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Abstract 

Protein-DNA interactions are indispensable players in the daily 
activities of cells. DNA-binding proteins regulate gene expression 
and are responsible of DNA replication, packaging, repair and 
recombination. Among them, transcription factors activate/repress 
gene transcription by binding to specific genomic sites. Hence, the 
characterization of transcription factor binding sites turns out to be 
crucial in order to understand gene regulation. In this context, the 
development of computational tools is foremost. Here, I show the 
prediction of redundant transcription factors in yeast using a 
combination of homology-based tools and protein-protein 
interactions. The approach was automated and incorporated into 
ModLink+, an online and user-friendly tool to infer the fold of 
remote homologs. Moreover, I describe split-statistical potentials 
for protein-DNA interactions. Finally, I present SHAITAN, a 
statistical/homology-based approach that can be used to both predict 
transcription factor binding sites and infer the more likely 
transcription factors to bind a DNA sequence of interest. 
 

Resum 

Les interaccions proteïna-ADN són indispensables en l’activitat 
diària de les cèl·lules. Les proteïnes que participen en aquestes 
interaccions s’encarreguen de la regulació de l'expressió gènica i 
són responsables de la replicació, l'empaquetament, la reparació i la 
recombinació de l’ADN. Entre aquestes proteïnes, els factors de 
transcripció activen/reprimeixen la transcripció de gens mitjançant 
la unió a llocs específics dins el genoma. Per tant, la caracterització 
dels llocs d'unió dels diferents factors de transcripció és crucial per 
tal d’entendre com funciona la regulació gènica. En aquest context, 
desenvolupar eines computacionals és importantíssim. En aquesta 
tesi predict redundància entre factors de transcripció de llevat eines 
fent servir eines basades en homologia i interaccions proteïna-
proteïna. Aquesta aproximació va ser automatitzada i incorporada a 
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ModLink+, una eina accessible des d’internet i fàcil d'usar per a 
inferir el plegament de proteïnes a partir d’homòlegs remots. D'altra 
banda, descric potencials estadístics fraccionats per a interaccions 
proteïna-ADN. Finalment presento SHAITAN, una aproximació 
basada en homologia i potencials estadistics que pot ser utilitzada 
per a predir els llocs d'unió de factors de transcripció així com per 
saber quins factors de transcripció són més probables que s’uneixin 
a una determinada seqüència d'ADN. 
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Preface 

This thesis represents the culmination of my work and learning 
during my doctorate. The journey began in form of collaboration 
with Dr. Anthony Gitter and Prof. Ziv Bar-Joseph from the 
Carnegie Mellon University (USA). In principle, I only had to apply 
the main concept behind my MSc project, which consisted in the 
use of protein-protein interactions for improving fold recognition in 
twilight zone proteins, to explain redundancy in gene regulatory 
networks. From that moment on, transcription factors and their 
interactions with DNA, rather than the prediction of protein fold or 
protein-protein interactions, became the center of my universe. 
 
Although I would like to say that I walked my path through this 
thesis as straight as an arrow, I have to admit that this was not the 
case. All along, I have been given the opportunity to flirt with other 
interesting fields in systems biology such as network medicine or 
mutual information. The first project aimed to predict aneurysm 
candidates by integrating multiple sources of information, including 
protein-protein interactions and microarrays. In the second, after a 
crazy idea that came to my mind while attending to a seminar of a 
visiting fellow from Buenos Aires, Dr. Elin Teppa, I expected to 
improve fold prediction by comparing networks of mutual 
information derived from Pfam alignments. Both projects taught me 
a very important lesson: some things are just never meant to be no 
matter how much we wish they were1. 
 
By then, an ex-colleague of mine, Dr. Elisenda Feliu, was working 
on the application of statistical potentials to solve protein-protein 
docking, and my supervisor, Prof. Baldo Oliva, encouraged me to 
study protein-DNA interactions using the exact same approach. It 
was already 2012. I put a lot of effort and enthusiasm in this new 
project. To derive statistical potentials, the first thing one needs is a 
set of non-redundant structures. I did some research on the field and 
                                                
1 This is actually a good motto when it comes to women. 
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found a promising starting point: the set of structures from the work 
of Dr. Mu Gao and Prof. Jeffrey Skolnick. Nevertheless, the set was 
composed of specific and non-specific protein-DNA interactions, so 
the first time I tested my statistical potentials to predict the binding 
sites on a handful of transcription factors it resulted in a failure of 
biblical proportions. And what was worse, I had a poster to present 
to a congress in a few weeks! 
 
It was during that congress, the RECOMB 2012, that I met Dr. Matt 
Weirauch. He provided me access to a database that contained 
hundreds of transcription factors and their binding sites. That was a 
point of inflection in my doctorate. The next week, my supervisor 
and I decided to incorporate such data into the statistical potentials 
and soon I started to obtain promising results. Since then, it has 
been one and a half years of trial and error until last week2. 
 
All in all, I am happy to have worked on such an interesting topic 
and I am glad that I have been given the opportunity to report my 
findings in this thesis. I truly hope you enjoy the reading!  

                                                
2 This is currently being written at 1:13AM on the 31st of August. 
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1. Introduction 



“Read and find out.” 
-Robert Jordan 
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In the midst of the Second World War, it was shown for the first 
time that deoxyribonucleic acid (DNA) is the material of 
inheritance (1). Until then, biologists thought that genes, the units of 
inheritance, were made of protein. But it wasn’t until 1953, an 
annus mirabilis for science, that the structure of DNA was 
disclosed. James Watson and Francis Crick were the first to 
describe the double-helical structure of DNA (2) and suggested it as 
a possible copying mechanism for the genetic material. In the same 
issue of Nature, Wilkins, Stokes and Wilson found evidence that the 
structure existed in biological systems (3), and Rosalind Franklin 
and Ray Gosling provided further evidence of the helical nature of 
nucleic acids and concluded that the phosphate backbone was 
placed on the outside of the structure (4). Later that year, Watson 
and Crick followed up with a largely accurate speculation on how 
base pairing in the double helix allowed DNA replication (5), and 
Franklin and Gosling detailed the differences between the A and B 
structures of DNA (6). Since then, many important biological 
discoveries, including some Nobel Prizes3, have revealed that the 
function of DNA depends on its interaction with proteins. 

                                                
3 In 1959, Arthur Kornberg won the Nobel Prize in Medicine (shared with Severo 
Ochoa) for the discovery of the DNA polymerase. In 1965,  François Jacob and 
Jacques Monod won the Nobel Prize in Medicine (shared with André Lwoff) for 
the discovery of the lac operon (see further in “Repressors” in section 1.1.1). In 
1995, Christiane Nüsslein-Volhard and Eric F. Wieschaus won the Nobel Prize in 
Medicine (shared with Edward B. Lewis) for the discovery of a set of 
transcription factors crucial for fruit fly development. In 2001, Leland H. 
Hartwell, Tim Hunt and Sir Paul M. Nurse won the Nobel Prize in Medicine for 
the discovery of the main CDK/cyclin that regulate the cell cycle. In 2009, Carol 
W. Greider and Elizabeth H. Blackburn won the Nobel Prize in Medicine (shared 
with Jack W. Szostak) for the discovery of the enzyme that protects the telomeres 
in chromosomes (see further in “Termination” in section 1.1.2). 
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1.1 Biological relevance of protein-DNA 
interactions 

Protein-DNA interactions (PDIs) play an essential role in the daily 
activities of cells. PDIs are involved in the regulation of gene 
expression and participate in the replication, packaging, repair and 
recombination of DNA. PDIs can be either specific or non-specific, 
depending on whether the protein recognizes a particular DNA 
sequence or not. Among DNA-binding proteins, transcription 
factors (TFs) are the most widely studied. By binding to specific 
DNA sequences, they can either promote or repress gene 
transcription. Some enzymes can also bind to DNA, and among 
them, the polymerases that copy DNA along transcription and 
replication are of particular importance. This section revises the 
main processes involving PDIs. 
 

1.1.1 Regulation of gene expression 

The regulation of gene expression allows living organisms to 
express proteins when it is required. It includes a wide range of 
mechanisms that control the production of ribonucleic acid (RNA) 
and proteins. Almost any step of gene expression can be regulated, 
from transcriptional initiation to post-translational modification of 
proteins, passing through the processing of RNA. However, for the 
purpose of this thesis, I only focus on transcriptional regulation by 
PDIs. Proteins responsible for such regulation are known as 
regulatory proteins. They usually bind to DNA sites located near the 
promoter region of genes, although it may not always be the case 
(see “Enhancers” and “Silencers”). Moreover, by interacting with 
their binding sites, these proteins are able to affect gene 
transcription by RNA polymerase. As the main participants of gene 
expression, TFs will be revised in next section (refer to section 1.2). 
There are different mechanisms by which regulatory proteins 
control the transcription of genes (see below). 
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Specificity factors 
In prokaryotes, sigma factors have the ability to alter the specificity 
of RNA polymerase for a given promoter (7). The use of a specific 
sigma factor to initiate the transcription of a gene depends on the 
gene and on the environmental signals needed to initiate the 
transcription of that gene. For example, in E. coli, when the bacteria 
are subjected to heat stress, the σ32 protein suffers a conformational 
change that causes RNA polymerase to bind to a set of specialized 
promoters that regulate genes coding for proteins involved in heat-
shock response (8). 
 
Activators 
TFs that promote the expression of a gene or a set of genes are 
known as activators. They usually bind to sequence-specific DNA 
sites located near the promoter, thereby facilitating the binding of 
the transcription machinery. In order to increase the expression of 
their regulated genes, activators can either interact with RNA 
polymerase subunits or distort the structure of DNA (see further in 
“The TATA-box promoter” in section 1.2.1). 
 
Enhancers 
Activators can bind to DNA sites located up to 1 megabase away 
from the promoter known as enhancers (9), or even in another 
chromosome (10), in order to loop DNA and promote gene 
transcription. Enhancers are very important during development and 
are involved in many different processes such as segmentation in 
invertebrates (11), or the establishment of the body axes in 
vertebrates (12–14). It is thought that human cells may contain up to 
1 million active enhancers (15). Sometimes, multiple enhancers 
associate forming large clusters in order to define cell identity. For 
example, in mouse embryonic stem cells, Oct4, Sox2 and Nanog, 
along with other TFs, have been associated to 231 different genes 
most of which control the pluripotent state (16). These clusters of 
enhancers are known as “super-enhancers” and have been also 
found at oncogenes in cancerous cells (17). 
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Repressors 
As their name suggests, these TFs repress gene expression by 
binding to non-coding DNA sequences that are close to or over the 
promoter region, in order to block the progress of RNA polymerase 
upon transcription. For example, in E. coli, the binding of the lac 
repressor protein in the major groove of the promoter region of the 
lac operon prevents the binding of RNA polymerase, which blocks 
the synthesis of enzymes that digest lactose when there is no lactose 
available in the environment (18). In the presence of lactose, the 
bacteria generate allolactose, which then binds to the repressor and 
causes it to detach from DNA. 
 
Silencers 
As for activators, repressors can bind to DNA sites located far away 
from the promoter known as silencers. Silencers work in a similar 
way than enhancers but, instead, they silence gene expression (19). 
For example, in T lymphocytes, a silencer is responsible for 
lineage-specific differential expression of CD4 during development, 
which results in either helper or cytotoxic T cells (20). 
 
General transcription factors 
Also known as basal TFs because they are always present, the 
function of these proteins is to position RNA polymerase at the start 
site of a protein-coding sequence and then release it to transcribe 
the mRNA (21). For example, in eukaryotes, RNA polymerase II 
requires the binding of 6 different general TFs in order to initiate 
gene transcription (22): TFIIA, TFIIB, TFIID, TFIIE, TFIIF and 
TFIIH (see further in “The TATA-box promoter” in section 1.2.1). 
 
Chromatin structure 
In eukaryotes, a particular case of regulation is mediated by the 
accessibility of DNA to RNA polymerase. The level of packaging 
of the chromatin (see section 1.1.3) dictates which DNA regions can 
be transcribed and which cannot (23). Chromatin can be unpacked 
as a result of histone modifications, including acetylation, 
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methylation, phosphorylation or ubiquitination. Therefore, cells can 
up- or down-regulate the expression of genes by packing/unpacking 
DNA (24). 
 
1.1.2 DNA replication 

The replication of DNA is the basis for biological inheritance and it 
occurs in all living organisms. It is a process by which cells 
generate two identical replicas from one original DNA molecule. 
Each strand of the original DNA molecule is used by a DNA 
polymerase as template for the production of a complementary 
strand. Therefore, each produced replica contains one strand from 
the original DNA molecule. Overall, the mechanism of replication 
is very precise, with DNA polymerases making less than one 
mistake for every 107 nucleotides added (25). Moreover, some 
DNA polymerases also have the ability to remove nucleotides from 
the end of the growing strand in order to correct mismatches. Other 
post-replication mismatch repair mechanisms also monitor DNA for 
errors, and are able to identify mismatches in the newly synthesized 
DNA strand from the original strand sequence. By combining these 
three factors, cells achieve a replication fidelity of less than one 
mistake for every 109 nucleotides added (25). 
 
Initiation 
DNA replication is initiated at particular points in DNA known as 
“origins”, which are bound by initiator proteins (26). For example, 
in E. coli, this protein is DnaA, while in yeast it requires the origin 
recognition complex (27). These proteins recognize DNA motifs 
that tend to be “AT-rich” since A-T pairs only have two hydrogen 
bonds (rather than the three formed in a C-G pair), which make 
them easier to separate. The binding of initiator proteins to the 
origin is required in order to recruit other proteins and form the pre-
replication complex (28), which unzips the double-stranded DNA. 
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Elongation 
Once the two strands of DNA are separated by helicases, a primase 
adds a short fragment of RNA, named primer, to each template 
strand. During the replication process, the leading strand receives 
only one RNA primer, while the lagging strand receives several. 
This is because the leading strand is extended continuously by a 
high processivity, replicative DNA polymerase, while the lagging 
strand is extended discontinuously from each primer as the double-
stranded DNA unzips, generating short DNA fragments, typically 
between 100-200 nucleotides long, known as Okazaki fragments 
(29). 
 
After DNA extension, an RNase removes all primers and a low 
processivity DNA polymerase, distinct from the one used for the 
replication, fills the gaps left. In the end, the process leaves a single 
nick on the leading strand and several nicks on the lagging strand, 
which are filled by a DNA ligase, completing the replication. There 
are other proteins involved in elongation, such as topoisomerases or 
gyrases, which relax the unzipped DNA from helicases, or DNA 
clamps, which form a sliding clamp around DNA and prevent the 
polymerase from dissociating from the template strand. 
 
