. Knauerhase, R. Lethin, B. Meister, A. K. Mishra, W. R.

Pinfold, J. Teller, J. Torrellas, N. Vasilache, G. Venkatesh, and J. Xu. Runnemede:

An Architecture for Ubiquitous High-Performance Computing. In Proceedings

of the 2013 IEEE 19th International Symposium on High Performance Computer

Architecture, HPCA ’13, pages 198–209, 2013. IEEE Computer Society.

[34] M. Casas, M. Moreto, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes, L. Jaulmes,

O. Palomar, O. Unsal, A. Cristal, et al. Runtime-Aware Architectures. In Proceed-

ings of the 21st International Conference on Parallel and Distributed Computing,

Euro-Par 2015, pages 16–27, 2015. Springer-Verlag.

[35] L. Chen, L. Liu, S. Tang, L. Huang, Z. Jing, S. Xu, D. Zhang, and B. Shou. Unified

Parallel C for GPU Clusters: Language Extensions and Compiler Implementation.

In Proceedings of the 23rd International Workshop on Languages and Compilers

for Parallel Computing, LCPC ’10, pages 151–165, 2011. Springer-Verlag.

[36] T. Chen, Z. Sura, K. M. O’Brien, and J. K. O’Brien. Optimizing the Use of Static

Buffers for DMA on a CELL Chip. In Proceedings of the 19th International Work-

shop on Languages and Compilers for Parallel Computing, LCPC ’06, pages 314–

329. Springer-Verlag, 2006.

[37] H. Cho, B. Egger, J. Lee, and H. Shin. Dynamic Data Scratchpad Memory Man-

agement for a Memory Subsystem with an MMU. In Proceedings of the 2007 ACM

SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embed-

ded Systems, LCTES ’07, pages 195–206, 2007. ACM.

[38] H. Cook, K. Asanovic, and D. A. Patterson. Virtual Local Stores: Enabling

Software-Managed Memory Hierarchies in Mainstream Computing Environments.

Technical Report UCB/EECS-2009-131, Electrical Engineering and Computer Sci-

ences Department, University of California at Berkeley, 2009.

97

BIBLIOGRAPHY

[39] B. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. Duato. Increasing the Effec-

tiveness of Directory Caches by Avoiding the Tracking of Noncoherent Memory

Blocks. IEEE Transactions on Computers, 62(3):482–495, Mar. 2013.

[40] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato. Increasing the

Effectiveness of Directory Caches by Deactivating Coherence for Private Memory

Blocks. In Proceedings of the 38th Annual International Symposium on Computer

Architecture, ISCA ’11, pages 93–104, 2011. ACM.

[41] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato. Increasing the

Effectiveness of Directory Caches by Deactivating Coherence for Private Memory

Blocks. SIGARCH Computer Architecture News, 39(3):93–104, June 2011.

[42] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju, M. Erez,

N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi. Merrimac: Supercomputing

with Streams. In Proceedings of the 2003 ACM/IEEE Conference on Supercom-

puting, SC ’03, pages 35–42, 2003. ACM.

[43] A. Das, W. J. Dally, and P. Mattson. Compiling for Stream Processing. In Pro-

ceedings of the 15th International Conference on Parallel Architectures and Com-

pilation Techniques, PACT ’06, pages 33–42, 2006. ACM.

[44] R. H. Dennard, F. H. Gaensslen, H. nien Yu, V. L. Rideout, E. Bassous, Andre,

and R. Leblanc. Design of Ion-implanted MOSFETs with Very Small Physical

Dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, Oct. 1974.

[45] A. Deutsch. Interprocedural May-alias Analysis for Pointers: Beyond K-limiting.

In Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language

Design and Implementation, PLDI ’94, pages 230–241, 1994. ACM.

[46] A. Deutsch. Interprocedural May-alias Analysis for Pointers: Beyond K-limiting.

ACM SIGPLAN Notices, 29(6):230–241, June 1994.

[47] A. S. Dhodapkar and J. E. Smith. Managing Multi-configuration Hardware via Dy-

namic Working Set Analysis. In Proceedings of the 29th Annual International Sym-

posium on Computer Architecture, ISCA ’02, pages 233–244, 2002. IEEE Com-

puter Society.

98

BIBLIOGRAPHY

[48] A. S. Dhodapkar and J. E. Smith. Managing Multi-configuration Hardware via

Dynamic Working Set Analysis. SIGARCH Computer Architure News, 30(2):233–

244, May 2002.

[49] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core parallel pro-

gramming environment. In Proceedings of the 1st Workshop on General-Purpose

Computation on Graphics Processing Units, GPGPU-1, 2007. ACM.

