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Abstract

With ever more powerful machines being constantly deployed, it is crucial to manage the
computational resources e�ciently. This is important both from the point of view of the
individual user, who expects fast results; and the supercomputing center hosting the whole
infrastructure, that is interested in maximizing its overall productivity. Nevertheless, the
real sustained performance achieved by the applications can be signi�cantly lower than
the theoretical peak performance of the machines. A key factor to bridge this performance
gap is to understand how parallel computers behave.

Performance analysis tools are essential not only to understand the behavior of paral-
lel applications, but to identify why performance expectations might not have been met,
serving as guidelines to improve the ine�ciencies that caused poor performance, and driv-
ing both software and hardware optimizations. However, detailed analysis of the behavior
of a parallel application requires to process a large amount of data that also grows ex-
tremely fast.

Current large scale systems already comprise hundreds of thousands of cores, and up-
coming exascale systems are expected to assemble more than a million processing ele-
ments. With such number of hardware components, the traditional analysis methodologies
consisting in blindly collecting as much data as possible and then performing exhaustive
lookups are no longer applicable, because the volume of performance data generated be-
comes absolutely unmanageable to store, process and analyze. The evolution of the tools
suggests that more complex approaches are needed, incorporating intelligence to perform
competently the challenging and important task of detailed analysis.

In this thesis, we address the problem of scalability of performance analysis tools in
large scale systems. In such scenarios, in-depth understanding of the interactions between
all the system components is more compelling than ever for an e�ective use of the parallel
resources.

To this end, our work includes a thorough review of techniques that have been suc-
cessfully applied to aid in the task of Big Data Analytics in �elds like machine learning,
data mining, signal processing and computer vision. We have leveraged these techniques
to improve the analysis of large-scale parallel applications by automatically uncovering
repetitive patterns, �nding data correlations, detecting performance trends and further
useful analysis information. Combinining their use, we have minimized the volume of
performance data captured from an execution, while maximizing the bene�t and insight
gained from this data, and have proposed new and more e�ective methodologies for single
and multi-experiment performance analysis.
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Chapter 1
Introduction

In this thesis we present a set of novel techniques to enhance the use of detailed perform-
ance analysis in large-scale supercomputers. The work specializes in parallel applica-
tions that run on high-performance computing (HPC) systems. This chapter presents

the motivation for this research and introduces the challenges faced by using traditional
detailed analysis techniques as we move into and then beyond the petascale era. Lastly,
this chapter details the list of contributions made by this research to the literature, as well
as the thesis’ organization.

1.1. Motivation

Supercomputing has come to be a rightful cornerstone of science. The list and extent of the
achievements made possible through the use of supercomputers is extraordinary: Today,
we are able to accurately forecast weather conditions months in advance and predict the
exact place and time of natural disasters. Advances in supercomputers have allowed ex-
tensive use of computational �uid dynamics in aerospace research, resulting in more accur-
ate and faster air �ow calculations and better vehicle designs. They have helped to speed
up the drug discovery process, identifying molecular structures that have the highest po-
tential to serve as the basis for new medications, and virtually test their e�ects without dir-
ect delivery to humans or animals. Supercomputing drives technological innovation, and
while scienti�cs struggle to �nd answers to the big questions: “How did life begin?”, “How
does the brain work?”, or “Will we cure cancer?”; supercomputers play a fundamental role
in their research; computing realistic simulations of the formation of the Universe like in
the Evolution and Assembly of Galaxies and their Environments (EAGLE) project [1], clear-
ing the road for systems with brain-like intelligence as in the Human Brain Project [2], or
detecting genetic changes responsible for the onset and progression of tumors such as the
Somatic Mutations Finder (SMuFin) project [3]. And every scienti�c success draws more
experts from chemistry, physics, astronomy, engineering and every other �eld into high
performance computing, with more di�cult problems to solve.

The ever-growing demand for yet more computing power, faster simulations and more
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1. Introduction

Figure 1.1.: Past and projected performance development of supercomputers as of Novem-
ber/2014 in the TOP500 list.

precise results has pushed supercomputers to evolve unstoppingly. Figure 1.1 shows an ex-
ponential growth of supercomputing power recorded by the TOP500 [4], a list of the 500
most powerful computer systems ranked by their performance on the LINPACK bench-
mark [5]. Larger and more intrincate infrastructures are being deployed constantly, en-
abling the study of bigger and more complex problems. But with each generation of su-
percomputers having a more sophisticated design, one of today’s biggest challenges is to
make e�cient use of the hardware. For decades, computer processors bene�ted from faster
clock speeds, but since 2005 they have mostly plateaued at less than 4GHz due to power
consumption and heat dissipation constraints [6]. This has led chip designers to �t mul-
tiple processing cores into a single chip, an approach that requires software to be broken
down into subtasks that run in parallel.

Parallel computing is a staple of supercomputing, but it is still di�cult and it is getting
more complicated. On one hand, modern high-end machines are composed of many in-
dependent systems linked with high-speed networks; each of those systems has multicore
processors and, often, graphics-chip accelerators that add an entirely new level of parallel
computation ability. On the other hand, the broadening of supercomputing accessilibity
to other areas of science has scattered the responsibility for software development across
experts of all other disciplines, who might not necessarily be experts in supercomputers,
and in turn, might not be familiar with all the supercomputer’s architecture details and
all the issues related to parallel machines which have to be addressed. The experts in su-
percomputers, though, might not be necessary knowledgeable about the foundations and
theory behind the problem to solve, and so it is becoming more common and important to
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have interdisciplinary teams working together in order to develop an e�cient application.
The upshot, supercomputers are not trivial to program, and their users need e�ortless,
intuitive and powerful tools to ease the development.

These reasons have raised debugging and performance analysis tools to new heights of
importance. Developers are more than ever in need of e�ective tools and methodologies to
get detailed measurements to understand how their applications behave and what can be
improved in order to achieve the best possible performance. When hundreds, thousands
or even tens of thousands of processors are interacting, even small e�ects that cause poor
performance of one or a few processes can lead to a large negative impact, in the form of
load imbalance, network congestion or chain delays. All these factors keep an application
from exploiting the system fully, and stepping into the next exascale supercomputing wave
will worsen the situation as the number of cores increase.

But the scale of current supercomputers already poses a problem for traditional per-
formance analysis techniques. Over the last few years, this �eld has witnessed a signi�cant
change of paradigm, moving from “the more, the better” idea, to somewhat the opposite. In
the past, execution environments usually involved some tens of processes, and eventually
no more than a few hundred. In those scenarios, the main focus was to retrieve as much in-
formation as possible to do a better analysis, and there were not strong concerns about the
size of the data. Moving on to today’s large scale runs, the amount of information that can
be generated from a single core in an everyday simulation, that may run for hours while
producing data every few nanoseconds, can already be daunting. And even in the case
that the data gathered from a single process was small, the aggregation of thousands or
more processes can easily result in terabytes or higher orders of magnitude of data. At this
point, even the simpler task of storing the data becomes a substantial problem. But storage
space is not the major limitation, as the price of hard disks is continuously dropping. The
time and the e�ort that is required to manipulate such a large data volume increases dra-
matically, and sifting through all the data to �nd relevant information becomes a tedious
and expensive task. The e�ective use of the data in a reasonable time frame for actionable
decision-making is de�nitely the most important problem to solve.

According to the strategy adopted to collect and process the data, we can discern two
main schools of performance analysis tools: pro�ling and tracing. On one hand, pro�ling
tools measure the behavior of a program as it runs. The output is essentially a summary
of cumulative �rst order statistics. The typical information provided would include the
frequency and average duration of function calls, and also call-chains. As the summariza-
tion is often related to the source code parts where the events are observed, the size of the
measured data is linear to the code size of the program.

On the other hand, tracing tools store a raw sequence of time-stamped events into �les,
usually for post-mortem analysis. Performance bottlenecks in parallel programs (e.g. wait-
ing for a message or synchronization issues) often depend on the temporal relationship
between events, thus requiring the full trace to get a complete understanding of the prob-
lem. However, a complete timetabled sequence of events of a parallel application usually
results in a huge �le which becomes di�cult, sometimes impossible, to handle with most
analysis tools. To reduce the size of the trace, a common approach consists in carefully con-
trolling which information is recorded during the tracing process. For example, enabling
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the tracing in the interesting parts of the application and disabling otherwise; or limit-
ing the type and number of events registered (i.e. function entries and exits, performance
counters metrics, call stack information, parallel run-time activity, etc.). But this process
is mostly cumbersome and requires prior knowledge of the source code of the application.
Moreover, some parts of the trace are often perturbed because of the overhead of storing
the data into disk, and so it is important to identify representative regions of the execution
to conduct an e�ective analysis.

For these reasons, several authors in the literature take stance in favor of pro�le-based
tools due to the di�culties that trace-based alternatives entail. Nevertheless, tracing tools
have several advantages over pro�lers. Trace-based techniques allow a very detailed study
of the small variations across processes and over time. These microscopic e�ects are critical
to analyze because they are often the root-cause of a global performance issue, but pro-
�lers cloak this type of information by making averages and summarizations. Rather than
relying on a prede�ned set of metrics averaged for the whole run, tracing tools provide all
the information to conduct the analysis to speci�c metrics as it progresses, enabling the
discovery of new unexpected patterns of ine�cient behavior, and keep pulling the cord
until the source of the problem is located. Therefore, there is a need to develop techniques
that allow us to conveniently handle large event traces.

The purpose of this thesis is to investigate how far we can go in the use of trace-based
approaches to analyze with detail the performance of large scale parallel computers. This
thesis defends that even for large numbers of processors, trace-based approaches can still
be applied, o�ering the advantages of supporting a detailed and �exible analysis. Certainly,
blind tracing of large scale systems is unmanageable, thus it is necessary to explore the
direction of intelligent selection of the traced information.

1.2. Objective
The main goal of this thesis is to address the scalability problem of trace-based performance
analysis tools by developing new techniques and methodologies to produce and process
smart traces. The target of a smart trace is to to �nd an appropriate trade-o� between the
amount of information stored from the execution of a parallel application and its relevance
for the analysis.

While it would stand to reason that the more information is collected, the more precise
is the analysis likely to be, this is not necessarily true. Trace data is usually repetitive
due to the iterative algorithmic schemes of the applications, and not every performance
measurement is pertinent to describe the observed application behavior.

Irrelevant and redundant data do not contribute to improve the overall quality of the
analysis. Discarding those pieces of information aims at reducing the size of the traces, as
well as the time required to perform the analysis and deliver precise results to the user. To
this aim, we have developed an autonomous tracing library able to intelligently select at
run-time the most useful information for its further analysis, while keeping the total trace
data volume at a reasonable size.

In pursuit of this objective, we have covered the following key aspects:

6



1.2. Objective

• Study, design and implement mechanisms that allow to control the size of

the resulting trace.

Many approaches have been proposed in the literature aiming at reducing the trace size.
These techniques can be classi�ed depending on which phase they are applied: during the
execution, at post-processing, or in the visualization/analysis stage. While there is room
for improvement in each phase, this thesis focuses on developing mechanisms applied on-
line, during the program execution.

• Span a wide range of granularities.

An e�ective analysis of a large amount of information requires a top-down approach
that goes from �rst getting general understanding of the program behavior to delving into
the small details. Performance analysis tools should present a very high level view for the
whole run and then allow to focus on any small time interval and subset of processes to
inspect every microscopic phenomena that may have a signi�cant global impact. To this
end, the tracing mechanisms must be able to collect performance information at di�erent
levels of detail (from very general to very speci�c data), as the execution progress dictates.

• Adaptive tracing behavior.

The behavior of an application may change as the execution progresses. The decision
of which information is useful or not for the analysis is tightly correlated with the current
status of the program. In order to select the information that describes most accurately the
execution at a given time, it is necessary to detect changes in the program behavior and
react accordingly.

• Minimal user intervention.

With current instrumentation mechanisms, the users can freely enable or disable tracing
features to select which type of information will be either stored or discarded (i.e. limit
the trace �le size, select speci�c metrics, ignore certain events, etc.). However, there is
no guarantee that the collected information will describe the behavior of the program
precisely enough in order to identify the ine�ciencies that caused a poor performance.
This may end up in having a fairly large trace where the actual performance bottlenecks
have been masked. The objective is to let the instrumentation mechanism automatically
determine which information is relevant and which techniques to apply to control the
volume of collected data as the program runs, without requiring further user supervision.

• Demonstrate the quality of the resulting traces.

In the end, we want to obtain smaller execution traces, yet containing all the useful in-
formation for the analysis. Irrelevant data can distort the trace quality, making the analysis
slower and more di�cult. Our objective is to demonstrate that discarding this information
enables to a better comprehension of the behavior of a parallel application, and the analysis
task improves in terms of precision and simplicity.
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1.3. Contributions
A signi�cant part of our work has mainly consisted in developing new analysis mechan-
isms to inspect the traced data in real-time, to take intelligent decisions on whether to store,
transform or discard it. The result is a smart trace: the minimum amount of information
that best describes the application behavior. From there, we have de�ned new techniques
and methodologies to improve the analysis of the captured data from several angles, all
aimed at extracting useful and comprehensive insight about the program behavior.

In this work, we present the following original contributions:

• The introduction of a framework to perform on-line analysis of extreme

scale parallel applications.

We have developed a tracing framework with autonomous capabilites to control when,
what and how performance data generated during the execution of parallel application is
stored. The intelligence of this system lays in the automatic analyses that are automat-
ically conducted, currently based on machine learning and signal processing techniques.
Furthermore, the system presents a modular construction that enables to be extended with
new plug-ins of analysis. The proposed implementation follows an extremely scalable
design that has been proven to handle very large executions of tens of thousands of cores.

• A method to determine at run-time relevant regions of the execution.

The method proposed leverages machine learning (cluster analysis) techniques to auto-
matically detect performance trends in the computing phases of the applications. The
analysis on the performance behavior of the computations of the program enables us to
identify which are the most relevant phases of the code, and focus the tracing process to
obtain information from the most interesting regions.

• The design and validation of a newmassively parallel algorithm to improve

the scalability of on-line cluster-based analysis.

Cluster analysis of large volumes of performance data is unsuitable for on-line applica-
tion due to the expensive computational cost. We have designed a new hierarchical distrib-
uted algorithm to scale cluster-based analysis to a large number of cores. One of the main
advantages of our approach is that it does not require an explicit pre-process of the data.
Each parallel process is able to analyze their own self-taken performance measurements,
eliminating the need to redistribute data between them, and thus making this solution very
convenient to be applied on-line. Moreover, our approach increases by several orders of
magnitude the volume of data that can be analyzed in near real-time, improving the quality
and precision of the analysis results.

• The dynamic generation of complementary performance reports to enrich

the analysis.

8



1.3. Contributions

We introduce a new representation for the clustering results based on the idea of heat
maps, where the temperature indicates how many parallel processes support the di�erent
areas of the clustering space. The temperature of the clusters enables quick identi�cation of
the most frequent performance behaviors among parallel tasks, and easy characterization
of the source of variabilities behind very disperse clusters. This development also gives
support to metrics extrapolation techniques, that enable to characterize the clusters with
many more metrics than those that can be gathered in a single run, as well as building
break-down models based on them such as the architecture impact and the instructions
mix stack charts. Performance reports are produced periodically, providing extra insight
about the structure of the application at di�erent time intervals and its evolution over time.

• A method to generate multi-detail traces.

A vast majority of high-performance computing applications implement algorithms,
procedures and numerical methods that are iterative in nature. The proposed method ap-
plies signal processing techniques to exploit this characteristic, enabling to dynamically
identify repetitive patterns in the program, select representatives to trace in detail, and
summarize the data for the repeating phases. This method results in a compact trace that
fully covers the whole execution, with selected intervals traced at very �ne-grain detail,
and other regions where the data is summarized, �ltered out, or aggregated at di�erent
levels of detail.

• The de�nition of a new methodology to improve comparative and multi-

experiment analysis.

Understanding the possible changes in behavior that an application can undergo over
time requires to integrate observations from multiple execution intervals. Analogously,
understanding the impact of di�erent settings on the application performance often re-
quires to evaluate the results of multiple experiments. If the amount of performance data
gathered from a single execution region can already be large, which makes it more di�-
cult to understand, the problem intensi�es if we have to contrast uncorrelated information
from several regions or experiments. The proposed methodology employs object track-
ing techniques to provide an intuitive and comprehensive way to present and compare
the performance of di�erent execution scenarios. This approach enables the analyst to
study the impact of virtually any con�guration on the application performance without
prior knowledge of the program; compare and correlate performance data between exper-
iments; determine the best setup to meet speci�c performance requirements; follow the
evolution of the program over time; and ultimately helps to gain better understanding of
the application behavior, much beyond what can be learned from a single experiment.

• A method to perform all-in-one series of experiments.

Running multiple experiments is often necessary for an e�ective analysis, but this might
be expensive in terms of time, computational resources and the amount of information
produced. This method relies on active measurement techniques to introduce controlled
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interferences into the application execution to simulate di�erent execution conditions, en-
abling to test multiple scenarios under the same program run. In this way, just one program
execution is enough to extract all the necessary samples of performance data that would
have otherwise required many experiments. The potential of this technique is not limited
to measure the program behavior, but enables to provide dynamic feed-back to the parallel
run-time to optimize the resources and improve the program performance.

• Validation of the quality of the smart traces.

We present multiple studies of proxy applications, benchmarks and real production
codes that demostrate that it is possible to greatly reduce the amount of traced data, in
favor of a more directed and e�cient analysis, focused on the zones of real interest, provid-
ing useful insight and concise recommendations to improve the application development,
and performed in a timely manner. In some cases of study, the knowledge gained has ma-
terialized in technical reports that were willingly forwarded to the program’s developers
to contribute to improving the application’s e�ciency.

1.4. Thesis organization
This document is structured in four main parts.

Part I introduces the work by de�ning the motivation, objectives and contributions in
Chapter 1, and covering background knowledge and the previous work in the �eld of per-
formance analysis that has been explored to improve the scalability of trace-based tools in
Chapter 2.

Part II focuses on the development of new techniques to produce smart traces that ob-
tain the maximum relevant information in the minimum volume of data possible for a
single execution. Chapter 3 introduces the on-line analysis framework that we propose to
conduct automatic analyses on the performance data as it is being collected, in order to in-
telligently select which data is more relevant. In Chapter 4, we present a clustering-based
analysis technique that is able to identify at run-time relevant phases of the execution and
the most important computations of the application, an information that we use to auto-
matically reduce the amount of traced data. In Chapter 5, we present a technique based
on spectral analysis of signals to detect periodic behavior in the program execution. This
information enables us to further reduce the amount of traced data, as well as obtaining a
full characterization of the whole execution at multiple levels of detail.

Part III focuses on the development of new techniques and methodologies to improve
several facets of the analysis task. In Chapter 6, we present a new parallel implementa-
tion of a density-based clustering algorithm that enables to perform this kind of analysis
at large scale, aiming at improving the scalability and the quality of the analysis. Chapter
7 presents a novel technique that leverages object tracking concepts to compare and con-
trast performance observations that may belong to multiple execution intervals or di�erent
experiments, easing the conduction of comparative analyses and preventing the data ex-
plosion problem of processing high amounts of data from several sources. In Chapter 8,
we extend this technique to simulate di�erent experiments in just a single run, minimizing
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the costs in time and resources. Moreover, this preliminary work opens the possibility of
providing dynamic feed-back to the parallel run-time, taking advantage of the previous
analysis techniques to give hints on how to tune the execution settings to improve the
program performance.

Lastly, Part IV compiles the contributions of our work, and discusses further research
and development opportunities in Chapter 9.

Additionally, Appendix A presents the user guide of the proposed on-line analysis frame-
work. Appendix B describes a middleware software that we have produced to facilitate the
inclusion of new automatic analyses to run on top of the on-line framework. Finally, Ap-
pendix C presents the user guide for the tracking-based analysis tool developed on top of
the work presented in Chapter 7.
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Chapter 2
Background and Context

In this chapter we describe several generalities and basic concepts about parallel pro-
gramming and performance analysis that are widely used through this document. We
present a taxonomy of the state-of-the-art performance tools and the challenges they

face towards the analysis of large-scale applications. Then we discuss the di�erent dir-
ections that trace-based tools have explored to deal with the scalability problem. More
and more sophisticated solutions are being applied to deal with this issue, and the more
advanced ones have come to be known as Performance Analytics, a term that refers to the
application of techniques from the �elds of statistics, machine learning, signal processing
or image recognition; to automatically extract useful insight from the data without requir-
ing high expertise to manipulate the large amount of information. Finally, we explain how
the main goals of this thesis align with the current state-of-the-art and put the presented
work in context.

2.1. Introduction to parallel programming

With the onset of multicore processors and the more complex computer architectures that
evolved from there, parallel programming has become increasingly important. Simply put,
parallel programming is a computer programming technique for writing programs which
can make simultaneous use of multiple computing resources to solve a problem. These
computing resources are typically a single machine with multiple processors, and an ar-
bitrary number of such machines connected by a network. From a hardware point of view,
the architecture of these machines can be generally classi�ed into two main categories:
shared memory and distributed memory systems [13].

Shared memory systems refer to a multiprocessing design where several processors ac-
cess all memory as a single global address space. Multiple processors can operate independ-
ently but share the same memory resources, so any change in a memory location caused
by one processor is visible to all others. Distributed memory systems refer to a multiple-
processor computer system in which each processor has its own private memory. When
a process needs to access data that is stored in another processor they need to communic-
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ate, and so this architecture requires a communication network to connect inter-processor
memory.

The largest and fastest parallel computers in the world today employ a hybrid distributed-
shared memory architecture. Multiple shared memory nodes (possibly equipped with ac-
celerators) are networked together to make larger clusters. This design combines the ad-
vantages of both architectures, which essentially results in an increased system scalability.
For this reason, current trends [4] seem to indicate that this type of hybrid memory archi-
tecture will continue to prevail in future Exascale systems. However, the hybrid architec-
tures come with a major disadvantage: an increased complexity to program, synchronize
and communicate all the system’s components.

Parallel programming models appeared as an abstraction of the hardware design to fa-
cilitate to program parallel computers. Generally speaking, any programming model could
be applicable despite the underlying architecture, but there are combinations of hardware
and software that are naturally more suited to work together. For distributed architectures,
the most widely used programming paradigm is, by far, the message-passing model. The
central idea of the message-passing paradigm is to have multiple autonomous processes
that can be running on di�erent computers and have the ability to interact exchanging
messages. Message passing may be implemented by various mechanisms, like Remote
Procedure Call (RPC) [14], Common Object Request Broker Architecture (CORBA) [15],
Java Remote Method Invocation (Java RMI) [16] or D-BUS [17], but the de facto standard
is the Message-Passing Interface (MPI) [18].

The MPI standard de�nes a set of routines to support various parallel operations such
as point-to-point communication, collective communications and parallel I/O operations.
Unlike other programming paradigms that allow to parallelize a code semi-automatically,
writing an MPI program requires to explicitly insert calls to the MPI API into the code,
program how the processes are going to interact, and consider the semantics of which parts
of the code will be executed by the di�erent processes. While the development of MPI codes
requires more work than other paradigms, it also enables to develop more realiable and
scalable code since the programmer has total control of all aspects of the program. Well-
written MPI codes can scale to thousands and more processes, and the scienti�c community
agrees that MPI will continue to play a major role in exascale systems [19]. It is essential to
be able to identify, understand and overcome the performance problems happening at large
scale, and for this reason, the work developed in this thesis focuses on the performance
analysis of MPI applications.

In any case, MPI is often used along with other programming models to take full advant-
age of the common hybrid architectures. A typical scheme is to combine MPI to commu-
nicate between nodes with a shared-memory programming model to exploit the multi-core
resources inside each single node, such as OpenMP [20]. OpenMP is a set of compiler dir-
ectives and callable runtime library routines that enables to run certain parts of the code
in parallel without explicitly managing (creating, destroying, assigning) threads. Basically,
OpenMP adds thread-level concurrency abstracting the developer from the complexity of
managing threads, splitting some program tasks into parts and handing o� each of these
parts to di�erent threads automatically. Important extensions to the OpenMP standard are
being developed, such as OmpSs [21]. OmpSs is an e�ort to extend OpenMP with new fea-
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tures like asynchronous parallelism and heterogeneity (the ability to manage accelerator
devices like GPUs). It also incorporates the concept of task-based parallelism, allowing to
express data-dependencies between the program’s tasks. Task dependencies are used to
decide how the program will run in parallel. Given a set of interdependent tasks and a set
of available threads, each thread repeatedly selects a task with no unsatis�ed dependencies
and executes it.

These programming paradigms are also widely used today, and while our work mainly
targets MPI parallelism and its variants, it also supports the combination of other program-
ming models as the ones stated.

2.2. The parallel performance analysis field
The raise in parallel programming brought new questions to the fore. Am I using the
parallel resources e�ciently? Which of the many individual components may be caus-
ing bottlenecks for my execution? How can I further improve my program? The role of
performance analysis tools is to answer all of these questions.

Performance tools comprehend several techniques and methodologies that assist the
analyst in understanding the behavior of parallel applications, measuring di�erent per-
formance parameters, detecting hotspots in the program, identifying the root source of
performance ine�ciencies, and driving the task of code optimization. In this section, we
give a general overview of the existing tools and analysis strategies, classifying them ac-
cording several fundamental aspects: the type of data used to characterize the performance,
and how the data is acquired, stored and processed.

2.2.1. Definition of performance data
When we talk about performance data, we actually refer to metrics that measure how
well a parallel program behaves. The simplest of these metrics would be the total time
to solution, and basically, this is �rst and foremost metric that the user would want to
improve. However, understanding why a program is underperforming often requires to
inspect other metrics that explain in detail how speci�c sub-parts of the program behave.

A �rst approach to determine how the di�erent parts of the program behave consists in
measuring the time invested in the di�erent subroutines, loops or other program phases.
To take these measurements we can make use of the timing mechanisms provided by the
operating system, for example, the programmable clock interrupts. This information is
useful to detect phases that might be abnormally long. Going one step further, the OS can
also report metrics regarding the state of the system’s resources. For example, these may
come from the getrusage() or the mallinfo() system calls, which return resource usage
statistics for the calling thread regarding CPU time used; and page faults, context switches
and memory usage statistics; respectively.

Further performance data can be obtained directly from the microprocessor. Hardware
performance counters are available on most modern microprocessors, and they are usu-
ally accessible through interfaces like PAPI [22] or PMAPI [23]. These counters exist as a
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small set of registers that count events and occurrences of speci�c signals related to the
processor’s function, such as the number of instructions executed, cycles elapsed, memory
cache misses or branch misspredictions. This type of information facilitates to correlate
the e�ciency of the program with the underlying architecture. More recently, due to the
need to better understand new hardware, we can also �nd performance counters for hard-
ware components other than the CPU, like network performance counters for the Myrinet
or the In�niband networks [24]; or the Nvidia CUDA GPU’s [25].

The metrics regarding the parallel runtime are varied and their accessibility usually de-
pends on the programming model implementation. For example, in MPI message-passing
applications it is normal to measure the number of messages sent or received, the size of
the messages, the number of collective operations, etc. To this end, MPI provides the MPI
pro�ling interface (PMPI) [26] to intercept the MPI calls and extract these values. While
not all programming models make their internal performance metrics publicly available,
their trend is to become more open and facilitate these measurements, as in the OMPT
standard e�ort [27].

And for all these metrics to be most useful, it is necessary to be able to attribute the
observed performance to the application source code. Location information can be ob-
tained via the Program Counter (PC) of the CPU, or the call path, that includes the list of
all active subroutines which can be accessed using stack unwinding tools such as libun-
wind [28], StackwalkerAPI [29], or the system-dependent stack trace methods like Linux
backtrace().

Beyond this list, there are a variety of metrics to evaluate speci�c performance elements
like I/O performance [30], energy consumption [31], etc. It is not the aim of this section to
present every performance metric available, but those commonly used by most perform-
ance tools.

2.2.2. Data collection techniques
There are two main techniques to extract performance data from a parallel application:
sampling and code instrumentation. The di�erence between them is that the �rst method
periodically takes statistical data to give you an overview of where your application is
spending the most time, while the latter integrates into the code, therefore being able to
deliver precise measurements of the number of times a method has been called, the time
it needed to perform, and more than stastistical estimates.

More speci�cally, sampling techniques consist in taking random measurements at peri-
odic time intervals or when an event is triggered by an alarm. The interrupts generated
by a sampling mechanism generally add negligible overhead to the total execution time,
because the perturbation is introduced only in the actual measurement, which can be eas-
ily controlled by reducing the sampling frequency. Low sampling frequencies (e.g. 100
Hz or below) are less disruptive, but also the statistical information collected becomes less
accurate.

On the other hand, code instrumentation is generally more disruptive, but allows to
record all the events regarding the program status. Instrumentation consists in injecting
monitoring probes into di�erent points of the program. The typical points to instrument
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are the entries and exits of the routines, before and after calls to external libraries, or
other relevant phases such as loops. Whenever the execution �ow goes through any of
these points, the monitors trigger and take their measurements. In this case, one has to be
aware not to instrument very �ne-grain routines that are called very often (e.g. a simple
printf) to avoid introducing large perturbation.

There are many mechanisms to perform code instrumentation that basically fall into two
categories: source code and binary instrumentation. Source instrumentation comprehends
the basic approach of manually modifying the source code to insert the monitors, as well as
compiler-based techniques to automatically insert the monitors at the level of intermedi-
ate language representation like gprof [32], and code-to-code compilers that return instru-
mented source code like OPARI [33, 34]. Binary instrumentation can be achieved through
binary rewriting tools like Dyninst [35] or SIGMA [36], library interposition through static
linking or dynamic preloading, and dynamic binary memory image modi�cation at load
time using tools like Dyninst [35] or PIN [37].

Overall, sampling techniques are generally considered suitable to perform �rst-line ana-
lyses to discover the relative percentage of time spent in frequently-called methods, while
code instrumentation is considered useful to discover high-level details of the interest-
ing methods, enabling an in-depth analysis. Both approaches entail advantages, yet they
share one major disadvantage that regards to the execution coverage. Deciding an appro-
priate sampling frequency might not be trivial, and a bad choice may lead to coupling the
sampling interrupts with the application periodic behavior, which in the end may result in
having a non-representative sample space because all samples were taken from the same
points of the program. Instrumentation, on the other hand, is driven by the location of
the monitors. If a monitor is never installed in a particular point of the execution, then
instrumentation collects no data at that point.

A recent approach that is gaining importance is to combine instrumentation and sampling
to o�er the bene�ts of better execution coverage with reduced perturbation, such as the
techniques presented in [38, 39] that employ mixed information.

2.2.3. Approaches to store the data
Regardless of which is the mechanism employed to collect performance data, there are
basically two strategies to store it. The �rst strategy consists in summarizing the data, an
approach that gives rise to pro�ling tools. The second approach is to store the data raw for
later processing, which opens the way for tracing tools.

Profiles

An application pro�le is a summary of �rst-order statistics that concisely state which parts
of the program consume most of the CPU cycles. Pro�lers can produce several di�erent
output styles, and some examples follow. Flat pro�les show how much time was spent ex-
ecuting each program routine, and how many times that function was called. Call graph
pro�les show which functions called which others, and how much time each function used
when its subroutine calls are included. Line-by-line pro�les report statistics for each in-

17



2. Background and Context

vididual source code line. And annotated source pro�les display source code labeled with
execution counts. The fundamental characteristic, which is common to all types of pro-
�les is that the temporal information regarding when the data was collected is lost in the
summarization process, and so they report averages for the whole execution.

gprof [32] is the GNU pro�ling tool. It is considered the de facto standard for pro�lers,
and has appeared on the list of the 50 most in�uential PLDI papers of all time [40]. It
provides information about the number of times each function in the code was called,
the length of time that was spent within that function, and also information about the
call-graph structure of the code. gprof operates as a hybrid instrumenting and sampling
pro�ler. It requires code to be speci�cally compiled with pro�ling support to gather caller-
function data, and also relies on POSIX timers and signalling mechanisms to take time
measurement samples.

HPCToolkit [41] and Open SpeedShop [42] are a collection of tools that rely on statistical
sampling techniques to generate pro�les of parallel applications, taking into account the
performance results from all processes or threads in the parallel execution. Moreover,
they provide the ability to pro�le not only the program subroutines, but also basic blocks
of code, or even invididual source code lines.

Periscope [43] is an online pro�ler that automatically evaluates performance properties
and tests hypotheses about typical performance problems, which are reported to the user
if detected.

mpiP [44] is a lightweight pro�ling library that collects statistical information about MPI
functions in message-passing applications. Unlike other tools that focus on the user code,
this tool focuses on reporting metrics regarding the parallel run-time, like the percent of
a task’s time attributed to MPI calls, where each MPI call is made within the program, and
callsite statistics.

The TAU Performance System [45] is an extensive pro�ling tool-set that relies on instru-
mentation mechanisms to capture additional information from the parallel run-time (e.g.
MPI and OpenMP) and performance hardware counters. To overcome one of the main lim-
itations of pro�lers regarding to not storing any temporal information, TAU introduced the
concept of phase pro�les. These are partial pro�les extracted at di�erent phases (i.e. time
intervals) of the execution that enable to study performance variabilities that may occur
over time.

Scalasca [46, 47] is a software tool that also o�ers the collection of regular pro�les with
metrics from MPI, OpenMP and hardware counters through instrumentation. Scalasca
introduced the time-series call-path pro�les [48], a call-graph oriented version of the phase
pro�les mentioned before, that enable to study the performance behavior variations as the
execution progresses.

Event traces

Event traces record the entire dynamic execution behavior of a program up to any required
level of detail. They store each occurrence of speci�ed events, such as the entry and exit to
subroutines, the invocations to the parallel run-time, the performance hardware counters
values for a given point in time, or call-path information to attribute the observed perform-
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ance to points in the source code. Unlike pro�lers, event traces capture the temporal and
spatial relationship between individual events, and so they allow application developers
to study the time-varying behavior of the application and the performance variations that
may occur across processes. Although event traces o�er highly-detailed information re-
garding the program performance, they typically result in very large amounts of data.

Relevant examples of trace-based performance tools are Scalasca [46, 47], a tool to per-
form post-mortem analysis of event traces and automatically detect performance critical
situations; TAU [45], which is capable of gathering performance information through in-
strumentation of functions, methods, basic blocks, and statements; or Vampir [49], an in-
teractive event trace visualization software which allows to analyze parallel program runs
with various graphical representations in a post-mortem fashion. These tools used to im-
plement their own instrumentation mechanisms and native formats to store the data, but
they recently adopted a common infrastructure for event trace recording under the joint
Score-P initiative [50, 51], which adopts the Open Trace Format version 2 (OTF2) [52] for
data storage.

The BSC Tools [53] is a suite of parallel performance analysis tools also based on traces.
This ecosystem revolves around the Paraver trace format [54], a structured text �le that
stores a list of timestamped key-value events without any semantics. This distinguishing
feature enables a �exible data browsing that does not rely on hardwired metrics, but allows
to program new metrics to give di�erent meanings to the data as the analysis progresses.

While trace-based tools mainly rely on instrumentation techniques to capture the com-
plete stream of events from the execution, it is also possible to generate traces from sampling
data. The Oracle Solaris Studio [55] comprises a set of tools for analyzing the application
performance using tracing and sampling mechanisms to collect information regarding the
user routines. HPCToolkit has incorporated sampled call-stack data into their traces that
can be visualized with the hpctraceviewer [56] tool. The BSC Tools also added sampled
performance hardware counters and call-stack data into their traces to be able to report
the instantenous performance between instrumentation points [38].

2.2.4. Analysis of performance data

Most performance tools analyze the data post-mortem, i.e. after the execution has �nished.
The type of analyses that can be conducted very much depends on the choices taken prior
to the execution regarding what data to collect during the run. Also, the way the informa-
tion is presented determines the type of observations and hypotheses that the user will be
able to extract about the program performance.

While the possible presentations of the results are many and very varied, there are two
predominant choices that comprehend most of the tools. Pro�ling data, which typically
consists of summary statistics for di�erent parts of the code, is usually presented using
tabular representations. Otherwise, tracing data, which exhibits the time evolution of the
program and the relationships between processes and events, is usually presented using
timeline representations.
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Figure 2.1.: GNU gprof’s �at-pro�le showing a list of the most time-consuming routines

Figure 2.2.: GNU gprof’s call-graph showing caller-callee relationships for function match

Presentation of profiles

In general, pro�les are presented as tables. The di�erent code lines, routines or phases of
the program are separated by rows, and the di�erent metrics measured are displayed by
columns. This simple arrangement enables to focus, for example, on a particular routine of
the program and get a quick view of all the metrics measured for it, or otherwise, focus on
a given metric and very quickly compare the di�erences between all parts of the program
with respect to that metric. This kind of quick interpretations make pro�lers a good choice
for �rst-line analyses to get an initial overview of the program performance.

Figure 2.1 shows a �at pro�le produced by gprof. In this case, the output is a list of pro-
gram subroutines sorted by the percentage of execution time that they represent. Columns
display several metrics for each subroutine such as the average duration per call exclud-
ing the time spent in second-level routines (exclusive time), including the time spent in
second-level routines (inclusive time), and the number of invocations.

Figure 2.2 shows a call-graph pro�le also produced by gprof. The call-graph provides
metrics regarding the routine invocations and displays caller-callee relationships. Tools
like XPro�ler [57] can interpret gprof’s results and construct a graphical display of the
functions within an application, as shown in Figure 2.3. The nodes represent functions and
arcs represent function calls. The relative width and height of nodes show the execution
time of a function including and excluding the execution time of its descendants. This type
of representation helps users identify the functions that are the most CPU-intensive and
facilitates to �nd the application’s performance-critical areas.

Flat pro�les can also be displayed graphically. TAU’s pro�ler ParaProf [58] uses simple
bar charts linking the metrics with the source code. Figure 2.4 shows the most time con-
suming routines, including the calls to the MPI parallel run-time. In addition, ParaProf can
display comparisons of pro�les from di�erent executions of the same application. To this
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Figure 2.3.: IBM XPro�ler showing a call-graph representation

Figure 2.4.: TAU ParaProf showing a list of the most time-consuming routines
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Figure 2.5.: TAU ParaProf showing a comparison of the most time-consuming routines in
three versions of the program with di�erent optimizations

end, ParaProf relies on PerfDMF [59], a data management framework to store and retrieve
pro�ling data from a multi-experiment database. Figure 2.5 shows a comparison of the
most time consuming routines with di�erent optimizations.

HPCToolkit [41] o�ers similar functionalities as the previous tools, supporting inter-
active visualization of call-path and �at pro�les, textual summaries, and correlations of
the metrics with the source code structure. Figure 2.6 shows the main interface of the
pro�le visualization tool hpcviewer, displaying performance hardware counters averages
associated to the calling context.

CUBE [60], which is the performance report explorer for Scalasca [46, 47], is a gen-
eric tool for displaying a performance space consisting of three dimensions: performance
metric, call-path and system resource, as shown in Figure 2.7. This three-part categoriz-
ation aims at answering three main questions: “which performance problem?”, “where in
the program?”, and ”where in the system?”. Each dimension can be represented as a tree,
where non-leaf nodes of the tree can be collapsed or expanded to achieve the desired level
of granularity, and the coloring helps the user to quickly evaluate the severity of the metric
being inspected.

Presentation of event traces

In contrast to pro�les, application traces preserve the dynamic application behavior. In
order to enable the study of the time relationships between the discrete events recorded
and the resources used, trace-based tools commonly employ a representation paradigm
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Figure 2.6.: HPCToolkit hpcviewer pro�le interface showing call-graph context with re-
lated hardware counter metrics
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Figure 2.7.: CUBE showing known performance problems (left) associated to the code
(middle) and the system (right)
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Figure 2.8.: Vampir Trace Analyzer showing a time-line view (top) and summary statistics
(bottom)

consisting of a timeline. Timelines display a list of events in chronological order, typically
showing a long bar labelled with dates, and events are depicted along the time bar where
they happened. In parallel performance analysis, the timeline is usually represented as
a 2-D matrix, where the secondary axis shows all the parallel resources involved in the
execution. In this way, each event can be related not only to when it happened, but also
where. This type of representation helps to visualize time lapses between events, durations,
and the simultaneity or overlap of spans and events between parallel processes.

Figure 2.8 shows an example of the Vampir [61] master timeline. The X-axis represents
time in milliseconds, the Y-axis represents processes, threads and accelerator resources
of the parallel application, and the colors represent the routines that where executed at
a given point in time for each thread. The black lines represent point-to-point commu-
nications (i.e. MPI messages) between the di�erent processes. The bottom half displays
three panes containing pro�ling statistics. Obvious as it may seem, pro�le-like statistics
can also be computed from the trace data, and most trace-based tools also provide this type
of summarized statistics in one way or another.

HPCToolkit’s hpctraceviewer employs a very similar representation, as shown in Fig-
ure 2.9. hpctraceviewer comprises three parts: The trace view (top) is similar to the con-
ventional process/time timeline, showing time on the horizontal axis and processes (or
threads) on the vertical axis, with one key di�erence. To show call path hierarchy, the
view is actually a user-controllable slice of the process/time/call-path space. Given a call
path depth, the view shows the color of the currently active procedure at a given time and
process rank. For the selected process, the depth view shows a call-path along the vertical
axis for each virtual time along the horizontal axis. And the summary view shows for the
whole time range displayed, the proportion of each subroutine in a certain time.

The Paraver trace timeline [53] is shown in Figure 2.10. Similarly to the previous tools,
this display represents the activity of the application over time on the X-axis, and across
processes over the Y-axis. The top timeline (2.10a) shows the program calls to the MPI run-
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Figure 2.9.: HPCToolkit hpctraceviewer showing a detailed time-line view (top), call-graph
over time (middle), and summary time-line (bottom)

time, where each di�erent routine is identi�ed with its own color. The main characteristic
of Paraver is that this tool is semantic free. Instead of providing pre-computed metrics, it
can be con�gured to compute any metric with the data available in the trace. This approach
enables to evaluate the program’s performance from many di�erent perspectives. For ex-
ample, the middle timeline (2.10b) shows the duration of the computations for the same
execution phase. The colors here are a gradient that goes from green (short computations)
to blue (long computations), giving a complementary view to the parallel run-time activity.
Moreover, the metrics displayed can be complex derivatives of simpler metrics. The bot-
tom timeline (2.10c) shows the achieved Instructions per Cycle (IPC), computed from the
Instructions Executed and Elapsed Cycles hardware counters stored in the trace. Derived
metrics can be arbitrarily combined to produce even more speci�c metrics on demand.

Just by visual comparison of the di�erent timelines it is possible to identify correlations
between di�erent metrics. In this case, one can easily see that when the computations are
short, the IPC achieved was high, and vice-versa. Paraver also o�ers summary views that
allow to freely combine di�erent metrics to facilitate to detect possible correlations. Fig-
ure 2.11a shows a histogram of the durations of the computations. The X-axis represents
bins of durations, the Y-axis represents processes, and cells with values indicate that there
are computations in the program of that given duration. The color in this case represents
the average IPC for those computations. This type of representation allows to �nd, for
example, if there is a direct correlation of higher IPC’s with faster computing times, which
is not the case in this example, because there are long computations (right part of the his-
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(a) MPI calls timeline. Each color represents a di�erent MPI routine.

(b) Computation duration timeline. The color gradient from green to blue shows increas-
ingly longer computations.

