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Abstract  

State-of-the-art biophysical techniques featuring high temporal and spatial resolution 

have allowed for the first time the direct visualization of individual transmembrane 

proteins on the cell membrane. These techniques have revealed that a large amount of 

molecular components of the cell membrane do not organize in a random manner but 

they rather grouped together forming so-called clusters at the nanoscale. Moreover, the 

lateral behavior of these clusters shows a great dependence on the compartmentalization 

of the cell membrane by, e.g., the actin cytoskeleton at multiple temporal and spatial 

scales. Since these lateral and temporal organizations have been shown to be crucial for 

the regulation of the biological activity by these transmembrane proteins, the 

understanding of the spatiotemporal behavior of membrane receptors, and of proteins in 

general, is a necessary step towards understanding the biology of the cell. Protein 

nanoclustering and membrane compartmentalization have been shown to play a crucial 

role on leukocytes, particularly on the surface of antigen presenting cells. Hence, the 

direct visualization of membrane proteins on the cell membrane of antigen presenting 

proteins represents a crucial step in understanding how an immune response can be 

controlled by leukocytes at the molecular level.  

 

In Chapter 1, the immune system, the membrane receptor DC-SIGN and the antigen 

presenting protein CD1d are briefly introduced. Moreover, recent advances in 

superresolution microscopy and single particle tracking techniques which allow the 

study of membrane proteins at the nanoscale are discussed. Finally, an updated review 

of protein nanoclustering on the cell membrane shows examples of the importance of 

protein nanoclustering in regulating biological function in the immune system. Chapter 

2 presents the quantitative methodology for analyzing STED nanoscopy images and 

multi-color single particle tracking data used throughout this thesis. In particular, we 

have developed a new algorithm, which reconstructs STED nanoscopy images based on 

the Bayesian Inference Criterion. The algorithm faithfully reconstructs raw STED 

nanoscopy images generating new super-resolution synthetic images with higher lateral 

resolution than the original STED images. Chapter 2 also describes the single-molecule 

fluorescence sensitive microscopes implemented in this thesis for multi-color single 

particle tracking experiments and the corresponding data analysis. At the end of Chapter 

2, cartography maps combining high temporal with micron-scale spatial information on 

the basis of single-molecule detection are presented.  

 

The following chapters in this thesis describe the major results obtained on two 

important receptors of the immune system. In Chapter 3, we address the role of the neck 
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region of DC-SIGN in fine-tuning the nanoclustering degree of DC-SIGN on the cell 

membrane. Moreover, Chapter 3 also links the nanoclustering capability of DC-SIGN 

with its virus binding capability. The meso-scale organization of DC-SIGN and its 

dependence on a glycan-based connectivity is addressed on Chapter 4. This 

glycosylation network enhances the interaction between DC-SIGN and clathrin beyond 

stochastic random encountering. In Chapter 5, we showed that DC-SIGN shows 

subdiffusive behavior and weak ergodicity breaking (wEB). Moreover, we show that  

weak ergodicity breaking on the diffusion of DC-SIGN is incompatible with its 

immobilization on the plasma membrane, as previously shown for other proteins and 

well-described using the continuous time random walk (CTRW) model. Instead, our 

data are more consistent with a model in which the plasma membrane is composed of 

“patches” that change in space in time, so that the receptor experiences changes in 

diffusivity as it diffuses through these patches. Importantly, we show that weak 

ergodicity breaking of DC-SIGN correlates with its nanoclustering degree and 

biological function, establishing for the first time a relationship between ergodicity 

breaking and function.  

 

In Chapter 6, we demonstrate that the antigen presenting protein CD1d organizes in 

nanoclusters on the cell membrane of antigen presenting cells whose size and density 

are tightly controlled by the actin cytoskeleton. Moreover, we also showed that this 

cytoskeletal control of the CD1d nanoclustering predominantly occurs on the pool of 

CD1d that has undergone lysosomal recycling, including under inflammatory 

conditions. We also showed a clear correlation between an enhanced CD1d 

nanoclustering and enhanced invariant Natural Killer T (iNKT) cell activation defining 

a new mechanism by which antigen presenting cells can control iNKT cell activation or 

even autoreactivity. Finally, in Chapter 7 we summarize the main results of this thesis 

and highlight future experiments that will expand the knowledge obtained so far 

regarding the role of plasma membrane organization and biological regulation.  
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Resumen  

Gracias a su alta resolución temporal y espacial, las técnicas biofísicas de última 

generación han permitido la observación directa de proteínas de transmembrana de 

forma individual en la membrana celular. Estas técnicas han mostrado que la 

organización de una gran parte de las proteínas de transmembrana no es aleatoria sino 

que éstas están agrupadas en la membrana celular formando nano-agregados, o 

“clusters”. A su vez, se ha observado que la formación de dichos “clusters” depende de  

compartimentos de la membrana celular que puede estar regulados por distintos 

componentes moleculares, como por ejemplo el citoesqueleto de actina en diversas 

escalas de espacio y tiempo. Estas técnicas también han demostrado que la organización 

lateral de proteínas en la membrana celular juega un papel determinante en la regulación 

de la actividad biológica de dichas proteínas. Por tanto, entender esta organización 

lateral es un paso crucial para un entendimiento más global de la función celular a la 

escala molecular. En el caso concreto del sistema inmune, se ha demostrado que el 

agrupamiento de proteínas y los compartimentos de la membrana celular juegan un 

papel determinante en las células presentadoras de antígenos a la hora de controlar la 

iniciación de una respuesta inmune. Por tanto, la visualización directa de proteínas de 

membrana en células presentadoras de antígenos a la escala nanométrica representa un 

paso crucial en el entendimiento del sistema inmune y en un futuro desarrollo de 

terapias basadas en el sistema inmune humano.  

 

En el primer capítulo de esta tesis, se presentará al lector una breve introducción del 

sistema inmune y una descripción general de las dos proteínas que se han estudiado 

extensivamente en esta tesis: el receptor reconocedor de patógenos DC-SIGN y la 

proteína presentadora de antígenos glicolipídicos CD1d. Se discutirán además los 

últimos avances en técnicas de microscopía de fluorescencia con alta resolución 

temporal y espacial que permiten el estudio de proteínas a la escala nanométrica. 

Finalmente, el primer capítulo concluye con una revisión de los últimos avances en la 

caracterización de la organización lateral de proteínas de membrana mostrando cómo 

dicha organización determina la función biológica de estas proteínas.  

 

En el capítulo 2, se presentan los distintos tipos de metodología utilizados en esta tesis 

para cuantificar imágenes de microscopía de super-resolución STED así como para 

analizar datos provenientes del seguimiento de partículas individuales usando varios 

colores. En concreto, hemos desarrollado un algoritmo que reconstruye imágenes de 

STED basado en el método de inferencia bayesiano. El algoritmo es capaz de 

reconstruir, paso a paso, imágenes originales STED para producir imágenes sintéticas 
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con una resolución lateral mayor que la original. En el capítulo 2 también se presenta 

una descripción de los microscopios de detección de moléculas individuales por 

fluorescencia implementados y utilizados a lo largo de esta tesis, y que permiten el 

estudio de la dinámica de partículas individuales en células vivas. Además, se describen 

como se han analizado dichos experimentos tanto en el caso de uno o varios colores. Al 

final del capítulo 2 se presenta una nueva metodología desarrollada en esta tesis que 

permite el estudio lateral de proteínas de membrana con una alta resolución temporal y 

una escala espacial de orden de micras y a la que hemos denominado mapas 

cartográficos.  

 

Los siguientes capítulos de esta tesis se enfocan en el estudio de dos importantes 

proteínas involucradas en el sistema inmune. En el capítulo 3 se describe como la parte 

central de la estructura del receptor captador de patógenos DC-SIGN determina su 

grado de nano-agrupamiento sobre la membrana celular. A su vez, este agrupamiento 

tiene una incidencia clave en la capacidad de DC-SIGN en unirse a partículas virales. 

La organización de DC-SIGN a la escala mesoscópica y la dependencia de dicha 

organización de una conectividad en la membrana celular basada en la glicosilación de 

proteínas es descrita en el capítulo 4. Además, dicha conectividad promueve la 

interacción entre DC-SIGN y clatrina pudiendo ser determinante para la endocitosis de 

patógenos mediante DC-SIGN y clatrina. En el capítulo 5 descubrimos que DC-SIGN 

tiene un comportamiento que no solo es sub-difusivo en la membrana celular sino que 

también conlleva a la ruptura de ergodicidad por parte de este receptor. Además, 

demostramos que la ruptura de la ergodicidad por parte de DC-SIGN no es compatible 

con procesos de inmovilización temporales característicos del modelo “continous time 

random walk” (CTRW). Por el contrario, nuestros datos son consistentes con un modelo 

donde la difusión de la partícula cambia constantemente en el espacio y en el tiempo. 

De manera importante, demostramos que la ruptura de ergodicidad de DC-SIGN 

correlaciona directamente con su capacidad de agregación así como con su función 

biológica.  

 

En el capítulo 6 de esta tesis describimos como la molécula CD1d forma nano-

agrupamientos en la membrana celular cuyo tamaño y densidad son controlados por el 

citoesqueleto de actina. Además, observamos que dicho control mayoritariamente 

sucede cuando CD1d ha sido reciclado a través de compartimentos lisosomales, 

incluyendo procesos inflamatorios. También mostramos como la activación de las 

células iNKT correlaciona con un mayor nanoagrupamiento de CD1d en la membrana 

celular. Esto define un nuevo mecanismo por el cual las células presentadoras de 

antígenos controlan la activación de las células iNKT no solo ante antígenos 

presentados por CD1d sino también ante glicolípidos propios del cuerpo humano. 
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Finalmente, en el capítulo 7 se discuten las conclusiones generales de esta tesis y se 

sugieren experimentos a futuro de manera de incrementar, en base a los resultados 

obtenidos en esta tesis, nuestro conocimiento de la membrana celular y el papel que la 

organización espacial y temporal juega en el control del sistema inmune.  
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Chapter 1 

 

Protein nanoclustering in the immune system and 

related biological function  

 

The role of the spatiotemporal behavior of transmembrane proteins as a regulator of their 

function is an emerging concept in human immunology. In this introductory Chapter, a 

short overview of the immune system is presented with a particular emphasis on two main 

receptors involved in immunity: the pathogen recognition receptor DC-SIGN and the 

antigen presenting protein CD1d. Then, state-of-the-art advanced fluorescence techniques 

such as single particle tracking and super-resolution microscopy will be presented and their 

capability in characterizing the compartmentalization of the cell membrane at the nanoscale 

will be discussed. In the last part of this Chapter a general overview on receptor 

nanoclustering is given, highlighting recent findings in the field that allow us to conclude 

that nanoclustering is a prevalent feature that characterizes the organization of the cell 

membrane and that controls biological function. 
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K. Jacobson, “Nanoclustering as a dominant feature of plasma membrane organization”, Journal of Cell 

Science 127, 4995 (2014). 
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The immune system 

 

The immune system represents the main defense system of the human body against 

invading pathogens (1). The hallmark of the immune system is its ability to distinguish 

self from non-self (2). Any alteration of this sensitive balance can have dramatic 

consequences for the host body such as infection or autoimmunity. The human immune 

response can be divided into two different types of defense: innate and adaptive 

immunity. The first one relies on conserved molecular patterns among the very different 

pathogens which are recognized by toll-like receptors (TLRS) expressed on the cell 

membrane of, e.g., macrophages or dendritic cells (3). In contrast, adaptive immunity is 

characterized by a specific response against a particular structure of the pathogen, 

principally mediated by activated T cells which can lead to the production of antibodies 

by effector B cells (4). The key event responsible for initiating adaptive immune 

responses is the interplay between T cells and dendritic cells (5). 

 

Dendritic cells (DCs) were discovered by Ralph Steinman in the lab of Zanvil A. Cohn 

at The Rockefeller University in the 1970s (6-9), a discovery that led him winning the 

Nobel Prize in Physiology and Medicine in 2011 (nobelprize.org). DCs capture and 

digest pathogens in order to present them to T cells. There are two main routes for 

pathogen processing and presentation by DCs which depend on whether the antigen is 

located in the cytoplasm of the DC or in its endocytic pathway (10). The first pathway 

leads to presentation to CD8-T cells by antigen loaded major-histocompatibility 

complex I (MHC-I). On the other hand, if the pathogen has entered the endocytic 

pathway of the DCs, it will be degraded and loaded into MHC-II complexes for a later 

presentation to CD4-T cells (11). Nevertheless, DCs can also present captured antigens 

via their MHC-I complex in a process called “cross-presentation” (12). Hence, the 

combination and the interplay between pathogen receptors and antigen presenting 

molecules located on the cell membrane of DCs are the principal components of the 

initiation of DC-mediated adaptive immunity. 

 

DCs reside in the human body in two very different states: mature and immature (Fig. 

1.1) (13-15). Immature DCs have the role of surveilling the human body in order to 

capture invading pathogens in peripheral tissues or in secondary lymphoid organs (15). 

Immature DCs display a remarkable endocytic capacity but express low levels of MHC 

complexes on their surface. Hence, the role of immature DCs is antigen accumulation 

rather than antigen presentation. The process of DC maturation is initiated after DC 

stimulation via inflammatory signals such as TLR agonists (14). In the process of 

maturation, the different phenotypic changes in immature DCs are dramatic and 

comprise not only changes at the molecular level but also on the overall morphology of 
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DCs. For instance, matured DCs express the chemokine CCL21 receptor CCR7 that 

produces rapid integrin-independent migration of DCs to the lymph node where mature 

DCs will present the antigens to T cells (16, 17). Moreover, mature DCs enhance the 

surface expression of antigen-bound MHC-I and MHC-II complexes and T cell co-

stimulatory molecules such as CD80, CD86 and CD40 (18). On the other hand, not fully 

mature DCs in peripheral lymphoid tissues have been associated with being tolerogenic 

(18). The transition from immature to mature DCs with pro-inflammatory stimuli 

represents the hallmark of DC-mediated T cell immunity. The importance of the 

maturation process is such that nowadays it is well accepted that traditional adjuvants 

used in vaccination strategies promote the DC maturation process (13, 14). Hence, DC 

maturation is the key event that allows DCs to link innate and adaptive immunity (19). 

 
Figure 1.1 Different maturation states of DCs and associated DC function. (A) 
Immature DCs continuously patrol the human body seeking potential invading 
pathogens in peripheral tissues. The pathogens are internalized by the binding to 
pathogen receptors such as lectins or TLRs on the surface of DCs. After pathogen 
internalization and (partial and inefficient) lysosomal degradation (20, 15), MHC-II 
complexes located in lysosomal compartments might bind to antigen peptides. (B) After 
the DC maturation signal, pathogens are degraded very efficiently in the lysosomal 
compartment. Antigen peptide loading of MHC-II complexes also occur very fast, and 
surface expression of peptide-bound MHC-II increases dramatically (20). Moreover, the 
mature DC expresses costimulatory molecules such as CD40, CD80/86 and the 
chemokine receptor CCR7. The mature DC enters the lymphatic system in order to 
migrate to the T-cell-rich lymph node. (C) In the lymph node, T cells recognize the 
antigen-bound MHC-II through the T cell receptor and become activated. 

 

C-type lectins are a canonical example of protein receptors responsible for, among other 

functions, pathogen uptake on the cell membrane of DCs (21). Dendritic Cell-Specific 

Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN) is a C-type lectin 

that can bind to carbohydrate structures present not only on pathogens but also on the 

intercellular adhesion receptor ICAM-3 (22). The structure of DC-SIGN consists on a 

carbohydrate-recognition domain (CRD), a tandem-neck-repeat domain and a 

cytoplasmic tail (23). The CRD is responsible for binding to adhesion molecules or 
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pathogens by DC-SIGN. The neck domain has been shown to promote the 

tetramerization of DC-SIGN (24) and the cytoplasmic tail contains signaling and 

internalization motifs (23). DC-SIGN binds to mannose- and fucose-containing 

glycoproteins on the surface of a large group of pathogens such as bacteria or viruses, 

including HIV (22). Moreover, depending on the type of glycan bound to DC-SIGN, the 

DC-SIGN signalosome can tailor the profile of cytokines released after TLR stimulation 

of DCs (25). DC-SIGN ligands are mainly internalized via clathrin-coated pits (26, 27) 

and they are degraded in lysosomal compartments. Using transmission electron 

microscopy, it has been shown that DC-SIGN forms microclusters on immature but not 

mature DCs (28). Moreover, microcluster formation was shown to favor the virus-

binding capability by the receptor (28). Hence, the lateral organization of DC-SIGN has 

a significant impact on its biological function. 

 

MHC-I and MHC-II are the classical examples of antigen presenting proteins expressed 

on the cell membrane of DCs. Their ability of presenting foreign peptides on the surface 

for the recognition of CD8-T cells and CD4-T cells represents the key component of T 

cell mediated immunity. There is another class of antigen presenting proteins that 

instead of peptides, they present glycolipids coming from exogenous antigens: the CD1 

family (29). The CD1 members (CD1a, CD1b, CD1c, CD1d and CD1e) are 

transmembrane glycoproteins which share a similar structural architecture as the MHC-I 

complex. The CD1 family can be divided according to their structure into two groups 

with CD1a, CD1b, CD1c, CD1e forming subgroup I and CD1d as subgroup II. While 

most of the members of the CD1 family can be found exclusively on antigen presenting 

cells (APCs), CD1d is expressed among a greater subset of cells, including epithelial 

cells (30, 31). Moreover, the type of T cells that recognize CD1 proteins of the subgroup 

I strongly deviates from the T cells that recognize CD1d, the invariant Natural Killer T 

cells (iNKT). iNKT cells share properties of innate lymphocytes and their main 

characteristics are the expression of, contrary to classical T cells, a conserved T cell 

receptor with a Vα24-Jα18 TCRα chain coupled to a Vβ11 TCRβ in humans. 

Importantly, iNKT cells can be stimulated in a CD1d dependent manner via TLR 

stimulation of DCs (32). Hence, the CD1d-iNKT cell system can link innate and 

adaptive immunity (33). This makes CD1d a very powerful target in therapies aiming 

for the stimulation and activation of immune responses such asin cancer immunotherapy 
(34, 35). Thus, the study of CD1d represents a key point in defining future anti-cancer 

therapies using human immunology. 

 

Both CD1d and DC-SIGN are transmembrane glycoproteins expressed on the surface of 

DCs (Fig. 1.2). The study of their behavior on their natural environment, the cell 

membrane, represents a crucial step in understanding their biological function in the 
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human immune system. In the recent years, advanced biophysical techniques have 

allowed the study of the spatiotemporal behavior of transmembrane proteins on the cell 

membrane of leukocytes. These studies have revealed that most of these proteins are not 

individually organized in a random manner on the cell membrane but are rather grouped 

together forming so called protein nanoclusters (36, 37). Moreover, the formation and 

integrity of these protein nanoclusters appear to play an essential role in regulating their  

 
 

Figure 1.2 Proposed 
schematic of the 
working principle of the 
interplay between DC-
SIGN and CD1d on 
DCs (29). (A) A 
glycosylated protein on 
the cell membrane of 
the pathogen might be 
recognized by DC-
SIGN on the surface of 

DCs. After internalization through DC-SIGN-mediated endocytosis, the pathogen is 
exposed to degradation on lysosomal compartments where at the same time, CD1d 
molecules can undergo trafficking from the cell membrane. These recycling CD1d 
molecules might encounter and possibly bind glycolipids coming from the pathogen 
previously internalized by DC-SIGN and degraded in the lysosome. Eventually, CD1d 
traffics back to the cell membrane presenting the exogenous glycolipid to iNKT cells 
which might initiate an immune response by fast cytokine release. 

 

biological function. Therefore, studying and understanding how DC-SIGN and CD1d 

are laterally organized on the cell membrane of DCs represents a crucial step in further 

deepening our knowledge in how immune reactions are fine-tuned at the molecular level 

by DCs. This type of studies will improve the rational development of promising 

treatments in oncology such like cancer immunotherapy in the near future. 

 

Optical nano-tools for studying receptor organization in the cell membrane 

 

The study of the lateral organization of transmembrane proteins such as CD1d and DC-

SIGN imposes a need for using techniques capable of performing measurements at the 

relevant temporal and spatial scales of transmembrane proteins. Moreover, these 

techniques must perform in a minimally invasive manner in order to characterize these 

peptides in their natural context, the living cell. Light is probably one of the best 

resources available in nature to match these requirements. Indeed, its manipulation 

through the use of lenses has consistently resulted in major breakthroughs in the history 

of scientific discoveries. The classical example is the invention of the optical 

microscope which is able of magnifying living micron-sized objects such as bacteria 
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due to its high spatial lateral resolution (≈250 nm). The possibility of observing directly 

microorganisms or human cells has had a tremendous impact in the way we understand 

biology nowadays (38). 

 

However, when it comes to the visualization of individual molecules, such as 

transmembrane proteins in living cells with a typical size of 1-10 nm and expression 

levels of 500-2000 protein/µm2 (39), optical microscopy stops being a suitable imaging 

technique. This is mainly due to the so-called Abbe diffraction limit, which defines the 

maximum focusing power (d) of a microscope depending on the numerical aperture 

(NA) of the objective and the wavelength λ of the excitation light as d ≈ λ/2NA (38).  

This limit makes a light emitting point source to appear in the detector as a diffraction-

pattern with a shape of concentric rings having decaying intensities as the distance from 

the center increases (40). The central ring, known as the Airy disk, has a full width at 

half maximum (FWHM) in the visible of ≈250 nm and it is also referred as to the point-

spread function (PSF) of the microscope (41). Hence, the diffraction limit of light 

implies that two objects cannot be resolved individually if their mutual distance is 

smaller than 250 nm. Since the density of proteins on the cell membrane can be 

extremely high, standard optical microscopy cannot faithfully image individual 

components at physiologically relevant concentration levels.  

 

In the last 10 years, a group of super-resolution optical techniques were invented based 

on the ability of precisely controlling the photophysics of individual fluorophores by 

carefully switching them between “on” and “off” states (38). Since the Abbe´s 

diffraction limit cannot be overcome using traditional lenses, the labeling probe is now 

the key component to make nanoscopy imaging possible. One way of exploiting the 

“on/off” switching behavior of individual fluorescent molecules to achieve super-

resolution is to allow the emission of fluorescence from only a reduced group of labeled 

proteins having nearest-neighbor distances (nnd) larger than the diffraction limit (42, 

43). In these sparse emission conditions, the lateral position of each individual molecule 

can be determined with nanometer precision by fitting the emission intensity profile 

using a 2D Gaussian function. By repeating the localization step for many different 

images having at each time a different subset of molecules emitting light, a super-

resolution image can be reconstructed. This is finally done by adding all the 

localizations detected in every frame into one final reconstructed super-resolution image 

(Fig. 1.3A). Nanometer localization of dyes is possible because it ultimately depends on 

the number of photons N emitted by fluorescent dyes as σ ~ FWHM/√N (44), where the 

FWHM corresponds to the size of the PSF of the microscope. Localization-based super-

resolution imaging is the working principle of techniques such as photo-activated 
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localization microscopy (PALM) (42) and stochastic optical reconstruction microscopy 

(STORM) (43) (Fig. 1.3A).  

 

Stimulated emission depletion (STED) microscopy is another super-resolution 

technique that works conceptually different but it also based on the control of the 

photophysics of a fluorophore (Fig. 1.3B) (45-47). In STED, a predetermined number 

of dyes are first excited with an excitation laser using diffraction limited optics, and 

then de-excited to the ground state by stimulated emission using a red-shifted STED 

laser (using also conventional lenses) (38). The diffraction limit is overcome in STED 

by doughnut-shaping the STED depletion laser beam and overlapping it with the 

excitation beam. Thus, only fluorophores located in the area of the hole of the doughnut 

are allowed to emit fluorescence leading to an effective reduced illumination area below 

the diffraction limit. As anticipated, the resolution of STED nanoscopy ultimately 

depends on the intensity of the STED laser beam and not on the optics used.  

 

An alternative nanoscopy imaging approach to PALM, STORM or STED is near-field 

scanning optical microscopy (NSOM) (Fig. 1.3C), which is not based on the control of 

the photophysics of fluorescent molecules but rather, on the detection of the near-field 

component of the emitted fluorescence before it undergoes diffraction (48-50). In 

NSOM, the fluorophore is excited in the near-field using a subwavelength source and 

the emitted fluorescence is collected in the far-field through an objective. Thus, the 

resolution in NSOM does not depend on the fluorophore or on the used optics but 

ultimately, on the final diameter of the sub-wavelength source (51-53). In summary, 

both far-field and near-field nanoscopy approaches are nowadays capable of breaking 

the diffraction limit of light. These techniques are being currently used to directly 

visualize proteins on the cell membrane at endogenous expression levels and in a 

minimally invasive manner (54, 49, 55) having a major impact in the way we try to 

understand biology. 

 

The main current limitation of super-resolution techniques is their temporal resolution 

and as a consequence the sample needs to be fixed before imaging. For instance, to 

create a localization-based super-resolution (PALM or STORM) image, the nanometer 

localizations of fluorophores coming from typically, more than 50.000 frames, need to 

be collected. On the other hand, STED and NSOM also suffer from poor temporal 

resolution due to their sample scanning operating principle. As a consequence, although 

super-resolution techniques offer detailed imaging with nanometer resolution, temporal 

information of the sample of interest is hard to access.  
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Figure 1.3 Far field and near field super-resolution techniques. (A) If all the molecules 
within a dense sample are allowed to emit fluorescence (1), individual molecules cannot 
be resolved due to the diffraction limit (2). However, if one molecule is allowed to emit 
fluorescence at a time and its localization determined with nm accuracy, a final super-
resolution image can be constructed after repeating the activation/localization cycle 
many times (3 and 4). This is the working principle of PALM/STORM.  (B) In STED 
nanoscopy, the diffraction limit is broken by de-exciting fluorophores under a doughnut 
shaped STED beam (orange). Only the fluorophores located in the zero intensity region 
of the STED beam are allowed to emit fluorescence. (C) NSOM is based on the 
excitation of fluorophores by the near-field emitted by a tip with a sub-wavelength 
aperture. 

 

To gain access to the temporal information of diffusing proteins on the cell membrane, 

fluorescence recovery after photobleaching (FRAP) has been the main imaging 

technique used in most biology Labs in the last decades (Fig. 1.4A) (56-58). FRAP is 

based on the photobleaching of a given area on the cell membrane using a very intense 

laser illumination. Diffusing fluorescently labeled molecules located in the periphery of 

the photobleached area will gradually fill the photobleached space in time. By 

monitoring the recovery of the fluorescence within the photobleached area in time, one 

can determine the overall mobility of the fluorescently labeled molecules (Fig. 1.4A). 

However, FRAP is an ensemble averaging imaging technique. Hence, any sensitive 

dynamic information within potentially different subpopulations of the molecule of 

interest cannot be accessed beyond that provided by data averaging. Fluorescence 

correlation spectroscopy (FCS) is another imaging technique which, similar to FRAP, 

also allows characterizing the diffusion of fluorescently labeled diffusing molecules 

(Fig. 1.4B) (59, 60). In FCS, the fluorescence emission of molecules diffusing through 

a fixed illumination volume (usually confocal volume) is recorded over a given period 

of time (Fig. 1.4B). By analyzing the fluctuation of the fluorescence intensity over time, 

the number of molecules and the diffusion coefficient, among other parameters, can be 
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extracted. One of the main drawbacks of standard FCS is that it is still diffraction 

limited. Hence, the influence of local variations in the structure of the cell membrane on 

the diffusion of the molecule of interest cannot be extracted. To obtain illumination 

areas at the nanoscale, close to the size of those local variations, two different methods 

have been developed: STED-FCS and NSOM-FCS (61, 62). Since both techniques offer 

sub-diffraction illumination areas, the effect of, e.g., confinement zones <100 nm on the 

diffusion of molecules can be addressed (61, 62).  

 

An alternative imaging approach to FRAP and FCS which features high temporal 

resolution and single molecule fluorescence sensitivity is single particle tracking (SPT) 
(63-65). The technique is based on the ability of detecting diffusing single molecules 

over a given number of frames with millisecond time resolution. By reconnecting the 

coordinate positions of each fluorescent spot with nanometer accuracy and as a function 

of time, fluorescent trajectories can be generated and the diffusion of individually 

labeled proteins can be characterized (Fig. 1.4C) (66). Unfortunately, the reduced 

fluorescence emission and photobleaching of traditional organic dyes impose limitations 

in the length of the trajectory as well as in the localization accuracy that can be 

achieved, typically 40 nm (67). Quantum dots (QDs) are nanocrystals that have been  

 

 
Figure 1.4 Different biophysical techniques 
to extract temporal information of diffusing 
molecules. (A) FRAP is based on the 
recovery of the fluorescence of a previously 
photobleached area by diffusing molecules 
located in the surrounding area. (1) A given 
area within the cell membrane is 
photobleached by an intense laser 
illumination (2). By recording the recovery 
of the fluorescence intensity in time (3 and 
lower plot) due to the diffusion of molecules 
inside the photobleached area, the averaged 
mobility of the protein of interest is 
extracted. (B) FCS extracts the number of 
molecules and diffusion coefficient of 
fluorescent molecules diffusing through the 
excitation volume after autocorrelating their 
fluorescence fluctuations in time. (C) SPT is 
a single molecule based imaging technique. 
By connecting the detected localizations of 
individual diffusing molecules in every 
frame of a movie, trajectories can be built 
up. 
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consistently replacing  traditional organic dyes as imaging probes for SPT (68, 69). Due 

to their high brightness and enhanced photostability, longer trajectories with localization 

accuracies of 15-20 nm can be obtained (70). Moreover, since QDs feature a narrow 

spectral emission compared to organic dyes or fluorescent proteins, they are especially 

suitable for multi-color SPT (71). This is particularly advantageous when addressing 

how different multi-colored labeled proteins interact in real time at the nanoscale. 

Nevertheless, it should be realized that SPT experiments must be performed at sub-

labeling conditions (typically two orders of magnitudes lower labeling than for super-

resolution imaging) so that individual trajectories can be re-connected in time. As 

consequence, only a sub-set of molecules can be investigated in a dynamic fashion and 

a large set of data are necessary to derive statistically relevant information on the 

processes of interest.  

 

Cell membrane: organization, dynamics and function 

 

The cell membrane represents the ultimate barrier between the interior of a cell and the 

extracellular environment. Thus, any outside-in or inside-out intercommunication 

between the cell and its environment has to be triggered or terminated on the cell 

surface. The main constituents of cell membranes are phospholipids which organize in a 

double layer exposing their polar residues to the aqueous milieu. Components of the cell 

membrane such as transmembrane proteins would then have their non-polar aminoacids 

buried into the double lipid bilayer (72) while their polar residues exposed to water. The 

seminal experiment carried out by Frye and Edidin (73) showed that the behavior of the 

lipid bilayer of cell membranes correspond to a fluid rather than a solid. This led to the 

concept that cell membranes are essentially a fluid mosaic where transmembrane 

proteins could diffuse laterally in a random behavior. However, thanks to the 

application of advanced biophysical techniques such as FRAP, SPT and optical laser 

trap (74), it started to become clear that the lateral diffusion of membrane proteins was 

hindered by obstacles leading to the hypothesis of membrane compartmentalization 

about 20 years ago. This constitutes an excellent example of how our understanding 

about biology is constantly reshaped by the implementation of physical techniques.  

 

The advent of super-resolution fluorescence microscopy combined with high-temporal 

fluorescence imaging techniques such as SPT and FCS has led to the more recent 

concept that compartmentalization at different temporal and spatial scales is a general 

organizing principle on the cell membrane (36). The observation that many, if not most, 

membrane components such as proteins or lipids are clustered at the plasma membrane 

at different scales has been consistently reported in the literature for many different 

proteins, lipids and in many different cells, specially leukocytes. It has been reported 
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that nanoclusters can be organized on the nano- as well as on the mesoscale to form 

nano- and microdomains that are capable of supporting cell adhesion, pathogen binding 

and immune cell-cell recognition amongst many other cell functions. Hence, there has 

to be one or many conserved mechanisms responsible for membrane 

compartmentalization.  

 

One of the most prominent concepts for membrane compartmentalization refers to the 

‘lipid raft hypothesis’. The raft model originated from a study more than 25 years ago 

(75) and has been extensively reviewed since then (76, 77). The lipid raft notion 

proposes the existence of small plasma membrane compartments that are enriched in 

cholesterol and sphingolipids, and populated by ‘raftophilic’ proteins such as, for 

example, glycosylphosphatidyl-anchored proteins (GPI-APs). Persistent controversies 

have led to a provisional contemporary definition that emphasizes the small and 

transient nature of putative lipid rafts (78). Yet, when considering the current, general 

view about the nature of lipid rafts, it must be borne in mind that membranes are rich in 

proteins (79) and that any preferential residence of membrane proteins in regions 

populated by raft lipids most likely occurs only on a very small spatial and temporal 

scale (61). At present, the existence of relatively large, and predominantly ‘lipid raft’ 

domains is expected to be the exception rather than the rule.  

 

Another prominent concept for plasma membrane compartmentalization is based on the 

meshwork of filamentous proteins including F-actin and spectrin that immediately 

underlie the plasma membrane. This model originated over three decades ago on the 

basis of lateral diffusion studies of proteins in the membranes of red blood cells (80) 

and was later expanded by work from Akihiro Kusumi's group, who termed it the 

membrane cytoskeleton ‘fence’ (81). They also coined the term ‘anchored 

transmembrane picket’, which refers to the more or less regular array of transmembrane 

proteins (posts) that are anchored to the underlying membrane-associated cytoskeletal 

fence serving to compartmentalize the membrane. Thus, long-range diffusion of both 

transmembrane and lipid-anchored proteins is restricted because it is rate-limited by 

fluctuations in the cytoskeletal ‘fence–picket’ structure that permits the inter-

compartmental barriers to be traversed by the diffusing molecule. By contrast, short-

range diffusion within each compartment is much more rapid.  

 

Other notions have also been put forth with regard to factors that govern plasma 

membrane compartmentalization on different length and time scales, such as lipid shells 

(82), tetraspanin-enriched microdomains (83) and galectin lattices (84). Moreover, 

recent evidence suggests that these possible local organizers are not independent from 
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each other but, rather, act in a synergistic manner that remains to be precisely defined 
(85, 84).  

 

The term ‘microdomain’ is generally employed to describe membrane 

compartmentalization that occurs either naturally or is ligand induced. However, the 

size of such domains can vary from a few nanometers to several micrometers, most 

probably owing to their different molecular composition and different capacities to 

coalesce with or segregate from each other. A plausible hypothesis is that plasma 

membrane compartmentalization is based on a hierarchical organization of molecules 

that ranges from classic protein oligomerization to nanometer-sized or micrometer-sized 

clusters, which may provide multi-scale regulation of membrane protein function.  

 

Some examples of protein nanoclustering on the cell membrane 

 

GPI-APs 

 

Some of the smallest documented nanoclusters are those that contain GPI-APs. These 

extracellular, lipid-linked proteins constitute a diverse set of proteins tethered to the 

outer leaflet of the plasma membrane that exhibits specific sorting and signaling 

properties. GPI-APs are regulated by alterations in cholesterol and sphingolipid levels 

in cell membranes and, as such, have been considered to be classic lipid-raft markers 

(86). The first studies discussing the unusual nature of GPI-AP nanoclustering were 

reported by two different groups using complementary approaches; i.e. chemical 

crosslinking (87) and fluorescence resonance energy transfer (FRET) (88). Later, using 

a combination of homo- and hetero-FRET techniques, it was shown that GPI-APs co-

exist on the cell membrane as mixtures of monomers together with a fraction (20–40%) 

that includes cholesterol-sensitive oligomers (<5 nm) composed of at most four 

molecules; this was shown for a diverse set of GPI-AP species (89). Surprisingly, the 

relationship between monomers and nanoclusters did not obey the mass-action law that 

would be expected for a classic chemical equilibrium, because the percentages of GPI-

APs nanoclusters and their molecular density were concentration-independent (90). 

Importantly, GPI-AP nanoclustering has been more recently confirmed by super-

resolution microscopy techniques including NSOM (49) and PALM (91).  

 

SPT and FCS studies on nanoscale volumes (61) have provided further evidence for the 

existence of small GPI-AP nanoclusters in living cell membranes – although, as recently 

pointed out, an entirely consistent picture has not yet emerged owing to the high number 

of different techniques employed (92).  
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Of considerable interest is the nature of the factors that regulate and stabilize 

nanoclusters of lipid-anchored proteins. In general, lipid-linked protein nanoclusters 

might be stabilized by cis associations of their protein ectodomains, cytosolic domains, 

lipid anchors or a combination of these. For example, Akihiro Kusumi's group recently 

showed that ectodomain interactions are the primary factor in transiently stabilizing 

homodimers of the GPI-AP CD59, with cholesterol and other lipids having secondary 

stabilizing roles (93). Furthermore, in supported lipid bilayers, Ras GTPases dimerize 

using a specific motif in their cytosolic domains (94). These studies suggest that 

protein–protein interactions among identical lipid-linked proteins play a significant role 

with respect to the stability of lipid-linked protein nanoclusters.  Furthermore, it has 

been also proposed that dynamic, short actin filaments form aster-like aggregates under 

the plasma membrane that actively drive lipid-anchored proteins into nanoclusters (95) 

(Fig. 1.5A). The observation that GPI-AP nanoclusters are found to be spatially 

separated by a characteristic distance of less than 250 nm (49), further indicates that the 

assembly of actin asters close to the inner leaflet of the plasma membrane occurs at this 

spatial scale (Fig. 1.5B). Recently, it has been proposed that a combination of 

transbilayer coupling of long acyl chain lipids, actin dependent immobilization of inner 

leaflet phosphatidylserine and the proper amount of cholesterol on the cell membrane 

might be the mechanism driving GPI-AP nanoclustering (96). 

 

The lymphocyte function-associated antigen-1 

 

The main integrin receptor involved in leukocyte adhesion is the lymphocyte function-

associated antigen-1 (LFA-1, officially known as ITGAL), which forms nanoclusters of 

∼70 nm on monocytes prior to ligand binding (97). The integrity of these nanoclusters 

is independent of cholesterol or the actin cytoskeleton and the clusters contain on 

average six LFA-1 molecules (97). By using NSOM, a first level of hierarchy for LFA-

1 organization was defined because ligand-independent LFA-1 nanoclusters resided 

within 50–100 nm of GPI-AP nanodomains (49) (Fig. 1.6). Upon ligand-induced LFA-1 

activation, a higher level of hierarchy that is associated with function was observed 

(49). Indeed, coalescence of the two nanodomain types and further recruitment of GPI-

APs to these sites resulted in the formation of stable cell adhesion nanoplatforms (49) 

(Fig. 1.6). Although there is no clear explanation yet with regard to what keeps LFA-1 

in nanoclusters, it is tempting to speculate that LFA-1 and GPI-AP nanoclusters are 

somehow interconnected by the actin cytoskeleton to the sub-membranous actin asters 

described above (95). More recently, using a combination of NSOM and SPT, the 

importance of the actin cytoskeleton was demonstrated for inside–out activation of 

LFA-1, its stable ligand binding and firm cell adhesion (67). Although LFA-1 

nanoclustering in resting monocytes was observed prior to ligand activation, it is worth 
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mentioning that other integrins, such as β1 and β3, form nanoclusters upon ligand 

activation (98, 99). These nascent nanoclusters are thought to play a key role in the 

initiation of cell adhesion (99) and in the formation of focal adhesion complexes (98, 

49, 99). 

