
LEVERAGING PERFORMANCE OF

3D FINITE DIFFERENCE SCHEMES IN

LARGE SCIENTIFIC COMPUTING

SIMULATIONS

by

Raúl de la Cruz Martínez

Advisors:

José María Cela

Mauricio Araya Polo

DISSERTATION

Submitted in partial fulfillment of the

requirements for the PhD Degree issued by the

Department of Computer Architecture

Universitat Politècnica de Catalunya

Barcelona, Spain

October 2015

Abstract

Gone are the days when engineers and scientists conducted most of their experiments empir-

ically. During these decades, actual tests were carried out in order to assess the robustness

and reliability of forthcoming product designs and prove theoretical models. With the ad-

vent of the computational era, scientific computing has definetely become a feasible solution

compared with empiricial methods, in terms of effort, cost and reliability. The deployment of

powerful supercomputers, with thousands of computing nodes, have additionally promoted

the extent and use of scientific computing. Large and massively parallel computational re-

sources have reduced the simulation execution times and have improved their numerical

results due to the refinement of the sampled domain.

Several numerical methods coexist for solving the Partial Differential Equations (PDEs)

governing the physical phenomena to simulate. Methods such as the Finite Element (FE)

and the Finite Volume (FV) schemes are specially well suited for dealing with problems where

unstructured meshes are frequent owing to the complex domain to simulate. Unfortunately,

this flexibility and versatility are not bestowed for free. These schemes entail higher memory

latencies due to the handling of sparse matrices which involve irregular data accesses, there-

fore increasing the execution time. Conversely, the Finite Difference (FD) scheme has shown

to be an efficient solution for specific problems where the structured meshes suit the problem

domain requirements. Many scientific areas use this scheme for solving their PDEs due to its

higher performance compared to the former schemes.

This thesis focuses on improving FD schemes to leverage the performance of large sci-

entific computing simulations. Different techniques are proposed such as the Semi-stencil, a

novel algorithm that increases the FLOP/Byte ratio for medium- and high-order stencils oper-

ators by reducing the accesses and endorsing data reuse. The algorithm is orthogonal and can

be combined with techniques such as spatial- or time-blocking, adding further improvement

to the final results.

New trends on Symmetric Multi-Processing (SMP) systems —where tens of cores are repli-

cated on the same die— pose new challenges due to the exacerbation of the memory wall

problem. The computational capability increases exponentially whereas the system band-

width only grows linearly. In order to alleviate this issue, our research is focused on different

strategies to reduce pressure on the cache hierarchy, particularly when different threads are

sharing resources due to Simultaneous Multi-Threading (SMT) capabilities. Architectures

with high level of parallelism also require efficient work-load balance to map computational

blocks to the spawned threads. Several domain decomposition schedulers for work-load bal-

ance are introduced ensuring quasi-optimal results without jeopardizing the overall perfor-

mance. We combine these schedulers with spatial-blocking and auto-tuning techniques con-

ducted at run-time, exploring the parametric space and reducing misses in last level cache.

As alternative to brute-force methods used in auto-tuning, where a huge parametric space

must be traversed to find a suboptimal candidate, performance models are a feasible solution.

Performance models can predict the performance on different architectures, selecting subop-

timal parameters almost instantly. In this thesis, we devise a flexible and extensible perfor-

mance model for stencils. The proposed model is capable of supporting multi- and many-core

architectures including complex features such as hardware prefetchers, SMT context and al-

gorithmic optimizations (spatial-blocking and Semi-stencil). Our model can be used not only

to forecast the execution time, but also to make decisions about the best algorithmic parame-

ters. Moreover, it can be included in run-time optimizers to decide the best SMT configuration

based on the execution environment.

Some industries rely heavily on FD-based techniques for their codes, which strongly moti-

vates the ongoing research of leveraging the performance. Nevertheless, many cumbersome

aspects arising in industry are still scarcely considered in academia research. In this regard,

we have collaborated in the implementation of a FD framework which covers the most im-

portant features that an HPC industrial application must include. Some of the node-level

optimization techniques devised in this thesis have been included into the framework in or-

der to contribute in the overall application performance. We show results for a couple of

strategic applications in industry: an atmospheric transport model that simulates the dis-

persal of volcanic ash and a seismic imaging model used in Oil & Gas industry to identify

hydrocarbon-rich reservoirs.

To my little Inés,

my resilient wife Mónica

and my dear family

Contents

1 Preface 1

1.1 Motivation of this Thesis . 1

1.2 Thesis Contributions . 2

1.2.1 Thesis Limitations . 3

1.3 Thesis Outline . 3

1.4 List of Publications . 4

1.5 Acknowledgements . 6

2 Introduction 9

2.1 Numerical Methods . 9

2.2 Finite Difference Method . 11

2.3 Implicit and Explicit Methods . 14

2.4 Summary . 18

3 Experimental Setup 19

3.1 Architecture Overview . 19

3.1.1 Intel Xeon X5570 (Nehalem-EP) . 19

3.1.2 IBM POWER6 . 20

3.1.3 IBM Blue Gene/P . 21

3.1.4 AMD Opteron (Barcelona) . 22

3.1.5 IBM Cell/B.E. 22

3.1.6 IBM POWER7 . 23

3.1.7 Intel Xeon E5-2670 (Sandy Bridge-EP) 23

3.1.8 Intel Xeon Phi (MIC) . 24

3.2 Parallel Programming Models . 26

3.3 Programming Languages and Compilers . 27

3.4 Performance Measurement . 28

3.5 STREAM2 . 29

3.6 Prefetchers . 31

3.7 The Roofline Model . 33

3.8 The StencilProbe Micro-benchmark . 35

3.9 Summary . 36

i

Contents ii

4 Optimizing Stencil Computations 37

4.1 The Stencil Problem . 38

4.2 State of the Art . 40

4.2.1 Space Blocking . 41

4.2.2 Time Blocking . 42

4.2.3 Pipeline Optimizations . 43

4.3 The Semi-stencil Algorithm . 45

4.3.1 Forward and Backward Updates . 46

4.3.2 Floating-Point Operations to Data Cache Access Ratio 47

4.3.3 Head, Body and Tail computations . 48

4.3.4 Orthogonal Algorithm . 48

4.4 Experiments . 55

4.4.1 Data Cache Accesses . 55

4.4.2 Operational Intensity . 57

4.4.3 Performance Evaluation and Analysis 60

4.4.4 SMP Performance . 70

4.5 Summary . 73

5 SMT, Multi-core and Auto-tuning Optimizations 75

5.1 State of the Art . 76

5.2 Simultaneous Multithreading Awareness . 78

5.3 Multi-core and Many-core Improvements . 81

5.4 Auto-tuning Improvements . 87

5.5 Experimental Results . 88

5.6 Summary . 94

6 Performance Modeling of Stencil Computations 97

6.1 Performance Modeling Overview . 98

6.2 State of the Art . 99

6.3 Multi-Level Cache Performance Model . 101

6.3.1 Base Model . 102

6.3.2 Cache Miss Cases and Rules . 104

6.3.3 Cache Interference Phenomena: II×JJ Effect 106

6.3.4 Additional Time Overheads . 107

6.4 From Single-core to Multi-core and Many-core 108

6.5 Modeling the Prefetching Effect . 109

6.5.1 Hardware Prefetching . 109

6.5.2 Software Prefetching . 111

6.6 Optimizations . 112

6.6.1 Spatial Blocking . 112

Contents iii

6.6.2 Semi-stencil Algorithm . 114

6.7 Experimental Results . 114

6.7.1 Preliminary Model Results . 115

6.7.2 Advanced Model Results . 119

6.8 Summary . 126

7 Case Studies 127

7.1 Oil & Gas Industry . 127

7.1.1 RTM Overview . 129

7.1.2 Semi-stencil Implementation in Cell/B.E. 132

7.2 WARIS Framework . 136

7.2.1 System Architecture . 137

7.2.2 Optimization Module . 143

7.3 Atmospheric Transport Modeling - Ash Dispersal 144

7.3.1 WARIS-Transport Specialization . 145

7.3.2 Volcanic Ash Dispersal Results . 146

7.4 Summary . 153

8 Conclusions and Future Work 155

8.1 Optimizing Stencil Computations . 155

8.2 SMT, Multi-core and Auto-tuning . 156

8.3 Performance Modeling of Stencil Computations 158

8.4 Case Studies . 159

A Numerical Equations 161

A.1 Heat Equation . 161

A.2 Wave Equation . 161

A.3 Advection–Diffusion–Reaction Equation . 162

A.4 FALL3D Governing Equation . 164

List of Figures

2.1 Translation from the continuous to the discrete problem 10

2.2 Discretization of u(x) the domain. 11

2.3 FD example of 1D problem with a 5 points grid domain 15

2.4 7-point stencil layout . 17

3.1 Diagram of a dual-socket configuration with Intel Nehalem-EP. 20

3.2 Diagram of the IBM Cell/B.E. processor. 23

3.3 Diagram of the Intel Xeon Phi processor. 25

3.4 Shared and distributed memory layout using OpenMP and MPI APIs 27

3.5 STREAM2 example results . 32

3.6 Streaming concurrency effect . 33

3.7 Roofline model example . 34

4.1 The memory access pattern for a 7-point stencil 39

4.2 Characterization of different optimization schemes 41

4.3 3D spatial-blocking . 42

4.4 Execution sequence of time blocking algorithms on 2D problems 44

4.5 Forward and backward updates of Semi-stencil 47

4.6 Execution example of Semi-stencil algorithm for a 1D problem 49

4.7 Ratio of floating-point operations to data cache accesses 56

4.8 Roofline models for Intel Nehalem and AMD Opteron 59

4.9 Comparison between classical and Semi-stencil 61

4.10 Matrix of metric results for IBM Blue Gene/P 63

4.11 Matrix of metric results for POWER6 . 64

4.12 Matrix of metric results for AMD Opteron . 65

4.13 Matrix of metric results for Intel Nehalem . 66

4.14 Speed-up results with respect to the baseline algorithm 67

4.15 IBM POWER6 and AMD Opteron execution times for all algorithms 68

4.16 IBM BlueGene/P and Intel Nehalem execution times for all algorithms 69

4.17 Thread decomposition strategies for time blocking algorithms 71

5.1 Four-level problem decomposition proposed by Datta and et al. 77

5.2 Data distributions for SMT threads . 79

5.3 Thread affinity strategy proposed for MIC architecture 80

v

List of Figures vi

5.4 Intra-node domain decomposition . 81

5.5 Auto-tuning strategies for exploring the optimization space 87

5.6 Imbalance of decomposition strategies for Intel Xeon Phi with a 64× 601× 75

problem size . 91

5.7 Imbalance of balanced and static Y schedulings for Intel Xeon Phi with a 64×

601× 601 problem size . 91

5.8 Imbalance of balanced and guided schedulings for Intel Sandy Bridge-EP plat-

form with a 64× 601× 601 problem size . 92

5.9 Scalability break-down for Intel Xeon Phi (MIC) 93

5.10 Scalability break-down for Intel Sandy Bridge 94

6.1 Test cases tree . 98

6.2 Cases considered for cache misses during the stencil computation 104

6.3 The different rules R1, R2, R3 and R4 . 105

6.4 Cache interference effect as a function of problem size 107

6.5 STREAM2 results for Intel Xeon Phi architecture 109

6.6 L2 prefetching efficiency for Intel Xeon Phi architecture 111

6.7 Modeling of spatial blocking optimization . 113

6.8 Work-flow of the model methodology with feedback mechanism. 115

6.9 AMD Opteron results for the preliminary model with a 85-point stencil 117

6.10 Intel Nehalem results for the preliminary model with a 25-point stencil 118

6.11 Actual and predicted for prefetched and non-prefetched cache-lines 121

6.12 Actual, projected and predicted execution times 123

6.13 Projected and predicted execution times for spatial blocking results 124

6.14 Core efficiency for all three SMT combinations using a naive stencil 125

7.1 Off-shore oil and gas prospection . 128

7.2 Comparison between WEM and RTM results 129

7.3 Decomposition strategy on Cell/B.E. of 3D domain along the X axis. 133

7.4 The forward wave propagation of single-SPE implementation 135

7.5 RTM output of the SEG/EAGE salt synthetic model 135

7.6 WARIS System . 137

7.7 Architecture model supported by the PSK. 138

7.8 Domain decomposition conducted by the PSK infraestructure 139

7.9 Threads spawned by the PSK framework . 140

7.10 Execution flow of the PSK framework. 141

7.11 Output example of the volcanic ash dispersion model. 144

7.12 Comparison of simulated ash column mass and TERRA satellite images 147

7.13 Spatial-blocking impact on the ADS kernel execution time 148

7.14 EXTRAE traces of WARIS-Transport with Caulle-0.05 case 152

List of Tables

2.1 Comparison of FD, FE and FV numerical schemes. 11

2.2 Different order Finite Difference formulas for BD, FD and CD. 13

3.1 Architecture description . 21

3.2 Architecture description continuation . 24

3.3 The four computational kernels in STREAM2 micro-benchmark. 30

3.4 The different STREAM2 execution modes supported. 30

3.5 Prefetchers micro-benchmark kernels . 33

3.6 Extended version features of the StencilProbe 36

4.1 Operation and instruction cost of two representations of stencil codes 45

4.2 Dataset accesses per stencil implementation 50

4.3 List of parameters used for the extended version of StencilProbe 55

4.4 Computational and bandwidth ceilings for Roofline model 58

4.5 Theoretical OI for stencils depending on their 3C’s misses 58

4.6 Summary of execution times and speed-ups for Semi-stencil 62

4.7 POWER7 SMP results among the different algorithms 71

4.8 Sandy Bridge (1 socket) SMP results for the different algorithms 72

4.9 Knight Corner beta 0 SMP (balanced scheduling) results 73

5.1 SMT tests results of the Ash Dispersion Model 81

5.2 List of parameters used for testing the decomposition strategies 90

5.3 Domain decomposition results for Intel Xeon Phi (MIC) architecture 90

5.4 Domain decomposition results for Intel Sandy Bridge platform 92

6.1 Features used for preliminary and advanced model results. 116

6.2 Parameters used in the preliminary model . 116

6.3 Summary of preliminary model results . 118

6.4 List of parameters used for the model and the StencilProbe benchmark. 119

6.5 Hardware counters and the formulas used to compute the projected time. . . 120

7.1 Execution time breakdown of the RTM workload 131

7.2 Performance results of the single-SPE implementation 134

7.3 Pipeline statistics of the single-SPE implementations 134

7.4 Performance results of the RTM implementation 136

vii

List of Tables viii

7.5 Domain resolutions for Cordón Caulle reference simulations 146

7.6 Time comparison between FALL3D and WARIS-Transport (naive) 149

7.7 WARIS-Transport simulation times on Intel Sandy Bridge and Intel Xeon Phi . 150

7.8 Break-down of the optimized WARIS-Transport times on Intel Sandy Bridge . 151

7.9 Time break-down of EXTRAE traces with Caulle-0.05 case 153

A.1 Scaling factors for a spherical terrain-following coordinate system 165

List of Algorithms

1 General control flow structure of a generic Finite Difference code 13

2 Heattut kernel of Chombo toolkit . 35

3 The classical stencil algorithm pseudo-code for a 3D problem 40

4 The Semi-stencil algorithm pseudo-code (Part 1) 51

5 Continuation of the Semi-stencil algorithm pseudo-code (Part 2) 52

6 Pseudo-code for the space tiling implementation of the Semi-stencil algorithm 52

7 Pseudo-code for the time-skewing implementation of the Semi-stencil algorithm 53

8 Pseudo-code for the cache-oblivious implementation of the Semi-stencil algo-

rithm . 54

9 Snippet of C code that implements a plane distribution among SMT threads

using OpenMP . 80

10 Pseudo-code of the static domain decomposition scheduler 84

11 Pseudo-code of the balanced domain decomposition scheduler 85

12 Pseudo-code of the guided domain decomposition scheduler 86

13 Pseudo-code of the auto-tuner used for finding a pseudo-optimal TJ parameter 89

14 The classical stencil algorithm pseudo-code 102

15 The RTM pseudo-code . 130

16 Pseudo-code of the PDE solver for the 3D wave equation in the RTM 131

17 Volcanic ash dispersion pseudo-code in WARIS-Transport 145

ix

Chapter 1

Preface

1.1 Motivation of this Thesis

Nowadays, most of the scientific codes are run in supercomputers. To achieve full resource

utilization, these codes must be able to scale from a single node up to a cluster. This scalable

migration involves at least four main tasks to succeed: kernel computation, load balancing,

input/output (I/O) and inter/intra-node communications. Therefore, the optimization efforts

must be driven to these tasks in order to leverage the scientific computing performance.

The computational kernels in scientific applications usually consist of nested loops. In Von

Neumann architectures most of the loop optimization techniques are based on improving the

floating point to memory access ratio (FLOPS/Byte). This ratio measures the bytes required

from memory with respect to the floating point operations performed. The higher this metric

is, the better performance is expected. However, there are no general rules, and the optimiza-

tion techniques may vary depending on the underlying platform due to the memory system

intricacy, e.g. complex multi-level cache hierarchies or scratchpad memories.

The parallelization of scientific codes is conducted at two different levels: inter-node

and intra-node, which are usually performed with message passing libraries (e.g. MPI) and

shared memory multiprocessing APIs (e.g. OpenMP) respectively. At intra-node level, two

parallelism approaches can be distinguished: Thread Level Parallelism (TLP) —that exploits

the multiple cores within a node—, and Instruction Level Parallelism (ILP) —that takes ad-

vantage of the multiple execution units within a core. In TLP, load-balancing is critical in

order to maximize the overall throughput and reduce the execution time. However, thread

imbalance may be exacerbated as the trend to many-core integration in the same die is

strengthened within Symmetric Multi-Processing architectures (SMP). This issue will require

the deployment of efficient load-balancing and auto-tuning techniques to leverage the intra-

node performance.

Another concern is the inter-node communication, which is essential in parallel comput-

ing to keep the synchronization and coherence of the global results during the time-steps

of the simulation. Minimizing the impact of communication between domains is crucial to

prevent node stagnation. As a solution, the boundary regions can be reduced and the commu-

nication of contiguous allocated data promoted. In this way, the message sizes are minimized

and the temporal copies of scattered data across the parallel stack avoided. In this regard, task

1

Chapter 1. Preface 2

overlapping can also help allowing the simultaneous execution of kernel computation, I/O

and communications, thus hiding the shortest latencies.

The main goal of this thesis is to improve the performance of FD-based codes at every

above-mentioned level. Within the scientific computing, the FD scheme is typically employed

to solve problems dealing with structured meshes that arise in science and industry. However,

some application-based implementations of the FD scheme can only reach up to 30-40% of

the peak performance [5]. This inefficient usage of resources has motivated this research,

exploring new strategies to improve the critical sections of these codes, either serial or par-

allel. Since the stencil can represent up to 80% of the execution time in some FD-based

simulations [9, 42], this kernel is our first target for optimization. To achieve it, we focus

on enhancing the memory access pattern and increasing the data re-utilization at core-level,

devising also new load-balancing strategies as node-level optimizations.

1.2 Thesis Contributions

This thesis contributes to the performance improvement of FD-based codes focusing on the

following main areas:

• A novel algorithm called Semi-stencil has been developed for computing stencil opera-

tors. This new algorithm establishes an innovative way of computing the spatial oper-

ator for medium- and high-order stencils. Its use permits data reuse and reduces the

required dataset per point.

• We have unveiled new ways of improving the stencil computations on architectures

with Symmetric Multi-Processing (SMP) and Simultaneous Multi-Threading (SMT) ca-

pabilities. These strategies are based on a group of schedulers for arranging and travers-

ing the computational domain promoting cache effectiveness and scalability on many-

core architectures.

• As improvement to the multi-core and SMT environment, we have developed a straight-

forward auto-tuner that selects pseudo-optimal tiling parameters (TJ) for computa-

tional domains. The auto-tuner, when is combined with domain schedulers, improves

even further the expected performance by reducing misses in last level caches.

• A sophisticated performance model for stencil computations has been elaborated to

mimic the behavior on a broad variety of computer architectures. This model is a big

step forward compared with any previous stencil performance model that can be found

in the literature. It includes modern capabilities such as hardware prefetching, multi-

level cache hierarchy and many-core support. It has been designed to be modular, in-

corporating spatial-blocking and Semi-stencil optimizations.

Chapter 1. Preface 3

• Our stencil model not only predicts the best parameters for a given optimization al-

gorithm, but also conveys hints of outperforming SMT configurations that can be con-

ducted for a specific architecture.

• Finally, we have collaborated in the development of WARIS, a FD-based framework

for High Performance Computing, that deploys efficient performance when is tailored

to the industry. This framework is intended to be modular and considers all the re-

quirements for production, including overlapping of computation and communication

as well as asynchronous I/O. We demonstrate the effectiveness of our core- and nodel-

level optimizations on two real applications used in the industry.

Other minor contributions of this thesis are the following:

• We have extended the StencilProbe micro-benchmark [43] to obtain and assess the

experimental results. In order to conduct the experiments, we have incorporated the

proposed core- and node-level optimizations using OpenMP to exploit the Thread Level

Parallelism.

• The STREAM2 benchmark [55] has been enhanced to fully characterize the mem-

ory hierarchy of modern architectures. This benchmark is now able to gather non-

streaming bandwidth in multi-threaded environments considering aligned, SIMD and

non-temporal accesses.

• We have developed from scratch a new micro-benchmark called Prefetchers that aims

to characterize the prefetching engines of an architecture. By means of this tool, we

can gather insightful metrics such as the prefetching efficiency, the triggering of the

prefetcher and the look-ahead parameters.

1.2.1 Thesis Limitations

The current research is targeted at stencil computations on structured cartesian grids (con-

stant coefficients). However, although not explicitly covered in this thesis, our research may

be easily extended to suit other structured meshes such as rectilinear and curvilinear grids

(variable coefficients). On the other hand, non-structured grids are out of scope due to the

incompatibility of their irregular connectivity with our algorithms.

In addition, despite the recent emergence of massively-parallel accelerators such as the

Graphics Processing Units (GPUs), this thesis is specially devoted to scratchpad and cache-

based architectures with a high emphasis on multi- and many-core processors. Even though,

the latest GPUs with some levels of cache may take partial advantage of this work.

1.3 Thesis Outline

This thesis is organized as follows:

Chapter 1. Preface 4

In Chapter 2, a brief background of the most representative numerical methods for solving

scientific problems is given. Then, we focus on FD schemes, on which this thesis is specially

devoted. The FD scheme is introduced, explaining the explicit and implicit approaches for

obtaining the numerical solutions.

Chapter 3 presents the different architectures used for the elaboration of this thesis.

We also detail the whole set of tools, characterization benchmarks, libraries and parallel

paradigms employed.

In Chapter 4, we unveil the stencil-specific optimizations developed at core-level such as

the novel Semi-stencil algorithm and its performance when combined with other common

strategies.

Chapter 5 proposes specific domain decomposition schedulers that aim to improve the

stencil performance when is scaled at node-level. We also propose the combination of these

schedulers with auto-tuning methods in order to allow last level cache optimizations.

Chapter 6 introduces the performance models for stencil computations and details the

multi-level cache model developed in this research and its insightful results.

In Chapter 7, we present the implementation of some optimization techniques from Chap-

ters 4 and 5 for two strategic applications for the society: a seismic imaging model used by

Oil & Gas industry and a volcanic ash dispersal model used by civil aviation authorities.

Finally, Chapter 8 concludes this thesis with a summary of the contributions of each topic,

and proposing ideas for possible future work.

1.4 List of Publications

The work presented in this thesis has been presented and published in journals and proceed-

ings of international conferences. The papers and talks categorized by topic are the following:

Semi-stencil:

• Raúl de la Cruz and Mauricio Araya-Polo. Algorithm 942: Semi-stencil. ACM Transac-

tions on Mathematical Software (TOMS), 40(3):23:1–23:39, April 2014

• Raúl de la Cruz, Mauricio Araya-Polo, and José María Cela. Introducing the Semi-stencil

algorithm. In Parallel Processing and Applied Mathematics, 8th International Conference,

PPAM 2009, Wroclaw, Poland, September 13-16, 2009. Revised Selected Papers, Part I,

pages 496–506, 2009

• Mauricio Araya-Polo and Raúl de la Cruz. Semi-stencil algorithm: Improving data lo-

cality and reuse in stencil computation. 14th SIAM Conference on Parallel Processing

for Scientific Computing, Seattle, Washington, February 2010. Part of CP4 PDEs (Talk)

Chapter 1. Preface 5

Performance Modeling:

• Raúl de la Cruz and Mauricio Araya-Polo. Modeling stencil computations on mod-

ern HPC architectures. In High Performance Computing Systems. Performance Modeling,

Benchmarking, and Simulation, volume 8966 of Lecture Notes in Computer Science, pages

149–171. Springer International Publishing, 2015

• Raúl de la Cruz and Mauricio Araya-Polo. Towards a multi-level cache performance

model for 3D stencil computation. In Proceedings of the International Conference on Com-

putational Science, ICCS 2011, Nanyang Technological University, Singapore, 1-3 June,

2011, pages 2146–2155, 2011

• Raúl de la Cruz and Mauricio Araya-Polo. Using modeling to develop stencil codes.

2015 Rice Oil & Gas HPC Workshop, Rice University, Houston, March 2015. Coarse-

grained Seismic Algorithms (Talk)

• Raúl de la Cruz and Mauricio Araya-Polo. Modeling stencil code optimizations. 16th

SIAM Conference on Parallel Processing for Scientific Computing, Portland, Oregon,

February 2014. CP8: Performance Optimization for Stencils and Meshes (Talk)

• Mauricio Araya-Polo and Raúl de la Cruz. Performance model for 3D stencil compu-

tation. 2012 Rice Oil & Gas HPC Workshop, Rice University, Houston, March 2012.

Parallel session A: Benchmarking, Optimization & Performance (Talk)

Case Studies:

• Raúl de la Cruz, Arnau Folch, Pau Farré, Javier Cabezas, Nacho Navarro, and José María

Cela. Optimization of atmospheric transport models on HPC platforms. Computational

Geosciences, 2015. (Submitted)

• Raúl de la Cruz, Mauricio Hanzich, Arnau Folch, Guillaume Houzeaux, and José María

Cela. Unveiling WARIS code, a parallel and multi-purpose FDM framework. In Numeri-

cal Mathematics and Advanced Applications - ENUMATH 2013 - Proceedings of ENUMATH

2013, the 10th European Conference on Numerical Mathematics and Advanced Applica-

tions, Lausanne, Switzerland, August 2013, pages 591–599, 2013

• Mauricio Araya-Polo, Félix Rubio, Mauricio Hanzich, Raúl de la Cruz, José María Cela,

and Daniele P. Scarpazza. 3D seismic imaging through reverse-time migration on ho-

mogeneous and heterogeneous multi-core processors. Scientific Programming, Special

Issue on the Cell Processor, 17, 2009

• Mauricio Araya-Polo, Félix Rubio, Raúl de la Cruz, Mauricio Hanzich, José María Cela,

and Daniele Paolo Scarpazza. High-performance seismic acoustic imaging by reverse-

time migration on the Cell/B.E. architecture. ISCA2008 - WCSA2008, 2008

Chapter 1. Preface 6

• Raúl de la Cruz, Mauricio Hanzich, and José María Cela. Stencil computations: from

academia to industry. 16th SIAM Conference on Parallel Processing for Scientific Com-

puting, Portland, Oregon, February 2014. Part of MS66 Optimizing Stencil-based Algo-

rithms - Part II of II (Talk)

Other Publications:

• Muhammad Shafiq, M. Pericas, Raúl de la Cruz, Mauricio Araya-Polo, Nacho Navarro,

and E. Ayguade. Exploiting memory customization in FPGA for 3D stencil computations.

In IEEE International Conference on Field-Programmable Technology, 2009

• Francisco Ortigosa, Mauricio Araya-Polo, Raúl de la Cruz, and José M. Cela. Seismic

imaging and the road to peta-scale capacity. 17th SPE - 70th EAGE Conference, 2008

• Francisco Ortigosa, Mauricio Araya-Polo, Félix Rubio, Mauricio Hanzich, Raúl de la

Cruz, and José Maria Cela. Evaluation of 3D RTM on HPC platforms. SEG 2008, Las

Vegas, USA, 2008

• Francisco Ortigosa, Hongbo Zhou, Santiago Fernandez, Mauricio Hanzich, Mauricio

Araya-Polo, Felix Rubio, Raúl de la Cruz, and José M. Cela. Benchmarking 3D RTM

on HPC platforms. Instituto Argentino del Petroleo y del Gas, November 2008

1.5 Acknowledgements

This work could not have been done without the support, in knowledge and inspiration, of

many people.

First, I want to thank the support of my family, but specially the one given by my wife. Her

resilience and patience to the large process of getting my PhD has endorsed me to success in

this endeavour.

I would also want to thank my thesis advisor Mauricio Araya-Polo, for his support and

willingness to motivate me in the worst moments to finish my doctoral degree.

I am grateful to Arnau Folch and José María Cela for giving me the opportunity of devel-

oping the WARIS-Transport module and the liberty of exposing and implementing some new

ideas. It has not been a smooth journey, but it has inspired me in insightful research that has

allowed me to fulfill the requirements of this thesis.

I am also indebted to the Barcelona Supercomputing Center and my colleagues at the

Computer Applications in Science & Engineering (CASE) department for the nice working

atmosphere that motivated to give the best of me. All the years working at the BSC have

been enriching and fruitful in intellectual terms.

I would also like to express my gratitude to the Partnership for Advanced Computing

in Europe (PRACE) for the grant of computing time on their supercomputing facilities. The

Chapter 1. Preface 7

PRACE project receives funding from the EU’s Seventh Framework Programme (FP7/2007-

2015) under grant agreements RI-211528, 261557, 283493 and 312763. This thesis has been

partially supported by the Spanish Ministry of Science and Innovation (CICYT) under grants

TIN2007-60625 and 2009501052. Finally, I would like to acknowledge Intel for providing

early access to a MIC based system.

Chapter 2

Introduction

2.1 Numerical Methods

Before the transistor revolution, many engineering fields needed costly and time consuming

experiments to improve the product design [19, 63]. However, in the last decades, the cost

reduction of microprocessors and memory has allowed the advent of a new supercomputers

generation [77]. The availability of supercomputers has enabled scientists to conduct large

and complex simulations that usually consume days of computational time. Since then, sci-

entific simulations have become a cutting-edge factor for industry. They have permitted to

shorten the development cycle of engineering products by assisting in design and optimiza-

tion stages, thus eliminating lengthy and costly prototype manufacturing. As an example,

scientific computing may help to reduce friction coefficients of high speed trains by slightly

changing the product geometry.

Today, large scientific computing simulations are widely used to solve numerical prob-

lems arising in Aerospace [44], Meteorology [76], Astrophysics [12], Geophysics [58, 65],

Quantum Chemistry [4, 15] and Oceanography [38, 45]. Most of these scientific simulations

have something in common, the physical and mathematical models are approximated using

Partial Differential Equations (PDEs), which can be solved using various numerical analysis

schemes.

In general terms, we could enumerate the following main reasons to perform scientific

simulations:

• Analysis: in some engineering fields (e.g. Aerospace) it is far too expensive and difficult

to build specific experimental models. In addition, simulations can provide data that

empirically is impossible or very hard to obtain.

• Prediction: it provide answers to different design implementations in a short time of

period, improving the quality of the final product.

• Efficiency: as a consequence of the shortening of the design and development stages,

the final product can reach faster to the market.

The most representative fields within scientific computing are Computational Mechanics

(CM) and Computational Physics (CP). They are devoted to study phenomena governed by

9

Chapter 2. Introduction 10

the principles of mechanics and physics by means of computational methods. Both are in-

terdisciplinary fields that are based on three disciplines: physics, mathematics and computer

science. The development of computational simulations codes in these fields involves the

following steps, which are also represented in Figure 2.1:

1. Mathematical modeling: a physical phenomenon or engineering system is represented

by PDEs in the continuous domain.

2. Discretization of the mathematical model: PDEs are turned into forms which are suit-

able to be solved by computers. In this step, the numerical scheme (e.g. Finite Differ-

ence or Finite Elements) discretizes the original continuous PDEs. Commonly, the PDEs

involved are translated into a system of algebraic equations.

3. Computational implementation: once the discretized equations are built, the scientific

code is written to represent the equations as computer programs. The discretized equa-

tions are solved using direct or iterative methods.

4. Validation: the software application, the numerical method and the mathematical model

are verified either empirically or using simplified models with exact analytical solutions.

Continuous
PDE for
φ(x, t)

Numerical
method

−−−−−−−−−→

Discrete
Difference
Equation
φ(xi, tn)

Solution
method

−−−−−−−−−→
φn
i

approximation
to φ(x, t)

Figure 2.1: Translation from the continuous to the discrete problem. φ(x, t): continuous
solution (exact solution). φ(xi, tn): continuous solution evaluated at the mesh points. φn

i :
approximated solution by solving the numerical scheme.

High Performance Computational Simulations (HPCS) is a sub-discipline of scientific com-

puting, where the implementation of the scientific simulation runs on large supercomputers.

Due to the cluster nature of the supercomputers, HPCS is intrinsically related to highly par-

allel demanding computations. This large computations involve two main aspects. First the

kernel computation, which solves numerically the PDEs and consumes large amount of re-

sources, both computational and memory. Second the parallelization step, that permits to

scale the performance up to thousands of nodes. This parallelization may be performed in

two levels: intra-node, which takes advantage of the multi-core nature of modern architec-

tures, and inter-node that enables the cluster-level parallelism.

The most popular numerical schemes used nowadays are the Finite Difference (FD), the

Finite Element (FE) and the Finite Volume (FV) methods. Table 2.1 shows a summary of the

advantages and disadvantages of these methods. FD method is commonly used in thermody-

namics, electromagnetism and geophysics, whereas FE and FV are widely used in solid and

fluid mechanics problems. There are also other methods to numerically solve PDEs (e.g. Dis-

crete Element, Spectral or Particle-In-Cell), but they are out of scope of this introduction. In

Chapter 2. Introduction 11

Num. Scheme Finite Difference Finite Element Finite Volume

Appeared in 20s 70s 80s
Robustness Medium High High
Meshes Structured Non-structured Non-structured
Coverage Specific problems All kind of problems All kind of problems
Peak Perf. Up to 40% Between 8-12% Between 8-12%

Table 2.1: Comparison of FD, FE and FV numerical schemes.

the following sections, we will review in detail the FD method, and the ways of numerically

solve PDEs using this scheme (implicitly or explicitly).

2.2 Finite Difference Method

The Finite Difference method (FD) is the simplest and straightforward way of numerically

solve PDEs [80]. The FD consists in approximating the solutions to the PDEs by replacing

derivative expressions with approximately equivalent difference quotients. Therefore, the

PDE is converted into a set of finite difference algebraic equations. As a result, the continu-

ous domain of the problem is transformed into a structured mesh of discrete points. In this

structured mesh, by using different forms of the finite different equations, a wide variety of

physical phenomena can be conformed.

Consider the case of a function with one variable u(x). Given a set of points xi; i = 1, ..., N

in the domain of u(x), as shown in Figure 2.2, the numerical solution is represented by

a discrete set of function values {u1, ..., uN} that approximate u at these points, i.e., ui ≈

u(xi); i = 1, ..., N .

Figure 2.2: Discretization of u(x) the domain.

Generally, and for simplicity, the points are equally spaced along the domain with a ∆x

constant distance (∆x = xi+1−xi), so we write ui+1 ≈ u(xi+1) = u(xi+∆x). This discretized

domain is referred to as structured mesh or grid.

PDEs involve unknown functions of several independent variables (in time and space)

and their partial derivatives. The derivative of a unknown u(x) with respect to x can be

approximated by linear combinations of function values at the grid points,

Chapter 2. Introduction 12

∂u

∂x
(xi) = lim

∆x→0

u(xi +∆x)− u(xi)

∆x
≈

u(xi+1)− u(xi)

∆x
(FD)

= lim
∆x→0

u(xi)− u(xi −∆x)

∆x
≈

u(xi)− u(xi−1)

∆x
(BD)

= lim
∆x→0

u(xi +∆x)− u(xi −∆x)

2∆x
≈

u(xi+1)− u(xi−1)

2∆x
(CD) .

(2.1)

All these expressions are equivalent and they converge to the derivative of u(x) when

∆x → 0. However, when ∆x is finite but small enough, the Equations 2.1 can be used to

obtain approximations of the derivative of u(x). In that case, we may use ui, ui−1 and ui+1

to obtain the derivative.

Such approximations (Equations 2.1), depending on the points used for the derivative, are

referred to as forward (FD: xi, xi+1), backward (BD: xi−1, xi) and centered (CD: xi−1, xi, xi+1)

finite difference approximations of u(xi). The precision of such approximations may differ

from each other, where the accuracy depends on the number of neighbors used (order of

accuracy) and the discretization of the mesh.

A way to compute a better accuracy of first and high order derivatives approximations is

using Taylor series expansions around the point xi,

u(x) =

∞∑

n=0

(x− xi)
n

n!

∂nu

∂xn
(xi)

ui+1 = ui +∆x

(
∂u

∂x

)

i

+
(∆x)2

2

(
∂2u

∂x2

)

i

+
(∆x)3

6

(
∂3u

∂x3

)

i

+Rn(x)

ui−1 = ui −∆x

(
∂u

∂x

)

i

+
(∆x)2

2

(
∂2u

∂x2

)

i

−
(∆x)3

6

(
∂3u

∂x3

)

i

+Rn(x) .

(2.2)

Taylor expansions permit to elaborate high-order accuracy derivatives using more neigh-

bors of the grid. Depending on the truncation point of the Taylor serie, we may have a

bigger or smaller residual term (Rn(x)). This truncation error is proportional to the mesh

discretization and the number of expanded series (O(∆xn)/n-th order accuracy). Table 2.2

summarizes the coefficient terms of various order finite difference formulas up to fourth-

order derivatives.

Two different approaches can be used in scientific computing in order to obtain the nu-

merical solutions of time-dependent PDEs: explicit and implicit methods. These two methods

are discussed in detail in Section 2.3, but generally, when FD methods are implemented in

scientific simulations, explicit time integration schemes are mostly used as direct solvers. Ex-

plicit methods can solve time-dependent PDEs directly, involving both the current state of the

system and some previous ones, advancing the solution through small intervals of time (∆t).

Chapter 2. Introduction 13

Forward Difference - O(∆x)

Order Disc. coeff ui ui+1 ui+2 ui+3 ui+4

∂u/∂x ∆x -1 1
∂2u/∂x2 ∆x2 1 -2 1
∂3u/∂x3 ∆x3 -1 3 -3 1
∂4u/∂x4 ∆x4 1 -4 6 -4 1

Backward Difference - O(∆x)

Order Disc. coeff ui−4 ui−3 ui−2 ui−1 ui

∂u/∂x ∆x -1 1
∂2u/∂x2 ∆x2 1 -2 1
∂3u/∂x3 ∆x3 -1 3 -3 1
∂4u/∂x4 ∆x4 1 -4 6 -4 1

Central Difference - O(∆x2)

Order Disc. coeff ui−2 ui−1 ui ui+1 ui+2

∂u/∂x 2∆x 1 0 1
∂2u/∂x2 ∆x2 1 -2 1
∂3u/∂x3 2∆x3 1 2 0 2 1
∂4u/∂x4 ∆x4 1 -4 6 -4 1

Table 2.2: Different order Finite Difference formulas for BD, FD and CD.

Algorithm 1 General control flow structure of a generic Finite Difference code. The tasks
to be performed can be categorized in four different types: Kernel Computation (KC), Data
Communication (DC), Input/Output (IO) and Load Balancing (LB).

1: Domain decomposition of the structured mesh (LB)
2: for t = timestart to timeend in ∆t steps do
3: Read input for t (IO)
4: Pre-process input (KC)
5: Inject source (KC)
6: Apply boundary conditions (KC)
7: for all discretized points in my domain do
8: Stencil computation (update ut) (KC)
9: end for

10: Exchange overlap points between neighbor domains (DC)
11: Post-process output (KC)
12: Write output for t (IO)
13: end for

A parallel implementation of the explicit FD solver involves, amongst many others steps,

the so-called stencil computation (see Algorithm 1 line 8), which solves the spatial and tem-

poral differential operators of the governing equations. The stencil computation consists

in accumulating the contribution of the neighbors points (ut−1) in the discretized domain

Chapter 2. Introduction 14

(i = 1, ..., N) along the cartesian axis, updating in this way the unknown for the next time

step (ut
i). This operation is usually the main computational bottleneck of FD codes and it may

require up to 80% of the total execution time for some simulations [8, 9, 67]. Nevertheless,

the stencil is conducted through an outer loop advancing the simulation over time (t) and

composed of other tasks that concern minor kernel computations (KC), data communication

(DC) and Input/Output (IO). Likewise, prior to the loop time iteration, a load balancing pro-

cess must be carried out to ensure appropriate decomposition of the global domain among

the computational resources in charge of the parallel simulation.

At any time step, the simulation may require acquiring and pre-processing input data

(lines 3 and 4) as new solver parameters and post-processing and writting the current system

state as the output solution (lines 11 and 12). The simulation also involves applying the

boundary conditions (line 6), which are numerical tricks to confine the problem in a finite

domain. This is done by prescribing the boundary elements (u1 and uN) of the domain to

specific values that replicate the environment outbounds. Last but not least important, the

data communication process (line 10) is conducted after the computation of the stencil. In

this step, each computational resource exchanges its boundary areas with their neighbors in

order to proceed with the local update of the system state.

2.3 Implicit and Explicit Methods

In spatial approximations, PDEs can be solved through two different methods: implicit and

explicit.

In order to illustrate how we can find numerical solutions using both methods, let us con-

sider a heat equation problem (see Appendix A.1). The heat equation is a PDE that describes

the evolution of the heat distribution in a medium over time. This kind of equations can be

used to describe the heat conduction in a metal rod. In one-dimensional problems and in the

continuum case, this equation is written as

∂u

∂t
= α

∂2u

∂x2
(2.3)

where α is the thermal diffusivity of the material being described, and u is the unknown

temperature.

This first-order in time and second-order in space PDE can be discretized by using Finite

Differences in a equally spaced grid (∆x). Then, we can formalize the heat problem as

ut
i = u(t, i) = u(t∆t, i∆x) ; i = 1, . . . , N ; t ≥ 0. (2.4)

At this point, we continue the discretization by replacing the continuous derivatives in

space and time with discrete approximations of FD. In the interest of simplicity, we use a

central difference (CD) in space with respect to x (ut
i−1 − 2ut

i + ut
i+1). However, we use a

Chapter 2. Introduction 15

backward difference (BD) for the derivative with respect to t. Using this numerical scheme,

the heat equation is discretized as

1

∆t
(ut − ut−1) =

α

∆x2
(ut

i−1 − 2ut
i + ut

i+1) (2.5)

obtaining an implicit scheme where the unknown (ut) function value includes terms involv-

ing as well unknown derivative values. In other words, we obtain a system where linear

combinations of unknown derivative values (ut) are given in terms of known function values

(ut−1). Then, rearranging the terms, we can obtain the following algebraic equation for each

discrete point to solve in the grid,

−rut
i−1 + (1 + 2r)ut

i − rut
i+1

︸ ︷︷ ︸

A coefficients

= ut−1
i

︸︷︷︸

RHS

, r =
α∆t

∆x2
. (2.6)

Figure 2.3.Left shows an example with 5 points where the Backward-Time-Central-Space

(BTCS) scheme has been used.

Backward-Time

Central-Space

(implicit)

Forward-Time

Central-Space

(explicit)

Figure 2.3: FD example of 1D problem with a 5 points grid domain. Left: Backward in Time
and Central in Space scheme (implicit). Right: Forward in Time and Central in Space scheme
(explicit). Red squares depict the data dependencies for each scheme.

To obtain a well-defined problem, some initial conditions must be applied on the bound-

ary nodes of the domain (u0 and u4 of the 5 point example). These two end points depend

on values that are outside of the computational domain (u−1 and u5), and therefore we must

enforce boundary conditions to confine the problem in the discrete domain. There are differ-

ent boundary conditions that can be applied, one of them is the Dirichlet boundary condition

that imposes the boundary to a fixed value,

ut
0 = β, ut

4 = γ, ∀t (2.7)

Once the problem has been well-defined enforcing the boundary condition to the end

nodes of the grid, we can proceed to build the linear system. For the 5 point grid example,

the final system of equations would be

Chapter 2. Introduction 16

1 0 0 0 0

−r 1 + 2r −r 0 0

0 −r 1 + 2r −r 0

0 0 −r 1 + 2r −r

0 0 0 0 1

ut
0

ut
1

ut
2

ut
3

ut
4

=

β

ut−1
1

ut−1
2

ut−1
3

γ

(2.8)

where the boundary nodes (ut
0 and ut

4) have already been imposed as Dirichlet boundary

conditions (β and γ). Structured meshes produce banded matrices in the linear system which

hold large sparsity. This banded sparsity is deterministic and can be optimally stored using

specific matrix storage formats as DIAG. Solving the Ax = b linear system requires any of the

different solver algorithms available, either the classical iterative (CG or GMRES) or direct

(Gaussian or LU factorization). By solving this system, we finally propagate the solution one

time-step (∆t).

So far, we have seen how to formulate the heat equation as an implicit problem, where

linear algebra problems arise. Actually, it is the backward difference discretization in time

which leads to implicit schemes. Then, by discretizing the Equations 2.3 and 2.4 using a

first-order forward differences in time (FTCS) instead of backward differences, we obtain

the following discretization of the heat equation:

1

∆t
(ut+1 − ut) =

α

∆x2
(ut

i−1 − 2ut
i + ut

i+1) (2.9)

where the only changed terms are the time superscripts of the left unknowns (ut+1 − ut).

This other way of discretizing in time produces the following explicit scheme for the heat

equation,

ut+1
i = rut

i−1 − (1 + 2r)ut
i + rut

i+1, r =
α∆t

∆x2
(2.10)

which can be solved explicitly due to the knowledge of all its dependences. While the implicit

scheme leads to a set of algebraic equations, the explicit scheme results in a formula that gives

us the solution without the requirement of an iterative or direct solver. This explicit formula

that performs nearest neighbor computations is called stencil, and gives us the solution of the

PDE for the next time-step.

In a stencil computation, each point of the structured grid is traversed and updated with

the weighted contributions from a subset of neighbors points over each direction of the carte-

sian axis in space (ut
i±1) and time (ut−1). Figure 2.3.right shows the 5 point grid example

with an explicit scheme where all dependencies are known (ut). The structured grid points

represent the unknowns (ut
i) in space for the PDE problem to be solved in time-step t. The

number of neighbors, their coefficients (−(1+2r) and r in Equation 2.10) and the discretiza-

tion (∆x) set the order accuracy of the spatial differential operator. These coefficients may

be the same for each point of the grid or may not be. This is often related to uniformly spaced

meshes (constant coefficients) and rectilinear and curvilinear meshes (variable coefficients),

Chapter 2. Introduction 17

where discretization over the cartesian axis vary for each point of the grid.

As in the implicit scheme, specific boundary conditions must be applied to boundary nodes

(u0 and u4 in 5 point grid example) so as to confine the problem to the discretized grid. To

do this, explicit schemes incorporate to the computational domain the so-called ghost points

(see pink outer area in Figure 2.4.Left). This technique is two-fold, first it intends to impose

those boundary nodes to an specific boundary condition (e.g. Dirichlet), and second it allows

to use the same stencil operator throughout the whole computational domain.

In order to ensure numerical stability, explicit methods must conform the Courant-Friedrichs-

Levy (CFL) condition. This condition ensures no numerical instabilities during the time-

marching of the explicit solver by setting the time-step (∆t) to a sufficient small value. The

timestep must assure that the numerical domain dependence of any point in space and time

must include the analytical domain of dependence. In particular, the CFL condition for the

1D heat equation using FTCS (2nd order in space and 1st in time) is

r =
α∆t

∆x2
<

1

2
, ∆t <

∆x2

2α
. (2.11)

Once the critical time-step has been computed, we have a well-defined problem that can

be solved numerically. The FTCS scheme is easy to implement in parallel because ut+1
i values

can be updated independently from each other and only depend on older steps (ut
i). The

entire solution of the PDE is conducted in two nested loops, an outer loop over all time-steps,

and an inner loop that traverses all grid points.

1

2

3

Figure 2.4: 7-point stencil layout. Left: Data involved in the computation of a 7-point stencil.
The layout structure is totally different to 1D or 2D stencil computations. The pink halo in
plane k depicts the ghost points required to perform the boundary conditions. Right: structure
of the 7-point stencil. Data is accessed in the three axes.

Unlike the 1D example exposed here on account of simplicity, stencil computations are

usually performed on 3D domains, on which this thesis is specially focused. In 3D stencils, the

working dataset required is much bigger than in 1D or 2D problems (see Figure 2.4.Right).

For example, the formulation of the 7-point 3D stencil operator (FTCS scheme: 2nd order in

Chapter 2. Introduction 18

space and 1st in time) for the heat equation problem is the following,

ut+1
i,j,k = (1− 2ri − 2rj − 2rk)u

t
i + ri(u

t
i−1,j,k + ut

i+1,j,k)

+ rj(u
t
i,j−1,k + ut

i,j+1,k) + rk(u
t
i,j,k−1 + ut

i,j,k+1),

ri =
α∆t

∆x2
, rj =

α∆t

∆y2
, rk =

α∆t

∆z2
.

(2.12)

Two main problems can be inferred from 3D computations. The first one is the memory

access pattern. Accesses across the j and k indexes may be significantly more expensive in a

hierarchy cache architecture. The spatial order of the stencil has direct impact on this prob-

lem. The more neighbors are accessed, the more expensive is in latency-wise, in particular for

the k index which accesses over the least-stride dimension. The second stencil problem is the

low ratio of floating point operations to memory accesses, which is related to the poor data

reuse. This ratio is the result of dividing the floating-points instructions per load and stores

accesses of ut and ut−1 data grids. These two problems provoke that 3D stencil computations

are often memory-bound, requiring special algorithmic treatments to sort out these issues.

2.4 Summary

This chapter has introduced a big picture of the most important numerical methods that can

be found today. We have paid special attention to Finite Difference scheme, to which this

thesis is devoted. As shown, this scheme is specially well suited to solve problems that can be

represented in structured meshes in a reasonable execution time. We have also dedicated a

section to explain the difference between implicit and explicit methods to solve numerically

PDEs. Through a simple PDE problem as the heat equation, we have shown step by step how

to deduce the linear system equations for implicit methods but also the nearest neighbor

formula (stencil) for explicit methods. In order to obtain well-defined problems, we have

dealt with the boundary conditions, and how to apply them to the boundary nodes of the

domain to confine the problem to the discretized grid. Finally, we have also explained the

difference of solving 1D or 2D against 3D stencil computations in terms of memory access

complexity, unveiling the main computational problems that scientists and developers must

face.

Chapter 3

Experimental Setup

In this chapter, the testbeds for the experiments are presented and detailed at each hardware

and software implementation level. From the point of view of the hardware, all the peculiari-

ties of the architectures and their memory hierarchy systems used in this thesis are discussed.

Likewise, the software stack chosen for each platform to sort out aspects such as the parallel

programming model, programming language and compiler versions are also addressed. Fi-

nally, we explain the details about the methodology considered to collect the performance

results for the experiments and the instrumentation support used to measure the metrics.

3.1 Architecture Overview

The architecture variety used for the elaboration of this thesis is rather extent (see Tables 3.1

and 3.2 for further details about their specifications). Many types of architectures have been

covered to assess the effectiveness of the optimizations proposed in most of the platforms

available nowadays. The architectures analysed range from heterogeneous architectures with

low latency scratchpad memories to homogeneous architectures with tenths of cores, which

are able to run multiple threads simultaneously, and complex multi-level cache hierarchies

that sport software and hardware prefetching capabilities.

3.1.1 Intel Xeon X5570 (Nehalem-EP)

The Intel Nehalem chip is the next multi-core processor generation of the Intel Core family,

which includes technologies that bestow better performance compared to its predecessors.

The main difference is the replacement of the front side bus architecture, and the integra-

tion of a memory controller (IMC) in the same die. Due to this new on-chip integration, an

inter-chip network connection, called Quick Path Interconnect (QPI), is required for the multi-

socket implementation. The QPI is also in charge of conducting the coherence protocol and

the access to the I/O devices. This technology revamps the memory performance shortening

the processor and memory performance gap.

As multi-socket architecture, memory can be attached to different processors, and there-

fore the cost of accessing data from one processor to the neighbor processor’s memory has a

higher penalty. This memory organization is called non-uniform memory access (NUMA), and

19

Chapter 3. Experimental Setup 20

requires careful consideration for the programmer in order to minimize remote memory ac-

cesses. However, the memory performance improvement overcomes the cost of the additional

specific code.

The Intel Xeon 5500 series includes a quad-core processor with Simultaneous Multi-

Threading (SMT) capabilities (see Figure 3.1). Each core has 2 independent FP units (FPADD

and FPMUL) and is able to compute 8 floating points in SIMD mode (SSE) for single-precision

and 4 floating points in double-precision. This gives a peak performance of 46.88 GFlops and

23.44 GFlops respectively for balanced codes (parity of adds and multiplications).

32 GB/s

IMC (3x64b) Q
u
ic

k
 P

a
th

 (
2
x
3

2
b
)

2
 S

M
T

C
O

R
E

2
5

6
K

 L
2

8 MB
shared L3

2
 S

M
T

C
O

R
E

2
5

6
K

 L
2

2
 S

M
T

C
O

R
E

2
5

6
K

 L
2

2
 S

M
T

C
O

R
E

2
5

6
K

 L
2

1
2
.8

 G
B

/s

(e
a

c
h

 d
ir

e
c
ti
o

n
)

32 GB/s

IMC (3x64b)Q
u
ic

k
 P

a
th

 (
2
x
3

2
b
)

2
 S

M
T

C
O

R
E

2
5

6
K

 L
2

8 MB
shared L3

2
 S

M
T

C
O

R
E

2
5

6
K

 L
2

2
 S

M
T

C
O

R
E

2
5

6
K

 L
2

2
 S

M
T

C
O

R
E

2
5

6
K

 L
2

3 x 1333 MHz DDR3 3 x 1333 MHz DDR3

Figure 3.1: Diagram of a dual-socket configuration with Intel Nehalem-EP.

3.1.2 IBM POWER6

IBM introduced the POWER6 architecture in 2007. This was a higher improvement over the

POWER5 version which was based on the two-way Simultaneous Multi-Threading (SMT) and

dual-core technologies that were proven in its predecessor. In this version, IBM coupled high-

frequency cores with a massive cache hierarchy and a complex memory subsystem specifically

tuned for high-end computing.

The POWER6 processor incorporates two high-frequency (up to 5.0 GHz) two-way SMT

cores, which are able to operate in 32- and 64-bit modes. Each core includes a 64 KB L1-D

and L1-I caches, and a private on-chip 4 MB L2 cache. Finally a 32 MB L3 victim cache located

off-chip is shared among the two cores. Each core also contains a sophisticated prefetching

engine that reduces the effective latency by detecting 16 independent streams on L1 and L2

caches for reading and writing operations.

