
Universitat Politècnica de Catalunya

Ph.D. Thesis

Joint Parsing of Syntactic and Semantic
Dependencies

Xavier Lluı́s

advisors

Doctor Xavier Carreras
Doctor Lluı́s Màrquez

Departament de Ciències de la Computació
Programa de Doctorat en Intel·ligència Artificial

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33349302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

CONTENTS

1 Introduction 1
1.1 Goals and contributions . 5

1.2 Overview of this Document 7

1.3 Published Work . 8

2 State of the Art 11
2.1 Syntactic Dependency Parsing 11

2.1.1 Parsing algorithms 12

2.2 Semantic Role Labeling . 18

2.3 Syntactic-Semantic Parsing 22

2.3.1 Pipeline Models . 24

2.3.2 k-best Approaches 24

2.3.3 Joint Approaches . 25

2.3.4 Evaluation of syntactic-semantic systems 29

2.3.5 Remarks and Conclusions 32

3 SRL as Assignment 35
3.1 The Assignment Algorithm 37

3.2 Framing SRL as an assignment task 37

iii

3.2.1 The Assignment Algorithm 39

3.3 Related Work . 41

3.4 Experiments . 42

3.4.1 Implementation . 43

3.4.2 Results . 46

3.5 Remarks . 51

4 Dual-decomposition Joint Syntactic-Semantic Parsing 53
4.1 A Syntactic-Semantic Dependency Model 54

4.2 Local Optimization of Syntactic Paths 58

4.3 A Dual-Decomposition Algorithm 58

4.4 Related Work . 63

4.5 Experiments . 63

4.5.1 Implementation . 64

4.5.2 Results . 66

4.6 Remarks . 70

5 Shortest-path Syntactic-semantic Parsing 73
5.1 Motivation . 73

5.2 Arc-factored SRL . 76

5.3 SRL as a Shortest-path Problem 77

5.4 Adapting and Training Model Scores 78

5.5 Experiments . 80

5.6 Remarks . 82

6 Conclusions and Future Work 85

A Algorithms 91
A.1 Chu-Liu-Edmonds . 91

A.2 Eisner First-order . 91

A.3 Second-order Siblings . 93

iv

A.4 Second-order Grandchildren 93

A.5 Shift-reduce and Transition-based Parsers 95

A.6 Structured Perceptron . 97

B The CoNLL-2006 and 2007 Shared Tasks 99

C Datasets, Treebanks and measures 101
C.1 Relevant Measures and Metrics 103

C.1.1 Syntactic scoring . 103

C.1.2 Semantic scoring . 104

C.1.3 Global scoring . 106

Bibliography 107

v

Agraı̈ments

No hauria pogut escriure aquesta tesi sense el suport i l’ajuda dels meus direc-

tors de tesi, la meva famı́lia, amics i companys de despatx. Gràcies a tots!

Acknowledgments

This work has been partially funded by the European Commission for the

XLike project (FP7-288342); and by the Spanish Government for project KNOW

(TIN2006-15049-C03), project OpenMT-2 (TIN2009-14675-C03-01) and project

Skater (TIN2012-38584-C06-01).

vi

Abstract

Syntactic Dependency Parsing and Semantic Role Labeling (SRL) are two main

problems in Natural Language Understanding. Both tasks are closely related

and can be regarded as parsing on top of a given sequence. In the data-driven

approach context, these tasks are typically addressed sequentially by a pipeline

of classifiers. A syntactic parser is run in the first stage, and then given the

predicates, the semantic roles are identified and classified (Gildea and Jurafsky,

2002).

An appealing and largely unexplored idea is to jointly process syntactic de-

pendencies and semantic roles. A joint process could capture some interactions

that pipeline systems are unable to model. We expect joint models to improve

on syntax based on semantic cues and also the reverse. Despite this potential

advantage and the interest in joint processing stimulated by the CoNLL-2008

and 2009 Shared Tasks (Surdeanu et al., 2008; Hajič et al., 2009), very few joint

models have been proposed to date, few have achieved attention and fewer have

obtained competitive results.

This thesis presents three contributions on this topic. The first contribution

is to frame semantic role labeling as a linear assignment task. Under this frame-

work we avoid assigning repeated roles to the arguments of a predicate. Our

proposal follows previous work on enforcing constraints on the SRL analysis

(Punyakanok et al., 2004; Surdeanu et al., 2007). But in our case, we enforce

only a relevant subset of these constraints. We solve this problem with the

efficient O(n3) Hungarian algorithm. Our next contributions will rely on this

assignment framework.

The second contribution of this thesis is a joint model that combines syntac-

tic parsing and SRL (Lluı́s et al., 2013). We solve it by using dual-decomposition

techniques. A strong point of our model is that it generates a joint solution re-

lying on largely unmodified syntactic and SRL parsers. We train each compo-

nent independently and the dual-decomposition method finds the optimal joint

vii

solution at decoding time. Our model has some optimality and efficiency guar-

antees. We show experiments comparing the pipeline and joint approaches on

different test sets extracted from the CoNLL-2009 Shared Task. We observe

some improvements both in syntax and semantics when our syntactic compo-

nent is a first-order parser. Our results for the English language are competitive

with respect to other state-of-the-art joint proposals such as Henderson et al.

