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Abstract

Computation is currently an integral part of scientific experimentation. There are many disciplines
in which computers help to solve a myriad of scientific problems using a wide spectrum of
algorithms implemented into programs. Some of these problems are so complex that a single
computer would take too long that they become impractical to tackle. High-Performance
Computing (HPC) systems (or informally, supercomputers) appeared to solve these problems and
let the user do more science by offering more computational power. Current HPC systems consist
of nodes containing multiple processors that communicate to each other using a fast network,
resulting in a tightly coupled systems. If applications are to take advantage of these replicated
resources they need to communicate and collaborate with one another to reach the final solution.
To this end, applications need to divide their work into smaller work units and split them among
the processors, so each processor works in parallel.

Nowadays, supercomputers deliver an enormous amount of computational power; however,
it is well-known that applications only reach a fraction of it. There are several factors that limit
the achieved application performance. One of the most important factors is the single processor
performance (i.e. how fast a processor executes a work unit) because it ultimately dictates
the overall achieved performance. Performance analysis tools are pieces of software that help
to locate performance inefficiencies and identify their nature within applications to improve
eventually the application performance. Performance tools rely on two collection techniques
to invoke their performance monitors: instrumentation and sampling. The instrumentation
mechanism is the ability inject performance monitors into concrete application locations whereas
sampling it the capacity to invoke periodically monitors according to external events. Each
technique has its advantages. The measurements obtained through instrumentation are directly
associated with the application structure while sampling allows a simple way to determine the
volume of the measurements captured. In any case, however, the granularity of the measurements
that provides valuable insight cannot be easily determined a priori. Should analysts study the
performance of an application for the first time, they may consider using a performance tool
and instrument every routine or use high-frequency sampling rates in order to provide the most
detailed results. More often than not, these approaches lead to large overheads that impact on
the application performance and so altering the measurements gathered and therefore mislead
the analyst.

This thesis describes the folding mechanism that overcomes the overhead by taking advantage
of the repetitiveness of many applications. This mechanism smartly combines punctual instru-
mented and inexpensive coarse-grain sampled information and then generates rich reports that
show the instantaneous performance evolution within instrumented regions of code. In order to
produce these reports, the folding processes performance metrics from different types of sources:
performance and energy counters, source code and memory references. The folding processes
these metrics according to their nature. While performance and energy counters represent
continuous metrics, the source code and memory references refer to discrete values that point
out locations within the application code or the application address space, respectively. This
thesis evaluates and validates two fitting algorithms used in different areas to report continuous



metrics: a Gaussian interpolation process known as Kriging and piece-wise linear regressions.
Also, when reporting performance counters, it is crucial to correlate the value from different
events at the same time to unveil the nature of the bottlenecks. The folding takes advantage
of of analytic performance models derived from performance counters to focus on a small set
of performance metrics. This fact avoids the analyst to dig into all the available performance
counters and search for multiple reports to look for correlations. The folding also presents
the correlation with the source code. To this end, the work described here also proposes two
alternatives: using the outcome of the piece-wise linear regressions and a mechanism inspired
by Multi-Sequence Alignment techniques. Finally, this thesis explores the applicability of the
folding mechanism to captured memory references to give insight regarding the accesses to the
application data object and report their temporal accesses.

This thesis proposes an analysis methodology for the first-time seen parallel applications
that focus on describing the most time-consuming computing regions. This methodology is
implemented on top of a framework that is based on a previously existing clustering tool and the
folding mechanism. The clustering tool explores an application trace-file exploring the structural
behavior of the application based on the performance data captured by instrumenting parallel
programming run-times (such as MPI and OpenMP). The folding mechanism then uses the
information on the identified structures to report their internal evolution and correlate with the
source code, making the folding the perfect companion for the clustering tool. As a result, the
framework finely accurately depicts the application performance using coarse-grain sampling
and minimal instrumentation with the consequent savings in terms of overhead.

To demonstrate the usefulness of the methodology and the framework and therefore the value
of the folding mechanism, this thesis includes the discussion of multiple first-time seen parallel
in-production applications executed in several supercomputers. The discussions include a high
level of detail regarding the application performance bottlenecks and correlate with tiny pieces of
code that are responsible for most the execution time. Although many analyzed applications have
been compiled using aggressive compiler optimization flags, the insight obtained from the folding
mechanism has turned into small code transformations based on widely-known optimization
techniques that have improved the performance in some applications. In addition, this work
also takes advantage of the power monitoring capabilities of recent processors and discusses the
simultaneous performance and energy behavior on a selection of benchmarks and in-production
applications.
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1
Introduction

The cathedral was on fire.
It was done now. There was no turning back.

— Ken Follet, THE PILLARS OF THE EARTH

Computers have become essential to almost every discipline they are used in. Disciplines such
as chemistry, physics, engineering, earth sciences, life sciences and medicine, to name a few,
bear strong testimony to that. Today’s computers are being used to assist in generating accurate
models for compound structures [200], studying the behavior of galaxies [11], improving the
efficiency of wind turbines [7], forecasting tomorrow’s weather [148], designing new drugs for
therapy [171], and processing diagnostic images [115], respectively. These all involve problems
that are tackled through a wide spectrum of methods implemented in computer programs.
However, even with the computational capacity of a computer, some of these problems are
too large to execute using the resources of a single computer; even, where resources are not a
limitation, the problem may require too much time to be practical to tackle. Computers have
evolved to cooperate in solving a problem that a single computer cannot undertake and to
shorten the time-to-solution allowing the user to do more science instead of waiting for results.
Although the improvements implemented into computers to make them faster, it is necessary
to evaluate whether the applications take proper advantage of the computing characteristics.
This thesis helps in this evaluation by introducing a mechanism named folding that exposes
the instantaneous performance evolution of the existing repetitive behavior due to the nature
of many methods used in the application without incurring in performance expenses. The
work presented in this thesis not only covers evaluation through exposing many performance
measurements, but also pointing to regions of code that is responsible for such performance and
exploring the memory references to the application address space. This thesis also proposes a
methodology and a framework for implementing it, that provide the analyst with very detailed
reports that indicate the nature of the application performance inefficiencies and where their
location within the application source code.

1.1 Introduction and historical background of supercomputing

High-Performance Computing (hereafter, HPC) is a discipline within Computer Sciences that
involves studying, developing and manufacturing computer-based systems (named HPC systems
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1 - Introduction

or more informally, supercomputers) with such computational power that they are able to solve
the most computationally bounded and memory intensive applications within a practical period
time. HPC systems have evolved significantly since their inception. Early HPC systems were
based on serial vector processors specifically designed for performance (such as Cray I, marketed
by Cray Research and installed at Los Alamos National Laboratory in 1,976). Vector processors
are processors that operate vectors (or arrays) of data in addition to scalar operands as opposed
to scalar processors that only operate on scalar operands. Their main benefits include reducing
the number of control instructions executed, reducing the number of address translations
and operating in parallel the values of the vectors. The main drawbacks, however, are their
programmability and high memory bandwidth requirements. Vector-based processor systems
were overtaken in performance by clusters of computers mainly when the cost of commodity
components decreased and allowed the building of HPC systems on top of simpler processors
and when the performance gap between the processor and the memory increased [232, 142]. A
cluster of computers consists of a set of computers interconnected together using a fast network
so that they can be viewed as a single system simplifying its programmability and cutting down
the developer’s efforts to get more computing power. In these systems, calculations are carried out
simultaneously after dividing large problems into smaller ones that are solved independently in
parallel and reducing the required time to solve the problem. Originally, these clusters were built
using proprietary components but were later able to be built from commodity components (such
as ASCI Red, built by Intel Corporation and installed at Sandia National Laboratories in 1,997).
Nowadays, there is an increased transistor density that allows having multiple central processing
units (cores) on each cluster node processor and while making the hardware accelerators
more accessible. These devices are computational units separated from the processors that
perform certain operations much faster than the processor itself. Currently, the most widespread
accelerators are the general purpose graphical processing units (GPGPU, in short). Accelerators
are orders of magnitude faster than regular processors, which makes them very attractive in
HPC environments, even though they are mostly effective for stream-based processing problems.
At the time of writing this thesis, the highest exponent of such developments is the Tianhe-2
supercomputer, developed by China’s National University of Defense Technology and installed at
National Super Computer Center in Guangzhou in 2,013. This supercomputer sums up more
than 3 million cores and 1 Exabyte of memory distributed in 16,000 computing nodes where
each computing node contains three accelerator chips.

The increasing computing capabilities of HPC systems rarely come without a price, however.
As HPC systems evolve generation after generation, so does their complexity, making it so harder
for a developer and/or user to benefit from the maximum system performance. For instance,
the ubiquitous Top500 list [220] keeps a record of the most powerful HPC systems twice a
year and uses the Linpack benchmark [50] to determine the system performance by solving
a dense system of linear equations. Benchmarks are synthetic applications that approximate
the behavior of a specific workload, so the result of a benchmark is biased towards stressing
some - but not all - of the system’s components, so the result of sole benchmark may not
represent the performance of the system on the actual workloads. The Linpack benchmark, for
instance, simply evaluates the performance focusing on arithmetic instructions but ignoring
the remaining instructions (including data movement, value testing and branching, among
others). The benchmark returns the number of arithmetic operations per unit of time (commonly
known as floating-point operations per second and abbreviated as Flop/s) as well as the system
solution. Table 1.1 tabulates several performance milestones of the Top500 list, including their
year of installation, theoretical maximum performance (Rpeak), achieved performance (Rmax )
and achieved efficiency (Rmax/Rpeak) in order to show the performance evolution of several
HPC systems. While the benchmark is specifically tuned for the system where it runs, it may be
observed that the benchmark cannot take relevant advantage of all the computational power of
the systems, except for the Earth Simulator and the K computer1. Quite the opposite, i.e. some
systems seem to have been developed to achieve the best results on workloads similar to these
benchmarks, overlooking the remaining type of workloads.

1Chapter 2, Section 2.3.4 gives some insights on why these systems outperform the rest with respect to efficiency.
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Table 1.1
Performance milestones of the Top500 list sorted by installation year. Rmax and Rpeak refer to the maximum
Linpack performance and the peak performance of the system, respectively.

System name Year Clock rate Rmax Rpeak Rmax

Rpeak(MHz) (Flop/s) (Flop/s)
Cray Y-MP 1,988 167 2.1×109 2.6×109 0.80
Numerical Wind Tunnel 1,993 105 12×109 23×109 0.52
ASCI Red2 1,997 333 1.1×1012 1.3×1012 0.81
Earth Simulator 2,002 500 35.8×1012 40.9×1012 0.87
BlueGene/L 2,005 700 280×1012 367×1012 0.76
IBM RoadRunner3 2,008 1,8004 1.0×1015 1.3×1015 0.74
K computer 2,011 2,000 10.5×1015 11.2×1015 0.89
Tianhe-2 2,013 2,2004 33.8×1015 54.9×1015 0.61

The next milestone in HPC is the ExaFlop system, a machine that executes at least 1018F lop/s
sustainedly and performs 30x compared to the fastest machine in the current Top500 list. The
projection of the performance of the first machine on the Top500 list along time and some
estimates [49] predict that the first ExaFlop system is due between 2,019 and 2,020. In addition,
the processor frequency has stalled [181, 49, 57, 155, 177] mainly due to energy constraints.
Since the processor is the main responsible for the node-level performance, it becomes clear that
the stall on the processor frequency restricts the performance gains of current HPC systems and
limits further increase to an improved use of the available resources.

1.2 Performance analysis

In every new system generation, users expect systems to execute their applications faster;
however, it is becoming natural with each newer generation application for developers to
use newer development approaches and require deeper system knowledge to achieve the best
performance. Currently, there are many topics involved on achieving a competent efficiency
such as data dependencies, memory hierarchy, instruction-level and task parallelism, symmetric
multiprocessing, cluster computing, programming models, compiler suite and flags, network
topology, bandwidth and latency, to name a few. It is therefore legitimate for users to ask
themselves whether their applications are taking the proper benefit of the resources and they
do not rely only on the behavior of a single benchmark. Similarly, computer architects design
and plan future processors so as to improve the performance and they need feedback to improve
future processor generations. Also, it is likely that system administrators wish to know the
conditions under which their user’s applications are optimally executed to achieve the best use
of the resources.

While this thesis focuses on a particular topic of the performance analysis area of study that
aims at improving the performance of an application, it is noticeable that performance analysis
can be divided in the following parts:

performance measurements covers capturing information (and its posterior analysis) to unveil
whether the application runs optimally on a system, or if the application presents any
bottlenecks.

performance simulation (or prediction) assists in predicting the application performance on
systems that do not currently exist, or exploring alternative optimization techniques.

performance models describe the performance behavior of an application or a system by using
abstract concepts.

2First system to reach the TeraFlop/s (1012 F lop/s) rate.
3First system to reach the PetaFlop/s (1015 F lop/s) rate.
4This is an heterogeneous system. The clock rate reported refers to the main computing nodes, not to the accelerators.
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Performance measurement tools (or performance tools) come into play to answer the user
questions relating to the behavior of an application in a specific machine. Performance tools
are pieces of software that deliver comprehensive details of the application behavior, both
quantitatively and qualitatively. These tools expose metrics that describe how an application
behaves by providing metrics such as execution time, number of function calls, the number
of bytes transferred, the number of instructions executed, the number of elapsed cycles and
determining whether the work is balanced. This information not only helps the user to understand
how the program behaves, it also provides details on how it interacts with different system
aspects pointing out what bottlenecks (if any) there are and why and where. While knowing
these details is important, the most beneficial outcome for the user is an increased possibility
of taking greater advantage of the system resources. Ultimately, this knowledge will lead to
modifications based on the identified diagnostics and may increase the application performance,
which directly translates into a reduction for the time-to-solution and enables the software to
solve a larger problem size.

Since the inception of the performance measurement tools, there have been several alterna-
tives for providing feedback to the analyst. For instance, tools used several decades ago [230,
174, 27, 28, 201, 170] already required choosing the best approach to provide valuable insight
to the user. The alternatives these tools had are similar to currently available options, no matter
the technology has progressed. Still nowadays, there are several ways to classify these tools,
including: how measurements are stored and presented to the user and how measurements are
captured within the application. With respect to the first group, there are some tools that collect
a time-stamped sequence of measurements (trace-files), enabling the analyst to understand the
temporal evolution of the application and observe variations in time during the process execution.
However, since trace-files may turn into a huge amount of data for long runs or runs involving a
large amount of processes, other tools summarize all the performance data and simply present
first order statistics (such as average, mean, count, max and min) correlated with application
routines. Each approach has its own advantages and drawbacks and while the scope of this thesis
does not cover the matter of which approach is better, it is worth mentioning that it is framed in
performance tools that use time-stamped trace-files.

Regarding the collection of performance measurements, data collection uses monitors invoked
by either sampling or code instrumentation mechanisms. On the one hand, sampling periodically
executes monitors injected into the program by interrupting it using timer interrupts and/or
operating system signals. When using sampling, the cost associated with each sample interval is
correlated with the routine that was being interrupted, therefore the results obtained using this
mechanism are statistical approximations. Such statistical inference on the behavior requires
the application to run during long enough for the results to approximate the actual distribution,
though highly volatile metrics may not be captured. On the other hand, instrumentation refers
to injecting monitors into the target application at certain points. With instrumentation, metrics
are accurately correlated to the program source code because monitors are associated with
components with syntactical structure within a program (such as routines, loops or sentences).
However, as monitors are injected at specific code locations, their invocations completely rely on
the application control flow, which means that the granularity and the volume of the performance
metrics gathered directly depends on the activity of application.

It is beyond dispute that the more details a performance tool provides, the deeper the
understanding of the application that the tool may offer, but at the cost of dealing (both the user
and the tool) with large amounts of data. However, a tool that uniquely relies on instrumentation
cannot provide additional metrics between two instrumentation points. The same occurs with
sampling-based performance tools, it is impossible to finely depict what occurs between two
samples. To increase the granularity of the data, these tools have two alternatives with respect to
measurement collection: inserting additional instrumentation monitors or using higher sampling
frequencies. For instrumentation based tools, this may be particularly difficult because it requires
a priori knowledge of the application control flow in order to place the instrumentation monitors
into the source code adequately. Focusing on the overhead, it does not matter which alternative is
adopted, the application suffers from the observer effect (i.e. the performance is altered) because
monitors occur in first person and so need to interrupt the application to collect measurements.
An indiscriminate increase of the number of monitors executed ends up altering the application
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performance and therefore the measurements, so these measurements may become misleading
or even useless for an ulterior analysis. The main objective of this thesis aims is to combine
instrumented and sampled data to depict performance phases that are finer than the sampling
frequency between instrumentation points without increasing the overall overhead.

1.3 Contributions

While increasing the number of monitors injected into the application may shift the results into
non-representative performance data, so rendering these data useless for an analysis, it is still
possible to combine both instrumentation and sampling mechanisms. The research described in
this thesis aims at combining performance metrics that come from these two mechanisms and its
main contribution is a mechanism named folding. The folding process is capable of providing
instantaneous node-level performance evolution of regions to unveil whether the processor
resources are being used efficiently, determine the nature of any bottleneck and identify the
source code regions that are responsible for such performance. This thesis demonstrates that
applying the folding to regions that are executed multiple times allows a detailing of the
performance evolution within these regions of code even if the sampling period is coarser than
the region period.

While the folding itself is the major contribution, this thesis also offers additional research
that takes advantage of this mechanism. The folding mechanism is applied to measurements
collected through a performance monitoring tool and includes data such as performance and
energy counters as well as, source code and memory references. Due to the different nature
of the performance counters and the source code references, this thesis evaluates different
approaches to process both performance data types. It also explores the applicability of the
folding mechanism to memory references to depict the temporal evolution of the accesses to the
application data objects.

This thesis also introduces a methodology to evaluate parallel applications. Such a method-
ology has been implemented in a framework that relies on a previously existing tool. The
framework generates the detailed evolution of the application bottlenecks, their nature and their
associated core on the most time-computing regions within a parallel application. These reports
are generated by applying minimal instrumentation to the parallel application and sampling
at very coarse-grain frequencies, so it does not penalize the application execution. In addition,
these reports are obtained through a single execution on parallel application binaries even if
the analyst does not have any former knowledge from the application, so saving computing
resources.

The thesis goes beyond the performance analysis and shows that the folding mechanism can
be applied to other studies such as an energy-consumption analysis. Last, but not least, this thesis
details multiple studies on first-time seen applications to demonstrate the process’ usefulness. In
some cases, these studies include applying small modifications on the application source code
which end up improving the application performance according to the findings of the folding
results.

1.3.1 Folding mechanism

Many applications executed in HPC systems present a strong repetitive behavior because the
nature of the problem they are meant to solve using numerical analysis theory. Consequently,
these applications are structured as an iterative sequence of routines and loops which means
they periodically expose the same performance from one iteration to the next and each iteration
exposes different performance phases as the application advances from one loop to the next
within the same iteration. Because of these characteristics, the application performance at
a particular time since the start of a repetitive region will be the same independently from
the region that is being executed, which means that the performance of every region can be
considered an ergodic system.

The folding exploits this latter quality to show detailed performance progression within
regions of code by combining metrics that come from instrumentation and sampling mechanisms.
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Within the folding, the instrumentation and sampling collected metrics play different roles. While
the metrics captured in the instrumentation points are used to delimit repetitive regions (such
as routines and loop bodies), the metrics gathered from sampling points are used to report
progress within the regions. The process receives this name since it intuitively takes each region
independently and folds (or superimposes) them to generate a synthetic region and the more
instances folded, the more details within the synthetic region. The benefits of the folding are
twofold. First, it exposes precise performance characterization of regions even using coarse grain
sampling, so allowing a precise performance characterization while keeping the overhead that
the application suffers to the minimum. Second, when analyzing applications for the first-time,
the process might provide enough insight even if the captured metrics do not characterize the
regions of interest sufficiently, which turns into a reduced number of runs and, consequently,
saves computing resources.

As stated, the folding mechanism requires some instrumentation markers to delimit the region
of interest. Needless to say, applications are typically large in terms of lines of code and delimiting
the application source code to apply requires a certain knowledge of the application that the
analyst may not have without incurring on an additional execution or techniques such as source
code analysis. To circumvent this issue, this thesis introduces a methodology to study first-time
seen parallel applications. This methodology is supported by a framework based on a tool that
categorizes the application computing regions through performance metrics [85] and also by
the folding process to described the node-level performance of these computing regions. Since
both tools rely on minimal instrumentation on parallel run-time calls and coarse-grain sampling,
there is minimal intrusion during the application execution.

The thesis also covers different implementation alternatives, discusses how the results change
depending on the alternative used and, more importantly, examines further analysis benefits from
the alternatives considered. For instance, the folding requires the interpolation of intermediate
results and this thesis evaluates the use of two contouring algorithms. The following publications
describe and evaluate the first approach for the folding mechanism when adopting a contouring
algorithm used in geo-statistical studies [221]. They also demonstrate the usefulness of the
framework by discussing and analyzing multiple parallel applications:

• [188] Harald Servat, Germán Llort, Judit Giménez, Jesús Labarta: Detailed Performance
Analysis Using Coarse Grain Sampling. In proceedings of the Workshop on Productivity
and Performance (PROPER) in conjunction with Euro-Par 2,009: 185-198.

• [193] Harald Servat, Germán Llort, Judit Giménez, Kevin A. Huck, Jesús Labarta: Unveil-
ing Internal Evolution of Parallel Application Computation Phases. In proceedings of
International Conference on Parallel Processing (ICPP) 2,011: 155-164.

• [189] Harald Servat, Germán Llort, Judit Giménez, Kevin A. Huck, Jesús Labarta: Folding:
Detailed Analysis with Coarse Sampling. In proceedings of the Parallel Tools Workshop
2,011: 105-118.

1.3.2 Applicability of performance models

To report the node-level performance, the folding results include detailed evolution of hardware
performance counters for the repetitive regions. The increasing complexity of the microprocessor
has resulted in an increase in the number of performance counters and also in semantics strongly
linked to the microprocessor architecture. Yet users can apply the folding mechanism to a number
of these counters when analyzing an application, the resulting number of plots and the data
they present may be intimidating. Several performance models have been described outside this
thesis in order to overcome such complexity and simplify the use of the performance counters.
For instance, the IBM CPIstack model for the IBM R©Power5 R© [202] and the IBM R©Power7 R© [62]
processors and a model described for the Intel R©Itanium2 R©processor [108] help to identify the
source of the stalled cycles within the processor. To ease the comprehension of the application
performance, while still providing detailed evolution, the folding results are combined with these
performance models to generate a summarized evolution of the performance metrics.

This work resulted in the following publication:
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• [190] Harald Servat, Germán Llort, Kevin A. Huck, Judit Giménez, Jesús Labarta: Frame-
work for a productive performance optimization. In Parallel Computing journal, 39(8):
336-353 (2,013).

1.3.3 Source code and performance correlation

The correlation between performance inefficiencies and their associated source code has become
a cornerstone to understanding why the efficiency of an application falls behind the computer’s
peak performance and to ultimately enabling optimizations on the application code. To this
end, performance analysis tools rely on collecting the processor call-stack and then combine this
information with performance measurements to enable the analyst understand the application
behavior. This work explores the capabilities that the folding mechanism offers for correlating
performance and source code, to allow the analyst to easily understand the application’s bot-
tlenecks. Although source code references do not benefit from fitting models as performance
counters, this work explores two approaches to establish an approximate correlation between
performance and source code.

The first approach benefits from detecting phases derived from the performance results
and associating each phase with a routine or loop. This approach complements the initial
implementation of the folding mechanism and uses piece-wise linear regressions, which have
been used in bio-medicine [158] and financial studies [153]. The main benefit of piece-wise linear
regressions applied to the folding results is that they help to determine where the performance
changes between two consecutive performance phases. These phase breaks enable correlations
between the source code and each phase and allow the analyst to focus on very small regions of
source code when studying each of the phases, ideally at loop level.

The second approach develops a mechanism inspired on Multiple Sequence Alignment (MSA)
algorithms by treating samples as molecules. The goal of this approach is to reduce the cost
of capturing the processor call-stack information no matter its depth and to make it uniform.
This way the folded data are treated like independent sequences of biological molecules that
are aligned using MSA algorithms and then the most representative routines are provided to the
analyst.

This work resulted in the following publications:

• [191] Harald Servat, Germán Llort, Juan González, Judit Giménez, Jesús Labarta: Identi-
fying code phases using piece-wise linear regressions. In proceedings of the 28th IEEE
International Parallel & Distributed Processing Symposium (IPDPS) 2,014: 941-951.

• [186] Harald Servat, Germán Llort, Juan González, Judit Giménez, Jesús Labarta: Bio-
inspired call-stack reconstruction for performance analysis. Technical report UPC-
DAC-RR-2014-20.

1.3.4 Energy consumption analyses

This thesis shows that the folding is not limited to performance measurements, but can ma-
nipulate other metrics gathered by the instrumentation and sampling monitors. For instance,
the processor is responsible not only for the node-level performance but also for most of the
energy consumed by a system, which means that it is important to have tools to analyze both
performance and energy efficiency. The folding allows correlating the evolution of drained power,
in addition to performance metrics.

This work resulted in the following publication:

• [187] Harald Servat, Germán Llort, Judit Giménez, Jesús Labarta: Detailed and simulta-
neous power and performance analysis. In Concurrency and Computation: Practice and
Experience journal, (2,013).
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1.3.5 Detection of memory access patterns and their time evolution

The memory hierarchy is becoming more and more sophisticated as processors evolve generation
after generation. Its advances respond not only to address the speed divergence between the
processor and the memory outside the chip, but also to reduce the energy dissipated by the
data movement. Processor manufacturers have typically organized the memory hierarchy in
different strata to exploit the temporal and spatial localities of reference. The memory hierarchy
ranges from the extremely fast but tiny and power-hungry registers to the slow but huge and
less energy-consuming DRAM, including multiple cache levels. Still, some processor researchers
and manufacturers are looking for opportunities to extend the memory hierarchy to improve the
application execution in terms of performance and energy. Their research considers additional
integration directions so that the memory hierarchy adds layers as scratchpad memories, stacked
3D DRAM [134] and even non-volatile RAM [228].

This work explores the incorporation of the application address space perspective into the
folding mechanism to unveil the access patterns and the locality of reference to the application
data structures. Such an extension relies on the address sampling mechanisms offered by the
PMU extension known as PEBS [37] or IBS [55] from Intel and AMD, respectively. The result of
this combination provides complete support to gain insight of the application behavior, including
the application syntactical level, its data structure organization and its memory hierarchy use
and achieved performance.

This work resulted in the following publication:

• [192] Harald Servat, Germán Llort, Juan González, Judit Giménez, Jesús Labarta: Low-
overhead detection of memory access patterns and their time evolution. Accepted
for publication in the 2,015 edition of Euro-Par conference. Technical report UPC-DAC-RR-
2015-01.

1.4 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 briefly introduces some generalities in
parallel programming that are used in the rest of thesis. Chapter 3 then details some aspects
used across many performance tools and serves to describe other existing performance tools,
comparing them with the work described in this thesis. Chapter 4 introduces and discusses
the main contribution of this thesis: the folding process. Since this process applies to several
types of measurements such as performance counters, power readings and source code and
memory references, the discussion includes several implementations to report this information
back to the analyst. The Chapter also introduces a methodology and a framework that can
help an analyst to evaluate the performance of a parallel application without requiring former
knowledge of the studied application in a single execution. Chapter 5 demonstrates the usefulness
of the framework described by evaluating a number of first-time seen, in-production parallel
applications. Chapter 6 draws some of the conclusions drawn from this thesis as well as further
research directions. Finally, there are a number of appendices that include the folding manual
and a basic description of the folding implementation.
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Parallel programming

07.00 Decido salir en busca de Gurb.

— Eduardo Mendoza, SIN NOTÍCIAS DE GURB

There are a variety of approximations in HPC to make a parallel version of an application that
takes the most benefit of supercomputers. This chapter revises Amdahl’s law and describes computer
systems according to their design points and the relations among their parts. The chapter follows
introducing the most widespread mechanisms to parallelize applications in the HPC environment,
from the cluster to the instruction level, with an assorted selection of examples. Although the
examples are intentionally keep as simple as possible, they prepare the reader for the forthcoming
chapters these topics are widely used.

2.1 Amdahl’s law

Current HPC systems offer a vast amount of computational power because they are built on
top of replicated components which are interconnected through a fast network, resulting in a
tightly coupled systems that enable parallel executions at different levels of the system. A naive
view of this replication depicts an HPC system as a collection of multiple computers, where each
computer contains many processors, each processor accommodate several central processing
units and each central processing unit works on different data sets at a time. So that applications
take advantage of these resources, applications need to be parallelized, which means that the
work of the application must be split into portions that can be simultaneously executed by
different levels of the system replicas. Ideally, a user expects that an application executed on N
processors lasts 1/N of the duration of the serial execution (T (1)); or in other words, executing
a parallel application on N processors becomes N times faster so resulting in a reduced execution
time (T (N)) inversely proportional to the number of processes. However, this is not necessarily
true because the speedup (i.e. the ratio between the execution times in serial and parallel)
achieved by executing a parallel application on N processors depends on many factors, mainly
the application and the system. In exceptional cases such as those that memory hierarchy plays a
significant role on the computation speed, the increase of the number of processing units increase
the amount of cache capacity, the speedup may exceed the number of processors. Still, more
often than not, the speedup is lower than the number of processors. Amdahl’s law [5] states that
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Figure 2.1
Graphical representation of Amdahl’s law at different parallelization factors using up to 256 processors.

the theoretical maximum speedup (S) achieved on N processors depends on the portion of the
algorithm that is executed in parallel (P ∈ [0, 1]) and it is defined by:

S(N) =
T (1)
T (N)

=
T (1)

T (1)
�

(1− P) + 1
N

P
� =

1

(1− P) + 1
N

P
(2.1)

This equation points out that the serial part of the algorithm (1−P) limits the overall execution
time, therefore, it must be minimized to reach the maximum speedup. This minimization is what
the parallel programming pursuits: attempting to reduce the serial portion so that the application
execution time gets as small as possible by increasing the use of the available resources. Figure 2.1
shows the maximum expected speedup for a variety of parallelization levels (P ranging from
0.75 to 0.97) of an application when using multiple processors according to Equation 2.1. If
only 3% of the total execution time is executed in serial, the achieved speedup is roughly 25
when using 100 processes. Therefore, if developers focus on making their applications scalable
and take advantage of current and forthcoming supercomputers, they need to maximize their
in-parallel execution time.

2.2 Parallel computer architecture taxonomy

There is a breadth of design alternatives for parallel computers. Flynn proposed a simple model
to classify them based on the available number of concurrent instructions and data streams in
the architecture [69]. The four resulting categories of such classifications are shown in Table 2.1
and, while there are some hybrids of these categories, they are summarized like:

SISD Represents a sequential computer without any attempt to exploit parallelism at neither
instruction nor data level. There is a single control unit that fetches instructions one at a
time and where each instruction only operates to scalar values.

MISD A very uncommon architecture where many instructions work on the same data. While
some people object, systems that may belong to this group are fault tolerant systems that
include multiprocessors running at lockstep to compare the results every cycle.
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Table 2.1
Flynn’s taxonomy.

Single instruction Multiple instructions
Single data SISD MISD

Multiple data SIMD MIMD

SIMD A computer architecture that operate on vectors (or arrays) of values using one single
instruction.

MIMD Multiple autonomous processors where each simultaneously execute different instructions
on different data.

During the last years, there has been a rise of the MIMD architectures, mainly because
they are built with cost/performance ratio advantages and offer an unprecedented flexibility.
Multiprocessors are built today using the same processors found in workstations, which reduces
design and implementation costs. MIMD architectures operate either as a single-application
machine, or as a multiprogramming machine executing many independent tasks, or even as a
combination of both, although these systems require appropriate hardware and software support.

A further categorization of parallel applications that run on MIMD architectures is based
upon the technique employed to achieve parallelism. In Single Program Multiple Data (SPMD)
applications, their processes run the same program operating on different data and in contrast,
Multiple Program Multiple Data (MPMD) applications, their processes execute different programs
on different data. The SPMD model is particularly appropriate for regular problems and exposes
predictable communication patterns between computation phases. On the other side, MPMD
model relies on manager process(es) to control a number of worker processes, which is typically
implemented either on different binaries or in a single binary using different control flows. The
model election must be selected according to the problem to solve and ultimately by the developer,
but the fact that workers in MPMD applications have to communicate with the managers may
limit the scalability due to a communication bottleneck.

There is an additional division of MIMD architectures that depends on the memory organiza-
tion and interconnect strategy. The first group, called shared-memory architectures, interconnects
memory and a modest number of processors with a bus. This multiprocessor offers a single mem-
ory address space that is used by all the processors and consequently, processors communicate
through regular load and store instructions. Currently, there has been a raise in the multi-core
processors due to a reduction in transistor size and it is very common to see multi-processor
systems where each processor is multi-core. A multi-core processor is a single chip processor
that contains two or more independent central processing units which may share some resources
(such as the memory bus, the memory hierarchy and the I/O buses), so effectively, a multi-core
processor becomes a shared multi-processor itself within a chip. The second group of MIMD ar-
chitectures, named distributed-memory architectures, represents systems where processors have
their own private memory and communicate with other processors using special purpose com-
munication instructions that are nowadays leveraged to network devices. While the connectivity
to the network depends on the network topology, these architectures allow connecting a larger
amount of processors than shared-memory architectures. Nowadays, HPC systems combine these
two types of architectures so that each computer from the system includes multiple processors
and each computer is connected to the rest of the system using fast networks. For instance, the
Marenostrum III supercomputer [138], which is installed at Barcelona Supercomputing Center,
is currently a system consisting of 3,056 compute nodes interconnected through an Infiniband
network and where each compute node contains 2 octo-core (8x) processors.

2.3 Parallelization alternatives

There exist various parallel programming models, languages, libraries and application program-
ming interfaces (API) to write applications that benefit from the resources of HPC systems
depending on the assumptions they make about the memory architecture. This section is divided
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into several parts that describe the current techniques in parallel programming and each part
describes how to take profit of the parallelism provided by the resource replication at different
levels of the system, from the system to the processor level. First, there is an introduction to
message-passing paradigms, which are typically used to communicate processes executing in
different nodes of the system. The following section provides some basic principles of shared-
memory paradigms, which are appropriate to assist in parallelizing applications within a node.
The section continues by providing introductory foundations of parallelism within a single pro-
cessor using current approaches to parallelizing through instruction-level parallelism (ILP) as
well as SIMD instructions. Finally, the section finishes by providing a brief discussion on the use
of accelerators to execute applications in parallel. So as to achieve the desired performance, it is
necessary to optimize the resource use at each level of the system, which may imply combining
several parallelization schemes to produce hybrid applications.

2.3.1 Message-passing paradigm

Starting a top-down perspective of HPC systems, these are a collection of individual nodes that
are interconnected by high-speed networks exposing a distributed-memory architecture. So that
applications benefit from this parallelism, they require some inter-process communication to
coordinate and exchange data. Applications that make use of these inter-process communication
to solve a common problem are known to use the message-passing paradigm. Although message-
passing applications do not necessarily require to be written for this paradigm from the scratch,
due to the requirements for the organization, coordination and computation in a distributed
environment, the process of porting to this environment requires an amount of time.

There are several message-passing standards such as Remote Procedure Call (RPC) [206],
Common Object Request Broker Architecture (CORBA) [163], Java Remote Method Invocation
(Java RMI) [38] and Desktop Bus (D-Bus) [178]; but the most extended standard in the HPC
community is the Message Passing Interface (MPI) [51, 146]. When running an MPI application,
the MPI launcher spawns the binary (or binaries if the application is MPMD) onto the resources
creating multiple processes. These processes run independently except when they need to
initialize and finalize as well as to communicate to the rest of the processes spawned.

To ease the development of MPI applications, the standard provides a rich range of abilities
that include: communicators, point-to-point operations, collective operations and derived data
types. Communicators are logical objects that group processes within the execution of the MPI
application and they are mainly used to allow communicating between the grouped processes.
By default, MPI applications have two communicators, one that groups all the processes involved
in the computation and another that contains each process itself, but MPI allows creating new
communicators based on groups of processes.

Point-to-point operations involve communication between two processes from the application
that are connected through a communicator. The most basic point-to-point operations are
MPI_Send and MPI_Recv (shown in Listing 2.1), which send and receive a message to/from a
particular process, respectively. A message in this context is formed by data of a particular data
type and identified by a tag as shown in their declarations for the C language.

Listing 2.1
Basic MPI point-to-point routines.

int MPI_Send (void *buf, int count, MPI_Datatype datatype,
int destination, int tag, MPI_Comm comm);

int MPI_Recv (void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status);

Collective operations distribute data among all processes belonging to a communicator and
they are meant to save the developer the effort of having to invoke many times the point-to-point
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operations to distribute messages to multiple partners with the consequent expense saving.
While the standard describes a wide variety of collective operations, the operations MPI_Bcast,
MPI_Reduce, MPI_Scatter, MPI_Gather and MPI_Alltoall can be highlighted to illustrate the
functionality of the collective operations and are shown in Listing 2.2. The first and third
operations are aimed at distributing messages from one process to all the processes that are
involved in a communicator. Although on MPI_Bcast each receiver gets a copy of the whole
message, on MPI_Scatter the message is divided among the receivers. Operations MPI_Reduce
and MPI_Gather are intended to collect messages from many processes by one process. In the
particular case of MPI_Reduce the values received are processed by a given function (sum, max,
min, etc...), whereas MPI_Gather simply concatenates all the messages received onto a larger
message. Finally, it is worth mentioning the MPI_Alltoall operation, which allows data to be
sent and received from and to all processes in the communicator.

Listing 2.2
Basic MPI collective routines.

int MPI_Bcast (void *buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm);

int MPI_Reduce (void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm);

int MPI_Scatter (void *sendbuf, int sendcnt,
MPI_Datatype sendtype, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, int root, MPI_Comm comm);

int MPI_Gather (void *sendbuf, int sendcnt,
MPI_Datatype sendtype, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, int root, MPI_Comm comm);

int MPI_Alltoall (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm);

Finally, it may well be that the application data are not homogeneous or contiguous in memory
and therefore do not fit in predefined MPI types (such as integer, char, boolean and floating-point
numbers). Under these circumstances, the application needs to convert its own data types into
MPI data types, execute the MPI operation and then convert the received data from the MPI data
types into its data types again, with the consequent overhead. MPI allows defining new data
types to amortize the overhead of translating application data structures into MPI types as well
as it would be more productive for the application developer which avoids programming such
transformations in every place where the application needs them.

To exemplify the use of the MPI standard, consider first the code shown as Listing 2.3 that
approximates the value of π through a quadrature method. In this code, each iteration of the
loop contributes in the result independently and its parallelization is pretty simple. Table 2.2
shows two parallel versions derived from the serial code using MPI routines, the one the left
uses MPI point-to-point operations (MPI_Send and MPI_Recv) and the one on the right uses MPI
collective operations (MPI_Bcast and MPI_Reduce). While both versions approximate the same
result, it is noticeable that the version that uses collective operations is significantly shorter. On
these versions, each MPI process calculates a partial value of area in the variable tmp2 and then,
each process transmits the value of tmp2 to process zero, where it is accumulated.

The previously stated MPI routines block the execution of the process until the communication
has finished. The consequences of this blocking behavior includes situations where two or more
processes are waiting for others to finish (a situation commonly known as deadlock) as well
as that the application cannot computationally progress as long as it waits for a message to
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Listing 2.3
Serial version to approximate the value of π.

1 h = 1.0 / n;
2 for (i = 1; i <= n; i++)
3 {
4 x = h * (i - 0.5);
5 area += (4.0 / (1.0 + x*x));
6 }
7 pi = h * area;

arrive. To circumvent these issues, the MPI standard introduced non-blocking point-to-point
operations in MPI version 1 and non-blocking collective operations in MPI version 3. Although
avoiding deadlocks is necessary to allow a correct execution of the application, with respect to
performance, the non-blocking communications allow developers to overlap communications
with computation so increasing the parallelism achieved.

2.3.2 Shared-memory paradigm

Although message-paradigm applications take advantage of independent processes possibly
executing in separate nodes, the shared-memory paradigm allows multiple processes from
the same node to access and exchange data by accessing a unique address space. This way,
communication between processes is very fast and transparent to the user, as opposed to the
message-passing paradigm. These shared-memory programming paradigms naturally match on
top of the shared-memory architecture, so that each processor connected to the memory bus
can easily access to the whole address space without requiring special instructions. The most
extended parallel programming model using this paradigm in HPC systems is OpenMP [42, 166],
but there are others such as pthreads [127], OmpSs [56], Cilk and Cilk Plus [18, 126] and Intel
Threading Building Blocks [180], to name a few. The reader can even find additional languages
such as Unified Parallel C (UPC) [61] and Co-Array Fortran [161] where the shared address
space is partitioned and a portion of it is local to each thread or process, no matter the system is
shared or distributed memory.

Since OpenMP is the most shared-memory paradigm in HPC, this section gives some insight
about it. OpenMP is a portable standard for shared memory multiprocessing that mainly uses
program annotations (#pragma constructs in C/C++ and special directives in Fortran) to indicate
which regions of code are meant to be executed in parallel. Compared to MPI, OpenMP offers
a simpler parallel scheme and also an incremental approach; however, since shared-memory
architectures do not scale to large number of processors, the maximum expected scalability of
OpenMP applications, compared to MPI applications, is far more reduced. The fact that the
whole application shares a unique address space and that it is turned into parallel by adding
some program annotations simplifies the application development and, significantly important,
and increases productivity when parallelizing an existing serial code. In addition, the developer
easily decides when to stop adding OpenMP directives, for instance when a particular target
speed-up has been reached, as the application will normally work since non-parallel regions
execute serially. Compared to MPI, the message-passing applications need orchestration during
the whole execution, so the developer must ensure a correct parallel execution during the process
lifetime, which requires additional modifications to the serial code.

The execution model of OpenMP applications is based on threads (also known as light-weight
processes) that are single independent sequential flows of control within a program that have
access to all the process data but also have a private data area. In this model, the application
follows a fork-and-join behavior as illustrated in Figure 2.2. The application starts as a single
process with one thread of execution (named master) and once it reaches a parallel construct
(#pragma omp parallel, for instance), a team of threads is created within the process to execute
the code within the parallel construct. Then, each thread of the team carries out its assigned
work and once it finishes, the thread waits for the remaining threads of the team to finish, to
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Figure 2.2
The fork-join execution model in OpenMP.

finally let the master thread continue the execution. While in the Figure threads are depicted in
such a way that threads are created at every parallel region, it is very common that OpenMP
implementations create the team of threads once and then reuse it in the next parallel construct
in order to save the expense of the team creation. In fact, since every process has at least one
thread (named master), the OpenMP run-time only creates three threads and let the master
thread become one of the worker threads when entering into the parallel regions.

Up to OpenMP version 2.5, this programming model mainly focused on extracting parallelism
from loops because of two reasons. First, these are the regions of code where applications invest
most of their time and, second, because the loops easily offer parallelism opportunities if data
dependencies between iterations are independent (i.e. the data produced from one iteration is
not consumed in another iteration). Usually, the team of threads shares loop iterations (also
known as work units) of a parallel loop through the use of work-sharing constructs. Each work
unit, with the corresponding data environment, is bound to a particular thread for its whole
lifetime, becoming impractical to execute loops with dynamic conditions. Since OpenMP version
3.0, this model allows expressing irregular parallelism through the tasking constructs, which
allows executing in parallel loops where the number of iterations cannot be determined at the
entry of the loop, and also, dynamically generating units of work.

The use of shared-memory paradigms imposes the developer to care about accesses to shared
data because modifications done by a thread are visible to the remaining threads. Consider
again the pi kernel shown in Listing 2.3 while being executed by multiple threads, if two
threads simultaneously read the value of area (line 5) and then both update the value of this
variable, one of the updates will be lost. OpenMP provides ways to synchronize threads, which
include lock constructs (through the OpenMP API) as well as critical, atomic, single, master
clauses. The lock constructs provide the most general approach to coordinate execution between
threads because only one thread at a time executes the code that is wrapped by these constructs.
Critical and atomic directives specify that the region delimited and the following sentence are
expected to be carried out in mutual exclusion, respectively. The single clause indicates that
the enclosed code is executed by one thread of the team, whereas the master clause specifies
that the code is executed by the master thread, only. All these constructs do not come for free,
though, as they penalize the application performance because they increase the serialization of
the application if multiple threads face a synchronization region at the same time. Sometimes the
source code allows transformations to avoid adding these synchronization points. For instance, as
the addition is a commutative operation, each thread updates the area variable privately with its
own partial value and then leave master thread to accumulate each thread’s copy into the actual
variable at the end of the parallel construct. This approach makes unnecessary to synchronize
the threads when accessing the shared variable, but requires a commutative operation and a
mechanism that allows the master thread to access the private copies of the remaining threads.
This latter technique receives the name of reduction and it is available in OpenMP as an extension
for the parallel construct by providing the target variable and the operation.

Table 2.3 illustrates the implementation of the application that calculates the π value using
OpenMP in which the work is distributed among threads but the way to reach the solution differs.
In the application on the left, the master thread starts executing and when it encounters the
#pragma omp parallel for it spawns the team of threads to distribute the iteration trip count
among them. In such a distribution, each thread accesses to a private copy of x and i variables

16



Parallelization alternatives - 2.3

Table 2.3
Comparison of two OpenMP versions that approximate the π value. On the left, the application uses a
synchronization mechanism that introduces serialization. On the right, the application uses a reduction
clause to accumulate each thread’s private copy of area at the end of the parallel region.