Likewise, two integrated memory controllers and an integrated SMP coherence and data

interconnect switch are included in the same die. Both memory controllers can operate at

3.2 GHz, reading up to 16 bytes of data and simultaneously writing up to 8 bytes per cycle

(peaks of 51.2 GB/s and 25.6 GB/s in read/write operations) when using 800 MHz DDR2

Chapter 3. Experimental Setup 21

DRAM. Besides, the SMP switch enables scalable connectivity for up to 32 POWER6 chips

through chip-to-chip and node-to-node links.

System Bull IBM IBM Cray
name NovaScale Server System XT5

Architecture Intel IBM IBM AMD
Nehalem-EP POWER6 PowerPC 450 Opteron

Model X5570 p-575 BlueGene/P 2356
Execution out-of-order in-order in-order out-of-order
SMT 2 2 1 1
SIMD SSE4.2 VMX HUMMER SSE4.2

128-bit 128-bit 128-bit 128-bit
ISA amd64 POWER PowerPC amd64
Chips×Cores 2 × 4 16 × 2 1 × 4 2 × 4
Clock (GHz) 2.93 4.7 0.850 2.3
SP GFlops† 93.76 75.2 13.6 73.6
DP GFlops† 46.88 37.6 13.6 36.8
L1 D-Cache 32 KB 64 KB 32 KB 64 KB
L2 Cache 256 KB 4096 KB 1920 B 512 KB
L3 Cache 8 MB 32 MB 2 × 4 MB 2 MB

(inclusive) (victim) (victim)
Main memory 24 GB 128 GB 2 GB 8 GB
Bandwidth 32 GB/s 51.2 GB/s 13.6 GB/s 21.3 GB/s
Watts × hour† 95 100 39 75
Compiler Intel v11.1 IBM XL IBM XL Portland v10.2

GCC v4.1.2 v12.1/v10.01 v9.0/v11.01 GCC v4.1.2

Table 3.1: Architectural configuration of the platforms used. †Only one chip is considered.

3.1.3 IBM Blue Gene/P

The IBM BG/P architecture, the successor of BG/L, was conceived to emphasize the high-

power efficiency in platforms while keeping the race to the future petascale energy-efficient

supercomputers. The BG/P version maintains the application-specific integrated circuit (ASIC)

and the 3D torus interconnection topology of the BG/L, but incorporating significant impor-

tant enhancements that boost the throughput of this architecture.

The BG/P die includes four IBM PowerPC 450 32-bit cores running at 850 MHz. Each

core contains a dual-pipeline FPU, that supports two simultaneous floating-point operations

in SIMD mode (either single or double precision). These units are able to conduct fused

multiple-add operations (2 FLOPs), conferring a peak throughput of 13.6 GFlops per chip.

In addition, each PPC450 core sports a 32 KB L1-I and L1-D caches, a private L2 stream

buffer on-chip able to keep 7 streams simultaneously (2 cache-lines per stream), and a 8 MB

L3 cache shared among the cores. All four cores are interconnected with the DDR2 main

memory through a 16 byte wide dual-channel able to keep a sustainable bandwidth of 13.6

Chapter 3. Experimental Setup 22

GBytes/s. In order to fully utilize the compute node resources, this platform supports three

execution modes: SMP mode (one MPI task with up to four threads per process), dual mode

(two MPI tasks with up to two threads per process) and quad mode (four MPI tasks with one

single thread per process).

3.1.4 AMD Opteron (Barcelona)

The AMD Opteron codename Barcelona was the first AMD chip to combine in the same die

a quad-core processor. In this NUMA architecture, each die include an integrated memory

controller that uses the AMD HyperTransport (HT) technology for point-to-point communi-

cations between chips. Although the AMD Opteron is similar to Intel Nehalem in number of

cores, clock rate and cache sizes, performance results can differ significantly. The lack of SMT

parallelism and the number of channels of the memory controllers and their frequency are

the main reasons of its lower performance.

Each Opteron core has a 32 KB L1-I and L1-D caches and a private 512 KB L2 cache,

including also a 2 MB L3 victim cache shared among all four cores. It supports SSE4 ISA able

to issue four double-precision floating-point operations per cycle. For the NUMA system, each

socket is connected to a DDR2 667 MHz memory bank through the dual-channel (8 bytes

wide) HT memory controller, thus delivering 10.66 GB/s per socket (21.3 GB/s aggregated).

3.1.5 IBM Cell/B.E.

The IBM Cell/B.E., shown in Figure 3.2, is a heterogeneous architecture with a multi-core

chip composed of a general 64-bit PowerPC Processor Element (PPE) and 8 Synergistic Pro-

cessor Elements (SPEs) running at 3.2 GHz. The PPE is the main processor capable of running

the OS, context switching and logical codes, whereas the SPEs have 128-bit wide SIMD units

exempt from caches, suitable for intensive computing. These SIMD units allow to process

simultaneously four single-precision and two double-precision floating-point operations per

cycle. In addition, each SPE instead of having caches has direct access to a small but low

latency scratchpad memory of 256 KB, called Local Store (LS).

Another important feature of the Cell/B.E. is the Element Interconnect Bus (EIB). The

EIB is a high speed bus that connects all components together and enables efficient memory

transfers between the PPE, the SPEs (up to 200 GB/s) and the main memory (up to 25.6

GB/s). It is composed of four circular data rings (16 bytes wide) and each of them can han-

dle up to 3 concurrent transfers (12 simultaneous transfers). Each SPE has a dedicated DMA

controller for transferring data from and to the LS asynchronously. By using double-buffering

techniques, the DMA controller can be used to overlap data transfers with computations, and

can therefore potentially eliminate the memory latencies normally associated with traditional

cores. Thus, in this architecture the memory management is completely explicit, and its bur-

den is left to the programmer, who can take advantage for achieving efficient scheduling of

computation and memory transfers.

Chapter 3. Experimental Setup 23

Figure 3.2: Diagram of the IBM Cell/B.E. processor.

3.1.6 IBM POWER7

The IBM BladeCenter PS701 node is equipped with an 8-core 64-bit POWER7 processor oper-

ating at 3.0 GHz. Each core contains 4 Floating-Point units, which are able to perform fused

multiply-add (FMA) instructions in double precision. These features give an impressive 192

GFlops of peak performance per socket. Additionally, a 32KB L1 data cache and a 256KB L2

cache are included on each core, and an on-chip 32MB L3 adaptative victim cache is shared

among all eight cores. The POWER7 socket processor has eight DDR3-1066 RDIMM memory

channels. Each channel operates at 6.4 Gbps and can address up to 32 GB of memory. The

RDIMM capacity of the PS701 system examined in our studies is 128 GB (16 × 8).

IBM has vastly increased the parallel processing capabilities of POWER7 cores by enabling

a 4-way SMT (simultaneous multi-threading) system. Therefore, up to 32 threads can run at

the same time per chip, leading to a quasi-massive parallel processor. This high thread level

parallelism makes the POWER7 platform a very appealing target to test the OpenMP versions

of our benchmarks. Our PS701 node only includes one POWER7 chip; therefore no NUMA-

aware code is required since all the data is allocated in a single memory bank. Otherwise,

data should be initialized in parallel by all threads due to the first touch page mapping policy.

In this way, the dataset memory region would be pinned to its corresponding socket.

3.1.7 Intel Xeon E5-2670 (Sandy Bridge-EP)

The Intel Sandy Bridge chip is the successor of the Intel Nehalem family, that includes a higher

SMP degree and lower latency and larger caches than its predecessor. Our Intel Xeon system

is based on the E5-2670 Sandy Bridge-EP chip, a high-end efficient performance processor

for servers.

This system has two sockets connected through QPI links (NUMA configuration), where

each socket holds eight 2-way SMT cores running at 2.6 GHz. As in the Nehalem architecture,

the core memory hierarchy is composed of a 32 KB L1-I, a 32 KB L1-D and a 256 KB L2 caches

on-chip. However, the L3 cache is much larger than in the Nehalem with 20 MB and is linked

Chapter 3. Experimental Setup 24

System IBM IBM IBM Intel
name BladeCenter BladeCenter System X Xeon Phi

Architecture IBM IBM Intel Intel
Cell/B.E. POWER7 Sandy Bridge MIC

Model QS22 PS701 E5-2670 KC (SE10P)
Execution in-order out-of-order out-of-order in-order
SMT 1 4 2 4
SIMD VMX/SIMD VMX/SIMD AVX AVX512

128-bit 128-bit 256-bit 512-bit
ISA PowerPC/SPU POWER amd64 x86-64-k1om
Chips×Cores 2 × 1 + 8 1 × 8 2 × 8 1 × 61
Clock (GHz) 3.2 3.0 2.6 1.1
SP GFlops† 204.8 384 (w/o VMX) 332.8 2129.6
DP GFlops† 102.4 192 (w/o VMX) 166.4 1064.8
Scratchpad 256 KB - - -
L1 D-Cache 32 KB 32 KB 32 KB 32 KB
L2 Cache 256 KB 256 KB 256 KB 512 KB
L3 Cache - 32 MB 20 MB -

Main memory 8 GB 128 GB 32 GB 8 GB
DRAM type XDR RDIMM-DDR3 DDR3-1600 GDDR5-2750
Bandwidth 25.6 GB/s 102.4 GB/s 51.2 GB/s 352 GB/s
Watts × hour† 92 170 115 300
Compiler IBM XL v9.0 IBM XL Intel v13 Intel v14

GCC v4.1.1 v12.1/v10.01 GCC v4.7

Table 3.2: Architectural configuration of the platforms used. †Only one chip is considered.

to the cores through a bi-directional ring interconnection. The sockets are connected to the

DDR3-1600 main memory through four-channel memory controllers (4x64b) in order to

provide better performance for 8 core chips (theoretical peak of 51.2 GB/s).

A new feature of this Intel architecture is the support of AVX, a 256-bit wide SIMD in-

struction set that can compute 4 double-precision FP instructions per cycle. This new ISA

confers an astonishing peak performance of 166.4 GFlops per chip when dealing with mul-

add balanced numerical codes in double-precision. Finally, it also includes a complex hard-

ware prefetcher system able to prefetch data to the L1 cache (DCU and IP, 2 streams in

total), and to the L2 and L3 through the streamer and spatial prefetcher mechanism (up to

32 streams are keep simultaneously).

3.1.8 Intel Xeon Phi (MIC)

In 2011 Intel released the first stable Many Integrated Core architecture (MIC), known as

Intel Xeon Phi product family, incorporating the research work of the discontinued Larrabee

many-core architecture. Since then, Intel has released MIC versions with different number

of cores. Our two 22 nm MIC (Knight Corner) prototypes include 60 and 61 cores with 4-

Chapter 3. Experimental Setup 25

way SMT capabilities running at 1.05 and 1.1 GHz (see Figure 3.3). Each core contains an

in-order execution pipeline and a 512-bit wide vector unit (VPU) that performs 8 double-

precision fused multiply-add operations (8×2 FLOPs) per cycle. This many-core architecture

was initially designed for crunching numbers conferring the impressive aggregated peak per-

formance of 1.07 TFLOPs per chip in SIMD mode.

The MIC memory hierarchy is composed of a 32 KB L1-D cache, a 32 KB L1-I cache

and a private 512 KB L2 cache per core. The L2 cache also includes a hardware prefetcher

able to prefetch 16 forward or backward sequential streams into 4KB page-size boundaries.

All cores are connected together and to 8 GB of main memory through their L2 caches via

a bi-directional ring bus with the MESI protocol for maintaining the coherence state. This

mechanism enables to access other private L2 cache units from any core, providing a shared

L2 cache of 30 MB per chip.

The high TLP of our MICs (up to 4-way SMT and 61 cores) offers a vast number of par-

allelism configurations regarding the work-balance distribution among threads (up to 244

threads) and their pinning to cores. In order to ease this task, the MIC runtime environment

offers new scheduling options for thread affinity settings, such as: scatter, compact and bal-

anced.

The initial versions of the MIC device were intended to be used as a coprocessor, and

therefore are required to be attached to a host system via the PCI express bus. Even though,

the MIC platform supports two execution models: native (run from the MIC device) and

offload (run from the host). The former is accessed via the Intel compiler flag -mmic which

produces an executable targeted specifically for MIC. The latter is based on specific language

pragmas that allow the programmer to specify which data must be transferred back and forth

from the host to the MIC device.

64B

4 SMT
CORE

512 KB
shared

4 SMT
CORE

512 KB
shared

4 SMT
CORE

512 KB
shared

4 SMT
CORE

512 KB
shared

4 SMT
CORE

512 KB
shared

4 SMT
CORE

512 KB
shared

4 SMT
CORE

512 KB
shared

4 SMT
CORE

512 KB
shared

4 SMT
CORE

512 KB
shared

TAG
DIR

TAG
DIR

TAG
DIR

TAG
DIR

TAG
DIR

TAG
DIR

TAG
DIR

TAG
DIR

TAG
DIR

TAG
DIR

4 SMT
CORE

512 KB
shared

8 x 5.5 GHz
GDDR5 (4GB)

176 GB/s

GDDR MC

(8x32b)

8 x 5.5 GHz
GDDR5 (4GB)

176 GB/s

GDDR MC

(8x32b)

PCIe

Client

Logic

8
 c

h
a
n
n
e
ls

2
2
 G

B
/s

p
e
r

c
h
a
n

n
e
l

8
 c

h
a
n
n
e
ls

2
2
 G

B
/s

p
e
r

c
h
a
n

n
e
l

(each)

Figure 3.3: Diagram of the Intel Xeon Phi processor.

Chapter 3. Experimental Setup 26

3.2 Parallel Programming Models

This thesis does not endeavour to evaluate the myriad alternatives of the programming mod-

els. The intent is simply to select the appropriate programming model that maximizes the

performance in clusters of nodes with multi-core processors and several sockets. To succeed

in this task, the parallelization must be conducted at two different levels: node-level (intra-

node) and cluster-level (inter-node).

At intra-node level, where the shared memory within the node is exploited, two parallel

programming models dominate the arena: the POSIX Threads (Pthreads) and the OpenMP

standard. These two models take advantage of the shared memory to communicate data

across threads. Pthreads is a POSIX standard for threads that defines an API for creating

and manipulating threads on UNIX-like operating systems. The advantage of Pthreads over

OpenMP is the explicit control that the user has over the lightweight created threads and

the pinning to the computational resources (affinity). On the other hand, OpenMP standard

permits a fast prototyping through specific clauses that allow work-sharing constructs of com-

putational areas at the cost of less thread control and flexibility. Users must annotate their

codes with pragmas that specify how computational loops or regions should be parallelized.

Lately, some OpenMP implementations have improved the thread control through new affin-

ity variables.

At cluster-level (inter-node), MPI is a message passing library that has become the de

facto standard for distributed memory systems. The MPI implementation is much costly than

Pthreads or OpenMP. The MPI API spawns processes instead of threads on each node (Single

Program Multiple Data - SPMD), that run the same program with their own address space

where communication between nodes occurs explicitly through two-sided messaging. The

SPMD parallelism adds memory overheads, and thus its use is only recommended to per-

form domain decomposition at cluster-level where shared memory paradigm is not possible.

The parallelization of the explicit FD solver within the cluster requires boundary points (see

Figure 3.4), which are additional data that must be allocated in each node to ensure consis-

tency across nodes. Therefore, every computational node must exchange (Send/Receive) the

boundary areas with their neighbors.

As we will show in Chapter 7, high performance applications can be obtained by the com-

bination of the three previous parallel paradigms. Although it seems to be counter-productive

to use both shared memory models at the same time (Pthreads and OpenMP), it can be ben-

eficial when they are carefully combined for specific tasks. In this regard, we have employed

the three parallel models as follows. First, Pthreads are used to create a set of independent

threads in charge of dissimilar tasks that encompass computation, communication and I/O.

Second, OpenMP threads are spawned at these regions or kernels of the computation threads

that are compute-intensive. This is the primary mechanism that is used for loop parallelism

constructs. Finally, MPI is explicitly used in communication threads to conduct the message

passing and to scale up to several number of nodes. The flexibility of POSIX threads allows

Chapter 3. Experimental Setup 27

Figure 3.4: Shared and distributed memory layout using OpenMP and MPI APIs. In this case,
we have an SPMD execution with 2 MPI tasks, each with 2 threads managed by OpenMP.
Ghost points are depicted in grey, whereas the remaining colors represent the thread owner
of the computed point. The shared memory in each MPI task is arranged sequentially in
memory, thus avoiding any replication of data across threads. In contrast, the distributed
memory layout across MPI tasks requires message passing of the internal nodes adjacent to
the boundary nodes.

us to have a high level of control and synchronize them in their tasks.

3.3 Programming Languages and Compilers

Two main programming languages are used for this thesis: Fortran and C. Fortran is a pro-

gramming language that has been widely used in scientific codes. Most of the old numerical

codes written in 60s and 70s were developed in this language. In contrast, C is a more flexible

and low level programming language that allows us additional control. For instance, OpenMP

and MPI APIs have runtime implementations of Fortran, not being the case of Pthreads, where

only private and non-standard implementations can be found. The decision was to select

C as preferred language when fine-grain control was required through the combination of

Pthreads, OpenMP and MPI models. On the other hand, Fortran was selected in cases where

this was not necessary.

The best optimization parameters that we are aware of have been used for each specific

compiler. An analysis of the optimization flags was performed in advance to find out the most

Chapter 3. Experimental Setup 28

suitable in each case. This set of parameters includes -O3 for GCC compiler, -O3, -O4 and -O5

for IBM XL compiler and -fast option for Intel compiler. Moreover, the most recommended

architectural optimizations for the instruction set and the cache configuration were employed.

Options such as 450, 450d and pwr6 were used for -qarch and -qtune flags in BlueGene/P

and POWER6 architectures respectively, whereas -mSSEx flag, core2 and opteron options for

-mcpu, -mtune and -xHost flags were utilized in GCC and Intel compilers for x86 architectures.

The additional -mmic flag was used for Intel Xeon Phi in order to enable cross compiling in

the host architecture.

Our aim was not to obtain the fastest implementation of each proposed algorithm or

binary, but to show that the proposed methods are valid strategies to boost the numerical

codes that are led by explicit FD methods.

3.4 Performance Measurement

Two sets of data have been collected for evaluation from these platforms: execution times

and hardware counters. The former allows to compare the performance of our different im-

plementations; while the latter gives an accurate profiling picture of the underlying events,

such as the use of the CPU pipelines and the memory hierarchy transfers. Some of the coun-

ters measured are: floating-point operations, total cycles & instructions, load & store issued,

and cache misses, hits & accesses for L1, L2 and L3 levels. These counters permit measure-

ment of some interesting metrics such as: GFlops, FP/Cache ratio and actual memory traffic,

among others.

In order to gather the hardware counter profiling, the following tools and frameworks

have been deployed in the testbed systems:

• PapiEx (PAPI): PapiEx is a performance analysis tool designed to measure transpar-

ently and passively the hardware performance counters of an application using the

PAPI [61] framework.

• LikwidPerfCtr (Likwid): LikwidPerfCtr [83] is a lightweight command tool to mea-

sure hardware performance counters on Intel and AMD processors using the Linux msr

module.

• hpmcount/libhpm (HPCT/HPM): hpmcount and libhpm provide hardware metric and

resource utilization statistics after application execution. They are developed by IBM

to support Power-based systems.

• Valgrind: Valgrind is an instrumentation framework for building dynamic analysis

tools. It contains a set of tools to perform debugging and profiling. It also contains

a cache simulator which can be used to build a memory footprint map of a given appli-

cation.

Chapter 3. Experimental Setup 29

• Extrae: Extrae [1] is a dynamic instrumentation package to trace programs with shared

memory models (OpenMP and Pthreads) and message passing (MPI). It generates trace

files that can be visualized with Paraver [70].

The information gathered through these tools is used as reference data in the validation

and evaluation process. However, some steps are necessary to ensure reliable and accurate

metrics. First, tests must be executed several times to minimize collateral effects from any

artifact. Second, cache hierarchy must be cleared during each test repetition to avoid cache-

line hits due to hot cache effects. Finally, in high-order stencils, a reduced set of coefficient

terms (CZ,X,Y) is used to prevent pollution of load and store metrics due to register spilling.

Cache misses gathered with these performance tools can be classified into three cate-

gories [79], also known as 3C’s misses:

• Compulsory misses (cold misses) occur when a cache-line that has never been accessed

before must be brought into the cache. Any accessed cache-line should be included

in this category at the very beginning. Prefetching can partially hide the miss latency

by eagerly fetching the cache-lines. Another way is to reduce the required dataset to

reduce the memory footprint. A scenario with only compulsory misses sets the upper-

bound of a memory-bound application where the maximum attainable performance is

obtained.

• Capacity misses are produced on cache-lines that have been previously accessed but

are no longer in cache. The accessed dataset is larger than the cache hierarchy, leading

to evictions and reloads of data with a certain temporal locality. Capacity misses can

be reduced by increasing the capacity of the cache hierarchy or by reorganizing the

computation in such a way that accesses to cache-lines with certain temporal reuse are

shorten in time.

• Conflict misses are caused by cache-lines that are mapped to the same cache location,

therefore competing for cache-lines and entailing the cache thrashing or ping-pong ef-

fect. As a solution to mitigate this effect, we can increase the cache associativity, the

layout of data in memory (e.g. using padding) and the access pattern.

3.5 STREAM2

In order to obtain memory bandwidth measures on the testbed architectures, we have used

the synthetic STREAM2 [55] benchmark, which aims to extend the functionality of STREAM [54]

in two aspects. First, it measures sustained bandwidth, providing accurate information across

the memory hierarchy. Second, STREAM2 exposes more clearly the performance differences

between reads and writes. It is based on the same ideas as STREAM, but a different set of

vector kernels are used: FILL, COPY, DAXPY and DOT. Table 3.3 details the operations carried

out in each STREAM2 kernel.

Chapter 3. Experimental Setup 30

The intent of STREAM2 is to decouple the measurement of the memory subsystem from

the hypothetical peak performance of the machine, obtaining the best attainable bandwidth

over each hierarchy level using standard Fortran. In this respect, the benchmark is comple-

mentary to LINPACK, which is optimized to obtain the maximum computational performance

in FLOPS, disregarding the performance of memory subsystems.

Kernel Operation Type Bytes FLOPs

FILL a(i) = 0 WRITE 8 0
COPY a(i) = b(i) READ & WRITE 16 0
DAXPY a(i) = a(i) + q*b(i) READ & WRITE 24 2
DOT sum += a(i) * b(i) READ 16 1

Table 3.3: The four computational kernels in STREAM2 micro-benchmark.

The technique for measuring the memory bandwidth in STREAM2 is based on performing

the bandwidth kernels over long vectors (size N in double precision). The array sizes are

defined so that each array is large enough to exceed the whole cache hierarchy of the platform

to be tested. The vector data is traversed and computed linearly so that data reuse is avoided.

The maximum bandwidth attainable for each kernel is then computed by dividing the total

bytes transferred across the memory hierarchy by the elapsed time (N ×Byteskernel/sec).

In order to obtain reliable cache and memory performance with STREAM2, the charac-

terization must be performed using similar memory access conditions in terms of alignment,

SIMD code, parallel context and temporal writes with respect to the application to analyze.

As a consequence, during the progress of this thesis, the STREAM2 benchmark was extended

adding new features that were required to characterize the testbed platforms. First, to build

lower-bound models for the analyzed platforms, the benchmark was updated to capture non-

streaming bandwidths of each cache level. Second, multi-core and SMT support were added

through the OpenMP standard, resizing vector lengths to be multiple of number of threads.

Third, to ease the SIMDization, arrays are carefully resized and aligned to natural vector-

size boundary, assisted by auto-vectorization pragmas. Finally, specific pragmas to enable

non-temporal writes (streaming stores through cache-bypass technique) were also included.

Adding all the different extensions, our STREAM2 version supports a wide variety of execu-

tion modes, which are shown in Table 3.4.

Modifiers SIMD Aligned Streaming store

-DSSE -DAVX -DMIC ✓ ✓ ✓

→ -DNONTEMPORAL ✓ ✓ ✗

→ -DUNALIGNED ✓ ✗ ✗

-DNOVECTOR ✗ ✗ ✗

Table 3.4: The different STREAM2 execution modes supported.

For the development of this thesis, DOT and FILL kernels have been mainly deployed to

Chapter 3. Experimental Setup 31

isolate read and write bandwidths over each cache hierarchy level. In addition, streamed

and non-streamed bandwidths were also gathered for both kernels. Actually, obtaining non-

streaming bandwidths can be complex depending on the underlying architecture. To succeed

in this task, three strategies (alone or combined) have been employed. First, some compilers

provide prefetch pragmas (#pragma noprefetch) that permit to disable software prefetching

when this feature is present in the underlying architecture. Second, on some cases the pro-

cessor manufacturer provides MSR (Model Specific Registers) specifications that allow the

user to completely disable hardware prefetching. If none of the previous cases are available

for a specific hardware, we devised an alternative strategy implemented through software

that estimates this bandwidth by avoiding the triggering of hardware prefetchers. For this

purpose, STREAM2 kernels were modified in such a way that a stride parameter (offset)

is carefully set to prevent consecutive reads and writes, disabling the unit-stride prefetcher.

Moreover, most modern architectures also support next-stride cacheline prefetching. Thus,

we have used a combination of two techniques in DOT and FILL kernels to avoid triggering

the prefetching engine. The stride parameter of STREAM2 kernels has been redefined as,

offset = stride
︸ ︷︷ ︸

adjacent

+MOD(I, epsilon)
︸ ︷︷ ︸

stride

(3.1)

where stride is a constant large enough to avoid next cacheline prefetching mechanism (ad-

jacent). The second term MOD(I, epsilon), which is a cyclic variable that depends on the I

iteration of the loop and a constant epsilon, prevents the stride cacheline prefetcher engine

to be triggered.

Finally, after selecting the proper execution mode and running the benchmark, the differ-

ent cache level bandwidths can be deduced analyzing the STREAM2 output (see Figure 3.5).

This is observed in the areas where bandwidth drops substantially due to cache overflow

when vector size increases (X axis). Every plateau represents the attainable bandwidth for

each cache level in the hierarchy.

3.6 Prefetchers

Modern computer architectures commonly incorporate prefetching engines in their cache hi-

erarchy. Its aim is to reduce the memory latency by eagerly fetching data that is expected to be

required in the near future. Consequently, in memory bound applications, hardware prefetch-

ers play an important role in the overall performance. Therefore, the characterization of the

prefetching mechanism is meaningful to understand the causes behind poor performance of

codes such as stencil computation.

In order to characterize the prefetching mechanism, we developed from scratch Prefetch-

ers, a micro-benchmark that measures the prefetching efficiency [52, 56]. This metric weighs

the number of data fetched using the prefetcher mechanism with respect to the entire data

Chapter 3. Experimental Setup 32

0

10

20

30

40

50

1000 10000 100000 1e+06

G
B
/s

Size in words

Intel Nehalem (Inti)

Read Stream
Write Stream

Read Non-stream
Write Non-streamL1

L2

L3

Memory

L1

L2

L3

Memory

Prefetching

No Prefetching

Figure 3.5: STREAM2 results of stream and non-stream bandwidths for read and write oper-
ations in the memory hierarchy of Intel Nehalem platform.

transferred through the whole memory accesses. As we will see in Chapter 6, this metric is a

good predictor of the memory requests initiated by streaming prefetchers.

The technique used to gather this information is very similar to the one followed in

STREAM2 benchmark; a large array is traversed accessing successive cachelines and thus

triggering the hardware prefetchers. Then, the results are presented using hardware coun-

ters, collecting the cachelines read by the prefetcher and the total data requested through

the hierarchy. Finally, the following formula is computed,

Prefetchingefficiency = prefetched/total. (3.2)

Two kernels are implemented (see Table 3.5), one for reading and a second one for writ-

ing operations when write-allocate policy is present in the cache hierarchy. The former per-

forms a cumulative sum over the vector to be streamed. The latter reverses this operation,

filling the destination vector with incremental values that cannot be replaced with compiler

intrinsics.

In multi-core and SMT architectures, where hardware prefetchers included in caches are

shared among the processing units, the streaming effectiveness can vary drastically due to the

limited number of data streams that hardware prefetchers can track simultaneously. There-

fore, the term streaming concurrency, relating the parallel and logical data streams, is cap-

Chapter 3. Experimental Setup 33

Kernel Operation Streams Type

CUMUL sum = sum + a(streamthrdi) Up to 32 READ
INCFILL a(streamthrdi) = sum++ Up to 32 WRITE

Table 3.5: The two computational kernels in Prefetchers micro-benchmark. INCFILL kernel
can be used to verify whether writes are also affected by the prefetching engine.

tured by increasing the concurrent buffers computed in a round-robin fashion and observing

its behavior. Figure 3.6 shows the pattern of how data is traversed to measure this concur-

rency. Using this access pattern, three characteristics can be deduced: the triggering of the

prefetcher (TP), the prefetcher efficiency (PE) and the look-ahead (LAP). The former specifies

the warm-up time required to trigger the engine. The latter indicates how many cache-lines

are additionally fetched in advance.

1 30 2 4 6 8 10 5 7 9 11Thread 0

stream 0 stream 1

1 30 2 4 6 8 10 5 7 9 11Thread 1

stream 2 stream 3

LAPTP PE

a(stream)
thr0

0,1

a(stream)
thr1

2,3

page boundary

Figure 3.6: Round-robin access of streaming vectors among concurrent threads. In this ex-
ample 4 streams are computed simultaneously by two threads (2-way SMT) accessing cache-
lines in the depicted order.

In order to collect consistent information about the prefetchers, a couple facts must be

considered. Firstly, cache sets are equally spaced along threads to avoid collided accesses

that promote eviction of prefetched data before used (cache pollution). Secondly, buffers are

aligned to page boundaries (e.g. 4 KB in GNU/Linux) preventing disruption of the hardware

prefetcher.

3.7 The Roofline Model

An easy-to-understand and visual performance model is proposed through the Roofline [86].

It aims to improve parallel software and hardware for floating point computations by relating

processor performance to off-chip memory traffic. To achieve that goal, the term Operational

Intensity (OI) is defined as the operations carried out per byte of memory traffic (Flops/Byte).

The total bytes accessed are those that hit the main memory after being filtered by the cache

hierarchy. Therefore, OI measures the traffic between the caches and memory rather than

between the processor and the caches. Thus, OI quantifies the DRAM bandwidth needed by

a kernel on a particular architecture.

As shown in Figure 3.7, floating-point performance, OI and memory performance can be

tied together in a two-dimensional graph with this model. The horizontal line shows peak

Chapter 3. Experimental Setup 34

floating-point performance of the given architecture, and therefore no kernel can exceed this

since it is a hardware limit. The X axis depicts the GFlops/byte, whereas the Y axis shows

the GFlops/second. The 45◦ angle of the graph represents the bytes per second metric, the

ratio of (GFlops/second)/(GFlops/byte). As a consequence, a second line can be plotted,

which gives the highest floating-point performance that the memory system can achieve for

a given OI. Through these two lines, the model is completely roof-limited and therefore the

performance limit can be obtained with the following formula:

Attainable GFlops/second = MIN(Peak Floating Point Performance,

Peak Memory Bandwidth × Operational Intensity)

The point where the two lines intersect is the peak computational performance and the

peak memory bandwidth. It is important to bear in mind that the Roofline limits are fixed for

each architecture and do not depend on the kernel that is being characterized.

The ceiling for any scientific kernel can be found through its OI. Drawing a vertical line on

the X axis at the OI point, the maximum attainable performance for the tested architecture

can be estimated from the intersection of the vertical line and the roof line.

A
tt

a
in

a
b

le
 G

F
lo

p
s

/s

1/2

1

2

4

8

16

32

peak floating-point

pea
k

m
em

ory
 b

w
. (

st
re

am
) 2. FP balance

1. ILP or SIMD

TLP only

1/8 84211/21/4

(a) Computational Ceilings

Operational Intensity (Flops/Byte)

1/8

peak floating-point

pea
k

m
em

ory
 b

w
. (

st
re

am
)

5.
 s

oftw
ar

e
pre

fe
tc

hin
g

4.
 m

em
ory

 a
ffi

nity

3.
 u

nit-
st

rid
e

ac
ce

ss
es

 o
nly

84211/21/4

(b) Bandwidth Ceilings

peak floating-point

pea
k

m
em

ory
 b

w
. (

st
re

am
)

K
e

rn
e

l
1

K
e

rn
e

l
2

2. FP balance

1. ILP or SIMD

TLP only5.
 s

oftw
ar

e
pre

fe
tc

hin
g

4.
 m

em
ory

 a
ffi

nity

3.
 u

nit-
st

rid
e

ac
ce

ss
es

 o
nly

1/8 84211/21/4

(c) Optimization Regions

Figure 3.7: Roofline model example [86] with computational and bandwidth ceilings and its
optimization regions.

The Roofline sets an upper bound in a kernel’s performance depending on its OI. If the

vertical projection of the line intersects the flat part of the roof, the kernel performance is

compute bound, whereas it is memory bound if it intersects the sloped part of the roof. In

addition, the model shows what the authors call the ridge point, where the horizontal and

the 45◦ roof lines meet. The x-coordinate of this point provides an estimate of the minimum

OI required by a kernel to achieve the maximum performance on an architecture. A ridge

point shifted to the right implies that only kernels with a high OI can achieve the maximum

Chapter 3. Experimental Setup 35

performance. On the other hand, a ridge point shifted to the left on the axis means that most

of the kernels can potentially obtain the maximum performance. Hence, the ridge point is

related to the difficulty for programmers and compilers to achieve the peak performance in

a given architecture.

3.8 The StencilProbe Micro-benchmark

In order to evaluate the performance of new stencil-based implementations, the Stencil-

Probe [43], a compact, flexible and self-contained serial micro-benchmark, has been used.

This micro-benchmark was developed as a proof of concept to explore the behavior of 3D

stencil-based computations without endeavouring the modification of any actual application

code. This tool is especially suitable for experimenting with different implementation states

on cache-hierarchy architectures by rewriting the computations carried out in the inner loop

of the benchmark. Indeed, the basic idea is to mimic explicit FD kernels from scientific ap-

plications, thus reproducing the same memory access patterns of application-based computa-

tional kernels.

Initially, the regular StencilProbe benchmark only included serial implementations of a

low-order (1st order) heat diffusion solver derived from Chombo toolkit (heattut) [48]. This

FD kernel, shown in Algorithm 2, was implemented using five different stencil-based algo-

rithms: naive, space-blocking, time-skewing, cache-oblivious and circular queue algorithms.

Algorithm 2 Heattut kernel of Chombo toolkit. This is a low-order stencil (7-point), 2nd
order in space (Central Difference) and 1st order in time (Backward Difference).

X t
i,j,k = −6X t−1

i,j,k/factor
2

+ X t−1
i−1,j,k + X t−1

i+1,j,k + X t−1
i,j−1,k + X t−1

i,j+1,k + X t−1
i,j,k−1 + X t−1

i,j,k+1

For purposes of the current thesis, the StencilProbe infrastructure has been adapted and

extended. In this way, this tool has allowed to verify and evaluate the contribution of new

stencil optimizations and algorithms.

Four main changes were made to the micro-benchmark. First, five new cross-shape sten-

cils were included for each algorithmic implementation, ranging from low-order to high-order

stencils (ℓ = {1, 2, 4, 7, 14}). This new benchmark version implements the stencil scheme

shown in Algorithm 3, where star-like stencils with symetric and constant coefficients are

computed using 1st order in time and different orders in space (depending on ℓ). Second,

apart from the classical stencil implementation, two Semi-stencil algorithms were introduced

(see Chapter 4): a full-axis (Z, X and Y) and a partial-axis (X and Y) version. Third, some

straightforward pipeline optimizations related to the inner loop of the stencil were coded.

These optimizations include loop fusion (computation carried out in one single loop) and

loop fission (computation split into two and three loops). Finally, the StencilProbe micro-

benchmark were extended to include the parallel implementation of each algorithm in or-

Chapter 3. Experimental Setup 36

StencilProbe Features Possible range of values

Stencil sizes (ℓ) 1, 2, 4, 7 and 14 (7, 13, 25, 43 and 85-point respectively)
SIMD code SSE, AVX and AVX-512 intrinsics,

and Intel auto-vectorization pragmas for scalar code
Store hints Temporal and non-temporal stores
Memory alignment Aligned and non-aligned read/writes
Prefetching Enable/disable Hardware & Software prefetchers

Multi-core/SMT OpenMP pragmas for parallelization
Decomposition policies Static (either X or Y axis) and SMT Thread Affinity

Traversing algorithms Naive, Rivera, Time-skewing and Cache-oblivious
Baseline algorithms Classical and Semi-stencil (Partial X-Y, Full Z-X-Y axis)
Inner loop optimizations Loop fusion (1 loop) and loop fission (2 and 3 loops)

Trace/HWC analysis PAPI, Extrae and Likwid
Peak performance Get the maximum performance for an implementation
Plot options Pretty printing for plotting data
Trial options Try several executions (min, max and average values)

Table 3.6: Features supported by the extended version of the StencilProbe. Some option
combinations may depend on the architecture and the algorithm.

der to analyze their multi-core and SMT scalability. The shared-memory OpenMP API was

used as the parallel programming paradigm. Other minor upgrades conducted into the micro-

benchmark are the inclusion of SIMD code, memory alignment, and instrumentation support.

Table 3.6 shows a summary of all the features of the new StencilProbe benchmark.

3.9 Summary

So far, in this chapter, we have established the experimental setup, presenting the architec-

tures, software and benchmarks that will be used as tools to unveil and corroborate our

findings. The following chapters will focus on detailing this thesis contributions.

Chapter 4

Optimizing Stencil Computations

Astrophysics [12], Geophysics [58, 65], Quantum Chemistry [4, 15] and Oceanography [39,

45] are examples of scientific fields where large computer simulations are frequently carried

out. On these simulations, the physical models are represented by Partial Differential Equa-

tions (PDE) which can be solved by the Finite Difference (FD) method. The FD method uses

stencil computations to obtain values for discrete differential operators. These large scale sim-

ulations may consume days of supercomputer time, and in particular most of the execution

time is spent on the stencil computation. For instance, the Reverse-Time Migration (RTM) is

a seismic imaging technique from Geophysics used in the Oil & Gas industry, where up to

80% of the RTM execution time [9] is spent on stencil computation.

The basic structure of stencil computation is that the central point accumulates the con-

tribution of neighbor points in every axis of the cartesian system. The number of neighbor

points in every axis relates to the accuracy level of the stencil, where more neighbor points

lead to higher accuracy. The stencil computation is then repeated for every point in the com-

putational domain, thus solving the spatial differential operator.

Two inherent problems can be identified from the structure of the stencil computation:

• First, the non-contiguous memory access pattern. In order to compute the central point

of the stencil, a set of neighbors have to be accessed. Some of these neighbor points are

distant in the memory hierarchy, requiring many cycles in latencies to be accessed [42,

43]. Furthermore, with increasing stencil order, it becomes more expensive to access

the required data points.

• Second, the low computational-intensity and reuse ratios. After gathering the set of

data points, just one central point is computed and only the accessed data points in

the sweep direction might be reused for the computation of the next central point [36].

Thus, some of the accessed data are not reused and the current hierarchical memory is

poorly exploited.

In order to deal with these issues and improve the stencil computation, we introduce the

Semi-stencil algorithm. This algorithm changes the structure of the stencil computation, but

it can be generally applied to most stencil-based problems. Indeed, the Semi-stencil algorithm

computes half of the axis contributions required by several central points at the same loop

iteration. By just accessing the points required to compute half of the stencil axis, this algo-

37

Chapter 4. Optimizing Stencil Computations 38

rithm reduces the number of neighboring points loaded per iteration. At the same time, the

number of floating point operations remains the same, but because the number of loads is

reduced, the computation-access ratio is increased.

In this chapter, we present a comprehensive study of the Semi-stencil strategy on homo-

geneous multi-core architectures with hierarchical memories. Unlike other stencil optimiza-

tion works [20, 21, 22] where a 7-point academic stencil (single Jacobi iteration) is tackled

through auto-tuning environments, we perform an evaluation on medium and high-order

stencils (from academic up to widely used in the industry). The aim of this research is not to

achieve the fastest stencil implementation on the chosen platforms, but to prove the sound-

ness of the Semi-stencil algorithm when scientific codes are optimized.

4.1 The Stencil Problem

The stencil computes the spatial differential operator, which is required to solve PDEs numer-

ically on FD schemes. A multidimensional structured grid (often a huge 3D data structure) is

traversed and the elements (X t
i,j,k) are updated with weighted contributions. Figure 4.1.b de-

picts a generic 3D stencil pattern, where the ℓ parameter represents the number of neighbors

to be used in each direction of the Cartesian axis. Hence, the computation of a X t
i,j,k point

at time-step t requires ℓ weighted neighbors in each axis direction at the previous time-step

(t− 1). The domain contains interior points (the solution domain) and ghost points (outside

of the solution domain). This operation is repeated for every point in the solution domain,

finally approximating the spatial differential operator.

The first problem identified from this computation is the sparse memory access pat-

tern. Data is stored in Z-major order (unit-stride dimension), and therefore accesses across

the other two axes (X and Y) may be significantly more expensive latency-wise (see Fig-

ure 4.1.a). The ℓ parameter has a direct impact on this problem, the larger the ℓ value the

more neighbors at each axis have to be loaded to compute the X t
i,j,k point.

The second problem to deal with is the low floating-point operations to data cache ac-

cesses ratio, which is related to the poor data reuse. In this work, we use the FP/Cache metric

to quantify these issues; this is the ratio of floating-point operations to the number of loads

and stores issued to L1 data cache for one X t point computation:

FP/CacheClassical =
F loatingPoint Operations

Data Cache Accesses
=

2 ∗MultiplyAdd Instructions

X t−1 Loads+ X t Stores

=
2 ∗ 2 ∗ dim ∗ ℓ+ 1

(2 ∗ (dim− 1) ∗ ℓ+ 1)
︸ ︷︷ ︸

X t−1 Loads

+ (1)
︸︷︷︸

X t Stores

=
4 ∗ dim ∗ ℓ+ 1

2 ∗ dim ∗ ℓ− 2 ∗ ℓ+ 2
(4.1)

Equation 4.1 states this metric for the classical stencil computation shown in Algorithm 3.

dim is the number of dimensions of our PDE (3 in a 3D problem), where 2 ∗ ℓ Multiply-Add

instructions are required at each dimension. Furthermore, one extra multiplication operation

Chapter 4. Optimizing Stencil Computations 39

Figure 4.1: (a) The memory access pattern for a 7-point stencil. The sparsity of the required
data to compute the stencil is higher in the last two axes (X and Y). (b) A 3D symmetric cross-
shaped stencil. Each X t

i,j,k point is updated with the weighted neighbors (X t−1
i±1..ℓ,j±1..ℓ,k±1..ℓ)

of the previous time-step (t− 1).

must be considered for the self-contribution (X t−1
i,j,k). The number of loads needed to compute

a stencil point differs depending on the axis. Those axes that are not unit-stride dimension

(X and Y) require 2 ∗ ℓ loads at each loop iteration. However, the Z unit-stride dimension

tends to require just one load due to the load reuse from preceding loop iterations. Finally,

to conclude the X t
i,j,k point computation requires one store to save the result.

As shown in Equation 4.1, the FP/Cache ratio depends on the dim and ℓ variables. Taking

into account that ℓ is the only variable that may increase, the FP/Cache ratio tends to a

factor of ≈ 3 flops per data cache (d-cache) access for 3D problems. This relatively low ratio

along with some previous works’ results [36, 53, 72] shows that the stencil computation

is usually memory-bound. In conclusion, the execution time of the stencil computation is

mainly dominated by the memory access latency.

These concerns force us to pay special attention to how data is accessed during the com-

putation. It is crucial to improve the memory access pattern (by reducing the overall number

of data transfers) and exploit the memory hierarchy as much as possible (by reducing the

overall transfer latency). Section 4.2 reviews the main approaches that can be found in the

literature to address these issues.

Chapter 4. Optimizing Stencil Computations 40

Algorithm 3 The classical stencil algorithm pseudo-code for a 3D problem. X t is the space
domain for time-step t, where Z, X and Y define the dimensions (ordered from unit to
least-stride) of the datasets including ghost points (points outside of the solution domain). ℓ
denotes the number of neighbors used for the central point contribution. CZ1...Zℓ, CX1...Xℓ,
CY 1...Y ℓ are the spatial discretization coefficients for each dimension and C0 for the self-
contribution. zs, ze, xs, xe, ys and ye denote the area in X t where the stencil operator is
computed. In order to compute the entire dataset, the stencil pseudo-code must be called
as follows: Stenil(X t,X t−1, ℓ, ℓ, Z − ℓ, ℓ,X − ℓ, ℓ, Y − ℓ). Notice that the discretization
coefficients are considered constant.

1: procedure Stenil(X t, X t−1, ℓ, zs, ze, xs, xe, ys, ye)
2: for k = ys to ye do

3: for j = xs to xe do

4: for i = zs to ze do

5: X t
i,j,k = C0 ∗ X

t−1
i,j,k

+CZ1 ∗ (X
t−1
i−1,j,k + X t−1

i+1,j,k) + . . .+ CZℓ ∗ (X
t−1
i−ℓ,j,k + X t−1

i+ℓ,j,k)

+CX1 ∗ (X
t−1
i,j−1,k +X t−1

i,j+1,k) + . . .+ CXℓ ∗ (X
t−1
i,j−ℓ,k + X t−1

i,j+ℓ,k)

+CY 1 ∗ (X
t−1
i,j,k−1 + X

t−1
i,j,k+1) + . . .+ CY ℓ ∗ (X

t−1
i,j,k−ℓ + X

t−1
i,j,k+ℓ)

6: end for

7: end for

8: end for

9: end procedure

4.2 State of the Art

Most of the contributions for stencil computations can be divided into three dissimilar groups:

space blocking, time blocking and pipeline optimizations. Space and time blocking are re-

lated to tiling strategies widely used in multi-level cache hierarchy architectures. Pipeline

optimizations refer to those optimization techniques that are used at the CPU pipeline level

to improve the instruction throughput performance (IPC). In addition, these three groups

contain incremental optimization techniques which can be combined with techniques from

other groups.

Figure 4.2 categorizes these three groups by complexity of implementation (effort), ben-

efit improvement (performance) and implementation tightness regarding hardware (depen-

dency). Even though each algorithm property (effort, performance and dependency) can

differ widely depending on the code complexity and the underlying hardware, this classifica-

tion can be treated as the big picture of the state-of-the-art. In this diagram, an interesting

optimization algorithm would be classified in the top-left corner, whereas an inefficient one

would be in the bottom-right corner. The next subsections will review the advantages and

disadvantages of these optimizations methods.

Chapter 4. Optimizing Stencil Computations 41

Figure 4.2: Characterization of different optimization schemes. This diagram sorts each op-
timization method according to the three properties: programming effort required to imple-
ment it, performance boost by optimizing the code and the dependency of the implementa-
tion with respect to the underlying hardware.

4.2.1 Space Blocking

Space blocking algorithms promote data reuse by traversing data in a specific order. Space

blocking is especially useful when the dataset structure does not fit into the memory hierarchy.

The most representative algorithms of this kind are:

• Tiling or blocking techniques: Rivera and Tseng [72] propose a generic blocking scheme

for 3D stencil problems. The entire domain is divided into small blocks of size TI ×

TJ ×TK which must fit into the cache. Rivera and Tseng showed that a good blocking

scheme configuration can be achieved when a TI × TJ 2D block is set along the less-

stride dimension. Later, Kamil et al. [43] found out that the best configuration is usually

given when TI is equal to the grid size I, as shown in Figure 4.3. This traversal order

Chapter 4. Optimizing Stencil Computations 42

reduces cache misses in less-stride dimensions (X and Y), which may increase data

locality and overall performance. Note that a search of the best block size parameters

(TI × TJ) must be performed for each problem size and architecture.

IxTJxK block

K
 (t

ra
ve

rs
in

g
di

re
ct

io
n)

I
(u

n
it

-s
tr

id
e)

Figure 4.3: Left: 3D cache blocking proposed by Rivera, where TI × TJ cuts are computed
sweeping through the unblocked dimension K. Right: I × TJ × K blocking configuration
suggested by Kamil, where the I and K dimensions are left unblocked. In this example, I
and K are the unit-stride and the least-stride dimensions respectively.

• Circular queue: Data et al. [22] employ a separate queue data structure to perform the

actual stencil calculations. This structure stores only as many 2D planes as are needed

for the given stencil. After completing a plane, the pointer to the lowest read plane is

moved to the new top read plane, thus making a circular queue. In general, the circular

queue stores (t− 1) sets of planes, where t is the number of iterations performed.

4.2.2 Time Blocking

Time blocking algorithms perform loop unrolling over time-step sweeps to exploit the grid

points as much as possible, and thus increase data reuse. Such techniques have shown some

effectiveness in real infrastructures [48], but they require careful code design. However, due

to the time dependency scenario, these techniques may pose implementation issues when

other tasks must be carried out between stencil sweeps. For instance, boundary condition

computation, intra- and extra-node communication or I/O may occur in many scientific ap-

plications during time-step updates. Time blocking techniques can be divided into explicit

and implicit algorithms:

• Time-skewing: McCalpin and Wonnacott [53] algorithm try to reuse data in cache as

much as possible. As a result, memory transfers are reduced and execution stalls are

minimized. Essentially, several cache blocks of size TI × TJ × TK are generated over

space dimensions of the grid and each of those blocks is unrolled over time, as shown in

Figure 4.4(a). To keep data dependencies of stencil computations, block computations

Chapter 4. Optimizing Stencil Computations 43

must be executed in a specific order. This constraint makes the time-skewing algorithm

only partially effective in parallel executions. However, time-skewing has been already

parallelized [42, 87] with reasonable results. Wonnacott devised the parallel version

of the time-skewing algorithm by performing space cuts in the least-stride dimension.

Each thread block is divided into three parallelepipeds, which are computed in a specific

order to preserve data dependencies and enable parallel computation. In this algorithm,

as in space tiling, a search of the best block size parameters must be performed prior

to the start of the computation.

• Cache-oblivious: Frigo and Strumpen [36] time blocking algorithm tiles both space and

time domains. In contrast with time-skewing, the cache-oblivious algorithm does not

require explicit information about the cache hierarchy. As Figures 4.4(b,c,d) show, an

(n + 1) dimensional space-time trapezoid is considered, where all the spatial dimen-

sions plus time are represented. Cuts can be performed recursively over the trapezoid

in space or time to generate two new, smaller trapezoids (T 1 and T 2), where the sten-

cil can be computed in an optimal way due to size constraints of the cache hierarchy.

Cutting in space produces a left side trapezoid (T 1) where there is no point depending

on the right side trapezoid (T 2), thus allowing T 1 to be fully computed before T 2. In

addition, recursive cuts can be taken over the time dimension. In this cut, the original

time region (t0, t1) is split into a lower T 1 trapezoid (t0, tn) and an upper T 2 trapezoid

(tn, t1). As in space cut, T 1 does not depend on any point of T 2, and T 1 can be com-

puted in advance. Cache-oblivious has been also parallelized [37] by creating space

cuts (either in the Z or Y dimensions) of inverted and non-inverted trapezoids, which

are computed in order to preserve dependencies.

4.2.3 Pipeline Optimizations

Low level optimizations at the CPU pipeline level include several well-known techniques.

These techniques may be categorized into three groups: loop transformations, data access

and streaming optimizations. Loop unrolling, loop fission and loop fusion are part of the

loop transformations group. They can reduce the overall execution time of scientific codes by

reducing register pressure and data dependency as well as improving temporal locality [51,

57].

Data access optimizations include techniques such as software prefetching, software pipelin-

ing and register blocking [3, 14, 46, 60, 73], all of these relate to improving data access

latency within the memory hierarchy (from register to main memory level). Finally, Symmet-

ric Multi-Processing (SMP), Single-Instruction Multiple-Data (SIMD) or Multiple-Instruction

Multiple-Data (MIMD) are some programming paradigms which are included in the stream-

ing optimizations group. The multiprocessing term refers to the ability to execute multiple

processes, threads and instructions concurrently in a hardware system.

Chapter 4. Optimizing Stencil Computations 44

space
0

ti
m

e

0-

1-

2-

1st 2nd 3rd 4th

x

t

C
o

n
s
t. B

o
u

n
d

a
ry C

o
n

s
t.

 B
o

u
n

d
a

ry

cache
block

1 2 3 4 5 6 7 8 9 10 11 12 13

(a) (b)

(c) (d)

Figure 4.4: Execution sequence of time blocking algorithms on 2D problems. (a): the cache
blocks in time-skewing, depicted here with different patterns, must be traversed in a specific
order to preserve stencil dependencies. (b): (n + 1) dimensional space-time trapezoid used
in cache-oblivious. (c) and (d): space and time cuts where new trapezoids are generated
cutting through the center of the trapezoid and ∆t/2 horizontal line respectively.

All the previous techniques have been successfully used in many computational fields

to improve the processing throughput and increase the IPC metric (Instructions Per Cycle).

Furthermore, the performance of the codes can be improved significantly by combining sev-

eral of these, although collateral effects (performance issues) can appear from time to time.

Some modern compilers are able to generate code automatically that takes advantage of

some of these techniques, thus relieving the developer of the tedious implementation work.

However, some pipeline optimizations may increase both instruction code size and register

pressure. Therefore, they must be used carefully, since overuse can lead to register spilling,

which would produce slower code due to additional saves and restores of register code from

the stack.

The stencil code representation in terms of arithmetic instructions is another issue to bear

in mind. Depending on the hardware, one type of stencil code codification could perform

better than others. Table 4.1 shows two different ways of stencil representation: factored

and expanded. The former uses add and multiplication instructions, while the latter maps

more naturally to fused multiply-add and multiplication instructions.

Chapter 4. Optimizing Stencil Computations 45

Method Stencil code Operations Instructions

Factored X t
i,j,k = C0 ∗ X t−1

i,j,k

+ CZ1 ∗ (X t−1
i−1,j,k + X t−1

i+1,j,k)

+ . . .+

+ CZℓ ∗ (X t−1
i−ℓ,j,k

+ X t−1
i+ℓ,j,k

)

3 ∗ dim ∗ ℓ+ 1 3 ∗ dim ∗ ℓ+ 1
(Muls Muls: dim ∗ ℓ+ 1 Muls: dim ∗ ℓ+ 1
and Adds: 2 ∗ dim ∗ ℓ Adds: 2 ∗ dim ∗ ℓ
Adds inst.

based)

Expanded X t
i,j,k = C0 ∗ X t−1

i,j,k

+ CZ1 ∗ X t−1
i−1,j,k + CZ1 ∗ X t−1

i+1,j,k

+ . . .+

+ CZℓ ∗ X t−1
i−ℓ,j,k

+ CZℓ ∗ X t−1
i+ℓ,j,k

4 ∗ dim ∗ ℓ+ 1 2 ∗ dim ∗ ℓ+ 1
(Fused Muls: 2 ∗ dim ∗ ℓ+ 1 MAdds: 2 ∗ dim ∗ ℓ
Multiply- Adds: 2 ∗ dim ∗ ℓ Muls: 1
Add inst.
based)

Table 4.1: Operation and instruction cost of two representations of stencil codes. Depending
on the instruction set and the latency (in cycles) of each arithmetic instruction in the CPU
pipeline, one specific representation (factored or expanded) may outperform the other.