 

 

 

 

Figure 1.5 Nanoscale organization of GPI-APs on the cell membrane. (A) The 
organization of GPI-APs on plasma membranes as co-existence between monomers and 
small nanoclusters containing a few molecules. Nanocluster formation appears to be 
driven by cortical actin (hypothetical actin asters) and maintained by weak interactions 
with cholesterol (95). These small nanoclusters can be further stabilized by cortical 
actin through asters and/or proximal transmembrane proteins that act as ‘posts’ attached 
to the cortical actin. The physical separation between GPI-AP nanoclusters has been 
observed to be within 200–250 nm (49). (B) (Top) 3D intensity projection of a super-
resolution NSOM image showing the co-existence of nanoclusters (black arrowheads) 
and monomers (white arrowheads) of GPI-APs. (Bottom) Areas encircled by a dashed 
line on the 2D image illustrate that nanoclusters prefer to concentrate at specific sites as 
hotspots that are typically separated by less than 250 nm. This characteristic separation 
might reflect the physical dimensions of the actin meshwork and/or spatial distribution 
of actin asters (95, 49). a.u., arbitrary units.  

 

T-cell receptors, linkers for activation of T cells and B-cell receptors 

 

Several other receptors involved in the immune system have also been shown to form 

nanoclusters (100). For instance, there is accumulating evidence that T-cell receptors 

(TCRs) form nanoclusters on the surface of unstimulated T cells. Initial biochemical 

and EM experiments carried out in Alarcon's group showed that monomers and TCR 

nanoclusters co-exist on resting T cells (101). Another study confirmed this by using the 

two-color coincidence-detection technique but found a smaller population of 

nanoclusters compared to monomers (102). More recently, TCR nanoclustering has 

been demonstrated by EM and PALM on fixed cells (37). Although the molecular 

mechanisms for the formation of TCR nanoclusters are still highly debated, nanocluster  
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Figure 1.6 Hierarchical organization of GPI-APs and the cell adhesion integrin receptor 
LFA-1. The inverted triangle at the left indicates the increase in hierarchical order in 
space and time from bottom to top of each panel. (A) Bottom panel: GPI-AP 
nanoclusters (containing two to four molecules in total) and pre-formed LFA-1 
nanoclusters (six to ten molecules in total) have been observed in close proximity from 
each other (50–150 nm) before LFA-1 is activated through ligand binding. Top panel: 
Activation of LFA-1 through ligand binding, correlates with an increase in the number 
of GPI-AP molecules in each nanocluster that is likely to be mediated by local 
rearrangements of the cytoskeleton through adaptor proteins (green). Furthermore, 
incorporation (arrows) of mobile monomeric GPI-APs and diffusible LFA-1 
nanoclusters (67) can further strengthen the nanoclusters and lead to the assembly of 
LFA-1- and GPI-AP-containing nanoplatforms that are adhesion competent. (B) Bottom 
panel: Representative super-resolution NSOM images of GPI-AP (green) and LFA-1 
nanoclusters (red) in resting monocytes show that LFA-1 and GPI-AP are not associated 
but in close proximity to each other. Scale bar: 1 µm. Top panel: Ligand activation of 
LFA-1 leads to aggregation of GPI-APs and LFA-1 (visualized by the substantial 
increase in yellow areas, which indicates spatial colocalization at the nanoscale) into 
adhesion-competent nanoplatforms. Scale bar: 5 µm. Images have been taken from (49). 

 

stability appears to depend on cholesterol and sphingomyelin (103, 101). Because T 

cells can regulate the extent of TCR nanoclustering depending on their activity, i.e. 

naïve versus memory T cells, it has been suggested that nanoclustering facilitates a 

quick memory response upon T-cell activation (104).  
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The adaptor proteins linker for activation of T-cells 1 and 2 (LAT1 and LAT2, hereafter 

referred to as LAT) are members of the TRAP family (105) and also form nanoclusters 

on resting T cells, although the size of these nanoclusters and their participation in T-

cell signaling are still debated. Lillemeier et al. showed that TCR and LAT exist as 

separate and discrete nanoclusters (also termed 'protein islands' by the authors) of 70–

140 nm in diameter that concatenate (without mixing) during activation (37) (Fig. 

1.7A). By contrast using similar super-resolution approaches – another study showed 

that TCR and LAT nanoclusters are highly mixed, and that LAT nanoclusters are 

composed of only a few molecules (106). These nanoclusters might not participate in 

early T-cell signaling events because sub-synaptic vesicles of LAT were seen to dock to 

the plasma membrane to TCR-activation sites (55) (Fig. 1.7B), a process that is 

dependent on the vesicle (v)-SNARE protein VAMP7 (107). The reasons for these 

contrasting results are not yet clear but they might be related to differences in the TCR 

activation times used by the different research groups.  

 

The multi-chain high-affinity IgE ε receptor subunit β (FcεRI; also known as MS4A2) 

and the B cell receptor are other examples of receptors that pre-cluster prior to antigen 

binding (108-110). For instance, by using a combination of (dSTORM) and SPT, BCR 

and its co-receptor CD19 were found to exist in spatially distinct preformed 

nanoclusters in resting B cells (111). Although the actin cytoskeleton regulates BCR, 

CD19 mobility appears restricted by the tetraspanin CD81, indicating that both CD19 

and CD81 can form scaffolds to support BCR signaling (111). 

 

Nanocluster biogenesis, formation and stability 

 

The full intracellular molecular complement of membrane nanoclusters (e.g. individual 

protein monomers, preformed protein homo-oligomers, preformed protein hetero-

oligomers and/or particular lipid components) is typically unknown. Of interest is 

whether a given nanocluster arrives at the plasma membrane as an almost fully 

assembled entity – as appears to be the case for LAT (55) – with only a few factors to 

be subsequently recruited and/or eliminated or, by contrast, almost completely 

unassembled. It is unlikely that most membrane nanoclusters are composed solely of 

close-packed, identical proteins, although the idea is conceptually attractive. Instead, the 

current evidence strongly suggests that a specific complement of lipids and (most 

probably) other proteins will be present in nanoclusters. Indeed, at least in the case of 

LFA-1 (49) and BCR (111), nanoclusters are not fully packed with their respective 

receptors.  
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Figure 1.7 Two possible pathways for the hierarchical organization of TCR and LAT 
molecules at T cells. The inverted triangle to the left indicates the increase in 
hierarchical order in space and time from bottom to top of each panel. (A) One possible 
pathway considered in the field, termed the ‘protein island’ model. TCR–CD3 
[comprising TCR and the T-cell co-receptor cluster of differentiation 3 (CD3), also 
known as Cde3] complexes and LAT molecules are already present as small 
preassembled nanoclusters on the surface of resting T cells (bottom panel). After 
antigen recognition and TCR activation, TCR-CD3 and LAT nanoclusters concatenate, 
but do not mix (top panel). The actin cytoskeleton is thought to play a main role in this 
process (37). Evidence for the protein island model comes from EM and PALM images 
before and after TCR activation. (B) An alternative assembly pathway of TCR and LAT 
nanoclusters, involving sub-synaptic LAT vesicles. TCR-CD3 complexes, as well as 
some LAT molecules, exist as small nanoclusters on the surface of resting T cells 
(bottom panel). LAT can also be found in sub-synaptic vesicles (top panel). After TCR 
activation, only LAT molecules within the sub-synaptic vesicles in close proximity to 
the cell membrane participate in signal transduction (55). Evidence for the involvement 
of LAT sub-synaptic vesicles comes from PALM images in living cells, which show 
LAT recruitment in close proximity to the cell membrane. These LAT nanoclusters 
appear and disappear quickly over time, suggesting that vesicles dock and undock at the 
membrane without undergoing any appreciable lateral movement (55).  

 

The mechanism by which nanocluster precursors undergo initial reorganization after 

their delivery to the plasma membrane is a key issue. One might expect at least passive 

reorganization to occur in response to the differences in chemical composition between 

the intracellular and plasma membrane environments. These arise from at least three 

specific characteristics of plasma membranes: (1) molecular components have specific 
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orientations and cannot be treated as soluble proteins with the freedom to reorient in 

three dimensions; (2) the environment contains additional structural features, i.e. the 

outer and inner membrane environments are considerably different; and (3) the 

membrane is very crowded. Involvement of an active rather than passive process in the 

formation of nanoclusters and their stabilization is also possible (95).  

 

If the mechanisms of nanocluster formation involve at least the partial self-association 

at the plasma membrane, then how are these associations limited to the nanoscale? The 

limiting factors could be of biochemical nature (i.e. they might constitute specific 

molecular interactions), reflect cell biological aspects (e.g. transmembrane pickets 

attached to the cytoskeleton) (112) or result from physical effects (e.g. kinetics trapping 

or the entropic costs associated with nanocluster existence). Importantly, at least in 

several cases, there is no particular size limit; instead nanoclusters of varying sizes 

simultaneously coexist (51, 113, 114, 55).  

 

Elucidating the factors that contribute to nanocluster stability is crucially important in 

understanding nanocluster function and regulation. Generally speaking, nanoclusters 

could merge, partially disassemble, change their biochemical composition or completely 

dissolve. A dynamic equilibrium may also exist between nanoclusters and their 

components in the nearby membrane environment. Another characteristic of 

nanoclusters is their lateral mobility within the membrane plane. Examples, of functions 

that require nanocluster mobility are the rearrangement of the relative spatial 

distributions of TCR and LAT nanoclusters after T cell activation (37), and 

rearrangement and further recruitment of GPI-APs to activated LFA-1 nanoclusters 

(49). Finally, the role of the membrane-associated actomyosin cell cortex has only just 

began to be investigated in detail, both structurally and functionally (95, 113, 112, 115, 

116). Determination of its actual organization and structural association with membrane 

components should be an area of intense investigation in the future.  

 

Role of non-clustered components 

 

Although the forces that drive and limit nanocluster assembly are still under discussion, 

it is important to note that clustering is rarely complete and that, in many cases, 

nanoclusters co-exist with randomly distributed non-clustered components, as shown 

for TCR, LAT, GPI-APs, CD71 (49) and CD36 (117), suggesting that such co-existence 

has a functional or regulatory role (Fig. 1.8). For example, nanoclusters could act as pre-

assembled units that have the potential to become activated upon ligand binding because 

they spatially concentrate receptors and commonly exhibit restricted diffusion or are 

even spatially trapped. Yet, they might exist below a functional threshold because of 
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their small size and, as such, are not able to stably bind their ligands. Alternatively, 

binding of ligands to such small nanoclusters might not be sufficient to elicit a 

downstream response. Non-clustered components, typically characterized by faster and 

unconstrained diffusion, might modulate nanocluster function by being incorporated 

into pre-existing nanoclusters, thereby acting as switches that provide the necessary 

threshold of nanocluster assembly in order to initiate their function. According to this 

hypothesis, dynamic pre-formed nanoclusters may not be functional when their size is 

below a specific threshold. Non-clustered receptors could provide a positive feedback    

  

 
Figure 1.8 Co-existence of transmembrane protein monomers and nanoclusters at the 
cell membrane. (A) Monomers and small inactive nanoclusters co-exist within the cell 
membrane. Small nanoclusters generally diffuse only slowly or, as shown here, might 
be anchored to the actin cytoskeleton. Monomeric species, by contrast, have greater 
mobility. At resting condition, i.e. in their inactivated non-ligand-bound state, it is 
possible that the size of the nanoclusters is below a functional threshold, at which they 
cannot stably bind their ligands (the on–off arrows indicate an equilibrium between 
extracellular and bound ligands). Alternatively, binding of ligands to small nanoclusters 
might not be sufficient to elicit a response to downstream effectors. (B) Upon ligand 
binding, a pre-existing small nanocluster can incorporate further monomers. 
Nanocluster activation through ligand binding and further recruitment of protein 
monomers stabilize the – now – larger cluster and render it functional, resulting in a 
downstream response. How this process is mediated in unknown but it might require the 
assistance of the local actin cytoskeleton and/or other signaling molecules, or involve 
stable conformational changes of the bound receptors that are transmitted to the 
monomer species. 

 

to create larger domains as a way to trigger nanocluster assembly and hierarchical 

organization in a functional context. Such a positive feedback would, in principle, come 

into play upon nanocluster activation, and be mediated by lateral diffusion and 

encounter with nanoclusters, as recently suggested for TCRs (100).  
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Why nanoclusters? 

 

The ubiquitous presence of protein nanoclusters in mammalian plasma membranes 

prompts the crucial question of why nature has chosen this feature. Possible answers 

might come from elucidating why many soluble proteins are found in oligomeric states. 

This fundamental question has been addressed in several reviews that discuss plausible 

hypotheses, many of which may also be applicable to membrane protein nanoclusters 
(118-120). One important feature of soluble, oligomeric proteins is that they present the 

possibility of allosteric regulation; thus membrane protein nanoclusters might also be 

subject to this type of regulation. Another potential function of oligomerization of 

soluble proteins is to provide multiple, identical, ligand-binding sites in close proximity. 

For multivalent ligands, nanoclustering might increase the effective ligand-binding 

affinity (121). Furthermore – compared with non-clustered receptors – in the case of 

monovalent ligands, oligomerization of their receptors can result in a higher dwell time 

of the ligand because ligand rebinding is facilitated (122). Moreover, the time of ligand 

engagement to the nanocluster might be regulated by altering the density of clustered 

ligand-binding sites because ligand-rebinding probability increases with the square of 

the binding-site density.  

 

With respect to signal transduction, Hancock and co-workers (123, 124) have proposed 

that nanoclustering in the plasma membrane offers a general way to ‘digitalize’ analog 

input signals according to their strength by increasing the number of nanoclusters, 

because each of these provides a discrete switch-like output because of the short 

lifetime of nanoclusters (125). For example, in response to EGF stimulation, ligation of 

the EGF receptor activates K-Ras, thereby generating nanoclusters that provide digital 

inputs to the Ras–Raf–MEK–ERK kinase signaling cascade. This allows the pathway to 

be sensitive to small amounts of the activating ligand. The ‘quantal’ outputs from each 

signaling nanocluster are ‘counted’, i.e. integrated, in the cytoplasm by the kinase 

cascade to generate the bulk, analog cellular response.  

 

A number of recent studies have demonstrated that membrane protein nanoclusters and 

their functional remodeling is an emerging theme in eukaryotic plasma membrane 

organization. It is reasonable to expect that, as the field progresses – particularly in light 

of the increasing availability of super-resolution microscopy – even more examples will 

be discovered. The development of technologies that permit simultaneous, multiplexed 

observation of different nanocluster types in living cells might, in the near future, give 

rise to a new field of systems nanobiology to specifically address the structural and 

functional properties of membrane protein nanoclusters. Although each imaging 

technique has potential drawbacks, the convergence of observations obtained with 
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different approaches strongly suggests that nanoclustering will be increasingly 

recognized as a predominant feature. One of the challenges that lie ahead is to 

determine with certainty why nanoclustering is so prevalent.  

 

Concept of this thesis 

 

In this thesis, we address the lateral behavior of the membrane receptor DC-SIGN and 

of the antigen presenting protein CD1d. By combining multiple color-SPT and STED 

nanoscopy, we aim to tackle how these two transmembrane proteins are organized on 

the surface of antigen presenting cells. Moreover, we try to connect the spatiotemporal 

behavior of these two proteins with their biological function within the context of the 

human immune system. In Chapter 1, a review is presented about the latest findings of 

protein nanoclustering on the cell membrane together with the concepts of state-of-the-

art biophysical techniques featuring high temporal and spatial resolution. In Chapter 2, 

the biophysical techniques and the quantitative methodology used throughout this thesis 

are presented. In Chapter 3, the influence of the neck region of DC-SIGN on its degree 

of nanoclustering and its virus-binding capabilities is addressed. In Chapter 4, we study 

the influence of the glycosylation network on the meso-scale spatiotemporal behavior of 

DC-SIGN. In Chapter 5, we try to link the weak ergodicity breaking of DC-SIGN with 

its molecular structure, nanoclustering degree and biological function. In Chapter 6, by 

combining multi-color SPT and STED nanoscopy, the spatiotemporal behavior of CD1d 

on the cell membrane is addressed and linked to CD1d-mediated iNKT cell activation. 

Finally, in Chapter 7, we discuss the conclusions of the thesis and highlight 

developments and experiments for the near-future. 
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Chapter 2 

 

Quantitative methodology for STED nanoscopy and 

multi-color single particle tracking  

 

As discussed in Chapter 1, the study of the spatiotemporal behavior of membrane receptors 

of antigen presenting cells represents a crucial step in understanding immune reactions at 

the molecular level. Super-resolution techniques and single particle tracking have allowed 

for the first time the direct visualization of transmembrane proteins at the nanoscale. In this 

thesis, we combine STED nanoscopy and multi-color single-particle tracking to address the 

lateral behavior of DC-SIGN and CD1d. In this chapter, we present a methodological 

framework that allows us to quantify STED nanoscopy images and multi-color single-

particle data.  
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Introduction 

As extensively described in Chapter 1, in the last ten years a group of super-resolution 

optical techniques have been developed to obtain lateral nanometric resolution of fixed 

samples at highly dense molecular densities. Moreover, we also discussed several 

approaches to derive dynamic information on living cells at the single molecule level. In 

this thesis, we have combined stimulated emission depletion (STED) microscopy 

together with single particle tracking (SPT) using quantum dots (QDs) to investigate the 

spatiotemporal organization of different receptors on cells of the immune system. We 

take advantage of the high spatial resolution of STED to map the lateral distribution of 

receptors on fixed cells. In addition, multi-color SPT is used to infer how the lateral 

organization of these receptors changes over time and how receptors dynamically 

interact with other cellular membrane components.  

 

In this chapter we explain the methodological approach followed in the thesis. In 

particular, we describe the two different experimental configurations, i.e., STED & SPT 

as well as the specific sample preparation conditions of both techniques. Moreover, we 

also explain the different algorithms used for every experimental condition to be able to 

analyze the data in a rigorous manner. 

 

STED nanoscopy: from principles to imaging and data analysis 

 

STED nanoscopy relies on the off-switching of an excited fluorophore using stimulated 

emission, a process theoretically discovered by Albert Einstein about hundred years ago 

(1). The off-switching is based on the principle that fluorophores can be de-excited by 

stimulating their decay from an excited state (S1) to the ground state (S0) using light 

without the emission of fluorescence photons (2). Hence, and in contrast to spontaneous 

fluorescence emission, stimulated emission is not a stochastic process. STED 

nanoscopy breaks diffraction by off-switching excited fluorophores within a predefined 

area of the sample via stimulated emission. This concept is engineered by overlapping a 

red-shifted doughnut-shaped STED beam with a Gaussian-shaped excitation laser 

creating a mask with an effective sub-diffraction sized area in the center of both beams 

(2) (Fig. 2.1).  

 

The choice of the fluorophore to be used is a critical step when performing STED 

nanoscopy. For instance, the fluorophore in the excited state can absorb a photon from 

the STED beam and instead of undergoing stimulated emission, the fluorophore can be 

further excited into higher singlet (Sn>1) or triplet (Tn>1) states which can lead to its 

photobleaching (3, 4). Hence, fluorophores bearing little absorption from S1 to Sn>1 or 

Tn>1 states at the STED wavelength are ideally suited for STED nanoscopy (5). Another 
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limitation in choosing a dye and a corresponding STED beam wavelength is the 

potential spectral overlap between the absorption and emission spectrum of the 

fluorophore. If there is a strong overlay of both spectra, the STED beam can excite 

fluorophores from higher vibrational states of S0 to the S1 state leading to anti-Stokes 

emission (6). This process can lead to background fluorescence of the dyes below the 

STED beam area and a concomitant reduction in the lateral resolution of the STED 

nanoscope. This effect is in practice solved by red-shifting the wavelength of the STED 

beam to the far-red edge of the fluorescence emission spectrum. Hence, although STED 

represents a very powerful working principle, the right combination of the STED beam 

wavelength with the proper fluorophore is a crucial step when performing STED super-

resolution imaging. 

 

Since STED relies on the off-switching of excited fluorophores via stimulated emission, 

its lateral resolution depends ultimately on the intensity I of the STED beam as given in 

the following formula (1):  

 

                              ∆� ≈ �
����	
�(
�� ��� )                                 (1) 

 

 

where n is the refractive index of the medium between the sample and the objective, α is 

the one-half angular aperture of the objective and λ is the wavelength of the excitation 

light. Is is the STED beam intensity value at which the fluorescence of the excited dye is 

depleted to 50% (1). Thus, only when the STED beam intensity favors stimulated 

emission over spontaneous emission, the excited fluorophores are switched off (1). 

Since the rate of fluorescence spontaneous emission (τ) is typically as high as 109 s-1 and 

the cross-section for stimulated emission (σSTED) is 10-16 cm2 (6), STED beams with very 

high excitation densities (~GW/cm2) are required to induce stimulated emission. To 

maximize the optimization of the depletion process while trying to minimize the amount 

of STED beam intensity needed, STED nanoscopy is best performed using pulsed lasers 

(3). By fine-tuning the arrival time and duration of the pulse of the excitation and STED 

beam, stimulated emission can be favored over other competing transitions of the 

excited fluorophores efficiently. The STED pulse should ideally arrive after the 

excitation pulse and be shorter than the vibrational relaxation of electrons in the excited 

state S1, typically 10-12 to 10-14 s (7). For example, STED nanoscopy have been 

performed by time-delaying a 250 ps STED pulse with respect to a 80 ps excitation 

pulse (3, 8, 9, 10).  

 

Although pulsed-STED offers a lateral resolution close to the molecular level, its com- 
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Figure 2.1 Schematic of the working principle of stimulated emission and STED 
nanoscopy. (A) The fluorophore (represented as a red dot) is excited from the ground 
state (S0) to the excited state (S1) by the incidence of a photon (left). From the excited 
state, the fluorophore can decay via spontaneous emission to the ground state (center) 
emitting a fluorescence photon with lower energy than the excitation one (υ1> υ2). 
Alternatively, the fluorophore can decay to the ground state via stimulated emission 
induced by an incoming red-shifted photon (υ1> υ2> υ3). The additional emitted photon 
via stimulated emission has the same wavelength, phase and polarization than the 
incident one. (B) A diffraction-limited excitation laser (blue) is overlapped with a 
doughnut-shaped STED beam (red). Fluorophores located under the STED beam area 
are switched off via stimulated emission while fluorophores located in the central region 
with an effective sub-diffraction area are allowed to emit fluorescence. 

 

plicated pulse optimization and synchronization represents a limitation when developing 

a STED microscope in the lab. Continuous wave (CW) STED represents a simplified 

version of a STED microscope where the fluorophore is continuously illuminated and 

excited (10). However, this continuous illumination of the dye requires higher STED 

beam intensities to enhance stimulated emission over other competing transitions. 

Hence, due to this higher STED beam intensity, the probability of photobleaching of the 

fluorophore in CW-STED increases compared to pulsed-STED. Nevertheless, 

photobleaching can be reduced on CW-STED by reducing the pixel integration time and 

faster-scanning of the sample. Although the achievable resolution of CW-STED is 

typically lower than with pulsed-STED, it offers a good compromise between set-up 

simplicity and a reasonable resolution (somewhere between 80-100nm). 

 

In this thesis, we have performed STED nanoscopy using a commercial Leica CW-

STED setup (TCS-SP5). A fully motorized Leica DMI6000B microscope equipped with 

a 100x 1.4 N.A. oil objective (HCX PL APO CS, Leica) was used to visualize the sam-

ple. We chose to use AlexaFluor 488nm (AF488) for all the experiments reported in this 

thesis given its good performance in CW-STED set-ups (11). AF488 fluorophores were 
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excited with the 488nm line of an ArKr laser with a laser intensity of ~1 µW in the focal 

plane. To achieve the highest lateral resolution possible by the setup, the STED laser 

beam intensity was set to 100% of its power, ~100-130 mW in the focal plane. Co-

alignment of the excitation and the STED beam was automatically performed several 

times to ensure optimal alignment, depletion efficiency and maximal lateral resolution 

by the setup. 1024x1024 pixel STED images were acquired with a bit depth of 12 bits. 

The fluorescence intensity coming from the sample was detected either by an avalanche 

photo diode module (APD) or with a photomultiplier tube (PMT).  Line accumulation 

and image averaging depended on the labeling conditions of the sample. However, to be 

able to compare different imaging conditions, STED imaging of individual fluorescent 

labeled Abs was performed every time under the exact same imaging conditions as the 

sample. STED resolution was ≈100 nm or ≈85 nm when fitting the point-spread func-

tion of the fluorescence spots with a Gaussian or with a Lorentzian function, respective-

ly. 

Sample preparation for STED imaging. The main goal of super-resolution imaging is 

to map the entire population of receptor proteins on the cell membrane. Thus, a high 

concentration of labeling probes such as fluorophore labeled antibodies (Abs), has to be 

applied so that ideally all target proteins on the cell membrane can be fluorescently 

labeled, imaged and quantified. The general procedure for receptor labeling used 

throughout this thesis has been the following: typically, adherent cells such as Chinese 

Hamster Ovary (CHO) cells or immature Dendritic Cells (imDCs) were directly 

cultured on glass coverslips so that no further substrate treatment was needed to ensure 

cell spreading and adhesion. Non adherent cells such as the human myelomonocytic cell 

line THP-1 were incubated onto PLL-coated (10 µg/ml) glass coverslips for 30 min at 

37ºC. After cell adhesion, cells were fixed in 2% Paraformaldehyde (PFA) for 15 min 

and subsequently blocked with a solution containing 3% BSA + 20 mM Glycine in PBS 

buffer for 15 min (12). Fc receptors were blocked in order to avoid non-specific binding 

of Antibodies (Abs) to the cells by blocking them with a 2% HS. In 2 separated steps, 

primary mouse anti-human Abs and goat anti-mouse AlexaFluor488 (AF488) labeled 

secondary Abs were added at a concentration of ≈5 µg/ml (≈30 nM) and incubated for 

30 min at room temperature. Isotype controls were always performed in order to check 

that all the labelings were specific. After the sample preparation was completed, cells 

were kept in a 1% PFA solution in PBS buffer till imaging. 

 

Analysis of STED nanoscopy images 

 

In this thesis, we have followed two different methodologies to analyze STED 

nanoscopy images with the aim of obtaining the nanoclustering degree of membrane 
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receptors. The two methodologies extract the nanocluster stoichiometry based on the 

comparison between the fluorescence intensity signals of an individual nanocluster with 

the intensity fluorescence signal of individual Abs spread on glass. The choice of each 

methodology depended on the receptor density on the cell membrane. If, due to a low 

receptor density and a concomitant nearest-neighbor distance (nnd) larger than the 

lateral resolution of the STED microscope, individual spots could be visually identified, 

manual Gaussian fitting of each spot was performed. On the contrary, if the receptor 

density prevented the identification of individual spots on the raw STED image, an 

algorithm based on the decomposition of intensity peaks with PSFs obtained from 

single markers was used. 

 

Gaussian fitting of single membrane protein nanoclusters. To extract quantitative 

information about the lateral organization of  receptors with a low protein density on the 

cell membrane, we fitted the intensity profile of each individual nanocluster with a 2D 

Gaussian curve (12, 13): 

 

�(�, �) = ������
(����) !("�"�)  # $%

                              (2) 
 

where x0 and y0 are the peak location coordinates, I0 is the peak intensity and σ the 

standard deviation in both dimensions. 

 

By extracting the centroid position, the FWHM and the intensity from the fit, the lateral 

position, the size and the nanoclustering degree, i.e. number of molecules per cluster, of 

each individual spot could be obtained, respectively. This is a valid approach because 

the total intensity profile of any given nanocluster is directly proportional to the number 

of AF488-labeled Abs attached to it as long as the number of molecules per cluster is 

relatively small so that self-quenching does not occur. Hence, by comparing the 

fluorescence intensity of each protein nanocluster on the cell membrane with the 

fluorescence intensity of individual AF488-labeled Abs spread on the glass coverslip, 

we estimated the number of proteins per nanocluster. Specifically, the total intensity of 

each individual nanocluster was extracted by averaging the background-corrected 

intensity values over all pixels located within the FWHM of each spot. Moreover, the 

total intensity of spots on glass corresponding to single Abs was determined using the 

same approach. By dividing the mean fluorescence intensity of all the individual 

nanoclusters by the mean intensity value of all the spots on glass, the nanoclustering 

degree of membrane receptors could be estimated.  

 

PSF decomposition of nanoscopy images via Bayesian analysis. As mentioned 

above, manual Gaussian fitting can only be applied when the identification of individual 
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spots on the cell membrane is feasible due to a low protein density. For highly dense 

STED nanoscopy images, a more advanced algorithm based on Bayesian inference was 

developed by Dr. Carlo Manzo in our lab (14). The concept of this algorithm is the 

progressive reconstruction of a high fidelity synthetic super-resolution image by 

quantifying the fluorescence intensity of each local intensity peak of the raw STED 

image using the fluorescence intensity of individual markers as a reference. The method 

only requires two input parameters: the width of the PSF and the intensity distribution 

of individual receptor markers. Both quantities can be evaluated from images of sparse 

immobilized fluorescent markers on glass or on the cell membrane. The fact that the 

algorithm only requires these 2 parameters allows a high throughput quantification of 

super-resolution images and a very user-friendly approach. Moreover, since this method 

is based on the fluorescence intensity of the sample, it represents a particularly suitable 

data analysis methodology for low intensity STED nanoscopy or circular aperture-based 

NSOM since both techniques offer a low probability of fluorophore photobleaching 

while achieving nanoscopic resolution. 

 

The algorithm relies on the progressive full reconstruction of a synthetic image by 

detecting, reconstructing and correspondingly subtracting all the local peak intensity 

values within a sub-region of the raw unprocessed image. After peak subtraction of the 

reconstructed sub-region, the deflated image undergoes a new iteration of the algorithm. 

This process continues n cycles for n sub-regions until a final faithfully reconstructed 

synthetic super-resolution image is obtained (Fig. 2.2). The schematic of the algorithm 

is the following: First, the algorithm is applied on the STED raw image (RAW in Fig. 

2.2) without filtering or preprocessing (Fig. 2.2A). The first step consists in determining 

an image sub-region having the highest probability of containing features that can be 

associated to marker fluorescence emission and not to noise (Fig. 2.2B). After having 

identified that fixed size sub-region (white box in Fig. 2.2A or red box in Fig. 2.2B), the 

raw intensity map of the sub-region is attempted to be reconstructed (REC in Fig. 2.2C) 

as the sum of n PSFs, each PSF being two-dimensional Gaussian functions obtained 

from individual markers spread on glass. This reconstruction is performed by 

minimizing the Bayesian Inference Criterion (BIC) (14). Importantly, BIC introduces a 

penalty for the addition of further PSFs, thus preventing overestimation of the particle 

number when reconstructing the sub-region raw image. When the algorithm has 

faithfully reconstructed the intensity map contained within the sub-region (Fig. 2.2C, 

right), the algorithm adds the reconstructed intensity map to the synthetic final super-

resolution image (Fig. 2.2D, left) while subtracting the corresponding region from the 

entire raw STED image (SUB in Fig. 2.2D, right). The resulting subtracted image is 

passed again through the algorithm and a new iteration starts. This cycle is repeated n 

times till the full raw STED image has been reconstructed by PSFs extracted from 
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markers. After full reconstruction of the synthetic image, the algorithm minimizes false 

detected peaks in the entire image by doing a global BIC analysis on all the detected 

PSFs. This final step prevents overestimation of the detected number of particles 

yielding a high fidelity reconstructed synthetic super-resolution image.  

 

Figure 2.2 Schematic of the PSF 
decomposition algorithm via Bayesian 
Analysis. (A) A fixed size sub-region 
from the raw image having the highest 
likelihood (B) to contain intensity values 
corresponding to the intensity of single 
markers is searched and selected (white 
box in A or red box in B) for further 
calculation. (C) The raw intensity peaks in 
the sub-region (left) are reconstructed as a 
sum of PSFs (REC, right) determined 
from single markers using a BIC routine 
(see main text for details). (D) The 
reconstructed sub-region is added to a null 
synthetic image (left) and the 
corresponding area (right) in the raw 
STED image is subtracted. The algorithm 
is repeated until the entire raw 
fluorescence image is depleted and a full 
reconstructed (synthetic) image is 
generated.  

 

 

 

Evaluation of the performance of the algorithm. Besides molecular density, other 

factors such as the width of the PSF, background noise and marker brightness 

distribution significantly affect particle localization accuracy of the algorithm. While 

PSF width and noise depends on instrumental settings, marker brightness distribution is 

related to the labeling marker. For STED nanoscopy, receptors are typically labeled 

with antibodies containing one or more organic fluorophores. The brightness intensity 

distribution accounts for the fluorophore quantum yield, mean and variance of the 

number of fluorophores per antibody and the intrinsic stochasticity of fluorophore 

emission. Since the algorithm takes advantage of such a distribution to infer on particle 

localization, its impact on the algorithm performance was evaluated. For this, synthetic 

images were generated at different molecular densities while varying the FWHM of the 

PSF, signal-to-noise ratio (SNR, calculated as 20 times the logarithm of the mean 

brightness over the background noise standard deviation), average intensity (I) and 

width (σI
2) of the marker brightness distribution. The analysis of simulated data (Fig. 
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2.3) shows the algorithm capability to reconstruct raw images in a wide range of 

molecular densities (up to 200 µm−2) at moderate super-resolution conditions (FWHM = 

90 nm) typically afforded by our commercial STED microscope. At densities larger 

than ~500 µm−2 (Fig. 2.3, lower panels), the finite width of the intensity distribution 

increases the probability that different molecules separated by distances shorter than the 

resolution are identified as a single one, affecting the particle localization accuracy and 

the number of positive detections. 
 

Figure 2.3 Simulated images 
were generated using standard 
experimental imaging conditions, 
i.e., resolution = 90 nm, signal-to-
noise ratio = 15 dB, average 
intensity of 100 counts and 
standard deviation of the intensity 
of 15 counts. (A) Representative 
synthetic images at three different 
densities (5, 50, 500 µm−2, from 
top to bottom). (B) Corresponding 
images reconstructed by the PSF 
decomposition via Bayesian 
algorithm. (C) Particle 
localizations retrieved by the 
algorithm (red crosses) compared 
with the original particle locations 
used in the simulations (open 
circles). 

 

For a quantitative assessment of the algorithm performance, we then calculated the 

recall fraction Rf, i.e. the ratio between the number of particles correctly identified with 

localizations and the number of simulated ones, the localization error Lerr and the 

relative intensity error Ierr (Fig. 2.4). We first evaluated the effect of the instrumental 

resolution on particle identification and localization (Fig. 2.4A). Notably, the method 

yields a high Rf, small Lerr and Ierr at receptor densities <200 µm−2 for all the 

investigated resolutions. For densities beyond this value, Rf decays in a resolution-

dependent way towards a constant offset (~0.4), together with a concomitant increase in 

Lerr and Ierr. Notice that for extremely high densities (>1000 µm−2) there is an apparent 

decrease in Lerr due to the false identification of closely spaced particles as a single one. 

 

Quantification of receptor spatial organization from reconstructed STED images. 

We determined the cluster size and number of particles per cluster using the pair-

correlation function. The pair-correlation function g(r) was calculated similarly as 

previously detailed (15) on reconstructed images obtained by convoluting the particle 

localizations with 2D Gaussian functions having width equal to the localization 
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accuracies ∆ri. Each curve represents the average of at least 30 pair correlations 

obtained over 3x3 µm2 regions of interest.    

 

 

 

Figure 2.4 The recall fraction Rf, localization error Lerr and intensity relative error Ierr 
were evaluated as a function of molecular density for different experimental settings. 
(A) For varying image resolution, i.e, FWHM, with SNR = 15 dB, I = 35 counts,σI

2 = 50 
counts2. (B) For varying SNR, with FWHM = 90 nm, I = 35 counts, σI

2 = 50 counts2. 
(C) For varying mean intensity value I, with FWHM = 90 nm, SNR = 15 dB, σI

2 = 50 
counts2 and (D) for varying width of the intensity distribution σI

2, with FWHM = 90 nm, 
SNR = 15 dB and I = 35 counts. 
 
 

Fitting of the g(r) curves was performed according to: 

 
 

                                 (3) 
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 where the first term accounts for the average particle localization accuracy  and 

with ρ indicating the protein density. The second term represents the convolution of the 

receptor correlation with a Gaussian function having width equal to the average 

localization accuracy. The cluster radius rclust was calculated as the value at which grec 

decays at 1/e. From these quantities, the average number of particle per cluster Nclust was 

calculated as described by Sengupta et al (15). The errors on the fitting parameters were 

calculated as the 95.4% confidence interval (14). Errors on the derived quantities were 

obtained through statistical error propagation. 

 

Single Particle Tracking: from principles to tracking and data analysis 

 

Although super-resolution techniques are able to break the diffraction limit allowing 

nanoscopic imaging, their poor temporal resolution constitutes a major limitation when 

studying the behavior of dynamic processes on the cell membrane of a living cell. 

Single Particle Tracking (SPT) represents an alternative imaging technique to 

nanoscopy offering both single molecule sensitivity and micro- to millisecond time 

resolution (16, 17, 18). In SPT, fluorescently labeled diffusing molecules are temporally 

imaged and their position tracked for a given period of time. One key difference 

between super-resolution techniques and SPT is the amount of fluorophores use to label 

the sample. Since in super-resolution imaging the mapping of the entire population is 

desired, a high concentration of labeling molecules is used. In contrast, in SPT only a 

few molecules from the entire population are labeled with the desired fluorophore. This 

is due to the fact that for tracking an individual molecule in time it is necessary to be 

able to distinguish it from other identical molecules throughout the entire experiment. 

This would not be feasible on a sample with high labeling density since intercrossing of 

different diffusing molecules would prevent their precise identification in every frame 

of the movie.  

 

In analogy to super-resolution imaging, the choice of the fluorophore when performing 

SPT experiments constitutes a critical step. Traditional organic dyes or fluorescent 

proteins suffer mainly from limited brightness and photostability (19). The first limits 

the localization accuracy of the dye since it depends on the number of emitted photons 

N, σ ~ FWHM/√N (20). Moreover, photobleaching prevents the recording of long 

trajectories limiting the access to information on a long temporal scale (21). Quantum 

dots (QDs) are labeling probes that offer exceptional brightness and photostability due 

to their high extinction coefficient when compared to organic dyes (22, 23, 21). 

Moreover, the possibility of biofunctionalizing their surface with a range of different 

biocompatible molecules such as proteins allows a wide applicability in bioimaging 

(21). The conjugation of streptavidine coated QDs with biotinylated Fab fragments or 
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antibodies constitute a canonical example of their use as imaging probes in live cell 

fluorescence imaging. Since QDs have an absorption spectrum covering a wide range of 

wavelengths and a very narrow fluorescence emission spectrum (21), they can be easily 

combined with other QDs, organic dyes or autofluorescent proteins to perform 

multicolor imaging in real time. 

 

In this thesis, we have performed multicolor SPT experiments by labeling membrane 

receptors with a combination of different QDs. Moreover, we have also addressed how 

membrane receptors diffuse with respect to other cellular components such as the actin 

cytoskeleton and clathrin coated pits by combining single QD tracking with fluorescent 

proteins. Moreover, we have used a range of different analysis methods in order to gain 

access to the spatiotemporal behavior of membrane receptors. Overall, the SPT data 

presented in this thesis constitutes a perfect complementary approach to the results of 

STED super-resolution imaging. By combining these two imaging techniques, the 

temporal as well as the spatial organization of membrane receptors could be obtained. 