(c) Instructions per Cycle. The color gradient from green to blue shows increasingly
higher IPC.

Figure 2.10.: Paraver timeline view
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togram) with higher IPC (blue) than shorter computations (left part of the histogram) with
lower IPC (green). The histogram view can represent any other metric as well. For ex-
ample, Figure 2.11b represents processes in both axes, and the colors indicate the number
of MPI messages exchanged between every pair of processes. Also, Paraver is able to com-
pute �at-pro�les from the trace data for a wide range of statistics (e.g. time, occurrences,
average value, standard deviation, etc.), as seen in Figure 2.12, that shows time statistics
for the MPI calls.

2.2.5. Which performance tool is be�er?

The question of which performance tool is better is often asked, but can not be answered
clearly and some consider it argueably irrelevant. Most of the tools mentioned in the
previous section admit several modes of operation, use similar representations, share the
type of data they gather, and overlap many functionalities, but also complement each other
with very speci�c features and slightly di�erent standpoints. There is no best tool, but
there is the most appropriate tool depending on the objective and the particular situation.

Generally speaking, pro�lers are a useful approach to perform �rst-line analyses to ob-
tain general observations and information regarding the major hotspots in the program.
Tracing tools provide much more information enabling to delve into the details and per-
form more in-depth analysis. As we have seen, both approaches have supporting and
opposing arguments, which we could summarize in the following aspects: Pro�lers are
generally easier to use, but the summarizations may hide relevant performance issues. On
the other hand, tracing tools capture all the details, but the amount of data easily grows so
large, that it becomes di�cult to process and analyze it.

The large number of cores available to applications in future extreme-scale systems will
pose a challenge to all performance analysis tools, but the size of today’s large-scale sys-
tems already constitutes a problem, which is particularly pressing for tracing tools. In the
November 2014 list of the Top500 supercomputers [4], even the smallest system already
comprises several thousands of cores; and the average core-count is over 45,000. So tools
must be able to handle at least tens of thousands of cores, but traditional tracing techniques
are no longer applicable at such scales, because the amount of data generated becomes ab-
solutely unmanageable.

It is important to be able to use tracing tools in the largest-scale because they will enable
to see in detail the new types of problems that arise due to the interaction of so many com-
ponents, understand how they interrelate, identify the causes and their possible solutions,
model the patterns of ine�cient behavior into expert systems for automatic analyses, and
aid in the design of new programming models and future architectures to overcome these
de�ciencies.

In the following sections, we make a summary of the techniques that have been explored
to deal with the traces’ scalability problem and contextualize our contribution to the �eld.
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(a) Average IPC per computation. Data columns from left
to right show increasingly longer computations. The
color gradient from green to blue shows increasingly
higher IPC.

(b) Communication matrix showing the
number of messages sent between
every pair of peers

Figure 2.11.: Paraver histogram view

Figure 2.12.: Paraver pro�le view showing time statistics for the MPI calls
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2.3. The trace scalability problem
Trace-based performance tools face a fundamental problem when long execution runs and
thousands of processes are involved. First, just saving and handling the trace may be un-
feasible due to storage limitations. Second, the vast amount of data that has to be analyzed
dramatically plummets down the responsiveness of the analysis tools. The amount of time
required to perform the analysis easily becomes daunting, having a negative impact on the
analyst’s interest and the interaction with the tool.

Many di�erent trace-based performance tools exist, and most of them have in common
a good awareness of the traces scalability problem. Motivated by this concern, several
projects have got o� the ground. Although their common goal is to tackle this problem,
di�erent directions are being explored:

• Selective acquisition of performance data; techniques to �lter the traced data, picking
out speci�c performance information.

• Trace structures and compression mechanisms; new trace de�nitions and e�cient
compression schemes are proposed to reduce the size of traces.

• Distributed parallel architectures; parallelizing the tools themselves is an alternative
to speed-up their execution and let them use more resources than available in a single
node.

• Expert systems; methods to automatically analyze and draw conclusions from large
amounts of data.

• Cluster analysis; application of techniques to simplify the description of complex
multi-dimensional data by identifying a few number of invididual elements that rep-
resent the whole set of data.

• Pattern recognition; application of techniques to detect redundant data that does not
provide additional information and thus can be discarded.

These are the most important topics being explored in the context of how to deal with
the trace-based performance tools scalability problem. Existing performance tools draw
multiple techniques from these �elds and apply them at di�erent phases of the performance
analysis process. Furthermore, interaction between tools is very usual. In this way, most
performance tools fall under more than one of these categories. However, we are going to
discuss these areas in more detail and point up the most representative research works on
each of these directions.

2.3.1. Selective acquisition of performance data
The Paradyn Parallel Performance Tools project [62] opened the direction of intelligent
selection of performance data leveraging a technique called dynamic instrumentation [63].

30



2.3. The trace scalability problem

This technique permits to attach to a running program, create a bit of code and insert
it into the program. The program is able to continue executing and doesn’t need to be
re-compiled, re-linked or even re-started. The next time the program executes the block
of code that has been modi�ed, the new code is executed in addition to the original one.
Dynamic binary instrumentation technology is available to researchers via the Dyninst
API [64]. This approach extends the capabilities of other post-compiler instrumentation
tools such as ATOM [65] or SiGMA [36, 66], that only permit code to be inserted into a
binary before it starts executing.

Run-time code changes allow instrumentation to be inserted and removed whenever de-
sired. This feature lays the foundations for intelligent selection of performance data. The
idea consists in performing the analysis as the program runs, and deciding whether the
performance data that is being collected is interesting or not. Depending on the perform-
ance values observed, the instrumentation can be changed dynamically in order to collect
more relevant performance metrics.

Paradyn [62] is a performance tool which relies on run-time performance analysis,
rather than recording a complete trace of the whole execution. The user can select which
performance metrics they wish to view. Additionally, it also provides a bottleneck search
algorithm named the Performance Consultant (PC), that automatically searches for a set of
known performance problems. This algorithm uses the W 3 model to guide the bottleneck
search, which attempts to answer why, where and when the application is performing
poorly. This is an iterative process of formulating hypotheses and re�ning them based on
the performance data being collected. For example, if a routine performing synchroniza-
tion operations is taking up a large amount of time, the hypothesis of ExcessiveSyncTime
will be formulated, and instrumentation will be dynamically inserted into that routine in
order to collect more speci�c data that helps to �nd the speci�c causes or to reject the
initial hypothesis. The PC periodically gathers performance data from every process and
decisions about how does the bottleneck search progress are taken centrally.

OPAL [67] uses hypothesis, re�nements and proof rules similar to Paradyn, except that
re�nements cause new executions of a program to be started with new data to be collected
via selective tracing.

DynTG [68] shares the same idea of on-line analysis, except that it does not include
automatic selection of the performance data. It includes a source browser where users
can instrument their program as it runs by clicking on source code lines in the browser.
The performance data gathered is presented in real-time. This enables users to monitor
their application progress and interactively adapt the instrumentation based on their own
observations.

TAU [45] comprises a set of static and dynamic tools that form an integrated analysis
environment for parallel applications. It includes the tau_reduce tool, which allows to cre-
ate a list of user-de�ned rules for excluding events that result in a lot of run-time overhead
and do not o�er much information (i.e., functions that do a small amount of work and are
called many times).

A more speci�c work presented in [69] illustrates the use of partial data traces for suc-
cessfully detecting memory performance bottlenecks. Continuing this work, the authors
propose a method based on Dyninst to extract partial data traces from running applica-
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tions by observing their memory behavior [70]. The instrumentation is placed at memory
accesses to capture the data references issued by the program. An on-line algorithm is
used to select the most critical memory accesses. Once a speci�ed number of those events
have been logged or a time threshold has been reached, the instrumentation is removed.

The BSC Tools [53] comprise a set of post-mortem utilities to post-process Paraver
traces. These mechanisms allow to cut, summarize, translate or accumulate the perform-
ance data in order to produce smaller traces with a partial view of the overall application
behavior.

2.3.2. Trace structures and compression mechanisms
Several proposals address the traces scalability problem from the data structure point of
view. Their objective consists in reducing the traces size, and at the same time speed-up
the access to the data either to display it or to compute statistics. To this end, structures to
store the trace data both in disk and memory, as well as adequate algorithms to traverse
through the data have been designed.

Continuing the work on data compression of trace �les [71], the Compressed Complete
Call Graphs (cCCGs) [72] is a recent compressible memory data structure for event traces.
Its primary intention is to signi�cantly reduce the memory requirements in the analysis
of huge traces. In the traditional scheme, events are stored sequentially in the trace sorted
by time-stamp. Although this is a simple and fairly e�ective data structure, it o�ers no
way to exploit the inherent redundancy of trace data. A cCCG of a program consists of
a call tree, that represents the run-time call stack, for every process. All properties of a
function call (i.e., the call duration, performance counter values, etc.) are annotated in the
node representing that particular invocation in the tree. The data compression is achieved
by collapsing nodes of the tree with the same (or very similar) properties. The decision of
collapsing two nodes with not exactly the same but similar properties depends on whether
lossy compression is allowed or not. This development has been integrated into Vampir-
NG [61, 73].

Open Trace Format (OTF) [74] appeared as a new trace de�nition for use with large-
scale parallel platforms. The main objective addressed is to provide e�cient sequential
and parallel access to trace data. To this end, it provides an API that enables to read and
write trace �les in parallel. This proposal was incorporated into TAU [45], which can
convert their own trace format into OTF with the tau2otf tool; into Vampir-NG [61, 73],
which can load OTF traces; and into the BSC Tools, which included a translator to convert
OTF traces into Paraver format [75].

Recently, as a part of the Score-P initiative [50, 51], the analysis toolkits Scalasca, Vampir,
Periscope and TAU decided to adopt the Open Trace Format version 2 (OTF2) [52]. OTF2 is
structured in a collection of multiple binary �les accessible via an API. The main concern
in the design of this trace is the scalability: the trace format de�nition includes a series of
encoding techniques to reduce its size [76], and the access API uses techniques to reduce
the memory footprint.

Scalatrace [77] provides online trace compression of MPI communication trace-�les at
two di�erent levels: intra-node and inter-node. Intra-node compression is achieved by
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describing loops with regular section analyses (RSA) [78] and compressing call-path in-
formation. On the other hand, Scalatrace compresses at the inter-node level by combining
the information from the involved processes into a single one for the whole application.

Jumpshot [79] is a Java-based visualization tool that relies on time-line representations
for post-mortem analysis. Jumpshot’s SLOG trace format [80] is a graphics-oriented data
representation. It is more computationally expensive to create than traditional timestamped
list of events but allows Jumpshot to more e�ciently display trace data. It is based on
describing composite graphical objects rather than individual events, and is capable of
handling traces in the gigabyte range.

Intel Trace Collector and Trace Analyzer are Intel’s updated versions of Pallas’ Vampir
tools [49]. They de�ne the Structured Trace Format (STF) to store trace data. Files can be
written in parallel, thus generating trace �les faster and includes some indexing techniques
that allow random access to di�erent portions of the same trace independently, speeding
up the process of loading large amounts of data.

DeWiz [81, 82] proposes to represent an event trace as a directed event graph. The ver-
tices represent the events observed during the program execution, like for example send or
receive events in message passing programs, and read or write memory accesses on shared
memory programs. The edges represent the relation between the events, that are connec-
ted using the happened-before relation. The objective of such representation is tailored
towards the analysis tasks, which can then be performed as a set of graph �ltering and
transformation operations. Similarly, PARADIS [83] also utilizes the event graph model to
represent a program run for all further analysis tasks.

2.3.3. Distributed parallel architectures

Parallelizing the tools themselves is an alternative to speed-up their execution and allow
them to access more resources than available in a single node.

Vampir Next Generation (Vampir-NG) [61, 73] explores the direction of distributed data
processing. They propose a distributed software architecture for parallel program analysis.
This design consists of a parallel analysis server running on a segment of a parallel pro-
duction environment, and a visualization client running on a remote graphics workstation.
Both components interact through a socket based network connection. This architecture
allows the analysis server to be close to the location of the trace data. The server uses a
master/workers approach. Workers are responsible for storage and analysis of a part of
the overall trace data. The master decides how to distribute analysis requests among the
workers and merges the results from multiple workers into a single response that is sent
to the visualization client.

Paradyn’s automatic performance bottleneck search has been recently extended [84].
The new strategy uses distributed, autonomous agents that monitor each running process,
searching for a prede�ned set of performance problems, and taking local decisions about
how does the search progress. A very similar architecture for on-line performance analysis
is proposed with Periscope [43], an automatic analysis tool that consists of several analysis
agents that search autonomously for ine�ciencies in a subset of the application processes.
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A parallel extension of KOJAK [85, 86] is the Scalasca project [46]. Rather than se-
quentially analyze a single global trace �le, Scalasca analyzes separate local trace �les in
parallel.

DeWiz’s [81, 82] architecture also has a modular design which enables distributed data
processing. The di�erent modules that perform analysis tasks are placed on arbitrary com-
puting nodes. A dedicated module, the DeWiz Sentinel is used to coordinate interconnec-
tion between them.

In order to develop distributed architectures using the master/worker scheme like the
tools mentioned above, it is important to e�ciently manage the �ow of data between both
components. The Multicast/Reduction Network (MRNet) [87] is a software tailored to-
wards building scalable parallel performance tools. It uses a tree of processes to commu-
nicate between the master and workers. These internal processes are used to synchronize
and aggregate data �owing across the network. Using �lters, these processes can compute
averages, sums, and other more complex reductions on tool data. Tools like TAU [88],
Paradyn [84] and STAT [89] have already incorporated this kind of technology into their
software.

2.3.4. Expert systems
While the approaches above try to control the volume of data to keep it at a reasonable
size, other works focus their e�orts on providing e�cient mechanisms to analyze huge
traces. Manually sifting through large amounts of trace data and trying to identify spe-
ci�c performance problems can be daunting. Instead, automatic analysis mechanisms are
proposed.

The automatic analysis is often performed post-mortem. This approach has the ad-
vantage of being able to consider all detailed information gathered during the application
execution and the analysis phase does not introduce any overhead in the run.

The majority of automatic analysis methods adopt a knowledge-based system solution
to the problem of identifying performance problems in existing programs. These tools
contain a knowledge base of known performance problems which are matched against
complete trace �les. Once bottlenecks are detected, some tools also suggest a few strategies
on how to �x the performance problem based on information contained in the knowledge
base.

When applying knowledge-based expert systems, it is often very useful to let the user
add their own entries into the knowledge base of performance problems. While some tools
use �xed sets of bottlenecks, more often than not the core set of rules can be extended by
the user.

KOJAK’s [85, 86] main feature is EXPERT [90, 91], an automatic trace analyzer that
attempts to detect speci�c bottlenecks such as ine�cient use of the programming model
and low CPU and memory performance. The set of rules that model ine�cient behavior
of the program can be de�ned by the user using the EARL language [92]. Every metric is
computed for every thread or task and every part of the code. The results are presented on
the CUBE viewer [60], which displays the performance problem - task - code part resulting
combinations, making easy to correlate where do performance problems actually happen.
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Kappa-PI [93] is a knowledge-based system similar to EXPERT in terms of applying rules
that model ine�cient behavior to detect performance bottlenecks. The main di�erence is
that Kappa-PI checks the source code and makes suggestions to the user on how to �x
each bottleneck and improve their application. One of the main disadvantages of this tool
is that the performance knowledge is directly coded in the kernel of the tool. Keeping in
mind the same goal of providing useful hints to the application developer a new version
of the tool, Kappa-PI 2 [94], was developed. It is based in the speci�cation of performance
knowledge as input data for the tool using the APART Speci�cation Language (ASL) [95],
which is a standard grammar for specifying performance problems.

ASKALON [96] is a set of tools for cluster and grid computing. Among other tools, it
comprises SCALEA [97] and AKSUM [98]. SCALEA provides instrumentation mechanisms
that allow to select code regions (i.e. loops or procedures) for which speci�c performance
metrics should be obtained. AKSUM is an automatic analysis mechanism that tries to
discover bottlenecks using a base of known performance problems. The set of rules can
be speci�ed with JavaPSL, a Java implementation based on the standard ASL mentioned
above. Beyond single-experiment analysis, it also supports multiple experiment perform-
ance analysis, that allows to compare the performance outcome of several experiments.

2.3.5. Performance modeling
A di�erent approach within the framework of automatic analysis is based on data modeling
techniques. Performance modeling is often used to make comprehensible interpretations
of the tracing data, identify the relevant parts of the program, pinpoint their bottlenecks,
and generate accurate performance predictions; while avoiding the data storage overheads.

A signi�cant research e�ort has been invested in the development of approaches for per-
formance modeling and prediction of parallel and distributed systems [99]. To this extent,
Hoe�er et al. [100] popularized performance modeling by de�ning a manual six-step pro-
cess to create interpretable application performance models that could be presented to the
user so that they can estimate how the program’s performance changes with the change
in values of the input’s parameters. Calotoiu et al. [101] extend this work, developing
an empirical scalability model to predict the scaling behavior of applications beyond the
executed con�gurations.

PEMOGEN [102] is a modeling framework that complements runtime pro�ling mech-
anisms with online performance modeling, a method that generates performance models
while the application is running. This allows to produce accurate predictions based on
trace data, while greatly reducing the storage overhead. PEMOGEN relies on LASSO, a
statistical learning method to automatically learn performance models during execution
for the most relevant kernels (i.e. loops and functions), considering their critical paramet-
ers (i.e. sizes of dimensions or number of iterations), and generates models for multiple
target metrics (i.e. hardware performance counters, the number of messages communic-
ated, the size of the messages and the execution time). Overall, PEMOGEN assesses the
scaling and potential bottlenecks with regards to any input parameter and the number of
processes of a parallel application.

Morajko et al. [103] also explore the direction of on-the-�y trace analysis through per-
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formance modeling. They aim at re�ecting the application behavior by modeling execution
�ows through high-level program structures, such as loops and communication operations,
and to characterize them with visual statistical execution pro�les. They de�ne the Task
Activity Graph (TAG) as a directed graph that abstracts the communication and compu-
tation activities of a single process in message-passing applications. The model provides
a high-level view of the execution and enables the easy detection of performance bottle-
necks and their location in each task. By merging individual TAGs, they provide a global
application view, which provides the opportunity to analyze the whole application while
it runs and develop tools for root-cause problem diagnosis. In this same direction, MATE
[104] relies on online performance modeling techniques to perform dynamic and auto-
matic tuning of MPI parallel applications, by conducting message aggregation, workload
balancing and PVM library tuning according to the conditions of the system.

COMPASS [105] is a framework for automated performance model generation and pre-
diction. COMPASS generates a structured, parametrized performance model in the Aspen
performance modeling language [106] by using automated static analysis of the target ap-
plication. This performance model can then be used for a variety of purposes, including
predicting performance of the target application on a range of current and future architec-
tures, as well as predicting runtimes under di�erent application and system con�gurations.

A recent work that is being deployed by Rosas et. al [107] suggests the decomposition
of the application’s performance in fundamental factors such as load balance, transfer and
serialization to describe the application behavior. This scalability empirical model infers
the expected performance based on the known limitations of the code on a given architec-
ture, using an Amdalh’s law-based �tting. Their approach is applied post-mortem to easily
extract high-level metrics from a set of heavy execution traces and thus further automate
the performance understanding process.

2.3.6. Cluster analysis
A di�erent trend on automatic analysis is the application of statistical methods to perform
clustering in event traces. Cluster analysis is the task of grouping a set of objects so that
objects in the same group (cluster) are more similar to each other than to those in other
groups, with respect to one or several characteristics. This technique has long been used
for exploratory data mining, statistical data analysis, unsupervised machine learning or
image analysis. The knowledge of the clusters enables a very concise description of a large
set of complex multi-dimensional data, just by replacing the description of each individual
element of the cluster by a single representative of the group.

Several works have applied clustering techniques to �nd representative processes in
a parallel application. Nickolayev et al. [108], propose the application of the K-means
clustering algorithm in an on-line analysis to determine the similarities among processors
involved in a parallel execution. The authors use coarse-grain granularity metrics such
as processor idle or running times to describe the behavior of each individual processor.
The work was developed as part of the Pablo Performance Environment [109], with the
target of reducing the event traces generated. Instead of �ushing the performance data of
all processors, the output trace just includes the metrics of a representative processor per
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cluster detected.
Ahn et al. [110] developed a statistical analysis of event traces containing processor

performance hardware counters that characterize application subroutines. In this work,
hierarchical and K-means clustering are used to determine the similarity across processes,
MPI tasks and OpenMP threads, at the level of subroutines. The authors demonstrate the
utility of clustering to automatically distinguish master-slave patterns of the processes and
also application algorithm structural patterns such as the organization of the processes de-
pending on the problem decomposition. In addition, the authors apply multivariate stat-
istical methods, Principal Component Analysis (PCA) [111] and Factor Analysis [112], to
highlight the high correlations between some of the performance counters. These two
techniques are useful to select those metrics that provide more information, reducing the
dimensionality of the collected data.

PerfExplorer [113] o�ers similar features with major emphasis on describing the detec-
ted clusters. In PerfExplorer, K-means and hierarchical clustering, PCA and Factor Ana-
lysis are applied to pro�ling information stored in an experiment database, that includes a
wide variety of metrics, ranging from high level idle or running times to low level processor
hardware counters. Similarly, the target of the clustering analysis is to �nd processes (or
threads) with similar behavior. The major contribution of this work is the correlation of
the groups found with the pro�ling information available, providing the analyst a clear
characterization of the behavior of the clusters.

González et al. [114] explore a di�erent direction. Instead of looking for similar pro-
cesses or threads, they detect which computing phases of the program present similar per-
formance behavior. This approach does not aim at reducing the size of the data by selecting
representatives, but to expose the �ne-grain structure of the main performance trends of
the program. They propose to apply the density-based cluster algorithm DBSCAN [115]
to the program’s computations, which are stored in an event trace characterized by their
duration and several performance hardware counter metrics such as the Instructions Ex-
ecuted and the Instructions per Cycle. As a result of the analysis, all the computations in
the trace are enriched with the information of to which cluster they belong to. This in-
formation enables to represent in a timeline the distribution of clusters over time, expose
SPMD or sub-SPMD program structures, identify multi-modal behavior, and study in de-
tail the time-varying performance variabilites that may happen across processes and over
time.

2.3.7. Pa�ern recognition
Computation-intensive scienti�c applications usually present iterative algorithms being
repeated over and over. In many cases, the program behavior does not vary between it-
erations. It stands to reason that signi�cant performance problems that may exist will be
noticeable repeatedly. Therefore, saving detailed performance data for every iteration does
not necessarily provide much more useful information than tracing just a few iterations.
Redundant performance data can be safely discarded, sharply decreasing the trace data
volume while precision of the analysis is not lost.
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In this direction, the Dynamic Periodicity Detector (DPD) [116] detects the periodic
structure of an OpenMP application as it runs, and emits to the trace �le only a few periods
of such pattern. The DPD uses the stream of OpenMP parallel function identi�ers that
are being executed to identify whether periodicity exists in the current data stream. Once
enough periods of the current pattern have been traced, the tracing facility stops recording
events, but keeps on feeding the DPD with the stream of data until a change in the program
behavior is detected, and trace data starts to be collected again.

An analogous approach [117] detects iterative communication patterns in message passing
(MPI) applications. A combination of parameters of the MPI calls (e.g. memory addresses
of the accessed bu�ers) is used to detect periodicity. This work aimed at dynamically bal-
ancing the assignment of resources (processors) to processes.

A post-mortem approach described in [118] derives signals from the data contained in
the trace �le, calculating metrics that summarize the behavior of the application from a
particular point of view. Then, signal processing techniques are applied in order to dis-
cover execution phases in the temporal evolution of the application. This system allows to
generate smaller sub-traces which contain only a few repetitions of the periodic patterns
detected. Additionally, it reports a global view of the structure of the program in terms of
which were the repetitive execution phases.

A. Knüpfer et al. [119], tackle this problem at the visualization phase. Their position
is that, although performance tools can successfully cope with ever growing trace sizes,
human perception is unable to scale-up with the increasing amount of data. Their objective
is to display less data but more information within the typical time-line views. To this
end, they collapse all repetition patterns of function calls with a single marked box. These
boxes indicate a region with repetitive behavior, and inner details are not shown. Since this
display hides too much information, patterns can be decomposed interactively, replacing
every pattern with its direct sub-patterns. This process can be repeated until there are no
more boxes and the fully decomposed view is identical to the original one.

2.4. Thesis work in context
The algorithms, techniques and methodologies developed in this thesis have been imple-
mented into the BSC Tools [53] ecosystem. In this section, we describe the starting point
of these tools and put the work developed in context with respect to the state-of-the-art
presented before.

2.4.1. Preliminary work
The two main lines of previous work in the BSC Tools towards improving the scalability
of tracing tools were to provide user-driven mechanisms to select the data being collected
and to develop a lightweight tracing process for summarizing the data of large runs [120].

The mechanisms for data selection included rudimentary techniques to control the range
of instrumented processes, stop the tracing after a certain amount of data had been col-
lected, and pause or resume the tracing at di�erent phases of the program. Since they
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determine which information is collected, they have direct impact on reducing the size of
the �nal trace. These mechanisms were useful, but they had to be explicitly activated by
hand before starting the application, and thus required prior knowledge of the program to
decide what to select.

The lightweight tracing approach considered to collect information only about phases
of computation that were longer than a given threshold, focusing the analysis on the parts
of the program that represented more execution time. For these regions, the tool provided
summaries of performance hardware counters and several �rst-order statistics. The ex-
perience acquired from this work was that it is possible to obtain interesting information
without requiring to generate the whole detailed event trace.

2.4.2. Proposed work
This thesis continues this previous work along two main directions. First, instead of re-
lying on user-driven mechanisms that have to be manually activated to reduce the size
of the traces, we have proposed to apply intelligence to the tracing process to automat-
ically focus on what is relevant for understanding the application behavior. To this end,
we devised a new tracing infrastructure that is capable of examining the application be-
havior on-line, and applying performance analytics techniques to select the most relevant
performance information to be stored in the trace, drastically reducing the volume of data
being collected.

Our proposal shares common aspects with Paradyn [84] and Periscope [43]. Similarly,
we propose an on-line analysis system that inspects the performance data being collected.
However, two fundamental issues di�erentiate both proposals. First, their objective is to
point up common performance bottlenecks in the program. Instead, we want to obtain a
complete depiction of the program run that helps to fully understand its behavior. Second,
they rely on summarized pro�ling snapshots to compute the analysis. On the contrary,
we base the decisions about which information has to be stored on analyzing the detailed
stream of events being captured, which supports the study of variance in time and space.

Automatic trace analysis systems such as EXPERT [90, 91], AKSUM [98] or Kappa-PI
[94] mainly di�er with Paradyn [84] and Periscope [43] in the phase the analysis is applied.
Their post-mortem approach allows a thorough search for performance bottlenecks over
the whole detailed event trace, rather than relying on summarized statistics. Nevertheless,
all of them focus on identifying previously known performance problems, limiting the
purpose of the analysis to a very speci�c objective.

In a very similar way to rule-based systems, performance modeling approaches like
PEMOGEN [102] also aim at interpreting the data to gain automatic insight about the pro-
gram’s behavior and bottlenecks. Their approach allows to make useful predictions beyond
the experiment space, yet the accuracy of the results will depend on a wise choice of the
parameters to model and a good inference of their impact on the program’s performance.
Making the appropriate choices is particularly decisive when these solutions are applied
on-line and the data used to build the model is no longer kept, because if it is later veri�ed
that the model does not �t well, it is then necessary to repeat the execution and rebuild the
model, which may be expensive. In this regard, the ability of the domain expert to de�ne
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the model’s critical parameters, either manually or automatically, is crucial.
Arguably the major drawback of expert systems and modeling approaches is that the

ability to identify performance problems is strictly limited by the rules de�ned in the know-
ledge base and the selection of parameters to model. Rather than trying to synthesize the
data into higher-level conclusions automatically or into speci�c target metrics, our ap-
proach aims to keep a minimal recorded instance of a run, which permits the analyst to
mature their understanding about the causes of the observed performance, formulate their
own hypotheses and design speci�c metrics to corroborate them. This process can lead to
discover new and unexpected patterns that model an ine�cient behavior, that could then
be used to re�ne the knowledge base and models of the automatic analysis tools.

Aside from the strategies described above, there are no other proposals in the literat-
ure sharing the idea of intelligently selecting performance data of high interest in detailed
event traces to deal with the scalability problem of trace-based performance tools. This
methodology raised a signi�cant challenge that we have met: to have the ability to auto-
matically determine the minimal subset of relevant performance information that fully
describes the overall performance behavior, when not even the user knows what to expect
and where to look at when facing the analysis of a new application. These achievements
are described through Chapters 3 to 5, where we show how cluster analysis and pattern
recognition techniques can be leveraged to this purpose.

With the volume of data generated successfully controlled, the second part of our work
focuses on improving several important aspects of the task of analysis. In the �rst place,
the application of on-line analysis techniques imposes certain new restrictions. First and
foremost, for the analysis to take place at runtime it is important to deliver near real-time
results, and so the e�ciency of the mechanisms used to process large volumes of data can
limit the scalability of the analysis.

In our work, we have taken as a starting point for the on-line analysis the clustering
strategy presented in [114], due to its ability to provide very �ne-grain details about the
program structure. After evaluating the e�ciency of this method, which is computation-
ally expensive, it became clear the necessity to design a new distributed strategy to paral-
lelize the cluster analysis in order not to sacri�ce quality in expense of fast results in large
scale experiments. Other works have also followed the approach of parallelizing their clus-
tering algorithms [121, 122, 123, 124, 125], yet our approach o�ers the main advantages of
eliminating the need for an expensive pre-processing phase to prepare the data, it is aimed
for general purpose processors, and proposes a work distribution scheme that is generic
enough to parallelize di�erent families of clustering algorithms. The achievements regard-
ing the increase of the scalability and the quality of �ne-grain cluster analysis to be applied
on-line are discussed in Chapter 6.

In the second place, an e�ective analysis of a parallel application often requires to under-
stand how the behavior of the program changes over time, or over di�erent experiments
with di�erent settings that may impact on the performance. Comparing large amounts of
performance data that may come from di�erent sources can be a di�cult task. This thesis
proposes a new methodology to compare and contrast the large amount of performance
observations generated from multiple execution scenarios, providing useful and intuitive
insights about how the program behavior varies under di�erent circumstances.
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Comparative and multi-experiment analysis has been approached by several perform-
ance analysis tools. Scalasca [126] includes a tool called performance algebra that can be
used to merge, subtract, and average the data from di�erent experiments and view the res-
ults as a single derived experiment. PerfExplorer [113] supports data mining analyses on
multi-experiment parallel performance pro�les. Its capabilities include general statistical
analysis of performance data, dimension reduction, clustering and correlation of perform-
ance data, and multi-experiment data query and management. TAU [45] incorporates the
concept of phase pro�ling for the study of the evolution within a single experiment. This
is an approach to pro�ling that measures performance relative to a phase of execution,
having its entry and exit marked by the user. HPCToolkit [41] merges pro�le data from
multiple performance experiments into a database �le and perform various statistical and
comparative analyses.

The fundamental di�erence that distinguishes our approach is that we do not merely
report the outcome of di�erent experiments together. We automatically determine the
regions of interest and track their evolution along multiple executions. To this end, we
translate performance data from di�erent execution scenarios into a sequence of images,
detect structure in each image and automatically correlate them. These achievements are
described in Chapter 7.

Lastly, an important limitation for the analysis is to gain access to all the computing
resources that are necessary to perform all the experiments and generating all the data,
which is often very time- and cost-consuming. Aiming at improving the productivity of
the analysis and the e�ective use of the resources, we propose a novel strategy based on
active monitoring techniques to inject controlled interferences into the program. This
approach enables us to obtain from a single execution all the performance measurements
that describe the behavior of the program under di�erent conditions, an information that
would require multiple executions to get otherwise, saving on time, energy and resources.

In this direction, we �nd tools like AutoTune [127], a plugin-driven framework that
automatically runs the program one or more times to try di�erent con�gurations of com-
piler �ags, energy e�ciency parameters and di�erent execution patterns, and returns re-
commendations to tune the code. Similarly, Active Harmony [128] and MATE [104] are
automated runtime tuning systems that put emphasis on dynamically adapting to chan-
ging resource capacities and application requirements. The technique that we have pro-
posed shares the idea of testing di�erent settings during the execution but with a di�erent
goal: to extract all the detailed measurements necessary to conduct an in-depth analysis of
the data, instead of reporting general and prede�ned recommendations. Moreover, our ap-
proach enables to simulate on-line both di�erent hardware and runtime settings, requiring
only a single program run. These achievements are described in Chapter 8.
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Chapter 3
The on-line analysis framework

The very �rst handicap for trace-based performance tools when it comes to analyze
large-scale parallel applications is to store all the performance data that is produced
during the execution. And even if you have enough storage available, the amount

of time required to process the sheer volume of data can be extremely high.

Indiscriminate tracing is no longer a feasible option, and so it is necessary to add intel-
ligence into the tracing process and explore on-line techniques so that you directly obtain
the most relevant information regarding the program behavior, getting rid of the tedious
task of handling large �les.

In this chapter we present an on-line analysis infrastructure that enables to attach to a
parallel application, extract performance measurements, analyze the data at run-time and
take intelligent decisions on which information is relevant for the analysis and what can
be discarded.

3.1. Background and motivation

Nowadays it is not surprising to �nd applications running in real production systems for
hours and using thousands of processes. And the scale of these applications keeps in-
creasing everyday with the advent of Exascale computing. It is clear that a blind tracing
approach in these scenarios would produce huge data volumes that are absolutely unman-
ageable.

Despite the drawbacks that entails using traces, it is important to use them because they
provide far more information for a very detailed analysis. In the traces it is possible to see
small e�ects that may have a large global impact in the performance of the application.
In particular, they enable to study spatial and temporal variabilities, which are the usual
triggers for load imbalance problems, and in turn one of the major bottlenecks in high
performance computing.

The �rst problem with trace-based tools is to store the data that is produced. Even if

45



3. The on-line analysis framework

Figure 3.1.: On-line analysis framework system architecture

the amount of performance measurements gathered by a single process is small, traces
rapidly become unmanageable when merging together the information collected from all
processes. But not all the data that is recorded in a trace might be essential to understand
the application behavior. For example, the iterative nature of most scienti�c applications
and their common SPMD organizations results in huge amounts of redundant information.
An e�cient analysis of such large volumes of data requires to direct the analyst’s attention
towards what is more meaningful. Discarding irrelevant data aims at reducing both the
size of the traces, and the time required to perform the analysis and deliver results.

To date, the usual approach to deal with large traces has typically consisted in �ltering
the information: one would �rst obtain a whole trace, then do summarizations to get a
broad view of the application behavior, and �nally focus on several small, representative
regions to inspect all the details. And this kind of post-process has been typically applied
post-morten, and manually driven by the expert. The next obvious step is to automatize
this process to be done on-line, so that one directly obtains the most relevant informa-
tion from the execution, getting rid of the cumbersome task of storing, processing and
manipulating large trace �les. To this end, we have designed an analysis framework that
incorporates intelligence to the tracing process, enabling to apply diverse techniques of
analysis to inspect and �lter the data automatically and at run-time, towards selecting the
minimum amount of information that best describes the application behavior.

3.2. System architecture
The architecture of the on-line analysis framework is structured in three main components,
as depicted in Figure 3.1: the tracing back-ends, the reduction tree, and the analysis front-
end.

The tracing back-ends are responsible for attaching to the parallel application and col-
lecting performance measurements from the execution, and they provide mechanisms to
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�lter, manipulate and store the data into a trace �le.
The reduction tree provides a scalable mechanism to reduce and summarize the inform-

ation that is collected from every independent process in the parallel execution. The tree
emulates the structure of a multi-layer perceptron neural network, where each node ap-
plies an activation function that combines a set of inputs to produce a single output. These
functions can compute complex data aggregations so as to reduce the volume of data that
�ows through the network to keep the system scalable.

The analysis front-end performs the role of a global orchestrator. It is a centralized pro-
cess that coordinates the interaction between these components, and enables to aggregate
data coming from all processes of the parallel application to conduct global analyses hav-
ing an overall view of the status of the program. Based on this information, it can provide
dynamic feedback to the tracing back-ends about which information is more interesting
to record, and take intelligent decisions regarding:

• When to act; decide when it is necessary to activate the tracing back-ends. For ex-
ample, when do they have to start collecting data, and how often the captured data
has to be analyzed.

• Which actions to take; select which of the mechanisms that are available in the tra-
cing back-ends to �lter and manipulate the trace data have to be used at a given time
in order to focus on the more relevant information. For example, switch the level
of granularity of the recorded data, change the metrics that are being inspected, or
decide the type of analysis that has to be performed.

A signi�cant part of the thesis has then consisted in designing di�erent protocols of
analysis to automatically decide when and what to do, based on how the application is be-
having. The modular construction of the on-line analysis framework enables to implement
these protocols as plug-ins that can be loaded alone or in combination into the di�erent
components of the system. Depending on where are the plug-ins connected we can meet
di�erent analysis needs:

• Local analysis; protocols running on the back-ends can analyze their own data straight,
as they have direct access to the trace data that is being captured from the execu-
tion. Local analyses are interesting because they diminish the volume of data that
is transferred through the network, and enables the back-ends to take autonomous
decisions based on the behavior of each single process.

• Distributed analysis and summarizations; protocols running on the intermediate
nodes of the reduction tree can take full advantage of the resources and their tree-
like organization to run hierarchical analyses and perform complex data reductions
to keep the system scalable.

• Global analysis; protocols running on the analysis front-end can analyze an aggreg-
ate of the data produced from all back-ends. Global analyses are interesting because
they enable to �nd a consensus on the state of the whole program and take coordin-
ated actions involving all processes.
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Through Chapters 4 to 5 we will discuss the protocols that we have designed acting on
the di�erent tree components to drive the exploration of the performance data and intel-
ligently select the most relevant information to understand how the application behaves,
while keeping the volume of data at a reasonable size. The following sections describe the
work�ow of interaction between the analysis framework components.

3.3. Components interaction
This section gives details on the implementation of each component in the system and how
they interact. In summary, we have combined two pieces of software: a tracing facility
and an overlay network; extending their standalone functionalities to develop an on-line
system that inspects the trace data on-the-�y and takes intelligent decisions dynamically.

The basic interaction between these tools is as follows: The user application is intru-
mented with a tracing tool that automatically intercepts the entries and exits points of the
calls to most parallel runtimes. At these points, it takes automatic measurements for dif-
ferent hardware components describing what is the performance behavior of the di�erent
parts of the program.

Periodically, the captured data is sent through the overlay network and reduced across
the intermediate nodes of the tree upon its way to the root, so as to preserve the system’s
scalability. The front-end analyzes the data that comes from all parallel processes, and
sends feedback to the tracing back-ends instructing them on which is the most relevant
information to focus.

In order not to introduce a continous overhead on the program execution, the data is
not analyzed in streaming, but periodically. When the system decides to perform the next
phase of analysis, the front-end broadcasts a message to activate all back-ends, and this
starts the process of data extraction and analysis. This process is repeated over time, in-
terspersing intervals of data collection without any interference, with steps of analysis of
the collected data, at the discretion of the analysis front-end.

3.3.1. The tracing back-ends
Performance data from the running application is collected through Extrae [53], a tra-
cing tool that automatically intercepts the entries and exits points of the calls to most
parallel runtimes. At these points, it relies on low-level libraries (e.g. PAPI [22]) and sys-
tem services (e.g. resource usage or memory allocation information) to take performance
measurements for the di�erent hardware components, describing what is the performance
behavior of the di�erent parts of the program.

In particular, our work has focused on the analysis of message-passing applications
(MPI), optionally including shared memory programming (MPI + OpenMP). We have fo-
cused on these two runtimes because they are the most widely used to exploit parallel-
lism in HPC applications, but our solution can be likewise applied to other programming
paradigms. The typical information gathered for MPI applications consists in hardware
counters (i.e. elapsed cycles, instructions executed, cache misses, etc.), references to the
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source code (i.e. call-stack information) and punctual events (i.e. entry or exit from a func-
tion). A basic tracing tool stores all these measurements as a time-stamped sequence of
events into per-thread memory bu�ers, and eventually writes the data to disk when the
bu�ers are full to reduce the overhead of instrumentation.

In our on-line implementation, the memory bu�ers operate instead in a circular mode.
This is to say, once they have been �lled, every new event overwrites the oldest. In this
way, the system has always available to analyze the data that refers to the most recent
activity of the application, and when the analysis has concluded, a subset of interesting
information is written into disk and the bu�ers are cleared so that the next analysis will
only consider the data generated from that point on.

In order to access the information that the tracing mechanism is recording during the
program execution, an auxiliary thread is created when the traced program starts execut-
ing. More precisely, when the user program calls MPI_Init to initialize the MPI run-time
environment, the tracing tool intercepts the execution and spawns a new POSIX thread
to act as the tracing back-end. By default, this second thread remains latent while the
program runs and is activated on demand of the analysis front-end. Being a thread of the
traced application has the major advantage of having direct access to the memory bu�ers
that store the trace data. Once active, the tracing back-ends are responsible for stopping
and resuming the application (using signals or locks); extracting, �ltering and manipulat-
ing data from the tracing bu�ers; sending data through the overlay network; performing
local analyses and writing to disk. The actions to perform are determined by the front-
end, which synchronizes all back-ends to come into play at the same time broadcasting
messages through the overlay network.

3.3.2. The reduction tree
While the structure of the analysis framework is conceptually simple, creating and con-
necting the internal processes of the overlay network is complicated by interactions with
the various job scheduling systems. To facilitate the process of creating the network, we
rely on the Multicast/Reduction Network (MRNet) utility [87].

MRNet is a customizable, high-throughput communication software system for paral-
lel tools and applications with a master/slave architecture. MRNet reduces the cost of
these tools’ activities by incorporating a tree-based overlay network (TBON) of processes
between the tool’s front-end and back-ends. MRNet uses the TBON to distribute tool com-
munication and computation activities, reducing analysis time and keeping tool front-end
loads manageable. MRNet-based tools send data between front-end and back-ends on lo-
gical �ows of data called streams. The internal TBON processes use �lters to synchronize
and aggregate data sent to the tool’s front-end. Using �lters to manipulate data in parallel
as it passes through the network, MRNet enables to e�ciently compute averages, sums,
and other more complex aggregations on back-end data. The organization of an MRNet-
based application is perfectly suited for the structure of the analysis framework described:
the analysis front-end corresponds to the root node in the TBON, the intermediate pro-
cesses of the reduction tree run the MRNet �lters, and the tracing back-ends play the role
of the leaf nodes.
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In the simplest environments, MRNet supports to start the processes directly using fa-
cilities like rsh or ssh. However, it is common in production environments to submit all
requests to a job management system. In this case, MRNet is constrained by the operations
provided by the job manager. For example, MPI implementations like OpenMPI [129], Intel
MPI [130] or IBM POE [131] use environment variables to pass information, such as the
process’ rank within the application’s global MPI communicator, to the MPI run-time lib-
rary in each application process. In cases like this, MRNet alone cannot provide back-end
processes with the environment necessary to start MPI application processes, and so it has
to rely on the speci�c process management tools like aprun, mpiexec, mpirun or srun to
start the back-ends. This mode of operation accommodates tools that require their back-
ends to create, monitor, and control other processes, which is our case with the tracing
back-ends attaching to the user parallel application.