4.3 The Semi-stencil Algorithm

The Semi-stencil algorithm involves noticeable changes to the structure as well as the mem-

ory access pattern of the stencil computation. This new computation structure (depicted in

Figure 4.5) consists of two phases: forward and backward updates, which are described in

detail in Section 4.3.1. Additionally, due to this new structure, three parts of code, called

head, body and tail need to be developed to preserve the numerical soundness; these are de-

scribed at the end of this section. To conclude this section, it will be shown how Semi-stencil

is orthogonal and may be combined with any other optimization technique.

As shown in Section 4.1, there are two main issues in stencil computations. First, the

low floating-point operation to data cache access ratio and, second, the high latency memory

access pattern especially for the last two dimensions. Basically, the Semi-stencil algorithm

tackles these two issues in the following ways:

• It improves data locality since less data is required on each axis per loop iteration.

This may have an important benefit for hierarchical cache architectures, where the non-

contiguous axes (X and Y) of a 3D domain are more expensive latency-wise.

• The new memory access pattern reduces the total number of loads per inner loop itera-

tion, while keeping the same number of floating-point operations. Thereby, increasing

the data reuse and thus the FP/Cache ratio, relative to the classical estimate of Equa-

tion 4.1.

As mentioned before, two phases (forward and backward updates) are needed to carry

out the new memory access pattern of the Semi-stencil algorithm. These are the core of the

algorithm, and the following subsection elaborates them.

Chapter 4. Optimizing Stencil Computations 46

4.3.1 Forward and Backward Updates

Line 5 of Algorithm 3 shows, in computational terms, the generic spatial operator for FD

codes. This line of pseudo-code updates the value of X t
i,j,k in one step (iteration {i, j, k}

of the loop). The essential idea of the Semi-stencil is to break up this line into two phases,

thereby partially updating more than one point per loop iteration. To carry out this parallel

update, the factored add and mul operations (ci ∗ (x−i + x+i)) must be decomposed into

multiply-add instructions (ci ∗ x−i + ci ∗ x+i) in order to split up the classical computation

into forward and backward updates.

The forward update is the first contribution that a X t point receives at time-step t. During

this phase, when the i iteration of the sweep axis is being computed, the X t
i+ℓ point is updated

with ℓX t−1 rear contributions (as depicted in Figure 4.5.a). Through this operation we obtain

a precomputed X ′t
i+ℓ value. Recall that ℓ represents the number of neighbors used in each axis

direction. Equation 4.2 shows, in mathematical terms, a summary of the forward operations

performed over X ′t
i+ℓ point in a one-dimensional (1D) problem,

X ′t
i+ℓ = C1 ∗ X

t−1
i+ℓ−1 + C2 ∗ X

t−1
i+ℓ−2 + · · ·+ Cℓ−1 ∗ X

t−1
i+1 + Cℓ ∗ X

t−1
i (4.2)

where the prime character (′) denotes that the point has been partially computed, and some

contributions are still missing. In addition, only ℓ neighbor points of X t−1 have been loaded

and one X t point, X ′t
i+ℓ, stored so far.

In a second phase, called backward, a previously precomputed X ′t
i point in the forward

update is completed by adding in the front axis contributions (X t−1
i to X t−1

i+ℓ). More precisely,

X t
i = X ′t

i + C0 ∗ X
t−1
i + C1 ∗ X

t−1
i+1 + C2 ∗ X

t−1
i+2

+ · · · + Cℓ−1 ∗ X
t−1
i+ℓ−1 + Cℓ ∗ X

t−1
i+ℓ

(4.3)

(see also Figure 4.5.b).

Only two loads are required in this process to complete the backward computation, since

most of the t − 1 time-step points were loaded during the forward update of the Xt
i+ℓ com-

putation and hence they can be reused. The two loads required for this second phase are:

the X t−1
i+ℓ point and the precomputed X ′t

i value. This phase also needs one additional store

to write the final X t
i value.

Finally, in order to carry out both updates, 2 ∗ ℓ+1 floating-point operations are issued in

the inner loop (ℓ Multiply-Add instructions for neighbor contributions and one multiplication

for the self-contribution). Moreover, in particular scenarios the computation can be reused;

if ℓ is a multiple of two, the Cl/2 ∗ X t−1
i+l/2 operation may be used for forward and backward

updates when performing the X t
i and X t

i+ℓ computation. These scenarios may lead to a slight

reduction of the inner loop instructions and a further improvement in the execution time.

Chapter 4. Optimizing Stencil Computations 47

Figure 4.5: Detail of the two phases for the Semi-stencil algorithm at iteration i of a 1D
domain. a) Forward update on X t

i+ℓ point and b) Backward update on X t
i point. Notice that

the X t−1
i+1,··· ,i+ℓ−1 interval can be reused.

4.3.2 Floating-Point Operations to Data Cache Access Ratio

For the purpose of comparing the classical and the Semi-stencil algorithms, we calculate the

FP/Cache ratio for the latter algorithm as follows,

FP/CacheSemi =
F loatingPoint Operations

Data Cache Accesses
=

2 ∗MultiplyAdd Instructions

X t−1 Loads+ X t Loads+ X t Stores

=
2 ∗ 2 ∗ dim ∗ ℓ+ 1

((dim− 1) ∗ ℓ+ 1)
︸ ︷︷ ︸

X t−1 Loads

+(dim− 1)
︸ ︷︷ ︸

X t Loads

+ (dim)
︸ ︷︷ ︸

X t Stores

=
4 ∗ dim ∗ ℓ+ 1

dim ∗ ℓ− ℓ+ 2 ∗ dim
(4.4)

where the total number of floating-point operations remains constant with respect to the

classical stencil implementation (see Equation 4.1). Equation 4.4 also shows that X t−1 loads

to the L1 cache have decreased substantially, by almost a factor of 2. Nevertheless, the X t

stores have increased and a new term (X t loads) has appeared in the equation due to the

partial computations applied to the X and Y axes. Reducing the number of loads results

in less cycles to compute the inner loop, as well as a lower register pressure. The lower

register use means the compiler has the opportunity to perform more aggressive low level

optimizations, such as: loop unrolling, software pipelining and software prefecthing.

However, as shown in Figure 4.5, the Semi-stencil algorithm updates two points per iter-

ation leading to double the number of X t stores. Depending on the architecture, this could

result in loss of performance. For instance, in caches with write-allocate policy, a store miss

produces a load block action followed by a write-hit, which will produce cache pollution

and a pipeline stall. Nowadays, some cache hierarchy architectures implement cache-bypass

Chapter 4. Optimizing Stencil Computations 48

techniques to address this issue.

Reviewing Equation 4.4, we see that the new computation structure of the Semi-stencil

allows the FP/Cache ratio to increase to ≈ 5 flops per d-cache access for 3D problems. For

ℓ in the range of 4 to 14, the FP/Cache ratio is a factor of between 1.3 and 1.7 times better

than the classical stencil implementation, which will have a clear effect on performance.

4.3.3 Head, Body and Tail computations

FD methods require what are called interior points (inside the solution domain) and ghost

points (outside the solution domain). The new algorithm structure of Semi-stencil takes this

feature into account to preserve the numerical soundness.

To obtain consistent results with the two-phase update on border interior points, the algo-

rithm must be split into three different sections: head, body and tail. The head section updates

the first ℓ interior points with the rear contributions (forward phase). In the body section, the

interior points are updated with back and forth neighbor interior elements (both forward

and backward phases are carried out). Finally, in the tail section, the last ℓ interior points of

the axis are updated with the front contributions (backward phase). Figure 4.6 shows a 1D

execution example of Semi-stencil where the three sections are clearly depicted.

4.3.4 Orthogonal Algorithm

As stated in Section 4.2, the state-of-the-art in stencil computations has improved in recent

years with the publication of several optimization techniques. Some of these can significantly

increase the execution performance under specific circumstances. However, most of them

can not be combined due to traversing strategy incompatibilities. In other words, some state-

of-the-art techniques share a particular data traversal method when the stencil operator is

computed, for example: space blocking or space-time blocking based. Therefore, not all com-

binations of these techniques are feasible.

In contrast to the previous group of optimization algorithms, the Semi-stencil specifies the

manner in which the stencil operator is calculated and how data is accessed in the inner loop

(see Algorithm 4). This kind of algorithm, which we term a structural-based optimization

algorithm, is orthogonal and can easily be implemented without modifying the sweeping

order of the computational domain. Thus, the Semi-stencil structure is complementary with

traversing optimization algorithms such as Rivera, Time-skewing or Cache-oblivious. At the

same time, Semi-stencil can be combined with low level pipeline optimizations such as loop-

level transformations, software prefetching or software pipelining.

Note that Semi-stencil can be applied to any axis of an n-dimensional stencil problem,

from unit-stride to least-stride dimension. Our recent studies in 3D stencil problems have

shown that the Semi-stencil algorithm is most suitable for the least-stride dimensions of 3D

problems (X and Y in our Cartesian axes). There are four main reasons for this behavior.

First, most modern compilers can take advantage of unit-stride accesses by reusing previous

Chapter 4. Optimizing Stencil Computations 49

Figure 4.6: Execution example of Semi-stencil algorithm for a 1D problem, where ℓ = 4.
F stands for a forward update and B stands for a backward update. The horizontal axis
represents the space domain (Z = 16 including ghost points) of the problem. The vertical
axis shows the execution time (example completed in 12 steps) for each algorithm section.

loads and fetching one value per iteration in a steady state. Second, the programmer may

easily add some pipeline optimizations that would improve performance for the unit-stride

dimension in the same way that Semi-stencil does. Third, current architectures usually sport

hardware prefetchers which may especially help to reduce unit-stride latency accesses. And

fourth, our memory access model for stencil computations (see the summary in Table 4.2) has

shown that a full-axis Semi-stencil algorithm implementation has a slightly higher penalty for

X t loads and X t stores than a partial Semi-stencil implementation.

Algorithms 6, 7 and 8 show the pseudo-code implementation of Rivera, Time-skewing and

Cache-oblivious algorithms respectively with a partial Semi-stencil implementation (detailed

Chapter 4. Optimizing Stencil Computations 50

Dataset Classical Stencil Full Semi-stencil Partial Semi-stencil

accesses (Z, X and Y axis) (X and Y axis)

Structure
of the
stencil

1

1

3

2

4

1

2

3

X t−1 loads 2 ∗ (dim− 1) ∗ ℓ+ 1 (dim− 1) ∗ ℓ+ 1 (dim− 1) ∗ ℓ+ 1
X t loads 0 dim dim− 1
X t stores 1 dim+ 1 dim

Table 4.2: Dataset accesses per stencil implementation in order to compute one point of the
domain. The figures show the structure of each stencil while dark boxes and numbers repre-
sent the updated points and their computation order respectively. Recall that data reuse for
load operation is considered for the unit-stride dimension (Z) through compiler optimiza-
tions.

in Algorithms 4 and 5). All these implementations are freely available in our version of the

StencilProbe micro-benchmark [25].

Chapter 4. Optimizing Stencil Computations 51

Algorithm 4 The Semi-stencil algorithm pseudo-code (Part 1). X t is the space domain for
time-step t, where Z, X and Y are the dimensions of the datasets including ghost points. ℓ
denotes the neighbors used for the central point contribution. CZ1...Zℓ, CX1...Xℓ and CY 1...Y ℓ

are the spatial discretization coefficients for each direction and C0 for the self-contribution.
zs, ze, xs, xe, ys and ye denote the area of X t where the stencil operator is computed.

1: procedure Semi-stenil(X t, X t−1, ℓ, zs, ze, xs, xe, ys, ye)

2: for k = ys − ℓ to MIN(ys, ye − ℓ) do ⊲ Head Y / Forward Y
3: for j = xs to xe do

4: for i = zs to ze do

5: X t
i,j,k+ℓ = CY ℓ ∗ X

t−1
i,j,k + CY ℓ−1 ∗ X

t−1
i,j,k+1 + . . .+ CY 1 ∗ X

t−1
i,j,k+ℓ−1

6: end for

7: end for

8: end for

9: for k = ys to ye − ℓ do ⊲ Body Y
10: for j = xs − ℓ to MIN(xs, xe − ℓ) do ⊲ Head X / Forward X
11: for i = zs to ze do

12: X t
i,j+ℓ,k

+
= CXℓ ∗ X

t−1
i,j,k + CXℓ−1 ∗ X

t−1
i,j+1,k + . . .+ CY 1 ∗ X

t−1
i,j+ℓ−1,k

13: end for

14: end for

15: for j = xs to xe − ℓ do ⊲ Body X
16: for i = zs to ze do ⊲ Backward X,Y / Forward X,Y

17: X t
i,j,k

+
= C0 ∗ X

t−1
i,j,k

+ CZ1 ∗ (X
t−1
i−1,j,k + X t−1

i+1,j,k) + . . .+ CZℓ ∗ (X
t−1
i−ℓ,j,k + X t−1

i+ℓ,j,k)

+ CX1 ∗ X
t−1
i,j+1,k + . . .+ CXℓ ∗ X

t−1
i,j+ℓ,k

+ CY 1 ∗ X
t−1
i,j,k+1 + . . .+ CY ℓ ∗ X

t−1
i,j,k+ℓ

18: X t
i,j+ℓ,k

+
= CXℓ ∗ X

t−1
i,j,k + CXℓ−1 ∗ X

t−1
i,j+1,k + . . .+ CY 1 ∗ X

t−1
i,j+ℓ−1,k

19: X t
i,j,k+ℓ = CY ℓ ∗ X

t−1
i,j,k + CY ℓ−1 ∗ X

t−1
i,j,k+1 + . . .+ CY 1 ∗ X

t−1
i,j,k+ℓ−1

20: end for

21: end for

22: for j =MAX(xe − ℓ, xs) to xe do ⊲ Tail X
23: for i = zs to ze do ⊲ Backward X,Y / Forward Y

24: X t
i,j,k

+
= C0 ∗ X

t−1
i,j,k

+ CZ1 ∗ (X
t−1
i−1,j,k + X t−1

i+1,j,k) + . . .+ CZℓ ∗ (X
t−1
i−ℓ,j,k + X t−1

i+ℓ,j,k)

+ CX1 ∗ X
t−1
i,j+1,k + . . .+ CXℓ ∗ X

t−1
i,j+ℓ,k

+ CY 1 ∗ X
t−1
i,j,k+1 + . . .+ CY ℓ ∗ X

t−1
i,j,k+ℓ

25: X t
i,j,k+ℓ = CY ℓ ∗ X

t−1
i,j,k + CY ℓ−1 ∗ X

t−1
i,j,k+1 + . . .+ CY 1 ∗ X

t−1
i,j,k+ℓ−1

26: end for

27: end for

28: end for ⊲ Continues in part 2

Chapter 4. Optimizing Stencil Computations 52

Algorithm 5 Continuation of the Semi-stencil algorithm pseudo-code (Part 2). This algorithm
must be called as follows to compute the entire data set: Semi-stenil(X t,X t−1, ℓ, ℓ, Z −
ℓ, ℓ,X − ℓ, ℓ, Y − ℓ). Note that, in this work, the coefficients are considered constant.

29: for k =MAX(ye − ℓ, ys) to ye do ⊲ Tail Y
30: for j = xs − ℓ to MIN(xs, xe − ℓ) do ⊲ Head X / Forward X
31: for i = zs to ze do

32: X t
i,j+ℓ,k

+
= CXℓ ∗ X

t−1
i,j,k + CXℓ−1 ∗ X

t−1
i,j+1,k + . . .+ CY 1 ∗ X

t−1
i,j+ℓ−1,k

33: end for

34: end for

35: for j = xs to xe − ℓ do ⊲ Body X
36: for i = zs to ze do ⊲ Backward X,Y / Forward X

37: X t
i,j,k

+
= C0 ∗ X

t−1
i,j,k

+CZ1 ∗ (X
t−1
i−1,j,k + X t−1

i+1,j,k) + . . .+ CZℓ ∗ (X
t−1
i−ℓ,j,k + X t−1

i+ℓ,j,k)

+CX1 ∗ X
t−1
i,j+1,k + . . .+ CXℓ ∗ X

t−1
i,j+ℓ,k

+CY 1 ∗ X
t−1
i,j,k+1 + . . .+ CY ℓ ∗ X

t−1
i,j,k+ℓ

38: X t
i,j+ℓ,k

+
= CXℓ ∗ X

t−1
i,j,k + CXℓ−1 ∗ X

t−1
i,j+1,k + . . .+ CY 1 ∗ X

t−1
i,j+ℓ−1,k

39: end for

40: end for

41: for j =MAX(xe − ℓ, xs) to xe do ⊲ Tail X
42: for i = zs to ze do ⊲ Backward X,Y

43: X t
i,j,k

+
= C0 ∗ X

t−1
i,j,k

+CZ1 ∗ (X
t−1
i−1,j,k + X t−1

i+1,j,k) + . . .+ CZℓ ∗ (X
t−1
i−ℓ,j,k + X t−1

i+ℓ,j,k)

+CX1 ∗ X
t−1
i,j+1,k + . . .+ CXℓ ∗ X

t−1
i,j+ℓ,k

+CY 1 ∗ X
t−1
i,j,k+1 + . . .+ CY ℓ ∗ X

t−1
i,j,k+ℓ

44: end for

45: end for

46: end for

47: end procedure

Algorithm 6 Pseudo-code for the space tiling implementation of the Semi-stencil algorithm.
TI and TJ define the TI × TJ block size. The less-stride dimension (Y) is left uncut.

1: procedure Rivera(X t, X t−1, Z, X, Y , TI , TJ , timesteps, ℓ)
2: for t = 0 to timesteps do ⊲ Compute blocks of size TI × TJ
3: for jj = ℓ to X, TJ do

4: for ii = ℓ to Z, TI do

5: Semi-stenil(X t, X t−1, ℓ, ii, MIN(ii+ TI ,Z − ℓ),
jj, MIN(jj + TJ ,X − ℓ), ℓ, Y − ℓ)

6: end for

7: end for

8: end for

9: end procedure

Chapter 4. Optimizing Stencil Computations 53

Algorithm 7 Pseudo-code for the time-skewing implementation of the Semi-stencil algo-
rithm.

1: procedure Time-skewing(X t, X t−1, Z, X, Y , TI , TJ , TK, timesteps, ℓ)
2: for kk = ℓ to Y − ℓ, TK do

3: negY slope = ℓ
4: posY slope = −ℓ
5: tyy =MIN(TK,Y − kk − ℓ)
6: if kk = ℓ then

7: negY slope = 0
8: end if

9: if kk = Y − tyy − ℓ then

10: posY slope = 0
11: end if

12: for jj = ℓ to X − ℓ, TJ do

13: negXslope = ℓ
14: posXslope = −ℓ
15: txx =MIN(TJ ,X − jj − ℓ)
16: if jj = ℓ then

17: negXslope = 0
18: end if

19: if jj = X − txx− ℓ then

20: posXslope = 0
21: end if

22: for ii = ℓ to Z − ℓ, TI do

23: negZslope = ℓ
24: posZslope = −ℓ
25: tzz =MIN(TI ,Z − ii− ℓ)
26: if ii = ℓ then

27: negZslope = 0
28: end if

29: if ii = Z − tzz − ℓ then

30: posZslope = 0
31: end if

32: pX t = X t

33: pX t−1 = X t−1

34: for t = t0 to timesteps do ⊲ Compute stencil on 3D trapezoid
35: Semi-stenil(pX t, pX t−1, ℓ,

MAX(ℓ, ii− t ∗ negZslope), MAX(ℓ, ii+ tzz ∗ posZslope),

MAX(ℓ, jj − t ∗ negXslope), MAX(ℓ, jj + txx ∗ posXslope),
MAX(ℓ, kk − t ∗ negY slope), MAX(ℓ, kk + tyy ∗ posY slope))

36: tmpPtr = pX t

37: pX t = pX t−1

38: pX t−1 = tmpPtr
39: end for

40: end for

41: end for

42: end for

43: end procedure

Chapter 4. Optimizing Stencil Computations 54

Algorithm 8 Pseudo-code for the cache-oblivious implementation of
the Semi-stencil algorithm. The trapezoid to compute is defined by
τ(t0, t1, z0, dz0, z1, dz1, x0, dx0, x1, dx1, y0, dy0, y1, dy1).

1: procedure Cahe-oblivious(X[t,t− 1], Z, X, Y , CUTOFF, ds, t0, t1,
z0, dz0, z1, dz1, x0, dx0, x1, dx1, y0, dy0, y1, dy1)

2: dt = t1− t0
3: wz = ((z1− z0) + (dz1− dz0) ∗ dt ∗ 0.5) ⊲ Compute 3D trapezoid volume
4: wx = ((x1− x0) + (dx1− dx0) ∗ dt ∗ 0.5)
5: wy = ((y1− y0) + (dy1− dy0) ∗ dt ∗ 0.5)
6: if dt = 1 or vol < CUTOFF then

7: for t = t0 to t1 do ⊲ Base case: compute stencil on 3D trapezoid

8: Semi-stenil(X[MOD(t+ 1,2)], X[MOD(t,2)], ds,
z0 + (t− t0) ∗ dz0, z1 + (t− t0) ∗ dz1,
x0 + (t− t0) ∗ dx0, x1 + (t− t0) ∗ dx1,

y0 + (t− t0) ∗ dy0, y1 + (t− t0) ∗ dy1)
9: end for

10: else if dt > 1 then

11: if wy ≥ 2 ∗ ds ∗ dt then ⊲ Space Y-cut

12: ym = (2 ∗ (y0 + y1) + (2 ∗ ds+ dy0 + dy1) ∗ dt)/4
13: Cahe-oblivious(X[t,t− 1], Z, X, Y , CUTOFF, ds, t0, t1,

z0, dz0, z1, dz1, x0, dx0, x1, dx1, y0, dy0, ym, −ds)

14: Cahe-oblivious(X[t,t− 1], Z, X, Y , CUTOFF, ds, t0, t1,
z0, dz0, z1, dz1, x0, dx0, x1, dx1, ym, −ds, y1, dy1)

15: else if wx ≥ 2 ∗ ds ∗ dt then ⊲ Space X-cut

16: xm = (2 ∗ (x0 + x1) + (2 ∗ ds+ dx0 + dx1) ∗ dt)/4
17: Cahe-oblivious(X[t,t− 1], Z, X, Y , CUTOFF, ds, t0, t1,

z0, dz0, z1, dz1, x0, dx0, xm, −ds, y0, dy0, y1, dy1)

18: Cahe-oblivious(X[t,t− 1], Z, X, Y , CUTOFF, ds, t0, t1,
z0, dz0, z1, dz1, xm, −ds, x1, dx1, y0, dy0, y1, dy1)

19: else ⊲ Time cut

20: s = dt/2
21: Cahe-oblivious(X[t,t− 1], Z, X, Y , CUTOFF, ds, t0, t0 + s,

z0, dz0, z1, dz1, x0, dx0, x1, dx1, y0, dy0, y1, dy1)

22: Cahe-oblivious(X[t,t− 1], Z, X, Y , CUTOFF, ds, t0 + s, t1,
z0 + dz0 ∗ s, dz0, z1 + dz1 ∗ s, dz1,
x0 + dx0 ∗ s, dx0, x1 + dx1 ∗ s, dx1,

y0 + dy0 ∗ s, dy0, y1 + dy1 ∗ s, dy1)
23: end if

24: end if

25: end procedure

Chapter 4. Optimizing Stencil Computations 55

4.4 Experiments

In this section, the experimental results of the Semi-stencil algorithm are presented. All these

experimients have been conducted using our modified version of the StencilProbe micro-

benchmark (see Section 3.8), which has been updated including the Semi-stencil algorithm.

It is worth noting that, with the new benchmark features, the parameter space to be explored

becomes quite large. In order to bound the search area for the experiments, we set some

parameters as either constants or within a reasonable range of values (e.g., problem size and

blocking parameters). Table 4.3 shows a summary of all the parameters used in the micro-

benchmark.

Parameters Range of values

Problem sizes 512× 512× 512 (in double-precision floating-point format)
Stencil sizes (ℓ) 1, 2, 4, 7 and 14 (7, 13, 25, 43 and 85-point respectively)

Time-steps 1, 2, 4 and 8

Algorithms {Naive, Rivera, Time-skew, Cache-oblivious} × {Classical, Semi-stencil}

Block sizes {16, 32, 64, 128, 256, 512} × {16, 32, 64, 128, 256, 512} × 512
CUTOFF {256, 512, 1k, 2k, 4k, 8k, 16k, 32k}

Inner loop opts. {loop fusion (1 loop), loop fission (2 loops), loop fission (3 loops)}

Table 4.3: List of parameters used for the extended version of StencilProbe. Some combina-
tions may depend on the architecture and the algorithm; for example, block sizes are only
used for Rivera and Time-skew, whereas CUTOFF is only used for the Cache-oblivious algo-
rithm. Due to memory constraints on some platforms, the problem size may be reduced to
2563.

In the following subsections, first, we prove through the FP/Cache metric, that our experi-

mental model is consistent with classical and Semi-stencil codes’ results. Second, the Roofline

model (see Section 3.7) is used to demonstrate through Operational Intensity metric how the

Semi-stencil algorithm behaves. Finally, the performance results are shown and evaluated for

each testbed platform, including also interesting scalability results for multi and many-core

archhitectures.

4.4.1 Data Cache Accesses

As Equations 4.1 and 4.4 convey, the proposed algorithm performs increasingly well in FP/Cache

and data access terms with respect to the classical approach. Figure 4.7 (top) plots the three

models: the classical and the two Semi-stencil (partial-axis X-Y and full-axis Z-X-Y). We

see that the classical and the Semi-stencil models tend to a factor of ≈ 3 and 5 flops per

d-cache access respectively.

To evaluate the robustness of our results, we proceed to compare the model with real

performance data. Unfortunately, if the measured data and the projected FP/Cache model

are compared, we note a slight difference. The main reason for this is due to interference

Chapter 4. Optimizing Stencil Computations 56

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

R
a
ti
o
 F

lo
p
s
 p

e
r

D
a
ta

 C
a
c
h
e
 A

c
c
e
s
s
e
s
 (

F
P

/C
a
c
h
e
)

Classical model
Partial Semi-stencil model (axis X-Y)
Full Semi-stencil model (axis Z-X-Y)

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

7-point 13-point 25-point 43-point 85-point

R
e
d
u
c
ti
o
n
 o

f
D

a
ta

 C
a
c
h
e
 A

c
c
e
s
s
e
s
 (

in
 %

)

Partial model
IBM BlueGene/P

IBM Power6
AMD Opteron
Intel Nehalem

-2

-1

 0

 1

 2

 3

 4

 5

13-point

-40

-35

-30

-25

-20

-15

-10

7-point

Figure 4.7: Top: Ratio of floating-point operations to data cache accesses for all three stencil
models. The horizontal axis represents the number of neighbors used to compute the stencil.
The larger the stencil, the better ratio obtained. Bottom: Comparison of data cache access
reduction between partial-axis Semi-stencil and classical versions for model and measured
data on all four platforms.

from other loads and stores not related to X t and X t−1 datasets; coefficients terms, loop

control variables and register spilling are all involved in this cache traffic increase. The larger

the stencil length (ℓ), the worse the traffic becomes.

In order to achieve an accurate comparison, a new metric must be defined. Taking into

account that this issue affects any stencil computation and the artifact should remain con-

stant for a specific stencil size (ℓ); it would be a good idea to compare data cache ac-

cesses between different implementations of the same stencil length. Therefore, results are

Chapter 4. Optimizing Stencil Computations 57

compared based on the accesses in terms of gain or loss using a reduction factor between

FP/Cache metrics. This new metric is defined as: AccessesGain = (AccessesClassical −

AccessesSemi)/AccessesClassical, and is measured as a percentage. A negative value signi-

fies higher data cache traffic, while a positive percentage signals a lower traffic, and, hence,

better performance.

Figure 4.7 (bottom) shows the comparison of data cache accesses for best performance

cases using Semi-stencil and classical implementations. Examining the figure, we note that

both data groups, the model and the real performance data, are quite close and the experi-

ments follow closely the reduction model curve. In addition, the Semi-stencil algorithm per-

forms poorly for low order stencils (ℓ = {1, 2}), where the negative reduction factor repre-

sents an increase in traffic. This result is also in line with the theoretical FP/Cache ratio mod-

els presented at Figure 4.7 (top), where both Semi-stencil implementations perform worse

than the classical code for ℓ ≤ 2. Nevertheless, as expected, the Semi-stencil algorithm be-

haves better for medium-high order stencils due to a decrease in data cache traffic.

4.4.2 Operational Intensity

In order to demonstrate the robustness of the Semi-stencil algorithm, we conducted the

Roofline model on the Intel Nehalem and AMD Opteron architectures where memory traf-

fic counters (DRAM bytes accessed) were gathered using likwidperfctr. We can then use the

Roofline model to assess how far our empirical results are from the attainable peak perfor-

mance.

To build the roof part of the model, the DRAM bandwidth and the theoretical peak per-

formance were measured. The DRAM bandwidth measurements were conducted using our

modified version of STREAM2 [24] to estimate stream and non-stream bandwidths. The

stream bandwidth determines the upper bound whereas the non-stream bandwidth sets the

lower bound. These bandwidths determine how far to the left or right the ridge point is on

the X-axis. Next, to obtain the Y -axis ceilings, theoretical peak performance, the processor

frequency and the floating-point units on a single core were considered. The AMD Opteron

and Intel Nehalem cores have two floating-point units, one multiplication and one add unit.

Hence, applications must be multiplication/add instruction balanced in order to reach the

maximum peak performance. Table 4.4 shows the gathered ceiling data on both architec-

tures.

To gain a better understanding of the Roofline model, the theoretical Operational Intensity

(OI) for each stencil algorithm and size were also estimated. As described in Section 3.4, three

OI groups are devised depending on the stencil 3C’s misses: only compulsory, compulsory +

capacity and compulsory + capacity + conflict misses. Compulsory misses set the upper

bound while the compulsory + capacity + conflict misses set the lower bound in the X-axis

of the Roofline model. Table 4.5 shows the estimated OIs using write-back and write-through

policies.

Chapter 4. Optimizing Stencil Computations 58

Roofline ceilings Intel Nehalem AMD Opteron

Peak Stream DRAM (GBytes/s) 8.2 4.6
Peak Non-stream DRAM (GBytes/s) 3.4 1.4
Peak 2 FP units (GFlops/s) 5.86 4.6
Peak 1 FP unit (GFlops/s) 2.93 2.3

Table 4.4: Computational and bandwidth ceilings for Roofline model. Notice that only one
core is being considered.

Classical Semi-stencil

Compulsory Compulsory Compulsory Compulsory Compulsory Compulsory
Stencil + Capacity + Capacity + Capacity + Capacity
sizes + Conflict + Conflict

7-point 0.54 (0.81) 0.32 (0.40) 0.23 (0.27) 0.23 (0.27) 0.20 (0.23) 0.18 (0.20)
13-point 1.04 (1.56) 0.44 (0.52) 0.28 (0.31) 0.45 (0.52) 0.35 (0.39) 0.28 (0.31)
25-point 2.04 (3.06) 0.55 (0.61) 0.32 (0.34) 0.88 (1.02) 0.55 (0.61) 0.41 (0.44)
43-point 3.50 (5.31) 0.62 (0.66) 0.34 (0.35) 1.51 (1.77) 0.76 (0.82) 0.50 (0.53)
85-point 7.04 (10.56) 0.68 (0.70) 0.36 (0.37) 3.01 (3.52) 1.00 (1.05) 0.60 (0.62)

Table 4.5: Theoretical OI for stencils depending on their 3C’s misses. The gray section depicts
where Semi-stencil obtains a better ratio compared to the classical. Values in parenthesis are
obtained using write-through policy.

Furthermore, we calculated the actual computational peak performance to provide a re-

alistic bound on the Roofline ceilings. Such information was obtained by running the Sten-

cilProbe micro-benchmark several times using a small dataset as input (323), but without

clearing the cache (warm cache effect). Then, the fastest execution time was selected as the

reference for the stencil algorithm and size. Using this technique, the optimal computational

performance was obtained disregarding DRAM accesses and considering only traffic between

processor and cache.

Figure 4.8 combines all the gathered data in the Roofline model for the Intel Nehalem

and AMD Opteron architectures to predict the attainable performance. Graphs are on log2-

log2 scale, where the Y-axis is the attainable GFlops per second and the X-axis is Flops

per DRAM byte accessed. Memory bandwidths (stream and non-stream) and computational

peaks (mul/add instruction balanced and imbalanced) determine the optimization regions

within the graphs. Remember that the memory measurement is the steady state bandwidth

potential of the memory in only one core, and it is not the pin bandwidth of the DRAM chips.

The model also suggests, through three regions, which optimizations would be appropriate.

The darkest trapezoid suggests working mainly on computational optimizations, the lightest

parallelogram proposes trying just memory optimizations, and the region in the corner sug-

gests both types of the above optimizations. The vertical lines on the graphs show bounds for

3C’s regions obtained for a 25-point stencil computation, and hence their theoretical OI lim-

its. Additionally, the remaining horizontal lines depict the actual peak performance for each

stencil size. Finally, the crosses and circles on the graphs mark the performance achieved by

Chapter 4. Optimizing Stencil Computations 59

1

2

4

8

1/16 1/8 1/4 1/2 1 2 4

G
F

lo
p
s
/s

Operational Intensity (Flops/Byte)

Intel Nehalem

7
25

43

7

13
43

13

25 mul/add imbalanced

+mul/add balanced

pe
ak

 m
em

or
y

ba
nd

w
id

th
 (
st

re
am

)

no
n-

st
re

am
 b

an
dw

id
th

C
o
m

p
u
ls

o
ry

 m
is

s
e
s
 c

la
s
s
ic

a
l

C
o
m

p
u
ls

o
ry

 m
is

s
e
s
 s

e
m

i

+
C

a
p
a

c
it
y
 m

is
s
e
s
 b

o
th

+
C

o
n
fl
ic

t
m

is
s
e
s
 s

e
m

i

+
C

o
n
fl
ic

t
m

is
s
e
s
 c

la
s
s
ic

a
l

actual 7-point peak

actual 13,25 and 43-point peak

1

2

4

8

1/8 1/4 1/2 1 2 4

G
F

lo
p
s
/s

Operational Intensity (Flops/Byte)

AMD Opteron

7

25

43

7

13

25

43

13

pe
ak

 m
em

or
y

ba
nd

w
id

th
 (s

tre
am

)
no

n-
st

re
am

 b
an

dw
id

th

+
C

o
n
fl
ic

t
c
la

s
s
ic

a
l

+
C

o
n
fl
ic

t
m

is
s
e
s
 s

e
m

i

+
C

a
p
a

c
it
y
 m

is
s
e
s
 b

o
th

C
o
m

p
u
ls

o
ry

 m
is

s
e
s
 s

e
m

i

C
o
m

p
u
ls

o
ry

 m
is

s
e
s
 c

la
s
s
ic

a
l

+mul/add balanced

mul/add imbalanced

actual 7-point peak

actual 13,43-point peak

actual 25-point peak

Figure 4.8: Roofline models for Intel Nehalem and AMD Opteron. Computational and band-
width ceilings bound the theoretical limits for the architecture, whereas the vertical 3C’s lines
and the horizontal actual peak lines set the limits for each stencil kernel.

Chapter 4. Optimizing Stencil Computations 60

Naive and Naive+Semi-stencil runs respectively. Numbers shown next to the marks represent

their stencil size.

The peak double precision performance for the Intel Nehalem is the highest of the two

architectures. However, Figure 4.8 (top) shows that this performance can only be achieved

with an OI greater than 0.71 in the best scenario (stream bandwidth) and 1.72 Flops per

byte in the worst scenario (non-stream bandwidth). Reviewing the achieved performances,

we can note that they are all in the bottom part of the memory bandwidth (45◦ non-stream

line). This behavior may be a consequence of a front side bus limitation and the ineffective

work of the snoop filter, which carries coherency traffic and may consume half of the bus

bandwidth. Despite the memory bandwidth limitation, the 25 and 43-point stencil computa-

tions of Naive+Semi-stencil get close to the actual computational peak thanks to their higher

OI.

Figure 4.8 (bottom) shows the Roofline model for the AMD Opteron architecture. In this

architecture the ridge point of the model is at an OI of 1 Flop per byte for stream bandwidth

and at 3.28 Flops per byte for non-stream bandwidth. The model clearly shows that the 7

and 13-point results of Naive+Semi-stencil are already limited by peak memory and their

performance could only be improved by increasing OI. On the other hand, Naive results fall

into the lightest region, indicating not so efficient memory access. Notice that if a vertical

line is projected from each Naive result, these lines meet the actual stencil peak performance

approximately at the point that diagonal roof part is reached. This behavior confirms the

accuracy of the gathered data for the Roofline model. In addition, large stencil size computa-

tions (25 and 43-point) of Semi-stencil lead the GFlops/second results despite only showing

slightly better OI ratios with respect to their Naive competitors. This metric gap is because

OI depends on traffic between the caches and memory, whereas the Semi-stencil algorithm

mostly reduces traffic between the processor and caches (see Equation 4.4).

4.4.3 Performance Evaluation and Analysis

This research not only claims that the Semi-stencil approach improves the stencil compu-

tation performance, but also that it can be combined with others stencil optimization tech-

niques to achieve even higher performance. Due to the sheer number of possible experiments

(see Table 4.3) the most relevant results across all testbed platforms are highlighted and an-

alyzed in this section. All computations have been carried out in double precision, since this

is used by most scientific codes.

In order to support our claims, the results of our experiments are shown combined in four

arrangements. First, the execution times of classical and Semi-stencil versions are compared

when the stencil size (ℓ) and the problem size are changed. Second, hardware counter pro-

filings are given and discussed for each algorithm. Third, a general view of algorithm speed-

ups is outlined, and finally, performance results are grouped by varying blocking parameters

(TI × TJ × TK).

Chapter 4. Optimizing Stencil Computations 61

-20

-10

 0

 10

 20

 30

 40

 50

7-point 13-point 25-point 43-point 85-point

R
e
d
u
c
ti
o
n
 o

f
ti
m

e
 w

rt
.
C

la
s
s
ic

a
l
(i
n
 %

)

128
3

256
3

512
3

768
3

1024
3

 0.01

 0.1

 1

 10

 100
T

im
e
 (

in
 s

e
c
o
n
d
s
)

Classical 128
3

Semi 128
3

Classical 256
3

Semi 256
3

Classical 512
3

Semi 512
3

Classical 768
3

Semi 768
3

Classical 1024
3

Semi 1024
3

Figure 4.9: Comparison between classical and Semi-stencil runs using different stencil
lengths and problem sizes on Intel Nehalem. Top: elapsed time comparison in seconds. Lower
is better. Bottom: reduction of time in percentage. A negative value represents a Semi-stencil
slower than the classical approach, whereas a positive value depicts a faster one. Notice how
important the problem size is in order to obtain further improvement in low-medium order
stencils.

Figure 4.9 (top) shows how efficient the Semi-stencil algorithm performs as ℓ and the

problem size (N3) are varied. Here, all parameters have been fixed, except for the stencil

length. Each pair of classical and Semi-stencil runs was conducted for a particular problem

size, ranging from unusually small sizes (1283 and 2563) to realistic cases (5123, 7683 and

10243). In order to obtain a fair and clear comparison, the reduction in time with respect to

the classical algorithm is presented in Figure 4.9 (bottom).

As expected, Semi-stencil versions perform worse for low order stencil computations (ℓ ≤

2) where the elapsed time is slightly higher compared to the classical implementation. How-

ever, for medium and high order stencils (ℓ ≥ 4), our proposed algorithm performs extremely

well. Nevertheless, as the problem size grows, the elapsed time difference becomes negligible

when ℓ = 2.

Considering precision and performance requirements, the stencil computation depends

on the number of neighbor points. A large number of neighbors will provide high order

results at increased computational cost. Given the previous statement and the results shown

in Figure 4.9, a Semi-stencil algorithm is a valid option when high precision is required in

Chapter 4. Optimizing Stencil Computations 62

large scientific problems.

Figures 4.10, 4.11, 4.12 and 4.13 show a detailed collection of hardware counters ob-

tained by profiling on all four platforms. Performance statistics shown are: Memory traffic

(GBytes), Million Updates Per Second (MUPS), L1/L2/L3 cache misses, GFlops and FP/Cache

ratios. Each matrix column represents an algorithm implementation and each matrix row a

specific stencil length, ℓ. Generally, most of these show a better performance when ℓ ≥ 2 (13-

point). In terms of the FP/Cache ratio and cache misses, our proposed algorithm performs

increasingly well with respect to the classical algorithm.

The stacked bar graphs in Figure 4.14 show the speed-up of each implementation and

execution times in seconds. Data is gathered by platform, time-steps and stencil length. In

these graphs, the baseline for each platform and set of parameters represents the Naive code

using a classical algorithm (where the speed-up is 1). We see that, space and time-blocking

techniques enhance some of the performance results, ranging from 1.05 to 1.3×. However,

using the same enhancements with Semi-stencil improves the performance even further, be-

stowing aggregated speed-ups of up to 1.6× in some cases. The BlueGene/P outperforms the

others platforms in terms of speed-up especially for the Semi-stencil algorithm.

In order to show how important a blocking parameter is for space and time-blocking algo-

rithms, Figure 4.15 and 4.16 collect all the execution runs sorted by blocking sizes. Results

are shown for each platform by modifying the blocking parameters in the horizontal axis. As

expected, the Rivera and Time-skewing algorithms show a variation of performance when

TI, TJ and TK are changed. In all cases, the best blocking performance is obtained when

TI is left uncut [43, 72]; the exception, strangely, is BG/P. This may be due to collateral

cache-line conflicts. The Naive and Cache-Oblivious algorithms are plotted using their best

configurations (tuning internal loop optimizations and CUTOFF parameter).

Algorithm Intel Nehalem IBM POWER6 IBM BlueGene/P AMD Opteron

Naive 5.01 (1.00) 8.64 (1.00) 9.07 (1.00) 7.42 (1.00)
Rivera 4.82 (1.04) 8.74 (0.99) 7.46 (1.22) 8.63 (0.86)

Timeskew 4.43 (1.13) 8.55 (1.01) 7.02 (1.29) 11.04 (0.67)
Oblivous 3.89 (1.29) 9.05 (0.95) 8.25 (1.10) 5.95 (1.25)

Naive + Semi 4.27 (1.17) 6.53 (1.32) 6.03 (1.50) 5.64 (1.32)
Rivera + Semi 4.25 (1.18/1.13) 6.92 (1.25/1.26) 5.73 (1.58/1.30) 4.90 (1.51/1.76)

Timeskew + Semi 4.25 (1.18/1.05) 6.50 (1.33/1.32) 5.53 (1.64/1.27) 5.42 (1.37/2.04)
Oblivious + Semi 3.93 (1.27/0.99) 7.04 (1.23/1.29) 6.68 (1.36/1.24) 5.65 (1.31/1.05)

Table 4.6: Summary of execution times (in seconds) and speed-ups for Semi-stencil. Problem
sizes are 5123 except for BlueGene/P where 2563 has been used due to memory limitations. A
widely used stencil size (ℓ = 4, 25-point) and a time-step of 2 have been chosen. Speed-ups
with respect to the Naive implementation and without the Semi-stencil strategy are shown
in parenthesis and italics respectively.

A summary of the performance results can be found in Table 4.6. This table shows the

execution times and their speed-ups using a stencil size of 4. For three of the four platforms,

Chapter 4. Optimizing Stencil Computations 63

L
1

 M
is

s
e

s
 *

 1
0

6
 f

o
r

IB
M

 B
lu

e
G

e
n

e
/P

 (
2

5
6

3
,

ti
m

e
s

te
p

s
=

4
)

2
6

8

3
2

0

1
3

0
7

8
1

7

1
3

2
3

3
3

6

1
7

0

2
3

1

4
3

5

8
2

7

8
7

.4

9
9

.0

1
5

0

4
7

9

7
4

5

1
7

1

1
6

6

1
8

0

2
8

9

3
6

9

1
4

4

1
6

4

2
8

0

9
0

9

1
1

0
2

3
3

6

1
7

7

1
8

3

2
6

6

7
1

4

1
1

9

1
7

1

4
4

4

6
0

7

1
1

1
3

2
1

1

2
4

9

4
5

6

4
1

8

8
4

5

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

L
2

 M
is

s
e

s
 *

 1
0

6
 f

o
r

IB
M

 B
lu

e
G

e
n

e
/P

 (
2

5
6

3
,

ti
m

e
s

te
p

s
=

4
)

0
.0

9

2
6

.0

1
3

8

4
3

4

9
7

5

0
.0

4

1
1

.2

2
4

.9

7
4

.6

5
4

5

1
.5

1

8
.9

8

4
2

.9

2
9

2

5
5

8

0
.0

7

6
.5

4

6
.2

1

7
7

.1

1
3

1

1
.9

3

6
.5

6

4
4

.2

2
9

2

6
4

9

0
.0

7

3
.5

3

5
.8

1

3
8

.7

2
8

6

0
.6

9

3
2

.2

1
4

0

4
3

5

9
6

2

0
.4

7

1
2

.5

2
7

.5

9
5

.1

6
4

5

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

 1
0
0
0

G
F

lo
p

s
 f

o
r

IB
M

 B
lu

e
G

e
n

e
/P

 (
2

5
6

3
,

ti
m

e
s

te
p

s
=

4
)

0
.2

3

0
.2

4

0
.1

8

0
.1

6

0
.1

6

0
.2

0

0
.2

6

0
.2

7

0
.2

6

0
.2

4

0
.2

3

0
.2

4

0
.2

2

0
.2

0

0
.1

9

0
.2

2

0
.2

4

0
.2

9

0
.2

6

0
.2

4

0
.2

4

0
.2

6

0
.2

3

0
.2

0

0
.1

7

0
.2

0

0
.2

7

0
.3

0

0
.2

8

0
.2

7

0
.2

3

0
.2

5

0
.2

0

0
.2

0

0
.1

9

0
.1

9

0
.2

4

0
.2

5

0
.2

4

0
.2

1

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0
.1

4

 0
.1

6

 0
.1

8

 0
.2

 0
.2

2

 0
.2

4

 0
.2

6

 0
.2

8

 0
.3

R
a

ti
o

 F
P

/C
a

c
h

e
 f

o
r

IB
M

 B
lu

e
G

e
n

e
/P

 (
2

5
6

3
,

ti
m

e
s

te
p

s
=

4
)

1
.3

6

1
.4

8

1
.3

1

1
.3

9

1
.0

8

1
.1

0

1
.5

0

1
.6

3

1
.7

2

1
.9

0

1
.3

8

1
.5

0

1
.4

1

1
.4

1

1
.3

3

1
.1

2

1
.4

7

1
.6

4

1
.8

3

1
.5

2

1
.3

7

1
.4

8

1
.3

9

1
.4

0

1
.0

6

1
.1

0

1
.5

1

1
.6

5

1
.6

3

1
.8

7

1
.3

7

1
.4

9

1
.2

9

1
.4

7

1
.3

2

1
.0

5

1
.3

7

1
.4

3

1
.5

3

1
.6

7

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 1 1
.1

 1
.2

 1
.3

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9

 2

M
il

li
o

n
 p

o
in

ts
 s

e
c

 f
o

r
IB

M
 B

lu
e

G
e

n
e

/P
 (

2
5

6
3
,

ti
m

e
s

te
p

s
=

4
)

1
7

.7

9
.5

4

3
.7

0

1
.8

5

0
.9

4

1
5

.4

1
0

.4

5
.5

7

3
.0

2

1
.4

1

1
7

.9

9
.4

7

4
.5

0

2
.4

1

1
.1

2

1
7

.1

9
.7

7

5
.8

5

3
.0

0

1
.4

1

1
8

.5

1
0

.5

4
.7

8

2
.3

1

1
.0

2

1
5

.4

1
0

.6

6
.0

7

3
.3

1

1
.5

7

1
7

.7

9
.8

7

4
.0

7

2
.3

5

1
.1

3

1
4

.9

9
.4

6

5
.0

3

2
.8

3

1
.2

7

7-point13-point25-point43-point85-point

N
ai

ve
N

ai
ve

+
S

em
i

R
iv

er
a

R
iv

er
a+

S
em

i
T

im
es

ke
w

T
im

es
ke

w
+

S
em

i
O

bl
iv

io
us

O
bl

iv
io

us
+

S
em

i

 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

M
e

m
o

ry
 t

ra
ff

ic
 (

G
B

s
)

fo
r

IB
M

 B
lu

e
G

e
n

e
/P

 (
2

5
6

3
,

ti
m

e
s

te
p

s
=

4
)

7
6

.3

1
3

5

2
9

9

4
8

8

1
2

4
9

9
4

.2

1
3

3

2
4

0

3
9

5

7
1

1

7
5

.4

1
3

4

2
7

8

4
8

3

1
0

2
0

9
2

.9

1
3

6

2
3

9

3
7

2

8
9

1

7
5

.8

1
3

5

2
8

3

4
8

7

1
2

7
7

9
4

.2

1
3

3

2
3

7

4
1

7

7
2

5

7
5

.9

1
3

4

3
0

3

4
6

3

1
0

2
3

9
9

.2

1
4

6

2
7

3

4
4

5

8
1

2

7-point13-point25-point43-point85-point

N
ai

ve
N

ai
ve

+
S

em
i

R
iv

er
a

R
iv

er
a+

S
em

i
T

im
es

ke
w

T
im

es
ke

w
+

S
em

i
O

bl
iv

io
us

O
bl

iv
io

us
+

S
em

i

 0 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

F
ig

u
re

4
.1

0
:

M
a
tr

ix
o
f

m
e
tr

ic
re

su
lt

s
fo

r
IB

M
B

lu
e

G
e
n

e
/P

.
T

h
e
se

m
a
tr

ic
e
s

sh
o
w

d
a
ta

ca
ch

e
m

is
se

s
fo

r
L
1

a
n

d
L
2
,
G

F
lo

p
s,

F
P
/
C

a
ch

e,
M

U
P
S

a
n

d
m

e
m

o
ry

tr
a
ffi

c
m

e
tr

ic
s

fo
r

fi
v
e

st
e
n

ci
l
si

ze
s

w
it

h
e
a
ch

d
if

fe
re

n
t

o
p
ti

m
iz

a
ti

o
n

m
e
th

o
d

.

Chapter 4. Optimizing Stencil Computations 64

L
1

 M
is

s
e

s
 * 1

0
6 fo

r IB
M

 P
o

w
e

r6
 (5

1
2

3, tim
e

s
te

p
s

=
4

)

5
3

9

5
7

3

5
4

0

5
9

3

1
4

3
3

9
9

3

5
4

0

5
5

2

5
8

7

6
3

8

5
3

9

5
1

0

6
3

7

5
8

6

1
3

1
3

9
8

5

5
4

0

5
4

7

5
9

2

6
4

5

5
3

8

5
7

2

6
2

6

7
3

8

1
5

2
5

1
0

0
3

5
4

0

5
5

2

5
8

2

6
4

5

5
3

9

5
7

2

6
2

8

5
9

6

1
7

6
8

8
5

4

5
4

5

5
5

4

5
8

7

6
5

2

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

 1
6
0
0

 1
8
0
0

L
2

 M
is

s
e

s
 * 1

0
6 fo

r IB
M

 P
o

w
e

r6
 (5

1
2

3, tim
e

s
te

p
s

=
4

)

2
1

6

2
6

9

4
3

3

7
5

7

1
3

0
8

2
2

1

2
4

8

3
4

7

5
0

1

6
4

4

1
2

5

1
2

6

1
4

2

1
4

7

2
2

5

1
3

0

1
3

0

1
4

7

1
8

5

2
5

1

1
2

4

1
3

3

1
5

4

1
7

0

9
7

9

2
4

1

2
3

9

3
4

8

2
4

6

5
4

3

6
0

.3

6
0

.5

1
2

5

2
1

1

9
0

9

5
7

.2

6
1

.7

1
3

3

2
1

8

3
0

5

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

G
F

lo
p

s
 fo

r IB
M

 P
o

w
e

r6
 (5

1
2

3, tim
e

s
te

p
s

=
4

)

1
.5

7

1
.5

6

1
.5

2

1
.5

1

1
.2

1

0
.6

4

2
.0

8

2
.0

1

1
.8

9

1
.8

5

1
.5

0

1
.5

3

1
.5

0

1
.4

3

1
.3

9

0
.9

3

2
.0

2

1
.9

0

1
.7

9

1
.7

8

1
.5

7

1
.5

6

1
.5

4

1
.5

3

1
.4

1

0
.8

6

2
.0

8

2
.0

2

1
.9

0

1
.7

4

1
.5

4

1
.5

0

1
.4

5

1
.3

8

1
.3

4

0
.9

1

1
.9

6

1
.8

7

1
.7

8

1
.6

3

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0
.6

 0
.8

 1 1
.2

 1
.4

 1
.6

 1
.8

 2 2
.2

R
a

tio
 F

P
/C

a
c

h
e

 fo
r IB

M
 P

o
w

e
r6

 (5
1

2
3, tim

e
s

te
p

s
=

4
)

1
.6

2

1
.7

8

1
.7

4

1
.7

6

1
.7

0

1
.3

0

1
.2

5

1
.7

5

2
.1

2

2
.4

5

1
.6

2

1
.5

6

1
.4

0

1
.3

8

1
.6

1

1
.3

0

1
.4

7

1
.9

4

1
.9

8

1
.7

8

1
.6

2

1
.7

8

1
.8

7

1
.8

4

1
.5

5

1
.3

0

1
.2

5

1
.7

4

2
.2

5

2
.2

7

1
.6

2

1
.6

6

0
.8

9

1
.0

0

1
.3

0

1
.1

7

1
.2

0

1
.5

8

1
.9

9

2
.1

2

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0
.8

 1 1
.2

 1
.4

 1
.6

 1
.8

 2 2
.2

 2
.4

 2
.6

M
illio

n
 p

o
in

ts
 s

e
c

 fo
r IB

M
 P

o
w

e
r6

 (5
1

2
3, tim

e
s

te
p

s
=

4
)

1
2

1

6
2

.6

3
1

.1

1
7

.8

7
.1

4

4
9

.0

8
3

.0

4
1

.1

2
2

.2

1
0

.9

1
1

6

6
1

.0

3
0

.7

1
6

.8

8
.2

2

7
1

.7

8
0

.7

3
8

.8

2
1

.1

1
0

.5

1
2

1

6
2

.5

3
1

.4

1
8

.0

8
.3

6

6
6

.5

8
3

.3

4
1

.3

2
2

.4

1
0

.3

1
1

9

6
0

.1

2
9

.7

1
6

.2

7
.9

2

6
9

.6

7
8

.6

3
8

.1

2
0

.9

9
.6

2

7-point 13-point 25-point 43-point 85-point

N
aive

N
aive+

S
em

i
R

ivera
R

ivera+
S

em
i

T
im

eskew
T

im
eskew

+
S

em
i

O
blivious

O
blivious+
S

em
i

 0 20

 40

 60

 80

 100

 120

 140
M

e
m

o
ry

 tra
ffic

 (G
B

s
) fo

r IB
M

 P
o

w
e

r6
 (5

1
2

3, tim
e

s
te

p
s

=
4

)

6
4

.0

1
1

2

2
2

5

3
8

5

7
9

4

8
0

.0

1
6

0

2
2

4

3
2

1

5
5

1

6
4

.0

1
2

8

2
8

1

4
9

4

8
3

9

8
0

.3

1
3

6

2
0

2

3
4

3

7
5

8

6
4

.0

1
1

2

2
1

0

3
7

0

8
7

0

8
0

.1

1
6

0

2
2

5

3
0

2

5
9

4

6
4

.0

1
2

0

4
4

1

6
8

1

1
0

4
1

8
9

.2

1
6

6

2
4

8

3
4

2

6
3

7

7-point 13-point 25-point 43-point 85-point

N
aive

N
aive+

S
em

i
R

ivera
R

ivera+
S

em
i

T
im

eskew
T

im
eskew

+
S

em
i

O
blivious

O
blivious+
S

em
i

 0 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

F
ig

u
re

4
.1

1
:

M
a
trix

o
f

m
e
tric

re
su

lts
fo

r
P
O

W
E

R
6
.