Termination 
In eukaryotes, the process of replication is unable to reach the very 
end of chromosomes. Instead, it stops at the telomere region of the 
chromosome, which contains repetitive DNA, shortening the 
telomere of the replicated DNA strand. This is a normal process in 
somatic cells and, as a result, cells can only divide a certain number 
of times before the loss of DNA prevents further division (30). 
However, in germ cells, since they are in charge of passing the 
genetic material to the next generation, a telomerase extends the 
repetitive telomeric regions to prevent its degradation (31). 
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1.1.3 DNA packaging 

In order to understand the level of packaging that DNA suffers in 
the nucleus of cells, lets first put the size of DNA into context. Each 
human somatic cell contains approximately 6 billion base pairs of 
DNA. Moreover, a base pair is around 0.34 nanometers long, which 
makes a total of 2 meters of DNA per cell. Furthermore, the human 
body is estimated to contain about 50 trillion cells, which means 
that the amount of DNA stored in each human being arises to the 
astronomic number of 100 trillion meters. Now, considering the fact 
that the Sun is 150 billion meters from Earth, human cells altogether 
contain enough DNA to go to the Sun and back more than 300 
times, or to circle the Earth’s equator 2.5 million times. This is 
possible because DNA is highly compacted and packed in the 
nucleus of each cell in form of chromosomes. 
 
An initial step of condensation is due to nucleosomes. They are 
composed of two of each of the histones H2A, H2B, H3, and H4, 
which bind and wrap about 1.67 turns of DNA, or 146 base pairs 
(32). The addition of the linker histone H1 to the base of the 
nucleosome wraps an additional 20 base pairs, which results in two 
full turns of DNA around the nucleosome, or 166 base pairs (33). 
The packaging of DNA into nucleosomes shortens the fiber of DNA 
by seven fold. In other words, the length of DNA per cell is reduced 
from 2 meters to 28 centimeters. However, this is still too much to 
be fit in the nucleus of a cell. Another step of condensation is 
achieved when the nucleosomes fold into a fiber of approximately 
30 nanometers in diameter (34), which in turn form loops of 300 
nanometers length in average (35). These 300 nanometer fibers are 
further compressed and folded to produce a 250 nanometer-wide 
fiber, which is tightly coiled into the chromatid of the chromosome. 
However, DNA is only condensed at that level during cell division, 
especially in the metaphase 
 
Some processes such as transcription or replication also require the 
chromosomes to uncoil so that the two strands of DNA can come 
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apart temporarily, thus allowing polymerases access to the DNA 
template. Nevertheless, the presence of nucleosomes and the folding 
of chromatin into 30-nanometer fibers suppose a physical barrier for 
the enzymes that unwind and copy DNA. Therefore, there are two 
major mechanisms that open up chromatin fibers and/or remove 
histones transiently, which make the chromatin more accessible for 
DNA transcription and replication. On the one hand, histones can be 
enzymatically modified by the addition of acetyl, methyl, or 
phosphate groups, which releases them from DNA (36) and, on the 
other hand, histones can be displaced by chromatin remodeling 
complexes (37).  
 
Figure 1.1. Structural view of two concatenated nucleosomes (38). 

 
The structure shows that linker DNA zigzags back and forth between two stacks 
of nucleosome cores. By successively stacking to one on another, nucleosomes 
form continuous 30 nanometer fibers. 
 
1.1.4 DNA repair 

Every day cells must face tens of thousands of DNA lesions. 
Although environmental causes such as chemical agents, ultraviolet 
(UV) radiation, or ionizing radiation are the main sources of DNA 
damage, normal metabolic processes inside the cell as well as 
spontaneous depurination of DNA also play an important role (39). 
All in all, human cells have to repair about 0.000165% of the 6 
billion base pairs of their genome daily. However, although it may 
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seem a small percentage, any unrepaired lesions in critical genes, 
such as tumor suppressor genes, can impede the cell to function 
normally, or increase the likelihood of tumor formation and 
contribute to its heterogeneity. 
 
Most DNA damage affects the primary structure of the double helix 
by chemical modification of the bases. These modifications can 
disrupt the structure of DNA by introducing non-native chemical 
bonds or bulky adducts that do not fit in the double helix standards. 
Moreover, when the damage is near nucleosomes, DNA packaging 
can result affected. The typical DNA damage due to endogenous 
cellular processes comprises oxidation, alkylation, hydrolysis, 
formation of adducts, or mismatches during replication. In contrast, 
environmental damage of DNA comes in many forms such as UV 
light (creates pyrimidine dimers), ionizing radiation (causes 
irreversible DNA breaks), or industrial chemicals. Obviously, cells 
cannot function if any damage affects the integrity or accessibility 
of the essential information that is contained in their genomes. 
Therefore, there exist several mechanisms to repair DNA (40–47). 
 
1.1.5 DNA recombination 

Genetic recombination is a process by which two chromosomes, or 
two different regions from the same chromosome, exchange genetic 
material. In sexually reproducing organisms, it is essential in order 
to ensure genetic variation within a population (48). It also allows 
lymphocyte B cells to change the class of an antibody (49), and it is 
one of the mechanisms by which cells repair double-breaks in DNA 
molecules (45,46). The basic steps of recombination involve the 
alignment of two homologous DNA strands, the precise breakage of 
each strand, the exchange of genetic material between the strands, 
and the sealing of the resulting recombined molecules. Although it 
is very complex, this process occurs frequently in both prokaryotic 
and eukaryotic cells, and with a high degree of accuracy. 
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1.2 Transcription factors 

Among DNA-binding proteins, TFs are the crème de la crème. 
They are essential for the transcription of genes and therefore, they 
are present in all living organisms. In fact, due to their importance, 
mutations affecting TFs have been directly associated to diseases 
and cancer (50). For example, one third of human developmental 
disorders have been associated to dysfunctional TFs (51). The 
number of TFs found across species, as well as their proportion with 
respect to the number of genes, grow with their genome size (52). In 
eukaryotes, they account for approximately 5-10% of genes (53–
57), and the human genome alone is estimated to encode around 
2,000 TFs (58). TFs are able to bind alone or cooperatively to 
enhancer or promoter DNA regions adjacent to their regulated 
genes in order to promote/repress gene transcription. For example, 
TFs can stabilize/block the binding of RNA polymerase to DNA, 
promote the acetylation/deacetylation of histones to pack/unpack 
DNA, or recruit coactivators/corepressors to the TF-DNA complex 
(see “Activators” and “Repressors” in section 1.1.1). In eukaryotes, 
TF-binding sites range between 6 and 10 base pairs and are usually 
degenerated. 
 
Regarding gene transcription, in eukaryotes it begins with the 
binding of a TF to its cognate site. This is followed by sequential 
recruitment of general TFs and ultimately, of RNA polymerase II. 
Altogether, these proteins compose the transcription preinitiation 
complex (PIC). In prokaryotes, RNA polymerase is able to bind the 
promoter of a gene per se. Next steps include promoter melting and 
escape, transcript elongation until termination sites, and additional 
capping and processing of the nascent transcript, which occurs co-
transcriptionally. For the purpose of this thesis, this section only 
revises gene transcription until the ensemble of the PIC. A typical 
example to illustrate the PIC formation upon transcription is the 
recruitment of general TFs by the TATA-box binding protein (TBP) 
(see Figure 1.2). 
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1.2.1 The TATA-box promoter 

The TATAAA sequence present in the TATA-box promoter is 
recognized by TBP, which binds to the promoter and distorts the 
structure of DNA, thus facilitating the recruitment of several TBP-
associated factors (TAFs) (see Figure 1.3). The recruitment of TBP 
is regulated both positively and negatively. On the one hand, 
activators increase the binding of TBP to the TATA-box during 
transcriptional activation (59). On the other hand, negative factors 
such as Mot1 or the Taf1 N-terminal domain suppress the DNA-
binding activity of TBP (60). 
 
Figure 1.2. Illustration of a TATA-box promoter. 

 
 
Apart from TAFs, general TFs associate with TBP at the TATA-
box. Initially, the binding of TFIIA stabilizes the interaction 
between TBP and DNA. In yeast, TAF40 interacts with TFIIA and 
adds TFIID to the complex (61). Moreover, TFIIA competes with 
negative factors such as NC2, Mot1 and Taf1 for binding to TBP. 
Next, TFIIB, binds to the flanking regions immediate to the TATA-
box, which is critical for the formation of a stable PIC (62). A 
crystal structure at 4.5 Å of RNA polymerase II complexed with the 
N-terminal region of TFIIB revealed a loop called the “B-finger” 
that reaches into the catalytic center of the polymerase, where it 
interacts with both DNA and the nascent RNA (63). More recent 
crystals have shown that the C-terminal region of TFIIB is located 
above the polymerase active center cleft, which directs the TFIIB 
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N-terminus towards the catalytic center. A linker helix/strand of 
TFIIB interacts with the polymerase rudder and assists in opening 
DNA at the active center. Furthermore, at the catalytic center of the 
polymerase, the DNA template strand slides into the cleft and is 
scanned for the transcription start site with the help of a helical 
region of TFIIB, the “B-reader”, which collaborates in the start site 
selection. As the nascent transcript grows, at the length of 5 
nucleotides, it contacts the B-finger to form a stable complex. In 
addition, at the length of 7 residues, the nascent transcript clashes 
with the B-finger and displaces TFIIB, which leads to promoter 
escape (64,65). The PIC is further stabilized with the binding of 
RNA polymerase II and TFIIF. Finally, the general TFs TFIIH and 
TFIIE are recruited to the PIC together with the mediator complex, 
and transcription initiates. TFIIH contains 10 subunits that control 
an ATP-dependent transition from the closed to open PIC, which is 
required for productive transcription initiation (66). 
 
Figure 1.3. Structural view of a TATA-box promoter. 

 
TATA-box complex with TBP (67) (yellow), TFIIB (68) (magenta), TFIIA (69) 
(green) and RNA polymerase II (65) (cyan), created by structural superimposition 
with the UCSF Chimera package (70).  
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However, the majority of eukaryotic promoters lack a canonical 
TATA-box. In yeast, only about 20% of genes contain a TATA-
box, and most of them are associated to stress response. In contrast, 
TATA-less promoters contain other elements such as Initiator and 
the downstream promoter element that are used for promoter 
recognition by the transcription machinery (71). The majority of 
TATA-less promoters are found in basic housekeeping genes (72). 
 
1.2.2 Structure of transcription factors 

TFs are modular, and are constituted of 3 different domains. The 
DNA-binding domain (DBD) allows the TF to attach to DNA 
through a combination of electrostatic (of which hydrogen bonds 
are a special case) and Van der Waals forces. This allows the TF to 
recognize DNA in a sequence specific manner. However, not all 
bases in the binding site may actually interact with the TF, and 
some of these interactions may be weaker than others. Thus, a TF is 
capable of binding a subset of closely related sequences, each with 
different affinity, which allows to represent its binding sites as a 
probabilistic model named position weight matrix (PWM). For 
example, although the consensus site for TBP is TATAAA, it also 
binds to similar sequences like TATATA or TATAAT (73). The 
limited number of DBDs that exist in nature has been used to 
classify TFs in different families (see Table 1.1 and Figure 1.4). 
 
The trans-activating domain allows the TF to interact with other 
transcriptional coactivators such as TAF9, MED15, CBP and p300. 
For example, the nine-amino-acids trans-activation domain, which 
appears in a large superfamily of eukaryotic TFs represented by 
Gal4, Oaf1, Leu3, Rtg3, Pho4, Gln3 and Gcn4 in yeast, and by p53, 
NFAT, NF-κB and VP16 in mammals, interacts directly with the 
general coactivators TAF9 and CBP/p300 (74). 
 
The signal-sensing domain, which is not present in all TFs, senses 
external signals and transmits them to the rest of the transcription 
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Figure 1.4. Structural view of a member of each family of TFs from Table 1. 

   

AFT (103) AP2 (104) ARID/BRIGHT (105) 

   

bHLH (106) bZIP (107) Cys2-His2 zinc finger (108) 

   

E2F (109) Ets (110) Forkhead (111) 

   

GATA (112) Homeodomain (113) IRF (114) 
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MADS box (115) Myb/SANT (116) NAC/NAM (117) 

   

Nuclear receptor (118) Paired box (119) POU (120) 

   

SMAD (121) Sox (122) T-box (123) 

   

TBP (67) WRKY (124) Zinc cluster (125) 
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complex, which results in up- or down-regulation of the expression 
of the transcribed gene. For example, a PAS domain allows the 
hypoxia-inducible factor 1 to mediate the transcriptional activation 
of the erythropoietin gene in front of decreased O2 levels (126). 
 
1.2.3 Protein interactions of transcription factors 

Protein-protein interactions (PPIs) are essential in order to regulate 
gene expression. Not only they are necessary upon PIC formation, 
but also for the transduction of external signals into the expression 
of one gene or another. Many TFs involved in developmental 
processes, such as Smad (97), STAT (127), β-catenin (128) or NF-
κB (127), are mainly signal transducers. Typically, these TFs are 
found in the cytoplasm and, upon activation, they translocate to the 
nucleus and promote the transcription of their regulated genes. As 
signal transducers, these TFs interact with different proteins, 
including membrane receptors, adaptor proteins, or kinases. 
 
Some TFs bind to DNA as dimers, as it is the case of the bHLH 
(78), bZIP (129) and nuclear hormone receptor families (130). 
Dimerization increases the specificity and affinity of TFs for DNA 
and allows them to interact with different proteins (131). In some 
cases, different combinations of monomers can transform the dimer 
from one that activates gene transcription to one that represses it. 
For example, the CCAAT/enhancer binding protein (C/EBP) is 
involved in various processes, such as adipogenesis, hematopoiesis 
and regulation of cell cycle. C/EBP belongs to the bZIP family and 
interacts with DNA in form of homo- or heterodimer. However, 
when it dimerizes with the C/EBP homologous protein 10, its DNA-
binding activity is attenuated (132).  
 
Finally, in eukaryotes, it is by now fairly clear that TFs do not act 
alone. Instead, they act cooperatively forming “enhanceosomes”, 
which are assemblies of TFs stabilized by protein-protein as well as 
PDIs. A well known enhanceosome occurs in the human interferon-
beta gene (133). Upon viral infection, NF-κB, the ATF-2/c-Jun 
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dimer, and an interferon regulatory factor such as IRF-3/7 bind 
cooperatively to a nucleosome-free region of the gene promoter. A 
fourth protein, HMG-I, stabilizes the complex by promoting inter-
protein interactions. Once assembled, the enhanceosome recruits the 
RNA-polymerase II machinery to the promoter and activates the 
transcription of the gene.  
 