 

Fluorescence imaging was performed using a home-made single molecule sensitive 

microscope working under wide-field geometry (Chapter 3, 4 and 5) or under total-

internal reflection (TIR) geometry (Chapter 6). Continuous excitation of the QDs was 

provided by the 488-nm line of an Ar+ laser (0.3kW/cm2) (Fig. 2.5). Circular 

polarization of the light was achieved by passing the laser beam through a quarter-wave 

plate. The diameter of the excitation beam was magnified three times using a telescope 

and then focused in the back focal plane of the objective of a commercial inverted IX71 

Olympus microscope. To achieve TIR geometry, a mirror was accurately shifted 

laterally with respect to the objective by a linear translation stage. Fluorescence was 

collected using a 1.4 NA oil immersion objective (Olympus). Fluorescence emission 

was then guided into an EM-CCD camera (C9100-13, Hamamatsu) after suitable 

filtering. The arriving photons were integrated from a 256x256 or 128x128 pixel array 

with a frame rate of 60 Hz and 100 Hz, respectively. The total size of the chip of the 

CCD camera is 512x512 pixel with a image size of 16x16 µm. The data were not binned 

after integration (1x1 bin). The bit depth was 16 bits. The FWHM of the PSF of the 

microscope with these conditions was ≈360 nm. Since the commercial tube lens of the 

microscope produced an image with a pixel size of 270 nm, the image was magnified by 

a factor of two (135 nm pixel size) or three (90 nm pixel size) times with a telescope in 

order to achieve a pixel size equal to the standard deviation of the FWHM. This 

guarantees a proper fitting of the PSF with a Gaussian function. 

 

Dual-color SPT were always performed on the basis that one of the fluorescence 

emission channels was efficiently collecting the emission of QD655. The second chan- 



2. Quantitative methodology for STED nanoscopy and multi-color single particle tracking 
 

   

49 
 

 

 
Figure 2.5 QD655 were imaged and detected using wide-field or TIR geometry on an 
inverted single-molecule sensitive fluorescence microscope. The sample was 
illuminated by a 488 nm excitation line focused on the back focal plane of the objective. 
Fluorescence emission was collected through the objective and focused after 
magnification and bandpass filtered (655±25 nm) on a CCD Camera. 

 

nel contained fluorescence emission coming from either Green Fluorescent Protein 

(GFP; λem=509 nm), Yellow Fluorescent Protein (YFP; λem=527 nm) or QD585 

(λem=585 nm). In all cases, the excitation light was also the 488 nm-line of the Ar+ laser 

(Fig. 2.6 and 2.7). This simplified the alignment of the excitation path since only a laser 

beam was used for multicolor excitation. The intensity of the 488 nm-line was adjusted 

depending on the conditions of each experiment, such as the expression levels of 

Clathrin-YFP or Lifeact-GFP. The dual-color fluorescence emission was split using a 

dichroic mirror with a cutoff wavelength of 600 nm and narrowband filtered (525±25 

nm for GFP/YFP, 560±40 nm for QD585 and 655±25 nm for QD655) before reaching 

the camera (Fig. 2.6 and 2.7). QD655 and QD585 were simultaneously used when 

tracking homo protein interactions (DC-SIGN or CD1d) on the cell membrane (see 

Chapters 4 and 6 for details). In this case, both fluorescence channels were recorded by 

the same full chip of the Hamamtsu EM-CCD Camera at a frame rate of 30 Hz. When 

tracking DC-SIGN or CD1d with respect to global static cellular structures such as 

clathrin coated pits (YFP-tagged) or the actin cytoskeleton labeled with lifeact-GFP 

(24), the fluorescence emission from the fluorescent proteins was projected onto a 

second 12 bit CCD I-PentaMAX (Roper Scientific) Camera at a frame rate of 10 Hz.  

 

To accurately overlay different fluorescence emission channels, images of multi-

fluorophore fluorescent beads (0.2 µm Tetraspeck, Invitrogen), having emission spectra 

covering the two detection channels were obtained to determine the spatial 

transformation leading to the overlay of the two spectral channels. To calculate the 
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Figure 2.6 QD655 and GFP or YFP transfected proteins were imaged and detected 
using TIR geometry on an inverted single-molecule sensitive fluorescence microscope 
with two CCD Cameras. The sample was illuminated by a single 488 nm excitation line 
focused on the back focal plane of the objective. Dual-color fluorescence emission was 
collected through the objective, magnified, split by a dichroic mirror (DM) and focused 
on two different CCD Cameras after narrow band filtering. 

 

spatial transformation, at least 10 beads appearing on both channels were manually 

selected, their centroid positions calculated with subpixel accuracy and stored in two 

coordinate lists. The transformation matrix was inferred from the coordinate lists 

according to an affine transformation, correcting for displacement and small chromatic 

aberrations. Physiological conditions (37ºC, 5% CO2) were maintained during the 

experiments using a culture dish incubator (DH-35iL, Warner Instruments) equipped 

with a temperature controller (TC-324B, Warner Instruments) and a digital CO2 

controller (DGTCO2BX, Okolab). 

 

Sample preparation for multicolor single particle tracking. In contrast to super-

resolution imaging of fully protein labeled cell membranes, the key property of any 

single-molecule localization based imaging of diffusing particles is that a very low 

amount of dye is required. The concentration of labeling probe attached to an Ab for 

single-molecule detection of membrane receptors is typically 2 orders of magnitude 

(≈200-500 pM) lower than for nanoscopy imaging (≈30 nM). Moreover, in the case that 

fluorescently labeled ligands are used to map membrane receptors, higher 

concentrations (≈2 nM) have to be used due to the higher dissociacion constants of 

ligand-receptor complexes compared to Ab-receptor complexes. 
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Figure 2.7 QD655 and QD585 were simultaneously imaged and detected using 
TIR/EPI geometry on an inverted single-molecule sensitive fluorescence microscope. 
The sample was illuminated by a single 488 nm excitation line focused on the back 
focal plane of the objective. After adjusting the separation of the two color fields of 
view by a diaphragm in the excitation path, dual-color fluorescence emission was 
collected through the objective, magnified, split by a dichroic mirror (DM) and focused 
on the same CCD Camera allowing simultaneous imaging of two different QDs.  
 

Single particle tracking analysis. Trajectories of individual QDs with at least 200 

points (DC-SIGN data, Chapter 3, 4 and 5) or 100 points (CD1d data, Chapter 6) were 

reconnected with Matlab routines based on the multiple-target-tracing (MTT) algorithm 

described by Serge et al. (25). This method relies on past statistical history in order to 

achieve a more efficient reconnection of trajectories. Importantly, although this method 

could provide reconnection of QDs trajectories with “off” times, only trajectories with 

QDs emitting above a certain signal-to-background level (Probability of false alarm for 

peak detection: PFApeak<10-6) in every frame of the trajectory were selected for analysis 

in this thesis. To validate the performance of the detection and reconnection algorithm, 

reconnected trajectories were always overlaid onto the corresponding original raw video 

and visually inspected with a custom-made software in ImageJ. 

 

As a general approach throughout this thesis, individual trajectories were analyzed by 

calculating their mean-squared-displacement (MSD) according to the following formula 

(16): 

 
&'(() ∙ ∆+) = 


,���
∑ .�(/∆+ + )∆+) − �(/∆+)2� + .�(/∆+ + )∆+) − �(/∆+)2�,���
34
   (4)        
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where ∆t is the time lag, N is the total number of frames of the trajectory, n represents 

the time increment and x,y represent the 2D particle position. Short-range diffusion 

coefficients were extracted from the linear fit to the 2nd- 4th point of the MSD curve 

using the following equation: 

 

&'( = 4(��6+ + ∆�                                    (5) 

 

where D2-4 is the instantaneous diffusion coefficient and ∆0 is the MSD offset at zero 

time increment. To validate the correct performance of the MTT algorithm in terms of 

detecting and reconnecting individually diffusing QDs, manual tracking for every 

condition was performed and the distribution of the D2-4 values of both cases were 

compared. 

 

The offset is related to the localization accuracy by the following formula (26): 

 

∆x( )
2
=
∆0

2d
                                          (6) 

 

where d accounts for the space Euclidean dimension (in this case, d=2). Using the given 

formula, we obtained a localization accuracy of 18-20 nm for quantum dots under the 

different experimental conditions used throughout this thesis. 

 

The smallest detectable diffusion coefficient was obtained after imaging immobilized 

QDs on a coverslip using either EPI (DC-SIGN experiments reported in Chapters 3,4 

and 5) or TIRF (CD1d experiments reported in Chapter 6) configurations at the same 

frame rate as in the corresponding experiments, 60Hz and 100Hz, respectively. 95% of 

the immobile QDs displayed diffusion coefficients <10-3 µm2/s or <6·10-4 µm2/s under 

TIRF (100Hz) or EPI (60Hz) geometry, respectively. Hence, these values were selected 

as the thresholds for discriminating immobile vs. mobile trajectories. To avoid any 

overestimation of the immobile fraction due to non-specific interaction of QDs with the 

coverslip, only trajectories classified as mobile were used for the trajectory analysis 

under TIR geometry. In case of EPI illumination, the microscope was focused slightly 

above the focal plane of the coverslip avoiding the detection of off-focus QDs 

immobilized on glass by the MTT algorithm. 

 

An alternative to MSD based analysis was used to detect transient confinement zones 

(TCZ) based on Simson et al. (27). The algorithm calculates the probability that a 

diffusing particle would stay within a zone of a given radius for a particular amount of 

time. If the particle stays within that zone for a longer period of time compared to a 
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particle diffusing with purely Brownian motion, the algorithm then classifies that region 

as a confinement zone. By comparing the performance of the software with simulated 

trajectories showing purely Brownian motion, the input parameters of the software and 

its performance can be addressed. Overall, this algorithm constitutes an efficient 

approach to study whether a diffusing molecule stays temporally trapped within certain 

regions of the explored area or volume (28, 29). 

 

Dual Color trajectory analysis of QDs. After successfully overlaying the two 

fluorescence emission channels (Fig. 2.8A), individual trajectories were manually 

reconnected. The position of each QD at every frame was determined by fitting the PSF 

of every individual QD with a Gaussian function. After reconnecting every trajectory, 

the interparticle distance between both QDs per frame was calculated (Fig. 2.8B,C). To 

quantify whether the interparticle interactions corresponded to purely Brownian 

stochastic encounters or to specific protein-protein interactions, the distribution of the 

interparticle distances were compared to Monte-Carlo simulations of Brownian 

diffusing particles with the same initial interparticle distances and diffusion coefficients 

than the experimental data (see Chapters 4 and 6). 

 

Membrane exploration or cartography maps 

 

SPT allows the characterization of the lateral behavior of individual diffusing proteins 

on the cell membrane at the nanoscale with ms time resolution. However, SPT requires 

reconnection of trajectories which can be challenging even using automated 

reconnection algorithms such as MTT. Very low densities of fluorophores, e.g., are 

required in order to discriminate properly between trajectories. This prevents the 

simultaneous recording of a large amount of long trajectories (>100 points) in a single 

cell making traditional SPT a low throughput technique. In the recent years, some 

single-molecule based techniques have tried to exploit high-density single particle 

tracking following different approaches: single particle tracking-PALM, hyperspectral 

imaging and MTT (30, 31, 25). Although the global mapping of the cell membrane has 

been possible with these approaches by creating, e.g., diffusion maps (30), all these 

techniques still rely on the limiting factor of reconnecting trajectories. Moreover, 

although diffusion coefficient-based analysis provides information on the diffusing 

receptor and its interaction with the environment, it is much harder to extract 

information over potential confinement in mesoscale areas of the cell membrane using 

this approach.  

 

In this thesis, we have developed a methodology based on the localization of single QDs 

over a micron size area on the cell membrane of living cells for a precise period of time.  
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Figure 2.8 Dual color QD tracking analysis was based on the interparticle distance 
between individual QDs per frame. (A) Still frame of a movie showing individual 
receptor nanoclusters labeled with either green (585) or red (655) QDs; and sample time 
series of two QDs (red and green) spatially close in time (see white arrows). (B) Full 
reconstruction of the 2D green and red trajectories in time of the two QDs shown in A. 
High labeling conditions have been used to increase the probability of observing such 
events. (C) Examples of separation distances obtained for three pairs of seemly closed 
QDs, showing large and random variations in the relative positions between QDs. 
 

We essentially recorded the highest possible amount of localization of diffusing QDs 

during a movie.  However, we did not reconnect any trajectories but instead analyzed 

the spatial distribution of all the localizations obtained during the full video after 

collapsing them into one single final image (Figure 2.9). This methodology offers the 

great advantage of accessing not only the nano- but also importantly, the mesoscale 

distribution of the transmembrane protein of interest without the need of reconnecting 

very long trajectories. This has a great impact in the amount of time needed to collect 

data, making membrane exploration maps a high throughput technique. In addition, the 

setup required for performing membrane exploration maps with QDs is greatly 

simplified with respect to the setups needed to perform spt-PALM or QD hyperspectral 

imaging. Moreover, by combining cartography maps of different colors, the different 
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lateral organization of molecules at multiple temporal and spatial scales of interest can 

be obtained with high throughput (Chapter 4).  

 

 

 

Figure 2.9 Cartography maps are generated by localizing all QDs in every frame of the 
movie and collapsing all the detected localizations in one single frame. This can be done 
by dual-color or by high-density single color SPT techniques. 

 

Discussion 

 

In this thesis, we have combined several state-of-the-art single-molecule sensitive 

fluorescence technologies to gain access to the spatiotemporal behavior of the 

membrane receptors such as CD1d and DC-SIGN. By using STED nanoscopy, we 

could identify that these receptors do not organize in a random manner but in 

nanoclusters on the cell membrane. To gain access to the temporal behavior of CD1d 

and DC-SIGN, multi-color single particle tracking was developed allowing us to study 

how these transmembrane proteins interact not only with each other but also with 

surrounding cellular components. Thus, by combining both multicolor SPT and STED 

nanoscopy, we could characterize the composition of each individual nanocluster and 

how these nanoclusters diffuse laterally in space and time. 

 

To quantify the nanoclustering degree of DC-SIGN or CD1d from the STED nanoscopy 

images, two different types of analysis were applied. The relative low protein density of 

DC-SIGN on the cell membrane allowed the fitting of every single nanocluster on the 

cell membrane with a Gaussian function. By extracting the characteristic parameters of 

the fit, the size and composition of every individual DC-SIGN nanocluster could be 

estimated. On the other hand, the high density of CD1d molecules on the cell membrane 

prompted us to develop an algorithm that could reconstruct the spatial organization of 

highly dense CD1d STED images. The algorithm works on the basis that a nanoscopic 

image can be reconstructed, using the Bayesian Information Criterion, by the sum of 

multiple PSFs with an intensity distribution that can be experimentally determined from 

single markers. 
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The lateral behavior of CD1d and DC-SIGN was accessible using single or multi-color 

single particle tracking. By simultaneous recording of DC-SIGN vs DC-SIGN or CD1d 

vs CD1d, potential homo-interaction between diffusing nanoclusters could be studied. 

Moreover, dual color imaging of DC-SIGN on top of clathrin, or CD1d on top of actin, 

are examples of the possibility of addressing the potential influence of other cell 

components on the lateral behavior of diffusing transmembrane proteins. This technique 

offers a unique possibility to test the influence of a cell component on the molecule of 

interest in a minimally invasive manner. This is in strong contrast to traditional 

biochemical approaches which rely on very perturbing methods such as drug treatments 

or gene knockdowns/knockouts of the cellular component of interest. 

 

Membrane exploration maps were developed in order to combine information about the 

spatial organization with temporal resolution in a single experiment. Not only the areas 

covered by a diffusing molecule over time can be obtained by collapsing all the 

localizations of a video into one single frame but also importantly, how efficiently those 

areas are being explored. Moreover, the nano- and microscale spatiotemporal behavior 

can be extracted without the need of extensive data collection. By expanding membrane 

exploration maps to multi-color imaging, detailed information on how the collective 

spatiotemporal behavior of a transmembrane protein depends on the organization of 

another one can be extracted. This is a particularly powerful approach to study 

components of the cell membrane because they can easily be simultaneously 

fluorescently labeled and imaged in real time. 

 

In summary, in this Chapter we have described the development of the tools needed to 

study the spatiotemporal behavior of transmembrane proteins with high temporal and 

spatial resolution. By combining STED nanoscopy with multi-color SPT, we have 

successfully characterized how CD1d and DC-SIGN are distributed on the cell 

membrane and how they interact with other cell membrane components. Overall, this 

Chapter presents a palette of imaging techniques and analysis tools that allows to extract 

biologically relevant information that could have not be obtained using standard 

traditional biochemical approaches.  
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Chapter 3 

 

The neck region regulates the spatiotemporal 

organization and virus-binding capability of DC-

SIGN 

 

As discussed in Chapter 1, the study of the spatiotemporal behavior of transmembrane 

proteins is crucial to understand their biological function. In this Chapter, by combining 

biochemical and advanced biophysical techniques, including optical super-resolution and 

single particle tracking, we demonstrate that DC-SIGN forms nanoclusters on the cell 

membrane of antigen presenting cells. Moreover, its intrinsic nanoclustering capacity 

strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian 

diffusion on the cell membrane. Truncation of the extracellular neck region, known to 

abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased 

lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised 

binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity 

on nanocluster density and spatial distribution confers broader binding capabilities to DC-

SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, 

driven by intermolecular interactions between the neck regions, and receptor diffusion, to 

provide DC-SIGN with the exquisite ability to dock pathogens at the virus length-scale. 

Insight on how virus receptors are organized prior to virus binding and how they assemble 

into functional platforms for virus docking is helpful to develop novel strategies to prevent 

virus entry and infection. 

 

 

This work has been published as C. Manzo*, J.A. Torreno-Pina*, B. Joosten, I. Reinieren-Beeren, E.J. 

Gualda, P. Loza-Alvarez, C.G. Figdor, M.F. Garcia-Parajo, A. Cambi, “The neck region of the C-type lectin 
DC-SIGN regulates its surface spatiotemporal organization and virus-binding capacity on antigen-presenting 

cells”, Journal of Biological Chemistry 287, 38946 (2012). * Equally contributing authors. 
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Introduction 

As briefly described in Chapter 1, dendritic cells (DCs) constitute a specific group of 

professional antigen presenting leukocytes that link the innate and adaptive branches of 

the immune response by virtue of their capacity to recognize pathogen-specific 

structures (1). Immature DCs (imDCs) migrate from the blood into tissues where they 

detect foreign antigens. Upon antigen recognition, imDCs are activated and migrate to 

the lymph nodes, where they present antigen-derived peptides to naive T lymphocytes 

and induce an effective immune response (2-4). For efficient pathogen recognition, 

imDCs are equipped with a large number of lectin and lectin-like receptors (CLR) on 

the cellular membrane that bind to high mannose structures present on the surfaces of a 

broad range of pathogens including viruses, bacteria, yeast and parasites (5,6). Since 

DCs can be manipulated ex-vivo, numerous efforts have been undertaken for exploiting 

the extraordinary binding capabilities of CLRs to target antigens directly to DCs in vivo, 

potentially increasing the effectiveness of antitumor and antiviral vaccines (7,8).  
 

Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN; CD209) is a type II 

membrane CLR abundantly expressed in-vivo on myeloid DC and macrophage 

populations (9,10) as well as on in-vitro generated monocyte-derived DCs and activated 

macrophages (10-12). DC-SIGN is responsible for the binding and uptake of a 

multitude of pathogens, such as HIV-1 (13), Ebola virus (14), hepatitis C virus (15), 

Candida albicans (16) and Mycobacterium tuberculosis (17) via mannan- and Lewis X 

oligosaccharides-dependent interactions. More recently, it is been shown that upon 

recognition of mannan or Lewis X carbohydrates, DC-SIGN associates with distinct 

signaling molecules to induce differential production of cytokines that in turn lead to 

enhancement or suppression of proinflammatory responses (18). The mechanisms by 

which these diverging signaling pathways are generated remain a mystery although it 

has been suggested that the molecular structure of DC-SIGN might be altered upon 

binding to the two different carbohydrates. 

 

Structurally, DC-SIGN is a tetrameric transmembrane protein with each sub-unit 

comprising a long extracellular part with a carbohydrate-recognition domain (CRD), a 

7-and-a-half tandem repeat of 23 amino acids forming the neck region, and a 

transmembrane part followed by a cytoplasmic tail containing recycling and 

internalization motifs (19-20). Analysis of recombinant molecules, hydrodynamic and 

surface force measurements revealed that the neck region of DC-SIGN is responsible 

for its tetramerization (21-23) enabling the formation of CRD multi-binding sites and 

increasing the interaction strength with specific ligands (23). Based on these results it 

has been proposed that the neck configuration is likely to play a significant role in 

pathogen capture (23).   
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Using transmission electron microscopy (TEM) and near-field optical nanoscopy, it was 

previously shown that DC-SIGN forms nanoclusters on the membrane of fixed 

immature (im)DCs far beyond mere tetramerization (11,24,25). These results have been 

recently validated on living imDCs (26) and on several cell lines transfected with DC-

SIGN (26,27). Importantly, tight spatial ordering of DC-SIGN in nanoclusters resulted 

crucial for binding and internalization of HIV-1 (11). However, how DC-SIGN achieves 

such a refined level of spatial control is largely unknown. Although DC-SIGN has been 

shown to partially associate to lipid rafts, cholesterol extraction did not alter the 

integrity of the nanoclusters (11). Similarly, DC-SIGN nanocluster formation and/or 

stability do not require interactions with the cortical cytoskeleton (27) neither 

association with tetraspanins (27). Recently, it has been hypothesized that large DC-

SIGN domains, i.e., microclusters could be formed and stabilized through interactions 

between the CRDs and yet unidentified extracellular components, as deletion of the 

CRD moiety abrogated DC-SIGN microclustering (28). However, since these 

experiments were performed using diffraction limited confocal microscopy, it is not 

clear whether the nanoclustering capacity of DC-SIGN also requires the presence of the 

CRD. Thus, despite the importance of DC-SIGN nanoclustering in pathogen 

recognition, the studies performed so far have not provided yet conclusive evidences to 

explain the origin for this well-defined organization. 

 

This chapter addresses the mechanisms leading to DC-SIGN nanoclustering by 

combining biochemical assays, super-resolution optical nanoscopy, single particle 

tracking and Monte Carlo simulations of different DC-SIGN mutants. Moreover, we 

correlate DC-SIGN nanoclustering with viral binding capacity. Our results reveal that 

homophilic interactions mediated by the neck region of DC-SIGN are responsible for its 

nanoclustering and enhanced virus-binding ability. 

 

Results 

 

Mutated DC-SIGN forms are functional but have impaired virus-binding capacity. 

Previously it was shown that DC-SIGN expressed in CHO cells serve as a valid model 

system to study binding, internalization and trafficking of different antigens targeted to 

DC-SIGN, recapitulating its essential activities on imDCs (33,34). We thus used 3 

different DC-SIGN mutants where specific regions of the molecule were deleted (Fig. 

3.1A). Moreover, the DC-SIGN mutants were stably transfected in CHO cells to 

investigate their effect on pathogen binding (Fig. 3.1A). The mutants are denoted as 

∆CRD (lacking the CRD domain), ∆Rep (lacking the tandem repeats in the extracellular 

neck region) and ∆35 (lacking the first 35 amino acids from the N terminal in the 

cytoplasmatic tail). We evaluated the functionality and binding capability of the stable 
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transfectants to soluble ligands, virus-sized and micron-sized objects. Whereas wt-DC-

SIGN, ∆Rep- and ∆35- bind to fluorescent soluble mannan, the lack of the CRD ex- 

 

 

 

 

 

 

 

 

 

 

 

pectedly prevents binding, consistent with the fact that DC-SIGN-mediated interactions 

occur through the CRD (20) (Fig. 3.1B). Addition of blocking-antibodies or competing 

soluble mannan significantly reduces the binding in all cases, showing DC-SIGN 

specificity. These results confirm that wt-DC-SIGN, ∆Rep- and ∆35- are all functional 

on CHO cells, and furthermore show that the CRD is available for binding even in the 

absence of the neck region. 

 

To investigate the DC-SIGN capability for virus docking, we carried out binding assays 

with gp120-coated nanobeads (40 nm in diameter, Fig. 3.1C) having comparable size to 

HIV-1 (35). Interestingly, significant binding is only observed on wt-DC-SIGN and 

Figure 3.1 Mutated DC-SIGN forms are functional but have impaired virus-binding 

capacity. (A) Schematics of wt-DC-SIGN and cell surface expression levels of wt-DC-

SIGN and mutants on stably transfected CHO cells as determined by FACS analysis. 

The black histogram represents the isotype control, and the red histogram indicates the 

specific staining with anti-DC-SIGN Ab (anti-AU1). (B-D) Binding of soluble 

fluorescent Alexa-647-mannan (B), gp120-coated fluorescent nanobeads (40 nm Ø) (C) 

and micron-sized FITC-zymosan (D) to CHO cells expressing wt-DC-SIGN or mutants 

were measured by FACS. Specificity was determined by measuring binding in 

presence of anti-DC-SIGN blocking Ab (AZN-D1) or Ca
2+

 chelating agent EDTA or 

soluble non-fluorescent mannan. One representative experiment out of 3 is shown. 

Values represent average of duplicates experiments with corresponding SD.  
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∆35-. While a lack of binding is expected for ∆CRD-DC-SIGN, the complete absence 

of binding of ∆Rep-DC-SIGN indicates a key role for the neck region in securing 

interactions with nanometric-size particulate antigens. This was further confirmed by 

using real HIV-1 virus particles, which were bound by CHO cells expressing wt-DC-

SIGN and not by ∆Rep-DC-SIGN (Fig. 3.2), thus validating the use of nanobeads as 

virus-like particles and in agreement with previous studies (30,34). To further 

investigate the binding capability to large objects, we performed similar experiments 

using micron-sized zymosan particles (yeast cell walls, Fig. 3.1D). High binding was 

retrieved for wt-DC-SIGN and all the mutants, except for ∆CRD-DC-SIGN, in similar 

fashion as found for the soluble ligand. Notice that the somewhat lower binding of ∆35-

DC-SIGN in all cases is due to its lower expression level as compared to wt-, ∆CRD- 

and ∆Rep- (Fig. 3.1A). These results show that whereas binding of DC-SIGN and its 

mutants to soluble ligands and large particles occur with similar efficiency, the neck 

region of DC-SIGN is crucial to ensure binding of small virus-size particles. 

 

The cytoplasmic tail impacts on DC-SIGN clathrin-dependent internalization. It 

has been previously shown that DC-SIGN-mediated endocytosis of virus-like particles 

occurs via clathrin (33,34). Therefore we sought to investigate the effect of structural 

mutations on DC-SIGN mediated endocytosis by comparing the amount of Ab on the 

cell membrane before and after internalization. The percentage of internalized mAb was 

calculated by measuring the mean fluorescence (MF) of the samples using flow 

cytometry and by applying the following formula: ((MF@37
°
C – MF@4

°
C) / MF@4

°
C) 

x100 (Fig. 3.3A). Truncation of the neck region (∆Rep-DC-SIGN) does not affect 

antigen internalization compared to wt-DC-SIGN (Fig. 3.3A). In contrast, deletion of 

the cytoplasmatic tail (∆35-DC-SIGN) significantly reduced internalization (Fig. 3.3A), 

supporting previous findings obtained on ∆35-DC-SIGN expressed on Raji cells and 

incubated with HIV-1 virions (36). Subsequently, we used confocal imaging to 

determine the degree of colocalization of anti-DC-SIGN mAbs and clathrin before and 

10 min after endocytosis triggering (Fig. 3.3B). Colocalization with clathrin was not 

observed for wt-DC-SIGN or the two mutants investigated (∆Rep-DC-SIGN and ∆35-

DC-SIGN) in the basal state. Triggering of endocytosis by shifting the temperature to 

37ºC for 10 min induced significant colocalization with clathrin for wt-DC-SIGN and 

∆Rep-DC-SIGN but not for ∆35-DC-SIGN, as quantified using the Pearson correlation 

coefficient (Fig. 3.3C). Our data thus show that the cytosplasmic tail of DC-SIGN is 

crucial for clathrin-dependent endocytosis whereas the neck region has no major 

influence on internalization. 

 

The neck region is required for DC-SIGN nanoclustering. It is known that DC-SIGN 

forms nanoclusters on the cell surface of imDCs and of several cell lines (11,24-27). To  
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Figure 3.2 The 

lack of the neck 

region prevents 

binding of real 

HIV-1 particles. 

(A) CHO cells 

transfected with 

empty vector, 

∆Rep-DC-SIGN 

or wt-DC-SIGN 

were incubated 

with Alexa647-

labeled HIV-1 

(400 ng HIV-1 

p24 Ag/100.000 

cells) for 30 min 

at 37ºC or 30 

min at 37ºC. 

After washing 

unbound virus, 

cells were analyzed by flow cytometry. Cells that have bound fluorescent virus particles 

became fluorescent, as indicated by the shift of the mean fluorescence histogram 

towards higher values on the x axis. The cell counts are shown on the y axis. One 

representative experiment out of two is shown. (B) To visualize the difference in HIV-1 

binding, CHO cells were incubated with the Alexa647-labelled HIV-1 particles, as 

described in A, and after removing unbound virus the samples were fixed with 4% PFA 

for 1 hr at RT and subsequently labeled for DC-SIGN. Samples were then fixed again 

and analyzed by confocal microscopy. One representative field of view is shown. Scale 

bar, 10 µm. 

 

investigate whether a potential relationship might exist between the molecular structure 

of DC-SIGN and its nanoclustering capacity we analyzed TEM images on whole-mount 

samples of CHO cells (Fig. 3.4). TEM images of immunogold-labeled wt-DC-SIGN 

showed a non-homogeneous receptor distribution over the cell membrane, characterized 

by regions of closely grouped particles (Fig. 3.4A). Similar nanoclustered organization 

was found for the ∆35 and the ∆CRD mutants (Fig. 3.4 C,D respectively). In contrast, a 

significantly more disperse distribution was observed for the ∆Rep mutant (Fig. 3.4 B). 

To quantitatively analyze the images we developed a cluster-searching algorithm that 

discriminates between isolated and clustered receptors by recursively comparing the 

inter-particle distances to a threshold value of 80 nm (Fig. 3.5). Briefly, gold particle 

positions were automatically detected by means of maximum-likelihood based routine 

(51). Then, the classification of particles into clusters was performed by means of a 

threshold-based algorithm. If the interparticle distance between 2 particles is below a 

given threshold value th, the particles are assigned to the same cluster (Fig. 3.5A). For a 

proper choice of the threshold, we generated simulated images of randomly positioned 
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particles, using a particle density similar to that of the experimental data data (17 

particles/µm
2
), and retrieved the nearest neighbor distribution (nnd) from the simulated 

images (Fig. 3.5B). To determine the threshold value, we compared the nnd of 

randomly positioned particles with the nnd distribution obtained from the experimental 

data. The curves of the experimental and the simulated data intersect at a distance of 80 

nm. Therefore, we used the value th=80 nm to rigorously define our threshold and 

minimize the false-positive cluster identifications (Fig. 3.5B).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5C shows the histogram of the nearest neighbor distribution for wt-DC-SIGN, 

∆35-, and ∆CRD- showing a similar distribution peaked around ~6 pixels with a slowly 

decaying tail, whereas ∆Rep- shows a significant deviation in the ~20-60 pixels region 

due to the higher number of isolated particles. Moreover, the distribution of ∆Rep-DC-

SIGN shows a broad distribution peaked around 30 pixels due to isolated particles (Fig. 

Figure 3.3 The cytoplasmic tail impacts on DC-SIGN clathrin-dependent 

internalization. (A) CHO cells stably transfected with DC-SIGN constructs were 

incubated with anti-DCSIGN mAb hD1 at 4ºC, washed and incubated for 30 min at 

37ºC to induce endocytosis. (B) CHO transfectants were incubated with hD1 at 4ºC, 

washed and shortly incubated with isotype specific Alexa-647 (red) conjugated 

secondary Abs at 4ºC. After washing, cells were kept on ice (0 min @ 37ºC) or shifted 

for 10 min at 37ºC to induce endocytosis (10 min @ 37ºC). After fixation and 

permeabilization, clathrin (green) was labeled. The pictures are enlarged areas taken 

from representative cells. Scale bar, 5 µm. (C) Pearson colocalization coefficient plot 

of DC-SIGN and clathrin. Values ± SEM are average of multiple images from several 

cells in at least three different experiments.  (* = p<0.01, T-test). 
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3.5C, inset) very similar to the nearest neighbor distribution of simulated random-

distributed particles. This already suggests that DC-SIGN nanoclustering is strongly 

dependent on its neck region. Fig. 3.5D shows a linear relationship between the cluster 

size and the number of particles per cluster suggesting a homoprotein-protein 

interaction as the mechanism responsible for DC-SIGN nanoclustering. 

 

 

 

 

 

 

 

 

Figure 3.6 shows once more representative TEM images of wt-DC-SIGN and the ∆Rep 

mutant highlighting their markedly different spatial distribution. Quantification of the 

wt-DC-SIGN, ∆CRD- and ∆35- gold particle distributions showed that the large 

majority (~80%) of receptors are organized in nanoclusters and that this percentage 

drops to ~60% for ∆Rep-DC-SIGN (Fig. 3.6B). Since two particles closer than 80 nm 

from each other are already defined as a cluster by the algorithm (Fig. 3.5), we further 

inquired whether the degree of clustering of wt-DC-SIGN differed from that of the 

mutants. For this, we calculated the distribution of the number of particles per 

nanocluster (nclust). The cluster probability distributions are similar for wt-DC-SIGN, 

∆CRD- and ∆35-, indicating that the CRD and the cytoplamic tail of DC-SIGN do not 

Figure 3.4 DC-SIGN nanoclustering is only affected by truncation of the neck region. 

(A-D) Representative TEM images of whole-mount, immunogold labeled CHO cells 

expressing wt-DC-SIGN (A) and the different mutants: ∆Rep- (B), ∆35- (C), and CRD- 

(D). The insets show zoomed regions (black boxes) of the images, evidencing similar 

cluster capability for wt-DC-SIGN, ∆35-, and ∆CRD- and reduced clustering of ∆Rep-. 
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play a role in DC-SIGN nanoclustering (Fig. 3.6C). In remarkable contrast, the large 

majority of the ∆Rep-DC-SIGN nanoclusters contain at the most 2-3 particles. Beyond 

these values, the distribution of cluster sizes decays very rapidly, significantly 

overlapping with that of simulations of random organization. Indeed, the probability of 

finding clusters of 4 particles is nearly six-fold lower in the case of ∆Rep-DC-SIGN 

with respect to wt-DC-SIGN (and the other mutants) and ten-fold lower for clusters 

larger than 8 particles (Fig. 3.6C). Altogether these data demonstrate that deletion of the 

neck region severely reduces the aggregation state of DC-SIGN at the nanoscale, 

indicating that the neck region is crucial to maintain nanocluster integrity. 

 

Figure 3.5 Quantification of the degree of nanoclustering from TEM images. (A) 

Zoomed-in region of a TEM image of wt-DC-SIGN showing the result of the cluster- 

searching algorithm. (B) Histograms of the nearest neighbor distribution for wt-DC-

SIGN (dotted line) and simulated random-distributed particles (continuous line) are 

shown. The distance at which the two histograms intersect is selected as the threshold 

value (vertical gray line). (C) Histogram of the nearest neighbor distribution for wt-DC-

SIGN and the different mutants (∆Rep-, ∆35-, and ∆CRD-). Inset: zoom-in of the 

distribution of ∆Rep-DC-SIGN and comparison with the nearest neighbor distribution 

of simulated random-distributed particles. Pixel size is 4.451nm. (D) Plot of the cluster 

diameter versus the number of particles (circles) and corresponding linear fit (line). 

Error bars represent the standard error.  
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Figure 3.6 Truncation of the neck region affects DC-SIGN nanoclustering. (A) 

Representative TEM images of whole-mount, immunogold labeled CHO cells 

expressing wt-DC-SIGN (top) and ∆Rep-DC-SIGN (bottom). Anti-AU1 mAb and 10 

nm Ø gold particles were used to specifically stain DC-SIGN. Results are 

representatives of multiple cells in several independent experiments. (B) The digital 

images of electron micrographs were processed to extract the percentage of DC-SIGN 

molecules organized in nanoclusters for wt-DC-SIGN and the different mutants 

(∆CRD-, ∆Rep- and ∆35-). The results are compared to simulations of random 

organization with similar surface density as in the experiments. T-test was used to 

compare the data of wt-DC-SIGN to ∆CRD- and ∆35- that of ∆Rep- (* = p <10
-5

). (C) 

Probability distribution of the number of particles per nanocluster from multiple TEM 

images over at least 3 independent experiments compared to simulation of random 

distribution with same surface density as in the experiments. Lines are guides for the 

eye. At least 10 different TEM images over different cells at each condition. 

 

To exclude the possibility that the observed difference in nanoclusters results from the 

Ab chosen, anti-AU1 as well as anti-DC-SIGN AZN-D1 and DCN46 antibodies were 

also used for labeling. More specifically, while anti-AU1 Ab was used to label all DC-

SIGN molecules (as all constructs bear the AU1 tag), the anti-CRD Ab AZN-D1 was 

used to label all DC-SIGN molecules except the ∆CRD mutant, while the anti-neck Ab 

DCN46 was applied to label all DC-SIGN molecules except the ∆Repeat mutant (31). 

As shown in Figure 3.7, when anti-AU1, AZN-D1 and DCN46 labeling were compared 

for wt-DC-SIGN, no significant differences in the nanoclustered organization of the 

receptor were observed. 



3. The neck region regulates the spatiotemporal organization and virus-binding capability of DC-SIGN 
 
 

69 
 

 

 

 

 

 

 

 

 

 

 

 

Super-resolution optical nanoscopy reveals differences in the spatial organization 

of DC-SIGN that depend on its molecular structure. Although TEM images show 

the presence of DC-SIGN nanoclustering on CHO cells, in a similar fashion as already 

reported for imDC (11), steric hinderance between Abs and/or gold beads can induce 

non-saturated receptor labeling, potentially leading to an underestimation of 

nanoclustering. Therefore, to confirm wt-DC-SIGN nanoclustering and its abrogation 

for ∆Rep-DC-SIGN, we performed extensive nanoscale imaging on fully intact CHO 

cells and imDCs using stimulated emission depletion (STED) as well as near-field 

scanning optical microscopy (NSOM). Representative confocal and STED images of 

wt-DC-SIGN on the membrane of fixed CHO cells are shown in Figs. 3.8A,B. With an 

optical resolution of 95nm, STED nanoscopy reveals individual DC-SIGN spots well 

separated on the cell membrane and significantly brighter than those on the glass 

substrate, which arise from sparsely and non-specifically attached individual antibodies.  

 

Similar results were obtained when imaging DC-SIGN on monocyte-derived imDCs 

using a combined single molecule confocal/NSOM set-up at an optical resolution of 90 

nm (Fig. 3.9A,B) (24,25). In contrast, significantly weaker florescent spots were 

 
Figure 3.7 The nanoclustered organization of DC-SIGN is not determined by the chosen 

antibody. AZN-D1 is an anti-CRD Ab, DCN46 is an anti-neck Ab and anti-AU1 is an Ab 

against the short AU1 tag fused at the C-terminal of each DC-SIGN construct. 

