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Abstract

The ability of humans to reliably perceive and recognise
objects relies on an interaction between information seen
in the visual image and prior expectations. We describe
an extension to the CHREST computational model which
enables it to learn and combine information from multi-
ple input modalities. Simulations demonstrate the pres-
ence of quantitative effects on recognition ability due to
cross-modal interactions. Our simulations with CHREST
illustrate how expectations can improve classification ac-
curacy, reduce classification time, and enable words to be
reconstructed from noisy visual input.

Introduction
The direct association of visual perception with cog-
nition has long been recognised by cognitive scien-
tists, although understanding of its nature has changed.
Marr (1982) proposed a model of visual perception
which is essentially one-dimensional: visual stimuli are
processed in a sequence of stages, until the final repre-
sentation is passed to high-level cognition. This concep-
tion is undermined by experiments indicating the role
that expectations play in altering bottom-up processes
of classification. These expectations may be conceptual,
based on familiar patterns in the input, or due to priming
with, for instance, verbal cues. The challenge for com-
putational modellers is to provide a framework in which
information from multiple modalities may be combined
and used.

A further motivation is found in the importance of
application areas, such as Human-Computer Interac-
tion and image analysis, which highlight the need for
a greater understanding of how humans relate their
high-level conceptual knowledge to what they perceive.
These applications are reflected in recent extensions to
the ACT-R architecture, supporting perceptual-motor ac-
tions (Byrne, 2001). However, although ACT-R/PM
uses expectations in the form of high-level schemata, the
model must still be ‘programmed’ with its initial infor-
mation.

In this paper, we are interested in how information
from multiple modalities may be learnt and combined
in a manner supporting the interplay between perceived
and expected information. We develop some extensions
to the CHREST (Chunk Hierarchy and REtrieval STruc-
tures) computational model of perception and learning.

CHREST implements a theory of how humans learn hi-
erarchical categories from naturalistic input (see Gobet,
Lane, Croker et al., 2001), and models the process by
which experts learn perceptual templates (Gobet & Si-
mon, 2000). We aim to combine the perceptual-learning
processes already existing in CHREST with mechanisms
for handling multiple input modalities.

Expectations in Perception
We focus on three important phenomena demonstrating
the role of expectations in perception. The first of these
is that expected objects are recognised with greater ac-
curacy than unexpected objects, particularly in domains
where noise affects the quality of the input stimulus. For
instance, characters may be badly formed, ambiguous,
or simply ‘damaged’ or partially hidden. An expectation
that characters are from a standard alphabet enables cor-
rect identification of characters which would otherwise
be ambiguous (Neisser, 1966; Richman & Simon, 1989).

The second phenomenon shows that expectations may
relate to complex collections of objects, or schemata.
Perceptual classification of objects within a familiar
schema can be quicker than when the objects are not in
the schema. For instance, Biederman (1981) describes
an experiment in which participants took longer to iden-
tify a fire-hydrant when positioned above street level
than when at its expected position. A similar result
can be found in reading: identifying the ‘K’ in a word
such as ‘ANKLE’ is quicker than in a non-word such as
‘XGKAL’.

A third phenomenon is that of reconstructive memory,
whereby a set of partially obscured objects may be iden-
tified based on their being recognised as a composite.
For instance, a collection of partially obscured characters
may be identified as a word (Lindsay & Norman, 1972),
even though each individual character may be ambigu-
ous.

Although it must be admitted that some of these phe-
nomena are difficult to cleanly replicate in experimen-
tal settings, it is clear that people do not simply scan an
input stimulus in a serial fashion whilst looking for a
given item. Instead, humans employ higher-order con-
straints, based on expected schemata, to constrain the
range of potential matches. In other words, perception is
not a one-dimensional, bottom-up process, as proposed
by Marr (1982), but instead interprets what is being seen
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Figure 1: The CHREST Model

in the light of what is currently expected. We now de-
scribe some extensions to the CHREST computational
model which support such interactions.

The CHREST Model of Learning
Figure 1 illustrates the three main components of
CHREST, which are: mechanisms for interacting
with the external world; multiple short-term memories
(STMs), to hold information from different input modal-
ities; and a long-term memory (LTM), where informa-
tion is held within a discrimination structure known as a
chunking network.

CHREST’s interface with the external world can in-
clude a variety of input/output mechanisms. In this pa-
per, we use two input modalities: visual, and verbal.
For visual input, we use patterns consisting of stylised
characters, which may be presented to the model in a
sequence. For the verbal input, we use a simple char-
acter input, representing a single input entity. As with
visual input, verbal input can occur in sequence. Thus,
CHREST may be presented with words, in the form of a
sequence of characters, either via a visual input, or via a
verbal input, or through both simultaneously.