Characterization of protein-protein interactions 
Several methods have been developed in order to identify PPIs. 
Protein complementation assays (PCA) (134) represent the biggest 
group of these methods. In a typical PCA protocol, the proteins of 
interest (“bait” and “prey”) are covalently linked at the genetic level 
to incomplete fragments of a third protein known as the “reporter”. 
Usually, the reporter protein is a TF that regulates a certain gene, 
which upon activation promotes an observable phenotype. The 
whole system is expressed in vivo. If the bait and prey proteins 
interact, the reporter fragments are close enough to become 
functional and, consequently, the reporter activity is detectable. 
Among PCA methods, the most widely used are the yeast two-
hybrid assay (135) and tandem affinity purification (136). 
 
Other methods are based in fluorescence and are aimed to detect 
weak and transient PPIs as occurring in living cells. Among them, 
the biomolecular fluorescence complementation (BiFC) (137) and 
the green fluorescence protein (GFP) (138) assays are the most 
popular. Förster/fluorescence resonance energy transfer (139) is 
another common flourescence-based assay in which the energy 
from a donor fluorophore is transferred to an acceptor fluorophore if 
they are in close proximity and properly oriented. A more sensitive 
method, the bioluminescence resonance energy transfer system 
(140), replaces the donor fluorophore by a luciferase. 
 
A different family of methods is based on the array technology. The 
array contains several covalently attached proteins (probes), and 
their ability to interact with other labeled proteins (samples) is 
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tested (141). A variation of these methods, the surface plasmon 
resonance system (142), does not require labeled samples. Instead, 
an optical biosensor identifies PPIs by detecting changes in the local 
refractive index, thus providing real-time affinity and kinetic data. 
 
Some methods are able to characterize PPIs at atomic resolution, 
but they will be described in “High-resolution methods” in section 
1.3.4. Table 1.2 summarizes the most commonly used methods to 
detect PPIs (this later group is not included). 
 
Table 1.2. Most common experimental methods for detecting PPI. 

Method Type Binary Complex HT 
Yeast two-hybrid (135) PCA �  � 
Mammalian PPI trap (143) PCA �   
Tox-r dimerization assay (144) PCA �   
Bimolecular fluorescence 
complementation (137) 

PCA, 
fluorescence 

�   

Proximity ligation assay (145) PCA �   
Förster/fluorescence resonance 
energy transfer (139) 

Fluorescence �   

Bioluminescence resonance 
energy transfer (140) 

Fluorescence � �  

Protein microarrays (141) Array � � � 
Surface plasmon resonance (142) Array � �  
Tandem affinity purification (136) PCA � � � 
Columns 3-5 use a dot to indicate if the method can detect binary PPI (Binary), 
multiple protein complexes (Complex), or if it can be used in a high-throughput 
manner (HT). 
 
Databases of protein-protein interactions 
The emergence of high-throughput techniques has allowed PPI 
detection at large scale. All this data can be found in various curated 
depositories, including the database of interacting proteins (DIP) 
(146), the biomolecular interactions network database (BIND) 
(147), the biological general repository for interaction datasets 
(BioGRID) (148), the human protein reference database (HPRD) 
(149), or MIntAct (150) (this subject is reviewed in (151); see 
Appendix 1). 
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1.3 Characterization of protein-DNA interactions 

The characterization of PDIs is foremost in order to understand how 
proteins interact with DNA and regulate gene expression. This 
section is focused on different methods for the detection and 
characterization of PDIs, including the prediction of DNA-binding 
ability of proteins, the identification of protein-DNA association, 
and the elucidation of specific binding amino acids and nucleotides 
involved in the PDI. According to the nature of the experiment, 
these methods have been classified into 5 categories: in vitro, in 
vivo, high-throughput, high-resolution and computational. 
 
1.3.1 In vitro methods 

Traditionally, in vitro methods have been employed to identify and 
characterize PDIs. Among them, the most widely used are DNA 
footprinting, southwestern blot, electrophoretic mobility shift assay 
and DNA pull-down. 
 
DNA footprinting 
This method relies on the principle that a protein bound to DNA 
will protect that DNA from enzymatic cleavage. The DNA region 
of interest is amplified and labelled using polymerase chain reaction 
(PCR) method (152). Then, a given protein is added to a portion of 
amplified DNA (the other portion is saved for later comparison) 
together with a cleavage agent (which is added to both portions). 
There are various cleavage agents that can be used such as DNase I 
(153), hydroxyl radicals (154) or UV radiation (155). If the protein 
does not bind to the target DNA, both samples, the one with protein 
and the one without protein, will show a ladder-like distribution 
when run on a polyacrylamide gel electrophoresis. On the contrary, 
if the protein binds the DNA, the protein sample will show a ladder 
distribution with a break in it, the “footprint”, where DNA has been 
protected from the cleavage agent. By varying the concentration of 
DNA-binding protein, the binding affinity of the protein can be 
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estimated according to the minimum concentration of protein at 
which the footprint is observed. 
 
Figure 1.5. Overview of DNA footprinting workflow. 

 
 
Southwestern blot 
Soutwestern blotting involves a modified western blot procedure 
using labeled oligonucleotides instead of antibodies as probes (156). 
The whole cell content (raw or purified) is resolved on a denaturing 
polyacrylamide gel, which is followed by electrophoretic transfer of 
the proteins to a membrane, under renaturing conditions, and further 
incubation with the DNA sequence of interest. Then, the membrane 
is developed and photographed, revealing a band corresponding to 
the bound DNA sequence. The alignment of the band with the gel 
marks the position of the DNA-binding protein and provides 
information about its molecular weight. Additional western blotting 
or mass spectrometry can be used to identify the protein, if 
necessary. 
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Electrophoretic mobility shift assay 
The electrophoretic mobility shift assay (157) is based on the 
observation that protein-DNA complexes migrate more slowly than 
free DNA molecules in non-denaturing polyacrylamide or agarose 
gel electrophoresis. Then, if a protein binds a given DNA molecule, 
a migration “shift” relative to the non-bound DNA probe can be 
observed. The specificity of the binding can be determined through 
a competition reaction between unlabeled and labeled different 
DNA sequences, which results in a decrease in the shifted signal if 
the different DNAs compete for the binding of the same protein. 
Alternatively, the protein-DNA complex can be crosslinked and the 
reaction run on a denaturing gel, where the specificity of the 
binding can be determined through visualization of a single shifted 
band. Moreover, if the starting concentrations of both the protein 
and DNA are known, as well as the stoichiometry of the complex 
(i.e. if the protein binds as a monomer or as a multimer), the 
apparent affinity of the protein for the DNA sequence can also be 
determined. Additionally, calculating the apparent affinities of 
different mutants and comparing them with respect to the wild type 
can also be used to identify the key DNA-binding amino acids of 
the protein. 
 
Figure 1.6. Illustration of EMSA principle. 

 
 
DNA pull-down 
In a DNA pull-down assay, double-stranded DNA sequences are 
labeled with high affinity tags, such as biotin, in order to 
immobilize them in functionalized beads or columns (usually 
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containing avidin4 or derivates). The biotin-tagged DNAs are then 
incubated with proteins from a cell lysate. The formed protein-DNA 
complexes are further purified using agarose or magnetic beads. 
Once the proteins are eluted from DNA, they can be detected by 
western blotting or identified by mass spectrometry. Alternatively, 
the protein can be labeled with an affinity tag or the protein-DNA 
complex can be isolated using an antibody against the protein of 
interest. In this case, the unknown DNA sequence bound by the 
protein can be detected by southern blot or through PCR analysis. 
 
1.3.2 In vivo methods 

In contrast to the previous techniques, some methods allow the 
characterization of PDIs as occurring in living cells. Among them, 
chromatin immunoprecipitation (ChIP) is the most popular (158), 
but I will describe it together with other high-throughput methods 
(see section 1.3.3). 
 
Proximity ligation assay 
Proximity ligation assay (PLA) is an ultrasensitive technique for 
measuring any kind of interaction in vivo (145). For PDIs, it 
requires two primary antibodies grown in different species, each of 
them specific for either the protein of interest or DNA (the second 
antibody is unspecific for any DNA sequence), which are then 
bound by specie-specific secondary antibodies named PLA probes. 
Each PLA probe contains a unique short DNA sequence attached to 
it and, if the two probes are in close proximity, the addition of two 
other DNA fragments forms a circle. Once ligated, the circular 
DNA is amplified using labeled nucleotides, resulting in a bright 
spot when observing the cells or tissue sample with a fluorescence 
microscope. 
  

                                                
4 The avidin-biotin complex is the strongest known non-covalent interaction 
between a protein and a ligand (Kd = 10-15 M), which makes it one of the most 
useful tags for the purification and detection of complexes. 
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DNA adenine methyltransferase identification 
In this technique, a protein of interest is fused with a bacterial DNA 
adenine methylase (DAM) (159). Upon binding, the protein brings 
DAM to its DNA recognition sites, which results in the methylation 
of adenines in neighbouring GATC sites. Further digestion of the 
genome with the enzyme DpnI, which cuts methylated GATCs, 
coupled with PCR analysis or microarrays allows the generation of 
genome-wide DNA-binding maps of the protein. 
 
Figure 1.7. Illustration of DamID principle. 

 
 
1.3.3 High-throughput methods 

The previous methods are generally low throughput and laborious 
and what is more important, they generate consensus DNA-binding 
sites of low resolution due to the limited number of DNA sequences 
that can be tested in each experiment. In contrast, in the last decade, 
several methods have appeared able to characterize PDIs in a high-
throughput manner. 
 
ChIP-chip/ChIP-seq 
Chromatin immunoprecipitation (ChIP) has been extensively used 
to characterize PDIs in vivo. This technique uses chemicals such as 
formaldehyde to crosslink proteins and DNA that are in direct 
contact, which is followed by cell lysate and DNA fragmentation by 
sonication. Then, the whole cellular content is immunoprecipitated 
in order to capture the protein of interest with specific antibodies, 
together with any crosslinked DNA fragment. After reversing the 
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Figure 1.8. Overview of ChIP-chip and ChIP-seq workflows. 

 
 
crosslink, the bound DNA is amplified and characterized in various 
ways such as microarrays (ChIP-chip) (160) or high-throughput 
sequencing (ChIP-seq) (161). 
 
SELEX 
The systematic evolution of ligands by exponential enrichment 
(SELEX) (162) is the main experimental approach used in the 
construction of the TRANSFAC database (163). It involves the 
incubation of a protein of interest with a library of random DNA  
 
Figure 1.9. Overview of SELEX workflow. 
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sequences. Then, bound and unbound DNA sequences are separated 
and bound DNA is further amplified by PCR and incubated with the 
protein. The whole procedure is repeated several times, which 
makes its application difficult. Moreover, it is also difficult to 
obtain TF motifs with high resolution, as SELEX typically yields 
between 20 and 70 binding sites. The introduction of serial analysis 
of gene expression (SAGE) overcomes these limitations (164). In 
SELEX-SAGE, radiolabeled oligonucleotides are used to monitor 
the binding conditions thus preventing the selection of only high- 
affinity binding sites. Moreover, the inclusion of SAGE increases 
the sequencing throughput by concatenation of the DNA sequences 
obtained during SELEX rounds. 
 
Protein binding microarray 
In a protein binding microarray (PBM) experiment, a recombinant 
protein of interest (GST-tagged) is probed against an array of 
double-stranded DNA and labeled with a fluorescent anti-GST 
antibody (165). The resulting intensity signals are used to determine 
the DNA-binding specificities of the given protein (the higher the 
intensity the stronger the protein is bound to DNA). One of the 
main advantages of the method is that it exhaustively explores the  
 
Figure 1.10. Overview of PBM workflow. 
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DNA space thus providing highly accurate consensus binding sites. 
The microarray is designed to contain all non-palindromic DNA 
sequences of 8 base pairs (8-mers) in at least 32 different spots (16 
for palindromic 8-mers). This redundancy allows a robust 
estimation of the relative preference of the protein for every 8-mer. 
The binding site of the protein is reported as a PWM, which is 
derived from the top scoring 8-mers (166). 
 
Yeast one-hybrid 
Both SELEX and PBM approaches are useful for identifying the 
preferred binding sites of a given protein but, if the aim of the 
experiment is the opposite, to identify proteins that can specifically 
interact with a given DNA sequence, the yeast one-hybrid (Y1H) 
(167) or the protein microarray (171) methods are more indicated. 
Y1H exploits the fact that DNA-binding proteins, such as yeast 
Gal4, have a modular structure comprising a DNA-binding domain 
and a trans-activation domain (see “Structure of transcription 
factors” in section 1.2.2). In this method, a DNA fragment of 
interest (bait) is cloned upstream of two different reporters, HIS3 
and LacZ, which are then integrated into the genome of a yeast 
strain. Moreover, plasmids expressing a TF (prey) fused with the 
trans-activation domain of Gal4 are introduced into the yeast strain. 
 
Figure 1.11. Overview of Y1H workflow. 
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If the prey interacts with the bait, the trans-activation domain of 
Gal4 activates the reporter expression regardless of whether the TF 
is an activator or repressor in vivo. The HIS3 reporter overcomes 
3AT inhibition allowing the yeast strain to grow, while the LacZ 
reporter produces a blue compound from X-gal. The sequencing of 
the plasmid in each of the blue colonies reveals the identity of the 
TFs that can bind the DNA fragment of interest. 
 
Bacterial one-hybrid 
In a bacterial one-hybrid (B1H) experiment, the TF of interest is 
expressed as a fusion to a subunit of RNA polymerase. In parallel, a 
library of randomized oligonucleotides with potential TF-binding 
sites is cloned into a separate vector that contains the selectable 
genes HIS3 and URA3. If the TF (bait) binds a potential binding site 
(prey) in vivo, it will recruit RNA polymerase to the promoter and 
activate the transcription of the reporter genes in that clone. The two 
reporter genes, HIS3 and URA3, allow for positive and negative 
selections, respectively. At the end of the process, positive clones 
are sequenced and examined with motif-finding tools in order to 
produce a PWM of the binding site (168). 
 
Protein microarray 
Unlike PBMs, in a protein microarray experiment, a fluorescent-
labeled DNA motif is probed against thousands of individually 
purified proteins on a glass. This approach, as in the case of Y1H, 
allows the identification of TFs that bind the promoter region of a 
gene of interest, and has been used to profile the protein-DNA 
interactome in human (169). 
 