[50] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink. Compiling a High-

level Language for GPUs: (via Language Support for Architectures and Compil-

ers). In Proceedings of the ACM SIGPLAN 2012 Conference on Programming

Language Design and Implementation, PLDI ’12, pages 1–12, 2012. ACM.

[51] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and

J. Planas. OmpSs: A Proposal for Programming Heterogeneous Multi-core Archi-

tectures. Parallel Processing Letters, 21(2):173–193, 2011.

[52] H. C. Edwards and C. R. Trott. Kokkos: Enabling Performance Portability Across

Manycore Architectures. In Proceedings of the 2013 Extreme Scaling Workshop,

XSW ’13, pages 18–24, 2013. IEEE Computer Society.

[53] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee, and S. L. Min. A Dynamic Code

Placement Technique for Scratchpad Memory Using Postpass Optimization. In

Proceedings of the 2006 International Conference on Compilers, Architecture and

Synthesis for Embedded Systems, CASES ’06, pages 223–233, 2006. ACM.

[54] B. Egger, J. Lee, and H. Shin. Scratchpad Memory Management for Portable

Systems with a Memory Management Unit. In Proceedings of the 6th ACM/IEEE

International Conference on Embedded Software, EMSOFT ’06, pages 321–330,

2006. ACM.

[55] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H. Oden,

D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K.

Gschwind, R. Archambault, Y. Gao, and R. Koo. Using Advanced Compiler Tech-

nology to Exploit the Performance of the Cell Broadband Engine™Architecture.

IBM Systems Journal, 45(1):59–84, Jan. 2006.

[56] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H. Oden,

D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and

99

BIBLIOGRAPHY

M. Gschwind. Optimizing Compiler for the CELL Processor. In Proceedings of

the 14th International Conference on Parallel Architectures and Compilation Tech-

niques, PACT ’05, pages 161–172, 2005. IEEE Computer Society.

[57] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta,

and M. Valero. Task Superscalar: An Out-of-Order Task Pipeline. In Proceedings

of the 43rd Annual ACM/IEEE International Symposium on Microarchitecture, MI-

CRO 43, pages 89–100, 2010. IEEE Computer Society.

[58] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez,

M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: Programming the Mem-

ory Hierarchy. In Proceedings of the 2006 ACM/IEEE Conference on Supercom-

puting, SC ’06, pages 83:1–83:11, 2006. ACM.

[59] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches: Sim-

ple Techniques for Reducing Leakage Power. In Proceedings of the 29th Annual

International Symposium on Computer Architecture, ISCA ’02, pages 148–157,

2002. IEEE Computer Society.

[60] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches:

Simple Techniques for Reducing Leakage Power. SIGARCH Computer Architec-

ture News, 30(2):148–157, May 2002.

[61] V. Garcia, A. Rico, C. Villavieja, P. Carpenter, N. Navarro, and A. Ramirez. Adap-

tive Runtime-Assisted Block Prefetching on Chip-Multiprocessors. In Proceedings

of the 3rd International Workshop on On-chip Memory Hierarchies and Intercon-

nets, OMHI ’14, pages 1888–1892, 2014. Springer-Verlag.

[62] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W. Hwu. An

Asymmetric Distributed Shared Memory Model for Heterogeneous Parallel Sys-

tems. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XV, pages 347–

358, 2010. ACM.

[63] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W. Hwu. An

Asymmetric Distributed Shared Memory Model for Heterogeneous Parallel Sys-

tems. SIGARCH Computer Architectures News, 38(1):347–358, Mar. 2010.

100

BIBLIOGRAPHY

[64] M. Ghosh, E. Özer, S. Biles, and H.-H. S. Lee. Efficient System-on-chip En-

ergy Management with a Segmented Bloom Filter. In Proceedings of the 19th

International Conference on Architecture of Computing Systems, ARCS ’06, pages

283–297, 2006. Springer-Verlag.

[65] M. Ghosh, E. Ozer, S. Ford, S. Biles, and H.-H. S. Lee. Way Guard: A Segmented

Counting Bloom Filter Approach to Reducing Energy for Set-associative Caches.

In Proceedings of the 2009 International Symposium on Low Power Electronics

and Design, ISLPED ’09, pages 165–170, 2009. ACM.

[66] Peter N. Glaskowsky. NVIDIA’s Fermi: The First Complete GPU Computing Ar-

chitecture. White paper. 2009.