Representative TEM images of whole-mount, immunogold labeled CHO cells expressing 

wt-DC-SIGN (top) and ∆Rep-DC-SIGN (bottom) obtained by  using the different Abs 

and 10 nm Ø gold particles are shown. The insets show enlarged parts of the images. 

∆Rep-DC-SIGN cannot be labelled with the anti-neck Ab DCN46 since this mutant lacks 

the entire neck domain. Results are representatives of multiple cells in several 

independent experiments. 
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retrieved when performing STED imaging of ∆Rep-DC-SIGN on CHO cells (Fig. 

3.8C,D). 

 

 

 

Figure 3.8 Super-resolution optical nanoscopy confirms loss of nanoclustering for 

∆Rep-DC-SIGN. (A-D) Confocal (A, C) and counterpart STED (B, D) images of wt-

DC-SIGN (A, B) and ∆Rep- (C, D) on CHO cells. The insets highlight the increased 

resolution of STED compared to diffraction-limited confocal microscopy. (E) 

Normalized distribution of the spot sizes obtained for wt-DC-SIGN (gray bars) 

compared to that of ∆Rep- (dotted). The average spot sizes are 186 (55) nm and 108 

(24) nm for wt-DC-SIGN and ∆Rep- respectively. The inset shows the spot sizes 

obtained from individual Abs non-specifically attached to glass and are used to 

illustrate the spatial resolution of STED (ca. 100nm). (F) Normalized intensity 

distribution of fluorescent spots obtained for wt-DC-SIGN (gray bars) compared to that 

of ∆Rep- (dotted). The inset shows the corresponding intensity of spots found on glass. 

266 and 198 spots wt-DC-SIGN and ∆Rep- respectively from multiple STED images.  
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The physical size of the spots was determined from multiple super-resolution images by 

directly measuring their full-width-at-half-maximum (FWHM) (Fig. 3.8E). In full 

agreement with the TEM data, the size distribution of ∆Rep-DC-SIGN spots markedly 

shifted towards smaller diameters compared to wt-DC-SIGN, being similar in size to the 

STED resolution (Fig. 3.8E, inset), consistent with a strong reduction of nanoclustering 

or its complete abrogation. On the other hand, fluorescent spots of wt-DC-SIGN on 

CHO cells and endogenous DC-SIGN on imDCs exhibited similar average sizes (ca. 

Figure 3.9 Near-field Scanning Optical Microscopy (NSOM) confirms DC-SIGN 

nanoclustering on imDC. (A-B) Confocal (A) and counterpart NSOM (B) images of 

DC-SIGN on imDC. The insets highlight the increased resolution of NSOM compared 

to diffraction-limited confocal microscopy.  (C) Normalized distribution of the spot 

sizes obtained for DC-SIGN on imDC (dotted) compared to that of CHO cells 

expressing wt-DC-SIGN (gray bars). The inset shows the spot sizes obtained from 

individual Abs nonspecifically attached to glass and are used to illustrate the spatial 

resolution of NSOM (ca. 100nm). (D) Normalized intensity distribution of fluorescent 

spots obtained for DC-SIGN on imDC (dotted) compared to that of CHO cells 

expressing wt-DC-SIGN (gray bars). The inset shows the corresponding intensity of 

spots found on glass. 
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180 nm) and comparable size distributions (Fig. 3.9C,D). Brightness analysis (see 

Chapter 2) to estimate the number of molecules per fluorescent spot confirmed 

nanoclustering of wt-DC-SIGN with a mean value of 7.5 (s.d.=2.7) 

molecules/nanocluster. This value reduced to 1.8 (s.d.=0.8) in the case of ∆Rep-DC- 

SIGN. Collectively, these results confirm that the neck region of DC-SIGN crucially 

affects its nanocluster capacity. Since the neck region is also imperative for DC-SIGN 

tetramerization (21,37), our data indicate that inter-molecular interactions mediated by 

the neck region of DC-SIGN regulate different hierarchical levels of receptor spatial 

organization on the cell membrane. Together with the reduced binding capability to 

virus-sized particles observed for ∆Rep-DC-SIGN, our data establish a direct 

relationship between nanoclustering formation and the exquisite ability of DC-SIGN to 

dock pathogens at the virus length-scale. 

 

DC-SIGN nanoclusters are mobile on CHO cells and imDCs. Recent reports on DC-

SIGN expressed on NIH-3T3 cells and imDC showed an unusual stability of DC-SIGN 

in terms of dynamics (26-28). We decided to thoroughly investigate the lateral mobility 

of DC-SIGN on both CHO and imDCs using particle tracking (SPT) of quantum dots 

(QD) specifically labeling DC-SIGN, at high speed (60 frame/s) and 20 nm localization 

accuracy. To avoid potential artifacts due to interactions between the cell ventral 

membrane and the substrate, we performed QD-labeling of DC-SIGN (either using 

biotinylated anti-DC-SIGN DCN46 Fab, or anti-AU1 single-chain Ab) after cell 

stretching and recorded individual trajectories exclusively on the dorsal membrane. 

Clear mobility of wt-DC-SIGN nanoclusters and ∆Rep-DC-SIGN was observed on 

CHO cells (Fig. 3.10A) in apparent contrast to the results obtained on NIH-3T3 cells 

(27,28). 

 

To quantify the degree of mobility of DC-SIGN we built individual trajectories from 

multiple movies and generated plots of the mean-squared displacement (MSD) as a 

function of time lag. Apparent diffusion coefficients D2-4 were calculated from the 

initial slopes by linear fit from the second to the fourth point, and included in a semi-log 

plot (Fig. 3.10B). The D2-4 values of wt-DC-SIGN nanoclusters varied from 10
-3

-10
-1 

µm
2
/s, with a median value of D2-4 = 6.5·10

-2
 µm

2
/s. On the other hand the D2-4 

distribution of ∆Rep-DC-SIGN was significantly narrower and shifted to larger D2-4 

values, with a median value of D2-4 = 1.23·10
-1

 µm
2
/s. Since the diffusion coefficient D 

depends on the size of the diffusing object R as D ∝ 1/R, the higher D2-4 values 

observed on ∆Rep-DC-SIGN compared to those of  wt-DC-SIGN are entirely consistent 

with nanocluster dissolution (38,39). 
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To validate our results on CHO cells, we performed single QD tracking of endogenous 

DC-SIGN nanoclusters on monocyte-derived imDCs. Clear mobility was also observed 

on the dorsal membrane of imDCs (Fig. 3.10A), with comparable D2-4 values as to those 

obtained for wt-DC-SIGN on CHO cells (Fig. 3.10C). Since D2-4 does not report on the 

long-term diffusion behavior we then generated cumulative MSD plots of all trajectories 

at longer time lags for wt-DC-SIGN, ∆Rep-DC-SIGN on CHO and DC-SIGN on 

imDCs (Fig 3.10D). In all the three cases, the plots are nearly linear indicating 

Brownian diffusion of DC-SIGN on both imDCs and CHO cells. As expected, the 

Figure 3.10 DC-SIGN nanoclusters are freely mobile on CHO cells and imDCs. (A) 

Selected sample time series of DC-SIGN-QD to illustrate the mobility of wt-DC-SIGN 

(left); ∆Rep-DC-SIGN (middle); and DC-SIGN on imDC (right). Scale bar: 1µm. (B) 

Normalized semi-log distribution of D2-4 values at short-time lags for wt-DC-SIGN 

(gray bars) and ∆Rep-DC-SIGN (dotted). Each histogram contains at least 100 

trajectories taken from >50 cells in multiple experiments. (C) Normalized semi-log 

distribution of D2-4 values at short-time lags for wt-DC-SIGN (gray bars) and DC-

SIGN on imDC (dotted). At least 250 trajectories per histogram from >40 cells in 

multiple experiments were analyzed. (D) Cumulative MSD plots of wt-DC-SIGN 

(black), ∆Rep-DC-SIGN (blue) and DC-SIGN on imDC (magenta). The inset shows 

the percentage of trajectories with D2-4 < 6·10
-4 

µm
2
/s and classified as immobile. 
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average D value of ∆Rep-DC-SIGN, as extracted from the slope of the cumulative MSD 

plot, is higher than that of wt-DC-SIGN. Moreover, the immobile fraction (D< 6·10
-4 

µm
2
/s) of DC-SIGN in the three cases accounted for < 10% of all trajectories analyzed. 

These results thus conclusively confirm lateral mobility of DC-SIGN nanoclusters 

within the cell membrane and further evidence a faster diffusion of ∆Rep-DC-SIGN 

fully consistent with nanocluster dissolution at the cell membrane. 

 

Monte Carlo simulations indicate that DC-SIGN nanoclustering enhances viral 

binding ability. Since the decreased capability of ∆Rep-DC-SIGN to bind to virus-

sized particles correlated with a loss of nanoclustering on the cell membrane, we wished 

to understand the impact of receptor organization, and in particular the role of DC-SIGN 

nanoclustering on viral binding. For this, we turned to Monte Carlo (MC) simulations 

where we considered different degrees of receptor organization and allowed pathogens 

of different sizes to land on the cell membrane. We first sought to investigate the role of 

receptor clustering as a function of pathogen size by choosing two extreme cases, i.e.,  

pathogens with sizes comparable to those of viruses (r=50nm), and pathogens with sizes 

comparable to those of bacteria (r=500nm), (Fig. 3.11A). 

 

As schematically depicted in Fig. 3.11A, pathogens are approximated as spheres of 

radius r and the membrane as a flat square region with lateral size L>>r. Receptor 

molecules are positioned on the membrane according to different spatial distributions, 

varying the degree of clustering, from completely random to fully clustered. In the 

simulations, the pathogen lands at a random position on the cell membrane and the 

number of DC-SIGN receptors (n) within the area projected by the pathogen is counted. 

From these data, the complementary cumulative distribution function (ccdf) is obtained 

and plotted versus n. The ccdf value for a given n represents the probability that at least 

n receptors are accessible to the pathogen at the moment of membrane contact. This 

quantity is important for pathogen binding since the larger the number of accessible 

receptors n, the more likely is for ligands on the pathogen surface to engage specific 

bonds with the membrane receptors. 

 

First, we investigated the effect of receptor nanoclustering on virus binding (r=50nm), 

while keeping constant the total receptor density. As the percentage of clustering is 

increased, the ccdf decays at higher n, indicating an increased probability of having 

more accessible receptors around the virus contact point (Fig. 3.11B). Taking as a 

reference the value of n=4 (dashed vertical line), the corresponding ccdf varies over 

more than 2 orders of magnitude as a function of the clustering percentage, from <10
-4

 

for random organization, to ~10
-2

 for total clustering. Importantly, a slight increase in 

clustering percentage from 60% to 80%, similarly to what is observed in the TEM 
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images for ∆Rep-DC-SIGN and wt- respectively, already produces a 5-fold probability 

enhancement.  

 

 

 

 

 

 

 

 

 

Although a qualitatively similar effect is also visible for larger pathogen-like particles 

(r=500 nm), the increased clustering induces a much smaller variation. Indeed, a change 

from random distribution to 80% clustering induces at most a 5-fold increase in the ccdf 

(n=30) and a significant change is only observed in case of total clustering for n>40.  

Our simulations thus confirm that nanoclustering has a crucial role for the docking of 

virus-size particles and provides a mechanistic explanation for the distinct binding 

capabilities of DC-SIGN by correlating pathogen size with DC-SIGN spatial 

organization. 

Figure 3.11 Monte Carlo simulations show the effect of nanoclustering on pathogen 

binding. (A) Schematics of the simulation of pathogen landing over a cell membrane 

containing receptors spatially distributed in a random or clustered fashion. (B) 

Complementary cumulative distribution function (ccdf) for having a given number of 

receptors at the pathogen-cell interface for two pathogen radii (50 and 500 nm) at 

different degrees of nanoclustering (Black: random distribution; red: 60% clustering; 

blue: 80% clustering; and green: full clustering). (C) ccdf for having a given number of 

receptors at the pathogen-cell interface for different cluster densities. The thick black 

line denotes the experimental distribution. 
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Heterogeneity in cluster density confers broader binding capability to DC-SIGN. 

TEM and super-resolution images showed that DC-SIGN organizes in nanoclusters 

having a broadly distributed size and number of particles (Fig. 3.6C and 3.8E, F). To 

enquire whether this multi-dispersed distribution offers any advantage with respect to a 

mono-dispersed type of clustering, we performed MC simulations varying the number 

of receptors per cluster, given that the cluster size depends linearly on the number of 

receptors per cluster as shown in Fig. 3.5D. 

 

Expectedly, the presence of clusters formed by a larger number of receptors 

progressively shifts the ccdf decay towards larger n (Fig. 3.11C). Interestingly, the ccdf 

obtained for the experimental distribution of nclust (black curve) initially follows the 

same behavior as that simulated for nclust = 3, to then decay similarly as nclust = 5 and 

finally overlapping with the ccdf simulated for nclust = 8. Therefore, these simulations 

show that the heterogeneity experimentally observed for the molecular density of DC-

SIGN nanoclusters might serve to effectively broaden its binding capabilities to a 

variety of viruses having different sizes and/or binding affinities for DC-SIGN. Lateral 

mobility of nanoclusters, as observed in our experiments, will then further virus capture 

by increasing the probability of encountering events. 

 

Discussion 

It has been extensively documented that DC-SIGN forms stable tetramers both in-vitro 

and in living cells (21-23,37). Tetramers would allow establishing multivalent 

interactions via the CRDs increasing the adhesion energy of DC-SIGN to its ligands. 

Our results now show a higher level of spatial complexity of DC-SIGN at the cell 

membrane, and demonstrate for the first time a direct structural relationship between 

tetramer stability and nanoclustering formation sustained by the neck region of DC-

SIGN. Furthermore, this particular arrangement resulted crucial for efficient binding of 

nanometer scale pathogens such as viruses, underscoring a physiological role for 

nanoclustering. Thus, our work provides a clear example of self-organization at the cell 

surface prior to ligand activation that is driven by the molecular structure of the 

receptor.  

 

It has been proposed that the extended and flexible structure of the DC-SIGN neck 

region might play a role in favorably positioning the CRDs for efficient pathogen 

binding (21,22) and that neck-truncated molecules did not bind to HIV-1 because they 

are too short to emerge from the plasma membrane (30). Our binding assays show that 

the CRD of the neck-truncated mutant is fully available for binding to both soluble 

ligands and micron-size objects and that the impaired binding to virus-like particles is 

mostly due to the lack of nanocluster spatial organization of DC-SIGN. We also 
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observed that DC-SIGN mediated internalization was independent of the neck region 

but highly affected by the cytosplamic tail of DC-SIGN. These results thus reflect 

different functional properties of DC-SIGN directly related to its molecular structure, 

i.e., whereas nanoclustering is important for pathogen binding, the cytoplasmic region 

determines internalization efficiency. 

 

Recent work using diffraction-limited confocal imaging showed that on imDCs and 

fibroblast cell lines, DC-SIGN form immobile microdomains of dimensions larger than 

600nm stabilized by interactions between the CRDs and the extracellular matrix (26-

28). Deletion of the CRD abrogated microclustering and resulted in DC-SIGN lateral 

diffusion on the cell membrane, as measured by fluorescence recovery after 

photobleaching using full Abs (28). In apparent contrast, we observed that truncation of 

the CRDs did not affect the nanoclustering capacity of DC-SIGN and that nanoclusters 

are fully mobile, independent on the cell type and mutant investigated. Because of the 

limited spatial resolution of confocal microscopy, it might well be that nanoclusters (of 

sizes < 180 nm as observed in our super-resolution experiments) spatially proximal to 

each other appear as larger clusters when inspected by confocal microscopy. Indeed, 

recent work from the same group using super-resolution blink microscopy showed that 

the microdomains observed by diffraction limited optical techniques are in fact 

composed by discrete DC-SIGN nanodomains (40). In addition, receptor diffusion 

measurements on the cell membrane are highly influenced by the labeling conditions. 

Whereas the use of full Abs might induce cross-linking of close by receptors increasing 

clustering beyond the native state and reducing their overall mobility to the level of 

fixed cells (41,42), single chains or Fabs, as used in our experiments, guarantee that 

both nanoclustering as well as laterally mobility are minimally influenced. Additionally, 

possible Ab-induced receptor cross-linking could contribute to initiate DC-SIGN 

endocytosis via nascent clathrin-coated pits. These nascent endocytic complexes are 

likely to appear as immobile features at the observed time-scale.  

 

In summary, we have shown that homophilic interactions mediated by the neck region 

of DC-SIGN are essential to coordinate its spatiotemporal organization on the cell 

membrane effectively broadening its binding capabilities to nanoscale-size pathogens. 

Since lateral mobility of receptors and ligands play a key role in facilitating mutual 

interactions, our results indicate that for a given number of receptors at the cell surface, 

tight spatial coordination in nanoclusters guarantees highly energetic interactions with 

ligands, while lateral mobility enhances the probability of ligand encountering for 

effective binding. 
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Interestingly, different DC-SIGN neck variants have been found to naturally occur on 

dendritic and myeloid cells (37) and polymorphisms in the DC-SIGN gene affecting the 

length of the neck region appeared correlated with altered susceptibility to HIV 

infection (43,44). Besides with HIV, DC-SIGN is known to interact with a plethora of 

viruses with different size and different properties. While DC-SIGN has been shown to 

solely act as attachment factor for viruses such as Ebola (45), Measles (46), and 

Hepatitis C (47), recent publications demonstrated the direct involvement of DC-SIGN 

in the entry of viruses such as arthropod-borne phleboviruses (48), coronavirus (49) and 

human Herpesvirus 8 (50). Clearly, DC-SIGN binds with equal efficiency to viruses of 

different sizes (from Dengue being about 50nm, HIV around 100nm and Measles virus 

200-300nm). Furthermore, it has also been shown that DC-SIGN is able to bind to 

gp120-coated particles of 40nm in size as well as real HIV virions (11). In addition, 

Pohlmann and colleagues have reported that real HIV virus cannot bind to ∆Rep-DC-

SIGN (30), implying that 40nm and 100 nm are equally not bound by this mutant. Our 

work therefore demonstrates that the plasticity of DC-SIGN virus binding capacity is 

largely determined by its variable nanoclustering capacity, which is regulated by the 

neck region of the receptor. Furthermore, our simulations indicate that the number of 

receptors included in the clusters defines the effectiveness of the binding as long as the 

sizes of the viruses are comparable to the sizes of the DC-SIGN nanoclusters (i.e. from 

80-400 nm with a mean size of 180nm). Thus, the inherent nanoclustering of DC-SIGN 

driven by the neck region, as observed in our measurements, could have important 

implications for DC-SIGN functionality under physiological settings and impact on our 

understanding of membrane receptor organization in relation to virus entry into the 

cells. 

 

It has been previously shown that ligand binding via DC-SIGN neck region leads to 

prolonged antigen storage and enhanced cross-presentation capacity (43). Exploitation 

of the DC-SIGN neck region therefore represents an intriguing possibility for the 

development of novel targeted vaccination strategies, justifying the increasing interest 

in the contribution of the neck region to the immunobiology of DC-SIGN. 

 

Materials & Methods 

 

Cells and DNA constructs. CHO cell lines stably expressing wt-DC-SIGN, ∆CRD-, 

∆35- and ∆Rep- were established by LipofectaminTM 2000 transfection. Human 

imDCs were generated from buffy coats of healthy donors as previously reported (29). 

Plasmids used in this study were pcDNA-3 carrying the wt-DC-SIGN or deletion 

mutants. These constructs have a short C-terminal AU-1 tag and were constructed as 

already published (30).  
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Binding assays. Binding of CHO cells to soluble Alexa647-mannan was performed as 

follows: 50,000 cells were incubated with 50 µg/ml Alexa647-mannan in 20 mM Tris 

pH 8.0, containing 150 mM NaCl, 1 mM CaCl2, 2mM MgCl2, and 1% BSA (TSA-

buffer) for 30 min on ice, in presence or absence of 20 µg/ml anti–DC-SIGN blocking 

mAb (AZN-D1) or 100 µg/ml unlabeled mannan. After thorough washing in PBS, the 

% of cells that had bound mannan was detected by flow cytometry using the 

FACSCalibur™ (Becton Dickinson). The values represent the mean ± the standard 

deviation of duplicates of one representative experiment out of three. Binding to gp120-

coated beads was performed as already reported (11). Briefly, streptavidin-modified 

TransFluorSpheres (505/515 nm, 40-nm diam; Molecular Probes) were coated with 

recombinant biotinylated gp120 (HIV-1 III B, from ImmunoDiagnostics, Inc. Woburn, 

USA) and were added to 50,000 cells in a ratio of 20 beads/cell in TSA-buffer and the 

suspension was incubated for 30 min at 37ºC. When necessary, cells were pre-incubated 

with 20 µg/ml blocking mAb or 2 mM EDTA for 10 min at RT. Binding was 

determined by measuring the percentage of cells, which have bound fluorescent beads, 

by flow cytometry. Binding to FITC-conjugated zymosan was performed as already 

described (16). Briefly, CHO transfectants were incubated with FITC-labeled zymosan 

particles in the absence or the presence of mannan (100 µg/ml) or anti-DC-SIGN mAb 

AZN-D1 (20 µg/ml) in TSA buffer. After 30 min of incubation at 37ºC, cell-zymosan 

conjugates were analyzed by flow cytometry, and the percentage of CHO cells that had 

acquired a FITC+ signal was quantified by flow cytometry. 

 

Antigen internalization assay. The internalization assay was performed as already 

reported (31). Briefly, CHO cell lines stably expressing wt-DC-SIGN or the deletion 

mutants were incubated with anti-DC-SIGN mAb hD1 (5 µg/ml) in serum-free medium 

for 20 min on ice. After washing the unbound mAb in ice-cold medium, half of the cells 

were further incubated for 15 min on ice to prevent internalization, while the other half 

was shifted to 37°C for 15 min to induce internalization. Subsequently, cells were 

placed back on ice to stop internalization, washed in ice-cold PBS containing 3% BSA, 

and incubated with PE-conjugated goat-anti-human antibodies for 20 min on ice to stain 

the mAb still present at the cell surface. Unbound Abs were washed away and cells 

were fixed in 1% formaldehyde. Isotype controls were always taken along. 

 

Gold labeling of whole-mount samples. CHO transfectants were allowed to adhere 

and spread on glass coverslips covered by a thin layer of formvar for 1h at 37ºC and 

immediately fixed with 1% PFA for 15 min. After two washing steps with PBS and a 

subsequent incubation (60 min at RT) with blocking buffer (PBS, 0.1% glycine, 1% 

BSA, and 0.25% gelatin) to reduce specific background, the specimens were incubated 

for 30 min with primary antibodies (DCN46 Ab (Pharmingen) for wt-DC-SIGN, 
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∆CRD- and ∆35- or anti-AU1 Ab (Covance) for ∆Rep-DC-SIGN in blocking buffer on 

ice, rinsed in PBS, and fixed in 1% PFA and 0.1% glutaraldehyde for 15 min. After two 

washing steps with PBS and blocking buffer, the samples were incubated with rabbit 

anti–mouse IgG (to detect mAb) for 30 min on ice. A final incubation with 10-nm 

diameter gold-labeled Protein A (to detect polyclonal antibodies) was performed, 

followed by final fixation in 1% glutaraldehyde in phosphate buffer for 20 min at RT. 

 

TEM Sample preparation and imaging. After gold labeling and fixation, the samples 

were dehydrated by sequential passages through 30, 50, 70, 90%, and absolute ethanol. 

Next, the ethanol was substituted by liquid CO2, and the samples were critical point 

dried. The formvar films were transferred from the glass onto copper grids, and the 

specimens were observed in a transmission electron microscope (model 1010; JEOL), 

operating at 60–80 kV. Gold particles were detected on the periphery and thinner parts 

of cells, where a good contrast could be achieved. Since the CHO cells widely spread, 

the membrane area available for analysis represented up to 60–70% of the whole 

labeled plasma membrane. For each cell at least four to six areas were analyzed at 

random.  

 

TEM image analysis and quantification of clustering. The digital images of electron 

micrographs were processed by custom-written software based on Matlab (The 

Mathworks, Inc.). Gold particle positions were automatically detected by means of 

maximum-likelihood based routine (51). The classification of particles into clusters was 

performed by means of a threshold-based algorithm. The interparticle distance matrix 

M(i,j) is calculated for all the particles in an image. The routine finds the minimum of 

M(i,j) and compares it with a threshold value, th. If min(M)<th, the particles i
*
 and j

*
  

with (i
*
, j

*
)=arg{min(M)} are considered as belonging to a cluster. The search continues 

over the distances of all the remaining particles from i
*
 and j

*
. If a third particle, k

* 
is 

found at a distance shorter than th from either i
*
 or j

*
, then it is also included as part of 

the cluster. The search continues until no particles are found within a distance th from 

those composing the cluster. Then the algorithm moves to the next minimum of the 

matrix M and defines a new cluster. Once the particles are assigned to a given cluster, 

the area of the smallest ellipse inclosing all the particles is used to determine the cluster 

area, Aclust. The cluster size is calculated as dclust=2*(Aclust/π)
1/2

.  

 

Near-field Scanning Optical Microscopy (NSOM). Cells were imaged with a custom-

built confocal/NSOM microscope working in aqueous conditions (54). Custom built 

NSOM probes with an aperture of 80-100 nm were kept at a distance of ~10 nm above 

the sample using a shear-force feedback system, simultaneously yielding the sample 

topographic map. Typically, cells were first imaged in confocal mode. Subsequently, 
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NSOM imaging was performed on a 7x7 µm area of a well-stretched region on the cell 

membrane. Scanning speed was 3-6 µm s
-1

. 

 

Binding to real HIV-1 particles. The AT-2-inactivated HIV-1 particles [HIV-

1(MN)/H9 Cl.4 lot P3936 courtesy of Biological Products Section, AIDS and Cancer 

Virus Program, SAIC Frederick, Inc, National Cancer Institute at Frederick, Frederick, 

MD USA 21702] were already described (52). After conjugating the particles to 

Alexa647 dye, binding to the CHO cells was performed as already reported (53). 

Briefly, 400000 CHO cells transfected with empty vector or ∆Rep-DC-SIGN or wt-DC-

SIGN were left in suspension and incubated with Alexa647-conjugated HIV-1 virions 

(400 ng HIV-1 p24 Ag/100.000 cells) for 30 min at 37ºC. Unbound virus was discarded 

by washing 3 times with PBS buffer. Subsequently, fixation with 4% PFA for 1 hr at 

RT was performed and the samples were analyzed by flow cytometry (Fig. 3.2A). For 

the visualization of binding by confocal microscopy, 400000 adherent cells were 

allowed to interact with the fluorescent virus particles, as described above. 

Subsequently, after washing and fixation, the cells were stained with the anti-DC-SIGN 

mAb AZN-D1 and fluorescent secondary Ab and imaged by confocal microscopy (Fig. 

3.2B). 

 

Stimulated Emission Depletion (STED) Nanoscopy. Confocal and STED images 

were obtained in a sequential manner using a 100x oil immersion objective (HCX PL 

APO 100x/1.4 Oil, Leica Microsystems, Germany) of a commercial CW-STED SP-7 

microscope (Leica Microsystems, Germany) as described in Chapter 2.  

 

Single Particle Tracking. Single Particle Tracking experiments were performed on a 

custom built EPI single molecule sensitive fluorescence microscope with a Hamamtsu 

EM-CCD Camera at 60Hz and analyzed using the mean-square displacement as 

described on Chapter 2. 

 

Fab/mAb preparation for single molecule dynamic measurements. Anti-human DC-

SIGN Fab fragments were generated from DCN46 mAb by papain digestion (Pierce 

Biotechnology, Rockford, IL) according to the manufacturer’s instructions. Fab 

fragments were further purified from remaining undigested IgG and Fc fragments on a 

NAb Protein A column (Pierce Biotechnology). Non-reducing 12.5% sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and staining with Coomassie 

brilliant blue were carried out to monitor Fab digestion and purification. Analysis of 

Fab fragment by gel filtration (Superdex 200 matrix) revealed a single homodisperse 

peak at an exclusion volume corresponding to a molecular weight ≈ 50 kDa. Where 

desired, purified Fab fragments were biotinylated with an EZ-Link Sulfo-NHS-Biotin 
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reagent (Thermo Scientific) following the manufacturer’s instructions. Non-reacted 

sulfo-NHS biotin was removed using PD SpinTrap G-25 columns (GE Healthcare Life 

Sciences).  

 

Monovalent anti-human AU1 antibodies were generated from AU1 Ab (Covance) by 

reduction with Dithiothreitol (Invitrogen) according to manufacturer´s instructions. 

Biotinylation was then achieved by addition of Maleimide-PEG2-Biotin (Thermo 

Scientific) to the reduced Abs. Non-reacted DTT or unbound biotin was removed by 

dialysis using Slide-A-Lyzer MINI Dyalisis Units (Thermo Scientific) overnight. A 4-

12% Bis-Tris gel under denaturing and non-denaturing conditions was performed at 

every step to monitor the reaction. 

 

Monte Carlo simulations. We performed Monte Carlo simulations of the random 

encounter of a pathogen-like object with the cell membrane. In our model, the cell 

membrane is approximated as a flat, square region (LxL=2048x2048 pixels, 4 nm per 

pixel) and the pathogen as a sphere (r = 50 and 500 nm). Receptors were positioned on 

the membrane according to different spatial distributions, with a given particle density 

(17 particles/µm
2
) and periodic boundaries. Although the membrane is a dynamic 

surface, we only considered static distributions of receptors. This is a valid 

approximation since the simulations are focused on the initial moment of the cell-

pathogen encounter, not including any dynamic process that may occur after the 

engagement. In each simulation run, the pathogen-like object encounters the membrane 

at a randomly drawn position. Receptor molecules were positioned on the membrane 

according to different spatial distributions, varying the degree of clustering, as well as 

the type of cluster distribution. Each type of receptor distribution was simulated 100 

times and on each of such configurations we ran 100 simulation of pathogen landing. 

The number of receptors included inside the projected area of the pathogen was counted 

and recorded. The complementary cumulative probability distribution (ccdf) was then 

built and plotted against the minimum number of receptors, n. 
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Chapter 4 

 

Enhanced receptor-clathrin interactions induced by 

N-glycan-mediated membrane micropatterning 

 

In Chapter 3, we have addressed the importance of the neck region in regulating DC-SIGN 

nanoclustering, lateral mobility and virus-binding capability. In this Chapter we have 

focused on the influence of another extracellular structural motif of DC-SIGN, its N-

glycosylation motif, in regulating the spatiotemporal behavior of the receptor by interacting 

with extracellular sugars. Glycan-protein interactions are emerging as important 

modulators of membrane protein organization and dynamics, regulating multiple cellular 

functions. In particular, it has been postulated that glycan-mediated interactions regulate 

surface residence time of glycoproteins and endocytosis. How this precisely occurs is poorly 

understood. We applied single-molecule-based approaches to directly visualize the impact of 

glycan-based interactions on the spatiotemporal organization and interaction with clathrin 

of the N-glycosylated DC-SIGN. We find that cell surface glycan-mediated interactions do 

not influence the nanoscale lateral organization of DC-SIGN but restrict the mobility of the 

receptor to distinct micrometer-size membrane regions. Remarkably, these regions are 

enriched in clathrin, thereby increasing the probability of DC-SIGN-clathrin interactions 

beyond random encountering. N-glycan removal or neutralization leads to larger membrane 

exploration and reduced interaction with clathrin, compromising clathrin-dependent 

internalization of virus-like particles by DC-SIGN. Therefore, our data reveal that cell 

surface glycan-mediated interactions add another organization layer to the cell membrane 

at the microscale and establish a novel mechanism of extracellular membrane organization 

based on the compartments of the membrane that a receptor is able to explore. Our work 

underscores the important and complex role of surface glycans regulating cell membrane 

organization and interaction with downstream partners. 

 

 

 

 

Introduction  

 

This work has been published as J.A. Torreno-Pina*, B.M. Castro*, C. Manzo, S.I. Buschow, A. Cambi, 

M.F. Garcia-Parajo, “Enhanced receptor-clathrin interactions induced by N-glycan-mediated membrane 

micropatterning”, Proc. Natl. Acad. Sci. U S A 111, 11037 (2014). * Equally contributing authors. 
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Introduction 

 

Glycans are fundamental cellular components ubiquitously present in the extracellular 

matrix and cell membrane as glycoproteins or glycolipids. Glycan-binding proteins such 

as galectins, siglecs and selectins are mostly multivalent and thus thought to crosslink 

glycoproteins into higher order aggregates, creating a cell surface glycan-based 

connectivity also called glycan lattice or network (1-3) (Fig. 4.1). In the case of the 

galectins, there are 3 major groups that are classified according to their structure in 

mammals: proto-type, tandem-repeat type and chimera-type galectins (4). The first two 

type of galectins comprise 14 out of 15 different galectins which have been identified so 

far. Proto-type galectins contain 1-2 identical carbon recognition domains (CRD) 

whereas tandem-repeat galectins consist of two homologous CRDs that are 

interconnected by a protein residue. Galectin-3 has been classified as chimera-type 

galectin and has the unique properties of containing one CRD at the carboxy-terminus 

and a non-lectin region at the N-terminal region prone to multimerization. Galectins 

bind predominantly to glycoproteins containing N-acetyllactosamine residues (5). 

Moreover, different specificity among the galectin family is achieved through the 

different binding affinities to branched N-glycans (6). 

 

Galectin-9 belongs to the family of tandem repeat-type galectins and consists of two 

homologous CRD which bind to β-galactoside (7). It is expressed in the extracellular 

milieu, the cytosol and in the nucleus (8). Galectin-9 has been associated to 

immunosuppressive activities such as exhausting activated TH1 cells by binding to Tim-

3 on their cell membrane (9). Moreover, the association of Galectin-9 to Tim-3 has been 

shown to reduce HIV- infection of activated CD4-T cells by down-regulating HIV 

coreceptors such as CCR5 (10). Another prominent binding molecule of Galectin-9 is 

the highly glycosylated glycoprotein CD44. It has been shown that Galectin-9 binding 

to CD44 prevents CD44-HA (hyaluronan) interactions imparing the infiltration of 

activated T cells into the airway in the context of allergic asthma in mice (11). Recently, 

it was also proposed that the co-binding of CD44 to Galectin-9 and TGF-β receptor 

promotes the expression of the iTreg master transcription factor Foxp3 and Galectin-9 

in a feedforward loop (12). In the context of DC-SIGN, it has been shown that Galectin-

9 and CD44 are recruited to the DC-SIGN highly enriched DC-phagosome, suggesting a 

multicomponent interaction on the cell membrane mediated by a glycan-based 

connectivity (13) regulating DC-SIGN mediated endocytosis. Thus, the interaction 

between Galectin-9 and CD44 serves as an excellent example of how glycoproteins 

interact and control downstream processes by means of a galectin-glycan lattice. 
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Based on their capability of modulating the lateral behavior of molecules on the cell 

membrane, several functions have been attributed so far to these galectin-glycan lattices 

such as regulating signaling thresholds of e.g. T-Cells or controlling cell membrane 

receptor residency time at the cell surface (14). In the context of T-Cell signaling, the 

galectin lattice has been proposed to have an opposing role to the actin cytoskeleton in 

laterally segregating CD45 and the T-Cell receptor (15). Moreover, it has been shown 

that the galectin lattice prevents TCR microclustering reducing the probability of T-Cell 

activation (15). On the other hand, how a glycan-based connectivity could coordinate 

cell membrane residency time of receptors was studied for the EGF receptor (16, 17). 

By means of FRAP, it has been suggested that cell surface glycan-based interactions 

restrict EGFR dynamics and localization into membrane regions away from endocytic 

platforms (16, 17). This could be seen as an example of how by concentrating specific 

glycoproteins or glycolipids while excluding other cell surface molecules, surface 

glycan-based connectivity can organize the plasma membrane into specialized domains 

that perform unique functions (1,3,18-20). Nevertheless, direct observation of glycan-

mediated ligand crosslinking in living cells remains challenging (21, 22). Moreover, 

visualization of receptor interactions with the endocytic machinery under the influence 

of the glycan network has not yet been attained. 

 

Clathrin-mediated endocytosis (CME) constitutes the primary pathway of cargo 

internalization in mammalian cells regulating the surface expression of receptors (23). 

Formation of clathrin-coated pits (CCPs) starts by nucleation of coat assembly at 

Figure 4.1 Galectins crosslink different glycosylated proteins on the cell membrane 

thereby creating a lattice that regulates the lateral behavior of membrane receptors. The 

different binding to multiple potential glycoproteins is ultimately defined by the specific 

glycan-protein affinities.  
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distributed positions in the inner surface of the plasma membrane where it continues to 

grow or dissolve rapidly unless coat stabilization occurs (24, 25). One event that clearly 

correlates with successful CCP stabilization is cargo loading (25). Recent studies show 

that cargo molecules diffuse randomly on the cell membrane until they meet growing 

CCPs, with the extent of cargo interactions regulating CCP maturation (26). As such, 

factors that affect cargo mobility within/at the cell surface will inevitably impact on 

CCP maturation and successful internalization. In the context of surface glycan-protein 

interactions, it has been shown that glycoproteins with an intact glycan-based 

connectivity exhibit reduced lateral mobility and this correlates with compromised 

endocytosis (3, 16, 17, 27-29). However, this has been shown in ensemble-type of 

measurement with poor spatial and temporal resolution. 

 

This Chapter describes the application of super-resolution nanoscopy and dual-color 

single particle tracking (SPT) approaches to visualize the impact of glycan-based 

interactions on the spatiotemporal organization and clathrin interaction of DC-SIGN. 

DC-SIGN contains a single N-glycosylation site, organizes in nanoclusters at the cell 

membrane (30-33) and internalizes bound antigens via CPPs for subsequent processing 

and presentation to T-cells (34-37). Our work provides new insights on how surface 

glycan-mediated interactions tune spatiotemporal micropatterning of receptors on the 

cell membrane, potentially regulating interactions with the endocytic machinery and 

underscoring the importance and complex role of surface glycans on cell membrane 

organization and function. 

 

Results 

 

Glycan-based interactions do not affect DC-SIGN nanoclustering. It has been 

described that glycan-binding proteins crosslink surface glycoproteins into higher order 

oligomers (1, 2, 18, 19). Since DC-SIGN forms nanoclusters on the cell surface and has 

a single N-glycosylation site (30, 31-33), we first investigated the role of N-

glycosylation on the nanoscale organization of DC-SIGN using stimulated emission 

depletion (STED) nanoscopy. We used CHO cells stably expressing wild-type DC-

SIGN (wt-DC-SIGN) and a receptor variant presenting a point mutation within the DC-

SIGN N-glycosylation motif (denoted as N80A), known to prevent receptor 

glycosylation (38). This cell system recapitulates DC-SIGN essential activities, such as 

antigen binding, internalization and trafficking (33, 35, 36). We first performed FACS 

analysis to confirm that the expression levels of wt-DC-SIGN and the N80A mutant 

were similar (Fig. 4.2).  