1 h = 1.0 / n;
2 #pragma omp parallel for \
3 private(x) shared(n,h,area)
4 for (i = 1; i <= n; i++)
5 {
6 x = h * (i - 0.5);
7 #pragma omp atomic
8 area += (4.0 / (1.0 + x*x));
9 }

10 pi = h * area;

1h = 1.0 / n;
2#pragma omp parallel for \
3private(x) shared(n,h) \
4reduction(+:area)
5for (i = 1; i <= n; i++)
6{
7x = h * (i - 0.5);
8area += (4.0 / (1.0 + x*x));
9}
10pi = h * area;

(because loop index is always privatized) and also to the shared variables n, h and area. Within
the parallel region, each thread calculates the value for x and then updates the area variable
exclusively (lines 6 to 8). When all threads finish, the master thread continues alone. In the
code shown on the right, the application behaves mostly the same except for the parallel region
which does not include synchronization constructs but uses a reduction clause (lines 2 to 4) that
applies the add operation to each private copy of the variable area. Therefore, when the parallel
region finishes, each thread has its own partial summation of area and then the master thread
aggregates them all into master thread’s variable area.

2.3.3 Instruction-level parallelism

The next system level of parallelism exposed is the processor-level because one single processor
also executes instructions in parallel. In this direction, instruction-level parallelism (ILP) accounts
for how many operations are performed simultaneously during the execution of an application.
Current processors implement several techniques to extract parallelism from a sequential instruc-
tion stream, i.e. a processor is capable of overlapping the execution of multiple instructions at a
time so producing more than a result per unit of time. Consider the code shown in Listing 2.4
that consists of three assembly instructions. In this sequence of instructions, the third instruction
depends on the results of the first and second instructions but the second instruction does not
depend on any other instruction, so the two first instructions can be calculated simultaneously.
Assuming that several instructions can be executed in a unit of time and that instructions one and
two are executed simultaneously, the code above would only require two units of time, which
would represent an ILP of 3/2 instructions per cycle (IPC), or inversely 2/3 cycles per instruction
(CPI).

Listing 2.4
Simple sequence of assembler instructions.

1 ADD R1, R2 ; R1 = R1 + R2
2 ADD R3, R4 ; R3 = R3 + R4
3 MUL R1, R3 ; R1 = R1 * R3

The amount of existing ILP of a workload depends on the application because it dictates
the instruction dependencies and also, depends on the ability of the compiler to schedule the
application instructions. Compilers use techniques such as loop unrolling and software pipelining
techniques to increase the ILP, but still the hardware may have limited resources to execute the
independent instructions. This section highlights the most prominent techniques to achieve a
high ILP in hardware, which include pipelining, out-of-order and speculative execution, as well
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Clock cycles→
PC Instruction 1 2 3 4 5 6 7 8 9
i+0 LOAD R0, X[4] F D X M W
i+1 ADD R1, R2 F D X M W
i+2 SUB R3, R4 F D X M W
i+3 MUL R5, R6 F D X M W
i+4 ADD R7, 1 F D X M W

Figure 2.3
Example of diagram for a sequence of six instructions starting at a given Program Counter (PC) executed in a
processor where instructions traverse five stages. The stages are Fetch the following instruction, Decode
the instruction, eXecute the instruction (or calculate the address of it the instruction references to memory),
access the Memory and Write (or commit) the results.

as superscalar processors. The main benefit of these approaches is that they are transparent to
the programmer1 so that parallelism is automatically extracted by the processor.

2.3.3.1 Pipelining

Pipelining is a technique that allows the overlapping of the execution of multiple instructions.
This technique is achieved by dividing the work of the instructions into smaller parts so that
instructions need several steps (or stages) to complete. The stages are physically connected,
each one to the next, so that instructions enter and progress through the stages to finish when
they exit the last stage. The number of steps in a pipeline depends on factors like the instruction
set architecture (ISA) and the instruction semantics. The processor designer must to balance
the work at each stage because the slower stage determine the duration of the machine cycle.
The main benefit of breaking down instructions into smaller stages is that it allows a significant
reduction in the machine cycle. Comparing the amount of time per instruction, it does not matter
if the processor is pipelined, a single instruction requires the same amount of time to complete,
but in a pipelined processor, the benefit comes from that the following instructions are finished
in every cycle and as the cycle time is shorter the overall execution time is then shorter.

The diagram shown in Figure 2.3 exemplifies the instruction progression in a 5-staged
pipelined processor. The diagram shows a time-line in which the X-axis represents cycles, the
Y-axis represents the Program Counter register (PC) and the instructions as they enter in the
pipeline and each instruction faces five instruction to complete. As the reader can observe,
every cycle a new instruction enters the pipeline and after the fifth cycle an instruction finishes
every cycle. Compared to a non-pipelined processor, the same instructions would require five
cycles, however in this example it requires nine cycles, so pipe-lining the processor requires more
cycles to complete the program. However, while the number of cycles required in a pipelined
processor is higher, the shorter cycle time implies a reduction in the required time to complete
the instructions. For instance, if the cycle time of the non-pipelined processor is Tc yc and the
pipelined processor allows dividing the stages in a such way that the cycle time is Tc yc/5 , then
the total time required for executing the application will be 5×Tc yc and 9×Tc yc/5, respectively
and for a reduction in 64% of the execution time.

While the pipelined processor is meant to ideally finish an instruction every cycle, there are
situations, known as hazards, that restrict a pipelined processor to achieve this rate. Hazards are
classified as: structural, data, or control. Structural hazards exist when the hardware cannot
execute the simultaneous instructions in the pipeline due to lack of resources. For instance, if
the processor only has one arithmetic-logic unit (ALU), it becomes impossible to calculate two
additions at a time. Data hazards arise when an instruction depends on the results of a previous
instructions. There are three types of data hazards, true dependencies (an instruction generates
a value in a register that a following instruction needs as an input), anti-dependencies (an
instruction requires a register that is latter updated) and output dependencies (two instructions
modify the same register). Violating dependencies between instructions breaks the semantics of

1While the application programmer can hint the hardware on the application behavior, these techniques are meant to
be valid without requiring any modification from the programmer.

18



Parallelization alternatives - 2.3

the code and thus yields to an incorrect execution. Finally, control hazards are related to the
pipelined execution of instructions that modifies the PC. No matter the type of hazard, when the
processor detects them it needs to stall the execution of incoming instructions and continue the
execution of the instruction within the pipeline until the hazard disappears by generating pipeline
bubbles (represented as ◦). While structural hazards can be avoided by replicating functional
units within the processor, the rest cannot be avoided directly by the hardware, though there
are opportunities for reducing the impact of data and control hazards. The following sections
discuss techniques used for limiting the impact of these hazards in modern processors.

2.3.3.2 Out-of-order execution

So that instructions can be actually executed in the pipeline, it is imperative that the operands
are ready once the instruction faces the execution stage (X). If operands are not ready (because
data are brought from memory or it is computed in a multi-cycle functional unit, for instance),
the instruction has to wait (or stall) inside the pipeline until operands are available, so reducing
the ILP. Although in the exemplified pipeline instructions write the results back in the write stage
(W), since the results are actually computed at earlier stages, there is a chance for the processor
to forward (or bypass) the values from latter stages to the input of earlier stages of forthcoming
instructions. Forwarding results from one stage of one instruction to another stage of a following
instruction simply requires additional logic and does not require adding bubbles into the pipeline.
Consider the time-lines in Figure 2.4 which represent the execution of the same code with two
data dependencies but executed on a machine that cannot (top) and can (bottom) forward the
result as soon as it is generated at the execution stage (X). The first dependence exist between
instructions at PC i+0 to PC i+1. If the processor cannot forward the result immediately after
finishing the execution stage (X), then it is necessary to stall the processor until the data are
being written (as seen in Figure 2.4a). However, if the processor forwards the result of execution
stage (X) of instruction at PC i+0 to the beginning of the execution stage (X) at PC i+1, at cycles
three and four, then there is no need to stall the processor as seen in Figure 2.4b. The second
data dependence involves instructions at PC i+2 and PC i+3. In this dependence, the instruction
at PC i+2 does not get the data from memory until the memory stage (M) has finished for
instruction i+2, which occurs at cycle six in Figure 2.4b. However, instruction i+3 requires that
data at the execution stage (X), which would be cycle five. Due to the design of the pipeline, the
processor has to stall the execution of the forthcoming instructions by injecting a bubble into the
pipeline at cycle five. In fact, it is even possible that the memory needs more than one cycle to
provide this data if the memory hierarchy requires more cycles to access these data. So when a
cache miss occurs, more bubbles are injected in the pipeline according to the time wait for the
data and consequently, reduce the achieved ILP.

Thornton proposed a method named Scoreboarding [217] for the CDC 6600 computer that
uses an extra logic (named scoreboard) to orchestrate instructions during their live within
the pipeline and executes instructions out of order if sufficient resources are available. The
scoreboard is fully responsible for fetching instructions, executing them and for detecting all
possible hazards between them. It records all the dependencies of the instructions in the pipeline
and then determines when instructions can read their operands and commence the execution. If
the scoreboard determines that an instruction cannot be executed immediately, it monitors all
the modifications in the register file so it determines when the instruction will be executed. Yet
an instruction is stalled in the pipeline, the scoreboard continues fetching instructions as long
as the processor has enough functional units to execute the instruction and the target register
does not match any instruction inside the scoreboard that writes on the same register (to avoid
violating output dependencies).

Tomasulo also proposed an algorithm to allow proceeding with the execution of instructions
even if there are hazards between some instructions in the IBM System/360 model 91 [218]. This
approach combines some elements from Scoreboarding, but also introduces a key feature such
as the register renaming. Register renaming avoids anti-dependencies and output dependencies
data hazards by transparently extending the number of available physical registers (named also
as reservation stations) compared to those available in the ISA. In addition to register renaming,
Tomasulo’s algorithm introduces a distributed hazard detection and a common bus to transfer
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Clock cycles→
PC Instruction 1 2 3 4 5 6 7 8 9 10
i+0 ADD R1, R0 F D X M W
i+1 ADD R1, R2 F D ◦ X M W
i+2 LOAD R3, X[0] F ◦ D X M W
i+3 ADD R1, R3 ◦ F D ◦ X M W

(a) Needs to wait until instruction completes.

Clock cycles→
PC Instruction 1 2 3 4 5 6 7 8 9 10
i+0 ADD R1, R0 F D X M W
i+1 ADD R1, R2 F D X M W
i+2 LOAD R3, X[0] F D X M W
i+3 ADD R1, R3 F D ◦ X M W

(b) Forwards instruction results as soon as they are generated.

Figure 2.4
Comparison of pipeline executions with dependencies, either from registers or memory without (top) and
with (bottom) result forwarding. The processor needs to wait for such data introducing a bubble (◦) in the
pipeline thus stalling forthcoming instructions.

results directly from functional units to reservation stations. With respect to the execution
flow, the processor fetches instructions into an out-of-order buffer and sends the operands to a
reservation station if operands are in registers. Once instructions reach the out-of-order buffer,
they are executed as soon as the operands are ready and there are functional units to execute
them. If operands are not ready, the algorithm observes the bus monitoring for the registers
needed by the instruction. Once the instruction result is available, it is transmitted through the
bus to the registers and to any reservation station waiting for it.

2.3.3.3 Speculative execution

As mentioned above, control flow instructions arise control hazards because they do not only
depend on the results of previous instructions but are able to change the execution flow or the
instruction stream that the processor is executing. When executing in a pipelined processor,
the evaluation of control instructions and the value of the forthcoming PC happen at advanced
stages of the pipeline, which implies that the processor has to wait for the result that determines
which instruction stream to follow. In such control hazards, the number of bubbles added into
the pipeline is determined by the number of stages (or cycles) that the control instruction has to
traverse to determine whether the control flow changes, so the sooner it is resolved, the higher
ILP achieved.

Consider the diagram shown in Figure 2.5 which contains a branch instruction at PC i+2.
Here two situations may occur when reaching PC i+2, if the condition is met then the PC is set
to i and the instruction flow has to be restarted from there, or if the condition is not met then the
instruction flow continues at i+3. Independently from this, a non speculative processor fetches
at the beginning of cycle four the following instruction pointed by the PC because, at that point,
the processor has not yet decoded that the instruction at i+2 is a conditional branch. At cycle
five, the processor has decoded the branch instruction and it has to stall subsequent instructions
from entering the pipeline until it calculates whether the branch has to be taken or not (at stage
X in this example). If the condition is met (not shown in the diagram), then the PC has to be set
to i+0 and restart the execution from there after discarding the instruction that entered in cycle
four, which means that the processor has to stall at least for two cycles (decode and execute
stages). If the condition is not met (shown in the diagram), then the PC has to be set to i+3,
which means that the processor has to stall for one cycle.

The branch predictor is a component of the processor that speculate whether the control
flow will change and the address of the following instruction stream, so allowing issuing
additional instructions into the pipeline without stalling the processor. As current processors
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Clock cycles→
PC Instruction 1 2 3 4 5 6 7 8 9
i+0 ADD R1, R2 F D X M W
i+1 SUB R3, 1 F D X M W
i+2 JNZ i+0 F D X M W
i+3 ADD R2, 1 F ◦ D X M W

Figure 2.5
Pipelined execution of a sequence of instructions including a branch instruction. The evaluation of the
following PC is unknown until later stages of the instruction, so the processor has to wait, injecting a bubble
(◦), until its evaluation to determine which is the next instruction to execute.

have deep pipelines nowadays, it is important to have such a correct prediction as soon as
possible in order prevent penalization of the performance. Branch predictors are based on either
a statically fixed prediction [68] or the history results of the control instruction that entered
in the pipeline [125, 234]. Control flow instructions are ultimately evaluated, which allows
confirming if the speculation of the branch predictor was correct. If branch predictor hits on
the result, the instructions fetched during the evaluation (speculative) are executed normally;
however, if the branch predictor missed, then the instructions that entered speculatively into
the pipeline need to be flushed and the control flow needs to be changed accordingly, with the
consequent penalty.

2.3.3.4 Superscalar and VLIW processors

The techniques from the previous sections are used to reduce the stalled cycles in the pipeline
and so increase the chances to achieve an ILP of 1 IPC. An ILP of 1 IPC is the maximum reachable
value if only one instruction enters in the pipeline at a time, so to increase the ILP it is mandatory
to fetch multiple instructions in the pipeline. There are two types of processors that fetch
several instructions to the pipeline in a single cycle: superscalar and very long instruction
word (VLIW) processors. Superscalar processors fetch a varying number of instructions into
the pipeline that are either scheduled by techniques such as Scoreboarding and Tomasulo’s
algorithm and sometimes assisted by the compiler. VLIW processors, in contrast, fetch a fixed
number of instructions typically formatted as either one large instruction or as a fixed set of
independent instructions. In terms of architecture, VLIW processors are simpler to design because
the instructions themselves expose the parallelism among them, i.e. if they are in the same
set, they are meant to be executed at the same time. This means that for VLIW processors, the
compiler is responsible for explicitly stating which instructions are executed in parallel, whereas
in superscalar processors this decision is made at run-time, dynamically. Whatever the processor
type, to effectively execute the fetched instructions the processor requires the replication of
processor block to execute the instructions. For instance, several instructions may execute at the
same time, many arithmetic-logic units may be necessary. Also, many instructions may read from
the bank of registers at a time, requiring additional number of bank ports to read and write from
it. Still, there is a fundamental and simple limit on available ILP: the code to be executed. If the
code to be executed does not expose enough instructions to fill the available slots, then does not
matter the how many instructions are sent to the pipeline.

2.3.4 Vector processors

Vector processors provide an additional way to achieve parallelism through the architecture.
These processors provide high-level instructions that work on vector operands instead of scalar
operands. Compared to the previously seen architectural techniques that achieve instruction
parallelism from a serial code, one vector instruction stipulate a bunch of work. Vector-processors
provided several benefits when they appeared. First, a single vector instruction specifies such
an amount of work that sometimes a single vector instruction replace a whole loop from
the application source code. In this direction, there is a reduction on the number of control
instructions executed (mainly branches and instructions to calculate the next iteration index)
and, the consequent savings on the pressure on the instruction bandwidth. Second, vector
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instructions access memory with a known access pattern, so in systems where memory banks are
interleaved, the high latency of accessing the main memory can be amortized because accesses
are initiated for the whole vector and not for every single scalar. The last advantage, is that
as vector instructions involve multiple parallel and independent operations, these operations
are performed in parallel if several functional units can do the operation. There are two types
of vector processors, depending whether the operands are located in memory (the so-called
memory-memory vector processors) or in registers (named vector-register processors). The
discussion in this section focuses on vector-register processors, although a similar discussion can
be extrapolated for memory-memory vector processors just considering that operands are stored
in memory instead of registers.

To fulfill these design objectives, vector-register processors require the following components:
vector registers, vector-control registers, functional units, and load-store units as well as a set of
scalar registers. Vector registers are fixed-length registers that hold multiple elements of basic
data types (such as integer and floating-point values). With respect to the vector-control registers,
the Vector-Length and Vector-Stride registers are highlighted. As data vectors in applications
do not need to match the length of the registers, there must exist a Vector Length register in
the processor ISA that tells the processor the number of useful elements present in the vector
registers. Also, positions in memory of adjacent elements of a vector may not refer to consecutive
addresses, so there is a Vector Stride register indicates the distance in memory addresses between
adjacent elements when executing vector load or store instructions. Finally, scalar registers are
needed as in regular processors, to provide data as input to the vector functional units and to
calculate addresses for the vector load-store unit.

Listing 2.5
Source code for the SAXPY/DAXPY routine.

1 for (i = 0; i < N; i++)
2 Y[i] = a*X[i]+Y[i]

To exemplify the behavior of a vector processor, consider the piece of code shown in Listing 2.5
which calculates Y=a×X+Y (being a scalar and X and Y vectors) and which is commonly known
as SAXPY or DAXPY, depending on whether the values are single or double-precision, respectively.
When the above code is compiled for a scalar processor, the assembly code may look like the
code found in the left column of Table 2.4. On the scalar version, each index is calculated
individually (instructions 4-8) and then the loop index is advanced and repeats the loop if
necessary (instructions 9-11). To execute the code, the application needs to traverse the loop N
times, which in this case accounts for a total of 2+8×N . In contrast, in a situation where the
vector processor supports up to 64 elements on its registers, the number of instructions to be
executed is reduced to 3+(11×N)/64. That value can be further shortened if the compiler knows
at compile-time whether N is 64 or less, or even if N is multiple of 64. In these circumstances,
the compiler might suppress unnecessary control instructions.

Giving the vectorization example of the DAXPY routine helps us to understand not only how
a vector processor works, but also why some of the Top500 systems pointed out in Table 1.1 (on
page 3) achieve such a good efficiency. The DAXPY routine represents a small fraction of the
source code of the Linpack benchmark but accounts for most of its execution time, which means
that supercomputers built on top of vector processors, such as Earth Simulator and K computer
systems, achieve a higher Flop/s rate than systems not using vector processors.

During the last years, processors have benefited from architectural techniques that increased
the performance significantly and have left the original vector processors schemes behind. The
introduction of architectural features such as pipelining, superscalar and out-of-order execution,
which combined with efficient memory hierarchies built on top of several levels of caches and the
flexibility of combining processors into clusters made these systems more competitive in terms
of performance/price ratio. Today, however, most of the current processors are vector-capable
due to the introduction of the originally self-styled multimedia instructions. These multimedia
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Table 2.4
Comparison of scalar and vector codes for DAXPY using a pseudo-assembly language. On the left there is a
version for serial processors, whereas on the right there is a version for vector processors. The vector code
version assumes that vectors are 64 elements long.

1 LOAD Ra, a[] ; R1 = a
2 MOVE Ri, 0 ; i = 0
3 LOOP:

4 LOAD Rx, X[8*Ri] ; Rx = X[i]
5 LOAD Ry, Y[8*Ri] ; Ry = Y[i]
6 MUL Rx, Ra ; Rx = a*Rx
7 ADD Ry, Rx ; Ry = Ry+a*Rx
8 STORE Y[8*Ri], Ry ; Y[i] = Ry
9 ADD Ri, 1 ; i = i+1

10 CMP Ri, N ; i < N ?
11 JNE LOOP ; Continue?

1LOAD Ra, a[] ; Ra = a
2MOVE Rb, N ; Rb = N
3MOVE VL, 64 ; Init VL = 64
4LOOP:
5CMP Rb, 64 ; Is Rb < 64?
6JGE USEVL64 ; If not, use VL = 64
7MOVE VL, Rb ; Else: last iteration
8; use VL = Rb
9USEVL64:
10LOADV Vx, X[] ; Vx = X[1:VL]
11LOADV Vy, Y[] ; Vy = Y[1:VL]
12MULSV Vx, Ra ; Vx = a*Vx
13ADDV Vy, Vx ; Vy = Vx+Vy
14STOREV Y[], Vy ; Y[1:VL] = Vy
15SUB Rb, 64 ; VL = VL-64
16CMP Rb, 0 ; VL > 0?
17JG LOOP ; If so, continue

instructions are almost the same as vector instructions, but with a vector-length far more reduced.
For instance, the Cray Y-MP had eight vector registers that held 64 64-bit elements [41, 40],
whereas the Intel MMX instruction set has eight vector registers holding two 32-bit integer-only
elements [102] and the Altivec instruction set has 32 vector registers holding up to four 32-bit
elements each [185]. Intel has continued developing their multimedia instructions and their
forthcoming instruction set is named AVX512. This instruction set contains up to 32 vector
registers that accommodate eight 64-bit elements [103], which considering the number of bits in
the vector register bank is half of the number of bits compared of the vector register of a Cray
Y-MP, showing that there is still a road ahead of vector processing.

2.3.5 Coprocessors and accelerators

This chapter concludes with an illustration of the use of coprocessors to achieve a higher degree of
instruction execution rate. Coprocessors are, by definition, devices that extend (or complement)
the functions of the processor. There is a variety of coprocessors that perform different types of
operations such as floating-point arithmetic, signal and graphics processing and I/O interfacing.
Coprocessors not only allow executing a portion of the application, but they run independently
from the processor so the application advances in parallel, executing one part in the processor
and another in the coprocessor. The fact that some of these coprocessors, such as graphic
processing units (GPUs), have arisen as devices capable of running software in parallel to the
processor faster than the processor itself, has resulted in naming them as accelerators.

Today’s well-known accelerators include the IBM PowerCell [36], the Intel Xeon Phi [109]
and the NVIDIA CUDA [162]. Each accelerator provides its own specific development platform
proposed by its vendor but there are some efforts to unify and simplify the development of
applications that use these accelerators. For instance, the most dominant programming models for
GPUs are CUDA and OpenCL [114] but programming models such as HMPP [48], OpenACC [165]
simply extend programming languages to delegate work to GPUs in an easy manner. Other
approaches, such as OmpSs [56] and OpenMP 4.0 [166] not only support GPUs as well as
other accelerators such as the Intel Xeon Phi, but also allow parallelizing for the shared-memory
multiprocessor and the use of accelerators in the same application.

Table 2.5 depicts the combined use of shared-memory parallelism and accelerator using the
OmpSs programming model. So as OmpSs leverage work to the accelerator, the routine meant to
be executed in the accelerator needs to be written in the native language for the accelerator. In
this example, the code on the left shows the actual implementation of the kernel that is intended
to be executed in the accelerator using the CL language in which objects x and y are globally
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Table 2.5
An hybrid application that uses OpenCL acceleration plus OmpSs shared-memory parallel programming. The
code for the accelerator is written in CL language on the left. On the right, the code executed on the host
and decorated with OmpSs directives to take benefit of the accelerated version of DAXPY.

1 __kernel void daxpy (
2 int n,
3 double a,
4 __global double *x,
5 __global double *y)
6 {
7 int i = get_global_id (0);
8 if (i < n)
9 y[i] = a*x[i] + y[i]

10 }

1#pragma target device(opencl) \
2ndrange (1, n, 128) copy_deps
3#pragma omp task \
4in([n]x) inout ([n]y)
5__kernel void daxpy (
6int n,
7double a,
8__global double *x,
9__global double *y);

10int main (int argc, char *argv[])
11{
12#define N 1024
13double x[N], y[N], z[N];
14double r[N][N], s[N][N], res[N][N];

15daxpy (N, a1, x, y);
16dgemm (’N’, ’N’, N, N, N, 1.0,
17r, N, s, N, 1.0, t, N);

18#pragma omp taskwait

19dgemv (’N’, ’N’, 1.0, y, N, t,
20N, 1, 1.0, res, 1);

21return 0;
22}

accessed. The acceleration code is executed in such a manner that each iteration is executed
by a different thread and each thread identifies which iteration index to refer using the call
get_global_id(0). The code on the right shows the code for the main processor written in C
with some OmpSs directives. The code shows first a declaration of the routine that serves as an
execution point for the daxpy routine in the accelerator and follows the code to be executed in
the processor. The declaration to the routine for the accelerator code is subject to two directives.
The first directive indicates that the following declaration of daxpy is implemented as an OpenCL
kernel. The declaration specifies uni-dimensional data array of length n that is being executed
by 128 threads (or more accurately to the OpenCL nomenclature, work-items) and that ensures
that a copy of the data is within the accelerator address space when the routine is about to run.
The second directive instructs the OmpSs run-time how data is accessed in the code, so that the
OmpSs run-time order of execution of this routine according to the data dependencies. In this
example, vectors x and y are input variables and y is an output variable, as well. In the main
code, a call to daxpy (line 15) occurs, so the OmpSs run-time copies the input parameters of the
routine and then lets the accelerator run the daxpy routine asynchronously while the processor
continues and executes the matrix by matrix multiplication (routine dgemm in line 16). The
processor finishes the dgemm call and then executes the #pragma omp taskwait to wait for the
completion of the daxpy task and brings the results in vector y back from the accelerator. The
execution flow continues in the processor, which calculates the matrix by vector multiplication
invoking the dgemv routine and then finishes.
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Performance analysis

There are three things all wise men fear: the sea in storm, a night with
no moon, and the anger of a gentle man.

— Patrick Rothfuss, THE WISE MAN’S FEAR

As computational power of supercomputers increases in every generation, developers need to keep
pace with technology and adapt their applications to get most of systems through the hardware and
software stack. These efforts lead to a better use of resources and benefit end users with a shorter
time-to-solution, allowing them to focus more on research instead of waiting for results. By all means,
developers can take the logical, but innocent, approach to measure the duration of the application
execution after applying one modification at a time. However, if developers put these efforts into use
without judgment then the optimization process is likely to result in a daunting task. Experience
shows that many applications output additional timing results to report the time consumption of
several parts of the application. However, these results do not answer the fundamental questions
such as: what is the nature of the performance bottlenecks? or, where are such inefficiencies within
the application code?

3.1 Description

Performance analysis is a multidisciplinary subject that has been adopted in system and software
development and which involves measurement capabilities, simulation and system modeling.
The importance of performance analysis is threefold:

1. There may be performance bugs as there are logical bugs, so if performance is important it
should be debugged by measurement.

2. When designing new or improved systems or programs, a good understanding of the
performance of the base system is needed for avoiding future performance bugs.

3. To avoid spending resources on fixing obvious, but minor, inefficiencies rather than
searching the real reasons for the poor performance.

Performance analysis tools are pieces of software that help to measure and deliver compre-
hensive details of the application behavior on a given system. The details provided include a
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number of metrics associated with the application structure and the underlying execution. A
performance tool helps their users (hereafter, analysts) to understand the unknown behavior of
the application. In addition, these tools compare the collected measurements against a theory,
model, or even previous executions and ultimately help with fixing performance bugs in the
application that they consider worth mending.

When it comes to analyzing the application performance on a system, the analyst may explore
the performance from the application or the system point of view. This distinction begets two
different types of analyses as one part can be changed while the other remains immutable during
the experimentation in order to achieve proper comparative analyses. On the one hand, it is
possible to consider the software as a fixed part and so explore the processor design space for the
purposes of improving forthcoming processor generations by applying architectural simulations.
On the other hand, the software developer (or the analyst) may need to tweak the application
somehow to take the maximum profit of an immutable system. The scope of this thesis focuses
on the latter approach in which developers execute their application on a system and need to
adapt the software to the underlying processor.

With respect to the performance tools, there are different aspects that help to classify them.
The first classification scheme depends on how data are stored and presented to the user.
Performance tools either store time-stamped metrics begetting a time-series stored in a trace-
file, or summarize all the measurements with the consequent space savings, but loosing time-
dependent issues. A secondary way to classify performance tools refers to the mechanism
used for executing the monitors (or probes): instrumentation and sampling. Instrumentation
refers to the ability to inject monitors to specific application locations therefore it provides
accurate metrics to these regions of code. On the other hand, sampling takes advantage of
mechanisms to periodically invoke monitors so that the results are statistical inferences of the
application behavior. While some of the tools expose the captured metrics with minimal or none
manipulation, there are tools that process the metrics by applying additional mechanisms and
extract conclusions automatically without major intervention from the analyst.

This chapter covers most of the topics relating to performance analysis tools. First, there will
be an extended summary of a variety of state of the art tools, discussing their design points and
presenting the reports they provide to the analyst. The summary of the tools will also includes
the investigation of many techniques to evaluate metrics automatically to ease the analyst’s
experience. A section will then follow with a detailed dissertation of the mechanisms available to
record the application measurements. Afterwards, there will be a brief discussion about applied
techniques to correlate performance with the application source code. Finally, the chapter
will also cover the node-level metrics that help understand what the exact processor-related
performance issues exist in the application.

3.2 Overview of performance analysis tools

Performance analysis tools need to answer two major questions that analysts face when studying
an application: what are nature of the performance inefficiencies and where are they located
within the application? Performance tools describe the application performance behavior using
either summaries (profiles) or detailing variations in performance across time (trace-files).
Profiles apply first order statistics (such as mean, min, max, stdev) to the measurements captured
to simplify the metrics provided to the analyst. Tools that use trace-files allow expressing
variability of performance issues exposing sequence of metrics as well as multi-modal behavior.

3.2.1 Profile based tools

gprof [88] is the de facto profile-based tool because it is available by default on several operating
systems and widespread across many compilers. The profiler works in conjunction with a
compiler (typically using the special flag -pg) so that the compiler instruments user routines
to count the number of invocations and to emit the relationship between routines (in terms of
caller-callee) in a call-graph. In addition, during the application execution, the profiler also
uses sampling mechanisms to estimate the execution time per routine. Listing 3.1 shows an
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Listing 3.1
gprof’s flat profile.

% cumulative self self total
time seconds seconds calls s/call s/call name
29.83 18.33 18.33 146029716 0.00 0.00 binvcrhs_

17.38 29.00 10.68 146029716 0.00 0.00 matmul_sub_

12.81 36.88 7.87 201 0.04 0.09 z_solve_

12.79 44.73 7.86 201 0.04 0.09 y_solve_

12.32 52.30 7.57 201 0.04 0.09 x_solve_

7.96 57.19 4.89 202 0.02 0.02 compute_rhs_

5.15 60.36 3.17 146029716 0.00 0.00 matvec_sub_

0.60 60.73 0.37 201 0.00 0.00 add_

0.50 61.04 0.31 2317932 0.00 0.00 lhsinit_

0.29 61.22 0.18 2317932 0.00 0.00 binvrhs_

Listing 3.2
gprof’s call-graph profile focusing on the routine adi_.

index % time self children called name
0.00 61.19 201/201 MAIN__ [1]

[3] 99.6 0.00 61.19 201 adi_ [3]
7.87 10.89 201/201 z_solve_ [4]
7.86 10.89 201/201 y_solve_ [5]
7.57 10.89 201/201 x_solve_ [6]
4.87 0.00 201/202 compute_rhs_ [9]
0.37 0.00 201/201 add_ [11]

output of gprof when applied to the bt.A benchmark from the NAS benchmark suite [10] on
an Intel R©CoreTM i7 running at 2.4 GHz and compiled with the GNU compiler suite 4.8.1. The
output is a sorted list of routines where each has associated set of performance metrics such as
the cumulative seconds and the number of calls.

As mentioned, gprof reports a call-graph output as shown in Listing 3.2. The call-graph
provides information regarding the routine invocations besides the callee and the caller routines.
For instance, in the given example, the routine adi_ is invoked by MAIN__ and calls x_solve,
y_solve, z_solve, compute_rhs and add_. The output also shows the exclusive time spent
on each of the children calls and a relation with respect to the number of invocations. The
combination of both outputs helps an analyst to understand the organization of an application in
terms of routines, offering an approximation of the routines are the most time-consuming as well
as which is their duration per invocation ratio. There are tools such as IBM’s Xprofiler [121] that
interpret the results of gprof and displays the output in a graphical user interface (GUI) so that
each routine is represented in a box, as in Figure 3.1. In Xprofiler, the size and shape of each
function indicate its CPU use. The height of each function box symbolizes its execution time (i.e.
exclusive time), whereas the width of each function box illustrates the amount of time it has
spent in addition to its descendants (i.e. inclusive time).

There are other profilers such as perf [144, 111] and OProfile [110] that extend the capabili-
ties from gprof and attribute values of several processor related activities monitored through the
Performance Monitoring Unit (PMU). The PMU is a hardware component available in modern
processors that observes the activity of the processor and counts a set of events (commonly
referred as hardware performance counters), and allows third party software to retrieve their
value. This activity covers a wide range of events specific to the architecture, as the number of
instructions fetched, instructions finalized, cache misses, branch mispredictions, or cycles stalled,
to name a few. For instance, Listing 3.3 shows the attribution of three performance counters
(namely instructions, cycles and L1 data-cache misses) sorted by number of events when applied
to the bt.A benchmark using the perf tool. Notice that the benchmark shows a similar routine dis-
tribution for both instructions and cycles counters, although the actual attribution presents some
variations, but routine distribution changes significantly when correlating with L1 data-cache
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Figure 3.1
Example of results provided by the Xprofiler performance tool (picture obtained from [101]).

misses. The Listing indicates that the routine binvcrhs_ is the most observed routine when the
sampling uses instructions or cycles and the tool attributes most of the event counts (33.07% and
29.83%, respectively) to this routine. In contrast, the analysis of the application when sampled
using cache-misses indicate that most of the misses (up to 33.87%) occur in compute_rhs_.
These results point out that while the routine compute_rhs_ experiences more cache misses,
the most time-consuming routine is binvcrhs_ because it executes more instructions. These
profilers also report detailed attribution of performance counters to the assembly code (and
to the source code if debugging information is available). Listing 3.4 shows the attribution of
amount of time spent on each assembly instruction.

OmpP [75] is a profiling tool for OpenMP applications and differs from profiling tools such as
gprof, perf and OProfile in two ways. First, ompP only relies on instrumentation and does not
use sampling; so ompP enables direct measurement of program execution events. Second, data
collection and representation follows the OpenMP user model of execution. In this sense, the
results not only include the execution time, but also list the time to enter and exit OpenMP regions,
including critical constructs, for example. In addition, the results include the accumulated time
that each thread spends inside the construct and the number of times each thread enters the
construct. This profiler is also capable of breaking down the execution time into overhead classes
(synchronization, load imbalance, thread management and limited parallelism).

mpiP [227] provides a lightweight profiling tool for MPI applications by collecting statistical
information. This profiler developed techniques that focus the user’s attention on communication
operations, so it detects what message-passing routines may limit the application scalability.
Although this tool provides a good overview of the performance problems, it lacks the temporal
order of data needed for in-depth performance analysis. IPM [3] is another performance tool for
MPI binaries that provides temporal ordering in performance data using event flow graphs. The
use of event flow graphs allows capturing MPI events and their temporal order as in trace-files
while storing it in files that are significantly smaller.

Scalatrace [159] provides online trace compression of MPI communication trace-files at two
different levels: intra-node and inter-node. Intra-node compression is achieved by describing
loops with regular section analyses (RSA) [90] and compressing call-path information. On the
other hand, Scalatrace compresses at inter-node level by combining the information from the
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Listing 3.3
perf’s flat profiles showing the most representative routines according to the number of instructions executed,
the number of cycles and the number of L1 data cache misses.

# Samples: 245K of event ’instructions’
# Event count (approx.): 348581349586
# Overhead Command Shared Object Symbol
# ........ ....... ................. .......................

33.07% bt.A bt.A [.] binvcrhs_

20.55% bt.A bt.A [.] matmul_sub_

11.25% bt.A bt.A [.] y_solve_

11.06% bt.A bt.A [.] z_solve_

10.77% bt.A bt.A [.] x_solve_

7.44% bt.A bt.A [.] compute_rhs_

4.50% bt.A bt.A [.] matvec_sub_

0.59% bt.A bt.A [.] add_

0.21% bt.A bt.A [.] exact_solution_

0.21% bt.A bt.A [.] lhsinit_

# Samples: 246K of event ’cycles’
# Event count (approx.): 145846400668
# Overhead Command Shared Object Symbol
# ........ ....... ................. ......................

29.83% bt.A bt.A [.] binvcrhs_

16.45% bt.A bt.A [.] matmul_sub_

12.85% bt.A bt.A [.] z_solve_

12.73% bt.A bt.A [.] y_solve_

12.44% bt.A bt.A [.] x_solve_

8.13% bt.A bt.A [.] compute_rhs_

5.68% bt.A bt.A [.] matvec_sub_

0.62% bt.A bt.A [.] add_

0.50% bt.A bt.A [.] lhsinit_

0.25% bt.A bt.A [.] exact_solution_

# Samples: 128K of event ’cache-misses’
# Event count (approx.): 71881607
# Overhead Command Shared Object Symbol
# ........ ....... ................. ......................

33.87% bt.A bt.A [.] compute_rhs_

25.71% bt.A bt.A [.] z_solve_

18.71% bt.A bt.A [.] binvcrhs_

5.82% bt.A bt.A [.] y_solve_

5.81% bt.A bt.A [.] add_

4.71% bt.A bt.A [.] matmul_sub_

3.02% bt.A [kernel.kallsyms] [k] 0xffffffff8104d24a
1.59% bt.A bt.A [.] matvec_sub_

0.32% bt.A bt.A [.] exact_rhs_

0.30% bt.A bt.A [.] binvrhs_

involved processes into a single one for the whole application.
Other profilers like TAU [194] capture information from parallel programming models

(including hybrid MPI and OpenMP, for instance) and display the whole gathered in a simple
GUI, rather than analyzing each process individually, as it happens in the previous profilers.
Reporting information from several processes at the same time helps to identify performance
variations between them. To illustrate a classical TAU report, Figure 3.2 shows a subset of 24 out
of 96 processes from a CGPOP mini-application [204, 203] when executed in MareNostrum3
supercomputer [138]. In the Figure, the tool reports that the sixteen first processes (named node
0 to 15) spend more time in the orange and cyan routines compared to processes 16 to 27, but
lesser time in the green and purple routines.

TAU has added sampling capabilities in its tracing measurement system [154]. In their com-
bined approach, TAU also uses hardware counter overflows to gather performance information
periodically. Although they collect performance counter information, their work is mainly focused
on instrumentation cooperating with the sampling to augment the TAU profiles with call-stack
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Listing 3.4
perf’s flat profile.

Percent | Source code & Disassembly of bt.A
--------------------------------------------------

: lhs(1,1,bb,k) = 1.0d+00
: > + tmp1 * 2.0d+00 * njac(1,1,k)
: > + tmp1 * 2.0d+00 * dz1

0.39 : 40b762: movapd %xmm2,%xmm9
0.00 : 40b767: mulsd 0x3390(%rax),%xmm9
0.00 : 40b770: addsd %xmm3,%xmm9
0.02 : 40b775: addsd %xmm14,%xmm9
0.35 : 40b77a: movsd %xmm9,0x68b0(%rdx)

: lhs(1,2,bb,k) = tmp1 * 2.0d+00 * njac(1,2,k)
0.21 : 40b783: movapd %xmm2,%xmm9
0.00 : 40b788: mulsd 0x33b8(%rax),%xmm9
0.00 : 40b791: movsd %xmm9,0x68d8(%rdx)

: lhs(1,3,bb,k) = tmp1 * 2.0d+00 * njac(1,3,k)
0.23 : 40b79a: movapd %xmm2,%xmm9
0.09 : 40b79f: mulsd 0x33e0(%rax),%xmm9
0.00 : 40b7a8: movsd %xmm9,0x6900(%rdx)

: lhs(1,4,bb,k) = tmp1 * 2.0d+00 * njac(1,4,k)
0.00 : 40b7b1: movapd %xmm2,%xmm9
0.15 : 40b7b6: mulsd 0x3408(%rax),%xmm9
0.14 : 40b7bf: movsd %xmm9,0x6928(%rdx)

: lhs(1,5,bb,k) = tmp1 * 2.0d+00 * njac(1,5,k)
0.00 : 40b7c8: movapd %xmm2,%xmm9
0.00 : 40b7cd: mulsd 0x3430(%rax),%xmm9
0.23 : 40b7d6: movsd %xmm9,0x6950(%rdx)

Figure 3.2
Example of results provided by the TAU performance tool.

information.
The Scalasca tool-suite includes the Cube visualization tool that summarizes the information

gathered from the tool-suite instrumentation package. The Cube display shows three panels
containing tree browsers, each of them representing a dimension of the performance space.
The left tree presents the metric dimension (such as time, number of visits or occurrences and
performance counters). The panel in the middle exhibits the (source code) program dimension
where the tool user finds references to the captured routines. The tree on the right displays
the system dimension, so that performance is inspected according to the resources involved
during the execution. Every node has an associated value (named severity) and the value
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is displayed simultaneously using a text, as well as, a colored square according a gradient
shown in the bottom part of the tool. When the analyst changes the selection on a panel,
the application updates the information on the remaining panels according to the selection.
Figure 3.3 shows a screen-shot of the Cube visualizer when displaying the results of CGPOP
used in the previous example for TAU. For example, the Figure shows that the MPI_Allreduce
invoked from reductions.global_max is the routine that executed more instructions during
the application execution, but the distribution is uniform across the execution nodes.

Figure 3.3
Scalasca’s Cube visualization tool.

Periscope [80] is an online profiler that automatically searches for bottlenecks based on
previous optimization experts’ knowledge. Periscope offers several bottleneck analyses depending
on the application type and the architecture where the application runs including load imbalance,
excessive time MPI time due to several reasons, spent time in OpenMP exclusion regions and so.
The results of Periscope are integrated into Eclipse through a plugin that helps to associate the
obtained metrics with the source code in a single environment (see Figure 3.4).

It is worth mentioning that TAU, Scalasca, Periscope and Vampir joined efforts to define Score-
P [147], a community effort for a common measurement infrastructure. From the developer
perspective, a unique infrastructure helps to save manpower by sharing development resources
and invest these resources in new analysis techniques. From the user perspective, there is only
one framework to learn and it allows interoperability and data exchange between performance
tools. However, at the moment of writing this thesis, Score-P does not offer all functionalities
that are present in each tool’s instrumentation package, such as sampling capabilities.

HPCToolkit [210] is an integrated tools framework for measurement and analysis of program
performance on computers using a variety of parallel run-times (MPI, OpenMP, pthreads, among
others). The framework uses statistical sampling of timers and hardware performance counters,
in order to attribute accurate measurements of the program’s work, resource consumption and
inefficiency to the full calling context in that they occur. Data presentation in HPCToolkit enables
rapid analysis of the execution costs, inefficiency and scaling characteristics both within and
across nodes of a parallel system. The HPCToolkit output, as depicted in Figure 3.5a, is divided
into two panels in hpcviewer [1]. The panel at the top displays the program source code whereas
the bottom panel associates a table of performance metrics with the source code.
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Figure 3.4
Periscope results shown in the Eclipse plugin (picture obtained from [213]).

3.2.2 Trace-file based tools

Paraver [120, 118] is a flexible data browser that does not offer hardwired metrics but which
allows their programming according to the semantics of the data contained in a trace-file. Using
filter and semantic modules, the analyst creates time-lines, profiles and histograms from trace-
files to selectively display a huge number of performance metrics. The views can be combined to
find correlations among the causes of performance drawbacks. To capture the expert’s knowledge,
any set of views can be saved as a Paraver configuration file, to be reused either in subsequent
analysis or in the other trace-files loaded within the framework, allowing multi-experiment
comparison. Extrae [66] is an instrumentation and sampling tool that collects metrics from
several parallel and accelerator run-times (such as MPI, OpenMP, CUDA, OpenCL, OmpSs, among
others) that generates Paraver trace-files, although other tools have created their own trace-file
translators into Paraver format.

Figure 3.6 shows two Paraver time-lines. Time-lines represent the activity over time on the
X-axis, the processes in the Y-axis and the color indicate the type of activity of a given thread in a
given time span. The screen-shot at the top shows the executed MPI calls during the application
run where Paraver has assigned a unique color to each MPI routine. The picture below shows
the duration of the computation regions (i.e. in between two consecutive MPI calls) using a
gradient that represents low values in green and high values in blue. Due to the definition of the
data represented, the two windows show complementary information. Note that the processes
that reach MPI calls earlier (mainly tasks 17 to 33) result in a shorter computation time; so the
duration is represented in a color that tends to green. Paraver depicts the remaining tasks in a
more intense blue because they take more time to complete.

As mentioned above, Paraver also represents data using tables (matrices or histograms).
Paraver shows tables depicting processes on each row, but data represented in columns varies.
Figure 3.7 shows different uses of tables in Paraver when representing different data in columns.
On the table at the top (Figure 3.7a, columns refer to discrete values such as MPI routines. In this
example, the table associates the percentage of time spent on each routine by each process and
uses numerical value as well as colors the cells to represent the value of a particular cell. On the
histogram in the middle (Figure 3.7b), columns refer to ranges of values and more specifically to
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(a) HPCToolkit assessing the hot-spots in an application.

(b) HPCToolkit showing a part of the execution of a parallel application.

Figure 3.5
Visualization mechanisms available within the HPCToolkit suite (images obtained from [2]).
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(a) Paraver displaying MPI activity.

(b) Paraver displaying a histogram.