[67] M. Gonzàlez, N. Vujic, X. Martorell, E. Ayguadé, A. E. Eichenberger, T. Chen,

Z. Sura, T. Zhang, K. O’Brien, and K. O’Brien. Hybrid Access-specific Software

Cache Techniques for the Cell BE Architecture. In Proceedings of the 17th Inter-

national Conference on Parallel Architectures and Compilation Techniques, PACT

’08, pages 292–302, 2008. ACM.

[68] K. Gregory and A. Miller. C++ AMP: Accelerated Massive Parallelism with Mi-

crosoft Visual C++. Developer Reference. Microsoft Press, 2012.

[69] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum, and W. J. Dally. Architec-

tural Support for the Stream Execution Model on General-Purpose Processors. In

Proceedings of the 16th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’07, pages 3–12, 2007. IEEE Computer Society.

[70] J. Gummaraju and M. Rosenblum. Stream Programming on General-Purpose Pro-

cessors. In Proceedings of the 38th Annual ACM/IEEE International Symposium

on Microarchitecture, MICRO 38, pages 343–354, 2005. IEEE Computer Society.

[71] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: Near-

optimal Block Placement and Replication in Distributed Caches. In Proceedings

of the 36th Annual International Symposium on Computer Architecture, ISCA ’09,

pages 184–195, 2009. ACM.

[72] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: Near-

optimal Block Placement and Replication in Distributed Caches. SIGARCH Com-

puter Architecture News, 37(3):184–195, June 2009.

101

BIBLIOGRAPHY

[73] L. J. Hendren, J. Hummell, and A. Nicolau. Abstractions for Recursive Pointer

Data Structures: Improving the Analysis and Transformation of Imperative Pro-

grams. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming

Language Design and Implementation, PLDI ’92, pages 249–260, 1992. ACM.

[74] L. J. Hendren, J. Hummell, and A. Nicolau. Abstractions for Recursive Pointer

Data Structures: Improving the Analysis and Transformation of Imperative Pro-

grams. ACM SIGPLAN Notices, 27(7):249–260, July 1992.

[75] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting Set-associative Cache for

High Performance and Low Energy Consumption. In Proceedings of the 1999 In-

ternational Symposium on Low Power Electronics and Design, ISLPED ’99, pages

273–275, 1999. ACM.

[76] Intel 64 and IA-32 Architectures Software Developer’s Manual. January 2011.

[77] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. Au-

gust. Automatic CPU-GPU Communication Management and Optimization. In

Proceedings of the ACM SIGPLAN 2011 Conference on Programming Language

Design and Implementation, PLDI ’11, pages 142–151, 2011. ACM.

[78] A. Janapsatya, A. Ignjatović, and S. Parameswaran. A Novel Instruction Scratch-

pad Memory Optimization Method Based on Concomitance Metric. In Proceed-

ings of the 2006 Asia and South Pacific Design Automation Conference, ASP-DAC

’06, pages 612–617, 2006. IEEE Computer Society.

[79] J. Kahle. The Cell Processor Architecture. In Proceedings of the 38th Annual

ACM/IEEE International Symposium on Microarchitecture, MICRO 38, page 3,

2005. IEEE Computer Society.

[80] L. V. Kale and S. Krishnan. CHARM++: A Portable Concurrent Object Ori-

ented System Based on C++. In Proceedings of the Eighth Annual Conference on

Object-oriented Programming Systems, Languages, and Applications, OOPSLA

’93, pages 91–108, 1993. ACM.

[81] M. Kandemir and A. Choudhary. Compiler-directed Scratch Pad Memory Hierar-

chy Design and Management. In Proceedings of the 39th Annual Design Automa-

tion Conference, DAC ’02, pages 628–633, 2002. ACM.

102

BIBLIOGRAPHY

[82] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh.

Dynamic Management of Scratch-pad Memory Space. In Proceedings of the 38th

Annual Design Automation Conference, DAC ’01, pages 690–695, 2001. ACM.

[83] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting Generational Be-

havior to Reduce Cache Leakage Power. In Proceedings of the 28th Annual Inter-

national Symposium on Computer Architecture, ISCA ’01, pages 240–251, 2001.

ACM.

[84] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting Generational Be-

havior to Reduce Cache Leakage Power. SIGARCH Computer Architecture News,

29(2):240–251, May 2001.

[85] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,

B. Towles, A. Chang, and S. Rixner. Imagine: Media Processing with Streams.

IEEE Micro, 21(2):35–46, Mar. 2001.

[86] D. Kim, J. Ahn, J. Kim, and J. Huh. Subspace Snooping: Filtering Snoops with

Operating System Support. In Proceedings of the 19th International Conference

on Parallel Architectures and Compilation Techniques, PACT ’10, pages 111–122,

2010. ACM.

[87] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy Instruction Caches:

Leakage Power Reduction Using Dynamic Voltage Scaling and Cache Sub-bank

Prediction. In Proceedings of the 35th Annual ACM/IEEE International Sympo-

sium on Microarchitecture, MICRO 35, pages 219–230, 2002. IEEE Computer

Society.