T
h

e
se

m
a
trice

s
sh

o
w

d
a
ta

ca
ch

e
m

isse
s

fo
r

L
1

a
n

d
L
2
,

G
F
lo

p
s,

F
P
/
C

a
ch

e,
M

U
P
S

a
n

d
m

e
m

o
ry

tra
ffi

c
m

e
trics

fo
r

fi
v
e

ste
n

cil
size

s
w

ith
e
a
ch

d
iffe

re
n

t
o
p
tim

iza
tio

n
m

e
th

o
d

.

Chapter 4. Optimizing Stencil Computations 65

L
1

 M
is

s
e

s
 *

 1
0

6
 f

o
r

A
M

D
 O

p
te

ro
n

 (
5

1
2

3
,

ti
m

e
s

te
p

s
=

4
)

1
2

7

1
5

7

1
8

8

3
4

6

3
8

0
2

1
2

4

2
7

1

1
5

5

1
7

9

3
9

0

1
2

3

1
4

8

1
8

9

5
8

3

2
4

6
9

1
2

4

2
6

1

1
5

0

1
9

3

4
2

8

4
3

.8

6
8

.7

8
6

.2

2
4

3

2
4

3
8

3
8

.9

1
7

9

6
4

.9

1
1

6

3
1

3

4
3

.0

7
3

.2

9
2

.0

2
5

8

3
0

2
1

4
1

.0

1
9

5

8
0

.7

1
2

5

3
5

3

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 5
0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

 3
5
0
0

 4
0
0
0

L
2

 M
is

s
e

s
 *

 1
0

6
 f

o
r

A
M

D
 O

p
te

ro
n

 (
5

1
2

3
,

ti
m

e
s

te
p

s
=

4
)

2
1

5

1
6

7

1
8

7

2
3

3

1
8

5
1

2
3

1

2
2

7

2
1

6

1
9

3

2
7

8

2
0

9

1
5

6

1
7

5

3
9

8

1
2

0
2

2
2

9

2
3

7

1
7

3

1
5

8

2
7

3

6
0

.5

4
8

.6

7
7

.4

1
0

1

1
9

8
2

6
4

.6

7
0

.9

6
9

.0

7
1

.7

1
7

9

3
9

.9

4
3

.5

4
2

.7

1
2

8

2
0

3
0

4
6

.3

6
2

.9

6
4

.2

8
0

.5

2
1

6

7-point13-point25-point43-point85-point

N
ai

ve
N

ai
ve

+
S

em
i

R
iv

er
a

R
iv

er
a+

S
em

i
T

im
es

ke
w

T
im

es
ke

w
+

S
em

i
O

bl
iv

io
us

O
bl

iv
io

us
+

S
em

i

 0 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

 2
20

0

L
3

 M
is

s
e

s
 *

 1
0

6
 f

o
r

A
M

D
 O

p
te

ro
n

 (
5

1
2

3
,

ti
m

e
s

te
p

s
=

4
)

1
7

4

2
8

9

4
9

5

8
0

6

1
4

9
1

1
7

7

2
5

3

3
5

9

5
2

0

8
7

9

8
8

.3

9
9

.2

9
3

.9

1
1

4

2
2

3

8
5

.9

8
8

.7

9
8

.2

1
3

4

1
9

7

8
9

.3

9
9

.2

9
3

.4

1
1

5

1
7

3

8
6

.1

8
8

.2

9
9

.6

1
3

9

2
4

3

2
5

.4

2
5

.2

4
0

.3

1
1

7

2
4

0

2
5

.3

2
5

.2

4
1

.0

1
1

7

2
1

0

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

 1
6
0
0

G
F

lo
p

s
 f

o
r

A
M

D
 O

p
te

ro
n

 (
5

1
2

3
,

ti
m

e
s

te
p

s
=

4
)

1
.3

6

1
.5

2

1
.7

7

1
.5

7

1
.0

8

1
.4

1

1
.9

1

2
.3

3

2
.1

5

1
.5

1

1
.3

6

1
.4

7

1
.5

2

1
.6

8

1
.4

3

1
.7

5

2
.3

9

2
.6

8

2
.4

4

1
.6

3

1
.2

0

1
.2

8

1
.1

9

1
.3

2

1
.3

7

1
.8

0

2
.4

0

2
.4

3

2
.1

4

1
.6

2

2
.1

2

2
.2

2

2
.2

3

1
.8

4

1
.3

6

1
.7

6

2
.1

1

2
.3

6

2
.2

5

1
.6

3

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 1 1
.2

 1
.4

 1
.6

 1
.8

 2 2
.2

 2
.4

 2
.6

 2
.8

R
a

ti
o

 F
P

/C
a

c
h

e
 f

o
r

A
M

D
 O

p
te

ro
n

 (
5

1
2

3
,

ti
m

e
s

te
p

s
=

4
)

1
.6

0

1
.5

5

1
.5

7

1
.3

6

1
.1

4

0
.9

9

1
.7

6

1
.9

4

2
.2

0

1
.7

6

1
.6

0

1
.3

8

1
.0

2

1
.1

9

1
.1

3

0
.9

9

1
.4

5

1
.7

1

1
.9

0

1
.3

9

1
.3

0

1
.3

1

0
.7

2

1
.1

2

1
.1

4

0
.9

9

1
.4

6

1
.7

3

1
.8

6

1
.5

9

1
.5

9

1
.5

5

1
.5

7

1
.2

3

1
.3

3

1
.1

7

1
.3

6

1
.7

1

1
.7

4

1
.4

0

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0
.6

 0
.8

 1 1
.2

 1
.4

 1
.6

 1
.8

 2 2
.2

M
e

m
o

ry
 t

ra
ff

ic
 (

G
B

s
)

fo
r

A
M

D
 O

p
te

ro
n

 (
5

1
2

3
,

ti
m

e
s

te
p

s
=

4
)

1
5

.9

2
2

.7

3
5

.9

5
6

.0

1
0

0

1
9

.8

2
4

.9

3
1

.3

4
2

.1

6
8

.4

1
1

.0

1
0

.7

3
4

.8

5
5

.6

5
2

.9

1
7

.0

2
0

.3

2
7

.0

3
9

.3

6
8

.3

1
1

.0

1
0

.8

3
4

.9

5
6

.8

1
2

8

1
7

.1

2
0

.3

2
7

.9

3
9

.4

6
7

.7

5
.1

7

1
0

.7

1
5

.8

5
7

.4

1
0

2

5
.1

4

1
1

.1

1
6

.7

3
9

.0

8
4

.6

7-point13-point25-point43-point85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 2
0

 4
0

 6
0

 8
0

 1
0
0

 1
2
0

 1
4
0

F
ig

u
re

4
.1

2
:

M
a
tr

ix
o
f

m
e
tr

ic
re

su
lt

s
fo

r
A

M
D

O
p
te

ro
n

.
T

h
e
se

m
a
tr

ic
e
s

sh
o
w

d
a
ta

ca
ch

e
m

is
se

s
fo

r
L
1
,

L
2

a
n

d
L
3
,

G
F
lo

p
s,

F
P
/
C

a
ch

e
a
n

d
m

e
m

o
ry

tr
a
ffi

c
m

e
tr

ic
s

fo
r

fi
v
e

st
e
n

ci
l
si

ze
s

w
it

h
e
a
ch

d
if

fe
re

n
t

o
p
ti

m
iz

a
ti

o
n

m
e
th

o
d

.

Chapter 4. Optimizing Stencil Computations 66

L
1

 M
is

s
e

s
 * 1

0
6 fo

r In
te

l N
e

h
a

le
m

 (5
1

2
3, tim

e
s

te
p

s
=

4
)

2
2

9

4
8

8

9
5

1

1
6

6
2

3
0

6
8

2
4

5

4
0

8

6
7

2

1
0

7
1

1
8

6
5

2
3

1

4
8

0

9
4

6

1
6

5
1

3
0

6
9

2
4

9

4
2

6

6
7

4

1
0

9
8

1
9

8
5

2
3

1

4
7

9

9
4

6

1
6

5
6

3
5

7
7

2
4

4

4
2

7

6
7

6

1
1

2
5

1
9

8
2

2
5

3

5
1

4

9
7

4

1
6

5
4

3
0

7
4

2
5

9

4
1

5

7
8

1

1
3

2
5

2
3

7
5

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 5
0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

 3
5
0
0

 4
0
0
0

L
2

 M
is

s
e

s
 * 1

0
6 fo

r In
te

l N
e

h
a

le
m

 (5
1

2
3, tim

e
s

te
p

s
=

4
)

2
0

1

3
0

9

5
4

5

8
9

6

2
1

9
4

2
1

0

2
6

8

3
8

8

5
8

8

1
0

9
1

2
0

3

3
1

6

5
4

7

9
5

3

2
2

0
5

1
7

5

2
6

3

3
8

7

5
9

8

1
0

9
7

2
0

1

3
1

6

5
4

7

9
3

0

1
9

6
9

2
1

2

2
6

1

3
9

3

6
1

0

1
0

9
3

1
2

3

2
2

1

5
4

7

9
5

8

2
1

9
9

1
5

9

2
4

7

4
1

4

7
8

2

1
4

0
2

7-point 13-point 25-point 43-point 85-point

N
aive

N
aive+

S
em

i
R

ivera
R

ivera+
S

em
i

T
im

eskew
T

im
eskew

+
S

em
i

O
blivious

O
blivious+
S

em
i

 0 500

 1000

 1500

 2000

 2500

L
3

 M
is

s
e

s
 * 1

0
6 fo

r In
te

l N
e

h
a

le
m

 (5
1

2
3, tim

e
s

te
p

s
=

4
)

1
4

2

2
3

4

5
1

2

8
4

9

1
5

5
3

1
3

9

2
1

0

3
4

4

5
3

9

9
4

5

1
2

5

1
3

1

1
3

8

1
7

3

1
7

8

1
3

3

1
2

8

1
3

2

1
4

4

2
1

0

1
2

4

1
3

2

1
3

9

1
5

1

2
2

9

1
2

6

1
2

7

1
4

0

1
5

2

2
1

1

6
3

.9

6
4

.1

6
7

.5

1
2

6

2
1

3

6
4

.0

6
4

.4

7
0

.0

1
2

6

2
2

1

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

 1
6
0
0

G
F

lo
p

s
 fo

r In
te

l N
e

h
a

le
m

 (5
1

2
3, tim

e
s

te
p

s
=

4
)

2
.4

3

2
.6

6

2
.6

2

2
.6

5

1
.4

9

2
.1

5

2
.9

2

3
.0

8

3
.0

4

2
.1

4

2
.7

4

2
.8

3

2
.7

3

2
.8

7

1
.7

0

2
.4

2

3
.0

6

3
.0

9

3
.2

4

2
.1

0

2
.7

2

2
.8

1

2
.9

7

2
.8

6

1
.6

0

2
.4

2

3
.0

7

3
.1

0

3
.2

0

2
.1

1

2
.6

2

3
.2

4

3
.3

7

2
.8

0

1
.6

3

2
.2

3

3
.0

0

3
.3

4

3
.0

8

2
.1

1

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 1
.4

 1
.6

 1
.8

 2 2
.2

 2
.4

 2
.6

 2
.8

 3 3
.2

 3
.4

R
a

tio
 F

P
/C

a
c

h
e

 fo
r In

te
l N

e
h

a
le

m
 (5

1
2

3, tim
e

s
te

p
s

=
4

)

1
.4

1

1
.3

6

1
.4

7

1
.4

0

0
.8

9

1
.2

7

1
.3

4

1
.6

1

1
.8

1

1
.4

3

1
.4

0

1
.3

6

1
.4

6

1
.4

0

0
.8

0

1
.2

6

1
.5

3

1
.4

4

1
.7

6

1
.2

5

1
.3

8

1
.3

6

1
.4

6

1
.4

0

0
.8

8

1
.2

4

1
.5

3

1
.4

3

1
.7

2

0
.9

6

1
.5

5

1
.4

9

1
.5

8

1
.4

0

0
.8

9

1
.1

5

1
.2

9

1
.5

4

1
.5

1

1
.3

6

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0
.8

 1 1
.2

 1
.4

 1
.6

 1
.8

 2
M

e
m

o
ry

 tra
ffic

 (G
B

s
) fo

r In
te

l N
e

h
a

le
m

 (5
1

2
3, tim

e
s

te
p

s
=

4
)

4
.8

1

7
.4

9

1
5

.4

2
5

.2

4
6

.2

4
.9

1

7
.7

8

1
2

.3

1
8

.0

3
0

.4

4
.3

7

4
.6

0

4
.8

5

5
.9

6

6
.2

9

4
.7

1

4
.5

3

4
.6

9

5
.2

6

8
.2

6

4
.3

5

4
.4

9

4
.6

8

5
.0

6

7
.8

6

4
.3

0

4
.3

1

4
.7

3

5
.1

5

8
.2

0

2
.2

2

2
.2

3

2
.3

5

4
.3

0

6
.9

3

2
.2

2

2
.2

5

2
.3

7

4
.3

2

7
.4

1

7-point 13-point 25-point 43-point 85-point

N
a
iv

e
N

a
iv

e
+

S
e
m

i
R

iv
e
ra

R
iv

e
ra

+
S

e
m

i
T

im
e
s
k
e
w

T
im

e
s
k
e
w

+
S

e
m

i
O

b
liv

io
u
s

O
b
liv

io
u
s
+

S
e
m

i

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

F
ig

u
re

4
.1

3
:

M
a
trix

o
f

m
e
tric

re
su

lts
fo

r
In

te
l

N
e
h

a
le

m
.

T
h

e
se

m
a
trice

s
sh

o
w

d
a
ta

ca
ch

e
m

isse
s

fo
r

L
1
,

L
2

a
n

d
L
3
,

G
F
lo

p
s,

F
P
/
C

a
ch

e
a
n

d
m

e
m

o
ry

tra
ffi

c
m

e
trics

fo
r

fi
v
e

ste
n

cil
size

s
w

ith
e
a
ch

d
iffe

re
n

t
o
p
tim

iza
tio

n
m

e
th

o
d

.

Chapter 4. Optimizing Stencil Computations 67

 0.8

 1

 1.2

 1.4

 1.6

 1.8

IBM Power6 Intel Nehalem AMD Opteron IBM BlueGene/P

S
p

e
e

d
-u

p
Performance results for 512

3
 volume (timesteps=4, length=2)

Naive
Naive+Semi

8.58 5.04 8.81 7.04

6.46

4.59

7.01

6.48

Rivera
Rivera+Semi

8.80

4.75

9.11
7.08

6.65

4.38

5.61

6.87

Time-skewing
Time-skewing+Semi

8.57

4.78

10.46

6.43

6.45

4.36

5.59

6.32

Cache oblivious
Cache oblivious+Semi

8.91

3.95

6.06

6.84

6.78

 0.8

 1

 1.2

 1.4

 1.6

 1.8

IBM Power6 Intel Nehalem AMD Opteron IBM BlueGene/P

S
p

e
e

d
-u

p

Performance results for 512
3
 volume (timesteps=4, length=4)

Naive
Naive+Semi

17.28 10.01 14.83 18.14

13.06

8.53

11.28

12.05

Rivera
Rivera+Semi

17.49
9.63

17.27

14.91

13.85

8.50

9.80

11.46

Time-skewing
Time-skewing+Semi

17.11

8.85

14.28

12.99

8.47

10.83

11.05

Cache oblivious
Cache oblivious+Semi

18.10

7.70
11.80

16.52

14.06

11.15
13.33

 0.8

 1

 1.2

 1.4

 1.6

 1.8

IBM Power6 Intel Nehalem AMD Opteron IBM BlueGene/P

S
p

e
e

d
-u

p

Performance results for 512
3
 volume (timesteps=4, length=7)

Naive
Naive+Semi

30.15 17.15 29.13 36.23

23.67

15.02

21.26

22.19

Rivera
Rivera+Semi

31.96

15.87 27.13

27.85
25.47

14.06

18.73

22.35

Time-skewing
Time-skewing+Semi

29.85

15.98

34.61

29.09

23.66

14.27

21.34

21.35
Cache oblivious

Cache oblivious+Semi

33.07

16.30

24.74

28.60
25.62 14.80

20.30

23.66

 0.8

 1

 1.2

 1.4

 1.6

 1.8

IBM Power6 Intel Nehalem AMD Opteron IBM BlueGene/P

S
p

e
e

d
-u

p

Performance results for 512
3
 volume (timesteps=4, length=14)

Naive
Naive+Semi

75.18 60.88 84.02 71.19

49.16

42.01
59.93

47.44

Rivera
Rivera+Semi

65.34 53.27

63.43

60.01

51.07

43.12

55.83 47.47

Time-skewing
Time-skewing+Semi

65.40

56.86

66.05

68.86

52.37 42.97

55.91

43.31

Cache oblivious
Cache oblivious+Semi

68.03 55.56

66.46

59.65

55.56

42.96

55.55

52.18

Figure 4.14: Speed-up results with respect to the baseline algorithm (Naive implementation).
Numbers shown in bars represent the total time in seconds for each execution (lower is
better).

Chapter 4. Optimizing Stencil Computations 68

 12

 14

 16

 18

 20

 22

 24

 26

 28

1
6

x
1

6
x
5

1
2

3
2

x
1

6
x
5

1
2

6
4

x
1

6
x
5

1
2

1
2

8
x
1

6
x
5

1
2

2
5

6
x
1

6
x
5

1
2

5
1

2
x
1

6
x
5

1
2

1
6

x
3

2
x
5

1
2

3
2

x
3

2
x
5

1
2

6
4

x
3

2
x
5

1
2

1
2

8
x
3

2
x
5

1
2

2
5

6
x
3

2
x
5

1
2

5
1

2
x
3

2
x
5

1
2

1
6

x
6

4
x
5

1
2

3
2

x
6

4
x
5

1
2

6
4

x
6

4
x
5

1
2

1
2

8
x
6

4
x
5

1
2

2
5

6
x
6

4
x
5

1
2

5
1

2
x
6

4
x
5

1
2

1
6

x
1

2
8

x
5

1
2

3
2

x
1

2
8

x
5

1
2

6
4

x
1

2
8

x
5

1
2

1
2

8
x
1

2
8

x
5

1
2

2
5

6
x
1

2
8

x
5

1
2

5
1

2
x
1

2
8

x
5

1
2

1
6

x
2

5
6

x
5

1
2

3
2

x
2

5
6

x
5

1
2

6
4

x
2

5
6

x
5

1
2

1
2

8
x
2

5
6

x
5

1
2

2
5

6
x
2

5
6

x
5

1
2

5
1

2
x
2

5
6

x
5

1
2

1
6

x
5

1
2

x
5

1
2

3
2

x
5

1
2

x
5

1
2

6
4

x
5

1
2

x
5

1
2

1
2

8
x
5

1
2

x
5

1
2

2
5

6
x
5

1
2

x
5

1
2

5
1

2
x
5

1
2

x
5

1
2

T
im

e
 (

in
 s

e
c
o
n
d
s
)

IBM Power6 performance results for 512
3
 volume (timesteps=4, length=4)

Naive
Naive+Semi

Rivera
Rivera+Semi

Time-skewing
Time-skewing+Semi

Cache oblivious
Cache oblivious+Semi

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

1
6

x
1

6
x
5

1
2

3
2

x
1

6
x
5

1
2

6
4

x
1

6
x
5

1
2

1
2

8
x
1

6
x
5

1
2

2
5

6
x
1

6
x
5

1
2

5
1

2
x
1

6
x
5

1
2

1
6

x
3

2
x
5

1
2

3
2

x
3

2
x
5

1
2

6
4

x
3

2
x
5

1
2

1
2

8
x
3

2
x
5

1
2

2
5

6
x
3

2
x
5

1
2

5
1

2
x
3

2
x
5

1
2

1
6

x
6

4
x
5

1
2

3
2

x
6

4
x
5

1
2

6
4

x
6

4
x
5

1
2

1
2

8
x
6

4
x
5

1
2

2
5

6
x
6

4
x
5

1
2

5
1

2
x
6

4
x
5

1
2

1
6

x
1

2
8

x
5

1
2

3
2

x
1

2
8

x
5

1
2

6
4

x
1

2
8

x
5

1
2

1
2

8
x
1

2
8

x
5

1
2

2
5

6
x
1

2
8

x
5

1
2

5
1

2
x
1

2
8

x
5

1
2

1
6

x
2

5
6

x
5

1
2

3
2

x
2

5
6

x
5

1
2

6
4

x
2

5
6

x
5

1
2

1
2

8
x
2

5
6

x
5

1
2

2
5

6
x
2

5
6

x
5

1
2

5
1

2
x
2

5
6

x
5

1
2

1
6

x
5

1
2

x
5

1
2

3
2

x
5

1
2

x
5

1
2

6
4

x
5

1
2

x
5

1
2

1
2

8
x
5

1
2

x
5

1
2

2
5

6
x
5

1
2

x
5

1
2

5
1

2
x
5

1
2

x
5

1
2

T
im

e
 (

in
 s

e
c
o
n
d
s
)

AMD Opteron performance results for 512
3
 volume (timesteps=2, length=7)

Naive
Naive+Semi

Rivera
Rivera+Semi

Time-skewing
Time-skewing+Semi

Cache oblivious
Cache oblivious+Semi

Figure 4.15: IBM POWER6 and AMD Opteron execution times for all the algorithmic combi-
nations, where the blocking parameter has been changed to discover the optimum value. The
algorithms which do not support blocking have been plotted using the best time obtained.

Chapter 4. Optimizing Stencil Computations 69

 11

 12

 13

 14

 15

 16

 17

 18

 19

1
6

x
1

6
x
2

5
6

3
2

x
1

6
x
2

5
6

6
4

x
1

6
x
2

5
6

1
2

8
x
1

6
x
2

5
6

2
5

6
x
1

6
x
2

5
6

1
6

x
3

2
x
2

5
6

3
2

x
3

2
x
2

5
6

6
4

x
3

2
x
2

5
6

1
2

8
x
3

2
x
2

5
6

2
5

6
x
3

2
x
2

5
6

1
6

x
6

4
x
2

5
6

3
2

x
6

4
x
2

5
6

6
4

x
6

4
x
2

5
6

1
2

8
x
6

4
x
2

5
6

2
5

6
x
6

4
x
2

5
6

1
6

x
1

2
8

x
2

5
6

3
2

x
1

2
8

x
2

5
6

6
4

x
1

2
8

x
2

5
6

1
2

8
x
1

2
8

x
2

5
6

2
5

6
x
1

2
8

x
2

5
6

1
6

x
2

5
6

x
2

5
6

3
2

x
2

5
6

x
2

5
6

6
4

x
2

5
6

x
2

5
6

1
2

8
x
2

5
6

x
2

5
6

2
5

6
x
2

5
6

x
2

5
6

T
im

e
 (

in
 s

e
c
o
n
d
s
)

IBM BlueGene/P performance results for 256
3
 volume (timesteps=4, length=4)

Naive
Naive+Semi

Rivera
Rivera+Semi

Time-skewing
Time-skewing+Semi

Cache oblivious
Cache oblivious+Semi

 7

 8

 9

 10

 11

 12

 13

 14

 15

1
6

x
1

6
x
5

1
2

3
2

x
1

6
x
5

1
2

6
4

x
1

6
x
5

1
2

1
2

8
x
1

6
x
5

1
2

2
5

6
x
1

6
x
5

1
2

5
1

2
x
1

6
x
5

1
2

1
6

x
3

2
x
5

1
2

3
2

x
3

2
x
5

1
2

6
4

x
3

2
x
5

1
2

1
2

8
x
3

2
x
5

1
2

2
5

6
x
3

2
x
5

1
2

5
1

2
x
3

2
x
5

1
2

1
6

x
6

4
x
5

1
2

3
2

x
6

4
x
5

1
2

6
4

x
6

4
x
5

1
2

1
2

8
x
6

4
x
5

1
2

2
5

6
x
6

4
x
5

1
2

5
1

2
x
6

4
x
5

1
2

1
6

x
1

2
8

x
5

1
2

3
2

x
1

2
8

x
5

1
2

6
4

x
1

2
8

x
5

1
2

1
2

8
x
1

2
8

x
5

1
2

2
5

6
x
1

2
8

x
5

1
2

5
1

2
x
1

2
8

x
5

1
2

1
6

x
2

5
6

x
5

1
2

3
2

x
2

5
6

x
5

1
2

6
4

x
2

5
6

x
5

1
2

1
2

8
x
2

5
6

x
5

1
2

2
5

6
x
2

5
6

x
5

1
2

5
1

2
x
2

5
6

x
5

1
2

1
6

x
5

1
2

x
5

1
2

3
2

x
5

1
2

x
5

1
2

6
4

x
5

1
2

x
5

1
2

1
2

8
x
5

1
2

x
5

1
2

2
5

6
x
5

1
2

x
5

1
2

5
1

2
x
5

1
2

x
5

1
2

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Intel Nehalem performance results for 512
3
 volume (timesteps=2, length=7)

Naive
Naive+Semi

Rivera
Rivera+Semi

Time-skewing
Time-skewing+Semi

Cache oblivious
Cache oblivious+Semi

Figure 4.16: IBM BlueGene/P and Intel Nehalem execution times for all the algorithmic com-
binations, where the blocking parameter has been changed to discover the optimum value.
The algorithms which do not support blocking have been plotted using the best time ob-
tained.

Chapter 4. Optimizing Stencil Computations 70

the Semi-stencil versions are the best implementations. The speed-ups, with respect to the

naive code, ranges from ≈ 1.20× on the Intel Nehalem to 1.60× for BG/P, which is the most

favored architecture. On the Intel Nehalem, the classical Cache-oblivious version slightly out-

performs the Semi-stencil version. It is likely that the -fast option on the Intel compiler

is quite aggressive and optimizes stencil codes reasonably well. On the contrary, the AMD

Opteron appears to have some kind of problem with Time-skewing, where the compiler does

not appear able to generate optimized binaries for this code. The compiler used on this ar-

chitecture was GCC v4.1. Finally, on both IBM platforms a substantial gain is observed. First,

on BG/P a speed-up of 1.64 is obtained, basically because Semi-stencil helps to mitigate

cache-line conflicts in the small L1/L2 caches (32kB and 1920B). Second, on the POWER6

architecture, space and time-blocking techniques do not have any substantial effect due to

the large memory hierarchy (64kB, 4MB and 32MB) and the sophisticated hardware prefetch-

ing system. However, Semi-stencil is able to improve the execution time by 25% due to the

lower number of loads issued into the memory system.

4.4.4 SMP Performance

In this subsection, the parallel aspect of the algorithms is evaluated. The multiprocessing ver-

sion of each stencil algorithm version has been augmented using OpenMP pragmas. We have

tested certain combinations of the algorithms on three different architectures: Intel Sandy

Bridge, IBM POWER7 and the latest Intel Xeon Phi (MIC). Three specific architectures that

have been chosen due to their quasi-massive parallel capabilities, able to run simultaneously

with 8, 32 and 244 threads per chip respectively.

The parallel implementation of each stencil code has been designed following specific

decomposition strategies. First, the Naive parallelization has been carried out cutting the

least-stride dimension (NY) by the number of threads in order to deal with data locality. Each

thread computes thread blocks of size NZ ×NX ×TKSMP , where TKSMP = NY/Threads.

Second, in order not to affect the Rivera-base scheme performance, the serial search of the

best TJ block size parameter has been respected as far as possible when decomposing the

problem size. The block parameter is computed as: TJSMP = TJ if TJ ∗ Threads ≤ NX ,

or TJSMP = NX/Threads otherwise. Hence, each thread computes blocks of size NZ ×

TJSMP × NY . Finally, time blocking algorithms have been parallelized by applying thread

synchronization methods to keep data dependencies between thread domain computations.

Figure 4.17 shows the Time-skewing [42, 87] and Cache-oblivious [37] parallel strategies as

discussed in Section 4.2.2.

Table 4.7 shows the parallel results on the POWER7 architecture for a large problem (512

× 1024 × 1024) in order to exploit the parallel capabilities (up to 32 threads). This table

shows the execution time and scalability for each algorithm using the classical (top) and the

Semi-stencil implementation (bottom) for varying numbers of OpenMP threads. Threads has

been progressively increased until fully populate all 8 cores with 1, 2 and 4 SMT threads.

Chapter 4. Optimizing Stencil Computations 71

Figure 4.17: Thread decomposition strategies for time blocking algorithms. Top: in Time-
skewing, each thread block (size block) is divided into three parallelepipeds and executed in
the next order at the same time by all threads: firstly the light gray (size base = 2∗ℓ∗(t−1)+1),
secondly the white and finally the dark gray area. Bottom: in Cache-oblivious, each thread
block is divided into inverted and non-inverted trapezoids (size l) and executed in this order.

Reviewing the results, we observe clearly that Semi-stencil enhances the global performance

in almost all cases, except, partially, in Cache-oblivious. In some cases, performance is nearly

doubled (1.68 and 1.83×) when compared with the classical algorithm running the same

number of threads and baseline algorithm (2 and 4 threads for Naive and Timeskew respec-

tively). Besides, the Semi-stencil scalability results are mostly similar to the classical algo-

rithm except on 8 and 16 threads runs, where a substantial degradation in performance is

observed.

Thread level parallelism in IBM POWER7 for 512×1024×1024 (timesteps=2, length=4)

Algorithm 1 thread 2 threads 4 threads 8 threads 8×2 threads 8×4 threads

Naive 39.81 19.98 (1.99) 10.01 (3.97) 6.46 (6.15) 4.76 (8.35) 2.47 (16.08)
Rivera 33.48 16.81 (1.99) 8.73 (3.83) 8.21 (4.07) 5.80 (5.77) 2.77 (12.08)
Timeskew 39.50 19.84 (1.99) 9.96 (3.96) 6.59 (5.99) 4.64 (8.51) 3.36 (11.75)

Oblivious 23.86 11.92 (2.00) 5.96 (4.00) 4.85 (4.91) 2.86 (8.33) 2.04 (11.64)

N + Semi 23.45 11.83 (1.98) 5.95 (3.94) 5.87 (3.99) 3.37 (6.94) 2.36 (9.90)
R + Semi 22.48 11.30 (1.99) 5.66 (3.96) 4.87 (4.61) 4.82 (4.66) 2.13 (10.53)
T + Semi 21.47 10.90 (1.97) 5.45 (3.94) 5.54 (3.87) 3.83 (5.59) 2.92 (7.35)

O + Semi 22.80 11.46 (1.99) 5.71 (3.98) 5.57 (4.09) 3.47 (6.55) 1.74 (13.06)

Table 4.7: POWER7 SMP results among the different algorithms. Numbers shown represent
the total time in seconds (lower is better). Scalability results with respect to the 1 thread
execution are shown in parenthesis.

Furthermore, the POWER7 architecture scales well considering that despite having 32

threads, only 8 real cores exist per chip, achieving the impressive scalability of ≈16× for the

Naive case and ≈13× for Semi-stencil case. This behaviour shows that the 4 way SMT feature

Chapter 4. Optimizing Stencil Computations 72

maximizes the processor core throughput by offering an increase in efficiency.

This section is concluded by looking at two Intel-based platforms; a representative of the

Xeon family and an early access to a Many Integrated Core (MIC) Knight Corner based system

with 61 cores (SE10P).

For our experiments on the Sandy Bridge, the hyper-threading capability were turned off.

Additionally, only one of the sockets was used since the micro-benchmark does not take ad-

vantage of the NUMA configuration (memory banks associated to sockets). Besides this, the

testing on the Intel architectures followed the parallelism guidelines stated above. Regarding

the software stack, the code was compiled and profiled with Intel tools, where the only out-

standing compiler flags used were -avx and -DAVX macro in order to utilize Advanced Vector

Extensions (AVX) instrinsics.

Thread level parallelism in Sandy Bridge for 6403 (timesteps=4, length=4)

Algorithm 1 thread 2 threads 4 threads 6 threads 8 threads

Naive 6.77 3.59 (1.88) 2.48 (2.73) 2.45 (2.76) 2.47 (2.74)
Rivera 5.27 2.67 (1.97) 1.39 (3.79) 1.00 (5.27) 0.84 (6.27)
Timeskew 5.29 2.71 (1.95) 1.46 (3.62) 1.06 (4.99) 0.95 (5.57)
Oblivious 5.82 3.01 (1.93) 1.60 (3.64) 1.15 (5.06) 1.00 (5.82)

N + Semi 5.19 2.86 (1.81) 2.00 (2.89) 1.99 (2.60) 2.03 (2.56)
R + Semi 4.35 2.21 (1.97) 1.18 (3.69) 0.90 (4.83) 0.82 (5.30)
T + Semi 4.48 2.33 (1.92) 1.28 (3.50) 0.97 (4.62) 0.92 (4.87)
O + Semi 4.72 2.46 (1.92) 1.34 (3.52) 1.01 (4.67) 0.94 (5.02)

Table 4.8: Sandy Bridge (1 socket) SMP results for the different algorithms. Numbers shown
represent the total time in seconds. Scalability results with respect to the 1 thread execution
are shown in parenthesis.

The dataset sizes selected for the tests were 6403 and 256×4096×256 on Sandy Bridge

and MIC respectively. These sizes are enough to overwhelm the memory hierarchy and

also to bear a reasonable load-balance among OpenMP threads. Table 4.8 shows moder-

ate scalability for Sandy Bridge (up to 6.27×) on Rivera, Rivera+Semi-stencil, Oblivious

and Oblivious+Semi-stencil. Nevertheless, Naive results lead to the worst scalability results.

Clearly, the current domain decomposition (cutting the least-stride dimension) is not the

most appropriate approach for this case.

Also, the Semi-stencil algorithm reduces the execution time on 8 cores by only 3% on

the worst case (Rivera) to 18% on the better case (Naive). Furthermore, the larger is the

number of threads, less is the advantage of the Semi-stencil strategy over the algorithms. It

is likely that memory channels saturate earlier, thus achieving the peak memory bandwidth

and hampering the linear scalability for a large number of threads.

Finally, Table 4.9 shows MIC results for a 25-point stencil, where threads has been pro-

gressively augmented until populating its 61 cores with 1, 2 and 4 SMT threads. The best

scalability for the 244 threads case is achieved by Rivera+Semi-stencil algorithm with 93.8×,

Chapter 4. Optimizing Stencil Computations 73

Thread level parallelism in KNC for 256×4096×256 (timesteps=4, length=4)

Algorithm 1 thread 61 threads 61×2 threads 61×3 threads 61×4 threads

Naive 49.71 0.888 (55.9) 0.658 (75.5) 0.632 (78.6) 0.627 (79.2)
Rivera 45.36 0.813 (55.8) 0.595 (76.2) 0.515 (88.0) 0.594 (76.3)
Timeskew † 29.46 0.575 (51.2) 0.465 (63.3) 0.599 (49.2) 0.694 (42.4)
Oblivious 32.90 0.593 (55.5) 0.456 (72.1) 0.571 (57.6) 0.694 (47.4)

N + Semi 38.89 0.710 (54.7) 0.535 (72.7) 0.560 (69.4) 0.587 (66.2)
R + Semi 44.21 0.780 (56.6) 0.511 (86.5) 0.457 (96.7) 0.471 (93.8)

T + Semi † 21.13 0.452 (46.7) 0.426 (49.6) 0.512 (41.3) 0.599 (35.3)
O + Semi 34.16 0.601 (56.8) 0.472 (72.3) 0.503 (67.9) 0.576 (59.3)

Table 4.9: Knight Corner beta 0 SMP (balanced scheduling) results. Numbers represent the
total time in seconds (scalability is shown in parenthesis). †Due to algorithmic constraints
on Timeskew (thread decomposition is performed on least-stride dimension), tests were con-
ducted using a 256×256×4096 dataset to enable parallelization with a large number of
threads.

which corresponds to a 1.26× improvement over the Rivera baseline. Another worthy result

is the combination of Time-skewing and Semi-stencil; this case offers the best performance in

execution time (0.426 seconds with 122 threads) among all algorithms. However, it should

be clarified that for this case, the dataset size was rearranged and the timestep was split in

order to satisfy the parallelepipeds’ size constraints (size base) for a decomposition with a

large number of threads (see Figure 4.17 (top)).

4.5 Summary

In this chapter, a novel optimization technique for stencil-based computations is presented.

This new algorithmic approach, called Semi-stencil, is especially well suited for scientific ap-

plications on cache-based architectures and in particular, for large stencil sizes.

The proposed technique is relevant because it deals with a number of well known prob-

lems associated with stencil computations. First, due to the lower number of reads that are

issued it improves the floating-point operation to data cache access ratio (FP/Cache), which

also entails a higher data re-utilization. Second, it modifies the memory access pattern, re-

ducing the cache pressure and enhancing the spatial and temporal locality for the accessed

data. In addition, due to its orthogonal property, the Semi-stencil outperforms other tech-

niques on many architectures, either when implemented alone or combined with space and

time-blocking algorithms.

On the SMP experiments, the Semi-stencil algorithm also improves the classical approach

for most cases presented in this thesis. Nevertheless, the highest attainable scalability remains

low for all three reviewed platforms. It achieves scalability efficiencies of only 41%, 66%

and 38% for POWER7, Sandy Bridge and MIC respectively with the maximum number of

Chapter 4. Optimizing Stencil Computations 74

threads. Next chapter discusses new parallel strategies focused on improving the scalability

on modern multi- and many-core architectures.

Chapter 5

SMT, Multi-core and

Auto-tuning Optimizations

The raise of the multi-core paradigm is already a fact. Computing industry has moved from

high-frequency scaling toward chip multiprocessors (CMP) in order to break the limiting

wall of performance and energy consumption [10]. In this approach, conventional cores are

replicated and arranged in the same die, sharing memory resources as cache memories or

prefetching engines. Nowadays, several mainstream platforms coexist with a variety of archi-

tectural features. Programmers have to face multi-core chips, simultaneous multithreading

(SMT), SIMD capabilities, complex memory hierarchies with enhanced prefetching systems

and NUMA arrangements due to multi-sockets implementations.

Moreover, the new trend towards many-core architecture is also a reality. Emerging plat-

forms such as the Intel Xeon Phi architecture, including the MIC chip (Many Integrated Cores)

with +60 cores and 4-way SMT capabilities, is a clear example. More novel many-cores ar-

chitectures are going to appear. For instance, Intel has already announced the next version

of the MIC chip in 2016, the Knights Landing built using up to 72 cores with 4-way SMT and

out-of-order execution model. This tremendous parallelism (288 concurrent threads) poses

optimization challenges to effectively and fully utilize the system’s resources. As more of

these massively parallel architectures appear in the market, specific parallel strategies should

be explored to achieve suboptimal implementations of the computational kernels.

In Chapter 4, we have reviewed the current state-of-the-art in stencil optimizations at

core level. Above all the highlighted algorithms in that chapter, spatial-blocking algorithms

have provided higher performance portability and support across a wide breadth of numeri-

cal problems utilizing stencil computations in their structured meshes due to their simplicity

of implementation. On the other hand, time-blocking algorithms (time-skewing and cache-

oblivious), despite of their compelling performance, pose implementation difficulties when

they are combined with I/O, boundary conditions or communications tasks in real-life appli-

cations. Time-blocking performs loop unrolling over time-step sweeps, therefore interfering

in the execution of the remaining tasks which might be executed at each time-step. These

issues make spatial-blocking a better candidate to be considered in general optimizations for

stencil computations.

Nevertheless, spatial-blocking is very sensitive to the problem domain size and the pres-

75

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 76

sure in the cache hierarchy in order to report remarkable improvements in performance. The

larger the problem and the pressure in the cache hierarchy is, the better performance the

spatial-blocking algorithm produces. Consequently, to effectively obtain a suboptimal imple-

mentation with spatial-blocking, a parametrical search of the tiling (TI × TJ × TK) must

be performed for each problem size and architectural setup. At multi-core and many-core

optimization level, where register pools, functional units, cache memories and prefetching

engines are shared across computational threads, this sensitivity effect is magnified even

more. As a result, the choice of the best tiling parameter is not only input-dependent but

also architecture-dependent. With the broad disposal of computer architecture configura-

tions, auto-tuning has emerged as a feasible approach to tune computational kernels [85],

exploring all variants in less time than a human-driven strategy. Therefore, an auto-tuning

framework at runtime level in combination with other approaches may allow to leverage the

performance in existing and emerging architectures.

This chapter proposes a comprehensive set of general multi-core and many-core optimiza-

tions for stencil computations that aim to maximize overall performance by balancing the

workload among the computational threads. For this purpose, we have devised a group of

domain decomposition strategies at node-level that effectively reuse the shared resources of

the cores across threads (cache memories and prefetching engines) considering all features

in emerging platforms. We also present a simple and straightforward auto-tuning engine that

explores and selects the best parametrical combinations for our implemented spatial-blocking

algorithms in order to minimize the runtime. Combining both proposals, the domain decom-

position policies and the auto-tuner framework, the chances to speed-up stencil kernels on

multi-core platforms are promising.

5.1 State of the Art

The most remarkable study about domain decomposition and auto-tuning over stencil com-

putations on multi-core platforms was developed by the CDR group in the Lawrence Berkeley

National Laboratory [22, 23, 41]. Datta et al. proposed a set of multi-core strategies to opti-

mize stencils at node-level: data allocation policies (NUMA aware and padding), a four-level

domain decomposition strategy and low-level optimizations (prefetching and cache-bypass).

Then, they combined all these optimization strategies as decision tree rules in a first com-

ponent (a Perl code generator) of an auto-tuning framework that produced multithreaded

C code. This approach allowed them to generate easily a vast combination of stencil codes

encompassing all the optimization techniques. Finally, a second component of the auto-tuner

performed an explicit search looking for local minima using heuristics for constraining the

search space.

Figure 5.1 shows the four-level decomposition employed in their study. First, a node block

of size NX×NY ×NZ, that consists in the entire problem to solve, is partitioned into smaller

core blocks of size CX ×CY ×CZ. In their work, X is the unit-stride whereas the Z is least-

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 77

+Y

+Z

(b)

Decomposition into

Thread Blocks

(c)

Decomposition into

Register Blocks

(a)

Decomposition of a Node Block

into a Chunk of Core Blocks

RY
RX

RZ

CY

C
Z

CX

TYTX

NY

N
Z

NX

+X
(unit stride)

TY

C
Z

TX

Figure 5.1: Datta and et al. proposed this four-level problem decomposition: In (a), a node
block (the full grid) is broken into smaller chunks. All the core blocks in a chunk are processed
by the same subset of threads. One core block from the chunk in (a) is magnified in (b). A
properly sized core block should avoid capacity misses in last level cache. A single thread
block from the core block in (b) is then magnified in (c). A thread block should exploit
common resources among threads. Finally, the magnified thread block in (c) is decomposed
into register blocks, which exploit data level parallelism. This figure was taken from Kaushik
Datta article [22].

stride dimension. Each core group is processed by threads belonging to the same core. This

first decomposition is intended to avoid last level cache (LLC) capacity misses among differ-

ent cores in the same chip by blocking the problem. In addition, in a second decomposition,

contiguous core blocks can be also grouped together into chunks of size ChunkSize, being

processed by the same core and its threads. This second scheme strives to explain shared

cache locality, cache blocking, register blocking and NUMA-aware allocation. In a third step,

core blocks are further decomposed into thread blocks of TX×TY ×CZ size (Figure 5.1.b).

Thread blocks respect CZ size of core blocks, therefore when TX = CX and TY = CY , only

one thread per core block is assigned. This additional decomposition allows to exploit shared

cache resources that may exist across threads. Chunks of core blocks are assigned to threads

running in a core block (CX/TX × CY/TY) in a round-robin fashion. Finally, a fourth de-

composition is conducted through each thread block into register blocks of RX ×RY × RZ

size, taking the advantage of the data level parallelism of SIMD instructions and the available

registers.

As a summary, Datta et al. establish some interesting strategies for multi-core architec-

tures in order to find their best stencil configuration. Their approach generates a massive

variety of stencil codes at compile-time through a code generator tool of their auto-tuning

framework considering all the different strategies that they propose. Then, using an iterative

greedy search algorithm and heuristics to reduce the search space, they find a suboptimal

configuration for a given platform. Nevertheless, this brute-force approach based on trial

and error has considerable costs in terms of search and computation time. This execution

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 78

flow must be performed prior the real scientific executions for each architectural setup and

problem size. Therefore, if the number of spawned threads are changed or the problem size

slightly modified, the second step of the auto-tuning environment must be performed once

again to find the best decomposition. In addition, in their four-level decomposition, the con-

siderations regarding the cooperation of the cache hierarchy and the prefetching effect across

SMT threads are leaved aside. In the following sections, we propose specific strategies that

intend to cover all compute levels (node, socket, core and SMT) in order to tackle efficiently

the stencil scalability on modern architectures. We support this decomposition methodology

with numerical results that strongly corroborate our initial thoughts.

5.2 Simultaneous Multithreading Awareness

Simultaneous Multithreading (SMT) is a Thread Level Parallelism (TLP) technique that in-

creases the core throughput without the necessity of explicitly increasing the hardware re-

sources. SMT enables multiple and independent threads to be running on the same hardware

core sharing resources such as: register pools, functional units, memory (usually L1 and L2

caches) and their hardware prefetchers.

Mapping computational kernels to architectures with SMT features requires careful de-

sign and specific domain decomposition strategies to effectively exploit TLP capabilities. Oth-

erwise, threads spawned and pinned to the same core can provoke collateral effects (e.g.

ping-pong phenomena over data cache) that may harm the overall performance due to re-

source contention.

In memory-bound applications, such as stencil computations, data reuse is a key factor

to improve the speed-up by reducing the memory footprint and increasing the Operational

Intensity (OI) of the kernel. Therefore, when mapping stencil computations to SMT archi-

tectures the domain decomposition strategies must be rearranged to take advantage of data

reuse between SMT threads. To this extent, SMT threads may reuse the neighbour points to

compute the spatial operator (X t−1
i±1..ℓ,j±1..ℓ,k±1..ℓ), thus minimizing the dataset to compute a

subspace of the domain. As a consequence, compulsory and mainly capacity misses should

be reduced.

In 3D stencil computations, we have devised three different ways of scheduling SMT

threads in order to promote data cooperation across them:

• Row distribution: computational blocks of one single point are interleaved across

threads through the unit-stride dimension (Z) (see Figure 5.2.Left).

• Column distribution: each thread traverses entire columns of size Z in an interleaving

fashion computing blocks of Z consecutive points (see Figure 5.2.Center).

• Plane distribution: every Z-X plane of the domain is swept by only one thread, inter-

leaving computational blocks through the least-stride dimension (see Figure 5.2.Right).

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 79

Column distribution

T0 T1 T0 T1

Z

(u
n
it

-s
tr

id
e
)

T0

T1

T0

T1

Row distribution

T0

T1

T0

T1

T0

T1

X

Planes

distribution

Thread 0

Thread 1

Thread 0

Thread 1Y
(le

as
t-
st

ri
de

)

Figure 5.2: Data distributions for SMT threads. Planes depicted here lay over the Z-X axes. In
this example a 2-way SMT core is shown. Data is traversed in a column-order fashion from
left-top to right-bottom. The computational blocks are scheduled in a round-robin fashion
(similar to the schedule(static,1) clause of OpenMP).

All the three traversing strategies for SMT threads promote data cooperation but only

one of them is the most appropriate for a given architecture and stencil topology. Deciding

the approach to be used may strongly depend on the prefetching capabilities. In a transient

state of a stencil computation, where columns over X dimension do not produce conflict and

capacity misses among them, one prefetching stream is triggered for each Z-X X t−1
i,j,k±1..ℓ

plane accessed (see Section 6). Therefore, in a star-like stencil computation of order ℓ, up to

2 ∗ ℓ+ 1 streams are kept simultaneously in order to perform one single output plane.

Considering this scenario, at least four are the main reasons for scheduling SMT threads

in a plane (Z-X) distribution fashion. First, despite of having constant-stride prefetchers,

caches prefetch data in a more efficient way when unit-stride accesses are performed. Second,

a higher ratio of warm-ups (depicted with circles in Figure 5.2) and look-ahead effects (see

Section 3.6) can appear per plane in row and column distribution, interfering and disrupting

the streaming effectiveness. Third, planes distribution promotes data reuse in the least-stride

dimension, which in turn has a lower spatial locality and a higher probability of being evicted

from cache. Fourth, architectures with concurrent streaming support are better exploited and

shared across SMT threads in plane distribution scenario where longer unit-stride accesses

are performed. The section of code in Algorithm 9 shows how to proceed to achieve a plane

distribution among SMT threads. In this algorithm, the 3D stencil problem is distributed

along the Y axis (iniy and endy), arranging together planes assigned to SMT threads that

reside in the same physical core.

In order to corroborate these statements, a small test was conducted on Intel Xeon Phi

(MIC) platform, which supports up to 4 threads in SMT mode. A particle dispersion model

(ADR), which uses a 4th-order stencil in space (13-points), was run over 4 MIC cores, pinning

2 consecutive threads per core. Then, the explicit kernel time and the most relevant hardware

metrics were gathered setting the THRCORE parameter to 1 (no affinity at all) and 2 (SMT

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 80

Algorithm 9 Snippet of C code that implements a plane distribution among SMT threads
using OpenMP. THRCORE indicates the number of SMT threads running in the same core.
Least-stride dimension (iniy and endy) is distributed across threads and an interleaved ac-
cess is performed through k+= THRCORE.

#pragma omp parallel firstprivate(iniy,endy)

{

int tid = omp_get_thread_num()%THRCORE; // Thread id in core

int dom = omp_get_max_threads()/THRCORE; // Core id

int nby = (endy - iniy) / dom;

int rnb = (endy - iniy) % dom;

if (rnb > dom) iniy = iniy + (++nby)*dom; // Initial Y domain

else iniy = iniy + nby*dom + rnb; // End Y domain

endy = MIN(iniy+nby, endy);

/* Update maingrid */

for (k= iniy+tid; k< endy; k+= THRCORE) {

for (j= inix; j< endx; j++) {

for (i= iniz; i< endz; i++) {

affinity across 2 threads). Figures in 5.3 depict the workload distribution followed for this

test.

Thread 3

Thread 2

Thread 3

Thread 2

C
O
R
E
 1

(T
h
rd

s
2
-3

)

Thread 1

Z

X

Y

Thread 0

Thread 1

Thread 0

C
O
R
E
 0

 (
T
h
rd

s
0
-1

)

CORE 0

L1D 32KB

L2 512KB

SMT

Up to 4 thrds

CORE 1

L1D 32KB

L2 512KB

SMT

Up to 4 thrds

Threads 0-1 Threads 2-3

Figure 5.3: Left: Thread affinity strategy proposed for MIC architecture test. Right: MIC dia-
gram of two cores. Two levels of cache are shared per core between SMT threads, L1 and L2
caches.

The results were compelling. All gathered metrics improved when SMT affinity was en-

abled across threads (see Table 5.1). L1 misses slightly decreased, but above all, L2 demand

misses (explicit loads) suffered a reduction of 89% due to the better behavior of the L2

prefetcher, which tracked 79% more cache-lines. Finally, TLB misses were also significantly

reduced by 92% because more data thread addresses belonged to the same 4 KB page-

boundaries. As a result, the overall time was improved by almost 20%. The number of cores

used for this test is not relevant due to hardware metrics are gathered per core and therefore

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 81

equivalent for any number of cores.

L1 L2 Demand L2 HWP TLB Time
Metric Misses Misses Misses Misses (in sec)

No affinity 9504992 3492094 2753247 4411206 4.88
SMT affinity 8201066 361439 4933127 346578 3.96
Difference -14% -89% +79% -92% -19%

Table 5.1: Ash Dispersion model: Intel MIC, 4 cores (2 threads each). Problem size
256x64x1024. Metrics were only measured for the explicit kernel (stencil computation). This
hardware metrics correspond to a single core (not aggregated).

5.3 Multi-core and Many-core Improvements

High-level parallelism architectures (high degree of SMP-SMT) pose new challenges to max-

imize performance due to the complexity of work-load balancing when many threads are

cooperating. For example, the optimal scalability can be tampered if the problem lacks of

computational domain to fully utilize the resources. In addition, NUMA designs, the intri-

cacy of cache levels and the shared resources across threads add additional complexity to

this challenge. Assigning correctly the work-balance across threads can alleviate these issues.

This section is devoted to devise strategies in order to reduce imbalance but, at the same

time, taking into account the underlying architecture to effectively map resources, threads

and computational blocks.

SOCKET 0

NX

NZ

NY

NYSOCKET

{Zbase,Xbase,Ybase}

NYSOCKET
NX

C
O

R
E

 0

TJCORE

Thrd 0
Thrd 1Thrd 0Thrd 1

N
Z

C
O

R
E

NYCORE
NXCORE

Figure 5.4: Intra-node domain decomposition. A three-level decomposition is performed with
our schedulers. Left: first, the intra-node domain is statically split through the least-stride
dimension (Y) across all sockets, thus avoiding NUMA effects. Center: each Socketgroup is
decomposed across cores using one of the strategies (static, balanced or guided). This second
decomposition strives to minimize imbalance, and prioritizes cutting along X and Y axes
to avoid disruption of prefetching. Right: finally, each Coregroup is traversed by SMTgroup

threads in a interleaving fashion of Z-X planes using the selected TJ parameter from the
auto-tuning step. The interleaving should exploit the common resources within the cores,
and the TJ parameter should avoid capacity misses in the last level cache.

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 82

We propose simplified thread domain schedulers where decomposition is explored in a

top-down approach (from socket to core and SMT-level). To that end, a three-level problem

decomposition is devised (see Figure 5.4) categorizing threads within the following groups:

• Socketgroup: to reduce slow data transferences across socket links due to NUMA, grid

is only decomposed through the least-unit stride dimension (Y). Threads (thrdid) are

assigned to sockets as Socketgroup = MOD(Nsockets ×Ncores ×NSMT , thrdid), being

Nsockets, Ncores and NSMT the number of sockets, cores per socket and SMT level con-

currency respectively.