To support this mode, MRNet has to start all processes except the back-ends recursively
as in the normal instantiation mode using rsh or ssh. MRNet then waits for the tool back-
ends to be started by the process management system to ensure they have the environment
needed to create application processes successfully. To allow back-ends to connect to the
MRNet network, information such as process host names and connection port numbers
must be provided to the back-ends. This information can be provided via the environment,
using shared �lesystems or other information services as available on the target system.
To collect the necessary information, the front-end can use the MRNet API methods for
discovering the network topology details. This mode of process instantiation is referred to
as back-end attach mode.

The resources needed to create the network can be either additional or shared with those
used by the parallel application itself. In our case, since the overlay network is inactive
while the application is running and vice-versa, we chose to share the resources because
there is no actual penalty in the application performance and we reduce the amount of
resources that are needed to run, yet using extra resources is also a viable option.

Once all back-ends have connected to the network, all the initializations are complete
and both the tracing subsystem and the overlay network are ready to be used. Then all
processes in the network stall in a blocking receive operation waiting for messages from
their respective parent in the TBON. Periodically, the front-end node broadcasts a control
message that gets propagated through the network awakening them in cascade. When the
back-ends are activated with an analysis request, they pause the application and transfer
all performance data (relative to the analysis that is going to be computed) that is currently
stored in the bu�ers of the tracing tool, and then resume the application.

The data extracted from the tracing back-ends can be �ltered in the intermediate nodes
of the tree using the �lters functionality o�ered by MRNet. Moreover, we have used this
functionality to develop complex aggregations, taking advantage of the tree-like structure
of the network to implement distributed hierarchical analysis algorithms, exploiting the
full power of all the resources devoted to this structure. More details about complex ag-
gregations are given through Chapters 4 to 6.
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3.3.3. The analysis front-end
The analysis front-end orchestrates all the operations over the on-line framework. On one
hand, it is responsible for deciding when to activate the back-ends to extract performance
data and when to start the next phase of analysis.

The default interaction consists in triggering each new phase of analysis periodically
every certain seconds, but more sophisticated interactions are also possible. For example,
the system can automatically adjust the frequency of the analyses based on the speed at
which the application is producing data so as not to exceed a set maximum data load in
each analysis phase; based on the results of previous analysis steps (e.g. decide that it needs
more data to reach a conclusion); or even it can ask the user interactively.

On the other hand, the front-end is a central point that receives data from all the back-
ends. In this way, the front-end gets a global view of the status of all application’s processes
and how they are performing. Analyzing the aggregated information, it can take global
decisions and provide dynamic feedback to the back-ends, instructing the tracing tool in
what is the most interesting information to record. Through the following chapters we will
show three protocols of analysis that take advantage of having such a global view of the
application behavior to detect structure and periodicity in the data, leveraging techniques
and methods from the �elds of machine learning, data mining and signal processing.

3.4. Closing remarks
In this chapter we have presented an on-line analysis framework that combines a tracing
system and an overlay network to automatically extract performance data from the exe-
cution of a parallel application, analyze it on-the-�y, and provides mechanisms to dynam-
ically �lter, summarize and manipulate the data to intelligently select which is the most
interesting information to record.

The intelligence of the system lies in the analyses that are performed on the data and
the conclusions that can be extracted from them. The following chapters show the di�er-
ent types of analyses that we have designed and how we use the results to discriminate
between meaningful and irrelevant data, in order to meet the objective of generating min-
imal application traces that best describe the application behavior.

The modular construction of the system enables to easily extend its functionalities by
connecting new plug-ins of analysis to the di�erent components of the framework. In
order to ease the development of new plug-ins, we have developed a utility middleware
named Synapse that helps to develop MRNet-based applications that are structured in a
tree-like topology, hiding all the di�culties that are inherent to creating, connecting and
communicating the processes, and allowing the developer to focus on de�ning the actions
that the di�erent components of the tree (the root, intermediate nodes and leaves) will
perform. More details on Synapse can be found in Annex B. Also, in Annex A the reader
can �nd the user guide for the on-line analysis framework.
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Chapter 4
On-line cluster analysis to �nd the
program’s most relevant execution regions

Cluster analysis is one of the most used explorative data mining techniques used for
classi�cation of data. The data elements are partitioned into groups called clusters
that represent collections of data elements that are proximate based on a distance

or dissimilarity function. For example, cluster analysis has been used to group spatial loc-
ation prone to earthquakes or group related documents for browsing.

This type of analysis is particularly well suited to be applied on performance data. Due to
the strong iterative nature of HPC applications and their frequent SPMD organizations, the
performance achieved by the di�erent processes and through the di�erent iterations tends
to repeat. By identifying similarities in the performance metrics that are being mesured
during the program run, it is possible to detect performance trends and analogous pro-
cessors. We can then focus on selecting representative samples for the di�erent behaviors
detected, describe these in all detail, and save us from capturing all the remaining redund-
ant data.

In this chapter we present a cluster analysis protocol built on top of the on-line frame-
work, targeted towards exposing the �ne grain structure of the main computing regions
of the program, for which we automatically generate a small, yet very detailed trace.

4.1. Background and motivation

When the amount of performance data collected from a parallel execution has grown large,
�nding ways to summarize the information becomes a cornerstone necessity. A common
technique that has been widely used to deal with the summarization of large volumes of
data is statistical pro�ling. A pro�le is a simple accounting of �rst order statistics over a
set of metrics associated to an application-level abstraction, for example the application
subroutines. The main weakness of pro�les is that they mask the time- and space-varying
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behaviors. For example, the execution of a given subroutine may exhibit di�erent times
to solution depending on the parameters passed, the phase of the application when it is
invoked, or the processor that is running. A pro�le just averages all these di�erent occur-
rences and will not make any further distinction.

Cluster analysis is a better approach to overcome the intrinsic problem of loss of vari-
ability in the summarization process. As de�ned in [132], cluster analysis is the “unsu-
pervised classi�cation of patterns (observations, data items or feature vectors) into groups
(clusters)”. Since this process is a classi�cation and not an aggregation of the information,
the di�erent trends in the data are not masked.

A common use for cluster analysis is to reduce the amount of information generated,
taking into advantage the repetitive patterns of parallel applications. In works such as
[108, 133, 113], the authors exploited the structure of the Single Program Multiple Data
(SPMD) paradigm that the vast majority parallel applications follow. In a SPMD applica-
tion it is expected that all processes involved perform the same sequence of computations
simultaneously. In this context, cluster analysis has been demonstrated to be e�ective to
group those processes that behave similarly. Selecting a representative process per cluster,
the authors easily reduce the amount of performance data.

In [114], the authors were pursuing a di�erent goal: to determine the computational
structure of the application. Instead of grouping the processes that behave similarly, they
focus on identifying similarities in the performance achieved in the computing regions
executed by the processes, i.e. the phases of serial code between communication primitives
or calls to the parallel run-time. Following this approach, they obtain a small number of
clusters that expose the behavior of the program’s computations, and provide the user with
useful insight about the main performance trends.

Figure 4.1 compares these two di�erent approaches. Figure 4.1a represents the di�erent
processes in a parallel application, where we have distinguished the computations (light
grey) and communications (dark grey). Figure 4.1b represents the results of the approaches
presented in [108, 133, 113]: considering for example the duration of the processes as the
similarity metric, they detect two di�erent clusters grouping two processes each. Figure
4.1c represents the approach followed in [114], where they group the similar computing
regions that appear in all processes, obtaining three di�erent clusters according to their
durations.

The latter approach maintains very �ne-grain details about variabilities that may ocurr
over processes and through time, enabling later in-depth analyses that can detect micro-
scopic e�ects that may have a large global impact in the program performance. However,
generating the clusters might be computationally very expensive. A post-mortem sequen-
tial approach that has to assess all the data captured from all the processes in a full parallel
execution might result in millions of data points to process and extremely slow response
times due to the clustering algorithms complexity.

In order to support the computations’ structure analysis of large-scale applications and
their massive volumes of data, it is necessary to apply these techniques at run-time to
intelligently focus on what is more relevant for understanding the application behavior,
and thus notably reduce the amount of data generated. In this chapter, we introduce a novel
alternative to tackle the trace scalability problem in the direction of intelligent selection of
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(a) Original sequence of computations/communica-
tions to analyze

(b) Cluster analysis to detect processes with similar
behavior

(c) Cluster analysis to detect computing regions with
similar behavior

Figure 4.1.: Comparison of clustering analysis targets

the traced information. We have designed a protocol of analysis that runs on top of the on-
line framework presented in the previous chapter, to perform automatic cluster analysis
on the performance data that is being generated during the run to accurately identify the
application’s structure and report its evolution over time. We are able to detect at runtime a
fairly small region that faithfully represents its overall behavior. Performance data is stored
in the trace with a wealth of detail for this particular region only, keeping it at a manageable
size. The combination of periodic reports and a representative trace o�ers the analyst a
general understanding understanding of the structure of the application, and allows easy
identi�cation of potential imbalances and their possible causes, while still providing all the
advantages of a detailed trace-based analysis.

4.2. Computation structure detection based on
DBSCAN

The target of the technique presented in [114] was to analyze the computational behavior
of the CPU bursts executed by a parallel application. A CPU burst is the region in a parallel
application between an exit from the parallel runtime and the following entry. Each CPU
burst is characterized with a vector of performance hardware counters, erasing the time
and space (process) components. Typically, the hardware counters used for this character-
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(a) X-means cluster algorithm results (b) DBSCAN cluster algorithm results

Figure 4.2.: X-means and DBSCAN algorithms comparison for 3 iterations of CPMD. Boxes
highlight clouds of points with strong vertical or horizontal components where
X-means splits the group and DBSCAN does not.

(a) X-means clusters time-line distribution

(b) DBSCAN clusters time-line distribution

Figure 4.3.: Comparison of X-means and DBSCAN clusters distribution over time for 3 it-
erations of CPMD
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ization are Instructions Completed and IPC, focusing on a general performance view of the
application. This combination enables to detect regions of the code with the same com-
putational complexity (Instructions Completed), as well as to di�erentiate regions with
the same complexity but di�erent performance (IPC). Grouping the CPU bursts according
to their similarity on these metrics results in clusters that represent the main behavioral
trends of the program.

The choice of DBSCAN responds to the fact that performance counters data can have
an arbitrary shape. Figure 4.2 compares the resulting clusters when applying two di�erent
clustering algorithms to the performance data from three iterations of an execution of
CPMD [134]. Algorithms such as K-means or X-means, that are of common use in the
�eld, are not able to detect the most suitable clusters due to certain assumptions about
the data distribution that are no longer true for performance data. X-means (left plot)
tends to partition the long ellipses, while DBSCAN (right plot) merges the disperse clouds
into a single cluster. In terms of the quality of the computation structure detected, the
data partition generated by DBSCAN is better. This can be seen in the trace time-lines in
Figure 4.3. In these time-lines, the X-axis represents the time, the Y-axis represents the 128
processes involved in the application execution, and the color identi�es the cluster of each
CPU burst. In the top time-line, the clusters detected by X-means show high variability
between processes, while when applying DBSCAN, the bottom time-line now shows a
very clear SPMD structure, with all processes performing the same type of computation
simultaneously.

DBSCAN [115] is the �rst and most cited density-based clustering algorithm designed to
discover non-linearly separable clusters of arbitrary shape. DBSCAN requires two para-
meters: a distance (Eps) and the minimum number of points that form a cluster (Min-
Pts). The basic idea is to explore the Eps-neighborhood of each point, and if it comprises
more than MinPts a cluster is formed. For each point that belongs to the cluster, its Eps-
neighborhood will also be added as long as its density is high enough. The cost of the al-
gorithm is bounded above byO(n2), although the average case cost improves toO(n log n)
when the implementation includes a spatial index to optimize the searches in the data
space.

When applied to the analysis of performance data, the scalability of the algorithm be-
comes a serious limitation. With tens and even hundreds of thousands of cores generating
data every few nanoseconds, the amount of data to cluster grows extremely large, and so
the clustering times quickly turn prohibitive, specially when the results are required in
real-time.

4.3. The on-line clustering protocol
The on-line clustering protocol is built on top of the analysis framework introduced in
Chapter 3. Figure 4.4 shows how this protocol integrates with the system.

The tracing back-ends are con�gured to capture performance metrics to characterize
the computing regions of the application. Periodically, this data is aggregated in the ana-
lysis front-end through the reduction tree. Then, the computations structure is analyzed
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Figure 4.4.: On-line clustering analysis protocol work�ow

centrally using a basic DBSCAN sequential algorithm.
This process of analysis enables us to determine at runtime a relevant region of the

execution that illustrates the overall behavior of the application, and produces several per-
formance reports, plus a full detailed yet small trace for this time interval.

Required user intervention is limited just to specify an approximate size for the resulting
trace, and the system parameters are automatically adjusted to produce that amount of
information. Free control over this setting allows the user to adapt to the limitations of the
analysis tools that are going to be used afterwards, so as not to generate more data than
what can be conveniently handled.

4.3.1. Global cluster analysis of the program’s computations

The analysis conducted consists of a computation structure detection using a density-based
clustering algorithm [114]. The main purpose of this mechanism is to detect computing
regions (i.e. CPU bursts) with similar behavior and, eventually, to identify phases of the
application.

Every CPU burst is de�ned by its duration and a set of performance metrics read at the
beginning and end of the region. The clustering algorithm can use an arbitrary number
of these available metrics to characterize the application. Amongst all traced metrics, we
select a combination of IPC and instructions completed to execute the clustering analysis
with. These two metrics are useful to bring insight into the overall performance of the
application. Trends in the instructions completed counter re�ect regions with di�erent
computational complexity. In combination with IPC, it is possible to di�erentiate between
regions with the same complexity but di�erent performance.

As a result of the analysis we obtain a �ne-grain characterization of the computing re-
gions of the application, grouped by performance trends. The tool presents a numerical
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report with the average values for the di�erent metrics that were used, and a scatter plot
depicting the general structure of the application. Figure 4.5a shows an example of the
structure of GROMACS [135]. It can be seen that the �rst three clusters (they are sorted
according to the highest percentage of execution time that each cluster represents) exhibit
di�erent distributions. While cluster 2 is rather compact, clusters 1 and 3 present a sig-
ni�cant dispersion in IPC and instructions respectively, and they all represent di�erent
computation regions that achieve divergent performance.

The analysis is carried out centrally at the analysis front-end of the framework. In or-
der to accelerate the process and keep the system scalable, it is advisable to apply some
reductions on the amount of data to cluster. While data is being retrieved from the tracing
bu�ers and sent through the reduction tree, those CPU bursts whose duration is negligible
are directly discarded. In this way, the clustering tool needs not to process irrelevant data,
and the communication network is not �ooded with useless tra�c. Experiments in [114]
show that the 99% of the total computation time is covered by only the 20% of all CPU
bursts.

Even after having �ltered all meaningless data, the cost of the clustering process grows
more than linearly with the input size. In the applications tested (GROMACS, SPECFEM3D,
NAS BT, etc.) more than 50,000 bursts can be generated in roughly 30 seconds on average,
which can take up to 10 minutes to analyze. Among those bursts that make the cut, only
a small subset is actually clustered to speed up the process. Taking as starting point the
results of the clustering analysis with the selected training set, the remaining bursts are
classi�ed to their closest cluster using a nearest neighbor search. Di�erent strategies have
been tested to select a representative set:

• Sampling across time. Select a small percentage (10-20%) of CPU bursts of every
process, randomly taken across the whole time range.

• Sampling across space. Select all CPU bursts from a few random processes.

In this way, a reduction of the input size to a few thousands of samples drops the analysis
time to 5-10 seconds. Obviously the less samples are taken, the quickest but less precise
results are produced.

Figure 4.6 shows the e�ect of di�erent sampling strategies for the clustering in the res-
ulting trace time-lines for the GROMACS application. The column on the left shows the
results of taking samples across space from di�erent number of processors. Figure 4.6a
corresponds to an experiment where all the data from all processes was clustered, so this
result can be considered as the reference. In Figures 4.6c and 4.6e the number of samples
is reduced, clustering all the data from 32 and 16 random tasks only, respectively. The
column on the right shows the results of taking samples across time. Figure 4.6b repres-
ents the results of selecting 25% random data points over time from each process. In this
case, the results are identical to the reference case 4.6a. Figures 4.6d and 4.6f correspond
to selecting 15% and 10% of random data points over time, respectively. As the reader can
see, when reducing the number of samples, either across space or time, the results become
more distorted compared to the reference case.
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(a) Clustering all computing bursts

(b) Clustering a small subset of bursts and classifying
the rest with a nearest-neighbor algorithm

Figure 4.5.: Comparison of clustering the whole data set vs. a small training set for
GROMACS
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(a) All data from all processes (b) 25% of random samples from all processes

(c) All data from 32 random processes (d) 15% of random samples from all processes

(e) All data from 16 random processes (f) 10% of random samples from all processes

(g) Combining space sampling (all data from 8 ran-
dom processes) and time sampling (15% of ran-
dom samples from the remaining processes)

Figure 4.6.: Visual comparison of time vs. space sampling strategies for GROMACS
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However, this does not imply a bad characterization of the application at all, but just a
di�erent one. Typically, a single large cluster can split into two or more (or even disappear)
because samples in the middle were not taken, and subclusters were not close enough to
merge. This is still a valid clustering that shows structure, though with di�erent �nesse.
Depending on the application (e.g., if it is purely SPMD or not), one approach might be
more convenient than the other, and their suitability responds more to the expert’s ob-
jective than to any strict rule. In our experiments, the combination of both methods (i.e.
include all bursts from a few processes and sample the rest) has proven to work fairly well
for all situations, as it provides a better chance to capture both time and space variations.

Figure 4.5b corresponds to the same analysis than the one shown in Figure 4.5a. In-
stead of having all data clustered, we took all bursts from just 8 processes (out of 64), and
sampled the 15% of bursts from the rest. In comparison, 75% less data was processed (2,500
bursts down from 10,000) and the analysis �nished 20 times faster (6 seconds down from 2
minutes). Although the resulting clusters are less populated, and the former cluster 4 was
split into two subclusters, the same overall structure can be identi�ed.

The sampling percentage and number of representative processes might vary between
applications. In our experiments, these speci�c values lowered the number of samples to
just a few thousands, keeping the clustering analysis responsive enough to be computed
on-line, while maintaining the quality of the results. An easy way to automatically adjust
these parameters is to limit the data to be clustered to a known maximum value and reduce
the number of samples proportionally.

The analysis described above is repeatedly computed whenever the application produces
new volumes of performance data. Multiple clustering results are used to monitor the
evolution of the application behavior. It is only when certain conditions are met that a
representative region of the whole execution is selected to produce a full detailed trace.
The following section explains this process in detail.

4.3.2. Monitoring the application evolution
Whenever the application produces a new volume of performance data, equivalent in size
to the amount of data speci�ed by the user for the �nal trace, a subsequent clustering
analysis triggers. This mechanism produces an ordered sequence of clusterings that illus-
trates not only the structure of the application in their respective execution regions, but
its evolution over time.

By means of the study of the similarities between multiple clusterings, we aim at de-
tecting at runtime a single region of the execution that faithfully represents the overall
application behavior. We consider a representative region to be one where the application
behavior is stable. By stability we understand the convergence of the algorithm into an
iterative pattern over which the achieved performance presents minor �uctuations. Given
the iterative nature of the vast majority of scienti�c codes, such a region typi�es the whole
execution almost in its entirely. Any performance �aw that can be detected there and op-
timized will result in a strong positive impact all over the execution.

The application is considered stable when several clusterings in a row are equivalent.
This is to say, the clusters found in the current analysis have similar shape, size and pos-
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Figure 4.7.: Stability heuristic to compare whether two clusterings are equivalent. In 2D
this can be seen as inscribing the clusters inside a rectangle and see if overlap-
ping area is high.

ition in space than those detected in previous steps. Basing the precise numbers on pre-
vious tests experience, for every cluster we check that the values of the extremes of each
dimension are within a ±5% margin of variance compared to the previous clusterings. In
the case of using just two dimensions (instructions and IPC in our case studies), this can
be interpreted as inscribing every cluster into a rectangle and matching those with high
overlapping area, as shown in Figure 4.7. Two clusterings are considered equivalent if the
matching clusters represent at least the 85% of the total computation time. In case the ap-
plication would keep on changing behavior and the stability criterion could not be met,
the requisites are gradually lowered to attempt to �nd the best possible region. This would
also relax any inaccuracy that could be introduced due to the sampling and classi�cation
process where, as explained before, a single cluster can intermittently split depending on
the selected samples. The inability to �nd a stable region can also be the consequence
of too small trace bu�ers which can not hold an entire representative region. A possible
alternative is to dynamically increase their size and check whether the results improve.

The current heuristic leaves room for improvement. For instance, it could easily take into
account how populated the clusters are. Non-regular shapes could be inscribed into more
accurate geometrical �gures, and superposition techniques could be used to calculate the
overlapping area between two clusters. Yet as simple as it is, it o�ers a quick and versatile
approach to the problem that deals well with the spectrum of scienti�c applications, whose
behavior does not tend to radically change all of a sudden.

Figure 4.8 shows this heuristic applied to follow the evolution of the SPECMPI bench-
mark MILC [136]. Each clustering plot corresponds to the analysis of the data of sub-
sequent time intervals of the application. As the reader can see, the structure of the ap-
plication performance keeps on changing during the initial phases, while the initializations
are still taking part, until the program enters the main computing loop (step 5 and beyond).

Once a stable region has been detected, clustering results are transferred back to the
back-end threads, and every CPU burst is labeled with the cluster to whom it belongs to.
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Figure 4.8.: Monitoring the evolution of MILC until a stable region is detected. The scatter
plots show the structure of the computations detected for subsequent execution
intervals.

Along with the clusters distribution, all performance data within the same time interval is
�ushed from the tracing bu�ers in order to produce a detailed trace of that region. In this
example, the trace generated comprises about 6 full iterations with all the details, including
MPI calls, communications, hardware counters, callstack information, plus the distribution
of clusters over time as depicted in the time-line in Figure 4.8.

Structural information incorporated into the trace helps the user to identify those com-
puting phases that they may expect of their application and to correlate them with the
code. In addition, we obtain periodic reports that allow to understand the evolution of the
application’s structure until then. At this moment, the system does not necessarily have
to stop, but can work the other way around. Taking the stable region as representative,
subsequent clusterings can be compared looking for signi�cant di�erences in structure.
This might be a re�ection of the application entering a di�erent computation phase or un-
dergoing signi�cant perturbations, and detailed snapshots of these regions can be stored
along with the trace.
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SPECFEM3D Gromacs MILC Zeus-MP Leslie3D

Number of tasks 64 64 245 256 512
Requested trace size 100 MB 200 MB 200 MB 350 MB 600 MB
Full run time 58 m 8 m 5.5 m 10 m 56 m
Full trace size 3 GB 20 GB 5.5 GB 22 GB 82 GB
Analysis steps 6 8 7 4 8
Clustering time / step 0.6 s 4.5 s 5.85 s 1 s 60 s
Classi�cation time 1 s 1 s 1 s 1 s 3 s
Time to get results 15 m 2.5 m 3 m 3 m 12 m

Table 4.1.: On-line clustering experiments

4.4. Experimental validation
The aim of this section is to demonstrate the ability of the on-line cluster analysis to auto-
matically identify the structure of an application as it runs, obtaining a representative trace
along with performance reports showing its evolution, and how this all contributes to an
improvement of the analysis methodology of parallel applications.

To this end, a variety of real applications and benchmarks were run on the Marenostrum
supercomputer, a cluster comprising 10,240 IBM Power PC 970MP processors at 2.3 GHz
(2560 JS21 blades) interconnected by a Myrinet network. Table 4.1 compiles the main con-
�guration parameters and results of the experiments executed. The meaning of the main
�elds and some interesting quick facts are detailed below:

• The user speci�es the �nal trace size, usually according to the amount of data the
trace visualization tool can conveniently handle. We attained reductions in size up
to two orders of magnitude while still obtaining a relevant trace comprising a few
iterations of the execution. As the number of processes grows large, it begins to
be necessary to increase the �nal trace size so as to capture a time interval that is
meaningful enough. However, this progression is much slower than in the full trace
size for a whole run.

• The frequency at which the analysis steps trigger is determined by the application
itself. For instance, GROMACS generates an average of 2,500Mb/min of trace data.
At such production rate, the requested amount of data for the resulting trace is pro-
duced every 5 seconds, so subsequent analysis are computed at that incidence rate.

• In most cases, a representative time interval is found after a few analysis steps. In-
termediate reports are produced at every step, and a �rst trace right when the ap-
plication is considered stable, which happens much before it concludes. The listed
total time to get results includes initializations, the aggregated analysis times and
the application computation itself.

• As explained in Section 3.3 only a small subset of data is actually clustered, while
the rest is classi�ed in order to keep the analysis times short. In most experiments
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the same number of samples were randomly taken to be clustered (approximately
a maximum of 8,000 samples) but noteworthy variances in the analysis time can be
observed between applications. This is due to the fact that the analysis cost does not
only depend on the volume of data being processed, but also on the data itself and
the input parameters of the analysis algorithm. Further details on this are discussed
in [114].

The following sections present a more in-depth analysis of three of these applications to
demonstrate how the proposed technique contributes for an easier analysis methodology
and a better understanding of the application, and how the presented information can be
used to detect interesting performance issues.

4.4.1. GROMACS analysis
GROMACS is an engine to perform molecular dynamics simulations and energy minim-
ization. These are two of the many techniques that belong to the realm of computational
chemistry and molecular modeling [135]. In our experiments, the application ran with 64
MPI tasks and we obtained a trace comprising just 10 full iterations.

Figure 4.9 shows the structure of the application at the di�erent analysis steps. As the
reader can see, it presents minor variations over time, with the exception of the Cluster 1
(green) that sometimes splits into two (steps 2 and 5). This can happen because of small
variations of the application, or because the data points in the middle that make the sub-
clusters merge are not very frequent and might not get sampled. Anyway, the application
stays very stable in the following steps, as shown in the bottom left chart that displays
the total percentage of time covered by the clusters that were considered equivalent by
the stability heuristic. After two consecutive hits of 100% similarity, the region analyzed
in step 8 is selected as representative. Even if the green cluster had continued splitting
intermittently, since the comparison heuristic is adaptative and lowers the requisites as
time passes, we would have come to the same solution anyway.

The scatter plot in Figure 4.10 shows a detailed view of the the structure of the di�erent
computing regions for the traced interval in terms of IPC and instructions. Coinciding with
the di�erent phases of the application, three predominant zones with di�erent behaviors
can be easily identi�ed.

Both clusters 1 and 2 correspond to the heaviest computing phases, with higher IPC
and number of instructions completed. A third group of less-populated clusters represent
the smaller computing zones, with less than 20 million of instructions executed and lower
performance.

While cluster 1 stretches well-balanced (the more instructions, the more IPC), cluster 2
presents a signi�cant �uctuation in the number of instructions but constant IPC, which is
indicative of a potential load imbalance. This will be an actual imbalance if those variances
occur simultaneously in di�erent processes. Further veri�cation will require to check the
distribution of clusters over time, that can be seen within the trace time-line.

A closer look to the region of clusters with lower performance (see Figure 4.11) reveals
both instructions and IPC variances between di�erent clusters. Having the plot correlated
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Figure 4.9.: Monitoring the evolution of GROMACS until a stable region is detected. The
scatter plots show the structure of the computations detected for subsequent
execution intervals. Top left chart shows the aggregate time covered by the
matched clusters when applying the stability heuristic to every pair of images.
The application is considered stable at step 8, which is selected as representat-
ive.
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Figure 4.10.: Structure of the main computing regions of GROMACS. Two main compute-
intensive phases are represented by clusters 1 and 2. Clusters 3 to 7 group
smaller computations.

with the time-line, we can verify a non-SPMD behavior where di�erent computations with
variable performance are taking place simultaneously. Computing zones with constant
instructions but variance in IPC and vice-versa are interspersed, which results in a duration
variance, thus a real load imbalance.

Moreover, these small computations are being performed by a subset of the processes.
Complementary processes (not depicted) perform those heavy computations that fall into
clusters 1 and 2 only. These de�nes two disjoint types of processes that match the perform-
ance behaviors initially observed in the scatter plot, which correspond to the two types of
job classes (PME and non-PME processes) in which the application is divided. Further-
more, every computing zone can be easily correlated with the source code, as the trace
contains their associated call stack information. In this way, a precise recommendation to
study the load-balancing characteristics of these particular regions of code can be made to
the user.

4.4.2. Zeus-MP analysis

ZEUS-MP [137] is a computational �uid dynamics code for the simulation of astrophysical
phenomena. It is included as part of the SPEC MPI2007 benchmark suite [136] for meas-
uring and comparing MPI-parallel, �oating point, compute intensive performance across
a wide range of systems. In our experiments, we ran Zeus-MP with 256 MPI tasks, and
obtained a trace comprising 4 representative iterations. The analysis completed in just 4
steps, meaning that the application behavior is very stationary.

The scatter plot in Figure 4.13a shows the structure of the di�erent computing regions
for the traced interval. Most clusters can be seen to spread horizontally, which typically
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Figure 4.11.: Detailed view of clusters of GROMACS with lower performance and their
distribution over time. Clusters with same IPC and di�erent instructions and
vice-versa denote imbalance problems.

means the computing regions are well balanced in terms of amount of work (they all ex-
ecute the same number of instructions), but there are �uctuations of IPC which may result
in load imbalances depending on how they are distributed over time, as we saw in the
previous example.

The clusters information included in the trace helps the analyst not only to identify
where do these imbalances happen, but to decide whether they are signi�cant and quantify
their impact. Focusing on the most compute-intensive clusters, the graph in Figure 4.13b
correlates the variability between computation durations and their achieved IPC within
each cluster. As one could expect, decreases in IPC that range from 20 to 30%, incur pro-
portional duration increases.

The repercussion of these variances can be observed in the time-line in Figure 4.12,
which shows the distribution of clusters over a single full iteration. While at the beginning
of the iteration all processes start computing at the same time, the fastest processes keep
on outrunning the slowest as the iteration progresses, making the processes more and
more desynchronized. Point to point communications between computing phases hold
the accumulation of delays back slightly as they keep partners synchronized, but it is not
until the end of the iteration that a global collective operation absorbs the whole imbalance.
A di�erent work distribution could be considered in favor of a better balance of the varied
computation costs, rather than the raw amount of work.

4.4.3. SPECFEM3D analysis

The software package SPECFEM3D [138] simulates seismic wave propagation in sediment-
ary basin. The solver is completely general and can be used to simulate seismic wave
propagation on regional and local scales.

This case study focuses on showing the utility of the reports that are generated in ad-
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Figure 4.12.: Distribution of clusters over 1 iteration of Zeus-MP (top) and complementary
MPI communications (bottom)

dition to the trace. Even though these are presented as complementary material to the
trace, they are useful tools on their own to draw quick conclusions and get a better gen-
eral understanding of the application without getting into the trace details. Going one step
beyond, they can provide the expert with the initial clues to decide on which direction to
move the analysis toward.

A �rst look to the scatter plot in Figure 4.14 provides a quick and very simple charac-
terization of the algorithm structure, clearly showing three well-di�erentiated computing
trends. Generally, the analyst’s interest will lie in the performance of the most compute-
intensive regions of the code, since it is where the useful work is done. Clusters 1 and 2
at the top right corner represent the two main computing phases of the application. Both
issue a large number of instructions (more than a billion) and achieve high performance.
However, they also present �uctuations in IPC, which are even more remarkable in cluster
2.

Along with the plot and the trace itself, the analysis produces a summary report listing
average values for a wide range of relevant performance metrics for every cluster. Table
4.15a shows a small excerpt of this list. This information can be used to characterize the
di�erent clusters, and can be represented more visually through the Cycles per Instruction
breakdown model [139], as shown in Figure 4.15b.

The CPI stack depicts the percentage of cycles in which the processor is completing
work or stalled. The stall component is decomposed into the possible causes (i.e. empty
pipeline; waiting for memory, arithmetic or �oating point units). In this particular example,
it is interesting to point out that more than 50% of the stall cycles in both clusters 1 and 2
are due to memory accesses (LSU stall cycles).

Whether the high percentage of ine�cient memory accesses justi�es the �uctuations in
IPC that we observed in the scatter plot can be answered by delving into the trace. A more
detailed analysis correlating the duration of computations against L2 data cache misses
shows a proportionally increasing relation between both variables, highlighting a possible
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(a) Most compute-intensive clusters present large IPC �uctuations

(b) Correlation of computing durations and IPC per cluster

Figure 4.13.: Structure of the main computing regions of Zeus-MP
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Figure 4.14.: Structure of the main computing regions of SPECFEM3D. Three main per-
formance trends stand out.

improvement in the data access pattern.

4.4.4. �ality assessment of the clustering results

In previous sections we have shown the on-line clustering protocol applied to the analysis
of di�erent applications and how the resulting reports can be used to gain understand-
ing of their structure and achieved performance. This approach provides greater analysis
�exibility than a pro�ler, while sharply reducing the amount of data compared to a full
execution trace. However, such data reduction goes through an inevitable data loss, where
punctual variations between iterations might get lost.

While not spurning the interest of these details, it becomes even more important to �nd
a time interval that is illustrative of the application’s iterative behavior. Any performance
problem detected in this region is likely to be replicated thorough the whole execution,
and this strong is the impact of an optimization as well.

In order to ensure that the traced region does not miss relevant areas and to evaluate
how representative of the overall execution it is, we have compared our results to the per-
formance data gathered by an external tool from a full run. To this end, we have used a
pro�ler to obtain several metrics of the most relevant user functions. The same metrics
were also computed for the traced interval that is automatically selected by our mechan-
ism. In this way, we have veri�ed that the values reported by both approaches remain
practically the same. For the comparison, we took into consideration the percentage of
time spent in each function, and the average values of instructions completed and elapsed
cycles per call.

Table 4.2 compares the measurements obtained both from the complete and selected
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Cluster 1 Cluster 2

% Duration 70.23% 26.02%
Avg. Burst Duration (µs) 2,142.66 947.04
IPC 0.75 0.66
MIPS 1,702.70 1,501.75
MFLOPS 1,421.36 555.95
Memory BW (MB/s) 260.22 203.84
Memory instr/s 1,324.80 1,740.67

(a) Detailed list of metrics

(b) CPI stack report

Figure 4.15.: Performance reports per cluster of SPECFEM3D

time intervals of GROMACS application. Columns 1-3 show the values for these metrics
as reported by TAU pro�ler [45] for the whole run of the application. Columns 4-6 show
the same metrics computed for the representative traced region. As noted, di�erences are
marginal (percentage di�erences are lower than 4% and under 1% in most cases) and can be
due to small variances between iterations, executions, or even to the di�erent overheads
introduced by the respective measuring tools. Showing all user functions the same overall
behavior is a simple indicative of the traced region as a fair representative for the whole
execution.

4.5. Related work

The Paradyn Parallel Performance Tools project [62, 84] paved the way for intelligent selec-
tion of performance data. It provides a pro�le-based on-line bottleneck search algorithm
that automatically looks for a set of known performance problems. This is an iterative
process of formulating hypotheses and inspecting related performance data in an attempt
to con�rm or reject them. Periscope [43] proposes a very similar on-line distributed ana-
lysis, having agents autonomously searching for performance problems of a small subset
of processes. Similarly, OPAL [67] used hypothesis and proof rules, except that re�ne-
ments caused new executions to be started with new data to be collected via selective
tracing. DynTG [68] does not include automatic selection of performance data. Instead,
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the user interactively instruments the program as it runs by clicking on source code lines
in a browser, based on their own observations of the results presented for the selected
zones.

Automatic trace analysis systems such as Scalasca [46], AKSUM [98] or Kappa-PI [93]
mainly di�er in the phase the analysis is applied. Their post-mortem approach allows a
thorough search for known performance bottlenecks over the whole detailed event trace.
Nevertheless, their ability to identify performance issues is limited by the knowledge bases
themselves, and the more extensive they are, the more time the analysis is going to require.

The application of clustering techniques in real-time analysis has been approached by
Nickolayev et al. [108]. In their work, K-means statistical clustering is taken in the Pablo
Performance Analysis Environment [109] to reduce the volume of captured data by identi-
fying and recording events only from representative processors. Instead we aim to detect
the internal structure of the application, basing on a density-based clustering strategy pro-
posed by Gonzalez et al. in [114].

Overall, our approach shares common aspects with the tools above. Similarly, we pro-
pose to inspect and �lter the performance data automatically and at run-time. However,
two fundamental poses di�er in our contribution. First, we do not rely on summarized pro-
�ling snapshots to compute the analysis. On the contrary, we analyze the detailed stream
of traced events, where small variances that may have a signi�cant impact are not masked.
Second, our objective is not to produce a summary report of common performance bottle-
necks, but a detailed description of the application structure along with a representative
yet small trace. While the structure reports are meant to provide the analyst with a general
understanding of the application, having a recorded trace enables them to formulate their
own hypotheses about the causes of the observed performance and design speci�c metrics
to corroborate them, which may lead to the discovery of new and unexpected patterns that
model an ine�cient behavior.

4.6. Closing remarks
In this chapter we have presented an analysis protocol running on top of the on-line ana-
lysis framework that leverages clustering techniques to automatically detect the perform-
ance trends that the computing regions of a parallel application exhibit during the exe-
cution. This information enables us to minimize the amount of data emitted to the trace
while maximizing the amount of relevant information presented to the analyst. This con-
tribution tackles the trace scalability problem and allows tracing-based solutions to be used
even in large-scale scenarios. Furthermore, our on-line solution overcomes the limitations
of post-mortem analysis tools regarding the manipulation of large volumes of data and the
inevitable data loss that results from the necessary summarization processes.

Performance measurements collected during the execution are periodically analyzed us-
ing density-based clustering in order to detect the application’s structure at run-time. As a
result, we produce a compact trace of a representative region of the whole execution, pre-
serving very �ne-grain details about time and space variabilities that are important to be
analyzed. In addition, periodic performance reports and trend plots are produced, provid-
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ing extra insight about the structure of the application at the respective time intervals and
its evolution over time.

Unlike other approaches, the target of our on-line analysis is not to �nd and �lter peri-
ods for a mere data compression. Instead, we aim at identifying the application structure
as it runs, and decide which are the most interesting regions to present to the analyst,
who can then conduct the analysis not being limited by prede�ned and potentially incom-
plete knowledge-based rules. In this regard, automatic analysis tools like expert systems
and performance modeling frameworks could immediately bene�t from the structural in-
formation that we discover in several ways. On one hand, such automatic analysis tools
could still do their job maintaining the same levels of accuracy but much more e�ciently
if they are presented with a subset of the whole data that is equally representative of the
potential performance problems. On the other hand, the insight extracted about the pro-
gram’s structure could be used to enrich the set of rules of a knowledge-based system for
a more precise diagnosis. Furthermore, it would be possible to build new performance
models based on the clusters information to better undestand and predict changes in the
program’s structure.

Our work opened several new research horizons that we have explored. First, although
the work presented relies on clustering, the underlying infrastructure enables the applica-
tion of other analysis techniques towards the intelligent selection of performance data. A
downside of the clustering approach is that there is not precise control over which part of
the code will correspond to the traced region. In Chapter 5, we discuss on how to precisely
identify the program’s iterations to delimit more accurately the traced regions, using signal
processing techniques.

Second, it is interesting to redesign the density-based clustering algorithm DBSCAN to
follow a hierarchical approach that would make the most of the reduction network, by
running distributedly over all the intermediate processes of the tree so as to analyze the
data incrementally and to keep the system more scalable. The details of a hierarchical
parallelization for DBSCAN are discussed in Chapter 6.

Finally, Chapter 7 develops the idea of comparing clusterings from di�erent time in-
tervals to perform an automatic analysis of the evolution of the application over time,
and further extends it to present a technique that enables to perform very versatile multi-
experiment analyses.

76



Chapter 5
On-line spectral analysis to generate
multi-detail traces

Computation-intensive applications are customarily characterized by presenting
an iterative data�ow. In most cases, the program behavior will not change over
time, and so any signi�cant performance problem that occurs over the course of a

single iteration will also appear every single other iteration. Therefore, storing perform-
ance data for every iteration of the program does not necessarily provide much more useful
information than tracing just a few selected time steps. Identifying the iterative pattern of
the application aims at discarding redundant data while maintaining the precision of the
analysis.

Determining which iterations are interesting to trace is not a trivial task. The user could
easily annonate the main loops in their code, but that would be inpractical for the analysis
as it requires source code modi�cations and recompiling. Static code analysis techniques
can be used to instrument the loops automatically, but the decision of which ones are rel-
evant has to be taken without any knowledge about the performance behavior exhibited
during the loop, and so these mechanisms alone lack of criteria. In this chapter we present
a technique based on spectral analysis of signals to dynamically discover the iterative pat-
tern of an application considering its performance characteristics.

The information about the periodic phases of the program enables the on-line analysis
framework not only to intelligently select representative periods to trace, but also to de-
cide the granularity of the information gathered for each region. As a result, the execution
is completeley characterized at di�erent levels of detail, reducing the amount of data col-
lected while maximizing the amount of useful information presented for the analysis.
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5. On-line spectral analysis to generate multi-detail traces

5.1. Background and motivation

The problem of trace scalability has been tackled before from several angles: e�cient trace
formats and compression schemes, automatic methodologies to analyze large volumes of
data, parallel tools and distributed processing. A di�erent approach to the problem is to
exploit the highly iterative nature of HPC applications and their frequent SPMD organiza-
tion. In this sense, performance measurements can be repetitive, and a periodicity analysis
is going to detect loop-phases and expose the application’s iterative structure.

Ideally, a tracing tool should be able to automatically discard all irrelevant measure-
ments, focusing the analysis just on the essential information and �ltering out the redund-
ant data. In Chapter 4, we introduced the use of clustering techniques to identify the struc-
ture of the computing regions and monitor the evolution of the application to see changes
in its behavior. The analysis was repeated periodically and the results compared. If the
resulting clusters were similar, that was indicative of the application being in a repetitive
phase, and then just one of these phases was traced as a representative of the execution.

While this method has proved useful to reduce the amount of data emitted to the trace,
it lacks precision when it comes to delimiting the boundaries of the traced region since
the exact start and ending points of every iteration inside the loops of the program is not
known. At best, this rough approach may result in tracing more iterations than what is
actually needed for an e�ective analysis, if not the very opposite.

Spectral analysis techniques such as Fourier transform and Wavelet analysis have been
previously applied post-mortem for pattern recognition in event traces [140]. The analysis
of signals to detect phases in the application is advantageous for several reasons. First, the
time-stamped sequence of performance events that is contained in a trace can be easily and
naturally represented as a function of time. Second, a signal can re�ect very accurately
all the high-detail variabilities across time and space (processors) that are important for
the analysis. Third, it is possible to isolate a given performance metric and perform the
analysis based only on it, and therefore, to determine the impact of this parameter over
the whole execution. Finally, the algorithms based on signal processing theory have low
computational complexity, they rest on a very solid mathematical foundation, and they are
able to provide relevant information automatically.