Each STM contains pointers to information held in
LTM, and its contents vary as the model carries out learn-
ing and searching operations. In this paper, CHREST is
given two STMs, one for information relating to the vi-
sual input, and one for the verbal input. The STMs are
important in learning as they support the construction of
links between information, as explained below.

CHREST uses a chunking network in its LTM to store
learnt information. A chunking network consists of a
collection of nodes, with each node holding a learnt pat-
tern (or chunk) in its image. Nodes are primarily inter-
connected with test links, which impose a discrimination
structure on LTM. Beginning from the root node, a given
input pattern is sorted to a node with a matching image
by following those test links whose tests match the input
pattern. When the pattern cannot be sorted any further,
then the node is pushed onto the appropriate STM.

Apart from test links, chunking networks also support
associations between nodes from disparate parts of the

network. These associations are made with lateral links,
two of which are:

naming links A node representing visual information is
named by linking it with a node representing verbal
information.

sequence links A node is linked to a second of the same
modality, to indicate that the first is followed by the
second in sequence.

The CHREST model, like its predecessor, EPAM
(Elementary Perceiver and Memorizer: Feigenbaum
& Simon, 1984), has proven successful in modelling
a wide range of cognitive phenomena, including:
chess expertise (e.g. see de Groot & Gobet, 1996;
Gobet & Simon, 2000), diagrammatic reasoning
(Lane, Cheng & Gobet, 2001), and language learning
(e.g. see Freudenthal, Pine & Gobet, 2002). More
details and references for CHREST can be found
at: http://homepages.feis.herts.ac.uk/˜
comqpcl/chrest/

Learning Multiple Input Modalities
As mentioned above, we provide CHREST with two in-
put modalities, visual and verbal. In this section, we de-
fine the input patterns and describe how CHREST learns
from two modalities, separately and in combination.

Example Data
We use one form of visual input, a stylised character, and
one form of verbal input, consisting of character names.
The verbal input can be used as a name for the visual
input. Thus, the string “A” presented on the verbal input
would be used to name the visual pattern for a character
‘A’.

Our design for the visual input is motivated by three
factors. First, a symbolic form of input is preferred for
ease of implementation. Second, the individual charac-
ters should be arrangeable in a sequential array, so the
model can learn that certain characters usually appear in
a given sequence. Third, the representation should sup-
port noisy or occluded (hidden) inputs in a controlled



(a) (b)

Figure 2: The Visual Input: (a) shows the 15 segments,
which may be set/unset/occluded, (b) shows a complete
character ‘A’, and a partially occluded character ‘E’.

manner. Thus, we implement the visual input as a set
of 15 segments, arranged as shown in Figure 2(a). Each
segment may be either set, unset, or occluded. Fig-
ure 2(b) shows the settings for one complete and one par-
tially occluded character.

The verbal input to the model is a simple string or
character object, representing the character’s name. For
simplicity, we assume that the verbal input to the model
is free of noise.

Learning Patterns and Sequences
Learning occurs after a pattern has been sorted down the
test links in the chunking network. A single LTM struc-
ture is used, and it is assumed that patterns from different
modalities can never match. Hence, when a visual pat-
tern is sorted through LTM, it can only follow test links
representing visual patterns; retrieved nodes are always
of the same modality as the input pattern.

One of two learning processes can occur, depending
upon the match between the image at the node reached
and the input pattern. First, if the node image matches
the input pattern (i.e. the input pattern is a superset of the
current node image), then extra information is added to
the node image, in a process known as familiarisation.
(If the node image equals the input pattern, then no extra
information will be added.) Second, if the node image
mismatches (i.e. the input pattern disagrees with the cur-
rent node image), then an extra child node is added to
the current node in a process known as discrimination.
This child node is linked with a test for the mismatching
feature, and, initially, its image is empty. Further presen-
tation of the same input pattern would lead to the node
image being completed through a process of familiarisa-
tion. (Further details of these learning mechanisms may
be found in the EPAM/CHREST literature, e.g. see Go-
bet et al., 2001.) Whether learning occurs through famil-
iarisation or discrimination, the trained node is pushed
onto the appropriate STM.