Figure 3.6
Paraver representing trace-files as time-lines.

this example, it refers to ranges of duration. The cells with data are shown in gradient according
to the time spent on that particular combination of thread and range, while the cells without
data are shown in gray. In this particular case, the columns refer to the duration of computing
regions and the data represented in the cell refers to the achieved IPC. This plot shows that
the duration of the computing regions differ from process to process because points at different
columns. It is also noteworthy that the achieved IPC depends on the duration of the computing
region, the low (green) IPC on the left of the plot while the high (blue) IPC is on the right part.
Finally, on the histogram at the bottom (Figure 3.7c) columns refer to processes so allowing the
table to depict a communication matrix. In this plot, the color represents the average number of
bytes sent from one process to another. The shape of the results shows that adjacent processes
are responsible for most of the transferred bytes.

Vampir [157] is a performance analysis tool for parallel applications with a graphical data
representation that enables detailed understanding of dynamic processes. Vampir features
many functionalities such as adaptive statistics, support for referencing source code locations,
hierarchical grouping of computing resources as well as filter techniques for processes, functions
and messages. The framework also relies on a scalable design that distributes performance data
visualization and increases the scalability and the responsiveness compared to the sequential
approach [22].

Figure 3.8 shows different analysis techniques using the Vampir performance analysis tool.
More precisely, Subfigure 3.8a shows a process time-line with detailed information about func-
tions, communication and synchronization events where each row represents a single process;
whereas Subfigure 3.8b is a function summary that gives an overview of the accumulated time
consumption across all function groups and routines. For example, the tool accumulates the
elapsed time of every call to MPI_Send into the MPI function group time. Finally, the screen-shot
in Subfigure 3.8c illustrates the invocation hierarchy of every monitored function in a tree
representation by revealing information about the number of invocations of a given function, the
time spent in the different calls and the caller-callee relationship.

Pajé is an interactive visualization tool designed to allow inspection of every object displayed,
to cope with a large number of threads and to allow its extension with new functionalities [113,
117]. The tool also limits the tracing intrusion by compacting events during the application
execution, with space savings about 50%. Pajé offers several filtering and zooming features to
help programmers to cope with large amounts of information. These features include event
grouping, event removing according to the type of the visual object, object repositioning to save
screen use, production of synthetic views and change the type and color of entities.

HPCToolkit has recently added a tool into its suite that allows users to visualize the sampled
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(a) Paraver displaying a profile.

(b) Paraver displaying a histogram.

(c) Paraver displaying a communication matrix.

Figure 3.7
Paraver tabulating results.
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(a) Representation of the execution in a time-line.

(b) Summary of the executed function timings.

(c) Invocation hierarchy of instrumented routines.

Figure 3.8
Multiple views from the Vampir tool-suite, showing from time-lines to profiles. Images obtained from [34].
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call-stack data in a time-line using the hpctraceviewer [212] tool. hpctraceviewer displays
the samples for process, the time dimension and the call depth in a GUI as shown as in Figure 3.5b.
In the Figure, the time-line is shown in the top plot of the screen-shot. The X-axis and the Y-axis
represent time and the processes of the application, respectively and the colors in the time-line
represent the routines that were executing at that time.

The Oracle Solaris Studio [39] (formerly known as Sun Studio Performance Analyzer) is a
performance tool framework that comprises a set of tools for collecting and viewing application
performance data using tracing and profiling mechanisms. The framework provides many tools,
each responsible for analyzing a specific subset of problems such as causes of communication
delays in MPI applications and the efficiency of multi-threading in a program. These tools
instrument synchronization calls, heap allocation and deallocation routines, OpenMP constructs,
MPI routines and also uses a sampling mechanism to collect information regarding the user
routines. The framework also provides a GUI that provides views as time-lines, call-trees and
source code disassembly to name a few.

3.2.3 Time-series profiles

Some profile-based performance tools have extended their collection and presentation mech-
anisms to explore profiles as a function of time (begetting the time-series profiles). These
profiles allow the analyst understand adaptive applications where performance changes from
one time-step to the next during the execution, resulting in a combination of both profiles and
trace-files. To achieve this functionality, performance tools separate each of the profiles in phases
so that each phase is summarized and explored independently. In such profilers, phases are
either provided by the analyst or determined by the tool automatically.

For instance, OmpP is capable of providing phase-based profiles by providing two different
approaches to detect phases. The first approach relies on sampling techniques to obtain profiles
in regular, uniform intervals. This approach allows adapting the capture rate depending on the
behavior of the application, increasing the dump rate if the application behavior changes. OmpP
also enables detecting phases by exposing an API for dumping profiles at user request, which in
a typical scenario would be aligned to outer loop iterations.

Tools such as TAU, Scalasca and Periscope share the need for the analyst to separate applica-
tion run into phases, but each tool focuses on phase analysis pursuing different objectives. Mainly,
they evaluate how parallel application performance evolves at simulation time-steps, identify-
ing phases where the application re-balances its workload. While TAU allows distinguishing
performance phases along different execution time-steps, it requires having former knowledge
of the application in order to enclose the time-step loop body with entry and exit events that
instructs the profiling system when a phase starts and stops. The Scalasca team extended this
idea and developed a lossy compression mechanism for time-series call-path profiles [207] to
establish a link between a performance problem and the context where it occurs with respect
to the time-steps of the application. Their approach uses incremental clustering to generate a
condensed version of the profile data to reveal temporal evolution of performance phenomena.
Finally, Periscope also included into their framework the times-series profiling to automate the
analysis and tuning process using plugins [164] that allows measuring performance metrics at
each phase and capture the evolution over the iterations of the simulation.

3.2.4 Overview of simulation tools

Although this thesis focuses on performance analysis from the application perspective, it is
valuable to examine performance exploration alternatives when evaluating the hardware design
space. While this thesis does not aim at providing the same level of insight as the tools that
belong to this group, it is worth to provide a small overview of these tools. Despite the large
quantity of categories to be simulated in current HPC systems, this brief summary only covers
the simulation of the two most representative aspects in these type of computers: processors and
networks.

With respect to the processors, their full simulation require on the order of months to
complete due to the cost of the simulation speed and there has been extensive research related
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to application workload reduction. Simpoint [195, 196] is a tool that automatically finds sets of
simulation points gathered by instrumentation tools such as Atom [65], SimpleScalar [25] and
PIN [135]. These simulation points are referred as sampled traces but there are issues to be dealt
with when selecting trace samples so that these samples represent the program performance.
These issues include determining the sample length, the number of samples needed, the hardware
state when simulating the sample (commonly referred as warm up) and the sample selection
itself. Eeckhout and others presented an algorithm that determines the optimal sample length
per benchmark in different warm up scenarios for sampled cache simulations [58]. Nowadays,
multithreaded architectures have become so popular that all new processors are capable of
executing multiple processes simultaneously. To evaluate these capabilities, some computer
architecture researchers use benchmark suites that serve as a workloads composed by non-
cooperative threads instead of analyzing truly parallel applications [224]. Since simulating all
the benchmark combinations is excessively time-consuming, there has been research to analyze
a benchmark suite and find all the distinct behaviors that occur when pairs of benchmarks run
together [223]. FAME [226] addresses this problem with a new methodology aimed at fairly
measuring the performance by re-executing all sampled traces in a multithread workload until all
of them are fairly represented in the measurements. More recently, Carlson et al. have considered
a general purpose multi-threaded application sampling methodology that takes into account
thread synchronization such as locks and barriers [29].

Regarding the simulation of the network subsystem, the literature shows several approaches
with variable degree of simulation detail. Packet-level simulation tools [216, 236, 169, 44,
225] have been considered the most detailed simulation tools with respect to the details of
simulation because they consider a large number of aspects to accurately model the network
behavior. However, these simulation tools generate large amounts of traffic and incur in high
overheads, resulting in simulations that take longer to run than the actual application, which
makes them inappropriate to evaluate in-production applications. To circumvent the expenses of
detailed packet-level simulation approaches other simulation tools use simpler models ignoring
the network complexity. Dimemas [119, 9] is a simulation tool for message-passing programs
aimed at providing fast simulations without simulating all the system’s details and using a
trace-file from the MPI activity. Dimemas replays such a trace using an architectural machine
model consisting of a network of SMP nodes and generates various statistics as well as a Paraver
trace-file. The model is highly parametrizable, allowing the specification of parameters such
as number of nodes, number of processors per node, relative CPU speed, memory bandwidth,
memory latency, number of buses. The work described in [6] employs static code analysis to
simulate only one iteration of communication patterns with the consequent in the data captured
volume. MPI-SIM [172] is a parallel simulator for performance evaluation of MPI programs that
uses direct execution to obtain the computation time of programs but simulates communication
and I/O times during the execution by swapping MPI calls to a library of the simulator. There
are co-simulation efforts such as Venus [151] in which the boundary of the co-simulation lies
between the detailed simulation of the network (Venus) and the replaying of an application’s
trace (Dimemas). There are some models to define flow-based network models considering
network topology and network contention to predict the performance in a wide range of parallel
applications [14]. These models consider several network aspects such as: communication
architecture, collective communication translation into point-to-point messages, interconnect
topology and contention when sharing a network link.

3.3 Performance analytics

As we have seen in this chapter, performance tools gather lots of information. Since analysts
invest considerable time delving into such information, it is worth considering the application of
techniques from other research (such as data analytics) into the performance analysis area to
assist in finding performance answers. Some performance tools have introduced data analytics
methods into their frameworks to be applied to performance data (begetting what they call
performance analytics), so enabling mechanisms to expose patterns of interest, detect application
structure and compare multiple experiments, for instance.
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The Pablo Performance Analysis Environment [179] provides unobtrusive performance data
capture, analysis and presentation. The instrumentation mechanism of this tool monitors and
alters the volume, frequency and types of event data recorded depending if the tool generates
more data than the user requested. The tool also identifies a few equivalence classes of processor
behavior from SPMD applications and then only records data from them, saving the tool from
collecting a huge amount of performance data.

Scalasca [78] is a performance analysis tool-set designed for use on large-scale systems.
The tool-set offers an incremental performance-analysis procedure that integrates run-time
summaries with in-depth studies of concurrent behavior via event tracing, adopting a strategy of
successively refined measurement configurations. A distinctive feature is its ability to identify wait
states that occur on unevenly distributed workloads, which limit scalability on large processor
counts. Scalasca detect such wait states and related performance properties even in very large
configurations of processes using a parallel trace-analysis scheme [77]. For instance, Figure 3.9
depicts the output of the Scalasca tool-set for an execution of the CGPOP application on 96 tasks
using the Cube visualizer. The analysis of Scalasca indicates that approximately half of the total
sends were issued before their receive counterpart (a metric named Late receiver) and most of
these Late receivers occurred within the subroutine mpi2s_gshalo_update_2d_dbl.

Figure 3.9
Example of results provided by the Scalasca performance tool.

Since a time-stamped sequence of events is a function of time, signal processing techniques
(in particular the wavelet transform) are worth applying on trace-files. Casas et al. describe an
autonomous phase detection mechanism of MPI application’s execution based on the frequency
behavior extracted from the sequence of events [32]. This phase detection mechanism also
enables authors to study the scalability of the application and determine the limiting factors
within these phases. This processing enables on-line analyses on which tracing only emits
information for the detected periodic phases [132], with consequent savings in space and
post-processing time.

Ocelotl [54, 53] proposes an innovative visualization technique that provides a consistent
overview of the temporal and resource dimensions. The tool uses an aggregation model that
detects and merges areas of a trace-file that are temporally and spatially homogeneous to provide
higher-level visualizations while preserving the microscopic information content. The algorithm
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of the tool computes a partition of space and time that optimizes a trade-off between the
representation complexity and information loss. The aggregation consists of a two-step process
that partitions the entity set into disjoint aggregates first and then, reduces the microscopic data
and proves an overview according to the partition. Aggregation is a complex task that consists in
optimizing a trade-off between data reduction and information loss. Several information metrics
help in this optimization while measuring the information loss, data reduction and to measure
the balance between this trade-off.

It also occurs that applications expose different performance behavior when they run in
a variety of environments. The user may wonder which compiler version generates the best
code, which block size improves the application efficiency, or how the application behaves at
different processor scales. PerfExplorer [95] is a framework to conduct comparison of several
experiments based on data mining techniques built on top of PerfDMF [96] analysis infrastructure
for parallel performance profiles. Figure 3.10 shows a comparison of four CGPOP executions
using 48, 96, 192 and 360 processes in MareNostrum3. On the top plot, the tool shows that
the application does not scale ideally among experiments (called trials in PerfExplorer) and the
plot below decomposes exclusive time among several components (mainly user routines and
MPI calls). Note that the decomposition indicates that solvers.pcg_chrongear_linear_ scales
superlinearly, matrix_mod.matvec_ and MPI_Waitall scale linearly, but MPI_Allreduce does
not scale.

Huck describes an automatic process for parallel performance experimentation, analysis and
problem diagnosis [97]. Such a process is built on top of the PerfExplorer performance data
mining system combined with the OpenUH [128] compiler infrastructure. PerfExplorer eases the
comparison of several experiments using the same application and the selective instrumentation
of TAU [194] helps to avoid excessive overhead during the execution and gives the opportunity
to provide optimization suggestions to the user.

Llort et al. introduces a mechanism based on object tracking techniques from the computer
vision field that help to identify computation regions across multiple experiments [131]. This
work provides performance trends of regions and insight on the influence of different parameters
and execution conditions. This way, the tool presents a summarized result that indicates whether
scalability expectations are met, how the compiler affects the performance and if application
parameters alter the performance of specific computation regions.

Finally, expert systems are also used in the performance analysis area. For instance, Para-
dyn [149] employs expert’s knowledge to drive the analysis of the instrumented application
according to the W 3 [94] search model for the why, where and when information regarding the
search for performance bottlenecks [149]. The Performance Consultant module from Paradyn
has a well-defined notion of performance bottlenecks and program structure, so that it associates
bottlenecks with specific causes and specific parts of a program.

The PerfExpert [26] tool employs the HPCToolkit measurement system to execute a structured
sequence of performance counter measurements to detect probable core, socket and node-
level performance bottlenecks in important procedures and loops of an application. For each
bottleneck found PerfExpert provides an assessment and suggests steps to the programmer
to improve the performance. Authors introduce the LCPI metric (local cycles per instruction)
which combines performance counter measurements with architectural parameters to make
measurements comparable. In order to calculate the LCPI, the tool executes the application
several times before analyzing in order to capture all the necessary performance measurements.

Periscope also employs expert’s knowledge to drive the analysis of the instrumented appli-
cation while the application runs. Depending on the automated analysis of the performance
data and some properties provided by formalized expert knowledge, the tool determines which
additional performance issues and search strategies to follow. For example, Periscope may
analyze the proportion of stalled cycles during the execution and evaluate the cache miss and
branch misprediction ratios to identify the sources of such stalls and suggest changes during the
application execution, or skip to the next type of analysis.
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(a) Scalability analysis in PerfExplorer.

(b) Scalability decomposition as depicted in PerfExplorer.

Figure 3.10
ParaProf showing an scalability analysis and its decomposition using multiple experiments of the CGPOP
application ranging from 48 to 360 MPI processes.

3.4 Measurement collection techniques

Tools gather performance metrics during the application’s execution to unveil the application
behavior. To illustrate measurement collection mechanisms, the reader may consider two naive
examples that include timing and inspecting the amount of memory allocated using the time
and top commands, respectively. The former command measures the time spent executing a
command whereas the second displays information from every process in the system periodically.
To measure the time spent for a particular command, the time command obtains the time before
and after the execution and then calculates the difference between the two. With respect to the
top command, the metrics displayed are not computed by the top utility itself but the operating
system when executing activities related to memory allocation. For instance, every time a process
invokes a memory-related call (such as malloc, free and realloc) the operating system tracks
the allocated memory and exposes this value through a certain set of calls that top uses to collect
and display periodically.

Performance analysis tools apply these techniques to record the application activity by injecting
monitors and letting the process to execute them (i.e. first-person monitoring). Therefore, these
monitors interrupt the program to collect metrics. There are two ways to invoke the monitors:
when an application activity occurs during the application execution or when an external
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application event reaches the application process. The first mechanism, called instrumentation,
refers the ability to inject probes at specific program locations (such as routines, loop bodies,
sentences and even machine instructions). Due to the nature of the instrumentation, it provides
accurate association between the gathered metrics and the application locations. The second
mechanism to invoke monitors is named sampling and it runs independently whatever the
application activity. The cost associated to each sample interval is correlated with the activity that
was interrupted; therefore, the results obtained are statistical approximations. This inference
requires a certain quantity of samples; that is, the obtained results approximate the actual
distribution the application needs to run for a sufficient amount of time, yet highly volatile metrics
may get lost. Sampling typically uses alarms to create a periodic signal, which consequently,
simplifies the cost attribution because the cost associated with one sample is the sampling period.
Both mechanisms have their advantages and disadvantages. When instrumenting, the captured
metrics are directly related to the application code; so on the positive side measures are easily
associated with the program structure (and any programming models applied). However, on
the negative side, the granularity and the volume of measurements gathered are related to the
program execution flow, so it is either possible that a short instrumented run captures lots of
data, or vice-versa, a long instrumented run collects few data. Therefore, instrumenting the
appropriate application points to unveil the performance may need some additional insight. In
contrast, sampling easily lets the user tune the volume of data gathered since the quantity directly
depends on the periodicity: the smaller the period (and granularity), the higher volume of data
gathered. However, since sampling results are approximations to the actual distribution, highly
volatile metrics may not be captured unless choosing a small period. Whatever the alternative,
either instrumentation and sampling, both approaches need to interrupt the application, so the
more frequent the monitoring occurs, the more overhead suffered. This additional overhead
poses a problem because it alters the application performance observed and then mislead the
analyst during the analysis of the results.

3.4.1 Instrumentation alternatives

As discussed, instrumentation consists on modifying the application at specific points to inject
monitors. Currently, there are several methods to modify application codes. The probes are
added either in the source code, during compile-time, in the link stage, when generating the
program binary, or even at the start of the execution.

Modifying source code It is the most fundamental method to add monitors into the application
because it involves changing the source code to add calls to the monitoring routines. This
form of instrumentation allows adding probes into any syntactical level of the application
(ranging from routines to sentences) at desired application points resulting in a very
precise injection mechanism. This flexibility comes at a price because this approach
requires access to the source code to modify it, it requires some understanding of the
application behavior in order to know where to inject probes and also alters the compiler
optimization process. For instance, Table 3.1 shows a simplistic mechanism to instrument
the entry and exit points of the function named fact by adding two calls to the monitors
called monitor_routine_entry and monitor_routine_exit, respectively.

Compiler-assisted Compilers translate the application source code into machine instructions to
generate the program binary. Since compilers have full control of the executed instructions,
they can inject calls to performance monitors during the code generation. While nothing
except overhead limits where to inject probes, practice shows that the commonplace
compiler suites (including IBM XL [100], Intel [104], GNU [72] and clang [133]) only
offer callbacks at the entry and exit point of the routines so that performance tools
report the performance at user function level. Some source-to-source compilers, such as
OPARI2 [222] and Mercurium [23], are capable of injecting additional instrumentation
monitors to the parallel programming model and so provide performance metrics associated
with the OpenMP and OmpSs constructs, respectively. Similarly to the previous approach,
using compile-time instrumentation alters the compiler optimization process.
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Table 3.1
Instrumentation of entry and exit points of a routine. On the left, there is the original source code for the
fact routine. On the right, there is the instrumented routine where monitors are injected at two points: first,
before any instruction of the routine occurs, and second, before returning from the routine.

1 int fact (int f)
2 {
3 int result;

4 result = 1;
5 while (f > 0)
6 result = result * f--;

7 return result;
8 }

1int fact (int f)
2{
3int result;
4monitor_routine_entry (fact);
5result = 1;
6while (f > 0)
7result = result * f--;
8monitor_routine_exit (fact);
9return result;
10}

Link-stage Libraries are files that contain common functionalities (such as the MPI and OpenMP
programming model run-times) and are used by the compiler and linker to generate the
final program object. The use of these libraries in conjunction with a particular annotation
that denote an overridable (or weak) symbol1 allows injecting monitors at specific routines
offered by the libraries. As a result, performance tools take advantage of weak symbols to
inject calls to the measurement procedures and allow injecting code without modifying the
source code or altering the compilation process; however, this instrumentation is restricted
to libraries that allow substituting their symbols. For example, the MPI specification
enforces the use of weak symbols to provide instrumentation capabilities of its implemen-
tations. The specification results in two symbols: strong symbols, which implement the
MPI specification and weak symbols, which serve as instrumentation points to the MPI
routines [70].

Binary patching Although the aforementioned mechanisms inject monitors during any step
of the binary-object making process, it is possible to modify already built application
binaries, even if they are optimized. An application binary contains, among many other
data, a collection of routines formed by sequences of byte-code instructions. Binary
patching consists on altering these sequences so that the application does not behave
exactly as originally expected but adding invocations to monitoring routines in between
byte-code instructions. These modifications either remain during the application execution
by modifying the process image, or become persistent by storing the modified binary
for subsequent executions. Therefore, the main advantage of this mechanism is that it
allows injecting monitors into optimized application binaries even if the application source
code is not available or cannot be compiled or linked. However, binary patching is an
elaborated technique because it involves parsing the byte code, so most of the existing
binary patching tools and library only focus on one architecture, such as ATOM [65] for
Alpha processors and PIN [135], MAQAO [107] and Dynamorio [21] for Intel processors.
The exception to the former tools is the DynInst instrumentation package [24] because it
encapsulates the instrumentation mechanism and separates it from the instruction decoding
and source code parsing. As a result DynInst handles different architectures, such as Intel
x86 and IBM R©PowerPC R©(and not mentioning the recently discontinued Intel R©Itanium R©),
transparently. Performance tools based on DynInst analyze the structure of the application
source code to determine what to instrument. For instance, the instrumentation package
based on DynInst developed by Mußler et al. [156] instruments routines according to
their size in number of lines. Listing 3.5 exemplifies how to instrument a routine using
DynInst. The example is meant to inject at the routine entry and exit points by using
independent monitoring functions (wrap_begin and wrap_end, respectively). Lines 4-10

1See the following URLs for further references on this topic:
http://www.keil.com/support/man/docs/armlink/armlink_CACCEEIF.htm,
http://docs.oracle.com/cd/E19963-01/html/819-0690/chapter2-90421.html#chapter2-11 and
http://www.akkadia.org/drepper/dsohowto.pdf
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Listing 3.5
Dyninst-based instrumentation code to instrument a given routine that receives nparams parameters. The
instrumentation code adds a call to wrap_begin and wrap_end functions at the entry and exit points of the
instrumented routine. For the sake of simplicity, error checking is omitted within the code.

1 void Instrumenter::wrapRoutine (BPatch_image *appImage, string routine,
2 string wrap_begin, string wrap_end, unsigned nparams)
3 {
4 BPatch_Vector<BPatch_function *> found_funcs;
5 appImage->findFunction (routine, found_funcs);
6 BPatch_function *function = found_funcs[0];
7 BPatch_Vector<BPatch_point *> *entry_point = function->findPoint (BPatch_entry);
8 BPatch_Vector<BPatch_point *> *exit_point = function->findPoint (BPatch_exit);

9 appImage->findFunction (wrap_begin, found_funcs);
10 BPatch_function *entry_function = found_funcs[0];
11 BPatch_Vector<BPatch_snippet *> entry_args;
12 for (unsigned u = 0; u < nparams; u++)
13 entry_args.push_back (new BPatch_paramExpr (u));
14 appImage->getAddressSpace()->insertSnippet (
15 BPatch_funcCallExpr (*entry_function, entry_args), *entry_point);

16 appImage->findFunction (wrap_end, found_funcs);
17 BPatch_function *exit_function = found_funcs[0];
18 BPatch_Vector<BPatch_snippet *> null_args;
19 appImage->getAddressSpace()->insertSnippet (
20 BPatch_funcCallExpr (*exit_function, null_args), *exit_point);
21 }

Listing 3.6
Sample instrumentation for the libc’s close routine using the shared-library interposition technique.

1 #include <unistd.h>
2 #include <stdio.h>
3 #include <stdlib.h>

4 #define __USE_GNU
5 #include <dlfcn.h>

6 int close (int fd)
7 {
8 static int (*close_real) (int) = NULL;
9 int res;

10 if (!close_real)
11 close_real = dlsym (RTLD_NEXT, "close");

12 monitor_routine_entry (close);
13 res = close_real (fd)
14 monitor_routine_exit (close);

15 return res;
16 }

locate the entry and exit points of the routine to be instrumented, while lines 11-17 and
18-22 inject calls to independent monitoring functions at those points. In the particular
case of the entry point, the monitoring functions receives the same parameters as the
routine instrumented (as listed in the loop in lines 14 and 15) so as to allow the monitor
to intercept the value of the parameters.

Shared-library interposition There exist an additional instrumentation mechanism that com-
bines the two previous mechanisms. Modern operating systems, such as Linux, FreeBSD,
AIX and Solaris, support shared libraries, which are libraries focused on reducing the
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overall memory use by running multiple applications and sharing the regions of code
without requiring multiple instances of the same routines. These operating systems also
allow loading a shared-library into an application process before the process is loaded2, so
the preloaded library loads the symbols first into the process address space and overwrites
the implementation from the original shared-library. This type of instrumentation wraps
the substituted routine and accesses to the original implementation using the dynamic
loader API.

Listing 3.6 depicts a full example of how this interposition mechanism to inject monitors
wrapping the routine named close from the libc shared library. The Listing shows the
code that is injected into the application process before loading the rest of the application.
Line six refers to the routine that is meant to be interposed (close) and it must have the
same signature as the replaced routine. Line eight declares a pointer to a routine to the
actual implementation of the routine. The routine dlsym is responsible for searching the
address for the entry point of close within the existing shared libraries in the process
address space. Since two libraries offer the symbol (the preloaded and the original), the
instrumentation must search the routine on the second library. This search is achieved by
passing the parameter RTLD_NEXT to the dlsym call. Finally, line 13 invokes the actual code
for the substituted routine and which is wrapped (in lines 12 and 14) by the measurement
code.

Additional instrumentation mechanisms To conclude this enumeration, it is worth mention-
ing alternative mechanisms. One of these mechanisms includes establishing callback
functions at particular application spots. Whenever the processor reaches these points, the
processor executes the associated callback before continuing with the original sequence of
instructions. Since callbacks are added manually into any module or library, this requires
manual instrumentation though it only serves the purpose to end up invoking the actual
monitoring routine. For example, a recent specification proposal for the OpenMP run-time
(OMPT) [59] allows executing monitors when certain OpenMP activity occurs as well
as querying the status of the run-time during the application execution. Similarly to
OMPT, PERUSE [112] describes the specification and implementation within the OpenMPI
message-passing library of a mechanism to extend the basic PMPI capabilities by providing
low-level information such as when a message left and arrived at the physical layer, when
the buffers got allocated, and so.

Switching to accelerators, despite the fact that CUDA and OpenCL allow using callbacks,
they also provide an additional approaches that work with events to collect timing infor-
mation of the activity performed by the accelerator. CUDA allows injecting events into
the device and they are processed with all the remaining commands by the accelerator.
When the accelerator processes the injected events, the accelerator assigns a time-stamp
that the performance tool collects to determine the elapsed time between events. While in
OpenCL the behavior is similar to CUDA, the events are part of the OpenCL API calls so
the application developer may, or may not, use them. In contrast, on CUDA applications
the event injection is transparent to the user code by the performance tool.

To wrap-up this section, Table 3.2 summarizes the instrumentation possibilities of the afore-
mentioned mechanisms. Considering the alternatives, compiler-assisted instrumentation and
binary patching offer the wider range of possibilities. Follows manual instrumentation, which
cannot add monitors in-between machine instructions3. Finally, the link-stage and library inter-
position can only measure at routine level. With respect to the source code access, neither binary
patching nor library interposition needs to modify the source code; thus the analyst can proceed
only with the application binary.

2The preloading is achieved using environment variables such as LD_PRELOAD in Linux systems.
3Unless the region to be instrumented is written in assembly code, but this is not considered for practical reasons.
4This alternative only allows instrumenting routines existing in libraries but not routines from the application code

itself.
5Only applies to shared-libraries.

45



3 - Performance analysis

Table 3.2
Instrumentation alternatives available depending on the instrumentation mechanism used.

User Loops Statements Machine
routines instructions

Modify source code Ø Ø Ø
Compiler-assisted Ø Ø Ø Ø
Link-stage Ø4

Binary patching Ø Ø Ø Ø
Shared-library interposition Ø4,5

3.4.2 Sampling

The number of sampling alternatives to collect punctual performance measurements is limited
when compared to instrumentation. Sampling mechanisms are implemented on top of operating
system signals, which are asynchronous notifications sent to a process (or thread from a process)
in order to notify that an external event has occurred. When the operating system sends a signal,
the process receiving the signal stops its execution flow temporarily and starts executing the
signal handler which invokes the measurement monitor and returns back to the normal execution
flow when the monitor finishes. There is an assortment of signals that can be hand over to the
application process, some of them are generated from the operating system when the application
raises an error, but some other generated from external sources, such as devices or the user
itself. However, performance analysis tools mostly rely on signals that occur many times during
the application execution to periodically accumulate metrics. Even though time-based signals
are the general approach to query periodically the status of the application process, hardware
performance counters (described below in this section) provide additional periodic signaling.
This way performance counters operate in such a way that the sampling handler executes every
certain number of instructions, cycles, or cache misses, for instance [152].

While this thesis does not focus on architectural simulations, it is worth mentioning that in
this field samples are not punctual information but a contiguous interval of dynamic instructions
during the program execution. In architecture simulation, sampling techniques are typically split
into two general types: statistical sampling and representative sampling. The former samples
the execution in a random pattern without any consideration regarding the sample selection,
while the latter involves choosing samples to uniquely represent repetitive patterns during the
program’s execution.

3.5 Performance metrics

Performance metrics indicate the application efficiency and help to figure out what are the existing
bottlenecks. Although monitors collect a wide range of metrics during an execution, the execution
time is the de facto measurement that determines the performance of an application. Due to
the variety on the programming models and the complexity of the systems, time measurements
solely do not provide enough insight with respect to the nature of the underlying problem.

So as performance analysis tools give relevant information related with the application
structure, these tools must provide performance information related to the application nature.
The most basic examples include detailing the number of invocations of each application routine
so as to focus on a particular region of the application code. When analyzing parallel applications,
performance tools may provide information related to the work balance to uncover situations
where some processors do more work than the rest. In addition, it would be helpful to know
the number of messages sent and their size, or which locks are limiting the parallelism, in
message-passing or shared-memory applications, respectively.

Focusing on the node-level performance, performance tools need to expose node-level activity
so as to unveil how the processor behaves because architectural design of the processor may limit
the application performance. The PMU provides information relating to the processor activity
through a wide variety of performance counters. Using the data observed by the PMU, the
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Table 3.3
Number of performance counters on a wide variety of architectures.

Manufacturer Processor Availability # pmcs7

PowerPC R©970 2,002 214
PowerPC R©440 2,004 329

Power5 R© 2,004 448
PowerPC R©970MP 2,005 231

IBM R© PowerPC R©450 2,007 455
Power6 R© 2,007 553
Power7 R© 2,010 545

PowerPC R©A2 2,012 406
Power8 R© 2,014 1,144

Xeon R©E7450 2,008 1308

Xeon R©X5570 2,009 1358

Xeon R©X5680 2,010 2298,9

Xeon R©E5-2690 2,012 6318,9

Intel R©
Xeon R©E5-2670 2,012 1668

Xeon R©E5-2620 v2 2,013 1,0569

Xeon R©E5-2670 v3 2,014 194
Itanium R©9030 2,006 637
OpteronTM 2354 2,009 126
OpteronTM 6172 2,010 147AMD OpteronTM 6276 2,011 219
OpteronTM 6274 2,011 21910

ARMv7 CortexTM -M3 2,006 81ARM ARMv7 Samsung Exynos5 Dual 2,012 147

analyst detects whether the system either achieves a good ILP (in terms of cycles per instruction
[CPI], or inversely, instructions per cycle [IPC]) or there are issues due to improper data accesses,
branch misspeculations, to name a few. Unfortunately, event availability varies substantially
among processor vendors and even within the same processor family. The increasing complexity
of processors translates into an increased number of available performance counters, as shown
in Table 3.3. The Table summarizes the number of available performance counters on different
processors from several vendors that have reached the market recently. Note that many processors
offer hundreds of events and separating those that measure valuable information from others
that measure esoteric data is a complex task.

PAPI [20] is a widespread middle-ware for providing uniform access to performance counters
on a variety of operating systems across architectures and it is employed by the tools used in this
thesis. This software also promotes the definition of a standard performance counter set (called
preset counters in PAPI jargon) that represent the typical phenomena observed in performance
analysis, in contrast to the native counters (those provided by the underlying substrate) that
are used to calculate the preset counters. The definition of these preset counters present two
drawbacks. First, there are more than one hundred preset counters at this moment, so it is still
difficult to choose which are relevant or not. Second, the availability of PAPI presets is restricted
by the semantics of the native performance counters due to the complex mapping between the
PAPI preset counters and the native performance counters and as a result it is possible that not
all the presets are available.

As a consequence of the large event set count and the difficult interpretation of native counter,
there has been research on defining analytical performance models based on a subset of the

7Number of performance monitoring counters.
8Several of these counters can be extra-qualified using two bit fields (named umask and cmask that slightly changes the

semantics of the counters, thus increasing the number of available performance counters.
9Also include the uncore events.

10This is the processor used in the Cray XK7 Titan supercomputer. PAPI reports additional 686 performance counters
related to the Cray component available in such supercomputer.
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Table 3.4
The full Power7 CPI breakdown model.

To
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Completion Completion cycles
cycles Overhead of expansion
Completion due to I-cache miss
Table due to branch mispredict
empty due to I-cache miss and branch mispredict
cycles other

by reject Translation Stall
other

by LSU by D-cache miss
by Store
other

Completion by multi-cycle instruction
stall by FXU other
cycles Stall due to IFU

Stall due to SMT

by scalar long
otherby VSU

by vector long
other

Others: Stall by BRU/CRU, flush penalty, etc.

native counters. These models help the analyst to deal with a small assortment of simpler metrics
rather than using hundreds of native performance counters. Following this section, there is an
introduction to several performance models based on performance counters. Some of these
models apply to specific processors because they require specific performance counters and
their result is heavily tailored to the architectural disposition, but the remaining models rely
on PAPI preset counters that enable them for a wide range of processors. For instance, the
Statistical Stall Breakdown [8] describes a mechanism that samples hardware counters and
dynamically multiplexes hardware counters to compute a breakdown model for a PowerPC based
microprocessor. Such mechanism is implemented using the sampling capabilities in the K42
operating system. This operating system provides a performance monitoring infrastructure that
allows on-line performance monitoring and uniform access from the OS and the user applications.

3.5.1 Models based on performance counters

3.5.1.1 IBM CPIStack model

IBM published the CPIStack model for the IBM R©Power5 R©processor originally [202] and for
the Power7 R©and Power8 R©processors later [62, 145, 33]. The CPIStack model breaks the CPI
down into several categories, which can be further classified depending on the category and
focuses on identifying the type of stalls that prevent achieving a low CPI (or inversely, a high
IPC). Table 3.4 summarizes the complete CPIStack model for the IBM R©Power7 R©processor. The
model for this processor divides the execution cycles into three top-level categories: completion
stall cycles, Global Completion Table (GCT) empty cycles and completion cycles. Completion stall
cycles report the number of stalled cycles in the processor and it is further categorized according
to the processor component responsible for the stall (LSU for Load/Store Unit and VSU for
Vector-and-Scalar Unit, among others). The GCT is a table representing a group of instructions
being processed by the processor, so it must contain instructions to let the application progress.
The GCT may be empty due to a branch misprediction or an instruction cache miss. Finally,
completion cycles refer to cycles that have finalized an instruction. Although the model has
been criticized by [67] because it cannot detect dependency chains and coupled effects between
counters, it has proved useful in attributing stall causes on different applications [231, 47, 139].

The plots shown in Figure 3.11 depict the break-down on the first and second level of cate-
gories within the CPIStack model when analyzing the cg.A benchmark from the NAS benchmark
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(a) Basic Power7 breakdown model showing the three metrics of the first categorical level.
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(b) Detailed Power7 breakdown model showing the twelve metrics that compose the second categorical
level.

Figure 3.11
Two different approaches on the IBM Power7 CPIstack breakdown model depending on which categories are
used. The models are applied to the conjugate gradient (CG) benchmark from the NAS suite.

suite. In the simple decomposition plot (as depicted in Subfigure 3.11a), results show that
Stall cycles dominate in the benchmark and that the processor always has work to do because
the GCT stall cycles tends to zero. A detailed view on the stall decomposition (illustrated in
Subfigure 3.11b) shows that instructions executed by the Load/Store Unit (LSU), the Fixed
Point Unit (FXU) and non-classifiable instructions cause most of the stalls in the execution. With
respect to completion cycles, a small fraction of them are related to the so-called overhead of
micro-decoding instructions while the rest finishes instructions and so produces work.

3.5.1.2 Intel Itanium2 model

Hewlett-Packard defines two performance models for the Intel R©Itanium2 R©processor [108]. The
first of these models enables understanding the nature of the stalls suffered by associating to
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(b) Global stall decomposition.

Figure 3.12
Two breakdown models for the Intel Itanium2 processor. The model at the top categorizes which pipeline
component (Front-End, RSE, EXE, L1D/FPU and Flush) injected bubbles in the pipeline. The model at the
bottom decomposes the stalled cycles according to several components from the processor.

each block of the pipeline the number of bubbles that were inserted into the pipeline by that
particular block. For the particular case of the Intel Itanium2 processor, the pipeline is organized
in five blocks: the front-end (FE), the register-stack engine (RSE), the execution engine (EXE),
the common L1 data-cache and FPU block (L1D/FPU) and the branch predictor (FLUSH) [143].
Figure 3.12a exemplifies the result of the basic model when applied to the cg.A benchmark and
shows that the execution engine and the L1 data-cache and FPU are the blocks that inserted the
most bubbles into the pipeline. As in IBM CPIStack, this performance model allows the provision
of additional categories that specify the meaningful entities from the processor that required
inserting the bubbles into the pipeline. For example, the detailed model (shown in Figure 3.12b)
would to shed light on whether the FPU or the L1 data cache injected more bubbles, or which
type of registers are causing the scoreboard to inject bubbles in the execution engine.
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Figure 3.13
Simple models that use common performance counters. The model at the top decomposes the instructions
executed according to their nature, while the model at the bottom shows the efficiency of the architectural
components such as the cache levels and branch predictor.

3.5.1.3 Simple performance models using common performance counters

While not every processor has a performance model available, it is noteworthy that simple, and
yet helpful, models provide insight of how the application behaves on a particular processor.
These simple models are built as ratios of common performance counters such as number of
instructions, cycles, data-cache misses at several levels and branch mispredictions. While these
ratios are not as expressive as the previous models, they still give lots of information with respect
to the behavior of the application.

For instance, Figure 3.13 depicts two plots with two independent models applied to the
cg.A benchmark from the NAS benchmark suite. The plot on the top provides information
with respect to the instruction mix (i.e. the instruction type ratio) out of the total number of
instructions and dissects the instruction type that is more frequent in a similar way to the Gibson
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Mix [82]. The results show that Loads, followed by Floating-Point instructions, dominate the
benchmark. The plot below establishes a relation between architectural components that may
limit the performance, such as several levels of cache and the branch predictor and show their
efficiency in terms of their proportion of cache misses and branch mispredictions, respectively.
For example, the cg.A benchmark suffers from a relatively high percentage of L1 cache misses per
instruction, surpassing the 10%, but the branch predictor anticipates the destination correctly
most of the times. With these two plots, the analyst easily identifies which type of the activity is
more frequent in a particular application and how processor components are behaving.

3.5.2 Active performance measurements

Currently, although computers have replicated many of their components to achieve higher
performance, there are still some blocks connected to the processor that are shared among
different processor blocks. An improper dimension of these shared blocks may result either in
bad performance or in high production costs if the size is too fit or huge, respectively. Several
shared blocks can be outlined: the Last-Level Cache, the cores within a processor and the network
switches, among others.

Recently, a new set of methodologies to measure and model the performance the system
have been proposed in different areas in order to predict the performance slowdown (if any)
when moving to a machine with reduced characteristics. For instance, Eklov et al., have created
a framework to actively evaluate the memory bandwidth requirements of an application [60].
Casas and Bronevetsky have independently created a similar method [30], but also have extended
their approach to measure the application requirements in terms of network bandwidth [31].
The frameworks include a special piece of software that utilizes a defined portion of the shared
resource (i.e. memory or network bandwidth), so the framework calculates the sensitiveness
of applications to different resource sizes and extrapolates how well the application would
work on a different machine. Similarly, some of the recent Intel processors include the so-
called TurboBoost technology which allows the processor to increase its frequency on certain
conditions. When this option is enabled, a component of the system continuously monitors the
cores activity, the thermal status and the voltage conditions to determine any frequency increase.
Some experiments have demonstrated gains up to 6% in execution time when activating this
technology but resulting in a higher energy drain [35].

3.6 Source code references

Anybody who recognizes the performance flaws and their causes in a piece of software, will
realize that the correlation between performance and source code is essential. Such a correlation
helps to understand the application behavior and enables to have a chance to improve it. This
fact is more relevant as systems and applications are becoming more complex; and also, because
the scenario in which analysts know little about applications and have to report how to improve
the application performance is becoming more frequent.

Performance analysis tools perform these associations between performance bottlenecks and
the source code and enable the analyst understand what the performance flaws are and which
part of the code is responsible for them. These tools rely on either instrumentation or sampling
techniques to monitor the application as the application progresses from one routine to the
next. Instrumenting every routine from an application leads to exaggerated overheads when
monitoring very fine grain routines, therefore requiring an additional execution to know which
routines are to be excluded. For instance, a previous study of gprof shows that instrumenting
all the routines of the integer version of the SPEC CPU2000 [91] benchmarks results in an
overhead of 93% [74]. To avoid these drawbacks, many tools have promoted sampling to collect
information regarding the representative routines of an application. Even though sampling
typically provides the interrupted routine, some tool developers consider that reporting routines
simply is insufficient because the results tend to be circumstantial clues. Some tools have been to
provide a call-path (or sequence of nested routines) in order to differentiate between routine
invocations [89, 122, 116].
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The processor maintains a data structure name call-stack that helps with identifying which
routine is being executed. The call-stack is updated every time the processor enters (or leaves)
a subroutine by creating (or destroying) stack frames. These frames contain information such
as the arguments received, the return address back to the routine’s caller and space for local
variables. Call-stack unwind is the process of inspecting these data structures and it involves
accessing the processor structures to analyze the stack frames to emit relationships between
callers and callees. The libunwind library [215] is considered the industry standard mechanism
for call-stack traversals, due to its portability and accessible nature. The call-stack information
is converted into human-readable information that includes the routine name, its container
file-name and the source code line through the compiler added debugging information and the
binutils package [71]. Since capturing the whole call-path is costly, some performance tools
mitigate the resulting overhead in different directions.

CATCH [45] is a DynInst-based tool that associate metrics with call-path information for
OpenMP and MPI applications. CATCH analyzes the call-graph of the program and uses call-site
instrumentation to maintain a representation of the current call-path. The user selects subtrees
of the call-graph to profile, allowing the tool to reduce the amount of instrumentation added in
the program. As a result, CATCH statically predicts call-paths within the selected subtrees but
cannot handle call-paths through dynamic calls.

iPath [15] is a call-path performance tool that allows the examination of the captured data as
the application. This tool shares some similarities with CATCH because iPath also uses DynInst to
instrument user-selected routines, but instead of instrumenting every call-site as in CATCH, iPath
only inserts instrumentation in selected functions. To reduce the overhead of the tool, it performs
a stack walk to determine the current call-path and then associates the sampled performance
each time the application executes a monitored function.

Complete Call Graphs (CCG) is a mechanism to compress post-mortem call-stack traces [116]
developed by Knüpfer and others. In this approach, CCGs build a call graph that replaces similar
repeated sub-trees with references to a single instance. As a result, CCGs are very convenient for
trace analysis tools as they reduce memory footprint and allow work with larger executions.

TAU explores two different approaches in this area and describes them in [137]. The first
approach relates the ability of TAU to instrument routines and methods, but this leads to high
measurement overhead when instrumenting short routines. To alleviate this problem, authors
propose a new tool that allows the user to write instrumentation rules that will be applied to the
measurement data to identify which events to exclude in a following execution. These rules are
defined as numerical functions in terms of TAU metrics, such as the number of invocations or the
mean duration being larger than a given threshold. The second approach involves implementing
a call-path profiling in TAU that adapts to the application execution at every routine entry/exit
point. In this case, identifying a call-path requires traversing a k-length structure, which may
end up in non-uniform measurement overheads. TAU uses hashes to identify each of the possible
call-stacks and associate the performance in order to reduce the measurement expense.

The Scalasca tool has also been extended using time sampling [208]. Like TAU, their major
effort has been devoted to providing information about application routines instead of providing
performance counters metrics. Scalasca provides accurate measurements when combining PMPI
instrumentation and sampling by subtracting the time spent in MPI calls from a user routine
collected during a sampling point. Also, Scalasca reduces the overhead during the call-stack
unwinding process by inserting trampolines into the call-stack.

Scalasca also offers compressed time-series of call-path profiles to reduce the quantity of data
to be collected during the execution [209]. Their approach uses lossy compression mechanisms by
using incremental on-line clustering techniques on consecutive application time-steps. The tool
only stores the complete performance data for the representative iterations, while the remaining
iterations are associated with the representative, with the consequent savings in terms of space.
While the tool only saves partial information, the tool reconstructs aggregate profiles when
presenting data to the users by weighting clusters by the number of iterations they represent.