[88] M. Kistler, M. Perrone, and F. Petrini. Cell Multiprocessor Communication Net-

work: Built for Speed. IEEE Micro, 26(3):10–23, May 2006.

[89] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: Architectural Support for Fine-

grained Parallelism on Chip Multiprocessors. In Proceedings of the 34th Annual

International Symposium on Computer Architecture, ISCA ’07, pages 162–173,

2007. ACM.

[90] W. Landi and B. G. Ryder. A Safe Approximate Algorithm for Interprocedural

Aliasing. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming

Language Design and Implementation, PLDI ’92, pages 235–248, 1992. ACM.

103

BIBLIOGRAPHY

[91] W. Landi and B. G. Ryder. A Safe Approximate Algorithm for Interprocedural

Aliasing. ACM SIGPLAN Notices, 27(7):235–248, July 1992.

[92] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim, and S. Han. COMIC:

A Coherent Shared Memory Interface for Cell BE. In Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’08, pages 303–314, 2008. ACM.

[93] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming and Tun-

ing for GPUs. In Proceedings of the 2010 ACM/IEEE International Conference on

High Performance Computing, Networking, Storage and Analysis, SC ’10, pages

1–11, 2010. IEEE Computer Society.

[94] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A Compiler Framework

for Automatic Translation and Optimization. In Proceedings of the 14th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’09, pages 101–110, 2009. ACM.

[95] L. Li, L. Gao, and J. Xue. Memory Coloring: A Compiler Approach for Scratchpad

Memory Management. In Proceedings of the 14th International Conference on

Parallel Architectures and Compilation Techniques, PACT ’05, pages 329–338,

2005. IEEE Computer Society.

[96] L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. T. Kandemir, M. J. Irwin, and

A. Sivasubramaniam. Leakage Energy Management in Cache Hierarchies. In Pro-

ceedings of the 11th International Conference on Parallel Architectures and Com-

pilation Techniques, PACT ’02, pages 131–140, 2002. ACM.

[97] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multi-

core and Manycore Architectures. In Proceedings of the 42nd Annual ACM/IEEE

International Symposium on Microarchitecture, MICRO 42, pages 469–480, 2009.

IEEE Computer Society.

[98] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart

Memories: A Modular Reconfigurable Architecture. In Proceedings of the 27th

Annual International Symposium on Computer Architecture, ISCA ’00, pages 161–

171, 2000. IEEE Computer Society.

104

BIBLIOGRAPHY

[99] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart Mem-

ories: A Modular Reconfigurable Architecture. SIGARCH Computer Architecture

News, 28(2):161–171, May 2000.

[100] M. Manivannan, A. Negi, and P. Stenström. Efficient Forwarding of Producer-

Consumer Data in Task-Based Programs. In Proceedings of the 2013 42nd Inter-

national Conference on Parallel Processing, ICPP ’13, pages 517–522, 2013. IEEE

Computer Society.

[101] M. Manivannan and P. Stenstrom. Runtime-Guided Cache Coherence Optimiza-

tions in Multi-core Architectures. In Proceedings of the 2014 IEEE 28th Interna-

tional Parallel and Distributed Processing Symposium, IPDPS ’14, pages 625–636,

2014. IEEE Computer Society.

[102] R. Min, W.-B. Jone, and Y. Hu. Location Cache: A Low-power L2 Cache System.

In Proceedings of the 2004 International Symposium on Low Power Electronics

and Design, ISLPED ’04, pages 120–125, 2004. ACM.

[103] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based Co-

herence. In Proceedings of the 32nd Annual International Symposium on Computer

Architecture, ISCA ’05, pages 234–245, 2005. ACM.

[104] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based

Coherence. SIGARCH Computer Architecture News, 33(2):234–245, May 2005.

[105] T. Mudge. Power: A First-Class Architectural Design Constraint. IEEE Computer

Journal, 34(4):52–58, Apr. 2001.

[106] F. Mueller. A Library Implementation of POSIX Threads under UNIX. In Proceed-

ings of the Usenix Winter 1993 Technical Conference, USENIX ’93, pages 29–42.

USENIX Association, 1993.

[107] R. Murphy and P. Kogge. On the Memory Access Patterns of Supercomputer Ap-

plications: Benchmark Selection and Its Implications. IEEE Transactions on Com-

puters, 56(7):937–945, July 2007.