In this chapter we show how these techniques can be adapted to run in real time, en-
abling us to identify the di�erent phases and periods of the application while it is being
executed. This knowledge incorporated into the on-line analysis framework provides the
opportunity to automatically select an exact number of representative iterations for every
di�erent pattern, and dynamically decide whether to keep, discard or aggregate the inform-
ation for the repetitive phases at di�erent levels of detail. As a result, a minimum trace is
produced that maximizes the amount of relevant information presented to the analyst and
fully characterizes the whole execution, notably simplifying the subsequent analysis in
terms of the amount of data that has to be processed.
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Figure 5.1.: On-line spectral analysis protocol work�ow

5.2. The on-line spectral analysis protocol
The on-line spectral analysis protocol is built on top of the analysis framework introduced
in Chapter 3. Figure 5.1 shows how this protocol integrates with the system. The objective
of this analysis is to identify and di�erentiate every di�erent periodic behavior of the ap-
plication. This addition brings to the fray the ability to precisely control what information
is relevant to be traced and what is subject to be discarded.

5.2.1. Generation of a signal from performance data
In order to apply signal processing techniques to detect periodic phases in the applica-
tion, it is necessary to characterize the execution with signals. The �rst step then consists
in deriving a signal from the trace data that is being collected by the tracing back-ends.
We convert the stream of time-stamped performance measurements into a time-discrete
function described by triplets of time, duration and value of the metric used to compute
the signal, representing the time evolution of the given metric during the execution of the
application.

Any of the performance measurements available in the trace can be used to build the sig-
nal. In this way, we can select metrics that focus on the execution phases (e.g. the number
of processes that are computing simultaneously), metrics that focus on the performance
characteristics (e.g. the instructions executed per cycle), or metrics that put more emphasis
on the communications (e.g. number of message-passing calls or number of in-�ight com-
munications).
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5. On-line spectral analysis to generate multi-detail traces

An interesting metric to analyze is any that re�ects the periodic structure of the ap-
plication, and depending on the case, some metrics might show phases more clearly than
others. The selected metric does not necessarily have to distinguish code regions unequi-
vocally, but to represent a marked sequence of repetitions where to �nd a clear periodicity.
Among the possible options, we usually select the duration of the CPU bursts, de�ned as
the duration of the computing regions between consecutive calls to the parallel run-time.

This metric has the major advantage of being applicable regardless of the parallel pro-
gramming paradigm the application uses. And more importantly, it shows a very strong
pattern despite small variations or �uctuations the application might undergo, as exempli-
�ed in Figure 5.2 for the NAS BT benchmark [141].

5.2.2. Signals integration
One such signal is independently generated per every application task, using its local per-
formance data, and therefore represents the periodic behavior of a single task each. In
order to analyze the application globally, we integrate all individual signals over the re-
duction tree. These are sent from the back-ends of the tree to the front-end, and they are
added up in the intermediate nodes as they go up in the tree. The aggregation simply con-
sists of increasing the value of the resulting signal whenever any of the summed signals is
non-zero, as shown in Figure 5.3a. When the application model is SPMD, all task’s signals
will approximately show the same amplitude in the same time intervals, thus the summed
signal will present the same shape with amplitudes scaled by the number of tasks. This
e�ect strengthens the periodic behavior of the signal and facilitates the later periodicity
analysis.

If all tasks and node clocks were perfectly synchronized, all variations in the signals
amplitudes would occur in the same exact timestamp, and the total number of di�erent
transitions to describe the summed signal would remain constant. But in reality, small
clock skews and performance variations between processors make the tasks misaligned,
and so the aggregated signal to grow linearly to the number of tasks, as shown in Figure
5.3b. In this case, the number of transitions that are needed to express the summed signal
more than doubled, and the result does not better re�ect the state of the application.

In order to keep the summed signal scalable, we added a second �lter operation in the

Figure 5.2.: CPU burst duration signal of the NAS BT benchmark
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(a) Signals aligned (b) Signals misaligned (c) Jitter reduction

Figure 5.3.: Signals integration process

intermediate nodes to clean the jitter. Consecutive rising or falling edges as shown in
Figure 5.3c (top) are accumulated in a single �ank transition, resulting in the simpli�ed
signal 5.3c (bottom).

The combination of both �lters sharply reduces the size of the integrated signal, keeping
the system scalable in terms of memory consumption and required computation for the
analysis to be computed at the front-end, which receives a single signal to analyze that
expresses the global periodic behavior of the whole application.

5.2.3. Spectral analysis of signals
The spectral analysis mechanism that we use [140] consists of four main signal processing
techniques to detect periodicity in the signal. First, morphological �lters derived from the
theory of Mathematical morphology are applied to clean up perturbed regions of the trace
(e.g. zones of disk I/O). Second, Discrete Wavelet (DWT) and Fast-Fourier (FFT) transforms
are used to identify high-frequency regions in the signal, which are directly related to the
execution of the internal loops of the application’s source code, and allows to separate
regions according to their frequency behavior, i.e. a region with a small iteration which is
repeated many times is separated from another region with no periodic behavior. Then,
autocorrelation analysis provides a way to detect the period within the regions with strong
periodic behavior. And �nally, cross-correlation enables to detect which iterations are the
most representative of the whole periodic region.

If the execution has the typical structure of HPC applications, the periodic phase will
be detected because it has a strong high frequency behavior. Besides, if the execution
contains multiple periodic phases, the analysis will also detect them because DWT is able
to separate the periodic phases characterized with di�erent frequencies. Assuming that
each periodic region detected comprises an iterative pattern where there are no signi�cant
di�erences between the repetitions of the pattern, it is possible to select just a few of them
as representatives.

At the end of the spectral analysis, the mechanism reports the time bounds for each
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(a) Intersecting area is low when signals are decoupled

(b) Maximum intersecting area when signals are coupled

Figure 5.4.: Cross-correlation of two signals

periodic region detected, the average length of the period, and thus the total number of
iterations within the periodic region. Additionally, the user can specify a number of con-
secutive iterations, and the tool recommends those where the period is more marked and
presents less �uctuations.

This information is then used to monitor the evolution of the application over time. At
�xed time intervals, or whenever a given volume of new performance data is produced
(orchestrated by the analysis front-end of the on-line framework), a new step of analysis
triggers. Subsequent analyses produce a sequence of signals, whose shape (length, fre-
quency, amplitude) can be compared to see changes in the application structure. For this
comparison, we perform a cross-correlation of the signals in pairs, which is a measure of
similarity of two waveforms as a function of a time-lag applied to one of them. This can
be seen as sliding one function over the other, to �nd the point where the area under both
functions is maximum, as shown in Figure 5.4.

The result of the cross-correlation is expressed as a percentage of similarity. When
this value is greater than a given threshold, both signals are considered to be equivalent,
meaning the periodic behavior remains the same. If the signals di�er, then the applica-
tion is either under signi�cant perturbations or entered a di�erent computing phase, and
the value for the cross-correlation will drop. Contrasting empirical experiments, we have
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Figure 5.5.: Global periodicity view in the full execution of PFloTran with 32 MPI tasks

Figure 5.6.: Detail of the two di�erent periodic behaviors observed over time during the
execution of PFloTran

determined that an appropriate similarity threshold for the cross-correlation ranges from
90 to 100% for synthetic benchmarks, which are usually very repetitive; 80% is a reason-
able value for most normal cases; lower than 70% denotes noticeable di�erences; and very
signi�cant di�erences under 50%.

The sensitivity to execution variations can be tuned with this parameter, so the higher
the threshold, the more likely two periods are detected to be di�erent due to small �uc-
tuations, and the more information is �nally traced. Other parameters that control the
amount of traced information are: the maximum number of periods to trace, the minimum
times a period has to be seen before it is traced, and the maximum number of iterations to
trace per period.

Having prior knowledge of the application (i.e. there is certainty that the application
presents just one type of periodic behavior), these parameters can be easily adjusted so
that the analysis produces results before the execution completes. Otherwise, the system
will monitor the whole run, periodically repeating the analysis across the execution. For
every new pattern of periodic behavior that is detected, it will then trace in detail an ex-
act number of representative iterations. Generally, a minimum of 2 or 3 full iterations is
enough for an e�ective analysis, but as much extra data as speci�ed can be included beyond
that while keeping the total trace size under control. If the observed application behavior
remains unchanged, the system will not trace any more samples, but can be con�gured to
summarize or completely discard the surplus data.

Figure 5.5 shows an example of the on-line spectral analysis protocol applied to the
full run of PFloTran using 32 MPI tasks. The analysis was performed every 30 seconds,
introducing an overhead of 1.5 seconds on average. As a result, the system detected two
di�erent periodic behaviors, shown as the green and yellow phases in the timeline. The
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size of the resulting trace, that comprises a sample of a few iterations per each of these
two periods, is 275 Mb, down from 8.5 Gb for the full trace. This application executes 100
iterations of the same code, so we could have expected to �nd a single type of periodic
behavior. The fact that two di�erent periods are detected means that the behavior of the
application changed over time.

What the analysis found is that the length of the period decreases from 1,600 ms (green
phase) to 1,300 ms (yellow phase). The reason for this is not because of performance per-
turbations, but because the execution �ow of the program changes. Figure 5.6 shows how
the main iterative phase of the program is comprised of 4 sub-phases during the green
period, while it is only 3 sub-phases during the yellow period. This happens because the
algorithm is a solver that can converge to a stable solution faster or slower. These di�er-
ences change the shape of the signals depicted on the right, decreasing in turn the value for
the cross-correlation below the similarity threshold, and thus both phases are considered
di�erent and a sample for each one gets automatically traced in detail.

5.3. Multi-detail levels of trace data
In the previous section we have described the ability of the system to detect patterns of
periodic behavior and automatically select a few representative iterations to be traced in
detail. In this way, we avoid storing redundant data and keep the trace manageable. But
this does not necessarily mean that we can not have any information for the rest of the
execution, other than these selected iterations.

The tracing back-ends are able to trace information under two main modes of operation:
full detail streams of events (all function calls, hardware counters, communications, call
stack, etc.), and summarized traces [120]. The latter focuses on providing information only
for the most intensive computing regions, so that the main structure of the application
can still be analyzed in detail. The most negligible but frequent computations that make
the trace grow large, along with general MPI statistics (time elapsed, bytes transferred and
number of calls), are accumulated using software counters. The minimum computing burst
length to consider determines the granularity of the summarized trace, which is a trade-o�
between size and usefulness of the information presented to the analyst, enabling a good
characterization of the execution at a reasonable size.

The strategy we follow is to combine both tracing modes and di�erent levels of granular-
ity so that a few representative iterations are traced in detail, and the remaining repetitive
behaviors and non-periodic zones get partially summarized. In this way, time and space
variability can still be studied across the whole execution while avoiding redundant data.

Figure 5.7 shows an example of this protocol applied to a full 3.5 minutes run of the NAS
BT benchmark with 64 processes. The trace timelines represent the state of every process
(Y-axis) over time (X-axis) with respect to di�erent metrics.

Figure 5.7a shows the di�erent periods that were detected for a global view of the it-
erative structure of the application. Colors represent every di�erent periodic behavior of
the application: blue for the non-periodic region (occurs at the very beginning, due to ini-
tializations); red for the analysis time, which was computed every 30 seconds and took
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(a) Global periodic view for the whole run

(b) Phase pro�ler of Instructions per cycle for all periodic regions

(c) Sequence of MPI calls over three detailed iterations

(d) Internal computing bursts structure of a single iteration

Figure 5.7.: Increasing levels of detail stored in a single trace of the NAS BT benchmark
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1.5s on average to complete; and green for the regions analyzed. Every analysis region
comprises 40 iterations of the application, which executes a total of 200. The fact that all
these regions are green means that the application presents a single periodic behavior that
repeats across the whole execution.

The very �rst time this behavior is seen, the system selects a few representative iter-
ations to be traced in detail. That includes function calls, hardware counters, call stack
references, and inter-process communications, as shown in Figure 5.7c with the detailed
sequence of MPI calls over three complete iterations of the application’s main loop. In this
way, every di�erent pattern of behavior has a compact, but complete representation in the
trace.

Then, for the remaining iterations within a periodic region that will not be traced in de-
tail, we accumulate software counters for MPI statistics and performance counters, provid-
ing per-step phase pro�ler information. Figure 5.7b shows the average instructions per cycle
per iteration of NAS BT over the entire run. In this case, the gradient from green to blue
represents increasingly higher IPC values. Just having a quick look at it, one can easily
identify a subset of processes that are systematically achieving higher performance.

Combining spectral analysis with clustering, we can also incorporate into the trace in-
formation about the structure of every computing burst for a given time region, which
provides high details about the internal computing structure of the application. Figure
5.7d shows the distribution of the di�erent computing clusters over a single iteration of
the application, where three main sub-phases can be quickly identi�ed.

And for the non-periodic regions, we can optionally store a summarized trace that �lters
out the less relevant computations. Including detailed tracing for these regions is usually
not an option, as the �nal trace size can grow large and its utility is debatable. Generally
speaking, a highly repetitive behavior is more interesting than an isolated e�ect, as any
performance issue detected and optimized there will have a strong impact all over the
execution. However, this does not imply that non-periodic e�ects are all irrelevant, so
rather than discarding all this data, we present it partially summarized.

All these types of information, which range from the most general view of the applica-
tion’s iterative structure to the most speci�c details in an iteration, can be combined in a
single trace that virtually has the same information that is comprised in a full trace, but at
a minimum size. The automatically generated trace used in this example occupies 20Mb
only, down from 1.5Gb for the full trace.

5.4. Experimental validation
The automatic analysis system presented has been tested with a variety of real applica-
tions and benchmarks in the Cray XT5 supercomputer Jaguar. The XT5 partition contains
18,688 compute nodes with dual hex-core AMD Opteron 2435 (Istanbul) processors run-
ning at 2.6GHz, for a total of 224,256 processing cores. The objective of these experiments
is threefold:

• Validate that the system successfully identi�es the iterative behavior of an applica-
tion, and it is responsive to small �uctuations that might be present in the execution.
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• Show that the automatic traces are much smaller compared to the full runs, and they
can be e�ectively used to detect interesting performance issues.

• Evaluate the scalability of the system up to tens of thousands of cores.

The following sections present an in-depth analysis on two real applications to demon-
strate how the proposed analysis contributes to obtaining manageable volumes of inform-
ation that are useful for the analyst to understand how the application behaves.

5.4.1. �ality assessment of the resulting traces
As shown in the following examples, the application of this protocol results in automat-
ically generated traces that attain size reductions of several orders of magnitude, sharply
shrinking the amount of data compared to a full execution trace. However, such data re-
duction goes through an inevitable data loss, where isolated e�ects might get lost.

One question that arises then is whether a compact trace for a short time interval is a
fair representative for a full trace, and if the analysis of the �rst would lead to the same
conclusions as the use of the latter. In order to respond to this matter, we evaluate the trace
quality loss in terms of the variability that is going to be lost because of focusing on just
a few iterations. The objective is to ensure that the traced region does not miss relevant
areas and represents well the overall execution. We do so by comparing our results with
the performance data gathered from a full run. In particular, we have used a pro�ler to
obtain several metrics of the functions of the program. The same metrics were computed
for the trace interval that is automatically selected by our mechanism. In this way, we have
veri�ed that the values reported in both cases remain practically the same.

Table 5.1 compares the percentage of time spent in the most consuming MPI functions,
both for the complete and selected time intervals of PEPC and PFloTran applications. As
noted, di�erences are marginal (percentage di�erences are lower than 3%) with trace re-
ductions greater than 90%. Overall, the same structure can be identi�ed, so in all cases the
trace segment proved to be a good representative for the rest of the execution.

5.4.2. PEPC analysis
PEPC 1.0 [142] is a parallel tree-code for rapid computation of long-range Coulomb forces
for large ensembles of charged particles. The execution was run with 2,048 processors on
Jaguar. The analysis was triggered at a �xed time rate of 3 minutes, and took 4.5 seconds
on average to complete. A full trace has an approximate size of 0.5 Tb for 30 minutes of
execution. Instead, the tool produces an automatic trace that represents a single periodic
behavior with two iterations traced in detail in roughly 5 Gb. Some tools may still present
issues when handling such amount of data, but the important fact to remark is that the
trace generated is 99% smaller.

Figure 5.8a shows the structure for these two iterations, which alternates a sequence
of computing and global communication phases. The computing phase is in turn divided
into an iterative pattern that comprises two heavy computations followed by several short
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(a) The main iteration is comprised by two di�erent phases

(b) Three sub-iterations inside the computing phase

(c) Distribution of clusters over the sub-iterations

Figure 5.8.: Analysis views for PEPC (2,048 tasks)

bursts, as can be seen in more detail in Figure 5.8b. In both timelines, the color gradient
from green to blue represents increasingly larger computations.

We have clustered the computing bursts on this sample of three sub-iterations by their
number of executed instructions and the achieved IPC. This results in all computations
with similar characteristics to be grouped together, as shown in Figure 5.9. This scatter
plot is to be interpreted as having four di�erent types of computations, where clusters 1
and 2 happen to execute a high number of instructions and are the most time-consuming,
which makes them the best candidates to focus the analysis on. The distribution of clusters
over the timeline can be seen in Figure 5.8c. Clusters 1 and 2 correspond to the heavy com-
putations on the sub-iteration, while clusters 3 and 4 correspond to the short computations
between MPI calls.

A histogram of the computation durations correlated with the number of executed in-
structions is shown in Figure 5.10. This is read as the classic histogram rotated, where
the processes are on the Y-axis and the values on the X-axis, with higher values on the
right-most part of the histogram. Any structure other than a vertical line is re�ecting
dispersion, which is specially remarkable in cluster 2. The lower half of the histogram
is shifted to the right, meaning the computations for the lower half of the processors are
taking a 2% longer. The color gradient from green to blue represents an increasing number
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Figure 5.9.: Structure of the main computing regions of PEPC

Figure 5.10.: Histogram correlating the duration of the computations and the executed in-
structions in PEPC. Longer computations (the more to the right part of the
histogram) execute more instructions (darker gradient colors from green to
blue, being orange the maximum value).

of executed instructions, being higher for these same processes. This re�ects work imbal-
ance in the application, that could also be inferred from the signi�cant dispersion in the
instruction axis in Figure 5.9.

The corresponding source code is the function tree_walk, between lines 160 and 378.
The code within this region classi�es a list of particles whether their interaction has to
be computed or deferred, and the code �ow is likely to di�er depending on the process,
being some case statements more compute intensive than the rest. This e�ect eventually
causes communication delays in the next program phase. The imbalance in computations
that belong to cluster 2 are absorbed in MPI_Alltoall collective operations that take place
immediately after, where the late-arriving processes provoke a global stall. The impact
of this imbalance can be measured by Paraver con�gurations as de�ned by Casas et al.
in [143]. The loss in the load balance e�ciency can be quanti�ed up to a 16% of the total
computing time for this region. So if the user gets to balance the dispersion of instructions,
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(a) Time interval for a single iteration running with 16,384 tasks

(b) Same time interval doubling the number of tasks to 32,768

Figure 5.11.: Structure of a single iteration of PFloTran

these are the improvements they are expected to achieve.
All in all, while the spectral analysis of signals delimits which are the interesting regions

to be traced, clustering analysis is used to characterize their internal structure. The com-
bination of both techniques attains full coverage for the execution, capturing meaningful
information for every relevant region to help the analyst getting complete understanding
of the application behavior.

5.4.3. PFloTran analysis
PFloTran [144] is built on top of PETSc for modeling multi-phase, multi-component sub-
surface �ow and reactive transport using massively parallel computers. In this experiment,
we ran two large executions on Jaguar with 16,384 and 32,768 cores, with the objective of
studying how well the application scales. The full traces for these runs approximately size
28 and 78 Tb, while the automatic traces resulted in 2.6 and 7.3 Gb respectively, compris-
ing three iterations traced in full detail each. In both cases, the extra analysis time did not
exceed the 1% of the total execution time.

PFloTran performs an iteration-based simulation with two main stages: �ow and trans-
port. Figure 5.11a shows the execution timeline for a single iteration of the 16k cores
test case, where both phases intersperse. The �ow stage comprises three intensive com-
putations separated by large global communications where data is exchanged between all
processes. The transport phase comprises, in turn, iterative short computations also separ-
ated by global synchronizations. If the application scales well, when doubling the number
of processes we expect it to run twice as fast, and so in the same time interval that a single
iteration took to execute, it now should execute two. Figure 5.11b shows the same time
scale for the 32k cores experiment. In this interval, it now gets to execute one and a half
iteration only, which is indicative of some phases that are not linearly scaling. Visually, it
is easy to see that �ow gets signi�cantly reduced, while transport lasts the same. However,
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Figure 5.12.: Histograms of the duration of the computations in PFloTran when using
16,384 (top) and 32,768 (bottom) MPI tasks. The rate at which data moves
to the left indicates how well the di�erent parts of the program scale.

it is not that the computations in this stage do not scale, but it is now performing more
sub-iterations, which is dependant on how quick the solver converges.

For a detailed study of the scalability of the di�erent stages we can compare the histo-
grams for the computations durations, as shown in Figure 5.12. Here we can easily see
that all phases scale, but at a di�erent rate. For the three sub-phases (named F1, F2 and F3)
that comprise the �ow stage, F2 scales linearly being reduced by a 50%, while F1 and F3
achieve a smaller 1.6 speed-up. The transport stage scores the worst improvement, with
a 1.4 speed-up only. Also, it is easy to notice that the dispersion between processors in-
creases in the largest execution, with new trends of behavior (more columns) appearing
for the di�erent stages. The fact that the second half of processors are all skewed to the
left re�ects a load-balance problem, as multiple computations with variable performance
are taking place simultaneously.

Starting with the region that performs the worst, we can then correlate the duration
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Figure 5.13.: Histogram correlating the duration of the computations (columns) and the ex-
ecuted instructions (color gradient) in PFloTran showing imbalances between
processes (rows)

of the computations with the number of instructions executed (see Figure 5.13), so as to
check whether the reason for the bad scaling is due to problems in the work distribution.
The more to the right a point appears in the histogram, the longer is the duration of the
computation that represents. The color gradient from green to blue indicates an increas-
ing number of executed instructions per computation. There is a direct relation between
both variables showing that the longer a computation is taking, the higher number of in-
structions is executing. Furthermore, it so happens that there are computations that last
the same but are executing di�erent numbers of instructions, which is a sign of work im-
balance. Contrariwise, we can also observe computations performing the same number of
instructions, but taking variable times to complete, which also evinces IPC imbalance.

The �ow phases F1 and F3 also present work distribution issues. The average number of
instructions executed per computation in these regions is 368M, which gets reduced by a
37.5% to 230M, rather than the expected half. A �nal recommendation that could be given
to the user is to study the load-balancing characteristics of these regions of the code.

Applying our analysis mechanism, we renounce a full trace for a meaningful represent-
ative, where we are still able to quickly identify microscopic e�ects that have a large global
impact. And when these are optimized, not only the single iteration where they were seen
will improve, but all along the same periodic region. So this leads to the remarkable con-
clusion that there is much room for performance improvement from the analysis of a very
compact trace.

5.5. Related work
The application of periodicity detection techniques in real-time analysis was explored by
Freitag et al. [145]. The Dynamic Periodicity Detector uses the stream of OpenMP parallel

93



5. On-line spectral analysis to generate multi-detail traces

functions that are being executed to identify periodic patterns of behavior in the current
data stream. Once enough periods have been recorded, the tracing facility stops collecting
events, but keeps on feeding the DPD with the stream of data until a change in the program
behavior is detected, and trace data starts to be collected again.

Also based on the detection of repetitive sequences we �nd ScalaTrace [77]. This tool is
targeted at generating scalable MPI event traces by introducing compression techniques
that are capable of extracting the application’s communication structure. Repetitive se-
quences of MPI events are merged into a single entity called Regular Section Descriptor,
which enable the representation of traces with near constant size.

Mohror et al [146] investigate pattern-based methods for reducing traces. They present
an approach for trace segmentation, that consists in collapsing sequences of segments (i.e.
loop iterations) with similar behavior and retaining a representative. To decide the simil-
arity of segments, the authors evaluate several methods based on distances and iterations.

While the previous approaches are based on a sequence of events, ours is based on sig-
nals that are not bound to the parallel programming model and do not require a repetitive
sequence of speci�c events. Instead, periodic behavior is detected from any performance
metric, and thus it is applicable in a wider range of scenarios. Also, we perform a global
analysis of a selected signal that characterizes the periodicity of the application, so as to
determine a trace interval to study time and space variations at the application level.

A. Knüpfer et al [147] apply periodicity detection at the visualization phase. Their ob-
jective is to display less data but more information within the typical time-line views.
To this end, they collapse all repetition patterns of function calls, and since that hides too
much information, the patterns can be decomposed interactively to show the inner details.
Our approach brings the same concept of reducing the amount of information presented
to the analyst to the data collection phase, because performance tools can no longer cope
with the ever-growing amounts of gathered data.

The Paradyn Parallel Performance Tools project [62, 84] paved the way for intelligent
selection of performance data. It provides a pro�le-based on-line bottleneck search al-
gorithm that automatically looks for a set of known performance problems. This is an
iterative process of formulating hypotheses and inspecting related performance data in
an attempt to con�rm or reject them. Periscope [43] proposes a very similar on-line dis-
tributed analysis, having agents autonomously searching for performance problems of a
small subset of processes. The common aspect that our approach shares with these tools
is that we similarly inspect and �lter out the data that is being collected. However, we
perform the analysis over the detailed stream of events rather than summarized pro�les.
Also, our objective is not to report common performance bottlenecks but a detailed trace,
whose analysis may lead to the discovery of new and unexpected patterns that model an
ine�cient behavior.

Our work on intelligent selection of the traced information was �rst approached using
cluster analysis [7]. The objective was to characterize the structure of the computing re-
gions according to similarities in hardware counters values. The analysis was repeated
periodically and the results were compared. If the resulting clusters happened to be the
same, that was indicative of the application being in an iterative phase, and then that re-
gion was selected and traced as representative of the execution. This mechanism has poor
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control over the traced period, while with the approach presented here we gain precision
as we can control the exact number of traced periods.

5.6. Closing remarks
In this chapter we have presented an analysis protocol running on top of the on-line ana-
lysis framework that leverages signal processing techniques to identify the periodic struc-
ture of a parallel application. Then for each di�erent pattern of behavior detected we auto-
matically select a small representative to be emitted into the trace. Trace data is stored at
di�erent levels of granularity, ranging from a general view of the periodic structure of the
application, to every single detail for an speci�c time interval. This brings the concept of
reducing the amount of information presented to the analyst to the data collection phase,
because performance tools can no longer cope with the ever-growing amounts of data.

For every period, a few representative iterations are traced in full detail. For the remain-
ing iterations, we store accumulated software counters (i.e. MPI statistics, performance
counters), providing the information equivalent to a phase-pro�ler for the whole run. In
combination with clustering (refer to Chapter 4), we can also incorporate into the trace the
internal structure of every computing burst, and with it, the full power of cluster-based
analysis that we have previously discussed. And for the non-periodic regions, rather than
discarding all data we optionally store a summarized trace that only contains information
for the most signi�cant computations. All together, this provides both general and detailed
information that is useful for the analyst to get complete understanding of the application
behavior.

The resulting trace fully describes the execution, and enables the study in detail of time
and space variances across the whole run, while avoiding redundant data. Since it com-
prises small samples of the application iterative behavior, we achieve size reductions of
several orders of magnitude compared to a full trace. In general, the analysis of such a
compact trace will successfully lead to important performance improvements, as any per-
sistent performance �aw that is solved for a single iteration, will have a positive impact
throughout the execution.

This approach can be seen as a �rst step in the analysis methodology, obtaining the min-
imum amount of information that is relevant to the analysis. Other analysis mechanisms
could then be applied, not having to deal with large amounts of data and all the di�culties
that are inherently associated.

We have demonstrated the usefulness of this approach to extend the traces scalability up
to tens of thousands of cores and beyond. But as we keep moving forward to larger-scale
scenarios and the number of cores increase, we will eventually need additional reductions.
Knowing the structure of the application (where the iterations are, their size, etc.), we can
predict the size of the resulting trace before writing it, and take automatic decisions on
whether to keep the data in detail, discard or further summarize it, towards the maximum
trace precision that is still manageable.
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Chapter 6
A massively parallel version of the
DBSCAN cluster algorithm to improve the
scalability of on-line analysis

We have presented density-based cluster analysis as a useful technique for the
performance analysis of parallel applications. By identifying similarities in the
computing bursts of the application, it is possible to expose their �ne-grain

structure and detect relevant regions of the execution, and characterize their performance
behavior to detect imbalances and other performance problems. Nevertheless, clustering
algorithms are often computationally expensive, and since their cost heavily depends on
the size of the input, they scale very poorly with large data sets.

In this chapter we present a distributed scheme to parallelize clustering algorithms. We
apply this technique to parallelize one of the most common clustering algorithms in sci-
enti�c literature, the density-based spatial clustering of applications with noise (DBSCAN).
In the context of performance analysis, we have chosen to relax some of the axioms that
determine the cluster formation in DBSCAN on account of improving the quality of the
results due to certain characteristics of performance data. For this reason, our implement-
ation can not be assumed to be compliant with the original DBSCAN formulation, but in
the described scenario produces oustanding results being able to scale up to tens of thou-
sands of cores and analyze data sets three orders of magnitude bigger than the sequential
DBSCAN in equivalent execution time. Moreover, our approach is general enough to be
applicable to other cluster algorithms families that can also take advantage of a distributed
structure to easily parallelize their computation.

This work extends previous research presented in Chapter 4 in two main directions. First,
we increase the scalability of the clustering process to be applied on-line for the analysis
of large scale applications. And second, by being able to process larger data sets in less
time, the quality and precision of the analysis improves.
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6.1. Background and motivation
With analysis tools extracting performance measurements from a parallel application every
few milliseconds, the data generation rate for a large-scale execution quickly grows to
millions of events per second. Sifting through huge amounts of data to uncover relev-
ant performance issues makes the task of analysis for �nding bottlenecks and potential
optimizations not a trivial pursuit.

Clustering has become an important technique for the analysis of high-performance
computing applications. In brief, clustering is the task of assigning data into groups ac-
cording to a similarity measure in order to reduce the volume of data by selecting rep-
resentative observations that serve as prototypes of the clusters. In [108, 110, 148] the
authors applied K-means to �nd similar behavior among all the processes involved in a
parallel execution.

These approaches are very e�ective in reducing the sheer amount of data, but at the
expense of variability. Time and space variabilities are important in performance analysis
so as to detect microscopic e�ects that may have a large global impact, which are often
masked out when looking just at a few representatives. In [114], the authors follow a
di�erent approach. Instead of searching for representative processes, they apply DBSCAN
[115] to cluster all the CPU bursts in the execution (i.e. the computing regions between
MPI or OpenMP synchronization primitives) with respect to hardware counters metrics.
In this way, all the details on how the variability distributes over time and processes are
kept, enabling a precise detection of the computations’ structure. This information was
demonstrated to be useful to better understand the application behavior and serves as a
starting point to direct a deeper analysis.

However, DBSCAN shows scalability issues basically motivated by its algorithmic cost,
which is quadratic in the worst case. In Chapter 4, we further developed the previous
method to build an on-line analysis tool and overcame the scalability limits using a sample-
based strategy. There, each parallel process captures its own performance measurements,
samples a subset of its data, and transfers its samples to a single node where the clustering
is performed centrally with an aggregate of the samples from all tasks. Then, the rest of
the data is classi�ed in parallel using a nearest-neighbor algorithm. Withal, when moving
to the large-scale the number of samples increases very fast, resulting in slow response
times that are not reasonable in real-time; and further reducing the number of samples
would degrade the resulting clusters up to the point where they are bad prototypes of the
overall data and the amount of noise grows large.

This contribution extends the work presented in previous Chapter 4 by introducing a
new distributed implementation of the DBSCAN cluster algorithm. Our objectives are
fourfold: �rst, to design a general algorithm that can be applied to any data source, even
though our study is tailored to the on-line analysis of performance data; second, to further
improve the scalability of the DBSCAN algorithm to support large-scale experiments; third,
to support both post-mortem analysis from prerecorded trace data, and on-line analysis
where every process clusters its own performance data; and fourth, not to perform an
explicit preprocessing phase to make optimal data partitions and redistributions.

To this end, we present a tree-based algorithm that takes advantage of the inherent
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data distribution of a parallel application to perform local clusterings with partial data and
hierarchilly combine the results. Having no data redistribution phase, the main di�culty
of the algorithm becomes to expand the search for points that belong to the cluster across
the data stored in all other processes. In order to solve this algorithmic problem e�ciently,
we transform the domain of the problem from checking the Euclidean distances between
pairs of points into modelling the partial clusters as simple geometries, and checking for
their collisions in the clustering space. This approach approximates very well the original
DBSCAN algorithm with marginal di�erences below 2%.

6.2. Distributed scheme to parallelize clustering
algorithms

This section describes in detail our parallel implementation of DBSCAN, taking advantage
of the on-line analysis infrastructure presented in Chapter 3. Figure 6.1 shows the overall
structure of the algorithm.

The process starts with a local clustering performed in the back-end nodes of the tree,
so that each one will process the data extracted from one or more application’s tasks (steps
1 and 2). Local clustering results are then aggregated in the intermediate nodes of the tree
(3). In order not to �ood the network with data, the points that shape the clusters are not
transmitted per se, but they are simpli�ed into a minimal model that represents the cluster
using convex hulls [149]. The partial models are combined upon their way to the front-end,
who ends up receiving a single global representation of the state of all clusters (4). Then,
the global clustering model is broadcasted back to the back-ends (5), and their local data is
independently classi�ed with a nearest-neighbor algorithm (6), using the global model as
a reference. In this way, we achieve a highly scalable alternative to centralize and cluster
the whole data set together.

The following Sections describe the phases above in more detail.

6.2.1. Data partitions
In the performance analysis scenario, where every process of the application is producing
performance measurements, there is an intrinsic distribution of the data right from the
start. Each process could cluster its own data removing the need to create partitions and
redistribute it. How the data is distributed has a signi�cant impact in the performance
of a parallel DBSCAN implementation because of the costs associated with looking for
candidate points to be part of a cluster when they are stored in a di�erent process. For this
reason, algorithms in the literature have paid careful attention to how to better balance the
work among the processes. But �nding an optimal partition is not a trivial task, and so a
common approach is to simply distribute the whole data set equally [124]. When the data
has a physical interpretation (e.g. geographical data), it is desirable to make specialized
partitions to keep the dense areas close, minimizing the messages between processes [125].

Nevertheless, parallel applications broadly feature several characteristics that enable us
to make certain assumptions about the data distribution. Typically, these programs present
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Figure 6.1.: Distributed tree-based DBSCAN cluster algorithm design

Figure 6.2.: DBSCAN of complete data from all 128 tasks of CPMD
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strong iterative patterns and marked SPMD models [150]. This is to say, if a process reaches
a certain degree of performance for a given region of the code, it will generally achieve
very similar performance whenever it is executed again. On the other hand, di�erent
regions of code may exhibit very di�erent performance. But whatever is the shape of
the data for one process, it will be very similar for the others if the application is SPMD.
Representing the performance measurements into the space would ideally result in very
compact and clearly separated clouds of points, as shown in Figure 6.3. The scatter plots
show the result of applying DBSCAN to the performance data from tasks number 1, 64
and 128 of CPMD. It is easy to see that the structure is very similar for the di�erent tasks.
Figure 6.2 shows the resulting clustering when the data from all tasks is aggregated. Now
some clusters stretch vertically (e.g. black and red boxes) and horizontally (e.g. blue box),
denoting performance variabilities due to work and time imbalances between the di�erent
processes of the application, respectively.

Since all processes participate to the global clustering with a partial subset of the data,
an optimal redistribution that would keep the dense areas together would then require
huge data movements between all processes, incurring in a cost possibly higher than the
clustering algorithm itself. This is the reason behind the decision of designing an algorithm
without an explicit partitioning phase.

6.2.2. Local clustering
Each back-end node in the tree processes the performance data produced by one or more
tasks from the parallel application, and runs a regular sequential DBSCAN with its own
data subset. In particular, we assign to each back-end the same number of application’s
tasks, under the assumption that most codes are SPMD and so the volume of data per back-
end will be well-balanced. For non-SPMD codes this could lead to a certain work imbalance,
yet these are seldom seen and the algorithm is still applicable. For the maximum degree
of distribution, as many back-end processes as application tasks are created, so that each
task’s data is independently clustered.

The resulting local clusterings represent the computational structure of one or a few
tasks each, and these partial results have to be combined for a global view of the application
structure.

6.2.3. Global clustering
Combining the partial results requires to de�ne an e�cient representation of the cluster-
ing, so as not to �ood the network with an excess of data. In this sense, putting together all
clusters points would scale very poorly. Instead, we de�ne a simple geometrical model that
minimally describes the clusters using convex hulls, as implemented in the Computational
Geometry Algorithms Library [151].

The convex hull for a set of points P is the minimal convex polygon with vertices in
P containing all points in the set. This can be seen as an elastic band stretched open to
encompass the given cluster; when released, it will assume the shape of the convex hull, as
shown in Figure 6.4. The number of points required to represent the convex hull is orders
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(a) DBSCAN on Task 1 data (b) DBSCAN on Task 64 data

(c) DBSCAN on Task 128 data

Figure 6.3.: DBSCAN of partial data from tasks 1, 64 and 128 of CPMD
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Figure 6.4.: Convex hull of a set of points

Figure 6.5.: Intersection of convex hull cluster models

of magnitude smaller than the number of points for the whole cluster. Using this repres-
entation, we can easily transfer the local clusterings through the network and aggregate
the results directly operating with their models.

The process of aggregation is done at the intermediate nodes of the reduction tree as
data goes up to the front-end. At every node, all convex hulls received from the children
nodes are combined into a new partial model that describes the structure of that sub-tree,
which is then retransmitted to the upper tree levels. Whenever two convex hulls intersect,
or any pair of their vertices are at distance lower than Eps (see DBSCAN parameters in
Section [115]), these are merged into a new convex hull that embraces both. Figure 6.5
shows an example of the merging phase. An intermediate node receives the models that
describe the red and blue clusters from di�erent back-ends. Since the polygons intersect, a
new convex hull that envelopes both is created (purple), and only the newly created model
will be passed to the following node.

Those polygons that do not intersect with any other are just bypassed to the next levels
of the tree. In this way, data from di�erent tasks with the same type of performance struc-
ture is combined into a single cluster representation, keeping the system scalable in terms
of the amount of information to handle. The previous example also serves to illustrate
why our implementation is an approximation to the original DBSCAN algorithm. If the
data presents concave shapes as in Figure 6.5, modelling the cluster with a convex hull
makes the area of the cluster bigger. Any points falling far from dense areas but inside the
polygon area, like the black dot in the example, would be taken as part of the cluster, while
DBSCAN could detect them as noise or even as a new cluster if they meet the necessary
density and distance conditions. This limitation imposed by the use of convex hulls can
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be easily circumvented by modelling the clusters with a di�erent geometry, for example,
medial axis [152], Voronoi diagrams [153] or straight skeletons [154]. However, we had no
need to follow this direction because we learnt from empirical experience that performance
data from parallel applications hardly, if ever, presents these problematic shapes.

Also, merging two convex hulls just because they intersect does not take into account
the density of points around the intersection area. This might lead to merge clusters that
the original DBSCAN would not expand because the density of a given point inside the
convex hull is not high enough. To deal with this issue, our model representation also
stores the neighborhood density around the vertices of the convex hull. When two poly-
gons intersect, our algorithm assumes that the density in the intersection area is higher
than MinPts, and we always merge the clusters. However, in the case where two hulls do
not intersect, but any of their vertices are under Eps distance, we check for the average
density of the vertices to be above MinPts, assuming a homogeneous distribution of points
around the vertices. While this assumption is not necessarily true, we will later see in the
validation Section 6.3 that this relaxation generally leads to better results in our context of
performance analysis.

6.2.4. Local classification
When the merged clusters models reach the front-end node of the network, they have been
reduced to a global model that represents the structure of all tasks of the application. This
information is then broadcasted back to the leaves, so that every local task is able to see
the global clustering state of the application.

Now local data can be independently classi�ed using the global clustering model as a
reference. The process of classi�cation turns to be very easy and non-demaning in terms
of computing power, as for every point we only have to check whether they fall inside of
any of the polygons formed by the global convex hulls. In the end, the result is equivalent
to have centralized all data and performed a single cluster analysis, but with a scalable
approach that overcomes the limitations imposed by this type of analysis, where the time
and memory required grows exponentially to the input data.

6.2.5. Noise management
One of the parameters that determines the quality of the resulting clustering in DBSCAN
is the minimum number of points (MinPts) required to form a cluster. But when the data
is distributed among many back-ends, the density of the data in each of the local cluster-
ings becomes proportionally lower to the number of processes. Because of this, clusters
that would appear when all the data is centralized, might not form a cluster in the local
clusterings because the density is too low and detected as noise. To deal with the noise,
our algorithm performs two operations.

First, the value for MinPts is dynamically adjusted depending on the level of the reduc-
tion tree. At the bottom level, where the local clusterings are performed, MinPts is �xed
to a minimum value of 3, because this is the minimum number of vertices needed to build
the convex hull model of a cluster. In the intermediate levels of the tree, MinPts is updated
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to be the value set by the user divided by the number of sibling nodes in the current tree
depth. This is made under the assumption that if the application is SPMD, all processes
contribute to each of the clusters with at least one point, and so each SPMD cluster will
have at least as many points as the number of processes. In this way, the value of MinPts
increases as we move to upper levels in the tree. At the root-level, MinPts is �xed to be
the value set by the user.

Second, after running the local DBSCAN in each of the processes, the remaining points
that were detected as noise are also aggregated through the reduction tree, and we repeat
the clustering step with the noise points from all the children only. If new clusters ap-
pear from clustering the noise, we also build their convex hull models and combine them
with the rest of the models. This process is streamlined: while a given level of the tree
is clustering the aggregated noise data from their children, the level below is building the
clusters models and merging them, so as to keep all nodes in the tree busy. By the time the
data arrives to the root level of the tree, the points that are still considered noise are those
that the basic implementation of DBSCAN would also consider as noise with all the data
centralized.

6.2.6. Time complexity analysis of the algorithm
The basic DBSCAN visits all the data points, possibly multiple times as they can be candid-
ates to di�erent clusters. The time complexity of the algorithm is mostly dominated by the
cost of the neighborhood searches, which are executed exactly once for each data point.
The general complexity of the neighborhood search is O(n2) (i.e. for each point, �nd all
others that are close enough). If an indexing structure that executes the neighborhood
query in logarithmic time is used (e.g. an R-tree), the overall complexity of the algorithm
is reduced to O(n log n).

In our parallel implementation, the DBSCAN algorithm is split in 3 phases: the local
clustering phase, the merge phase, and the local classi�cation phase. Being n the number
of data points, P the number of parallel processes, h the height of the reduction tree, f the
fan-in of the tree, and cmax the maximum number of clusters detected by a single process in
the local clustering phase, the asymptotic complexity of the algorithm has three addends:

O

(
n2

P

)
+O

dlogfP e∑
h=1

(cmax· f (h−1))f

+O

(
n log n

P

)
(6.1)

The �rst addend corresponds to the cost of the local clustering phase. Since each back-
end runs a basic DBSCAN with a subset of the data, the complexity is the same of the
DBSCAN algorithm (quadratic) divided by the number of parallel processes.