HPCToolkit also pursues correlating performance inefficiencies and the source code but do
not rely on. Tallent et al. describe in [211] a mechanism to present performance data and the
observed call-paths combined with the static program structure. This work is achieved using a
context-free on-line binary analysis for locating procedure bounds and unwind information and
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a post-mortem analysis of the optimized object code and its debugging sections. Still, their work
require traversing the stack during the execution as detailed in [73]; however, to further reduce
the overhead they rely on inserting hand-crafted trampolines inside the call-stack in order to
limit the number of unwinds.

3.7 Memory references

This section describes earlier approaches related to performance analysis tools that have focused
to some extent on the analysis of data structures and the efficiency achieved while accessing
them. This research is divided into two groups depending on the mechanism used to capture the
addresses referenced by the load/store instructions.

The first group includes tools that instrument the application instructions to obtain the
referenced addresses. MemSpy [140] is a prototype tool to profile applications on a system
simulator that introduces the notion of data-oriented, in addition to code oriented, performance
tuning. This tool instruments every memory reference from an application run and leverage the
references to a memory simulator that calculates statistics such as cache hits and misses according
to a given cache organization. SLO [17] suggests for locality optimizations by analyzing the
application reuse paths to find the root causes of poor data locality. This tool extends the GCC
compiler to capture the application’s memory accesses, function calls and loops in order to
track data reuses and then it analyzes the reused paths to suggest code loop transformations.
MACPO [176] captures memory traces and computes metrics for the memory access behavior
of source-level data structures. The tool uses PerfExpert to identify code regions with memory-
related inefficiencies, then employs the LLVM compiler to instrument the memory references
and, finally, it calculates several reuse factors and the number of data streams in a loop nest.
Tareador [205] is a tool that estimates how much parallelism can be achieved in a task-based data-
flow programming model. The tool employs dynamic instrumentation to monitor the memory
accesses of delimited regions of code in order to determine whether they can simultaneously
run without data race conditions and then it simulates the application execution based on this
outcome. Peña et al. have designed an emulator based data-oriented profiling tool to analyze
actual program executions in an emulated system equipped with a DRAM-based memory system
only [168]. They also use dynamic instrumentation to monitor the memory references in order
to detect which memory structures are the most referenced. With this setup, they estimate the
CPU stall cycles incurred by the different memory objects to decide their optimal placement at
object granularity in heterogeneous memory system.

The second group consists of tools that take advantage of hardware mechanisms to sample
addresses referenced when processor counter overflows occur and estimate the accesses weight
from the sample count. The Sun ONE Studio analysis tool has been extended in [106] by
incorporating memory system behavior in the context of the application’s data space. This
extension brings the analyst independent and uncorrelated views that rank program counters and
data objects according to hardware counter metrics as well as shows metrics for each element in
data object structures. HPCToolkit has been recently extended to support data-centric profiling
of parallel programs [130]. In contrast to the previous tool, HPCToolkit provides a graphical user
interface that presents data- and code-centric metrics in a single panel, easing the correlation
between the two. Giménez et al. use PEBS to monitor load instructions that access addresses
within memory regions delimited by user-specified data objects and focusing on those that
surpass a given latency [83]. Then, they associate the memory behavior with several semantic
attributes, including the application context which is shown through the MemAxes visualization
tool.

3.8 Power measurements

The increasing interest in the energy-consumption related topics of HPC systems has also raised
interest in analyzing dissipated power and using similar techniques when analyzing performance.
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Table 3.5
Power model applied to the Intel Core2 Duo processor.

(a) Association between power and performance components (see [16] for
further referencing).

Power Component Modeled components
FE Front-end
INT Integer arithmetic
FP Floating point arithmetic
SIMD SIMD arithmetic
BPU Branch prediction
L1 L1 Cache
L2 L2 Cache
FSB Front-side bus and main memory

(b) Conversion factors from performance to power to be applied to the power components.

Processor
Power component

Frequency
FE INT FP SIMD BPU L1 L2 FSB Base

0.8 GHz 148 10,815 362 169 5,069 55 106 147 1,309
1.6 GHz 336 8,680 769 360 10,613 113 184 335 2,508
2.1 GHz 566 8,553 1,334 620 17,676 193 357 565 6,272
2.5 GHz 789 8,852 1,908 856 24,437 261 502 788 8,701

There are several methods for capturing the consumed energy of a system and this section
summarizes some of this work. They are classed under three groups.

The first group includes devices such as PowerMon [13] and PowerPack [76]. These de-
vices provide accurate, fine-grained power measurements in computing systems because they
sample the power drained while being connected to the computing systems through the ATX
pin configuration. Since these devices access the power supply, they can monitor the power
consumption from every component attached to it, including disks, GPUs and network devices
among others. However, their main drawback is that they require physical access to the machine,
which may not be possible due to security restrictions. The work described in [4] combines a
self designed and implemented power meter that is attached to the computer with the Paraver
performance analysis tool. The resulting combination allows the authors to enrich the traces
that contain information with power information, giving the analyst the chance to correlate the
source code and the parallel run-time calls with power metering reads. Their method of work
consists on getting accumulated power measurements at node level by using low sampling rates
for previously instrumented regions of code but require that all the cores execute one of the
instrumented regions to report consumption for every core.

The second group involves instruction simulation. Wattch [19] and SimplePower [233]
are cycle-level architectural simulators that estimate the CPU power consumption of every
component of the socket by applying power consumption models. This type of simulation
requires full instrumentation of the application, making the power estimation of the full execution
unmanageable, not only because of the data size to be gathered, but also because of the time
needed for producing the results. Consequently, these methods are not appropriate for day-to-day
use on in-production binaries.

The third group includes research on the field of providing power models based on perfor-
mance monitoring counters, such as the independent work developed by Singh et al. in [197]
and Bertran et al. in [16]. The latter, for instance, presents a full methodology for creating power
models based on performance monitoring counters that rapidly adapts to power changes. The
result is a set of formulae that relates the activity on the processor components to conversion
factors expressing their consumption and which summed up results in a power estimation of
the whole processor. Table 3.5 shows the result of these power models based on performance
monitoring counters when applied to the Intel R©Core2 Duo R©processor. The performance activity
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is correlated with power components and the energy consumed by these components is directly
related to the processor frequency.

The Intel R©SandyBridge processor is the first generation of this brand of processors to introduce
the Running Average Power Limit (RAPL) infrastructure which allows monitoring the drained
energy by the processor. The Package Control Unit (PCU) is a part of RAPL and it is a combination
of dedicated hardware state machines in charge for the RAPL infrastructure. The PCU is
connected to power management agents that collect information such as power consumption
and temperature and, control transitions between processor performance states and processor
operating states. The PCU also monitors performance events from the cores, the I/O and the
integrated GPU activity and weights them with energy factors in order to predict the socket’s
active power consumption. The resulting power consumption is scaled accordingly with operation
conditions such as voltage and frequency of execution. Since RAPL is accessible through the PAPI
library, performance tools such as Scalasca, Vampir, HPCToolkit and TAU, would easily provide
performance and power information using this library.
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“Then let’s play,” says Enoch Root.

— Neal Stephenson, CRIPTONOMICON

The granularity of the captured data depends on the monitoring frequency when using sampling and
on the application activity when using instrumentation. Any attempt to gather performance metrics
continuously involves either smartly adding more instrumentation points or increasing the sampling
frequency, though both alternatives come with a consequent expense. This chapter introduces the
main contribution of this thesis: the folding mechanism. This mechanism takes advantage of the
repetitiveness exposed by many applications and smartly combines performance data captured by
instrumentation and sampling techniques to provide instantaneous performance measurements.

4.1 Motivation

A performance tool that instruments routine entry and exit points only aggregates data whenever
one of the selected routines starts or stops, and similarly, a sampling-based tool only accumu-
lates measurements at sample points. In this direction, the performance data captured are
discontinuous in time and any attempt to gather performance metrics more frequently requires
either adding more instrumentation points or increasing the sampling frequency. Needless to
say, smartly instrumenting more routines requires some previous application knowledge when
it comes to choosing the instrumentation points, so this adds additional expense to gain this
knowledge. For instance, a previous study of the gprof profiler shows that instrumenting every
routine of the integer version of the SPEC CPU2000 [91] benchmark suite results in an overhead
of 93% [73]. Also, as the reader may expect, the higher sampling rate, the more penalty suf-
fered by the benchmarks. Figure 4.1 confirms this expectation by depicting the time dilation of
several benchmarks from the SPEC CPU2006 [92] when increasing the sampling frequency in
the Extrae [66] package when measured on an Intel R©Xeon R©E5 2670 running at 2.60 GHz. The
overhead, irrespective of its source, is the result of the first person monitoring that alters the
regular application performance, therefore the measurement results may be inaccurate and even
misleading.

This chapter describes the main contribution of this thesis: the folding mechanism. This
mechanism creates synthetic metrics that finely express the instantaneous node-level performance
within an instrumented region at unprecedented levels of detail without incurring in a significant
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Figure 4.1
Measured sampling overhead in the Extrae instrumentation package when tested using different benchmarks
and sampling frequencies.

overhead. The folded information covers data such as performance counters (either individually
or grouped), call-path and memory object references and energy-consumption readings. This
information proves very relevant when it comes to understand how the application behaves at a
very fine-grain granularity, and, the presentation of the results ultimately enables the analyst to
improve the application performance as shown in the forthcoming Chapter. This chapter proposes
a methodology for evaluating the most dominant computing regions in parallel applications
so that any chance to improve these regions should lead to higher returns. To implement this
methodology, this chapter presents a framework that helps an analyst to evaluate the performance
of parallel applications without requiring any preliminary knowledge of the application.

4.2 Description of the mechanism

High-performance computing applications typically have several well-defined phases. These
applications start with an initialization phase where data structures are set up and distributed
across processes. This is followed by an intensive and time-consuming phase in which multiple
processes cooperate to reach a solution by combining sequences of computation and commu-
nication. Once the processes finalize, they output the generated data and the application then
finishes.

In these applications, the computation phase tends to present a periodic behavior. Such
behavior responds to the application structure because applications consist of a sequence of
routines and loops that are executed iteratively for a number of time-steps. As a result of
this periodicity, one expects the application performance also to expose a periodic behavior as
well, in which every loop uncovers performance phases since each of them undergoes different
inefficiencies. Ideally, if the application execution does not suffer any external interference
(such as preemptions, interrupts, network and memory contention), it is possible to understand
the collection of individual periods as an ergodic system. This behavior leads to a couple of
consequences:

1. it is irrelevant which period is analyzed since every period behaves invariantly and,
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Figure 4.2
Illustration of the folding process.

Table 4.1
Tabulated exemplification of the folded results.

Instance #1 Instance #2 Instance #3
S1 S2 S3 S4 S5 S6 S7

Ts 7 14 21 28 35 42 49
Ti 3 3 20 20 20 37 37
δs 4 11 1 8 15 5 12

2. performance measurements should be the same at any given point within the period
irrespective of the period observed.

The folding mechanism takes advantage of this repetitive behavior found in many HPC
applications. The mechanism uses trace-files from these applications containing performance
information collected through sampling and instrumentation mechanisms. The mechanism
gathers and combines data of delimited repetitive regions (henceforth, instance) spread along
the trace-file and generates a synthetic instance that reports the evolution of the instances.
Instrumented and sampled measurements play different roles:

instrumented information delimits regions in the source code. For instance, instrumentation
helps to delimit user routines, loop bodies, outlined parallel routines, or any other repetitive
region of code.

sampled data are uncorrelated with application behavior. It determines how the performance
behavior evolves within the instance it belongs.

The folding projects the collected samples into a synthetic instance preserving their time since
the start of their respective instance; so, a sample fired at time Ts within an instance that starts
at Ti gets mapped into the representative region at time δs, where δs = Ts − Ti .

Figure 4.2 provides a visual description of the process in order to help understand it. The top
of the Figure depicts a time-line of an application with a repetitive region that has been executed
three times during the whole execution whereas the bottom part schematizes the folding results.
The analyst instruments the application to determine when each routine invocation begins and
ends. These points are represented by black markers and labeled as Ix, where odd and even
subindices x ∈ {1, 2, 3, 5, 6} represent entry and exit points, respectively. The analyst also enables
a periodic sampling mechanism that freely runs whatever the application activity (in the example,
providing measurements every seven units of time). Considering the given Figure, the routine
invocations start at times 3, 20 and 37 and end at times 19, 36 and 53, respectively. With respect
to the sampling, it has fired nine samples labeled S0 to S8, from which only S1 to S7 have actually
occurred within the instrumented region. The samples are represented by additional markers
with colors that correspond to the instance color to ease the description. In the resulting schema,
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there is a single instance that summarizes the behavior of the three actual executed instances
of the instrumented region. Table 4.1 tabulates the results with respect to the mapped results
concisely while showing their respective values for Ts, Ti and δs.

As a result of this process, the folding combines information from multiple instances into a
single synthetic instance regardless of the sampling frequency used. Therefore the aftereffect of
the process is an increase of the volume of performance measurements present in the synthetic
instance without adding instrumentation points or increasing the sampling frequency, therefore
not incurring on a large overheads. At a constant sampling rate, the increase of the volume is
directly related to the number of instances folded. A user may execute its application with more
time-steps or even take advantage of parallel executions, where multiple processes execute the
same region of code, in order to increase the number of instances to be folded. The folding
mechanism as described up to this point requires manual intervention from the user to delimit
the repetitive regions in the trace-file. However, the end of this chapter offers a description
of a framework that provides very detailed metrics without requiring manual instrumentation.
This framework helps following a methodology that allows the analyst to understand and even
improve the most dominant compute regions within the application.

Truth to be told, practice shows that executions are non-deterministic even using dedicated
systems and applications face interferences each run, which results in slight performance vari-
ations along the execution. The folding includes a preliminary step to filter out the perturbed
instances by considering the duration of the iteration as a normally distributed variable. This
step discards from the process those instances that lie outside the range defined by µ±X×σ,
where µ and σ refer to the mean and the standard deviation of the duration of the instances.
Although the implementation automatically sets up a value that keeps instances with a duration
within the interval of confidence of 95%, the user may provide a different value for X . For
instance, values 1.0, 1.5 and 2.0 keep those instances with a duration within the interval of
confidence of the 68%, 86% and 95%, respectively. Still, removing outlier instances does not
result in every instance taking the same amount of time to execute. After the outlier removal, the
folding normalizes the duration of every instance in the range defined in [0..1] so as to ensure
that every instance lasts the same.

It is convenient to remember that performance measurements include data metrics that cover
a broad spectrum of information, such as performance counters, energy measurements and
call-stack and memory references. Each metric has its own semantics and characteristics; so, they
must be treated independently with different approximations. The forthcoming sections describe
the data processing and representation to provide the analyst with insightful data that depict
the evolution of the application. Despite the differences between the semantics of the captured
information the results are shown in similar plots. The results provided by the folding span
across time of the representative (or synthetic) instance on the X-axis and the data represented
on the Y-axis (even in the secondary Y-axis [on the right]) depend on the nature of the metrics.

4.3 Detailed performance counters evolution

Performance counters present two characteristics with respect to measurement. First, their value
are monotonically increasing, which means that

∀x , y ∈ R : x ≤ y =⇒ C(x)≤ C(y) (4.1)

where C(t) is the value of a counter at time t. Second, their value is continuously updated at
every clock cycle, therefore they appear to be continuous along time.

There are several performance tools (such as TAU [194], HPCToolkit [210], Extrae [66],
to name a few) that capture the necessary information through sampling and instrumentation
mechanisms that may apply to the folding mechanism. For the particular processing of the
performance counter values in the folding mechanism, the counters need to represent cumulative
values. For instance, the Extrae instrumentation package reads the performance counters at
instrumentation and sampling points, although the value of the counters represent the number
of events since the last read. Consequently, to provide the cumulative counter value (Counters)
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Table 4.2
Tabulated exemplification of the folded results where samples include values of a performance counter.

Instance #1 Instance #2 Instance #3
S1 S2 S3 S4 S5 S6 S7

Ts 7 14 21 28 35 42 49
Ti 3 3 20 20 20 37 37
δs 4 11 1 8 15 5 12

Counters 4 17 1 8 33 5 21
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Figure 4.3
Graphical representation of performance counter data from Table 4.2.

it is necessary to convert the readings of the performance tool first so that measurements honor
Equation 4.1.

Following the initial example, Table 4.1 has been extended so that each sample contains the
cumulative value of an indistinct performance counter since the start of the instance, as depicted
by the last row in Table 4.2. It is also possible to represent this information in a plot, as seen in
Figure 4.3. The Figure represents the evolution of Counters with respect to δs and the picture
shows that the performance counter values at folded sample points represent an increasing
function, even though at this point the result is only a set of discontinuous values. The following
step in the folding mechanism focuses on constructing a continuous signal along the synthetic
region using an interpolation mechanism. There are several approaches to interpolate the values
within a delimited range:

piece-wise constant interpolation is the simplest interpolation method and consists of finding
the closest data value at a given time.

linear interpolation uses linear polynomials to guess the returned value between two known
points. For instance, for the known points (t0, c0) and (t1, c1), a value at time t in the
interval (t0, t1) the value c along the straight line follows the equation:

c− c0

t − t0
=

c1 − c0

t1 − t0
=⇒ c = c0 + (c1 − c0)×

t − t0

t1 − t0
(4.2)
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piece-wise linear interpolation partitions the independent variable into intervals and each
separate segment is fitted using a linear interpolation.

polynomial interpolation generalizes the linear interpolation by using a higher degree polyno-
mial that connects all the points. For instance, the interpolation polynomial may look like
the following function:

c(t) = an × tn + an−1 × tn−1 + · · ·+ a1 × t + a0 (4.3)

spline interpolation is a form of interpolation that uses low-degree polynomials to connect the
intervals and choose the polynomial so they fit together in such a way that the function is
derivable at every point.

Gaussian processes interpolation is a non-linear interpolation mechanism where realizations
consist of random values associated with random variables with a normal distribution.

This thesis evaluates the use of interpolation mechanisms derived from a Gaussian process
regression and piece-wise linear regressions, as depicted in the plots of Figure 4.4. Gaussian
process regressions are governed by prior calculated covariances, as opposed to splines which are
chosen to optimize smoothness of the connected values. On the other side, piece-wise linear (or
segmented linear) regressions study the independent variable looking for segments to express
the variable as separate linear regressions on each segment. In the aforementioned Figure, it
may be observed that the use of the first type of interpolation results in a smooth curve that
adjusts to every point. However, the second type of interpolation connects every point through
simple linear regressions (in this particular example, two segments with a break-point in between
them).

It is important to note that not every instance needs to account for the same value for a
counter across instance. Variations across instances occur as a consequence to different control
flows, subtle differences in the processor state every time the computation region begins and even
non-deterministic behavior of the performance counters in modern processors [229]. Similarly
to the aforementioned process that normalizes the instance duration, the performance counter
values are normalized so that each value for a particular counter within an instance lies within
the range [0..1]. A caveat here, the normalization process needs the performance counter values
at begin and end points, so it is necessary for the monitoring system to capture these metrics in
addition to the metrics at sample points. For clarification purposes, Figures 4.3 and 4.4 show on
the left Y-axis the normalized accumulated value and the right Y-axis the accumulated value, but
henceforth any performance counter folding plot will only show the normalized accumulated
value (on the left Y-axis).

4.3.1 Kriging fitting

The first study focuses on the Gaussian interpolation process known in the geo-statistics commu-
nity as Kriging [221]. Even though it was originally developed for applications in geo-statistics,
it is a general method used in other disciplines such as environmental science [237], hydro-
geology [12] and remote sensing [167]. When used in geo-statistics, Kriging is typically used to in
the spatial data field such as mineral resource and reserve valuation so it applies to cartographic
(2D) data and estimates the values of unsampled locations. The method used in this thesis
simplifies this approach because the Kriging fitting applies to one dimension (time) and estimates
the value of performance counters in between captured samples.

Though there are several variants for the Kriging estimators, all of them derive from the basic
linear regression estimator Ẑ(x0) at point x0 defined as [87]:

Ẑ(x0)−µ=
N
∑

i=1

λi
�

Z(x i)−µ(x0)
�

(4.4)

where Z(x i) refer to the measured values at the i-th location, µ and µ(x0) are the expected
values (means) of Z(x0) and Z(x i), λi is an unknown weight for the measured value at the i-th
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Figure 4.4
Alternatives to fit hardware counters folded data using data from Table 4.2.
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location as well, x0 is the predict location and N is the number of given values. The goal is to
determine the weights (λi) to minimize the variance of the estimator

S2(x0) = Var
�

Ẑ(x0)− Z(x0)
	

(4.5)

under the unbiasedness constraint:

E
�

Ẑ(x0)− Z(x0)
	

= 0 (4.6)

The weights are based on the distance between the measured points and the prediction
location, but also on the overall spatial arrangement of the measured points. In addition, the
Kriging interpolation includes a set of parameters that determine the fitting. Of all these note
the nugget parameter, which determines how strictly the fit follows the individual points on the
neighborhood. The value for the nugget parameter in the Kriging implementation used in this
thesis defaults to 10−4, although sometimes it is necessary to increase this value because the
results may exhibit the nugget effect [105] (i.e. oscillatory artifacts when interpolating distant
points with respect to performance metrics but very close in time).

Listing 4.1
Summarized code for the Stream benchmark.

1 for (i = 0; i < NTIMES; i++)
2 {
3 for (j = 0; j < Ncopy; j++)
4 c[j] = a[j]; /* Copy */
5 for (j = 0; j < Nscale; j++)
6 b[j] = s*c[j]; /* Scale */
7 for (j = 0; j < Nadd; j++)
8 c[j] = a[j] + b[j]; /* Add */
9 for (j = 0; j < Ntriad; j++)

10 a[j] = b[j] + s*c[j]; /* Triad */
11 }

Figure 4.5 illustrates the plot generated by the folding mechanism when applied to the
instruction counter on a trace-file of the Stream [141] benchmark. Listing 4.1 shows the main
loop of the benchmark, which traverses four kernels named copy, scale, add and triad. For the
particular execution described here, the external loop trip counts N T I M ES=100 and the internal
loop trips are Ncop y=Nscale=Nadd=Nt r iad=10,000,000. The application has been instrumented
to delimit the loop body as the instance to be folded and the execution has been sampled at
50 Hz on a Intel R©CoreTM i7 running at 2.4 GHz. Each red cross in the Figure corresponds to
the cumulative value of the corresponding hardware counter (graduated instructions) since the
start of the instance associated with a folded sample when mapped into the synthetic instance.
So, one red cross at position (X , Y ) represents one sample that occurred at time X from the
origin of the instrumented region and has executed Y instructions so far. The contouring Kriging
algorithm connects all these points and its results are shown using a green line in the plot. The
mechanism also calculates the derivative of the contouring results and shows them in blue within
the plot using the right Y-axis as a reference (which in this case represents the MIPS rate since
the analyzed metric refers to instructions). Also, the plot also displays a gray marker on the right
indicating the average counter rate and some metrics at the top regarding the average duration
and the average number of events (instructions here) along the instances folded.

The most prominent information to extract from this Figure is that the MIPS rate clearly
exhibits four phases. This insight is likely to indicate that the application traverses four uniform
regions of code where the performance differs (matching with the application structure), yet the
correlation between performance and source code will be analyzed later in detail in Section 4.5.
The results allow being much more precise when reporting the results: the first phase starts at
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Figure 4.5
Folding results for the instruction counter using Kriging interpolation on the Stream benchmark.

Table 4.3
Experiment setup for the quality study.

Application name MHD bt.B
Sampling mode Detailed Coarse Detailed Coarse
Sampling period (in cycles) 1 M 1,000 M 50 K 10 M
Samples per second 1,600 1.6 32,000 160
Sampling overhead 4% <1% 89% 2%
Number of iterations 1 100 1 200
Total number of samples per task 2,870 260 5,661 5,445

the beginning of the region and lasts about 20% of the duration (approximately 14 milliseconds
[ms]) and executes at 3,600 MIPS. Similarly, subsequent phases last 13, 18 and 19 ms and
execute at 4,250, 3,300 and 3,800 MIPS, respectively, therefore the folding reports phases smaller
than the sampling period (20 ms). In conclusion, compared to other performance tools that
only summarize the performance metrics between instrumentation or sample points, the folding
mechanism expresses the instantaneous evolution of performance within a region delimited by
instrumentation.

4.3.1.1 Validation

So as to validate and study the quality of the folding mechanism, this work proposes a twofold
experiment. The evaluation compares the resulting trace-files of two executions in which the
applications have been sampled with high and low frequencies. The experiment uses the bt.B
parallel benchmark from the NAS MPI Parallel Benchmark Suite [10] and MHD, a parallel Lattice
Boltzmann magneto-hydrodynamics application, on an SGI Altix machine with Intel R©Itanium R©2
9030 processors running at 1.6 GHz. Since the results of the contouring algorithm are sensitive
to the number of folded samples, the test focuses on validating how similar are the interpolated
results from both fine-grain sampling with respect to the folded data. Table 4.3 provides all the
details regarding these executions.

The first experiment aims at comparing the shape of the hardware counter metrics in a
high-frequency sampled trace with the shape obtained by using the folding on a low-frequency
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sampled trace. In this study, only one time-step of the high rate sampled trace-file is used as a
reference and afterwards, it is compared with the resulting folded data. Also, the comparison uses
several performance counters, namely committed instructions, executed floating-point operations
and branches and L2 cache accesses, hits and misses; and compares how these counters differ
between the detailed and the folded results. Finally, to prevent the results being affected by the
indeterminism introduced by MPI calls (due to network congestion, for instance), the comparison
applies to the most time-consuming computation regions found on each binary, that is the region
from an MPI call to the following MPI call. Furthermore, to disregard the expense experienced
in the fine-grain execution, the average distance is calculated between the normalized results.
In order to facilitate the reading, each computation region is named according the routine to
which it belongs plus a suffix that indicates how many MPI calls have occurred since entering the
routine.

Since the Kriging implementation used in this thesis returns a vector of equidistant points
(in terms of time) and not as a function of time, it is not possible to obtain the value of the
contouring function at any arbitrary point. Consequently, the results between the samples of the
reference time-step and the folded samples by interpolating are both sampled at the same rate.
Then the absolute mean difference and the square mean error are computed for each pair of
samples.

Figure 4.6 presents the results of this comparison. The X-axis represents the different
computation regions found, whereas on the Y-axis indicates the percentage of variation between
the detailed sampling and the folded coarse samples using the bars and the square mean error
using the whiskers. The plots show a mean difference up to 5% in bt.B and 0.5% in MHD, no
matter which performance counters are compared in every computation region. More specifically
for bt.B, the folded coarse grain sampling sums up approximately the same number of samples
as the reference iteration because the number of time-steps on the coarse grain execution is
the proportion between the two sampling frequencies. As for MHD, the situation is even better.
Although the difference between the detailed and coarse sampled frequencies is about three
orders of magnitude, using a coarse-grain sampling and executing 100 time-steps suffices to get
similar results. The conclusion drawn from these results indicate that if the application executes
long enough and the same code several times then analyst can use large sampling periods and
apply the folding process to obtain a good approximation of the internal performance behavior
without requiring highly penalizing periods.

The second test measures how the number of folded samples influences the absolute mean
difference. The comparison uses a highly detailed sampled trace-file of the three longest
computation regions from the two applications (namely copy_faces.26 and x_solve.8 for bt.B
and stream.160 for MHD) and calculates the mean difference by limiting the number of samples
used in the folding process. Plots in Figure 4.7 show how the absolute mean difference varies
as a function of the number of samples folded in each region. As oneself might expect, these
plots indicate that the mean absolute difference decreases as the number of folded samples
increase. More specifically, using 100 samples in the folding processes reduces the difference
below the 5% for the copy_faces.26 region. Regions stream.160 and x_solve.8 show an even
better situation because only 30 and 40 samples provide results differ by under 5% from the
highly sampled results, respectively. The results for the region copy_faces.26 are enhanced
when 200 samples are folded (especially on the branch instructions counter) but using more
than 200 samples results in a marginal improvement of the results. Something similar occurs
in x_solve.8 and stream.160, using more than 40 or 60 samples in the folding process yields
small improvements in the comparison. In conclusion, these repetitive applications do not need
extremely long runs to get similar results when comparing the results of the detailed sampling to
those obtained using folding and coarse grain sampling.

4.3.2 Piece-wise linear fitting

The exploration of the Kriging contouring results in Figure 4.5 raises several questions. First,
it becomes evident that the folding helps to expose performance phases within instrumented
regions and, by means of example, the aforementioned Figure shows that the MIPS rate traverses
four performance phases. Since applications are structured as an iterative sequence of loops
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Figure 4.6
Study of the mean square error on different applications comparing high frequency sampling and folded
results with coarse grain sampling.
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Figure 4.7
Evaluation of how the number of samples involved in the folding mechanism influences on the mean square
error difference of several performance counters in two compute regions when using Kriging interpolation.
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and routines, it would be helpful to determine when an performance change occurs, but the
Kriging process does not provide this information without further post-processing. Second,
the Kriging results expose oscillatory artifacts that resemble noise within these phases (nugget
effect). However, in ideal circumstances, the processor is likely to execute the phases at a uniform
rate and these can be modeled using linear regressions. Finally, while there exists a transition
between phases necessarily, the transition using the Kriging algorithm is mitigated as a result of
the selection of a relaxed nugget parameter. Selecting a stricter value for the nugget parameter
would generate sharper transitions but increase the nugget effect.

This thesis evaluates the use of piece-wise (or segmented) linear regressions to address these
issues when used as a fitting mechanism for the folded data. Piece-wise linear regression is a
method aimed at detecting changes in time-series (named break-points, but to avoid confusions
with debugging techniques they will henceforth be referred as phase breaks in this thesis); it has
been used in bio-medicine [158] as well as financial [153] and ecological [219] studies, among
many others. By way of introduction to these regressions, consider the general linear regression
model that is expressed as

yi = x>i βi + ui (i = 1, .., n) (4.7)

where at time i, yi is the observation of the dependent variable and x i , βi and ui are
the explanatory variables, regression coefficients (including the intercept) and error terms,
respectively. Segmented linear regression tests whether the regression coefficients remain
constant or vary over a time-series, which in the current scope is defined by the folded samples.
In general, an unknown number of phase breaks (m) exist and they indicate when the coefficients
shift from one regression to the next, which is to say in the environment of this thesis, when the
performance rate changes within the folded results of the instrumented region. Consequently,
there are m+1 segments (or phases) in which the regression coefficients become constant and
allows rewriting Equation 4.7 as:

yi = x>i β j + ui (i = i j−1 + 1, .., i j , j = 1, .., m+ 1) (4.8)

where j is the segment index (so the range defined in [i j−1+1, i j] can be approximated by a
linear regression) and i1, .., im denotes the set of phase breaks, where by convention, i0 = 0 and
im+1 = n.

The work described in this thesis uses the strucchange library [235] from R statistical pack-
age [173] to estimate the optimal phase breaks in regression relationships by using generalized
fluctuation tests and minimizing the residual sum of squares in Equation 4.8. Trials on the
structural change are concerned with testing the null hypothesis (H0) that is defined by no
structural changes along the temporal series, or H0 : βi = β0 for any i. If the process crosses
the boundaries defined by the probability of rejecting the null hypothesis, then the fluctuation
should be considered improbably large, and H0 should be rejected. Finally, the process applies
linear regressions to calculate the slope (which refers to the counter rate in this case) of the
segments delimited.

Figure 4.8 illustrates the results of the folding mechanism when using piece-wise linear
regression on the same trace-file used to generate Figure 4.5. The way to read the plot is similar
to earlier plots with a slight extension because it provides information regarding the phase
breaks. The value of the instruction counter in folded samples (depicted as red crosses) exposes
the evolution from the start of the instrumented region. The mechanism estimates three phase
breaks (for a total of four phases) within the counter associated with to these folded samples at
approximately 14, 28 and 46 ms since the start of the loop. The segmented linear regressions are
shown in green above the red points using the left Y-axis, while the slope of the linear regression
(the MIPS rate) is shown using a blue line on the right Y-axis. The results obtained through this
method are compared with those obtained with the Kriging contouring algorithm depicted in
Figure 4.5 on page 65. Both results are similar in terms of identifying the achieved counter rate
and exposing the behavior of the instrumented region. The most notable differences between
the two approximations include: first, the piece-wise linear regressions automatically detects the
phase breaks; and second, the Kriging contouring results provides a continuous results even in
the phase breaks.
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Figure 4.8
Folding results for the instruction counter using piece-wise linear regressions on the Stream benchmark.

4.3.2.1 Validation

Several well-known benchmarks from the NAS benchmark suite as well as the Stream benchmarks
help to test the folding mechanism using piece-wise linear regressions in a similar way to that of
the validation of the folding using the Kriging contouring approach. The validation comprises
two parts which include: first, a comparison between detailed sampling and folded coarse grain
sampling when varying the number of folded samples; and second, a comparison of the results
obtained using the Kriging and the piece-wise linear regression approaches.

In order to compare the results obtained using the folding with those obtained through
detailed sampling, the benchmarks (namely is.B, ft.A, bt.A and Stream) are executed using two
sampling frequencies: coarse-grain (50 Hz) and fine-grain (5,000 Hz) on an Intel R©Xeon R©E5
running at 2.60 GHz. Both trace-files are folded using piece-wise linear regressions and then
the resulting interpolations are sampled so as to calculate the difference of the shapes on
four performance counters (instructions, branch instructions, L1 data-cache misses and stalled
cycles). In addition, the number of samples used in the coarse-grain sampling varies so as
to determine how the number of folded samples influences the results. Again, to dismiss the
sampling overhead experienced in the fine-grain execution, the average distance is calculated
between the normalized results.

Figure 4.9 depicts the evolution of the distance between the detailed and coarse-grain folded
results on the four performance counters and varies the number of samples used. It is noticeable
that the benchmarks show similar shapes between the detailed sampled executions and the
folded coarse-grain sampled executions, with differences below 2% when there are more than
50 samples in the representative region. The only exception to this observation is the branch
instruction counter for the bt.A benchmark, which shows a difference about 6%. The difference
between the detailed and folded cases in this benchmark is due to the presence of very short
phases that execute a large number of branches, which results in a small number of samples and
inhibits the strucchange implementation to detect the phase breaks and therefore summarize
consecutive phases with one linear regression.

In comparing the results using piece-wise linear regressions with those obtained using the
Kriging approach, it is worth remembering that one of the parameters of the latter algorithm
determines how tight the fit follows the individual points on the neighborhood (acting as a
low-pass filter). This effect is illustrated in Figure 4.10 by comparing the folded instruction rate
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Evaluation of how the number of samples involved in the folding mechanism (shown in the X-axis) influences
on the mean square error (Y-axis) of several performance counters in two compute regions when using
piece-wise linear regressions.
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applications.

obtained using the piece-wise linear regression (in blue) and the results are calculated using the
original Kriging interpolation for several values of nugget (in different gray scales). It may be
observed two situations in the plots: a large nugget value results in loosely fitted results and
artificial curves near a phase change, while a small value provides fitted results, but at the cost
of additional noise due to the variability in terms of instructions among instances and the nugget
effect.

Figure 4.11 shows a plot that compares the results from the two explored interpolation
methods. The plot shows the mean square error for the Kriging with different nugget values
and piece-wise linear regressions for the Stream benchmark, a selection of the NAS parallel
benchmarks and the main computation regions of several in-production applications named
BigDFT [79], GTC [129] and Nest [81]. The plot indicates that the error from the piece-wise
linear regression is similar to the error from the Kriging and the error is application dependent.
With respect to the last point, it is worth noting that while the error is related to the variability
experienced on the folded instances, the folding results still provide very useful insight.

4.4 Correlation of multiple performance counters

There are several measures to identify the presence of performance bottlenecks in an application.
For instance, the introduction of this thesis refers to the floating point operations (Flops) rate
which is heavily tailored to measure the performance of mathematical codes. Still, when
exploring the performance of an application it is convenient to consider the instruction (MIPS)
rate given the fact that not every HPC application is floating-point intensive and that it accounts
for all the instruction the processor actually executes. Some people consider this as a weakness
in the MIPS rate as there are many instructions in application binaries that do not produce
effective work. However the processor has to execute every instruction it encounters in the
instruction stream, regardless of whether or not they result in effective work. All the analyses in
the forthcoming chapter rely on this metric to evaluate the application performance and compare
it to the processor’s peak performance.

Even though the exploration of the MIPS rate helps to identify the presence of bottlenecks in
the application, this counter rate alone does not help to characterize the nature of the bottleneck.
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(b) FP instructions.
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(c) Conditional branch instructions.
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(d) L1 Data-cache misses.
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(e) L2 Data-cache misses.
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(f) L3 Cache Misses.
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(g) Load instructions.
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(h) Store instructions.
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(i) Stalled cycles elapsed.

Figure 4.12
Multiple performance views from the Stream benchmark. Each figure shows the progression of a particular
performance counter within the main loop of the benchmark.

Other metrics therefore need to be gathered during the application run to contrast results from
different counters and understand the nature of the bottlenecks. Consider the results for several
performance counter rates shown in Figure 4.12 for the Stream benchmark to exemplify this
approach. Interestingly, the MIPS rate for this benchmark (Subfigure 4.12a) shows four phases
within the progression of the delimited region (the main iteration loop). However, not every
performance counter rate shows the same number of phases. For instance, the rates for the
conditional branch instructions (Subfigure 4.12c), the load instruction (Subfigure 4.12g), the
store instruction (Subfigure 4.12h) and L1 Data-Cache misses (Subfigure 4.12d) only expose
two performance phases in the delimited region. On the other hand, the L2 Data-Cache misses
(Subfigure 4.12e) and the stalled cycles (Subfigure 4.12i) show three performance phases. Finally,
the floating point instructions (Subfigure 4.12b) and L3 Cache misses (Subfigure 4.12f) do expose
four phases. The L3 Cache misses rate may explain (inversely) the instruction counter rate in the
middle phases and it may be observed that the four phase achieves a higher L3 cache miss rate
than the first phase and that the instruction counter on the first phase is higher than the first
phase.

With respect to the collection capabilities, the Performance Monitoring Unit (PMU) is the
component of the processor responsible for counting the events associated with the hardware
activity and this component imposes certain restrictions on the number and which performance
counters that are read at the same time. There are several multiplexing techniques available for
alleviating this problem. For instance, the simplest approach tackles this problem by executing
the application as many times as performance counters needed and extrapolating the ratios
by analyzing the results of every execution. However, it is possible to obtain all the desired
counters at once by periodically changing the counter groups during data measurement (either
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Figure 4.13
Three different perspectives of the evolution of the main iteration of the Stream benchmark.

by using time-outs or counting the number of collective operations) because of the iterative
nature of typical parallel scientific applications. With sufficient coverage, it is possible to collect
the counters for each repetitive region and extrapolate their values in only one execution [86].
The major benefits of this approach is that it saves computing resources (and energy), reduces the
amount of time to get the results and reduces the variability introduced by dissimilar executions.

4.4.1 Applicability to performance models

Since the folding results are a function of time, it is possible to apply simple operations between
them, such as:

L1Dperinst ruct ion(t) = L1Drate(t)/M I PS(t) (4.9)

in which at time t, L1Dperinst ruct ion(t) represents the L1 D-cache misses per instruction ratio
and L1Drate(t) and M I PS(t) refer to the L1 D-cache miss and instruction rates, respectively.
Using the counter ratios instead of counter rates helps when comparing several counters at the
same time because they are normalized by the instruction rate divisor. These ratios help on
the correlation of multiple performance counters in one go. While calculating ratios between
performance counter rates and the instruction rate helps to identify the nature of the bottlenecks,
it is worth remembering that modern processors provide hundreds of performance counters. The
folding mechanism implements another mechanism to describe the models based on performance
counters mentioned in Section 3.5.1 (page 48). This functionality extends the folding results
because it avoids the need for the analyst to dig into all the available performance counters
(and their description) and focus on a bunch of performance metrics instead of searching into
multiple plots to locate correlations between counters. For instance, Figure 4.13 uses multiple
performance counters in order to offer three different perspectives of the evolution of the main
iteration of the Stream benchmark when executed on a system that uses a Intel R©SandyBridge
processor. In every plot of the set, the MIPS rate is shown in black on the right Y-axis, while the
rest of counter ratios are shown on the left Y-axis. More specifically, Figure 4.13a reports the
instantaneous progression of the instruction decomposition, giving insight into the code that
is being executed. Figure 4.13b reports several architectural components that may limit the
processor performance (such as several levels of the memory cache hierarchy and the branch
predictor accuracy). Finally, Figure 4.13c provides information on the blocks of the processor
responsible for stalled cycles injected into the processor pipeline.

Figure 4.14 shows another example of combining multiple performance using a performance
model into a single plot, instead of multiple plots as in the earlier example. The Figure shows
the evolution of a compute region of the CCSM [93] application when executed in a cluster of
IBM R©PowerPC R©970MP processors. The combination of the performance metrics honors the
IBM R©Power5 R©CPIStack model (detailed in Section 3.5.1.1 [see page 48]). In the Figure, the left
Y-axis refers to the break-down of the CPI according to the model and the right Y-axis refers to
the achieved MIPS (and depicted through a black line that traverses the plot). An analysis of the
Figure shows that the processor faces several performance phases as the application progresses
within the compute region. Exploring the performance from the CPIStack perspective, it may be
noted that from the start and during 30 ms, the application suffers from the Load/Store Unit
(LSU). Most of the issues relating the LSU derive from cache-misses, instructions rejected and to
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Figure 4.14
Example of applying the IBM CPIstack performance model for the IBM Power5 processor when analysing a
compute region within the CCSM application.

a lesser extent, TLB misses. Within this phase, there is a region in time (from 6 to 15 ms from
the start) where the performance is extremely low because of cache-misses, showing CPI above
25 (or similarly, running below 100 MIPS at the processor frequency). The second phase starts at
30 ms from the start and lasts until the end of the region achieves better performance, although
CPI is above one. This phase is mostly dominated by the floating-point operations although there
is an increase of the cache misses at the very end of the region.

4.5 Accurate source code attribution

The folding mechanism also attributes the observed performance to the application source
code. Samples must therefore contain source code references that represent the processor
call-stack frames at the sample point. Unlike hardware performance counters, source code
references cannot benefit from fitting models to detail the evolution of the source code due to
the discrete nature of the source code references, though there are alternatives for processing
this information.

The first simplistic approach tested to correlate performance and the source code uses the
GVIM1 editor. This approach relies on a manual exploration of the folded trace-file containing
the folded results and call-stack information. With this trace-file it is possible to manually
filter and then associate the captured call-stack with the folded results, to finally export the
correlation of the achieved performance to a given portion of a routine. For instance, Figure 4.15
shows a screen-shot of this editor showing the source code of the Stream benchmark and
representing the achieved MIPS rate using a background color that ranges from green (low)
to blue (high). The scale and add kernels (second and third loops) therefore achieve the best
and worst instruction rates, respectively. While this first approach enables the analyst to better
understand the correlation between source code and performance, it presents several drawbacks:

• it relies on a manual analysis and data selection from the trace-file,

• while the coloring provides some information on the metric rate, this approach does not
provide the analyst with quantitative results,

• the coloring only refers to one metric but there may be many metrics of interest to the
analyst and

• it does not provide temporal a evolution of the performance and the source code.

In order to address all the aforementioned weaknesses, this thesis describes two approaches
to conduct the association between performance and source code references. Both approaches

1http://www.vim.org/about.php - Last accessed March, 2015.
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Figure 4.15
MIPS rate shown in the GVIM editor in conjunction with the application source-code.

provide an automated mechanism to correlate multiple performance metrics with the source
code and display their temporal evolution. The first approach takes advantage of the phases
detected automatically using the piece-wise linear regressions. The mechanism associates the
performance of each with the source code loops observed by the top of the call-stack in a phase.
The second approach takes into consideration the fact that consecutive folded samples present
some temporal and spatial locality, i.e. it is very likely that consecutive samples refer to source
code references that are close to each other. This second approach proposes a novel post-mortem
that grounds on Multiple Sequence Alignment (MSA) algorithms [160, 123, 52] to approximate
the duration of the representative routines by grabbing a small, fixed segment of the call-stack.

4.5.1 Using phases determined by piece-wise linear regressions

The fact that most applications are written using a structured programming paradigm means
it is conceivable for each loop to show a distinct performance in the folding results, or vice
versa, that each performance phase corresponds to one loop. This first approach to correlate
source code and performance exploits this idea. The approach uses phase breaks obtained from
the piece-wise linear regressions when applied to a performance counter. These phase breaks
divide the folded synthetic instance into phases that help to attribute independent source code
references to the performance.

While there are several performance counters, the current implementation uses the instruction
counter to delimit the phases for the source code analysis because the instruction rate is commonly
used to determine whether a code runs efficiently or not. However, this can be modified and/or
extended to use another performance counter or even a combination of performance counters.
Regardless the performance counter used, it is interesting to note that consecutive loops or
routines may perform at a similar rate and such cases these loops will be grouped together within
a single phase. So as to attribute the performance to a region of code, the process maps the
source code lines pointed out by the call-stack of the samples into the application routines or
loops. In order to perform such attribution, the process includes AST parsers for C, C++ and
Fortran90 codes that delimit the boundaries of routines and loops within the source code. This
way, it allows a relationship to be established between one line of code and the loop (or the
routine if a loop does not exist) that contains it.

To illustrate this process, consider extending the earlier folding example shown in Table 4.2
(page 59) by adding an additional row (named CodeLines) that indicates the sampled source
code line at time δs (shown in Table 4.4). Figure 4.16 shows a time-line that depicts the evolution
of the performance counter as well as the line of source code. The plot at the bottom depicts
the evolution of the performance counter, while the top part indicates at a given time-stamp the
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Table 4.4
Tabulated exemplification of the folded results where samples include values of a performance counter and
code line references.