[108] N. Nguyen, A. Dominguez, and R. Barua. Memory Allocation for Embedded Sys-

tems with a Compile-time-unknown Scratch-pad Size. In Proceedings of the 2005

105

BIBLIOGRAPHY

International Conference on Compilers, Architecture and Synthesis for Embedded

Systems, CASES ’05, pages 115–125, 2005. ACM.

[109] D. Nicolaescu, A. Veidenbaum, and A. Nicolau. Reducing Power Consumption for

High-Associativity Data Caches in Embedded Processors. In Proceedings of the

Conference on Design, Automation and Test in Europe, DATE ’03, pages 1064–

1069, 2003. IEEE Computer Society.

[110] NVIDIA CUDA C Programming Guide. Version 7.0. March 2015.

[111] S. Oaks and H. Wong. Java threads. O’Reilly Media, 2004.

[112] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang. Supporting OpenMP on

Cell. International Journal of Parallel Programming, 36(3):289–311, June 2008.

[113] The OpenACC Application Program Interface. Version 1.0. Novembre 2011.

[114] OpenMP Application Program Interface. Version 3.0. May 2008.

[115] OpenMP Application Program Interface. Version 4.0. July 2013.

[116] Y. Paek, J. Hoeflinger, and D. Padua. Efficient and Precise Array Access Analysis.

ACM Transactions on Programming Language and Systems, 24(1):65–109, Jan.

2002.

[117] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient Utilization of Scratch-Pad Mem-

ory in Embedded Processor Applications. In Proceedings of the 1997 European

Conference on Design and Test, EDTC ’97, pages 7–11, 1997. IEEE Computer

Society.

[118] P. R. Panda, N. D. Dutt, and A. Nicolau. On-chip vs. Off-chip Memory: The Data

Partitioning Problem in Embedded Processor-based Systems. ACM Transactions

on Design Automation of Electronic Systems, 5(3):682–704, July 2000.

[119] V. Papaefstathiou, M. G. Katevenis, D. S. Nikolopoulos, and D. Pnevmatikatos.

Prefetching and Cache Management Using Task Lifetimes. In Proceedings of the

27th ACM International Conference on Supercomputing, ICS ’13, pages 325–334,

2013. ACM.

106

BIBLIOGRAPHY

[120] J. P. Perez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: Making It Easier

to Program the Cell Broadband Engine Processor. IBM Journal of Research and

Development, 51(5):593–604, Sept. 2007.

[121] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta. Self-Adaptive OmpSs Tasks in

Heterogeneous Environments. In Proceedings of the 2013 IEEE 27th International

Parallel and Distributed Processing Symposium, IPDPS ’13, pages 138–149, 2013.

IEEE Computer Society.

[122] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-Vdd:

A Circuit Technique to Reduce Leakage in Deep-submicron Cache Memories. In

Proceedings of the 2000 International Symposium on Low Power Electronics and

Design, ISLPED ’00, pages 90–95, 2000. ACM.

[123] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy. Reducing

Set-associative Cache Energy via Way-prediction and Selective Direct-mapping. In

Proceedings of the 34th Annual ACM/IEEE International Symposium on Microar-

chitecture, MICRO 34, pages 54–65, 2001. IEEE Computer Society.

[124] Power ISA. Version 2.06 Revision B. July 2010.

[125] A. Ramirez, F. Cabarcas, B. Juurlink, M. Alvarez Mesa, F. Sanchez, A. Azevedo,

C. Meenderinck, C. Ciobanu, S. Isaza, and G. Gaydadjiev. The SARC Architecture.

IEEE Micro, 30(5):16–29, Sept. 2010.

[126] J. Reinders. Intel threading building blocks - outfitting C++ for multi-core proces-

sor parallelism. O’Reilly Media, 2007.

[127] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural Support for Fine-

grain Scheduling. In Proceedings of the Fifteenth Edition of ASPLOS on Architec-

tural Support for Programming Languages and Operating Systems, ASPLOS XV,

pages 311–322, 2010. ACM.

[128] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler,

and C. R. Moore. Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS

Architecture. In Proceedings of the 30th Annual International Symposium on Com-

puter Architecture, ISCA ’03, pages 422–433, 2003. ACM.

107

BIBLIOGRAPHY

[129] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler,

and C. R. Moore. Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS

Architecture. SIGARCH Computer Architecture News, 31(2):422–433, May 2003.

[130] A. Sembrant, E. Hagersten, and D. Black-Schaffer. The Direct-to-Data (D2D)

Cache: Navigating the Cache Hierarchy with a Single Lookup. In Proceedings

of the 41st Annual International Symposium on Computer Architecture, ISCA ’14,

pages 133–144, 2014. IEEE Computer Society.