 

STED images on fixed immuno-labeled cells expressing either wt-DC-SIGN or N80A  
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Figure 4.2 Cell surface expression levels of wt-DC-SIGN and N80A mutant on stably 

transfected CHO cells as determined by FACS analysis. The black histogram represents 

the isotype control and the red histogram indicates the specific staining with anti-DC-

SIGN Ab (DCN46). Note that both cell lines have comparable expression levels of the 

receptor. 

 

showed well-separated bright fluorescent spots (Fig. 4.3A, upper row). Spot size 

distributions were generated from multiple super-resolution images (Fig. 4.3B). As a 

control for impaired nanoclustering, we include the spot size distributions obtained for a 

DC-SIGN mutant lacking the neck region (∆Rep), known to abrogate nanoclustering as 

shown in the previous Chapter (33, 38). Interestingly, the spot size distributions for wt-

DC-SIGN and N80A are similar, with average values around 160nm, in agreement with 

previously reported wt-DC-SIGN values (31, 33) and significantly larger than for ∆Rep. 

We also generated fluorescence intensity distributions of DC-SIGN spots (Fig. 4.3C). 

Considering that antibodies typically bind to 1-2 antigens, an average of 5-10, 6-12 and 

1-3 molecules/spot were obtained respectively for wt-DC-SIGN, N80A and ∆Rep. 

These results thus show that glycosylation does not significantly affect DC-SIGN 

nanoscale organization on CHO cells.  

 

Similar experiments were performed on imDCs (Fig. 4.3A lower row). Quantitative 

analysis confirms DC-SIGN nanoclustering on imDCs (Fig. 4.3B,C) with an average 

density of 3.5-7 molecules/nanocluster, in agreement with previous results (30-33). To 

test the effect of cell surface glycan-mediated interactions on DC-SIGN nanoclustering, 

we treated imDCs with lactose. Lactose impairs cell surface glycan-based connectivity 

promoted by galectins, by competing with their major ligands, branched N-linked 

protein glycans, dissociating bound galectins from the cell surface (16, 17, 39). 

Although lactose treatment highly reduced the surface levels of galectin-9 and -3 on 

imDCs (Fig. 4.4), it had no effect on DC-SIGN nanoclustering (Fig. 4.3B,C). These 

results indicate that DC-SIGN nanoscale organization is independent on the 

glycosylation state of the receptor and/or on glycan-based interactions at the cell 

surface. 
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Figure 4.3 DC-SIGN nanoclustering is independent on its glycosylation motif. (A) 

Upper row: Representative STED images of wt-DC-SIGN (left) and N80A (right) on 

CHO cells. Lower row: DC-SIGN on imDCs (left) and on imDCs treated with 200 mM 

lactose (right). A magnified view of the receptor nanoclusters for each case is shown in 

the insets. Spot size (B) and normalized intensity distributions (C) of all fluorescent 

spots for each experimental condition, including data from the ∆Rep mutant. 300 spots 

obtained from multiple STED images at each experimental condition. Data from 

individual Abs non-specifically attached to glass are also shown in (B) and (C) to 

illustrate the spatial resolution of STED (ca. 110nm) and sensitivity for single Abs 

detection respectively. Statistical significances were obtained with two-tailed Student's t 

-test. * p < 0.05; n.s. no significant.  

 

DC-SIGN glycosylation does not influence nanocluster interactions in living cells. 

To capture potential effects of glycan-based interactions on DC-SIGN nanoclustering in 

living cells we applied dual-color SPT. We labeled DC-SIGN using two different 

quantum dots (QD) at concentrations such to increase the probability of capturing 

nanocluster interaction events in case they would occur, while allowing for the 

recording of individual trajectories (see also Chapter 2 for details). Examples of such 2 

dimensional trajectories of spatially close QDs (green & red) for wt-DC-SIGN and the 
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Figure 4.4 Mean fluorescence 

intensity (MFI) of imDCs labeled 

for cell surface galectin-3 (left) and 

galectin-9 (right) in the absence and 

presence of 25mM of lactose. The 

significant decrease in MFI after 

cells treatment with lactose indicates 

that galectins 3 and 9 surface levels 

of these cells have been highly 

reduced. 

 

 

N80A mutant are shown in Fig 4.5. Fig. 4.6A also shows as example snapshots of two 

wt-DC-SIGN nanoclusters that are initially spatially close to each other, as a function of 

time. To calculate the separation distance between close QDs we exclusively focused on 

(green & red) QDs that were initially separated by a distance equal or below 400 nm 

(see also methods for a detailed explanation on how the interparticle distance 

separations were obtained). Two examples of the interparticle distance separation for 

wt-DC-SIGN & the N80A mutant are shown in Fig. 4.6B. In the case of interacting 

nanoclusters, dual color trajectories should exhibit correlated motion with separation 

 

 

Figure 4.5 DC-SIGN nanoclusters 

trajectories do not show evidence for 

correlated motion. Representative 2D 

trajectories as a function of time for 

wt-DC-SIGN and N80A nanoclusters 

labeled with single chain DCN46-

QD585 (green) or QD655 (red) on the 

upper surface of CHO cells. 

 

distances between QDs close to or below 160nm which corresponds to the average 

nanocluster size as shown in Fig. 4.3. We then measured the times during which the 

separation distances remained below 160 nm and compared them to simulations of 

randomly encountering particles (40). We did this by generating in-silico close-by 

trajectories of randomly diffusing particles and determined the average times at which 

their mutual distances remained ≤ 160nm due to stochastic encountering. For generating 

these trajectories we took into account the diffusion coefficients of both wt-DC-SIGN 

and N80A mutant. The experimental and simulation results are shown in Fig. 4.6C and 

show that the average “interaction” times of wt-DC-SIGN and N80A nanoclusters are 

similar to those obtained from simulations of random encountering, demonstrating the 

absence of dynamic interactions between wt-DC-SIGN or N80A nanoclusters. 
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Interestingly, the large majority of wt-DC-SIGN nanoclusters remained proximal to 

each other within a separation distance of ~1 µm, while larger values were observed for 

N80A (Fig. 4.6D, dashed line). To assess whether these observations bear physical si- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 DC-SIGN glycosylation does not influence nanocluster interactions in 

living cells. (A) Sample time series of two DC-SIGN nanoclusters labeled with either 

green (585) or red (655) QDs, spatially close in time (white arrows). (B) Two 

examples of interparticle distances vs. time for two pairs of seemly closed QDs. Blue 

curve for two proximal wt-DC-SIGN nanoclusters, and orange curve for N80A. (C) 

Average times at which couples of QDs (green and red) remain below 160 nm. 

Experimental results are contrasted with simulations of Brownian diffusing particles 

(grey bars). Experimental data correspond to 32 and 26 pairs of QDs for wt-DC-SIGN 

and N80A respectively. Simulated data correspond respectively to 6400 and 5200 pairs 

of randomly coincident interactions for wt-DC-SIGN and N80A. (D) Interparticle 

distances vs. time for wt-DC-SIGN and N80A. (E) Interparticle distance distributions 

as obtained for wt-DC-SIGN and N80A and compared to simulated data of Brownian 

(light grey) or confined (to a 1 µm area, dark grey) particles. 1360 and 1040 

occurrences for wt-DC-SIGN and N80A respectively, over 15 movies from different 

cells. **p < 0.01; n.s. no significant. 



4. Enhanced  receptor-clathrin interactions induced by N-glycan-mediated membrane micropatterning 
 
 

95 

 

gnificance, we generated interparticle distances histograms and compared the 

experimental data to simulations of freely- and confined-diffusion particles to a 1 µm 

region (Fig. 4.6E). As suspected, the experimental distribution for wt-DC-SIGN closely 

resembles the simulated distribution of confined diffusion, whereas the experimental 

distribution of N80A is closer to that of Brownian diffusion. wt-DC-SIGN confinement 

was also confirmed by direct analysis of long trajectories by means of their mean-square 

displacement (Fig. 4.7). These results indicate that N-glycosylation plays an important 

role in confining DC-SIGN nanoclusters at the meso-scale. 

 

 

Figure 4.7 wt-DC-SIGN nanoclusters trajectories show restricted mobility within 

regions of ∼1 µm. Three representative 2D trajectories of wt-DC-SIGN. The boxes 

around the trajectories are 1µm x 1µm in size and show wt-DC-SIGN diffusion in 

regions smaller than 1µm. Trajectories have been acquired at 60 frames/s. Trajectory 

length: 200 frames.  The representative MSD plot on the right corresponds to one single 

trajectory exhibiting confinement to a region of 0.83 µm.   

 

 

Glycan-based interactions enhance meso-scale compartmentalization of DC-SIGN. 

To directly visualize the micro-scale confinement of DC-SIGN, we generated dynamic 

membrane exploration maps using a method that combines nanometer-localization 

together with temporal information as obtained from SPT, and explained in detail in 

Chapter 2 (see also Fig. 4.8A). We found that glycosylated DC-SIGN nanoclusters are 

confined in meso-scale compartments, exploring only a fraction of the total cell 

membrane area (Fig. 4.8B, upper-row, left). Abrogation of DC-SIGN glycosylation 

relaxes the degree of confinement with receptors exploring larger surface areas (Fig. 

4.8B, upper-row, right). Interestingly, comparable compartmentalization was obtained 

for DC-SIGN on untreated imDCs (Fig. 4.8B, lower-row, left), while treatment with 

lactose led to larger exploration regions (Fig. 4.8B, lower-row, right) qualitatively 

similar to those exhibited by N80A. To quantify these observations we analyzed the 

membrane exploration maps using a fixed grid box counting algorithm (Fig. 4.8C). A 

decrease on the normalized number of boxes containing at least one spatial localization 

event, with increasing box size was obtained for all cases (Fig. 4.8D). The curves were 

fitted using a double exponential decay indicating the existence of two spatially distinct 

compartments: a nanometer scale region, with values between 80-120 nm and a second 
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meso-scale region with values between 1.3-1.6 µm (Table 1). Although the spatial 

scales of these two regions are similar for all cases, the relative occurrence of receptors 

being confined in meso-scale compartments differs significantly. Indeed, a larger 

percentage of receptors on cells with an intact glycan- based connectivity (wt-DC-

SIGN-CHO or DC-SIGN on untreated imDCs) are confined at the meso-scale as 

compared to the case where these interactions are hindered (Fig. 4.8E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Membrane explorations maps reveal glycan-mediated confinement of DC-

SIGN at the meso-scale. (A) Scheme illustrating how membrane exploration maps of 

DC-SIGN are generated from dual-color SPT movies at high labeling-densities, and 

example of such a map overlaid with the fluorescence image. (B) Representative 

membrane exploration maps for wtDC-SIGN and N80A on CHO cells (8000 

localizations/map, 30 frames/s), and DC-SIGN on untreated and lactose-treated imDCs 

(10000 localizations/map, 30 frames/s). Each blue point corresponds to a localization 

event. Grey background corresponds to the cell surface area. Black contour lines 

delineate the edges of the membrane (scale bars – 400 nm). (C) Implementation of the 

fixed grid box-counting algorithm. Boxes of decreasing sizes are used and the # of 

boxes containing at least one localization event is recorded. (D) Normalized number of 

boxes containing at least one spatial localization event vs. box size. The solid lines are 

the fit to the data using a double exponential decay function. (E) Degree of meso-scale 

compartmentalization (expressed in %), as extracted from the weight coefficient of the 

second exponential decay (Table S1). Error bars represent the error on the fitting. 
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Cells 

CHO imDCs 

wt-DC-SIGN N80A No Lactose With Lactose 

α 
0.65 ± 0.03 0.83 ± 0.02 0.56 ± 0.02 0.72 ± 0.01 

S1 (nm) 
87 ± 4 77 ± 3 116 ± 7 107 ± 4 

(1- α ) 
0.35 ± 0.03 0.17 ± 0.02 0.44 ± 0.02 0.28 ± 0.01 

S2 (nm) 
1540 ± 90 1610 ± 180 1310 ± 70 1540 ± 100 

 

Table 1 Fitting parameters of the membrane exploration maps box counting analysis as 

obtained using Equation 1. 

 

Collectively, these results demonstrate that glycan-based connectivity restricts DC-

SIGN nanocluster mobility to micron-size regions of the membrane. 

 

Glycan-based meso-scale compartments correlate with regions enriched in 

clathrin. Cell surface glycan-based interactions are thought to increase signaling and 

residence time of the EGFR by recruiting the receptor away from caveolae (16). Since 

DC-SIGN internalizes via CCPs (34, 35, 36) we investigated whether the glycan-based 

meso-scale confinement exhibited by DC-SIGN influences its interaction with clathrin. 

We performed SPT on CHO cells co-transfected with either wt-DC-SIGN or N80A, and 

clathrin light chain (CLC)-YFP (Fig. 4.9A) and generated membrane exploration maps 

of wt-DC-SIGN or N80A superimposed to the CLC-YFP signal (Fig. 4.9B). Some 

observations are derived from these dual color maps: a) a more restricted surface 

exploration of wt-DC-SIGN compared to N80A, consistent with the data shown in Fig. 

4.8B; b) a non-homogeneous distribution of clathrin over the cell surface, with well-

defined clathrin-rich and clathrin-poor regions; c) importantly, glycosylated DC-SIGN 

preferentially partitions into clathrin-rich regions compared to its de-glycosylated 

counterpart. 

 

To quantify these observations we generated histograms of the normalized CLC-YFP 

signal associated to each wt-DC-SIGN or N80A localization (Fig. 4.9C). Clearly, the 

distribution of wt-DC-SIGN localizations is shifted to higher clathrin signal values 

confirming that wt-DC-SIGN resides closer to clathrin. To substantiate these results we 

calculated the difference between the normalized frequency of localizations of wt-DC-

SIGN and N80A at each value of the normalized clathrin signal (Fig. 4.9D). For clathrin  
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signals ≤ 0.55 the residuals are negative so that N80A localizations are dominant. 

Above 0.55 the residuals are positive and thus dominated by wt-DC-SIGN localizations. 

To account for the total percentage of localizations we separated the distributions in two 

subpopulations according to the clathrin signal, i.e., clathrin-poor (signals < 0.6) and 

clathrin-rich (signals ≥ 0.6) regions. We found that ≈60% of wt-DC-SIGN localizations 

reside in clathrin-rich regions, whereas this percentage reduces to ≈40% for N80A 

localizations (Fig. 4.9E). These results thus show that DC-SIGN glycosylation enhances 

its meso-scale compartmentalization in regions of the cell membrane, which are 

enriched in clathrin. 

Figure 4.9 Glycan-based meso-scale compartments correlate with regions enriched in 

clathrin. (A) Still frame of a dual-color SPT movie taken in TIRF geometry showing 

individual DC-SIGN-QDs (red) overlaid with the clathrin-YFP signal (green) on the 

surface of a CHO cell (Video S2). Scale bar 5 µm. (B) Membrane exploration maps of 

wtDC-SIGN and N80A overlaid with the normalized CLC-YFP image. Black points 

correspond to individual localizations of wtDC-SIGN or N80A (≈12500 

localizations/map). Arrows highlight localizations close to clathrin rich regions. Scale 

bars: 200 nm. (C) Distribution of the normalized CLC-YFP intensity associated to each 

localization of wtDC-SIGN (blue) or N80A (orange) on CHO cells extracted from the 

exploration maps. To avoid false co-localization of the receptors with clathrin due to 

background, only localizations associated to clathrin-YFP intensities ≥ 0.2 were 

considered. (D) Difference between the normalized frequency of localizations of 

wtDC-SIGN and N80A as function of the normalized clathrin signal. (E) Total 

percentages of wtDC-SIGN and N80A localizations associated to the normalized 

clathrin-YFP fluorescence signal for values < 0.6 and > 0.6 as extracted from C. At 

least 30000 localizations from 6 cells from different days at each experimental 

condition. 
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Meso-scale compartmentalization influences nanoscale transient confinement of 

DC-SIGN. Next, we investigated the impact of DC-SIGN meso-scale 

compartmentalization on its nanoscale dynamic behavior. We performed SPT of DC-

SIGN nanoclusters on CHO cells (wt-DC-SIGN and N80A), and on untreated and 

lactose-treated imDCs. In all cases DC-SIGN nanoclusters were mobile (Fig. 4.10A). 

Moreover, we analyzed the trajectories to detect regions of transient confinement zones 

using an algorithm which calculate the probability that a diffusing particle stays a given 

time within a zone of a fixed radius depending on the instantaneous mobility of the 

diffusing particle (41) (see methods for a detailed description). Fig. 4.10A shows 

example of trajectories where transient confinement zones have been detected. We then 

extracted all the detected transient confinement zones belonging to all the trajectories 

and analyzed using a cumulative probability analysis of the squared displacements 

yielding an immobile and a mobile fraction. We took only the mobile fraction for 

further analysis. By fitting the mean square displacement of the mobile fraction of the 

data with a confinement curve, we obtained not only an average value of the diffusion 

coefficient but also the size of the confinement zone (Fig. 4.10B). In addition, we 

determined the characteristic duration of the TCZs and the average number of 

TCZs/area by fitting the data in each case with single exponential curves (Fig. 4. 10C-

D). The membrane explored area is calculated from ellipses gyration that characterize 

each trajectory (42) and determining their gyration radius Rg
2
=Rx

2
+Ry

2
, where Ri is the 

maximum trajectory displacement in the x and y coordinates. 

 

Although the average duration of the TCZs were roughly similar in all samples (Fig. 

4.11A), the nanometer-scale TCZs sensed by DC-SIGN nanoclusters in unperturbed 

cells were larger in size compared to those found on the glycan-perturbed counterparts 

(Fig. 4.11B). Moreover, DC-SIGN diffusion coefficients inside TCZs were significantly 

larger in unperturbed cells compared to those obtained on N80A and on lactose-treated 

imDCs (Fig. 4. 11C). Finally, the TCZs surface density, i.e., number of TCZs/area, was 

lower on cells with an intact DC-SIGN glycan-based connectivity compared to those 

where these interactions have been disturbed (Fig. 4. 11D), in nice correlation with the 

restricted surface exploration maps shown in Figure 4.8. Altogether, these results 

indicate that the meso-scale organization brought about by glycan-interactions influence 

the TCZs encountered by DC-SIGN and further support the existence of different 

mechanisms responsible for the occurrence of TCZs. 

 

N- glycosylation enhances DC-SIGN clathrin interactions. Based on our data, we 

further questioned whether: a) the detected TCZs might correspond to dynamic 

interactions of DC-SIGN with clathrin and b) glycan-based connectivity would impact 

on DC-SIGN-CCP interactions. To address these questions we analyzed DC-SIGN 
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trajectories on double transfected cells (wt-DCSIGN or N80A and CLC-YFP) for the 

presence of TCZs and quantified their proximity to clathrin (Fig. 4.12A). Strikingly, ∼ 

80% of wt-DC-SIGN-TCZs were located inside or in the proximity to clathrin-rich 

areas, while this percentage decreased to ~ 40% for N80A (Fig. 4.12B).  

 

 

 

Figure 4.10 Representative analysis of detected transient confinement zones of DC-

SIGN trajectories. (A) Representative trajectories of wt-DC-SIGN and N80A on CHO 

cells, and DC-SIGN on untreated and lactose-treated immature DCs. Regions of TCZs 

are detected and shown in circles and highlighted by arrows. Scale bar 400 nm.  (B) 

Average MSD analysis of the mobile fraction of TCZs obtained by means of a 

cumulative probability analysis of r
2
. The average diffusion coefficient inside TCZs is 

given by the fit parameter D2-4. The average size of the TCZs was determined from the 

fit according to Equation 3. (C) Characteristic duration of the TCZs as extracted from 

the exponential fit (red line) of the histogram of the duration of each TCZs (D) Average 

number of TCZs/membrane area as retrieved from the exponential fit (red line) of the 

#TCZs/area histogram built from each trajectory containing at least one TCZ. 

 

We further analyzed the TCZs with respect to their proximity to clathrin, both for wt-

DC-SIGN and N80A. The majority of the N80A-TCZs occur outside clathrin with 

diffusion values (Fig. 4.12C) similar to those shown in Fig. 4.11C and D, indicating that 

these TCZs bear no relation to clathrin. In remarkable contrast, wt-DC-SIGN-TCZs 

inside clathrin showed similar characteristics as those found for DC-SIGN with intact 

glycan- based connectivity (compare Fig. 4.11C and D with 4.12C and D), revealing 

that dynamic interaction with clathrin leads to the transient arrest of DC-SIGN. 
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Figure 4.11 Meso-scale compartmentalization influences nanoscale transient 

confinement of DC-SIGN. (A) Average duration of TCZs. (B) Average size of the 

TCZs. (C) Average diffusion inside TCZs. (D) Average number of TCZs/area. Error 

bars correspond to the errors on the fitting. wt-DC-SIGN: 283 TCZ on 755 trajectories. 

N80A: 483 TCZ on 614 trajectories. ImDC: 293 TCZ on 171 trajectories. 

ImDC+lactose: 107 TCZ on 155 trajectories. Minimum of 50 cells from 10-20 separate 

experiments at each condition. 

 

Regrettably, the poor transfection efficiency (<5%) and low cell viability of transfected 

imDCs prevented analogous studies on these cells. Importantly, these data imply that 

DC-SIGN-CCP interactions do not occur by random encounters between mobile 

receptors and CCPs. Instead, DC-SIGN micropatterning in regions enriched in clathrin, 

brought about by the glycan network, favors cargo-clathrin encounters. Interestingly, 

N80A-TCZs events proximal to clathrin showed similar diffusion as to those of wt-DC-

SIGN- TCZ (Fig. 4.12C,D) indicating that glycosylation does not interfere on the 

dynamics of the interaction itself, but it affects the probability with which these 

interactions occur. 

 

To investigate the consequences of DC-SIGN glycosylation on antigen internalization 

via clathrin-dependent endocytosis we used QDs conjugated with gp120, an HIV-1 

envelope protein recognized and internalized by DC-SIGN, resulting in DC infection 
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with HIV-1 virus (Fig. 4.12E and F). CHO cells expressing either wt-DC-SIGN or the 

N80A mutant and imDCs untreated or treated with lactose were incubated at 37 ºC with 

gp120-QDs. After particle binding and internalization, cells were fixed and labeled for 

clathrin and its degree of co-localization with gp120-coated QDs was determined. In all 

 

 

Figure 4.12 N-glycosylation enhances DC-SIGN clathrin interactions and virus-like 

particle internalization via CCPs. (A) Representative wt-DC-SIGN and N80A 

trajectories (white lines) overlaid on the normalized CLC-YFP image. Black points 

(highlighted with arrows) show the occurrence of TCZs (Video S3). Scale bars: 400 nm. 

(B) Percentage of TCZs near to clathrin-rich areas for wt-DC-SIGN and N80A. Since 

clathrin images are diffraction-limited we considered clathrin-rich regions as those 

having intensity > 0.7. Data from at least 8 cells from different days. ** p< 0.01 (C) D2-

4 inside TCZs for wt-DC-SIGN and N80A, in relation to clathrin proximity. Due to the 

low number of wt-DC-SIGN-TCZ events outside clathrin we could not determine D2-4 

values here. (D) Sizes of TCZ inside clathrin. Error bars in C & D correspond to the 

error on the fitting (Fig. 4.10). (E) Merged confocal microscopy images of internalized 

gp120-QD (red) and CCPs (green) on CHO cells expressing wt-DC-SIGN or N80A, and 

on untreated and lactose-treated imDCs. Images represent one focal plane in the middle 

of the cell body. Representative cells from multiple experiments are shown. Scale bars: 

5 µm. (F) Pearson correlation coefficient between gp120-QD and clathrin. Values ± 

SEM are average of multiple images from several cells from different days of 

experiments .** p<0.01. 

 

cases, internalization of single virus-like particles could be detected. However, the 

degree of co-localization between gp120-QDs and clahtrin was markedly different: cells 

with an intact glycan-based connectivity showed higher co-localization values 

compared to those where this connectivity has been compromised (Fig. 4.12F). 

Collectively, our data reveal that glycan-based interactions promote meso-scale 
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compartmentalization of DC-SIGN thereby fine-tuning the occurrence of dynamic 

interactions with clathrin and possibly enhancing CME of antigens bound to DC-SIGN. 

 

We then sought to address the potential candidates of the glycan-network which could 

be regulating the spatiotemporal behavior of DC-SIGN on the cell membrane at the 

meso-scale. Since Galectin-9 and CD44 were enriched in the DC-SIGN phagosome 

(13), we studied by means of confocal microscopy wether Galectin-9, CD44 and DC-

SIGN would also colocalize at the plasma membrane of immature dendritic cells (Fig. 

4.13). Using copatching with secondary Abs, we obtained a significant colocalization of 

DC-SIGN with CD44 at the cell membrane (Fig. 4.13A). Galectin-9 also showed 

colocalization with CD44 (Fig. 4.13B). Remarkably, DC-SIGN also colocalizes with 

Galectin-9 at the cell membrane (Fig. 4.13C). The degree of colocalization between 

these molecules were quantified using the Pearson correlation coefficient revealing 

higher colocalization between CD44, Galectin-9 and DC-SIGN than the control case of 

the transferrin receptor (known to bind to Gaectin-3, reference) colocalizing with 

Galectin-9 (Fig. 4.13D). Thus, the copatching data suggests that there might be some 

pre-interaction between DC-SIGN, Galectin-9 and CD44 already at the cell membrane 

that can potentially be mediated by a glycan-based connectivity.  

 

 

Figure 4.13 DC-SIGN colocalizes with 

galectin-9 and CD44 on the plasma 

membrane of imDCs. Panels A, B and C 

show representative confocal sections of 

imDCs subjected to copatching for the 

indicated combinations of antibodies 

against DC-SIGN, CD44 and Galectin-

9. Figure D shows de degree of co-

localization quantified by the Pearson 

correlation coefficient. Individual dots 

represent single cells from DCs of 2 

different healthy donors. **p<0.01 as 

determined by an unpaired two tailed 

students t-test. 
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To gain insight on how this machinery might be laterally assembled, we generated dual- 

color cartography maps of CD44 and DC-SIGN on the cell membrane of imDCs (Fig. 

4.14A). Zoom-in cartography regions reveal that CD44 explores regions enriched by 

DC-SIGN as well as regions that are spatially contiguous to DC-SIGN (Fig. 4.14B). 

 

Figure 4.14 Spatiotemporal exploration of DC-SIGN and CD44 on the cell membrane 

of imDCs. (A) Dual color membrane cartography map of CD44 labeled with QD655 

(red) and DC-SIGN labeled with QD585 (green) obtained on live day 6 imDCs. Cells 

were incubated on glass coverslips and CD44 and DC-SIGN were labeled with QD655-

Ab (NKI-P2, NKI) and QD585-Ab (DCN46, Pharmingen) respectively. Dual-color 

imaging was performed with split channels imaged on the same chip of an EM-CCD 

Camera at a time resolution of 30 Hz and a total observation time of 13.3 s. 42000 

localizations of CD44 (red) and DCSIGN (green) are displayed representing each one a 

localization event over the total observation time. (B) Zoom-in region displaying 4000 

localizations of CD44 (red) and DCSIGN (green) on an area of 5.76 x 5.76 um collected 

over the total observation time. Note that CD44 explores regions enriched by DC-SIGN 

as well as regions that are spatially contiguous to DC-SIGN. (C) Simulated 2D plot of 

4000 red particles and green particles randomly distributed 5.76 x 5.76 µm area. (D) 

Quantification of the nearest-neighbor distance (nnd) between red and green 

occurrences for the experimental and simulated data.  

 

These results suggest that CD44 might work as a fence, delimiting the membrane 

regions that DC-SIGN is able to explore. Moreover, the lateral behavior of both 

molecules is restricted within regions of approximately 1 µm which is in excellent 

agreement with the meso-scale organization shown for DC-SIGN in Fig. 4.8. Monte-

Carlo simulations of random organization of the two molecules (Fig. 4.14C) reveal that 
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the maximum (black arrow) of the distribution of the nearest-neighbor distance (nnd) is 

shifted towards lower nnd values with respect to the simulated data (red arrow) (Fig. 

4.14D), indicating true physical partitioning between CD44 and DCSIGN at the 

nanoscale. Interestingly, the experimental nnd distribution also shows a long tail, clearly 

deviating from random organization and strongly evidencing a spatiotemporal 

relationship between these two glycoproteins at characteristic spatial distances. Since 

copatching experiments show colocalization of Galectin-9 with CD44 and DC-SIGN at 

the level of the cell membrane, it is tempting to speculate at this stage that Galectin-9 

might regulate the lateral organization between CD44 and DC-SIGN resulting in the 

confinement of  DC-SIGN in micron-scale regions.  

 

Discussion 

 

In this work we directly visualize cell membrane micropatterning mediated by glycans 

using a combination of super-resolution imaging techniques and dual color single 

particle tracking. We find that this micropatterning corrals receptors into clathrin 

enriched regions, thereby increasing clathrin-receptor interactions, and potentially 

influencing clathrin-mediated endocytosis of receptor-bound ligands. We also establish 

that clathrin-receptor encounters do not occur in a random fashion and further 

substantiate the dynamic and transient behavior of clathrin interactions with their cargo 

before successful internalization.  

 

Cell surface glycan-mediated interactions have been thought to promote the formation 

of high-order aggregates of several membrane proteins (1-3, 19). Contrasting with these 

expectations, one of the key observations of our work is that glycan-mediated 

interactions do not contribute to receptor nanoclustering, neither promote dynamic 

interactions between nanoclusters. However, the overall lateral mobility was 

considerably affected, with glycosylated DC-SIGN nanoclusters dynamically exploring 

restricted areas of the cell surface. These results demonstrate that glycan-based 

interactions regulate the micro-scale organization of the receptor and importantly, 

establish a novel extracellular mechanism of membrane organization based on the 

compartments of the membrane a molecule is able to (or unable to) explore. Moreover, 

our results indicate that these interactions are mediated (directly or indirectly) by cell 

surface galectins. Indeed, treatment of imDCs with lactose drastically affected the 

spatial exploration of the receptor and reduced galectin-9 surface levels (Fig. 4.4), an 

important glycan-binding protein found on imDCs phagosomes together with DC-SIGN 

and the transmembrane glycoprotein CD44 (13).  

 

An interesting finding of our work is that glycan-based interactions seem fundamental 

in fine-tuning DC-SIGN interactions with clathrin, by confining the receptor in regions 
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enriched with this endocytic protein. Remarkably, we observed that clathrin distribution 

is not homogenous but highly localized in permissive regions of the membrane, 

supporting earlier findings that indicated CCPs nucleation at predefined sites (25, 43). It 

has been further shown that these regions are specialized cortical actin patches that 

might efficiently organize CCP nucleations (43). How exactly glycan-based interactions 

sense these clathrin-rich regions is currently unknown. It is conceivable that there might 

be areas of the cell membrane enriched in actin where several key players colocalize in 

space and time, including CD44 (44) and clathrin (43). DC-SIGN could then be 

maintained in these regions through its interactions with CD44, most likely involving 

galectin-9, which would crosslink both proteins through their glycosylated motifs (Fig 

4.14). 

 

 
 

Figure 4.15 DC-SIGN glycan-mediated membrane mesoscale and nanoscale 

compartmentalization. DC-SIGN and CD44 interactions most likely involve their N-

glycosylation motifs and cell surface galectin-9. This intricate molecular network results 

in DC-SIGN nanoclusters confinement to micrometer-size membrane regions 

(mesoscale confinement) enriched in clathrin, where the encounters of DC-SIGN 

nanoclusters with clathrin-coated pits (nanoscale transient confinement) are enhanced. 

Recent intriguing single molecule experiments have shown that CCPs do not 

permanently capture cargo molecules before internalization (26). Instead, cargos diffuse 

on the membrane until they randomly encounter CCPs and become transiently arrested 

in a “catch-and-release” fashion (26). Our results substantiate the dynamic and transient 

behavior of clathrin interactions with their cargo before successful internalization, and 

importantly extend these findings by showing that the spatial proximity of DC-SIGN to 

clathrin enhances the probability of successful cargo-clathrin interactions. Our data thus 

imply that CCP-cargo interactions do not proceed via random encountering but are 

greatly influenced by the micropatterning spatial regulation of the glycan network. 

Interestingly, receptor glycosylation does not affect the dynamical aspects of this 

interaction, suggesting that the rates of clathrin dependent endocytosis of DC-SIGN and 

its pathogenic ligands are not altered by glycosylation; merely the probability of 

encountering clathrin increases as compared to a purely random process. 

 

Although this research is still ongoing in our lab, we have summarized our findings so 

far in an illustration (Fig. 4.15). CD44 would interact with DC-SIGN by means of one 
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of its multiple glycosylation motifs. This interaction could be mediated by Galectin-9 

which would temporally crosslink CD44 and DC-SIGN since Galectin-9 contains two 

homologous CRDs. This temporal crosslinking taking place along multiple CD44 over 

time results in DC-SIGN being confined to meso-scale regions on the cell membrane. 

Moreover, we also show that clathrin is enriched in those meso-scale regions building 

up a clathin-mediated endocytosis hotspot region. Thus, the glycan-based connectivity 

might possibly control clathrin-mediated endocytosis by controlling the spatiotemporal 

beavior of membrane receptors at multiple temporal and spatial scales. 

 

In summary, the novel quantitative methods described in this thesis identify a novel 

mechanism of membrane organization and provide a visual and quantitative picture on 

how glycan-mediated interactions contribute with a new layer of complexity on the 

organization of the cell membrane. This meso-scale dynamic organization influences 

receptor interactions with clathrin, possibly impacting on CME but likely also 

influencing other cellular processes. 

 

 

Materials & Methods 

 

Single and dual-color SPT measurements. Experiments were performed using a 

home-made single molecule sensitive microscope, either under epi-fluorescence (single 

and dual color QDs measurements) or total internal reflection (TIRF) (dual color 

QD/clathrin measurements) excitation. Continuous excitation was provided by the 488-

nm line of an Ar+ laser (0.3kW/cm2). Fluorescence was collected with a 1.4 NA oil 

immersion objective (Olympus) and guided into an intensified EM-CCD camera 

(Hamamatsu) after suitable filtering. Single QD movies were recorded at a frame rate of 

30-60Hz. For dual-color measurements, emission light was split and selected with 

appropriate dichroic mirror and filters. Dual QD signals were collected by the same 

EM-CCD, whereas single QD and clathrin-YFP signal were recorded respectively by an 

EM-CCD and an intensified CCD camera. Movies frame rates were 30Hz for dual QD 

tracking, and 60Hz and 10Hz for QD and clathrin-YFP, respectively. Images of multi-

fluorophore fluorescent beads (0.2 µm Tetraspeck, Invitrogen), having emission 

spectrum covering the two spectral windows were obtained to determine the spatial 

transformation leading to the overlay of the two spectral channels. To calculate the 

spatial transformation, at least 10 beads appearing on both channels were manually 

selected, their centroid positions calculated with subpixel accuracy and stored in two 

coordinate lists. The transformation matrix was inferred from the coordinate lists 

according to an affine transformation, correcting for displacement and small chromatic 

aberrations. Experiments were performed at 37ºC in 5% CO2 atmosphere. Trajectories 
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were generated with Matlab routines based on an algorithm described in Serge et al. 

(45). 

 

Stimulated Emission Depletion (STED) Nanoscopy. Confocal and STED images 

were obtained in a sequential manner using a 100x oil immersion objective (HCX PL 

APO 100x/1.4 Oil, Leica Microsystems, Germany) of a commercial CW-STED SP-7 

microscope (Leica Microsystems, Germany) as described in Chapter 2.  

 

Generation of time-dependent membrane exploration maps from SPT 

measurements. To quantify the differences between the exploration maps obtained for 

each experimental condition, we applied a box-counting algorithm. Coordinates maps 

were transformed into binary images with square pixels (box) at varying box sizes. 

Pixel values were set to one if at least one spatial coordinate was found within the pixel 

area and zero otherwise. The number of nonzero pixels over the total number of pixels 

(������) was evaluated for each box size and fitted with a bi-exponential function: 

 

������ = �	
��
��� � + �1 − ��	
��
��� �                       (1) 

where � and �1 − �� = �����	����������� are respectively the degree of the nanoscale 

and meso-scale compartments, box represents the pixel size and it is the size of the 

varying scan window and si are the characteristics length of nano- and meso-scale 

confinements. Results of the fitting for the different membrane exploration maps are 

shown in Table 1. 

 

Membrane exploration maps of the receptors over clathrin fluorescence were gathered 

from single color SPT measurements of cells densely labeled with anti-DC-SIGN QD-

conjugate, which have been previously transiently transfected with clathrin-YFP. For 

the duration of the SPT movies, the clathrin-YFP signal did not show any variation. 

Identification of single molecules in each movie frame was possible in these conditions, 

allowing the construction of single particle trajectories and their subsequent analysis. 

The distribution of the normalized clathrin-YFP intensity associated to each localization 

of wtDC-SIGN or N80A as generated by transforming the sub-pixel spatial coordinates 

of the receptor into a pixel with the same size as those of the clathrin-YFP images. To 

each pixel of the receptor localization, the corresponding clathrin-YFP signal was 

determined, and their distribution was obtained. To avoid false co-localization of the 

receptors with clathrin due to background, only localizations associated to clathrin-YFP 

intensities ≥ 0.2 were considered. The association of TCZs to clathrin-rich and -poor 

regions was done by comparing each TCZ localization with its respective clathrin-YFP 

signal. Since clathrin-YFP signal is diffraction-limited we used a normalized signal of 
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clathrin ≥0.7 as the threshold to discriminate between both regions. 

 

Identification of transient confinement zones (TCZs) and analysis. Transient 

confinement zones occurring within trajectories were detected by an algorithm 

described by Simson et al. (41). The algorithm identifies regions of the trajectory in 

which the receptor remains with duration considerably longer than a particle with a 

Brownian diffusion would. This is done by breaking the particle trajectories into shorter 

segments of successive points of variable length, and determining the likelihood that the 

receptor will remain in that segment according to its diffusion coefficient D. TCZs are 

considered when the average probability calculated for each point of the trajectory is 

higher than that of a random diffusing particle. For DC-SIGN and in our experimental 

conditions, the maximum segment Sm was 25 points, the probability level threshold Lc 

was 1.5 and the minimal time that DC-SIGN spends within a TCZ, tc, was 133ms (8 

frames). 

 

We performed cumulative probability analysis to characterize the diffusion of DC-SIGN 

inside TCZs and to estimate the average size of the TCZs. Receptor square displacement 

(r
2
) inside each detected TCZs was determined and its cumulative probability 

distribution for a time lag of 48ms (3 frames) was generated. This was fitted to a two-

population model according to (46): 

 

 �!", $� = 1 − %�	�&�&�� + �1 − ��	�&�&��'   (2) 

 

where  �!", $� is the probability that a particle starting at the origin will be found within 

a circle of radius r. α is the normalized fraction of slow receptor molecules, (1- α) the 

normalized fraction of fast receptor molecules, r1 the radius of the confinement of the 

slow population and r2, the radius of the confinement of the fast population. The 

average diffusion coefficient (D2-4) of each population was determined by calculating 

their average MSD and fitting a straight line as explained in Chapter 2. From this fit, 

and according to our localization accuracy, the slow diffusing population was classified 

as immobile and was not further considered for the analysis. The average size of the 

TCZs associated to the fast/mobile population was determined according to (47): 

 

!("�$� = �))*	$ + 
+,�- � .1 − 	/�012,34   (3) 

were �))*	$, L and τi, are respectively the offset, the length of a square confinement 

region and its average duration. In addition, from the detected TCZ we directly 

measured the time that DC-SIGN spends in these regions and generated distributions for 
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all individual TCZ detected. Fitting of the distribution using a single exponential decay 

renders the characteristic TCZ time, as shown in Figure 4.10. 