Instance #1 Instance #2 Instance #3
S1 S2 S3 S4 S5 S6 S7

Ts 7 14 21 28 35 42 49
Ti 3 3 20 20 20 37 37
δs 4 11 1 8 15 5 12

Counters 4 17 1 8 33 5 21
CodeLines 10 20 11 12 21 11 20
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Figure 4.16
Graphical representation from data contained in Table 4.4. The plot at the bottom depicts the counter
evolution since the origin of the instance where there are two evident phases with respect to performance.
The plot at the top illustrates which source code lines where obtained folded time-stamps of the samples.

observed source code lines. Looking at the plot at the bottom, it becomes clear that two linear
models exist (one derived from samples S1, S3, S4 and S6 and another derived from samples
S2, S5 and S7) and that these two linear models intersect at one point. In this case, applying a
simple linear regression model to each of the two sets of folded samples (i.e. models expressed as
Y=a×X+b) helps to calculate the values for (a1, b1) and (a2, b2). More precisely, the solution
of these values is (1, 0) and (4, −27), respectively and the intersect at point (9,9).

In the previous Figure, the intersection at time nine represents a phase break, so that two
phases exist with different performance each. These two phases are processed separately; the
performance of each phase is attributed to the source code lines observed in each phase. For
instance, the first phase includes samples that observed lines 10-14 and the second phase consists
of samples that reference lines 20-24. As a result, the loops (or routines) that cover lines 10-14
and 20-24 will be assigned the performance observed in each phase.

In a more practical way, the attribution process not only has to associate performance of
multiple counters with ASTs, but also requires a mechanism to display all the metrics collocated
with the source code. Within the scope of this thesis, the Scalasca CUBE source code visualizer
has been extended to show the source code correlated with annotations regarding the folded
hardware counter metrics, as depicted in Figure 4.17. The tool also allows the user to select the

77



4 - The folding mechanism

Figure 4.17
CUBE visualizer correlating the Stream source code with branch mispredicts, L1 and L2 D-cache misses, L3
cache misses, and MIPS rates.

metric for the coloring gradient by clicking on the column of the metric and it shows a profile
that indicates the most observed source code lines in the region during the performance data
collection.

4.5.1.1 Validation

This work uses the Stream benchmark (see Listing 4.1 in page 64) to evaluate the accuracy
of attributing the source code and its performance. This evaluation aims at describing how
the following three factors influence the phase detection mechanism: 1) the duration of the
phase, 2) the sampling frequency and 3) the number of instances folded. The evaluation
takes as a reference an execution of the Stream benchmark in which N T I M ES=200 and
Ncop y=Nscale=Nadd=Nt r iad=10,000,000 and that has been sampled at 25 Hz. The results are
then compared to the reference while changing some of the parameters of the benchmark.

Figure 4.18a shows the results obtained on the folded instruction counter rate by progressively
reducing (from N/2 to N/16) the loop trip count of the central loops scale (Nscale) and add (Nadd)
and keeping the sample rate at 25 Hz. The Figure shows that the piece-wise linear regression
successfully distinguishes the scale and add loops when their loop trip count is N/2, N/4 and
N/8 and their duration sum up to 11.6, 9.4 and 4.3 ms, respectively. Reducing the trip count
to N/16 results in a reduction of the number of samples in the central loops and this leads to
three effects in the results. First, the loops for scale and add are still detected and separated, but
they are combined into a single phase. Second, the regression generated for the two loops lasts
about 3 ms, in contrast to 4.3 ms when the trip count is N/8. Finally, the phase break occurs
late in time, i.e. the end point of the central phase occurs almost at the same time as the N/8
case. These effects are directly related to the fact that the fluctuation tests of the strucchange
require a number of samples to notice a change in the slope. Therefore, it becomes harder to
detect changes of the counter rate if there is a reduction of the number of samples.

The number of samples must increase to ease the phase detection and this can be achieved
either by using a finer sampling frequency (and increasing the overhead) or by increasing the
number of folded instances. To increase the number of instances, one may re-execute the
application with more time-steps or use instance data of multiple processes in parallel executions.
For instance, if analysts change the sampling rate on the version of Stream where the central
loops iterate N/16 times, they will observe that using a sampling frequency equal or higher
than 100 Hz detects four phases, as depicted in Figure 4.18b. Similarly, if the analyst decides to
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Figure 4.18
Results of the folded instruction counter rate when changing some attributes of the execution of Stream.
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Table 4.5
Results obtained through pure instrumentation and gprof for the modified Stream and its relationship with
phases delimited in Figure 4.18.

Instrumentation gprof
Phase % Time Self Self/Ntimes % Time Self Self/Ntimes

1 40.10 2.78 s 13.91 ms 39.52 2.78 s 13.90 ms
2 2.51 0.24 s 1.2 ms 2.28 0.16 s 0.8 ms
3 3.42 0.30 s 1.5 ms 3.28 0.23 s 1.15 ms
4 53.80 3.70 s 18.5 ms 45.80 3.22 s 16.16 ms

execute a longer run on the same version of Stream, they will note that increasing the number of
N T I M ES ends up in the disclosure of the scale and add loops as shown in Figure 4.18c.

In addition, the Stream benchmark with a trip count N/16 in the central loops has been
manually instrumented and also, profiled using gprof. The timing results of these executions are
tabulated in Table 4.5 and correlate with the phases discovered in the folding results using the
piece-wise linear regressions. It may be observed that the time attributed to each phase by either
the instrumentation or gprof is similar to that of the phase breaks obtained using frequencies
over 100 Hz and/or executing 800 iterations on the main loop.

4.5.2 Bio-inspired call-stack reconstruction

The previously stated correlation between the performance and the source code provides perfor-
mance metrics from the source code point of view; it needs a mechanism to determine the phase
breaks, however, and it does not naturally expose the time progression. This thesis proposes an
additional for such a correlation without searching within the performance space and exposing
the source code time progression. This approach takes advantage of the sequence of the folded
samples to determine which portions of the code are being executed according to their call-stack
references.

In the context of this thesis, libunwind is used to capture the call-stack information at sample
points. While libunwind already provides a fast unwind facility on certain systems2, it is inherently
a slow operation that impacts on code performance significantly because it traverses multiple
stack frames. To capture the full calling context, the frame inspection needs to unwind every stack
frame, resulting in a non-negligible and variable overhead. To give an example, Figure 4.19a
shows a histogram of the sample call-stack depth of 16 applications including benchmarks [92,
10, 99] and in-production programs [81, 79, 136, 98]. The plot shows that some applications
(such as 465.tonto, 481.wrf, BigDFT, Nemo and CESM) require unwinding more than ten levels
of the call-stack to obtain the full call-path and this effect is likely to grow as applications reuse
their code. Note too that the number of stack frames varies in a wide range, thus the number of
iterations to completely unwind the call-stack fluctuates during the application execution. The
cost of traversing the frames without collecting any data are in the order of microseconds and
depends on the number of stack frames unwound, as illustrated in Figure 4.19b. Consequently,
the call-stack collecting overhead will vary in different application phases and may lead to
inaccurate conclusions.

In order to reduce this overhead and keep it uniform as long as the application executes, the
work described here proposes capturing a subset of the call-stack frames up to a fixed limit. This
approach involves capturing a contiguous subset of the frames from the top of the call-stack.
There are two main reasons for applying such a top-down approach (as depicted in Figure 4.20).
First, the collection expense becomes fixed irrespective of the number of existing call-stack
frames. Second, the collected frames represent functions that are closer to where the activity
occurs, helping the tool to point out what routines were being executed during the monitoring
stage. However, the top-down approach presents some difficulties when identifying routines in
the call-stack as it evolves in conjunction with the routine entries and exits, so the depth for a
particular routine varies along the application activity. Figure 4.21a shows the top of several

2Mainly x86 and x86-64 architectures.
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Call-stack tree when routine e is active and its selected subset.

captured call-stacks in a time-line of the application with the call-tree shown in Figure 4.20a,
exemplifies this problem. In Figure 4.21a, the first sample (s1) has been interrupted while
executing routine fd which was invoked by fc and at the same time, fc was called by fd. Since the
location for a particular routine (e.g. fb) varies along time, the call-stack analysis must be aware
of such an issue.

An algorithm inspired from Multiple Sequence Alignment (MSA) algorithms [160, 123, 52]
has been developed in order to reconstruct the approximate complete call-stack from the reduced
call-stacks, The MSA algorithms infer biological sequence homology to conduct phylogenetic
analyses and study shared lineages from specimens sharing a common ancestor. These algorithms
work by arranging sequences of biological molecules (i.e. DNA, RNA or proteins) and identify
regions of similarity between the sequences. Their purpose in this research, however, is to
provide as inspiration for deducing the necessary line of call-path ancestors.

The simplest alignment involves a pair-wise sequence comparison [199], but this idea is
extended to multiple sequences, in which the mechanism searches for the best matching on
any number of sequences. The method to align n individual sequences involves constructing an
n-dimensional matrix where each column represents a sequence and then applying a pair-wise
alignment. The algorithm described here is similar to MSA but substitutes the sequences with
the sampled call-stacks. Honoring this metaphor, Figure 4.21a represents the starting point of an
alignment of six call-stack samples. In contrast to the biological studies, where the length of the
sequences are large and the number of sequences is typically low, the approach described here
applies to a limited number of call-stack frames but a large number of call-stacks.

There is a fundamental difference in comparing the two approaches when applying the
pair-wise alignment: the presence of mutations. In biology, mutations are either point mutations
(i.e. a molecule has been replaced by another) or indels (that is, insertions in or deletions from a
sequence). The approach described here disregards both point and deletion-derived mutations
but considers insertion mutations to preserve the common call-stack part between two samples.
These insertions (henceforth gaps, to keep to the biological nomenclature) are denoted as ◦(X )
where X refers to the routine that is being inserted into the deepest part of the target call-stack.

Much like the biological implementation, the call-stack reconstruction algorithm generates
an alignment matrix. Algorithm 1 summarizes the algorithmic implementation applied to the
call-stacks and Figure 4.21 provides an example on how it works. The algorithm starts looking
for the most frequent routine (henceforth referred to here as the pivot) in a vector of samples
ordered by their time-stamp. This routine serves as a reference for the alignment. Next, the
process selects those samples that contain the pivot within their call-stacks and then applies the
alignment to this selection. The alignment applies a pair-wise align to consecutive samples by
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Algorithm 1 Call-stack alignment pseudo-algorithm.

1: procedure CALLSTACKALIGNMENT(vs)
Input: vs: vector(Samples) sorted by their time-stamp
Output: mat: matrix(Samples) aligned

2: pivot ← vs.searchMostF requentRoutine()
3: vtmps← vs.contain(pivot)
4: for i ≤ vtmps.size() do
5: c_c← vs(i).getCallstack() . Current call-stack
6: if i > 1 then
7: p_c← vs(i− 1).getCallstack() . Previous call-stack
8: h_cc← c_c.height(pivot)
9: h_pc← p_c.height(pivot)

10: if h_cc > h_pc then
11: for j < i do
12: mat( j).In jec tGaps(c_c.subset(h_p− h_c))
13: end for
14: else
15: c.In jec tGaps(c_p.subset(h_c− h_p))
16: end if
17: end if
18: mat(i)← c
19: end for
20: return mat
21: end procedure

injecting as many gaps as needed to align the pivot of the samples. Consider the processing of
samples s1 and s2 from Figure 4.21a. In such a case, both samples contain the pivot routine and
the pivot routine is at a higher frame in s1 compared to s2, so the algorithm injects a gap at the
bottom of the call-stack of s2 (as illustrated in Figure 4.21b) in order to get pivot at the same
height. When aligning s2 and s3 the algorithm behaves slightly different because the height of
the pivot is higher in s3 and s3 occurred latter than s2. In this case, the gaps are back-propagated
to those samples that occurred before s3, as depicted in Figure 4.21c in order to propagate the
common call-path. Due to space restrictions, Figure 4.21d depicts in a diagram the alignment
between samples s3 and s4 and s4 and s5, but these are treated one after another. After processing
the samples that contain the pivot in their call-stack, an additional step (not shown in Algorithm)
aligns the samples that do not contain the pivot but share a portion of the call-stack with the
previously treated samples. For instance, sample s4 in Figure 4.21e has been ignored because it
does not contain the pivot, but since its call-stack has routines in common with other processed
samples (fa and fb) it is aligned in this second step. In this case, the call-stack data from s4 shows
that its bottom frame points to the routine main, so the alignment injects a gap into the rest of
the samples.

Due to the construction of the alignment algorithm, the selection of the pivot influences the
results because it determines which samples are aligned and which are ignored. This fact becomes
critical in applications that progress through multiple routines and share a few calling routines
in the selected frames of the call-stack. Also, the sampling period affects the results because
the larger sampling period, the lesser call-stack activity captured so the call-stacks captured
may differ substantially. However, as the folding mechanism gathers scattered samples along an
execution then adjacent folded samples refer to adjacent source code references. Consequently,
the folded call-stack is likely to exhibit spatial locality and the number of gaps to add should be
minimum.

Whenever applying this approach, the folding plot is extended by collocating the call-stack and
the performance evolution along the computing region. The analysis of the call-stack discards the
small routines that are closer to the application activity (top frame of the call-stack) and focus on
those routines that last for a certain period. It is therefore necessary to search within the resulting
aligned call-stacks for routines with a certain granularity (determined by a number of samples or

83



4 - The folding mechanism

s1

fd

fc

fb

s2

fe

fd

fc

s3

fc

fb

fa

s4

fb

fa

fmain

s5

ff

fd

fc

s6

fe

fd

fc

Time

Top

Bottom

(a) Samples as collected. fc is the pivot.

s1

fd

fc

fb

s2

fe

fd

fc

◦(fb)

s3

fc

fb

fa

s4

fb

fa

fmain

s5

ff

fd

fc

s6

fe

fd

fc

Processed

(b) Alignment of s1 and s2. Bubble injection into s2.

s1

fd

fc

fb

◦(fa)

s2

fe

fd

fc

◦(fb)

◦(fa)

s3

fc

fb

fa

s4

fb

fa

fmain

s5

ff

fd

fc

s6

fe

fd

fc

Processed

(c) Alignment of s2 and s3. Bubble injection into previous samples.

s1

fd

fc

fb

◦(fa)

s2

fe

fd

fc

◦(fb)

◦(fa)

s3

fc

fb

fa

s4

fb

fa

fmain

s5

ff

fd

fc

◦(fb)

◦(fa)

s6

fe

fd

fc

◦(fb)

◦(fa)

Processed

(d) Alignment of s3 and s5, s6. Double gap injection into s5 and s6.

s1

fd

fc

fb

◦(fa)

◦(fmain)

s2

fe

fd

fc

◦(fb)

◦(fa)

◦(fmain)

s3

fc

fb

fa

◦(fmain)

s4

fb

fa

fmain

s5

ff

fd

fc

◦(fb)

◦(fa)

◦(fmain)

s6

fe

fd

fc

◦(fb)

◦(fa)

◦(fmain)

Processed (2nd round)

(e) Processing the remaining samples s4 that do not contain fc. Need to inject gaps into
the other samples.

Figure 4.21
Example of alignment of a set of samples.

84



Accurate source code attribution - 4.5

d=6 fc ff fc

d=5 fd fd fd fd

d=4 fc fc fc fc fc

d=3 fb fb fb fb fb fb

d=2 fa fa fa fa fa fa

d=1 fmain fmain fmain fmain fmain fmain

s1 s2 s 3 s4 s5 s6
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Figure 4.21e.
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Figure 4.22
Post-processing the alignment samples to choose the routines of interest.

a duration). This search processes the aligned call-stacks as if they were stored in a matrix where
columns refer to samples ordered by their collection time and rows point to the depth of the
call-stack frame. For instance, Figure 4.22a shows the matrix representation of the results shown
in Figure 4.21e. The search algorithm looks for the number of consecutive frames at a particular
height that point to the same routine. If the number of consecutive samples is higher than the
given threshold, then the process is applied recursively to the upper level (d=d+1) within the
interval defined by interval of samples that contain the frames pointing to the same routine. For
instance, Figure 4.22b shows in solid color and below a black line the routines that are selected
for the analysis when the threshold is two samples whereas the transparent are ignored. In this
example, all the frames of every sample point to the same routine at levels d=1, d=2 and d=3.
When processing the frames at d=4, the mechanism splits the recursive analysis in two parts
(one involving samples s1-s3 and the other involving s5-s6). The analysis finishes at d=6, where
routines fe and ff are skipped because they only last one sample. In the end, the selected portion
of the matrix represents the active routines with a certain granularity and the top of the selection
denotes the active routines.

The main loop of the NAS MPI bt.A benchmark (the routine adi) was instrumented to
delimit the computing region and sampled to exemplify the results of the combined framework.
Figure 4.23 shows the combined plot containing the source code and the performance views.
The Figure is divided into two plots that represent the progression along the instrumented region
for the routines and a profile of source code lines (at the top) and the node-level performance
metrics (at the bottom). Both plots share a distinctive background color according to the active
routine. Due to plot rendering limitations, the short routines (as in the transition from s3 to s4 in
Subfigure 4.22b) are depicted with a white background, though they can be analyzed using the
trace-file. The plot at the top shows text displaying the name of the active routines and up to two
calling ancestors (in the form of X >Y >Z [n], where Z is the active routine, X and Y refer to
the ancestors and n is the most observed source code line within the active routine). For instance,
the green phase represents the routine x_solve_cell, which is called by x_solve and invests
most of its time in line 723. This plot also shows pink points representing a time-based profile
of the source code lines within the active routine (where the top refers to the top of the file
that contains the routine). The solvers (*_solve_cell) show almost a random line progression
limited to the half bottom of the plot, which indicates the presence of a loop that covers the
bottom half of the file and that spans for the whole execution of the routine. The comparison
of the solvers shows that x_solve_cell lasts less than the rest and that most of the samples
point to one line at the bottom of the source file; while the other solvers have mainly sampled
two lines at the bottom of the file. Finally, routines *_backsubstitute (depicted in white and
manually labeled as A, B and C) invest most of their time on one line, which observing the source
code corresponds to a single statement within the five-nested loop that comprises the routines.
With respect to the performance plot, the black line represents the MIPS using the right Y-axis,
while the remaining lines are plotted on the left Y-axis and show the ratio of cache misses per
instruction at different levels of the cache hierarchy. The MIPS rate within the solvers is uniform,
being higher on x_solve due to less cache miss ratios in L2D and Last-Level Cache (LLC). This
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Figure 4.23
Source code-references and performance metrics collocated for the MPI version of the NAS bt.A benchmark.

behavior contrast with that of the *_backsubstitute routines, where x_backsubstitute (A in
the plot) runs at a slower pace due to an increase in the instructions miss ratios in L2D and LLC.

4.5.2.1 Validation

The results provided by this approach are compared to those obtained with other performance
tools that rely on different measurement techniques (Score-P [147] using direct instrumentation
and gprof using time-based sampling running at 100 Hz). The comparison also helps to detect
how the depth of the call-stack unwound affects the results. To conduct this evaluation, the bt.B
benchmark from the NAS MPI benchmark suite, Lulesh and the HydroC [175] proxy benchmarks
were executed with the three measurement techniques. The binaries were executed with one
process to avoid the variability introduced by the network into the different measurement
systems. To proceed with the instrumentation-only approach, the gprof results revealed the
most representative routines (in terms of percentage of time) later instrumented using ScoreP.
To use the bio-inspired approach, the entry and exit points of the application main loop were
instrumented and the application then was sampled using a coarse frequency (25 Hz) to generate
a trace-file. Such a trace-file was later processed in a way that the instrumented entry and exit
points delimit the computing region.

Figure 4.24 shows the results for the applications using gprof, ScoreP and the approach
described in this section when collecting different call-stack depths. Note that the call-stack
depth is expressed in terms of X+1, meaning that the sampling handler unwound X frames of
the call-stack and also emitted the interrupted PC address provided by the sampling handler.
In general, it may observed that the results from the proposed approach using depth=3+1
are similar to those obtained by ScoreP and gprof. Using a smaller value for depth does
not attribute time to some of the routines, though it does provide good approximations for
many cases. For instance, it is worth mentioning that in Figure 4.24a the bio-approach only
provides measurements for y_solve_cell and y_backsubstitute when depth=1+1. This
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(a) NAS bt.B benchmark.
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(b) Lulesh mini-app.
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(c) HydroC application.

Figure 4.24
Comparison of the code attribution with other performance tools and using different levels of call-stack
unwind when applied to different applications.
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Figure 4.25
Summarized call-graph for the NAS MPI bt benchmark

occurs because the routine y_solve_cell becomes the pivot in the algorithm and because of
the structure of the application (depicted in Figure 4.25). Since this approach applies to those
call-stacks containing the pivot, when depth=1+1 the mechanism only finds samples containing
invocations from y_solve. Then, the second part of the algorithm (which looks for common
frames) adds y_backsubstitute to the common frames. However, it ignores adi because the
collecting mechanism did not capture samples at y_solve (invoked from adi), so the mechanism
does not explore the call-stacks that contain this routine. A similar issue occurs in Lulesh
(Figure 4.24b) when depth=1+1 where only three of the seven most representative routines are
disclosed.

4.6 Detecting time evolution of memory access patterns

When it comes to performance analysis, traditional performance analysis tools have naturally
associated performance metrics with syntactical application components such as routines, loops
and even statements. Though this association has proven valuable and also helpful for under-
standing and improving applications, the impact of the memory hierarchy makes it necessary
to explore the performance from the data perspective, as well. A study from this point of view
includes, though it is not limited to, the unveiling of the application variables that are referenced
the most and their access costs, the detection of memory streams to assist prefetch mechanisms,
the calculation of reuse distances and even identification of the cache organization that may
improve the execution behavior. Two mechanisms have accordingly emerged for addressing such
studies. On the one hand, there is an instruction-based instrumentation that monitors load/store
instructions and decodes them to capture the referenced addresses. While this approach accu-
rately correlates code statements with data references, it comes with a severe cost, overwhelming
the analysis with large data collections and/or time-consuming analysis and is not practical
for long in-production executions. On the other hand, several processors have enhanced their
Performance Monitoring Unit (PMU) to sample instructions based on a user specified period and
associate them with data such as the referenced address. For instance, Intel and AMD chips have
named their respective extensions Precise Event Based Sampling (PEBS) and Instruction Based
Sampling (IBS).

PEBS and IBS work in a similar fashion. These mechanisms periodically choose an instruction
from those that enter the processor pipeline. The selected instruction is then tagged and is
monitored as it progresses through the pipeline while annotating any event caused by the
instruction. When the instruction completes, the processor generates an record containing the
instruction address, its associated events and the machine state (without time-stamp), and the
record is then written into a previously allocated buffer. Every time the buffer becomes full, the
processor invokes an interrupt service routine provided by a profiler responsible for collecting
the generated records. Since instructions are reported at the retirement stage, these mechanisms
exclude contributions from speculative execution. For the particular case of load instructions,
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PEBS collects data such as, but are not limited to: the linear address3 referenced, the layer of the
memory hierarchy that served the reference or how many cycles did it take to reach the processor.
Seeing as these monitoring mechanisms report linear addresses from the process address space
without providing information on the physical addresses, they are consequently not helpful for
understanding issues such as memory migrations.

When exploring the address space, it is convenient to map the address space to the application
data structures in order to let the analyst match the generated results with the application code
and also explore their pattern access type. For that reason, it is not enough to capture the
referenced addresses, but it is also necessary to extend the instrumentation mechanism in order
to capture the base address and the respective sizes of the static variables and the dynamically
allocated variables. As for the static variables, the instrumentation package needs to explore the
data symbols within application binary image using the binutils library [71] in order to acquire
their name, starting address and size. Regarding the dynamic variables, the instrumentation has
to capture whenever the malloc related routines occur and then capture their input parameters
and output results to determine the starting address and size. As dynamically allocated variables
do not have a name, the tool needs to identify their allocation, which is why the tool need to
capture the call-stack reference. Finally, it is worth mentioning that some languages (such as
C and C++) allow local (stack) variables to be declared within code blocks that can only be
referenced by the inner block statements. While these references are captured by the perf tool,
the instrumentation tool does not track their creation; so, their references appear on the resulting
plot but do not have an associated variable name.

In order to demonstrate the value of this extension, the folding tool has been applied to
a modified version of the Stream benchmark. Since Stream accesses to statically allocated
variables through ordered linear accesses, the application code has been modified so that: 1)
the c array is no longer a static variable but allocated by malloc and 2) the scale kernel
loads data from pseudo-random indices from the c array. Due to modification 2), the scale
executes additional instructions and expose lesser locality of reference, so the loop trip count
in this kernel has been reduced to N/8 to compensate its duration. The resulting code looks
as the one depicted in Listing 4.2. With respect to the measurement, the main loop body was
instrumented and the application sampled at 20 Hz and captured memory references every 250k
load instructions. Regarding the execution environment, the application was executed on an
Intel R©CoreTM i7 2760QM running at 2.40 GHz on a Linux 3.11 operating system. The CoreTM i7
processor has three levels of cache with a line size of 64 bytes: level 1 are two 8-way 32 Kbyte
caches for instructions and data, level 2 consists of a 8-way unified 256 Kbyte cache and level 3
is a 12-way unified 6,144 Kbyte cache.

Listing 4.2
Modified version of the Stream benchmark.

1 for (i = 0; i < NTIMES; i++)
2 {
3 for (j = 0; j < N; j++)
4 c[j] = a[j]; /* Copy */
5 for (j = 0; j < N/8; j++)
6 b[j] = s*c[random(j)]; /* Scale */
7 for (j = 0; j < N; j++)
8 c[j] = a[j] + b[j]; /* Add */
9 for (j = 0; j < N; j++)

10 a[j] = b[j] + s*c[j]; /* Triad */
11 }

3Linear addresses also refer to logical addresses in x86-64 architectures since segmentation is generally disabled
thus creating a flat 64-bit space, according to sections 3.3.4 and 3.4.2.1 from Intel R© 64 and IA-32 Architectures Software
Developer’s Manual as of April, 2,015.
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Figure 4.26
Analysis of the modified Stream benchmark. Triple correlation time-lines for the main iteration: source code,
addresses referenced and performance.

Figure 4.26 shows the result of the extended framework. The Figure consists of three plots:
1) source code references (top), 2) address space load references (middle) and 3) performance
metrics (bottom). In the source code profile each color indicates the active routine (identified
by a label of the form X >Y [n], where Y and X refer to the active routine and its ancestor
and n indicates the most observed line). In addition, the purple dots represent a time-based
profile of the sampled code lines where the top (bottom) of the plot represents the beginning
(end) of the container source file. This plot indicates that the application progresses through
four routines and that most of the activity observed of each of these routines occurs in a tiny
amount of lines. The second plot shows the address space and their references. On this plot, the
background color alternates showing the space used by the variables (either static or dynamically
allocated) and the left and right Y-axes show the name of the variables referenced and the
address space, respectively. The dots show a time-based profile of the addresses referenced
through load instructions and their color indicate the time to solve the reference based on a
gradient that ranges from green to blue referring to low and high values, respectively. This
plot outlines several phenomena. First, as expected, the access pattern in the Scale routine to
the variable allocated in line 181 of the file stream.c (formerly c) shows a randomized access
pattern with most of the references in blue (meaning high latency). The straight lines formed by
the references in the rest of the routines denote that they progressively advance and so expose
spatial locality while the greenish color indicates that these references take less time to be served.
Second, the Copy routine accesses to the array a downwards even though the loop is written so
that the loop index goes upwards. This effect occurs because the compiler replaced the loop
with a call to memcpy (from glibc 2.14) that reverses the loop traversal, unrolls the loop body
and uses SSSE3 vector instructions. A linear regression analysis indicates that approximately
each instruction references five addresses in Copy and since SSSE3 vector instructions may load
up to 16 bytes, this translates into a 31.25% vector efficiency. Finally, the instructions within
routines Add and Triad reference two addresses per variable in average, the loaded data comes
from two independent variables (or streams) simultaneously, and their accesses go from low to
high addresses honoring the code. The third plot shows the achieved instruction rate (referenced
on the right Y-axis) within the instrumented region as well as the L1D, L2D and LLC cache misses
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per instruction (on the left Y-axis). While the reader would expect a large cache miss ratio per
instruction in Scale, they observe that the kernels behave similarly to the rest of the kernel
routines. This occurs because random() executes instructions to compute its results without
accessing the memory, so reducing the cache miss ratio per instruction.

4.7 Precise evolution of power consumption

Unlike the performance monitoring, power monitoring has proven complicated and intrusive
until the inclusion of self-power consumption monitoring capabilities into the processors such as
the RAPL infrastructure available on the Intel R©processors [43, 182]. RAPL offers a mechanism to
limit, control and monitor the power and energy use of a single processor socket. The monitoring
capabilities are accessible through the PAPI performance measurement infrastructure4 [20]
allowing performance tools to integrate the power and energy metrics seamlessly. As a result
of this integration, performance tools not only simultaneously report performance and power
measurements for their correlation, but also allow the folding mechanism to depict the fine
evolution of the power metrics.

RAPL is accessible through the processor model specific registers5,6. The RAPL interface
exposes several domains of power distributed for every processor socket and each can be
monitored and limited independently. The interface domains consist of a package domain (i.e.
the whole socket), a basic power plane (i.e. the cores of a single processor socket), a memory
domain (i.e. the directly-attached DRAM) and, optionally, additional power planes that are
commonly assigned to the integrated GPU. The difference with respect to performance tools and
according to the processor manual, the energy consumption information is updated at 1 kHz and
by default, the processor socket reports the energy measurements in multiples of 15.2 µJoules.
Another difference between performance and energy counters is that performance counters are
associated with the thread-level while the energy counters sum up all the energy used by the
entire socket.

In this thesis a serial benchmark has been designed to execute a loop that invokes two kernels
(named A and B) on a RAPL-ready processor to illustrate the differences between the accuracy of
the performance and power counters. Each kernel is designed to consume a different amount
of energy constantly and to execute at different MIPS rate, though they are designed to last
approximately the same time. The benchmark executes in conjunction with an instrumentation
package that collects performance and power metrics periodically and also at the start and
end points of each kernel. Figure 4.27a shows the achieved MIPS rate and the drained power
of the package by this benchmark on a small period of the whole benchmark execution. The
results show that the instructions counter is less sensible to noise than the power counter. More
precisely the reader may observe that iteration labeled as Iter i+2 is particularly perturbed. With
respect to the noise, the Figure shows that at some kernel changes the readings gather a 0-value,
which means that the PCU has not updated the energy measurement from the previous reading.
Superimposing the results of each iteration (what the folding process does conceptually), results
in the plot depicted in Figure 4.27b. This Figure shows that at start and end points of each kernel
(i.e. kernel A starts at 0 and ends at 60 ms and kernel B starts at 60 ms and ends at 130 ms), the
power counter presents perturbation while the instruction counter does not. The perturbation
correlates with the frequent reads done by the instrumentation package at the enter and exit
points of the kernel and the fact that the power measurements are quantified and discrete. This
conclusion derives from the fact that it is very unlikely that two consecutive instrumentation
points allow the PCU to update the power metering nor consume 15.2 µJoules.

To avoid the issues related with the quantification and discretization, the data gathering and
the folding algorithm require modifications in three different directions: reducing the number of
counter measurements, improving the outlier removal and reducing the noise.

4Available since PAPI version 5.0.
5For further reference, see section 14.9 from Intel R© 64 and IA-32 Architectures Software Developers’ Manual as of April

2,015.
6Although the use of MSR registers is restricted by the kernel, a regular user can read their contents in Linux operating

system by setting the appropriate read permissions to the /dev/cpu/*/msr files.
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Figure 4.27
Evolution of the MIPS counter (top) and the package power consumption (bottom) for a benchmark that
executes two different kernels.
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Figure 4.28
Distance-based instance filtering used in the folding mechanism. The green line refers to the curve fitting
result when using with the samples (µ) and the gray color shows the area (within µ±X×σ). Those samples
that have to be taken into account are shown in red whereas the samples that can be ignored are colored in
black.

• The data generation process emits the performance counter values at the beginning and
end of the instrumented region and the folding mechanism normalizes the performance
counters to minimize the perturbation suffered on each instance. The reduction of the
measurements is achieved by not capturing the power metrics either at the start or end
points of the instrumented region. It is therefore impossible to know exactly the total
energy consumed by the region. Suppressing the monitoring at the beginning of the
instrumented region requires interpolating the first folded sample in order to approximate
the actual consumed energy since start of the region. On the other hand, removing the
monitoring at the end of the instrumented region leaves two opportunities: estimating
the consumed energy from the last folded sample to the end of the region, or apply the
folding to absolute values (not normalized). The work in this thesis has focused on the
last alternative, i.e. not capturing the power metrics at the end of the region and apply the
folding to absolute values.

• The second direction moves toward using a stricter filtering step. A pre-filtering step has
been added to the folding mechanism before applying the curve fitting of the samples
to improve the outlier removal. This step interpolates a subset of the samples and then
uses the result as a reference so that those samples that lie within µ±X×σ are finally
used in the interpolation, as shown in Figure 4.28. The dark green line depicts the
preliminary interpolation (µ) and the light green region shows the area (the ±X×σ part
of the equation) that surrounds the interpolation. The filtering keeps the samples that lie
within the light green area (colored in black) and discards the samples that are beyond the
designated area (colored in red).

• Finally, it is worth adapting the curve fitting parameter to the counter used. When using
the Kriging interpolation, for instance, the nugget parameter determines how strict the
interpolation follows the points, therefore it acts as a low-pass filter. So as to mitigate
the noise observed in the energy counters, the folding uses a more relaxed value for the
nugget variable.

It is possible to test the modifications on the folding process as well as showing the potential
of plotting together performance and energy counters by using a hand-crafted benchmark. The
benchmark consists of four kernels that take approximately 500 million cycles each, for a total
of 76 ms in an Intel R©SandyBridge processor running at 2.6 GHz. Each kernel executes at a
different instruction rate by executing different types of instructions, including no-operations
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Figure 4.29
Study of the folded results for performance and energy measurements by using a serial benchmark that
executes four different types of kernels.

(NOP), integer operations (INT), floating-point operations (FP) and memory operations (MEM).
The output of applying the folding mechanism to both performance and energy counters into
the benchmark is shown in Figure 4.29. The Figure shows that the high instruction rate of the
no-operation kernel translates into high energy consumption at the package- and core-levels.
This relation, however, only applies to high instructions rates and not to lower instruction rates
as observed in the kernels that execute integer and floating-point instructions. Although the
integer operations execute twice as fast as the floating-point kernel; the energy consumption
of these two kernels is approximately the same. With respect to the memory bounded kernel,
note the expected increase on the L1 data cache misses and the increase in the DRAM energy
consumption and also at the core-level.

4.8 Analysis methodology for parallel applications

The folding results are very useful for detailing the performance evolution within delimited
code regions. Application developers may find these results valuable because they correlate
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performance and source code locations and help to confirm whether the performance expectations
are met. These developers easily identify application spots to study because they are familiarized
with the application code structure. However, there are two scenarios worth discussing. First, it
is becoming frequent that analysts have to report on the application performance without having
any preliminary knowledge of the application. Second, applications are becoming more and
more complex on every new version, so it is convenient to search for alternatives to analyze
applications from scratch, even for developers or external analysts. This section therefore
proposes a methodology for finely analyzing a parallel application without the need for analysts
to have prior knowledge of the application studied.

The methodology presented is based on Amdahl’s law: it is worth studying those code regions
that represent most of the execution time because the returns on improving them will be higher
where there are node-level optimization opportunities. This methodology takes advantage of
a clustering tool for trace-files to categorize the application computation regions (i.e. the code
comprised between a parallel run-time exit and its subsequent entry) using a Density-Based
clustering algorithm [63] (DBSCAN) and enriches the trace-file with the clusters found [85]. The
clustering tool assigns to each individual computation region its performance metrics derived
from the trace-file. The metrics typically used refer to the execution rate (cycles-per-instruction
[CPI], or inversely, instructions-per-cycles [IPC]) and the computational complexity (the number
of instructions executed and the ability of the algorithm to distribute the work among processes),
but these metrics can be changed at user request. In this plot, points (i.e. computing regions) that
appear on the right execute at slower pace than those located on the left and those computing
regions that are on the top execute more instructions than those located at the bottom. Then,
the DBSCAN algorithm groups the regions according to the selected metrics and according two
additional parameters that control the minimum points to form a cluster (MinPoints) and the
search radius neighborhood (Eps). The resulting clusters obtained are those subsets Ci of the
data that fulfill the following conditions:

1. For any given pair of points p ∈ Ci and q ∈ Ci it is possible to find a set of points
a1, a2, ..., an−1, an ∈ Ci , being p = a1 and q = an, where the Euclidean distance for each
pair ai , ai+1 is less or equal to Eps. This property is called density reachability.

2. |Ci | ≥ MinPoints. This is the minimum density condition to consider Ci as a cluster.

Then, the grouping information is written into the trace-file for an ulterior analysis.
The main objective of the analysis and optimization process would include moving the

computing groups to the leftmost part of the plot and possibly, to the bottom part. Since it is
unfeasible to optimize the whole application, the methodology proposed focuses on analyzing
those regions that take most of the time. To this end, the clustering tool not only groups the
computing regions, but also sorts the identified groups according to the fraction of the total time
they represent with respect to the total computation. The analyst should therefore focus on the
groups with a lower identifier and which are located in the right (or top-right) part of the plot.

Figure 4.30 shows the results for the clustering tool when applied to a parallel application.
Each point in the scatter-plot represents the execution of a computation region that is classified by
two axes: instructions (on the Y-axis) and CPI (on the X-axis). The DBSCAN algorithm analyzes
the whole cloud of points and identifies 16 groups and each group is represented using a unique
combination of color and shape in the plot. For instance, Cluster 1 (+ shape in light green)
refers to computation regions that execute approximately 2×107 instructions with an unbalanced
CPI that ranges from 1.1 to 1.7. On the other side, compute regions belonging to Cluster 2
(depicted in yellow) presents variability on both axis (instructions and CPI). Clusters 3 and 4
(red and dark green, respectively) experience a differences in terms of CPI but each instance
represents an extremely short computation region in terms of instructions. Other groups, such
as Clusters 5, 7 and 9 present a steady behavior across invocations. Variability in instructions
means that the computation regions do not always execute the same code and that is most likely
to happen due to work unbalance. Variability in CPI indicates that the region does not behave at
the same performance; and that effect is not only likely to occur if the work differs from instance
to instance, but also because the region faces different bottlenecks at each execution. In this case,
it is interesting to note that the more instructions executed, the lower CPI; so at some level, the
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Figure 4.30
Clustering results for a MPI application.

faster execution compensates for the extra work to execute. The variability, whatever the type,
influences the folding mechanism when applied to clusters because it translates into computing
regions that behave differently and typically produces curly performance counter rate results
though this effect can be reduced by increasing the outlier removal factor.

With respect to the time-line, it provides further insight of the clusters and their progression
along the execution. For instance, the Figure exhibits a region in time with two repetitive regions.
Each region consists of a sequence of the execution of a Cluster 2 (yellow) followed by several
Cluster 1 (green) compute regions interleaved with Cluster 3 (red) compute regions and ending
with Cluster 4 (dark green). The time-line also shows that the application presents a SPMD
behavior as the sequence of compute regions does not depend on the process examined.

4.9 Framework for a productive node-level performance analysis

A framework that combines the clustering tool, the folding mechanism and a set of performance
counters was created in order to implement the aforementioned methodology. Figure 4.31 shows
the data-flow of this framework. The framework detects and categorizes similar computation
regions within parallel applications and then depicts the progression of multiple performance
counters within the associated source code and optionally, the memory references. Also, and if
requested by the user, the framework combines multiple performance counters using analytical
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Figure 4.31
Data-flow of the resulting framework.

models based on performance counters to simplify the analysis of the performance metrics. This
section describes how the trace-files are generated and how these trace-files are processed by the
framework to provide its results.

4.9.1 Trace-generation

The work described in this thesis aims to support any measurement system that supports
instrumentation and sampling at the same time using a public API (see the Appendices at the
end of this thesis). As this thesis has been framed in the context of the BSC performance tools,
the current implementation of the framework receives a Paraver trace-file generated with the
Extrae instrumentation package [66]. Extrae automatically instruments the application using
the LD_PRELOAD environment variable and gathers information using PMPI [70] instrumentation
layer or other instrumentation techniques and sampling mechanisms without any further user
intervention. Once the application finishes, the instrumentation package generates a trace-file
containing performance measurements attached to parallel programming model calls and also to
sample points. Note the information collected at instrumentation and sampling points:

Instrumentation points collect time-stamped performance counter metrics that help to deter-
mine the cumulative number of events that occurred within the delimited region,

Sampling points capture time-stamped information including performance counter values, a
segment of the call-stack references and memory references.

As noted earlier, the framework reports information regarding memory references. While
Extrae captures information regarding the performance counters through PAPI, this library does
not capture the PEBS generated information7 so it is necessary to capture this information from
another tool. perf [144] is a tool that uses the performance counters subsystem in Linux and
since Linux kernel version 3.11 it benefits from PEBS or IBS to collect memory references from
either load or store instructions, but not both at the same time. This tool allocates a 1-entry
buffer to store the memory references and then samples the application at a user defined period,
so each time the processor reaches the period, it generates a memory reference record and then
perf captures this record and associates a time-stamp to it. This way, perf is capable of generating
time-stamped trace-files containing sampled memory references even though neither PEBS nor
IBS capture a time-stamp. Both (Extrae and perf) tools must use the same timing source in
order to correlate the data captured, but the perf tool uses low-level kernel timing routines and
Extrae uses the Posix compliant high precision clock routines by default. In this thesis, Extrae
was modified for use in the same low-level routines from perf by adopting a kernel module that
exposes these timing routines8 to the user-space applications, though there are other possibilities
for achieving this goal.

7As of PAPI 5.4.0.
8https://lkml.org/lkml/2013/3/14/523
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Figure 4.32
Sample of the framework results.

4.9.2 Framework data-flow

Once the user provides a trace-file containing MPI and/or OpenMP delimited regions and sampled
performance metrics, the first stage of the framework detects similar computation regions within
the application through the collected performance data using the clustering tool. The clustering
tool processes the application trace-file to detect similar computation regions and then adds
events to each computation region according to its categorization into the trace-file. Once the
regions have been delimited within the trace-file, the folding mechanism uses these new events to
obtain instantaneous metrics of the hardware counters within each computation region. This step
is particularly useful when the analyst does not know the application and chooses the sampling
frequency blindly, because it may be the case that the sampling frequency is too coarse to provide
any details within the computation region. At the end of this step, the framework produces
as many detailed reports as the combination of identified clusters and performance counters.
If the processor type on which the application ran has an associated performance model, the
framework combines the detailed metrics of a cluster into a single report in order to summarize
all the results in the lesser possible reports.

4.9.3 Example of the result

The framework has the ability to report instantaneous performance metrics or apply performance
models based on performance counters, in addition to pin-pointing to the responsible source
code and referenced addresses. The results of the framework are expressive because they
expose the evolution of the performance metrics, associate them with the source code and also
express their temporal behavior. Compared to regular profilers, or even trace-based tools, the
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framework is able to provide metrics in between instrumented points but does not summarize
the performance under a single value, which may mislead the analyst into thinking the region
behaves uniformly across the execution when in fact it does not. Figure 4.32 exemplifies the
results of the framework when applied to the application BigDFT [79]. The instruction rate is
depicted in black and referenced on the right Y-axis and several ratios with respect to performance
counters (L1D cache misses and floating-point instructions) are referenced on the left Y-axis. The
instruction rate observed is below 200 MIPS for two thirds of the computing region and spans
for two source code identified regions (green and blue). The reason for such a low MIPS rate
seems to be related to the high number of L1D cache misses, which is approximately 40% and
7% in the green and blue regions, respectively. The source code correlation points to two regions
into the code of the routines conv_kin_y_new and conv_kin_z_new. This type of outcome is
very useful for the analyst when it comes to understanding whether there are bottlenecks in the
application, and if there are any, what their nature is and where they are located.

In summary, the framework produces rich reports that no other performance tools described
in the related work provides. While the clustering algorithm automatically identifies the potential
regions to be optimized, the folding finely depicts the performance evolution of these regions
and correlates the performance with the source code. Although the folding results provide
considerable insight, the use of performance models or ratios between performance counters
allow the analyst to avoid the need for digging into the hard semantics of the performance
counters and to keep away from them by using high-level categories that are easier to understand.
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Practical uses of the framework

The consciousness of AC encompassed all of what had once been a
Universe and brooded over what was now Chaos. Step by step, it must
be done.
And AC said, “Let there be light!”
And there was light.

— Isaac Asimov, THE LAST QUESTION

Is seeing really believing? This chapter evaluates the performance (and sometimes power) of a
first-time seen broad spectrum set of applications executed on a variety of systems to demonstrate the
value of the framework and specially the folding mechanism, presented in this thesis. While some of
the applications are compiled using aggressive compiler optimization flags, the framework is capable
of pointing out the nature of the performance bottlenecks and their location within the source code.
Such a correlation allows the analyst to understand the characteristics of the application and the
reason why the node-level performance is behind the processor’s peak performance. Moreover, this
information guides the analyst to apply small modifications to correct the inefficiencies and improve
the overall performance, so, demonstrating the productivity of the framework.

5.1 Application analyses

This chapter is a compendium of several application analyses that were carried out during the
research framed in this thesis and which demonstrate the usefulness of the folding mechanism as
well as the methodology and the framework presented. Before moving on into the discussions,
note that some parts of the framework evolved during this thesis and that some facts are worth
mentioning regarding this evolution. First of all, the clustering tool groups computation regions
according to their performance parameters (typically instructions and CPI [or IPC]). However, it
may be noted that there are some cases in which the metrics include instructions and duration
(or DPI1). There are two reasons for this happening. First, at the early stages of the development
it was not possible to capture the value of the cycle counter when the sampling signal derives
from this counter because the PAPI library forbade it. Consequently, in these first analyses the
clustering tool relied on instructions and duration (instead of instructions and CPI [or IPC])

1Duration per instruction.
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when grouping the computing regions. Second, there are systems, such as the Intel Xeon Phi
processor, that only allow capturing two performance counters at a time. So, one counter gathers
instruction events always, while the other performance counter swaps periodically among other
performance counters for multiplexing purposes. With respect to the interpolation mechanism, it
also occurs that the Kriging contouring algorithm was the first available fitting implementation
during this research. Consequently, most of the analyses use this fitting algorithm; however,
there are analyses in which the fitting rely on piece-wise linear regressions.