[131] A. Sembrant, E. Hagersten, and D. Black-Schaffer. The Direct-to-Data (D2D)

Cache: Navigating the Cache Hierarchy with a Single Lookup. SIGARCH Com-

puter Architecture News, 42(3):133–144, June 2014.

[132] A. Sembrant, E. Hagersten, and D. Black-Shaffer. TLC: A Tag-less Cache for

Reducing Dynamic First Level Cache Energy. In Proceedings of the 46th Annual

ACM/IEEE International Symposium on Microarchitecture, MICRO 46, pages 49–

61, 2013. IEEE Computer Society.

[133] S. Seo, J. Lee, and Z. Sura. Design and Implementation of Software-Managed

Caches for Multicores with Local Memory. In Proceedings of the 2009 IEEE 15th

International Symposium on High-Performance Computer Architecture, HPCA

’09, pages 55–66, 2009. IEEE Computer Society.

[134] J. Shirako, J. M. Zhao, V. K. Nandivada, and V. N. Sarkar. Chunking Parallel Loops

in the Presence of Synchronization. In Proceedings of the 23rd ACM International

Conference on Supercomputing, ICS ’09, pages 181–192, 2009. ACM.

[135] A. Sidelnik, S. Maleki, B. L. Chamberlain, M. J. Garzarán, and D. Padua. Per-

formance Portability with the Chapel Language. In Proceedings of the 2012 IEEE

26th International Parallel and Distributed Processing Symposium, IPDPS ’12,

pages 582–594, 2012. IEEE Computer Society.

[136] A. Sodani. Race to Exascale: Opportunities and Challenges, Keynote in MICRO

2011.

[137] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and P. Mar-

wedel. Reducing Energy Consumption by Dynamic Copying of Instructions Onto

Onchip Memory. In Proceedings of the 15th International Symposium on System

Synthesis, ISSS ’02, pages 213–218, 2002. ACM.

108

BIBLIOGRAPHY

[138] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming Standard for

Heterogeneous Computing Systems. IEEE Design and Test Journal, 12(3):66–73,

May 2010.

[139] B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman Pub-

lishing, 4th edition, 2013.

[140] Sun Microsystems. Multithreading in the Solaris Operating Environment. A Tech-

nical White Paper. 2002.

[141] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi. A Com-

prehensive Memory Modeling Tool and Its Application to the Design and Analysis

of Future Memory Hierarchies. In Proceedings of the 35th Annual International

Symposium on Computer Architecture, ISCA ’08, pages 51–62, 2008. IEEE Com-

puter Society.

[142] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi. A Com-

prehensive Memory Modeling Tool and Its Application to the Design and Analysis

of Future Memory Hierarchies. SIGARCH Computer Architecture News, 36(3):51–

62, June 2008.

[143] V. Tipparaju and J. S. Vetter. GA-GPU: Extending a Library-based Global Address

Space Programming Model for Scalable Heterogeneous Computing Systems. In

Proceedings of the 9th Conference on Computing Frontiers, CF ’12, pages 53–64,

2012. ACM.

[144] E. Totoni, J. Torrellas, and L. V. Kale. Using an Adaptive HPC Runtime System

to Reconfigure the Cache Hierarchy. In Proceedings of the 2014 ACM/IEEE Inter-

national Conference on High Performance Computing, Networking, Storage and

Analysis, SC ’14, pages 1047–1058, 2014. IEEE Computer Society.

[145] S. Udayakumaran and R. Barua. Compiler-decided Dynamic Memory Allocation

for Scratch-pad Based Embedded Systems. In Proceedings of the 2003 Interna-

tional Conference on Compilers, Architecture and Synthesis for Embedded Sys-

tems, CASES ’03, pages 276–286, 2003. ACM.

[146] M. Valero, M. Moreto, M. Casas, E. Ayguade, and J. Labarta. Runtime-Aware Ar-

chitectures: A First Approach. International Journal on Supercomputing Frontiers

and Innovations, 1(1):29–44, June 2014.

109

BIBLIOGRAPHY

[147] J. J. Valls, A. Ros, J. Sahuquillo, and M. E. Gómez. PS-cache: An Energy-efficient

Cache Design for Chip Multiprocessors. In Proceedings of the 22nd Interna-

tional Conference on Parallel Architectures and Compilation Techniques, PACT

’13, pages 407–408, 2013. IEEE Computer Society.

[148] J. J. Valls, A. Ros, J. Sahuquillo, and M. E. Gomez. PS-Cache: An Energy-

efficient Cache Design for Chip Multiprocessors. The Journal of Supercomputing,

71(1):67–86, Jan. 2015.