• Coregroup: threads mapped to the same socket are classified into different cores as

Coregroup = MOD(Ncores × NSMT , thrdid). Grid decomposition is either performed

over any axis (Z, X or Y).

• SMTgroup: finally, threads residing in the same core are assigned interlaced domains

using the plane distribution strategy defined in Section 5.2.

Socketgroup distribution allows NUMA-aware allocation, whereas Coregroup ensures work-

load balancing across multiple core threads. Finally, SMTgroup promotes data reuse and

streaming concurrency among SMT threads into lower cache hierarchies such as L1 and L2.

Selecting a wise decomposition over Coregroup is not trivial. Schedulers must decide at

runtime which is the best way to decompose the computational domain in order to reduce

thread imbalance while sustaining the performance. We set some rules to select the best

possible scenario. First, the unit-stride dimension (Z) is never selected for decomposing un-

less insufficient columns (NX) and planes (NY) are available for the remaining threads

(NX ×NY < nthrs). This prevents the prefetching disruption. Second, there is a trade-off

between X t−1 loads and the stored data of X t. This balance factor (β) is determined by the

halo parameter (ℓ) with respect to the interior points as

β =
NZ ×NX ×NY

(NZ + 2× ℓ)× (NX + 2× ℓ)× (NY + 2× ℓ)
∈ (0, 1) , (5.1)

where each local computed plane within a Coregroup (NZ×NX) requires 2× ℓ+1 extended

planes from X t−1. This balance metric helps to decide which axis is a good candidate for

Coregroup decomposition. The higher the β parameter for a given decomposition, the better

ratio of loads and stores has.

Then, to support a wide variety of architectural setups in terms of sockets, cores and SMT

configurations, three recursive schedulers differing in the Coregroup decomposition were de-

veloped. These schedulers are recursively called until all groups have been fully decomposed

selecting the proper axis. The three work-balance schedulers are:

• Static: one axis is prioritized for cutting along (X or Y) without using the β parame-

ter. However, other axis is selected whether insufficient elements (columns for X and

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 83

planes for Y) are available for the remaining threads to assign. This strategy is simi-

lar to the schedule(static) of OpenMP, but adding another degree of freedom that

decomposes in the opposite axis if required.

• Balanced: X and Y axes are indistinctly employed, selecting recursively the proper axis

to cut that maximizes the β metric.

• Guided: instead of using the β metric to decide the decomposition axis, a previously

computed TJ parameter (Rivera algorithm) is used to make the decision. Then, X axis

is only recursively cut whether the new NX is still greater than TJ . Otherwise, either

NY or NZ are selected depending on β. This strategy is especially designed when the

decomposition is combined with auto-tuning techniques.

The result of these schedulers are a set of {(Zbase, NZcore), (Xbase, NYcore), (Ybase, NYcore)}

tuples per thread (dom[thrdid]) that bounds each thread to its computational domain. This

tuple specifies the starting point and length for each dimension respectively. Every Coregroup

domain must contain at least as many Z-X planes as SMT threads in order to fully popu-

late all running threads. On top of that, spatial-blocking can be stacked on top of Coregroup

blocks, including further data reuse for last level caches. Pseudo-codes for all schedulers are

shown in Algorithms 10, 11 and 12.

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 84

Algorithm 10 Pseudo-code of the static domain decomposition scheduler for X and Y axes.
axis parameter must be set to either to X or Y . The scheduler tries to balance over other
axes when not sufficient columns or planes are present.

1: procedure Stati-Deomposition(Zbase, Xbase, Ybase, NZ, NX, NY ,
Nsockets, Ncores, NSMT , thrdid, axis, dom)

2: nthrs← Nsockets ×Ncores ×NSMT ⊲ Threads to be assigned in this branch
3: if Nsockets > 1 then ⊲ Socketgroup decomposition
4: Nsockets ← 1
5: for i← 0 to Nsockets − 1 do ⊲ Evenly cut in NY
6: thrdiid ← i×Ncores ×NSMT

7: Y i
base ← Ybase + ⌊NY/Nsockets⌋ × i

8: NY i ← ⌊NY/Nsockets⌋
9: Stati-Deomposition

i(. . . groupiargs . . .)
10: end for ⊲ Insufficient work for all threads

11: else if (axis = X ∧NX < nthrs) ∨ (axis = Y ∧NY < nthrs) then

12: N1
cores ← ⌈Ncores/2⌉ ⊲ Odd or even group

13: N2
cores ← ⌊Ncores/2⌋ ⊲ Even group

14: thrd1id ← thrdid ⊲ Set thread index
15: thrd2id ← thrdid +N1

cores

16: if NX ×NY < nthrs ∧ (N1
cores = 1 ∨N2

cores = 1) then

17: Z1
base ← Zbase ⊲ Cut in NZ

18: NZ1 ← ⌈NZ/Ncores⌉ ×N1
cores

19: Z2
base ← Zbase +NZ1

20: NZ2 ← ⌊NZ/Ncores⌋ ×N2
cores

21: else if axis = Y then

22: Y 1
base ← Ybase ⊲ Cut in NY for X axis

23: NY 1 ← ⌈NY/Ncores⌉ ×N1
cores

24: Y 2
base ← Ybase +NY 1

25: NY 2 ← ⌊NY/Ncores⌋ ×N2
cores

26: else

27: X1
base ← Xbase ⊲ Cut in NX for Y axis

28: NX1 ← ⌈NX/Ncores⌉ ×N1
cores

29: X2
base ← Xbase +NX1

30: NX2 ← ⌊NX/Ncores⌋ ×N2
cores

31: end if

32: Stati-Deomposition

1(. . . group1args . . .)
33: Stati-Deomposition

2(. . . group2args . . .)
34: else ⊲ Assign Coregroup whether sufficient work is available
35: for i← 0 to Ncores − 1 do ⊲ Evenly cut in axis
36: thrdiid ← thrdid + i×NSMT

37: if axis = X then

38: Xi
base ← Xbase + ⌊NX/Ncores⌋ × i

39: NXi ← ⌊NX/Ncores⌋
40: else

41: Y i
base ← Ybase + ⌊NY/Ncores⌋ × i

42: NY i ← ⌊NY/Ncores⌋
43: end if

44: for j ← thrdiid to thrdiid +NSMT − 1 do ⊲ Assign domain area

45: dom[j]← {(Zi
base, NZi), (Xi

base, NXi), (Y i
base, NY i)}

46: end for

47: end for

48: end if

49: end procedure

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 85

Algorithm 11 Pseudo-code of the balanced domain decomposition sched-
uler. This recursive function might be initially called as Balaned-

Deomposition(0, 0, 0, NZ,NX,NY, 2, 8, 2, 0, dom) for a platform with 2 sockets, 8
core processor with 2-way SMT capabilities. Computational thread domains are defined
with the 2 × nthrs tuple dom, where first dimension is composed of the base address of the
domain (Zbase, Xbase, Ybase) and the local size of the domain (NZcore, NXcore, NYcore) for
thrdid.

1: procedure Balaned-Deomposition(Zbase, Xbase, Ybase, NZ, NX, NY ,
Nsockets, Ncores, NSMT , thrdid, dom)

2: nthrs← Nsockets ×Ncores ×NSMT ⊲ Threads to be assigned in this branch

3: if nthrs = NSMT then ⊲ Stop if SMTgroup is reached

4: for i← thrdid to thrdid + nthrs− 1 do ⊲ Assign domain area
5: dom[i]← {(Zbase, NZ), (Xbase, NX), (Ybase, NY)}
6: end for

7: else if Nsockets > 1 then ⊲ Socketgroup decomposition
8: Nsockets ← 1
9: for i← 0 to Nsockets − 1 do ⊲ Evenly cut in NY

10: thrdiid ← i×Ncores ×NSMT

11: Y i
base ← Ybase + ⌊NY/Nsockets⌋ × i

12: NY i ← ⌊NY/Nsockets⌋
13: Balaned-Deomposition

i(. . . groupiargs . . .)
14: end for

15: else if Ncores > 1 then ⊲ Coregroup decomposition

16: N1
cores ← ⌈Ncores/2⌉ ⊲ Odd or even group

17: N2
cores ← ⌊Ncores/2⌋ ⊲ Even group

18: thrd1id ← thrdid ⊲ Set thread index

19: thrd2id ← thrdid +N1
cores

20: if NX ×NY < nthrs ∧ (N1
cores = 1 ∨N2

cores = 1) then

21: Z1
base ← Zbase ⊲ Cut in NZ

22: NZ1 ← ⌈NZ/Ncores⌉ ×N1
cores

23: Z2
base ← Zbase +NZ1

24: NZ2 ← ⌊NZ/Ncores⌋ ×N2
cores

25: else if β(NZ, ⌊NX/2⌋, NY) > β(NZ,NX, ⌊NY/2⌋) then

26: X1
base ← Xbase ⊲ Cut in NX

27: NX1 ← ⌈NX/Ncores⌉ ×N1
cores

28: X2
base ← Xbase +NX1

29: NX2 ← ⌊NX/Ncores⌋ ×N2
cores

30: else

31: Y 1
base ← Ybase ⊲ Cut in NY

32: NY 1 ← ⌈NY/Ncores⌉ ×N1
cores

33: Y 2
base ← Ybase +NY 1

34: NY 2 ← ⌊NY/Ncores⌋ ×N2
cores

35: end if

36: Balaned-Deomposition

1(. . . group1args . . .)
37: Balaned-Deomposition

2(. . . group2args . . .)
38: end if

39: end procedure

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 86

Algorithm 12 Pseudo-code of the guided domain decomposition scheduler. An auto-tuning
process must be priorly conducted in order to select a pseudo-optimal TJ parameter.

1: procedure Guided-Deomposition(Zbase, Xbase, Ybase, NZ, NX, NY ,

Nsockets, Ncores, NSMT , thrdid, TJ , dom)

2: nthrs← Nsockets ×Ncores ×NSMT ⊲ Threads to be assigned in this branch

3: if nthrs = NSMT then ⊲ Stop if SMTgroup is reached
4: for i← thrdid to thrdid + nthrs− 1 do ⊲ Assign domain area

5: dom[i]← {(Zbase, NZ), (Xbase, NX), (Ybase, NY)}
6: end for

7: else if Nsockets > 1 then ⊲ Socketgroup decomposition

8: Nsockets ← 1
9: for i← 0 to Nsockets − 1 do ⊲ Evenly cut in NY

10: thrdiid ← i×Ncores ×NSMT

11: Y i
base ← Ybase + ⌊NY/Nsockets⌋ × i

12: NY i ← ⌊NY/Nsockets⌋
13: Guided-Deomposition

i(. . . groupiargs . . .)
14: end for

15: else if Ncores > 1 then ⊲ Coregroup decomposition
16: N1

cores ← ⌈Ncores/2⌉ ⊲ Odd or even group

17: N2
cores ← ⌊Ncores/2⌋ ⊲ Even group

18: thrd1id ← thrdid ⊲ Set thread index
19: thrd2id ← thrdid +N1

cores

20: if NX ×NY < nthrs ∧ (N1
cores = 1 ∨N2

cores = 1) then

21: Z1
base ← Zbase ⊲ Cut in NZ

22: NZ1 ← ⌈NZ/Ncores⌉ ×N1
cores

23: Z2
base ← Zbase +NZ1

24: NZ2 ← ⌊NZ/Ncores⌋ ×N2
cores

25: else if β(NZ, ⌊NX/2⌋, NY) > β(NZ,NX, ⌊NY/2⌋)∧
26: (⌊NX/Ncores⌋ ×N2

cores >= TJ) then

27: X1
base ← Xbase ⊲ Cut in NX

28: NX1 ← ⌈NX/Ncores⌉ ×N1
cores

29: X2
base ← Xbase +NX1

30: NX2 ← ⌊NX/Ncores⌋ ×N2
cores

31: else

32: Y 1
base ← Ybase ⊲ Cut in NY

33: NY 1 ← ⌈NY/Ncores⌉ ×N1
cores

34: Y 2
base ← Ybase +NY 1

35: NY 2 ← ⌊NY/Ncores⌋ ×N2
cores

36: end if

37: Guided-Deomposition

1(. . . group1args . . .)
38: Guided-Deomposition

2(. . . group2args . . .)
39: end if

40: end procedure

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 87

5.4 Auto-tuning Improvements

Auto-tuning is an optimization methodology that strives for finding the combination of algo-

rithmic parameters that bestows the best performance of a computational code for a given

platform and specific problem configuration. To conduct this task, first, all possible algorith-

mic optimizations must be enumerated (e.g. loop unrolling). Then, an automatic code genera-

tor produces all equivalent implementations (code variants) of these enumerated algorithmic

optimizations. Finally, a search must be performed by benchmarking the computational code

variants with a set of possible parametrical configurations (e.g. degree of loop unrolling),

choosing the fastest implementation. As a consequence, being D the algorithmic optimiza-

tions to be tested and N their possible parameters, a total of ND combinations must be tried.

Search space for op�miza�on A

S
e

a
rc

h
 s

p
a

ce
 f

o
r

o
p

�

m
iz

a

�

o
n

 B

Search space for op�miza�on A

S
e

a
rc

h
 s

p
a

ce
 f

o
r

o
p

�

m
iz

a

�

o
n

 B

Search space for op�miza�on A

S
e

a
rc

h
 s

p
a

ce
 f

o
r

o
p

�
m

iz
a

�

o
n

 B

1

23

4

Search space for op�miza�on A

S
e

a
rc

h
 s

p
a

ce
 f

o
r

o
p

�

m
iz

a

�

o
n

 B

1

2

3

Figure 5.5: Auto-tuning strategies for exploring the optimization space. From left to right:
exhaustive search, heuristically-pruned search, iterative hill-climbing (iterative greedy) and
gradient descent search. The red circle represents the optimal parameter combination and
the yellow rectangle the best option found for each strategy. The blue regions depict the
parametrical space explored and the arrows the direction chosen for the exploration.

When the optimization space to explore is tractable (small ND), an exhaustive search is

usually employed, exploring the whole optimization space and guaranteeing the global min-

ima. However, since the number of algorithmic optimizations and their parametrical space

can easily grow in the order of hundreds, this search is no longer feasible in terms of time and

resources. To alleviate the combinatorial explosion of the space size to traverse, a number

of search strategies have emerged avoiding expensive exhaustive searches. Figure 5.5 shows

the most representatives strategies used in auto-tuners for searching the best combination

of parameters: exhaustive, heuristic, iterative hill-climbing and gradient descent search. In

this figure, each axis plot represents an algorithmic optimization and their range of possible

values, whereas the curves denote areas where performance stays constant. Although, per-

formance curves are smooth, the optimization problems tackled by stencil auto-tuners lay on

a discrete space where a multi-dimensional integer space must be traversed. The heuristic

search tries to minimize the search time by applying heuristics that prune the full space area

by deciding appropriate parameters for certain optimizations. As a drawback, the best per-

formance might not be found (red dot in plots) given that the applied heuristics traverse a

subspace (blue regions) that only allows to find a pseudo-optimal performance (yellow rect-

angle). On the other hand, the iterative hill-climbing search reduces the initial ND space into

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 88

a k × N ×D space. In order to achieve it, this strategy performs an iterative greedy search

that seeks the local minima for an algorithmic optimization (green diamonds) while all other

variables are kept fixed. Then, this process is repeated for the remaining algorithmic opti-

mizations using the previous pseudo-optimal parameters. This search is conducted several

times (k) until no further improvement is obtained (yellow rectangle). Finally, the gradient

descent strategy diminishes the multi-dimensional search space significantly by testing the

surrounding area of an initial seed and moving towards the greatest gradient direction (max-

imal slope) that minimizes the execution time. This operation is repeatedly performed until

no descent gradient is found. The performance of this strategy is specially sensitive to the ini-

tial seed, not only in terms of search time, but also in pseudo-optimal results if local minima

are present.

The auto-tuning search performed in our domain decomposition strategy has one main

advantage, it only considers spatial-blocking algorithm as algorithmic optimization. This

decision reduces significantly the algorithmic optimization combinations to only three pa-

rameters (TI, TJ and TK), and to a containable parametrical space (TI = {1 . . .NZ},

TJ = {1 . . .NX} and TK = {1 . . .NY }).

In addition, our auto-tuning strategy also strives to minimize the search time. First, it

uses an heuristically-pruned search over TI and TK spatial-blocking parameters. In order

to achieve it, we take advantage of previous research works [43, 72] stating that spatial-

blocking algorithms benefit from leaving unit- and least-stride dimensions uncut (TI = NZ

and TK = NY). The main reason is that the prefetching effect is not disrupted and data

reuse is promoted for least-stride dimension which is more expensive latency-wise (see Sec-

tion 4.2). Second, we finally obtain a pseudo-optimal parameter by conducting a straightfor-

ward gradient descent search on TJ parameter. Algorithm 13 shows the pseudo-code of our

gradient search which must be called by passing the maximum NX value (dimx) and the

stencil kernel with spatial-blocking to be tuned (kernel). As an initial point for the gradient

descent search, three possible seeds are tested: a lower bound (2), centered bound (dimx/2)

and an upper bound (dimx). The seed that minimizes the execution time is used. Then, the

traversing direction is chosen by benchmarking neighbour parameters at prefixed offsets. The

neighbour parameter that minimizes the execution time is chosen as the next candidate for

the following gradient iteration. The offset array must include enough distant parameters

to avoid falling in a local minima that would prevent obtaining the optimal solution. The

algorithm also includes dynamic programming to avoid benchmarking the parameter combi-

nations more than once.

5.5 Experimental Results

In order to corroborate our statements and evaluate the decomposition strategies, we set a

group of tests with different problem sizes. Their ranges are defined from relatively small

to very large dimensions. The intent is to reproduce the behavior that appears in strong

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 89

Algorithm 13 Pseudo-code of the auto-tuner used in our tests for finding a pseudo-optimal
TJ parameter. This auto-tuner performs a gradient descent search traversing the linear
search space depending on the slope. Benhmark-Kernel routine performs the time
benchmarking of kernel routine by performing a number of fixed trials.

1: function Auto-tuner(dimx, kernel)
⊲ Initial seeds for TJ parameter

2: TJupper ← dimx
3: TJmiddle ← ⌊dimx/2⌋
4: TJlower ← 2

⊲ Search best initial seed
5: Benhmark-Kernel(TJupper, time[TJupper], visit[TJupper], kernel)
6: Benhmark-Kernel(TJmiddle, time[TJmiddle], visit[TJmiddle], kernel)
7: Benhmark-Kernel(TJlower, time[TJlower], visit[TJlower], kernel)

⊲ Select best initial seed

8: TJ ← TJlower

9: if time[TJmiddle] < time[TJ] then

10: TJ ← TJmiddle

11: end if

12: if time[TJupper] < time[TJ] then

13: TJ ← TJupper

14: end if

⊲ Offset for neighbor points to visit
15: OFFSET = {−64,−32,−16,−8,−4,−2,+2,+4,+8,+16,+32,+64}

⊲ Search for a pseudo-optimal TJ (local minima)

16: changed← TRUE

17: while changed = TRUE ∧ iter < MAXiters do

18: for i← 0 to Nneigh do

19: changed← FALSE

⊲ Neighbor to visit
20: neigh← max(min(TJ +OFFSET [i], TJupper), TJlower)
21: if visit[neigh] = FALSE then

22: Benhmark-Kernel(neigh, time[neigh], visit[neigh], kernel)
23: end if

24: if time[neigh] < time[TJ] then

25: TJ ← neigh
26: changed← TRUE

27: end if

28: end for

29: iter ← iter + 1
30: end while

31: return TJ
32: end function

scalability executions where threads stagnate as we increase the computational nodes. To

this extent, the least-stride dimension is varied while the remaining dimensions are kept

fixed. In addition, all dimensions except the unit-stride have been defined as uneven in order

to emphasize the imbalance across domains. Two modern platforms have been used, a dual-

socket node with Intel Xeon Sandy Bridge E5-2670 processors and a many-core Intel Xeon

Phi with 60 cores. Table 5.2 shows a summary of the testbed for the experimental results.

The stencil used in this benchmark is an ADR kernel (See Appendix A.3) which has been

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 90

fully SIMDized.

Parameters Range of values

Intra-node decompositions static (X and Y), balanced and guided
Problem sizes (I × J ×K) 64× 601× 25, 64× 601× 75,

64× 601× 151, 64× 601× 301,
64× 601× 601, 64× 1201× 1201

Stencil kernel ADR kernel† in single-precision (13-point stencil)
Platforms 2 × Intel Xeon Sandy Bridge E5-2670 system

and Intel Xeon Phi 5110P (KNC)

Table 5.2: List of parameters used for testing the decomposition strategies. †See Appendix A.3
for additional info.

The experimental results are exposed in three ways: maximum attainable performance,

break-down of scalability and 2D decomposition view. Table 5.3 and 5.4 show a summary

of the maximum attainable scalability for each platform, problem size and decomposition

strategy. These results include the combination of the decomposition scheduler with the auto-

tuner. For Intel Xeon Phi, it also includes the SMT affinity exposed in Section 5.2, where 4

SMT threads cooperate in a plane distribution policy. On the other hand, the Intel Sandy

Bridge processor used does not have the SMT enabled. Nevertheless, we have taken advan-

tage of the Semi-stencil algorithm which can leverage the performance by reducing cache

pressure promoting data reuse. In addition, we have also included the β metric and the max-

imum imbalance in percentage across computational domains.

Size Static X Static Y Balanced Guided

(J ×K) SCA β IMB SCA β IMB SCA β IMB SCA β IMB

601× 75 104.4 .66 10% 88.8 .51 .5% 113.4 .72 6% 90.0 .51 .5%
601× 151 112.5 .67 10% 91.7 .56 19% 117.1 .76 3% 92.5 .56 19%

601× 301 117.3 .68 10% 96.1 .56 20% 123.0 .81 3% 94.6 .56 20%
601× 601 114.5 .69 10% 112.2 .69 10% 121.9 .85 2.3% 112.6 .69 10%

Table 5.3: Domain decomposition results for Intel Xeon Phi (MIC) architecture. Columns
shown are scalability (SCA), β parameter and imbalance (IMB) for 240 threads (60 cores
× 4 SMT). Only best result of each strategy is shown (Decomposition+Auto-tuning+SMT
Affinity).

Results are quite compelling, specially for Intel Xeon Phi where the balanced strategy

overcomes the remaining ones. In general, its imbalance is sustained at a very low ratio

(2.3% to 6%), which allows a good equilibrium between the 60 cores. However, despite of

having a higher imbalance in 64 × 601 × 75 case compared to static Y and guided strategies

(6% vs 0.5%), its performance is still higher thanks to the β metric, which remains only to

0.51 with static Y and guided and 0.72 with balanced scheduler. This metric reveals that at

least 49% of the data involved in the stencil computation with static Y and guided are halo

points, whereas halo represent 38% with balanced. This difference leads to a reduction of

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 91

the memory traffic and the overall time. Figure 5.6 shows a 2D view (X-Y plane where

Z is left uncut) of the domain distribution for this case. As it can be seen, static Y and

guided schedulers produce very narrow domains that confer a low β metric. This is not the

case of balanced decomposition, where, although having a higher imbalance compared to the

remaining ones (up to 6%), its equilibrated domains ensure a higher β. The more cubical a

domain is, the higher the β metric is. Actually, there is a trade-off between domain balance

and β metric, where the preferred decomposition should include an imbalance ≈ 0% and a

β ≈ 1.

Static X scheduling

 100 200 300 400 500 600

 10
 20
 30
 40
 50
 60
 70

Y
 d

im
en

si
on

0%
2%
4%
6%
8%
10%

Static Y scheduling

 100 200 300 400 500 600

 10
 20
 30
 40
 50
 60
 70

-0.2%
-0.1%
0.0%
0.1%
0.2%
0.3%
0.4%
0.5%

Balanced scheduling

 100 200 300 400 500 600

X dimension

 10
 20
 30
 40
 50
 60
 70

Y
 d

im
en

si
on

-2%

0%

2%

4%

6%

Guided scheduling

 100 200 300 400 500 600

X dimension

 10
 20
 30
 40
 50
 60
 70

-0.2%
-0.1%
0.0%
0.1%
0.2%
0.3%
0.4%
0.5%

Figure 5.6: Imbalance of decomposition strategies for Intel Xeon Phi with a 64 × 601 × 75
problem size. Distribution with 60 cores (60 domains) and 4-way SMT (240 threads).

Figure 5.7 shows the 2D distribution view for 64 × 601 × 601 case with two opposite

schedulers: balanced and static Y. Results are clarifying, the balanced strategy decomposes

the computational domain striving for not only reducing the imbalance across domains, but

also for a cubical distribution. The improvement of these two metrics leads clearly to a better

performance.

Balanced scheduling

 100 200 300 400 500 600
X dimension

 100

 200

 300

 400

 500

 600

Y
 d

im
en

si
on

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Static Y scheduling

 100 200 300 400 500 600
X dimension

 100

 200

 300

 400

 500

 600

Y
 d

im
en

si
on

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

Figure 5.7: Imbalance of balanced and static Y schedulings for Intel Xeon Phi with a 64×601×
601 problem size. Distribution with 60 cores (60 domains) and 4-way SMT (240 threads).

Reviewing the Intel Sandy Bridge results in Table 5.4, a totally different scenario is ob-

served. Although the balanced scheduler behaves slightly better, there is not a clear winner for

large sizes. Indeed, the low thread level parallelism of our Intel Sandy Bridge processor does

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 92

not pose a real challenge for balanced scheduling. As a consequence, all schedulers produce

fair scalability results (≈ 15×) with good β and imbalance metrics. For instance, Figure 5.8

depicts the 2D distribution view for a large case with balanced and guided distributions. In

both cases, imbalance remains low (1.0% and 1.3%) and β close to 1 (0.92 and 0.91). How-

ever, as the problem size is decreased, two strategies prevail, static X and balanced. Actually,

static X performs satisfactorily well due to the large and fixed X dimension used in all test

cases. On the other hand, balanced strategy should guarantee an outstanding decomposition

in terms of performance regardless the decomposition strategy at inter-node level.

Size Static X Static Y Balanced Guided

(J ×K) SCA β IMB SCA β IMB SCA β IMB SCA β IMB

601× 25 15.2 .69 5.2% 11.9 .31 36% 15.5 .69 5.2% 11.9 .31 36%
601× 75 14.2 .85 2.5% 12.2 .47 15% 14.2 .85 2.5% 13.4 .66 6.8%

601× 151 14.5 .85 1.8% 12.6 .67 5.9% 14.8 .85 1.8% 14.7 .85 1.8%
601× 601 15.1 .88 1.3% 14.5 .84 1.5% 15.2 .89 1.0% 14.9 .88 1.3%
1201 × 1201 15.4 .91 .7% 14.8 .89 1.2% 15.4 .92 .5% 15.0 .91 .5%

Table 5.4: Domain decomposition results for Intel Sandy Bridge platform. Columns are scal-
ability (SCA), β parameter and imbalance (IMB) for 16 threads (2 sockets × 8 cores). Only
the best result of each strategy is shown (Decomposition+Auto-tuning+Semi-stencil).

Balanced scheduling

 100 200 300 400 500 600
X dimension

 100

 200

 300

 400

 500

 600

Y
 d

im
en

si
on

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

Guided scheduling

 100 200 300 400 500 600
X dimension

 100

 200

 300

 400

 500

 600

Y
 d

im
en

si
on

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

Figure 5.8: Imbalance of balanced and guided schedulings for Intel Sandy Bridge-EP platform
with a 64 × 601 × 601 problem size. Distribution for dual-socket node with 2×8 cores (16
domains).

Finally, we expose the scalability results for each particular layer of the schedulers: do-

main decomposition and auto-tuning, including SMT affinity for Intel Xeon Phi and Semi-

stencil for Intel Sandy Bridge. Results are broken down to show separately the benefit of each

optimization technique. The intent is to show not only the key fact of having a wise decom-

position strategy, but also its combination with an auto-tuning and SMT affinity approaches

in order to leverage scalability. Figure 5.9 plots the scalability break-down for Intel Xeon Phi

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 93

on two problem sizes, small and medium. The number of threads per core is progressively

increased until the processor is fully populated. As threads are increased, the decomposition

strategies alone are not able to attain a sustainable scalability. In fact, in most cases, the per-

formance drops when more than 2 threads are pinned per core (>120 threads). Nevertheless,

when the auto-tuning step is used, this trend disappears and the best scalability results scale

up to +90×. The search of a tuned TJ parameter for the spatial-blocking algorithm is crucial

to reduce pressure and cacheline conflicts in shared L1 and L2 caches. In addition, the SMT

affinity approach (on 120 threads executions upwards) can produce further improvements

by reducing memory footprint and prefetcher contention. For instance, on 64×601×300 case,

the SMT affinity yields an improvement from 100× to 123× with the balanced scheduler.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

1 60 120 180 240 1 60 120 180 240 1 60 120 180 240 1 60 120 180 240

S
ca

la
bi

lit
y

Thread level parallelism in Intel Xeon Phi (MIC) for 64x601x75 volume (ADR kernel)

Decomposition
+Auto-tuning
+SMT Affinity

307.6

6.531

4.311

3.597

2.947

307.6

8.364

5.416

3.250
3.462

307.6

5.700

4.036

3.196

2.714

307.6

6.122

4.824

3.460 3.361

GuidedBalancedStatic YStatic X

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

1 60 120 180 240 1 60 120 180 240 1 60 120 180 240 1 60 120 180 240

S
ca

la
bi

lit
y

Thread level parallelism in Intel Xeon Phi (MIC) for 64x601x301 volume (ADR kernel)

Decomposition
+Auto-tuning
+SMT Affinity

1294

26.69

17.05

14.16

11.03

1294

26.46

19.03

13.74 13.47

1294

24.08

16.33

13.53

10.52

1294

22.94

16.72

13.52 13.68

GuidedBalancedStatic YStatic X

Figure 5.9: Scalability break-down for Intel Xeon Phi (MIC). The numbers shown on top of
each bar represent the execution time (in milliseconds) for the best configuration.

The Intel Sandy Bridge results in Figure 5.10 show a different scenario when compared

to Intel Xeon Phi. First, all decomposition strategies alone yield a reasonable scalability as

threads are increased until both processors are fully populated (≈13.8×). The private L1

and L2 caches, only shared by one thread, and their aggressive prefetchers cope successfully

with the scalability of the ADR kernel. Second, the auto-tuning of TJ parameter leads to a

certain improvement, but not as remarkable as on Intel Xeon Phi. Indeed, the tremendous

shared L3 cache of 20 MB per processor diminishes the spatial-blocking effect. Additionally,

this performance loss is particularly exacerbated in static X and balanced schedulings, where

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 94

an implicit tiling is already applied due to the specific decomposition along the X axis. As a

final optimization, the Semi-stencil algorithm was added on top of the classical ADR kernel.

This novel algorithm could partially replace the lack of SMT feature by improving data reuse

in private L1 and L2 caches. For example, Semi-stencil led to a nearly perfect scalability on

64× 601× 601 case enhancing the results from 14 to 15.2×.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

S
ca

la
bi

lit
y

Thread level parallelism in Intel Sandy Bridge-EP for 64x601x25 volume (ADR kernel)

Decomposition
+Auto-tuning

+Semi

8.743

4.402

2.313

1.316

0.632

8.743

4.648

2.647

1.827

0.811

8.743

4.434

2.328

1.321

0.628

8.743

4.668

2.654

1.481

0.809

GuidedBalancedStatic YStatic X

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

S
ca

la
bi

lit
y

Thread level parallelism in Intel Sandy Bridge-EP for 64x601x601 volume (ADR kernel)

Decomposition
+Auto-tuning

+Semi

208.5

104.7

54.87

30.60

15.17

208.5

105.7

55.24

31.41

15.78

208.5

105.3

55.68

30.75

15.12

208.5

106.7

55.91

30.74

15.37

GuidedBalancedStatic YStatic X

Figure 5.10: Scalability break-down for Intel Sandy Bridge. The numbers shown on top of
each bar represent the execution time (in milliseconds) for the best configuration.

5.6 Summary

This chapter has proposed a set of intra-node optimizations for stencil computations pursu-

ing the CMP trend, where many-core processors with complex hierarchical caches coexist in

multi-socket platforms. The intra-node strategies discussed cover the following areas: SMT

affinity, multi-core decomposition and auto-tuning. Through the combination of these three

strategies, we have achieved better scalability results.

So far, auto-tuning has shown to be very convenient to select pseudo-optimal parameters

for specific algorithms. Nevertheless, the search can be cumbersome when the parametrical

space to explore is huge due to the complex combination of optimizations. In order to ease

the search of pseudo-optimal parameters, performance model can help giving hints almost

instantly. Next chapter is devoted to this topic by proposing a multi-level cache performance

Chapter 5. SMT, Multi-core and Auto-tuning Optimizations 95

model for stencils that remains flexible and accurate.

Chapter 6

Performance Modeling

of Stencil Computations

As shown in Chapter 2, the stencil computations are the core of many Scientific Computing

applications, of which moving data back and forth from memory to CPU is a major concern.

Therefore, the development and analysis of source code modifications that can effectively use

the memory hierarchy of modern architectures is crucial. This is not a simple task, actually it

is lengthy and tedious. The large number of stencil optimization combinations, which might

consume days of computing time, makes the process lengthy. Besides, the process is tedious

due to the slightly different versions of code to be implemented and assessed.

As an alternative, models that predict performance can be built without any actual stencil

computation execution, thus reducing the above mentioned cumbersome optimization task.

This performance models help expose bottlenecks and predict suitable tuning parameters in

order to boost stencil performance on any given platform. Previous works have proposed

cache misses and execution time models for specific stencil optimizations. However, most of

them have been designed for low-order stencils (7-point) and simplified cache-hierarchies,

leaving aside considerations of modern HPC architectures. Nowadays, the following two con-

siderations need to be accurately modeled. First, the complex architectures that sport multi-

or many-core processors with shared multi-level caches featuring one or several prefetch-

ing engines. Second, the algorithmic optimizations, such as spatial blocking or Semi-stencil,

which have complex behaviors that follow the intricacy of the above described architectures.

The challenge is to cover all these features to effectively model stencil computation perfor-

mance.

In this chapter, we propose a flexible and accurate model for a wide range of stencil sizes

that captures the behavior of 3D stencil computations using the platform parameters. The

model has been tested in a group of representative hardware architectures, using realistic

dataset sizes. The accuracy results obtained show that the proposed model is reliable and

can help to speed up the stencil computation optimization process. To that end, this model

has been designed to be extended adding new stencil optimization techniques, thus providing

essentially a framework that can cover most of the state-of-the-art in stencil optimizations.

97

Chapter 6. Performance Modeling of Stencil Computations 98

6.1 Performance Modeling Overview

The main objective of performance models is to improve stencil-based applications perfor-

mance. High performance is usually achieved by algorithmic changes that lead to suboptimal

implementations, where many executions of these different implementations are required.

Notice that these code modifications must not taint the numerical soundness of the numeri-

cal algorithm. To this extent, we define a test case as a set of characteristics that include plat-

form and stencil parameters, such as: stencil size, dataset size, algorithm implementation or

architecture configuration (see Figure 6.1). Since every one of those parameters may change

among executions, the number of total test cases can be extremely large. Therefore, it is not

feasible to find a possible suboptimal stencil scheme by manual means. The automatization

of this task is a must.

Platform Stencil Size Dataset Size

7

85

Test cases

...

...

Platform 1

Platform n

128

512

...

128

512

...

Figure 6.1: Test cases tree, this one with a basic configuration based on three main factors:
platform, stencil size and dataset size.

We identify three ways of improving stencil performance: by brute force, i.e. trying every

possible test case as in auto-tuning, by modeling the algorithm behavior and by a hybrid

approach based on the two previous ideas. The manual trial-and-error approach turns the

process of optimizing codes lengthy and tedious. The large number of stencil optimization

combinations, which might consume days of computing time, makes the process lengthy. Fur-

thermore, the process is tedious due to the slightly different versions of code that must be

implemented and assessed. To alleviate the cumbersome optimization process from user su-

pervision, several auto-tuning frameworks [16, 22, 41] have been developed. These frame-

works automatize the search by using heuristics to guide in the pruning of the parameter

subspace.

As an alternative, models that predict performance can be built without the requirement

of any actual stencil computation execution. We consider that the model-based approach has

three advantages with respect to auto-tuning. First, once the model is validated, there is no

Chapter 6. Performance Modeling of Stencil Computations 99

need for real executions, which can reduce hours or days of testing time. Second, there is

no need of developing a framework to command the trial-and-error experiments. And third,

which is the most important, the model flexibility allows the extension without a substantial

effort in implementation and experimental executions.

In addition, performance modeling is highly time-cost effective compared to other model-

ing approaches based on regression analysis. In regression-based analysis, users are required

to conduct extensive and costly experiments to obtain the input data for regression. A wide

range of hardware performance counters are gathered and machine learning algorithms are

used to determine correlations between architectural events and compiler optimizations. The

more complex the model is, the more data is required to estimate the correlation coefficients.

Moreover, regression models do not provide neither cache miss predictors nor hints about

algorithmic parameter candidates (e.g. spatial blocking). Nevertheless, regression analysis

can be partially useful whether it is intended to give indications of possible performance

bottlenecks and it is combined with knowledge-based systems.

Unfortunately, modeling has also shortcomings. The performance characterization of a

kernel code is not trivial and relies heavily on the ability to capture the algorithm’s behavior

in an accurate fashion, independently of the platform and the execution environment. In or-

der to do so, the estimation of memory latencies is critical in memory-bound kernels. This

is why predicting accurately 3C (compulsory, conflict and capacity) misses play an important

role to characterize effectively the kernel performance. Another drawback is the limited cov-

erage of the experimental space regarding very fine grain test cases. As a solution, the hybrid

approach can be used. In this approach, models are integrated into auto-tuning frameworks

for compile and run-time optimizations; making guided decisions about the best algorithmic

parameters and suggesting code modifications. In the test case tree of this hybrid approach,

the optimization search of main branches may be covered by modeling, whereas the param-

eter tuning of tree leaves may be performed by the auto-tuning mechanism.

6.2 State of the Art

The performance modeling topic on stencil computations has been fairly studied in the re-

cent years. The pioneers Kamil and Datta [21, 43] proposed straightforward cost models

to capture the performance of a set of stencil optimizations. Such models were strongly

based on the Stanza Triad micro-benchmark (STriad), derived from the STREAM Triad bench-

mark [54]. Using their approach, a 7-point naive stencil computation was modeled by taking

into account three types of memory access costs in a flat memory hierarchy: first, intermediate

and stream. In this model, the access cost of the first non-streamed cache line is represented

by Cfirst, given the overhead of performing a STriad operation with a short length. On the

other hand, the cost of streamed cache lines, Cstream, is computed by performing a STriad

with a large vector length in order to trigger the stream access. Nevertheless, due to the

warm-up phase of the prefetching engines, stream accesses are only activated after a number

Chapter 6. Performance Modeling of Stencil Computations 100

of misses (denoted as k) with a cost of Cintermediate.

Therefore, considering a domain of L elements (being L = N3 and N the axis domain

size) and W elements per cache line, where ⌈(L/W)⌉ cache lines must be fetched to compute

the entire domain, the total cost Cstencil of a low-order stencil can be summarized as:

Cstencil = Cfirst + k ∗ Cintermediate + (⌈(L/W)⌉ − k − 1) ∗ Cstream . (6.1)

In addition, Kamil and Datta also developed a cache blocking model for Rivera tiling [72],

where an N3 problem is traversed using I ×J ×N blocks, being I and J the most unit-stride

dimensions of the cut. This model was built on the top of the Equation 6.1. For this purpose,

they devised a simple approach by setting lower and upper cost bounds of memory traffic for

I×J×N blocks in a 7-point stencil computation. The lower bound assumes high cache reuse

with only compulsory misses (2Cstencil, one plane to read and one plane to write), while the

upper bound considers no cache reuse at all leading to conflict and capacity misses (4Cstencil,

three planes to read and one plane to write).

Therefore, given an N3 grid problem, the number of non-streamed (Tfirst), partially

streamed (Tintermediate) and streamed (Tstreamed) cache lines fetched are evaluated differ-

ently due to the disruption of the prefetching effect as: Tfirst=
N3

I if I 6=N , or N3

IJ if I=N 6=

J , or N2

IJ if I=J=N , Tintermediate=Tfirst∗(k−1) and Tstream=Ttotal−Tintermediate−Tfirst,

where Ttotal=
⌈(I/W)⌉N3

I . Consequently, the cost of sweeping a 3D domain in a blocked fash-

ion is approximated as:

Cstencil = CfirstTfirst + CintermediateTintermediate + CstreamTstream . (6.2)

Lately, Datta et al. [21] extended their model to time-skewing stencil computations pre-

dicting partially the entire stencil running time. In order to do so, they distinguished mainly

five cases of cache misses: three preferred cases with compulsory misses, and other two cases

with capacity misses. Finally, conflict misses where incorporated to the model by using a

cumulative Gaussian distribution that matched the data from a simple microbenchmark.

Kamil, Datta et al. set the basis for modeling stencil computations with the approach of

streamed and non-streamed data for Rivera blocking. However, there are at least two issues

which were not considered in their works. First, they were taking into account only low-

order 3D stencil computations (7-point or 27-point in a compact fashion). Nevertheless, in

many scientific computing applications, high-order stencils are required, from 25-point star-

like stencils [9] upwards [12, 69]. Second, the memory model is approached as an unified

homogeneous hierarchy, leaving aside multi-level cache peculiarities of modern architectures.

Furthermore, the number of available registers in the ALU or the different cost between load

and store operations are not considered in their model. We do believe that all these aspects

must be taken into account in order to lay down a flexible, accurate and reliable model

suitable for any kind of stencil computation and architecture. However, as far as we know,

no stencil computation model with such characteristics can be found in the literature, which

Chapter 6. Performance Modeling of Stencil Computations 101

motived us to develop the current work.

Regression analysis has also shown some appeal for modeling stencil computations. Rah-

man et al. [71] developed a set of formulas via regression analysis to model the overall

performance in 7 and 27-point Jacobi and Gauss-Seidel computations. Their intent was not

to predict absolute execution time but to extract meaningful insights that might help develop-

ers to improve effectively their codes. The time-skewing technique has been also modelized

by Strzodka et al. [78]. They proposed a performance model for their cache accurate time

skewing (CATS) algorithm, where the system and the cache bandwidths were estimated us-

ing regression analysis. The CATS performance model considered only two levels of memory

hierarchy, and therefore it could be inaccurate on some HPC architectures. Their aim was to

find out which hardware improvements were required in single-core architectures to match

the performance of future multi-core systems. The main disadvantage of regression analysis

techniques is that they are based on an extensive collection of empirical data which must be

gathered for each configuration (stencil type, problem size and architecture). This exhaustive

number of executions makes regression analysis an infeasible technique to obtain immediate

results.

Likewise, performance modeling has been successfully deployed into other numerical ar-

eas such as sparse matrix vector multiplications [62] and generic performance models for

bandwidth-limited loop kernels [40, 81, 82].

6.3 Multi-Level Cache Performance Model

In this section, we present the basis for a flexible and accurate model suitable for a wide

range of stencil computations and architectures. As mentioned before, the intricacy of the

multi-level cache hierarchy has to be considered to predict accurately the behavior of stencil

computations in modern architectures. This work is actually composed of two main parts, an

initial research where the basis of the model were settled, and a second research stage where

some concepts of the initial model were clearly improved and extended to fulfill the coverage

of the complex architectures.

It is a widely accepted fact that stencil computations are usually dominated by the data

transfer latency [21, 29]. Therefore, this performance model considers stencil computations

as memory-bound, where the cost of computing the floating-point operations is assumed neg-

ligible due to the overlap with considerable memory transfers. This assumption is especially

true for large domain problems where, apart from compulsory misses, capacity and conflict

misses arise commonly leading to a low OI [25]. Likewise, interferences between data and

instructions at cache level are not taken into account.

This section proceeds as follows: firstly, we review the base model. Secondly, the number

of read and write misses for stencil computations are approximated. And finally, some pecu-

liarities, like prefetching and other algorithmic optimizations, such blocking or Semi-stencil,

are added to the model.

Chapter 6. Performance Modeling of Stencil Computations 102

Algorithm 14 The classical stencil algorithm pseudo-code. II, JJ , KK are the dimensions
of the data set including ghost points. ℓ denotes the neighbors used for the central point
contribution. CZ1...Zℓ, CX1...Xℓ, CY 1...Y ℓ are the spatial discretization coefficients for each di-
rection and C0 for the self-contribution. Notice that the coefficients are considered symmetric
and constant for each axis.

1: for t = 0 to timesteps do ⊲ Iterate in time
2: for k = ℓ to KK − ℓ do ⊲ Y axis
3: for j = ℓ to JJ − ℓ do ⊲ X axis

4: for i = ℓ to II − ℓ do ⊲ Z axis
5: X t

i,j,k = C0 ∗ X
t−1
i,j,k

+CZ1 ∗ (X
t−1
i−1,j,k + X t−1

i+1,j,k) + . . .+ CZℓ ∗ (X
t−1
i−ℓ,j,k + X t−1

i+ℓ,j,k)

+CX1 ∗ (X
t−1
i,j−1,k +X t−1

i,j+1,k) + . . .+ CXℓ ∗ (X
t−1
i,j−ℓ,k + X t−1

i,j+ℓ,k)

+CY 1 ∗ (X
t−1
i,j,k−1 + X

t−1
i,j,k+1) + . . .+ CY ℓ ∗ (X

t−1
i,j,k−ℓ + X

t−1
i,j,k+ℓ)

6: end for

7: end for

8: end for

9: end for

6.3.1 Base Model

Considering a problem size of I × J ×K points of order ℓ, where I is the unit-stride (Z axis)

and J and K the least-stride dimensions (X and Y axes), an amount of Pread = 2× ℓ+1 and

Pwrite = 1 Z-X planes of X t−1 are required to compute a single X t plane (see Algorithm 14).

Thus, the total data to be held in memory to compute one k iteration of the sweep is

Stotal = Pread × Sread + Pwrite × Swrite, (6.3)

being Sread = II × JJ and Swrite = I × J their size in words. Notice that II, JJ and KK

are the domain problem dimensions including the ghost points (2× ℓ).

Likewise, the whole execution time (Ttotal) on an architecture with n levels of cache

is estimated based on the aggregated cost of transferring data on three memory hierarchy

groups: first (TL1), intermediate (TL2 to TLn) and last (TMemory),

Ttotal = TL1 + · · ·+ TLi + · · ·+ TLn + TMemory . (6.4)

Each transferring cost depends on their hits and misses and is computed differently for

each group. But, in general, the transferring cost (TLi = HitsdataLi × T data
Li) is based on the

latency of bringing as much data (word or cacheline) as required (HitsdataLi = MissesdataLi−1−

MissesdataLi) from the cache level to the CPU (T data
Li = data/Bwread

Li) in order to compute the

stencil. Finally, the amount of misses issued at each cache level is estimated as

MissesLi = ⌈II/W ⌉ × JJ ×KK × nplanesLi , (6.5)

where W = cacheline/word is the number of words per cacheline, and nplanesLi is the

Chapter 6. Performance Modeling of Stencil Computations 103

number of II × JJ planes read from the next cache level (Li+1) for each k iteration due to

possible compulsory, conflict or capacity misses.

However, the transferring costs of first and last memory hierarchy groups are computed

in a slightly different way. For example, when the CPU issues a word load or store instruction,

the data is brought from the closer cache level (L1). If the data is not present, a miss is flagged

and passed to the next level of the hierarchy. Recall that a stencil computation requires several

values in the inner loop to compute a single point: grid points (X t−1), weights (CZ,X,Y,0) and

indices (i, j, k) to access grid points. In the CPU register bank, grid points and weights are

kept in Floating-Point Registers (FPR), while indices use General-Purpose Registers (GPR).

Leaving aside compiler optimizations, grid points must be fetched in every sweep of the loop,

whereas weights and indices might be partially reused. However, depending on the order of

the stencil (ℓ), the dimension of the problem (dim) and the available registers (FPRfree and

GPRfree), data reuse becomes burdensome, leading to register spilling and a higher CPU-L1

traffic.

Two different ways were devised to estimate the data brought directly from the first level

(Hitsword
L1); an initial method based on register pressure prediction, and a more accurate

method based on static analysis of the compiler generated object code:

Register pressure predictor: After a deep analysis of the assembly stencil code on our

testbed architectures, a couple of assertions could be pointed out. First, the required ℓ ×

dim + 1 weights were reused along the sweep if enough FPRfree were available. Second,

the compiler kept one index register for each grid point, except for those points along the unit-

stride dimension (Z axis) that shared the same index (2× ℓ× (dim− 1)+1). Likewise, index

registers were also reused whether enough GPRfree resources existed. Using this assertions,

we proceeded to estimate the register pressure (Reg{grid,weight,index}) and the hits (Hitsword
L1)

to compute the whole domain (I × J ×K) as,

Reggrid = 2× ℓ× dim+ 1

Regindex = max((2× ℓ× (dim− 1) + 1) −GPRfree, 0)

Regweight = max((ℓ× dim+ 1)− FPRfree, 0)

Hitsword
L1 = (Reggrid +Regweight +Regindex)× I × J ×K −Missesword

L1

(6.6)

where FPRfree and GPRfree were speculated using the specifications of the architecture

and the register management policy of the compiler. Nevertheless, this method poses many

difficulties to predict accurately the L1 accesses due to the extra information about the regis-

ter usage, making this strategy an infeasible option.

Static code analysis: In this method, the register pressure was directly estimated by count-

ing the number of loads issued to the memory hierarchy through static analysis of the com-

piler generated object. This value remains constant for a single iteration of the inner loop

and can be deterministically computed with binary analysis tools that determine the number

Chapter 6. Performance Modeling of Stencil Computations 104

Evicted

Totally reused Compulsory misses

Partially reused Conflict and/or capacity misses between planes

Conflict and/or capacity misses between columns

Case 1

 Y
 tr

avers
in

g

dire

ct
io

n

0
1

2

3

Z

X

Case 2

0
1

2

3

Z

X

Case 4

0
1

2

3

Z

X

Case 3

0
1

2

3

Z

X

 Y
 tr

avers
in

g

 d

ire
ct

io
n

Figure 6.2: Cases considered for cache misses during the k sweep of the stencil computation.
Each plane color represents the misses generated when accessing the plane. A light color
means none or few misses and a dark color implies a high ratio of misses.

of loads issued in a section of code. The main advantage of this method is that it collects

precise information and must be conducted only once per binary code, being an option not

prone to errors.

Finally, the number of accesses to the last level can be computed as HitscachelineMemory =

MissescachelineLn given that data is always allocated in the last hierarchy level. Therefore,

any miss issued by the previous cache hierarchy level (Ln) will generate necessarily a hit in

the main memory.

6.3.2 Cache Miss Cases and Rules

The correct estimation of nplanesLi is crucial for the model accuracy. To do so, four miss

cases (C1, C2, C3 and C4, ordered from lower to higher penalty) and four rules (R1, R2, R3

and R4) are devised. Each of these rules triggers the transition from one miss case scenario

(see Figure 6.2) to the next one. In this model, the rules are linked together, and therefore

triggered in sequential order, thus exposing different levels of miss penalty.

Rule 1 (R1): The best possible scenario (lower bound) is likely to happen when all the

required Z-X planes (Stotal) to compute one k iteration fit loosely (Rcol factor) into the

cache level (sizeLi). This yields to only compulsory misses and to the following rule, R1 :

((sizeLi/w)×Rcol ≥ Stotal).

Rule 2 (R2): Conversely to R1, when all the required planes do not fit loosely in cache,

except the k-central plane with a higher temporal reuse (less chance to be evicted from

cache), conflict misses are produced among planes. This scenario is likely to happen when

the following rule is true, R2 : ((sizeLi/w) > Stotal).

Rule 3 (R3): On a third possible scenario, it is assumed that despite the whole data set

does not fit in cache (Stotal), the k-central plane does not overwhelm a significant part of the

Chapter 6. Performance Modeling of Stencil Computations 105

cache (Rcol factor). Therefore, the possibility of temporal reuse is reduced compared to R2

but not canceled completely. This scenario can occur when, R3 : ((sizeLi/w)×Rcol > Sread).

Rule 4 (R4): The worst scenario (upper bound) appears when neither the planes nor the

columns of the k-central plane fit loosely in the cache level. Then, capacity and conflict misses

arise frequently, resulting as well in fetching the k-central plane at each j iteration of the loop.

This scenario gives the following rule, R4 : ((sizeLi/w)×Rcol < Pread × II).

w is the word size (in single or double precision), and Rcol is a factor proportional to the

required data by the k-central plane with respect to the whole dataset (Pread/2Pread − 1).

Putting all the ingredients together, the computation of nplanesLi is yielded by the following

conditional equations:

nplanesLi(II, JJ) =

C1 : 1, if R1

C1 ⊔ C2 : (1, Pread − 1], if ¬R1 ∧R2

C2 ⊔ C3 : (Pread − 1, Pread], if ¬R2 ∧R3

C3 ⊔ C4 : (Pread, 2Pread − 1], if ¬R3 ∧ ¬R4

C4 : 2Pread − 1, if R4 ,

(6.7)

which only depends on II and JJ parameters for a given architecture and a stencil order (ℓ).

Figure 6.3 shows an example of how nplanesLi evolves with respect to II × JJ parameter.

Lower bound

U���� ����d

(size of plane)

Figure 6.3: The different rules R1, R2, R3 and R4 bound the size of the problem (abscissa:
II × JJ) with the miss case penalties (ordinate: 1, Pread − 1, Pread and 2Pread − 1).

Large discontinuities can appear in transitions of Equation 6.7 (C1 ⊔ C2, C2 ⊔ C3 and

C3 ⊔ C4). This effect can be partially smoothed by using interpolation methods. Apart from

the discrete transitioning, three types of interpolations have been added in our model: linear,

exponential and logarithmic. An interpolation function (f(x, x0, x1, y0, y1)) requires five in-

Chapter 6. Performance Modeling of Stencil Computations 106

put parameters, the X-axis bounds (x0 and x1), the Y -axis bounds (y0 and y1) and the point

in the X-axis (x) to be mapped into the Y -axis (y). In our problem domain, the X-axis rep-

resents the II × JJ parameters, whereas the Y -axis is the unknown nplanesLi. For instance,

for C1 ⊔ C2 transition, isolating II from R1 and R2 rules, IImin (x0) and IImax (x1) are re-

spectively obtained, bounding the interpolation. By using their respective rules, and isolating

the required variable for X-axis, the same procedure is also applied to the remaining tran-

sitions of Equation 6.7. In this way, an easy methodology is presented to avoid unrealistic

discontinuities for the model.

6.3.3 Cache Interference Phenomena: II×JJ Effect

As stated before, three types of cache misses (3C) can be distinguished: compulsory (cold-

start), capacity and conflict (interference) misses. Compulsory and capacity misses are rel-

atively easily predicted and estimated [79]. Contrarily, conflict misses are hard to evaluate

because it must be known where data are mapped in cache and when it will be referenced. In

addition, conflict misses disrupt data reuse, spatial or temporal. For instance, a high frequency

of cache interferences can lead to the rare ping-pong phenomena, where two or more mem-

ory references fall at the same cache location, therefore competing for cache-lines. Cache

associativity can alleviate this issue to a certain extent by increasing the cache locations for

the same address.