Tables 5.1 and 5.2 show, respectively, details regarding the applications and the systems used
thorough the analyses described. All the selected applications use the MPI parallel program-
ming model and most of them are compiled using the native compiler (when available). The
applications are compiled using flags that enable aggressive optimizations but the exceptions to
this rule are BigDFT and CESM because the problem they implement does not converge using
these type of optimizations. Moreover, the applications are compiled requesting optimization
reports and also, adding debugging information into the application binary in order to translate
the call-stack information into code references. It is worth noting the size of the applications
which range from a few thousand lines of code (CGPOP) to millions lines of code (CESM). Also,
the Arts_CF application was provided by the user in the binary form without providing access to
the source code. In addition, serial benchmarks from the NAS and SPEC benchmark suites were
used to study the applicability of the combined energy and performance analysis through the
folding mechanism. With respect to the systems, the Intel-based clusters are the most dominant
(as it occurs in the Top500 list as of writing this thesis, representing more than 80% of the
listed systems). Altamira is the only system in which RAPL is enabled, so experiments focusing
on combining performance/power analysis were executed in this system. The system labeled
as Experimental served to explore the temporal analysis of memory access patterns. Owing to
the requirements of this type of analysis, it was not possible to use in-production systems and
the experiments used two computers connected over Ethernet. The first computer (Core i7)
has loaded the kernel module to provide the same clock source to perf and Extrae, but as the
computer only has four cores the remaining processes are executed on the support computer
(Xeon) to prevent the former computer from overloading.

Table 5.3 provides information regarding the execution characteristics of each application
(not including the execution of serial Benchmarks). The Table indicates on which system an
application was executed, how many processes were used for the analysis and also the sampling
frequency. These applications were executed to reproduce an in-production environment using
a representative input data-set and number of processes. The processes of the applications
have been pinned to a particular core during the experimentation, disallowing the processes
from migrating between cores. The process pinning ensures that the performance or energy
consumption does not degrade due to the movement among cores because process have always
access to the same private cache memory. With respect to the performance collection mechanism,
the applications were instrumented at MPI calls and sampled using frequencies that range from
10 to 50 Hz, ensuring negligible overhead and below gprof’s sampling frequency (100 Hz).

Regarding the metrics depicted by the framework’s results, they depend on the available
performance/energy counters to the system used. If the system used has a performance model
associated with its processor (such as MareNostrum2, which uses the IBM R©PowerPC R©970MP)
then the results honor the model. Otherwise, the results depict several meaningful performance
counters along the region to correlate performance counters. When the folding results include
the MIPS rate, the instruction execution rate is represented in black and referenced on the right
Y-axis; whereas the remaining counters use the left Y-axis. The correlation between performance
and source code is achieved using the different approaches stated in this thesis. In order to

2https://grid.ifca.es/wiki/Supercomputing/Userguide
3http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/

Configuration_node.html
4http://www.bsc.es/marenostrum-support-services/marenostrum-system-architecture
5http://www.bsc.es/marenostrum-support-services/mn3
6http://www.bsc.es/marenostrum-support-services/other-hpc-facilities/nvidia-gpu-cluster
7https://www2.cisl.ucar.edu/resources/yellowstone
8Memory sampling references are captured every 106 load (or store) instructions.
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Table 5.3
Executions’ characteristics. Summary of which applications have been executed on which systems, the
number of processes and the sampling frequency.

Application System # processes Sampling frequency
Arts_CF MareNostrum3 512 20 Hz

Juqueen 1,024 20 Hz
BigDFT Experimental 21 50 Hz8

CESM Yellowstone 570 50 Hz
MareNostrum2 24, 96, 192, 384 10 Hz

CGPOP Minotauro 24 10 Hz
Experimental 24 50 Hz8

GTC MareNostrum3 256 20 Hz
HydroC Altamira 8 50 Hz

MareNostrum2 8, 128, 256, 512 10 HzMr. Genesis Altamira 8 50 Hz
Nemo MareNostrum3 128 20 Hz
NEST Knights 120 20 Hz
PEPC Tamariu 16 10 Hz
PMEMD MareNostrum2 4, 64, 128, 256 10 Hz
Siesta Altamira 128 50 Hz

ease the reading of the plots, some of the analyses were manually changed, with the addition
of labels and arrows to present the associated source code. Finally, in the event of proposing
modifications to the source code, the framework was applied to the altered version in order to
compare the analysis between the two versions of the code. So as to ease the comparison, the
temporal dimension (X-axis) and the different metrics shown (on the Y-axes) were kept the same
within an experiment.

5.1.1 CGPOP

CGPOP [204, 203] is a proxy application of the Parallel Ocean Program [198] application.
POP is a three-dimensional ocean circulation model designed primarily for studying the ocean
climate system and a component within the Community Earth System Model (CESM) [98].
This application was analyzed in three directions using the same input. First, to understand
its performance behavior and study whether there are optimization opportunities. Second, to
examine how the application behaves on systems in which the processor shares resources such as
the Last-Level Cache (LLC). Finally, the last experiment unveils the memory access patterns for the
application data objects. The first analysis was ran in MareNostrum2, the second on MinoTauro,
and the third on the Experimental system. The two first analyses focused on executions in which
the application was using 24 MPI ranks and the instrumentation package configured to sample
the application at 10 Hz in addition to capture MPI activity. With respect to the memory access
pattern study, the application was executed twice to capture information regarding the load
and store references, with the resulting plots shown side-by-side for comparison. Regarding the
sampling periods in this last analysis, the one for collecting performance was coarser than the
gprof sampling frequency (10 vs 20 ms) whereas memory sampling references were captured
every 106 load (or store) instructions.

5.1.1.1 Analysis in MareNostrum2

Figure 5.1 shows the clustering results and the folding results for the region identified as Cluster
1. The clustering results reveal variability in terms of CPI for Cluster 1 and variability in terms
of instructions for Cluster 3. Focusing on the most time-consuming region (Cluster 1), each
invocation to this computing region executes approximately 3.3×107 instructions at 3.5 CPI.
Also, an analysis of the trace-file indicates that Cluster 1 represents up to 84.8% of the total
computation time.

105



5 - Practical uses of the framework

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 3  3.5  4  4.5  5  5.5  6

In
st

ru
ct

io
ns

CPI

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1

(a) Clustering results.

0.00

0000
0000
0000
0000
0000
0000

gh
os

t

C
od

e 
lin

e

ghost
bottom

top

      

   

cg
po

p 
>

pc
g_

ch
ro

ng
ea

r_
lin

ea
r

[5
22

]

cg
po

p 
>

pc
g_

ch
ro

ng
ea

r_
lin

ea
r 

>
m

at
ve

c
[2

71
]

cg
po

p 
>

pc
g_

ch
ro

ng
ea

r_
lin

ea
r

[5
15

]

0.00

2.00

4.00

6.00

8.00

0.00 11.39 22.77 34.16 45.54 56.93
0

200

400

600

800

1000

C
PI

 b
re

ak
do

w
n

M
IP

S

Time (ms)

Useful cycles
Icache miss

Branch mispredict
Flush penalties, etc

LSU: Translation lookup
LSU: Other reject

LSU: D-cache miss

LSU: Basic latency
FXU: Div/MSTPR/MSFPR

FXU: Basic latency
FPU: FDiv/FSqrt

FPU: Basic latency
Other stall cycles

MIPS

A B C D

(b) Detailed performance progression of Cluster 1.

Figure 5.1
Analysis of CGPOP in MareNostrum2.

With respect to the folding results, they include a profile of the source code references at the
top diagram and the evolution of the MIPS rate and the CPIStack model in the plot below. In
these results, the MIPS rate clearly identifies three phases: from the beginning to 23 milliseconds
[ms], from 23 to 52 ms and from 52 ms to the end. However, the results of the performance
model identifies four phases, which are more likely to exist according to the source code profile.
The plot includes manually added labels (A - D) into the bottom plot to easily reference each of
the phases in the text. The instruction pace ranges from 200 (in phases A, B and D) to 800 MIPS
(in phase C), representing from 2%, up to 7% of the chip peak performance. In general, the
primary cause for such low MIPS rate is due to the stalls caused in the load-store unit (LSU)
and more precisely because of the data-cache misses as well as load/store instruction rejection.
Still, the nature of the bottlenecks along phases varies. For instance, phases B and D expose an
increase in the data-cache misses, in the FPU basic latency and also in terms of TLB misses.

The folding results show that the region occurs in the routine pcg_chrongear_linear, more
precisely in lines 504-526 of file solvers.F90. The left column of Table 5.4 shows the code
related to the delimited phases. Phase A involves the loop (lines 519-526) that is responsible
for computing the solution and the residual for the next step. Phase B correlates with the loops
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Figure 5.2
Analysis of the modified version of CGPOP in MareNostrum2.

in lines 504-511, where the first loop computes two reductions (on sumN1 and sumN3) and a
vector multiplication and the second loop computes a vector multiplication. Phase C calculates
the matrix-vector product where the matrix is stored in Compressed-Sparse-Row format through
the matvec call in line 512. Afterwards, the application reduces the result of the matrix-vector
product in phase D (on the variable sumN2) in the loop in lines 514-516. Also, the compiler
optimization report shows that the compiler has unrolled four times the loops in lines 504-
508 (phase B) and 514-516 (phase D). The compiler also states that these loops cannot take
advantage of vectorization because the operands, which are 64-bits long, are not suitable for
using the Altivec instruction set. Finally, dependencies do not allow improvements to either
the performance of the calculation of the solution and residual (phase A) or the matrix-vector
product (phase C). As a result, the reductions can be computed as the data are being generated.

In order to shorten the execution time, the code is altered so that the matvec subroutine
also computes the reduction, as described in the original loop at lines 514-516 by merging the
two loops. The idea behind this modification is to combine two regions with different types of
bottlenecks to reduce the pressure on the affected units so that they have more time to respond.
Further inspection of the code shows that vector Z (which ranges from 1 to n) is divided into
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Table 5.5
Execution time for the CGPOP application using larger data sets.

# processes Time w/o opt (s) Time w/ opt (s) Improvement
96 686 636 7.2%

192 417 387 7.2%
384 263 262 <0.1%

two parts and each is treated differently. The first part is kept within indices 1 to nActive,
whereas the second part is stored within indices nActive+1 and n. This allows the loop in lines
504-511 to be embedded into the body of the loop found in lines 519-526 but requires adding the
appropriate conditionals and a prologue before the iter_loop loop executes, so as to maintain
the semantics of the original code. Again, this change leads to intersperse the floating-point
instructions in between the loop traversal so that the pressure on the FPU decreases as there are
other instructions to execute before using its results. Table 5.4 summarizes all these changes
applied to the source code by comparing the original source code (on the left) and the modified
source code (on the right).

Figure 5.2 shows the results for the clustering and folding tools after applying the afore-
mentioned modifications. The clustering results reveal that one of the computation groups
merged with others. Since the changes were applied to Cluster 1, it is very likely that the original
Clusters 1 and 2 merged together as a result of closer performance metrics. The analysis of
the folding results show only two phases (A and B) that last 23 and 27 ms and run at 350 and
860 MIPS (which corresponds to 3% and 7.5% of the peak performance), respectively. These
results indicate that the original phases B and D were integrated into the original phases A and
C. With all these improvements, the overall duration of the region decreased by 6 ms and the
application ran 10% faster that in its original version.

The aforementioned optimizations have shown benefits on CGPOP by improving the serial
node performance when using a reduced number of MPI processes, but it is worth checking
whether these modifications are valuable for larger core count executions. Table 5.5 shows a
comparison of the wall-clock time for the best of three runs of the original and modified code
using a number of processes that represent a typical production workload in MareNostrum2.
The Table outlines that the optimized version of CGPOP outperforms the original version in
7.2% when using 96 and 192 processes but does not improve it when executing on 384 tasks.
Although the parallel scalability is outside the topic of this thesis, a preliminary analysis of the
execution using 384 processes that the application invests about 110 seconds in the initialization
phase. Also, approximately 18% and 22% of the total time is devoted to MPI_Waitall and
MPI_Allreduce in the main computation phase.

5.1.1.2 Analysis on the impact of shared resources

Nowadays, it is very common for a single processor to contain several computation units (namely,
cores) that share some of the chip resources. The most notable example is the LLC, which is the
last-standing cache in the path to the main memory. Sharing resources poses some difficulties
when analyzing applications because it is unclear during execution how resources distribute and
interact among the processes that run on the system. This section serves as a little appendix to
show how this type of analysis could be conducted applying the folding mechanism on CGPOP.

While CGPOP is an SPMD application because each MPI process shares the same application
code, the input data does not uniformly distribute among processes. This results in an unbalanced
run in which some processes finish earlier and need to wait for the remaining processes. The
unbalance occurs systematically during the whole application execution and remains constant
along time because CGPOP does not implement any adaptive work balance mechanism. Therefore,
the clustering tool groups unbalanced computation regions so that each unbalanced group
represents a single MPI process (or core).

In order to proceed with this experiment, the original version of CGPOP was executed using
24 MPI processes on four nodes of Minotauro. Each node of Minotauro consists of two hexa-core
chips and each chip has three levels of cache and access to main memory. The CGPOP processes
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Core 1
Core 2
Core 3
Core 4
Core 5
Core 6

Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 2
Cluster 1

Figure 5.3
Periodic work unbalance in CGPOP. The time-line shows in color the clusters along time and has been
extended with labels that identify clusters and the cores where the activity run.

were pinned to the cores of one of the two chips within the node. This way of executing the
application not only keeps all the processes accessing to the same private cache memory but also
ensures that the other chip does not compete to access to the memory bus. With respect to the
cache structures, the first level consists of independent 32 Kbyte instruction and data caches per
core. The second level is a 256 Kbyte unified cache per core. The Last-Level Cache (LLC, L3) is a
unified cache of 12,288 Kbyte shared among all the cores and the maximum memory bandwidth
is rated at 32 GB/s9. Figure 5.3 shows resulting trace-file obtained for this experiment. The
Figure consists of a time-line showing the work unbalance, the resulting clusters, as well as the
core pinned to a particular MPI rank (and therefore, cluster).

Figures 5.4 and 5.5 shows the folding results of the six cores of one node. More specifically,
Figure 5.4 represents the detailed evolution of the instruction rate and the instruction break-
down along the region. On the other hand, Figure 5.5 shows the progression of the MIPS rate
and the ratio of cache misses per instruction at different levels of the memory hierarchy. In the
Figures, the plots are sorted according to their required time to execute. The plot at the top
(bottom) shows the core/cluster that takes the less (most) time to execute.

An exploration of the trace-file indicates that these clusters occur immediately after an
MPI_Allreduce invoked from the routine global_sum. This MPI operation involves all the
processes, so these clusters are likely to start at the same time after the MPI call finishes because
the way this MPI call is implemented. All the plots use the time-scale of the longest computation
region (Cluster 1, executed in core 6) so as to ease the comparison. The plots are marked
manually with labels (A to E) to denote five points of interest regarding the interaction between
cores. The plots also include a label that represents the execution of the matvec routine, which
in turn, exposes a uniform behavior with respect to the instruction decomposition.

Point A in Clusters 4, 5 and 6 (which execute on cores 2, 3, 4, respectively) experience a subtle
increase on the instruction rate according to Figures 5.4a, 5.4b and 5.4c. This increase occurs
within the matvec routine, which has a constant instruction break-down along its execution so
the performance improvement is unlikely to occur because a change in the application. Notice
that point A also represents the time when Cluster 1 finishes executing the code with a portion
of store instructions (Figure 5.4f) actively using all the cache levels (as seen in Figure 5.5f).
Therefore, the stores executed in core 6 alter (or pollute) the shared-cache among all cores.

It is worth remembering that the computing regions finish when the core invokes an MPI
call. In this case, CGPOP establishes communication to other processes by invoking MPI_Irecv,
MPI_Isend and waiting for the completion of these messages through MPI_Waitall. Points
B, C, D and E represent the times when cores four, five, two and one finish their computing
region, respectively. At each of these points, one core starts waiting and stalls the processor until
data arrives from the network; so freeing up the resources it had allocated. For instance, when
Cluster 6 finishes (point B), the instruction rate on the remaining cores increase without any
representative change on their work. The very same behavior is repeated at points C, D and E.
When the two last executing cores (five and six) run alone (at point E), their instruction rate in
matvec double the instruction rate observed when the routine begins. In fact, the misses in LLC

9According to the specifications of the processor indicated in: http://ark.intel.com/products/52581/
Intel-Xeon-Processor-E5649-12M-Cache-2_53-GHz-5_86-GTs-Intel-QPI - Last accessed March, 2015.
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(c) Core 2 (Cluster 4).
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(d) Core 1 (Cluster 3).
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(e) Core 5 (Cluster 2).
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(f) Core 6 (Cluster 1).

Figure 5.4
MIPS rate and architecture impact model on each core of the hexa-core chip. The clusters/cores are sorted
according to their duration (shortest at the top).
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(b) Core 3 (Cluster 5).
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(c) Core 2 (Cluster 4).
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(e) Core 5 (Cluster 2).
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(f) Core 6 (Cluster 1).

Figure 5.5
MIPS rate and architecture impact model on each core of the hexa-core chip. The clusters/cores are sorted
according to their duration (shortest at the top).
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Aggregated and average MIPS achieved depending on the active cores executing matvec.
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Figure 5.7
Aggregated and average MIPS achieved depending on the active cores executing matvec.

(but not in L1D or L2D) per instruction ratio start decreasing from point C and reach a significant
reduction at point E, where only two cores share the LLC.

A comparison between cores allows further analyses point out the interactions between the
processes. Figure 5.6 shows both the accumulated and average (plus standard deviation) MIPS
according to the active cores when executing matvec simultaneously. According to the plot, the
more cores that execute the routine, the less the average MIPS rate achieved per core, even
though the accumulated instruction rate increases. The most significant change occurs when
increasing the active cores from two to three. The reader may wonder why the performance
achieved when one core a single core does not increase further. The case studied here shows that
the two processes with more work take approximately the same amount of time to execute; so,
the most unbalanced process does not have enough time to take benefit from all the resources
when running alone.

On the other hand, Figure 5.7 shows the memory bandwidth used. The plot shows the
accumulated and average (plus standard deviation) bandwidth to memory according to the
active cores when executing matvec concurrently. The used bandwidth at a given time t is
calculated according to:

BW (t) =
act ivecores
∑

c=1

LLCMissRate(t, c)×CacheLine (5.1)
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Figure 5.8
Source code, performance and memory references analysis for the CGPOP application.

where LLCMissRate(t, c) refers to the LLC miss rate at given t observed in core c and CacheLine is
64 bytes. For comparison purposes, the plot additionally shows the memory bandwidth reported
by the best of five runs of the Stream benchmark [141] using from one to six threads on a chip
and also the theoretical maximum memory bandwidth. The results of CGPOP show an increase
of the memory bandwidth used with a significant increase when increasing the active cores from
two to three, as it inversely occurred in the MIPS rate. The plot also shows that the system is
capable of delivering data from memory to the processor at a much higher rate. In conclusion,
the analysis presented shows that sharing the cache (or in other words, reducing the cache per
core) penalizes the application performance while sharing the bandwidth to main memory does
not interfere with the application performance.

5.1.1.3 Analysis of memory access patterns

Figure 5.8 shows the obtained plots depicting the load and store references for the most time-
consuming region of this execution. Each plot has its own address space depending on the
accessed variables. Note too that the store memory references are shown in green because
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in this architecture the store instructions are inserted into a store buffer and when the store
instructions go to memory they are no longer under control of PEBS. The Figure indicates that
the region faces two routines: pcg_chrongear_linear (in red) and matvec (from the matrix
module, in green), but the plots have been manually extended by adding labels (A-D) to ease the
referencing. With respect to the load instructions within the data structures, it may be observed
that phase C accesses to variables z and a (from the matrix module). The plot shows that the
load references to variable a are partitioned into three disjoint portions that are accessed linearly
and simultaneously by the processor. The analysis of the source code shows that this variable
represents a sparse row matrix that includes three arrays (one for double precision values and
two for integer indices). Phase A shows that the references require more time to be served (blue
colored) and this is also related to the highest ratio of cache misses (1 out of every 14 instructions
miss at L1D). The code in this phase loads data from six arrays (x_linear, s, r, z, q and az) and
stores data to four arrays (x_linear, s, r and q). The code of the application was modified for
the purposes of using an array of structures (AoS) in order to check whether this improved the
performance. However, after creating a small test case that resembles the application behavior
the timings indicate that using AoS does not offer performance improvements because the LLC
miss ratio and the number of instructions doubles. With respect to the stores (Figure 5.8b),
the results show several effects. First, phase B generates the data for the array z and is used
immediately afterwards in phase C. Second, the a variable keeps unchanged during this region.
Finally, phase D does not expose stores because it reduces a vector into a scalar (sumN2).

5.1.2 PMEMD

PMEMD is an application that belongs to the AMBER suite [214, 184]. AMBER is a set of
molecular mechanical force fields for the simulation of bio-molecules and a package of molecular
simulation programs. The scatter-plot shown in Figure 5.9a depicts the grouping of the compu-
tation regions of the application when executed in MareNostrum2 using 4 MPI processes. The
obtained results indicate that all clusters present variability in terms of either instructions or CPI.
In average, each execution of Cluster 1 commits 1.1×108 instructions running at 1.75 CPI. The
analysis of the trace-file extended with clusters information indicates that Cluster 1 takes up to
71.3% of the execution time.

Figure 5.9b shows the folded results for Cluster 1 combining the MIPS rate and breaking
down the CPI according to the CPIstack model for the IBM PowerPC 970MP processor. The result
in the Figure shows four phases (manually labeled as A-D in the plot) according to the resulting
CPI break-down. The most dominant phase in the computation region is phase B, which runs
at 1,400 MIPS (about 12.1% of the maximum rate) and lasts 58 ms approximately. The CPI
break-down of this phase is uniform across time and the FPU is the execution unit that accounts
most part of the CPI. According to the results, multi-cycle floating-point operations (labeled as
FPU: FDiv/FSqrt) and the latency of the FPU units (labeled as FPU: Basic latency) are responsible
for one of the total CPI (1.7) achieved within this phase.

The framework identifies that the code executed in this phase refers to the subroutine
pairs_calc_efv and more precisely by the loop contained in lines 691-748 of file pme_-
direct.f90. The report produced by the compiler shows that the loop contains non-vectorizable
reductions but the compiler unrolled it four times. An analysis of the code of the loop shows that
it contains dependencies on a square root and its inverse at the very beginning of the loop body
as shown in the left column of Table 5.6. According to the results in Figure 5.9b, the analyst has
to address the latency on the FPU to reduce the total CPI in this phase to increase the instruction
rate. In order to reduce the pressure on the FPU, the memoization technique is suggested so
as to increase the distance between the data generated by the FPU and its use. To apply this
technique it is necessary to create temporal lookup tables to store the pre-computed values of
the long latency operations and calculate these values before executing the conflicting loop.
More precisely, two lookup tables called sqrt_delr2 and inv_delr2 of vec_max size are created.
These tables are accessed in the loop in lines 685-690 to store the pre-computed square root
and the inverse of the square root of the element being accessed. The right column of Table 5.6
shows the summarized changes applied the source code. Although this solution increases the
distance between the floating-point operations, it has three drawbacks a priori: an increase in
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Figure 5.9
Analysis of PMEMD.
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Table 5.7
Execution time for the PMEMD application using larger data sets.

# processes Time w/o opt (s) Time w/ opt (s) Improvement
64 929 824 11.3%

128 635 563 11.3%
256 631 560 11.2%

the total executed instructions, an increase in the number of accesses to the memory hierarchy
and a higher memory consumption. Regarding the memory accesses, the folding results shows
that the original application do not have issues regarding the LSU; so, there is room to stress
this functional unit. With respect to memory consumption, creating the buffers does not pose a
problem because the new structures are small in size (the value of vec_max is 128).

The plot depicted in Figure 5.9c shows the result when applying the stated transformation.
The results indicate a reduction of the overall CPI to a value close 1 when it was about 1.7 for
the analyzed phase. According to the results, there is a reduction in the FPU that results into a
higher MIPS rate (from 1,400 to 2,600), but still far (22.6%) from the peak rate. As expected,
the modification applied increases the number of instructions executed by 8%. However, the
duration of the computation region is 36.7% shorter and the overall gain is approximately 26%.

Although the analysis of the application shows benefits at small scale, it is interesting to study
whether the suggested modifications impact executions with larger core-count. Table 5.7 tabulate
the best wall-clock timing measurements obtained from three runs of PMEMD on MareNostrum2
using a representative large input. The results show two effects. First, the changes proposed
result in a faster version with a constant increase (11.3%), regardless of the number of MPI tasks
used during the execution. And second, despite the improvement on the serial-node performance,
the application does not scale at 256 processes.

5.1.3 Mr. Genesis

Mr. Genesis [150] employs a finite volume approach in order to evolve the Relativistic Euler
equations combined with a Constrained Transport scheme to account for the divergence free
evolution of the dynamically included magnetic field. The application was executed in MareNos-
trum2 and the clustering tool reported that the application had three types of computing regions
according to their performance, as depicted in the resulting scatter-plot in Figure 5.10a. Cluster
1 represents up to 87% of the application execution time and each instance of this computing
region executes an average of 9.7×108 instructions running at 1.4 CPI.

The plot shown in Figure 5.10b illustrates the CPI break-down evolution for Cluster 1, as well
as the MIPS rate. These results obtained show four distinguishable phases (manually labeled A
to D) according to the instruction rate achieved. Phases A and C show the best instruction rate
and run approximately at 3,000 MIPS (about 26% of the peak rate), whereas phases B and D run
close to 100 and 500 MIPS, respectively. The CPI achieved in phase B is typically above 20 with
two peaks, the slowest of which achieves a CPI value of 90. The CPI break-down in this phase
is clearly dominated by TLB misses (labeled as LSU: Translation lookup) and by the latency of
the memory hierarchy (labeled as LSU: Basic latency). With respect to the source code, phase A
refers to the sweepx routine, phases B and C correlate with routine sweepy and phase D points
to the routine step.

Since phase B is the longest and presents the worst performance within the region, the analyst
should focus it to improve the application performance. The folding results correlate phase B
with the routine sweepy, more precisely with the 2D loop in lines 410-421 of file sweep.f. This
loop, as shown in the left column of Table 5.8, performs matrix transpositions in the loop in which
the data are read from two 3D matrices named primit and conser and stored into multiple
2D matrices. In addition, it includes Fortran90 intrinsic functions that transpose data from
tracer and trflux into tracerT and trfluxT. Each cell of the 3D matrices points to five-field
structures, so the sequential accesses to these structures ensure spatial locality. However, the
store instructions do not exploit spatial locality because of the construction of the loop.
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Figure 5.10
Analysis of Mr. Genesis.
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Table 5.9
Execution time for the Mr. Genesis application using larger data sets.

# processes Time w/o opt (s) Time w/ opt (s) Improvement
128 3,036 2,001 34.6%
256 1,332 815 38.8%
512 526 353 32.8%

The compiler reports that lines 415 and 416 cannot use vector instructions for two reasons.
First and most important, the elements accessed by the statements on these lines are 64-bits
long (i.e. they are double precision floating-point). This type of data is unsupported by the
vector instruction set of the processor, which only supports 32-bit floating-point arithmetic.
Second, the intrinsic functions reference the memory with non-vectorizable alignments, probably
because these buffers are marked in the source code as allocatable. According to the results
shown in the plot and the observed application source code, the loop interchange technique
is used to improve the data locality on the store instructions. It is worth mentioning that the
optimization option -O3 on the IBM XL compiler automatically turns on the -qhot=level=0
option. This optimization flag enables high-order transformations such as early distribution,
loop interchange and loop tiling to the optimizations applied; however, there is no reference in
the optimization report regarding the application of the loop interchange technique. The loop
interchange optimization cannot be applied indiscriminately and requires an analysis of the data
dependencies. For the case presented here, it is safe to apply this optimization technique, though.
Applying loop interchange in the 2D loop, as depicted in the right column of Table 5.8 only
reduces the locality on the load instructions in the outer loop. However, this modification does
not improve the locality at the inner loop because the access to the each field of the structure
preserves its spatial locality.

Figure 5.10c shows the results of the framework for the transformed version of the code.
Notice that the duration of the region decreases from 592.69 ms to 386.09 ms, which is
approximately 34% of reduction and the whole application runs 30% faster than the baseline.
The decrease on the execution time comes from the improvement on phase B, which now runs at
500 MIPS (i.e. a CPI close to 4). Still the main stall in this region is caused by the load/store
unit though it is significantly less after applying the modifications.

As in earlier analyses, it is worth evaluating whether these changes still improve executions
using a larger number of processes. Table 5.9 compares the elapsed time using a fixed input
with and without applying the aforesaid such changes to the code. As presented in the Table,
the optimized version of Mr. Genesis shows a improvement compared to the original version
and shows improvements that range from 32% to 38%. It is also worth noting that executing
Mr. Genesis with a fixed input shows a super-linear speed-up when increasing the number of
processes using either the optimized or the unmodified versions. This effect is likely to indicate
that the more processors that execute the application, the more application working set fits in
the cache memory.

5.1.4 BigDFT

BigDFT [79] is a massively parallel electronic structure code based on density functional the-
ories (DFT) using a wavelet basis set. Wavelets form a real space basis set distributed on an
adaptive mesh (two levels of resolution in the BigDFT implementation). BigDFT was analyzed
in two directions: by exploring its performance behavior and study performance optimizations
possibilities and by studying the memory access patterns for the application data objects. The
first analysis was made in Juqueen using 1,024 MPI processes and the instrumentation package
was configured for the application at 10 Hz in addition to capture the MPI activity. The second
analysis was executed in the Experimental system using 21 MPI processes and used the combined
Extrae and perf monitoring system to collect information from the MPI activity and the memory
references. Because of the difference in the system scale size, the application input was different
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for each execution. Regarding the sampling periods in the last analysis, the sampling period is set
to 50 Hz and memory sampling references were captured every 106 load (or store) instructions.

5.1.4.1 Analysis in Juqueen

Figure 5.11a shows the clustering scatter-plot that groups the most time-consuming computing re-
gions of this execution. Each invocation to the region labeled as Cluster 1 executes approximately
3.2×109 instructions and executes at 3.8 CPI (that translates into 7,588 ms per invocation), for a
47% of the total execution time. The folding mechanism depicts the internal evolution of the
instruction rate and the ratio between the instruction counter and the L1D miss rates within
Cluster 1. The result, illustrated in Figure 5.11c, indicates that the user code region faces seven
phases in terms of MIPS (labeled as Phase 1-7 within the plot). Phases 2-7 represent more than
the 90% of the whole region and run between 370 and 430 MIPS, which is approximately 7% of
the peak core performance. The ratio between the MIPS rate and the L1D miss rate reveals that
approximately 7% of the instructions on phases 3, 5 and 7 miss in L1D while circa 4% of the
instructions on phases 2, 4 and 6 miss in L1D.

With respect to the source code responsible for such bad performance, the CUBE visualization
points out the source code locations of these bottlenecks as shown in Figure 5.11b. On the
one hand, the annotations on the tool pinpoint that phases 2, 4 and, 6 correlate with the loop
in lines 387-397 of file convolut_common_slab.f90 within the convolut_kinetic_slab_sdc
routine three times. On the other hand, phases 3, 5 and 7, refer to the loop in lines 427-437
of the aforementioned file and routine. The source code shows that the code blamed is a
nested loop. These loops are written in such a way that they are executed consecutively, which
indicates that there is an external loop (or sequence or instructions) that invokes the routine
convolut_kinetic_slab_sdc.

An analysis of the loops pointed out by the CUBE visualization indicates that the loop in lines
427-437 does not exploit the data locality because it does not access to contiguous elements
of matrix x. To improve the memory hierarchy efficiency and therefore the performance, the
loops indices are swapped to exploit the cache locality better. As a consequence of the loop
reordering, the resulting code requires additional statements to maintain the original semantics
of the application. More precisely, the original order of the loops was written as {i2, i1, i3,
l} and the changed loop order becomes {i3, l, i2, i1}. Since the loop in lines 387-397
shows a similar code with the same diagnostic, an analogous solution applies.

So as to proceed with a comparative analysis, the same analysis was applied to the application
after applying the preceding changes. The results of the new analysis reveal that the duration of
this computing region had decreased from 7,588 to 4,945 ms despite the increase in the number
of instructions executed (from 3.2×109 to 3.7×109). The computing region was therefore
executed at a faster instruction rate. In terms of the clustering scatter-plot (not shown), the
computing region has moved a bit upwards and significantly to the left. Figure 5.11d shows
the result of the folding mechanism when applied to the modified binary and using the same
time-scale as in the original results. The Figure reveals that phases 2, 4 and 6, improved their
L1D use because less than 2% of the instructions miss at this level of the memory hierarchy.
The improved use of the memory hierarchy resulted in a performance boost that increased
the instruction rate from 430 to 880 MIPS. Similarly, phases 3, 5 and 7, also experienced a
performance increase running approximately at 660 MIPS and where 5% of the instructions
miss in L1D. Overall, the application execution time was cut by 14.6% when applying the stated
modifications.

5.1.4.2 Analysis of memory access patterns

Figure 5.12 shows the collocated plots depicting the source code information observed, the
addresses referenced (either by loads or stores) and the performance achieved for a region of
the application that corresponds to approximately 16% of the application execution time. The
time-based results indicate that the region consists of two iterations at all levels (source code,
references and performance) and the plots have been manually modified to identify the iterations
as well as the phases (routines) within the iterations. The results indicate that the load references
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Figure 5.11
Analysis of BigDFT.

123



5 - Practical uses of the framework

0.00

000000000000000000000000000000000000000000000000000000000000

gh
os

t

ghost

C
ode line

A
ddress space

M
IPS

bottom

top

...
_p

ut
_t

o_
ze

ro
_d

ou
bl

e_
2 

>
ra

ze
ro

_ 
[2

6]

co
m

b_
gr

ow
_c

_ 
>

co
m

b_
ro

t_
gr

ow
_l

oc
_s

qu
ar

e_
[2

00
]

co
m

b_
gr

ow
_c

_ 
>

co
m

b_
ro

t_
gr

ow
_l

oc
_s

qu
ar

e_
3_

[3
64

]

da
ub

_t
o_

is
f_

 >
co

m
b_

gr
ow

_t
re

e_
[1

03
]

da
ub

_t
o_

is
f_

 >
co

m
b_

ro
t_

gr
ow

_l
oc

_3
_

[6
4]

lo
ca

l_
pa

rt
ia

l_
de

ns
it

y_
 [

43
3]

co
m

b_
gr

ow
_c

_ 
>

co
m

b_
ro

t_
gr

ow
_l

oc
_s

qu
ar

e_
[1

95
]

co
m

b_
gr

ow
_c

_ 
>

co
m

b_
ro

t_
gr

ow
_l

oc
_s

qu
ar

e_
3_

[3
64

]

da
ub

_t
o_

is
f_

 >
co

m
b_

gr
ow

_t
re

e_
[1

03
]

da
ub

_t
o_

is
f_

 >
co

m
b_

ro
t_

gr
ow

_l
oc

_3
_

[6
4]

lo
ca

l_
pa

rt
ia

l_
de

ns
it

y_
 [

43
3]

7f3659d528f2

7f365af381d4

7f365c11dab7

7f365d303399

412__sumrho.f90

1008__plotting.f90

000003760cf0

000004b6c8c1

000005f78493

000007384064

00000878fc36

000009b9b808

170_.._new.f90
176_.._new.f90

1419_xcenergy.f90
1118_daubisf.f90
1119_daubisf.f90

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.00 52.11 104.22 156.34 208.45 260.56
0

1000

2000

3000

4000

5000

6000

C
ou

nt
er

 r
at

io
 p

er
 in

st
ru

ct
io

n

M
IP

S

Time (ms)

Iteration 1 Iteration 2
A B C D E F

L1D L2D LLC MIPS

(a) Load references.

0.00

000000000000000000000000000000000000000000000000000000000000

gh
os

t

ghost

C
ode line

A
ddress space

M
IPS

bottom

top

...
_p

ut
_t

o_
ze

ro
_d

ou
bl

e_
2 

>
ra

ze
ro

_ 
[2

6]

co
m

b_
gr

ow
_c

_ 
>

co
m

b_
ro

t_
gr

ow
_l

oc
_s

qu
ar

e_
[1

42
]

co
m

b_
gr

ow
_c

_ 
>

co
m

b_
ro

t_
gr

ow
_l

oc
_s

qu
ar

e_
3_

[3
70

]

da
ub

_t
o_

is
f_

 >
co

m
b_

gr
ow

_t
re

e_
[1

03
]

da
ub

_t
o_

is
f_

 >
co

m
b_

ro
t_

gr
ow

_l
oc

_3
_

[6
4]

lo
ca

l_
pa

rt
ia

l_
de

ns
it

y_
 [

43
3]

co
m

b_
gr

ow
_c

_ 
>

co
m

b_
ro

t_
gr

ow
_l

oc
_s

qu
ar

e_
[1

42
]

co
m

b_
gr

ow
_c

_ 
>

co
m

b_
ro

t_
gr

ow
_l

oc
_s

qu
ar

e_
3_

[3
63

]

da
ub

_t
o_

is
f_

 >
co

m
b_

gr
ow

_t
re

e_
[1

03
]

da
ub

_t
o_

is
f_

 >
co

m
b_

ro
t_

gr
ow

_l
oc

_3
_

[5
8]

lo
ca

l_
pa

rt
ia

l_
de

ns
it

y_
 [

43
3]

7f7580ab2c25

7f7581c98450

7f7582e7dc7c

1008__plotting.f90

000005236830

0000069f2b76

0000081aeebc

00000996b203

00000b127549

00000c8e3890

96__daubisf.f90

97__daubisf.f9098__daubisf.f9099__daubisf.f90
100__daubisf.f90

101__daubisf.f90
1117__daubisf.f90
1118__daubisf.f90

1119__daubisf.f90

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.00 52.59 105.17 157.76 210.34 262.93
0

1000

2000

3000

4000

5000

6000

C
ou

nt
er

 r
at

io
 p

er
 in

st
ru

ct
io

n

M
IP

S

Time (ms)

Iteration 1 Iteration 2
A B C D E F

L1D L2D LLC MIPS
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Figure 5.12
Source code, performance and memory references analysis for the BigDFT application.
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expose better spatial locality than the store references and that phase E shows a random access
behavior in the load references and these references take more time to be served. Also, phase A
traverses completely the array allocated in plotting.f90 (line 1,008) to store values on it and
that happens immediately after executing the razero routine (depicted in green) which may be
redundant because there are not so many in between.

This report also shows some insight into the chances of making this region parallel using a
task-based programming model. For instance, phases B and D store data in the data allocated
in daubis.f90 (line 1,118) and these data are used in phases C and E, begetting true (RAW)
dependencies between these pair of phases. Also, phases B and D load and store data from the re-
gion allocated in daubis.f90 (line 1,119) causing true (RAW) and output (WAW) dependencies
between these phases. Finally, phase F mainly depends on the data located by plotting.f90
(line 1,008) which is written by phases C and E. Due to the described dependencies, only phases
A and B might safely run in parallel.

5.1.5 GTC

GTC [129] is a parallel, particle-in-cell code for turbulence simulation in support of the burning
plasma experiment10. The application was monitored on MareNostrum3 using a 20 Hz sampling
frequency when running on 256 MPI processes. Figure 5.13a illustrates the computing regions
grouped by their performance metrics. Note that the computing regions labeled as Cluster 1
account for a 28% of the total time. The region experiments some variability with respect to
their CPI (ranging from 2.2 to 2.35) but the number of instructions executed is almost constant.

The results of the folding when applied to this region, shown in Figure 5.13c, revealed the
existence of four different phases in terms of MIPS. Phase 2 is the longest and takes approximately
61 ms to execute at 800 MIPS, which is 6% of the peak core performance. It may be observed
that there is a sudden increase on the miss rates at all cache levels when the application starts
this phase. For instance, the ratio between the MIPS and the LLC miss rates points out that one
out of twenty instructions (5%) misses at LLC.

The performance results are complemented by correlating the source code through CUBE
visualizer in a screen-shot depicted in Figure 5.13b displaying a partial view of the loop responsi-
ble for the performance observed in Phase 2. This loop ranges from lines 131 to 173 within file
pushe.F90 in the routine pushe. The Figure indicates that lines 142, 158 and, 159 are the most
observed. These lines contain statements that access to the gradphi matrix through indirections
(jtgc0 for line 142 and jtgc1 for lines 158 and 159). The compiler reported that the loop
could not take advantage of vector instructions because the subscript was too complex in several
of the statements of the loop. Still, there was an opportunity to reduce the cache misses in
this region of code by prefetching data from memory before its use (through the mm_prefetch
instruction). The code was modified to include two prefetch instructions to bring data into ache
data referenced by gradphi in the beginning of the aforesaid loop two prefetch instructions.

Figure 5.13d illustrates the results of the execution of the tuned application using the same
time-scale as in the original Cluster 1. The results of this new analysis show the addition of the
prefetch instructions resulted in a reduction of the loop duration by 18% (reduced from 61 to
50 ms). The improvement resulted from the increase in the instruction rate to 955 MIPS, though
the LLC miss ratio over instructions did not change substantially. As a result of implementing
these changes, the duration of the region was reduced by 11.7% compared to the original
execution and the overall execution took 6.2% less time to finish.

5.1.6 Arts_CF

Arts_CF implements a variable density, conservative and arbitrarily high order finite difference
method to simulate flows in complex geometries with cylindrical or cartesian non-uniform
meshes [46]. Although the application was provided by the user in binary form in conjunction
with an input, the instrumentation package allows the the necessary information to be captured
for its use by the framework. This application ran using 512 processes in MareNostrum3 and the

10http://www.iter.org
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Figure 5.13
Analysis of GTC.
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clustering tool detected up to 12 computing regions, as depicted in Figure 5.14a. Several of the
identified clusters elongate through the X-axis indicating variability in terms of CPI.

The most time-consuming region (Cluster 1), which characterizes approximately 19.5% of
the total execution time, ran at an average 7,500 MIPS. The folding results of this region (not
shown) indicate a long phase running at 8,000 MIPS (more than 60% of the processor peak
performance). Although there is a gap to reach the processor’s peak performance, practice
shows that the achieved performance is good enough and it is unlikely to offer optimization
opportunities by applying simple code transformations. So this analysis focus on the two
following most time-consuming computing regions (i.e. Clusters 2 and 3).

For instance, Cluster 3 represents up to 17.6% of the application execution time. Figure 5.14b
shows the correlation of the call-stack information and several counter ratios (including cache
misses at several levels, branch mispredictions and proportion of floating-point instructions).
The Figure points out that the computing region executes three phases during its execution and
the code line profile indicates that a small number of lines are responsible for the performance
behavior observed. The first phase, colored in red, is mainly devoted to line 667 within the
routine scalar_weno5_coeff, lasts approximately 30 ms and runs at 2,600 MIPS (less than 20%
of the peak performance). The second phase, depicted in green, runs for 26 ms at 7,300 MIPS
and correlates with line 722 in the routine scalar_weno5_residual and then code progresses
to the line 773 where the performance increases to 8,900 MIPS. The last phase, colored in yellow,
executes for 3 ms while running at 4,800 MIPS and it is associated with the routine update_div.

The analysis of the performance metrics in the first phase shows that neither the cache
hierarchy nor the branch predictor is limiting the performance. Less than 2% of the instructions
miss at L1D cache and less than 1% of the instructions fail on the branch predictor. However,
the results point out that most of the instructions are floating-point instructions. An analysis
of the ratio of stalled cycles (shown in Figure 5.14c) points out that up to 75% of the clock
cycles are stalled, from which 40% are related to scarce re-order buffer entries. This phase is
mostly correlated to an innermost sentence within a four-nested loop and this sentence included
a floating-point division on which the divisor is invariant in the inner-most loop. Since divisions
take longer to complete than multiplications, the code was changed to multiply by the inverse of
the divisor instead.

A similar performance analysis (not shown) was applied to Cluster 2, representing an ad-
ditional 18.3% of the computation time. Approximately 80% of this computing region ran
uniformly at 2,600 MIPS and the source code pointed to the inner-most statement of the loops
in lines 539, 545, 600 and 606 within the routine scalar_weno_coeff. Since the performance
symptoms were similar to those detailed in the first phase of the previous computing region,
similar code transformation were applied to the loops pointed in this region.

After implementing these changes and re-analyzing the application performance, the duration
of Clusters 2 and 3 decreased by 28.3% and 17.4%, respectively. With respect to the performance
achieved in Cluster 3 (depicted in Figures 5.14d and 5.14e), results show that the instruction
rate in the red phase increased to 4,200 MIPS approximately and the stalled cycles decreased to
less than 60%. In overall, the application execution time was reduced by 9.0%.

5.1.7 Nemo

Nemo [136] is an ocean model that includes several components besides the ocean circulation,
including sea-ice and bio-geochemistry. The application was executed on 128 processors of
MareNostrum3 and presented nine computing regions (as shown in Figure 5.15a), from which
the most time-consuming cluster took approximately 14% of the total execution time. Each
computing region instance belonging to Cluster 1 ran at approximately 1.5 CPI and executed
3.3×108 instructions.