Input patterns from both modalities are learnt in the
same manner, with only the criteria for matching vary-
ing. For the visual input, two patterns will match if the
collection of set/unset segments is the same. The famil-
iarisation process involves setting the value of any seg-
ment whose value is unknown in the node’s image to the
value of the input pattern. Discrimination occurs when
the node image and the input pattern disagree on the

value for one or more segments. One of the mismatching
segments is used to create the test leading to a new child
node.

A similar process occurs for the verbal patterns, except
that two verbal patterns containing different values can
never match. The discrimination tree for verbal patterns
is thus shallow, with discrimination occurring only at the
root node.

Sequences are represented within the chunking net-
work by connecting those nodes whose images occur
consecutively. A sequence link is formed between two
nodes when: firstly, they are present in the same STM at
the same time, and secondly, their images represent pat-
terns which were presented consecutively. A check for
the formation of sequence links is triggered whenever a
node is added to STM. During retrieval, CHREST can
use the sequence link to predict the node most likely to
appear next. Sequence links are formed only between
nodes which are present in an STM. Any node may have
multiple sequence links reflecting, in our example, that
any character may be within many words.

Creating Cross-Modal Links
In order to utilise interactions between the two modali-
ties, CHREST must form links between nodes from dif-
ferent modalities. This is achieved through a simple
extension of the process by which sequence links are
formed, leading to the creation of naming links. A nam-
ing link is formed between two nodes when: firstly, they
are present in different STMs at the same time, and sec-
ondly, their images represent patterns which were pre-
sented simultaneously. A check for the formation of
naming links is made whenever a node is added to either
STM. Figure 3 illustrates the process.

Using the Cross-Modal Links

Naming
Cross-modal links can be used to name an input visual
pattern. The process is applied after sorting the visual
pattern through LTM. If the node retrieved has a naming
link, then the associated verbal pattern is output by the
model: the model thus ‘names’ the input visual pattern.
Using this mechanism, it is possible to train CHREST on
a succession of characters, and then request the model to
name a succession of new characters; the model’s suc-
cess rate is its classification accuracy.

Priming
The model can be ‘primed’ to recognise a given visual
pattern by presenting its name on the verbal input. Sort-
ing the verbal pattern through LTM, CHREST will locate
a node and place this node into its verbal STM. If this
node has a naming link, then the linked node is used to
prime the model.

The priming mechanism uses this linked node as fol-
lows. When a visual pattern is presented, it is first com-
pared to the image in the linked node. If it matches to
within a given tolerance, then the primed node is returned
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Figure 3: Learning a ‘naming link’ across two modalities. (1) The visual pattern is sorted through LTM, and a pointer
to the node retrieved placed into visual STM. (2) The verbal pattern is sorted through LTM, and a pointer to the node
retrieved placed into verbal STM. (3) A ‘naming link’ is formed between the two nodes at the top of the STMs.

as the matching node. This priming process can allow the
model to successfully match input patterns even though
they would not have been retrieved during the usual sort-
ing process.

Expecting Sequences

In a similar way to priming with a verbal input, sequence
links can be used to prime the model to expect a pattern
of the same input modality. Thus, if a node for the visual
pattern ‘T’ is retrieved, and it is linked with a sequence
link to a node for the visual pattern ‘H’, then the model
will expect the character ‘H’ to appear next on the input.
The priming mechanism described above applies equally
to nodes linked through sequence links.

Simulations
We perform three sets of simulations. First, we explore
the accuracy with which CHREST can classify charac-
ters with increasing amounts of noise. Second, we con-
sider the speed with which characters are visually recog-
nised, comparing the speed of ‘pure’ bottom-up recogni-
tion with that of top-down, expectation-driven recogni-
tion. Third, we consider how the use of two modalities
enables CHREST to disentangle very noisy data when
attempting to satisfy high-level constraints.

Accuracy of Classification

Our input data consists of the standard 26 characters,
each represented both visually and verbally. We first
train CHREST fully on this input data, so that it accu-
rately classifies all 26 of the original characters. We then
explore the impact of two kinds of noise, in two sepa-
rate simulations. The first simulation explores the effect
of randomly occluding segments within each character,
thus making the state indeterminate. The second instead

randomly reverses the state of any segment in the char-
acter. The likelihood of a segment’s state being changed
is varied from 0.0 to 1.0 in steps of 0.1.