The cache miss model presented in Subsection 6.3.2 sets the upper bound for each of

the four cases in terms of number of planes read for each plane written (nplanesLi), thus

establishing a discrete model. Nevertheless, this discrete scenario is unlikely to happen for

cases C2, C3 and mainly C4, due to their dependency on capacity and especially on conflict

misses. There are two factors that clearly affect conflict misses: the reuse distance for a given

datum [79] and the intersection of two data sets [40], giving consequently a continuum

scenario. The former depends on temporal locality; the more data is loaded, the higher the

probability that a given datum may be flushed from cache before its reuse. On the other hand,

the latter depends on two parameters: the array base address and its leading dimensions.

In stencil computations the Z-X plane (II×JJ size) and the order of the stencil (Pread =

2 × ℓ + 1) are the critical parameters that exacerbate conflict misses. The conflict misses are

related to the probability of interference, P (i), and the column reuse of the central k-plane.

P (i) is proportional to the words of the columns to be reused (II× (Pread− 1)) after reading

the first central column with respect to the whole size of the central k-plane to be held in

cache (II × JJ),

P (i) =
II × JJ − II × (Pread − 1)

II × JJ
= 1−

Pread − 1

JJ
∈ [0, 1] , (6.8)

which yields to a logarithmic function depending on Pread, II and JJ parameters. A zero

value means no conflict misses at all, whereas a probability of one means disruption of tem-

poral reuse (high ratio of interferences) for columns of the central k-plane. Then, the P (i)

Chapter 6. Performance Modeling of Stencil Computations 107

probability can be added to Equation 6.7 as

nplanesLi′ = nplanesLi × P (i) , (6.9)

tailoring the boundary of read misses to their right value depending on the conflict misses

issued. Thus, the larger the data used to compute one output plane (I × J), the higher the

probability of having capacity and conflict misses. Figure 6.4 shows the accuracy difference

between the model with and without cache interference effect.

 1

 2

 3

 4

 5

1
6

x
8

1
6

x
1

6
1

6
x
2

4
1

6
x
3

2
1

6
x
4

0
1

6
x
4

8
1

6
x
5

6
1

6
x
6

4
1

6
x
1

2
8

1
6
x
2
5
6

1
6
x
5
1
2

1
6
x
1
0
2
4

3
2

x
1

6
3

2
x
2

4
3

2
x
3

2
3

2
x
4

0
3

2
x
4

8
3

2
x
5

6
3

2
x
6

4
3

2
x
1

2
8

3
2
x
2
5
6

3
2
x
5
1
2

3
2
x
1
0
2
4

6
4

x
1

6
6

4
x
2

4
6

4
x
3

2
6

4
x
4

0
6

4
x
4

8
6

4
x
5

6
6

4
x
6

4
6

4
x
1

2
8

6
4
x
2
5
6

6
4
x
5
1
2

6
4
x
1
0
2
4

1
2

8
x
1

6
1

2
8

x
2

4
1

2
8

x
3

2
1

2
8

x
4

0
1

2
8

x
4

8
1

2
8

x
5

6
1

2
8

x
6

4
1

2
8

x
1

2
8

1
2
8
x
2
5
6

1
2
8
x
5
1
2

1
2
8
x
1
0
2
4

2
5

6
x
1

6
2

5
6

x
2

4
2

5
6

x
3

2
2

5
6

x
4

0
2

5
6

x
4

8
2

5
6

x
5

6
2

5
6

x
6

4
2

5
6

x
1

2
8

2
5
6
x
2
5
6

2
5
6
x
5
1
2

2
5
6
x
1
0
2
4

5
1

2
x
1

6
5

1
2

x
2

4
5

1
2

x
3

2
5

1
2

x
4

0
5

1
2

x
4

8
5

1
2

x
5

6
5

1
2

x
6

4
5

1
2

x
1

2
8

5
1
2
x
2
5
6

5
1
2
x
5
1
2

5
1
2
x
1
0
2
4

1
0

2
4

x
1

6
1

0
2

4
x
2

4
1

0
2

4
x
3

2
1

0
2

4
x
4

0
1

0
2

4
x
4

8
1

0
2

4
x
5

6
1

0
2

4
x
6

4
1

0
2

4
x
1

2
8

1
0
2
4
x
2
5
6

1
0
2
4
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0

4
8

x
1

6
2

0
4

8
x
2

4
2

0
4

8
x
3

2
2

0
4

8
x
4

0
2

0
4

8
x
4

8
2

0
4

8
x
5

6
2

0
4

8
x
6

4
2

0
4

8
x
1

2
8

2
0
4
8
x
2
5
6

2
0
4
8
x
5
1
2

2
0
4
8
x
1
0
2
4

R
at

io
 p

er
 Z

-X
 p

la
ne

 (
np

la
ne

s L
i)

Plane size (I x J)

1 (LB)

Pread-1

Pread

2Pread-1 (UB)

Actual L1 Misses

Actual L2 Prefetches

Pred. L1 Misses w/o CI

Pred. L2 Prefetches w/o CI

Pred. L1 Misses w/ CI

Pred. L2 Prefetches w/ CI

Figure 6.4: Cache interference (CI) effect as a function of problem size. These results are for
a Naive 7-point stencil (ℓ = 1) on Intel Xeon Phi. The corresponding read misses bounds for
nplanesLi are shown as 1 (Lower Bound), 2 (Pread − 1), 3 (Pread) and 5 (2Pread − 1, Upper
Bound). Whilst Equation 6.9 is not applied, a discrete model is obtained (straight lines with
squares and diamonds). Conversely, its use leads to a continuum model (inverted and non-
inverted triangles).

6.3.4 Additional Time Overheads

During the execution of HPC stencil codes, some additional overheads may arise. In this

subsection, we briefly explain how these overheads are weighed in our stencil performance

model. The overheads are categorized into three groups: parallelism, memory interferences

and computational bottlenecks.

• Intra-node parallelism (OpenMP and Posix threads): small overheads may appear due

to the thread initialization and synchronization tasks whether data is disjoint among

threads. This overhead usually has a clear impact only on small dataset problems. In

order to characterize its effect on the stencil model, a small (order of milliseconds) and

constant ǫ (TOMP) is included.

Chapter 6. Performance Modeling of Stencil Computations 108

• Memory contention: TLB misses, ECC memories (error checking & corruption) and

cache coherence policies between cores (e.g. MESI protocol) affect noticeably the mem-

ory performance. Nevertheless, all these effects are already taken into account in the

memory characterization through our STREAM2 tool (see Section 6.4 for further de-

tails).

• Computational bottlenecks: stencil computations are mainly considered memory bound

instead of compute bound (low OI) [25, 86]. Therefore, for the sake of simplicity, the

tampering effect of floating-point operations is expected to be negligible, and thus not

considered.

6.4 From Single-core to Multi-core and Many-core

Current HPC platforms are suboptimal for scientific codes unless they take fully advantage of

simultaneous threads running on multi- and many-cores chips. Some clear examples of such

architectures are Intel Xeon family, IBM POWER7 or GPGPUs. All of them with tens of cores

and their ability to run in SMT mode. As a consequence, the parallel nature of the current

stencil computation deployments leads us to extend accordingly our model. To that end, the

parallel memory management is a main concern, and this section is fully devoted to sort it

out.

In order to characterize the memory management of multi-core architectures, the band-

width measurement is critical. The bandwidth metrics are captured for different configu-

rations using a bandwidth profiler such as STREAM2 benchmark [54]. To validate the re-

sults, our STREAM2 version [24] has been significantly extended by adding new features

such as vectorization (SSE, AVX and Xeon Phi ISAs), aligned and unaligned memory access,

non-temporal writes (through Intel pragmas), prefetching and non-prefetching bandwidths,

thread-level execution (OpenMP) and hardware counters instrumentation (PAPI).

The process to obtain bandwidth measurements is straightforward. First, the thread num-

ber is set through the OMP_NUM_THREADS environment variable. Then, each thread is

pinned to a specific core of the platform (e.g. using numactl or KMP_AFFINITY variable in

Xeon Phi architecture). Finally, the results obtained for DOT (16 bytes/read) and FILL (8

bytes/write) kernels are respectively used as read and write bandwidths for the different

cache hierarchies of the model. Figure 6.5 shows an example of the bandwidths used for a

particular case in the Intel Xeon Phi platform. The importance of mimicking the environment

conditions is crucial, in particular the execution time accuracy of the model is very sensitive

to the real execution conditions. This means that the characterization of the memory band-

width must be similarly performed in terms of: number of threads, threads per core, memory

access alignment, temporal or non-temporal writes and SISD or SIMD instruction set.

Additionally, there are some memory resources that might be shared among different

threads running in the same core or die. In order to model the behaviour in such cases,

Chapter 6. Performance Modeling of Stencil Computations 109

1

5

20

40

60
80

 10

 1000 10000 100000 1e+06

G
B

/s

Size in words

Read Stream
Write Stream

Read Non-stream
Write Non-stream

Figure 6.5: STREAM2 results for Intel Xeon Phi architecture (4 threads, 2 per core). Each
plateaux represents the sustainable bandwidth of a cache level.

the memory resources are equally split among all threads. This is, if we have a cache size

(sizeLi in rules R1,2,3,4) of N KBytes, then each thread would turn out to have a cache size

of sizeLi = N/nthreadscore.

6.5 Modeling the Prefetching Effect

Prefetching is a common feature in modern architectures. It enables a reduction of cache

misses, thus increasing the hit ratio and minimizing the memory latency. Data prefetching,

also known as streaming in the literature, consists of fetching data eagerly from main memory

into cache before it is explicitly requested. As the processor-memory performance gap has

widened, the significance of prefetching has noticeably increased. Prefetching comes in two

flavours, hardware and software driven. Furthermore, most modern architectures support

aggressive prefetching of streams at different levels of the cache hierarchy simultaneously,

which can can have a drastic effect in the application performance. Hence, it is necessary to

include prefetching capabilities to the model so that the stencil behaviour can be predicted

in current architectures.

This section is devoted to discuss and introduce the necessary extensions into the model

to effectively capture the prefetching behavior.

6.5.1 Hardware Prefetching

The modeling of the hardware prefetching mechanism is complex, in particular to figure

out whether a stream triggers any misses. We devised two different methods for this pur-

Chapter 6. Performance Modeling of Stencil Computations 110

pose: a simple approach based on categorizing the Z-X planes that are prefetched and non-

prefetched, and a second method based on an efficiency metric.

Prefetched and non-prefetched planes: Misses of the model are divided into two groups,

prefetched and non-prefetched, depending on the concurrent streams that the prefetching

engine supports. First, the Z-X planes that can be prefetched (nplanesSLi) and not prefetched

(nplanesNS
Li) at the cache level i are computed as

nplanesNS
Li = max(nplanesLi − prefLi, 0) nplanesSLi = nplanesLi − nplanesNS

Li

MissesNS
Li = ⌈II/W ⌉ × JJ ×KK × nplanesNS

Li MissesSLi = ⌈II/W ⌉ × JJ ×KK × nplanesSLi

(6.10)

where prefLi refers to the number of stream channels supported by the current hierarchy

level i. Then, prefetched and non-prefetched cache line misses are evaluated using their

nplanesLi. Next, hits are estimated within each group using the general rule (HitsLi =

MissesLi−1 −MissesLi) but using their specific cache misses as

HitsNS
Li = MissesNS

Li−1 −MissesNS
Li HitsSLi = MissesSLi−1 −MissesSLi

TNS
Li = cacheline/Bwread−NS

Li TS
Li = cacheline/Bwread−P

Li

TLi = HitsNS
Li × TNS

Li +HitsSLi × TS
Li

(6.11)

aggregating the partial transferring costs, which have been computed with their correspond-

ing bandwidths (TNS
Li and T S

Li), to obtain the final TLi. Recall, that the actual bandwidths

for prefetched and non-prefetched streams are computed through the STREAM2 benchmark

(see Section 6.4).

Prefetching effectiveness: Recent works [52, 56] have characterized the impact of prefetch-

ing mechanism on scientific application performance. They establish a new metric called

prefetching effectiveness, which computes the fraction of data accesses to the next memory

level that are initiated by the hardware prefetcher. Therefore, for a given data cache level

(DC), its prefetching effectiveness is computed as

DCeffectiveness = DC_Req_PF/DC_Req_All ∈ [0, 1] , (6.12)

where DC_Req_PF refers to the number of cache-lines requests initiated by the prefetching

engine, and DC_Req_All represents the total number of cache-lines transferred to the DC

level (including demanding and non-demanding loads). This approach has been adopted in

our model as the alternative way to accurately capture the prefetching behaviour.

In order to be able to characterize the prefetching effectiveness in our testbed platform, the

Prefetechers micro-benchmark was used (see Section 3.6). This benchmark traverses a chunk

of memory simultaneously by different threads and changes the number of stream accesses in

a round-robin fashion. Then, to compute their effectiveness, a set of hardware performance

Chapter 6. Performance Modeling of Stencil Computations 111

counters were gathered through PAPI. For instance, on Intel Xeon Phi architecture, two na-

tive events were instrumented to compute the prefetching effectiveness: HWP_L2MISS and

L2_DATA_READ_MISS_MEM_FILL. Figure 6.6 shows the results obtained for this platform

over the L2 hardware prefetcher.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
er

ce
nt

ag
e

w
.r

.t.
 m

em
or

y
ac

ce
ss

es

Number of simultaneous streams per thread

1 thread x Core

2 threads x Core

4 threads x Core

Figure 6.6: L2 prefetching efficiency for Intel Xeon Phi architecture. The efficiency has been
computed using one core and varying the SMT configuration from 1 to 4 threads.

The prefetching effectiveness (DCeffectiveness) is then used to compute the total number

of cache-line misses that are fetched using streaming bandwidths (nplanesSLi) and those that

are fetched using a regular bandwidth (nplanesNS
Li):

nplanesSLi = nplanesLi ×DCeffectiveness,

nplanesNS
Li = nplanesLi × (1−DCeffectiveness) .

(6.13)

Similarly to the memory resources, prefetching engines might be shared among threads

running on the same core. In such scenarios, the prefetching effectiveness is computed with our

prefetching tool varying the number of threads per core (for instance, 2 and 4 threads results

can be observed in Figure 6.6). In fact, these results are insightful and help to understand

when the core performance might be degraded due to excessive simultaneous streams, thus

adversely affecting the parallel scaling of stencil computations.

6.5.2 Software Prefetching

Software prefetching is a technique where compilers, and also programmers, explicitly insert

prefetching operations similar to load instructions into the code. Predicting the performance

of software prefetching is challenging. Compilers use proprietary heuristics in order to de-

cide where (code location), which (data array) and how long in advance (look-ahead in

bytes) data should be prefetched. Furthermore, programmers can even harden this task by

adding special hints in the code to help the compiler make some of these decisions [59]. As

software prefeching produces regular loads in the cache hierarchy, it also prevents hardware

Chapter 6. Performance Modeling of Stencil Computations 112

prefetcher to be triggered when it performs properly [34]. Thus, the failure or success of

software prefetching affects collaterally the hardware prefeching behaviour.

As a result of all above commented issues, software prefetching has not been taken into

account in the present work. The software prefetching can be disabled in Intel compilers by

using the pragma noprefetch or the -opt-prefetch=0 flag during the compilation.

6.6 Optimizations

The state-of-the-art in stencil computation is constantly being extended with the publication

of several optimization techniques in recent years. Under specific circumstances, some of

those techniques improve the execution performance. For instance, space blocking is a tiling

strategy widely used in multi-level cache hierarchy architectures. It promotes data reuse

by traversing the entire domain into small blocks of size TI × TJ which must fit into the

cache [43, 72]. In consequence, space blocking is especially useful when the dataset structure

does not fit into the memory hierarchy. This traversal order reduces capacity and conflict

misses in least-stride dimensions increasing data locality and overall performance. Notice

that a search of the best block size parameter (TI×TJ) must be performed for each problem

size and architecture.

A second example of stencil optimization is the Semi-stencil algorithm [25]. This algo-

rithm changes the way in which the spatial operator is calculated and how data is accessed in

the most inner loop. Actually, the inner loop involves two phases called forward and backward

where several grid points are updated simultaneously. By doing so, the dataset requirements

in the inner loop are reduced, while keeping the same number of floating-point operations.

Thereby, increasing data reuse, and thus the OI. Conversely to read operations, the number

of writes are slightly increased because the additional point updates. Due to this issue, this

algorithm only improves performance in medium-large stencil orders (ℓ > 2).

These two stencil optimizations have been included into our model. The motivation of

modeling them is two-fold. First, to reveal insights of where and why an algorithm may

perform inadequately for a given architecture and environment. Second, to analytically guide

the search for good algorithmic parameter candidates without the necessity of obtaining them

empirically (brute force).

6.6.1 Spatial Blocking

Space blocking is implemented in our model by including similar general ideas as [21], but

adapting them in order to suit the advantages of our cost model. Basically, the problem do-

main is traversed in TI × TJ × TK blocks. Then, first the blocks on each direction are com-

puted as NBI = I/T I, NBJ = J/TJ , and NBK = K/TK. Therefore, the total number of

tiling iterations to perform are NB = NBI × NBJ × NBK. Blocking may be performed

as well in the unit-stride dimension. Given that data is brought to cache in multiples of the

Chapter 6. Performance Modeling of Stencil Computations 113

IxTJxK block

K
 (t

ra
ve

rs
in

g
di

re
ct

io
n)

I
(u

n
it

-s
tr

id
e)

TJ

TI

TP

LAP

S
tre

a
m

 b
a
n
d
w

id
th

Additional

loads

Non-stream

bandwidth

warm-up

Figure 6.7: Modeling of spatial blocking optimization. Left: spatial-blocking layout with I ×
TJ ×K tiles. Right: detail of prefetching effect when TI 6= I, disrupting memory access and
increasing data transfers.

cache-line, additional transfer overhead may arise when TI size is not multiple of cache-line.

This is considered in the model by reassigning I, J , K and their extended dimensions as

follows:

I = ⌈TI/W ⌉ ×W, J = TJ, K = TK,

II = ⌈(TI + 2× ℓ)/W ⌉ ×W, JJ = TJ + 2× ℓ, KK = TK + 2× ℓ .
(6.14)

The new II and JJ parameters are then used for rules R1,2,3,4 to estimate nplanesLi based

on the blocking size. Finally, Equation 6.5 shall be rewritten as

Misses
[S,NS]
Li = ⌈II/W ⌉ × JJ ×KK × nplanes

[S,NS]
Li ×NB , (6.15)

where NB factor is considered to adjust streamed (SLi) and non-streamed (NS
Li) misses de-

pending on the total number of blocking iterations.

Architectures with prefetching features may present performance degradation when TI 6=

I [42]. Blocking on the unit-stride dimension may tamper streaming performance due to the

interference caused to the memory access pattern detection of the prefetching engine (see

Figure 6.7). The triggering of the prefetching engine involves a warm-up phase, where a

number of cache-lines must be previously read (TP). Additionally, prefetching engines keep

a look-ahead distance (LAP) of how many cache-lines to prefetch in advance. Disrupting

a regular memory access will produce LAP additional fetches to the next cache level if the

prefetching engine was triggered. Considering all these penalties, the cache misses are up-

dated with:

MissesNS
Li

+
= TP × JJ ×KK × nplanesNS

Li ×NB, if II/W ≥ TP,

MissesSLi
+
= LAP × JJ ×KK × nplanesSLi ×NB, if II/W ≥ TP .

(6.16)

TP and LAP parameters can be obtained from processor manufacturer’s manuals or

Chapter 6. Performance Modeling of Stencil Computations 114

empirically through our prefetching benchmark. To deduce such parameters, the Prefetching

benchmark was modified to traverse arrays in a blocked fashion whilst TI parameter was

slowly increased through consecutive executions. Then, the prefetching hardware counter

was monitored in order to flag at what precise point (TP = ⌈TI/W ⌉) the prefetching metric

soared significantly. Likewise, LAP parameter was estimated by counting the extra prefetch-

ing loads (apart from the TP) that were issued.

6.6.2 Semi-stencil Algorithm

Adapting the model for the Semi-stencil algorithm is equally straightforward. Indeed, this can

be achieved by setting Pread and Pwrite parameters correctly. By default, in a partial Semi-

stencil implementation (forward and backward phases on X and Y axes), ℓ + 1 Z-X planes

from X t and one X t+1 plane (k-central plane update) are read for each k iteration. As output,

two planes are written back as partial (X t+1
i,j,k+ℓ) and final (X t+1

i,j,k) results. However, these

values can slightly increase when no room is left for the k-central columns; thus yielding

Pread = ℓ+ 2, Pwrite = 2, if ¬R4

Pread = ℓ+ 3, Pwrite = 3, if R4

(6.17)

as the new data requirements to compute one output plane. This adaptability reveals the

model resilience, where an absolutely different stencil algorithm can be modeled by simply

tuning a couple of parameters.

6.7 Experimental Results

In this section, the experimental results are presented to validate the robustness of the model.

To that end, the predicted results (execution times and cache misses) are compared with

actual (execution times and hardware or software counted cache misses), computing also

their relative errors. In order to achieve that, we have followed a methodology that consists

in the following five stages:

Stage 1. Test-cases Parameters: due to the sheer parameter combinations to be analysed,

some representatives test cases are selected within the experimental space. The test cases

space is a combination of stencil size, dataset dimension, algorithm implementation and pa-

rameters for each specific optimization algorithm.

Stage 2. Real Execution Performance: the test cases selected in the previous stage are

executed and the results are stored for further use. Two sets of real data have been collected

for the validation step: the real execution times and hardware or software counters (cache

misses and prefetching metrics). In order to gather these metrics, the tools presented in

Section 3.4 have been used.

Chapter 6. Performance Modeling of Stencil Computations 115

Stage 3. Model Parameters and Architectural Characterization: each platform informa-

tion is gathered, such as cacheline size, cache hierarchy size, prefetching capabilities and

bandwidth (streamed and non-streamed). Some of them, for instance memory bandwidth

and prefetching effectiveness, are obtained through characterization benchmarks such as

STREAM2 and Prefetching (see Sections 6.4 and 6.5). The rest of the information is obtained

reviewing the manufacturer’s datasheets. Afterwards, the consolidated information is added

to the model through configuration files.

Stage 4 & 5. Model Performance and Validation: finally, the predicted performance is

obtained by using the model for the test cases selected in Stage 1 and are checked against

actual executions from Stage 2. As shown in Figure 6.8, this methodology has a feedback

mechanism, where model parameters can be adjusted and experiments repeated if the rela-

tive error computed in Stage 5 is out of acceptable correctness range. It may occur that some

characteristics are not clearly specified by the manufacturer, then a process of refinement

must be performed. This refinement process is conducted executing Stages 3-4-5 as many

times as it is needed.

 1. Test cases

 parameters
2. Real performance

 data

3. Model

 parameters
4. Model performance

 data

5. Validation

Figure 6.8: Work-flow of the model methodology with feedback mechanism.

Due to the enhancing process conducted during the research of the stencil model, the

experimental results are presented in two separated sections. The first section shows the

initial stage results for the preliminary model on three different platforms. The second section

exposes the results of the advanced model on a complex many-core architecture. Table 6.1

summarizes the features enabled for each experimental results group.

All experimental results in this section were validated using the StencilProbe [43], a syn-

thetic benchmark that we have extended. The new StencilProbe features [25] include: differ-

ent stencil orders (ℓ), thread support (OpenMP), SIMD code, instrumentation and new opti-

mization techniques (e.g. spatial blocking and Semi-stencil). This benchmark implements the

stencil scheme shown in Algorithm 3, where star-like stencils with symmetric and constant

coefficients are computed using 1st order in time and different orders in space (see Table 3.6).

6.7.1 Preliminary Model Results

The stencil sizes of the preliminary experiments carried out are 13, 25, 43 and 85-point. For

the sake of simplicity, we have collapsed the 3D dataset dimension to cubic (N3). The dataset

size ranges from 1283 to 5123 points, in strides of 16. Thus, in total, 288 test case results have

Chapter 6. Performance Modeling of Stencil Computations 116

Features Preliminary Model Advanced Model

Base Model Multi-Level cache Multi-Level cache
L1 read estimation Register predictor Static analysis
Cases & Rules 4 Cases & Bounds 4 Cases/Rules & Bounds

Interpolation ✗ Linear, exponential
Methods and logarithmic
Cache interference ✗ ✓

Multiprocessing Single-core SMT and Multi-core
Overheads ✗ TOMP

Prefetching method Planes policy Prefetching effectiveness
Optimizations ✗ Blocking & Semi-stencil

Architectures Intel Nehalem, AMD Intel Xeon Phi (MIC)
tested Opteron, IBM BG/P

Table 6.1: Features used for preliminary and advanced model results.

been analysed. Table 6.2 details the list of parameters used for the preliminary model on each

platform.

Intel IBM AMD
Parameters Nehalem BlueGene/P Opteron

Register

availability†
GPRfree 10 26 10
FPRfree 12 26 12

Block size cacheline 64 bytes 32/128 bytes 64 bytes

Prefetching
channels

prefL1 2 0 2
prefL2 2 7 0
prefL3 0 0 0

Cache
capacity

sizeL1 32 kB 32 kB 64 kB
sizeL2 256 kB 1920 bytes 512 kB
sizeL3

∗ 8 MB 8 MB 2 MB

Measured

Bandwidth‡

(GB/s)

Bwread
L1 49.4 (23.4) 6.2 (3.2) 29.1 (14.6)

Bwread
L2 29.4 (12.5) 2.1 (1.3) 13.9 (4.1)

Bwread
L3 21.1 (8.1) 2.0 (0.6) 7.6 (2.2)

Bwread
Memory 8.2 (3.5) 2.0 (0.6) 3.3 (1.3)

Bwwrite
L1 49.4 (24.6) 3.3 (3.3) 29.9 (8.6)

Bwwrite
Memory 7.9 (3.9) 3.3 (1.9) 4.9 (0.8)

Table 6.2: Parameters used in the preliminary model. †The available registers have been
estimated doing assembly register analysis of a naive case. ‡Streaming and non-streaming
bandwidths (shown in parenthesis). ∗L3 cache is shared among the cores.

In order to visualize and analyse the amount of data at hand, firstly we review the results

for a couple of interesting cases, and secondly we summarize the whole results in Table 6.3.

In Figure 6.9.Top, we can observe a clear pattern for an AMD Opteron case with a high-order

Chapter 6. Performance Modeling of Stencil Computations 117

stencil. The predicted curve of L2 cache misses diverges from actual (hardware counters) and

simulated (Valgrind) curves. Even so, the relative error with respect to the predicted results

stays in an acceptable 10 to 20% for test cases bigger than 2563. On the other hand, simu-

lated and actual curves follow a similar path, demonstrating that Valgrind cache simulator

can be a reliable tool for those metrics that can not be gathered using hardware counters.

Figure 6.9.Bottom depicts a different scenario, the measured and the predicted execution

times curves follow a closer path, where relative error remains under 12% for medium and

large problems. The main reason for this different behavior is that on high-order stencils (85-

point) the effect of L3 cache and memory latency overwhelms the remaining cache hierarchy

(L1 and L2), thus being the dominant factor of the total execution time. In addition, the exe-

cution time of large problem sizes with high-order stencils is slightly perturbed by the AMD

Opteron prefetching mechanism, with only 2 streamers in the L1 cache, thus diminishing its

effect and easing the prediction by the preliminary model.

 0

 100

 200

 300

 400

 500

 600

 100 150 200 250 300 350 400 450 500 550
0

8

17

25

33

42

50

C
ac

he
 m

is
se

s
x

10
6

E
rr

or
 [%

]

Performance results on Louhi (AMD Opteron) 85-point stencil

predicted L2
HW counted L2

Valgrind simulated L2
relative error (predicted vs HW counted) L2

relative error (predicted vs simulated) L2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 100 150 200 250 300 350 400 450 500 550
0

3

6

9

12

15

T
im

e
[s

]

E
rr

or
 [%

]

Dataset sizes [points]

predicted execution time
measured execution time

relative error

Figure 6.9: AMD Opteron results for the preliminary model with a 85-point naive stencil. On
the top figure, L2 cache misses are shown for the model (predicted), Valgrind (simulated)
and hardware counters results (actual). On the bottom, the execution times are presented
for predicted and measured metrics.

Figure 6.10.Top shows the L1 and L2 results for a 25-point stencil case on Intel Nehalem

architecture. In general, the relative error remains under 5% and the cache metrics follow

the simulated curves except for L1 misses when problem sizes are between 2003 and 4003,

Chapter 6. Performance Modeling of Stencil Computations 118

where the relative error soars considerably. However, in terms of execution time prediction,

the Figure 6.10.Bottom shows that the relative error stays under 15% for the most relevant

part of the graph due to the low effect of the L1 misprediction in the global execution time.

 0

 50

 100

 150

 200

 250

 300

 100 150 200 250 300 350 400 450 500 550
0

1

3

4

5

7

8

C
ac

he
 m

is
se

s
x

10
6

E
rr

or
 [%

]

Performance results on Inti (Intel Nehalem) 25-point stencil

predicted L1
predicted L2

Valgrind simulated L1
Valgrind simulated L2

relative error L1
relative error L2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 150 200 250 300 350 400 450 500 550
0

4

8

11

15

19

22

26

30

T
im

e
[s

]

E
rr

or
 [%

]

Dataset sizes [points]

predicted execution time
measured execution time

relative error

Figure 6.10: Intel Nehalem results for the preliminary model with a 25-point naive stencil.

AMD Opteron IBM BlueGene/P Intel Nehalem

Size 13 25 43 85 13 25 43 85 13 25 43 85

Max 37.2 37.0 18.2 13.4 17.2 24.5 27.9 16.8 46.2 28.9 38.2 20.0
Min 3.5 1.8 1.8 0.5 2.4 0.6 8.7 1.0 0.4 0.6 0.6 2.4

Avg. 13.0 11.6 8.5 5.8 11.1 17.1 21.1 10.8 9.9 11.9 22.1 12.5
Stdev. 16.4 18.7 3.7 2.7 6.8 7.5 10.8 10.1 0.5 7.1 4.9 0.5

Table 6.3: Summary of preliminary model results. Statistics for relative errors (%) between
predicted and measured execution times.

Reviewing the summarized results in Table 6.3, we can conclude that in general, consider-

ing both accuracy and stability, the model performs reasonable well for the AMD architecture,

where the average relative error is 9.7% for all stencil sizes. On the other hand, the model

is less effective on the Intel and especially on the IBM architectures where their maximum

relative errors are higher. In addition, it is important to remark that in a wide range of prob-

lem sizes with low and medium stencil orders (13 and 25-point) the relative error is higher.

Chapter 6. Performance Modeling of Stencil Computations 119

The main cause of this inaccuracy is the misprediction of the prefetching method followed by

the preliminary model. This behavior reveals a serious problem of this approach to capture

accurately any kind of stencil topology and problem size. In contrast, this situation is not

clearly exposed on high order stencils and very large problems due to the diminishing effect

of the prefetching mechanism on the overall execution time.

6.7.2 Advanced Model Results

This subsection estimates through experimental results how accurate is the advanced model

when exposed to: widespread problem sizes, hardware prefetching, thread parallelism and

code optimizations techniques.

A large number of different problem sizes were explored so as to validate the advanced

model accuracy for a wide parametrical space. Recall that the two first dimensions (on Z and

X axes) are the critical parameters that increase the cache miss ratio (nplanesLi) for a given

stencil order (ℓ) and architecture. Therefore, the last dimension K was set to a fixed number,

and the I and J dimensions were widely varied covering a large spectrum of grid sizes.

All the experiments were conducted using double-precision, and the domain decomposition

across threads was performed by cutting in the least-stride dimension (Y axis) with static

scheduling. This scheduling almost avoids the collateral effects between threads reducing the

cacheline invalidation because Read For Ownership (RFO) and the data duplicated among

core’s caches. Table 6.4 summarizes the different parameters used.

Parameters Range of values

Naive sizes (I × J ×K) 8× 8× 128 . . .2048× 1024× 128
Rivera sizes (I × J ×K) 512× 2048× 128
Stencil sizes (ℓ) 1, 2, 4 and 7 (7, 13, 25 and 43-point respectively)

Algorithms {Naive, Rivera} × {Classical, Semi-stencil}

Block sizes (TI and TJ) {8, 16, 24, 32, 64, 128, 256, 512, 1024, 1536, 2048}

Table 6.4: List of parameters used for the model and the StencilProbe benchmark.

We have used a leading hardware architecture in our advanced experiments, the popu-

lar Intel Xeon Phi 5100 series (SE10X model), also known as MIC. This architecture shows

an outstanding appeal for this research due to its support for all of the new hardware fea-

tures that our extended model intend to cover (hardware prefetching and a high level of

parallelism with SMT/SMP).

Hardware counters were gathered for all the experiments so as to validate the model

results against actual executions. Table 6.5 shows the hardware performance counters instru-

mented. The stencil code generated by StencilProbe is vectorized, and therefore only vector

reads were fetched (VPU_DATA_READ) during executions. Additionally, the L2 prefetcher in

Xeon Phi can also prefetch reads for a miss in a write-back operation (L2_WRITE_HIT) when

Chapter 6. Performance Modeling of Stencil Computations 120

it has the opportunity. Then, in order to fairly compare the prefetched read misses of the

model with actual metrics, the L2 prefetches (HWP_L2MISS) were normalized. This normal-

ization was performed by subtracting reads owing to a miss in a write operation scaled by

the prefetching efficiency. Likewise, some writes were considered prefetched (L2_WRITE_HIT

×DCeffectiveness) and others not (L2_WRITE_HIT ×(1−DCeffectiveness)) due to contention

of the L2 prefetching engine. Finally, the remaining miss counters (VPU_DATA_READ_MISS

and L2_DATA_READ_MISS_MEM_FILL) only consider demanding reads, initiated by explicit

reads, and therefore were directly used as non-prefetched read misses. It is important to men-

tion that, in our preliminary model [24], several complex formulas were derived to estimate

the number of reads issued to the first cache level (Hitsword
L1) through a register pressure

predictor. This estimation is not straightforward and lacked accuracy. However, we realized

that this parameter kept constant per loop iteration and could be precisely estimated by per-

forming static analysis of the inner stencil loop only once (counting the numbers of reads in

the object file).

Description Intel Xeon Phi Events Time Cost Formulas

Cycles CPU_CLK_UNHALTED TL1 = (L1 Hits - L1 Misses) ×Bwcline
L1

L1 Hits VPU_DATA_READ TL2 = Bwcline
L2 × (L1 Misses - L2 Misses -

L1 Misses VPU_DATA_READ_MISS (L2 Prefetches - L2 Writes × Pref Eff))

L2 Misses L2_DATA_READ_MISS_ TMem = L2 Misses ×BwNS
Mem +BwS

Mem×
MEM_FILL (L2 Prefetches - L2 Writes × Pref Eff)

L2 Prefetches HWP_L2MISS TWrites = L2 Writes × Pref Eff ×BwS
Write

L2 Writes L2_WRITE_HIT + L2 Writes × (1 - Pref Eff) ×BwNS
Write

Table 6.5: Hardware counters and the formulas used to compute the projected time.

An aim of this subsection is to prove that stencil computations can be accurately mod-

eled on SMT architectures. Therefore, all possible SMT combinations for a single core were

sampled. Our tests were conducted using 4 threads varying their pinning to cores. The In-

tel KMP_AFFINITY environment variable was accordingly set to bind threads to the desired

cores. The SMT configurations tried for each test were: 1 core in full usage (4 threads per

core), 2 cores in half usage (2 threads per core) and 4 cores in fourth usage (1 thread per

core).

Due to the sheer number of combinations sampled, only the most representative and

interesting results are shown. Results have been categorized as a function of core occupancy

(1, 2 and 4 threads per core) in order to explicitly visualize the effect of resource contention

on the actual metrics and test the predicted results.

Figure 6.11 shows the actual and the predicted misses as a factor of nplanesLi with the

advanced model version (prefetched and non-prefetched for L2) on all three SMT configu-

rations using a Naive stencil order of ℓ = 4. In this case 680 different problem sizes (X

axis in figures) were tested per configuration. Recall that software prefetching was disabled,

and therefore, L1 or L2 cache levels do not exhibit collateral effects due to compiler-assisted

prefetch. This figure is very insightful because the empirical results clearly corroborate our

Chapter 6. Performance Modeling of Stencil Computations 121

 0

 2

 4

 6

 8

 10

 12

 14

 16

1
6

x
8

1
6

x
1

6
1

6
x
2

4
1

6
x
3

2
1

6
x
4

0
1

6
x
4

8
1

6
x
5

6
1

6
x
6

4
1

6
x
1

2
8

1
6
x
2
5
6

1
6
x
5
1
2

1
6
x
1
0
2
4

3
2

x
1

6
3

2
x
2

4
3

2
x
3

2
3

2
x
4

0
3

2
x
4

8
3

2
x
5

6
3

2
x
6

4
3

2
x
1

2
8

3
2
x
2
5
6

3
2
x
5
1
2

3
2
x
1
0
2
4

6
4

x
1

6
6

4
x
2

4
6

4
x
3

2
6

4
x
4

0
6

4
x
4

8
6

4
x
5

6
6

4
x
6

4
6

4
x
1

2
8

6
4
x
2
5
6

6
4
x
5
1
2

6
4
x
1
0
2
4

1
2

8
x
1

6
1

2
8

x
2

4
1

2
8

x
3

2
1

2
8

x
4

0
1

2
8

x
4

8
1

2
8

x
5

6
1

2
8

x
6

4
1

2
8

x
1

2
8

1
2
8
x
2
5
6

1
2
8
x
5
1
2

1
2
8
x
1
0
2
4

2
5

6
x
1

6
2

5
6

x
2

4
2

5
6

x
3

2
2

5
6

x
4

0
2

5
6

x
4

8
2

5
6

x
5

6
2

5
6

x
6

4
2

5
6

x
1

2
8

2
5
6
x
2
5
6

2
5
6
x
5
1
2

2
5
6
x
1
0
2
4

5
1

2
x
1

6
5

1
2

x
2

4
5

1
2

x
3

2
5

1
2

x
4

0
5

1
2

x
4

8
5

1
2

x
5

6
5

1
2

x
6

4
5

1
2

x
1

2
8

5
1
2
x
2
5
6

5
1
2
x
5
1
2

5
1
2
x
1
0
2
4

1
0

2
4

x
1

6
1

0
2

4
x
2

4
1

0
2

4
x
3

2
1

0
2

4
x
4

0
1

0
2

4
x
4

8
1

0
2

4
x
5

6
1

0
2

4
x
6

4
1

0
2

4
x
1

2
8

1
0
2
4
x
2
5
6

1
0
2
4
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0

4
8

x
1

6
2

0
4

8
x
2

4
2

0
4

8
x
3

2
2

0
4

8
x
4

0
2

0
4

8
x
4

8
2

0
4

8
x
5

6
2

0
4

8
x
6

4
2

0
4

8
x
1

2
8

2
0
4
8
x
2
5
6

2
0
4
8
x
5
1
2

2
0
4
8
x
1
0
2
4

np
la

ne
s L

i (
4

th
re

ad
s

x
C

or
e)

Plane size (I x J)

 0

 2

 4

 6

 8

 10

 12

 14

 16

np
la

ne
s L

i (
2

th
re

ad
s

x
C

or
e)

 0

 2

 4

 6

 8

 10

 12

 14

 16

np
la

ne
s L

i (
1

th
re

ad
 x

 C
or

e)

1 (LB)

Pread-1

Pread

2Pread-1 (UB)

Actual L1 Misses

Actual L2 Misses

Actual L2 Prefetches

Predicted L1 Misses

Predicted L2 Misses

Predicted L2 Prefetches

Figure 6.11: Actual and predicted for prefetched (inverted triangles) and non-prefetched
(squares and diamonds) cache-lines for the three SMT configurations. These results are for
the Naive implementation of a medium-high order (ℓ = 4) stencil.

Chapter 6. Performance Modeling of Stencil Computations 122

thoughts regarding the different bounds applied in the stencil model. Indeed, in a ℓ = 4 sten-

cil the read miss bounds for the model are: 1, 8 (Pread − 1), 9 (Pread) and 17 (2Pread − 1)

per each I × J plane computed. Actual L1 and L2 misses tend to these bounds when a spe-

cific problem size is reached, never reaching beyond the upper bound (2Pread − 1), which

is showed as a solid coarse horizontal line in all plots. Cache levels with prefetched and

non-prefetched misses are a special case due to their direct relation with DCeffectiveness

ratio, and therefore they might be under the lower bound (1). Additionally, as the threads

per core are increased, the inflection points (transitions) between bounds (C1 ⊔ C2, C2 ⊔ C3

and C3 ⊔ C4) are triggered earlier in terms of plane size (I × J). The larger the number of

threads running concurrently on the same core, the more contention and struggle for shared

resources occurs. Likewise, some spikes appear on account of ping-pong effect, where differ-

ent planes and columns addresses fall in the same cache set. This effect is also exacerbated as

more threads are pinned to the same core. However, this effect is not captured by our model

because it would require a multi-level set-associative cache model, which is not covered yet

in our model.

Comparing the empirical (hardware counters) versus the analytical results (model), it

can be observed that the advanced model predicts accurately the number of misses on both

levels of the cache hierarchy, including those reads that are prefetched. However, some slight

mispredictions appear in specific sizes when the transition between miss cases is triggered.

Deciding a discrete point (I × J) for transitions is difficult, and it might depend on other

parameters apart from those considered in this work. Nevertheless, we think that our rules

(R1,2,3,4) have approximated these transitions fairly well. It is also important to mention the

prediction of the L2 prefetching engine, especially in the late executions for 2 threads and

in the early ones for 4 threads per core configurations. As hardware metrics show, in these

cases, the prefetching effect starts disrupting the results due to contention. Nonetheless, in

general the predicted results follow properly the trend of both type of misses as a result of

the DCeffectiveness parameter.

The model accuracy is verified in Figure 6.12, which shows a summary of three types of

execution times: actual, projected and predicted. The actual times were obtained using the

CPU clock cycles metric (CPU_CLK_UNHALTED). On the other hand, the projected times were

computed with the aggregated time of TL1, TL2, TMem and TWrite by using actual hardware

counters of reads, writes and misses with their respective bandwidth parameters (STREAM2

characterization). Finally, the predicted times follow the same idea than the projected but

using the estimations of our model instead of the instrumented ones. The purpose of the

projected time is the verification of the aggregated equation and the calibration of the band-

width parameters at each cache level. Therefore, the projected time plays an important role

ensuring that predicted times are a faithful representation of an actual execution.

Comparing the execution times shown in Figure 6.12, we observe that the predicted rel-

ative error (right axis) is very low in most of the cases. However, as the results reveal, some

predictions have a high error (2 threads per core). Reviewing the cache miss predictions

Chapter 6. Performance Modeling of Stencil Computations 123

0.001

0.01

0.1

1

10

1e+02

1
6

x
8

1
6

x
1

6
1

6
x
2

4
1

6
x
3

2
1

6
x
4

0
1

6
x
4

8
1

6
x
5

6
1

6
x
6

4
1

6
x
1

2
8

1
6
x
2
5
6

1
6
x
5
1
2

1
6
x
1
0
2
4

3
2

x
1

6
3

2
x
2

4
3

2
x
3

2
3

2
x
4

0
3

2
x
4

8
3

2
x
5

6
3

2
x
6

4
3

2
x
1

2
8

3
2
x
2
5
6

3
2
x
5
1
2

3
2
x
1
0
2
4

6
4

x
1

6
6

4
x
2

4
6

4
x
3

2
6

4
x
4

0
6

4
x
4

8
6

4
x
5

6
6

4
x
6

4
6

4
x
1

2
8

6
4
x
2
5
6

6
4
x
5
1
2

6
4
x
1
0
2
4

1
2

8
x
1

6
1

2
8

x
2

4
1

2
8

x
3

2
1

2
8

x
4

0
1

2
8

x
4

8
1

2
8

x
5

6
1

2
8

x
6

4
1

2
8

x
1

2
8

1
2
8
x
2
5
6

1
2
8
x
5
1
2

1
2
8
x
1
0
2
4

2
5

6
x
1

6
2

5
6

x
2

4
2

5
6

x
3

2
2

5
6

x
4

0
2

5
6

x
4

8
2

5
6

x
5

6
2

5
6

x
6

4
2

5
6

x
1

2
8

2
5
6
x
2
5
6

2
5
6
x
5
1
2

2
5
6
x
1
0
2
4

5
1

2
x
1

6
5

1
2

x
2

4
5

1
2

x
3

2
5

1
2

x
4

0
5

1
2

x
4

8
5

1
2

x
5

6
5

1
2

x
6

4
5

1
2

x
1

2
8

5
1
2
x
2
5
6

5
1
2
x
5
1
2

5
1
2
x
1
0
2
4

1
0

2
4

x
1

6
1

0
2

4
x
2

4
1

0
2

4
x
3

2
1

0
2

4
x
4

0
1

0
2

4
x
4

8
1

0
2

4
x
5

6
1

0
2

4
x
6

4
1

0
2

4
x
1

2
8

1
0
2
4
x
2
5
6

1
0
2
4
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0

4
8

x
1

6
2

0
4

8
x
2

4
2

0
4

8
x
3

2
2

0
4

8
x
4

0
2

0
4

8
x
4

8
2

0
4

8
x
5

6
2

0
4

8
x
6

4
2

0
4

8
x
1

2
8

2
0
4
8
x
2
5
6

2
0
4
8
x
5
1
2

2
0
4
8
x
1
0
2
4 0

 20

 40

 60

 80

 100

T
im

e
in

 s
ec

 (
4

th
re

ad
s

x
C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

Plane size (I x J)

0.001

0.01

0.1

1

10

1e+02

 0

 20

 40

 60

 80

 100

T
im

e
in

 s
ec

 (
2

th
re

ad
s

x
C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

0.0001

0.001

0.01

0.1

1

10

1e+02

 0

 20

 40

 60

 80

 100
T

im
e

in
 s

ec
 (

1
th

re
ad

 x
 C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

Projected Relative Error

Predicted Relative Error

Measured Time

Projected Time

Predicted Time

Figure 6.12: Left axis: actual (solid line), projected (circles) and predicted (squares) execu-
tion times for the three SMT configurations. Right axis: relative errors compared with actual
times. These results are for a high order (ℓ = 7) Naive stencil.

Chapter 6. Performance Modeling of Stencil Computations 124

(not shown here), this error is owing to a late deactivation of the L2 prefetching engine, mis-

leading the aggregated predicted time. Once the prefetching efficiency is correctly predicted

again, the relative error drops considerably under 10%. Equally, some actual executions also

present peaks due to the ping-pong effect. Projected times clearly follow this instabilities

because their mirroring on cache misses. On the contrary, our model can not mimic such

situations, and therefore, the relative error increases considerably on those cases.

5

20

1

10

8
x
8

1
6
x
8

2
4
x
8

3
2
x
8

6
4
x
8

1
2
8
x
8

2
5
6
x
8

5
1
2
x
8

8
x
1
6

1
6
x
1
6

2
4
x
1
6

3
2
x
1
6

6
4
x
1
6

1
2
8
x
1
6

2
5
6
x
1
6

5
1
2
x
1
6

8
x
2
4

1
6
x
2
4

2
4
x
2
4

3
2
x
2
4

6
4
x
2
4

1
2
8
x
2
4

2
5
6
x
2
4

5
1
2
x
2
4

8
x
3
2

1
6
x
3
2

2
4
x
3
2

3
2
x
3
2

6
4
x
3
2

1
2
8
x
3
2

2
5
6
x
3
2

5
1
2
x
3
2

8
x
6
4

1
6
x
6
4

2
4
x
6
4

3
2
x
6
4

6
4
x
6
4

1
2
8
x
6
4

2
5
6
x
6
4

5
1
2
x
6
4

8
x
1
2
8

1
6
x
1
2
8

2
4
x
1
2
8

3
2
x
1
2
8

6
4
x
1
2
8

1
2
8
x
1
2
8

2
5
6
x
1
2
8

5
1
2
x
1
2
8

8
x
2
5
6

1
6
x
2
5
6

2
4
x
2
5
6

3
2
x
2
5
6

6
4
x
2
5
6

1
2
8
x
2
5
6

2
5
6
x
2
5
6

5
1
2
x
2
5
6

8
x
5
1
2

1
6
x
5
1
2

2
4
x
5
1
2

3
2
x
5
1
2

6
4
x
5
1
2

1
2
8
x
5
1
2

2
5
6
x
5
1
2

5
1
2
x
5
1
2

8
x
1
0
2
4

1
6
x
1
0
2
4

2
4
x
1
0
2
4

3
2
x
1
0
2
4

6
4
x
1
0
2
4

1
2
8
x
1
0
2
4

2
5
6
x
1
0
2
4

5
1
2
x
1
0
2
4

8
x
1
5
3
6

1
6
x
1
5
3
6

2
4
x
1
5
3
6

3
2
x
1
5
3
6

6
4
x
1
5
3
6

1
2
8
x
1
5
3
6

2
5
6
x
1
5
3
6

5
1
2
x
1
5
3
6

8
x
2
0
4
8

1
6
x
2
0
4
8

2
4
x
2
0
4
8

3
2
x
2
0
4
8

6
4
x
2
0
4
8

1
2
8
x
2
0
4
8

2
5
6
x
2
0
4
8

5
1
2
x
2
0
4
8 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
im

e
in

 s
ec

 (
4

th
re

ad
s

x
C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

Plane size (I x J)

5

20

1

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
im

e
in

 s
ec

 (
2

th
re

ad
s

x
C

or
e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

5

20

1

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
im

e
in

 s
ec

 (
1

th
re

ad
 x

 C
or

e)

R
el

at
iv

e
E

rr
or

 (
in

 %
)

Predicted Relative Error

Projected Time

Predicted Time

Predicted Relative Error Semi

Projected Time Semi

Predicted Time Semi

Figure 6.13: Left axis: projected (solid line) and predicted (squares and circles) execution
times for spatial blocking results. Right axis: relative errors compared with projected times.
Results shown are for Naive (ℓ = 1) and for Semi-stencil (ℓ = 4).

Results considering stencil optimizations such as Semi-stencil and spatial blocking are

shown in Figure 6.13. In this test, 88 different tiling sizes were compared. The TP and LAP

parameters used for the model were set to 3 and 5 cache-lines respectively. These values were

Chapter 6. Performance Modeling of Stencil Computations 125

obtained empirically using the Prefetching benchmark as explained in Section 6.6. As shown

in Figure 6.13, the model clearly estimates the different valleys (local minima) that appear

when searching for the best tiling parameters due to the disruption of prefetched data and

the increase of cache-line misses. The model is even able to suggest some good parameter

candidates. For instance, taking a look to the Naive+Blocking results, the model predicts

successfully the best tiling parameter for 1 and 2 threads per core configurations (512 × 16

and 512× 8 respectively). This is not the case when running 4 threads per core. However, in

this latter case, the actual best parameter is given as third candidate (512× 8). On the other

hand, reviewing the Semi+Blocking results, despite of some mispredictions, especially for 4

threads per core, most of the local minima areas are well predicted.

Additionally, the model can reveal other insightful hints regarding the efficiency in SMT

executions. It can help to decide the best SMT configuration to be conducted in terms of

core efficiency. Let τSMTi be the execution time for a SMTi configuration of n different

combinations. We define the core efficiency as

CoreSMTi

efficiency =
min(τSMT1 , . . . , τSMTn)

τSMTi
∈ [0, 1] ,

(6.18)

where a core efficiency of 1 represents the best performance-wise SMT configuration for a set

of specific stencil parameters (ℓ, I × J plane size, spatial blocking, Semi-stencil, etc.) and a

given architecture. Therefore, the desirable decision would be to run the stencil code using

the SMTi configuration that maximizes the core efficiency. Normalizing our experiments for

all three SMT combinations on a Naive stencil (ℓ = 4) the Figure 6.14 is obtained. Note

that depending on the problem size, the best SMT configuration ranges from 4 threads for

small sizes to 2 threads for medium sizes and just only 1 thread per core for very large

problems. The factor leading to this behavior is the contention of shared resources, especially

the prefetching engine.

0.0001

0.001

0.01

0.1

1

10

1
6

x
8

1
6

x
1

6
1

6
x
2

4
1

6
x
3

2
1

6
x
4

0
1

6
x
4

8
1

6
x
5

6
1

6
x
6

4
1

6
x
1

2
8

1
6
x
2
5
6

1
6
x
5
1
2

1
6
x
1
0
2
4

3
2

x
1

6
3

2
x
2

4
3

2
x
3

2
3

2
x
4

0
3

2
x
4

8
3

2
x
5

6
3

2
x
6

4
3

2
x
1

2
8

3
2
x
2
5
6

3
2
x
5
1
2

3
2
x
1
0
2
4

6
4

x
1

6
6

4
x
2

4
6

4
x
3

2
6

4
x
4

0
6

4
x
4

8
6

4
x
5

6
6

4
x
6

4
6

4
x
1

2
8

6
4
x
2
5
6

6
4
x
5
1
2

6
4
x
1
0
2
4

1
2

8
x
1

6
1

2
8

x
2

4
1

2
8

x
3

2
1

2
8

x
4

0
1

2
8

x
4

8
1

2
8

x
5

6
1

2
8

x
6

4
1

2
8

x
1

2
8

1
2
8
x
2
5
6

1
2
8
x
5
1
2

1
2
8
x
1
0
2
4

2
5

6
x
1

6
2

5
6

x
2

4
2

5
6

x
3

2
2

5
6

x
4

0
2

5
6

x
4

8
2

5
6

x
5

6
2

5
6

x
6

4
2

5
6

x
1

2
8

2
5
6
x
2
5
6

2
5
6
x
5
1
2

2
5
6
x
1
0
2
4

5
1

2
x
1

6
5

1
2

x
2

4
5

1
2

x
3

2
5

1
2

x
4

0
5

1
2

x
4

8
5

1
2

x
5

6
5

1
2

x
6

4
5

1
2

x
1

2
8

5
1
2
x
2
5
6

5
1
2
x
5
1
2

5
1
2
x
1
0
2
4

1
0

2
4

x
1

6
1

0
2

4
x
2

4
1

0
2

4
x
3

2
1

0
2

4
x
4

0
1

0
2

4
x
4

8
1

0
2

4
x
5

6
1

0
2

4
x
6

4
1

0
2

4
x
1

2
8

1
0
2
4
x
2
5
6

1
0
2
4
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0

4
8

x
1

6
2

0
4

8
x
2

4
2

0
4

8
x
3

2
2

0
4

8
x
4

0
2

0
4

8
x
4

8
2

0
4

8
x
5

6
2

0
4

8
x
6

4
2

0
4

8
x
1

2
8

2
0
4
8
x
2
5
6

2
0
4
8
x
5
1
2

2
0
4
8
x
1
0
2
4 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
or

m
al

iz
ed

 T
im

e
pe

r
C

or
e

C
or

e
E

ffi
ci

en
cy

 (
in

 %
)

Plane size (I x J)

Norm. Time 1 thread

Norm. Time 2 threads

Norm. Time 4 threads

Core efficiency 1 thread

Core efficiency 2 threads

Core efficiency 4 threads

Figure 6.14: Core efficiency for all three SMT combinations using a naive stencil (ℓ = 4).