Chromosome conformation capture 
The previous methods are indicated for the characterization of PDIs. 
However, studying the structural properties and spatial organization 
of chromosomes is also important to understand the regulation of 
gene expression. For example, some chromosomal regions can fold 
in order to bring an enhancer and its associated TFs within close 
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proximity of a gene promoter (170). Chromosome conformation 
capture (3C) allows the analysis of such interactions in vivo (171). 
The whole genome is crosslinked with formaldehyde and digested 
with a restriction enzyme. This is followed by ligation at very low 
DNA concentrations to favor intramolecular ligation of crosslinked 
fragments over random fragments, whose ligation is intermolecular. 
The crosslink is then reversed and individual ligation products are 
finally detected and quantified by agarose gel detection or real-time 
qPCR using locus-specific primers. A disadvantage of 3C is the 
frequent random collisions of chromosomal regions to one another, 
which means that observed interactions between two regions are not 
always specific. Therefore, a specific interaction between two 
regions is only confirmed when the interaction occurs at a higher 
frequency than with neighboring DNA. 
 
Figure 1.12. Overview of 3C, 4C, and 5C workflows. 

 



Introduction 
 

 33 

An evolution of the method, circularized 3C (4C), has a significant 
advantage because only one of the two crosslinked fragments needs 
to be known (172,173). After the reversal of the crosslink, DNA 
fragments are digested a second time with a different restriction 
enzyme, which results in smaller fragments with restriction ends 
that differ from the previous restriction sites. This second digestion 
favors self-circularization of DNA that is further ligated. Circular 
DNAs are then amplified with inverse PCR, using primers designed 
against the outer restriction sites, and quantified by high-throughput 
sequencing or microarrays. 
 
Another 3C-based method, the carbon-copy or 5C, allows the 
parallel analysis of interactions between many chromosomal 
regions (174). In 5C, after the crosslink is reversed, ligation-
mediated amplification (LMA) is performed using multiplex 
universal primers as T7 and T3 fused to the ligation junction 
sequences (i.e. half the site recognized by the restriction enzyme). 
The primers anneal to the digested fragments and are ligated with a 
DNA ligase. The ligated primers are finally used as templates to 
further amplify and analyze the fragments via high-throughput 
sequencing or microarrays. 
 
MNase-, DNase-, and other restriction enzyme-based methods 
Also, the knowledge of the precise nucleosome locations in the 
genome is key to understand how gene regulation. Digestion of 
chromatin by micrococcal nuclease (MNase) provides information 
about nucleosome positioning along DNA strands (175). In this 
method, permeabilized cells are exposed to MNase in the presence 
of a divalent cation, which makes double-stranded cuts between 
nucleosomes. Treating the chromatin with very high concentrations 
of MNase yields mononucleosome-length DNA predominantly, 
while using lower concentrations of the enzyme generates one 
double-stranded cut at intervals of 10 to 50 nucleosomes, depending 
on the concentrations of both the enzyme and chromatin. MNase 
can also make single-stranded DNA cuts at the sites of histone 
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octamers, and thus, the mapping of nucleosome occupancy is 
usually performed with native double-stranded DNA.  
 
Although DNase I has traditionally been used to predict PDIs in 
vitro, its ability to digest accessible DNA in internucleosomal 
regions has been exploited to probe nucleosome occupancy in vivo 
(176). The digestion of nuclear chromatin by DNase I produces 
DNA fragments smaller than 500 base pairs that, in theory, allows 
to distinguish DNA fragments bound by either TFs or nucleosomes 
(177). The use of DNase over MNase has the advantage of coupling 
both TF occupancy and nucleosome positioning (178). However, a 
recent article shows that MNase coupled to immunoprecipitation of 
native chromatin (N-ChIP) can be used to generate high-resolution 
maps of TF binding sites on native chromatin (179). 
 
A recently published method, FIREWACh (180), uses restriction 
enzymes in permeabilized cells to isolate nucleosome-free regions 
of DNA. The resulting fragments are amplified using ligation-
mediated PCR with a complementary flanking adaptor primer, and 
inserted within the lentiviral reporter plasmid of FpG5, upstream of 
GFP-coding sequences. Plasmids are then transfected to another 
sample of the original cells and GFP+ cells are selected using 
fluorescence-activated cell sorting cytometry. Further amplification 
with PCR and sequencing of the plasmids in GFP+ cells results in 
the identification of transcriptional regulatory modules. 
 
1.3.4 High-resolution methods 

A deepen comprehension on how proteins and DNA interact can be 
achieved using methods that characterize protein-DNA complexes 
at atomic resolution. In the past decade, advances in the structural 
characterization of PDIs have accelerated the field thus facilitating 
the determination of large protein-DNA complex structures such as 
the formation of chromatin fibers due to tetranucleosomes (38), or 
even the encircling of DNA occurring during gene transcription and 
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DNA replication by sliding clamps (181,182). Still, the structural 
determination of protein-DNA complexes remains challenging, as 
suggested by the limited number of protein-DNA complexes stored 
in the Protein Data Bank (PDB) (183) (see Figure 1.13). For 
example, less than 1% of structures of human proteins in the PDB 
correspond to PDIs5. There are a few experimental techniques 
including modeling procedures that can be used in order to elucidate 
the structure of PDIs at atomic resolution. 
 
X-ray crystallography 
X-ray crystallography is the most widely used experimental method 
for determining the structure of large biomolecules. In fact, more 
than 90% of released PDIs in the PDB5 have been solved using this 
technique. It allows the three-dimensional (3D) description at 
atomic resolution of a crystallized macromolecule, in which their 
atoms cause a beam of incident X-rays to diffract into many specific 
directions. The produced diffraction map contains information 
about the electron density of the macromolecule, which allows the 
elucidation of their atom positions and chemical bonds. However, 
not all the contacts observed in a crystal are biologically relevant 
(184), and the crystallization conditions may not represent exactly 
those of an in vivo environment. 
 
Nuclear magnetic resonance spectroscopy 
In nuclear magnetic resonance (NMR), the macromolecule of study 
is kept in solution, which is a more natural environment. The 
sample is placed under a strong magnetic field and short frequency 
pulses are used to excite the nucleus of the macromolecule. This 
allows the detection of different chemical shifts for each nucleus of 
the macromolecule, which depend on their chemical environment. 
The different radio frequency pulses and the analysis of the 
chemical shifts that they produce in the different nucleus are used to 
determinate the distances between the different atoms and generate 
a 3D-structural model at atomic resolution of the macromolecule.  
                                                
5Last accessed: July 2014. 
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Moreover, amide hydrogen exchange experiments using deuterated 
water can be used to identify changes in solvent accessibility of 
interfacial residues and to provide additional evidence of the 
protein-DNA interface (185). However, the application of NMR is 
limited by the size of the complex of interest (186). 
 
Small-angle scattering and cryo-EM tomography 
Small-angle scattering, either using X-rays or neutron beams, is a 
promising alternative technique for the structural characterization of 
protein-DNA complexes (187). The macromolecule is exposed to 
X-rays or neutron beams and a detector registers the scattered 
radiation. Then, the X-ray or neutron scattering curve (intensity 
versus scattering angle) is used to create a low-resolution model of 
the system (around 15 Å). In contrast to the previous structural 
methods, small-angle scattering experiments can be done in a few 
days. In addition, the fact that a crystalline sample is not needed 
allows the study of the dynamic properties of the macromolecule in 
solution, which is a more realistic environment. In cryo-electron 
microscopy (cryo-EM) tomography, the macromolecule is observed 
at cryogenic temperatures by an electron microscope, which uses a 
beam of electrons to create an image. However, highly dynamic 
systems as protein-DNA complexes (188) difficult the interpretation 
of density maps, thus affecting the structural resolution of this 
technique (around 15 Å). Still, both small-angle scattering and cryo-
EM data provide information about the shape and size of the 
macromolecule, which can be exploited in computational modeling 
to solve structures at atomic resolution of large macrocomplexes 
(revised in section 3.2.1). 
 
Computational modeling 
Although modeling procedures involve the use of computers, I will 
revise them in this section due to their ability to yield 3D models of 
PDIs at atomic resolution. The most common way of modeling 
PDIs is via comparative modeling (revised in (190)). This approach 
can only be applied as long as there is a homologous structure of the 
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interaction. Then, applications such as MODELLER (191) can be 
used to model the protein of interest. Moreover, the modeling of 
DNA requires the use of specialized software, as for example 
3DNA (192). Occasionally, PDI models can be constructed by 
superimposition of the structure/model of the unbound protein over 
the structure of a homologous protein-DNA complex (193) using 
structural alignment programs like TM-align (194). 
 
In general, homology modeling is limited by those homologs whose 
structure is too remote to help assigning the correct fold. However, 
two proteins can have similar structures even if they share little 
sequence similarity (i.e. the twilight zone) (195). Alternatively, 
docking procedures can be used if there are no available structures 
of the interaction, but the structure of both the protein and DNA are 
known or can be modeled (196–200). This subject is revised in 
detail in section 3.2.1 of this thesis. 
 
1.3.5 Computational methods 

Given the complexity of genome regulation observed in eukaryotic 
organisms, it is likely that the relevant details about most DNA-
binding proteins and/or their binding sites still remain unknown for 
most of them. Despite the recent advances described in this section, 
experimental characterization of PDIs is a laborious and difficult 
process and as a result, only a small fraction of eukaryotic TFs has 
been profiled (201). Therefore, it is necessary the development of 
computational approaches for rapid and accurate mapping of PDIs, 
especially to complement experimental methods. Prior to this PhD 
thesis, there existed several computational methods that address 
three closely related problems regarding protein-DNA association: 
predict DNA-binding proteins; infer protein-DNA interfaces; and 
characterize protein DNA-binding sites. A summary of these tools 
is provided in Tables 1.3, 1.4 and 1.5. A less explored topic is the 
prediction of TFs that specifically recognize and bind a given DNA 
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sequence. This has only been achieved with a certain degree of 
success in the case of zinc finger endonucleases (202). 
 
Identification of DNA-binding proteins 
The different approaches to identify DNA-binding proteins can be 
divided into two groups: sequence-based and structure-based. On 
the one hand, sequence-based methods take into account different 
features of the protein such as its amino acid composition (203,204) 
or evolutionary profiles (205,206). However, these methods cannot 
discriminate DNA-binding from RNA-binding proteins (207). On 
the other hand, structure-based methods (208–210) normally yield 
better predictions than sequence-based ones. 
 
Prediction of protein-DNA interfaces 
In a similar way, the observed amino acid conservation in protein-
DNA interfaces (211) has been exploited to train machine learning 
approaches in order to predict the DNA-binding residues of a 
protein (212–216). However, these methods have two main 
drawbacks: they assume the interaction of the protein with DNA 
and they tend to overpredict positively charged residues. Again, if 
the structure of the protein is known, it can be used to calculate the 
accessible surface area of each amino acid, or to extract structural 
properties, which results in better predictions of the amino acids 
that contact DNA (217–219). 
 
Characterization of protein-DNA binding sites 
A well-established procedure to characterize protein DNA-binding 
sites is to search with a motif discovery algorithm for over-
represented DNA sequences in the promoter regions of genes 
known to be regulated by that protein (220). However, the success 
of such approaches requires the availability of enough sequences for 
pattern discovery, which often is not the case. Moreover, for 
homeodomain and zinc finger proteins, which happen to be the 
largest families of TFs, there are models that allow the prediction of 
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the PWM of a protein just from its sequence (231–233). Finally, if 
not only the structure of the protein is known but also the structure 
of its complex with DNA, then, statistical potentials can be applied 
in order to predict the DNA targets of a protein and generate a 
PWM (193,223,225,226,234–237). 
 
Databases of protein-DNA interactions 
Information stored in databases of PDIs and/or protein-DNA 
complex structures can be used as a complement to computational 
methods. For example, TRANSFAC (163) is a manually curated 
database of eukaryotic TFs, and their experimentally determined 
binding sites and binding profiles. A similar database, JASPAR 
(238), only contains open access data and is non-redundant. 
 
Some databases are very specialized in their content. For example, 
the databases ChIPBase (239) and UniPROBE (240) only contain 
PDIs determined by either ChIP-chip or PBMs, respectively. There 
are other databases that are specie-specific, such as YEASTRACT 
(241) and YeTFaSCo (242) in yeast, REDFly (243) and OnTheFly 
(244) in fruit fly, or hPDI (245) in humans. Even there are databases 
exclusively dedicated to certain types of TFs, as it is the case of the 
homeodomain (246) and zinc finger families (247). Also, the 
thermodynamics of protein-DNA complexes, including the affinity 
of binding upon complex formation, the strength of the interaction, 
or the effects of mutations in amino acids or nucleotides on the 
binding specificity, can be found in ProNIT database (248).  
 
The available protein-DNA structural data stored in the PDB have 
been collected in several databases such as NPIDB (249), 3D-
footprint (250), BIPA (251), TFinDit (252), or footprintDB (253) 
(the last two databases exclusively contain structures of bound and 
unbound TFs). Some databases go one step further and classify 
different types of contacts (254,255) or features (256) that can be 
extracted from the previous structures. 
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Statistical potentials derived from 3D-structures 
Most of the previous methods that exploit 3D-structures of PDIs are 
based on statistical potentials. In general, statistical potentials are 
energy functions derived from the analysis of known structures in 
the PDB. These functions are used to score all contacts observed in 
a protein structure or complex (a PPI or a PDI) and provide an 
approximation of its free energy (the lower, the better). The section 
3.2.1 of this thesis is exclusively dedicated to statistical potentials: 
what they are, how they are derived for PDIs, and an extensive case 
study. 
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1.4 Motivation of this thesis 

Experimental data on TF-binding sites and nucleosome occupancy 
shed light on our understanding on how genes are regulated as such 
data continue to accumulate. However, we are still far from having 
a full picture on how the different DNA regions in a cell interact 
with each other, directly or indirectly through their RNAs and 
protein expression products. In part, it is because the experimental 
characterization of PDIs is a laborious and difficult process. In this 
context, computational techniques, either sequence- or structure-
based, play an indispensable role to help disclose gene regulation. 
 
On the one hand, sequence-based approaches have focused on 
characterizing DNA-binding proteins and their interfaces. However, 
little effort has been made towards predicting TF-binding sites just 
from their sequence. A classic approach is the use of homology-
based tools for transferring annotation between similar TFs (257). 
Still, TF-binding preferences, even between closely related TFs, are 
usually determined by a few key amino acids (258), which blurs the 
predictions of such methods. As I have already shown in section 
1.2.3, TFs act cooperatively, they need to interact with other 
proteins in order to effect their function (133). Moreover, PPI data 
has been previously applied with success to predict distant related 
proteins (259) or to infer enzyme function (260) (I review this 
subject in (151); see Appendix 1). Thus, PPIs can be exploited to 
improve homology-based methods. In section 3.1 of this thesis, I 
show the prediction of redundant TFs (i.e. TFs that can bind to the 
same binding sites) by combining homology-based tools and PPI 
data. The approach was further automated and generalized to infer 
the fold of remote homologs (195). 
 