 

Determination of interparticle distances and Monte Carlo simulations to assess the 

degree of dynamic nanocluster interactions. To investigate the possibility that 

individual DC-SIGN nanoclusters would dynamically interact with each other we 

performed two-color QD tracking at high label densities following a methodology 

similar to that described by Low-Nam et al and Bakker et al (48, 40). Two-dimensional 

fluorescence trajectories of spatially close QD (red: Ab-QD655 and green: Ab-QD585) 

were generated (Fig. 4.4) and the separation distance (interparticle distance) between 

QDs was determined from their dual-color pair trajectories. The initial Ab-QDs 

conjugates separation distance considered was 400nm and interparticle distances were 

calculated for each 40 subsequent frames (t = 1.33s). In conditions in which an 

individual nanocluster would interact with its neighbor, the separation distances 

between QDs should decrease and maintain below 160 nm (the size of the nanoclusters 

as measured by STED) and exhibit correlated motion (40). In contrast, large variations 

on the separation distance and/or absence of correlated motion indicate only random 

coincidence events. In our experiments we never observed correlated motion and the 

separation distances varied largely (Fig. 4.4). Furthermore, from the interparticle 

distance distribution we also measured the average times at which Ab-QDs conjugates 

remained at distances ≤ 160nm. We chose this interparticle distance threshold because it 

is the characteristic size of the DC-SIGN nanocluster obtained using STED nanoscopy 

(Fig. 4.3). 

 

Monte Carlo simulations to identify spatial confinement of wt-DC-SIGN. Monte 

Carlo simulations of dual-color trajectories displaying purely Brownian 2D-diffusion 

(not hindered) and Brownian 2D-diffusion confined to a 1 µm
2
 circular region with 

elastic borders were also performed to compare the experimental results shown in Fig. 

4.5D with those obtained due to purely stochastic encounters between nanoclusters. The 

simulations took into account the initial experimental separation distance between each 

Ab-QDs conjugate (400nm) and the instantaneous diffusion coefficients experimentally 

determined for either wt-DC-SIGN or N80A mutant. A total of 200 trajectories per 

experimental pair of trajectories were simulated yielding a total amount of at least 5000 

simulated trajectories per condition. 

One or Dual-color cartography maps. Day 6 imDCs were pretreated with 100/200 

nM lactose for 24h, wt-DCSIGN and N80A expressing CHO cells were labeled with a 

conjugate of QD655 and DCN46 monovalent antibody. Alternatively, Day 6 imDCs 

were incubated on glass coverslips and CD44 and DC-SIGN were labeled with QD655 

monovalent Ab (NKI-P2, NKI) and QD585 monovalent Ab (DCN46, Pharmingen) 
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respectively. Dual-color imaging was performed with split channels imaged on the same 

chip of an EM-CCD Camera at a time resolution of 30 Hz and a total observation time 

of 13.3 s. 42000 localizations of CD44 (red) and DCSIGN (green) are displayed 

representing each one a localization event over the total observation time. 

 

The effect of lactose treatment on the surface expression of galectins. Day 5 imDCs 

were cultured for 2 days in the presence of 25mM Lactose, stained for Galectin-3 

(RtIgG2a clone M3/38; Biolegend) or Galectin-9 (Goat polyclonal anti-human Galectin-

9; R&D Systems) and analyzed by flow cytometry. Mean fluorescent intensities of 

specific signal corrected for the signal obtained on isotype control labeled cells are 

plotted (+/- SEM of cells of two healthy donors). 

 

Secondary antibodies copatching experiments. Human imDCs were incubated on ice 

with primary antibodies against DC-SIGN (clone AZN-D1 or clone DCN46), Galectin-

9 (Gt-human R&D systems), CD44 (G44.26 BD Biosciences) or Transferin receptor 

(clone B3/25) as indicated, followed by a copatching with a matching combination of 

species and isotype specific fluorescently labeled secondary antibodies at 15 °C. 

Subsequently cells were fixed, adhered to coverslips and analyzed with confocal 

microscopy. 
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Chapter 5 

 

Weak Ergodicity Breaking of Receptor Motion in 

Living Cells Stemming from Random Diffusivity 

 

Molecular transport in living systems regulates numerous processes underlying biological 

function. Although many cellular components exhibit anomalous diffusion, only recently has 

the subdiffusive motion been associated with nonergodic behavior. These findings have 

stimulated new questions for their implications in statistical mechanics and cell biology. Is 

nonergodicity a common strategy shared by living systems? Which physical mechanisms 

generate it? What are its implications for biological function? Here, we use single-particle 

tracking to demonstrate that the motion of DC-SIGN reveals nonergodic subdiffusion on 

living-cell membranes. In contrast to previous studies, this behavior is incompatible with 

transient immobilization, and, therefore, it cannot be interpreted according to continuous-

time random-walk theory. We show that the receptor undergoes changes of diffusivity, 

consistent with the current view of the cell membrane as a highly dynamic and diverse 

environment. Simulations based on a model of an ordinary random walk in complex media 

quantitatively reproduce all our observations, pointing toward diffusion heterogeneity as 

the cause of DC-SIGN behavior. By studying different receptor mutants, we further 

correlate receptor motion to its molecular structure, thus establishing a strong link between 

nonergodicity and biological function. These results underscore the role of disorder in cell 

membranes and its connection with function regulation. Because of its generality, our 

approach offers a framework to interpret anomalous transport in other complex media 

where dynamic heterogeneity might play a major role, such as those found, e.g., in soft 

condensed matter, geology, and ecology.  
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Introduction 

Cell function heavily relies on the occurrence of biochemical interactions between 

specific molecules. Encounters between interacting species within the cellular 

environment are mediated by active and/or diffusive molecular transport, with a motion 

characterized by directed displacements in the former case, and by random ones in the 

latter. The quantitative study of diffusion is thus essential for understanding molecular 

mechanisms underlying cellular function, including target search (1), kinetics of 

transport limited reactions (2, 3), trafficking and signaling (4). These processes take 

place in complex environments, crowded and compartmentalized by macromolecules 

and biopolymers. A prototypical example that we have addresses in this thesis is the 

plasma membrane. Here, the interplay of lipids and proteins with cytosolic (e.g., the 

actin cytoskeleton) and extracellular (e.g., glycans) components generates a highly 

dynamic and heterogeneous organization (5). 

 

The diffusion of a single molecule j, whose position xj is sampled at discrete time 

intervals ∆t for a total time N∆t, is often characterized by the time-averaged mean-

square displacement (T-MSD): 

 

T˗MSD�t
�� = �∆�� =
�

���
∑ (��(�� +�∆�� − ��(��������
���               (1) 

 

which for a Brownian particle scales linearly in the time-lag tlag. Application of 

fluorescence based techniques to living cells has evidenced striking deviations from 

Brownian behavior in the nucleus (6), cytoplasm (7–10) and plasma membrane (11, 12). 

Indeed, numerous cellular components show anomalous subdiffusion (13), characterized 

by a power law dependence of the MSD ∼ t
β
 , with β < 1 (14–16). Owing to the 

implications of molecular transport for cellular function and the widespread evidence of 

subdiffusion in biology, major theoretical efforts have been devoted to understand its 

physical origin. Subdiffusion is generally understood to be the consequence of 

molecular crowding (17) and several models have been developed to capture its main 

features. In general, subdiffusion can be obtained by models of energetic and/or 

geometric disorder, such as: (i) the continuous-time random walk (CTRW), i.e., a walk 

with waiting times between steps drawn from a power law distribution (18); (ii) 

fractional Brownian motion, i.e., a process with correlated increments (19); (iii) 

obstructed diffusion, i.e., a walk on a percolation cluster or a fractal (15); (iv) diffusion 

in a spatially heterogeneous medium (26). Each of these models can be in turn 

associated with relevant biophysical mechanisms such as trapping (20), the viscoelastic 

properties of the environment (21) or the presence of barriers and obstacles to diffusion 

(22). Advances in single particle tracking (SPT) techniques have allowed the recording 

of long single-molecule trajectories and have revealed very complex diffusion patterns 
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in living cell systems (5, 11). Recently, it has been shown that some cellular 

components show subdiffusion associated with weak ergodicity breaking (wEB) (9, 10, 

12), with the most obvious signatures being the non-equivalence of the T-MSD and the 

ensemble-averaged MSD (E-MSD), defined as: 

  

E˗MSD��
�� = �∆�� =
�

"
∑ (��(�� +�∆�� − ��(�����
"
���                      (2) 

 

where J is the total number of observed single-particle trajectories, and ti is a specific 

initial time. Moreover, ergodicity breaking has been further confirmed by the presence 

of aging (23, 24), i.e. the dependence of statistical quantities on the observation time. 

Based on these findings, several stochastic models presenting nonstationary (and thus 

nonergodic) subdiffusion have been proposed (25–28). Among these, CTRW has been 

used to model nonergodic subdiffusion in living cells (9, 10, 12) and has begun to 

provide theoretical insight into the physical origin of wEB in biological systems (25), 

associating the nonergodic behavior to the occurrence of particle immobilization with a 

heavy-tailed distribution of trapping times.  

 

At the same time, these intriguing findings have generated new questions: Is nonergodic 

subdiffusion a strategy shared by other biological systems? Can biophysical 

mechanisms other than trapping lead to similar behaviors? What is its functional 

relevance? Elucidating these issues is crucial to unravel the role of nonergodic 

subdiffusion in cellular function. The main aim of this work is to explore other forms of 

transport in biological systems to provide answers to these questions. 

 

In this Chapter we describe the use of SPT to study the diffusion of the pathogen-

recognition receptor DC-SIGN (29) on living cell membranes. Our experiments and 

data analysis show that DC-SIGN dynamics display clear signatures of wEB and aging. 

However, in contrast to recent studies reporting nonergodic behavior of other membrane 

proteins (12), we find that DC-SIGN very rarely shows trapping events so that the 

observed wEB cannot be described by the CTRW model. Instead, our analysis shows 

that DC-SIGN displays a heterogeneous dynamics presenting frequent changes of 

diffusivity. Our numerical simulations, based on a novel theoretical model of Brownian 

diffusion in complex media (30), quantitatively reproduce DC-SIGN dynamics 

demonstrating that nonergodic subdiffusion is a consequence of temporal and/or spatial 

heterogeneity. Furthermore, structurally mutated variants of DC-SIGN, with impaired 

function, show very different dynamical features. These results allow us to link receptor 

transport to molecular structure and receptor function, such as the capability to capture 

and uptake pathogens. 

 

Results 
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Weak ergodicity breaking and aging in DC-SIGN dynamics. We performed SPT 

experiments (5, 31) to follow the lateral diffusion of DC-SIGN (29, 32, 33, 34) on living 

cell membranes as previously described in Chapter 3 and 4. We also used in here stably 

DC-SIGN expressing CHO cells, in combination with the ∆Rep-, N80A and the ∆35-

DC-SIGN mutants. To characterize their dynamics, we labeled DC-SIGN receptors with 

quantum dots, and we recorded their mobility by tracking the quantum dot positions as 

explained in Chapter 2 (Fig. 5.1A-B).  

 

The T-MSD of individual trajectories of wild-type (wt)-DC-SIGN displayed a linear 

behavior (β ∼ 1), consistent with pure Brownian diffusion (Fig. 5.1C). The distribution 

of the exponents β obtained by nonlinear fitting of the T-MSDs of the individual 

trajectories (inset of Fig. 5.1C) showed an average < β >= 0.98±0.06. In addition, the 

fitting of the average T-MSD provided a value β = 0.95 ± 0.01. Since the T-MSD values 

corresponding to different trajectories were broadly scattered, for each trajectory we 

calculated the diffusion coefficient Ds by a linear fit of the T-MSD at time lags < 10% of 

the trajectory duration (35). As expected, the resulting values of Ds were found to have 

a very broad distribution, spanning more than two orders of magnitude (Fig. 5.1D). 

 

However, in marked contrast with the T-MSD, the E-MSD deviated significantly from 

linearity, showing subdiffusion with an exponent β = 0.84 ± 0.03 (Fig. 5.1E). The 

difference between the scalings of T-MSD and E-MSD is a clear signature of wEB (36). 

To inquire whether wt-DC-SIGN dynamics also exhibits aging, we computed the time-

ensemble-averaged MSD (TE-MSD) by truncating the data at different observation 

times T: 

 

TE˗MSD��
��, $� =
�

"

�
%
∆&��

∑ ∑ (��(�� +�∆�� − ��(�����
"
���

%
∆&��

���                (3) 

and extracting the corresponding diffusion coefficient DTE by linear fitting (35). In 

systems with uncorrelated increments, it can be shown under rather general assumptions 

that DTE ∼T
β−1

 (30, 37). The observed DTE indeed scaled as a power law with an 

exponent of −0.17 ±0.05 (Fig. 5.1F), yielding a value of β in good agreement with the 

exponent determined from E-MSD. These results thus demonstrate that wt-DC-SIGN 

dynamics exhibits aging. 

 

Failure of the CTRW model. The motion of some biological components, including 

the Kv2.1 potassium channel in the plasma membrane (12), lipid granules in yeast cells 

(9) and insulin-containing vesicles in Pancreatic β-cells (10), has been reported to 

exhibit subdiffusion compatible with the coexistence of an ergodic and a nonergodic 

process. The nonergodic part of the process has been modeled within the framework of 

the CTRW (25, 36, 37). 
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Figure 5.1 wt-DC-SIGN diffusion shows weak ergodicity breaking and aging. (A) 

Representative video frames of a quantum-dot-labeled wt-DC-SIGN molecule diffusing 

on the dorsal membrane of a CHO cell. The centroid position of the bright spot (+), 

corresponding to a single quantum-dot, is tracked and reconnected to build up the wt-

DC-SIGN trajectory, shown by the cyan line. (B) Representative trajectories for the 

same recording time (3.2 s). (C) Log-log plot of the time-averaged MSD for individual 

trajectories (blue lines). The dashed lines scale linearly in time, showing that T-MSD is 

compatible with pure brownian motion (β = 1). The symbols (o) correspond to the 

average T-MSD. Nonlinear fit provided β = 0.95 ± 0.01. (Inset) cdf of the exponent β 

obtained from nonlinear fitting of the T-MSD of all the trajectories. (D) Distribution of 

short-time diffusion coefficients as obtained from linear fitting of the time-averaged 

MSD for all the trajectories. (E) Log-log plot of the ensemble-averaged MSD. Power 

law fit of the data (dashed line) provides an exponent β = 0.84, showing subdiffusion. 

(F) Log-log plot of the time-ensemble-averaged diffusion coefficient as a function of the 

observation time T. The diffusion coefficients are obtained by linear fitting of the time-

ensemble-averaged MSD. A power-law fit (dashed line) provides an exponent β − 1 = 

−0.17, revealing aging and in good agreement with the value of β found in (E). 

 

CTRW is a random walk in which a particle performs jumps whose lengths have a finite 
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mean, but between jumps the walker remains trapped for random dwell times, 

distributed with a power-law probability density ∼ t
−(1+β)

 , which for β ≤ 1 has an infinite 

mean. This model is annealed, in the sense that the duration of trapping events is 

independent of the past history of the system, even if the particle revisits the same trap 

after some time. The energy landscape of this process is characterized by potential wells 

with a broad depth distribution. Such energetic disorder yields nonergodicity, since no 

matter how long one measures, deep traps cause dwell times on the order of the 

measurement time. Within the biological context, these traps generally have been 

associated with chemical binding to stationary cellular components (e.g. actin 

cytoskeleton (12) or microtubuli (10)), with a distribution of dissociation times with 

varying lifetimes. T-MSDs of molecules performing CTRW show broadly scattered 

values, but are on average linear in the lag time tlag (37, 38), similar to our observation 

in Fig. 5.1C. The subdiffusive behavior of the motion emerges in the E-MSD, scaling 

with the same exponent β describing the probability density of trapping dwell-times. 

 

Since wt-DC-SIGN dynamics also showed nonergodic subdiffusion and aging, we 

sought to investigate whether DC-SIGN diffusion agrees with the predictions of the 

CTRW model. To this end, we searched for the occurrence of transient trapping events 

on individual trajectories. In SPT experiments, the limited localization accuracy for 

determining the particle position sets a lower limit for the diffusivity value that can 

experimentally be measured. In our experiment, this lower threshold lies at Dth = 6 • 

10
−4

 µm
2
 s

−1
. Therefore, a segmentation algorithm (39) was applied to the x- and y-

displacements of our trajectories in order to detect events with diffusivity lower than 

Dth. Surprisingly, transient trapping was only detected over less than 5% of the total 

recording time (Fig. 5.2A-C). Moreover, the detected trapping times were rather short-

lived, with average duration of 330 ± 30 ms (Fig. 5.2D). These values are remarkably 

similar to those reported in Chapter 4 when estimating the transient confinement regions 

experienced by wt-DC-SIGN. In order to understand the nature of these trapping events, 

we attempted to fit their distribution by means of both an exponential and a power law 

distribution function ∼ t
−(1+β)

, as expected for CTRW (12). The power law pdf provided 

a better fit to the data, yielding an exponent β = 0.83 ± 0.05 (Fig. 5.2D), in agreement 

with the value obtained for the E-MSD. While a power-law distribution of trapping 

event durations would be compatible with the behavior expected for the CTRW, it is 

unlikely that these can have a major role in the ergodicity breaking we observe, given 

their very small probability of occurrence. We notice here that various other models 

predict a similar scaling of the trapping times; one such example will be discussed in 

detail later. To quantify to what extent the small percentage of trapping events actually 

influences the nonergodic behavior, we calculated the E-MSD excluding completely the 

trajectories showing events compatible with immobilization, even if these are transient 
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ones. Interestingly, this analysis provided an exponent β = 0.84 ± 0.04 exactly 

coinciding with the value obtained for the full set of trajectories (Fig. 5.2D), thus 

confirming that trapping alone cannot account for the ergodicity breaking we observe in 

wt-DC-SIGN dynamics. 

 

 

Figure 5.2 wt-DC-SIGN receptor dynamics is inconsistent with the CTRW model. (A) 

A trajectory of wt-DC-SIGN on living cell membranes showing a short-lived transient 

immobilization event, highlighted by the yellow circular area. (B) Plot of the x- (blue) 

and y-displacements (red) as a function of time. The occurrence of transient 

immobilization (yellow region) corresponds to a reduction in the trajectory 

displacement. (C) Time-averaged MSD for the entire trajectory (■) and for the 

immobilization region only (o). (D) Survivor function of the duration of immobilization 

events for wt-DC-SIGN trajectories (black line). Blue and red lines correspond to fits to 

exponential and power-law distribution functions. (E) Schematic representation of the 

calculation of the escape time probability from circular areas of different radius RTH . 

(F) Cumulative probability distribution function (cdf) of trajectory escape time for 

different radii RTH =20 (o), 50 (  ), 100 (□), 200 (  ), 300 (•), 500 (  ) and to 1000 nm (■). 

Dashed lines are guides to the eye. The gray shaded region represents times shorter than 

the acquisition frame rate. 

 

In addition, we constructed the distribution of escape times by identifying the duration 

of the events in which a trajectory remains within a given radius RTH (Fig. 5.2E). For a 
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CTRW, the long-time dynamics is dominated by anomalous trapping events, and as a 

result this quantity is expected to be independent of RTH (12). In strong contrast to the 

CTRW model, the escape-time distributions of DC-SIGN trajectories showed a marked 

dependence on RTH (Fig. 5.2F). The rare occurrence of transient trapping events, the 

lack of long immobilization times, the dependence of escape-time distributions on RTH 

and, most importantly, the fact that T-MSD and E-MSD show very different scaling 

even when the few trajectories showing immobilization are removed from the analysis, 

are all inconsistent with CTRW, indicating that the main features of wt-DC-SIGN 

dynamics may not be explained in terms of this model. 

 

DC-SIGN displays changes of diffusivity. Recently, diffusion maps of the cell 

membrane have shown the presence of patches with strongly varying diffusivity (31, 42, 

43). Based on this evidence, we have recently proposed a class of models describing 

ordinary Brownian motion with a diffusivity that varies randomly, but is constant on 

time intervals or spatial patches with random size (30). These models describe 

anomalous diffusion and wEB in complex and heterogeneous media, such as the cellular 

environment, without invoking transient trapping.  

 

To address whether the observed nonergodic dynamics of wt-DC-SIGN can be 

described with this theoretical framework, we further analyzed individual trajectories by 

means of a change-point algorithm to detect variations of diffusivity in time (39). In 

brief, the algorithm consists in a likelihood-based approach to quantitatively recover 

time-dependent changes in diffusivity, based on the calculation of maximum likelihood 

estimators for the determination of diffusion coefficients and the application of a 

likelihood ratio test for the localization of the changes. Notably, DC-SIGN trajectories 

displayed a Brownian motion with relatively constant diffusivity over intervals of 

varying length, but that changed significantly between these intervals (Fig. 5.3A-C). 

Similar features were identified in a large fraction of trajectories, with 63% showing at 

least one diffusivity change (Fig. 5.3D), in qualitative agreement with the models of 

random diffusivity (30). 

 

To obtain a comprehensive understanding of our data, we considered an annealed model 

in which randomly diffusing particles undergo sudden changes of diffusion coefficient 

(30). The distribution of diffusion coefficients D that a particle can experience is 

assumed to have a power-law behavior ∼ D
σ−1

 for small D (with σ > 0) and a fast decay 

for D → ∞. Given D, the transit time τ (i.e., the time τ a particle moves with a given D) 

is taken to have a probability distribution with mean ∼ D
−γ

 (with −∞ < γ < ∞). Since the  
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Figure 5.3 wt-DC-SIGN motion experiences changes in diffusivity. (A) Representative 

wt-DC-SIGN trajectory displaying changes of diffusivity. Change-point analysis 

evidenced 5 different regions represented with different colors. (B) Plot of the x- (blue) 

and y-displacement (red) for the trajectory in (A) as a function of time. The shaded 

areas indicate the regions of different diffusivity. The lower panel displays the 

corresponding short-time diffusion coefficient as obtained from a linear fit of the time-

averaged MSD for the 5 different regions. Gray areas correspond to the 95% confidence 

level. (C) Plot of time-averaged MSD versus time lag for the first three regions of the 

trajectory in (A). (D) Histogram of the number of changes of diffusion per trajectory. 

Most of the trajectories (63%) display at least one dynamical change, with an average of 

2.2 changes per trajectory. 

 

motion during the transit time τ is Brownian, particles explore areas with radius r ∼ √( 
D, and the radius of the region explored with such diffusion coefficient has probability 

distribution with mean ∼ D
(1− γ)/2

. Depending on the values of the exponents σ and γ, this 

model predicts three regimes (30), namely: (0) for γ < σ, the long-time dynamics is 

compatible with ordinary Brownian motion and yields an E-MSD exponent β = 1; (I) 

for σ < γ < σ + 1, the average transit time τ diverges and particles undergo nonergodic 

subdiffusion with β = σ/γ; (II) for γ > σ + 1, both the average transit time τ and the 

average radius r of the explored area diverge and one obtains nonergodic subdiffusion 

with β = 1 − 1/γ. On the other hand, the T-MSD predicted by this model always remains 

linear in time, for every choice of σ and γ. 
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We performed in-silico experiments of 2D diffusion (Fig. 5.4A-B), assuming a 

distribution of diffusion coefficients D given by: 

 

 

)*(+� =
*,-./-0/2

3,Г(5�
                                                                 (4) 

 

and a conditional distribution of transit times τ given by: 
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where b and k are dimensional constants and Γ(x) is the Gamma function. The 

functional form of these two joint distributions is the minimal one complying with the 

requirements of our model, while at the same time it is the one ensuring the minimal 

number of free parameters, making these a natural choice for our theoretical analysis. 

However, we note here that the asymptotic behavior of the model is actually 

independent from the specific functional form of the joint distributions. We performed 

simulations for different values of σ, with γ = σ/β as in regime (I), and β = 0.84, the 

exponent obtained from the experimental E-MSD. The simulations quantitatively 

reproduce not only subdiffusion, nonergodicity and aging, but also the heterogeneous 

distribution of diffusion coefficients and escape time distributions (Fig. 5.4C-H). The 

remarkable agreement between simulations and experimental data strongly supports 

heterogeneous diffusion as the origin for DC-SIGN nonergodicity.  

 

It must be noticed that, in contrast to CTRW, our model does not assume particle 

immobilization, but a continuous distribution of diffusivity, with PD (D) ∼ D
σ−1

 for 

small D. However, from the experimental point of view, it is not possible to distinguish 

immobilization events from very slow diffusion. In fact, the limited localization 

accuracy of SPT experiments translates into a lower limit for the diffusivity value Dth 

that can be detected. Therefore trajectories, or portion of trajectories, with diffusivity 

lower than Dth are identified by our algorithm as immobile, as shown in Fig. 5.2A-B. 

From the model described above, the distribution of the duration of these ”apparent” 

immobilization events can be calculated as: 

 

)���((� = ; )*(+�)6((|+�<+
*&=
>                                         (6) 

 

We neglect here the possibility that the trajectory of an in-silico particle contains two 

consecutive segments characterized by diffusivities Di and Di+1 which are both smaller 

than Dth , as this probability is vanishingly small for the parameter regime of our setup. 



5. Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity 
 
 
 

125 

 

Independently of Dth , the integral in Eq. (6) scales asymptotically as τ 
−1−β

 with β =σ/γ 

providing for the distribution of immobilization events the same behavior as predicted 

by the CTRW (12). Therefore, the distribution of immobilization times in Fig. 5.2D is 

fully compatible with the prediction of our model, further confirming the agreement 

with the experimental data. 

 

 

 

 

Figure 5.4 Annealed model of heterogeneous diffusion quantitatively reproduces wt-

DC-SIGN motion. (A) A simulated trajectory composed by five time intervals with 

different transit time τi and diffusivity Di . (B) Contour plot of the probability 

distribution of the simulated diffusion coefficient D and transit time τ for the parameters 

reproducing the dynamics of wt-DC-SIGN (σ = 1.16, γ = 1.38, b = 0.12 µm
2
/s, k = 

0.10µm
2γ

 s
γ+1 

). The white line represents the power law dependence between diffusivity 

and average transit time with exponent −γ. (C) Log-log plot of the time-averaged MSD 

for simulated trajectories (black lines). (D) Log-log plot of the ensemble-averaged MSD 

for the simulated trajectories. The dashed line represents a power law with the 

theoretical exponent β = σ/γ = 0.84. (E) Log-log plot of the time-ensemble averaged 

diffusion coefficient as a function of the observation time T. The dashed line represents 

a power law with the theoretical exponent β − 1 = −0.16. (F) Simulated trajectories for 

the same recording time (3.2 s). (G) Distribution of short-time diffusion coefficients as 

obtained from linear fitting of the time-averaged MSD for all the simulated trajectories. 

(H) cdf of trajectory escape time for different radii. Curves from left to right correspond 

to radii RTH =20, 50, 100, 200, 300, 500 and1000 nm. 
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Dynamics of receptor mutants. To gain insight into the molecular mechanisms of DC-

SIGN nonergodic diffusion, we performed the same analysis described so far for the 

∆35, ∆Rep and N80A mutants (Fig. 5.5A). As described in Chapters 3 and 4, each of 

the mutants is not able to interact with certain cellular components  such as the actin 

cytoskeleton, clathrin coated pits (∆35-DC-SIGN) or the glycan network (N80A 

mutant) (41,44,45,46). Moreover, the ∆Rep mutant lacks part of the neck region, 

abrogating interactions between different DC-SIGN molecules and nanoclustering, as 

shown in Chapters 3 and 4 (47). 

 

We found that each mutation has a very different effect on the dynamics of the receptor. 

The N80A mutant (Fig. 5.5C-F) showed nonergodic subdiffusion, with an exponent β 

similar to the one measured for wt-DC-SIGN. However, N80A showed a significantly 

larger extent of heterogeneity in the diffusion coefficients distribution, with a lower 

median diffusivity. The ∆35 mutant (Fig. 5.5G-L) also showed nonergodic subdiffusion. 

The anomalous exponent and the distribution of the diffusion coefficients were similar 

to that of wt-DC-SIGN, with only a slight reduction in median diffusivity. We 

accurately reproduced N80A and ∆35 dynamics by simulations performed in regime (I), 

i.e., nonergodic subdiffusion, using comparable values of γ for wt-DC-SIGN and ∆35, 

and a smaller value of γ for N80A (Fig. 5.5B). On the other hand, ∆Rep dynamics yield 

ergodic Brownian diffusion (Figs. 5.5M-P) and a narrower distribution of diffusivity 

with the median value significantly higher than for WT DC-SIGN. Consistently, the 

behavior of ∆Rep is fully captured by in silico experiments in regime (0), i.e., ordinary 

Brownian motion. 

 

Nonergodicity and biological function. Together with Chapter 3 and 4, the data and 

analysis presented in this Chapter allow us to link the dynamical behavior of DC-SIGN 

to its functional role in pathogen capture and uptake. In terms of steady-state 

organization, wt-DC-SIGN, N80A and ∆35- preferentially form nanoclusters on the cell 

membrane, which are crucial for regulating pathogen binding (41, 47), whereas removal 

of the neck region (∆Rep) reduces nanoclustering and binding efficiency to small 

pathogens, such as viruses (47). Our results thus show that the diffusive behavior of the 

receptor is strongly linked to nanoclustering, but not merely due to size-dependent 

diffusivity and/or time-dependent cluster formation and breakdown. In fact, as shown in 

Chapter 4, dual-color SPT experiments performed at high labeling density did not reveal 

correlated motion between nearby DC-SIGN nanoclusters, excluding the occurrence of 

dynamic nanocluster coalescence (41). Moreover, although super-resolution imaging 

has revealed that wt-DC-SIGN, N80A and ∆35- form nanoclusters with similar 

distributions of size and stoichiometry (41, 47), our dynamical data evidence significant 

differences in their diffusion patterns (Figs. 5.1 and 5.5). 
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Figure 5.5 Effect of mutations on the dynamics of DC-SIGN. (A) Schematic 

representation of wt-DC-SIGN and its mutated forms. (B) Contour plot of the 

probability distribution of the simulated diffusion coefficient (D) and transit time (τ) for 

the parameters reproducing the dynamics of N80A (σ = 0.58, γ = 0.68, b = 0.09µm
2
/s, k 

= 0.74µm
2γ

 s
γ+1

 ), ∆35 (σ = 1.04, γ = 1.23, b = 0.08µm
2
/s, k = 0.07µm

2γ
s

γ+1
) and ∆Rep (σ 

= 2.11, γ = 1.91, b = 0.07µm
2
/s, k = 0.07µm

2γ
s

γ+1
). The white line represents the power 

law dependence between diffusivity and average transit time with exponent −γ. (C) Log-

log plot of the ensemble-averaged MSD for N80A trajectories (•) and simulated data 

(+). (D) Log-log plot of the time-ensemble averaged diffusion coefficient for N80A 

trajectories (•) and simulated data (+) as a function of the observation time T. (E) 

Distribution of short-time diffusion coefficients as obtained from linear fitting of the 

time-averaged MSD for the N80A (filled bars) and the simulated trajectories (empty 

bars). (F) cdf of the escape time for N80A (symbols) and simulated trajectories (lines) 

for different radii. The meaning of the symbols is the same as in Fig. 5.2F. (G-L) 

Dynamical behavior of the ∆35 mutant. (M-P) Dynamical behavior of the ∆Rep mutant. 

 

Our data are in fact consistent with the view of the plasma membrane as being a highly 

dynamic and heterogeneous medium, where wEB stems from the enhanced ability of 

DC-SIGN nanoclusters to interact with the membrane environment, including 
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components from the outer and inner membrane leaflet. This interaction is inhibited (or 

strongly reduced) in the case of the ∆Rep mutant since it does not form nanoclusters 

(47). As a result, the motion of ∆Rep is Brownian and ergodic, and interestingly this 

dynamic behavior correlates with its impaired pathogen binding capability (33, 47). 

 

In contrast, we observed that both wt-DC-SIGN and N80A, which show a similar 

degree of nanoclustering (41), exhibit wEB. But, the distribution of diffusivity of N80A 

is significantly broader than that of wt-DC-SIGN, and is shifted towards lower 

diffusivity values (Fig. 5.5C-F). This increased heterogeneity correlates with altered 

interactions of the N80A with extracellular components, resulting from the removal of 

the glycosylation site. Indeed, as shown in Chapter 4, the N80A mutant has a reduced 

capability to interact with extracellular sugar binding partners (41). Thus, it appears that 

the extracellular milieu next to the membrane contributes to the degree of dynamical 

heterogeneity sensed by the receptor. Remarkably, this correlation also extends to the 

functional level, as we also showed in Chapter 4 that interactions of DC-SIGN with 

extracellular sugar-binding proteins influence encounters of DC-SIGN with the main 

endocytic protein clathrin. In turn, this resulted in reduced clathrin-dependent 

endocytosis of the receptor and its pathogenic ligands (41). 

 

Finally, the ∆35 mutant exhibits nanoclustering (47) and wEB similar to that of wt-DC- 

SIGN. From the biological point of view, however, this mutant is not able to interact 

with cytosolic components in close proximity to the inner membrane leaflet, including 

actin (46). Therefore, in contrast to the extracellular influence, observed for the N80A 

mutant, the results of ∆35 mutant indicate that interactions with the actin cytoskeleton, 

responsible for the CTRW-like behavior of other proteins (12), do not play a major role 

in DC-SIGN wEB. Nevertheless, it should be mentioned that the reduced endocytic 

capability of ∆35 (46) could not be uniquely attributed to its dynamic behavior on the 

cell membrane but rather to its impaired interaction with downstream partners involved 

in internalization (39). 

 

Discussion 

 

We have demonstrated that DC-SIGN displays subdiffusive dynamics, characterized by 

weak ergodicity breaking and aging. In contrast to other biological systems, receptor 

trajectories do not show significant evidence of transient immobilization with power-

law distributed waiting times. Therefore, its nonergodic behavior cannot be explained in 

terms of the CTRW model. However, DC-SIGN dynamics is highly heterogeneous, 

with trajectories often displaying sudden changes of diffusivity. These features are 

accurately described by a novel model of ordinary diffusion in complex media, strongly 
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suggesting inhomogeneous diffusivity as the cause of DC-SIGN nonergodic behavior. 

Comparative analysis of three mutated forms of DC-SIGN evidences the importance of 

specific regions of the receptor structure, known to mediate interactions with other 

molecules, in receptor dynamics. Since the mutations of these regions differently impair 

receptor function, the experiments allowed us to establish the relevance of 

nonergodicity for the regulation of functional mechanisms, such as capacity for 

pathogen recognition and internalization. 

 

The evidence that temporal and/or spatial disorder induces subdiffusion and wEB agrees 

remarkably well with the current view of the plasma membrane as an extremely 

complex environment. Here, precise tuning of the spatiotemporal organization of 

membrane components, in addition to biochemical interactions with molecules in the 

inner and outer membrane leaflet, orchestrate the triggering of cell signaling pathways. 

A detailed understanding of how these specific interactions occur and affect dynamics is 

still lacking. Future experiments, involving simultaneous tracking of several proteins by 

means of multicolor SPT (42) might provide a deeper comprehension of these 

mechanisms at the molecular level. 

 

The model used to interpret our data provides a flexible and realistic framework to 

describe anomalous motion in cell membranes. Although in the present work we have 

focused our simulations on time-dependent changes of diffusivity, similar conclusions 

can be obtained assuming a spatial dependence, with constant diffusivity on membrane 

patches of random size (30). The current data do not allow discrimination between the 

two scenarios. The application of techniques that combine dynamic and spatial mapping 

at high labeling conditions (43, 48) would be necessary to verify the occurrence of 

spatial maps of diffusivity. In addition, numerical simulations of spatial-dependent 

random diffusivity require the arrangement of a 2-dimensional geometry consistent with 

the probability density of diffusivity, which is a non-trivial task. 

 

While the work presented here focuses on the cell plasma membrane, we point out that 

these results have much broader implications. In fact, our model and analysis are very 

general and can be applied to any diffusive system that shows wEB, in order to 

investigate the role that heterogeneous diffusivity plays in observed anomalies. 

Fundamental questions about the nature of anomalous and nonergodic diffusion in 

disordered media arise in many fields, such as life sciences (25), soft condensed matter 

(49, 50), ultracold gases (51, 52), geology (53) and ecology (54). 
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Materials & Methods 

 

Single particle tracking experiments. We performed video microscopy using a custom 

single-molecule sensitive epi-fluorescence microscope. SPT was performed on the 

dorsal membrane of CHO cells at 60 Hz as explained in Chapter 2. 

 

Data analysis. Time-, ensemble- and time-ensemble-averaged mean-squared 

displacements were calculated as described in (12). Exponents of the E-MSD and Dt,ens 

were obtained by linear fitting of the log-log transformed data. Errors were calculated as 

the 99% confidence interval of the fitting parameters. Short-time diffusion coefficients 

were extracted from the linear fit of the first 10% of the points of T-MSD curves [35]. 

 

Dynamical changes in the motion of DC-SIGN receptors were identified by application 

of the change-point algorithm described in Ref. (39). In brief, the trajectories were 

recursively segmented and a maximum-likelihood-ratio test was applied to the trajectory 

displacements (∆x, ∆y) in order to identify sudden changes of diffusivity. The critical 

values for Type I error rates were set to a confidence level of 99%, corresponding to 1% 

probability of having a false-positive identification of a change-point. For each 

dynamical region identified by the algorithm, the short-time diffusion coefficient was 

calculated from a linear fit of the first 10% of the points of the corresponding MSD 

curves (35). Regions showing a short-time diffusion coefficient lower than Dth were 

considered compatible with transient immobilization. 

 

Simulations. Simulated trajectories (500 per parameter set) were obtained by 

generating random diffusion coefficients D according to the probability distribution 

given in Eq. (4). For each diffusion coefficient, the corresponding transit time τ was 

calculated as a random number drawn from the distribution given in Eq. (5). Particle 

coordinates r = {x, y} were generated as: 

 

 

?@A∆@B = ?@ + √2+∆�′E                                                    (7) 

where ξ = {ξx , ξy } are pairs of random numbers from a Gaussian distribution with zero 

mean and unitary standard deviation. The time increment was calculated as ∆t’ = ∆t/n, 

where ∆t is the camera acquisition rate and n is a integer depending on D and τ , chosen 

in order to have at least 10 points for each interval. For comparison with SPT data, 

trajectories were sub-sampled at the camera acquisition rate. Simulated trajectory were 

generated with duration Tsim >> Texp, where Texp is the duration of the experimental 

trajectory. The starting point was randomly drawn from a uniform distribution defined 

within 0 and Tsim − Texp . Trajectories were then cut to have the same duration Texp as the 
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experimental ones. Gaussian noise corresponding to the experimental localization 

accuracy (σacc = 20 nm) was subsequently added to the trajectories. 
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Chapter 6 

 

The actin cytoskeleton modulates the activation of 

iNKT cells by segregating CD1d nanoclusters on 

the cell membrane 

 

In the previous Chapters of this thesis, we have focused in addressing the role of the 

spatiotemporal behavior of DC-SIGN in controlling its function on the cell membrane of 

antigen presenting cells. In this Chapter, we focus on the spatiotemporal behavior of the 

antigen presenting protein CD1d. The aim of choosing an antigen protein, complementary 

to a receptor such as DC-SIGN, is to demonstrate that the spatiotemporal behavior of a 

protein on the cell membrane of a leukocyte can control the outcome of an immune reaction 

as a general principle in human immunology. By using super-resolution nanoscopy and 

dual-color single particle tracking, we demonstrate that CD1d molecules form nanoclusters 

at the surface of antigen presenting cells (APCs), whose size, density and lateral mobility is 

constrained by interactions between CD1d cytosolic tail and the actin cytoskeleton. 