Chapter 6. Performance Modeling of Stencil Computations 126

6.8 Summary

This chapter presents a thorough methodology to evaluate and predict stencil codes perfor-

mance on complex HPC architectures. The aim of this research was to develop a performance

model with minimal architectural parameter dependency (flexible) and at the same time able

to report accurate results (reliable). In this regard, we have obtained fairly good prediction re-

sults, where the average error for most relevant cases floats between 5-15%. All these results

factored in cache’s associativities, TLB page size or complex prefetching engine specifications

without explicitly modeling them. However, the final goal of this research is not only to de-

vise an accurate and flexible model, but also to freely experiment with platform parameters,

which in turn, would be helpful to forecast the performance of current and future platforms

as well.

Chapter 7

Case Studies

Many relevant problems arising in Geoscience and Computational Fluid Dynamics (CFD) can

be solved numerically using Finite Difference (FD) methods on structured computational

meshes. Application areas include, seismic wave propagation, weather prediction or atmo-

spheric transport. FD numerical schemes on structured meshes allow peak performances of

at least ≈ 20− 30%, about 3 times larger than analogous FE (Finite Element) methods.

In this chapter, several of the techniques presented in this thesis are implemented alone or

combined together into two real-life applications used nowadays. The challenge is to assess

and demonstrate that the reviewed optimization techniques can be successfully deployed as

feasible solutions to improve the performance of real cases for the industry.

First, we review an optimization of the RTM model, a method used in Oil & Gas industry,

using the Semi-stencil algorithm on the IBM Cell B.E. architecture. We take the code devel-

oped at the Kaleidoscope Project [13], a partnership of Repsol and BSC to develop HPC tools

for seismic imaging, as the infrastructure to optimize. Next, we present the WARIS frame-

work, a brand-new multi-purpose framework aimed at solving scientific computing problems

using FD; and in which the work of this thesis has partially collaborated. The initial design

requirements were: development of a portable framework (i.e. able to run on any hardware

platform) suited for accelerated-based architectures, with reusable software components, eas-

ily extendible, and able to solve the physical problems on structured meshes explicitly, implic-

itly or semi-implicitly. Finally, we present an application example using WARIS framework,

the WARIS-Transport module, entirely developed in this thesis. This module is a porting of the

FALL3D code [2], a multi-scale parallel Eulerian transport model that simulates the volcanic

ash dispersal. The FALL3D model has a worldwide community of users, such as Volcanic Ash

Advisory Centers (VAACs), and several applications, including short-term dispersion forecasts

of hazardous substances, long-term hazard assessments, air quality evaluations or climate

studies.

7.1 Oil & Gas Industry

In the search for new reserves, oil companies are turning to complex geological structures so

far left unexplored due to their inherent difficulty to be prospected. The most prominent ex-

amples are reserves located under salt domes, like in the offshore of the U.S. Gulf of Mexico.

127

Chapter 7. Case Studies 128

These reserves are estimated to hold more than three thousands sub-salt oil pools, account-

ing for 37 billion barrels of undiscovered recoverable oil, and 191 trillion cubic feet of gas

reserves [49]. Also, the discovery of a Brazilian deep-water sub-salt exploration area was

already announced, which may contain as many as 33 billion oil barrels [64].

Figure 7.1: Off-shore oil and gas prospection. Ships are equipped with airguns and geophones
to convey acoustic analysis.

Oil discovery is a theoretical, algorithmic and computational challenge. Prospection is

primarily performed with acoustic depth-imaging techniques: an intense acoustic signal is

directed into the ground, and receivers record the signal’s echoes. In off-shore campaigns

(see Figure 7.1), a prospecting ship is used to gather this data. These ships are equipped

with an array of airguns (sources) that produce acoustic waves whose echoes are recorded

by geophones (receivers). Receivers are arranged in a grid next to the airgun array. Then

using the recorded information of the receivers, wave field reconstruction methods are used

to solve equations which govern the propagation of acoustic waves through the Earth. These

methods aim to determine densities and shapes of the subsurface structures, thus finding

and assessing possible areas with oil & gas reservoirs. Due to the multi-million dollar cost

of drilling operations, oil companies trust in wave field reconstructions methods for making

decisions about when and where to conduct drilling campaigns.

Two imaging methods dominate the arena: One-way Wave Equation Migration (WEM)

and Reverse-Time Migration (RTM) [58]. WEM is very popular thanks to its lower compu-

tational cost and its acceptable degree of accuracy in traditional scenarios. RTM is more

accurate, but its computational cost, which is at least one order of magnitude higher than

WEM, hinders its adoption. Nevertheless, in scenarios with reserves located beneath salt

where large velocity contrasts or steeply dipping formations arise, RTM overcomes WEM’s

Chapter 7. Case Studies 129

Figure 7.2: Comparison between WEM and RTM results. RTM provides higher quality images,
with better signal-to-noise ratio and clearer structure delineation.

image quality. In fact, RTM can handle events that propagate along both directions of the

depth axis, whereas WEM cannot. As a consequence, WEM performs poorly with structures,

like salt flanks, that are illuminated by overturned reflections. Figure 7.2 presents a visual

comparison of the results provided by both methods.

7.1.1 RTM Overview

In this section, the RTM method is briefly presented, unveiling the algorithm and identifying

its main computational kernels that are our optimization targets.

The purpose of RTM is to generate the image of geological mediums, for instance multi-

mile-deep volumes of subsea geology. The RTM inputs consists of: an initial version of the

medium to be studied, a wavelet (provided by airguns), and a set of recorded acoustic wave

pressure traces (provided by geophones).

RTM simulates mathematically the propagation of sound in the given medium. In this

simulation, first the medium is excited by introducing the wavelet from airguns (namely

shot), expressed as a function of frequency and time. Then, the wave propagation is simulated

forward by using an acoustic wave equation. Next, this operation is repeated in a backward

fashion, but starting from the data recorded by the receivers (geophones) and propagating

the wave field back in time. Finally, when both acoustic fields representing the forward and

backward propagations are available, a cross-correlation is performed in order to generate

the output image of the subsurface.

Algorithm 15 shows the pseudo-code of the RTM method. The forward and backward

propagation steps have been separated for the sake of clarity. Both propagation codes consist

of four steps: the computation of the wave equation, the injection of sources, the absorbing

boundary conditions and the I/O operations. The first step (lines 4 and 20) contains the

PDE solver in charge of solving explicitly the acoustic wave propagation, which usually de-

Chapter 7. Case Studies 130

Algorithm 15 The RTM pseudo-code. Forward-Propagation, input: medium (u, v),
shots (source wavelets) and α; output: forward wavelet. Bakward-Propagation, in-
put: medium (u, v), receiver’ traces, forward wavelet and α, output: correlated image.

1: procedure Forward-Propagation

2: for t = 0 to tend do

3: for all grid points do ⊲ Stencil
4: Wave-Propagator

5: end for

6: for all sources locations do ⊲ Source
7: Add source wavelet
8: end for

9: for all absorbing points do ⊲ ABC
10: Apply absorption conditions
11: end for

12: if t is multiple of α then ⊲ I/O
13: Save forward wave field
14: end if

15: end for

16: end procedure

17: procedure Bakward-Propagation

18: for t = 0 to tend do

19: for all grid points do ⊲ Stencil
20: Wave-Propagator

21: end for

22: for all receivers location do ⊲ Source
23: Add receivers data
24: end for

25: for all absorbing area points do ⊲ ABC
26: Apply absorption conditions
27: end for

28: if t is multiple of α then ⊲ I/O
29: Recall wave field saved at t
30: for all grid points do

31: Correlate wave fields

32: end for

33: end if

34: end for

35: end procedure

mands the most part of the execution time. The second step (lines 7 and 23) introduces the

source wavelet and the receivers’ traces respectively. Step three (lines 10 and 26) applies the

absorbing boundary conditions in order to contain the physical phenomena in a finite com-

putational domain. Finally, step four (lines 13 and 29) saves the wave field in the forward

propagation to perform later the correlation image with respect to the backward wave field.

This step is only performed once every α time-steps, thus storing the RTM output (correlated

image) between the two wave fields saved at the same time iteration. The choice of α will

determine the accuracy of the final image. Unlike step one, the remaining three steps should

not require significant execution time.

The acoustic wave propagation equation (see Appendix A.2) is represented by PDEs. This

equation is solved in the RTM by FD using an explicit method and therefore a stencil opera-

tor. Assuming an isotropic, non-elastic medium, where density is not variable, an 8th-order

cross-shape discretization in space (X t−1
i±1..4,j±1..4,k±1..4) and a 2nd-order backward difference

discretization in time (X t,X t−1 and X t−2) are employed. Thus, the PDE solver involves a 3D

25-point stencil computation in a co-located mesh.

Algorithm 16 details the pseudo-code of the PDE solver that can be found as computation

step in both kernels propagators. The loop structure traverses, in a naive fashion, the com-

putational domain (a 3D structured mesh) that represents the subsea area to explore. The

explicit solver is composed of two parts. Line 5 computes the stencil operator (spatial integra-

tor) for each point, whereas lines 6 and 7 perform the time integration of the PDE solver. Due

to the isotropic medium, the stencil can be computed as a Laplacian operator rather than as

Chapter 7. Case Studies 131

Algorithm 16 Pseudo-code of the PDE solver for the 3D wave equation in the RTM. ut is
the space domain for time-step t, v is the velocity field of the media u, and Z, X , Y are the
dimensions of the dataset (ordered from unit to least-stride) including ghost points. CZ1...Z4,
CX1...X4, CY 1...Y 4 and C0 are the spatial discretization coefficients for each dimension and
∆t is the temporal discretization parameter. Integrating the equation requires maintaining
the wave field of at least two earlier time-steps (ut−1 and ut−2).

1: procedure Wave-Propagator(ut, ut−1, ut−2, v, Z, X, Y , ∆t, C0, CZ1...Z4, CX1...X4, CY 1...Y 4)

2: for k = 4 to Y − 4 do

3: for j = 4 to X − 4 do

4: for i = 4 to Z − 4 do ⊲ Spatial integration (Stencil)

5: ut
i,j,k = C0 ∗ u

t−1
i,j,k

+ CZ1 ∗ (u
t−1
i−1,j,k + ut−1

i+1,j,k) + . . .+CZ4 ∗ (u
t−1
i−4,j,k + ut−1

i+4,j,k)

+ CX1 ∗ (u
t−1
i,j−1,k + ut−1

i,j+1,k) + . . .+CX4 ∗ (u
t−1
i,j−4,k + ut−1

i,j+4,k)

+ CY 1 ∗ (u
t−1
i,j,k−1 + ut−1

i,j,k+1) + . . .+CY 4 ∗ (u
t−1
i,j,k−4 + ut−1

i,j,k+4)
⊲ Temporal integration

6: ut
i,j,k = v2i,j,k ∗ u

t
i,j,k

7: ut
i,j,k = ∆t2 ∗ ut

i,j,k + 2 ∗ ut−1
i,j,k − ut−2

i,j,k

8: end for

9: end for

10: end for

11: end procedure

a gradient followed by a divergence.

Step Forward Backward

Propagation 91.2% 70.2%
Source (shot, receivers) 1.3% 2.7%
Boundary conditions 7.5% 6.2%
Cross-correlation N/A 20.9%

Table 7.1: Execution time breakdown of the RTM workload. A synthetic benchmark was used
for this results using a naive RTM implementation.

We have benchmarked a sequential, unoptimized implementation of the RTM code in

order to determine the relative contribution to execution time of the different workload por-

tions. The results are reported in Table 7.1. The benchmark shows that the workload is

clearly dominated by the FD solver (line 4 in forward and line 20 in backward propagators

of Algorithm 15). The high computational cost of the propagator kernels is due to the ele-

vated number of memory accesses and the access pattern that they require to conduct the

stencil, turning the RTM code in a memory-bound problem.

As shown in previous chapters, the memory-bound limiting factor requires careful design

of how data is accessed in the memory hierarchy. In this regard, explicit techniques to pro-

mote data locality (spatial and temporal) can be applied. Actually, since the stencil of the

PDE solver uses a 25-point stencil (ℓ = 4) is an appropriate stencil candidate to apply the

Semi-stencil algorithm. Thus, the following sections are devoted to present an RTM kernel

Chapter 7. Case Studies 132

implementation where the Semi-stencil optimization has been applied on the Cell/B.E. archi-

tecture.

7.1.2 Semi-stencil Implementation in Cell/B.E.

We present a Semi-stencil implementation of the RTM computational kernel deployed for the

Kaleidoscope Project. This industrial code is specifically designed to exploit the architectural

characteristics of the Cell/B.E. The performance of the Semi-stencil algorithm is evaluated in

two steps: as a single-SPE implementation, and then integrating it later in a fully operational

multi-SPE version of the RTM numerical kernel. The purpose of the first implementation is

to show the local behavior of the algorithm, whereas the second implementation purpose is

twofold: to measure the expected positive impact of the Semi-stencil on a real application,

and to expose the impact of the Cell/B.E. architecture on the RTM performance. Although,

the RTM code of the Kaleidoscope Project is prepared to be run on a rack of IBM BladeCenter

QS22 nodes through MPI, we have specifically focused on the improvement achieved on one

single node. Therefore, the scalability analysis by means of MPI is out of scope.

General Cell/B.E. Optimization Considerations

As we have reviewed in Chapter 4, there are many optimization techniques that deal with

stencil computations. They have been successfully used in academic benchmarks for low-

order stencils. Spatial-blocking may enhance scientific applications, but time-blocking meth-

ods, due to their inherent time dependency, pose integration problems with boundary con-

ditions, communication, and I/O tasks that are commonly incorporated in real applications.

However, at SPE level, where the kernel optimization must be performed, spatial-blocking

is not longer useful due to the constant access cost of the scratchpad memory (LS), which

behaves as a very large register pool (256 KB). For these reasons, we discarded all these opti-

mization techniques, thus implementing classical and Semi-stencil algorithms together with

pipeline optimizations. In addition, other characteristics that must be carefully taken into

consideration for the Cell/B.E. porting are: the limited LS size, the appropriate use of SIMD

instructions, and the explicit coherence management between LS and main memory.

The RTM workload has been parallelized into loosely coupled threads to exploit the mul-

tiple independent processing elements (SPEs), orchestrating the data transfers to ensure the

most efficient memory bandwidth utilization. As a consequence of the limited size of each

private LS, it is necessary to decompose data for parallel processing. This kind of tiling has

to respect the LS size constraint. In order to do so, the parallelization strategy decomposes

the 3D domain along the X axis as shown in Figure 7.3, where each SPE processes a distinct

Z × XSPE × Y sub-cube. As sub-cubes are much larger than the available space in the LS,

the domain is traversed as a streaming of Z-X planes through the Y axis, keeping in LS only

as many planes as required to compute the stencil of one plane. Additionally, to achieve an

efficient scheduling of data transfers between main memory and LS with computation, we

Chapter 7. Case Studies 133

Figure 7.3: Decomposition strategy on Cell/B.E. of 3D domain along the X axis.

implement the double-buffering technique. This technique allows the overlapping of data

transfers and computation, completely hiding the shorter of the two latencies (usually the

computation).

Another main concern to get the most benefit from Cell/B.E. is to use the 128-bit wide

SIMD instruction set in SPEs. Considering the large number of SIMD registers (128), it is

possible to optimize the code to compute simultaneously up to 20 data points, which entails

to a further performance gain. This large register pool endorses the use of techniques such

as software pipelining and loop transformations, thus removing possible pipeline stalls and

achieving a balanced pipeline.

Single-SPE Implementation

In the first porting of the Semi-stencil algorithm to Cell/B.E., we focus only in the SPE’s code.

The PPE code and the techniques required to make the main memory transfers efficient are

exclusively considered in the multi-SPE implementation. As discussed before, our classical

and Semi-stencil implementations were vectorized by hand, taking advantage of pipeline

optimizations such as: software prefetching, software pipelining and loop unrolling.

The following results are expressed in terms of elapsed time and floating-point operations.

Notice that the experiments were conducted in single precision arithmetic, and using a stencil

size (ℓ) of 4. The intent of this experiment is to compare both implementation approaches:

the classical stencil and the Semi-stencil algorithm, evaluating their results with respect to

the peak performance of the Cell/B.E. architecture.

For this experiment, a simple synthetic benchmark was established where the whole 3D

dataset and the instruction code were completely allocated in the LS of the SPE (in place).

Considering the 256 KB available in the scratchpad memory, the maximum attainable size

was a domain of 283 elements. This domain required a total of 172 KB using single precision

(4 bytes) for source and destination buffers of the simulation (ut and ut−1). The computation

of the spatial operator needed a total of 37 Flops per point (see Algorithm 16, line 5).

The peak performance achieved by the Semi-stencil implementation is 12.44 GFlops (Ta-

Chapter 7. Case Studies 134

Classical Stencil Semi-stencil

Compiler Time Performance Time Performance
(Optimization) [ms] [GFlops] [ms] [GFlops]

XLC -O3 6.84 4.32 3.35 8.83
XLC -O5 3.44 8.61 2.38 12.44
GCC -O3 7.83 3.78 4.57 6.47

Table 7.2: Performance results of the single-SPE implementation. These results were obtained
with IBM XL C/C++ for Multi-core Acceleration for Linux, V9.0 and GCC 4.1.1.

ble 7.2), which corresponds to the 49% of the SPE peak performance (25 GFlops per SPE in

single-precision). Under the same experimental setup, the classical stencil reaches only 8.61

GFlops (34% of the SPE peak performance). This means that the Semi-stencil algorithm is

44% faster than the classical stencil. The projected-aggregated performance of this algorithm

is 99.52 GFlops for one Cell/B.E. processor, which is, to our knowledge, the highest peak

performance for stencil computations on this architecture [22, 84].

Classical Stencil Semi-stencil Gain

Total cycle count 11460147 7592643 33.7%
CPI [cycles/instructions] 0.69 0.75 -9%
Load/Store instructions 4236607 2618079 38.2%
Floating point instructions 5800000 4652400 19.8%
No-operations (NOPs) 1124903 442484 60.7%
FP/Cache ratio 1.36 1.78 24.4%
Shuffle instructions 1220001 1072401 12.1%

Table 7.3: Pipeline statistics of the single-SPE implementations. Obtained with the IBM Full-
System Simulator

In order to extract accurate and insightful information about how the Semi-stencil be-

haves in terms of pipeline execution, we collected performance statistics of the SPE through

the IBM Full-System Simulator for the Cell Broadband Engine. The SPEs have an in-order exe-

cution model, and the latencies of their execution units are deterministic. As a consequence,

the SPE execution work-flow can be accurately simulated using the binary files. The Cell/B.E.

simulator provided extremely detailed analysis on a cycle-for-cycle basis of the current state

of a simulated SPE. Table 7.3 summarizes all these results comparing the classical implemen-

tation versus the Semi-stencil one. In Table 7.3 every metric is in Semi-stencil favor, except

the CPI measure, which is 9% better in the classical stencil algorithm. Among all, the most

important metric and the one that summarizes the better performance is the FP/Cache ratio,

which is 24% higher in the Semi-stencil. These results clearly demonstrate that the Semi-

stencil algorithm is a feasible solution for optimizing medium- and high-order stencils.

The reported execution times include neither I/O time, nor non-recurring allocation nor

initialization delays. They have been gathered over repeated runs, to eliminate spurious

Chapter 7. Case Studies 135

Figure 7.4: The forward wave propagation of single-SPE implementation for one shot and
one receiver in a constant-velocity medium. Left: propagation after one time-step (X-Y cut).
Right: final result after several time-steps (Z-X cut).

artifacts (e.g. bus traffic, or unpredictable operating system events). Figure 7.4 shows the

dumped images of the wave propagation simulation conducted for the single-SPE experiment

with a constant velocity field and one shot and one receiver.

Multi-SPE Implementation

In this second version, we integrate the Semi-stencil algorithm with a fully operational Reverse-

Time Migration (RTM) implementation [9]. This version incorporates the domain decompo-

sition strategy discussed before, where a streaming of Z-XSPE planes is employed so as to

compute the whole 3D problem. This experiment was conducted using the SEG/EAGE salt

test (see Figure 7.5), a synthetic 3D model used broadly by the research community, which

was run on a 5123 dataset over 500 time-step iterations. In this implementation, the most

optimal Z-XSPE plane size in terms of transference efficiency and LS constraint must be pre-

viously computed by the PPE. Then, each SPE traverses, in a round-robin fashion, sub-cubes

of Z ×XSPE × Y points until the whole domain is computed.

Figure 7.5: RTM output of the SEG salt synthetic model. Left: velocity field used as input.
Right: correlated output image after forward and backward propagations.

Table 7.4 summarizes all the final results for both implementations, the classical and the

Semi-stencil algorithms. The results are presented considering both the overlap of compu-

tation and communication tasks (Total) and only one of them (Only Computation and Only

Chapter 7. Case Studies 136

Communication). The latter columns were obtained by disregarding FLOPs operations and

DMA transactions respectively. The intent of these two columns is to verify which part of the

SPE code dominates the execution time.

Only Only Imba-
Total Computation Comm. balance

Algorithm Time Performance Time Performance Time %
implementation [sec] [GFlops] [sec] [GFlops] [sec]

RTM + classical 74.24 39.15 71.92 41.06 70.33 2.3
RTM + Semi 63.33 46.62 48.13 61.35 64.62 25.6

Table 7.4: Performance results of the RTM implementation. These results were obtained
using only one Cell/B.E. of a QS22 blade. Total time experiments cover both computation
and communication times.

Reviewing the results, the RTM + Semi-stencil version is 16% faster than the RTM+classical,

which partially keeps the performance benefit presented in the single-SPE experiments. There

are two main reasons of this degradation in performance. First, the new tasks that must be

conducted in order to perform the full RTM implementation, e.g. boundary conditions, I/O,

etc. Second, and above all others, the data transfers of the streaming strategy, which in turn

results to be the main bottleneck. As shown in Only Computation and Only Communication

columns of Table 7.4, the imbalance between data transfers and computation stagnates the

overall performance. This imbalance is specially noticeable in the RTM+Semi-stencil version,

where the lost of performance is 25.6%, even using multi-buffering technique. If this 25.6%

is added to the already gained 16%, we recover the 44% of advantage of the Semi-stencil

over the classical stencil algorithm shown in the single-SPE implementation.

7.2 WARIS Framework

WARIS is a Barcelona Supercomputing Center (BSC) in-house multi-purpose framework

aimed at solving scientific problems using Finite Difference (FD) methods as numerical

scheme. The framework was designed from scratch to solve, in a parallel and efficient way,

Earth Science and Computational Fluid Dynamic problems on a wide variety of architectures.

WARIS uses structured meshes to discretize the problem domains, as these are better suited

for optimization in accelerator-based architectures. To succeed in such challenge, WARIS

framework was initially designed to be modular in order to ease development cycles, porta-

bility, reusability and future extensions of the framework. The following section details the

design of the WARIS framework and its basic internals.

Chapter 7. Case Studies 137

7.2.1 System Architecture

With the large number of physical problems to be supported by the WARIS framework, a

solution composed of two primary components was devised. The two components, so-called

Physical Simulator Kernel (PSK) and Workflow Manager (WM), are depicted in green and

blue respectively in Figure 7.6. The PSK framework is responsible for those tasks that are

common to any physical simulation being solved, such as domain decomposition, commu-

nications and I/O operations. Its aim is to provide a base for the specialization of physical

problems (e.g. heat, wave, ADR or Navier-Stokes equations) on any forthcoming architecture.

The PSK component is basically a template that provides the appropriate framework for im-

plementing a specific simulator. Flexibility in design must be attained to let the specialization

accommodate any type of physics on any kind of hardware reusing as much code as possible.

This approach minimizes the development cycle by reducing the code size and the debugging

efforts. The specializations (depicted in red in Figure 7.6) are used to configure the frame-

work in order to have a complete solution for a given physical problem. Those specializations

depend on aspects such as: the physical problem, the hardware platform (e.g. general pur-

pose, GPU, FPGA, Xeon Phi) and the programming model being used for development.

Figure 7.6: WARIS System. It is composed of three components: the Physical Simulator Kernel
(PSK), the user-specialization of the problem and the Workflow Manager (WM).

On the other hand, the WM is in charge of providing a framework that allows to process

several physical problems in parallel. This framework includes all the necessary components

to provide a distributed application in the sense that is capable of processing independent

problems using different computational nodes. Therefore, the WM can take advantage of the

massive parallel approach of running multiple physical problems in parallel. This approach

can be useful to tackle a statistical study or a search of an optimal parameter for any given

physical problem. The WM implements a Master-Worker pattern. The Master manages, sched-

ules and commands a set of Workers (user specializations that use PSK framework), allocated

Chapter 7. Case Studies 138

on computational nodes, by assigning them new tasks. Workers’ executions can include a ker-

nel computation or a specific data post-process step. Within this approach, the user must not

take care of resilience, fault tolerance, postprocessing and checkpointing management.

Hardware Architecture Model

A wide variety of hardware architectures is emerging during the last years, from general pur-

pose processors in multi-core and many-core chips (e.g. Intel Xeon) to accelerator-based de-

vices with outstanding performance (e.g. Intel MIC or General-Purpose computing on Graph-

ics Processing Units, GPGPUs). In order to build a framework able to accommodate with ease

any of these architectures, one must ensure an abstraction level of the computational archi-

tecture model. To this end, the WARIS framework was designed to include an architecture

model with a main entity called Computational Node (CN), shown in Figure 7.7. This main

entity is built using two computational resources: the host and the device that communicate

each other through a Common Address Space (CAS) memory. The host resource is responsible

for the parallel simulation processes, such as the load balancing (domain decomposition),

data communication (exchange of boundary nodes with neighbor domains) and I/O oper-

ations. The device resource is composed of a set of specialization routines that are used to

configure the framework in order to have a functional simulator. The specialization depends

on many aspects, such as the physical problem at stack, the hardware platform and the spe-

cific numerical method. Within this architecture model, the WARIS framework is executed in

the host while the device deals with the specifics of the physical problem being simulated. No-

tice that, in the particular case where the accelerator-based device is not present, the host will

be running both, the framework and the specialization code. If the amount of resources in

a single computational node are not sufficient for solving a physical simulation, more nodes

will be allocated and the communications will be managed by the PSK.

Host

Device

Memory

(CAS)

Host

Device

Memory

(CAS)

MPI

Figure 7.7: Architecture model supported by the PSK.

The domain decomposition is performed in the PSK framework at two different levels:

intra-node (node-level) and inter-node (cluster-level). The former level provides decomposi-

tion within a CN by means of shared memory, allowing to efficiently exploit platforms with

multi-card configuration (e.g. GPUs and MICs). As the memory address space across differ-

ent CNs is disjoint, the latter level decomposes by means of MPI API, adding support for

distributed memory implementations of the physical problems. Due to performance reasons,

PSK conducts domain decompositions only along the least-stride dimension of the domain

Chapter 7. Case Studies 139

(Y axis in a 3D problem where the dimension-ordered from unit-stride to least-stride dimen-

sion is Z-X-Y). This Y axis decomposition minimizes the gather operations (copies) of data

that must be transferred to neighbor domains thanks to the unit-stride layout. Figure 7.8

illustrates this two-level decomposition. To conduct the inter-node communication tasks, the

internal nodes adjacent to the boundary nodes are exchanged across neighbors using two

communication steps: Front and Back (shown in the example of Fig. 7.8 for sub-domains

0-2/1-0 and 1-2/2-0). This has the advantage of faster data transference but, in contrast,

impedes optimal scalability.
F
R
O
N
T

F
R
O
N
T B

A
C
K

B
A
C
K

G	
��	
������t
��	 �
��t�
C�� � �
D��� � C� � �

Y���� �units)

CN0 (Shared Memory)

D��
�0�

D��
�0�

D��
�0�

Y��� Y��� Y���

CN1

D��
�0�

D��
�0�

D��
�0�

Y��� Y��� Y���

CN2

D��
�0�

D��
�0�

D��
�0�

Y��� Y��� Y���

 MPI MPI

 MPI MPI

Figure 7.8: Domain decomposition conducted by the PSK infraestructure. Two levels of de-
composition are used in this example: intra-node with 3 subdomains within each CN (do-
mains *-0 to *-2) and inter-node with 3 domains (referenced as 0-* to 2-*).

Finally, in order to run the physical simulation in a efficient and concurrent way, each CN

spawns a set of independent execution flows by means of POSIX threads that are in charge

of specific tasks. These threads can be classified as:

• Main thread: each CN creates a Main thread in charge of orchestrating and commanding

the remaining threads spawned within the CN. Its main tasks are reliability and robust-

ness of the infrastructure, as well as allocation and deallocation of resources through

control code. This thread also creates the intra-domains by spawning as many Domain

threads as required by the platform specification.

• Domain thread: they are in charge of solving the physical problem by explicitly calling

the specialization routines that involve the computational effort. Each Domain thread

creates an I/O thread and as many Communication threads as domain neighbors (Back

and Front communication steps).

• Communication thread: it performs asynchronous transferences of boundary nodes across

neighbor domains. The appropriate parallel paradigm is selected automatically: shared

memory for intra-domains, and MPI API for inter-domains (across CNs).

Chapter 7. Case Studies 140

• I/O thread: this thread is exclusively in charge of performing I/O operations by means

of the I/O library chosen by the user implementation (e.g. POSIX I/O, MPI-IO, HDF5 or

NetCDF).

MPI

MPI process 0 (Running in CN0)

Domain 0-0

Domain 0-1

I/O Device I/O Device

Main

Domain

DomainComm.I/O

Comm. Comm.I/O

Shared
memory

MPI process 1 (Running in CN1)

Domain 1-0

Domain 1-1

I/O DeviceI/O Device

Comm.

Main

Domain

Domain Comm. I/O

Comm.I/O
Shared
memory

Figure 7.9: Threads spawned by the PSK framework. Example case running in two CNs, each
with two intra-domains. The green and blue nodes represent POSIX threads and I/O devices
respectively, whereas the brown and red boxes are the MPI processes running on a CN and
the intra-node domains within a CN.

Figure 7.9 shows a case where the PSK has mapped two intra-domains per each CN. In

this example, only one communication thread is required for domains assigned to sides (Do-

main 0-0 and Domain 1-1). The hardware architecture model followed by the PSK has several

advantages. First of all, the high level of parallelism that can be achieved by overlapping com-

putation, communication, and I/O tasks using independent threads. Second, the abstraction

level flexibility of the architecture model facilitates the porting to any possible architecture.

Chapter 7. Case Studies 141

Software Architecture Model

The PSK framework provides a configurable execution flow that permit to extend or special-

ize it for a given physical problem. The specialization process is done by implementing a

common interface defined by the PSK. Each of the functions to be implemented by the user

are known as a specialized functions, and they must conform this common interface. Among

these functions, the PSK defines: initialization and finalization routines for managing data

structures of the physical problem, proper functions for the simulation processing at each

iteration, and functions for scattering and gathering data across domains. Figure 7.10 shows

the execution flow provided by the PSK framework. The dashed and red boxes represent

the functions to be provided by the user in order to specialize the framework for a specific

physical problem.

Figure 7.10: Execution flow of the PSK framework.

The execution flow inside the main loop of the PSK framework is divided in three differ-

ent phases, known as Pre- Main- and Post-Processing phases, which are separated by stages

that perform communication and I/O tasks. The aim is to provide an environment capable

of overlapping simultaneously computation, communication and I/O through the Pthreads

created by the PSK. In general terms, the stages that compose the PSK execution flow are the

following:

Chapter 7. Case Studies 142

• Config: it configures the internal state (e.g. spatial dimensions and specialization pa-

rameters) and the internal behavior (e.g. P1, P2 and P3 functions).

• Initialize: it initializes the main structures at host and device levels needed for the sim-

ulation.

• Scatter: as the framework is intended for multi-node, multi-domain propagation, a data

scattering process may be needed before the simulation starts.

• Pre-processing (P1): it is responsible for executing a chain of functions (configured by

means of the Config module) in Phase 1. The configured functions should conduct the

computation of data that will be exchanged later.

• Main Processing (P2): it calculates everything else that needs to be calculated in the

propagation, including anything related to I/O operations (data preparation and wait-

ing).

• Post-Processing (P3): it post-processes any output generated after P1 and P2 phases.

• Communication H-D/H-H: it commands the Communication thread to perform asyn-

chronous communication across neighbors, first moving data between device and host

(Comm H-D) and later between hosts (Comm H-H). The data exchange can be per-

formed between CNs (inter-node) and within the CN (intra-node).

• I/O H-D/H-H: it commands the IO thread to perform the I/O, first moving data between

device and host (Comm H-D) and finally performing the I/O operation.

• Wait Communication: at the end of each time-step, the framework may wait for any

previous communication to be finished before starting a new time iteration.

• I/O Wait: it sets a synchronization point during P2 phase in order to wait for any flying

I/O operation.

• Gather: it collects any required output from the CNs in order to generate a merged

output.

• Finalize: it clears the internal structure by deallocating specialization and PSK resources.

In order to proceed with a correct configuration, the Phase 1 (P1) functions provided

by the user must process exclusively the boundary nodes involved in the exchange stage.

As soon as the P1 functions have finished, an asynchronous communication is started by the

Communication thread while the Phase 2 (P2) functions conduct the physical solution over the

remaining nodes of the domain. Likewise, an I/O operation may be started asynchronously

at the end of Phase 2, enabling as well the overlapping of I/O with other tasks. Finally, Phase

3 (P3) routines can be optionally provided by the user in cases where a post-processing step

is required after the computation of each time-step.

Chapter 7. Case Studies 143

7.2.2 Optimization Module

A new support module was integrated into the WARIS framework in order to implement the

optimizations and to make them available for future physical specializations (i.e. reusable

for solving different physical problems). This module, called opti, provides a set of functions

that users can employ to incorporate stencil-based optimizations into their explicit solvers.

The optimizations in opti are specially tailored for general purpose processors and multi-core

architectures such as the Intel Xeon family, including also accelerator-based as the many-core

Intel Xeon Phi (MIC). The features supported by this module are the following:

• Auto-tuner. To automatize the spatial-blocking effectiveness, a simple and straightfor-

ward auto-tuner was included. This auto-tuner, based on the research of Section 5.4, is

in charge of finding out possible pseudo-optimal TJ parameter (local minima) for the

spatial-blocking algorithm integrated in our stencil codes. This operation is conducted

during the initialization stage of each WARIS simulation. The cost of conducting this

search is marginal (order of milliseconds) compared to the whole simulation time. Se-

lecting an appropriate blocking parameter can save up to 30-40% of the explicit solver

for certain simulation cases.

• Intra-domain decomposition. Using the research done in Section 5.3 four different

schedulers were deployed for intra-domain decomposition, static over X and Y axes,

balanced (based on β parameter) and guided (using a tiling parameter from a previ-

ous auto-tuning search as heuristic). This routine returns a structure that contains the

domain boundaries for each computational thread (OpenMP).

• Topology. It collects the information of the underlying architecture in order to make

decisions about the best intra-node decomposition strategy in shared memory architec-

tures. This function returns the number of sockets (NSockets), the number of cores per

socket (NCores) and the number of threads per core (NSMT).

• Thread Affinity. Due to the multi-threaded and concurrent environment of WARIS, it is

highly recommended to establish a policy of thread affinity within a node. Through this

affinity, the spawned OpenMP and WARIS framework Pthreads (Main, Domain, Commu-

nication and I/O threads) are pinned to specific and different cores, avoiding memory

access disruption and interferences across threads. In order to do that, hardware cores

are not fully populated with OpenMP threads (in charge of intensive computing), leav-

ing specific cores exclusively dedicated to WARIS infrastructure management (execu-

tion flow, MPI communication and I/O). This thread affinity was achieved by setting

properly different environment variables: OMP_NUM_THREADS and KMP_AFFINITY

to control the binding of OpenMP threads, and EAP_AFFINITY to pin WARIS framework

threads to hardware cores. In some cases, this thread management led to a reduction

of 5 to 15% of the global execution time.

Chapter 7. Case Studies 144

7.3 Atmospheric Transport Modeling - Ash Dispersal

Atmospheric transport models [74] deal with transport of substances in the atmosphere, in-

cluding natural (e.g. mineral dust, volcanic ash, aerosols, sea salt), biogenic (e.g. biomass

burning), and anthropogenic origin (e.g. emission of pollutants, radionuclide leak). Model ap-

plications are multiple including, for example, short-term dispersion forecasts of hazardous

substances, long-term hazard assessments, air quality evaluations or climate studies. The

physics of these models describes the transport and removal mechanisms acting upon the

substance and predicts its concentration depending on meteorological variables and a source

term. These models are built on the Advection–Diffusion–Sedimentation (ADS) equation (see

Equation A.15), derived in continuum mechanics from the general principle of mass conser-

vation of particles within a fluid. The terms in the equation describe the advection of particles

by wind, turbulent diffusion of particles, and gravitational particle sedimentation.

Figure 7.11: Output example of the volcanic ash dispersion model.

This transport model can be effectively used to simulate the atmospheric dispersion of vol-

canic ash. Volcanic ash generated during explosive volcanic eruptions can be transported by

the prevailing winds thousands of kilometers downwind posing a serious threat to civil avia-

tion. Volcanic ash models run worldwide operationally to provide advice to the civil aviation

authorities, and other stakeholders, which need to react promptly in order to prevent in-flight

aircraft encounters with clouds. Figure 7.11 shows a simulation example of a paradigmatic

case occurred during April-May 2010, when ash clouds from the Eyjafjallajökull volcano in

Iceland disrupted the European airspace for almost one week. This eruption entailed thou-

sands of flight cancellations and millionaire economic losses [47].

Chapter 7. Case Studies 145

7.3.1 WARIS-Transport Specialization

As an application example, the FALL3D model (see Appendix A.4) has been ported to WARIS,

resulting in the so-called WARIS-Transport module. FALL3D [18, 35] is a multi-scale parallel

Eulerian transport model coupled with several mesoscale and global meteorological models,

including most re-analyses datasets. This model admits several parameterizations for verti-

cal and horizontal diffusion, particle sedimentation velocities, and source term, handling a

wide spectrum of particle sizes (from microns to few centimeters). Although FALL3D can be

applied to simulate the transport of any substance, the application is particularly tailored for

modeling the volcanic ash dispersal. FALL3D has a worldwide community of users, including

the Buenos Aires VAAC (Argentina) which has an operational setup to forecast ash cloud

dispersal under its area of influence.

Algorithm 17 Volcanic ash dispersion pseudo-code in WARIS-Transport. The tasks to be per-
formed can be categorized in four different types: Kernel Computation (KC), Data Communi-
cation (DC), Input/Output (IO) and Load Balancing (LB).

1: Read particle class properties (granulometry) (IO)
2: Read time and configuration variables (input) (IO)
3: Read grid data and topography from database (dbs) (IO)
4: Domain decomposition of the structured mesh (LB)
5: for t = timestart to timeend in ∆t steps do
6: if source_time ≤ t then
7: Read source term for each particle class (Snp) (IO)
8: Scale source terms (Snp

∗) (KC)
9: end if

10: if meteo_time ≤ t then
11: Read meteorological variables (ux,y,z, T , p, etc.) from dbs (IO)
12: Compute horizontal and vertical diffusions (Kx,y,z) (KC)
13: Compute terminal velocity for each particle (Vsj) (KC)
14: Scale velocities depending on coordinate system (Ux,y,z) (KC)
15: Calculate the critical time-step (∆t) (KC)
16: AllReduce of ∆t (DC)
17: end if
18: Set boundary conditions (CΓ) (KC)
19: for each particle class in np do
20: Advance ADS with stencil (Ct+1) (KC)
21: Exchange overlap points between neighbor domains (Covl) (DC)
22: end for
23: Compute ground accumulation of ash (Caccu) (KC)
24: Compute mass lost at boundaries (∇ · (UCΓ)) (KC)
25: AllReduce of mass lost (DC)
26: Mass balance correction (KC)
27: if output_time ≤ t then
28: Post-process output (Cthickness, CCFL, CPM) (KC)
29: Write output for t (Ct+1, Caccu, Cthickness, CCFL, CPM) (IO)
30: end if
31: end for

Chapter 7. Case Studies 146

The WARIS-Transport specialization was implemented following the Algorithm 17, which

shows the execution flow required to simulate the dispersion of volcanic ash. In our imple-

mentation, each WARIS thread is in charge of different tasks. So, Domain thread is in charge

of commanding the computational kernels (KC), Communication thread is involved in com-

municating the boundary nodes to neighbors (DC) and IO thread reads the meteorological

data and writes the post-processed output of the ash dispersal (IO).

7.3.2 Volcanic Ash Dispersal Results

The aim of this section is to quantify how different code optimizations and porting to emerg-

ing architectures speed up the FALL3D model execution times. We also investigate to which

extent WARIS-Transport can accelerate model forecasts and analyze whether the resulting

improvements make feasible a future transfer of ensemble forecast strategies into opera-

tions [11].

Horizontal Vertical nz × nx × ny Number
Test case resolution resolution (ALT×LON×LAT) of nodes

Caulle-0.25 0.25o 500 m 64× 121× 121 0.93 M
Caulle-0.10 0.10o 250 m 64× 301× 301 5.8 M
Caulle-0.05 0.05o 250 m 64× 601× 601 23.1 M

Table 7.5: Domain resolutions and number of grid nodes for the 3 different cases consid-
ered in the Cordón Caulle reference simulation. Horizontal resolutions along a meridian are
approximately 25, 10 and 5 km respectively.

To this purpose, we conducted experiments using a real test-case, the 2011 Cordón Caulle

eruption, and compared performance of both models (FALL3D and WARIS-Transport) for dif-

ferent computational domains.The Puyehue-Cordón Caulle volcanic eruption took place on

4 June 2011 after decades of quiescence. The explosive phase of the eruption generated ash

clouds that were dispersed over the Andes causing abundant ash fallout across the Argen-

tinean Patagonia [17]. Ash dispersal was operationally forecasted by the Buenos Aires VAAC

using the ETA-HYSPLIT and the WRF/ARW-FALL3D modeling systems. Here, we simulate the

first three days of the eruption, from 4 June at 19h UTC to 7 June at 12h UTC. The idea is to

have a real-case reference simulation of sufficient duration to compare the execution times.

The computational domain cover 30o × 30o (LON: −76oW to −46oW , LAT: −23oS to −53oS)

at three spatial resolutions of 0.25, 0.1 and 0.05o respectively (see Table 7.5) in order to

analyze the effect of increasing the size of the computational mesh. The 0.05o eruption case

involves an input dataset of 71 GBytes of meteorological data (72 hours) and 1.2 GBytes of

concentration and dispersal simulated data (66 hours). Although the scope of this research

is not to match simulations and satellite observations, Figure 7.12 compares, for illustrative

purposes, true color MODIS Terra satellite image with the current simulation output.

The results are shown using two different WARIS-Transport implementations, a naive ver-

Chapter 7. Case Studies 147

6June−19UTC

−75˚

−75˚

−70˚

−70˚

−65˚

−65˚

−60˚

−60˚

−55˚

−55˚

−50˚

−50˚

−50˚ −50˚

−45˚ −45˚

−40˚ −40˚

−35˚ −35˚

−30˚ −30˚

−25˚ −25˚

0.01

0.01

0.01

Figure 7.12: Comparison of simulated ash column mass (in g/m2) and true-color
TERRA/AQUA satellite images at 6 June 19 UTC time instant.

sion and a fully optimized one. The intent is to measure which is the effect of opti module

over the execution times. The baseline implementation (naive) incorporates a pure MPI ver-

sion, where the ADS kernel has been fully SIMDized including some pipeline optimizations

(loop transformations). In the parallel I/O aspect, this naive version also includes an active

buffering strategy [50] with two-phase collective I/O calls [33].

On the other hand, the optimized version introduces further improvements into the WARIS-

Transport code through hybrid MPI-OpenMP parallelization, Semi-stencil, spatial-blocking,

auto-tuning, and, finally, thread affinity (pinning threads to specific cores). To conduct the

OpenMP optimization, first we identified the main computational loops of the WARIS-Transport

routines. As expected, the most time consuming parts in Algorithm 17 resulted to be the ex-

plicit solver routines (lines 20, 23 and 24) and, to a lesser extent, the pre-process and post-

process section codes for I/O. Then, we proceeded to annotate with OpenMP pragmas the

loops of these routines. The annotation was combined with the intra-domain scheduler of

opti module which bestowed an appropriate domain decomposition across threads ensuring

not only a balanced workload but also an efficient data access to main memory (e.g. stream-

ing access and NUMA aware). The second-order FD solver of the ADS equation was likewise

improved by using the Semi-stencil approach [25]. Although the FALL3D model does not use

a high-order stencil, which are better suited for Semi-stencil, its slope-limiter method for sta-

bilization accesses data as a 13-point stencil. Thus, the Semi-stencil integration entailed an

additional improvement of 10% compared to the classical and vectorized stencil kernel. Fi-

nally, the spatial-blocking algorithm of the ADS code was combined with the auto-tuner from

the opti module. As example, Figure 7.13 shows how a proper blocking parameter is crucial

to reduce the execution time of the explicit kernel. In this particular case (256×2048×64

Chapter 7. Case Studies 148

domain size), the execution time has been reduced by 24.1% using spatial-blocking and

auto-tuning.

 1

 2

 4

16
x1

6x
64

32
x1

6x
64

64
x1

6x
64

12
8x

16
x6

4

25
6x

16
x6

4

16
x3

2x
64

32
x3

2x
64

64
x3

2x
64

12
8x

32
x6

4

25
6x

32
x6

4

16
x6

4x
64

32
x6

4x
64

64
x6

4x
64

12
8x

64
x6

4

25
6x

64
x6

4

16
x1

28
x6

4

32
x1

28
x6

4

64
x1

28
x6

4

12
8x

12
8x

64

25
6x

12
8x

64

16
x2

56
x6

4

32
x2

56
x6

4

64
x2

56
x6

4

12
8x

25
6x

64

25
6x

25
6x

64

16
x5

12
x6

4

32
x5

12
x6

4

64
x5

12
x6

4

12
8x

51
2x

64

25
6x

51
2x

64

16
x1

02
4x

64

32
x1

02
4x

64

64
x1

02
4x

64

12
8x

10
24

x6
4

25
6x

10
24

x6
4

16
x2

04
8x

64

32
x2

04
8x

64

64
x2

04
8x

64

12
8x

20
48

x6
4

25
6x

20
48

x6
4

T
im

e
(in

 s
ec

on
ds

)

0.66

0.87

Blocking parameter

Figure 7.13: Spatial-blocking impact on the ADS kernel execution time. The green rectangle
shows the performance of the naive implementation, whereas the blue circle depicts the best
blocking parameter. The opti module automatically selects the best parameter.

The execution times were evaluated on two platforms, a multi-core platform with Intel

Sandy Bridge-EP processors, and a prototype based on Intel Xeon Phi (MIC).

Intel Sandy Bridge-EP: As first platform, the MareNostrum supercomputer facility installed

at the BSC was used. MareNostrum is part of the Partnership for Advanced Computing in Eu-

rope (PRACE) research infrastructure. MareNostrum has a peak performance of 1.1 Petaflops,

with 48896 Intel Sandy Bridge processors in a total of 3056 nodes (16 processors per node).

Each MareNostrum node incorporates 2 Intel Sandy Bridge-EP E5-2670 chips (dual socket).

All nodes are interconnected through a dual-port high speed network Infiniband FDR10

for MPI communication (through POE). Finally, the supercomputer nodes have access to 2

PetaByte disk storage with General Parallel File System (GPFS).

Intel Xeon Phi (MIC): The MIC prototype configuration is composed of two Intel Xeon Phi

5110P cards attached to the PCI express bus of a MareNostrum compute node (dual Intel

Sandy Bridge-EP E5-2670 chips). Due to the lack of GPFS drivers specifically compiled for

MIC architecture, the global disk access is unavoidable configured through a double-mounted

system of a NFS server in host which is in turn also mounted to the GPFS system of MareNos-

trum. The main drawback of this configuration is its poor I/O performance due to the NFS

access, which provides a low bandwidth. Finally, as MPI implementation, OpenMPI was used.

Table 7.6 summarizes the FALL3D model and the non-optimized WARIS-Transport execu-

tion times for all 3 study cases. All these runs were conducted using 2 entire MareNostrum

nodes with MPI for intra- and inter-node communication between different domains. Times

Chapter 7. Case Studies 149

CPU WARIS-
Domain cases time (s) FALL3D Transport Speed-up

Caulle-0.25

Input 1991 27 -
Output 229 15 -
Kernel 1441 97 -
TOTAL 3458 163 21.21×

Caulle-0.10

Input 2085 71 -
Output 1508 17 -
Kernel 10099 1030 -
TOTAL 12525 1138 11.00×

Caulle-0.05

Input 2245 187 -
Output 4132 46 -
Kernel 38622 4735 -
TOTAL 41334 4978 8.30×

Table 7.6: Time comparison between FALL3D and the naive (non-optimized) version of
WARIS-Transport using 32 cores of MareNostrum supercomputer (2 Intel sandy bridge
nodes).

are broken down for the three main parts of the simulation: input, output and kernel. Input

time includes the cost of reading and pre-processing the meteorological data for each hour of

simulated time (8 variables of nz × nx × ny and 4 variables of nx × ny read hourly). Output

time considers the execution time of post-processing and writing results every hour of simu-

lated time (13 variables of nz ×nx×ny dimension). Finally, the kernel time refers to the cost

of computing explicit kernels such as: ADS equation, boundary conditions, ground accumu-

lation (ash fallout), mass lost at boundaries and the correction of the unbalanced mass due

to non-null divergence terms.

Looking at results in Table 7.6 it is observed that WARIS-Transport outperforms FALL3D

on all resolutions. The speed-ups shown with the preliminary WARIS-Transport implementa-

tion range from 8.30× in the worst case up to 21.21× in the best depending on the balance

between computation and communication. Several reasons explain this higher performance.

First, I/O operations are serialized in FALL3D due to the use of the sequential NetCDF-3

library. As a result, only the master process (MPI task 0) performs reading and writing op-

erations, and therefore, it is in charge of sending to and receiving from each computational

domain the required I/O data. This sequential I/O strategy does not scale because the mas-

ter process becomes the bottleneck as the number of domains involved in the simulation

increases. In opposition, WARIS-Transport uses the parallel implementation of the NetCDF-4

library, which takes advantage of MPI-IO, enabling a much better scaling. Second, the WARIS-

Transport module makes use of SIMDized kernels that take advantage of the SIMD units in

the Intel Sandy Bridge architecture (AVX). This vectorization may speed-up the performance

up to 8× compared to a scalar implementation when single-precision floating-point opera-

tions are carried out (8 FLOPs per AVX operation). In addition, the loops of these explicit

Chapter 7. Case Studies 150

kernels have been also rearranged to reduce memory access latency by accessing required

data in a proper way. Finally, the multi-threaded execution flow of WARIS framework per-

mits the WARIS-Transport module to overlap I/O, MPI communications and computation of

the explicit kernel. By doing so, a fraction of I/O and MPI exchange of boundary areas can

be hidden with the remaining parts of the simulation.

Although the initial naive WARIS-Transport results unveil a considerable speed-up com-

pared to FALL3D, further margin of performance improvement exists for the current HPC

scenario. Actually, parallel limitations can be expected in pure MPI applications when strong

scaling is performed because of the decreasing ratio of internal nodes with respect to nodes

that must be exchanged across neighbor domains (the more MPI decompositions are per-

formed, the more dominant communication across domains becomes). Modern architectures

expose high levels of parallelism through the ability of spawning threads that can run simul-

taneously in the same chip by means of multiple cores. Within this multi-core environment,

computation and implicit communications can be efficiently conducted at intra-node level

by using shared memory paradigms such as OpenMP instead of MPI. The hybrid MPI-OMP

version follows this concept.

Processing Intel Sandy Bridge Intel Xeon
Units Pure MPI (naive) MPI+OMP (opti) Phi (MIC)

1 7015 (7.3×) 5368 (9.6×) 5633 (9.1×)
2 4978 (8.3×) 2812 (14.6×) 2845 (14.6×)
4 2812 (12.7×) 1541 (23.3×) -
8 1954 (16.9×) 806 (41.0×) -
16 1815 (16.0×) 527 (55.2×) -
32 - 475 (N/A) -

Table 7.7: WARIS-Transport simulation times (in seconds) on Intel Sandy Bridge and Intel
Xeon Phi. Values are for the Caulle-0.05 case considering 3 days of simulation and hourly I/O.
Results are given in processing units, corresponding to 1 MareNostrum node (16 processors)
for the Intel Sandy Bridge and to 1 host (node) plus 1 card for Intel Xeon Phi. Speed-up time
factor with respect to the FALL3D original implementation is shown in parenthesis.

Table 7.7 compares the WARIS-Transport execution time for the Caulle-0.05 case con-

sidering the naive pure MPI and the optimized hybrid MPI-OMP version on Intel Sandy

Bridge and Intel Xeon Phi (MIC). In order to fairly compare performance between these

two platforms, the scalability results are ordered by the term processing unit, which refers

to the minimum hardware unit available to purchase (e.g. node or accelerator card). The

WARIS-Transport specialization for MIC has been deployed using a pure native implementa-

tion, where OpenMP and WARIS infrastructure threads are run exclusively in MIC device. The

host only provides access to the global disk. As many-core architecture with a cache-based

memory hierarchy, the MIC processor can also take advantage of opti module optimizations.

Regarding the thread affinity policy, on Intel Sandy Bridge nodes, 15 OpenMP threads were

mapped to 15 cores, and 1 core was specifically dedicated to WARIS Pthreads. On the other

Chapter 7. Case Studies 151

hand, for Intel Xeon Phi runs, 232 OpenMP threads were spawned and mapped to 58 cores

(4 SMT threads per core), and 2 entire cores were exclusively assigned to WARIS tasks (data

flow, communication and I/O). As constraint, certain cases were not feasible to be conducted.

First, the FALL3D and naive WARIS-Transport runs were only executed up to 256 CPUs be-

cause of MPI decomposition limitations (ny dimension too small for 512 MPI tasks). Second,

due to the network configuration of the MIC prototype system with OpenMPI, the analysis

was limited to the 2 MIC cards available on the same host.

As observed in Table 7.7, the Intel Sandy Bridge optimized version of WARIS-Transport

gives additional improvements between 23% and 70% with respect to the pure MPI naive one,

where the gain increases with the number of processing units. Likewise, the speed-up factor

with respect to the original FALL3D implementation (shown in parenthesis) is significantly

increased, specially with more than 128 CPUs. The Intel Xeon Phi gives very similar results

per processing unit. On the other hand, the scalability efficiency of Intel Sandy Bridge nodes

remains above 80% up to 8 processing units (128 CPUs), and the MIC accelerator-based

implementation presents nearly optimal scalability (above 90%), but our analysis limits to

the 2 MIC cards available. Nevertheless, a significant degradation is observed in the Intel

Sandy Bridge scalability with 16 and specially 32 processing units (corresponding to 256

and 512 CPUs respectively).