On the other hand, structure-based approaches have also been used 
to predict TF-binding sites. These methods are based on statistical 
potentials and, although they are a good alternative to experimental 
techniques, their application is not exempt from limitations. One of 
them is the scarcity of protein-DNA complex structures available in 
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the PDB. To avoid any bias, statistical potentials are usually derived 
from a non-redundant data set of structures, which can generate 
statistical potentials suffering from low-count and at the same time 
low diversity of binding patterns. Another setback is that statistical 
potentials assume the contribution of the different DNA base pairs 
to the binding energy of the complex is independent from each 
other, which is incorrect (261). Therefore, there is still room for 
improvement in the area. In sections 3.2.1 and 3.3.1 I tackle both 
problems by 1) describing statistical potentials for contacts between 
amino acids and dinucleotides (i.e. pairs of consecutive nucleotides 
along the DNA sequence) and 2) incorporating experimental data 
from PBMs to statistical potentials. 

Finally, as stated in section 1.3.5, the prediction of the best TF for a 
given DNA sequence has only been achieved in the case of zinc 
fingers endonucleases (202). In section 3.3.1 I show the application 
of statistical potentials regarding this subject. 
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2. Objectives



 

“Learn from yesterday, live for today, hope for tomorrow. The 
important thing is to not stop questioning.” 
-Albert Einstein 
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This thesis aims to fulfill the following objectives: 

1. To study redundancy in gene regulatory networks caused by
transcription factors.

2. To predict DNA sequences that can be bound to a given
transcription factor.

3. To infer transcription factors that can bind to a given DNA
sequence.

The achievement of these goals comprises several milestones: 

• To exploit homology-based tools together with protein-protein
interactions for remote homology prediction of function and fold
(see section 3.1.1 and 3.1.2).

• To revise current state-of-the-art statistical methods to infer
protein-DNA interactions (see section 3.2.1).

• To describe statistical potentials for protein-DNA interactions
(see section 3.2.1 and 3.3.1).

• To incorporate protein binding microarray data to statistical
potentials (see section 3.3.1).

• To develop an automated modeling pipeline for transcription
factor-DNA complexes (see section 3.3.1).
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3. Results



“If your experiment needs a statistician, you need a better 
experiment.” 
-Ernest Rutherford 
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3.1 Studying redundancy in transcription factors 

The complementarity between gene expression and protein-DNA 
interaction data has led to several successful models of biological 
systems. However, several studies in multiple species have raised 
doubts about the relationship between these two datasets. These 
studies have shown that the overwhelming majority of genes bound 
by a particular TF are not affected when that factor is knocked out. I 
hypothesize knockouts could be compensated by redundant TFs (i.e. 
a homolog that could replace the deleted TF). To further prove this 
hypothesis, I combine homology-based tools together with PPI data 
to predict remote homology in TFs. I also automate the approach to 
detect remote homology and generalize it to predict protein fold in 
ModLink+. 

Manuscripts presented in this section: 

Gitter, A., Siegfried, Z., Klutstein, M., Fornes, O., Oliva, B., 
Simon, I., & Bar-Joseph, Z. (2009). Backup in gene regulatory 
networks explains differences between binding and knockout 
results. Molecular Systems Biology, 5, 276.  

Fornes, O., Aragues, R., Espadaler, J., Marti-Renom, M.A., Sali, 
A., & Oliva, B. (2009). ModLink+: improving fold recognition 
by using protein-protein interactions. Bioinformatics, 25(12), 
1506-1512.
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3.1.1 Backup in gene regulatory networks explains 
differences between binding and knockout results 

My contribution to this manuscript was to detect homologous TFs 
and calculate the percentage of shared PPI for each of them. 

Gitter A, Siegfried Z, Klutstein M, Fornes O, Oliva B, Simon I et al. Backup 
in gene regulatory networks explains differences between binding and 
knockout results. Mol Syst Biol. 2009; 5: 276. DOI: 10.1038/msb.2009.33

http://msb.embopress.org/content/5/1/276.long
U16319
Rectángulo





Results 

87 

3.1.2 ModLink+: improving fold recognition by using 
protein-protein interactions 

Fornes O, Aragues R, Espadaler J, Marti-Renom MA, Sali A, Oliva B. 
ModLink+: improving fold recognition by using protein-protein 
interactions. Bioinformatics. 2009 Jun 15;25(12):1506-12. doi: 10.1093/
bioinformatics/btp238

http://bioinformatics.oxfordjournals.org/content/25/12/1506.long
U16319
Rectángulo
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3.2 Statistical potentials for protein-DNA 
interactions 

In order to perform their function, proteins need to interact with 
each other as well as with other biomolecules such as DNA or 
RNA. Therefore, to fathom the function of a protein, we need to 
know with whom it can interact as well as the atomic details of such 
interactions (i.e. the structure of the complex). However, the total 
amount of protein interactions with an experimentally determined 
3D-structure is small. Therefore, computational modeling is key to 
fill this gap. Protein interactions can be modeled using as templates 
the interactions of homologous proteins, if the structure of the 
complex is known, or using docking procedures. No matter the 
approach used, the estimation of the quality of the produced models 
is essential. In this section, I revise several applications of statistical 
potentials: from the assessment of models to the ranking of docking 
possess, passing through the prediction of interfaces and PDIs. 
Moreover, I further show how to derive split-statistical potentials 
for PDIs together with a case study. 

Manuscript presented in this section: 

Fornes, O., Garcia-Garcia, J., Bonet, J., & Oliva, B. (2014). On 
the Use of Knowledge-Based Potentials for the Evaluation of 
Models of Protein-Protein, Protein-DNA, and Protein-RNA 
Interactions. Advances in Protein Chemistry and Structural 
Biology, 94, 77-120. 
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3.2.1 On the use of knowledge-based potentials for the 
evaluation of models of protein-protein, protein-DNA 
and protein-RNA interactions 

Fornes O, Garcia-Garcia J, Bonet J, Oliva B. On the use of knowledge-
based potentials for the evaluation of models of protein-protein, protein-
DNA, and protein-RNA interactions. Adv Protein Chem Struct Biol. 
2014;94:77-120. doi: 10.1016/B978-0-12-800168-4.00004-4

http://www.sciencedirect.com/science/article/pii/B9780128001684000044
U16319
Rectángulo
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3.3 Prediction of protein-DNA interactions 

Statistical-based approaches have been exploited in different works 
to predict TF-binding sites (see sections 1.3.5 and 3.2.1). However, 
the application of these methods is limited and can be improved. In 
this context I present SHAITAN, a homology-based approach that 
combines structural information and protein binding microarray 
data for the annotation of TF-binding sites and the discovery of TFs 
able to bind to specific DNA regions. 
 
Manuscript presented in this section: 
 

Fornes, O., Weirauch, M.T., Hugues, T.R., & Oliva, B. 
SHAITAN: On the prediction of protein-DNA interactions 
with a homology-based approach (To be submitted). 
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3.3.1 SHAITAN: On the prediction of protein-DNA 
interactions with a homology-based approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fornes, O., Weirauch, M.T., Hugues, T.R., & Oliva, B. 
SHAITAN: On the prediction of protein-DNA interactions 
with a homology-based approach (To be submitted). 
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ABSTRACT 
The knowledge on transcription factor (TF) binding sites is key to understand 

gene regulation. However, the binding preferences for most of eukaryotic TFs 

are unknown. In this context, the development of computational tools as a 

complement to experimental procedures for characterizing TF-binding sites is 

foremost. In this work, we present SHAITAN, a homology-based approach 

that combines structural information and protein binding microarray data for 

the annotation of TF-binding sites and the discovery of TFs able to bind to 

specific DNA regions. SHAITAN was superior than three other state-of-art 

methodologies when benchmarked to predict the binding sites for 70 TFs from 

the DREAM5 Challenge. SHAITAN was also successful at identifying different 

combinations of specificity residues for determined DNA sequences in 

homeodomains. Thanks to an automated homology modeling pipeline for TF-

DNA complexes, SHAITAN could be applied at large-scale in order to fill the 

existing gaps in gene regulatory networks.  
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INTRODUCTION 
DNA-binding proteins play essential roles in the daily activities of cells. Among 

them, transcription factors (TFs) are the most widely studied. TFs are able to 

activate/repress gene transcription by binding to specific sites in enhancer or 

promoter regions adjacent to their regulated genes. The variability observed 

among DNA sequences recognized by a TF has driven to use probabilistic 

models, called position weight matrices (PWMs), in order to represent TF-

binding sites. Specifically, researchers have exploited PWMs to search for 

novel targets of TFs (reviewed in (1)).  

 

Characterizing TF-binding sites is foremost in order to understand how genes 

are regulated. In the past decade, the appearance of high-throughput 

techniques, including ChIP-chip (2) and ChIP-seq (3), protein binding 

microarrays (PBMs) (4), or the bacteria and yeast one-hybrids (5,6), have 

allowed the characterization of TF-binding sites at large-scale. However, 

experimental protocols are both laborious and difficult to apply, as it is 

suggested by the very small fraction of eukaryotic TFs that have been profiled 

(7). As an alternative, computational tools can be employed. A well-

established procedure to infer the binding sites of a TF consists in searching 

the promoter regions of its regulated genes for over-represented sequence 

patterns using a motif discovery algorithm (8). Nevertheless, the success of 

this strategy requires the availability of enough sequences for pattern 

discovery, which is only possible for a small number of TFs. Another 

successful approach to predict a TF-PWM is the structural analysis of its 

complex with DNA using statistical potentials (revised in (9)). Briefly, given a 

TF-DNA complex structure, different DNA sequences are threaded and the 

binding energies of the resulting interactions are calculated. Best scoring 

sequences are then considered to be bound by the TF and incorporated into a 

PWM. 

 

Although statistical potentials are a good alternative to infer TF-binding sites, 

their application still has some limitations. One of them is the lack of templates 

due to the small number of TF-DNA complex structures available in the 

Protein Data Bank (PDB) (10). To avoid any bias, statistical potentials are 
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usually derived from a non-redundant (nr) dataset of PDB structures. This 

redundancy is generally removed on the TF side of the complex. Yet, TFs can 

recognize different binding sites and in addition, members of the same family 

of TFs can bind to distinct DNA sequences (11). For this reason, the removal 

of redundancy can generate statistical potentials suffering from low-count and 

at the same time low diversity of binding patterns. Another problem arises 

because statistical potentials assume the contribution of the different DNA 

base pairs to the binding energy of the complex is independent from each 

other, which is not true (12). AlQuraishi and McAdams addressed the 

coverage problem for the homeodomain family by combining TF-DNA 

structures with experimentally determined PWMs (13). The inclusion of PWM 

data adapted the statistical potential to the varying binding preferences of 

homeodomains for different sites. Still, they highlighted the use of PWMs 

cannot account for inter-position dependencies observed among base pairs.  

 

In a recent work, we used statistical potentials of contacts between amino 

acids and dinucleotides (i.e. pairs of consecutive nucleotides along the DNA 

sequence) to address the recognition of DNA binding sites by TFs (9). We 

relied on a small set of nr TF-DNA complex structures to derive the statistical 

potentials. However, these potentials could not cover the whole contact 

spectrum and, as a result, the coverage of protein-DNA contacts was 

undermined. In this work, we present SHAITAN, Statistical-potentials using a 

Homology-based Approach to predict the Interactions between Transcription 

factors And Nucleotide sequences. SHAITAN is unique in that it integrates 

structural information and PBM data into three statistical potentials, thus 

bypassing the coverage problem. We further prove SHAITAN’s ability to infer 

TF-binding sites as well as to detect TFs able to bind a particular DNA 

sequence. SHAITAN was superior than other state-of-art tools when 

benchmarked against 70 targets from the DREAM5 TF-DNA Motif 

Recognition Challenge (14). Besides, SHAITAN was successfully applied to 

predict the specific residues involved in the recognition of the DNA binding 

site for the homeodomain family of TFs.  
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RESULTS 
When facing the problem of protein-DNA interactions we could address the 

following two questions: 1) what DNA binding sites were recognized by a TF; 

and 2) what TFs were able to bind a specific DNA sequence. In order to 

answer these questions, we could either choose the TF family or search over 

all possible TF conformations (i.e. all families). We tackled both challenges by 

using two different types of statistical potentials (see Methods): 1) specific for 

a particular TF family; and 2) general potentials that could be applied to all TF 

families. Thus, we considered deriving such potentials from two different sets 

of structures. These sets were constructed by removing similarity with two 

different thresholds: a strict cut-off, applicable to all structures, and a less 

restrictive cut-off that allowed the inclusion of TF-structures of the same family. 

The selected cut-offs were 35% and 70%, respectively, and the resulting non-

redundant (nr) sets were named nr35 and nr70. These sets were further used 

to train SHAITAN statistical potentials ES3DC, ES3DCdd and ES3DCdi under 

different conditions (see Methods). 

 

Evaluation of SHAITAN statistical potentials 

We tested different statistical potentials (i.e. ES3DC, ES3DCdd and ES3DCdi) to 

discern positive from negative 8-mers (i.e. P8Ms and N8Ms, respectively) in 

the PBM data using a five-fold cross-validation approach (see Methods). For 

each evaluated potential, we calculated the area under the receiver operating 

characteristic curve (AUROC) as a measure of performance. However, as we 

were dealing with unbalanced data, the performance of AUPR (i.e. area under 

the precision recall curve) was more informative than other statistical 

measures (15). 

 

Table 1 shows the resulting averaged AUROCs and AUPRs of SHAITAN 

using statistical potentials ES3DC, ES3DCdd and ES3DCdi derived under different 

conditions. The use of PBM information to generate the statistical potentials 

improved the performance of SHAITAN with respect to potentials generated 

with only known structures.  When using the non-specific general potentials 

with information from PBM, the AUPR was 1.5 times better than with 

information derived only from known structures. Besides, SHAITAN achieved 
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AUROCs over 0.9 when using family-specific potentials. In particular, for 

ES3DCdd, SHAITAN achieved an AUPR more than 60 times better than 

expected by random. 

 

Table 2 shows the averaged AUROCs and AUPRs of SHAITAN using family-

specific potentials. We have to note that, with independence of the statistical 

potential used, the performance of SHAITAN on the C2H2 zinc finger family 

was not successful. Members of this family of proteins typically have multiple 

DNA-binding domains arranged in tandem arrays, with each domain binding 

to 3 or more bases, and with an offset between fingers of three bases (16). 

Therefore, when mapping PBM data from multi-fingered proteins with more 

than 3 fingers over PDB structures, we could not tell which of the fingers 

interacted with the probes in the PBM experiment. Furthermore, depending on 

the PDB structure selected as template (see Methods), the maximum number 

of consecutive zinc fingers we could model was either 5 (17) or 6 (18). Thus, 

when modeling C2H2 zinc finger proteins with more than 6 fingers, more than 

one model was possible and we could not ascertain which was the correct 

model of the interaction as occurring in the PBM. These drawbacks resulted in 

a source of noise when deriving family-specific potentials for this family (see 

Figure 1). Still, SHAITAN could achieve AUROCs larger than 0.9 for the 

majority of TF-families (20 out of 24). Furthermore, when using the statistical 

potential ES3DCdd, AUPRs were more than 50 times better than expected by 

random for 70% of the families. 