Formation of larger nanoclusters upon disruption of actin cytoskeleton interactions 

enhances invariant Natural Killer T (iNKT) cell activation. Importantly, and consistently 

with iNKT cell activation during inflammatory conditions, exposure of APCs to the TLR7/8 

agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results 

define a novel mechanism that modulates iNKT cell autoreactivity based on the tight control 

by the APC cytoskeleton of the sizes and densities of endogenous antigen loaded CD1d 

nanoclusters. 

 

 

 

 

 

 

 

 

This work is currently under review in Immunity: J.A. Torreno-Pina, C. Manzo, M. Salio, M. Aichinger, V. 
Cerundolo, M.F. Garcia-Parajo, “The Actin Cytoskeleton down-regulates the activation of NKT cells by 

segregating CD1d nanoclusters on antigen presenting cells”. 
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Introduction 

It is well established that different populations of T lymphocytes can recognize not only 

peptides in the context of MHC class I and class II molecules, but also foreign and self-

lipids in association with CD1 proteins (1), antigen-presenting molecules which share 

structural similarities with MHC-class I molecules (Fig. 6.1). Of the five CD1 isoforms, 

CD1d restricts the activity of a family of cells known as invariant Natural Killer T 

(iNKT) cells, because of their semi-invariant T Cell Receptor (TCR) usage (2). To date, 

the exogenous glycolipid α-GalactosylCeramide (α-GalCer) represents the strongest 

CD1d-restricted agonist for iNKT cells (3). Unlike conventional peptide specific T 

cells, iNKT cells react against CD1d
+
 antigen presenting cells (APCs) in the absence of 

exogenous antigens, a feature defined as autoreactivity (4). iNKT cell autoreactivity 

underpins the constitutive memory phenotype of iNKT cells and their ability to be 

activated during a variety of immune responses, from infections to cancer and 

autoimmunity (1). Some of the endogenous antigens known to elicit iNKT cell 

autoreactivity belong to glycosphingolipid families, with a mix of α and β anomeric 

configurations (5-8). How iNKT cell autoreactivity is fine-tuned to prevent 

autoimmunity is subject of much investigation. Previous results have shown that 

exposure of APCs to TLR agonists enhances iNKT cell autoreactivity (9,10), consistent 

with the proposed mechanism by which ligand availability is regulated by lysosomal 

glycosidases (5,7).   

 

The recent application of advanced optical techniques (11-19) in combination with 

substrate patterning and functionalization (20-22) is providing detailed information on 

how the lateral organization of a variety of molecules located on both sides of the 

immunological synapse contributes to controlling T cell activation (23-25). Specifically, 

single molecule dynamic approaches and super-resolution optical nanoscopy 

experiments have provided indisputable proof that many receptors on the cell membrane  

 

Figure 6.1 Unlike classical peptide 

presenting MHC complexes, CD1d 

presents glycolipid antigens to 

iNKT cells (adapted from Van Kaer 

(26)). Moreover, CD1d can prime 

iNKT cells by presenting self-lipids 

under inflammatory conditions via 

Toll-like receptor stimulation. 

  

 

 

organize in small nanoclusters prior to ligand activation as described in Chapter 1 (27). 

Membrane nanodomains enriched in cholesterol and sphingolipids (28), protein-protein 
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interactions (29) and interactions between transmembrane proteins and the cytoskeleton 

(29-32) have been all implicated in regulating receptor dynamics and nanoclustering. 

An emerging concept attributes the actin cytoskeleton the ability of imposing barriers or 

fences on the cell membrane restricting the lateral mobility of transmembrane proteins 

(30,33). This transient restriction would in turn increase the local concentration of 

transmembrane proteins leading to protein nanoclusters. For instance, it has been shown 

that the actin cytoskeleton promotes the dimerization rate of EGF receptors by monomer 

co-confinement and facilitates ligand binding and signaling activation (29,31). 

Confinement of CD36 has also been observed as a result of its diffusion along linear 

channels dependent on the integrity of the actin cytoskeleton (34). This constrained 

diffusion promotes CD36 clustering, influencing CD36-mediated signaling and 

internalization. A similar mechanism has been proposed for the maintenance of MHCI 

clusters on the cell membrane by the actin cytoskeleton, with loss of MHCI clustering 

resulting in a decreased CD8-T Cell activation (35-37). Recent confocal microscopy 

studies have revealed that the association between agonist loaded-CD1d molecules and 

lipid rafts might contribute to the regulation of iNKT cell activation (38). This elegant 

study for the first time linked the spatial organization of CD1d molecules using standard 

fluorescence microscopy on the cell membrane of APCs with the activation profile of 

iNKT cells. However, it remains unclear whether the results of these experiments 

obtained using mouse cells can be extended to human cells and whether further insights 

can be obtained by using higher resolution microscopy. Indeed, it is not yet known 

whether CD1d molecules exist as monomers or as nanoclusters and whether the actin 

cytoskeleton might regulate CD1d lateral organization and iNKT cell activation.  

 

In this Chapter, we describe the combination of dual-color single molecule dynamic 

approaches with super-resolution optical nanoscopy to characterize for the first time the 

spatiotemporal behavior of CD1d on living human myeloid cells. We find that α-GalCer 

loaded human CD1d (hCD1d) molecules are organized in nanoclusters on the cell 

membrane of APCs. We report that the actin cytoskeleton prevents enhanced hCD1d 

nanoclustering by hindering physical encountering between hCD1d diffusing 

nanoclusters, thus reducing basal iNKT cell activation. Furthermore, we observed an 

increase in nanocluster density upon activation of APCs with inflammatory stimuli, 

such as Toll like receptor (TLR) stimulation, mirroring the increased iNKT cell 

stimulation. Notably, even during inflammation the actin cytoskeleton retains an 

important role to limit hCD1d cluster size and iNKT cell activation. Overall, our results 

suggest that regulation of CD1d nanoclustering through the actin cytoskeleton 

represents a novel mechanism to fine tune peripheral iNKT cell autoreactivity. 
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Results 

 

The actin cytoskeleton regulates the mobility of αααα-GalCer loaded human CD1d 

molecules. To study the lateral behavior of CD1d on the cell membrane of APCs, we 

first performed high-speed single particle tracking (SPT) on the human myelomonocytic 

cell line THP-1, transduced with lentiviral vectors encoding human CD1d (hCD1d) 

molecules and pulsed with the iNKT cell agonist α-GalCer. α-GalCer loaded hCD1d 

molecules were labeled at low density using a conjugate consisting of an iNKT- T cell 

receptor (iNKT-TCR) (39,40) and a quantum dot (QD655) (Fig. 6.2A). To ensure a 

single iNKT-TCR per QD, the iNKT-TCR-QD conjugate was prepared in a 10x excess 

of free biotin to occlude QD excess binding sites. As further control to rule out any 

potential cross-linking effects induced by the QD multivalency, we also used the α-

GalCer-hCD1d specific Fab fragment (Fab9b) covalently attached to the small dye 

Atto647N (39,40). As a third control for the iNKT-TCR probe, α-GalCer loaded hCD1d 

molecules were also labeled using the monovalent anti-CD1d antibody (CD1d42) 

conjugated to a QD under similar excess of free biotin. THP-1 cells were imaged on the 

ventral side using total internal reflection fluorescence microscopy (TIRFM). Individual 

features were detected and tracked to generate mobility trajectories (Fig. 6.2B). 

Individual trajectories were analyzed using custom-made algorithms to derive their 

instantaneous diffusion coefficient at short diffusion times (time lags 2 to 4) D2-4 (Fig. 

6.2C-F). The median D2-4 from multiple trajectories of α-GalCer loaded hCD1d 

molecules labeled with the iNKT-TCR-QD conjugate on different cells was 0.029 µm
2
/s 

(Fig. 6.2C). Similar diffusion profiles and median diffusion coefficients were also 

obtained with Fab9b-Atto647N (Fig. 6.2C) or when labeling α-GalCer loaded hCD1d 

using the monovalent CD1d42-QD Ab (Fig. 6.3). Altogether, these controls 

demonstrate that the lateral mobility of α-GalCer loaded hCD1d molecules is not 

affected by the iNKT-TCR-QD conjugate used throughout this study. 

 

To address the potential role of the actin cytoskeleton in regulating the lateral mobility 

of CD1d on the cell membrane of APCs, we then treated THP-1 cells with the actin 

cytoskeleton-perturbing drug CytochalasinD (CytoD) (32). CytoD treatment at a 

concentration of 10 µM for 60 min resulted in a nearly three-fold reduction in the 

instantaneous mobility of α-GalCer loaded hCD1d with a median D2-4 of 0.011 µm
2
/s 

(Fig. 6.2D). Cell viability was not compromised under these conditions, as shown by 

propidium iodide staining (Fig. 6.4). Similar results were obtained when we followed 

the lateral mobility of α-GalCer loaded hCD1d molecules upon CytoD treatment using 

the monovalent CD1d42-QD Ab (Fig. 6.3). 
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It has previously been shown that treatment of cells with a range of cytoskeleton 

perturbing drugs increases the instantaneous mobility of receptors, such as the FcɛRI 

receptor (30) and the B-Cell receptor (32), which has been accounted for by the 

breaking of actin barriers, which otherwise restrict the diffusion of receptors on the 

plasma membrane. To enquire whether the unexpectedly observed reduced mobility of  

 

Figure 6.2 The actin cytoskeleton affects the mobility of hCD1d molecules on the 

surface of APCs. (A) Schematic illustration of the labeling procedure. (Left) α-GalCer 

loaded hCD1d (blue) were labeled using a conjugate of an iNKT-TCR (light and dark 

green) and a QD (red). (Right) Unpulsed hCD1d molecules were labeled using a 

monovalent anti-CD1d42 Ab conjugated to a QD. Not to scale. (B) Selected TIRFM 

image of the ventral side of a α-GalCer pulsed THP-1 cell displaying individual iNKT-

TCR-QD-labeled hCD1d molecules (red) on the cell membrane. Representative 2D 

trajectories (white) are overlaid on the raw image (frame rate=100 Hz). (C) 

Distributions of the D2-4 values of α-GalCer loaded hCD1d labeled with the iNKT-

TCR-QD conjugate or with Fab9b-Atto647N. (D,E) Distributions of the D2-4 values for 

α-GalCer-pulsed (D) or unpulsed (E) THP-1 cells treated with 10 µM CytoD or 

expressing TD-hCD1d mutant molecules. (F) Distribution of the D2-4 values of Gal-

GalCer loaded hCD1d, after treatment with 10 µM CytoD or expressing TD-hCD1d 

mutant molecules. Data are representative from typically 200 trajectories per condition 

(90 trajectories in the case of hCD1d labeled with Fab9b-Atto647N) from at least 25 

cells over 8 different experiments. *P<0.0001, NS: not significant (P>0.05) (Student’s t-

test). 

 

hCD1d molecules is CD1d specific or whether it results from an overall change of the 

membrane environment due to the CytoD treatment, we compared it with the mobility 

of CD71 molecules on THP-1 cells. In marked contrast to the behavior of hCD1d 

molecules and consistent with the literature (41), treatment of THP1 cells with 10 µM of 

CytoD led to a significant increase of CD71 diffusion (Fig. 6.5), indicating that the 
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observed reduced mobility of hCD1d is specific. Finally, to rule out any other potential 

secondary effects induced by CytoD, we measured the mobility of a cytoplasmic tail 

deleted hCD1d (TD-hCD1d) mutant, which lacks the final 10 amino acid residues 

including the AP-2 and AP-3 internalization motif and the lysine residue which is a tar- 

 

Figure 6.3 The iNKT-TCR-QD conjugate does 

not influence the mobility of α-GalCer loaded 

hCD1d on THP-1 cells. To rule out the 

possibility that the iNKT-TCR-QD conjugate 

influenced the lateral mobility of α-GalCer 

loaded hCD1d molecules, we performed an 

extra control experiment in addition to the Fab-

Atto647N labeling experiments shown in Fig. 

6.2C. Specifically, we labeled α-GalCer loaded 

hCD1d molecules with a monovalent anti-

CD1d42 Ab conjugated to a QD655 and found 

no difference in terms of hCD1d lateral 

mobility as compared to iNKT-TCR-QD 

labeling. Moreover, equal reduction of lateral 

mobility was observed after treating the cells 

with CytoD, using the two different probes, 

demonstrating that the iNKT-TCR does not 

have any influence in the mobility of hCD1d. At least 189 trajectories on 14 cells over 2 

different experiments per condition. NS: not significant (P>0.05) (Student’s t-test). 

 

get for ubiquitination (42). Consistent with the results obtained with CytoD treated 

THP-1 cells, the mobility of the α-GalCer loaded TD-hCD1d mutant was slower than 

that of α-GalCer loaded wild type (WT) hCD1d (Fig. 6.2D). 

 

Upon biosynthesis and egress from the ER, CD1d molecules reach the cell surface and 

continuously recycle through the endolysosomal compartment, where they sample 

different pools of self and foreign lipid antigens (43). While presentation of complex 

exogenous antigens requires CD1d molecules to traffic deep into the lysosomes (44), 

autoreactivity of human iNKT cells has been shown to have different requirements for 

CD1d lysosomal trafficking, possibly as a result of the different APCs used in the 

experiments (40,45). To test whether these different trafficking pathways have an influ- 

 

Figure 6.4 Cell 

viability was not 

compromised under 

CytoD treatemtent. 

Propidium iodide 

staining of (A) control, 

(B) DMSO and (C) 

CytoD treated THP1 

cells. 
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ence on the lateral mobility of human CD1d, we imaged unpulsed THP-1 cells and 

tracked hCD1d molecules labeled with anti-CD1d42-QD  (Fig. 6.2). The lateral 

mobility of unpulsed WT-hCD1d molecules was almost half of α-GalCer loaded 

molecules (Fig. 6.2E). In strong contrast to α-GalCer loaded molecules, however, the 

lateral mobility of unpulsed WT-hCD1d molecules was not affected by CytoD treatment 

(median D2-4 of 0.017 µm
2
/s compared to the control case of 0.015 µm

2
/s). Moreover, 

the mobility of the unpulsed TD-CD1d mutant modestly reduced 1.5-fold as compared 

to the WT counterpart (0.009 µm
2
/s) (Fig. 6.2E). These results therefore suggest that the  

 

 Figure 6.5 Reduction of hCD1d lateral 

mobility upon CytoD treatment is CD1d 

specific. To rule out the possibility that the 

strong CytoD treatment (10 µM, 60 min) 

to THP-1 cells could induce an overall 

change on the cell membrane affecting the 

mobility of all receptors, including hCD1d, 

we performed SPT of the transferrin 

receptor (CD71) whose mobility has been 

reported to increase upon perturbation of 

the actin cytoskeleton (41). CD71 was 

labeled using a monoclonal Ab against 

CD71 labeled with QD655. Changes in the 

lateral mobility of hCD1d upon CytoD 

treatment are hCD1d specific since the 

lateral mobility of CD71 on the cell 

membrane of THP-1 cells is increased 

using the same CytoD treatment, as 

opposed to the reduced mobility measured on α-GalCer loaded hCD1d labeled with 

iNKT-TCR-QD. Data on CD71 are representative from at least 194 trajectories, 9 cells 

and 2 different experiments. *P<0.0001 (Student’s t-test). 

 

mobility of hCD1d molecules differs depending on whether we sample molecules that 

have just reached the cell surface from the ER (i.e., unpulsed and thus presenting self-

lipids) or whether they have been recycling through the early and late endosomes. To 

further strengthen these observations, we analyzed the lateral mobility of WT-hCD1d 

and TD-hCD1d molecules loaded with Gal(α1->2)GalCer (hereafter referred to as Gal-

GalCer) which requires cleavage of the terminal galactose by α-galactosidase A in the 

lysosome for recognition by the iNKT-TCR (44). Recognition of this pool of hCD1d 

molecules by the iNKT-TCR-QD thus identifies a cohort of hCD1d molecules that has 

exclusively trafficked through the endolysosomes and recycled back to the cell surface. 

These experiments indicated that the lateral mobility of Gal-GalCer loaded hCD1d 

molecules was significantly reduced upon CytoD treatment or deletion of the cytosolic 

tail (Fig. 6.2F), in analogy to the results obtained for α-GalCer loaded hCD1d. 

Altogether, these results demonstrate that in the absence of interactions between CD1d 
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molecules and the actin cytoskeleton, the lateral mobility of hCD1d recycled through 

the endosomes is drastically reduced. 

 

The actin cytoskeleton regulates the nanoclustering of αααα-GalCer loaded hCD1d 

molecules. Previous reports indicate that the actin cytoskeleton regulates the lateral 

organization and nanoclustering of receptors on the cell membrane (34,46). Given the 

marked effect of the actin cytoskeleton on the lateral mobility of hCD1d molecules that 

traffic through endosomes, we thought to visualize the nanoscale organization of 

unpulsed and α-GalCer loaded hCD1d on the surface of THP-1 cells using stimulated 

emission depletion (STED) nanoscopy (47,48). We focused on WT-hCD1d and the TD-

hCD1d mutant since SPT experiments showed a significant difference in their lateral 

mobility. STED images of anti-CD1d42 labeled hCD1d were performed on the dorsal 

side of fixed THP-1 cells. Images were analyzed using a custom-made algorithm based 

on Bayesian inference of the fluorescence intensity distribution as described in Chapter 

2, improving data quantification and increasing the effective resolution beyond that of 

STED raw images (49). Interestingly, α-GalCer loaded WT-hCD1d molecules formed 

small nanoclusters on the surface of THP-1 cells with a median cluster size of 78 nm, 

containing 3.8 median number of hCD1d molecules/cluster (Fig. 6.6A-C) resulting in a 

nanocluster density of  ~75 hCD1d/µm
2
 (Fig. 6.6D). Unpulsed WT-hCD1d molecules 

also formed nanoclusters on the cell surface of THP-1 with comparable nanocluster 

density to α-GalCer loaded hCD1d (Fig. 6.6D). To rule out the possibility that 

nanoclustering results from the enhanced expression of hCD1d on transduced THP-1 

cells, we imaged hCD1d on blood-derived primary human CD14
+
 monocytes. Analysis 

of STED images confirmed the presence of hCD1d nanoclusters, albeit being smaller in 

size (49 nm as median cluster size) compared to THP-1 cells (Fig. 6.7). These data 

demonstrate that hCD1d forms nanoclusters on the plasma membrane of APCs. 

 

Remarkably, α-GalCer loaded TD-hCD1d molecules, lacking the cytoplasmic tail, 

showed significantly larger and denser nanoclusters with a molecular density nearly 

three-fold higher (197 ± 17 hCD1d/µm
2
) than α-GalCer loaded WT-hCD1d (Fig. 6.6E-

G). In contrast, although self-lipid loaded TD-hCD1d molecules displayed slightly 

larger nanoclusters compared to self-lipid loaded WT-hCD1d molecules, no significant 

difference in molecular density was observed (Fig. 6.6H-J). Since truncation of the 

cytoplasmic tail leads to larger nanoclusters, the STED data indicate that α-GalCer 

loaded hCD1d nanocluster size and density are tightly regulated by the actin 

cytoskeleton. Importantly and consistent with our SPT results, the increased 

nanoclustering of α-GalCer loaded TD-hCD1d directly correlates with its reduced 

mobility on the membrane (Fig. 2D). Moreover, the lack of changes in nanocluster 

density on unpulsed TD-hCD1d compared to WT-hCD1d indicates once more that the 
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effect of the actin cytoskeleton on hCD1d organization is predominantly on the pool of 

molecules that has trafficked through the lysosome. Consistent with these observations,  

 

Figure 6.6 The actin cytoskeleton regulates the nanoclustering of α-GalCer loaded 

hCD1d on the plasma membrane of APCs.  (A) STED images of α-GalCer pulsed (left) 

and unpulsed (right) THP-1 cells transfected with WT-hCD1d (upper) or TD-hCD1d 

(lower) mutant. Cells were stretched onto PLL-coated coverslips and labeled with anti-

CD1d42 Ab. (B,E,H) Cluster size distribution, (C,F,I) distribution of the number of 

hCD1d molecules per cluster and (D,G,J) scatterplots of number of hCD1d molecules 

per cluster vs. cluster area corresponding to the quantification of the STED images. 

STED nanoscopy data are representative from at least 45 different images per condition, 

of 3x3 µm in size from at least 2 different experiments. *P<0.0001 and **P<1•10-7 

(Student’s t-test). 

 

Gal-GalCer loaded TD-hCD1d also formed larger nanoclusters with increased density 

compared to Gal-GalCer loaded WT-hCD1d molecules (Fig. 6.8). 

 

Figure 6.7 CD1d forms nanoclusters on 

the cell membrane of human monocytes. 

(A) Representative STED image of 

hCD1d on the cell membrane of 

monocytes. (B) Comparison between the 

correlation functions of the experimental 

data (blue) and corresponding Monte-

Carlo simulations (red) of CD1d 

molecules randomly organized on the cell 

membrane using the same particle density 

as the experimental data. (C) Comparison 

between the experimental CD1d cluster 

size (blue) and simulations of random 

organization (red). (D) Comparison 

between the number of molecules per 

cluster obtained on the experimental data (blue) and the simulations (red). Experimental 

and simulated data are representative from at least 52 different STED images of 3x3 µm 

in size belonging to at least 2 different experiments. *P<0.0001 (Student’s t-test). 
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Figure 6.8 The actin cytoskeleton regulates the nanoclustering degree of Gal-GalCer 

loaded hCD1d molecules on the cell membrane. (A) STED images of Gal-GalCer-

pulsed THP-1 cells transfected with WT-hCD1d  (left) or TD-hCD1d mutant (right). 

Cells were stretched onto PLL-coated coverslips and labeled with anti-CD1d42 Ab. (B) 

The cluster size of Gal-GalCer loaded TD-hCD1d nanoclusters is increased compared to 

Gal-GalCer loaded WT-hCD1d nanoclusters. (C) Strong increase in the number of 

hCD1d molecules per cluster when deleting the cytoplasmic tail of hCD1d. (D) 

Increased density of TD-hCD1d nanoclusters compared to WT-hCD1d nanoclusters. 

Analysis data correspond to at least 43 different STED images of 3x3 µm in size 

belonging to at least 2 different experiments. *P<0.001, **P<0.0001 (Student’s t-test). 

 

Perturbation of the actin cytoskeleton increases dynamic interactions between αααα-

GalCer loaded hCD1d nanoclusters. We hypothesized that the increased 

nanoclustering observed on α-GalCer loaded TD-hCD1d might result from dynamic 

encounters between individual nanoclusters that could favorably merge with each other 

in the absence of cytoskeleton interactions.  To test this possibility in living cells we 

applied dual color SPT. We labeled α-GalCer loaded hCD1d using two different QDs 

(Fig. 6.9A) at equimolar concentrations to increase the probability of detecting nano 

cluster interaction events (Fig. 6.9B), while allowing for single pair trajectory recording. 

Two-dimensional trajectories of spatially close QDs (red and green) were generated 

(Fig. 6.9C) and their separation distance was plotted vs. time (Fig. 6.9D). In the case of 

truly interacting nanoclusters, their separation distances should remain small (close to 

the nanocluster size) for periods longer than random encounter events. As expected, 

CytoD treatment of α-GalCer loaded WT-hCD1d and α-GalCer loaded TD-hCD1d 

showed significantly shorter separation distances over time compared to the untreated 

pulsed WT-hCD1d control (Fig. 6.9B,D,E) (median interparticle distance of 106 nm for 

CytoD treated cells, 130 nm for TD-hCD1d and 284 nm for the control case). These 

results were further validated by Monte-Carlo simulations of random encounters while 

accounting for the respective diffusion coefficients in the three different cases. The 
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shorter distances experimentally obtained as compared to the simulations (Fig. 6.9E) 

confirm real interactions between hCD1d nanoclusters upon perturbation of actin 

cytoskeleton interactions, following either CytoD treatment or removal of the hCD1d 

cytoplasmic tail. These sustained interactions (lasting at least 1s in our experiments) 

would effectively increase hCD1d nanoclustering in the absence of actin cytoskeleton 

interactions, consistent with the super-resolution data. 

 

 

 
Figure 6.9 The actin cytoskeleton regulates dynamic interactions between α-GalCer 

loaded hCD1d nanoclusters. (A) Schematic illustration of two α-GalCer loaded hCD1d 

molecules (blue) labeled with two different iNKT-TCR-QD-conjugates (green and red) 

at equimolar concentrations. Not to scale. (B) Magnified dual-color TIRFM images (1.9 

µm in size) displaying two diffusing hCD1d nanoclusters over time, for the control case 

(left column), CytoD treated samples (middle column) and the TD-hCD1d mutant (right 

column). White arrows indicate the starting time of the interaction. (C) Representative 

dual-color trajectories of two different hCD1d nanoclusters reconnected over a total 

observation time of 1s (frame rate: 30 Hz). (D) Separation distances of two α-GalCer 

loaded hCD1d nanoclusters over time for untreated WT–hCD1d (green), CytoD treated 

WT-hCD1d (red) and the TD-hCD1d mutant (blue). (E) Distributions of the 

interparticle distances from experimental data (color dots) together with Monte Carlo 

simulations of random encounters (gray dots). Data are representative of at least 20 

different trajectories on 9 different cells per condition over 6 different experiments. 

*P<0.0001 and **P<1•10-5 (Student’s t-test). 

 

The actin cytoskeleton spatiotemporally arrests diffusing αααα-GalCer loaded hCD1d 

nanoclusters on the cell membrane. The data presented so far indicate that the actin 

cytoskeleton somehow hinders dynamic interactions between hCD1d nanoclusters 

preventing their further coalescence into larger clusters. To directly visualize how actin  
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might accomplish such a role we performed dual-color TIRFM imaging of hCD1d and 

actin.  We used hCD1d transduced THP-1 cells expressing lifeact-GFP (50), a 

fluorescent marker of F-actin. We labeled individual α-GalCer loaded hCD1d 

nanoclusters with the iNKT-TCR-QD conjugate and followed their lateral mobility with 

respect to actin, as previously reported for other cell membrane receptors (30,32) (Fig. 

6.10A). Individual trajectories of diffusing WT-hCD1d nanoclusters were reconnected  

 

Figure 6.10 The actin 

cytoskeleton actively arrests 

diffusing α-GalCer loaded hCD1d 

nanoclusters on the cell 

membrane. (A) Snapshot of a 

dual-color TIRFM video 

displaying lifeact-GFP labeled 

actin (green) and α-GalCer loaded 

hCD1d nanoclusters (red). Scale 

bar: 2 µm. (B,C) Representative 

magnified TIRFM images at two 

different time sequences with an 

example of a 2D trajectory of α-

GalCer loaded hCD1d diffusing 

inside (black line) and outside 

(white line) actin-rich regions, 

with the diffusing particle 

outlined with a red-dashed circle. 

In panel (B) hCD1d is inside 

actin, while (C) shows the time 

sequence when hCD1d is outside 

actin. Scale bar: 500 nm. (D) 

Distributions of the D2-4 values for 

α-GalCer loaded hCD1d 

nanoclusters inside and outside 

high-actin regions. (E,F) 

Cumulated cartography maps 

containing 8000 localizations 

from α-GalCer loaded WT-

hCD1d (E) and TD-hCD1d (F) 

overlaid onto a lifeact-GFP TIRFM image. The white dots correspond to the different 

spatial positions explored by hCD1d during the observation time (20s). The pseudo-

colored image corresponds to the actin intensity, going from blue (actin-low) to red 

(actin-rich). The black filled arrows point to hCD1d diffusion on actin-poor regions, 

whereas empty-black arrows point to hCD1d diffusing close to actin-rich regions. Scale 

bar: 1 µm. SPT data from at least 87 trajectories on 30 different cells over 5 different 

experiments. *P<0.0001 (Student’s t-test). 

 

and superimposed on the actin image (Fig. 6.10B,C). Interestingly, WT-hCD1d 

nanoclusters exhibited a highly restricted mobility in actin-rich regions (Fig. 6.10B). In 

contrast, WT-hCD1d mobility increased in actin-poor regions (Fig. 6.10C). These 
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observations were substantiated by calculating the instantaneous mobility of individual 

trajectories inside and outside actin-rich regions. Indeed, WT-hCD1d nanoclusters 

displayed a remarkably slow diffusion inside actin-rich regions (median D2-4 = 0.0074 

µm
2
/s) compared to outside (D2-4 = 0.025 µm

2
/s), revealing that the actin cytoskeleton 

arrests mobile α-GalCer loaded hCD1d nanoclusters once they enter into actin-rich 

regions (Fig. 6.10D). 

 

To obtain a more robust quantification of the data we generated cartography maps of α-

GalCer loaded WT-hCD1d and α-GalCer loaded TD-hCD1d superimposed on actin 

fluorescence images. These maps provide the spatial positions of hCD1d nanoclusters 

as they dynamically explore the cell membrane in relation to actin, with a localization 

accuracy of 20nm (51) (Fig. 6.10E,F). Cartography maps of α-GalCer loaded WT-

hCD1d showed two different features: a) more dispersed localization positions outside 

actin regions resulting from its dynamic exploration of the cell membrane and; b) highly 

concentrated localization positions in actin-rich areas consistent with the arrest of the 

receptor in these regions (Fig. 6.10E). In contrast, no noticeable difference in terms of 

localization distribution with respect to actin was observed for α-GalCer loaded TD-

hCD1d (Fig. 6.10F), already suggesting that the dynamic exploration of α-GalCer 

loaded TD-hCD1d is actin-independent.  

 

To quantify these observations in a more robust way we developed an algorithm that 

computes the spatial localizations of CD1d as a function of the actin signal. 

Specifically, we generated two concentric circles with different radii R1 and R2 (R1=225 

nm and R2=1035 nm) and having each time a given localization of the cartography map 

as the center for both circles (Fig. 6.11A,B). The total number of localizations enclosed 

in each circle was then quantified; with N1 being the total number of localizations 

enclosed by circle R1 and N2 = (# of localizations in R2 – N1). Moreover, the mean raw 

fluorescence intensity value of actin (A1 and A2 from R1 and R2, respectively) enclosed 

by each radius was also extracted from the superimposition of the circles on top of the 

actin image. This procedure was repeated by positioning the center of the two 

concentric circles at each hCD1d localization value. Then, the behavior of WT-CD1d 

and TD-CD1d molecules with respect to the actin cytoskeleton was extracted by 

plotting the relative fraction of hCD1d localizations (N1/N2) against (A1-A2)/A1=∆Actin. 

Only cells with a similar expression of lifeact-GFP were selected for this analysis. WT-

hCD1d displayed a clear linear relationship between the number of localizations 

positions and the amount of actin, with a positive slope of 0.34 ± 0.03, indicating that 

higher number of WT-hCD1d localization positions directly correlates with higher 

values of actin intensity (Fig. 6.11C). This increased number of spatial positions in 

actin-rich areas means that the receptor explores multiple times the same region, 
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remaining spatiotemporally confined by actin. Together with the restricted mobility of 

WT-hCD1d observed on the actin-rich regions (Fig. 6.10D), these results prove that the 

actin cytoskeleton actively arrests WT-hCD1d nanoclusters on the cell membrane, 

preventing their further aggregation. In marked contrast, the number of localizations po- 

 

 

Figure 6.11 Quantification of cartography maps. At each given hCD1d localization 

position two concentric circles of radii R1 and R2 and drawn and the number of 

localization positions and actin intensity signal in each circle is measured to derive the 

fractional occurrence of localization positions as a function of actin intensity changes 

between the two circles. (A) Representative magnified cartography map of the spatial 

localization positions explored by hCD1d with respect to actin. (B) Illustration of the 

methodology used for data quantification. Notice that in this example, a large number of 

concentrated localizations are obtained on an actin-rich region delimited by the circle 

with radius R1, whereas more dispersed localizations are obtained within the circle of 

radius R2.  Scale bars are 1 µm. (C) Fractional occurrence of hCD1d localization 

positions vs. changes in actin intensity, ∆Actin for α-GalCer loaded WT-hCD1d (black) 

and α-GalCer loaded TD-hCD1d (red). Data were fitted with a straight line and the 

slope was obtained. Cartography maps data contain at least 8000 localizations. Analysis 

has been performed on 6 different cells and 3 different experiments per condition. 

 

sitions for TD-hCD1d shows only a weak dependence on actin (slope of 0.07 ± 0.08) 

(Fig. 6.11C) demonstrating no preferred interactions between TD-hCD1d and the actin 

cytoskeleton. 

 

Perturbation of the actin cytoskeleton of APCs results in enhanced iNKT cell 

activation. Given that perturbing actin cytoskeleton interactions resulted in enhanced α-

GalCer loaded hCD1d nanoclustering on APCs, we sought to address the consequences 

consequences of such altered spatiotemporal organization on iNKT cell activation (Fig. 

6.12). APCs were pulsed with different α-GalCer concentrations and treated with 

CytoD (10uM for 1h). APCs were then fixed and incubated with iNKT cells. IFN-γ 

production upon iNKT cell activation was measured by ELISA. Notably, CytoD-treated 

hCD1d-tranduced THP-1 cells (Fig. 6.12A) and CytoD-treated immature dendritic cells 

(Fig. 6.12B) elicited increased iNKT cell activation compared to untreated controls. The 

increase in IFN-γ production was not due to increased hCD1d expression upon CytoD 
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treatment (Fig. 6.12C). Interestingly, enhanced iNKT cell activation was more 

pronounced at low antigen dose (2.7 fold increase at 5 ng/ml compared to 1.2 fold 

increase at 150 ng/ml α-GalCer concentration) in agreement with other reports where 

nanoclustering of antigen presenting proteins have been shown to enhance more 

effectively T cell activation at low agonist densities (52,53).  

 

 

Figure 6.12 Perturbation of the actin 

cytoskeleton on α-GalCer pulsed 

APCs enhances iNKT cell activation. 

(A,B) IFN-γ production upon iNKT 

cell activation by (A) hCD1d 

transduced THP1 cells or (B) 

immature dendritic cells (imDCs), 

pulsed with the given α-GalCer 

concentrations overnight before 

treatment with CytoD. (C) 

Expression levels of hCD1d as 

measured by FACS after treating 

THP1 cells with CytoD (10 µM, 60 

min). (D) IFN-γ production upon 

iNKT cell activation by hCD1d 

THP1 cells stimulated with 10 µg/ml 

of TLR 7/8 ligand R848 for 30h 

before CytoD treatment. (•) Intensity 

value below the detection limit. Data 

are representative of 3 different 

experiments. *P<0.05, NS: not 

significant (P>0.05) (Student’s t-test). 

 

The actin cytoskeleton regulates hCD1d nanoclustering under inflammatory 

conditions. It has been described that innate stimuli, such as Toll-like receptor (TLR) 

stimulation, can trigger iNKT cell activation in a CD1d-dependent manner (9,10,40). To 

test whether perturbation of the actin cytoskeleton of APCs exposed to inflammatory 

conditions also resulted in enhanced iNKT cell activation, we treated hCD1d transduced 

THP-1 cells with the TLR7/8 ligand R848. After CytoD treatment and fixation, APCs 

were incubated with iNKT cells. Increased IFN-γ production by R848-matured CytoD 

treated WT-hCD1d THP1 cells was observed, in line with the results with lipid pulsed 

cells (Fig. 6.12D). Moreover, increased IFN-γ production was hCD1d-dependent since 

blocking with an anti-CD1d Ab resulted in total abrogation of iNKT cell activation. 

Altogether these results strongly indicate that the actin cytoskeleton of APCs controls 

the activation of iNKT cells under innate and adaptive stimuli. 
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Since perturbation of the actin cytoskeleton of APCs resulted in enhanced iNKT cell 

activation upon R848 treatment of THP1 cells, we next addressed whether the actin 

cytoskeleton regulates hCD1d nanoclustering under inflammatory conditions. We 

stimulated both WT-hCD1d and TD-hCD1d transduced cells with the TLR7/8 ligand 

R848, performed STED nanoscopy (Fig. 6.13A) and analyzed hCD1d cluster size and 

composition. Interestingly, R848 stimulated WT-hCD1d formed smaller nanoclusters 

(47 nm as median cluster size) (Fig. 6.13B) than the unstimulated controls (77 nm as 

median cluster size). However, those nanoclusters displayed a significantly higher 

number of hCD1d molecules (3.9 compared to 2.9 median number of unstimulated 

hCD1d molecules) (Fig. 6.13C) resulting in a strong increase of nanocluster density 

(180 ± 20 compared to 80 ± 5 hCD1d/µm
2
) of WT-hCD1d molecules under 

inflammatory conditions (Fig. 6.13D). Moreover, R848 stimulated TD-hCD1d 

nanoclusters had a larger size (90 nm compared to 47 nm) (Fig. 6.13E) and contained a  

 

 

Figure 6.13 The actin cytoskeleton regulates hDC1d nanoclustering under 

inflammatory conditions. (A) STED images of hCD1d nanoclusters on the cell 

membrane of R848 stimulated THP-1 cells stretched on PLL-coated glass coverslips. 

(B,E) Distributions of cluster size; (C,F) distribution of the number of hCD1d 

molecules per cluster; and (D,G) scatterplots of the number of hCD1d molecules per 

cluster vs. cluster area corresponding to the quantification of the STED images. STED 

nanoscopy analysis data from at least 30 different images of 3x3 µm in size, from at 

least 2 different experiments. *P<0.0001 and **P<1•10-7 (Student’s t-test). 
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higher number of molecules (8.1 compared to 3.9 hCD1d molecules) (Fig. 6.13F) than 

the WT counterpart resulting in an increased nanocluster density of TD-hCD1d (231 ± 

15 compared to 180 ± 20 CD1d/µm
2
) (Fig. 6.13G), in analogy with the results obtained 

with α-GalCer-TD-hCD1d (Fig. 6.6E-G). These results evidence an important role of 

the actin cytoskeleton in controlling the extent of CD1d nanoclustering on the cell 

membrane of APCs during inflammatory conditions. Moreover, since hCD1d undergoes 

lysosomal trafficking under inflammatory conditions in analogy to α-GalCer pulsing 

(40), these data provide further support for the role of the actin cytoskeleton in 

modulating hCD1d nanoclustering after endosome recycling. 

 

Discussion 

 

We have for the first time characterized the spatiotemporal behavior of hCD1d on the 

cell membrane of APCs at the nanoscale level. We found that hCD1d molecules 

organize in small nanoclusters on the cell membrane. Moreover, we observed that the 

actin cytoskeleton plays a major role in regulating the degree of hCD1d nanoclustering 

by actively arresting the diffusion of α-GalCer loaded hCD1d nanoclusters, maintaining 

them away from each other. Indeed, treatment of THP-1 cells with CytoD or deletion of 

the hCD1d cytoplasmic tail led to larger nanoclusters and a concomitant reduction of 

hCD1d mobility. Furthermore, increased hCD1d nanoclustering directly correlated with 

enhanced iNKT cell activation. Notably, under inflammatory conditions hCD1d formed 

denser nanoclusters whose organization also depended on the actin cytoskeleton, in 

remarkable analogy to α-GalCer presentation. Altogether our results reveal a novel 

mechanism by which APCs regulate iNKT cell activation by fine-tuning the spatial 

organization of hCD1d on the cell membrane.  