Num. Explicit kernel Meteo data Dispersal Wait Total Comp. Scal.
Proc. P1 P2 P3 Input Post- Pre- Output sync. I/O time efficiency efficiency

16 0 2971 2046 816 302 8 65 34 5368 100% 100%
32 17 1507 1065 438 151 5 79 62 2812 97.0% 95.4%
64 16 778 598 275 76 2 69 67 1541 90.6% 87.0%
128 16 410 190 1 38 1 72 144 806 100% 83.2%
256 16 217 104 1 20 1 113 165 527 93% 63.6%
512 15 126 64 1 11 1 217 255 475 76.4% 35.3%

Table 7.8: Break-down of the optimized WARIS-Transport times on Intel Sandy Bridge with
Caulle-0.05 case. Efficiency is shown disregarding the I/O (Computation efficiency) and con-
sidering the whole time (Scalability efficiency).

In order to explain the reasons of this lost of performance, Table 7.8 breaks down the exe-

cution time of the Caulle-0.05 case with Intel Sandy Bridge platform. Results are categorized

in four groups, explicit kernels (P1, P2 and P3 stages), meteorological input, ash dispersal out-

put and active wait due to synchronous I/O. P1 (boundary elements), P2 (internal elements)

and P3 stages refer to the kernel functions in the PSK framework structure. Post-process and

pre-process columns consider the required computation for the data arrangement after read-

ing meteorological data and before writing ash dispersal results respectively. Finally, unlike

Input and Output columns, wait synchronous I/O includes the time spent on serialized I/O

(not overlapped with other WARIS-Transport tasks).

Three main issues arise on these executions. First I/O becomes a bottleneck, specially

with a large number of MPI tasks. As the number of processors is increased, the required

time for I/O cannot be olverlapped with the remaining tasks. The reason is that computing

Chapter 7. Case Studies 152

Figure 7.14: EXTRAE traces of WARIS-Transport with Caulle-0.05 case. For clarity purposes,
only WARIS Pthreads are shown for two MPI tasks in a 8 seconds timeline. Each row repre-
sents a different execution flow (MPI task and Pthread) and the operation being performed
(see colors in legend). In these traces, the operations shown are: non-blocking MPI calls
(Immediate Receive/Send), waits for non-blocking MPI calls (Wait/WaitAll), MPI collectives
(Group Communication), I/O and others (Running). The yellow lines draw the point-to-point
communications between Communication threads when boundary nodes are being trans-
ferred at each time-step. Top: case where MPI contention is produced with a large number
of tasks. Bottom: a better MPI communication pattern is obtained with a lower number of
tasks.

resources are augmented whereas the GPFS I/O servers in MareNostrum remain the same.

Second, as the number of domains is increased, each MPI process must read and write smaller

chunks of data that entails inefficient gather and scatter operations in the MPI-IO layer. And

third, at a certain number of processors, we have experienced serious network contention

when MPI routines (point-to-point and collective) and the MPI-IO layer (through NetCDF)

are concurrently used by PSK threads.

The EXTRAE traces shown in Figure 7.14 clearly depict this issue. A strong MPI degra-

Chapter 7. Case Studies 153

MPI case Running Wait Imm. Send Imm. Receive Group Comm. I/O

Contention 38.0 5.7 1.3 0.003 6.7 12.3

No contention 49.7 0.374 0.039 0.004 0.889 13.0

Table 7.9: Time break-down of EXTRAE traces with Caulle-0.05 case. Times (in seconds)
have been aggregated for all threads.

dation can be observed in threads involving communication while I/O thread is performing

the MPI-IO. The MPI contention entails a poorer performance due to the stagnation of Do-

main and Communication threads that must wait for critical messages (boundary nodes and

collective reductions) to proceed with the next time-step. For example, during the timeline

shown in Figure 7.14, a total of 21 time-steps were conducted for the worst case (top) and

42 time-steps in the case without contention (bottom). Table 7.9 breaks down this timeline,

showing the aggregated time spent on each part for all threads. In the case without MPI

contention, threads spend more time computing (Running) than performing operations that

involve communications.

In order to minimize the MPI contention on executions with more than 128 CPUs, the

most critical part of the I/O (71 GBytes of meteorological data) was previously read in the

initialization part of WARIS-Transport. Although this strategy entailed the serialization of I/O

and therefore higher Wait synchronous I/O values, the whole execution time was improved

by the fact that the better MPI behavior overcame the cost of serializing the I/O.

7.4 Summary

In the first part of this chapter, we have demonstrated that Semi-stencil algorithm is a valid

technique to optimize scientific applications, such as the RTM on heterogeneous architectures

like Cell/B.E. Both, the 25-point stencil of the RTM kernel (wave propagator) and the low-

latency scratchpad memory of the SPEs are good candidates for our novel algorithm. A fully-

operational RTM code used in Oil & Gas industry has been enhanced by 16% using this novel

algorithm.

In the second part of this chapter, we have presented the WARIS framework. The WARIS

infrastructure has shown appealing capabilities by providing successful support for scientific

problems using FD methods. In order to assess its performance, a code that solves the vecto-

rial Advection–Diffusion–Sedimentation equation has been ported to the WARIS framework.

This problem appears in many geophysical applications, including atmospheric transport of

passive substances. As an application example, we focus on atmospheric dispersion of vol-

canic ash, a case in which operational code performance is critical given the threat posed

by this substance on aircraft engines. The results of WARIS-Transport are very promising,

performance has been improved by 55.2× with respect to the baseline code of FALL3D us-

ing a realistic case. This opens new perspectives for operational setups, including efficient

Chapter 7. Case Studies 154

ensemble forecast.

Chapter 8

Conclusions and Future Work

This thesis is devoted to leverage the performance of stencil computations that arise not only

in academia examples but also in real-applications used in industrial cases. To this extent,

this thesis has focused on four different topics that affects FD-based codes: optimization of

the stencil computation, strategies to facilitate the scalability on complex SMP architectures,

design of a flexible and accurate performance model for stencil computations, and the assess-

ment of the optimizations proposed in real applications for industry. The following sections

elaborate on the contributions and future work of each developed topic.

8.1 Optimizing Stencil Computations

Stencil codes are usually affected by low data reuse and non-unit stride memory access pat-

terns that jeopardize the global performance of the computations. Some techniques like loop

unrolling, software pipelining or software prefetching can help improve the performance of

stencil codes by partially hiding the dependency stalls. However, these techniques have a lim-

iting factor, namely the available register pool in the processor. Other algorithms like Rivera

or Cache-oblivious tackle the memory access pattern issue with partial success, reducing the

overall transfer latency in cache-based architectures.

In order to address the performance issues of stencil-based computations, in Chapter 4, we

have presented a novel optimization technique called Semi-stencil. This new algorithmic ap-

proach has shown significant performance improvements on test cases conducted with Sten-

cilProbe micro-benchmark over medium- and high-order stencils (ℓ > 2). The Semi-stencil

contributions are:

• It reduces the working data set, thus minimizing register pressure and cache memory

footprint. This effect becomes more pronounced for high-order stencils.

• It increases spatial and temporal data locality, owing to a reduction in loads issued,

but increasing slightly the required stores. In cache-based architectures, the cache co-

herence and the write allocate policy (usually associated with write-back) may produce

further memory traffic due to the extra store transactions. Despite the additional stores,

the benefit in time of the load reduction overcomes the penalty of stores.

155

Chapter 8. Conclusions and Future Work 156

• Due to its orthogonal property, the Semi-stencil outperforms other techniques on many

architectures, either when implemented alone or combined with space and time-blocking

algorithms.

The experimental results show that the best classical implementations of a 25-point stencil

are typically able to deliver up to 30% of the peak performance. Under the same conditions,

the Semi-stencil implementations can achieve up to 1.32× performance improvement. Addi-

tionally, through the insight provided by the Roofline model and the FP/Cache metric, we

have revealed how the Semi-stencil algorithm performs in terms of Operational Intensity and

memory traffic.

In SMP systems, the Semi-stencil algorithm has also added further scalability on most

of the analyzed platforms. In the POWER7 architecture, the scalability soars to 13.06× for

the Oblivious+Semi-stencil case when is run over 32 threads. Furthermore, when only 4

threads are used in this platform, the performance is widely enhanced in most cases and the

execution time almost halved with respect to the classical version. We have also demonstrated

the much better parallel behavior of the Semi-stencil algorithm on novel architectures such

as Intel Xeon Phi (MIC). For instance, on this architecture, the scalability reaches 93.8× over

244 threads for certain tests cases. Although the scalability has been reached with certain

success, the obtained results reveal that stencil-based optimizations must be combined with

load balancing strategies addressed specifically for SMP architectures.

Future work will focus on further research of this novel algorithm in several aspects. First,

the cost of each computational part (head, body and tail) will be broken down with respect to

the global performance. Second, the benefits in performance of each forward and backward

update will be analyzed in detail for each Semi-stencil axis. Third, on cache-based architec-

tures with write allocate policy, write misses may have a negative impact due to the pollution

that the cache-line allocation produces. Architectures with cache-bypass techniques that mini-

mize cache pollution when writing data to memory have already appeared (vmovntpd on x86

and dcbtst on POWER architectures). Our future efforts will assess the performance of the

Semi-stencil algorithm when combined with non-temporal stores. Finally, the Semi-stencil

strategy will be also evaluated on numerical methods that implement similar memory access

pattern such as Lattice Boltzmann Magnetohydrodynamics (LBMHD).

8.2 SMT, Multi-core and Auto-tuning

Currently, the GHz race for higher frequencies has slowed down due to technological issues.

The main challenge has been the CPU power consumption, which increases proportionally

to the clock frequency and to the square of the die voltage. As a solution, manufacturers

have migrated to CMP architectures, where the main source of performance comes from the

intra-node exploitation of multi- and many-core processors at lower frequencies. Within this

approach, the scalability is a major concern with an increasing number of replicated cores and

Chapter 8. Conclusions and Future Work 157

accelerators. Resources including memory, communication buses and shared caches become

bottlenecks and entail stagnation of performance. Therefore, the parallelization of stencil

codes requires careful considerations to fully exploit the CMP capabilities.

In this regard, Chapter 5 has proposed a set of intra-node strategies addressed to CMP

architectures in order to leverage the performance of stencil computations. The intra-node

strategies of this thesis contributes in the following areas:

• SMT affinity: we have proposed a work-load distribution by planes for SMT threads

that is two-fold. First, the private-core resources are better shared across SMT threads,

not only affecting caches, but also prefetcher engines. Second, as a consequence of

the thread cooperation, cache reuse is improved, reducing conflict and capacity misses

due to the smaller data footprint. This data reuse also promotes a better prefetching

effectiveness by reusing streams and avoiding prefetch disruption.

• Multi-core decomposition: in order to tackle the work-balance on CMP platforms, we

have suggested four decomposition schedulers for stencil computations that take into

account data reuse (spatial and temporal locality) and prefetching effectiveness. In

order to do that, threads mapped into the same core are assigned to a certain number

of consecutive planes guaranteeing stream access by preventing cutting along the unit-

stride dimension (Z).

• Auto-tuning: to guarantee a better scalability, we have also included a simple auto-

tuner that searches for a good tiling candidate (TJ) of the spatial-blocking algorithm.

This auto-tuning step uses a gradient descent search to find a pseudo-optimal value

in a small portion of time. Then, threads traverse their respective core domains in

NZcore × TJ ×NYcore blocks.

Through experiments on two leading platforms, we have demonstrated that the combina-

tion of these three techniques are crucial in order to allow higher scalability results. This is

specially true in novel architectures with a high level of thread parallelism such as Intel Xeon

Phi, where stagnation exacerbates as SMT threads are increased. Indeed, in certain cases

these three combined techniques allowed to improve the scalability from ≈50× up to 123×

for an ADR kernel.

Among all decomposition schedulers, we have proposed the balanced scheduler, which

strives to minimize the imbalance across intra-domains while a new introduced metric, named

β, is maximized. This metric measures the percentage of internal points with respect to the

halos that are required to compute the stencil operator. The higher this metric is, the less

memory traffic the halos represent. As a consequence of its higher β metric, the balanced

scheduler always yielded the best scalability results on both platforms. By means of this

scheduler, we have demonstrated not only the importance of reducing the imbalance, but

also of attaining a reasonable β to reduce the redundant data transferred from memory to

processor. On the other hand, we have also presented a scheduler called guided, that employs

Chapter 8. Conclusions and Future Work 158

a pseudo-optimal TJ parameter from a prior auto-tuning step. This scheduler uses the TJ

parameter as heuristic to prevent the decomposition on X axis under the TJ value. Never-

theless, the experimental results expose poorer performance than balanced because NXcore

has been bound as > TJ at the expense of decreasing the β metric.

Finally, we have also realized, that the memory enhancements proposed in this chapter

cannot be easily implemented through schedule(type[,chunk]) and collapse(2) clauses

from OpenMP. These clauses do not permit to promote data reuse neither between threads

residing in the same core nor within the same thread due to spatial-blocking. The main issue

of these OpenMP clauses is the inability to enforce that computational blocks reside in the

contiguous direction for the least-stride dimension (Y).

8.3 Performance Modeling of Stencil Computations

In Chapter 6, we have presented a performance model tailored for stencil computations. Our

stencil modeling study started with a preliminary model that despite some weaknesses was

able to capture roughly the performance behavior of naive stencil computations. The accu-

racy of the prediction ranged depending on the platform. In x86 architectures case, on which

we spent most of our research time, an acceptable level of prediction accuracy was obtained.

Furthermore, the average relative error in the execution time prediction was 13% for the

whole range of stencil sizes. These results proved that we were in the right path to achieve

a reliable multi-level cache model, which at the same time remained simple, flexible and ex-

tensible. Nevertheless, the prefetching mechanism devised for the preliminary model lacked

accuracy when the streaming bandwidth was dominant in the execution time (low-order sten-

cils and small problems) and especially when several threads were concurrently triggering

the prefetching engine.

As an enhancement, we extended the model to an advanced version. Several new features

were included into the model such as: multi-core support, improved hardware prefetching

modeling, cache interference due to conflict and capacity misses and spatial blocking and

Semi-stencil optimization techniques. The most challenging part was the prefetching model-

ing, specially when too many arrays are accessed concurrently, overwhelming the hardware

prefetching system and hampering the bandwidth performance. In these scenarios, an ag-

gressive prefetching intervention causes eviction of data that could be reused later (temporal

reuse), polluting the cache and affecting adversely the bandwidth performance. Loop fission

and data layout transformations can occasionally improve the performance in these cases.

Nevertheless, they must be applied carefully because some side effects may appear. In order

to effectively capture the stream engine behavior in all above mentioned cases, the prefetch-

ing effectiveness approach was adopted. As shown in the experiments, this approach can be

successfully used in SMT context, where the prefetching efficiency is substantially reduced

due to contention of the shared resources.

The new methodology in the performance model contributes to unveil insights about how

Chapter 8. Conclusions and Future Work 159

stencil codes might be built or executed in order to leverage the prefetching efficiency. The

proposed model could also be included as static analysis in auto-tuning frameworks to guide

in making decisions about algorithmic parameters for stencil codes; thus providing a rich

synergy towards efficient stencil code implementation. Likewise, our model might be useful in

expert systems, not only for compilers or auto-tuning tools, but also in run-time optimizations

for dynamic analysis. For instance, the model might decide the SMT configuration and the

number of threads to be spawned that outperform the remaining combinations based on the

prefetching engines, the problem size (I × J) and the stencil order (ℓ).

To our knowledge, this is the first stencil model that takes into account two important phe-

nomena: the cache interference (due to II × JJ and Pread parameters) and the prefetching

effectiveness when concurrent threads are running in the same core. Despite the fact that the

current work has been only conducted for 1st order in time and constant coefficient stencils,

the model could be adapted to higher orders in time and variable coefficients (anisotropic

medium) by adjusting the cost of cache miss cases (C1,2,3,4) and their rules (R1,2,3,4) through

Pread,write and Sread,write variables.

Future work will include temporal blocking as optimization method, and different thread

domain decomposition strategies apart from the static scheduling (cutting in the least-stride

dimension). Nonetheless, the addition of software prefetching behavior into the model is

unattainable since it depends on the internal compiler heuristics, and the pragmas inserted

by the user.

8.4 Case Studies

In Chapter 7 of this thesis, we have devoted our efforts to demonstrate the soundness of the

optimizations of previous chapters into real-life applications used in the industry.

First, we have reviewed the effect of Semi-stencil algorithm in a RTM code from the Kalei-

doscope project for the Cell/B.E. architecture. The RTM model is a seismic imaging method

used in Oil & Gas industry to search hidrocarbon-rich reservoirs where up to 80% of the ex-

ecution time is spent on solving the wave equation through stencil computations. The Semi-

stencil has shown two benefits compared to the classical stencil algorithm for this scientific

application. First, it reduces the number of Z-XSPE planes kept in LS, allowing to increase

the XSPE parameter and thus reducing the transferences. Second, although stores are in-

creased in Semi-stencil algorithm, the number of loads issued in the pipeline are reduced in

a noticeable way, alleviating significantly the pressure over the load-store unit (almost 40%).

Compared to cache hierarchy architectures, the additional stores do not pose any negative

impact on the global performance due to the constant latency of accessing the scratchpad

memory. In the single-SPE version of the FD scheme for the wave equation, the best classi-

cal stencil implementation with SIMD code and pipeline optimizations was able to reach up

to 34% of the SPE peak performance. Under the same conditions, we achieved 49% deploy-

ing the Semi-stencil algorithm. This algorithm has also revamped the performance of a fully

Chapter 8. Conclusions and Future Work 160

operational RTM code by speeding up the overall execution time by 16%.

In the second part of the chapter, we have presented the WARIS framework. WARIS, a

BSC in-house infrastructure on which this thesis has partially contributed with some im-

provements, has shown appealing capabilities by providing successful support for scientific

problems using FD methods. Through a modular perspective, it provides support for a wide-

range of hardware platforms, easing the specific platform support as the computation race

keeps the hardware changing everyday. We have included a new module called opti that incor-

porates most of the optimizations techniques devised in this thesis. As application example to

validate our research, we have developed WARIS-Transport, a porting of the FALL3D model.

FALL3D is an Eulerian Atmospheric Transport Model (ATM) tailored to simulate transport

and deposition of volcanic tephra at both research and operational levels, a case in which

operational code performance is critical given the threat posed by this substance on aircraft

engines. We have compared the WARIS-Transport performance with respect to the baseline

code of FALL3D using a real simulation occurred in 2011 at Puyehue-Cordón Caulle. The

optimized version of WARIS-Transport, which makes use of opti module and takes advantage

of an hybrid MPI-OpenMP parallelization, spatial-blocking, auto-tuning and thread affinity,

lead to much better scalability and a speed-up of 9.6× to 55.2×. From the ATM operational

point of view, the importance of code optimizations on HPC platforms is clear. On one hand,

for a given operational model setup, to dispose of a code at least one order of magnitude

faster allows to face ensemble forecast strategies with execution time constrains compatible

with operations. On the other, given a limited computing time and computational resources,

higher resolution simulations can be considered.

Future work will explore the reasons of the poor performance encountered between MPI

routines (point-to-point and collectives) and MPI-IO layer when they are simultaneously used

by the WARIS-PSK infrastructure. MPI_Send/Recv and specially collectives calls, which are

critical to conduct the simulation steps, must not be stagnated by lower priority MPI transfers

such as MPI-IO. In the near future with the exascale computing, parallel I/O will definitely

become a bottleneck which must be rapidly addressed. The solution to this issue comes neces-

sarily from the fact that I/O, computation and communication must be efficiently overlapped

without contention in scientific applications.

Appendix A

Numerical Equations

A.1 Heat Equation

The heat equation, a simplification of the diffusion equation, is a parabolic PDE that describes

the heat conduction (variation of temperature) in a given medium over time. The heat equa-

tion for u in any coordinate system is given by

∂u

∂t
= α∇2u (A.1)

and, more specifically for u(x, y, z, t), in a Cartesian coordinate system, is

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

(A.2)

where α is a positive constant depending on the coefficient of thermal conductivity over the

medium and ∇2u is the Laplace operator. The Laplace operator merely states that heat flows

down a temperature gradient depending on the thermal diffusivity that might represent the

insulation value of the material being described (α). The heat equation is one of the simplest

PDEs in physics, being first-order in time and second-order in space.

The finite difference approximation for the 1D heat equation can be written as

ut+1
i − ut

i

∆t
= α

(
ut
i−1 − 2ut

i + ut
i+1

∆x2

)

+O(∆x2,∆t) (A.3)

using a forward difference in time and a centered difference scheme in space. Thus, obtaining

a Forward-Time and Centered-Space (FTCS) approximation of the heat equation.

Then, the temperature for u(x, t) can be easily deduced by the following explicit equation,

ut+1
i = ut

i +
α∆t

∆x2

(
ut
i−1 − 2ut

i + ut
i+1

)
. (A.4)

A.2 Wave Equation

The wave equation is a hyperbolic PDE that models the displacement of a wave or pertur-

bation (u) in a specific medium over time (t). The wave equation for u in any coordinate

is,

161

Appendix A. Numerical Equations 162

∂2u

∂t2
= c2∇2u (A.5)

and, for a 3D problem u(x, y, z, t) in a Cartesian coordinate system is

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

, (A.6)

where c is a constant wave speed that depends on the medium. The wave equation resembles

the heat equation, but differing in the second-order term in time.

Approximating the second-order derivatives by central differences (CD) both in space and

time, the finite difference scheme for the 1D wave equation can be written as

ut−1
i − 2ut

i + ut+1
i

∆t2
= c2

(
ut
i−1 − 2ut

i + ut
i+1

∆x2

)

+O(∆x2,∆t2). (A.7)

Therefore, the equation can be explicitly solved by

ut+1
i = 2ut

i − ut−1
i

︸ ︷︷ ︸

Temporal integrator

+

(
c∆t

∆x

)2

(ut
i−1 − 2ut

i + ut
i+1)

︸ ︷︷ ︸

Spatial integrator

. (A.8)

A.3 Advection–Diffusion–Reaction Equation

The Advection–Diffusion–Reaction (ADR) equation is a PDE that models the concentration

of particles in a process where the particles (usually chemical species) suffer a reaction, dif-

fusing over the medium and transported by the movement of the fluid (advection). The ADR

equation modeling the concentration C of the particles in any coordinate system is given by

∂C

∂t
+∇ · (vC −K∇C) = S (A.9)

and, more specifically for C(x, y, z, t), in a Cartesian coordinate system, is

∂C

∂t
+

∂

∂x
(UC) +

∂

∂y
(V C) +

∂

∂z
(WC) =

∂

∂x

(

Kx
∂C

∂x

)

+
∂

∂y

(

Ky
∂C

∂y

)

+
∂

∂z

(

Kz
∂C

∂z

)

+ S,

(A.10)

where C is the transported quantity; (U, V,W) are the given fluid velocity components;

Kx(x, y, z), Ky(x, y, z), and Kz(x, y, z) are the turbulent diffusion coefficients, and S(x, y, z)

is the source term.

The solving algorithm for Equation A.10 considers a Lax-Wendorff scheme for advec-

tion (second-order accurate in both space and time) with a slope-limiter method (minmod),

whereas the diffusive terms are evaluated using a central difference scheme accounting for

a variable turbulent diffusivity tensor. Given the values of Cn
ijk = Cijk at the previous time

Appendix A. Numerical Equations 163

step and at point of indexes (i, j, k), the value of Cn+1
ijk at time t = t+∆t is given by:

Cn+1
ijk = Cn

ijk +∆tSijk

−
1

2
[1 + sgn(1, Uijk)]×

(
∆t

∆x
(UijkCijk − Ui−1jkCi−1jk) +

∆x

2
[Cri (1− Cri) σi − Cri−1 (1−Cri−1) σi−1]

)

−
1

2
[1− sgn(1, Uijk)]×

(
∆t

∆x
(Ui+1jkCi+1jk − UijkCijk) +

∆x

2
[Cri+1 (1−Cri+1) σi+1 − Cri (1−Cri) σi]

)

−
1

2
[1 + sgn(1, Vijk)]×

(
∆t

∆y
(VijkCijk − Vij−1kCij−1k) +

∆y

2
[Crj (1− Crj)σj − Crj−1 (1− Crj−1) σj−1]

)

−
1

2
[1− sgn(1, Vijk)]×

(
∆t

∆y
(Vij+1kCij+1k − VijkCijk) +

∆y

2
[Crj+1 (1− Crj+1) σj+1 − Crj (1− Crj) σj]

)

−
1

2
[1 + sgn(1,Wijk)]×

(
∆t

∆z
(WijkCijk −Wijk−1Cijk−1) +

∆z

2
[Crk (1− Crk) σk − Crk−1 (1− Crk−1) σk−1]

)

−
1

2
[1− sgn(1,Wijk)]×

(
∆t

∆z
(Wijk+1Cijk+1 −WijkCijk) +

∆z

2
[Crk+1 (1−Crk+1) σk+1 − Crk (1− Crk)σk]

)

+
∆t

2∆x2

[(
Kxi+1jk

+Kxijk

)
(Ci+1jk − Cijk)−

(
Kxijk

+Kxi−1jk

)
(Cijk −Ci−1jk)

]

+
∆t

2∆y2

[(
Kyij+1k

+Kyijk

)
(Cij+1k − Cijk)−

(
Kyijk +Kxij−1k

)
(Cijk − Cij−1k)

]

+
∆t

2∆z2
[(
Kzijk+1

+Kzijk

)
(Cijk+1 − Cijk)−

(
Kzijk +Kzijk−1

)
(Cijk − Cijk−1)

]
,

(A.11)

where Cr is the Courant number and σ is the minmod function:

Appendix A. Numerical Equations 164

Cri =
∆t

∆x
Ui− 1

2
jk =

1

2

∆t

∆x
(Uijk + Ui−1jk)

Crj =
∆t

∆y
Vij− 1

2
k =

1

2

∆t

∆y
(Vijk + Vij−1k)

Crk =
∆t

∆z
Wijk− 1

2
=

1

2

∆t

∆z
(Wijk +Wijk−1)

σi =
1

2
[sgn (1, Ci+1jk − Cijk) + sgn (1, Cijk − Ci−1jk)]min

(
|Ci+1jk − Cijk|

∆x
,
|Cijk − Ci−1jk|

∆x

)

σj =
1

2
[sgn (1, Cij+1k − Cijk) + sgn (1, Cijk −Cij−1k)]min

(
|Cij+1k −Cijk|

∆y
,
|Cijk − Cij−1k|

∆y

)

σk =
1

2
[sgn (1, Cijk+1 − Cijk) + sgn (1, Cijk − Cijk−1)]min

(
|Cijk+1 − Cijk|

∆z
,
|Cijk − Cijk−1|

∆z

)

.

(A.12)

The stability of the numerical scheme is ensured by using a time step ∆t lower than

the critical. As established by Hindmarsh et al., an explicit scheme for the multidimensional

advection-diffusion equation is numerically stable given the condition:

∆t ≤
1

2
(

Kx

∆x2 +
Ky

∆y2 + Kz

∆z2

)

+ |U|
∆x + |V |

∆y + |W |
∆z

(A.13)

A.4 FALL3D Governing Equation

The FALL3D governing equation simulates a 3D time-dependent Eulerian model for the

transport and deposition of tephra. This model, derived from the ADR equation (see Ap-

pendix A.3), solves a set of Advection–Diffusion–Sedimentation (ADS) equations on a struc-

tured terrain-following grid using a second-order Finite Differences (FD) explicit scheme. The

model inputs are meteorological data, topography, vent coordinate, eruption source parame-

ters such, mass flow rate, eruption duration, and particle shape and density information. The

outputs of the model are tephra ground load/thickness, airborne ash concentration and other

related variables.

In a rectangular Cartesian (x, y, z) coordinate system, the FALL3D tracer continuity equa-

tion is given by

∂c

∂t
+ ux

∂c

∂x
+ uy

∂c

∂y
+ (uz − vsj)

∂c

∂z
+ c (∇ · u)− c

∂vsj
∂z

=

∂

∂x

(

ρkx
∂c/ρ

∂x

)

+
∂

∂y

(

ρky
∂c/ρ

∂y

)

+
∂

∂z

(

ρkz
∂c/ρ

∂z

)

+ S,

(A.14)

where c is the tracer concentration ([c] = kg/m3); u = (ux, uy, uz) is the wind field; vsj =

Appendix A. Numerical Equations 165

(0, 0, vsj) is the settling velocity of the particle class j (j = 1 : np); kx = ky are the horizontal

diffusion coefficients ([k] = m2/s); kz is the vertical diffusion coefficient; ρ is the fluid (air)

density, and S is the source term ([S] = kg/m3s).

Equation (A.14) can be generalized to other coordinate systems (X,Y, Z) using scaled

quantities as:

∂C

∂t
+ UX

∂C

∂X
+ UY

∂C

∂Y
+ (UZ − Vsj)

∂C

∂Z
+ C (∇ ·U)− C

∂Vsj

∂Z
=

∂

∂X

(

ρ∗KX
∂C/ρ∗
∂X

)

+
∂

∂y

(

ρ∗KY
∂C/ρ∗
∂Y

)

+
∂

∂Z

(

ρ∗KZ
∂C/ρ∗
∂Z

)

+ S∗,

(A.15)

or in conservative form:

∂C

∂t
+

∂

∂X
(UXC) +

∂

∂Y
(UY C) +

∂

∂Z
[(UZ − Vsj)C] =

∂

∂X

(

ρ∗KX
∂C/ρ∗
∂X

)

+
∂

∂y

(

ρ∗KY
∂C/ρ∗
∂Y

)

+
∂

∂Z

(

ρ∗KZ
∂C/ρ∗
∂Z

)

+ S∗.

(A.16)

In particular, in a spherical terrain-following coordinate system (X,Y, Z) = (λ, φ, Z) =

(λ, φ, z − h(λ, φ)), where z is the elevation above sea level, h is the topographic elevation, λ

is longitude and φ is latitude, the scaled quantities are given in Table A.1

Scaled parameter Scaling factor

Coordinates dX = dλ = Redx; dY = dφ = Redy; dZ = dz

Velocity UX = ux/ sin γ; UY = uy; UZ = uz

Settling velocity Vsj = vsj

Diffusion Coefficients KX = kx/ sin
2 γ; KY = ky; KZ = kz

Concentration C = c sin γ

Density ρ∗ = ρ sin γ

Source Term S∗ = S sin γ

Table A.1: Scaling factors for a spherical terrain-following coordinate system where γ is the
colatitude and Re the radius of the Earth (spherical assumption).

The computational domain consists of a brick x ∈ [x0, x1], y ∈ [y0, y1],z ∈ [z0, z1] (z pos-

itive upwards) divided in nx, ny, and nz points respectively (not necessarily equally spaced

in z). Free flow conditions are assumed at all boundaries of the computational domain. The

choice of the boundary conditions is important in order to avoid absorption or reflection from

these boundaries. Different boundary conditions are imposed: for outgoing flux, zero deriva-

tive conditions, whereas for incoming flux, null concentrations at boundaries are assumed:

Appendix A. Numerical Equations 166

At x = x0

C0jk = 0 if U1jk ≥ 0

C0jk = C1jk if U1jk < 0

At x = x1

Cn+1jk = 0 if Unjk ≤ 0

Cn+1jk = Cnjk if Unjk > 0

(A.17)

and the same along y and z directions.

Bibliography

[1] Extrae. http://www.bsc.es/computer-sciences/extrae, 2015.

[2] FALL3D. http://bsccase02.bsc.es/projects/fall3d, 2015.

[3] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Software pipelin-

ing. ACM Comput. Surv., 27(3):367–432, 1995.

[4] J. L. Alonso, X. Andrade, P. Echenique, F. Falceto, D. Prada-Gracia, and A. Rubio. Effi-

cient formalism for large-scale ab initio molecular dynamics based on time-dependent

density functional theory. Physical Review Letters, 101, August 2008.

[5] Ulf Andersson. Time-Domain Methods for the Maxwell Equations. PhD thesis, Depart-

ment of Numerical Analysis and Computer Science, Royal Institute of Technology, Stock-

holm, 2001.

[6] Mauricio Araya-Polo and Raúl de la Cruz. Semi-stencil algorithm: Improving data local-

ity and reuse in stencil computation. 14th SIAM Conference on Parallel Processing for

Scientific Computing, Seattle, Washington, February 2010. Part of CP4 PDEs (Talk).

[7] Mauricio Araya-Polo and Raúl de la Cruz. Performance model for 3D stencil compu-

tation. 2012 Rice Oil & Gas HPC Workshop, Rice University, Houston, March 2012.

Parallel session A: Benchmarking, Optimization & Performance (Talk).

[8] Mauricio Araya-Polo, Félix Rubio, Raúl de la Cruz, Mauricio Hanzich, José María Cela,

and Daniele Paolo Scarpazza. High-performance seismic acoustic imaging by reverse-

time migration on the Cell/B.E. architecture. ISCA2008 - WCSA2008, 2008.

[9] Mauricio Araya-Polo, Félix Rubio, Mauricio Hanzich, Raúl de la Cruz, José María Cela,

and Daniele P. Scarpazza. 3D seismic imaging through reverse-time migration on ho-

mogeneous and heterogeneous multi-core processors. Scientific Programming, Special

Issue on the Cell Processor, 17, 2009.

[10] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Ku-

biatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David Wes-

sel, and Katherine Yelick. A view of the parallel computing landscape. Commun. ACM,

52(10):56–67, October 2009.

[11] C. Bonadonna, A. Folch, S. Loughlin, and H. Puempel. Future developments in mod-

elling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO

167

http://www.bsc.es/computer-sciences/extrae
http://bsccase02.bsc.es/projects/fall3d

Bibliography 168

workshop on Ash Dispersal Forecast and Civil Aviation. Bulletin of Volcanology, 74:1–

10, 2012.

[12] Axel Brandenburg. Computational aspects of astrophysical MHD and turbulence, vol-

ume 9. CRC, April 2003.

[13] Repsol - BSC. Kaleidoskope project. http://www.bsc.es/projects/kaleidoskope_

tmp, 2008.

[14] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching. In ASPLOS-

IV: Proceedings of the fourth international conference on Architectural support for program-

ming languages and operating systems, pages 40–52, New York, NY, USA, 1991. ACM.

[15] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, F. Lorenzen X. Andrade, M. A. L. Marques,

E. K. U. Gross, and A. Rubio. Octopus: a tool for the application of time-dependent

density functional theory. Physica Status Solidi: Towards Atomistic Materials Design,

243:2465 – 2488, June 2006.

[16] Matthias Christen, Olaf Schenk, and Helmar Burkhart. PATUS: A code generation and

autotuning framework for parallel iterative stencil computations on modern microarchi-

tectures. In Proceedings of the 2011 IEEE International Parallel & Distributed Processing

Symposium, IPDPS ’11, pages 676–687, Washington, DC, USA, 2011. IEEE Computer

Society.

[17] E. Collini, S. Osores, A. Folch, J.G. Viramonte, G. Villarosa, and G. Salmuni. Volcanic ash

forecast during the June 2011 Cordón Caulle eruption. Natural Hazards, 66(2):389–

412, 2013.

[18] A. Costa, G. Macedonio, and A. Folch. A three-dimensional Eulerian model for transport

and deposition of volcanic ashes. Earth and Planetary Science Letters, 241(3£4):634–

647, 2006.

[19] Daimler-Benz. Mercedes-Benz W111 fintail crash tests, September 1959. The first crash

test in the history of Mercedes-Benz.

[20] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Auto-tuning

stencil computations on multicore and accelerators. In Scientific Computing on Multicore

and Accelerators, pages 219–253. CRC Press, 2010.

[21] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and Katherine

Yelick. Optimization and performance modeling of stencil computations on modern

microprocessors. SIAM Rev., 51(1):129–159, 2009.

[22] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid

Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation optimiza-

tion and auto-tuning on state-of-the-art multicore architectures. In SC ’08: Proceedings

http://www.bsc.es/projects/kaleidoskope_tmp
http://www.bsc.es/projects/kaleidoskope_tmp

Bibliography 169

of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA,

2008. IEEE Press.

[23] Kaushik Datta, Samuel Williams, Vasily Volkov, Jonathan Carter, Leonid Oliker, John

Shalf, and Katherine Yelick. Auto-tuning the 27-point stencil for multicore. In Pro-

ceedings of iWAPT2009: The Fourth International Workshop on Automatic Performance

Tuning, 2009.

[24] Raúl de la Cruz and Mauricio Araya-Polo. Towards a multi-level cache performance

model for 3D stencil computation. In Proceedings of the International Conference on Com-

putational Science, ICCS 2011, Nanyang Technological University, Singapore, 1-3 June,

2011, pages 2146–2155, 2011.

[25] Raúl de la Cruz and Mauricio Araya-Polo. Algorithm 942: Semi-stencil. ACM Transac-

tions on Mathematical Software (TOMS), 40(3):23:1–23:39, April 2014.

[26] Raúl de la Cruz and Mauricio Araya-Polo. Modeling stencil code optimizations. 16th

SIAM Conference on Parallel Processing for Scientific Computing, Portland, Oregon,

February 2014. CP8: Performance Optimization for Stencils and Meshes (Talk).

[27] Raúl de la Cruz and Mauricio Araya-Polo. Modeling stencil computations on mod-

ern HPC architectures. In High Performance Computing Systems. Performance Modeling,

Benchmarking, and Simulation, volume 8966 of Lecture Notes in Computer Science, pages

149–171. Springer International Publishing, 2015.

[28] Raúl de la Cruz and Mauricio Araya-Polo. Using modeling to develop stencil codes.

2015 Rice Oil & Gas HPC Workshop, Rice University, Houston, March 2015. Coarse-

grained Seismic Algorithms (Talk).

[29] Raúl de la Cruz, Mauricio Araya-Polo, and José María Cela. Introducing the Semi-stencil

algorithm. In Parallel Processing and Applied Mathematics, 8th International Conference,

PPAM 2009, Wroclaw, Poland, September 13-16, 2009. Revised Selected Papers, Part I,

pages 496–506, 2009.

[30] Raúl de la Cruz, Arnau Folch, Pau Farré, Javier Cabezas, Nacho Navarro, and José María

Cela. Optimization of atmospheric transport models on HPC platforms. Computational

Geosciences, 2015. (Submitted).

[31] Raúl de la Cruz, Mauricio Hanzich, and José María Cela. Stencil computations: from

academia to industry. 16th SIAM Conference on Parallel Processing for Scientific Com-

puting, Portland, Oregon, February 2014. Part of MS66 Optimizing Stencil-based Algo-

rithms - Part II of II (Talk).

Bibliography 170

[32] Raúl de la Cruz, Mauricio Hanzich, Arnau Folch, Guillaume Houzeaux, and José María

Cela. Unveiling WARIS code, a parallel and multi-purpose FDM framework. In Numeri-

cal Mathematics and Advanced Applications - ENUMATH 2013 - Proceedings of ENUMATH

2013, the 10th European Conference on Numerical Mathematics and Advanced Applica-

tions, Lausanne, Switzerland, August 2013, pages 591–599, 2013.

[33] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel

I/O via a two-phase run-time access strategy. SIGARCH Comput. Archit. News, 21(5):31–

38, December 1993.

[34] Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips, Lilun Zhang, Yonggang Che, and

Chuanfu Xu. An empirical study of intel xeon phi. CoRR, abs/1310.5842, 2013.

[35] A. Folch, A. Costa, and G. Macedonio. FALL3D: A computational model for transport

and deposition of volcanic ash. Computers & Geosciences, 35(6):1334–1342, June 2009.

[36] Matteo Frigo and Volker Strumpen. Cache oblivious stencil computations. In 19th ACM

International Conference on Supercomputing, pages 361–366, June 2005.

[37] Matteo Frigo and Volker Strumpen. The cache complexity of multithreaded cache obliv-

ious algorithms. In Proceedings of the 18th annual ACM Symposium on Parallelism in

Algorithms and Architectures, SPAA ’06, pages 271–280, New York, NY, USA, 2006. ACM.

[38] C. De Groot-Hedlin. A finite difference solution to the Helmholtz equation in a radially

symmetric waveguide: Application to near-source scattering in ocean acoustics. Journal

of Computational Acoustics, 16:447–464, 2008.

[39] C. De Groot-Hedlin. A finite difference solution to the Helmholtz equation in a radially

symmetric waveguide: Application to near-source scattering in ocean acoustics. Journal

of Computational Acoustics, 16:447–464, 2008.

[40] John S. Harper, Darren J. Kerbyson, and Graham R. Nudd. Efficient analytical mod-

elling of multi-level set-associative caches. In Proceedings of the 7th International Con-

ference on High-Performance Computing and Networking, HPCN Europe ’99, pages 473–

482, London, UK, UK, 1999. Springer-Verlag.

[41] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel Williams. An auto-tuning

framework for parallel multicore stencil computations. In Proceedings of the Interna-

tional Parallel & Distributed Processing Symposium (IPDPS), pages 1–12, April 2010.

[42] Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and Kather-

ine Yelick. Implicit and explicit optimizations for stencil computations. In MSPC ’06:

Proceedings of the 2006 workshop on Memory system performance and correctness, pages

51–60, New York, NY, USA, 2006. ACM.

Bibliography 171

[43] Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shalf, and Katherine Yelick. Impact

of modern memory subsystems on cache optimizations for stencil computations. In

MSP ’05: Proceedings of the 2005 workshop on Memory system performance, pages 36–

43, New York, NY, USA, 2005. ACM Press.

[44] W. L. Ko, R. D. Quinn, and L. Gong. Reentry heat transfer analysis of the space shuttle

orbiter. In NASA. Langley Research Center Computational Aspects of Heat Transfer in

Struct. p 295-325 (SEE N82-23473 14-34), pages 295–325, 1982.

[45] Jean Kormann, Pedro Cobo, and Andres Prieto. Perfectly matched layers for modelling

seismic oceanography experiments. Journal of Sound and Vibration, 317(1-2):354 –

365, 2008.

[46] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance

and optimizations of blocked algorithms. In ASPLOS-IV: Proceedings of the fourth inter-

national conference on Architectural support for programming languages and operating

systems, pages 63–74, New York, NY, USA, 1991. ACM.

[47] B. Langmann, A. Folch, M. Hensch, and V. Matthias. Volcanic ash over Europe during

the eruption of Eyjafjallajökull on Iceland, April-May 2010. Atmospheric Environment,

48:1–8, 2012.

[48] CA. Applied Numerical Algorithms Group (ANAG) Lawrence Berkeley National Labora-

tory, Berkeley. Chombo. http://seesar.lbl.gov/ANAG/software.html, 2015.

[49] G.L. Lore, D.A. Marin, E.C. Batchelder, W.C. Courtwright, R.P. Desselles, and R.J. Klazyn-

ski. 2000 assessment of conventionally recoverable hydrocarbon resources of the Gulf

of Mexico and Atlantic outer continental shelf. Technical report, U.S. Department of the

Interior, Minerals Management Service, Gulf of Mexico OCS Region, Office of Resource

Evaluation, 2001.

[50] Xiaosong Ma, Marianne Winslett, Jonghyun Lee, and Shengke Yu. Improving MPI-IO

output performance with active buffering plus threads. In Proceedings of the 17th In-

ternational Symposium on Parallel and Distributed Processing, IPDPS ’03, pages 68.2–,

Washington, DC, USA, 2003. IEEE Computer Society.

[51] Naraig Manjikian and Tarek S. Abdelrahman. Fusion of loops for parallelism and local-

ity. IEEE Trans. Parallel Distrib. Syst., 8:193–209, February 1997.

[52] Gabriel Marin, Collin McCurdy, and Jeffrey S. Vetter. Diagnosis and optimization of

application prefetching performance. In Proceedings of the 27th International ACM Con-

ference on International Conference on Supercomputing, ICS ’13, pages 303–312, New

York, NY, USA, 2013. ACM.

http://seesar.lbl.gov/ANAG/software.html

Bibliography 172

[53] John McCalpin and David Wonnacott. Time skewing: A value-based approach to op-

timizing for memory locality. Technical report, Report 379, Department of Computer

Science, Rutgers University, 1999.

[54] John D. McCalpin. STREAM: Sustainable memory bandwidth in high performance

computers. Technical report, University of Virginia, Charlottesville, Virginia, 1991-2007.

A continually updated technical report. http://www.cs.virginia.edu/stream/.

[55] John D. McCalpin. STREAM2. https://www.cs.virginia.edu/stream/stream2/,

2015.

[56] Collin McCurdy, Gabriel Marin, and Jeffrey S Vetter. Characterizing the impact of

prefetching on scientific application performance. In International Workshop on Per-

formance Modeling, Benchmarking and Simulation of HPC Systems (PMBS13), Denver,

CO, 2013.

[57] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality with

loop transformations. ACM Trans. Program. Lang. Syst., 18:424–453, July 1996.

[58] George A. McMechan. A review of seismic acoustic imaging by reverse-time migration.

International Journal of Imaging Systems and Technology, 1(1):18–21, 1989.

[59] Sanyam Mehta, Zhenman Fang, Antonia Zhai, and Pen-Chung Yew. Multi-stage coordi-

nated prefetching for present-day processors. In Proceedings of the 28th ACM Interna-

tional Conference on Supercomputing, ICS ’14, pages 73–82, New York, NY, USA, 2014.

ACM.

[60] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled data

prefetching. Journal of Parallel and Distributed Computing, 12:87–106, 1991.

[61] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. PAPI: A portable

interface to hardware performance counters. In Proceedings of the Department of Defense

HPCMP Users Group Conference, pages 7–10, 1999.

[62] Rajesh Nishtala, Richard W. Vuduc, James W. Demmel, and Katherine A. Yelick. Perfor-

mance modeling and analysis of cache blocking in sparse matrix vector multiply. Tech-

nical Report UCB/CSD-04-1335, EECS Department, University of California, Berkeley,

2004.

[63] United States. Office of Aviation Safety. Full-scale transport controlled impact demon-

stration program: Aircraft accident investigation experiment and report of investigation.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880000639.pdf, De-

cember 1984.

[64] Brazil official cites giant oil-field discovery. Technical report, The International Herald

Tribune, Associated Press, April 2008.

http://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/stream2/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880000639.pdf

Bibliography 173

[65] S. Operto, J. Virieux, P. Amestoy, L. Giraud, and J. Y. L’Excellent. 3D frequency-domain

finite-difference modeling of acoustic wave propagation using a massively parallel di-

rect solver: a feasibility study. SEG Technical Program Expanded Abstracts, pages 2265–

2269, 2006.

[66] Francisco Ortigosa, Mauricio Araya-Polo, Raúl de la Cruz, and José M. Cela. Seismic

imaging and the road to peta-scale capacity. 17th SPE - 70th EAGE Conference, 2008.

[67] Francisco Ortigosa, Mauricio Araya-Polo, Félix Rubio, Mauricio Hanzich, Raúl de la

Cruz, and José Maria Cela. Evaluation of 3D RTM on HPC platforms. SEG 2008, Las

Vegas, USA, 2008.

[68] Francisco Ortigosa, Hongbo Zhou, Santiago Fernandez, Mauricio Hanzich, Mauricio

Araya-Polo, Felix Rubio, Raúl de la Cruz, and José M. Cela. Benchmarking 3D RTM

on HPC platforms. Instituto Argentino del Petroleo y del Gas, November 2008.

[69] Liu Peng, Richard Seymour, Ken ichi Nomura, Rajiv K. Kalia, Aiichiro Nakano, Priya

Vashishta, Alexander Loddoch, Michael Netzband, William R. Volz, and Chap C. Wong.

High-order stencil computations on multicore clusters. In IPDPS ’09: Proceedings of

the 2009 IEEE International Symposium on Parallel&Distributed Processing, pages 1–11,

Washington, DC, USA, 2009. IEEE Computer Society.

[70] Vincent Pillet, Vincent Pillet, Jesús Labarta, Toni Cortes, Toni Cortes, Sergi Girona, Sergi

Girona, and Departament D’arquitectura De Computadors. PARAVER: A tool to visual-

ize and analyze parallel code. 1995.

[71] Shah M. Faizur Rahman, Qing Yi, and Apan Qasem. Understanding stencil code per-

formance on multicore architectures. In Proceedings of the 8th ACM International Con-

ference on Computing Frontiers, CF ’11, pages 30:1–30:10, New York, NY, USA, 2011.

ACM.

[72] Gabriel Rivera and Chau Wen Tseng. Tiling optimizations for 3D scientific computations.

In Proc. ACM/IEEE Supercomputing Conference (SC 2000), page 32, November 2000.

[73] Anne Rogers and Kai Li. Software support for speculative loads. SIGPLAN Not.,

27(9):38–50, 1992.

[74] A. Russell and R. Dennis. NARSTO critical review of photochemical models and mod-

elling. Atmospheric environment, 34:2261–2282, 2000.

[75] Muhammad Shafiq, M. Pericas, Raúl de la Cruz, Mauricio Araya-Polo, Nacho Navarro,

and E. Ayguade. Exploiting memory customization in FPGA for 3D stencil computations.

In IEEE International Conference on Field-Programmable Technology, 2009.

Bibliography 174

[76] J. Steppeler. A three dimensional global weather prediction model using a finite ele-

ment scheme for vertical discretization. International Journal for Numerical Methods in

Engineering, 27, 1989.

[77] Erich Strohmaier. Top500 supercomputer. In Proceedings of the 2006 ACM/IEEE Confer-

ence on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[78] Robert Strzodka, Mohammed Shaheen, and Dawid Pajak. Impact of system and cache

bandwidth on stencil computation across multiple processor generations. In Proc. Work-

shop on Applications for Multi- and Many-Core Processors (A4MMC) at ISCA 2011, June

2011.

[79] O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena. In Proceedings

of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS ’94, pages 261–271, New York, NY, USA, 1994. ACM.

[80] Vidar Thomée. From finite differences to finite elements: a short history of numerical

analysis of partial differential equations. J. Comput. Appl. Math., 128(1-2):1–54, 2001.

[81] Jan Treibig and Georg Hager. Introducing a performance model for bandwidth-limited

loop kernels. In Proceedings of the 8th International Conference on Parallel Processing

and Applied Mathematics, volume 6067 of PPAM’09, pages 615–624. Springer-Verlag,

2009.

[82] Jan Treibig, Georg Hager, and Gerhard Wellein. Multi-core architectures: Complexities

of performance prediction and the impact of cache topology. CoRR, abs/0910.4865,

2009.

[83] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A lightweight performance-

oriented tool suite for x86 multicore environments. In Proceedings of the 2010 39th

International Conference on Parallel Processing Workshops, ICPPW ’10, pages 207–216,

Washington, DC, USA, 2010. IEEE Computer Society.

[84] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and Kather-

ine Yelick. Scientific computing kernels on the Cell processor. 35(3), June 2007.

[85] Samuel Webb Williams. Auto-tuning Performance on Multicore Computers. PhD thesis,

Berkeley, CA, USA, 2008. AAI3353349.

[86] Samuel Webb Williams, Andrew Waterman, and David A. Patterson. Roofline: An in-

sightful visual performance model for floating-point programs and multicore architec-

tures. Technical Report UCB/EECS-2008-134, EECS Department, University of Califor-

nia, Berkeley, Oct 2008.

Bibliography 175

[87] David Wonnacott. Time skewing for parallel computers. In Proceedings of the Twelfth

Workshop on Languages and Compilers for Parallel Computing, LCPC, pages 477–480.

Springer-Verlag, 1999.

	1 Preface
	1.1 Motivation of this Thesis
	1.2 Thesis Contributions
	1.2.1 Thesis Limitations

	1.3 Thesis Outline
	1.4 List of Publications
	1.5 Acknowledgements

	2 Introduction
	2.1 Numerical Methods
	2.2 Finite Difference Method
	2.3 Implicit and Explicit Methods
	2.4 Summary

	3 Experimental Setup
	3.1 Architecture Overview
	3.1.1 Intel Xeon X5570 (Nehalem-EP)
	3.1.2 IBM POWER6
	3.1.3 IBM Blue Gene/P
	3.1.4 AMD Opteron (Barcelona)
	3.1.5 IBM Cell/B.E.
	3.1.6 IBM POWER7
	3.1.7 Intel Xeon E5-2670 (Sandy Bridge-EP)
	3.1.8 Intel Xeon Phi (MIC)

	3.2 Parallel Programming Models
	3.3 Programming Languages and Compilers
	3.4 Performance Measurement
	3.5 STREAM2
	3.6 Prefetchers
	3.7 The Roofline Model
	3.8 The StencilProbe Micro-benchmark
	3.9 Summary

	4 Optimizing Stencil Computations
	4.1 The Stencil Problem
	4.2 State of the Art
	4.2.1 Space Blocking
	4.2.2 Time Blocking
	4.2.3 Pipeline Optimizations

	4.3 The Semi-stencil Algorithm
	4.3.1 Forward and Backward Updates
	4.3.2 Floating-Point Operations to Data Cache Access Ratio
	4.3.3 Head, Body and Tail computations
	4.3.4 Orthogonal Algorithm

	4.4 Experiments
	4.4.1 Data Cache Accesses
	4.4.2 Operational Intensity
	4.4.3 Performance Evaluation and Analysis
	4.4.4 SMP Performance

	4.5 Summary

	5 SMT, Multi-core and Auto-tuning Optimizations
	5.1 State of the Art
	5.2 Simultaneous Multithreading Awareness
	5.3 Multi-core and Many-core Improvements
	5.4 Auto-tuning Improvements
	5.5 Experimental Results
	5.6 Summary

	6 Performance Modeling of Stencil Computations
	6.1 Performance Modeling Overview
	6.2 State of the Art
	6.3 Multi-Level Cache Performance Model
	6.3.1 Base Model
	6.3.2 Cache Miss Cases and Rules
	6.3.3 Cache Interference Phenomena: IIJJ Effect
	6.3.4 Additional Time Overheads

	6.4 From Single-core to Multi-core and Many-core
	6.5 Modeling the Prefetching Effect
	6.5.1 Hardware Prefetching
	6.5.2 Software Prefetching

	6.6 Optimizations
	6.6.1 Spatial Blocking
	6.6.2 Semi-stencil Algorithm

	6.7 Experimental Results
	6.7.1 Preliminary Model Results
	6.7.2 Advanced Model Results

	6.8 Summary

	7 Case Studies
	7.1 Oil & Gas Industry
	7.1.1 RTM Overview
	7.1.2 Semi-stencil Implementation in Cell/B.E.

	7.2 WARIS Framework
	7.2.1 System Architecture
	7.2.2 Optimization Module

	7.3 Atmospheric Transport Modeling - Ash Dispersal
	7.3.1 WARIS-Transport Specialization
	7.3.2 Volcanic Ash Dispersal Results

	7.4 Summary

	8 Conclusions and Future Work
	8.1 Optimizing Stencil Computations
	8.2 SMT, Multi-core and Auto-tuning
	8.3 Performance Modeling of Stencil Computations
	8.4 Case Studies

	A Numerical Equations
	A.1 Heat Equation
	A.2 Wave Equation
	A.3 Advection–Diffusion–Reaction Equation
	A.4 FALL3D Governing Equation