The second addend corresponds to the cost of the merge phase, which includes the cost
of intersecting all children clusters at each node of the tree. This is an exponential oper-
ation, but being the number of clusters much smaller that the total volume of points (i.e.
cmax << n), the cost of this operation will be exponentially smaller than clustering all the
data points. Worst-case scenario, the local clusters never intersect, and so the next level of
the tree will have an increasing number of clusters to intersect, bounded by (cmax· f (h−1))f .
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The third addend corresponds to the classi�cation phase, where each back-end runs a k-
nearest neighbor classi�cation algorithm on their local subset of points, so the complexity
is the same as the classi�cation algorithm (quasilinear) divided by the number of processes.

In the average case, where the local DBSCAN uses an indexing structure, the cost of
the local clustering phase gets reduced to quasilinear. In the merging phase, if the clusters
intersect, each level of the tree processes a constant amount of clusters. Then, the average
cost of the algorithm can be reduced to:

O
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n log n

P

)
+O

(
dlogfP e· cfmax

)
+O

(
n log n

P

)
(6.2)

6.3. Experimental validation
In this section we measure the e�ciency and validate the results of our tree-based parallel
implementation of the DBSCAN algorithm, contrasting them against a basic sequential
implementation, and a sampling-based alternative. We compare the results from the three
implementations and discuss on their accuracy.

The experiments were performed on Blue Waters, a Cray XE6/XK7 system consisting of
more than 22,500 XE6 compute nodes (each containing two AMD Interlagos processors)
augmented by more than 4200 XK7 compute nodes (each containing one AMD Interlagos
processor and one NVIDIA GK110 Kepler accelerator) in a single Gemini interconnection
fabric [155].

6.3.1. Topological analysis
As discussed in Section 6.2.6, the time complexity of the algorithm depends on three com-
ponents: the cost of the local clustering phase, the cost of the merge phase, and the cost of
the classi�cation phase.

The cost the clustering and the classi�cation phases heavily depends on the number of
back-ends used, and so this setting will directly impact the e�ciency of these two phases.
Additionally, the cost of the merge phase also depends on the number intermediate pro-
cesses used to build the reduction tree, as well as the shape of this tree. The topology of
the tree is determined by the number of back-ends and a fan-in. The fan-in speci�es how
many lower-level nodes a higher-level node serves. A high fan-in requires less extra com-
puting resources and results in �at trees; whereas a low fan-in results in tall trees with
more nodes that can operate in parallel, at the cost of further resources.

In this Section we study the impact of both parameters -the number of back-ends and
the tree fan-in- in the algorithm performance, and draw some conclusions on how to apply
the most convenient settings. To this end, we cluster the performance data extracted from
a run of the Nekbone mini-app using 8192 cores. Nekbone is a Thermal Hydraulics proxy
application [156] that allows users to study the computationally intense linear solvers that
account for a large percentage of the more intricate Nek5000 software. In this experiment
we try di�erent number of back-ends to cluster the data, doubling them from 2 to 1024,
to see the impact on the clustering and classi�cation phases, which are directly in�uenced
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by this parameter. Then, for each �xed setting of back-ends we try di�erent fan-ins, from
2 to the number of back-ends, to see what is the e�ect of having a �atter or taller tree in
the merge phase. All the possible combinations of these two settings result in 55 di�erent
experiments, and for each one, we plot the computing time required to complete each of the
three phases of the algorithm in Figure 6.6. The major divisions in the X-axis correspond to
the number of back-ends, the minor divisions to the selected fan-in, and the Y-axis shows
time in microseconds. Please note the scale in the Y-axis is logarithmic to improve the
visualization of the graph.

The blue series represents the computing time for the clustering phase. With every
increase of the number of back-ends, the clustering time drops. This is an expected result,
because DBSCAN complexity depends on the input size. Given that we are increasing
the number of processes exponentially, the number of points per back-end decreases also
exponentially, and so does the computing time. With a �xed number of back-ends, the blue
line remains constant, meaning that the fan-in does not impact this phase of the algorithm.

Analogously, the green series represents the computing time for the classi�cation phase.
Increasing the number of back-ends reduces classi�cation costs, as the amount of data to
classify gets distributed among the back-ends. In absolute values, the classi�cation time is
always very small compared to the other two phases.

The red series represents the computing time for the merge phase. The overall progres-
sion of this phase exhibits a slow increase, meaning that this part of the algorithm becomes
more expensive when there are more processes involved. At small core counts, the merge
cost is orders of magnitude cheaper that the clustering cost. As we increase the number
of cores, the clustering cost drops very quickly, while the merge cost keeps increasing
slowly. When using 256 back-ends, the clustering and the merge times cross. Beyond this
point, the clustering time becomes so fast (below 1 second) that is almost negligible, and
adding more processes does not really improve the results, because the total time becomes
bounded by the merge time.

This e�ect can be seen more clearly in Figure 6.7. Graph 6.7a shows the total time of the
algorithm (aggregated sum of the clustering, merge and classi�cation times) and the total
amount of resources used, with respect to the di�erent settings for the number of back-
ends and fan-in. As the reader can see, the total time keeps decreasing until the 256-2 case.
Beyond this point, the 512-2 and 1024-2 con�gurations are still better (about 50% faster),
but they require 2 and 4 times more resources for a very slight overall improvement of
about 1 second in absolute numbers, so the trade-o� between performance and resources
becomes very unbalanced and all the extra resources are probably not worth it. Figure
6.7b illustrates how the e�ciency of the algorithm (achieved speedup divided by the ideal)
decreases in the right part of the plot, when the highest core counts are used.

The point where the clustering and merge lines cross is basically determined by the size
of the data and the number of clusters detected. When the number of points per back-
end is around one thousand, the clustering response time becomes practically immediate.
However, the number of clusters detected does not vary with the number of back-ends. In
our scenario, applying clustering to the performance data of a parallel application typically
results in less than 10 relevant clusters detected. When the back-ends process so few points,
the average merge time for such amount of clusters starts to exceed the clustering time. The

109



6. Parallel DBSCAN cluster algorithm to improve the scalability of the analysis

Figure
6.6.:Im

pactofthe
tree

topology
on

the
parallelD

BSCA
N

algorithm
perform

ance

110



6.3. Experimental validation

major gain from our approach is obtained in the exponential reduction of the cost of the
clustering and classi�cation phases by distributing the data, until they become negligible.
Beyond this point, adding more processes does not improve much the net performance,
and so the recommended setting for the number of back-ends is the one that keeps the
amount of data per back-end around a few thousand points.

Regarding the fan-in, we can observe that the merge time (red line) decreases with lower
fan-in values for any given setting of back-ends. A large fan-in means that the reduction
tree is very �at. For example, when the fan-in is equal to the number of back-ends, all
processes are connected to a single root node. Then, the root node is the only responsible
for merging the clusters from all back-ends, and this process easily becomes saturated.
This is the reason why the merge time is higher when the fan-in is large. Moreover, this
setting is usually impractical, because a single process receives so many connections that
the network becomes saturated. On the other end, when the fan-in is small (i.e. 2), the
reduction tree is binary and very tall, and there are many intermediate nodes that can
operate in parallel. As we can see in the graph, this is the point where the merge cost is
lower, so using more processes compensate the cost of having more tree levels. However,
a fan-in of 2 doubles the amount of resources necessary to build the tree. In this case, the
recommendation for the fan-in is to be as small as possible, as long as the resources permit.

6.3.2. Speed-up analysis

Following on the Nekbone experiment, the sequential version of DBSCAN applied to this
data set took 5.38 hours to complete the analysis.

Figure 6.8 shows the speedup of our algorithm for the di�erent con�gurations with re-
spect to the sequential run. The X-axis now shows the total number of processes used
(computed from the number of back-ends and the selected fan-in). The Y-axis shows speed
up, and again, is displayed in logarithmic scale for better readability. Each series corres-
ponds to the experiments done with a �xed number of back-ends but variable fan-in, where
each point in the series has a decreasing fan-in, starting at the number of back-ends down
to 2, from left to right. For example, the right-most series (purple), corresponds to all the
experiments done with 1024 back-ends, and the �rst point in the series has a fan-in of 1024,
while the last point has a fan-in of 2.

The black lines on the bottom represent the ideal speedup (this is linear to the number
of processes, but the scale is logarithmic). All our experiments are above the ideal, which
means that we are able to achieve super-linear speedup in all cases, approximately of one
order of magnitude higher, even when we surpass the optimal number of back-ends (256 in
this example, as we discussed in the previous section). Each of the series exhibits a mainly
upward tendency from left to right, meaning that smaller fan-ins achieve higher speedups.

The highest speedup achieved is met in the 512-2 case (this con�guration makes use of
1023 processes in total, 512 back-ends and a fan-in of 2), and the net speedup in this case
goes up to 16800x with respect to the sequential run, which is about 16 times faster than
the ideal speedup. The average speedup obtained considering all 55 experiments is around
3650x.
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Next we evaluate the performance of our tree-based parallel implementation of the DB-
SCAN algorithm, constrasting it against a basic sequential implementation, and a sampling-
based alternative. Then, we validate the results from the three implementations and discuss
on their accuracy.

6.3.3. Performance evaluation
To evaluate the performance of the algorithm, we have selected a variety of benchmarks
and real production codes to generate input data sets of di�erent sizes and variable point
distribution, and clustered the data using a basic sequential DBSCAN algorithm, a sampling-
based algorithm, and the proposed parallel implementation. The sampling-based experi-
ment applies the same sequential algorithm, but reduces the data to cluster by selecting
a 25% of samples uniformly distributed across all tasks of the application being analyzed
and over time. This setting was empirically proven valid in [7]. To perform the parallel
experiments, we follow the criteria described in previous sections to select the number of
back-ends and the tree fan-in: as many back-ends so that each one processes a few thou-
sand points approximately, and a rather small fan-in. The �rst parameter will depend on
the input size of each experiment, and the second, we have �xed it to 16 in order to balance
the trade-o� between good performance and low amount of resources in the larger-scale
tests.

Table 6.1 shows the time in seconds to cluster the performance data of 9 di�erent MPI ap-
plications. Processes indicates the amount of MPI tasks used to run the application. Points
counts the total volume of data to cluster. Eps and MinPts are the DBSCAN parameters
used. Tseq, Tsamp and Tpar show the clustering times for the sequential, sampling-based
and parallel algorithms, respectively. In some cases, the sequential and sampling-based al-
gorithms were not able to �nish under the maximum allocation time of the system, which
is set to 24 hours. This is marked with a greater than sign. Tpar displays the total clus-
tering time for the parallel algorithm, which is the aggregate of its three internal phases
(clustering, merge and classi�cation). Back-ends indicates the number of processes used in
our distributed algorithm to cluster the data in parallel (i. e. the processes in the last level
of the reduction tree). As explained before, the number of back-ends is adjusted based on
the number of input points, so that each process clusters a small number of points (always
below 10K per process). Finally, Ssamp and Spar show the speedup for the sampling-based
and the parallel algorithms with respect to the sequential time.

As the reader can see, the achieved speedup for the sampling-based algorithm (Ssamp)
is several times faster (up to 80x) than the sequential algorithm, which is expected as in
this case there is a direct input data reduction. The speedup obtained with the parallel
algorithm is in turn up to two or three orders of magnitude higher, more than 8,250 times
faster than the sequential version in the CPMD case. In all cases, the parallel speedup is
super-lineal, which suggest that our algorithm performs very well if the problem size is
su�ciently large and the data is distributed among many back-ends.

Table 6.2 shows the clustering times for large scale tests. Here, we used as many back-
ends to cluster the data as processes were used to run the application to analyze. In these
cases, it was not feasable to compare with the sequential and sampling-based algorithms,
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6. Parallel DBSCAN cluster algorithm to improve the scalability of the analysis

Application Processes Points Eps MinPts Time (s)
LINPACK 16,384 360,390 0.01 1,024 24.26
GROMACS 512 1,069,056 0.01 32 22.18
PEPC 4,096 1,118,210 0.01 256 13.02
PEPC 8,192 7,143,424 0.01 128 10.49
NEKBONE 8,192 2,064,384 0.025 4 6.97
SAMRAI 512 25,528,320 0.01 64 5,601.93
ZEUS 512 39,728,640 0.01 64 1408.61

Table 6.2.: Parallel DBSCAN large-scale experiments

because the input sizes are too large to �nish the executions under 24 hours. The objective
of these experiments is threefold: First, to show that the proposed parallel algorithm is able
to process millions of points with low response times. For example, the ZEUS case pro-
cesses up to 40 M points under 25 minutes. Second, to demonstrate that the algorithm can
scale up to a large number of cores. For instance, the LINPACK case was run using 16,384
back-ends (17,477 cores in total considering the extra resources to build the reduction tree
with a fan-in of 16), and the result was produced in less than 25 seconds, which doubles
the highest scale achieved prior to our work by [124] and [125]. And lastly, to prove this
approach useful to be applied in an on-line scenario.

As we have mentioned before, one of our targets is to apply cluster analysis on the per-
formance data of a parallel application at run-time. Using as many back-ends as application
processes, each process clusters its own data. This eliminates the need for an expensive
phase of data redistribution, and enables us to scale to very large core counts. The un-
availability of more resources has prevented us from experimenting with larger number of
processes. However, the hierarchical distributed scheme presented here has been similarly
applied in other works, which have proven to scale successfully to extremely large core
counts (above 200K) [89].

6.3.4. �ality assessment of the clustering results
Due to the expensive costs of the regular sequential implementation, it is not possible to do
a fair comparison using cases with large volumes of data. Instead, the validation process
was performed with a subset of data extracted from a trace, reduced to a volume that is
manageable for the sequential version, so that all three algorithms run with the same exact
input. In order to compare the clustering results of the three algorithms, we will be using
two quantitative measures: the Mirkin Distance and the Sequence Score.

Given two clusterings on the same data, the Mirkin Distance [157, 158] measures the
number of pairs of points that are in the same cluster in the �rst clustering, but in di�erent
clusters in the other. Basically this is a percentage that tells you how many points were
accidentally put in separate clusters, which is directly interpretable like a percent error.
Regarding the noise points, they are considered to be their own cluster. If two points are
both noise in the �rst clustering, they should still be noise in the second, and so it is just

116



6.3. Experimental validation

another class of points as far as the Mirkin Distance is concerned. This metric provides a
simple quantitative statement to determine how di�erent the clustering implementations
are.

The Sequence Score [159] is applicable as long as the data can be represented in the
form of a temporal sequence. This is exactly our case, since the data corresponds to se-
quences of timestamped performance measurements per process. Given this condition,
the Sequence Score employs a Multiple Sequence Alignment (MSA) algorithm to align the
data sequences, and calculates the percentage of points that belong to the same cluster
that happen simultaneously in all of the sequences. In our particular case, this gives a
quantitative measurement of the degree of SPMDiness of the application. If two points
that belong to the same cluster are accidentally separated, that would reduce the value of
the Sequence Score, and so it can be also interpreted as a metric to compare the similarity
of the structures detected in the di�erent implementations.

Table 6.3 shows the evaluation of these two metrics for the three clustering algorithms,
for 11 di�erent applications. Mksamp and Mkpar show the Mirkin error metric for the
sampling-based and parallel algorithms. A value of 0 indicates that the results are ex-
actly the same compared to the sequential DBSCAN algorithm. As the reader can see, the
Mirkin metric stays under 5% of error for the sampling-based algorithm (Mksamp), and
slightly improves in the parallel algorithm reducing the error below 2%. In the sampling-
based algorithm the error is introduced because the amount of data clustered has also been
reduced. If the selected samples were not good representatives, the algorithm might fail
to form or expand a cluster. In the parallel version, the error is introduced because we
chose to relax some of the DBSCAN axioms, as we explained in Section 6.2.3. However,
our approach does not only improve the quality of the results with respect to a sampling-
based alternative, but also has a positive e�ect that can be studied with the Sequence Score
metric.

Columns Ssseq, Sssamp and Sspar show the Sequence Score metric for the sequential,
sampling-based and parallel algorithms, respectively. A value of 100% means that the ap-
plication exhibits a perfect SPMD pattern. Looking at the sampling-based results (Sssamp),
it is easy to see that the values for this metric are slightly worse in most cases compared
to the baseline sequential algorithm (Ssseq). This is due to the fact that the sampling-
based algorithm tends to produce slightly di�erent results around the clusters borders,
because missing a few samples in these areas might reduce the density enough so as to
prevent the cluster to continue expanding. The interpretation on the data would be that
these border points correspond to performance outliers. If we discard these outliers but
the code is SPMD, the Sequence Score metric decreases. However, in the SAMRAI case the
Sssamp error increases by 9%, and in the GROMACS case the error increases up to 23%.
This is because these two codes present non-SPMD patterns. SAMRAI employs adapt-
ive mesh re�nement methods to change the accuracy of the solution in certain regions.
GROMACS performs two major compute tasks in di�erent sets of processes simultan-
eously: non-bonded forces on some processors, and Particle Mesh Ewald calculations on
the others. Skipping samples of non-SPMD patterns increases the chance to miss relevant
points, which leads to worse clustering results.

Nevertheless, the Sequence Score for the paralell algorithm (Sspar) presents di�erences
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under 1% in most cases and always below 4%, and even in some experiments (e.g. MRGEN-
ESIS and PEPC), the Sequence Score slightly improves, which means that relaxing the DB-
SCAN conditions with a variable MinPts parameter and a more permissive criterion to
consider whether a point is part of the cluster, generally leads to a slightly better detection
of SPMD structure.

The sampling-based implementation shows higher errors in all cases, and they obviously
keep increasing when the training set is further reduced. Despite the resulting clusterings
are not exactly equal, we do not necessarily care that we get to the same exact results of the
regular DBSCAN, but to get extremely close. In our context of application, the clustering
itself is mostly useful for qualitative analysis, and if the clusters are mostly the same, the
marginal di�erences are perfectly valid for our purposes.

6.4. Performance models based on cluster analysis
Cluster-based structure detection adds value to the performance analysis of parallel applic-
ations because the whole information available is resumed into a small subset of clusters
that characterize the main computing trends of the program. In this section, we show two
possible ways to look at the resulting data to get useful analysis information. We present
two types of studies based on de�ning simple performance models to extract quick con-
clusions from large volumes of clustering data.

To this end, we studied a linear advection (LinAdv) benchmark that uses a popular SAMR
library called SAMRAI [160]. This code is interesting because it employs adaptive mesh
re�nement (AMR) methods to change the accuracy of the solution in certain regions dy-
namically, and so we expect from it to exhibit variable computations and disperse clusters.
The experiment ran on MareNostrum III, a cluster comprising 3,028 nodes, each contain-
ing 2 Intel SandyBridge-EP E5-2670 8-Core at 2.6 GHz with 32 GB of RAM. The application
used 512 MPI tasks, which generated a total data volume of 194,920 points to cluster, pro-
cessed in 13.85 seconds.

The results of the clustering are shown in Figure 6.9a. As expected, the application
presents di�erent computing behaviors with divergent trends. For instance, clusters 2 (yel-
low) and 7 (brown) on the top clearly stretch vertically, denoting instructions variability.
Clusters 4 (dark green), 6 (purple) and 8 (orange) elongate horizontally instead, indicating
performance variabilities. While some clusters are very compact, clusters 1 (light green)
and 3 (red) widen in both axes covering a large range.

Figure 6.9d shows the distribution of the clusters over 3 iterations of the main loop of
the application. We were able to detect a very clear SPMD structure of the program, as all
processes are executing the same type of computation simultaneously.

6.4.1. Heat map model to characterize cluster variability
When performance measurements of a computing burst are plotted in a scattergraph, time
and space components are ignored. This is to say, you can no longer know which parallel
task has produced which points, or when.
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(a) Computations structure

(b) Fine-grain temperature (c) Coarse-grain temperature

(d) Distribution of clusters over 3 iterations of LinAdv

Figure 6.9.: Clustering results for the SAMRAI LinAdv benchmark
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The time component (when the computation happened) and the space component (in
which process) are relevant because it depends on how the data distributes over time and
space that we can attribute performance variabilities to problems of imbalance, arguably
one of the main factors that limit scalability. For example, when all processes execute the
same computing phase at the same time, but with variable performance, this indicates a
problem of imbalances between processes. Or if a given process achieves di�erent per-
formance for the same computing phase over di�erent iterations, this indicates a problem
of imbalances over time.

The shape of the clusters in the scattergraph gives us hints about potential imbalance
problems in those clusters that appear elongated because they present high variability.
But this information alone does not allow us to be more precise until we correlate the
scattergraph with the trace timeline that preserves the temporal and spatial information.

To partially recover the information that we lose when building a classical scattergraph
from trace data, we propose a new representation where the color of the points does no
longer represent the cluster to which they belong. Instead, the color indicates how many
processes contribute with data to each region of the space that is part of the cluster. To
do so, we discretize the space into small equi-sized bins (a grid of 50x50 by default), and
each back-end annotates whether they have points in each of the bins. This information is
then aggregated over the reduction tree, and so the front-end node receives a summation
of how many processes have data in each area of the space. This can be seen as the heat
map depicted in Figure 6.9b, where the temperature indicates the number of processes
with data in the area. Then for each cluster, we can compute its average temperature (the
average temperature of all the bins that are part of the cluster). The resolution of the heat
map can be reduced, as shown in Figure 6.9c, enabling a quick detection of where the most
frequent type of computations of the program fall in the clustering space. In our example,
most frequent computations are located at the bottom-right corner, meaning that most
processes usually report low instructions and high IPC.

This information is also useful to determine the source of the variabilities in wide, dis-
perse clusters. If the temperature of the cluster is low, the di�erent processes that con-
tribute to the cluster achieve di�erent performance for the same computations (e.g. some
processes perform their computations faster than others), and thus this is a re�ection of
behavioral di�erences between processes, which in the case of a SPMD code will be indic-
ative of spatial imbalance problems.

However, if the temperature of the cluster is high, all processes perform all types of
computations (e.g. all processes have instances of fast and slow computations), so the
dispersion in the cluster can be explained because there are also behavioral di�erences at
di�erent points of the execution, and thus this is indicative of problems of imbalances over
time.

Following with the LinAdv experiment, Table 6.4 shows the average temperature for
each cluster. The temperature is calculated as mentioned above, averaging the temperature
of all the bins of the discretized space that belong to the cluster.

Cluster 3 which appears in Figure 6.9a as a disperse cluster in both axes, has a very high
temperature of 91.78%. Figure 6.10a shows the histogram of the duration of the computa-
tions that belong to this cluster. The rows represent the parallel tasks, and the columns are
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(a) Cluster 3. The three vertical trends on the right-most part of the histogram indicate
that all processes execute three modes of computations with increasing duration.

(b) Cluster 7. The disperse points falling into di�erent columns indicate that every pro-
cess executes computations with di�erent duration

Figure 6.10.: Histogram of computations duration for two clusters of LinAdv showing dif-
ferent patterns of imbalance
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Cluster 1 2 3 4 5 6

Avg. Temperature 69.22% 99.01% 93.46% 91.78% 90.18% 61.18%

Cluster 7 8 9 10 11

Avg. Temperature 14.37% 19.47% 30.37% 3.12% 12.96%

Table 6.4.: Average temperature per cluster in SAMRAI LinAdv experiment

increasingly higher intervals of durations. In this way, points at the right-hand side rep-
resent the longest computations, and the colors from green to blue indicate which trend is
more frequent. On the right side of the histogram there are 3 clear vertical trends, meaning
that all processes execute phases with short, medium and large computations, respectively.
Figure 6.11a shows the timeline for the whole execution where the short computations that
belong to cluster 3 happen. As the reader can see, they occurr in all processes simultan-
eously, but at di�erent moments in time. We have the same situation for the medium and
large computations, as shown in Figures 6.11b and 6.11c, respectively. All these computa-
tions are interspersed in time, revealing a problem of performance variabilities occurring
over time, as the temperature measurement had predicted.

Cluster 7 is located on top of the instructions axis in Figure 6.9a, so these are the compu-
tations that perform more work in the execution, and shows signi�cant dispersion in this
axis. The temperature for this cluster is very low (14%). As stated before, low temperat-
ures indicate variability between processes. This can be veri�ed looking at the histogram
of the computations durations in Figure 6.10b. Each process (rows) has data in a di�erent
column of the histogram, meaning that some perform faster and some slower, but they are
all di�erent.

Since the computing regions are linked to the source code through callstack information
gathered during the execution, it is possible to relate the clusters with points in the code.
For these two, Cluster 3 relates to the regridding procedure of each AMR hierarchy level
at routine regridFinerLevel, and Cluster 7 corresponds to the initialization phase of the
AMR hierarchy at initializeHierarchy. The cluster temperature measurement helped
us to characterize the source of variability behind clusters with high dispersion, without
having to look into the trace to study the temporal and spatial distribution of the data.

6.4.2. Performance-breakdown models based on hardware
counters extrapolation

There are some limitations to retrieve hardware counters information from the micropro-
cessor: the number of available registers usually range from 4 to 8, and many combinations
of counters are not allowed. In order to measure more counters beyond these limitations
one would normally have to repeat the execution several times, de�ning di�erent sets of
counters to gather all the information. The performance counters extrapolation technique
[161] consists in multiplexing the set of hardware counters that is being read at run-time,
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(a) Trend of short computations performed by all processes

(b) Trend of medium computations performed by all processes

(c) Trend of long computations performed by all processes

Figure 6.11.: Timelines showing where the short (up), medium and long (bottom) compu-
tations that belong to Cluster 3 of LinAdv occur over time. The vertical lines
indicate that all processes execute the same type of computation simultan-
eously.
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and then using cluster analysis to characterize the computations with more performance
counters than the ones that can be read simultaneously with minimum error and just a
single execution of the application.

More speci�cally, the set of hardware counters is changed periodically so that there is
enough coverage for all metrics in the entire run. In this way, di�erent computing phases
will measure di�erent counters. As long as there is a subset of counters that is common
in all sets, those will be present in all the measurements, and they can be used to cluster
the data. Once the groups have been detected we can combine the data from the di�erent
bursts and compute the average value of all counters present in all groups for all the clusters
detected. Consequently, we obtain a complete characterization of all clusters.

Since the clustering process is performed locally in each of the back-ends with partial
data, the counters extrapolation process applied locally results in incomplete data. Our
implementation extends the cited technique so that the local metrics are combined across
the reduction tree, where each node computes the average value for all the metrics seen
in their children nodes. As a result, the front-end node obtains a pro�le of all metrics for
all clusters, taking into account the data from all tasks of the parallel application.

Using this technique we are able to retrieve from a single run enough hardware counters
measurements to de�ne break-down models to describe the behavior of the di�erent com-
puting regions of the application. Following on the previous example, Figure 6.12a shows
the architecture impact model for the LinAdv benchmark that measures the percentage of
cache misses and branch mispredictions over the total number of instructions executed. It
is interesting to note that clusters 5 and 6 present a signi�cantly higher percentage of cache
misses compared to the rest. These two clusters correspond to the creation of the input
database and the parsing of the input data during the initialization phase, and time integ-
rator methods invoked from the main loop of the benchmark, respectively. Figure 6.12b
shows the instructions mix break-down, classifying the instructions executed into di�er-
ent typologies. For the previous two clusters, they have balanced percentages of loads,
stores and branches, while others such as clusters 1, 2, 7 and 12 are executing loads for the
most part.

6.5. Related work
Regarding the problems of DBSCAN to handle very large data sets in the context of per-
formance analysis and others, two opposed strategies have been explored to improve the
scalability of the algorithm: scaling down the data and scaling up the algorithm with dif-
ferent parallelization schemes.

In the �rst direction, SDBSCAN [162] was the �rst sampling-based alternative. This
approach incorporates sampling techniques to randomly select samples from the Eps-
neighborhood to perform the exploration phase of the algorithm. In [7] the authors apply
this idea in an on-line scenario, selecting representative samples from di�erent processes
as a training set for the clustering phase, and then classify the remaining data following a
nearest-neighbor criterion. The sampling approach can reduce the clustering time while
preserving the quality of the results in many cases. But when the data volume grows very
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large and the samples subset represents a very small fraction of the total data, the correct-
ness of the resulting clustering quickly decreases. This e�ect is particularly dangerous in
performance analysis, where the data often presents variability that is important to cap-
ture so as to detect zones of imbalance, and a poor selection of the samples easily mistakes
variability for noise.

On the other hand, several parallelization strategies for DBSCAN have been presen-
ted. PDBSCAN [121] used a distributed spatial index structure in which the data is spread
among multiple nodes. When a given node needs to query data that is stored in a di�er-
ent one, they communicate through messages to retrieve the data. This approach showed
near-linear speedup up to 8 nodes, but beyond the amount of messages quickly grew super-
linearly restraining the scalability.

MR-DBSCAN [122] and DBSCAN-MR [123] are implementations based on the MapRe-
duce paradigm. In both cases, the data needs to be preprocessed into balanced partitions
so as to contend with load imbalance issues caused by variable-density regions. Neither of
both showed near-linear speedup nor the scalability of the algorithm beyond 12 nodes.

PDSDBSCAN [124] applies graph-algorithmic concepts to de�ne the disjoint-set data
structure to break the access sequentialitity of DBSCAN, and a tree-based approach to con-
struct the clusters. This approach outperforms previous master-slave strategies by yielding
a better-balanced workload and hence result in higher parallel e�ciency, scoring speedups
up to 5765 using 8192 cores on distributed memory architecture, but degrades beyond this
point due to the large number of messages required to manipulate the distributed data
structure.

Mr. Scan [125] combines a tree-based distribution network with hardware accelerators.
this hybrid implementation clustered 6.5 billion points on 8192 GPU cores, which is the
largest run of DBSCAN by point and core count that we are aware of. Mr. Scan also
starts with a preprocess phase in which they apply an optimized partitioning algorithm to
divide the space into high-density areas, allowing for points in these regions to be marked
as members of a cluster without incurring the cost of expanding each point individually.
Speedup decreased beyond 2048 nodes because the computation is limited by the slowest
cluster process that is executing a partition that can not be subdivided any further.

Our version of DBSCAN shares some design aspects with the di�erent works stated
above, and its distinguishing key features are: First, we follow a tree-based structure where
the complete data set is splitted into smaller, local clusterings performed at the leaves of
the tree, and the partial results are combined hierarchilly. Second, we do not require any
kind of data preprocess for optimal partitioning: our data distribution implies that all local
clusterings process a subset of points that are scattered across the whole data space. Third,
we do not rely on speci�c hardware accelerators, but aim at general purpose processors.
Fourth, we simplify the expensive problem of distance searches in the Eps-neighborhood
by modelling the clusters into simple geometries, and detecting collisions between geo-
metries. Lastly, this approach does not guarantee that all axioms in the original de�nition
of DBSCAN are preserved, hence the resulting clustering is an approximation, that we
have tested empirically to present dissimilarities below 2%.
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6.6. Closing remarks
When the amount of performance data grows large, aggregating all the data and doing
a single global analysis is not an option, as the density-based clustering cost increases
quadratically with the input size.

In this chapter we have presented a parallelization strategy for the DBSCAN algorithm
structured as a hierarchical tree, where the leaves execute a basic DBSCAN with local data,
the resulting clusters are modelled with convex hulls, and these are intersected in parallel
in the intermediate nodes of the tree to obtain a global clustering model. Finally, the local
data of each process is classi�ed using a nearest neighbor algorithm using the global model
as reference. Our approach is general enough to be applicable by other cluster algorithms
families that can also take advantage of a distributed structure to easily parallelize their
computation.

Our implementation does not require an explicit data redistribution phase to keep dense
areas close. It is actually designed to work e�ciently when the dense areas are highly
distributed, which is the situation of performance data from parallel applications. In the
experiments, we scaled comfortably to 16,384 cores and clustered millions of points in
few seconds. The clustering quality was veri�ed with two di�erent metrics: the Mirkin
distance and the Sequence Score, and the results obtained approximate those of the original
DBSCAN with marginal di�erences below 2%.

Considering its design, this algorithm will scale very well to larger core counts, given
that the local clusterings are performed with low volumes of points. When applied to per-
formance data from parallel applications, the resulting clusters are usually in low counts
(rarely over 10 to 15 clusters), and so the reduction phase is performed with a steady and
small number of convex hulls per child. Withal, there is room for improvement in both
phases. The local clustering could use an implementation other than the basic DBSCAN
to support larger local data volumes, and even a second level of parallellism could be used
for the local clustering. In the reduction phase, the current implementation tries to inter-
sect all convex hulls, increasing the cost exponentially, which is only reasonable because
the number of convex hulls is small. However, very much like many implementations of
this algorithm do, it would be possible to include a spatial index to reduce the number of
intersections and lower the complexity to logarithmic cost.

In addition to the new DBSCAN implementation, we have presented two analysis fea-
tures to demonstrate the utility of density-based clustering in performance analysis. First,
we introduced a new scatter-plot representation for the clusters based on the idea of heat
maps, where the temperature indicates how many parallel processes support the di�er-
ent areas of the clustering space. The average temperature of the clusters can be used to
characterize the type of imbalances that may be behind very disperse clusters. Second, we
extended an extrapolation mechanism for hardware counters to compute global statistics
in parallel, enabling us to characterize the clusters with many more metrics than those that
can be gathered in a single run, as well as building break-down models based on them such
as the architecture impact and the instructions mix stack charts. These high-level repres-
entations of the clusters performance provide quick and easy to understand information
and useful insight about the application behavior.
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(a) Architecture impact model

(b) Instructions mix model

Figure 6.12.: Performance models based on hardware counters metrics for SAMRAI
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Chapter 7
Object tracking techniques to improve
comparative and multi-experiment
analysis

Understanding the possible changes in behavior that an application can undergo
over time requires to integrate observations from multiple execution intervals.
Furthermore, scienti�c applications can have so many variables, possible usage

scenarios and target architectures, that a single experiment is often not enough for an
e�ective analysis that gets sound understanding of its performance behavior. Di�erent
software and hardware settings may have a strong impact on the results, but trying and
measuring in detail even just a few possible combinations to decide which con�guration
is better rapidly �oods the user with excessive amounts of information to compare.

In this chapter we introduce a novel methodology for performance analysis based on object
tracking techniques. The most compute-intensive parts of the program are automatically
identi�ed via cluster analysis, and then we track the evolution of these regions across
di�erent execution intervals and multiple experiments to see how the behavior of the pro-
gram changes with respect to the selected settings and over time.

This approach addresses an important problem in HPC performance analysis, where the
volume of data that can be collected expands rapidly in a potentially high dimensional
space of performance metrics, and we are able to manage this complexity and identify
coarse properties that change when parameters are varied to target tuning and more de-
tailed performance studies.

7.1. Background and motivation

The execution of a scienti�c code is dependent on a variety of parameters that may have
a strong impact on its performance. Some examples are the size of the input problem,
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the number of processes running in parallel, the physical mapping and sharing of the re-
sources or the parallel programming model used, as well as many other settings. Anticip-
ating the impact of di�erent con�gurations on the achieved performance, work balancing
or memory usage of the program is far from trivial and not seldom leads to discover un-
expected issues.

Analyzing these e�ects is important not only to get better understanding of the program
behavior, but also to foresee improving or degrading trends in the di�erent parts of the
code, identify the main limiting factors, and in the end, to help the users making the right
decisions to tune the application to achieve the most performace outcome. To this end, it is
necessary to have tools to easily compare di�erent experiments and correlate observations
between them.

In order to deal with the di�culties inherent to running, measuring and comparing
multiple experiments, we have designed a tool to conduct truly diverse parametric and
evolutionary studies, enabling to correlate performance information either from multiple
runs with di�erent con�gurations, or di�erent time intervals within the same experiment.
Our approach focuses on the computational behavior of the most relevant code regions
and shows their evolution with respect to several performance metrics to explain which
factors lead the di�erent parts of the code to improve or degrade. In this context, the use
of object tracking techniques has revealed to be a natural and intuitive way to detect the
performance changes sustained by each part of the code automatically, and represent the
information in a very visual manner.

While previous approaches for comparing experiments or phases [113, 45, 126] have
been proposed, our work goes one step further and presents a novel technique that does
not rely on preselected metrics and pro�le data for static code phases, such as routines,
loops or user-de�ned sections. One problem of summarizing the data at these levels is
that one same section of code can exhibit behavior variations, thus making averages will
hide divergent performance trends. Our position is that it is necessary not to consider
averages, but every independent instance to detect �ne-grain structure and capture multi-
modal variability.

7.2. Object tracking for performance analysis
Tracking techniques have been traditionally used to follow moving objects in an image
or video sequence. Practical examples include augmented reality, medical imaging, sur-
veillance or tra�c control. A �rst step to these problems is to delimit the objects of in-
terest within the scene depicted in the image. Therefore, object recognition algorithms
(e.g. image segmentation and edge detection) will look for appearance characteristics and
distinguishing features (e.g. color, direction or shape) that identify them. Then, consecut-
ive frames in the sequence are compared to �nd correspondences between the objects and
their displacements.

Analogously, we will represent di�erent executions as images, each one picturing the
program behavior for a given con�guration, and arrange them as a sequence of images
that expresses the evolution of the application behavior across experiments. Code regions

130



7.2. Object tracking for performance analysis

are drawn in the images as independent trackable objects, in a space whose dimensions
are not the actual physical dimensions of height, length and breadth, but performance
metrics that describe how these regions behave. Movements in the performance space
across the images highlight changes in the application performance, modeled into metrics
that evaluate the performance trends of the di�erent regions of code.

This approach is useful to discover valuable performance insights about the application
response to di�erent con�gurations, enabling the analyst to draw quick conclusions on
the key factors limiting performance, direct the optimization e�ort and easily determine
the best setup to maximize a certain performance requirement. Throughout this chapter,
we will be showing how this method applies to very diverse cases of analysis to get better
understanding of the impact of di�erent architectures, input problems, workloads, memory
and resource sharing schemes, and levels of scalability on several parallel programs.

7.2.1. Application structure characterization
Analysis tools usually choose to display performance data to the user in the form of pro-
�les at the level of syntactic program structures (i.e. subroutines, loops, or user-de�ned
sections). This has the advantage of being a very natural and understandable representa-
tion, but also carries some drawbacks along. Prior knowledge of the application may be re-
quired to determine which functions are relevant, so as to skip too �ne-grain routines that
would perturb the execution due to the instrumentation overhead. When no automatic in-
terposition mechanisms are available [35], access to the sources and manual modi�cations
are needed to inject measurement probes in these points of interest. Moreover, considering
a whole routine as a single unit of behavior can be deceitful, because di�erent invocations
may behave di�erently, depending on the parameters and conditional phases leading to
distinct code �ows with divergent performance. In these cases, a global average may con-
vey the wrong idea of a reasonable overall behavior, while speci�c sub-phases may be
reporting low performance and their optimization could lead to signi�cant improvements,
as proven in [38, 163].

A di�erent granularity to characterize the application performance is the computing
regions (i.e. CPU bursts). These are de�ned as the sequential computations between calls to
the MPI or OpenMP runtime. Delimiting these regions only requires library interposition
to instrument the parallel programming API, thus there is no need for user intervention nor
access to the sources. Each CPU burst is characterized by its duration, call stack references
that point to the corresponding source code, and a vector of hardware counters metrics
describing how it performed. Considering every CPU burst rather than simple averages,
we can detect variabilities across processes and time, exposing a �ne-level characterization
of every code region and the nature of their ine�ciencies.

This approach is less attached to the structure of the source code, but focuses on the
performance properties of the actual computations. In [114], the authors prove that this
granularity is useful for the analysis of parallel programs, as it re�ects an intermediate
point of view between very low level characterizations (i.e. basic blocks or instruction-
level simulators) and higher abstractions (i.e. functions, loops or user-de�ned sections).
Regardless of our implementation, which selects CPU bursts as the target granularity, the
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IPC Instructions L1 miss
x_solve 2.16 43.04 M 295.92 K
y_solve 2.16 43.83 M 323.07 K
z_solve 2.17 46.22 M 55.63 K

Table 7.1.: Pro�le of user functions for the NAS BT-MZ benchmark

technique presented would as well be applicable using other abstractions.

7.2.2. Generation of tracking images
In computer vision, one or more particular objects (e.g. humans, cells or cars) are �rst iden-
ti�ed within a frame (a single picture in a series of images) and then tracked as they move
through a sequence of frames. Likewise, we are going to identify the computing regions
of interest and keep track on how their performance evolves along multiple experiments.
To this end, we �rst need to represent the performance measurements observed in each
experiment graphically, or in other words, to capture our sequence of frames. This process
consists in selecting any pair of metrics to draw a two-dimensional space where we ex-
press the behavior of every individual CPU burst with a point in the plane. Typically, we
select Instructions per Cycle (IPC) and Instructions Completed, which are useful to bring in-
sight into the overall performance: trends in Instructions Completed indicate regions with
di�erent workloads, while IPC measures how fast the work is done. Anyhow, this process
can be applied to any arbitrary combination of metrics that may be used to describe the
CPU bursts (e.g. cache misses, �oating-point operations or power consumption) to support
even more precise multi-dimensional characterizations of the data.

With the images generated, the next step is to identify the objects of interest within
them. Due to the highly iterative nature of HPC applications, many computations will be
very alike in terms of the performance they achieve. In the image, this translates as clouds
of points that are close in the space, which can be grouped into a single entity according to
their similitude. Therefore, we apply the cluster analysis technique presented in [114, 161],
that uses density-based clustering in order to group similar CPU bursts with respect to the
metrics selected.

The result of this process is a scatter-plot representation of the performance space, where
the axes correspond to the metrics used to cluster the data, and all CPU bursts that are
similar with respect to these metrics get grouped into the same object. Clusters are then
intrinsically connected to the source code regions of their belonging CPU bursts, and both
terms will be indistinctly used for clarity, but this connection is not necessarily unambigu-
ous: a single region presenting bimodal behavior will result in two distinct clusters, while
two di�erent regions with similar behavior will conform the same cluster. So in essence
what each cluster represents is a behavioral trend, independently of the code region that
exhibits it.

One question that may arise about the bene�ts of using these performance images is
to what extent they are better than just a straightforward pro�le. To dispel the doubt,
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IPC Instructions L1 miss % Time
Region 1 2.21 19.15 M 56.45 K 36.95%
Region 2 2.13 53.46 M 266.33 K 12.28%
Region 3 2.16 42.36 M 194.32 K 12.08%
Region 4 2.12 65.79 M 363.01 K 11.43%
Region 5 2.18 33.87 M 133.19 K 11.42%
Region 6 2.11 83.27 M 494.41 K 9.68%
Region 7 2.05 101.61 M 949.55 K 4.01%
Region 8 2.10 109.46 M 115.66 K 2.13%

Table 7.2.: Pro�le of clusters for the NAS BT-MZ benchmark

we have selected as example the BT-MZ benchmark [141], a solver for block tri-diagonal
systems that performs computations of uneven size. Table 7.1 shows the average IPC,
instructions and L1 misses scored by three of the main functions, measurements obtained
by instrumenting the routines at their start and end points. From these numbers, we can
easily infer that all three routines present a similar behavior, with the same amount of work
(Instructions) executed at the same speed (IPC), yet they show di�erent memory e�ciency
with lower L1 cache misses in the Z-direction, certainly due to the data access pattern. One
could expect this result, as these functions perform the same kind of computation over
di�erent axes.

Figure 7.1 shows the performance image generated for these functions, with each dot
in the plot being a single instance of invocation, and grouped in clusters with respect to
the IPC achieved and the number of instructions executed. A function-agnostic view of
the data brings new insights about the application structure: The three functions show
eight di�erent computational behaviors with increasing amounts of work and decreasing
speed. Computations with high amount of work but low performance are interesting to
study, as well as those with the same amount of work at di�erent speeds, or vice-versa,
as these indicate potential load-imbalances. All eight behaviors are exhibited by all three
functions, which still conveys the idea that these functions are similar, but exposes their
inner variability as they behave more or less optimal depending on the size of the workload.