[149] J. J. Valls, J. Sahuquillo, A. Ros, and M. E. Gomez. The Tag Filter Cache: An

Energy-Efficient Approach. In Proceedings of the 23rd Euromicro International

Conference on Parallel, Distributed and Network-Based Processing, PDP ’15,

pages 182–189, March 2015. IEEE Computer Society.

[150] H. Vandierendonck, P. Pratikakis, and D. S. Nikolopoulos. Parallel Programming

of General-purpose Programs Using Task-based Programming Models. In Pro-

ceedings of the 3rd USENIX Conference on Hot Topic in Parallelism, HotPar ’11,

pages 13–13, 2011. USENIX Association.

[151] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-Aware Scratchpad Allocation

Algorithm. In Proceedings of the Conference on Design, Automation and Test in

Europe, DATE ’04, pages 1264–1269, 2004. IEEE Computer Society.

[152] J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely. Quantifying Lo-

cality In The Memory Access Patterns of HPC Applications. In Proceedings of the

2005 ACM/IEEE Conference on Supercomputing, SC ’05, page 50, 2005. ACM.

[153] R. P. Wilson and M. S. Lam. Efficient Context-sensitive Pointer Analysis for C Pro-

grams. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming

Language Design and Implementation, PLDI ’95, pages 1–12, 1995. ACM.

[154] R. P. Wilson and M. S. Lam. Efficient Context-sensitive Pointer Analysis for C

Programs. ACM SIGPLAN Notices, 30(6):1–12, June 1995.

[155] M. Wolfe. Implementing the PGI Accelerator Model. In Proceedings of the

3rd Workshop on General-Purpose Computation on Graphics Processing Units,

GPGPU-3, pages 43–50, 2010. ACM.

110

BIBLIOGRAPHY

[156] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the

Obvious. SIGARCH Computer Architure News, 23(1):20–24, Mar. 1995.

[157] C. Zhang, F. Vahid, and W. Najjar. A Highly Configurable Cache Architecture for

Embedded Systems. In Proceedings of the 30th Annual International Symposium

on Computer Architecture, ISCA ’03, pages 136–146, 2003. ACM.

[158] C. Zhang, F. Vahid, and W. Najjar. A Highly Configurable Cache Architecture for

Embedded Systems. SIGARCH Computer Architure News, 31(2):136–146, May

2003.

[159] C. Zhang, F. Vahid, J. Yang, and W. Najjar. A Way-halting Cache for Low-energy

High-performance Systems. ACM Transactions on Architecture Code Optimiza-

tion, 2(1):34–54, Mar. 2005.

[160] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.

Compiler-directed Instruction Cache Leakage Optimization. In Proceedings of the

35th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO

35, pages 208–218, 2002. IEEE Computer Society.

[161] Z. Zheng, Z. Wang, and M. Lipasti. Tag Check Elision. In Proceedings of the

2014 International Symposium on Low Power Electronics and Design, ISLPED

’14, pages 351–356, 2014. ACM.

[162] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte. Adaptive Mode Con-

trol: A Static-Power-Efficient Cache Design. In Proceedings of the 10th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, PACT

’01, pages 61–70, 2001. IEEE Computer Society.

[163] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte. Adaptive Mode Control:

A Static-power-efficient Cache Design. ACM Transactions on Embedded Comput-

ing Systems, 2(3):347–372, Aug. 2003.

[164] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using a "Codelet"

Program Execution Model for Exascale Machines: Position Paper. In Proceedings

of the 1st International Workshop on Adaptive Self-Tuning Computing Systems for

the Exaflop Era, EXADAPT ’11, pages 64–69, 2011. ACM.