 

CD1d is structurally related to the classical MHC-I complex (54). Using super-

resolution near-field microscopy, clusters of MHC-I from 70-600 nm in size were 

observed on the plasma membrane of fibroblasts (55). More recently, it was shown that 

this nanoclustering strongly depends on the actin cytoskeleton, which acts as a barrier to 

spatially concentrate MHC-I molecules (36). Consistent with this, deletion of the 

cytoplasmic tail increased the lateral mobility of MHC-I (56). Clustering of MHC-II 

complexes on the plasma membrane of APCs has also been reported (57-60). Using 

SPT approaches, it was shown that MHC-II displays hop-diffusion on the cell 

membrane in a manner that is dependent on the integrity of the actin cytoskeleton (61). 

Disruption of the actin cytoskeleton interactions by either perturbing the actin network 

or by truncation of the MHC-II cytoplasmic tail increased the lateral mobility of MHC-

II (61,62). In these experiments, the lateral organization of MHC molecules also had an 

impact on the extent of T cell activation, with larger clusters enhancing peptide-specific 

T cell effector functions, particularly at low antigen density (52,63). The role of actin on 
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the spatiotemporal organization of MHC-I and MHC-II on the cell membrane of APCs 

however is markedly different to the results reported here for hCD1d molecules. 

Whereas the actin cytoskeleton is essential to actively maintain the clustering of MHC-I 

and MHC-II, in the case of hCD1d, perturbation of actin cytoskeleton interactions leads 

to enhanced aggregation of hCD1d. Consistent with this, and also in contrast to MHC-I 

and MHC-II, disruption of the actin cytoskeleton or deletion of the hCD1d cytoplasmic 

tail results in reduced mobility of hCD1d nanoclusters. Altogether our results indicate 

that hCD1d-mediated antigen presentation is differently regulated at the cell surface of 

APCs as compared with MHC-restricted peptide presentation. We speculate that the 

contrasting role played by the actin cytoskeleton in regulating MHC and hCD1d 

nanoclustering reflects an important functional difference between conventional 

peptide-specific T cells and innate-like lipid specific T cells. Indeed, while peptide-

specific T cells undergo extensive negative selection in the thymus (64), to purge the 

autoreactive peptide repertoire, peripheral iNKT cells retain the ability to react to self-

lipids presented by CD1d molecules. This “autoreactivity by design” (4) underpins 

iNKT cells essential immunoregulatory role.  

 

Much research is being undertaken to understand how iNKT cell autoreactivity in the 

periphery is fine-tuned to prevent overt autoimmunity. Initial results suggested that β-

anomeric self-lipids were the main target of the iNKT cell autoreactive response (5), 

and that a combination of increased lipid biosynthesis, increased CD1d expression and 

co-stimulatory cytokines was driving iNKT cell reactivity following APC activation 

(5,9,10). Costimulation by inflammatory cytokines is essential to achieve iNKT cell 

activation in these infectious settings, as extensive structural analysis revealed that the 

iNKT TCR interact with β-anomeric self-lipids CD1d complexes with low affinity (65). 

Recently, evidence has emerged for recognition of α-anomeric self-lipids bound to 

CD1d (6,7). As the affinity of the iNKT TCR for α-anomeric lipids CD1d complexes is 

much higher (65), an even tighter regulation of their availability is required, for example 

through the concerted action of biosynthetic and catabolic pathways, which in turn are 

modulated during inflammation (7). Our results are consistent with and extend the 

above observations, underscoring the importance of hCD1d clustering at the cell surface 

of APCs as a further mechanism to fine tune iNKT cell autoreactivity in peripheral 

tissues. Indeed, while at steady state the actin network plays an important role in 

limiting basal iNKT cell autoreactivity, the observed increase in hCD1d nanocluster 

density upon TLR stimulation suggests that the actin cytoskeleton might also regulate 

iNKT cell activation under inflammatory conditions, increasing the overall avidity of 

self-lipid loaded CD1d nanoclusters. This hypothesis is consistent with the previously 

reported increased staining of TLR-matured APCs with a soluble iNKT TCR detecting 

self-lipid CD1d complexes (10). 
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Endogenous lipid loaded CD1d molecules traffic from the ER to the cell surface via the 

Golgi system, where they acquire a variety of self-lipids (6,66). From the plasma 

membrane, CD1d molecules constitutively traffic through the endolysosomal 

compartment. A tyrosine based internalization motif in the cytoplasmic tail initiates 

clathrin dependent endocytosis, while association with the adaptor AP-2 and the Arf-

like GTPase Arl8b control lysosomal trafficking (5,67).  It has been previously reported 

that the association of exogenous lipid loaded CD1d with membrane lipid rafts on the 

plasma membrane of murine cells was dependent on the internal trafficking of CD1d 

molecules (38). Furthemore, it has also been shown that upon inflammatory stimuli, 

loading of self-lipids also requires trafficking of CD1d molecules through the lysosomal 

compartment (54). Our data extend these observations and suggest that regulation of 

hCD1d nanoclustering by the actin cytoskeleton selectively occurs on the pool of 

hCD1d molecules that has trafficked through endolysosomal compartments. Indeed, we 

observed actin-dependent regulation of hCD1d nanoclustering only on molecules 

presenting exogenous lipids such as α-GalCer and GalGalCer, or self-lipids under 

inflammatory conditions. Conversely, no actin-dependent changes in hCD1d 

organization were observed with endogenous lipid loaded hCD1d. It will be of interest 

to investigate how the spatiotemporal behavior of hCD1d might also be affected by the 

absence of lysosomal lipid transfer proteins such as saposins, which have been shown to 

facilitate exogenous as well as self-lipid antigen presentation (40,68).  

 

The general consensus on the emerging role of the actin cytoskeleton in regulating cell 

membrane organization is that it restricts the lateral diffusion of transmembrane proteins 

by creating temporal physical barriers close to the cell membrane (30). These barriers 

locally confine membrane receptors increasing their local concentration and promoting 

clustering (34). In the case of hCD1d, we also observed similar arrest on its mobility in 

actin-rich regions. However, although hCD1d nanoclustering might be locally enhanced 

on certain hotspots of the cell membrane by actin, long-range hCD1d clustering is 

prevented by lowering the encountering probability of distant diffusing hCD1d 

nanoclusters. These results might bring new insights on how the actin cytoskeleton fine-

regulates the lateral behavior of membrane proteins at multiple temporal and spatial 

scales. Recent results have shown the importance of ERM proteins in linking the 

transmembrane region of surface receptors, such as the BCR, to the actin cytoskeleton 

(32). Further experiments are warranted to assess whether this family of proteins is also 

controlling the interaction between the CD1d cytosolic tail and the cortical actin 

cytoskeleton. Consistent with this possibility, it has recently been shown that Rho 

kinase controls antigen presentation by CD1d molecules by prohibiting actin fiber de-

polymerization68.   
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Summarizing, our results highlight a novel mechanism that APCs employ to regulate 

lipid antigen presentation via CD1d molecules, in order to modulate iNKT cell 

autoreactivity, a property which distinguishes this cell subset from conventional 

CD4+and CD8+ T cells. The observation that a similar actin-dependent mechanism 

regulates presentation of exogenous lipids and self-lipids upon inflammatory stimuli 

further adds to the singularity of the CD1d-iNKT cell system in bridging innate and 

adaptive immune responses. Importantly, this study underscores the importance of 

emerging concepts such as protein nanoclustering in deepening our understanding of 

how leukocytes can fine-regulate at the molecular level the outcome of an immune 

reaction. We predict this type of studies will provide essential information for the future 

optimization of novel immune-based therapeutic strategies. 

 

Materials & Methods 

 

Antibodies and Reagents. Monoclonal mouse anti-human CD1d (CD1d42) and 

monoclonal mouse anti-human CD71 (write clone number) antibodies were purchased 

from BD Pharmingen. Poly-L-lysine (PLL), Cytochalasin D (CytoD), DMSO, 

Atto647N-NHS ester and di-thiothreithol (DTT) were purchased from Sigma Aldrich. 

Human fibronectin (FN) was purchased from Roche. Streptavidin coated QD655 and 

QD585, goat-anti-mouse Alexa Fluor 488 antibody and D-biotin were purchased from 

Invitrogen. Maleimide-PEG2-Biotin and Slide-A-Lyzer MINI Dialysis Units were 

purchased from Thermo Scientific. 

 

Cell Medium and specific reagents. The complete medium (CM) used throughout this 

study was RPMI 1640 (Gibco) for THP-1 and IMDM (Gibco) for iNKT cells.  CM was 

supplemented with 2 mM L-glutamine, 1% non-essential amino acids, 1% sodium 

pyruvate, 1% pen/strep, 5 x10-5 2ME (all from Gibco) and serum: 10% FCS (Sigma) 

for THP-1; 5% Human AB Serum (Sigma) for iNKT cells. Recombinant human IL-2 

was produced in our laboratory as described69.  

 

Lipids: α-GalCer, C20:2, Gal(α1->2)GalCer and C20:2 were synthesized by a strategy 

described previously70, 71 and their structures were confirmed by mass spectrometry. 

The dried lipids were dissolved at 10 mg/ml in a solution of chloroform:methanol:water 

(10:10:3; v/v/v), followed by dilution in 150mM NaCl, 0.5% Tween 20 (vehicle 

solution) at 100-200 µg/ml stock solution (depending on solubility). The solution was 

heated at 80oC for 5 minutes followed by sonication for 5 minutes in an ultrasonic 

water bath. 14C-Threitol Ceramide was synthesized as described. 

 

Soluble iNKT-TCR heterodimers were generated as described (10). 
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Generation of iNKT cells and Dendritic Cells. Blood was purchased from the UK 

National Blood Service. Human iNKT cells were isolated by cell sorting with CD1d-α-

GalCer tetramers and/or Vα24 and Vβ11 antibodies (Immunotech, Marseille, France) 

directly from PBMC or after expansion with autologous DCs pulsed with α-GalCer as 

described (40). iNKT cells were grown in CM (containing 5% human AB serum instead 

of FCS) supplemented with 1000 U/ml IL-2 and periodically re-stimulated. Dendritic 

Cells (DCs) were differentiated from MACS-purified CD14 monocytes from healthy 

blood donors as described10. 

 

Generation of THP-1 cells over-expressing human CD1d constructs. Full length 

human CD1d was cloned in the pHR-SIN lentiviral vector. Lentivirus particles were 

made as described (40) and used to infect THP-1 cells (ATCC). Tail deleted (TD) 

human CD1d, lacking the last 10 AA, was cloned in the pHR-SIN lentiviral vector 

using a strategy previously described (40). THP1-CD1d cells were transduced with a 

lentivirus encoding lifeact GFP as previously described10. GFP positive cells were 

enriched by cell sorting. We acknowledge the gift of the lentiviral life-act GFP plasmid 

from Prof M. Sixt. 

 

iNKT cell stimulation assays. DCs and THP-1-CD1d cells were plated at 50000/well 

in U bottom 96 well plates and pulsed overnight at the indicated concentration of lipids. 

In some experiments, cells were matured for 36 hours with the TLR7/8 ligand R848 

(Invivogen, 5-10 µg/ml). Cells were extensively washed, treated for 1 hour at 37ºC with 

CytoD used at 10µM in HBSS (Gibco) and immediately fixed in glutaraldehyde 72. 

Fixed APCs were used to stimulate iNKT cells (20000-30000/well in duplicate or 

triplicate). iNKT cell activation was assessed by IFN-γ ELISA (BD Pharmingen) on 

supernatants harvested after 36 hours. When indicated, blocking anti CD1d antibody 

(clone 42.1, BD Pharmingen) was added at 20 µg/ml 30 min before adding iNKT cells. 

Viability of APCs and hCD1d expression after CytoD treatment was assessed by Flow 

cytometry upon staining with anti CD1d PE (BD Pharmingen) and propidium iodide 

(BD Pharmingen). Data were acquired on a Cyan DAKO flow cytometer and analyzed 

with Flowjo. 

 

Labeling conjugates for SPT experiments in living cells. Monovalent anti-human 

CD1d or CD71 Abs were prepared from CD1d42 and CD71 Ab by reduction with 

dithiothreitol (DTT) following manufacturer’s instructions. Reduced Abs were then 

biotinylated with Maleimide-PEG2-Biotin and non-reacted DTT. Unbound biotin was 

removed by overnight dialysis at 4ºC using Slide-A-Lyzer MINI Dialysis Units. To 

monitor each reaction step, a 4-12% Bis-Tris gel under denaturing and non-denaturing 

conditions was performed. 
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Biotinylated iNKT cell receptor/monovalent Abs were mixed with streptavidine coated 

QD655 or QD585 in equimolar concentrations and stirred for at least 2h at 4ºC. 10x 

excess of free biotin in the case of the iNKT cell receptor or 50x in the case of the 

monovalent Ab was added to the solution to ensure a single iNKT cell receptor or 

monovalent Ab per quantum dot. 

Atto647N-NHS Ester labeling of the Fab9b (39,74) was performed following 

manufacturer’s instructions. 

 

Single Particle Tracking. hCD1d transduced THP-1 cells were pulsed overnight with 

50 ng/ml of α-GalCer or 400 ng/ml of Gal-GalCer. After 30 min of incubation on FN-

coated coverslips at 37ºC and 5% CO2, cells were labeled with 2nM of the iNKT-TCR-

QD655 conjugate for 5 min at room temperature. Cells were then washed with cell 

medium three times to remove unbound iNKT-TCR-QD655 conjugates.  When labeling 

the cells with antibody-derived probes, 2% human serum incubation was performed for 

5 min at room temperature before adding monovalent antibodies or Fab fragments. 

Monovalent CD1d42-QD655 labeling was done at 0.2 nM concentration. Fab9b-

Atto647N labeling was done at 10nM concentration. On CytoD treated samples, 

treatment (10 µM CytoD for 1 hour) was performed before labeling, on cells seeded on 

FN-coated coverslips for unpulsed hCD1d-THP-1 cells or after overnight pulsing with 

α-GalCer or Gal-GalCer. CytoD was maintained in the medium while imaging. CytoD 

controls were performed with DMSO diluted in the imaging medium with the same 

dilution used for CytoD experiments. Single Particle Tracking experiments were 

performed on a custom built EPI single molecule sensitive fluorescence microscope 

with a Hamamtsu EM-CCD Camera at 60 Hz and analyzed using the mean-square 

displacement as described in Chapter 2. 

 

Dual color hCD1d trajectory analysis. Two-color QD tracking of labeled hCD1d (WT 

and TD) nanoclusters was performed at 2 nM concentrations to increase the probability 

of finding nanocluster interaction events. Two-dimensional fluorescence trajectories of 

spatially close QD (red: Ab-QD655 and green: Ab-QD585) were generated and the 

separation distance (interparticle distance) between QDs was determined from their 

dual-color pair trajectories by measuring the effective distance between the centroid 

positions of the diffusing QDs. The initial QDs separation distance considered was 350 

nm and interparticle distances were calculated at every frame for a total observation 

time of 1s yielding 30 data points per QD pair. Interparticle distances of all pairs at 

every frame were collected into a histogram. Monte-Carlo simulations were performed 

to discriminate between random encounters of diffusing hCD1d nanoclusters or true 

enhanced interaction between hCD1d nanoclusters. 100 pairs of randomly diffusing 
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nanoclusters were simulated yielding 3000 simulated interparticle distances per 

simulated pair. The instantaneous diffusion coefficient for each experimental condition 

was used for simulating the dual-color trajectories. 

 

Dual color trajectory analysis of iNKT-TCR-QD labeled hCD1d on Lifeact-GFP 

labeled actin. A single Lifeact-GFP fluorescence image was bandpass-filtered in the 

frequency domain using standard ImageJ image processing. Only QDs that visited both 

low-actin and high-actin regions during the time course of an experiment (20s) were 

manually tracked. The trajectories were then divided into 10 points segments and the 

instantaneous diffusion coefficients of every segment were calculated as earlier 

described. The segments of the trajectories were visually classified to belong to either 

low-actin or high-actin regions after thresholding (>75%) the normalized Lifeact-GFP 

fluorescence images. 

 

Generation of time-dependent membrane exploration maps from SPT 

measurements. Time-dependent membrane exploration maps of iNKT cell receptor-

Qdot655 labeled CD1d were obtained using single particle tracking as described in 

Chapter 2 and as reported in Ref. 51. Briefly, the position of each single quantum dot 

with sub-pixel accuracy was determined in every frame using a custom Matlab 

algorithm based on Serge et al (76). The frame rate of the camera was 60 Hz and the 

total observation time was 1200 frames. The total number of localizations of all 

quantum dots in all the frames was collapsed into one single image and overlaid into 

one single Lifeact-GFP fluorescence image. Cells with an actin cytoskeleton that did not 

change over the time course of an experiment were carefully selected for this analysis. 

 

Sample preparation for STED Nanoscopy. To avoid any potential artifacts due to 

CytoD treatment on membrane morphology that could affect the STED imaging, we 

exclusively focused on WT-hCD1d or TD-hCD1d transduced THP1 cells. WT-hCD1d 

or TD-hCD1d transduced THP1 cells were pulsed overnight with 100 ng/ml α-GalCer 

or 400 ng/ml Gal-GalCer. Alternatively, WT-hCD1d or TD-hCD1d transduced THP1 

cells were stimulated with 10 µg/ml R-848 for 30h. Cells were then stretched on PLL-

coated coverslips for 30 min at 37ºC and with 5% CO2. After cell fixation with 2% 

paraformaldehyde (77), Fc-receptors were blocked with 2% human serum. CDd1 

molecules on the cell membrane were labeled with 5 µg/ml anti-CD1d42 Ab. 

Fluorescent secondary antibody labeling was performed with a 5 µg/ml goat anti-mouse 

Alexa Fluor 488-labeled antibody. Isotype controls were performed in order to test the 

specificity of the labeling procedure. 
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Stimulated Emission Depletion (STED) Nanoscopy. Confocal and STED images 

were obtained in a sequential manner using a 100x oil immersion objective (HCX PL 

APO 100x/1.4 Oil, Leica Microsystems, Germany) of a commercial CW-STED SP-7 

microscope (Leica Microsystems, Germany) as described in Chapter 2.  

 

Analysis of the STED images. STED images were analyzed using the custom-made 

algorithm based on Bayesian inference as described in Chapter 2. Briefly, the algorithm 

essentially relies on the detection of fluorescence features and their fitting as a sum of 

different point spread functions (PSFs) whose width and intensity distribution are 

estimated from images of sparse markers. For each image, the localization positions of 

all the retrieved PSFs were used to reconstruct an image that contains the molecular 

localizations belonging to each fluorescent feature of the raw STED image. Cluster size 

and number of hCD1d molecules per cluster were then calculated from the 

reconstructed images as described in Chapter 2. 
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Chapter 7 

 

Conclusions and future perspectives 

 

In this Chapter, we draw some general conclusion of this thesis about the spatiotemporal 

behavior of DC-SIGN and CD1d. Moreover, we discuss the different imaging techniques 

used throughout this thesis in order to address the lateral behavior of these two membrane 

proteins at multiple spatial and temporal scales. We also discuss potential developments in, 

e.g., multi-color single particle tracking, cartography maps or STED nanoscopy 

experiments as future instrumental perspectives of this thesis. Then, we draw the general 

findings of DC-SIGN in terms of its nanoclustering and its mesoscale organization. 

Moreover, we also propose how to visualize and characterize the glycan-based connectivity 

in the case of DC-SIGN with potential interaction partners such as CD44 and Galectin-9. 

We then discuss the results obtained when studying the spatiotemporal behavior of CD1d on 

the surface of antigen presenting cells. Finally, we also propose how to address the role of 

lysosomal trafficking in the regulation of the control of the actin cytoskeleton on the 

behavior of CD1d.  
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A new microscopy era to investigate nanoscale receptor organization and function. 

 

In the last decade, the modulation of the biological function of membrane immune 

receptors by their lateral behavior is emerging as a new concept in immunology (1-3). 

This has been possible due to the development of super-resolution microscopy in 

combination with single molecule imaging approaches featuring high temporal 

resolution (4-7). The combination of these techniques has been a major breakthrough in 

the study of immune cells. In this context, it is becoming more widely accepted that 

nanoclustering of membrane receptors represents a crucial mechanism to regulate, e.g, 

the downstream signaling of an activated leukocyte (2).   

 

Cartography maps, as developed in this thesis research, represent a suitable imaging 

technique when combining high temporal resolution with microscale spatial information 

without the need of reconnecting trajectories. This is particularly beneficial when using 

QDs as labeling probes since their on-off blinking impose a limitation when trying to 

collect long trajectories in a standard SPT experiment (8, 5). Due to the need of 

reconnecting individual trajectories (9, 10), SPT is a very low throughput technique. In 

this context, cartography maps can provide data at a much higher yield than SPT. 

Moreover, extending cartography maps to multi-color imaging allows the simultaneous 

visualization of the global nanoscale but also microscale organization of multi-protein 

complexes, including signaling complexes at the cell membrane (11, 3, 12, 13), clathrin-

mediated endocytosis machinery (14) or cell-cell adhesion processes such as the 

immunological synapse (15). 

 

The main challenge of standard SPT experiments is still to find a minimally invasive 

probe featuring photostability in time (for obtaining long trajectories) together with high 

photon emission, which could allow nanometer localization precision even at 

microsecond integration times. The use of quantum dots (QDs) has been a major 

breakthrough in SPT experiments (8, 5). However, their characteristic blinking impose 

limitations when trying to acquire long (>1000 points) trajectories at a fast frame rate. 

Non-blinking QDs have been recently used to performed SPT allowing enhanced 

acquisition compared to blinking QDs (16-18). Moreover, the narrow emission band of 

QDs makes them a powerful probe when performing multi-color imaging experiments 

(1). It has to be noted that QDs dual-color experiments carried out throughout this thesis 

to address the interaction between different nanoclusters were performed at video rate 

(30 Hz). It would be very interesting to perform similar type of experiments but at a 

much higher frame rate (>1000 Hz) to address the stability of nanoclusters in time. 

Moreover, by extending this approach to three or four colors, multi homo- or hetero-

cluster interactions could be addressed very efficiently. 
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In the context of this thesis, several imaging techniques were developed and/or applied 

in order to directly visualize transmembrane proteins in leukocytes with high temporal 

and spatial resolution, such as STED nanoscopy and multi-color SPT. The consistent 

combination of STED nanoscopy with mobility data is one of the hallmarks of this 

thesis. For instance, we used the DC-SIGN nanocluster size obtained with STED 

nanoscopy to infer the interaction threshold for mobile interacting DC-SIGN 

nanoclusters imaged using dual-color SPT (Chapter 4, Fig. 4.6). Moreover, in Chapter 

6, we confirmed the enhanced CD1d nanoclustering obtained with STED nanoscopy by 

measuring reduced dual-color CD1d interparticle distances over a given period of time 

(Fig. 6.9). Indeed, the combination of both STED nanoscopy and multi-color SPT 

provides complementary information. Hence, an imaging technique both featuring 

super-resolution capability and high temporal resolution would be the ideal 

instrumentation to characterize dynamic events on the cell membrane. TOCCSL (19) 

offers the possibility of combining mobility data with the quantification of the number 

of particles of the diffusing diffraction limited spot. Nevertheless, in case that the 

diameter of the diffusing nanocluster is below the diffraction limit, TOCCSL could 

reveal the number of particles within the nanocluster but not its true size. In my opinion, 

one suitable solution for single monomer/nanocluster tracking would be STED 

nanoscopy with very high temporal resolution (20). By focusing on one individual 

nanocluster on the cell membrane and by following it in time, single nanocluster 

tracking could be possible. The advantage of focusing on one individual nanocluster is 

that the size of the scan area in every frame can be reduced as much as 2-4 times the 

diameter of the diffusing nanocluster which contributes to a higher temporal resolution. 

Moreover, single nanocluster tracking using STED would allow the quantification of 

the nanocluster in terms of size and number of proteins. This would allow addressing 

whether the number of molecules or the size of the nanocluster changes in time. The 

main limitation of this approach is the commonly high protein density on the cell 

membrane, which would first limit the identification of individual nanoclusters (this is 

the in fact main limitation in any SPT approach, so that sub-labeling conditions must be 

applied to reconnect individual trajectories) and second, the reconnection of trajectories 

even using small STED scan areas. Nevertheless, the reconnection of trajectories at high 

density labeling conditions could be enhanced by using a multiple-target tracing 

algorithm (21). Moreover, by extending the setup to a multicolor approach, multicolor 

STED single nanocluster tracking could be feasible. However, as for any STED 

applications, the dye represents the main limitation. If the dye photobleaches after a few 

frames, long-term single nanocluster tracking stops being feasible. Nevertheless, STED 

with <25 nm lateral resolution was demonstrated using nitrogen-vacancy centers which 

could be bio-functionalized for protein labeling (22). In this particular case, the 

challenge remains as to the fabrication of vacancy centers of nanometer size. With their 
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current developments, I would discard any PALM/STORM technique for single 

nanocluster tracking due to their stochastic readout in time (4).  

 

Characterizing the Glyconnectome 

 

In Chapter 3, we demonstrated that the neck region of DC-SIGN determines its 

spatiotemporal behavior on the cell membrane. For instance, the mutant missing the 

neck region (-∆Rep mutant) showed reduced nanoclustering compared to wt-DC-SIGN. 

Moreover, and consistent with this reduced nanoclustering, ∆Rep-DC-SIGN also 

exhibited enhanced lateral diffusion on the cell membrane. Interestingly, ∆Rep-DC-

SIGN was shown to bind to either soluble or to micron-sized antigens but not to virus-

sized particles. Monte-Carlo simulations showed that the integrity of the DC-SIGN 

nanoclusters is essential to the virus-binding capacity of the receptor. Altogether, these 

results suggest that the nanoclustering of a membrane receptor can widen the spectrum 

of potential ligands the receptor is able to bind to. Furthermore, in Chapter 4, we 

showed that the glycosylation motif of DC-SIGN does not influence the nanoclustering 

degree or the potential interaction of preformed nanoclusters. However, we showed that 

the glycosylation motif is critical for the stable confinement of DC-SIGN in ≈ 1 µm 

regions of the cell membrane.  By using cartography maps, a novel imaging approach 

developed in this thesis, we directly visualized these preferential regions of the cell 

membrane explored by DC-SIGN. Furthermore, we showed a favored enrichment of 

clathrin-coated pits within those glycosylation dependent regions and a related enhanced 

clathrin-dependent endocytosis of HIV-like particles. These data defines a novel 

biophysical membrane organizing principle, together with the actin cytoskeleton and 

lipid rafts (23, 24), based on an extracellular glycan-based connectivity at the 

microscale on the cell membrane. From now on, I will refer to this glycan-based 

connectivity as glyconnectome (from the words glyco- and connectome). 

 

Although we were able to visualize for the first time the impact of the glyconnectome 

on the lateral behavior of a membrane receptor at the microscale with high temporal 

resolution, it remains still as an open question how galectins (25), believed to crosslink 

glycoproteins, might regulate dynamically this connectivity. There have been major 

steps in the visualization of galectins at the nanoscale using super-resolution 

microscopy (26). For instance, dSTORM revealed that Galectin-3 organizes in 

nanoclusters with a cluster radius of around 80 nm on the cell membrane. Moreover, it 

was also shown than CD44 organizes in nanoclusters on the cell membrane whose 

integrity is dependent on the glycosylation state of CD44 (26). The lateral organization 

of Galectin-3 was also addressed using PALM on the cell membrane of HeLa cells 

using the photoconvertible protein EosFP (27). It was shown that Galecin-3 also forms 
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nanoclusters with a size ranging from 30 to 300 nm which is consistent with the work of 

Lakshminarayan et al. (26). Although these studies achieved the direct visualization of 

Galectin-3 on the cell membrane, they lack any information about the dynamic behavior 

of the protein. Since we show that the glyconnectome operate at the microscale (Chapter 

4, Fig. 4.8), cartography maps of Galectin-3 would be ideal to characterize this N-

glycosylation dependent network. Moreover, it is still to be established whether the 

different galectins (proto-type, tandem repeat-type or chimera-type) might regulate the 

glyconnectome in a different manner. Such different behavior could explain the 

differences observed in our work described in Chapter 4 and those reported by 

Lakshminarayan et al. (26). Indeed, whereas we postulate that CD44 and Galectin-9 

enhance clathrin dependent endocytosis, Lakshminarayan et al. found that CD44 and 

Galectin-3 promote clathrin independent endocytosis (26). Nevertheless, it has also been 

proposed that CD44 can undergo internalization via clathrin (28). Probably the 

glyconnectome might regulate CD44 endocytosis depending on the different external 

stimuli in a very sensitive manner. 

 

Another important consideration on the DC-SIGN work presented in this thesis is that 

all the biophysical measurements on its lateral organization were performed in the basal 

sate, i.e., before ligand engagement by DC-SIGN. It would be very interesting to 

determine the spatiotemporal behavior of DC-SIGN before and after ligand binding in 

real time. The ideal experiment would be to perform SPT while adding, e.g., HIV virus-

like particles into the imaging medium. Moreover, the virus like particles could be 

tagged with a fluorescent protein or a QD so that DC-SIGN and the virus like particles 

could be tracked simultaneously (29, 30). Nevertheless, there is an important limitation 

when performing SPT under these conditions. The probability of finding and tracking a 

DC-SIGN molecule bound to a virus-like particle would be extremely low considering 

the very high density of DC-SIGN molecules on the cell membrane and the very low 

concentration of dye needed for SPT. Cartography maps, on the other hand, offer an 

ideal solution, considering that individual trajectories do not need to be reconnected. By 

adding a high concentration of virus-like particles and anti-DC-SIGN dye-labeled 

antibodies, dual color cartography maps of DC-SIGN molecules bound to virus-like 

particles could be performed. Moreover, by modulating the observation times, the 

different global reorganization of DC-SIGN molecules on the cell membrane could be 

mapped during viral infection. This would provide unprecedented information on how 

the large-scale organization of membrane receptors changes their lateral organization 

from a single-molecule perspective (cartography maps originate from single molecule 

localizations) during an infection event. Moreover, by extending this approach to, e.g., 

to four-color cartography maps experiments, the global organization of the DC-SIGN 

glyconnectome: the cargo protein CD44, the membrane receptor DC-SIGN, the 



7. Conclusions and future perspectives 
 

 
 

170 

 

crosslinking protein Galectin-9 and the virus-like particle, could be simultaneously 

characterized.  

 

Furthermore, it has been reported that the DC-SIGN signalosome is strongly dependent 

on the type of sugar bound by DC-SIGN (31). Mannose-containing pathogens activate 

the Raf1-signaling pathway while fucose-containing pathogens dissociate the DC-SIGN 

signalosome suppressing a pro-inflammatory response by DCs (31). In this context, it is 

important would be interesting to address whether the different signaling pathways of 

the DC-SIGN signalosome could be already modulated at the level of the cell 

membrane by, e.g., a different lateral organization of the DC-SIGN glyconnectome. 

Hence, mapping and correlating the DC-SIGN glyconnectome in the presence of 

different ligands with downstream signaling pathways could be relevant to understand 

the potential link between the glyconnectome and the different signaling pathways of 

DC-SIGN. As I am convinced that the glyconnectome is a general membrane 

organizing principle, the concepts extracted from the experiments with DC-SIGN could 

be, under my very personal opinion, applied to many other cell membrane 

glycoproteins. 

 

Another important finding of this thesis is that the interaction of DC-SIGN with clathrin 

is transient rather than stable. This is consistent with the findings of the “catch-and-

release” model between cargo and clathrin reported by Weigel et al. (14). However, in 

their case, the binding of the cargo protein by clathrin led to a transient immobilization. 

Moreover, the distribution of the binding times between the cargo and clathrin exhibited 

a slow component that followed a power-law behavior (14). In our case, the interaction 

of clathrin with DC-SIGN led to confinement of DC-SIGN and not to its 

immobilization, while the distribution of the dwell times of DC-SIGN within clathrin-

coated pits followed a single exponential behavior (Chapter 4, Fig. 4.10). Nevertheless, 

it should be mentioned that all of our experiments were performed in the absence of 

DC-SIGN ligand. It will be exciting to address whether in the presence of a ligand the 

interaction between DC-SIGN and clathrin would become stronger and power-law 

immobilization events would be observed, as shown for the interaction between K
+
 

channels and clathrin-coated pits (14).  

 

In the context of experiments of DC-SIGN with ligands, one could address whether the 

behavior of DC-SIGN will still show weak ergodicity breaking (Chapter 5) in the 

presence of a ligand as it does in the resting state. Moreover, since upon engagement of 

the ligand, the nearby area of the cell membrane would be rearranged through the 

recruitment of the signaling or the clathrin mediated endocytosis machinery, it will be 
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important to develop theoretical models that could take into account the fact that the 

diffusing particle modifies the environment where it is diffusing through. 

 

Nanoscale lateral organization of CD1d and its implication on iNKT cell activation 

 

For a long time, it was known that the spatiotemporal behavior of MHC-I and MHC-II 

complexes impact on the activation of CD8- and CD4-T cells respectively (32-34), but 

virtually nothing was known regarding the lateral organization of CD1d on antigen 

presenting cells (APCs) and its consequences on invariant natural killer T (iNKT) cell 

activation. We showed in Chapter 6 that CD1d forms nanoclusters on the surface of 

APCs. We also showed that the size and density of these nanoclusters are tightly 

controlled by the actin cytoskeleton and that alteration of CD1d nanoclustering had an 

impact on the degree of activation of iNKT cells. These results introduce a new concept 

of controlling iNKT cell activation by means of lateral organization of CD1d molecules. 

Moreover, we also showed that the actin cytoskeleton regulates the lateral behavior of 

CD1d in a complete different manner than it does for MHC-I and MHC-II complexes 

(35, 36). Hence, the APC regulates the activation of iNKT cells in a complete different 

manner as it does for classical T cells. This might be explained by the constitutive 

autoreactivity displayed by iNKT cells, a property not shared by classical T cells (37).  

 

In Chapter 6 we also suggested that the tight control of CD1d nanoclustering by the 

actin cytoskeleton predominantly occurs on the pool of CD1d molecules that has 

trafficked through the lysosome, either when pulsing the cells with exogenous lipids or 

when stimulating them with toll-like receptor (TLR) ligands. This implies that there is a 

general mechanism of CD1d nanocluster editing in lysosomal compartments. Hence, 

complementary to the rather biochemical concept of CD1d lipid editing in the lysosome 

(38), I would like to also suggest a “CD1d nanocluster editing” capability of the 

lysosome. The lysosome would make CD1d nanoclusters prone to aggregation while the 

actin cytoskeleton on the cell membrane would prevent it by segregating away diffusing 

CD1d nanoclusters as much as possible. Nevertheless, it remains to be clarified the 

mechanism by which CD1d molecules are prone to aggregation after lysosomal 

recycling. Moreover, it should be addressed how is the interaction between CD1d 

molecules and the actin cytoskeleton differently regulated after lysosomal trafficking of 

CD1d molecules. A possible explanation for the latter case is that members of the Ezrin-

Radixin-Moesin (39, 40), proteins known to mediate the interaction between 

transmembrane proteins and the actin cytoskeleton, might be activated on CD1d 

molecules having undergone lysosomal trafficking. In this scenario, the anchoring of 

CD1d molecules to the actin cytoskeleton would only occur after CD1d lysosomal 

trafficking. To test this hypothesis, members of the ERM family could be silenced and 
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the nanoclustering of CD1d addressed. Alternatively, cell lines with ERM mutants 

lacking the actin binding domain could be used (40). Complementary to these 

experiments, it would be useful to address the phosphorylation degree of ERM proteins 

after pulsing the cells with exogenous lipids or to stimulate them with TLR ligands (40). 

Since phosphorylation of ERM proteins is an essential step for their activation, it would 

be reasonable to think that parallel to CD1d lysosomal recycling, ERM proteins would 

get phosphorylated and activated in order to actively bind CD1d to the actin 

cytoskeleton. 

 

It has to be noted that all the biophysical experiments performed on CD1d throughout 

this thesis were performed in presynaptic conditions, i.e., before the engagement of 

CD1d molecules by the iNKT cell receptor. Future experiments addressing the lateral 

organization of CD1d nanoclusters upon binding of an iNKT cell could be performed in 

order to visualize changes in the spatiotemporal behavior of both the iNKT cell 

receptor, on the side of the T cell, and CD1d molecules on the APC before and during 

the formation of the immunological synapse (41). In this context, there is already 

available a large palette of different tools that have been developed and used to study 

the interaction between MHC-I and MHC-II complexes and classical CD4+- and CD8+-

T cells (42, 43). This methodology could help to further confirm whether the CD1d-

iNKT cell system behaves in a complete different manner as classical MHC-I/MHC-II 

and CD8- and CD4-T cells. 

 

Summary 

 

In this thesis we have addressed the lateral organization of two transmembrane proteins 

(DC-SIGN and CD1d) on the surface of APCs. We have showed how the 

spatiotemporal behavior of these two proteins can control their biological function. The 

nanoclustering of DC-SIGN is crucial for the binding of virus-like particles. Moreover, 

the glyconnectome patterns the lateral behavior of DC-SIGN at the microscale and 

favors the encountering rate between DC-SIGN and clathrin on the cell membrane. DC-

SIGN shows subdiffusion and weak ergodicity breaking which is dependent on the 

nanoclustering degree of the receptor. Finally, we showed that the actin cytoskeleton 

controls the density and size of iNKT cell stimulating CD1d nanoclusters on the cell 

membrane of APCs. 

 

The full visualization of the glyconnectome is certainly one of the main, if not the most 

important experiment to be performed as a future perspective of this thesis. The 

multicolor visualization of DC-SIGN and its potential N-glycosylation dependent 

interaction partners CD44 and Galectin-9 represent a very powerful tool palette as a 
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starting point of the characterization of a glyconnectome on the extracellular part of the 

cell membrane. The second main future perspective of this thesis is to confirm whether 

the CD1d-iNKT cell system displays a very different lateral behavior as the classical 

MHC-I/II CD4+-CD8+-T cell system. A different spatiotemporal behavior of the CD1d-

iNKT system would contribute in a complementary manner to the rather traditional 

biochemical approaches, to confirm that this system shows unique properties 

completely different compared to classical T cells. 

 

The overall overview of this thesis deals with the importance of the spatiotemporal 

behavior of proteins in general. Traditional biochemical approaches have tried to 

understand the interaction between, e.g., different proteins or receptor and ligand as a 

one dimensional problem where only the binding between the different single 

components was taking into account. However, the cell membrane can be understood as 

a system where chemical reactants such as proteins or sugars are trapped in a two 

dimensional space. Hence, any alteration in the two dimensional organization of any of 

the reactants will have an impact on their potential (cis and trans) interaction on the cell 

membrane.  

 

I am convinced that the spatiotemporal behavior of proteins is going to play a crucial 

role in the future development of clinical treatments such as cancer immunotherapy. In 

analogy to the use of macromolecular crystallography in modern medicine to improve 

drug design (44), the characterization of the lateral organization of proteins in space and 

time at the relevant scales will have a big impact in the rational development of, e.g., 

human immunology based therapies against cancer. 
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