Table 7.2 shows the same statistics for the clusters, and now you can easily see a large
dynamic range in the metrics. Most signi�cantly, a standard deviation of 30 M of instruc-
tions reveals a large work imbalance between clusters, which was masked in a traditional
function-based pro�le. Column % Time makes clear that these computational behaviors
cover an important fraction of the total execution time, and thus the importance of being
aware of these variabilities. This example highlights the importance of focusing on the
dynamic behavior of the regions rather than static code structures to guarantee that we
detect performance variabilities and direct the analysis towards the zones of real interest.
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Figure 7.1.: Clusters for three main functions of the NAS BT-MZ Class B (4 tasks) bench-
mark

(a) 128 tasks (b) 256 tasks (c) 256 tasks normalized

Figure 7.2.: Illustration of the di�culty of comparing the structure of the computing re-
gions of WRF between two experiments with di�erent scale
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7.2.3. Tracking di�iculties

The main di�culty in the use of tracking techniques arises due to abrupt object motions.
Even though one would normally expect the application performance not to radically
change all of a sudden, performance variations may result in large changes of behavior,
preventing us from borrowing any assumption about the clusters’ position, direction or
shape in the performance space.

The clustering process of a frame assigns numbers and colors to every cluster identi�ed.
Since this is an independent, non-supervised process, the clustering of a second, di�er-
ent frame does not necessarily have to result in the same number of objects, assign the
same identi�ers, or exist a direct correspondence between their numberings. Figure 7.2a
shows the structure of the twelve most time-consuming regions of WRF [164] ran with
128 processes. Clusters are formed according to similarities in the achieved performance
(X-axis) and number of instructions (Y-axis). Those that stretch vertically (e.g. Region 2)
denote instructions imbalance, while those that stretch horizontally (e.g. 7 and 11) re�ect
IPC variations. Figure 7.2b shows the structure of WRF doubling the number of cores. The
number of instructions executed per core has reduced in inverse proportion, and so all
clusters have moved downwards the Y-axis. Intuitively, we can see that cluster 2 (yellow)
turned into 3 (red). And a few clusters have slightly improved their performance (e.g. 4 and
6 moved right with higher IPC), while cluster 11 signi�cantly degraded. But some changes
are far from evident: zooming into the boxed areas, you can see a fourth cluster appearing.
Is that the left-most cluster in the 128-task case redistributed into the two small ones on the
left of the 256-task case? Or these two come from split parts of the two left-most clusters?

With changing scenarios that may a�ect the application performance, clusters can not
only move long distances or change their shape between frames, they can also vary in
density, split, or merge together. And if the con�gurations that di�erentiate the experi-
ments vary signi�cantly, the frames to compare can be remarkably di�erent, which makes
even more di�cult to detect the interesting regions and see how they change from one
frame to the next. Although in some cases it would be possible to determine “who-is-who”
by visual inspection, this will not be obvious in the general case, and so the bene�ts of
an automated mechanism able to detect abrupt changes amongst many clusters become
evident.

The �rst di�culty in determining which objects within a frame correspond to the ones
in the next lies on the fact that the respective scales may be di�erent, so they can not
be compared directly. For example in a strong-scaling case, when the number of cores
increases, the number of instructions executed per core will decrease in proportion. A
step prior to track the evolution of the objects consists in normalizing the performance
scales so that they are comparable. Such metrics that are correlated with the number of
processes of the application (e.g. Instructions) are weighted by the number of cores, while
the scale for the rest (e.g. IPC) is adjusted to the minimum and maximum values seen
along all experiments. Figure 7.2c shows the 256-tasks case with the performance scales
normalized. The relative distances compared to the base 128-tasks case are kept almost
constant, and the experiments can now be easily compared.

In the next section we present a tracking algorithm that performs an automatic correl-
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ation of equivalent code regions that are subject to performance variations along multiple
experiments. To this end, we extrapolate the concept of recognizing moving objects in a
sequence of images to the displacement of clusters within the metrics space across experi-
ments. Clustering the application performance can be seen as identifying objects (regions
of code with a certain behavior) in a single frame. Subsequent clusterings result in a se-
quence of images that can be compared to see how these objects move, shape-shift, merge
or split in the performance space, re�ecting changes in the application behavior. Track-
ing their evolution across experiments enables us to study the performance characteristics
of the di�erent code regions, and to understand how the di�erent con�gurations get to
in�uence their behavior.

7.2.4. Implementation details

The current implementation uses the Extrae tracing tool [53] to automatically instrument
MPI and/or OpenMP through library preloading techniques. For each entry and exit point
of the parallel runtime, the tool stores a per-thread timestamped event trace, collecting
hardware counters data through PAPI [22]; and source code references by using libunwind
[28] to walk the call stack and GNU binutils [165] to fetch human-readable debugging
information from the binary. In our experiments, the size of the traces generated ranged
from tens of MB to tens of GB.

The clustering tool extracts the CPU bursts data comprised in the trace and runs a basic
DBSCAN algorithm to identify the main computing trends. In this process, bursts with
very short duration are considered negligible and discarded, so as to avoid the high cost of
processing many small points. In [114], the authors prove that one can discard up to 80%
of the data, while preserving the 99% of the computation representativity. This clustering
tool can handle up to 100K points under 1-2 minutes.

As reported in the literature, tracing tools already scale to hundreds of thousands of cores
[47], and parallel density-based algorithms are able to manage millions of points [166].
Once the data has been reduced to representative clusters in the performance image, the
tracking algorithm presented next works with a very reduced number of objects, enabling
low response times from few seconds to few minutes, and so the technique presented, re-
lying on large-scale tracing and clustering tools, is perfectly applicable with large volumes
of data and totally scalable.

7.3. The tracking algorithm

The objective of this algorithm is to automatically correlate equivalent computational com-
ponents that are subject to performance variations, tracking how they move along a se-
quence of images that represent the application’s performance behavior. Let A and B be
two images, as depicted in Figure 7.3, where n and m objects are respectively detected, say
A = {A1, A2, ..., An} and B = {B1, B2, ..., Bm}. The objective is to �nd the maximum
number of relations k, so that exists a k-partition P = {P1, ..., Pk} of A, and a k-partition
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Figure 7.3.: Tracking algorithm scheme

Q = {Q1, ..., Qk} of B, that ful�ll the condition:

∀i : 1 ≤ i ≤ k : Pi ≡ Qi

Where the optimal k is bounded above by the image with the fewer number of objects
detected, i.e. min(n,m), and the equivalence relation Pi ≡ Qi is the assumption that
objects in partition Pi correspond to those in partition Qi.

In order to determine whether two clusters are equivalent, there are three principal
properties of the computations that can be considered: the position in the performance
image, the position in the source code, and the position in the execution trace. Based
on these characteristics, we de�ne �ve complementary heuristics to evaluate the clusters
equivalences that are detailed in the next section.

7.3.1. The tracking heuristics
Recalling the di�culties to apply tracking on performance data that we previously ex-
plained in Section 7.2.3, deciding whether two clusters from di�erent experiments rep-
resent the same computational behavior requires to consider di�erent characteristics of
the computations. In our implementation, each characteristic is evaluated with a di�er-
ent heuristic. Applying just a single heuristic is generally not enough, because as we will
discuss throughout this section, most of the characteristics inspected are to some extent
ambiguous and do not allow to perfectly di�erentiate between the objects. Moreover, not
all the information required to apply all the heuristics is always present (that depends on
the system and the amount of information collected during the tracing process). There-
fore, we employ multiple heuristics and combine their results to decide the equivalences
between all objects. Each heuristic focuses on a particular characteristic of the computa-
tions:

• Direction of the movement. Clusters can move in any direction of the space as a
consequence of performance variations, but in the general case, these will manifest
as smooth, directed transitions rather than swift leaps. For example, if we keep
increasing the size of the workload, we can expect the total number of instructions
executed in all computations to increase as well, and make certain assumptions on
the directions of the movements.
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• SPMDiness. In SPMD applications, all processes must be executing the same code
phase simultaneously. If two di�erent clusters happen at the same time, since the
application is SPMD they can not refer to di�erent code phases, and so they must be
the same code phase that is presenting multi-modal behavior.

• Call stack references. Call stack information links every computation in the cluster to
the point in the code where it is executed. Di�erent clusters can not be the equivalent
if the computations that form them do not share any call stack reference that points
to the same point in the source code.

• Clusters density. If two experiments produce the same amount of computations, but
they classify in di�erent clusters because there are changes of behavior or splits,
there must be a superset of the split clusters so that the sum of their computations
equals the amount of computations in the equivalent unsplit cluster.

• Chronological sequence. Two experiments running the same program will show the
same time-ordered sequence of computations, so those that appear in the same order
of occurrence must be equivalent.

The following Sections 7.3.1 to 7.3.1 describe each of the heuristics in more detail. Then
in Section 7.3.2 we explain how the information provided by the di�erent heuristics is
combined to maximize the number of objects successfully tracked.

Direction of the movement

This heuristic takes a pair of images and performs a cross-classi�cation of every computing
burst from the �rst into the latter, and vice versa. The classi�cation is based on a nearest-
neighbor criteria, so that all points will get classi�ed to the nearest counterpart cluster.
This can be seen as projecting each object from one image to the next, and see which
object in the second image is closer.

The idea that lies behind supports on the fact that the behavior of a parallel application
will not radically change along images, and so the objects displacements will generally be
short. This assumes a certain ordering in the pairs of images that are compared, as the
more di�erent they are, the more di�cult becomes to �nd correspondences. However, for
the majority of analyses an implicit order emerges. Consider again the previous example
where we doubled from 128 to 256 the number of cores in WRF (see Figures 7.2a and 7.2c).
The resulting structure for both experiments hardly di�ers, with very slight movements.

There are situations where a cluster splits into two or more. For example, when new
zones of imbalance appear and separate one region into two distinct behaviors. This case
can be seen in Figure 7.4, where region A4 shifts to two behaviors, namely B4 and B11.
Also, there are cases where clusters can move a long way in the space, which is the case
of regions 11 and 12 in Figure 7.2a to regions 12 and 15 in Figure 7.2c, respectively. In
these situations, cross-classi�cation based on distance is likely not to assign the points to
the correct cluster (both get assigned to 12 because 15 is too far away, which illustrates a
mapping error), but we can then use the next heuristics to discern whether those regions
are the same or not.
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

B1 B2 B3 B4 B5 B6 . . . B10 B11 B12

A1 100% 0 0 0 0 0 0 0 0
A2 0 0 100% 0 0 0 0 0 0
A3 0 99% 0 0 0 0 1% 0 0
A4 0 0 0 34% 0 0 0 65% 0
A5 0 0 0 0 100% 0 0 0 0
A6 0 0 0 0 0 100% 0 0 0
...
A11 0 0 0 0 0 0 0 0 100%
A12 0 0 0 0 0 0 0 0 100%



Figure 7.4.: Tracked correlations between WRF-128 and WRF-256 according to the
movement-based heuristic

SPMDiness

This heuristic exploits the SPMD structure of the applications to match computing regions
that happen simultaneously in di�erent processes. Assuming this execution model, all
processors are expected to be executing the same phase of code at a time. In this case,
if multiple processes are executing di�erent types of computations concurrently, they are
likely to refer to the same code region, although there might be performance variations that
make them shift apart (e.g. the application presents work imbalance and some processes
execute more instructions than others).

Figure 7.5a shows a detailed view of the temporal sequence of clusters at the beginning
of one iteration of WRF 128-tasks. All processes (Y-axis) execute the same computations
over time (X-axis). The same pattern can be seen in Figure 7.5b for the 256-tasks case,
meaning that the code phases and the order in which they get executed are the same in
both runs. However, in this case some processes are undergoing duration imbalances and
execute longer computations, shown as stride lines with distinct colors. The new behavior
is identi�ed as a di�erent cluster, but these are actually the same computing phases and
can be linked together.

The application SPMDiness is evaluated with the technique presented in [159]. The
algorithm takes as input the sequence of clusters for every task of the application, and
performs a global sequence alignment. Clusters from di�erent tasks that fall into the same
position of the global sequence are getting executed simultaneously, and we use this in-
formation to mark them as equivalent.

Call stack references

This heuristic prunes the search space by discarding matchings between regions that do
not have call stack references in common. Call stack information points to the function,
�le and source code line where the CPU burst starts, linking them to speci�c points of code.
If two regions from two di�erent frames do not share code references, they are certainly
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(a) SPMD computations for WRF-128

(b) SPMD computations for WRF-256

Figure 7.5.: Tracked correlations between WRF-128 and WRF-256 according to the SPMD-
iness heuristic

not equivalent.
Table 7.3 illustrates a subset of the relations that can be outlined between regions from

their code references. The reason why some relations are ambiguous is because the clus-
tering process groups computations based on their similarity with respect to selected per-
formance metrics, so it is possible that di�erent points of code behave the same and get
grouped under the same cluster. Also, if a single code region presents di�erent behaviors,
it will also appear as part of multiple clusters. This information on its own is not enough
to discriminate more, but e�ectively reduces the combinatorial explosion.

Clusters density

This heuristic is applicable when comparing di�erent experiments that produce the same
amount of data. In those cases, the aggregate of points of all clusters in each clustering will
be the same. If the points distribution in the performance space does not change between
experiments, the densities of the clusters will also be the same. When a cluster splits, two
or more sub-clusters will have formed, and the sum of their densities will equal the density
of the original super-cluster that contained them all, as illustrated in Figure 7.6.

This problem can be formulated as a variant of the 0/1 knapsack problem [167]: given
a cluster from one experiment with a certain density DA, �nd the combination of sub-
clusters in the second experiment whose aggregate densities DB = D1

B +D2
B + ...+DN

B

are lower or equal to the limit density DA.
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Figure 7.6.: Tracked correlations according to the clusters density heuristic. Aggregated
density of clusters B1 +B2 = A1, and B3 +B4 +B5 = A2.

(a) Sequence of computations in two di�erent experiments

(b) Aligned subsequences between selected pivots, given that cluster 1 and 4 in the �rst
sequence correspond to 2 and 3 in the second. Attending to their chronological order
all clusters that fall the same column would be equivalent.

Figure 7.7.: Tracked correlations according to the chronological sequence heuristic
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128 tasks Callstack references 256 tasks

Region 1 4939 (module_comm_dm.f90) Region 1

Region 2
Region 5 6474 (module_comm_dm.f90)

Region 3
Region 5
Region 13

Region 3 6060 (module_comm_dm.f90) Region 2

Region 4 2472 (module_comm_dm.f90) Region 4
Region 11

Region 7 5734 (module_comm_dm.f90)
6275 (module_comm_dm.f90)

Region 7
Region 11 Region 12
Region 12 Region 15

Table 7.3.: Tracked correlations between WRF-128 and WRF-256 according to the call stack
heuristic

Chronological sequence

This heuristic assumes that, unless there are changes that alter the execution �ow of the
program, the code executed along di�erent experiments will be the same, and so the se-
quence of computing bursts over time will preserve the same chronological order. Looking
into the position where the computations appear in the sequences and matching those in
the same position, it is possible to determine equivalent code regions.

The sequence alignment technique referred in [159] is applied now on two experiments,
and we then compare the order of occurrence of the computations. For example, consider
an experiment that executes a loop comprising 4 computing regions with di�erent per-
formance behavior, and so these get classi�ed in 4 di�erent clusters. The top timeline in
Figure 7.7a depicts 2 iterations of this loop, with each computation colored according to
the cluster to whom it belongs. A second experiment that uses more processes and a bigger
problem size results in shorter computations and more iterations of the loop, as illustrated
in the bottom timeline in Figure 7.7a.

As we have discussed earlier in Section 7.2.3, the clustering process applied to di�er-
ent experiments can result in di�erent clusters, hence having the same clusters colors or
identi�ers does not necessarily imply that they represent the same computing region, and
so these sequences can not be compared directly. However, if we could guarantee some
correspondences between clusters, for example, that clusters 1 and 4 in the top experiment
correspond to 2 and 3 in the second, then we can split the sequences between this points
and align all the resulting subsequences, as shown in Figure 7.7b. Now if we only pay
attention to the order of occurrence of the computations, all those that appear in the same
column are equivalent with respect to their chronological order.

In order to decide which are points to split the sequences, this heuristic uses the match-
ings discovered so far by the previous heuristics to establish pivots in both sequences, and
align the subsequences with respect to these points of reference to discover new matchings.
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7.3.2. Combining tracking heuristics

Build upon the combination of these �ve heuristics, the tracking algorithm proceeds as
follows to determine a global matching between all clusters. Every heuristic is applied
separately and reports one or more correlation matrices representing relations between
objects. Depending on the heuristic, what these matrices express is di�erent. Figure 7.4
shows the correlations computed by the �rst heuristic for experiments WRF-128 (A) and
WRF-256 (B). In this case, it indicates the percentage of computations that conform ob-
ject Ai for which object Bj is closer. As you can see, there are cases where one object is
close enough to two others or more, so it is not immediate to determine the appropriate
correspondences when the objects are moving arbitrarily around the performance space.
For the second heuristic one matrix per frame is built, each expressing the probability of
two di�erent computations to be executed at the same time by di�erent processes within
the same experiment. The third calculates the percentage of computations that are part of
object Ai whose call stack references point to the same source code than those of object
Bj . The fourth re�ects the percentage of occurrence where computations Ai and Bj hap-
pen in the same chronological order. In the last case, the matrix represents combinations
of clusters that have the same aggregate density. In all cases, non-zero cells evince that a
given pair of objects are the same according to that heuristic, with a certain probability.
Occurrences with a very small probability (5% by default) are neglected as outliers.

Since every heuristic considers di�erent properties of the objects, they have to cooper-
ate to complement the correspondences that a given one might fail to discern. To this end,
the combination algorithm extracts from each correlation matrix a set of rules in the form
Ai ≡ Bj + Bk, expressing which objects between two images are equivalent according
to that heuristic. Some of the rules found can be contradictory (i.e. Ai and Bj are very
close according to the distance heuristic, but they do not share any common references
according to the call stack heuristic, so they can not be the same) or they can be comple-
mentary (i.e. Ai and Bj are very close according to distance, and Bj and Bk always appear
together according to the SPMDiness heuristic, so they must merge). In order to combine
all the equivalence rules from the di�erent heuristics, the combination algorithm performs
a series of union and intersection operations between them.

The �rst rules to take into account are always those found by distance, because the
information required to compute the distances between objects is always present in the
frames. Then the resulting rules are united with those found by SPMDiness. For example, if
the �rst �nds that the nearest object forA5 isB5, and the latter �nds thatB5 andB13 always
happen simultaneously, all objects merge into a more general relation A5 ≡ B5 ∪ B13.
The call stack and density rules are then intersected to prune incorrect relations that may
appear due to mapping errors in the former heuristics. The intersection operation can be
seen as an agreement between heuristics: an equivalence betwen two objects is kept only
if all the heuristics �nd that same correspondence, or discarded otherwise. For example,
all related clusters must share the same references to the source code, so we discard those
not having any in common.

We search for correspondences between objects reciprocally, this is to say, comparing
frame A with B and vice versa, extracting a �nal set of rules that correlate the objects
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Figure 7.8.: Trajectory of clusters from WRF-128 to WRF-256

between both frames. When the information available leads the heuristics to not be able
to clearly distinguish one region from another, the regions in doubt are grouped together,
resulting in wide relations of multiple objects. The execution sequence heuristic is �nally
used to re�ne the results, splitting wide relations into more speci�c ones.

The analysis is repeated for every pair of consecutive frames, obtaining in the end k
tracked regions, relations of objects that are equivalent along the whole sequence of images.
Additionally, the tool generates plots describing the evolution of each tracked region. Next
section gives an overview of the results of the tracking algorithm.

7.3.3. Tracking results
In this section we present the results of the tracking algorithm, following on from the WRF
example used to guide the explanation of the technique through the former sections. For
the two con�gurations presented, runs with 128 and 256 tasks, we will conduct a brief
scalability study to explain how the tracking results yield practical insights that help in
understanding and improving the code.

First, the tool reconstructs the input images for the tracking algorithm with all objects
identi�ers renamed, so that all equivalent regions keep the same numbering and color.
The whole sequence of images can be displayed in a simple animation, or in a single plot
showing the trajectory that every di�erent object follows, so that is very easy to identify
variations in the performance space, as shown in Figure 7.8 (in logarithmic scale for better
readability, refer to Figure 7.2 for the real scales).

Here we can observe two main trends: clusters whose shape hardly varies between
experiments (e.g. Regions 1 to 3), and those that become more distorted when the scale
increases (e.g. Regions 4, 5 and 7). Focusing on the latter which are most a�ected by the
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(a) IPC evolution (b) Instructions evolution

Figure 7.9.: Performance trends for WRF code regions

scale, the developers made an e�ort to balance the amount of work, as they appear as
�at clusters with low variation in the instructions axis. However, they present large IPC
variability that increases at higher scale. In the 256-tasks case Regions 4, 5 and 7, that cover
altogether the 30% of the total time, split into new zones of imbalance on their left with
lower performance. Clusters becoming more disperse indicate an increasing problem of
time imbalance.

Amongst the regions that do not deteriorate due to the scale increase, Region 2 stands
out for covering all alone the 15% of the execution time, and exhibiting an elongated cluster
in the Y-axis that re�ects large instructions imbalance, within a dynamic range that doubles
from 1.5e9 for the 128-tasks case (top), and 8e8 for the 256-tasks case (bottom). Despite
the IPC variability partially compensates the instructions imbalance and the performance
is maintained at scale, this region was already ine�cient from the start.

In addition, the tool presents the evolution of every computing region from the �rst
scenario to the last, with respect to the metrics selected to generate the images. Figure
7.9a shows a trend chart displaying the evolution in IPC for the 128 and 256-tasks runs of
WRF. For better readability, only the most signi�cant regions and those with higher IPC
variations (above 3%) are depicted. While there is a slight improvement for regions 4, 6
and 7 under 4%, regions 10 to 12 present a sharp decline up to 20%. Regions 1 to 3 remain
constant, yet is important to remark that being the most important computations covering
50% of the total time, these are also the ones achieving lower IPC around 0.70. Figure 7.9b
shows the evolution in the number of instructions for the regions that execute the most,
as the percentage over the 128-tasks base case. When the number of cores increases, so
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does the total number of instructions, revealing code replication below 8% in all regions of
the program, which is reasonable but warns us about an increasingly detrimental e�ect at
higher scales, in particular for regions 3 and 10.

For a production class application with a long-term development, a brief analysis of
the clusters trajectories and the metrics trends has quickly diagnosed several performance
weaknesses and potential problems at higher scales. In general, the information presented
allows to perform parametric studies on the in�uence of di�erent con�gurations, as well
as to study the evolution of a single experiment over time, enabling an intuitive analysis
that gets straight to the points of interest and their major causes of ine�ciency. Having
call stack references associated to every cluster, it is possible to connect the observed per-
formance artifacts to speci�c points in the code and extract useful recommendations on
which way to direct the optimization process.

7.4. Experimental validation

The aim of this section is to demonstrate the added value of using tracking, where the im-
portance lays on understanding how and why the performance of the application changes
along multiple experiments. We want to highlight the versatility of the technique for a
variety of parametric studies, tossing ideas about the kind of cases of study that could be
interesting for the analyst. To this end, we have selected con�gurations that would produce
unpredictable sets of clusters and arbitrary displacements to prove the algorithm working
under stress. Moreover, we present a real-case study to show that this technique can be
useful to provide valuable insights to the users and successfully lead to improvements in
their codes. Optimizing the applications is beyond the scope of this paper.

Therefore, a variety of proxy and production codes from di�erent �elds such as astro-
physics, molecular dynamics and meteorology; were run in MareNostrum II, MareNostrum
III and MinoTauro. MareNostrum II is a cluster of 2,560 nodes, each containing 2 IBM
PowerPC 970MP 2-Core at 2.3 GHz with 8 GB of RAM. MareNostrum III comprises 3,028
nodes, each containing 2 Intel SandyBridge-EP E5-2670 8-Core at 2.6 GHz with 32 GB of
RAM. MinoTauro comprises 126 nodes, each containing 2 Intel Xeon E5649 6-Core at 2.53
GHz with 24 GB of RAM.

Table 7.4 illustrates the ability of the algorithm to identify and keep track of the di�erent
computing regions in 11 studies. The objects detected are automatically reduced to the ones
considered more relevant, those that represent a high percentage of the total application
time, usually above 5-10%. Coverage is calculated as the percentage of objects tracked
with respect to the maximum number of identi�able objects in the input images. 100% in
coverage denotes that the algorithm has been able to �nd unambiguous correspondences
between all the objects. Values below the optimal re�ect that there were nearby objects in
the input images that the tracking heuristics could not distinguish as separate individuals
with the information available, grouping them as a single entity. On average, the algorithm
successfully discriminates 90% of the objects. The following sections present �ve case
studies in more detail.
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Application Input images Tracked regions Coverage
Gadget 2 8 88%
QuantumE 2 6 66%
WRF 2 12 100%
Gromacs 3 5 100%
CGPOP 4 2 66%
NAS BT 4 6 100%
OpenMX 7 7 100%
Hydro 8 3 100%
MR-Genesis 12 2 100%
NAS FT 15 2 100%
Gromacs 20 4 80%

Table 7.4.: Tracking experiments

(a) Application scalability (b) Computations scalability

Figure 7.10.: Scalability of OpenMX

7.4.1. Studying the scalability of the computing regions
The objective of this experiment is to conduct a real-case study of the scalability of the
computing regions of an application. The selected code is OpenMX [168], a software pack-
age designed for the realization of large-scale ab initio calculations. To that end, we run
OpenMX v3.6p1 in MareNostrum III increasing the number of MPI tasks from 64 to 512
using a single OpenMP thread per task.

As we are running a strong-scale test (�xed-size problem on a varying number of pro-
cessors), the application would ideally see the execution time reduced inversely propor-
tional to the number of processors used. However, multiplying by 8 the number of tasks,
the speedup achieved in a single time-step is lower than 2. In terms of work executed,
the total number of instructions should have got evenly distributed amongst all processes,
and thus remain constant when the scale increases. Withal, Figure 7.10a shows the total
number of instructions increasing by 100% from the 64 to the 512-tasks case, which is far
from the ideal scaling and too signi�cant to be due to a problem of code replication. Ap-
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(a) Sequence of output images from the tracking algorithm

(b) Trajectory of clusters from 64 to 512-tasks runs

Figure 7.11.: Tracking results for OpenMX
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plying tracking, we can now break-down this aggregate for the whole program and study
the evolution of the relevant code regions per separate, to understand which parts prevent
the application from scaling better.

The input to the tracking algorithm is the collection of images that depict the perform-
ance of each individual experiment. Unlike in other experiments where the images are
two-dimensional (Instructions and IPC), in this case we used the metric L1 data cache
misses as a third dimension to cluster the data, which results in a more precise charac-
terization of the relevant computational behaviors. Figure 7.11a shows the result of the
tracking algorithm applied to the sequence of experiments from 64 to 512 tasks (only 6 out
of 7 depicted due to space constraints, and plotted in 2D for clarity).

A quick glance at the evolution of the main behaviors reveals two main issues: First, most
regions progress vertically downwards the Y-axis (instructions decrease), as one would ex-
pect for a strong-scaling case. Figure 7.11b shows the trajectories that follow the di�erent
regions from one experiment to the next, represented by their centroids. It is easy to see
that regions 3, 6 and 7 do not move, meaning that they perform constant work despite the
scale, as if they were ran in a weak-scaling mode.

Figure 7.10b shows the ratio of surplus work executed per region with respect to the
ideal case where all regions scaled perfectly. In the 512-tasks case, regions 3, 6 and 7 which
should have seen reduced their work by a factor of 8, actually execute 7.5 times more work
than the expected. With this progression, these three regions that represented altogether
the 20% of the iteration time in the 64-tasks case, now dominate the iteration representing
the 65% of the total time, and have become the main bottlenecks to the computation scalab-
ility. Namely, these correspond to the computing phases starting at lines 289, 589 and 129
of routine Set_XC_Grid. Here, the programmer has put e�ort to use shared memory pro-
gramming, but has not taken advantage of distributing the workload amongst processes.
Likely, the developers considered more e�cient to replicate this code to avoid the cost of
communications, which may be worthwhile at small scales, but the increasing costs do not
pay o� at larger scales. These observations were reported to the developers, suggesting to
study the feasibility of partitioning the work so as to fully exploit the distributed resources.

The second important observation is that most behaviors grow more and more disperse.
In particular, it is the regions that scale better the ones that present more variability, namely
1, 2 and 4. The parallel e�ciency [143] of these regions decreases from 0.80 in the 64-tasks
case to 0.60 in the 512-tasks case, meaning that the 40% of resources are wasted due to
time imbalances, where some processes have to wait for others to �nish their work, and
such imbalance gets absorbed in subsequent synchronizations. These correspond to the
computing phases starting at lines 732 of Krylov_Col, 256 of Set_Hamiltonian, and 288 of
Set_Density_Grid. In this case, a second precise recommendation could be made to the
user to study the load-balancing characteristics of these particular regions.

As a �nal remark, the detected hazards could have been inferred just from the �rst three
frames in the sequence, and so our technique can be used with few cores to anticipate
problems at higher scales, saving on time and resources.
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(a) Clusters trajectories mapping from 1 to 12 pro-
cesses per node

(b) Region 1 evolution

Figure 7.12.: Tracking results for MR-Genesis

7.4.2. Studying the impact of multi-core sharing

MR-Genesis [169] employs a �nite volume approach in order to evolve the Relativistic
Euler equations combined with a Constrained Transport scheme to account for the diver-
gence free evolution of the dynamically included magnetic �eld. MR-Genesis was run in
MinoTauro using 12 processes, changing the maximum number of processes allowed per
node from 1 to 12. Being 12 the number of available cores per node in MinoTauro, the
con�guration for the �rst experiment corresponds to 12 di�erent nodes running a single
process each, and a single full node for the last experiment, with all the intermediate cases
also tested. The objective is to study the e�ect of memory bandwidth and caches conten-
tion on the application performance when sharing resources.

Figure 7.12a shows the result of the tracking algorithm applied to the sequence of exper-
iments from 1 to 12 processes per node, which reveals two main computing phases with
analogous behavior. Since it is only the physical mapping of processes what changes, the
total number of instructions executed remains constant in all trials. However, as nodes get
more populated, the achieved performance of the application decreases. Up to the 66% of
the node occupation (8 tasks per node) the IPC presents a slight reduction under 1.5% from
one experiment to the next, but starts presenting sharper drops beyond this point, with an
8.5% loss when an additional process is collocated in the node. Overall, the achieved IPC
degrades a total of 17.5% when the node is full.

Figure 7.12b correlates all performance metrics for Region 1. The Y-axis re�ects the
percentage of variation of each metric with respect to its maximum value for all trials.
The number of L2 cache misses grows inversely to the IPC degradation rate, and the TLB
misses also increase as the node gets more populated.

In this case, a fair trade-o� between maximum utilization of the resources and the ap-
plication performance is met at two-thirds of the node occupation.
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(a) Clusters trajectories doubling the block size from
8 to 1024 KB
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(b) Region 1 evolution

Figure 7.13.: Tracking results for Hydro

7.4.3. Studying the impact of the program block size

HYDRO [170] is a proxy benchmark that solves a large scale structure and galaxy form-
ation problem using a rectangular 2D space domain split in blocks. HYDRO was run in
MinoTauro, and the sequence of images in this case is built doubling the block size from 8
to 1024 Kb. The objective of this experiment is to determine which is the best setting for a
particular parameter of the program to minimize the execution time.

Figure 7.13a shows the evolution of the three main computing phases of the application,
which actually refer to the same source code region with tri-modal behavior. The traject-
ories re�ect the number of instructions initially decreasing for all three regions with drops
from 1% to 3% up to a block size of 32 (movement downwards the Y-axis), and keeps steady
beyond this point. IPC also decreases with a total deviation of 5% for Region 1, and 10%
for Regions 2 and 3, all presenting a sharp dip when the block size increases from 64 to
128 (movement leftwards the X-axis). At this point, the number of L1 data cache misses
rockets 40% more, as shown in Figure 7.13b.

Using small block sizes the application gets more blocks to compute, which entails ex-
ecuting more control instructions. Since the blocks are bi-dimensional and store 8-bytes
elements, when the block size is set to 64 the limit of the L1 cache is reached, which is 32
KB. With bigger sizes, the block does not �t in the cache, and so the miss rate increases to
the detriment of IPC.

Correlating the evolution of all metrics, the point where highest performance and lowest
workload and cache misses converge is at a block size of 16, which results in the fastest ex-
ecution of all proposed setups, so this one would be the most recommendable to minimize
the response time.
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Figure 7.14.: Trajectory of clusters through BT experiments

7.4.4. Studying the impact of the problem input size

The NAS Parallel Benchmarks [141] are a small set of programs designed to assess the
performance of parallel supercomputers. In this experiment we evaluate version 2.3 of the
BT solver with increasing problem sizes. Problem sizes are prede�ned and indicated as
di�erent classes, where Class W corresponds to a small workstation problem size, and A,
B and C correspond to standard test problems with a 4X size increase going from one class
to the next. For all classes, BT was run in MareNostrum II with 16 processes.

Figure 7.14 shows the trajectories of the clusters through classes W to C. The starting
experiment corresponds to Class W, which can be located at the bottom part of the plot.
Class W presents large variability in IPC, which is depicted with the elongated clusters
in the X-axis. As the experiments move forward, all clusters move to the top-left part of
the plot. This transition shows a large dynamic increase of two orders of magnitude in
the number of instructions from Class W to Class C. Also, clusters become more compact,
indicating a reduction in the IPC variability except for Region 2, which corresponds to the
Gaussian elimination performed in routines [x|y|z]_solve_cell.

In contrast, the achieved performance in all code regions degrades as the size of the
problem increases. Figure 7.15a shows there are two decreasing trends for the IPC. For
regions 1, 2, 4 and 5, a sharp loss ranging from 40% to 65% happens as soon as we move
from Class W to A and then stabilizes, while for regions 3 and 6 the IPC keeps decreasing
and does not stabilize until Class B. Correlating the evolution of all available metrics, we
can see that this IPC degradation can be explained due to an increase in the L2 data cache
misses, as shown in Figure 7.15b.
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(a) Evolution of IPC (b) Evolution of L2 Cache Misses

Figure 7.15.: Performance trends for NAS BT code regions

7.4.5. Studying the impact of di�erent hardware and compilers

In this experiment we are going to stress the performance variations in the application
changing machines and also changing from a generic to an architecture speci�c compiler.
This test shows that even in very di�erent scenarios, the tracking algorithm is able to
follow the evolution of the clusters.

CGPOP [171] is a proxy application of the Parallel Ocean Program [172]. POP simulates
the global climate model and is a component of the Community Earth System Model. CG-
POP was run with 128 processors both in MareNostrum II and MinoTauro, and compiled
with GNU Fortran 4.1.2 (gfortran) and IBM XL Fortran 12.1 (xlf) in MareNostrum, and GNU
Fortran 4.4.4 and Intel Fortran 12.0.4 (ifort) in MinoTauro. In all cases, the application was
compiled with the optimization �ag -O3 and debug.

Figure 7.16 shows the trajectories that follow the two main computing behaviors with
respect to the number of instructions, which are subdivided into several regions due to
di�erences in the achieved IPC. In MareNostrum, when the application is compiled with
xlf (see 7.16b) all computations see the number of instructions signi�cantly reduced (36%
and 33%, respectively) compared to using gfortran (see 7.16a), but the IPC degrades prac-
tically in the same proportion and the overall execution time remains almost constant. The
situation in MinoTauro is very similar (see 7.16c and 7.16d), with an overall improvement
in terms of less instructions executed and higher IPC achieved, yet the same e�ect when
changing compilers can be easily identi�ed.

Changing the platform also alters the behavior of code, as can be seen for Region 2 in
MareNostrum which splits into Regions 2 and 3 in MinoTauro, no matter the compiler used.
They all refer to the same point in the code, but it now presents two distinct behaviors.
The tracking algorithm automatically identi�es and groups together those regions that are
equivalent despite the performance variations, as illustrated by the bounding boxes, and
then numerically calculates their evolution along experiments. Table 7.5 summarizes the
averages for IPC and instructions for both tracked regions, and their elapsed execution
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(A) MareNostrum GNU (B) MareNostrum IBM XL (C) MinoTauro GNU (D) MinoTauro Intel.

Figure 7.16.: Trajectory of clusters through CGPOP experiments

MareNostrum MinoTauro
gfortran xlf gfortran ifort

Region 1 IPC 0.25 0.16 0.42 0.30
Instructions 6.8M 4.3M 5M 3.5M
Duration 12.09s 12.11s 4.82s 4.68s

Region 2 IPC 0.25 0.16 0.50 0.36
Instructions 4.5M 3M 3.3M 2.3M
Duration 2.13s 2.14s 0.71s 0.69s

Table 7.5.: Performance results for CGPOP using di�erent compilers

time.
In this case, the specialized compilers xlf and ifort attain a reduction of 36% and 30% of

the number of instructions with respect to gfortran in both machines, but at the expense
of an average IPC loss of 36% in MareNostrum and 28% in MinoTauro. Likely, they reduced
index arithmetic through reassociation. However, the performance did not change much
because the computation is still memory bound. The integer instructions saved were likely
traded for idle issue slots while waiting for the memory hierarchy, leading to negligible
variations in the execution times lower than ±0.03%.

7.4.6. Studying a weak scalability problem

The HACC (Hardware/Hybrid Accelerated Cosmology Code) is a framework that melds
particle and grid methods to satisfy the requirements of cosmological surveys, exploiting
hybrid and accelerator-based architectures with millions of cores, including CPU/GPU,
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Figure 7.17.: Trajectories of clusters through HACC weak scale experiments

Figure 7.18.: Average instructions executed per computing region in HACC

multi/many-core, and Blue Gene systems.
HACC is designed to scale weakly by dividing the work in cubes. In this experiment

we stressed the application setting di�erent geometries other than a perfect cube, in order
to see how much is the performance a�ected. The program was run in MareNostrum,
doubling the number of tasks from 16 to 1024 tasks, as well as the size of the problem, with
1 single MPI task per node (so neither multi-core nor L1 to L3 caches sharing), using the
Intel MPI message passing library, and without support for threads.

Figure 7.17 shows the trajectories of the main computing regions of the application.
Here we can observe diagonal movements back and forth: as we increase the number
of tasks (and so the size of the problem in proportion), all regions move upward (more
instructions executed) and rightward (more IPC achieved). However, when the number of
tasks is cubic (i.e. 64 and 512 tasks), the regions move back in the opposite direction (down
and left; meaning less instructions executed and less IPC achieved). Figures 7.18 and 7.19
show this e�ect more clearly. Figure 7.18 shows the amount of instructions executed per
region across experiments. The lower workload is found at experiments 3 and 6 (64 and
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Figure 7.19.: Average IPC achieved per computing region in HACC

512 tasks). Correlating with Figure 7.19, these two experiments are also the ones achieving
lower IPC.

The di�erences in the number of instructions can be explained due to the work distri-
bution scheme: when the number of tasks is not cubic there is extra work to distribute
among the available tasks. Although the IPC achieved also becomes higher, the increase
in performance does not compensate for the increase of work, and the computation time
becomes higher in the uneven cases. This can be seen in Figure 7.20b, that compares the
computation times for the main computing region of the program in the cubic runs (64 and
512 tasks), and an uneven intermediate case (256 tasks). In these histograms, the rows and
processes and the columns are bins of computation durations increasing from left to right.
In the cubic cases 7.20a and 7.20c, the computing times are very similar in the range of 310
to 323 ms, but in the 256 tasks case shown in Figure 7.20b, all computations are shifted to
the right, having increased times ranging from 323 to 343 ms.

Even though the overall performance of the computations is better in the cubic cases,
we can also observe that the time to solution degrades as we increase the scale. Comparing
the two cubic cases with 64 and 512 tasks, we can see that the percentage of time spent in
computations decreases from 60 to 45%. The problem in this case resides in the comple-
mentary communications. In particular, the time spent in MPI_Wait calls rockets from 30
to 50% because of the serializations in the program caused by a pipelined communication
pattern, where some processes can not progress until they have received messages they are
waiting on. One recommendation that could be given in this case to improve the scalability
of the program is to change the communication pattern so as to overlap computations and
communications, reducing the serializations.

7.5. Related work
Our work draws inspiration from a motion detection algorithm of moving biological ob-
jects that are similar but non-homogeneous [173]. They apply multi-feature contour seg-
mentation and �ux tensors to identify the boundaries of biological objects and detect de-
formable motion and complex behaviors (e.g. cell crawling or division) along a time-lapse
collection of images.

In a broader sense, object tracking is applied in the context of applications that require to
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(a) Experiment using 64 tasks

(b) Experiment using 256 tasks

(c) Experiment using 512 tasks

Figure 7.20.: Histograms of computations duration for Cluster 1 in HACC. The data points
in the 256-task case that appear more to the right indicate that the perform-
ance of the computations decreases in experiments with non-cubic task dis-
tribution.

associate target objects in consecutive frames to detect how they move around the scene.
Practical applications include: automated surveillance, gesture recognition, tra�c monit-
oring or path planning. [174] presents an extensive review of the state-of-the-art of track-
ing methods, and discusses related issues including the use of appropriate image features,
motion models and object recognition.

ETRUSCA [175] included a jitter reduction analysis that attempted to relate the clusters
found in one time interval with the clusters found in the next interval. Selecting a repres-
entative process in each interval, they would minimize the data captured. Our approach
does not look for representative processes, but representative behaviors for all computing
phases within all processors, and track how they change not only across time intervals,
but also across experiments with di�erent con�gurations.

Multi-experimental analysis has been approached by several performance analysis tools.
SCALASCA [126] includes a tool called performance algebra that can be used to merge,
subtract, and average the data from di�erent experiments and view the results as a single
derived experiment. PerfExplorer [113] supports data mining analyses on multi-experiment
parallel performance pro�les. Its capabilities include general statistical analysis of per-
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formance data, dimension reduction, clustering and correlation of performance data, and
multi-experiment data query and management. TAU [45] incorporates the concept of
phase pro�ling for the study of the evolution within a single experiment. This is an ap-
proach to pro�ling that measures performance relative to a phase of execution, having its
entry and exit marked by the user. HPCToolkit [41] merges pro�le data from multiple per-
formance experiments into a database �le and perform various statistical and comparative
analyses.

While they compute averages for prede�ned metrics and �xed phases such as functions,
iterations or sections marked beforehand, we report arbitrary metrics at the level of com-
puting regions. By doing so, we abstract the structure of the application to the behavior of
its computing phases, taking into account the performance measurements of every single
computation rather than pro�led averages that may hinder their actual behavior.

Studies have also used non-prede�ned program constructs to characterize the program
behavior. In [176], BBV-based analysis is applied to detect phases within an execution. This
lowers the granularity to the instruction-level, which moves away from the semantics of
the code and is not of common use for the analysis of parallel production codes. Further
discussion on the suitability of CPU bursts to characterize the program behavior can be
found in [114].

The fundamental di�erence that distinguishes our approach from the previous ones is
that we do not merely report the outcome of di�erent experiments together. We automat-
ically determine the regions of interest and track their evolution along multiple executions.
To this end, we translate performance data from di�erent execution scenarios into a se-
quence of images, detect structure in each image and automatically correlate them.