Figure 5.15b shows the combined performance and source code reference results generated
by the mechanism for this computation region. The results indicate that most of the time is
invested in the routines tra_ldf_iso and tra_zdf_imp (colored in green and blue) being lines
212 and 204 are the most observed, respectively. The code line profile displays a pattern of two
iterations on both routines. With respect to tra_ldf_iso, it mostly executes a loop within lines
173-313. This loop contains a nested loop (in lines 207-253) in which 7% of the instructions miss
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(b) Detailed performance progression of Cluster 3.
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(c) Detailed performance progression of Cluster 3 (stalls).
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(d) Detailed performance progression of Cluster 3 after mod-
ifying the source code.
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Figure 5.14
Analysis of Arts_CF.
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Figure 5.15
Analysis of Nemo.
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at L1D cache due to the access to one 4D matrix, eleven 3D matrices and several 2D matrices.
With respect to tra_zdf_imp, the source code line profile indicates that the computation invests
most of its time in the loop delimited by lines 161-280. Within this loop there is a nested loop in
lines 271-277 that achieves the worst performance (less than 1,000 MIPS) because of the high
L1D cache miss ratio (8%). The code within this nested updates a 4D matrix where each element
is calculated by accessing to four matrices and one of these matrices is accessed in two different
planes.

An analysis of the source code of the loops in tra_ldf_iso shows that the loops in lines
245-251 and 303-311 perform a very similar task: they calculate the divergence of fluxes. To
perform such calculations they access to the same data structures, perform similar operations
and update the same 4D matrix. Since these structures and matrix remain untouched from one
loop to the next, the two loops were fused to reduce the number of control instructions executed
and to improve the temporal locality of the data. The loop in lines 207-253 calculates two 2D
matrices (zdkt and zdk1t) before entering into the nested loops but the nested loops only access
to the elements (i, j), (i+1, j) and (i, j+1). Therefore, to reduce the pressure on the cache, the
modified code calculated these three elements and stored the results in scalar variables instead
of calculating the entire set of elements. Figure 5.15c shows the results of the framework after
analyzing the modified version of the source code. The results indicate that the region took 7.2%
less time to execute, increasing its average instruction rate from 1,950 to 2,200 MIPS.

5.1.8 PEPC

PEPC [84] is a parallel MPI-based tree-code for rapid computation of long-range Coulomb forces
in N-body particle systems based on the original Barnes-Hut algorithm. The application was
executed in Tamariu using 16 processes and the clustering results for the execution lead to the
plot depicted in Figure 5.16a11. The folding results (not shown) for the two leading compute
regions, i.e. Cluster 1 and 2, execute at high and uniform performance (3,100 and 2,500 MIPS)
when traversing the tree following indirections stored in a linked-list. Because of the code they
represent, it is difficult to improve the code without changing the application data-structures,
which is beyond the scope of this thesis. Still, an analysis of the time-line (shown in Figure 5.16b)
indicates that Clusters 3 and 4 approximately represent a combined 20% of the execution time
and each invocation last 1,833 and 2,014 ms, respectively. In addition, the time-line reports that
Cluster 4 is executed immediately after Cluster 3 and there were multiple invocations to Cluster
1 and 2 before executing Cluster 4 again.

Figures 5.16c and 5.16d show the folding results for the compute regions identified as Cluster
3 and 4, respectively. The black line refers to the MIPS achieved and it is referenced on the right
Y-axis, whereas the L2 data-cache and TLB misses use the left Y-axis. According to the instruction
rate, it is possible to divide each of the compute regions into four phases. The plots include
manually added labels to represent phases in Cluster 3 (named from A to D) and phases in
Cluster 4 (named from E to H). The MIPS rate shown in the computation phases of these regions
depict several phases where the instruction rates were very low. More precisely, phases A, C and
F did not go beyond 100 MIPS, which was less than 1% of the processor peak MIPS rate.

A detailed analysis of the Cluster 3 shows that, in phase A, five out of every 100 instructions
miss in L2. The source code references report that two lines in the source code were the most
time-consuming of this phase. These lines executed the Fortran90 intrinsic pack operation that
packs an array to a vector with the control of a mask. Phase C that runs at 80 MIPS shows
high L2 and TLB miss ratios per instruction which indicate that they were the limiting factor
of this phase. The code associated with this phase involves two loops. The first loop resets
several large structured arrays accessed through hash indices. On the other hand, the second
loop contains 27 multiplications, nine exponential operations, three divisions and one square
root with read-after-write dependencies among them. Note the ratio of TLB misses in this phase.
Such an amount of misses may occur if the address space of the hash function is not large
enough to store the complete working set. In contrast, L2 cache does not suffer from this issue

11The computing regions in this experiment are classified according to their number of executed instructions as well as
their duration due to the limitations of the measurement system.
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Figure 5.16
Analysis of PEPC.
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Figure 5.17
Analysis of the modified version of PEPC.
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Table 5.10
Side-by-side comparison of both original and optimized PEPC files.

120 do i = 1,maxaddress ! Loop

121 htable%node = 0
122 htable%key = 0
123 htable%link = -1
124 htable%leaves = 0
125 htable%childcode = 0

126 enddo
Original tree_allocate.f90

do i = 1,maxaddress ! Loop 120

htable(i)%node = 0 121

htable(i)%key = 0 122

htable(i)%link = -1 123

htable(i)%leaves = 0 124

htable(i)%childcode = 0 125

enddo 126

Optimized tree_allocate.f90

as its size and associativity are larger than the TLB (TLB is 4-way with 32 entries10, whereas L2
cache is 12-way with 49152 entries10). Improving the performance on this phase would include
using large memory pages or building a more efficient hash function. Finally, phase D is mostly
devoted to a loop that accumulates multi-pole moments by traversing a tree structure. This loop
contains a nested loop that operates for every node child and executes 33 multiplications and
three exponential operations. There is a large pressure on the register-file because of the large
amount of operations and the small number of registers in the Intel 32-bit architecture (eight).
It is therefore unlikely that loop unrolling techniques offer additional performance since they
require additional registers. However, the nested loop may benefit from vectorization due to the
lesser number of control instructions executed and the availability of additional registers.

With respect to Cluster 4, its MIPS rate is extremely low given that phase F runs at approxi-
mately 16 MIPS (approximately 0.16% of the node-level peak performance). This phase commits
fewer than 10% of instructions of the region in 60% of the computation time. The analysis of the
correlated code shows that a small number of lines are responsible for such a bad performance,
mostly in lines 120-124 and 58-62 in the files tree_allocate.f90 and tree_build.f90, re-
spectively. This code initializes structures using intrinsic Fortran90 vector instructions over large
arrays pointing to large structures which result in large stride accesses to memory. A suggested
change to improve the memory hierarchy accesses includes rewriting these vector instructions
using a single loop to initialize the required fields of every array position as shown in Table 5.10.

After implementing the modifications for phase B of Cluster 4, the analysis of the application
reports the results shown in Figure 5.17. The plots in this Figure show different aftereffects
of the application performance behavior. The clustering results (depicted in Subfigure 5.17a)
shows that Cluster 4 moved to the left when compared with the original results, indicating that
the region required less time to compute. The internal evolution of Cluster 4, as illustrated
in Subfigure 5.17c, shows that the duration of the region decreased to from 2,014 to 627 ms.
Comparing these results with the original, such improvements translate into a reduction of the
68% of the execution time and an increase on the average instruction rate from 96 to 253 MIPS.
Even though the results show a significant peak on L2D miss ratio, the improvement came from
the reduced number of TLB misses and executed instructions in this computation regions by 78%
and 18%, respectively. Another interesting consequence is that Cluster 3 also moved a bit to
the left on these results, also meaning that the region required less time to execute. In general
terms, the execution time of this region decreased by 26% and its instruction rate increased
from 403 to 544 MIPS. Since the code associated with Cluster 3 had not changed, the only
reason for its improved performance is that it was executed immediately after Cluster 4. The
modifications to Cluster 4 improved the memory utilization at both cache and TLB structures,
the execution of Cluster 3 was likely to execute faster in such a cleaner state thanks to better
cache use. The folding results show a reduction in the number of L2D and TLB misses by 10%
and 34%, respectively, as well as a reduced variability across time. Overall, the running time of
the application was reduced by 14%.

10As reported by the papi_mem_info utility on the execution machine.
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5.1.9 Nest

Nest [81] is a simulator used in The Human Brain Project13 for spiking neural network models
that focus on the dynamics, size and structure of neural systems rather than the morphology of
individual neurons. NEST was executed on two Intel Xeon Phi processors using the coprocessor-
only model; so all processes (120) were run on the coprocessors. Figure 5.18a illustrates that
Cluster 1 suffered variability in both instruction and duration per instruction1. On average,
each invocation to a computing region that belongs to Cluster 1 executed approximately 5×106

instructions where instructions took approximately 3.3 ns to execute. An analysis of the trace-file
shows that Cluster 1 represented 33% of the total time.

Figure 5.18c shows the folding results for Cluster 1. These results clearly indicate that Cluster
1 exhibits four phases. Phase 2 was the longest and took approximately 50% of the duration
running at 280 MIPS (about 20% of the core peak performance). The performance counters show
that the application was memory bound, more precisely due to L1D and TLB misses because the
processor missed in the L1D and TLB every 30 and 40 instructions respectively, during this phase.

Figure 5.18b displays the attribution of the performance metrics to the application source
code for Phase 2. The code correlated with this phase is a single-line in-lined method named
add_value found in ring_buffer.h. This method accesses the buffer_ attribute through
indirections on the get_index method, so leaving little room for improvements at this level. The
CUBE call-tree (not shown) reports that this method is called by a method named Connection-
Manager::send after a chain of method invocations. There is a loop in lines 652-653 within
the file connection_manager.cpp that traverses a list of objects and ends up calling add_value.
According to the compiler report, one of the routines invoked within this loop was promoted
to ignore the inline attribute and the vectorization was also disabled due to the complexity of
the loop. While this architecture enjoys the maximum performance from the vector codes, the
application would probably benefit from improving the memory referencing, in addition to, using
vectorization. It may be though that on way of addressing this issue would be by prefetching the
data contained in buffer_, for example. However, since each object instance exists in a different
memory region, their respective buffers are unlikely to be consecutive; therefore, accessing them
may not expose spatial locality. In other words, the application organizes the data in array of
structs (typically known as AoS) that contain the buffer_ member. An approach to increase
the spatial locality would involve changing the organization of the data as a struct of arrays
(commonly referred as SoA). By using SoA, the buffers of every object instance are allocated
together in consecutive regions of memory and so increase the effectiveness of both L1D cache
and TLB. However, implementing this modification is far beyond the scope of this work.

5.1.10 CESM

CESM [98] is a fully-coupled, global climate model that provides state-of-the-art computer
simulations of the Earth’s past, present and future climate states. The application was executed
by an external user in the Yellowstone system using 570 processes. Figure 5.19a shows the
identified regions for this execution and the scatter-plot indicates that the three identified regions
show variations in terms of CPI. Cluster 1 also experienced variations of CPI with the result that
the more instructions executed, the higher the CPI. According to the obtained results, the most
time-consuming region of this application represented approximately 12.7% of the execution
time.

Figure 5.19b shows the progression of the source code references and the performance within
this region. The results indicate that the region calls several subroutines and for the sake of
simplifying the results, the Figure has been manually adapted to display labels (from A to D) in the
short routines. With respect to the source code, the region mainly exhibits a pattern that repeats
three times in which periods include calls to the routine tphysbc. This routine invokes several
procedures of differing duration. Among these procedures, there is radiation_tend (shown as
B) which is sufficiently long and contains an invocation to the routine rrtmg_sw (shown as C).
The second and third invocations to tphysbc present a slightly different source code profile from

13https://www.humanbrainproject.eu
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Figure 5.18
Analysis of Nest.
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Figure 5.19
Analysis of CESM.
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Table 5.11
Benchmarks used for the performance and power experiments and the location of the begin and end points
to delimit the iterative part of the application.

Benchmark suite Name Time-step code region

SPEC CPU 2006

434.zeusmp src/zeusmp.F 675-709
435.gromacs src/md.c 413-820
436.cactusADM src/PUGH/Evolve.c 96-147
437.leslie3d src/tml.f 330-435
444.namd src/spec_namd.C 184-225
465.tonto src/mol.F90 13617-13629
470.lbm src/main.c 44-58
481.wrf src/module_integrate.F90 274-288

NPB 3.3

bt.B BT/adi.f 8-20
ft.B FT/appft.f 62-72
is.C IS/is.c 446-641
lu.B LU/ssor.f 102-232
mg.B MG/mg.f 255-264

Stream stream stream.c 220-262
Lulesh lulesh full/lulesh.cc 2,893-2,904

the first since they include the execution of the loop in line 644 in the beginning. Regarding
the overall performance, the results point out that less than 2% of the instructions missed at L2
and that more than 16% of the instructions were floating-point instructions. The lowest MIPS
observed, which was also the most intensive floating-point phase along the region, occurred
in rrtmg_sw. This routine invoked a set of routines (named taumol*) sequentially, where each
contained nested loops with many (14, in most of the cases) floating-point multiplications to
generate a single value stored in a 2D matrix. This large quantity of floating-point activity, in
conjunction to the dependencies generating a single value, resulted in a high value of cycles
stalled (not shown, but approximately 70%). Also, the MIPS rate decreased within the tphysbc
routine due to similar reasons when invoking get_snow_optics_sw and get_ice_optics_sw
resulting in half of the processor cycles stalled. In this case none of these multiplications could be
replaced with cheaper operations (as in Arts_CF), so a major effort was required for improving
these portions.

5.2 Simultaneous performance & power analysis

In addition to the previous tests, there has been further experimentation with respect to simulta-
neous analyses of performance and power metrics. The experiments reported within this section
were executed in Altamira, which runs at a nominal frequency of 2.60 GHz with a Thermal
Design Power (TDP) of 115 Watts. This system runs Linux kernel 2.6.32 and allows changing the
processor frequency from 1.2 up to 2.6 GHz in 0.2 GHz steps. While the processor can increase
its frequency up to 3.3 GHz using the Intel Turbo Boost capability, this functionality was manually
disabled in order to perform all the tests at a uniform frequency.

The analyses focus on two set of applications. The first set involves serial benchmarks that
were executed sequentially one after another and pinned to the first core of the socket. On the
other hand, the second set includes MPI-based parallel applications. The pinning for the parallel
applications depended on the execution configuration applied in terms of processes per socket,
while ensuring that each core executed only one process at the most. The applications were
compiled using the GNU compiler suite version 4.4.6 with -O3 -g as compile flags and OpenMPI
version 1.6 for the parallel applications.
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5.2.1 Serial benchmarks

The selected serial benchmarks include a subset from the SPEC CPU2006 benchmark suite [92],
from the NAS benchmark suite version 3.3 [10] as well as Stream [141] and Lulesh [99]
benchmarks and are listed in Table 5.11. Since these applications do not employ any parallel
programming model, it is not possible to benefit from the framework. It is therefore necessary to
instrument the start and end points of the time-stepper routine in order to delimit the synthetic
region for the folding mechanism. The Table therefore shows the location within the source
where the time-step begins and ends within the application source code.

The results of the folding for all the benchmarks are shown in Figure 5.20 and describe the
time-step routine of the benchmarks by combining performance and power metrics. In each
plot, the instruction rate is shown in black and referenced on the right Y-axis. On the other
hand, the power metrics are plotted on the left Y-axis and colored in blue, purple, red for the
DRAM, the core and the total package (socket), respectively. The first observation derived from
these plots is that the Stream benchmark is the application that drains more power along its
execution. This benchmark dissipates more than 36 Watts, from which 20 and 14 Watts are
drained by the package and the memory subsystems, respectively. These plots also outline
that the cores consumed essentially the same amount (between 16 and 18 Watts) whatever
the performance achieved by the application and irrespective of the application activity. More
specifically, benchmarks 437.leslie3d (5.20d), 481.wrf (5.20h) and ft.B (5.20j) experienced
the largest range on the instruction rate within the time-stepper region (ranging from 1,000
to 7,500 MIPS, from 3,000 to 9,000 MIPS and from 2,500 to 7,000 MIPS, respectively) with a
small variation on the core power consumption. Note too that at the end of lu.B (5.20l) and
ft.B (5.20j), the more MIPS achieved, the less power drained. It may also be observed that
the power consumption of the DRAM was mostly uncorrelated with the performance in all
executions except for 437.leslie3d (5.20d), 481.wrf (5.20h) and is.C (5.20k) where the high peak
performance resulted into higher DRAM consumption. With respect to the power consumption,
it is interesting to note that sum of the DRAM and core power consumption did not count for
the total consumption of the package. The results show that though the processors did not
have any integrated GPU on their power plane, there was some uncategorized power consumed
that explains the remaining power to reach the reported total. Finally, although the shapes
in the package and core results were similar, the results shown in lu.B (5.20l), ft.B (5.20j),
434.zeusmp (5.20a) and 437.leslie3d (5.20d) suggest that the power consumed by the DRAM
was under-weighted by the PCU when summing up the package consumption.

5.2.1.1 Application of the DVFS techniques

The power dissipated by an electronic circuit using the current CMOS technology is divided into
two parts: static and dynamic, the latter being claimed the main source of power consumption.
Dynamic power is the rate at which electric energy is transferred by a circuit to commute the
transistors of the circuit and it is equal to:

Pd ynamic = αCV 2 f (5.2)

where α is the circuit activity ratio (so, directly related to the application executed), C refers to
the chip capacitance, V indicates the operational voltage and f specifies the processor frequency.
According to this formula, there are two ways to reduce the energy consumption considering a
fixed application activity: by reducing either the processor voltage or the processor frequency.
While the former cannot usually be tackled by the user in a production environment because
it may either require privileges or physical access to the node, the latter is still applicable. In
fact, since the voltage required to operate the CPU at given frequency is, roughly speaking,
proportional to the frequency, the relationship between frequency and power consumption is
sometimes rewritten as:

Pd ynamic = αC f 3 (5.3)

which suggests a better alternative for reducing the dissipated power without accessing the system
physically by altering the processor frequency, though changing it alters the time-to-solution.
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Figure 5.20
Comparison of the performance and power consumption on the main iteration of several benchmarks running
at 2.6 GHz. The black line refers to the instruction rate. The blue, purple and red refer to the power drained
by the DRAM, the core and the package, respectively.
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(a) 437.leslie3d at 1.2 GHz.
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(b) ft.B at 1.2 GHz.
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(c) is.C at 1.2 GHz.
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(d) 437.leslie3d at 2.0 GHz.
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(e) ft.B at 2.0 GHz.
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Figure 5.21
Performance and power progression of three benchmarks when run at three core frequencies.

Current operating systems increase or reduce the processor frequency ( f ) depending on the
load of the system using a technique called Dynamic Voltage and Frequency Scaling (DVFS). In
order to reduce energy consumption, the operating system lowers the frequency when the system
is idle and reestablishes the processor frequency when the system becomes loaded. Previous
researches, such as [64] and [183], have already used this technique to reduce the energy
consumption on parallel applications that present load unbalance by decreasing the processor
frequency on the processors with less work.

In order to explore the impact on the performance and the power consumption of this
technique, a subset of the previous benchmarks was run using three core frequencies (1.2, 2.0
and 2.6 GHz). The plots in Figure 5.21 show the results for these executions. Again, the black
line refers to the instantaneous MIPS rate and is plotted on the right Y-axis, whereas the energy
consumption is shown red for package, blue for DRAM and purple for core and use the left
y-axis. The first thing to notice is that neither the power nor the performance shape of the
benchmarks changed when modifying the core frequency, except for the amplitude of the signal.
For instance, the highest and lowest peaks in the is.C benchmark (depicted in Figures 5.21c, 5.21f
and 5.21i) range from 600-2,400, 900-4,000 and 1,100-5,000 MIPS and, 4.9-5.8, 10.6-11.9 and
16.4-18.3 Watts in terms of performance and power drained by the core, respectively. These plots
outline that the higher the core frequency, the higher amplitude exists in both performance and
power metrics. More room for energy and performance improvements can therefore be reached
at higher frequencies, as it would be expected from Equation 5.2. As noted earlier, although
the power consumption may be directly related to the processor performance, as it occurs in
437.leslie3d and is.C, sometimes the power consumption is independent of the performance
achieved, as observed in ft.B.

The plots also show that the reduction factor observed in the power use when decreasing the
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core frequency was higher than the reduction factor of the clock rate. For instance, the cores
consume about 18 Watts when running ft.B at 2.6 GHz. According to Equation 5.2 the power
consumed running at 1.2 GHz would be approximately 9 Watts, however, the results indicate
that power consumption did not reach 6 Watts. The plot shown in Figure 5.22a shows a similar
effect when varying the processor frequency. The slope between frequencies 1.2 and 2.0 GHz is
smaller than the slope between frequencies 2.0 and 2.6 GHz. These observations, considering
that the chip capacitance (C) and the activity rate (α) are constant, lead to the conclusion that
the processor lowers its voltage (V ) when lowering its frequency ( f ), according the rewritten
Equation 5.3.

Even though the focus of this thesis involves depicting the detailed behavior of computation
regions, the recent increase of interest in power related topics, makes worthwhile summarizing
the findings of the selected benchmarks. The tabulated results appear in Tables 5.12 and
5.13. The first Table shows the average duration, the core consumption and the whole-socket
consumption of the main iteration of the benchmark when run at one of the selected processor
frequencies (2.6, 2.0 and 1.2 GHz). The Table shows that the energy consumed by the cores
decreases as the frequency decreases, but to a lesser scale. That is, although reducing the
processor frequency from 2.6 to 1.2 GHz makes the application run more than two times slower,
the energy consumed by the cores does not reduce accordingly because of the static component
of the power dissipated. It is also interesting to note that the total energy consumed by the
whole package increases as the processor frequency decreases because the energy dissipated is
a function of time and power. So the longer the application is run, the more energy it drains.
These results agree with the results of a group of experiments carried out by Le Sueur and
Heise [124]. The results suggest that to reduce the energy consumed by the system when
running an application, it should be run at the maximum processor frequency and halt the
processor once the application finishes.

On the other hand, Table 5.13 shows the average number of instructions and the average
number of L1D, L2 and LLC cache misses of the main iteration of the benchmark as well as
additional performance and power metrics derived from the aforementioned data. The Table
presents the average MIPS and the average MIPJ per core (MIPJC) and per package (MIPJP)
(analogously to MIPS, MIPJ stands for Millions of Instructions per Joule) achieved by each
benchmark. The results indicate that considering MIPJC as the power efficiency metric, the
lowest frequency provides the best results in terms of instructions per Joule achieved. However,
the most fruitful frequencies range from 2.0 to 2.6 GHz when recognizing MIPJP as the power
efficiency metric because using the highest frequencies allows the application to finish earlier.
More specifically, four of the slowest benchmarks (434.zeusmp, 470.lbm, is.C and Stream)
achieve the best MIPJP (114.51, 92.45, 61.26 and 108.69) running at 2.0 GHz, while the rest of
the benchmarks show better MIPJP when running at 2.6 GHz. These four benchmarks show high
L1D, L2 and LLC miss rates, indicating that these applications are memory bounded. An obvious
approach to select the most effective frequency in terms of MIPJP depends on the ratio between
the executed instructions and the LLC misses. In overall, the benefit in terms of MIPJP is minimal
when moving from 2.0 to 2.6 GHz as depicted in Figure 5.22b.

5.2.2 Mr. Genesis

This application was executed spawning eight MPI processes into the eight cores of a single
processor. Figure 5.23a shows the performance evolution of two metrics (MIPS and LLC miss
rate) for the main computing region of the application after applying the modifications stated in
section 5.1.3. As seen before, concerning the performance, the application has two important
routines according to their time invested, sweepx and sweepy. On the one hand, the sweepx
routine shows a uniform performance instruction rate running at 4,000 MIPS and a uniform

10Time refers to the average duration of the time-stepper function in milliseconds. Core and Chip refers to the energy
used in Joules by all the cores and the whole socket, respectively.

11Instructions is shown in millions. L1D, L2 and LLC refer to the ratio of L1, L2 and LLC with respect to the instructions
executed. MIPS, MIPJC and MIPJP stand for, Millions of Instructions per Second, Millions of Instructions per Joule (using the
core or the package energy counter, respectively).
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Figure 5.22
Performance and power related metrics when executing multiple benchmarks on several processor frequen-
cies.

LLC miss rate (less than 1 million per second), except at the end, where the routine experiences
a slight performance increase from 4,000 to 4,500 MIPS. On the other hand, sweepy presents
different phases in terms of performance that are related to two parts of the code labeled as B, C
and D that achieve 500, 4,500 and 1,800 MIPS, respectively.

Focusing on the sections that achieve lowest performance, the results show that phase B refers
to the loop in lines 410-421 of file sweep.f as described earlier. This phase reached up to 20
millions of LLC misses per second per core (which translates into one miss every 25 instructions)
and at that moment the DRAM consumption per socket reaches 12 Watts. Phase D involves
the execution of the loop in lines 556-564 of the file sweep.f which partially undoes the work
performed in Phase B by applying another matrix transposition. In this phase, the LLC miss rate
increased again to 20 millions of misses per second (i.e. there was one miss every 90 instructions)
and the dissipated power increased to 17 Watts.

Since the processor contains the RAPL infrastructure that automatically increases the fre-
quency based on several factors, including thermal and power conditions, it is also valuable to
analyze the energy footprint of the application. For instance the plot in Figure 5.23c shows that
during the 60% of the total execution time of Mr. Genesis, the socket consumes up to 80 Watts.
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(a) Clustering results.
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(b) Detailed performance progression of Cluster 1.
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(d) Longest duration of the application above a power limit.

Figure 5.23
Performance and power consumption analysis of MR. Genesis in Altamira.
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(a) 8 MPI processes per socket / shared execution.
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(b) 1 MPI process per socket / exclusive execution.

Figure 5.24
Temporal evolution of the HydroC main computation region using a different number of MPI processes per
socket.

Then the consumption rapidly and in under 10% of the time the processor drains more than
81.5 Watts. It is interesting to note that the longest duration sustained in 81.5 Watts by the
whole socket lasts under 40 ms as shown in Figure 5.23d. These values can be useful for the
acceleration mechanism that speeds up the processor frequency in several directions. First, the
processor could increase the frequency in the regions with lesser power consumption in a safe
manner without surpassing the TDP. Second, these results also mean that limiting the power
consumption to 81.5 Watts would only affect less than 10% of the application. Finally, if the
acceleration mechanism has a duration limit of longer than 40 ms, it would be able to boost the
application when entering the most power consuming regions of code.

5.2.3 HydroC

HydroC is a proxy benchmark of the RAMSES [175] application. This application solves a
large-scale structure and galaxy formation problem using a rectangular 2D space domain split
in blocks. It was instrumented and sampled in executions using eight MPI processes in two
configurations to evaluate the performance and power when sharing the computational resources.
One of the executions has placed all the processes into a single octa-core chip while the other
has run one process on eight processors.

Figure 5.24 shows the temporal evolution of the power consumption of the DRAM at socket
level and the LLC cache misses per core within the time-stepper routine when using one and
eight MPI processes per socket (MPIpps) running at 2.6 GHz. The results obtained show a tight
correlation between the rate of LLC misses and the power consumed by the DRAM. This seems
natural and expected because the higher the miss rate the more data movement from/to memory,
so increasing its energy consumption. This effect is most noticeable when using all the cores (as
shown in Subfigure 5.24a) because the power consumption counter reflects the accumulated
energy consumption by the whole socket and the signal presents a wider amplitude.

The use of the source code referencing capabilities helps to delimit the routines on the
plots according to the routines executed across time. The comparison of the two subfigures
(5.24b and 5.24a), shows an increase of the DRAM power consumption in the routines trace
and qleftright. The consumed energy moves from 10 to 20 Watts when using one or eight
MPI processes per socket, respectively. The riemann routine shows better power scalability
when moving from one to eight processes per socket. In this routine, while DRAM consumes
approximately 5 Watts on the exclusive execution and increases up to 8 Watts when executing
in shared mode. These results point out that, even multiplying by eight the number of cores
accessing to the memory, the power consumption due to DRAM is only multiplied by a factor
ranging from 1.6 to 3. Since the power metering reports measurements for the whole chip, it
becomes evident that the shared execution becomes more power efficient; so placing all the
processes in the lowest number of chips reduces the aggregate power consumption.
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Figure 5.25
Progress of the power consumption in the main computation region using combinations of MPI processes per
socket (MPIpps) and processor frequencies.

On the other hand, the performance when all cores of the processor execute the application
the execution time takes longer than employing one core per socket (313.37 vs 225.81 ms). For
instance, the results for one MPI process indicate that the LLC miss rate per core decreases in
the shared execution on qleftright compared to the exclusive execution and consequently,
the duration of the routine increases. The observed increase occurred because the shared
execution involved seven additional MPI processes running and therefore, competing for the
shared resources as the LLC cache. As a consequence of sharing these resources, the duration of
the routine qleftright increased from 8% to 12% (from 18 to 37.5 ms) when moving from the
exclusive to the shared execution. In addition, the riemann routine also increased its duration,
from 95 to 113 ms, although its proportional duration decreased from 42% to 36%. According
to the performance data gathered, the total number of LLC misses per core increased by 12.5%
when moving from the exclusive to the shared execution. This effect is reasonable because the
LLC is a shared resource among the cores within the socket and cannot sustain all the requests
from the cores with the increased number of LLC misses experienced by the application.

As with the sequential benchmark executions, HydroC was executed varying the processor
frequency as well as the number of processes per socket. The results of the progression of the
power consumption within the computation region are depicted in Figure 5.25. Each of these
plots has the X-axis (representing time) normalized, so each experiment takes the visually the
same to complete. The shape of the different plots is almost the same except for the amplitude,
which varies according to the processor frequency. When the system is fully occupied and
the processor clock rates at 2.6 GHz, the power dissipates by HydroC presents two modes:
70 and 80 Watts. When comparing the processor specifications and the results obtained, the
application consumes about 70% of the processor maximum TDP. The same Figure indicates that
the power consumed does not increase linearly with respect to the number of executing cores.
This observation can be explained because in the executions with one, two and four MPIpps the
idle cores are not halted and still consume energy.
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(b) Longest duration of the application above a power limit.

Figure 5.26
Energy footprint for the execution of HydroC when using eight MPI processes per socket running at 2.6 GHz.

Table 5.14
Scalability of SIESTA. Energy is shown in KJoules and Duration is shown in seconds.

# processes Energy Duration Speedup Parallel Efficiency
16 8205 51824 1 -
32 8296 27375 1.89 0.96
64 9885 16252 3.19 0.80

128 13373 10883 4.76 0.60
256 25610 11001 4.71 0.29

Finally, the last analysis of the application explores the amount of time that the processor
is above a power consumption rate. This type of analysis may prove helpful on how the RAPL
infrastructure of the Intel SandyBridge processors benefit from the folded results. The plot in
Figure 5.26 shows the energy footprint of the application depicting the percentage of time and
also the longest time-frame above a power limit when using all the cores from a processor. For
instance, the results in Subfigure 5.26a indicate that the application drains up to 80 Watts for
about half of the execution and only 10% of the whole execution needed more than 84 Watts.
These results show that there is room for power consumption and the processor may decide to
overclock itself to run faster. Subfigure 5.26b depicts the duration of the computation according
to its consumed power. The plot reveals that those regions that consume more than 84 Watts last
less than 25 ms. With such information, the processor may determine to increase the clock rate
for the periods where the power consumption is far from TDP. Then, the processor should restore
the clock rate for the periods in which power consumption is high (which are typically short).

5.2.4 SIESTA

SIESTA [200] is a software implementation for performing electronic structure calculations and
ab-initio molecular dynamics simulations of molecules and solids. It implements a self-consistent
density functional method using standard norm-conserving pseudopotentials and a flexible,
numerical linear combination of atomic orbitals basis set. The application was executed varying
the number of processes from 16 to 256 using the two available sockets of each node. Table 5.14
shows several application properties when using the selected number of MPI processes and the
tabulated results show that the application does not scale linearly in terms of either performance
or energy consumption. The analysis discussed here focuses on the execution that employs 128
MPI processes because it achieves the best performance, even though its efficiency could be
considered moderately low (0.60).

The performance of the main computation of SIESTA is depicted in Figure 5.27a and it shows
a pattern repeated four times. An inspection of the data gathered shows that the iteration mainly
invokes the routines zgemm, zgemmv, dgemm and again zgemm which are provided by the Linear
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Figure 5.27
Performance and power characterization of the SIESTA application.
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(b) Longest duration of the application above a power limit.

Figure 5.28
Energy footprint for the execution of SIESTA on one (1) socket running at 2.6 GHz.

Algebra Package (LAPACK16). With respect to performance, the application reaches a range
from 5,500 to 9,000 MIPS. The results show that the most performing routine is dgemm and
also that zgemm presents two forms of behavior in MIPS and LLC miss rates. In terms of energy,
Figure 5.27b shows that the power drained is about 80 Watts, increasing when the code executes
the zgemmv and the second call to zgemm up to 90 Watts. Such an increase corresponds to the
highest LLC miss rates observed in the application.

Regarding the energy footprint, the processor does not typically consume more than 80 Watts
(about 70% of the TDP) when running the application, as depicted in Figure 5.28. In this
case, these results show that the regions of code that consume more than 80 Watts do not
last more than 25 seconds. So, the processor typically drains a uniform amount of power and
requires more power for certain short periods. More precisely, considering the same 81.5 Watts
as in the previous example, the results show that SIESTA would exceed this limit for 7 seconds
approximately. Consequently, it is reasonable to assume that these analyses may help to boost
the processor frequency whenever the application runs in a scenario where the power drained is
below the TDP.

5.3 Final remarks

This chapter has focused on analyzing several first-time seen HPC applications of a broad
research areas by employing the framework described in this thesis. The reports generated
by the framework were turned into relatively simple and small modifications that improved

16http://www.netlib.org/lapack
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the node-level performance on eight applications, so demonstrating the productivity of the
framework. Table 5.15 summarizes for each application, the nature of the symptoms observed,
the modifications applied as well as the overall application improvement.

In addition to such a summary, the findings observed through the different applications allow
the authors to extract additional and more general comments. First of all, programs, compilers,
systems and performance tools evolve along time and become more complex. It is therefore
relevant to invest some time to evaluate the application performance to find out whether the
performance achieved is appropriate. These applications have reached an in-production status
and despite having been used for a long time there are still opportunities for improving their
performance. Even upgrading to newer compilers and using aggressive compiler optimizations,
the results of the framework described here have led to effortless changes to the source code
that impact on the application performance.

In fact, compilers include numerous optimization rules and heuristics that allow them to
tune the resulting binary code when translating the source code into binary code. However,
compilers have to honor the application semantics; so, they cannot change the code wildly and
they have to stick to the application developer’s requests. While the user can allow the compiler
to relax some of the application semantics and use even more aggressive optimization rules,
there are still other reasons that prevent the processor’s peak performance from being reached.
For instance, since the processor has a limited number of logical registers, the compiler needs
to use spill instructions to handle all the variables in the code region. Moreover, it is difficult
for the compiler to anticipate how many cycles an instruction will require to complete and also
the application may not expose sufficient instruction-level parallelism to overlap those stalled
cycles. Considering the large exploration space, the optimization process becomes a daunting
time-consuming task that may not offer the best possible code.

Performance analysis tools, either in the form of profile or a trace-based, help the analyst
to locate the bottlenecks, but the framework discussed here excels in locating and identifying
the nature of the node-level performance issues. Regarding the performance issues, it is widely
accepted that the memory gap is the main performance limiting factor. This factor is truly the
nature for the performance drop on several applications analyzed (e.g. CGPOP, Mr. Genesis, PEPC,
GTC and BigDFT, among others). However, there are other bottlenecks still to be considered
such as long floating-point dependency chains (as observed in Arts_CF, CESM and PMEMD, for
instance). Each of these applications have been optimized using different approaches according
to the source code that exposes the problem. The transformation applied in Arts_CF is simpler
because it focuses on swapping multi-cycle floating-point instructions for shorter instructions.
CGPOP exposes four phases stressing different processor units and the modification mitigates such
intensive use by combining consecutive phases to increase the distance between dependencies.
With respect to PMEMD, the application does not suffer from the memory gap and the application
semantics allows pre-calculating intermediate values; so new memory structures effectively
increase the floating-point dependency distances. Consequently, overlapping computation regions
with different bottleneck natures may increase the overall performance in applications.

Finally, the most important fraction of the power dissipated by a processor relates to the
static part. Consequently, to effectively reduce the energy consumed by a system it is appropriate
to follow the haste and halt approach. This approach means executing the application at
the maximum speed and then stopping the processor until more work is ready. Of course,
performance analysis tools also help to reduce the energy consumed by a processor as they help
to reduce the time-to-solution and so the energy consumed by the system.
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6
Conclusions and future research directions

“You’re a monster.
Thanks. Does this mean I get a raise?
No, just a medal. The budget isn’t inexhaustible.”

— Orson Scott Card, ENDER’S GAME

Previous chapters of this thesis have presented and demonstrated the usefulness of the main
contribution of this thesis: the folding mechanism. This mechanism depicts instantaneous metrics
within repetitive code regions ensuring minimum overhead during the application run. While most
of the metrics are heavily tailored to performance analysis, it should be noted that it is possible to
apply this mechanism to other concerns such as power analysis and call-stack and memory references.
The mechanism has become a component of a framework, in addition to an already existing tool
and it has motivated the proposition of an analysis methodology.

6.1 Conclusions

This thesis has been framed in the application performance analysis area and its main contribution
is a process named folding. The folding mechanism provides instantaneous performance metrics
using minimum instrumentation and coarse grain sampling and consequently, ensures very
low overhead (less than 5%). This mechanism takes advantage of the repetitive behavior
found in many applications, especially within the HPC environment given that most of these
applications are written as a repetitive sequence to calls that contain loops due to the nature
of the problems they solve. The folding creates a synthetic representation of these regions
to depict their instantaneous and accurate performance evolution. The mechanism smartly
combines performance data captured using instrumentation and sampling methods to report the
progression of several metrics accurately, including performance and energy hardware counters,
source code and memory references. This thesis refers to a previous work that identifies the
application structure according to performance metrics. The combination of both results in
a framework that provides instantaneous metrics of the most dominant computing regions
begetting a methodology of use. This framework excels in evaluating the serial node performance
of several parallel applications. These evaluations have helped to improve the performance in
some of these applications by manually applying small and well-known optimization techniques
(such as loop reorder, split and fusion, data prefetch and memoization).
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6.1.1 Performance metrics

This thesis has presented the instantaneous progression of the hardware performance counters by
using the associated counters from the folded samples and the delimiting instrumentation points.
To this end, the folding constructs a continuous function based on these counters and then
applies a contouring algorithm. This thesis has explored two different contouring algorithms: a
Gaussian process named Kriging and piece-wise linear regressions. The results obtained using
either approach are satisfactory in most situations, but they exhibit particular problems in very
specific situations. The Kriging results expose variability that resemble noise when the behavior
of the regions present variations, while the piece-wise linear regressions require a proportion
of consecutive samples to identify performance phases. Still, the results of these approaches
provide metrics that resemble measurements obtained using higher sampling frequencies.

With respect to the performance metrics, the folding depicts the instantaneous value of the
performance counters. The increasing quantity and semantics complexity of the performance
counters respond to the growing intricacy of the processors and pose a problem when interpreting
their results and by extension, the folding results. The folding mechanism has adopted analytical
performance models built on top of performance counters to facilitate the understanding of
the application performance behavior. That way, the folding generates simplified reports that
depict the progression of the overall performance (i.e. MIPS) in addition to the nature of any
performance inefficiency.

This thesis has also covered the analysis of several in-production applications in order to
demonstrate the usefulness of the folding. Within these analyses, the reader has encountered
several facts worth mentioning.

• A large computation fraction of the execution time is spent on a tiny portion of the source
code, honoring to some extent the 80/20 rule1. This fact, when combined with Amdahl’s,
law motivates the analysis methodology described in this thesis. The methodology aims at
exploring the (few) most time-consuming regions of code as the return would be higher if
there were any chance of enhancing the region performance. This thesis has shown that
very small and simple code modifications in tiny regions have resulted in performance
improvements up to 34%.

• The identification of the performance flaws and the corresponding source code is helpful
for understanding the application behavior and modifying the application code to improve
its performance. Even if the compiler considers many optimization transformations, there
are situations that prevent the compiler from applying them. This thesis has shown that
simple source code changes still play an interesting role in software development because
they boost the application performance when the compiler is not using them. However, it is
worth mentioning that not every application may benefit from such manual modifications.
In fact, it looks more promising using algorithms that require lower computational intensity
(i.e. instructions) to shorten the time-to-solution, but this work direction typically requires
additional application understanding.

• Sometimes there are reasons that prevent the application developer from sharing the
application source code with the analyst. Still, simple questions from the analyst to the
developer may provide significant insight in understanding the behavior of the application.
For instance, a developer of one application analyzed throughout this thesis was not
allowed to share the application source code. However, the folding clearly exposes
performance bottlenecks and their location. When the developer was requested the
surrounding code lines, he accepted and the later analysis helped to improve the application
performance.

• Multithreaded/multicore environments are difficult to analyze, in particular, when ex-
ploring interactions between cores and the shared resources. The folding mechanism has
exposed the performance behavior in multi-core executions and its results have indicated

1The Pareto Principle, sometimes referred as the 80/20 rule, states that a small proportion of products in a market
often generate a large proportion of sales.
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the interaction between processes executing in different cores and pointed out the reasons
why this occurs.

6.1.2 Source code time-evolution

The correlation between performance and source code is essential for determining which portions
of the application behave poorly and those that behave well. This thesis has evaluated two
approaches to associate performance and the source code.

The first approach relies on the fact that applications are written as a sequence of loops
and that each performs differently. This approach focuses on identifying phases with uniform
performance within the shape of the folding results by taking advantage of the piece-wise
linear regressions. Once the regression identifies these phases, the mechanism correlates the
performance observed on each of these phases to the loops according to the sampled source
code reference. That way, the phases define a mapping between application performance and
source code regions. The work in this thesis has extended the Cube code visualizer from the
Scalasca [78] project so that it presents this mapping to the user.

The second approach addresses the correlation between performance and source code without
considering the shape of the performance metrics but by exploring the temporal evolution of
the call-stack segments captured at sample points. This approach has presented a two-phase
mechanism to provide the temporal evolution of the call-stack segments. The first phase creates a
temporal sequence of call-stacks; however, given that only a segment of the call-stack is captured
call-stack then needs to be reconstructed. This thesis has therefore presented a bio-inspired
algorithm that identifies regions of similarity between call-stack segments in order to deduce the
necessary line of call-path ancestors. The second phase selects a handful representative routines
that are closer to the application activity and dismisses the extremely short routines according
to the user requests. This mechanism has served to determine the duration the representative
routines, observe their chronological order and display the evolution within the source code, in
addition to correlating them with performance plots.

6.1.3 Address-space time-evolution

This thesis has also presented an extension to the folding mechanism that displays the memory
access patterns of computing region and their time evolution along time and correlated with
source code and performance. This extension relies on the ability of recent hardware mechanisms
available in current processors to sample instructions and then attribute performance data that
includes the addresses referenced to each sample. The extension has proved valuable for giving
detailed insight into optimized application binaries, such as the detection of the most dominant
data streams and their temporal evolution along computing regions. The analyses provided
have shown situations in which the compiler has replaced a complete loop by a function call,
multiple and simultaneous memory streams for particular regions of code and identified possible
redundant work.

6.1.4 Energy metrics

This thesis has also shown the usefulness of employing novel capabilities from recent processors
to obtain power and energy metrics and the correlation with performance metrics. These
capabilities have allowed the evolution of both the performance and the power to be studied in a
wide variety of serial benchmarks and also in parallel applications executed in different scenarios
within production systems. The availability of these type of tools allows continuous development
of HPC systems and improves their use not only in performance, but also in energy dimensions.

With respect to the results, the most significant fraction of the power dissipated relates to
the static part and consequently, the effective way to reduce the energy consumed is following
the haste and halt approach. This approach refers to the running of the application at the
maximum speed and then stop the processor until more work is ready for execution. Still, the
folding results have exposed that both performance and energy consumption are influenced
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by similar factors (such as the application executed, the processor frequency, the occupancy
of the socket). In particular, the results indicate that the DRAM power consumption presents
the higher variability along the computing region as a result of the DRAM memory accesses.
In this direction, improving the access to the memory hierarchy serves to reduce the power
consumption but also the execution time and consequently, the overall dissipated energy. In
addition, the results have also shown that applications do not reach the processor TDP and
that regions with peaks of energy consumption are relatively short in duration. These energy
footprints are valuable for determining when to enable the acceleration of low-consumption
phases and limit the acceleration for a certain duration of the execution.

6.2 Future research directions

This work has covered several aspects to describe finely the progression of the performance
metrics. While these descriptions have been valuable to increase the performance of several
applications, this research also have arisen several open lines and future work that are described
below.

6.2.1 Alternative sampling sources

Sampling is one of the monitoring mechanisms used for capturing punctual data and in this
thesis, so it is crucial apply the folding. In this environment, sampled data enables the folding
mechanism to provide performance metrics as the instrumented region progresses. All the
experiments in this thesis have used time-based (or cycle-based) sampling mechanisms, which
ensures that the collected samples run independently with respect to the application activity.
Extrae was also been extended within the frame of this thesis to integrate variations in the
sampling periods to ensure that samples are randomly distributed among the computing regions,
whatever their duration.

Still, it is possible to use alternative sampling sources as, for instance, hardware counters.
In this situation, the processor invokes the sampling handler every time a given number of
accounted events by the PMU have occurred. As the evolution of the performance counters (such
as instructions, branches and cache misses) and the application activity are tightly correlated,
their use would help to locate regions of code with specific performance inefficiencies. For
instance, when searching for data cache misses, sampling through the cache miss performance
counter would capture most samples in those regions of code where the cache misses is higher.
Consequently, the number of samples and the quantity of details would be higher in these
particular regions. However, addressing this problem through this direction also poses a drawback
because the number of samples is uneven and there may be regions with little or no samples at
all.