 

Finally, we computed the positive predictive value (PPV) of SHAITAN using 

family-specific potentials in order to select the best cut-off for each of them to 

distinguish P8Ms from N8Ms (see Figure 2). In all cases, SHAITAN achieved 

maximum PPVs at energies lower than -0.45 (higher than 0.45 when using 

ES3DCdi). ES3DCdd was the most successful statistical potential implemented in 

SHAITAN, as shown by the statistical measures obtained in the different tests. 

Surprisingly, ES3DCdi, a distance independent potential, was better than the 

original ES3DC from which ES3DCdi was derived, with PPVs around 20%. So, the 

best statistical potentials in SHAITAN were, by decreasing order, ES3DCdd, 

ES3DCdi and ES3DC. 
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Prediction of DREAM5 PWMs 

We tested the capacity of SHAITAN family-specific potentials ES3DC, ES3DCdd 

and ES3DCdi to report TF-PWMs (see Methods). We compared these potentials 

with three state-of-art servers available online: 3D-footprint (19), 3DTF (20) 

and PiDNA (21). We used as benchmark the PWMs of 83 mouse TFs from 

the DREAM5 TF-DNA Motif Recognition Challenge (14). The three web 

servers require a TF-DNA complex structure, in PDB, format as input, and 

return the predicted TF-PWM as output. Nevertheless, most DREAM5 targets 

were not present in our set of known structures (see Methods). In all targets 

tested, the TF-DNA complex was modelled as shown in Figure 3. In total we 

obtained a TF-DNA complex structure, either directly from the PDB or 

modelled by our approach, for 70 DREAM5 targets. 

 

Figure 4 shows the quality of the predictions by means of comparing the 

PWMs created by 3D-footprint, 3DTF, PiDNA and SHAITAN to the DREAM5 

PWMs. Comparisons were made using Tomtom (22) as distributed in the 

MEME package (23). Tomtom yields the similarity between a pair of PWMs in 

form of a p-value. A prediction was considered good (green), mediocre 

(yellow), or bad (red) if the Tomtom p-value was ≤10-3, between 1 and 10-3, or 

1, respectively. Moreover, we considered a DREAM5 target as either easy or 

difficult to be predicted if, according to FIMO (24), the PWM bore some 

resemblance with the nucleotide sequence of the target TF-DNA complex. 

Additionally, we tested SHAITAN statistical potentials ES3DC, ES3DCdd and 

ES3DCdi derived without using PBM data specific of the DREAM5 targets 

(which was available in the real challenge). 

 

PiDNA and SHAITAN with ES3DCdd were applied to more than half the 

DREAM5 targets. They produced good results for 25 and 31 targets, 

respectively. Although the majority of good predictions were achieved for easy 

targets (20 out of 25 and 31, respectively), the capability of SHAITAN to yield 

good PWM predictions among the difficult targets was remarkably better than 

the rest of methods. When evaluating their performance on individual families, 

PiDNA and SHAITAN, using statistical potentials ES3DC and ES3DCdd, predicted 

good PWMs for TFs belonging to 7 different families. Surprisingly, SHAITAN 
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with ES3DCdi also achieved good predictions on members from 6 different 

families, while 3D-footprint and 3DTF were far behind reporting only good 

PWMs for 4 and 3 families, respectively. Still, good PWMs could not be 

obtained for the GATA, IRF, MBD and POU TF families with any of these 

approaches. As expected, the coverage on the C2H2 zinc finger family was 

very limited, especially in the case of multi-fingered proteins (i.e. from Zbtb1 to 

Zscan20). 

 

Prediction of homeodomain protein-PWMs 
Finally, we further investigated the ability of SHAITAN to predict putative TFs 

able to bind a DNA sequence of interest (see Methods). As a case study, we 

selected the homeodomain family. Homeodomains consist of three α-helices 

comprising approximately 60 amino acids. Upon binding, the third helix of the 

domain (i.e. the recognition helix) is accommodated in the major groove and 

forms contacts with DNA bases. The specificity of the interaction resides on 

amino acids 47, 50 and 54, which are located in the center of the recognition 

helix (25). Berger et al. revealed the binding preferences for the majority of 

mouse homeodomain proteins using PBMs, and found certain combinations 

of specificity amino acids that allowed homeodomains to bind predominantly 

to determined 8-mers (26). 

 

In Figure 5, we show for different DNA sequences the results to predict the 3 

specificity residues located in the recognition helix of the homeodomain family. 

We also show the PWM logos of the region comprising residues 47-54 

predicted by SHAITAN (see Methods). As we can see, SHAITAN was able to 

correctly predict the homeodomain specificity amino acids for DNA sequences 

scored under the cut-off of -0.45  (i.e. marked with a green tick). In contrast, 

unreliable predictions failed to provide the correct specificity residues (i.e. 

energies over the -0.45 cut-off and marked with a red cross). 
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DISCUSSION 
TF-binding specificities represent the cornerstone on functional genomics and 

the analysis of gene regulation. Still, only about 1% of eukaryotic TFs have 

been profiled using “omics” techniques (7). In this regard, the development of 

computational tools as a complement to experimental procedures is foremost. 

In the recent years, several approaches based on statistical potentials have 

emerged with the objective to annotate TF-PWMs (revised in (9)), but their 

application is complicated for the non-specialist, since they require the 

knowledge of the structure (or model) of the TF of interest in complex with 

DNA.  

 

In this work, we have presented SHAITAN, Statistical-potentials using a 

Homology-based Approach to predict the Interactions between Transcription 

factors And Nucleotide sequences. SHAITAN integrates structural information 

and PBM data into three different statistical potentials. Moreover, we have 

demonstrated SHAITAN is superior than other current state-of-art methods 

available online on the prediction of TF-PWMs. Additionally, we have supplied 

a case study in which we show the application of SHAITAN to detect the best 

TF able to bind a particular DNA sequence. 

 

However, it has to be noted the reliability of the predictions for certain TF 

families was dubious, especially for the C2H2 zinc finger family. As shown in 

Figure 1, PBM data is difficult to interpret for some members of this family, 

being impossible to model the correct conformation of the binding complex, 

which in turn affects negatively the performance of the method. However, we 

suggest this problem could be solved by using available information on 

individual zinc fingers (27) instead of PBM data. 

 

Thanks to an automated pipeline for modeling TF-DNA complexes, SHAITAN 

was easily converted into a large-scale platform to annotate TF binding sites, 

thus providing the scientific community with a powerful tool that can be 

applied to fill the existing gaps in gene regulatory networks (28) or propose 

putative transcription factors that interact with a specific DNA binding site. 

Furthermore, SHAITAN can be applied to redesign the best protein sequence 
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of a TF belonging to a particular family, or to identify the best specific residues 

able to bind a determined DNA sequence. An example was provided for the 

homeodomain family, for which we covered many of the known experimental 

TF targets. Last but not least, we defined the limits of a reliable prediction: as 

important as it is to predict the possibility a TF binds a particular DNA binding 

site, it is also relevant to know whether we can rely on the prediction or not. 
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METHODS 
Experimental data and software 
We retrieved from the PDB a total of 702 TF-DNA complex structures 

annotated in the TFinDiT (29) depository (April 2014 release). Moreover, we 

downloaded PBM data from various studies (14,26,30–42) available in the 

catalog of inferred sequence binding preferences (Cis-BP) (7). The whole 

data comprised the names, sequences and binding site motifs of 576 TFs, 

including the list of 8-mers evaluated in each PBM experiment with their 

corresponding E-score values and the resulting PWMs. 

 

We relied on the following software: DSSP (version CMBI 2006) (43) and 

3DNA (version 2.0) (44) provided the structural features of TFs and DNA, 

respectively; MATCHER, as distributed in the EMBOSS package (version 

6.5.0) (45), was applied to refine alignments; BLAST (version 2.2.22) (46) was 

employed for homology detection; MODELLER (version 9.10) (47) was used 

to model-build TFs complexes with DNA (when necessary, DNA was modeled 

using 3DNA); and TM-align (version 20120126) (48) was utilized for structural 

superpositions. 

 

Protein-DNA contact and interface 

We defined a protein-DNA contact between an amino acid and a paired 

dinucleotide if the Cβ atom of the amino acid (Cα for glycines) was found 

within 15.0 Å from the geometric center of the dinucleotide, as delimited by 

the four phosphates of the two nucleotides and their associated partners in 

the complementary strand (9). Moreover, we defined a protein-DNA interface 

as follows. At the side of the protein, the interface was composed of all 

secondary structures (α-helices and β-sheets) containing at least one amino 

acid involved in a protein-DNA contact, including any intermediate regions. At 

the side of DNA, the interface was delimited by the first and last base pairs in 

dinucleotides contacted by amino acids. In a more restrictive definition, the 

DNA interface was delimited by the first and last base pairs in dinucleotides 

involving a minimum of 5 different protein-DNA contacts and at least one of 

them within 12.0 Å. This was defined as the “core” DNA interface. 
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Positive and negative 8-mers 

Given a TF motif, its 8-mers were classified according to their ability to be 

bound by the TF (i.e. positives) or not (i.e. negatives). Specifically, 8-mers 

were considered positive (i.e. P8Ms) if their E-score ≥0.45 whereas negative 

8-mers (i.e. N8Ms) had E-scores ≤0.37. Moreover, since PBMs don’t specify 

whether an 8-mer is being recognized through the forward or reverse strand, 

we classified both strands of an 8-mer as either positive or negative. 

Unclassified 8-mers were considered dubious and discarded. Overall, the 

P8M/N8M ratio was 1 to 339. 

 

Set of known TF-DNA complex structures 

We examined all TF-DNA complex structures retrieved from the PDB in order 

to remove promiscuous residues and inadequate complexes. First of all, each 

structure was inspected and isolated nucleotides and overlapped DNA chains 

(i.e. RMSD between their backbones was <1.0 Å) were deleted. Then, 

complexes were analyzed using DSSP and 3DNA. The analysis led to the 

removal of residues that could not be recognized by any of these programs. 

Moreover, complexes that did not contain a double-stranded DNA molecule of 

at least 8 consecutive base pairs, according to 3DNA, were discarded. Finally, 

TF chains with DNA interfaces smaller than 8 base pairs were not considered. 

The remaining 583 TF-DNA complexes comprised a total of 1,341 TF chains, 

which constituted our set of known structures. 

 

Dimer set 

We identified all dimers in the set of known structures by grouping any two TF 

chains from the same PDB that: 1) belonged to the same structural family (i.e. 

both chains superimposed with a TM-score of at least 0.6 (49)); 2) had 

overlapping protein-DNA interfaces; and 3) had more than 5 residue-residue 

contacts between them as to form a binary complex (50). 

 

Set of modeled TF-DNA complex structures 

We modeled the TF interactions with different P8Ms as observed in the PBM 

data. The modeling of the whole complex was done separately for each TF, 

splitting the process in modeling the TF, the 8-mers and the complex. 
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Modeling of the TF 

Given a TF, different structural models of the TF in complex with DNA were 

obtained as follows (see Figure 3): In step 1, the TF sequence was scanned 

for putative homologs in the set of known structures using BLAST. In step 2, 

we only used as templates those BLAST hits ensuring an alignment with 

enough percentage of sequence identity (above the twilight-zone curve (51)) 

and without gaps in the interface region. In step 3, the TF was realigned to the 

template sequences using MATCHER. In step 4, each alignment was used to 

create an optimized structural model of the TF using MODELLER. This 

procedure yielded several models of the same TF. 

 

In addition, for TFs of the bHLH and bZIP families, since they recognize DNA 

as homo- or heterodimers, for each selected hit the dimer was modeled as 

follows: First, if the hit was already a homodimer, we used it as template. 

Otherwise, we searched the closest structural dimer to the hit in the set of 

dimers using TM-align and used the found dimer as new template. Then, the 

TF was realigned to both template chains (i.e. step 3) in order to generate a 

homodimer using MODELLER (i.e. step 4). 

 

Modeling of the P8Ms 

We used 3DNA to model the structure of the different P8Ms associated to the 

TF. We used as templates the DNA structures of the different hits obtained 

during the modeling of the TF in step 2 (see above). However, in order to 

model the interaction with the TF we needed to know the exact location of the 

TF-P8M interface. To place the interface between the TF and each P8M 

correctly, we realigned all P8Ms to the DNA sequence of the hit as follows: 

First, we constructed a multiple sequence alignment (MSA) around the most 

dominant P8M of the TF according to the PBM (i.e. the P8M with the highest 

E-score). Using that P8M as seed, the other P8Ms of the TF were 

incorporated to the MSA if: 1) they were single-nucleotide variants of seed 

P8M; or 2) they included a continuous gap of a maximum of 2 nucleotides at 3’ 

or 5’ side and no mismatches with the seed P8M. Second, if the sequence of 

the core DNA interface of the hit was found among the P8Ms of the MSA, the 
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P8Ms of the MSA could be realigned to it. Otherwise, the modeling using this 

hit as template was aborted. 

 

Constructing the TF-P8M complexes 

All TF-P8M complexes were modeled by superposing the models of the P8M 

and the model of TF to their corresponding templates using TM-align. Finally, 

the TF-P8M complex structure was optimized using MODELLER. In total, we 

obtained 52,419 TF-P8M complex models. 

 

Non-redundant sets 

We constructed two nr sets of TF-DNA complexes, named nr35 and nr70. 

Both sets contained known as well as modeled TF-DNA complex structures. 

Redundancy was removed at the level of the protein-DNA interface so that 

any two structures in sets nr35 and nr70 could not share more than 35 and 

70% of protein-DNA contacts, respectively. The total number of known 

structures and models in each nr set were: 352 and 112 for nr35, and 767 and 

1977 for nr70. 

 

Statistical potentials implemented in SHAITAN 

In a recent work, we derived 5 different statistical potentials to predict protein-

DNA interactions (9). Among them, ES3DC showed comparable results to other 

state-of-the-art methods when applied to predict the PWMs of 71 targets from 

the DREAM5 Challenge (14). Given a protein-DNA complex structure, the 

statistical potential ES3DC was obtained by summing the potential of mean 

force PMFS3DC over each protein-DNA contact, as defined by the amino acid a 

and the dinucleotide mn: 

!!!!" = !"#!!!"(!,!")
!,!"