To remove any bias in the precise ordering of charac-
ters presented to the model, we train 10 CHREST mod-
els, each with a different random order of the original
26 characters. Also, we create 10 datasets based on ran-
domising the visual patterns with the appropriate type of
noise. The classification ability of the models is com-
puted in two forms:

bottom-up Only the visual input is used by the model
in searching its LTM. Noise affects classification ac-
curacy by preventing the correct discriminatory tests
being made. (We call this ‘unprimed’ classification.)

top-down The verbal input is used to ‘prime’ the model
with the expected character. A match is made if the
primed character matches the input to within a given
tolerance: results are given for 6.7% (1/15 segments
matching), 20% (3/15) and 46.7% (7/15).

Figure 4 indicates the average performance of the
models in the first simulation, where segments may be
randomly occluded. As some segment states are un-
known, CHREST will fail to sort the visual pattern past
certain tests, hence returning an incorrect classification.
However, the use of priming with an expected character
significantly improves classification ability. When the
amount of noise exceeds 50%, then classification accu-
racy decreases rapidly. A similar advantage is seen in
the second simulation; refer to Figure 5.

Speed of Classification
In this simulation, we explore the speed with which clas-
sification occurs when characters appear in isolation (un-
primed), or instead appear within words (primed). We
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define the speed of classification by counting the number
of pattern matches made by the model when searching
its LTM. For input, we use a set of ten 5-character words.
The model is trained so that it forms sequence links be-
tween the nodes in its LTM representing the individual
characters.
Time to recognise characters First, we compare the
number of pattern matches required by the model to
recognise each of a sequence of characters. 50 models
were trained, each with the word-list sorted in a differ-
ent random order. Table 1 shows the average time, µ,
and standard deviation, σ, required when attempting to
recognise the characters in isolation (unprimed) as op-
posed to recognising them when forming part of a word
(primed). There is a significant reduction in the required
searching time when the model is primed. The use of an
expected schema to predict the characters appearing in
the visual input significantly reduces classification time.
Time to find a given character Second, we consider
the time required to find a given character within a se-

µ σ
unprimed 2.8 1.0
primed 1.4 0.8

Table 1: Average number of pattern matches.
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quence of characters. The time required depends on the
position of the character within the word, as the previ-
ous characters must first be searched. Figure 6 shows
the amount of time required to identify a given character
in each position: priming means that CHREST identifies
and uses a word schema to assist in finding the charac-
ter, the unprimed timings measure when CHREST treats
each character distinctly from its neighbours. CHREST
is quicker to locate a character when using a schema, and
this advantage increases with character position.

Reconstructive Memory
If the visual input given to a model is such that every
character is ambiguous, the only way to attempt a classi-
fication is to consider potential schemata which match
every character in the scene. For instance, Figure 8
shows three characters, each badly occluded: the first
character could be ‘A’ or ‘H’, the second ‘R’ or ‘K’, and
the third ‘E’ or ‘F’. From prior familiarity with likely
sequences of characters, a viewer may be expected to re-
trieve the word ‘ARE’ as the likely interpretation of the
scene.

We explore CHREST’s ability to reconstruct scenes by
training CHREST on the standard 26 characters, in isola-
tion. Next, we train CHREST to recognise words using
the verbal input only. Thus, CHREST’s LTM has se-
quence links only within nodes representing verbal pat-
terns. We then provide sequences of damaged charac-
ters, visually. The matching process proceeds as fol-
lows: in turn, we prime the visual matching process
with the named nodes from the LTM’s verbal knowledge.
When a match is made to the visual pattern, the sequence
links in the verbal nodes are used to further prime the
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visual matches. Hence, CHREST relies on its familiar
schemata to match the noisy data.

Figure 7 plots CHREST’s average performance at
classifying characters with progressively larger amounts
of noise. (We trained 5 CHREST models and used
5 randomly generated sets of test data for each noise
level; words were 5 characters in length.) The two
‘primed’ lines indicate CHREST’s performance when it
takes advantage of prelearnt words. As is evident, the
use of priming significantly increases the accuracy of
CHREST’s performance.

Discussion and Conclusion

In this paper, we have described an extension of the
CHREST architecture enabling it to learn and combine
information from multiple input modalities. The simu-
lations have demonstrated the presence of key qualita-
tive phenomena, in the effect that expectations have on
low-level perception. First, we have shown an improve-
ment in classification accuracy when particular objects
are recognised. Second, we have shown that a familiar
schema enables object recognition to proceed faster than
without. Third, we have shown that interpreting a set of
ambiguous objects is possible with the use of a schema
from a different modality.

One limitation of the model at present is that the visual
input is still in symbolic form, and cannot handle image
data directly. We are currently developing representa-
tions of bitmaps which will overcome this limitation. We
will then apply our model to more complex applications,
taking advantage of the model of eye movements already
present in CHREST.
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