6.2.2 Apply folding to non-user regions

The application analyses in this thesis have mainly focused on user regions because these
represent the largest part of the computation time and their analyses may encourage subsequent
improvements from the developer side. Still, nothing prevents the folding mechanism from being
applied to non-user regions of code, such as regions of code relating to the MPI or OpenMP
run-times, and from helping the developers of these run-times to gain new insight. There may be
several interesting studies applied to these run-times. For instance, it would be interesting to
detect when an incoming message actually arrives at an MPI process. PMPI instrumentation [70]
does not currently uncover this information. However, certain experiments indicate (as oneself
expects) that copying the message from the network device to the main memory generates
a quantity of data cache misses and this could be observed using the folding. In OpenMP
applications, it would be valuable to detect whether a thread in a spin (i.e. busy-wait) lock
degrades the memory performance of the remaining threads due to continuous pooling of
the memory bus. While the regions associated with the routines of these run-times represent
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repetitive patterns, they are likely to present duration variability between invocations; so, the
folding mechanism may require some changes to address this variability.

6.2.3 Expert systems

Despite the use of the analytical performance models, the interpretation of the values of the
performance counters requires some processor architecture knowledge due to the complex
semantics of the performance counters. This requirement prevents some users from using
performance tools and this has prompted approaches that easily map the performance counter
information into valuable insight that is likely to improve the application performance after
exploring the application behavior. Some performance tools have already included rule-based (or
expert) systems to point out the performance bottlenecks and even, include some guidelines for
increasing the application performance. The detailed results provided by the folding mechanism
in both performance and source code dimensions make it reasonable to adopt an expert system to
provide textual reports to the analyst and hints on how to improve the application performance.

6.2.4 Syntactic-level application reconstruction

The framework described in this thesis provides an enormous amount of application details that
cover performance, source code and even, data structures. This thesis offers several examples
that illustrate how an analyst interprets the results of the framework, even without any prior
knowledge of the application source code structure. On the other hand, application developers
know the application code structure, but they may find it difficult to follow the analyst findings
and map them out in the application where these are not sufficiently clear. However, the chances
for analysts to report on the application using the source code depends on the availability of the
application source code. So where the source code is not available, they will need to describe the
application structure from the folding results. This description is likely to respond to a mechanical
exploration of the folding results and interpreting when certain activity such as routine enter
and exits occur. The exploration of the results exposes information such as the presence of loops
or calls to subroutines. It, therefore seems valuable to reconstruct the application at the syntactic
level. This type of output would allow analysts and developers to understand the application,
while making it easier for developers to integrate them, thanks to the language being closer
to the application source code structure. In addition, this source code reconstruction may be
annotated with performance metrics providing an additional analysis experience.
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User guide

U.1 Quick start guide

The Folding is a mechanism that provides instantaneous performance metrics, source code
references and memory references1. This mechanism receives a trace-file (currently generated by
Extrae- see further details on generating a trace-file for the Folding in Appendix G) and generates
plots and an additional trace-file depicting the fine evolution of the performance. The Folding
uses information captured through instrumentation and sampling mechanisms and smartly
combines them. In this context, the samples are gathered from scattered computing regions
into a synthetic region by preserving their relative time within their original region so that the
sampled information determines how the performance evolves within the region. Consequently,
the folded samples represent the progression in shorter periods of time no matter the monitoring
sampling frequency, and also, the longer the runs the more samples get mapped into the synthetic
instance. The framework has shown mean differences up to 5% when comparing results obtained
sampling frequencies that are two orders of magnitude more frequent.

U.1.1 Decompressing the package

The Folding package is distributed in a .tar.bz2 file that can be uncompressed in the working
directory by executing the following command:

# tar xvz folding-1.0rc8-x86_64.tar.bz2

where folding-1.0rc8-x86_64.tar.bz2 refers to the Folding package as distributed from
the BSC web page2.

U.1.2 Contents of the package

After decompressing the package, the working directory should be populated with the directories
(and corresponding descriptions) as listed in Table U.1.

1This last option is experimental at the moment of writing this document
2http://www.bsc.es/computer-sciences/performance-tools/downloads
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Table U.1
Contents of the folding package.

Directory Contents
bin/ Binary packages
etc/

extrae-configurations/ Minimal configuration files for Extrae
models/ Configuration files to calculate performance models

basic/
ibm-power5/
ibm-power7/
ibm-power8/
intel-haswell/
intel-nehalem/
intel-sandybridge/

include/ Header files for the development of 3rd party tools
lib/ Libraries for the folding
share/ Miscellaneous files

cfg/ Configuration files for Paraver
doc/ Documentation

html
examples/

folding-writer/ Example on how to generate data for the folding
user-functions/ Sample tracefile with manually instrumented regions
clusters/ Sample tracefile with automatically detected regions

U.1.3 Quick run

This section provides examples of two types of execution of the Folding tool. These examples
take benefit of the included sample trace-files from the package. For further information on how
to generate trace-files for the Folding tool, check Appendix G.

U.1.3.1 Applied to manually instrumented regions

This first example uses a trace-file from the 444.namd SPEC benchmark that contains manually
instrumented information that is located in

${FOLDING_HOME}/etc/share/examples/user-functions

This trace-file was generated by Extrae and delimiting the main loop using the Extrae
API3, more precisely the Extrae_user_function which emits events with label User function
(or event type 60000019). To apply the Folding process to this trace-file, simply execute the
following commands:

# cd ${FOLDING_HOME}/etc/share/examples/user-functions
# ${FOLDING_HOME}/bin/folding 444.namd.prv "User function"

U.1.3.2 Applied to automatically characterized regions

This example consists of a trace-file for the Nemo application when executed in MareNostrum3.
This trace-file contains information regarding automatically characterized regions. This charac-
terization has been done using the Clustering tool4. This tool enriches the trace-file by adding

3Please refer to http://www.bsc.es/computer-sciences/performance-tools/documentation for the latest Extrae
User’s Guide.

4Please refer to http://www.bsc.es/computer-sciences/performance-tools/documentation for the latest docu-
mentation with respect to the Clustering tool.

162

http://www.bsc.es/computer-sciences/performance-tools/documentation
http://www.bsc.es/computer-sciences/performance-tools/documentation


Quick start guide - U.1

events labeled as Cluster ID (and event type 90000001) into the trace-file. In this context,
these events identify similar computation regions based on the event value. To apply the Folding
process to this trace-file, simply execute the following commands:

# cd ${FOLDING_HOME}/etc/share/examples/user-functions
# ${FOLDING_HOME}/bin/folding \
nemo.exe.128tasks.chop1.clustered.prv "Cluster ID"

This trace-file also contains all the necessary performance counters in order to take ben-
efit of several performance models based on performance counters. Simply add the -model
intel-sandybridge option to the Folding script to generate the plots with information of the
models instead of providing each performance counter individually. The commands to execute
should look like this:

# cd ${FOLDING_HOME}/etc/share/examples/user-functions
# ${FOLDING_HOME}/bin/folding -model intel-sandybridge \
nemo.exe.128tasks.chop1.clustered.prv "Cluster ID"

U.1.4 Exploring the results

The Folding mechanism generates two types of output inside a directory named as the trace-file
given (without the .prv suffix). The first type of results include a set of gnuplot files where each
of these represents the evolution of the performance counters within the region. The tool also
generates a Paraver trace-file with synthetic information derived from the Folding mechanism.

U.1.4.1 Using gnuplot

With respect to the gnuplot files, the Folding mechanism generates as many files as the combi-
nation of analyzed regions (clusters, OpenMP outlined routines, taskified OmpSs routines, or
manually delimited regions) and the counters gathered during the application execution. The
user can easily list the generated gnuplot files calling ls *.gnuplot within the directory created.
The name of the gnuplot files contain the trace-file prefix, the identification of the region folded,
and the performance counter shown. For instance, the example described in Section U.1.3.1
generates output files that can be explored by executing the command:

# gnuplot -persist \
444.namd.codeblocks.fused.any.any.any.main.Group_0.PAPI_TOT_INS.\
gnuplot

When executing the aforementioned command, the gnuplot command should open a window
that resembles that in Figure U.15. The Figure shows that the application faces six phases that
execute at 4,500 MIPS approximately. Most of the code occurs in three code locations (being line
76 the most observed line), and we also observe that phases related to high MIPS are related
with the activity in the middle of the code-line plot.

This file refers to the user routine main (which was manually instrumented) of the trace-file
444.namd.prv and provides information of the total graduated instructions (PAPI_TOT_INS).
The user will notice that there are additional files for the different performance counters and
they can explore them individually. The Folding also generates an additional plot that combines
the metrics of all the counters into a single plot. This plot mainly provides information with
respect to the MIPS rate (referenced on the right Y-axis), and ratio of the remaining performance
counters per instruction (referenced on the left Y-axis). For the particular case of the example
from Section U.1.3.1, this plot can be explored calling:

5Warning! If the user has problems to open the gnuplot, they should check whether the gnuplot installation is compatible
and supports the default terminal. Otherwise, simply select the appropriate terminal (or leave it blank) in the first four lines
in the gnuplot script
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Appl * Task * Thread * - Group_0 - main
Duration = 14647.68 ms, Counter = 60090.87 Mevents
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Figure U.1
Evolution of graduated instructions for 444.namd.
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Figure U.2
Evolution of multiple counters for 444.namd.

# gnuplot -persist \
444.namd.codeblocks.fused.any.any.any.main.\
Group_0.ratio_per_instruction.gnuplot

This command should generate an output combining all the performance counter slopes as
shown in Figure U.2.

The aforementioned instructions also apply to the automatically delimited example described
in Section U.1.3.2. In this case, the region names are numbered as Cluster_1 to Cluster_11, but
they also contain the trace-file prefix and the performance counters to explore them individually.
If the user requested the performance models, then additional gnuplot files are created to provide
information regarding these models. For the particular case of the Intel SandyBridge model, it
generates three models that always generate the MIPS rate and add different metrics:

• instruction-mix
Gives insight of the type of instructions executed along the region.

• architecture-impact
Provides information regarding to the cache misses at different levels and the branch
mispredictions along the region.
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Evolution for Instruction mix model
Appl * Task * Thread * - Group_0 - Cluster_1
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Figure U.3
Instruction mix decomposition for Cluster 1 of Nemo.

• stall-distribution
This plot shows information regarding on which components of the processor are stalling
the processor pipeline.

For instance, to open the instruction mix for the region labeled as Cluster 1 of the Nemo
application executed in Section U.1.3.2, the user needs to open the plot invoking the commands
below and should obtain a plot similar to Figure U.3. The reader may see that the application
shows two distinctive phases (green and blue) and within each of them there are two repetitions
of the same performance.

# gnuplot -persist \
nemo.exe.128tasks.chop1.clustered.codeblocks.fused.any.any.any.\
Cluster_1.Group_0.instructionmix.gnuplot

The tool also provides a GUI-based tool to explore the plots. the user may invoke a visualizer
named wxfolding-viewer, by invoking it from the newly created directory such as:

# ${FOLDING_HOME}/bin/wxfolding-viewer *.wxfolding

U.1.4.2 Using Paraver

The Folding process generates a trace-file with a suffix .folded.prv that lets Paraver to display
some parts of the folded results. The Folding package includes several configuration files in
the ${FOLDING_HOME}/share/cfg directory for Paraver to help analysing the results. From the
configuration files contained in that directory, we outline the following:

• views/

– win_folded_type.cfg
Generates a time-line that shows in which instances the Folding results have been
integrated. This helps correlating the original trace-file and its contents with the
folded trace-file. Notice that only one instance per type (where type refers to function,
cluster, etc...) is folded.

– win_folded_mips.cfg
Generates a time-line showing a signal of the MIPS rate within the folded instances.
See in Figure U.4 a time-line depicting the MIPS rate achieved in the example
trace-file for 444.namd.
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Figure U.4
Evolution of graduated instructions for 444.namd in Paraver.

Figure U.5
Paraver time-line showing the callers for Cluster 1 of Nemo.

– win_folded_processed_call-stack_caller.cfg
Generates a time-line showing the most time-dominant routines as they have been
executed within the folded instances. Figure U.5 shows a time-line depicting the
called routines for the Nemo example.

– win_folded_processed_call-stack_callerline.cfg
Generates a time-line showing the most time-dominant source code references (as
pair of line and file) as they have been executed within the folded instances.

• histograms/

– 3dh_folded_mips_per_caller.cfg
Generates a histogram that shows the achieved MIPS rate depending on the caller
(columns) for a particular region folded.

– 3dh_folded_mips_per_callerline.cfg
Generates a histogram that shows the achieved MIPS rate depending on the source
code references (pair of line and file in columns) for a particular region folded.

U.2 Configuration, build and installation

This section describes how to build and install the Folding package. The Folding package (and
its dependencies) requires the Boost library (only the headers suffice), a C compiler, a Fortran
compiler and a C++ compiler that supports the C++ 2011 specification (such as g++ version
4.8). This package optionally uses the strucchange package from the R statistical application
(and may execute in parallel if the doParallel is available) to use the piece-wise linear regression
interpolation mechanism. Additionally, the Folding package requires the libtools package to be
installed. This package helps on the parsing of Paraver trace-files and can be downloaded from
the BSC download web page.

U.2.1 Libtools package

This package can be downloaded from the BSC web page and requires the boost header files6.
If the boost header files are located in the system’s default, simply run the following command:

6The libtools package has been successfully tested against version from 1.48 to 1.54.
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# ./configure --prefix=/home/harald/aplic/libtools/1.0 \
&& make && make install

where -prefix indicates the destination folder for this package.
If the boost header files are located elsewhere in the system, run the following command:

# ./configure --prefix=/home/harald/aplic/libtools/1.0 \
--with-boost=/path/to/boost \
&& make && make install

U.2.2 Folding package

The most basic configuration for the Folding package honors the following commands:

# ./configure --with-libtools=$HOME/aplic/libtools/1.0 \
--prefix=$HOME/aplic/folding/1.0rc8 && \
make && make install

where -with-libtools refers to the location of the libtools package installed in Section U.2.1
and -prefix indicates where to install the Folding tool. If the compilation and installation
succeed, the contents of the target installation should look like as the contents defined in
Section U.1.2.

The Folding tool supports several compilation flags that modify the behavior or enable
additional functionalities of the tool. The following list groups the flags according to the behavior
they enable.

• -with-clustering-suite=<DIR>
The Folding tool relies on the similarity between the folded instances in order to generate
its results. By default, the Folding tool includes two mechanisms to reduce the noise that
appear from using instances with significant different behavior. However, this flag allows
using the BSC Clustering suite as a third alternative in order to reduce the noise.

• -with-R=<DIR1>, -with-cube=<DIR2>, -with-clang=<DIR3>
Enables the usage of piece-wise linear regressions on top of the strucchange package7

from the R statistical application8. This functionality requires the clang compiler9 and can
generate input files for a modified version of the Cube3 performance analysis package10.

• -with-boost=<DIR>
This flag lets the Folding to use a given Boost installation package.

• -enable-gui
The results of the Folding tool is a set of gnuplot files that have to explored manually. If
this flag is given at the configure step, the Folding package would include a GUI written in
Python that helps exploring all the results from the tool.

• -enable-callstack-analysis
This flag enables the call-stack analysis of the segments captured during the measurement
step. Enabling this option results in gnuplot files that depict the performance progression
collocated with the source code progression.

• -enable-reference-analysis
This flag enables the memory references analysis of the references captured during the

7http://cran.r-project.org/web/packages/strucchange/index.html
8http://www.r-project.org
9http://clang.llvm.org

10http://www.scalasca.org/software/cube-3.x/download.html
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measurement step (currently, through the perf system tool). Enabling this option results in
gnuplot files that depict the performance progression collocated with the memory address
space and the sampled references.
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Generate a trace-file for the Folding

This chapter covers the minimum and necessary steps so as to configure Extrae1 in order to use
its resulting trace-files for the Folding process. There are three requirements when monitoring
an application with Extrae in order to take the most benefit from the Folding tool. First, it is
necessary to enable the sampling mechanism in addition to the instrumentation mechanism
(see Section G.1). Second, it is convenient to collect the appropriate performance counters for
the underlying processor (see Section G.2). Finally, Extrae needs to capture a segment of the
call-stack in order to allow the Folding to provide information regarding the progression of
the executed routines. The forthcoming sections provide information on how to enable these
functionalities through the XML tags for the Extrae configuration file.

G.1 Enabling the sampling mechanism

Extrae is an instrumentation package that by default collects information from different parallel
runtimes, including but not limited to: MPI, OpenMP, pthreads, CUDA and OpenCL (and even
combinations of them). Extrae can be configured so that it also uses sampling mechanisms
to capture performance metrics on a periodic basis. There are currently two alternatives to
enable sampling in Extrae: using alarm signals and using performance counters. For the sake of
simplicity, this document only covers the alarm-based sampling. However, if the reader would
like to enable the sampling using the performance counters they must look at section 4.9 in the
Extrae User’s Manual for more details.

Listing G.1
Enable default time-based sampling in Extrae.

1 <sampling enabled="yes" type="default" period="50m" variability="10m"/>

The XML statements in Listing G.1 need to be included in the Extrae configuration file. These
statements indicate Extrae that sampling is enabled (enabled="yes"). They also tell Extrae
to capture samples every 50 milliseconds (ms) with a random variability of 10 ms, that means
that samples will be randomly collected with a periodicity of 50±10 ms. With respect to type,
it determines which timer domain is used (see man 2 setitimer or man 3p setitimer for

1Please refer to http://www.bsc.es/computer-sciences/performance-tools/documentation for the latest Extrae
User’s Guide.
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further information on time domains). Available options are: real (which is also the default
value, virtual and prof (which use the SIGALRM, SIGVTALRM and SIGPROF respectively).
The default timing accumulates real time, but only issues samples at master thread. To let all the
threads collect samples, the type must be set to either virtual or prof.

Additionally, the Folding mechanism is able to combine several performance models and
generate summarized results that simplify understanding the behavior of the node-level per-
formance. Since these performance models are heavily-tighted with the performance counters
available on each processor architecture and family, the following sections provide Extrae XML
configuration files ready to use on several architectures. Since each architecture has different
characteristics, the user may need to tune the XML presented there to make sure that all the list
performance counters are gathered appropriately.

G.2 Collecting the appropriate performance counters

The Folding mechanism provides, among other type of information, the progression of perfor-
mance metrics along a delimited region through instrumentation points. These performance
metrics include the progression of performance counters of every performance counter by default.
To generate these kind of reports, Extrae must collect the performance counters during the
application execution and this is achieved by defining counter sets into the <counters> section of
the Extrae configuration file (see Section 4.19 of the Extrae User’s guide for more information).

There has been research that has developed some performance models based on performance
counters ratios among performance counters in order to ease the analysis of the reports. Each of
these performance models aims at providing insight of different aspects of the application and
system during the execution. Since the availability of the performance counters changes from
processor to processor (even in the same processor family), the following sections describe the
performance counters that are meant to be collected in order to calculate these performance
models. These sections include the minimal <counters> sections to be added in a previously
existing Extrae configuration file, but the Folding package also includes full Extrae configuration
files in ${FOLDING_HOME}/etc/extrae-configurations.

G.2.1 Intel Haswell processors

Listing G.2
Counter definition sets for the Extrae configuration file when used on Intel Haswell procesors.

1 <cpu enabled="yes" starting-set-distribution="cyclic">
2 <set enabled="yes" domain="all" changeat-time="500000us">
3 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM,PAPI_L2_DCM
4 </set>
5 <set enabled="yes" domain="all" changeat-time="500000us">
6 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L3_TCM,RESOURCE_STALLS:SB,RESOURCE_STALLS:ROB
7 </set>
8 <set enabled="yes" domain="all" changeat-time="500000us">
9 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_SR_INS,PAPI_BR_CN,PAPI_BR_UCN

10 </set>
11 <set enabled="yes" domain="all" changeat-time="500000us">
12 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_BR_MSP,PAPI_LD_INS
13 </set>
14 <set enabled="yes" domain="all" changeat-time="500000us">
15 PAPI_TOT_INS,PAPI_TOT_CYC,RESOURCE_STALLS,RESOURCE_STALLS:RS
16 </set>
17 </cpu>
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The listing G.2 indicates Extrae to arrange five performance counter sets with performance
counters that are available on Intel Haswell processors. The collection of these performance
counters allows the Folding to apply the models contained in the ${FOLDING_HOME}/etc/
models/intel-haswell that include: instruction mix, architecture impact and stall distribution.
Unfortunately, the PMU of the Intel Haswell processors do not count neither floating point nor
vector instructions.

G.2.2 Intel SandyBridge processors

Listing G.3
Counter definition sets for the Extrae configuration file when used on Intel SandyBridge procesors.

1 <cpu enabled="yes" starting-set-distribution="cyclic">
2 <set enabled="yes" domain="all" changeat-time="500000us">
3 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM,PAPI_L2_DCM,PAPI_L3_TCM,PAPI_BR_MSP,
4 PAPI_BR_UCN,PAPI_BR_CN
5 </set>
6 <set enabled="yes" domain="all" changeat-time="500000us">
7 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_VEC_SP,PAPI_LD_INS,PAPI_SR_INS,RESOURCE_STALLS,
8 RESOURCE_STALLS:RS,RESOURCE_STALLS:ROB
9 </set>

10 <set enabled="yes" domain="all" changeat-time="500000us">
11 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_VEC_DP,PAPI_FP_INS,RESOURCE_STALLS:SB,
12 RESOURCE_STALLS:LB
13 </set>
14 </cpu>

The listing G.4 indicates Extrae to configure five performance counter sets with performance
counters that are available on Intel SandyBridge processors. The collection of these perfor-
mance counters allows the Folding to apply the models contained in the ${FOLDING_HOME}/
etc/models/intel-sandybridge that include: instruction mix, architecture impact and stall
distribution.

G.2.3 Intel Nehalem processors

The listing G.3 indicates Extrae to prepare three performance counter sets with performance
counters that are available on Intel Nehalem processors. The collection of these performance
counters allows the Folding to apply the models contained in the ${FOLDING_HOME}/etc/
models/intel-nehalem that include: instruction mix, architecture impact and stall distribution.

G.2.4 IBM Power8 processors

The listing G.5 indicates Extrae to arrange six performance counter sets with performance
counters that are available on IBM Power8 (and similar) processors. The collection of these
performance counters allows the Folding to calculate the CPIStack model for the IBM Power8
processor which is contained in ${FOLDING_HOME}/etc/models/ibm-power8.

G.2.5 IBM Power7 processors

The listing G.6 indicates Extrae to prepare six performance counter sets with performance
counters that are available on IBM Power7 (and similar) processors. The collection of these
performance counters allows the Folding to calculate the CPIStack model for the IBM Power7
processor which is contained in ${FOLDING_HOME}/etc/models/ibm-power7.
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Listing G.4
Counter definition sets for the Extrae configuration file when used on Intel Nehalem procesors.

1 <cpu enabled="yes" starting-set-distribution="cyclic">
2 <set enabled="yes" domain="all" changeat-time="500000us">
3 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM,PAPI_L2_DCM,PAPI_L3_TCM
4 </set>
5 <set enabled="yes" domain="all" changeat-time="500000us">
6 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_BR_MSP,PAPI_BR_UCN,PAPI_BR_CN,RESOURCE_STALLS
7 </set>
8 <set enabled="yes" domain="all" changeat-time="500000us">
9 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_VEC_DP,PAPI_VEC_SP,PAPI_FP_INS

10 </set>
11 <set enabled="yes" domain="all" changeat-time="500000us">
12 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_LD_INS,PAPI_SR_INS
13 </set>
14 <set enabled="yes" domain="all" changeat-time="500000us">
15 PAPI_TOT_INS,PAPI_TOT_CYC,RESOURCE_STALLS:LOAD,RESOURCE_STALLS:STORE,
16 RESOURCE_STALLS:ROB_FULL,RESOURCE_STALLS:RS_FULL
17 </set>
18 </cpu>

Listing G.5
Counter definition sets for the Extrae configuration file when used on IBM Power8 procesors.

1 <cpu enabled="yes" starting-set-distribution="cyclic">
2 <set enabled="yes" domain="all" changeat-time="500000us">
3 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL,PM_CMPLU_STALL_DCACHE_MISS,
4 PM_CMPLU_STALL_THRD,PM_GRP_CMPL
5 </set>
6 <set enabled="yes" domain="all" changeat-time="500000us">
7 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_BRU,PM_GCT_NOSLOT_CYC,
8 PM_CMPLU_STALL_FXU
9 </set>

10 <set enabled="yes" domain="all" changeat-time="500000us">
11 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_SCALAR,PM_CMPLU_STALL_LSU
12 </set>
13 <set enabled="yes" domain="all" changeat-time="500000us">
14 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_STORE,PM_CMPLU_STALL_DMISS_L3MISS
15 </set>
16 <set enabled="yes" domain="all" changeat-time="500000us">
17 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_VECTOR,PM_CMPLU_STALL_REJECT
18 </set>
19 <set enabled="yes" domain="all" changeat-time="500000us">
20 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_DMISS_L2L3
21 </set>
22 </cpu>

G.2.6 IBM Power5 processors

The listing G.7 indicates Extrae to configure six performance counter sets with performance
counters that are available on IBM Power5 (and similar) processors. The collection of these
performance counters allows the Folding to calculate the CPIStack model for the IBM Power5
processor which is contained in ${FOLDING_HOME}/etc/models/ibm-power5.
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Listing G.6
Counter definition sets for the Extrae configuration file when used on IBM Power7 procesors.

1 <cpu enabled="yes" starting-set-distribution="cyclic">
2 <set enabled="yes" domain="all" changeat-time="500000us">
3 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL,PM_CMPLU_STALL_DCACHE_MISS,
4 PM_CMPLU_STALL_THRD,PM_GRP_CMPL
5 </set>
6 <set enabled="yes" domain="all" changeat-time="500000us">
7 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_DFU,PM_CMPLU_STALL_IFU,
8 PM_GCT_NOSLOT_CYC
9 </set>

10 <set enabled="yes" domain="all" changeat-time="500000us">
11 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_FXU,PM_CMPLU_STALL_SCALAR
12 </set>
13 <set enabled="yes" domain="all" changeat-time="500000us">
14 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_LSU
15 </set>
16 <set enabled="yes" domain="all" changeat-time="500000us">
17 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_STORE
18 </set>
19 <set enabled="yes" domain="all" changeat-time="500000us">
20 PM_RUN_INST_CMPL,PM_RUN_CYC,PM_CMPLU_STALL_VECTOR
21 </set>
22 </cpu>

G.2.7 Other architectures

The previous definitions of counter sets included performance counters that are available on
the specific stated machines. Since these performance counters may not be available on all the
systems, the package also provides a group of counter sets that are available on a variety of
systems. Listing G.8 defines three Extrae counter sets that are available on many systems (caveat
here, not all systems provide them). With the use of these counter sets, the Folding can apply the
models contained in the ${FOLDING_HOME}/etc/models/basic that include: instruction mix
and architecture impact.

G.3 Capturing the call-stack at sample points

By default, the sampling mechanism captures the performance counters indicated in the counters
section and the Program Counter interrupted at the sample point. The Folding provides the
instantaneous progression of the routines that last at least a minimum given duration. To enable
this type of analysis, it is necessary to instruct Extrae to capture a portion of the call-stack during
its execution. Listing G.9 shows how to enable the collection of the call-stack at the sample
points in the Extrae configuration file. The mandatory lines to capture the call-stack at sample
points are lines 1 and 4. Line 1 indicates that this section must be processed and Line 4 tells
Extrae to capture levels 1 to 5 from the call-stack (where 1 refers to the level below to the top of
the call-stack).
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Listing G.7
Counter definition sets for the Extrae configuration file when used on IBM Power5 procesors.

1 <cpu enabled="yes" starting-set-distribution="cyclic">
2 <set enabled="yes" domain="all" changeat-time="500000us">
3 PM_INST_CMPL,PM_CYC,PM_GCT_EMPTY_CYC,PM_LSU_LMQ_SRQ_EMPTY_CYC,
4 PM_HV_CYC,PM_1PLUS_PPC_CMPL,PM_GRP_CMPL,PM_TB_BIT_TRANS
5 </set>
6 <set enabled="yes" domain="all" changeat-time="500000us">
7 PM_INST_CMPL,PM_CYC,PM_FLUSH_BR_MPRED,PM_BR_MPRED_TA,
8 PM_GCT_EMPTY_IC_MISS,PM_GCT_EMPTY_BR_MPRED,PM_L1_WRITE_CYC
9 </set>

10 <set enabled="yes" domain="all" changeat-time="500000us">
11 PM_INST_CMPL,PM_CYC,PM_LSU_FLUSH,PM_FLUSH_LSU_BR_MPRED,PM_CMPLU_STALL_LSU,
12 PM_CMPLU_STALL_ERAT_MISS
13 </set>
14 <set enabled="yes" domain="all" changeat-time="500000us">
15 PM_INST_CMPL,PM_CYC,PM_GCT_EMPTY_SRQ_FULL,PM_FXU_FIN,PM_FPU_FIN,
16 PM_CMPLU_STALL_FXU,PM_FXU_BUSY,PM_CMPLU_STALL_DIV
17 </set>
18 <set enabled="yes" domain="all" changeat-time="500000us">
19 PM_INST_CMPL,PM_CYC,PM_IOPS_CMPL,PM_CMPLU_STALL_FDIV,PM_FPU_FSQRT,
20 PM_CMPLU_STALL_FPU,PM_FPU_FDIV,PM_FPU_FMA
21 </set>
22 <set enabled="yes" domain="all" changeat-time="500000us">
23 PM_INST_CMPL,PM_CYC,PM_CMPLU_STALL_OTHER,PM_CMPLU_STALL_DCACHE_MISS,
24 PM_LSU_DERAT_MISS,PM_CMPLU_STALL_REJECT,PM_LD_MISS_L1,PM_LD_REF_L1
25 </set>
26 </cpu>

Listing G.8
Basic counter definition sets for other processors not stated before.

1 <cpu enabled="yes" starting-set-distribution="cyclic">
2 <set enabled="yes" domain="all" changeat-time="500000us">
3 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM,PAPI_L2_DCM,PAPI_L3_TCM
4 </set>
5 <set enabled="yes" domain="all" changeat-time="500000us">
6 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_BR_CN,PAPI_BR_UCN,PAPI_LD_INS,PAPI_SR_INS
7 </set>
8 <set enabled="yes" domain="all" changeat-time="500000us">
9 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_VEC_SP,PAPI_VEC_DP,PAPI_FP_INS,PAPI_BR_MSP

10 </set>
11 </cpu>

Listing G.9
Collect call-stack information at sample points.

1 <callers enabled="yes">
2 <mpi enabled="yes">1-3</mpi>
3 <pacx enabled="no">1-3</pacx>
4 <sampling enabled="yes">1-5</sampling>
5 </callers>
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Tool design

While the end user executes a single command to apply the Folding tool, this command hides
two major components that are executed sequentially and all the outputs are generated into a
newly created directory with the name of the input trace-file. The first component processes a
user-given trace-file that contains instrumented and sampled data and generates a textual file
that contains sequences of instances and samples. The second component takes these sequences
of instances and samples, then applies the contouring algorithm, any performance model, and
the call-stack processing, and, finally, it generates the output results. Both components are
grouped together within the folding.sh appearing to the user that the Folding simply consists
of a single tool.

T.1 First component: trace-file processing

The first component is divided into three phases that are executed one after another with the
user-given trace-file and each of these parse the given trace-file and generates another trace-file
that will be used in the subsequent phase as depicted in Figure T.1. Each of these phases are built
in a similar fashion. They parse the input trace-file and keep in memory information regarding
the thread state, and eventually, add information to the output. The phases are:

1. codeblocks (found in src/codeblocks)
This phase attributes to each sample information regarding to the loop / code region that
it belongs to according to the application source code.

2. fuse (found in src/fuse)
This phase compacts the trace-file and ensures that the resulting trace-file is well formed.

CodeBlocks

Fuse Extract

Source-code
(optionally)

Paraver
trace-file

.extract file

Figure T.1
Data-flow for the first component of the folding.

175



T - Tool design

InstanceContainer Instance
regionName : string

InstanceGroup Sample

Time : double
CounterValue : map <string, double>
crt : CodeRefTriplet

InterpolationResults

*

*

used, unused

*

instances, excluded

*

interpolated

*

samples

*

Figure T.2
Main instances and samples related diagram classes.

3. extract (found in src/extract)
This is the final phase and extracts information regarding the instances and samples within
the trace-file.

The output of this component is a set of files containing information relative to the application.
The most notable output is the .extract file, which contains the sequence of instances and their
samples. For instance, Listing T.1 shows the contents of the .extract file generated using the
provided example to demonstrate the API facility. This listing contains information regarding
one instance of the FunctionA region. The instance starts at time-stamp 1,000 ns and lasts
4,500 ns, and it executes up to 2,500 instructions (PAPI_TOT_INS) and takes 5,000 cycles
(PAPI_TOT_CYC) to complete. This instance has two samples associated that ocurred at time-
stamps 2,000 and 4,000, and each of those provides information regarding the aforementioned
performance counters.

Listing T.1
Output example for the extract phase of the Folding mechanism.

1 I 2 2 2 FunctionA 1000 4500 2 PAPI_TOT_CYC 5000 PAPI_TOT_INS 2500
2 S 2000 1000 2 PAPI_TOT_CYC 2000 PAPI_TOT_INS 1000 0 0
3 S 4000 3000 2 PAPI_TOT_CYC 4000 PAPI_TOT_INS 2000 2 0 1 2 3 1 3 4 5 0

T.2 Second component: applying the folding

The main objective of this component relies on processing the instances and samples extracted
and generate the output results. These results include the temporal evolution of the performance
counters, any models requested by the user, the source code references and memory references
progression, and the results are written in gnuplot and Paraver trace-files. This section gives a
summarized view of the Folding work-flow by depicting the most notable class diagrams found
in the application source code.

Figure T.2 shows a portion of the classes that are most important within this tool. The classes
Instance and Sample refer to the instances and samples as-is, without any further processing and
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<<abstract>>
InstanceSeparator

InstanceSeparator (bool keepallgroups);
separateInGroups (vector<Instance>);

InstanceSeparatorAuto InstanceSeparatorDBSCAN InstanceSeparatorNone

Figure T.3
Instance selection related diagram classes.

<<abstract>>
SampleSelector

select (InstanceGroup, vector<string> Counters);

SampleSelectorDefault SampleSelectorFirst SampleSelectorDistance

Figure T.4
Sample selector related diagram classes.

as generated by the extract tool, in which each Instance contains a set of Sample, and every
Instance belongs to an InstanceContainer.

After reading every Instance, the Folding may apply a clustering algorithm (see Figure T.3)
according to the duration of each instance in order to reduce the difference between folded
Instance. Currently, there are three alternatives regarding the grouping.

• InstanceSeparatorNone groups all instances into a single group.

• InstanceSeparatorAuto automatically groups the instances according to their duration. The
grouping partitions the time-space interval defined by the shortest and longest instances
and looks for group of nearby instances.

• InstanceSeparatorDBSCAN groups the instances according to a DBSCAN algorithm applied
to the duration of the instances. The DBSCAN algorithm groups together instances that
are closely packed together (instances with many nearby neighbors) in terms of time and
marks as outliers those instances that lie alone in low-density regions. This grouping uses
the ClusteringSuite implementation from the BSC performance tools1.

This grouping begets the InstanceGroup objects which contains references to those Instance
that belong to that particular group. Then, the Folding removes the outliers to each Instance
within every InstanceGroup and store the outliers and the remaining in the excluded and instances
associations, respectively.

Since the complexity of the contouring algorithms depends on the number of points to
connect, and therefore the number of samples to fold, the Folding tool supports limiting the
number of samples given to these algorithms. Figure T.4 depicts the class diagram of the available
SampleSelector mechanisms to limit the number of samples.

• SampleSelectorDefault the select method returns all of the samples within the InstanceGroup.
This is useful when the user does not impose any limit to the number of samples to be
folded.

• SampleSelectorFirst receives a threshold (N) in the class constructor. Then, the select
method tags the first N samples for the processing while the rest are marked as unused.

1See http://www.bsc.es/computer-sciences/performance-tools/downloads.
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<<abstract>>
Interpolation

Interpolation (unsigned steps, bool prefilter);
do_interpolate(..);

InterpolationRstrucchange InterpolationKriger

Figure T.5
Performance counter interpolation related diagram classes.

<<abstract>>
ComponentNode

evaluate (InterpolationResults);

ComponentNode-
constant

ComponentNode-data ComponentNode-derived

children
2

ComponentModel

1

Model

loadXML (file)

components

*

Figure T.6
Performance models related diagram classes.

• SampleSelectorDistance receives a threshold (N) in the class constructor. Then, the select
method tags N samples that are equidistant within the Instance duration, while the rest
are unused.

Then the Folding repeatedly applies the contouring algorithm to the used samples among
the different InstanceGroup objects. The contouring algorithm applies to each performance
counter individually, and as of writing this document, there are two approaches that honor the
Interpolation super-class virtual method (mainly do_interpolate):

• InterpolationKriger uses the self-provided contouring algorithm based on the Kriging
mechanism to implement the do_interpolate.

• InterpolationRstrucchange employs the strucchange package2 from the R statistical package3

to use piece-wise linear regressions to the folded samples. Additionally, this package may
benefit from parallel environments if the doParallel package4 is available on the system.

The interpolation results are stored, per performance counter, into InterpolationResults objects
that are associated by InstanceGroup by the attribute interpolated (as depicted in Figure T.2). The
interpolated attribute is implemented as a hash function indexed by the performance counter, so
that the interpolation results can be fetched easily.

The Folding allows defining performance models based on performance counters using XML
files (see Listing T.2 for exemplification purposes and ${FOLDING_HOME}/etc/models for more

2http://cran.r-project.org/web/packages/strucchange/index.html
3http://www.r-project.org
4http://cran.r-project.org/package=doParallel
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Listing T.2
Folding example model that generates the L1D and L2D misses per instruction, in addition to the MIPS rate

1 <?xml version=’1.0’?>
2

3 <model name="sample" title-name="Sample model"
4 y1="Ratios" y2="MIPS" y1-stacked="no">
5

6 <component name="l1_dcm_ratio" title-name="L1 DCM" where="y1"
7 color="red">
8 <operation type=’/’>
9 <value> PAPI_L1_DCM </value>

10 <value> PAPI_TOT_INS </value>
11 </operation>
12 </component>
13

14 <component name="l2_dcm_ratio" title-name="L2 DCM" where="y1"
15 color="blue">
16 <operation type=’/’>
17 <value> PAPI_L2_DCM </value>
18 <value> PAPI_TOT_INS </value>
19 </operation>
20 </component>
21

22 <component name="mips" title-name="MIPS" where="y2" color="black">
23 <value> PAPI_TOT_INS </value>
24 </component>
25

26 </model>

detailed examples). Within every XML there are one or several components (in the last Listing
these are: l1_dcm_ratio, l2_dcm_ratio and mips) that will be later represented in the resulting
gnuplot using the selected colors and Y-axis (left [y1] or right [y2]). Each component refers
to the instantaneous value of a certain performance counter (as in the mips component), a
constant value or the operation (addition, subtraction, multiplication and division) between two
other values (as in l1_dcm_ratio and l2_dcm_ratio components). The Folding implements
the performance models based on performance counters employing the diagram classes show
in Figure T.6. The XML model files are loaded into the Model class and each of them contains
multiple components (ComponentModel). The ComponentModel implements the definition of the
component on top of the ComponentNode derived sub-classes. These sub-classes allow referencing
constant values (ComponentNode_constant), interpolated results from a specific performance
counter (ComponentNode_data) and operation between other two ComponentNode objects).

With respect to the analysis of the call-stack, the Folding tool has implemented this analysis
through the CallstackProcessor related-classes that receives a set of Sample objects to explore.
Currently, the unique implementation available relies on aligning the call-stacks from the given
samples and then exploring the call-stack frames at a given level whether consecutive samples
refer to the same routine. If the number of samples surpasses a given threshold, then applies it
recursively to the next level until no more levels are available or the number of samples do not
surpass the threshold.
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<<abstract>>
CallstackProcessor

processSamples (vector<Sample>);

CallstackProcessor-
ConsecutiveRecursive

Figure T.7
Call-stack processing related diagram classes.
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API

This section covers the public API available in the Folding package. This API is meant to allow
the Folding tool to interact with other performance analysis tools in addition to Extrae.

A.1 Generation of input files for the Folding

A.1.1 Usage example

The directory ${FOLDING_HOME}/share/examples/folding-writer contains an example that
shows how to generate an input file for the folding from a programatically point of view. The
example can be compiled using the following command:

# cd ${FOLDING_HOME}/share/examples/folding-writer
# make

The Listing A.1 shows the example provided in the distributed/installed package. This
example demonstrates how to programatically create an .extract file for the interpolate
binary of the Folding package.

Listing A.1
Example of generating an input file for the Folding mechanism.

1 /*****************************************************************************\
2 * ANALYSIS PERFORMANCE TOOLS *
3 * Folding *
4 * Instrumentation package for parallel applications *
5 *****************************************************************************
6 * ___ This library is free software; you can redistribute it and/or *
7 * / __ modify it under the terms of the GNU LGPL as published *
8 * / / _____ by the Free Software Foundation; either version 2.1 *
9 * / / / \ of the License, or (at your option) any later version. *

10 * ( ( ( B S C ) *
11 * \ \ \_____/ This library is distributed in hope that it will be *
12 * \ \__ useful but WITHOUT ANY WARRANTY; without even the *
13 * \___ implied warranty of MERCHANTABILITY or FITNESS FOR A *
14 * PARTICULAR PURPOSE. See the GNU LGPL for more details. *
15 * *
16 * You should have received a copy of the GNU Lesser General Public License *
17 * along with this library; if not, write to the Free Software Foundation, *
18 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *
19 * The GNU LEsser General Public License is contained in the file COPYING. *
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20 * --------- *
21 * Barcelona Supercomputing Center - Centro Nacional de Supercomputacion *
22 \*****************************************************************************/
23

24 #include "folding-writer.H"
25 #include <fstream>
26

27 using namespace std;
28

29 int main (int argc, char *argv[])
30 {
31 string nameRegion = "FunctionA";
32 unsigned long long startRegion = 1000;
33 unsigned long long durationRegion = 4500;
34

35 /* NOTE:: Counters are given in deltas from their previous read, not as absolute values */
36 map<string, unsigned long long> c1;
37 c1["PAPI_TOT_INS"] = 1000;
38 c1["PAPI_TOT_CYC"] = 2000;
39 map<unsigned, CodeRefTriplet> crt1;
40 Sample *s1 = new Sample (2000, 2000-startRegion, c1, crt1);
41

42 map<string, unsigned long long> c2;
43 c2["PAPI_TOT_INS"] = 1000;
44 c2["PAPI_TOT_CYC"] = 2000;
45 map<unsigned, CodeRefTriplet> crt2;
46 CodeRefTriplet codeinfo_l0 (1,2,3);
47 CodeRefTriplet codeinfo_l1 (3,4,5);
48 crt2[0] = codeinfo_l0;
49 crt2[1] = codeinfo_l1;
50 Sample *s2 = new Sample (4000, 4000-startRegion, c2, crt2);
51

52 /* Last sample typically coincides with end of region -- see durationRegion,
53 Folding::Write won’t emit in a S entry */
54 map<string, unsigned long long> c3;
55 c3["PAPI_TOT_INS"] = 500;
56 c3["PAPI_TOT_CYC"] = 1000;
57 map<unsigned, CodeRefTriplet> crt3;
58 Sample *s3 = new Sample (4500, 4500-startRegion, c3, crt3);
59

60 vector<Sample*> vs;
61 vs.push_back (s1);
62 vs.push_back (s2);
63 vs.push_back (s3);
64

65 ofstream f("output.extract");
66 if (f.is_open())
67 {
68 FoldingWriter::Write (f, nameRegion, 1, 1, 1, startRegion,
69 durationRegion, vs);
70 f.close();
71 }
72

73 return 0;
74 }

The given example considers that the region FunctionA has been identified somehow by the
underlying monitoring mechanism, starts at 1,000 ns and lasts 4,500 ns (lines 31-33). Within this
period of time, three samples have occurred (s1-s3, created in lines 40, 50 and 58, respectively).
Samples contain performance counter information and source code references. The performance
counter information is given in a relative manner, thus each sample contains the difference from
the previous sample (or starting point). For instance, sample s1 captured information from
two performance counters (PAPI_TOT_INS and PAPI_TOT_CYC) that counted 1,000 and 2,000
events since the start of the region at time-stamp 2,000 ns (lines 36-40). The second sample
(s2) does not only contain information from performance counters, but also contains a call-stack
segment referencing two call-stack frames. The first frame (codeinfo_l0) refers to the routine
coded as 1, which has source code information coded as 2, and AST-block information coded
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as 3 (line 46). The same applies to second frame (codeinfo_l1) - (line 47). These frames
are mapped into depths 0 and 1 (where 0 refers to the top of the call-stack) in lines 48 and
49, and then the sample is built using the performance counter information and the call-stack
information in line 50. Finally, the last sample (s3) only accounted 500 and 1,000 events for
the PAPI_TOT_INS and PAPI_TOT_CYC performance counters respectively, but did not capture
any source code reference (lines 54-58). This last sample should coincide with the end of the
region (FunctionA), and may not be necessarily information captured from a sample point, but
from an instrumentation point that indicates the end of the region. All these samples are packed
together in a STL vector container (lines 60-63), and then the FoldingWriter::Write static
method dumps all the information from the samples using the given output stream (lines 65-71).
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