7.6. Closing remarks
In this chapter we have demonstrated that it is possible to draw an analogy between track-
ing techniques applied to the automatic detection of an object’s motility, and the perform-
ance analysis of a parallel application’s evolution along multiple execution scenarios. This
approach mimics the common phase structure of a tracking algorithm, including the gen-
eration of a sequence of images, object recognition within each frame and motion analysis
across scenes.

Di�erent scenarios are represented as a sequence of performance images that expresses
the evolution of the application either along di�erent experiments with changing con�g-
urations, or along time intervals within the same experiment. Computing regions of the
application are represented as objects in these images, described by how they behave in
terms of selected performance metrics. Then, we �nd a correspondence between objects
along the whole sequence of images, keeping track of their possible motions and structural
changes due to performance variations. To this end, we use a variety of heuristics that take
into account di�erent characteristics of the computing regions: the displacements in the
performance space, the SPMDiness of the application, the code region they refer to, and the
execution sequence. Combining their use, we are able to automatically identify the global
evolution of the main computational behaviors and illustrate their performance trends.
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Our technique o�ers a di�erent viewpoint to the task of analysis that is more agnostic
of the syntax of the code, but brings into focus the main performance characteristics of
the program and the nature of their ine�ciencies, enabling the identi�cation of the most
appropriate solution for the artifacts observed. Then, these observations can be correlated
with the source code, to know which sections exhibit a given behavior. There are two re-
markable bene�ts to this approach. First, the same solution can be applied to multiple code
sections that present the same de�ciency, without having to reappraise the same problems
repeatedly. Second, we are able to detect multi-modal behavior and variations along time
and processors, two important e�ects often masked by pro�ling tools. In this way, a single
code section undergoing performance variabilities will be expressed as divergent behaviors
that can be studied separately, revealing more room for improvement.

All in all, this work presents a versatile tool applicable in very varied scenarios, en-
abling the analyst to study the impact of virtually any con�guration on the application
performance without prior knowledge of the program; compare and correlate perform-
ance data between experiments; determine the best setup to meet speci�c performance
requirements; and ultimately helps to gain better understanding of the application beha-
vior, much beyond what can be learned from a single experiment.

This work opens up interesting lines of future research. On one hand, predictive models
could be built next that would enable us to foresee the performance of experiments beyond
the sample space. On the other hand, further on-line integration could be developed, in
order to analyze the evolution over time of adaptative applications automatically.
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Chapter 8
Active measurement techniques to
improve the productivity of the analysis

Current interest in multi-experiment performance analysis is highly motivated by
several purposes: benchmarking, procurement evaluation, modeling, prediction
or application optimization. However, in-depth analysis of a variety of experi-

mentation and evaluation scenarios poses two fundamental problems. First, and more
importantly, it becomes essential to have sophisticated tools to store, process and draw
useful conclusions from the multiple performance datasets generated from the di�erent
experiments. Second, even if you have these tools, recurring executions of a large-scale
parallel program results very quickly in in an enormous expense of computing resources,
energy and time; and the users happen to be often restrained by narrow computing budget
allocations.

In previous chapters, we have thoroughly discussed on the importance of leveraging tech-
niques from data mining, machine learning and statistics to focus the analysis on the zones
of real interest, and so we have successfully applied cluster and spectral analysis to detect
the application structure and identify behavioral archetypes. But being the applications
eminently repetitive, if we focus the analysis just on a few representative regions, a lot
of performance data is underused, and the computing power consumed to produce and
process this data becomes essentially wasted. However, if the conditions of the execution
changed over time, the application would be exposed to di�erent scenarios, enabling us to
evaluate the performance behavior under di�erent circumstances all under the same run.

Active measurement techniques actively interfere the application’s use of key resources
like memory capacity and bandwidth, network bandwidth and computing power. Then,
the application’s sensitivity to reduced resource availability is measured by observing the
e�ect of interference on the application performance. In this chapter, we combine this
kind of techniques with all the technology that we have developed for the on-line analysis
of parallel applications, in order to add controlled interferences to the program so as to
emulate di�erent execution scenarios at di�erent time intervals of the same run. Then,
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tracking can be applied to analyze the evolution of the program behavior across the dif-
ferent scenarios. Overall, we condense all the information that would be extracted from
multiple experiments in just a single run, minimizing the amount of resources necessary
to produce all the required data for an e�ective performance analysis.

8.1. Background and motivation
In the previous chapter, we have seen that performance evaluation of parallel programs be-
ne�ts from analyzing data taken from multiple experiments and di�erent execution scen-
arios. This allows us to understand and anticipate the computation and communication
needs in applications, identify current and future bottlenecks, drive program optimiza-
tions, and assess their e�ectiveness.

Three of the most common approaches to test the program performance under di�er-
ent scenarios are (i) analytical models, which characterize the application behavior under
several known environments and enable to extrapolate the results to a new scenario [177];
(ii) parameter sweep executions, which allow to explore the real e�ects produced on the
performance by di�erent settings of the algorithm [178]; and (iii) simulations, which en-
able to study how the program would behave under di�erent conditions [179]. While the
solutions are di�erent, all three approaches share the necessity of executing the program
several times or running one simulation per scenario, and this entails two main shortcom-
ings.

The �rst handicap is directly related to the accessibility to the computing resources.
Large-scale parallel executions may use a large number of cores and the execution time
may be long, so each experiment is costly to run. Moreover, the access to computing
resources is often limited by job scheduling policies, computing time budgets and shared
allocations, which taken altogether often results in long wait times and overly delayed
results.

The second issue is related to the optimal exploitation of the resources used. Our pre-
vious research has focused on leveraging clustering and signal processing techniques to
identify relevant phases of the program, reducing all the performance measurements taken
throughout the whole execution to small representative areas. Since the applications are
very repetitive, this actually results in a big portion of the measurements to be discarded
because they are essentially redundant and do not provide any additional information.
Thus the computing resources devoted to produce all this unused performance data are
basically wasted, especially when many experiments are required and the user has to pay
every time for the full cost of going through the wait lines to get all the necessary resources
and make another full run.

To overcome these limitations, we could take advantage of the repetitive behavior of an
application to expose it to many di�erent scenarios during di�erent time intervals of the
same execution. In this way, we could extract from a single run all the necessary perform-
ance data that would otherwise require to perform multiple independent experiments.

To this end, active measurement techniques [180] emulate the behavior of anticipated
future architectures on current machines. In particular, they focus on the impact of re-
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source limitations by arti�cially restricting them, enabling to capture low-level execution
details in real time to observe the application behavior under di�erent scenarios. In this
work, we combine the use of active measurement techniques with on-line techniques to
detect the application structure at run-time, using the detected repetitive program phases
to simulate di�erent machine conditions at selected execution intervals. Then, tracking-
based comparative analysis [9] can be applied to study how the program behavior evolves
through the di�erent simulated scenarios. The bene�ts are twofold: on one hand, just a
single execution is needed to perform a multi-experiment analysis, and so the resources
become more accessible; and on the other hand, less measurements are wasted because of
being redundant, and so the productivity of the resources increases.

Combining the use of all these techniques on-line, it is possible to go one step further
and use the results of the analysis to provide dynamic feedback to the execution run-time
to improve the application performance. In this work, we started this line of research by
integrating the on-line analysis framework with the OmpSs parallel run-time [21], adding
the capability to give hints about the most optimal strategy to balance threads and tasks.

8.2. On-line application of active measurement
techniques

In this Section we describe the integration of the on-line analysis framework with the
GREMLINS framework [180], a collection of modules that are loaded into the execution
environment of the target MPI application, to emulate di�erent machine conditions in a
single experiment. Then we describe how to extrapolate this idea to make the on-line ana-
lysis framework interact directly with the underlying parallel run-time, enabling to make
dynamic adjustments to the execution. We show two di�erent experiments to demonstrate
the utility of studying which resources are more critical to the application, and which is
the most optimal strategy to balance threads and tasks.

The experiments were run in Marenostrum 3 [181], a cluster of 3,056 compute nodes
based on dual Intel SandyBridge 8-core processors at 2.6 GHz, iDataPlex Compute Racks,
a Linux operating system and an In�niband interconnection network.

8.2.1. Simulating di�erent conditions in a single run
In this Section we describe the integration of the on-line analysis with the GREMLINS
framework [180], a collection of modules that are loaded into the execution environment
of the targeted MPI application to emulate di�erent aspects. The framework provides dif-
ferent classes of GREMLINS: power GREMLINS reduce the power budget using DVFS or
cap power on a per node basis; thermal GREMLINS enable thermal throttling; resilience
GREMLINS inject faults into target applications and enable us to study the e�ciency and
correctness of recovery techniques; bandwidth and memory GREMLINS limit resources
in the memory hierarchy such as cache size or memory bandwidth by running interfer-
ence threads; latency GREMLINS degrade memory latency; and noise GREMLINS inject
periodic or random noise events to emulate system and OS interference.
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Figure 8.1.: On-line active measurement protocol work�ow

Multiple GREMLINS can be used together, providing the illusion of a system that is mod-
i�ed in several di�erent aspects. For example, this enables to emulate a combined e�ect of
power limitations and reduced memory bandwidth. To accomplish this transparently to
the application and for an arbitrary combination of GREMLINS, the framework relies on
PNMPI [182]. PNMPI is a virtualization layer for PMPI [26], the standardized interface for
tools to wrap MPI calls and thereby to monitor the communication of the message-passing
applications. PNMPI extends the PMPI interface enabling to load and to stack arbitrary
PMPI tools dynamically and run them concurrently. This mechanism, in addition to allow-
ing to inject several GREMLINS into the application, also allows to plug-in a monitoring
system, and through this mechanism we connect the on-line analysis system, as shown in
Figure 8.1.

When the application starts executing and calls the MPI initialization routine MPI_Init,
the control is transferred �rst to the GREMLINS manager (GM), which triggers the appro-
priate GREMLINS into the execution. Next, control is transferred to the on-line analysis
framework (OL), which starts the analysis front-end, the reduction tree and the tracing
back-ends, as seen in Chapter 3. Then, the control returns to the application that starts
running normally, with one or more GREMLINS interfering the resources in parallel, and
the monitoring system taking performance measurements. Periodically, the analysis front-
end will pause the execution (1), and communicate with the GREMLINS manager (2; the
interaction between both systems is made through signals) to change the active GREM-
LINS to simulate a di�erent scenario (3). The decision on when to change the simulation
conditions can be taken arbitrarily, e.g. every certain amount of seconds, or intelligently,
e.g. considering the result of a previous analysis to detect the application’s periodic pat-
terns (see Chapter 5).
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(a) LULESH experiment without interferences (b) LULESH experiment with interferences

Figure 8.2.: Structure of the main computing regions of LULESH with (right) and without
(left) interferences

8.2.2. Studying the e�ects of memory congestion in LULESH

The objective of this experiment is to study which parts of the LULESH 1.0 benchmark
[183, 184] are more sensitive to memory restrictions. To do so, we interfere the execu-
tion collocating GREMLIN processes in the same nodes where the application is running,
constantly stealing memory capacity by randomly �lling and invalidating the L3 shared
memory cache. To this end, the on-line analysis framework will orchestrate the GREMLINS
manager to use a variable number of memory GREMLINS at di�erent execution intervals.

LULESH represents a typical hydrodynamics code, which describes the motion of ma-
terials relative to each other when subject to forces. LULESH is a highly simpli�ed applic-
ation, hard-coded to only solve a simple Sedov blast problem with analytic answers, and
approximates the hydrodynamics equations discretely by partitioning the spatial problem
domain into a collection of volumetric elements de�ned by a mesh. In this experiment, we
run LULESH with 8 MPI tasks distributed over 2 nodes. Each node has 2 CPU sockets with
8 cores each. Then, the MPI tasks are mapped so that each of the 4 CPU sockets avail-
able runs 2 MPI tasks. In the remaining slots will run the GREMLINS, and the mapping
is important so as to impact all the application’s processes evenly. Throughout the exe-
cution, the number of memory GREMLINS increases at a rate of 1 per CPU socket every
several iterations. In this way, in the same run there is an initial execution interval without
memory interferences, a �nal region with very reduced cache capacity with all the CPU
sockets populated with up to 6 GREMLINS, and all the intermediate con�gurations also
tested. At the same time, the on-line analysis framework is taking performance measure-
ments for the subsequent time intervals with varying number of GREMLINS. And at the
end of the execution, all the data is correlated using tracking (see Chapter 7), enabling us to
evaluate how the performance behavior of the program changes in relation to the degree
of memory interference.

The experimental setup has a baseline L3 cache capacity available of 20 MB, and each
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Figure 8.3.: Trajectory of clusters through LULESH experiments with increasing memory
interferences

each memory GREMLIN is con�gured to use 4 MB bu�ers, which results in minimal memory
bandwidth consumption (600 MB/s out of 40 GB/s), and a reduction of the e�ective cache
capacity to approximately 15 MB, 12 MB, 7 MB, 5 MB and 2.5 MB when using from 1
through 5 GREMLINS, respectively (refer to [185] for details on predicting the impact of
adding new GREMLINS).

Figure 8.2a shows the performance characteristics of the program when there are no
GREMLINS active. We can observe 4 main computing trends, characterized for having sig-
ni�cantly high performance (IPC > 1.8, X-axis), and a low number of L3 data cache misses
per instruction (Y-axis). Figure 8.2b shows the performance behavior of the same code
regions when the maximum number of GREMLINS are running concurrently (6 per CPU
socket). Here we can observe that the clusters have become much more disperse, especially
in the vertical axis, meaning that the intervention of the GREMLINS is contaminating the
memory caches and causing the application to transfer data from the main memory more
often. Figure 8.3 shows the evolution of these code regions considering all the experiments
from 0 to 6 GREMLINS per CPU socket. X-axis represents performance (IPC), and Y-axis
represents L3 total cache misses. All regions present similar behavior, amid which stands
all clusters moving upwards (the more GREMLINS active, the higher data cache misses),
and all clusters moving left (the more GREMLINS, the lower performance).

Figure 8.4a depicts the evolution of the L3 data cache misses per instruction metric
across experiments, which shows an increase of almost a 100% in all cases. Figure 8.4b
shows the evolution of the IPC, which shows a decrease of at least 2%. In particular,
Cluster 3 (red) shows a 10% decrease in performance, meaning that this is the part of the
program that would su�er a more signi�cant performance loss if the memory resources
are limited. Thanks to the callstack information that is also extracted in the measure-
ment phase, we can attribute this behavior to the calculations performed in the routine
CalcMonotonicQForElems. A conclusion that we can extract from these observations is
that in a future exascale system where memory will be a more scarce resource due to the
competition of a high number of threads per node, this particular part of the program will
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(a) Evolution of L3 data cache misses per instruction

(b) Evolution of IPC

Figure 8.4.: Evolution of performance metrics for all clusters across all LULESH experi-
ments

become a major bottleneck.

8.2.3. Dynamic interaction with the paralell run-time
In this Section we describe the integration of the on-line analysis framework with the
OmpSs parallel run-time. OmpSs [21] is a programming model that extends OpenMP [20]
with new directives to support asynchronous parallelism and heterogeneity (devices like
GPUs). The OmpSs parallel run-time works on top of Nanos++ [186], a run-time service
that provides mechanisms to support task parallelism using synchronizations based on
data-dependencies. In turn, Nanos++ runs on top of DLB [187], a dynamic library designed
to speed up hybrid applications with nested parallelism by improving the load balance
inside each computational node. Similarly to the way we have used the on-line analysis
framework to dynamically control the active GREMLINS to simulate di�erent machine
scenarios throughout the execution, these tools combined enable the on-line analysis to
dynamically change the parallel run-time internal settings, and then study which settings
yield a better program performance.

In particular, we have experimented with tuning the low-level DLB’s balancing decisions
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(i.e. how many threads are assigned to each process), trying di�erent resources distribution
schemes throughout the run. To this end, DLB provides mechanisms to assign or remove
threads from a process, which have been extended with a new API that enables the on-line
analysis framework to adjust the thread mapping over time.

8.2.4. Studying the e�ect of thread-balancing strategies in BT-MZ
The objective of this experiment is to study how the thread mapping a�ects the perform-
ance of the NAS BT-MZ benchmark. The NAS Parallel Benchmarks (NPB) [141] are a small
set of programs designed to help evaluate the performance of parallel supercomputers.
Problem sizes in NPB are prede�ned and indicated as di�erent classes. BT-MZ consists in
a block tri-diagonal solver derived from computational �uid dynamics (CFD) applications,
with uneven-size zones within a problem class, and increased number of zones as problem
class grows. In this case, we have run the benchmark class B using 2 MPI tasks, and a
variable number of OpenMP threads per process ranging from 1 to 8. In total, the execu-
tion never exceeds 8 concurrent threads, which means that we can set a perfectly balanced
mapping with 4 threads assigned to each process, or a very unbalanced case with 7 threads
assigned to the �rst process and only 1 thread assigned to the second process.

In this experiment, the on-line analysis system changes the thread mapping every few
iterations of the program, making a full sweep that considers all possible distribution
schemes, reallocating 1 single thread at a time. The starting point is the most unbalanced
scenario, having 7 threads assigned to the �rst process. For the following experiments,
threads assigned to the �rst process are reassigned to the second, until we achieve the
most balanced scenario with 4 threads per process. From this point on, we keep reas-
signing threads from the �rst process to the second to generate the mirrored unbalanced
scenario, with 7 threads assigned to the second process.

Figure 8.5a shows the performance characteristics of the program when the thread map-
ping is very unbalanced, with 7 threads assigned to the �rst process, and only 1 thread
assigned to the second process. In this case, we can observe that the program presents
6 main computing trends, characterized for having a very high IPC (around 2.4, X-axis),
and a wide dynamic range in the number of instructions executed (Y-axis). These beha-
viors re�ect the di�erent workloads for the uneven-size zones of the benchmark. Figure
8.5b shows the same structure for the perfectly balanced case, with 4 threads assigned per
process. In this case, we can observe that the clusters elongate horizontally, meaning that
there is more variability in the IPC in the balanced case.

This happens because in the unbalanced case, the second process that runs with a single
thread introduces a large serialization in the computation, as shown in Figure 8.5c. The
�rst process (7 threads) �nishes the computations fast, and has to wait for the second
process (1 thread) to �nish its part, which is executing the majority of the time alone
without any resource competition. In the balanced case, see Figure 8.5d, the work is better
balanced so the are no serializations, but since all threads are executing concurrently all
the time, the competition for resources is higher and the threads interfere with each other,
degrading the performance. Table 8.1 shows the total time percentage that the program
spends executing at di�erent levels of thread concurrency, where the reader can see that
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(a) BT-MZ experiment with unbalanced threads (b) BT-MZ experiment with balanced threads

(c) Tasks distribution with unbalanced threads

(d) Tasks distribution with balanced threads

Figure 8.5.: Structure of the main computing regions of BT-MZ with unbalanced threads
con�guration (a) and balanced (b), and their respective timeline distribution (c,
d)
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Figure 8.6.: Evolution of L3 total cache misses per instruction across all BT-MZ experiments

Execution time %
No. concurrent threads Unbalanced mapping (7-1) Balanced mapping (4-4)

1 68.35% 7.36%
2 2.40% 8.46%
3 2.19% 37.58%

4 1.97% 41.88%

5 4.36% 1.33%
6 12.49% 1.39%
7 8.24% 2.01%

Table 8.1.: Comparison of the execution time percentage with di�erent thread concurrency
levels in NAS BT-MZ between an experiment with unbalanced thread mapping
(all threads to a single process) and balanced thread mapping (same threads per
process)

there is a single thread executing alone about 70% of the time in the unbalanced case, while
in the balanced case almost 80% of the time there are 3 or 4 threads executing concurrently.

The higher concurrent thread interaction results in an increased L3 memory miss rate.
Figure 8.6 shows that the average L3 total cache misses per instruction (Y-axis) is maximum
for all code regions in the balanced case, and lower in the unbalanced scenarios, which
explains the IPC degradation in the most balanced case.

Figure 8.7a shows the tracking results for the series of experiments reallocating one
thread at a time, starting with the mapping 7-1 and moving to the opposite mapping 1-7.
Here we can observe a bouncing movement. At �rst, all threads are assigned to one process,
and the clusters centroids are on the right-hand of the plot with a high average IPC. As we
start removing threads from the �rst process and assigning them to the second, the IPC
degrades (clusters move left) because the concurrent execution of several threads results in
higher cache misses and so the average performance decreases. However, the overall load
balance is better and the total execution time also decreases. After the balanced scenario,
we start unbalancing the threads again in favor of the second process, which results in a
mirror scenario and the average IPC improves again although the balancing is better, and
the total execution time becomes slower. This e�ect can be seen more clearly in Figure
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(a) General view of all clusters (b) Detailed view of Cluster 1

Figure 8.7.: Trajectory of clusters through BT-MZ experiments with di�erent thread-
balancing con�gurations

8.7b, which zooms in the trajectory followed by Cluster 1 (green). All other clusters show
the same bouncing behavior.

For Clusters 1 to 3 (green, yellow and red), the variation in IPC is more signi�cant, i.e.
their displacements in the horizontal axis are larger, especially for Cluster 1 (green). These
computing regions correspond to the line solves in the X, Y and Z directions performed
in routines x_solve, y_solve and z_solve. One conclusion that we can extract from their
behavior is that these tasks are most sensitive to the competition for resources of many
threads, and this information could be useful for the run-time to try avoiding scheduling
many tasks of this type together to minimize the impact of sharing resources.

8.3. Related work

Many tools have demonstrated the importance of multi-experimental analysis [59, 188, 41,
189, 126, 190]. However, previous techniques require to run the program several times to
obtain all the necessary performance data for the analysis, a solution which is timely to
get results and computationally expensive. The technique presented here overcomes these
limitations by producing all the necessary performance data in a single execution.

To this end, we have proposed the use of active measurement techniques to simulate
di�erent machine conditions over time [185]. Similar approaches use interference threads
to steal available cache storage and bandwidth [191, 192, 193, 194], but in general they fall
short in precisely controlling the exact resources they are interfering, biasing the perform-
ance measurements obtained.

Then we have extended this idea to study not only di�erent machine conditions, but dif-
ferent parallel run-time settings. Most run-times o�er mechanisms to tune their internal
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activity. For example, MPI implementations [129, 195] typically allow to con�gure the
eager limit (i.e. the method of sending short messages) through environment variables.
Also, some scheduling decisions in OpenMP [20] applications can be delegated to the user
through extended annotations in the code. The OmpSs [21] task scheduling strategy can
also be controlled manually through the resources directive. But in order to get any be-
ne�t by tuning these settings the user often requires some trial and error to �nd which set-
tings are more optimal. Our method extends these functionalities enabling to try di�erent
run-time settings automatically and provide feedback to the parallel run-time dynamically.

Sharing the idea of testing several con�gurations under the same run, we �nd tools like
AutoTune [127], a plugin-driven framework that automatically runs the program one or
more times to try di�erent con�gurations of compiler �ags, energy e�ciency parameters
and di�erent execution patterns, and returns recommendations to tune the code. Simil-
arly, Active Harmony [128] is an automated runtime tuning system that puts emphasis
on dynamically adapting to changing resource capacities and application requirements.
Our goal is di�erent: to extract all the detailed measurements necessary to conduct an in-
depth analysis of the data, instead of reporting general and prede�ned recommendations.
Moreover, our approach enables to simulate on-line both di�erent hardware and runtime
settings, requiring only a single program run.

Following a di�erent direction, on-line performance modeling tools like PEMOGEN
[102] could also be used to make dynamic predictions of the impact of di�erent machine
con�gurations on the program performance. Rather than interfering the execution to
limit the available resources and then measuring the e�ect, it would be possible to rely
on architecture-based performance models (e.g. [196, 197, 198]) to predict changes in the
program behavior. The COMPASS framework [105] relies on the performance modeling
language Aspen [106] for automated static analysis of the target application. Their proto-
type system is integrated on top of OpenARC, a compiler and runtime system, enabling
the study of runtime relevant parameters, such as predicting runtimes under di�erent ap-
plication and system con�gurations, or �nding optimal decision points for a performance
target with multiple constraints (e.g., whether it is faster to o�oad a function and pay
data transfer costs or to execute the function on the host CPU). Using performance model-
based predictions, the comparative analysis methodology proposed that employs tracking
techniques could still be applied to e�ectively compare the di�erent scenarios. Neverthe-
less, the main advantage of applying active measurement techniques over modeling lays
on avoiding the di�culties, both in terms of cost and accuracy, of building a model that is
general and portable enough to infer the impact of a wide number of machine and runtime
parameters over many di�erent architectures and software versions.

8.4. Closing remarks
Multi-experiment analysis is important for perfomance evaluation and application tuning,
but it is a timely and computationally expensive task. In this chapter, we have proposed
to combine several techniques to take advantage of the highly iterative behavior of par-
allel applications to obtain from a single experiment all the performance data that would
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otherwise require to run the program multiple times, saving on time and resources.
On one hand, the on-line analysis framework monitors the application execution, provid-

ing the ability to detect the application’s periodic structure on the �y, and deciding when is
the right moment to start simulating di�erent machine conditions. On the other hand, the
GREMLINS framework is responsible for injecting controlled interferences into the target
application that can a�ect one or more sources like the CPU, memory or network. By hav-
ing both tools working together, we are able to simulate di�erent scenarios over di�erent
time intervals within the same execution. Then tracking can be applied to study how the
program’s performance behavior changes over the di�erent scenarios. In this way, we are
de�ning a new methodology to analyze very detailed trace data, considering all the time
and space varying behavior, and correlating the data from multiple experiments, without
having to generate and analyze the independent trace of each experiment per separate.

Furthermore, we have proposed to extrapolate this idea to interact with the parallel run-
time. Being able to communicate our whole analysis infrastructure with the underlying
run-time system, we can make dynamic adjustments of the run-time internal settings to
see how they impact the program’s performance. And if the analysis is perfomed on-line,
we could even provide dynamic feedback to the run-time to stick with the most optimal
settings.

This work has opened several interesting lines of research. Adaptative applications are
an interesting subject of study, to see if we can dynamically decide whether the application
could bene�t from adjustments considering the current use of the available resources. Also,
the tracing process could be guided by the impact of the interferences, i.e. if limiting a given
resource does not a�ect the program performance, then it is probably not worth to obtain
performance measurements regarding this particular resource as it is not going to pose
a performance bottleneck. Finally, it would be interesting to incorporate into the trace
the information of which degree of interference each part of the program is able to handle
before it starts degrading, to enable in-depth analysis of the resource needs correlated with
the program source code.
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Chapter 9
Conclusions

In this thesis, we have presented the research to improve the traces scalability problem.
Trace-based tools provide much more detailed information than any other approach
in performance analysis, yet the amount of information collected can grow so large

that traditional tracing techniques have become no longer applicable in the large scale.
This work addressed the challenging problem of enabling trace-based tools to be usable,
e�ective and applicable for the analysis of large scale parallel applications, and helped lay
the foundation of intelligent tracing as a valuable technique for performance analysis in
the exascale.

The main goal was to minimize the amount of captured data while maximizing the amount
of relevant information presented to the analyst. To this end, we proposed and validated
new instrumentation techniques and analysis methodologies to overcome the limitations
of trace-based analysis from two sides.

On one hand, we proposed a set of automatic mechanisms to intelligently focus the ana-
lysis on the most relevant data, obtaining manageable amounts of information even for
large-scale experiments. On the other hand, we proposed a variety of techniques to facil-
itate and improve relevant aspects of the task of analysis, with regard to (i) �nding new
ways to represent, interpret and extract useful observations, (ii) extending the scale of the
analysis, (iii) facilitating comparative and multi-experiment studies, and (iv) increasing the
productivity of the overall analysis process.

Our approach to the problem has focused on leveraging data analytics techniques from
other �elds like data mining, machine learning, signal processing, object tracking and act-
ive measurement; to automatically extract useful insight from the data. We demonstrated
the utility of the techniques introduced to conduct di�erent cases of study of parallel ap-
plications, reaching useful and comprehensible conclusions towards feasible programs’
optimizations. Table 9.1 shows a summary of the experiments that have been reported in
this thesis.
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Technique System Tested applications

On-line clustering Marenostrum 2 [181] GROMACS, Leslie3D, MILC,
SPECFEM3D, Zeus-MP

On-line spectral
Marenostrum 2 NAS-BT, P�oTran

Jaguar [199] PEPC, P�oTran

Parallel clustering BlueWaters [155]
AMG2013, AVBP, CPMD, GTC, GROMACS,

HACC, IPIC3D, LINPACK, NEKBONE,
PEPC, PFLoTran, SAMRAI, Zeus-MP

Tracking

Marenostrum 2 CGPOP, GADGET, GROMACS, NAS-BT,
NAS-FT, Quantum Espresso, WRF

Marenostrum 3 [181] HACC, OpenMX

Minotauro [181] CGPOP, Hydro, MR-Genesis

On-line active measurement Marenostrum 3 LULESH, NAS-BT-MZ

Table 9.1.: Summary of reported experiments

This chapter compiles all the conclusions and discusses potential future lines of research.

9.1. Enabling on-line analysis of extreme scale parallel
applications.

The core development of our research consists in an on-line analysis framework that com-
bines a tracing system and an overlay analysis network. The target of the framework is to
automatically extract performance data from the execution of a parallel application, and
analyze it on-the-�y. On top of this software infrastructure, we proposed two automatic
analysis techniques, based on clustering and signal processing, to supply the tracing pro-
cess with intelligence to select the most interesting information to produce a smart trace:
a minimal set of data that best describes the overall program behavior.

To achieve this, we made several design choices. We structured the analysis network in a
tree-like topology, where the leaves of the tree are threads that attach to each process of the
parallel application, extract performance measurements from them, and provide mechan-
isms to dynamically �lter, summarize and manipulate the data. The intervention of these
monitors is globally orchestrated by the root node of the tree, a central process that has
the ability to decide when to extract performance data, how to perform the analysis of
this data, and how to interpret the results. Between both end-points of the tree, the inter-
mediate nodes operate applying reductions on the data that is sent through the network.
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Application No. tasks Full trace size Smart trace size Reduction %

PFloTran 32 8.5 GB 275 MB 96.84%
GROMACS 64 20 GB 200 MB 99.02%
NAS BT 64 1.5 GB 20 MB 98.70%
SPECFEM3D 64 3 GB 100 MB 96.74%
PFloTran 128 1.3 GB 93 MB 93.01%
MILC 245 5.5 GB 200 MB 96.45%
Zeus-MP 256 22 GB 350 MB 98.45%
Leslie3D 512 82 GB 600 MB 99.29%
PEPC 1,024 7.0 GB 700 MB 90.23%
PEPC 2,048 0.5 TB 5 GB 99.02%
PFloTran 16,384 28 TB 2.6 GB 99.99%
PFloTran 32,768 78 TB 7.3 GB 99.99%

Table 9.2.: Summary of reported trace data reductions

This structure provides three main advantages: (i) enables independent tracing behavior
for each application process, i.e. take di�erent performance measurements for the di�er-
ent computing resources to maximize the spectrum of metrics evaluated; (ii) allows taking
decisions having a global view of the overall state of the application; and (iii) keeps the
system scalable by reducing logarithmically the set of linear data that is extracted from
each process.

Beyond the uses cases that we implemented, the modular construction of the system
enables to easily extend its functionalities by connecting new plug-ins of analysis to the
di�erent components of the framework. To ease the development of new analysis plug-
ins we have developed Synapse, a middleware that can be seen as a simple programming
paradigm to implement parallel computations that require master-slave coordination and
that can take advantage of the hierarchical reduction model employed (refer to Annex B).

The proposed implementation follows an extremely scalable design that has been proven
to handle very large executions up to tens of thousands of cores, and achieve large trace
data reductions of multiple orders of magnitude, as shown in Table 9.2. Furthermore, our
approach would as well accomodate di�erent types of performances tools other than trace-
based, for example, highly scalable pro�lers, debuggers or expert systems.

9.2. Detecting relevant phases through on-line
clustering analysis.

We have explored the application of cluster analysis techniques to analyze the perform-
ance data extracted from a parallel application at run-time. Although the use of cluster
algorithms in performance analysis is not new, we have found in these techniques a di�er-
ent possibility of application that serves for a new purpose. Traditionally, cluster analysis
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has been applied to detect representative processes in the parallel execution, aiming at re-
ducing the volume of data just by discarding the non-representative ones. This approach
eliminates all the variability in the data between processes, and thus undermines the ana-
lysis precision and the ability to detect certain performance problems that are directly
related to the interaction between processes.

More recent research focused on applying �ne-grain clustering to reveal the detailed
structure of the program’s computations. Trace-based analysis bene�ts from this approach,
as it enables a more in-depth examination of time and space variabilities, but this method
of using clustering did not achieve any degree of data reduction per se.

In our research, we have given the latter strategy a novel use. Clustering is repeatedly
applied to expose the performance structure of the main computing regions of the program
over consecutive time intervals of the execution. Subsequent clustering results are then
compared to see whether changes in the application performance happen.

Given the iterative nature of the vast majority of codes, the algorithms tend to quickly
converge into an iterative pattern over which the achieved performance presents minor
�uctuations. When the observed behavior di�ers signi�cantly from the baseline, this is
indicative of the program undergoing perturbations or entering into a di�erent algorithmic
phase.

Periodically assessing the performance structure of the clusters we automatically identify
relevant phases of the program while it is executing. This information enables us to pro-
duce a compact trace comprising selected representative regions of the whole execution,
yet preserving all the important �ne-grain trace information to support a posterior detailed
analysis.

9.3. Generating multi-detail traces through on-line
spectral analysis.

Previously, we proposed the use of cluster analysis to dynamically infer when the program
had entered into an important computing phase, and use the information to intelligently
select a small representative region to be traced in detail. As we proved, our approach ef-
fectively reduced the volume of traced data, and was able to preserve meaningful inform-
ation to analyze the major hotspots of the program. Nevertheless, we identi�ed potential
improvements in two areas.

In the �rst place, the method lacked precision to delimit the exact boundaries of the
traced region, because the exact start and ending points of every iteration inside the loops
of the program were not known. In the general case, the traced region would contain sev-
eral iterations of the main loop of the program. But in the worst case, this could result in
substandards like capturing incomplete iterations, tracing many more iterations than what
is actually needed for an e�ective analysis, or mistaking a small sub-phase of the program
with the main computing phase, which could lead to discard potentially important inform-
ation. Secondly, the previous approach focused straight on the most important regions of
the execution, directly discarding the remaining data without any further consideration.
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In order to complement the previous work, we proposed the use of signal processing
techniques to expose the precise periodic pattern of a parallel application at run-time.
Wavelet transform, cross-correlation function and mathematical morphology techniques
are applied to precisely identify the iterative behavior of the program, unveiling where
are the periodic and non-periodic program phases, the start and end points for each loop
iteration, and the zones that are less perturbed by performance artifacts. Then, we used
this new information to dynamically decide at which level of granularity the data was
stored in the trace, ranging from a general view of the periodic structure of the application
to every single detail for speci�c time intervals.

We demonstrated the usefulness of the proposed approach by producing execution traces
of several tens of thousands of processes, achieving size reductions of three and more or-
ders of magnitude. We also proved that the analysis of the traced information can suc-
cessfully lead to important improvements, as any recurring problem that can be observed
in a few representative iterations and corrected, will positively impact the performance
throughout the whole periodic phase of the program.

The addition of signal processing techniques to our on-line analysis framework trans-
fers the responsability of deciding which are the best areas to trace from the study of the
structure of the computing phases through cluster analysis, to the study of the periodicity
structure of the program through signal processing. By no means this implies that cluster
analysis falls in disuse. Quite the opposite, in combination with clustering, we can now
incorporate into the trace the internal structure of the computing phases for selected rep-
resentative regions of the execution, better controlling the size of the resulting trace, and
adding a new layer of very �ne-grain data to the trace that brings with it the added value
of cluster-based analysis methodologies and the performance models that can be derived
from this information.

The application of the proposed techniques can be seen as a �rst step in the analysis
methodology, obtaining the minimum amount of information that is relevant for the ana-
lysis. This opens the way for other analysis mechanisms that could then be applied (e.g.
automatic analysis, expert systems or performance modeling), not having to deal with
large amounts of data and all the di�culties that are inherently associated.

9.4. Complementary performance reports to enrich the
analysis.

In order to face the analysis of a large volume of data, it is vital to �nd e�cient repres-
entations of the data to permit direct lookup without requiring expensive post-processing
treatments; and so have a well-de�ned methodology to inspect the results, make under-
standable interpretations and draw useful conclusions. To this end, the on-line analysis
mechanisms are not only limited to producing a succinct trace. As a result of the analysis,
additional performance reports, trend plots and breakdown models are produced period-
ically, providing extra insight about the behavior of the application and its evolution over
time.
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On one hand, the multi-detail data collection approach extracts performance informa-
tion that fully covers the whole execution, enabling a top-down analysis methodology that
goes �rst from a very abstract view for the whole run to get general understanding of the
program behavior, to delving into the small details within a small time interval and subset
of processes to understand any microscopic phenomena that may impact the performance.

On the other hand, the study of the clusters gives us a new perspective to interpret the
application performance concisely. The shape of elongated clusters can be an indicative of
potential load imbalances. The density and temporal distribution of the clusters highlight
the zones of the program that are more signi�cant in terms of the time they consume. And
the composition of the clusters enables to characterize multi-modal behavior, i.e. di�erent
parts of the program with similar performance behavior and vice-versa.

All this new information, combined with the analysis of the detailed event trace, allows
us to reverse the typical direction of the analysis process for a more e�ective outcome. We
can now �rst evaluate the performance of the most relevant program phases, characterize
the nature of their ine�ciencies, and ultimately propose a solution that is applicable to all
the parts of the program that present the same behavior, instead of having to reappraise
routine per routine the same commonly known performance problems to see whether the
observed performance is satisfactory or not, as the most traditional performance tools
would do.

While the study of the clusters provides extra insight to better understand the applica-
tion behavior, some of the observations that can be made still require to inspect the trace
to corroborate them. For example, if a cluster presents an elongated shape because it com-
prises unbalanced computations that may run faster or slower, it is important to see how
these di�erent computing behaviors distribute over time and space to determine whether
they pose a real problem of imbalance or not.

We can not have certainty of some potential performance issues just by studying the
shape of the clusters because the scatter-plot representations used to characterize the per-
formance do not include the temporal and spatial information that is present in the trace.
We proposed a new scatter-plot representation for the clusters based on the idea of heat
maps. In heat maps, the temperature indicates how many parallel processes support the
di�erent areas of the clustering space. The temperature of the clusters enabled quick identi-
�cation of the most frequent performance behaviors among parallel tasks, and easy charac-
terization of the source of variabilities behind very disperse clusters, pointing out whether
the behavioral di�erences occurr between processes or over time.

Additionally, we extended existing performance hardware counters multiplexing tech-
niques to compute global statistics of the clusters in parallel, complementing the clusters
characterization. We used many more metrics than those that can be gathered in a single
run, and condensed all the extra information in comprehensible break-down models that
describe how the resources are spent. For example, the architecture impact model indicates
which hardware components are most used and how often the processor stalls due to lack
of resources; and the instructions mix model indicates the di�erent types of operations
that are necessary to perform a given computation.

In any case, the purpose of these reports is not to replace the task of analysis of the
trace, but to enrich the interpretation of the available trace data, and to enable to reach
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quick conclusions before a more in-depth analysis.

9.5. Extending the scalability of the analysis.
When the amount of performance data grows large, cluster-based analysis becomes a ser-
ious bottleneck. In this thesis, we assessed the cost of the basic density-based cluster al-
gorithm DBSCAN, and empirically proved that the processing of just a hundred thousand
data points can already require several hours to compute. This is extremely expensive if we
consider that current supercomputers already have the same order of magnitude of cores,
which can produce performance data at sustained rates of thousands of measurements per
second, and so the cost of analyzing all the data from a large scale run easily exceeds any
reasonable time frame. Thus, the applicability of cluster analysis at run-time is indispens-
ably subject to the availability of more sophisticated algorithms able to process large data
volumes in near-real time to be usable on-line.

We have explored two main research directions to overcome the scalability limitations
of the DBSCAN algorithm. First, we proposed a sampling-based approach to accelerate
the clustering process. In our research we found that because of the iterative nature of
scienti�c applications and their highly regular and repetitive structure, even a very small
sample space with few measurements taken from few processes was enough to reliably
characterize the performance characteristics of the program. This solution e�ectively
gained ground to the scalability limits, but only in the short term. As the scale keeps
increasing, a small percentage of samples taken from a large number of processes still is
a large volume of data. At this point, further reducing the sample space easily results in
a biased subset of points that poorly describe the complete data set, and the clustering
results become distorted and unrepresentative.

Then we approached the problem di�erently, considering to design a parallel version
of the cluster algorithm. There are parallel implementations present in the literature, but
virtually all of them rely on a pre-processing phase where optimizations are often made
to distribute the data so that the dense areas are kept close. This is done to facilitate
the main operation of the subsequent cluster algorithm, which consists in searching for
neighbour points along the data space. But in the on-line scenario, where each process
is producing its own performance data, the data is implicitly distributed from the start.
Going through a redistribution phase that would keep the dense areas close would require
a massive movement of data between all processes, which would be as expensive as the
cluster algorithm itself and unworkable to be used at run-time.

This led us to a new parallelization strategy for the DBSCAN algorithm that does not
require an explicit phase of data redistribution. It is designed to work e�ciently in those
scenarios where the dense areas are highly distributed, which is precisely the case of large
scale parallel applications. Our algorithm follows the hierarchical tree structure deployed
for the on-line analysis framework, taking full advantage of all the resources available to
perform the analysis. In this way, the leaf processes run a basic DBSCAN with their local
data, the resulting clusters are modelled with simple geometries, and they are combined in
parallel in the intermediate nodes of the tree to obtain a global clustering model. Finally,
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the local data of each process is classi�ed using a nearest neighbor algorithm with the
global model as reference.

We validated our proposal with a series of experiments scaling up to several thousands
of cores and millions of data points, measuring response times of few seconds, which rep-
resents an overhead low enough to be used on-line. Furthermore, the approach presented
could as well be adopted by other cluster algorithms families that can also take advantage
of a distributed structure to easily parallelize their computation.

9.6. Facilitating comparative and multi-experiment
analysis.

The aforementioned research addressed the scalability problem of trace-based analysis
from the standpoint of reducing the size of the stored data, by intelligently selecting rel-
evant regions of the execution.

From the analysis of the captured data we learned that, throughout the execution, there
may be several important phases, because of performance perturbations that the applica-
tion may undergo at di�erent intervals, or just because the program may enter a di�erent
algorithmic phase. It then became necessary to have an e�ective way to compare and con-
trast performance observations belonging to di�erent execution phases, to see how the
program behavior changes and evolves.

Moreover, a single experiment is often not enough to fully understand the behavior
of the program. In the general case, there are a wide range of tunable parameters and
possible tweaks that can potentially alter the performance of the program: the number
of parallel processes or threads used, the strategy to distribute the workload, the use of
speci�c hardware like accelerators, di�erent data access and algorithmic patterns, as well
as many other settings. It is important to understand how all these choices impact the
execution, which will often require multiple experiments trying di�erent con�gurations.