 

!"#!!!" !,!" = −!!!"#$
! !,!" !!,!", !! , !!" ! !! , !!"
! !,!" !! , !!" ! !!!!" !!,!"

!

Where kB denotes the Boltzmann constant and T the standard temperature  

(300 K), da,mn represents the contact distance between the amino acid a and 

the dinucleotide mn, and θa and θmn are their respective environments. The 
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environment of an amino acid was defined by its hydrophobicity, degree of 

exposure and surrounding secondary structure, while the environment of a 

dinucleotide was specified by its constituting bases and three features 

regarding the interaction between the amino acid and the dinucleotide: 1) the 

closest strand to the amino acid; 2) the DNA-groove where the amino acid 

was located; and 3) the closest chemical group of the dinucleotide to the 

amino acid (9). Terms P(*) denote the probabilities of observing contacts with 

different characteristics. For example, P(a,mn|da,mn,θa,θmn) is the conditional 

probability of observing the amino acid a and the dinucleotide mn, in their 

respective environments θa and θmn, within a distance da,mn.  

 

In this work, we further decomposed PMFS3DC in three different terms: 
 !"#!!!" !,!" =  

 
!!!"#$

! !!!!" !!,!"
! !! , !!"

 1 

 !!!!!!!!!−!!!!"#$ ! !,!" !!,!", !! , !!"  2 

 +!!!!"#$ ! !,!" !! , !!" !!!!! 3 

Where term 1 is PMF3DC (see (9)), and terms 2-3 are two new potentials. One 

of them is dependent of the distance at which a contact is observed, while the 

other one is distance independent. These potentials were named as PMFS3DC 

distance-dependent (i.e. PMFS3DCdd) and PMFS3DC distance-independent (i.e. 

PMFS3DCdi). As for ES3DC, statistical potentials ES3DCdd and ES3DCdi were the 

result of summing their corresponding PMFs over all protein-DNA contacts 

a,mn.  

 

Probabilities P(*) were derived from the frequencies of observed contacts in 

the nr sets. Still, some protein-DNA contacts might not be covered. In such 

cases, their PMFs were estimated from contacts involving the same 

dinucleotide but different amino acids. For example, if the probability of a 

protein-DNA contact between the amino acid a and the dinucleotide mn was 

unknown, but we knew the probabilities of similar contacts, let them be 

specified by b,mn, then the probability of the contact a,mn was calculated as 

follows: 
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! !,!" = ! ! → !
!!!

!(!,!") 

Where P(b!a) is the BLOSUM62 transition probability (52) from amino acid b 

to a. Therefore, by introducing the previous equation, the PMF for contact 

a,mn was approximated as: 

!"# !,!" = −!!!"#$ ! ! → !
!!!

!!!"#(!,!") !!!  

Moreover, the sum inside the logarithm of last equation was approached by 

Taylor’s (53), neglecting orders higher than 2, which resulted in:  

!"# !,!" = −!!! !"# ! !!"# → ! − !"# !!"# ,!"
!!!

+ ! ! → ! !!!"# !,!" !!!

! !!"# → ! !!!"# !!"#,!" !!!
!!!

!!!!"#

 

Where bmax was the amino acid that maximized the following product: 

! ! → ! !!!"# !,!" !!! 

Additionally, we transformed PMFs into Z-scores as follows. Given a protein-

DNA contact between the amino acid a and the dinucleotide mn (i.e. a,mn), 

the Z-score was calculated from the difference between the contact PMF (i.e. 

PMF(a,mn)) and the averaged PMFs of all contacts involving the same 

dinucleotide (i.e. µ) divided by the standard deviation (i.e. σ): 

! − !"#$%(!,!") = !"# !,!" − !
!  

Finally, we derived two types of statistical potentials called general and family-

specific potentials. On the one hand, general potentials were derived from 

nr35 complexes. On the other hand, given a TF-DNA complex, family-specific 

potentials were derived from a subset of nr70 belonging to the same structural 

family of the complex (see Dimer set). 

 

Five-fold cross-validation 

In order to evaluate the ability of SHAITAN to distinguish P8Ms from N8Ms, 

we conducted a five-fold cross-validation on nr35 and nr70. For each set, 

structure models were split into five folds. Four of them were used to derive 

the statistical potentials and models in the remaining fold were used for 
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testing. This process was repeated five times, changing each time the tested 

fold. For each tested model, all possible 8-mers were evaluated by threading 

them with one of the statistical potentials implemented in SHAITAN (i.e. ES3DC, 

ES3DCdd or ES3DCdi) and the resulting scores were scaled between ±0.5. We 

only kept the scores of the modeled P8M as well as of 500 randomly selected 

N8Ms. 

 

We tested several score cut-offs. For ES3DC and ES3DCdd, a prediction under 

the cut-off was considered “positive” while over the cut-off it was considered 

“negative”. For ES3DCdi it was the opposite, as high scores were meant for 

correct predictions. True positives (TP), true negatives (TN), false positives 

(FP) and false negatives (FN) were defined accordingly. We computed the 

TPR (also termed sensitivity or recall), the false-positive rate (FPR), and the 

PPV (also termed precision). The resulting AUROCs, AUPRs and PPVs were 

averaged from the five folds tested. 

 

Prediction of DREAM5 PWMs 

Given a DREAM5 TF-DNA complex structure, we used a sliding window of 8 

nucleotides to score all possible 8-mers along the DNA-interface with family-

specific statistical potentials. At each step, the resulting scores were scaled 

between ±0.5 and all 8-mers passing the cut-off of ±0.45 (sign depending on 

the potential) were used to calculate the probabilities of the different 

nucleotides in each PWM column, approached from the nucleotide frequency. 

 

Prediction of homeodomain protein-PWMs 

Given a target DNA sequence bound by a homeodomain, this was threaded in 

all TF-DNA complexes of the set of known structures classified as members 

of the homeobox Pfam family (54). We used the statistical potential ES3DCdd to 

rank the threaded structures. The homeobox structure with the most negative 

score was further used to construct a PWM of the protein as follows: First, the 

sequences of all homeodomains with associated PBM data (26) were aligned 

to the homeobox structure using BLAST. We discarded all homeodomains 

without at least one P8M matching the core DNA interface of the homeobox. 

The remaining homeodomains were used to construct a MSA using Clustal 
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Omega (55). Next, the MSA was realigned to the sequence of the Drosophila 

Engrailed protein (56). Special attention was taken on the region comprising 

the 3 specificity residues that bind DNA (i.e. residues 47-54). Finally, the 

realigned MSA was used to calculate the PWM and the frequencies of amino 

acids at each position. For this test, we used family-specific potentials derived 

exclusively from homeobox structures and homeodomain PBM data (26). 
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Table 1. SHAITAN AUROCs and AUPRs using statistical potentials ES3DC, 

ES3DCdd and ES3DCdi. 
  ES3DC ES3DCdd ES3DCdi 

Complexes Potentials AUROC AUPR AUROC AUPR AUROC AUPR 

PDB general 0.708 0.005 0.732 0.005 0.656 0.004 

PDB+PBM general 0.781 0.008 0.804 0.010 0.724 0.006 

PDB+PBM family 0.920 0.040 0.960 0.123 0.912 0.057 

AUPR expected by a random distribution is 0.002. 

 

Columns 1-2 show if SHAITAN statistical potentials were derived from PDB 

structures alone (i.e. PDB) or in combination with PBM models (i.e. 

PDB+PBM), and if they were general or family-specific. Columns 3-8 display 

averaged AUROCs and AUPRs from using a five-fold cross-validation 

approach for SHAITAN using statistical potentials ES3DC, ES3DCdd and ES3DCdi. 
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Table 2. SHAITAN AUROCs and AUPRs of family-specific potentials ES3DC, 

ES3DCdd and ES3DCdi for different TF families. 
 ES3DC ES3DCdd ES3DCdi 

Family AUROC AUPR AUROC AUPR AUROC AUPR 

AFT 1 0 0.99 0.083 0.043 0.001 

AP2 0.997 0.196 1 0.431 0.995 0.102 

ARID/BRIGHT       

bHLH 0.91 0.025 0.932 0.156 0.913 0.071 

bZIP 0.984 0.142 0.993 0.148 0.81 0.02 

C2H2 zinc finger 0.924 0.059 0.938 0.056 0.862 0.02 

E2F       

Ets 0.943 0.062 0.975 0.208 0.939 0.087 

Forkhead 0.945 0.055 0.974 0.143 0.938 0.068 

GATA 0.997 0.468 0.993 0.157 0.814 0.008 

Homeodomain 0.93 0.04 0.959 0.113 0.932 0.064 

IRF 0.921 0.057 0.952 0.048 0.885 0.011 

MADS box       

Myb/SANT 0.962 0.034 0.936 0.073 0.646 0.003 

NAC/NAM 0.971 0.061 0.987 0.111 0.921 0.04 

Nuclear receptor 0.88 0.023 0.958 0.149 0.9 0.062 

Paired box 0.934 0.02 0.989 0.121 0.99 0.156 

POU 0.99 0.448 0.994 0.586 0.968 0.129 

SMAD 0.972 0.033 0.928 0.014 0.094 0.001 

Sox 0.996 0.541 0.991 0.424 0.905 0.065 

T box 0.905 0.055 0.946 0.072 0.832 0.026 

TBP 0.999 0.54 0.999 0.565 0.994 0.173 

WRKY       

Zinc cluster 1 0.5 0.999 0.208 0.739 0.004 

AUPR expected by a random distribution is 0.002. 

 

Column 1 shows the different TF families studied. Columns 2-7 display 

averaged AUROCs and AUPRs obtained from a five-fold cross-validation 

approach for SHAITAN using family-specific statistical potentials ES3DC, 

ES3DCdd and ES3DCdi. Empty columns indicate no members of that family could 

be tested. 
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Figure 1. Problems related to the use of PBM data from members of the 

C2H2 zinc finger family. We provide a 6-finger protein as an example. On the 

one hand, each finger is able to recognize 3 consecutive base pairs (bps), 

which makes the binding site of the protein at least 18 bps long. Therefore, 

when mapping the PBM data of the protein, we cannot know which 

combination of fingers interacted with the probes of the PBM experiment. On 

the other hand, when modeling the protein using a 5-finger template (17), we 

cannot know which of the possible models contains the interacting fingers of 

the PBM experiment. The structure image was created with the UCSF 

Chimera package (57).  
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Figure 2. SHAITAN averaged PPVs obtained from a five-fold cross-validation 

approach using family-specific statistical potentials ES3DC (black), ES3DCdd 

(blue) and ES3DCdi (red). Dashed grey lines are used to indicate the highest 

PPV peaks for the different statistical potentials (approximately at ±0.45 score 

cut-off depending on the potential).  
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Figure 3. Homology modeling of TF-DNA complexes. Step 1: sequence 

homology search. Step 2: filter results from step 1 by sequence identity and 

protein-DNA interface coverage. Step 3: alignment optimization. Step 4: 

model building of the TF three-dimensional structure. If the TF works as a 

dimer, superimpose the alignment from step3 to the closest structural dimer 

and model the TF homodimer. Structural images were created with the UCSF 

Chimera package (57–59).  
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Figure 4. Comparison between the PWMs predicted by 3D-footprint, 3DTF, 

PiDNA and SHAITAN, using statistical ES3DC, ES3DCdd, and ES3DCdi, and the 

experimentally determined PWMs for 70 DREAM5 targets. The names and 

families of the different targets are shown at both sides of the predictions. 

Superindices 1 and 2 indicate if the prediction was performed using a real PDB 

structure (i.e. no modeling was required) and if the target PWM was easy to 

predict (i.e. the target PWM bore some resemblance with the nucleotide 

sequence of the TF-DNA complex, according to FIMO). Finally, green, yellow, 

and red squares indicate if the predictions of the different methods were good, 

mediocre or bad, respectively.  



 

 177 

  

 
Figure 5. Comparison between homeodomain specificity residues and 

SHAITAN predicted logos for determined DNA sequences. A) Protein-DNA 

complex structure of the Drosophila Engrailed protein (56). The three primary 

specificity amino acids discussed in the text are shown in red. Also, the highly 

conserved Asn-51 across the homeodomain family (25) is shown in blue. B) 

Logos comprising residues 47-54 of homeodomain proteins predicted to 

interact with each of the displayed DNA sequences. The positions of the three 

specificity residues are highlighted in yellow. Additionally, the different 

combinations of specificity amino acids known to interact with each DNA 

sequence are shown in red (26). “Score” and “Cut-off” columns indicate the 

SHAITAN score of the prediction and whether if it passed the energy cut-off of 

-0.45 or not (i.e. a green tick or a red cross, respectively). Engrailed structural 

image was created with the UCSF Chimera package (57) and logos were 

obtained using WebLogo (60). 
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4. Discussion 



 

“I think that in the discussion of natural problems we ought to 
begin not with the Scriptures, but with experiments, and 
demonstrations.” 
-Galileo Galilei 
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Eukaryotic genomes encode for thousands of different proteins and 
RNAs (262). Some of these genes are constitutively expressed, 
while others are expressed in a tightly controlled manner in only 
part of the organism, or under particular conditions as for example 
during development or disease. To understand how differential gene 
expression is regulated at a genome-wide or systems level, it is key 
to identify all TFs and their binding sites in promoter or enhancer 
regions of genes, and how and when they interact to affect gene 
expression. In this regard, the majority of efforts have focused on 
identifying the binding preferences of TFs. However, we are still far 
from having the whole picture of gene regulatory networks (263). 
 
During the past decade, the appearance of several high-throughput 
techniques has allowed the characterization of TF-binding sites at 
large-scale (revised in section 1.3.3), which has supposed a major 
breakthrough on the field. Still, the application of such protocols is 
both laborious and difficult and as a result, only a small fraction of 
eukaryotic TFs has been profiled (201). Thus, the development of 
computational approaches for rapid and accurate mapping of TFs 
and their binding sites along the genome is foremost, especially as a 
complement to current experimental procedures. 
 
My thesis has focused on the study of PDIs from a bioinformatics 
perspective. Specifically, the work I have developed during my 
doctorate can be divided into: 
 
1) Study redundancy in gene regulatory networks due to TFs 
2) Predict DNA sequences that can be bound by a TF and vice versa 
 
From this point forward, I will proceed with the discussion of this 
thesis by explaining the contribution of my research to the field and 
finally, I will devise new strategies and consider future perspectives 
with a special focus on functional genomics and the analysis of 
gene regulation. 
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4.1 Redundancy between transcription factors: 
the role of protein-protein interactions  

Even though the knowledge on PPIs is far from complete, PPI data 
has been broadly used to transfer annotation between proteins based 
on the interologs approach (264,265). This is, two proteins are more 
likely to be homologous if they also have common PPIs. As revised 
in section 1.2.3, in eukaryotes, it is by now fairly clear that TFs act 
cooperatively forming enhanceosomes. Upon assembly, these TF-
complexes are able to bring RNA polymerase to the promoter and 
activate gene transcription. Genome-wide analysis of the binding 
preferences for members of two different TF families have revealed 
that binding patterns are conserved between homologous TFs 
(258,266). Therefore, a pair of homologous TFs that in addition 
interacted with the same proteins should be able, in theory, to 
promote the transcription of the same genes. 
 