111

BIBLIOGRAPHY

112

List of Figures

1.1 Evolution of microprocessors . 1

2.1 Cache memory organization . 12

2.2 Directory-based cache coherence protocol 13

2.3 Cell B.E. architecture . 22

2.4 GPGPU architecture . 25

3.1 Baseline architecture . 34

3.2 Address space mapping for the SPMs 35

4.1 Code transformation for tiling software caches 43

4.2 Classification of memory references . 46

4.3 Code generation . 47

4.4 Hardware support for the coherence protocol 49

4.5 Strided access to the SPM . 50

4.6 Random access to the cache . 51

4.7 Guarded access to data not mapped to the SPMs with filter hit 51

4.8 Guarded access to data not mapped to the SPMs with filter miss 52

4.9 Guarded access to data mapped to the local SPM 53

4.10 Guarded access to data mapped to a remote SPM 53

4.11 SPM directory update and filter invalidation 54

4.12 Filter update . 55

4.13 State diagram of the possible replication states of the data 58

4.14 Coherence protocol overheads . 61

4.15 Filter hit ratio. 62

4.16 Reduction of execution time . 63

4.17 Reduction of NoC traffic . 64

113

LIST OF FIGURES

4.18 Reduction of energy consumption . 65

5.1 Percentage of memory accesses to tasks dependences 68

5.2 Timeline of a task application with the Cache behaviour 70

5.3 Runtime system extensions to support hybrid memory hierarchies 71

5.4 Timeline of a task application with the SPM-NoOv behaviour 72

5.5 Timeline of a task application with the SPM-RT behaviour 73

5.6 Timeline of a task application with the SPM-DB behaviour 74

5.7 Reduction of execution time . 77

5.8 Reduction of NoC traffic . 78

5.9 Reduction of energy consumption . 79

5.10 Speedup in EDP . 80

5.11 Reduction of execution time for different SPM sizes 81

5.12 Speedup with a hardware runtime system 82

114

List of Tables

3.1 Processor configuration . 36

3.2 Fork-join benchmarks . 38

3.3 Task benchmarks . 39

4.1 Configuration of the hardware structures for the coherence protocol . . . 60

4.2 Benchmarks and memory access characterization 60

115

LIST OF TABLES

116

Glossary

ALU Arithmetic Logic Unit

API Application Programming Interface

CAM Content-Addressable Memory

CPI Cycles Per Instruction

CPU Central Processing Unit

DMA Direct Memory Access

DRAM Dynamic Random-Access Memory

EIB Element Interconnection Bus

GM Global Memory

GPGPU General-Purpose Graphics Processing Unit

HPC High Performance Computing

ILP Instruction Level Parallelism

LSQ Load/Store Queue

MMU Memory Management Unit

MSHR Miss Status Handling Registers

NoC Network on-Chip

117

NUCA Non-Uniform Cache Architecture

OS Operating System

PPE Power Processor Element

RAM Random-Access Memory

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

SMT Simultaneous MultiThreading

SPE Synergistic Processor Element

SPM ScratchPad Memory

SRAM Static Random-Access Memory

SRF Stream Register File

TDG Task Dependence Graph

TLB Translation Lookaside Buffer

TLP Task Level Parallelism

VLIW Very Long Instruction Word

WaR Write after Read

WaW Write after Write

118

	Abstract
	Contents
	Introduction
	Thesis Objectives and Contributions
	Automatic Management of SPMs in Fork-Join Models
	Automatic Management of SPMs in Task Models

	Thesis Structure

	State of the Art
	Shared Memory Multiprocessors
	Shared Memory Programming Models
	Thread Libraries
	OpenMP
	Task Programming Models

	Cache-Coherent Shared Memory Hierarchies
	Cache Memories
	Cache Coherence Protocol

	Inefficiencies of Cache Hierarchies
	Power Consumption
	Coherence Traffic

	Future Directions

	Multiprocessors with Scratchpad Memories
	Embedded Processors
	Cell B.E.
	GPGPUs
	Stream Architectures
	Other Architectures
	Summary

	Methodology
	Simulation Infrastructure
	Simulators
	Baseline Architecture
	Operating System Support
	Runtime Systems

	Benchmarks
	Metrics

	SPM Management in Fork-Join Models
	Tiling Software Caches
	Coherence Problem

	Coherence Protocol
	Compiler Support
	Classification of Memory References
	Code Transformation
	Code Generation

	Hardware Design
	Implementation of Hardware Structures
	Execution of Memory Accesses
	Tracking SPMs Contents
	Maintaining Sequential Consistency

	Data Coherence Management
	Data States and Operations
	Data Eviction

	Evaluation
	Benchmark Characterization
	Coherence Protocol Overheads
	Comparison with Cache Hierarchies
	Performance Evaluation
	NoC Traffic Evaluation
	Energy Consumption Evaluation

	Summary and Concluding Remarks

	SPM Management in Task Models
	Suitability
	Suitability of Other Programming Models

	SPM Management in Task Runtime Systems
	Mapping Data Dependences to the SPMs
	Overlapping DMA Transfers with Computation
	Locality-Aware Scheduling
	Discussion

	Evaluation
	Performance Evaluation
	NoC Traffic Evaluation
	Energy Consumption Evaluation
	Mitigating the Effects of Fine-Grained Tasks

	Summary and Concluding Remarks

	Conclusions
	Goals, Contributions and Main Conclusions
	Future Work
	Publications
	Publications of the Thesis
	Other Publications

	Financial Support

	Bibliography
	List of Figures
	List of Tables
	Glossary