Contrasting the information from several data sources and interpreting the results for
large amounts of uncorrelated data is a di�cult task. Thus, it is necessary to develop tech-
niques to correlate the information and present it in an e�cient and comprehensible man-
ner. To this end, we proposed a novel approach that leverages object tracking techniques
from the �eld of computer vision applied to the performance analysis of a parallel applic-
ation’s evolution along multiple execution scenarios. We have extrapolated the concept of
following the movement of objects through a physical space in a video sequence, to track
the changes of behavior of the di�erent parts of the code through a multi-dimensional
performance space. Di�erent scenarios are represented as a sequence of performance im-
ages that expresses the evolution of the application either along di�erent experiments with
changing con�gurations, or along time intervals within the same experiment. Computing
regions of the application are represented as objects in these images, described by how
they behave in terms of selected performance metrics. Then, we �nd a correspondence
between objects along the whole sequence of images, keeping track of their possible mo-
tions and structural changes due to performance variations. To do so, we use a variety
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of heuristics that take into account di�erent characteristics of the computing regions: the
displacements in the performance space, the SPMDiness of the application, the density of
the clusters, the code region they refer to, and the execution sequence. Combining their
use, we are able to automatically identify the global evolution of the main computational
behaviors and illustrate their performance trends.

The proposed technique o�ers a di�erent viewpoint to the task of analysis that is more
agnostic of the syntax of the code, but brings into focus the main performance character-
istics of the program and the nature of their ine�ciencies, enabling the identi�cation of
the most appropriate solution for the artifacts observed. Then, these observations can be
correlated with the source code, to know which sections exhibit a given behavior. There
are two remarkable bene�ts to this approach. First, the same solution can be applied to
multiple code sections that present the same de�ciency, without having to reappraise the
same problems repeatedly. Second, we are able to detect multi-modal behavior and vari-
ations along time and processors, two important e�ects often masked by pro�ling tools. In
this way, a single code section undergoing performance variabilities will be expressed as
divergent behaviors that can be studied separately, revealing more room for improvement.

All in all, this work presents a versatile technique applicable in very varied scenarios,
enabling the analyst to study the impact of virtually any con�guration on the application
performance without prior knowledge of the program; compare and correlate perform-
ance data from di�erent sources; determine the best setup to meet speci�c performance
requirements; and ultimately helps to gain better understanding of the application beha-
vior.

This work addressed an important problem in performance analysis, where the sheer
amount of data that can be collected expands very rapidly in a potentially high dimen-
sional space with many metrics available, and we have provided a technique to manage
this complexity and identify coarse properties that change when parameters are varied to
target tuning and more detailed performance studies.

9.7. Improving the productivity of the analysis.
Executions in a production-class supercomputing facility are often subject to many restric-
tions, including any sort of batch scheduling software that runs the submitted jobs based
upon resource constraints and limited computing time allocations, shared with many other
users. Often, a job pending execution may sit in the queue for a very long time, and when
many experiments are needed, the time required to produce all the data can easily prolong
for several days as it is di�cult to access the high amount of resources that are needed to
run the experiments and produce all the analysis data. In order to improve the productiv-
ity of the analysis process, it is important to gather as much performance data in the less
number of runs, ideally, producing all the necessary data in just a single execution.

To this end, we proposed the application of active measurement techniques to simulate
in a single run di�erent experimental conditions that would otherwise require multiple
runs to try. Our approach consists in introducing controlled interferences into the pro-
gram that impact the performance of one or more speci�c resources, such as CPU, net-
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work or memory. A�ecting these resources at di�erent levels of intensity, we can simulate
the e�ect of having, for example, a slower processor or narrower network and memory
bandwidth. Then, applying the tracking techniques proposed before, we can study how
the application behaves under di�erent situations like node oversubscribing, or network
or memory congestion.

The main bene�t of this approach is that it enables us to obtain all the information ne-
cessary to understand the impact of one or several parameters in the program performance
from a single run. Moreover, to do this we can apply all the techniques and methodologies
proposed in this thesis. This is to say, the application’s performance data can be analyzed
on-line. At each analysis step, signal processing techniques can be applied to �nd the pro-
gram’s repetitive phases. To each representative phase, clustering analysis can be applied
to detect the most relevant computations. This process can be repeated at di�erent time
intervals, dynamically changing the level of interference. Lastly, we can apply tracking
techniques to see what is the evolution of the behavior of the main computing phases
across the di�erent zones of interference with respect to the parameters being studied. In
this way, we are providing a methodology to analyze very detailed trace data, considering
all the time and space varying behavior, and correlating the data from multiple experi-
ments, without having to analyze the independent trace of each experiment per separate.

Going one step beyond, we made experiments to dynamically interact with the parallel
run-time. Weaving all these pieces together, it is possible to study the impact of run-time
relevant parameters in the application performance. As a proof of concept, we integrated
the on-line analysis framework with the OmpSs run-time. We extended the on-line ana-
lysis framework to guide the runtime underlying balancing mechanism, deciding at the
analysis layer how the available threads are assigned to physical cores, and automatically
assessing which distribution is better. By doing so, we obtained useful information about
which tasks would be more convenient to be scheduled alone to reduce the competition
for the shared resources.

This line of work created an opportunity for providing dynamic feedback to the paral-
lel run-time to dynamically set the most optimal settings to achieve better performance.
Moreover, this approach facilitates the application of trace-based analysis tools at large
scale, by reducing the necessity for computing time and resources, which in current sys-
tems is already an important bottleneck.

9.8. Future work
One of the main arguments of this thesis is that in-depth performance analysis is cru-
cial to parallel program development. The concept of accurate and detailed analysis has
been customarily bound together with tracing, a specialized technique to record very low
level information about a program’s execution. But the traditional approaches to imple-
ment trace-based analysis techniques have reached their ceiling [200]. The ever-growing
size and power of high-end supercomputers led tracing tools to be increasingly di�cult to
apply, because the amount of information generated in such systems has grown so expo-
nentially fast that storing, processing and extracting useful and timely conclusions from
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the data became a challenging task.
The exascale will bring even higher core counts, and the increase of hardware com-

ponents and their interactions will de�nitely result in a greater likelihood of failures and
performance �aws. In this scenario, the ability to see in detail which are the causes of
poor e�ciency will be more important than ever. And this is precisely the reason why
trace-based analysis will continue to be necessary in the �eld.

In this thesis, we have addressed the scalability limitations of trace-based performance
analysis approaches to keep them applicable and e�cient in large-scale scenarios. To this
end, we took two important steps forward. First, we worked on incorporating intelligence
to the mechanisms of data extraction, automatically controlling the volume of data that
would be generated. In turn, this has enabled the application of state-of-the-art perform-
ance analytics techniques at run-time, putting aside the trace-centric approach of post-
processing all the recorded data.

Although analyzing the details is important, this does not necessarily mean to keep
storing traces in the traditional way. On the contrary, we focused on applying on-line ana-
lysis techniques to automatically extract useful insight from detailed performance meas-
urements, taking into account the time-varying behavior of the program over time and
across processes. The information extracted has enabled us to understand the program
behavior and the nature of its ine�ciencies better, and for the most part, storing the trace
would be no longer necessary.

The success of the techniques employed leads to think that the research in this �eld will
continue to apply automatic analysis techniques to obtain the most useful information
from the data, but the trace seen as a physical container that records the whole execution
is very likely deemed to disappear.

In this direction, new interesting lines of research are being recently explored that would
�t into this purpose. For example, folding is a novel technique that combines coarse grain
sampled and instrumented information to provide the detailed node-level performance
within a computing region [163]. This technique applied on-line would provide a new
level of analysis detail, being able to display very �ne-grain instantaneous performance
metrics precisely correlated with the program source code lines.

The design of new performance models is also a very important line of research. With
the daunting volume of metrics available, the high dimensional complexity of the data,
and the high intercorrelations between performance factors, performance models strive
to capture the application’s performance characteristics in a human-understandable form.
Their applications today are many and varied, for example, they are used to compare sys-
tem performance, validate large system installations, to detect anomalies and degradation,
to guide optimizations or refactoring of applications, and to some extent, allow predict-
ing performance of future experiments or on a target architecture. Models based upon
hardware performance counters have shown promise for on-line analysis [201] to quant-
itatively understand performance and power consumption, thanks to the growing use of
hardware counter events in performance data, their portability to a large number of sys-
tems and because of being reasonably accurate.

Our research paves the way for new studies in areas like expert systems for machine
learning. All the insight obtained with the techniques mentioned above also serves as
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valuable information to feed, re�ne, and specialize expert systems with better knowledge
rules to be more elastic to the variations in computation and communication delays, and
more e�cient to perform automatic bottleneck detection. Nevertheless, in order to de-
scribe the knowledge rules that govern an expert system, we still need the ability to detect
the microscopic e�ects that result in a performance problem �rst, understand what is the
root cause, and identify which performance variables may be early markers to diagnose the
problem. This is why in-depth performance analysis based on detailed event data will still
be a fundamental cornerstone in the design of new architectures, programming models
and better software.
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Appendix A
Extrae On-line User Guide

A.1. Introduction
Extrae On-line is a new module developed for the Extrae tracing toolkit [53], available from
version 3.0, that incorporates intelligent monitoring, analysis and selection of the traced
data. This tracing setup is tailored towards long executions that are producing large traces.
Applying automatic analysis techniques based on clustering, signal processing and active
monitoring, Extrae gains the ability to inspect and �lter the data while it is being collected
to minimize the amount of data emitted into the trace, while maximizing the amount of
relevant information presented.

Extrae On-line has been developed on top of Synapse (refer to Annex B), a framework
that facilitates the deployment of applications that follow the master/slave architecture
based on the MRNet software overlay network [87]. Thanks to its modular design, new
types of automatic analyses can be added very easily as new plug-ins into the on-line
tracing system, just by de�ning new Synapse protocols.

This document brie�y describes the main features of the Extrae On-line module, and
shows how it has to be con�gured and the di�erent options available.

A.2. Automatic analyses
Extrae On-line currently supports three types of automatic analyses: �ne-grain structure
detection based on clustering techniques, periodicity detection based on signal processing
techniques, and multi-experiment analysis based on active monitoring techniques. Extrae
On-line has to be con�gured to apply one of these types of analyses, and then the analysis
will be performed periodically as new data is being traced.

A.2.1. Structure detection
This mechanism aims at identifying the �ne-grain structure of the computing regions of
the program. Applying density-based clustering, this method is able to expose the main

191



A. Extrae On-line User Guide

performance trends in the computations, and this information is useful to focus the ana-
lysis on the zones of real interest. To perform the cluster analysis, Extrae On-line relies on
the ClusteringSuite tool [53].

At each phase of analysis, several outputs are produced:

• A scatter-plot representation that illustrates the behavior of the main computing
regions of the program, that enables a quick evaluation of potential imbalances.

• A summary of several performance metrics per cluster.

• On supported machines, a CPI stack model that attributes stall cycles to speci�c
hardware components.

• And a trace that is augmented with the clusters information, that allows to identify
patterns of performance and variabilites.

Subsequent clustering results can be used to study the evolution of the application over
time. In order to study how the clusters are evolving, the xtrack tool can be used (refer to
Annex C.

A.2.2. Periodicity detection
This mechanism allows to detect iterative patterns over a wide region of time, and pre-
cisely delimit where the iterations start. Once a period has been found, those iterations
presenting less perturbations are selected to produce a representative trace, and the rest of
the data is basically discarded. The result of applying this mechanism is a compact trace
where only the representative iterations are traced in full detail, and for the rest of the
execution we can optionally keep summarized information in the form of phase pro�les
or a “low resolution” trace.

Please note that applying this technique to a very short execution, or if no periodicity can
be detected in the application, may result in an empty trace depending on the con�guration
options selected (see Section A.3).

A.2.3. Multi-experiment analysis
This mechanism employs active measurement techniques in order to simulate di�erent
execution scenarios under the same execution. Using gremlins [185], Extrae On-line is
able to add controlled interference into the program to simulate di�erent computation
loads, network bandwidth, memory congestion and even tuning some con�gurations of
the parallel runtime (currently supports MPI Dynamic Load Balance (DLB) runtime). Then,
the application behavior can be studied under di�erent circumstances, and tracking can be
used to analyze the impact of these con�gurations on the program performance (refer to
Annex C). This technique aims at reducing the number of executions necessary to evaluate
di�erent parameters and characteristics of your program.
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A.3. Configuration
In order to activate the On-line tracing mode, the user has to enable the corresponding
con�guration section in the Extrae XML con�guration �le (see [202] for a complete de-
scription). This section is found under trace-control > remote-control > online. The default
con�guration is already ready to use:
<online enabled="yes"

analysis="clustering"

frequency="auto"

topology="auto">

The available options for the <online> section are the following:

• enabled: Set to “yes” to activate the On-line tracing mode.

• analysis: Choose from “clustering”, “spectral” and “gremlins”.

• frequency: Set the time in seconds after which a new phase of analysis will be
triggered, or “auto” to let Extrae decide this automatically.

• topology: Set the desired tree process tree topology, or “auto” to let Extrae decide
this automatically.

Depending on the analysis selected, the following speci�c options become available.

A.3.1. Clustering analysis options

<clustering config="cl.I.IPC.xml"/>

• con�g: Specify the path to the ClusteringSuite XML con�guration �le (refer to
[203]).

A.3.2. Spectral analysis options

<spectral max_periods="0" num_iters="3" min_seen="0" min_likeness="85">

<spectral_advanced enabled="no" burst_threshold="80">

<periodic_zone detail_level="profile"/>

<non_periodic_zone detail_level="bursts" min_duration="3s"/>

</spectral_advanced>

</spectral>

The basic con�guration options for the spectral analysis are the following:

• max_periods: Set to the maximum number of periods to trace, or “all” to explore
the whole run.
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• num_iters: Set to the number of iterations to trace per period.

• min_seen: Minimum repetitions of a period before tracing it (0 to trace the �rst
time that you encounter it)

• min_likeness: Minimum percentage of similarity to compare two periods equival-
ent.

• min_likeness: Minimum percentage of similarity to compare two periods equival-
ent.

Also, some advanced settings are tunable in the <spectral_advanced> section:

• enabled: Set to “yes” to activate the spectral analysis advanced options.

• burst_threshold: Filter threshold to keep all CPU bursts that add up to the given
total time percentage.

• detail_level: Specify the granularity of the data stored for the non-representative
iterations of the periodic region, and in the non-periodic regions. Choose from none
(everything is discarded), pro�le (phase pro�le at the start of each iteration/region)
or bursts (trace in bursts mode).

• min_duration: Minimum duration in seconds of the non-periodic regions for emit-
ting any information regarding that region into the trace.

A.3.3. Gremlins analysis options

<gremlins start="0" increment="2" roundtrip="no" loop="no"/>

• start: Number of gremlins at the beginning of the execution.

• increment: Number of extra gremlins at each analysis phase. Can also be a negative
value to indicate that you want to remove gremlins.

• roundtrip: Set to “yes” if you want to start adding gremlins after you decrease to 0,
or vice-versa, start removing gremlins after you reach the maximum.

• loop: Set to “yes” if you want to go back to the initial number of gremlins and
repeat the sequence of adding/removing gremlins after you have �nished a complete
sequence.
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B.1. Introduction
Synapse is a framework to facilitate the development of MRNet [87] applications. Synapse
takes its name from the neurological structure in the nervous system, because following
the analogy, MRNet applications resemble a neural network where inputs are passed from
one neuron (processor) to the next, and each processor applies a function on the passing
data.

As stated in the MRNet documentation [204], “MRNet applications are characterized
for MRNet is a customizable, high-throughput communication software system for par-
allel tools and applications with a master/slave architecture. MRNet reduces the cost of
these tools’ activities by incorporating a tree-based overlay network (TBON) of processes
between the tool’s front-end and back-ends. MRNet uses the TBON to distribute many im-
portant tool communication and computation activities, reducing analysis time and keep-
ing tool front-end loads manageable.

MRNet-based tools send data between front-end and back-ends on logical �ows of data
called streams. MRNet internal processes use �lters to synchronize and aggregate data
sent to the tool’s front-end. Using �lters to manipulate data in parallel as it passes through
the network, MRNet can e�ciently compute averages, sums, and other more complex ag-
gregations on back-end data“.

Implementing and running an MRNet application requires to follow a series of steps that
are common to most programs. These steps include: request resources for the TBON; map
the available resources in a tree-like topology; start the front-end process; instantiate the
MRNet internal nodes; and in the case where MRNet runs in the b̈ack-end attachm̈ode,
spawn the back-ends manually, pass the network connectivity information from the front-
end to the back-ends externally (via the environment, shared �lesystems or other inform-
ation services), connect the back-ends; and load the �lters into the network’s internal pro-
cesses and announce them.

MRNet provides a C++ API to facilitate each of these operations, yet the logical sequence
of operations is the same for all programs and is rather long. Furthermore, MRNet sup-
port for BlueGene architectures requires of an entirely separate and slightly di�erent API
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(known as lightweight), which is written in pure C. Synapse encapsulates all these com-
mon operations to all MRNet applications, and provides wrappers to hide the complexity
of using two di�erent API’s depending on the architecture, making the development of a
new program as easy as writing a few lines of code.

Sound understanding of the MRNet software is necessary to follow this manual, so
please refer to [204] for a complete description of MRNet.

B.2. Abstractions

Synapse provides a set of libraries and classes that can be extended to de�ne the inter-
actions between your front-end, �lters and back-end processes. Synapse handles all the
operations necessary to initiate and connect all the processes in the network, and just
leaves to the user the task of implementing the logic of the algorithm that these processes
will perform. To this end, Synapse provides the Protocol abstraction. A Protocol is the set
of operations that determine how the MRNet processes interact. For example, imagine
a trivial p̈ing-pongp̈rotocol, where the back-ends send an ACK to the front-end, and the
front-end replies with how many ACK’s it has received. This and any other protocol has
two parts: the part that is run at the back-ends, and the part that is run at the front-end.
In this simple case, the back-ends have to send the ACK and receive the reply, while the
front-end has to receive the ACK’s and send the reply. In order to implement the logic
of the front-end and the back-ends, Synapse provides two separate classes: FrontProtocol
and BackProtocol. When the user wants to de�ne its own protocol to run on top of the
MRNet, he has to write the code that refers to the operations performed by the front-end
extending the FrontProtocol class, and the complementary operations performed by the
back-ends extending the BackProtocol class. More speci�cally, the user has to implement
the Run() method, and write inside this method all the computations and communications
that take place in the protocol.

Once this work is done, that protocol can be easily loaded into any MRNet application
through the FrontEnd::LoadProtocol and BackEnd::LoadProtocol methods, and triggered
anytime through FrontEnd::Dispatch. Synapse will start the protocol in all the end-points
of the MRNet application, and ensure they meet a synchronization point once the protocol
is over so that the next one can start.

B.3. A simple example

A detailed description of the Synapse API is in Section B.4. This section shows a brief
example of a MRNet application that implements a ”ping-pong“ protocol. In this example,
the back-ends send an ACK to the front-end, and the front-end replies with how many
ACK’s were received.

196



B.3. A simple example

Front-End sample code

This piece of code creates the front-end end-point of the MRNet application, loads the
front-end side of the ”ping-pong“ protocol, and then starts the protocol.

#include <iostream>

#include "FrontEnd.h"

#include "Ping_FE.h"

int main(int argc, char *argv[])

{

/* Start the front-end side of the network */

FrontEnd *FE = new FrontEnd();

FE->Init("topology_1x4.txt", "./test_BE", NULL);

/* Load the protocols the network understand */

FrontProtocol *prot = new Ping();

FE->LoadProtocol( prot ) ;

/* Execute protocol "PING" */

int status;

FE->Dispatch("PING", status);

/* Shutdown the network */

FE->Shutdown();

return 0;

}

Back-End sample code

This piece of code creates the back-end end-point process of the MRNet application, loads
the back-end side of the ”ping-pong“ protocol, and waits for the front-end to orchestrate
the start of the protocol.

#include "BackEnd.h"

#include "Ping_BE.h"

int main(int argc, char *argv[])

{

/* Start the back-end side of the network */

BackEnd *BE = new BackEnd();

BE->Init(argc, argv);

/* Load the protocols the network understand */
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BackProtocol *prot = new Ping();

BE->LoadProtocol(prot);

/* The back-end enters the main analysis loop,

waiting for commands from the front-end */

BE->Loop();

return 0;

}

Front-End side of the ”ping-pong“ protocol sample code

The following code de�nes the front-end side of the protocol. The user has to extend the
Setup() method to initialize all the streams that are going to be used during the execution
of the protocol, and also the Run() method that implements the protocol. In this case, the
front-end �rst receives all the ACK’s (through the aggregation stream stAdd), and then
broadcasts to the back-ends the total number of ACK’s received.

#include <iostream>

#include "Ping_FE.h"

/**

* In the Setup function we have to register all the streams we want

* to use for this protocol. When the function returns, all streams

* pushed to the registeredStreams queue are automatically published

* to the back-ends. The Register_Stream is a wrapper to

* net->new_Stream() that creates a new stream in the FE and pushes

* it to the queue.

*/

void Ping::Setup()

{

stAdd = Register_Stream(TFILTER_SUM, SFILTER_WAITFORALL);

cout << "[FE] Created new stream " << stAdd->get_Id() << endl;

}

/**

* Implement the front-end side of the protocol.

* It is expected to return 0 on success; -1 otherwise.

*/

int Ping::Run()

{

int tag, countPongs = 0;

PacketPtr p;
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cout << "[FE] Sending PING to " << stAdd->size()

<< " back-ends through stream " << stAdd->get_Id() << endl;

MRN_STREAM_SEND(stAdd, TAG_PING, "");

cout << "[FE] Waiting for PONG from " << stAdd->size()

<< " back-ends..." << endl;

MRN_STREAM_RECV(stAdd, &tag, p, TAG_PONG);

p->unpack("\%d", &countPongs);

cout << "[FE] " << countPongs << " PONGs received!" << endl;

if (countPongs == stAdd->size())

{

cout << "[FE] Addition filter ran successfully! :)" << endl;

return 0;

}

else

{

cout << "[FE] Addition filter FAILED! :(" << endl;

return -1;

}

}

Back-End side of the ”ping-pong“ protocol sample code

The following code de�nes the back-end side of the protocol. The user has to extend the
Setup() method to initialize all the streams that are going to be used during the execution
of the protocol, and also the Run() method that implements the protocol. In this case, the
back-end �rst sends an ACK’s to the front-end (through the aggregation stream stAdd),
and then receives the reply with the total number of ACK’s that the front-end received.

#include <iostream>

#include "Ping_BE.h"

/**

* The streams created in the front-end are received here,

* in the same order that were created.

*/

void Ping::Setup()

{

Register_Stream(stAdd);

}

/**

* Implement the back-end side of the protocol.

* It is expected to return 0 on success; -1 otherwise.
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*/

int Ping::Run()

{

int tag;

PACKET_new(p);

MRN_STREAM_RECV(stAdd, &tag, p, TAG_PING);

MRN_STREAM_SEND(stAdd, TAG_PONG, "\%d", 1);

PACKET_delete(p);

return 0;

}

B.4. Synapse API
Synapse provides several classes to help building front-end and back-end MRNet processes
and the protocols they execute. These are bundled into two libraries (synapse-frontend and
synapse-backend) for the respective end-point processes.

B.4.1. Class FrontEnd
An instance of this class is needed to make your front-end process. This class provides
basic methods to start the network.

Init (normal mode)

Synopsis

int Init(const char *TopologyFile, const char *BackendExe,

const char **BackendArgs);

int Init(const char *BackendExe, const char **BackendArgs);

Description The basic method that is used to create the network and spawn the back-
ends (normal instantiation mode). TopologyFile is the path to a con�guration �le that
de�nes the desired process tree topology. The speci�cation format is the same that the
one produced by the mrnet_topgen tool. BackendExe is the path to the binary that will act
as the application back-end process. BackendArgs is a null terminated list of arguments to
pass to the back-end application upon creation.

If TopologyFile is not given, this information is read from the environment variable
MRNAPP_ TOPOLOGY.
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Return value Returns 0 if the MRNet starts successfully; -1 otherwise.

Init (back-end a�ach mode)

Synopsis

int Init(const char *TopologyFile, unsigned int numBackends,

const char *ConnectionsFile, bool wait_for_BEs=true);

int Init(bool wait_for_BEs=true);

Description Starts the MRNet except the back-ends (back-end attach mode), and waits
for these to connect. TopologyFile is the path to a con�guration �le that de�nes the desired
process tree topology (not including the back-ends). numBackends is the number of back-
ends that will be created outside the MRNet application. ConnectionsFile is the path to a �le
where the necessary information for the back-ends to connect to the network (hosts and
ports of their parent processes) will be written to. wait_for_BEs is an optional argument
(set by default). When set, the front-end will wait for all the back-ends to connect and then
complete all the initializations. Otherwise, the user will have to call to Connect() later to
complete the initialization.

If TopologyFile, numBackends and ConnectionsFile are not given, this information is read
from the environment variables MRNAPP_TOPOLOGY, MRNAPP_NUM_BE and
MRNAPP_BE_CONNECTIONS.

Return value Returns 0 if the MRNet starts successfully; -1 otherwise.

Connect

Synopsis

int Connect();

Description In the back-end attach instantiation mode, this is the second part of the
Init() function. Init() can call this function automatically if speci�ed, otherwise you have
to call it manually. This is implemented to support the use-case where the front-end and
the back-ends are threads of the same MPI process and you need to get the control back
after the front-end initialization to distribute the pending connection information among
the MPI tasks to start the back-ends.

Return value Returns 0 on success; -1 otherwise;
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isConnectionsFileWri�en

Synopsis

bool isConnectionsFileWritten();

Description This method exists to control in multi-threaded programs not to start pars-
ing the �le before all the necessary information has been totally dumped.

Return value Returns true if the necessary information for the back-ends to connect to
the network (hosts and ports of their parent processes) has been written completely.

ConnectedBackEnds

Synopsis

int ConnectedBackEnds(void);

Return value Returns the number of back-ends that are connected to the network.

LoadProtocol

Synopsis

int LoadProtocol(Protocol *prot);

Description Loads the user-de�ned protocol prot for the front-end side of the MRNet.

Return value Returns 0 on success; -1 otherwise;

LoadFilter

Synopsis

int LoadFilter (string filter_name);

Description Looks for the �lter shared object speci�ed by �lter_name (appending .so)
in the paths speci�ed with the environment variable MRNAPP_FILTER_PATH. If the �lter
is found, it is loaded into the network.

Return value Returns the �lter identi�er; or -1 if can not be found or loaded.
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Dispatch

Synopsis

int Dispatch(string protID, int &status, Protocol *& prot);

int Dispatch(string protID, int &status);

Description Tells the back-ends the next protocol the network is going to execute and
runs it. prot_id is the protocol identi�er. status is a parameter by reference that captures
the return code of the protocol. prot is an optional parameter that returns the instance of
the protocol that was executed, that the user can use to retrieve results from the execution
of the protocol.

Return value Returns 0 on success; -1 otherwise.

Shutdown

Synopsis

void Shutdown(void);

Description Noti�es the back-ends to exit and shutdowns the MRNet.

isUp

Synopsis

bool isUp();

Return value Returns true if the network has started correctly and the front-end is ready
to issue protocols.

B.4.2. Class BackEnd
Instances of this class are needed to make your back-end processes. This class provides
basic methods to connect the leaves of the network.

Init (normal mode)

Synopsis

int Init(int argc, char *argv[]);

Description Starts the network back-end. argc and argv are the number of arguments
and a NULL-terminating list of arguments that the back-end binary receives, respectively.
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Return value Returns 0 on success; -1 otherwise.

Init (back-end a�ach mode)

Synopsis

int Init(int wRank, const char *connectionsFile);

int Init(int wRank, char *parHostname, int parPort, int parRank);

int Init(int wRank);

Description Starts the network attaching the pending back-ends (BE attach mode). wRank
is the back-end rank identi�er.

connectionsFile is the path to a �le that contains all the parent’s hosts and ports where
each back-end has to connect.

Alternatively, you can manually provide the host, port and rank by setting parHostname,
parPort and parRank. This variant was implemented to avoid stressing the �lesystem by
reading the connections �le simultaneously from many back-ends.

If none of these arguments is provided, the path to the connections �le is read from the
environment variable MRNAPP_BE_CONNECTIONS.

Return value Returns 0 on success; -1 otherwise.

LoadProtocol

Synopsis

int LoadProtocol(Protocol *prot);

Description Loads a user-protocol for the back-end side of the MRNet.

Return value Returns 0 on success; -1 otherwise.

Loop

Synopsis

void Loop();

void Loop(callback_function preProtocol, callback_function postProtocol);
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Description The back-end enters a loop waiting for requests from the front-end. When
the front-end dispatches protocol, the back-end executes the counterpart back-end side
of the same protocol. The loop exits when the front-end dispatches a message with tag
TAG_EXIT (when calling Shutdown()).

If preProtocol and postProtocol are given, these callbacks are executed before and after
the protocol is executed. This was introduced to prepare input data and retrieve results.

Shutdown

Synopsis

void Shutdown();

Description Gracefully disconnects the back-end end-point from the MRNet.

B.4.3. Class MRNetApp

Common class inherited both from FrontEnd and BackEnd. Provides common methods to
identify the processes.

NumBackEnds

Synopsis

unsigned int NumBackEnds (void);

Description Queries the MRNet Network Topology for the total number of back-ends.

Return value Returns how many back-ends are in the network.

WhoAmI

Synopsis

unsigned int WhoAmI(bool return_network_id=false);

Description If return_network_id is set, returns the real ID for the backends in the net-
work topology (range from 1000000 to 1000000+N). Otherwise, returns the logical ID for
the remote back-ends (range from 0 to N).

Return value Returns the rank of the current MRNet process.
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isFE

Synopsis

bool isFE (void);

Return value Returns true if the calling process is the network front-end.

isBE

Synopsis

bool isBE (void);

Return value Returns true if the calling process is a network back-end.

B.4.4. Class Protocol
All user-de�ned protocols extend this class through the inheritance of FrontProtocol and
BackProtocol, that are necessary to de�ne the logic executed at the di�erent end-points
of the network. When writing your FrontProtocol and BackProtocol objects, you must
provide an implementation for the following methods.

ID

Synopsis

string ID (void);

Description Sets a textual identi�er for the protocol (e.g. P̈INGPONG)̈. The identi�er
must coincide in the front-end side of the protocol (FrontProtocol object) and the back-end
side of the protocol (BackProtocol object).

Setup

Synopsis

void Setup (void);

Description When a given protocol starts executing, its Setup() method will be executed
�rst. In the Setup() method you have to register all the streams (and �lters) that are going
to be used during the execution of the protocol. In order to register streams, it is necessary
to make calls to FrontProtocol::Register_Stream (in the front-end side of the protocol) and
BackProtocol::Register_Stream (in the back-end side of the protocol), in the same order.
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Run

Synopsis

int Run (void);

Description The protocol to execute has to be de�ned inside this method.

Return value Returns the return code of the protocol.

B.4.5. Class FrontProtocol

The front-end side of a protocol has to inherit this class, and implement the generic meth-
ods ID, Setup and Run (see B.4.4).

Barrier

int Barrier (void);

Description Blocks the front-end protocol until BackProtocol::Barrier is called by all
back-ends.

Return value Returns 0 on success; -1 otherwise.

Register_Stream

Synopsis

STREAM * Register_Stream(int up_transfilter_id, int up_syncfilter_id);

STREAM * Register_Stream(string filter_name, int up_syncfilter_id);

Description Front-end wrapper for MRNet::Network::new_Stream that stores the newly
created stream in a registration queue. When a protocol is loaded, all registered streams
are published automatically to the back-ends. up_trans�lter_id is the transformation �lter
to apply to data �owing upstream (the default is not to apply any �lter, TFILTER_NULL).
up_sync�lter_id is the synchronization �lter to apply to upstream packets (the default is
to wait for all children, SFILTER_WAITFORALL).

If �lter_name is speci�ed, the �lter identi�ed by �lter_name is loaded into the network
and linked to the new stream.

Return value Returns the new stream.
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B.4.6. Class BackProtocol
The back-end side of a protocol has to inherit this class, and implement the generic methods
ID(), Setup() and Run() (see B.4.4).

Barrier

int Barrier (void);

Description Blocks the calling back-end waiting for the remaining back-ends to call
BackProtocol::Barrier() and the front-end to call FrontProtocol::Barrier().

Return value Returns 0 on success; -1 otherwise.

Register_Stream

Synopsis

void Register_Stream(STREAM *& new_stream);

Description Retrieves a new stream that was registered in the front-end. The streams
have to be registered in the same order than in the front-end!

Return value Returns the stream that was registered in the front-end.

B.4.7. Class PendingConnections
This clas provides generic methods to exchange the connections information from the
front-end to the back-ends outside of the MRNet application. Currently it supports distri-
bution of this information through shared �lesystems and through an MPI network.

PendingConnections

Synopsis

void PendingConnections (string ConnectionsFile);

Description Constructor that receives the �le where the connections information has
to be written (front-end), or from where has to be read (back-ends).

Write

Synopsis

int Write(NETWORK *net, unsigned int numBackends);
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Description This front-end method queries the connection information from the net-
work and dumps it into a �le to share with the back-ends via a shared �lesystem.

Return value Returns 0 on success; -1 otherwise.

GetParentInfo

Synopsis

int GetParentInfo(int rank, char *phost, char *pport, char *prank);

Description This back-end method retrieves the host, port and rank where a given backend
has to connect from the connections �le.

Return value Returns 0 on success; -1 otherwise.

ParseForMPIDistribution

Synopsis

int ParseForMPIDistribution(int world_size, char *&sendbuf,

int *&sendcnts, int *&displs);

Description This back-end method parses the connections �le and serializes the data
into arrays to be distributed through MPI scatter. This method is meant for the use-case
where the back-ends are spawned through MPI, and just one process reads the connection
information and distributes the data to the rest through MPI. This was implemented to
avoid stressing the �lesystem because of many back-ends reading the same �le simultan-
eously.

Parameter world_size is the total number of back-ends. sendbuf is the address of send
bu�er to store the data to send to each process. sendcnt is the address of the integer array
to specify in entry i the number of elements to send to processor i. displs is the address of
the integer array to specify in entry i the displacement (relative to sendbuf) from which to
take the outgoing data to process i.

Return value Returns 0 on success; -1 otherwise.

B.5. Synapse wrappers
Synapse provides several wrappers to unify the lightweight API for BlueGene architectures
and the standard C++ API. These wrappers are de�ned as macros in upper case. There are
wrappers available for the basic MRNet objects Network, Stream and Packet:

• NETWORK
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• NETWORK_PTR

• STREAM

• STREAM_PTR

• PACKET

• PACKET_PTR

There are also wrappers for the basic methods of these objects. The wrappers take the
same arguments as the MRNet routines:

• STREAM_recv(stream, tag, data, block)

• STREAM_get_Id(stream)

• STREAM_send(stream, tag, format, args...)

• STREAM_�ush(stream)

• STREAM_is_Closed(stream)

• STREAM_delete(stream)

• PACKET_unpack(p, fmt, args...)

• PACKET_new(p)

• PACKET_delete(p)

• NETWORK_recv(net, tag, data, stream, block)

• NETWORK_CreateNetworkBE(argc, argv)

• NETWORK_get_LocalRank(net)

• NETWORK_waitfor_ShutDown(net)

• NETWORK_delete(net)

• NETWORK_get_NumBackEnds(net, num_be)

And additionally provides a few communication primitives:

• MRN_STREAM_SEND(stream, tag, format, args...)

Broadcast to all back-ends.

• MRN_STREAM_SEND_P2P(stream, be_list, tag, format, args...)

210



B.6. Synapse con�guration tool

Sends a message to the subset of back-ends in the stream speci�ed in be_list.

• MRN_STREAM_RECV(stream, tag, data, expected_tag)

Receive from a speci�c stream (blocking receive).

• MRN_STREAM_RECV_NONBLOCKING(stream, tag, data, expected_tag)

Receive from a speci�c stream (non-blocking receive).

• MRN_NETWORK_RECV(net, tag, data, expected_tag, stream, blocking)

Receive from any stream.

B.6. Synapse configuration tool
Synapse provides a con�guration tool that helps compiling and linking a MRNet-based
application. It can be queried (for example, from a Make�le or building system) for the
following information:

Synopsis

synapse-config <option>

Options

• –pre�x: print Synapse installation directory

• –fe-c�ags: prints pre-processor and compiler �ags for the front-end

• –fe-libs: prints library linking information for the front-end

• –be-c�ags: prints pre-processor and compiler �ags for the back-ends

• –be-libs: prints library linking information for the back-ends

• –cp-c�ags: prints pre-processor and compiler �ags for the �lters

• –libdir: prints the library directory

• –rpath: prints run-time search path �ags for the shared libraries

• –libtool-rpath: prints the rpath �ags used by libtool

• –mrnet: prints MRNet installation directory

• –version: prints version information
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xtrack User Guide

C.1. Introduction
xtrack is a tool for comparing multiple experiments or di�erent time intervals within the
same experiment. xtrack takes as input the output produced by the ClusteringSuite tool
[53] as well as the output produced by the Extrae On-line module when con�gured to run
automatic structure detection analysis (refer to Annex A). The input of the tool is a series
of clustering scatter-plots. Each clustering scatter-plot (or frame) is the result of clustering
the computations of one execution of a parallel application with respect to selected per-
formance metrics. Then, the clusters in one frame represent the main performance trends
of the computations of the program. Comparing multiple frames, we can study how the
behavior of the computing regions change between experiments. If we are changing a
given parameter between experiments, this is useful to study the impact of this parameter
in the program performance.

The tool has two parts: the tracking algorithm and the GUI. The tracking algorithm
takes as input the sequence of frames and performs a “who-is-who” correlation between
the clusters that appear in all the frames. To do this, the tool applies several heuristics
that look for di�erent characteristics that can distinguish certain clusters from the others.
Then, the results of the tracking algorithm can be visualized with the xtrack GUI.

In this document we brie�y introduce the user to both parts of the tool, and show how
to use them and the di�erent settings available.

C.2. The Tracking tool
The �rst step to perform this comparative analysis is to apply the tracking algorithm to
the sequence of frames that results from the application of cluster analyses to di�erent
traces (or sub-traces). To do so, the tool takes as input the list of clustered traces and some
optional arguments that de�ne which heuristics will be used to do the tracking. A detailed
description of each of the available heuristics can be found here [10]. By default, the tool
tries to apply all the heuristics that are applicable with the information comprised in the
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trace, as well as default threshold levels that are already usable.

SYNTAX

tracking [OPTIONS] [-l LIST | TRACE1 TRACE2 ...]

OPTIONS

-a MIN_SCORE

Minimum SPMD score to use the alignment tracker

-c CALLER_LEVEL

Enable the callers heuristic at the specified stack depth.

-d MAX_DISTANCE

Maximum Epsilon distance to use the cross-classifier tracker

-m MIN_TIME_PCT

Discard the clusters below the given duration time percentage.

-s DIM1,DIM2...

Select the dimensions to scale with the number of tasks.

-o OUTPUT_PREFIX

Set the prefix for all the output files.

-r Enable the trace reconstruction with tracked clusters.

-t THRESHOLD

Minimum likeliness percentage in order to match two clusters

(special values: all | first).

-v[v] Run in verbose mode (-vv for extra debug messages).

-x CLUSTERING_CONFIG_XML

Specify the clustering configuration to automatically

cluster the traces.

As a result, the tool generates:

• Trajectory lines for all the clusters in the frames, that show how the behavior of the
clusters change across experiments.

• Recolored frames: a new set of scatter-plots where the identi�ers of the clusters and
their colors have been changed to make them match across experiments for easy
comparison.

• Tracked traces: the input trace is reconstructed, changing the clustering events so
that the clusters identi�ers and their colors are the same in all experiments for easy
comparison.

• The *.xtrack de�nition �le. This �le contains all the information about “who-is-who”
between experiments, and is the input for the xtrack GUI.
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Figure C.1.: xtrack GUI

C.3. The xtrack GUI
The xtrack GUI takes as input the results of applying the tracking algorithm, and displays
a graphical comparison of the di�erent experiments. Figure C.1 shows the main view of
the tool.

C.3.1. Menu bar
The menu bar contains controls to manipulate the plotting areas 2 and 3. From left to right,
the common controls in both bars are:

• Reset the plot to the default view.

• Undo the last pan or zoom.

• Redo the last pan or zoom.

• Pan the graph towards any direction.

• Zoom-in dragging a box with the left mouse button, or zoom-out with the right
mouse button.

• Adjust the plot margins.
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• Save the visible plot.

The speci�c controls for the left menu bar (that controls plotting area 2) are:

• Show/hide a grid in the plot.

• Show/hide the centroids of the clusters.

• Show/hide the perimeters of the clusters.

And the speci�c controls for the right menu bar (that controls plotting area 3) are:

• Show/hide boxplots for dispersion plot in pane 3 (dispersion graph).

• Show/hide plots legends.

C.3.2. Frame/Trajectory view
This is the main view of the tool. When the frame view setting is selected in pane 4, it
displays the cluster results for one single frame of the input sequence of experiments, the
one that is selected in pane 5. When the trajectory view is selected in pane 4, it displays
instead all the clusters from all the frames at the same time, and draws trajectory lines
that show how the clusters are moving from one experiment to the next. In the image, the
trajectory view is set by default.

C.3.3. Correlations
This pane shows correlations for di�erent clusters and metrics across the sequence of ex-
periments (X-axis). The top plot shows a correlation of all metrics that are checked in
pane 7, for the cluster that is selected in pane 6. The middle plot shows a correlation of
the selected metric in pane 7, for all the clusters that are checked in pane 6. Since these
two plots can display di�erent metrics or very di�erent ranges for the same metric in the
Y-axis, the value for this axis is normalized. The bottom plot shows the dispersion of the
selected metric in pane 7 for the selected cluster in pane 6. In this case, the Y-axis shows
real values.

C.3.4. Se�ings
The settings is divided in two parts. The Axes con�guration (left) determine the metrics
that are used to plot the performance space in pane 2. It is possible to select any perform-
ance counter that was used to cluster the trace or extrapolated, and also to select a third
metric to change the view into a 3D plot. The Log scale checkbox can be ticked to draw
each axis in logarithmic scale. The Ratio by #tasks can be selected to weight that axis met-
ric with respect to the number of tasks that were used in the selected frame. This is useful
when the metric is related to the number of instructions executed (e.g. total instructions,
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�oating point instructions, etc.) for doing strong scaling or weak scaling comparisons, and
studying code replication issues.

The Fitting settings (right) are used to do predictions based on the experiments we have.
You can select a �tting model between linear, quadratic, cubic, logarithmic or log-linear
(right), and a number of experiments to predict (left), and all the correlation plots in pane
3 will extend their X-axis to predict how the series will continue according to the selected
model.

C.3.5. Frame thumbnails video
This pane shows a carousel of frames, where each frame is the clustering result of every
single experiment. This representation provides a quick view on the changes across ex-
periments. Also, this pane allows to select a single frame to be inspected in detail in pane
2.

C.3.6. Cluster selector
Ticking the checkbox of each cluster we can control whether that cluster has to be dis-
played/hidden in the plots in panes 2 and 3. Also selecting a single cluster from the list,
changes the plots in pane 3 to display the metrics correlations for the selected cluster only.

C.3.7. Metric selector
Analogously, ticking the checkbox of each metric we can control whether that metric has
to be displayed/hidden in the plots in pane 3. Also, selecting a single metric from the list,
changes the plots in pane 3 to display the correlations of clusters for the selected metric
only.
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