I further explored this hypothesis in collaboration with Dr. Anthony 
Gitter and Prof. Ziv Bar-Joseph from the Carnegie Mellon 
University (USA) (see section 3.1.1). In a previous work, Hu et al. 
(267) had knocked out 269 budding yeast TFs, one at a time, and 
had compared the differential expression of the different genes with 
the binding sites that had been previously generated for 188 of these 
TFs (268). Surprisingly, they observed that only 3% of the genes 
had been affected by the knockout and similarly, only 3% of the 
affected genes had been bound by the knocked out TF. To further 
explain these results, I did the following: 
 
1) Find pairs of homologous TFs (using BLAST (269) e-values) 
2) Group the TFs into different Pfam (270) families (by DBDs) 
3) Calculate the percentage of shared PPIs between TFs 
4) Automate remote homology detection using previous steps 
 
For TFs with a close homolog there was no overlap between their 
binding and knockout data. In contrast, TFs without any assigned 
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homolog (using a BLAST e-value of 10-3) had an overlap of more 
than 12%. Moreover, the use of Pfam family classification as a 
measure of similarity resulted in comparable results than when 
using BLAST homology: for TFs classified in larger groups the 
overlap was lower than for those classified in smaller groups. A 
similar trend was observed when using PPIs: as the percentage of 
shared PPIs between TFs increased, the overlap decreased. 
Specifically, for TFs without homologs and sharing no PPI data the 
overlap was greater than 13%. 
 
Certain pairs of homologous TFs identified in this work bind to an 
overlapping group of target genes. Hence, it is not surprising than 
their knockouts had a small effect of their targets expression. For 
example, Met31 and Met32 have a large overlapping set of target 
genes (>60%), and none of them was differentially expressed after 
the knockouts. Another example was Fkh1 and Fkh2. These TFs 
bind to a partially overlapped set of genes. However, the binding of 
Fkh1 to Fkh2 targets is enhanced in the absence of Fkh2 and vice 
versa (271), suggesting that compensation might occur beyond their 
common targets, as predicted. 
 
This kind of compensation may happen due to competition between 
the two TFs that resolves in the absence of one of them. Another 
possibility is the activity of one TF may be enhanced in the absence 
of its homolog (272). The people of the Systems Biology Group in 
the Carnegie Mellon University further inspected this idea by 
looking at the expression levels of the closest TF homologs 
predicted to be compensating for the knockout. As expected, they 
could not find any TF whose expression level had been significantly 
decreased. Still, a significant increase was observed for a few cases, 
which might be driven by PPIs. 
 
The findings obtained in this work strongly suggest the knockouts 
might be compensated by homologs sharing many PPI with the 
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deleted TF, thus agreeing with our initial hypothesis. The approach 
was further automated and generalized to infer the fold of remote 
homologs, and is included in ModLink+ (see section 3.1.2). 
 
4.2 Statistical potentials for protein-DNA 

interactions: how good are they? 

TF-binding specificities represent the cornerstone on functional 
genomics and the analysis of gene regulation. However, only about 
1% of eukaryotic TFs have been profiled using “omics” techniques 
(201). In this regard, the development of computational tools to 
complement experimental procedures is fundamental (see section 
1.3.5). One successful approach to predict the binding sites of a TF 
is the structural analysis of its complex with DNA using statistical 
potentials (see section 3.2.1). Briefly, given a TF-DNA complex 
structure, different DNA sequences are threaded and the binding 
energies of the resulting interactions are calculated. Best scoring 
sequences are then considered to be bound by the TF. 
 
However, their application still has some limitations. One of them is 
the small number of TF-DNA complex structures available in the 
PDB. Statistical potentials are usually derived from a non-redundant 
set of PDB structures. This redundancy is typically removed on the 
TF side of the complex. Yet, TFs can recognize different binding 
sites and in addition, members of the same family of TFs can bind 
to distinct DNA sequences (211), which can result in statistical 
potentials affected by both low-count and low diversity of binding 
patterns. Moreover, statistical potentials are derived under the 
wrong assumption the contribution of the different DNA base pairs 
to the binding energy of the complex is independent from each 
other (261). In sections 3.2.1 and 3.3.1 I tackled both problems by: 
 
1) Develop statistical potentials for contacts between amino acids 

and dinucleotides (i.e. pairs of consecutive nucleotides along the 
DNA sequence) 
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2) Augment the coverage of the potentials by including PBM data 
 
Both improvements are included in an approach named SHAITAN, 
which stands for Statistical-potentials using a Homology-based 
Approach to predict the Interactions between Transcription factors 
And Nucleotide sequences (see section 3.3.1). SHAITAN is better 
than other current state-of-art methods available online on the 
prediction of TF-PWMs. Moreover, it can be applied to detect the 
best TF able to bind a particular DNA sequence. Furthermore, 
thanks to an automated pipeline for modeling TF-DNA complexes, 
SHAITAN is applicable to annotate TF-binding sites at large-scale, 
thus providing the scientific community with a powerful tool that 
could be used to fill the existing gaps in gene regulatory networks. 
 
One of the most important things when benchmarking SHAITAN 
was to define its limits in terms of reliable predictions. I conducted 
a five-fold cross-validation on two non-redundant sets of TF-DNA 
complexes in order to evaluate SHAITAN’s ability to distinguish 
correct from incorrect complexes as defined by sequences known to 
be bound or not by each TF. The results from the evaluation 
allowed me to select the best cut-off in terms of positive predictive 
value. However, this has not been done in other cases. As examples 
I illustrate two other methods against which SHAITAN was 
compared (see section 3.3.1): 3DTF (223) and PiDNA (226). 
 
For example, 3DTF was benchmarked using two different analyses 
on TFs having both known binding sites in TRANSFAC (163) or 
UniProbe (240) and a PDB structure of its complex with DNA. On 
the one hand, for each TF-DNA complex, they compared the 
energies calculated for random sequences with the energies from 
the known binding sequences. As expected, binding site sequences 
were assigned lower energies than random ones. On the other hand, 
they compared the produced PWMs for each TF-DNA complex to 
the TRANSFAC and UniProbe PWMs. They reported 3DTF-PWMs 
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 were more similar to the PWMs of the corresponding TF than to 
other PWMs. The other example, PiDNA, was evaluated using three 
different sets in order to: 1) compare its generated PWMs against 
real PWMs; 2) identify binding sites with high specificity; and 3) 
predict known binding sites from random sequences. However, 
none of them removed redundancy with respect to the evaluation 
tests and, as a result, there is no way to know their performance. 
Moreover, on the prediction of known binding sites from random 
sequences using PiDNA, authors used the area under the receiver 
operating characteristic curve (AUC) as a measure of performance. 
However, the AUC was not informative because they were dealing 
with very unbalanced data (they tested 10,000 random sequences 
for each known binding site), so that even a high AUC score could 
imply a high number of false positives (273). 
 
4.3 Future challenges I: designing de novo 

transcription factors 

The engineering of TFs, especially for zinc finger proteins (ZFPs), 
provides an important tool for studying gene regulation and modify 
the genome (i.e. genome editing) because they can be used to target 
virtually any desired DNA sequence (274). 
 
As shown in section 3.3.1, SHAITAN can be applied to predict TFs 
able to bind a DNA sequence of interest by means of a PWM. 
However, such approach is limited by the knowledge on existing 
PBM data. Alternatively, given a TF-DNA complex structure, the 
prediction of the TF sequence can be done by approximating the 
probability of each amino acid from the energies of the different 
protein-DNA contacts. As shown in section 3.3.1, the energy of a 
TF-DNA complex structure is calculated by summing the potentials 
of mean force (PMF) over each protein-DNA contact, as defined by 
the amino acid a and the dinucleotide mn (i.e. a,mn): 

𝐸 = 𝑃𝑀𝐹(𝑎,𝑚𝑛)
!,!"
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This equation can be further decomposed to obtain the contribution 
to the energy of each individual amino acid: 

𝐸 = 𝐸!!
!

 

Where 𝐸!!  is the energy of the amino acid a (which can be any of 
the 20 proteinogenic amino acids) at position i. In SHAITAN, 𝐸!!  is 
independent of all other amino acids. Therefore, a PWM can be 
calculated from the probabilities of amino acids a at different 
positions i approximated using the Boltzmann formula: 

𝑃!! =
𝑒!!!!

𝑒!!!!!
 

Where 𝑃!! is the probability of amino acid a, and b can be any of the 
20 proteinogenic amino acids. The result is a PWM of the TF 
sequence of the evaluated structure that accommodates for different 
amino acids at determined positions (i.e. the positions where the 
protein contacts the DNA). Although this approach performs worse 
than the one shown for homeodomains (see section 3.3.1), it has the 
advantage that it can be applied even when there is no available 
PBM data. 
 
Then, using the PWM, the most probable TF sequences could be 
derived and tested for being able to fold as the original structure or 
not using energy functions for protein folding such as ProSA (275), 
thus filtering those sequences that would not fold. The generated 
TFs would be finally validated experimentally in order to ascertain 
their ability to bind the DNA sequence of interest. 
 
Still, in order to make SHAITAN applicable to genome editing, by 
engineering zinc finger endonucleases, the performance on this 
family should be improved by deriving statistical potentials using 
information on individual zinc fingers (247) instead of PBM data. 
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4.4 Future challenges II: towards modeling gene 
regulatory networks 

A gene regulatory network (GRN) is a collection of DNA regions in 
a cell that interact with each other indirectly through their RNAs 
and protein expression products, thereby governing the cell’s gene 
expression. GRNs are typically described as network models where 
gene dependencies are depicted by a directed graph, whose nodes 
represents genes and edges lead from a regulator (often a TF) to its 
targets. The edges preferably are used to represent dependencies at 
the transcriptional level, which are mediated by a TF binding to a 
regulatory region near the promoter region of the target gene. Thus, 
three different types of information are required to generate a GRN: 
 
1) The spatio-temporal expression pattern of the TFs 
2) The information on the TF-binding sites 
3) A causal link between the TF activity and the expression of the 

target gene 
 
Given the laborious task of identifying all nodes and edges in a 
GRN, most networks are at a small to medium size (276–282).  
Even in yeast, the most well studied eukaryote, the available 
information is far from complete. This is because many causal 
conditions still remain to be tested, and because for many TFs their 
low specificity binding sites may be difficult to analyze. For higher 
eukaryotes the situation is worse, in part due to the fact that less 
than 1% of eukaryotic TFs have been profiled (201). In addition, in 
higher eukaryotes, TFs act cooperatively forming enhanceosomes, 
with some of its members being located far from the gene promoter 
(e.g. enhancers). In such cases, it may be difficult to infer the gene 
that is being regulated by the enhanceosome. 
 
In this context, information on chromatin interaction maps (283) 
and TF occupancy on nucleosome free regions (178–180) could be 
exploited together with TF-binding site data to predict putative 
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enhanceosomes. A very simple approach using SHAITAN could be 
as follows: 
 
For each interaction involving two or more DNA regions… 
 
1) Identify the most likeable TFs able to bind to each region 
2) Filter any TFs that could not be connected to any of the TFs 

assigned in the remaining regions using PPIs (e.g. at distance 2) 
 
The resulting putative enhanceosomes could be further filtered by 
using microarray expression data specific for the tissue of interest 
(284). 
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5. Conclusions 



 

“I know one thing: that I know nothing.” 
-Socrates
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This section describes in short the main achievements of the work 
presented in this thesis. 
 
i. Redundancy in gene regulatory networks has been explained by 

homologous TFs sharing protein-protein interactions. 

ii. The previous conclusion has been generalized and integrated in 
ModLink+, an online and user-friendly tool to infer the fold of 
remote homologs. 

iii. Different applications of statistical potentials have been 
reviewed: the assessment of structural models, the ranking of 
docking possess, the detection of interfaces and the prediction 
of protein-DNA interactions. 

iv. Split-statistical potentials for protein-DNA interactions have 
been proposed and vindicated. 

v. Protein binding microarray data has been shown to improve the 
performance of statistical potentials for predicting transcription 
factor-DNA association. 

vi. An automated modeling pipeline has been proposed to create 
protein-DNA complex structures. 

vii. A homology-based approach to predict transcription factor-
DNA interactions, SHAITAN, has been developed. SHAITAN 
has been demonstrated to be superior to current state-of-art 
methods for the prediction of transcription factor binding sites 
and to predict TFs able to bind a particular DNA sequence. 
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6.1 Networks of protein-protein interactions: 
from uncertainty to molecular details 

My contribution to this manuscript was to review methods to study 
co-expressed and co-localized proteins as well as the application of 
PPI for protein functional annotation. 
 
Abstract 
Proteins are the bricks and mortar of cells. The work of proteins is 
structural and functional, as they are the principal element of the 
organization of the cell architecture, but they also play a relevant 
role in its metabolism and regulation. To perform all these 
functions, proteins need to interact with each other and with other 
bio-molecules, either to form complexes or to recognize precise 
targets of their action. For instance, a particular transcription factor 
may activate one gene or another depending on its interactions with 
other proteins and not only with DNA. Hence, the ability of a 
protein to interact with other biomolecules, and the partners they 
have at each particular time and location can be crucial to 
characterize the role of a protein. Proteins rarely act alone; they 
rather constitute a mingled network of physical interactions or other 
types of relationships (such as metabolic and regulatory) or 
signaling cascades. In this context, understanding the function of a 
protein implies to recognize the members of its neighborhood and to 
grasp how they associate, both at the systemic and atomic level. The 
network of physical interactions between the proteins of a system, 
cell or organism, is defined as the interactome. The purpose of this 
review is to deepen the description of interactomes at different 
levels of detail: from the molecular structure of complexes to the 
global topology of the network of interactions. The approaches and 
techniques applied experimentally and computationally to attain 
each level are depicted. The limits of each technique and its 
integration into a model network, the challenges and actual 
problems of completeness of an interactome, and the reliability of 
the interactions are reviewed and summarized. Finally, the 
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application of the current knowledge of protein-protein interactions 
on modern network medicine and protein function annotation is also 
explored. 
 

Garcia-Garcia, J., Bonet, J., Guney, E., Fornes, O., Planas-
Iglesias, J., & Oliva, B. (2012). Networks of Protein-Protein 
Interactions: From Uncertainty to Molecular Details. 
Molecular Informatics, 31(5), 342-362. 
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