(2013).

The third contribution of this thesis is a model that finds semantic roles to-

gether with syntactic paths linking predicates and arguments (Lluı́s et al., 2014).

We frame SRL as a shortest-path problem. Our method instead of condition-

ing over complete syntactic paths is based on the assumption that paths can be

factorized. We rely on this factorization to efficiently solve our problem. The

approach represents a novel way of exploiting syntactic variability in SRL. In

experiments we observe improvements in the robustness of classifiers.

viii

1

INTRODUCTION

Natural Language Understanding (NLU) is a complex topic still far from be-

ing solved. Syntactic dependency parsing and Semantic Role Labeling (SRL)

are two key tasks that could provide relevant insights regarding NLU. Progress

in these tasks may also benefit a wide range of Natural Language Processing

(NLP) applications. In the last years, there have been many proposals of sys-

tems that use the output of dependency parsing and SRL analysis for several

applications, including automatic summarization (Melli et al., 2006), question

answering (Narayanan and Harabagiu, 2004), information extraction (Surdeanu

et al., 2003), co-reference resolution (Kong et al., 2008; Màrquez et al., 2013)

and machine translation (Boas, 2002).

In the last decade, significant progress has been made towards a deep under-

standing of syntactic parsing and semantic role labeling partially summarized

in the CoNLL-2008 and 2009 Shared Tasks (Surdeanu et al., 2008; Hajič et

al., 2009). These shared tasks and also this thesis are framed under the data-

driven approach. The availability of large-sale hand-annotated resources such

as FrameNet (Fillmore et al., 2004), PropBank (Palmer et al., 2005) and Nom-

Bank (Meyers et al., 2004) boosted this data-driven research.

This work is focused on these following fundamental problems in natural

language understanding: syntactic dependency parsing and semantic role la-

1

Figure 1.1: A sentence with syntactic dependencies

beling. But more specifically, we focus on the joint processing of both tasks.

Syntactic Dependency Parsing Parsing is the process of building a structure

from a sequence of symbols (i.e., a sentence) with respect to a grammatical

formalism. Many NLP tasks can be regarded as finding an underlying struc-

ture or parse tree. Syntactic dependency parsing is the analysis of the syntactic

structure of a sentence under a formalism that defines a set of lexical elements

linked by dependencies (Mel’c̆uk, 1998). For example, figure 1.1 shows a syn-

tactic parse of the sentence Mary loves to play guitar. In the figure, we place

a dependency between loves and Mary in order to indicate a verb-subject re-

lationship between the two. This relationship is labeled with the syntactic tag

SBJ. A dependency links a modifier with their head. E.g., loves is the head of

Mary. The token * is the root of the sentence. Formally, a dependency struc-

ture is commonly a weakly-connected directed acyclic graph with a fictitious

root node. Each node in the graph has exactly one head except the root. Other

constraints may be applied depending on the formalism or framework.

The dependency parsing framework contrasts with the constituent approach,

the latter consists of decomposing the sentence into a set of hierarchically-

related constituents. Syntactic dependency parsing may offer some advantages

over the latter:

• Dependency graphs can better capture the structure of free-order languages.

The constituent formalism forces a less expressive projective parse. Pro-

jectivity is the planarity of the dependency graph restricted to the upper

2

half of the graph. In other words, a projective tree is one in which depen-

dencies do not cross.

• Many NLP applications such as information extraction, question answer-

ing and co-reference resolution could benefit from directly exploiting the

dependency-based representation.

• Dependencies are direct relations between lexical items, allowing for a

straightforward exploitation of lexical features. These lexical features

are important in order to obtain high accuracies with statistical methods.

Constituent-based models must be extended in order to incorporate such

features (Collins, 1999).

The most common algorithms used to solve data-driven dependency parsing

are the the Eisner bottom-up parsers (Eisner, 2000) and the shift-reduce parsers

(Covington, 2001; Nivre et al., 2007b). A more detailed review of these algo-

rithms is presented in chapter 2.

Semantic Role Labeling Semantic role labeling is the semantic processing

of a sentence where the arguments for a given predicate are identified and clas-

sified (Gildea and Jurafsky, 2002). The arguments capture semantic properties

that answer questions of the type who did what to whom, how, and why.

Figure 1.2 shows a sentence with the predicates loves and play. And for

example, guitar is an argument of the predicate play. Arguments are classified

by the semantic role that they play with respect to the predicate. In the figure,

guitar fills the instrument or ARG1 role for the predicate play.

Semantic roles provide an interesting level of abstraction with respect to

syntax. For example regarding the sentences: Mary plays the guitar and The

guitar is played by Mary, in both sentences Mary and guitar will realize the

same semantic role for the main predicate but with different syntactic function.

In this thesis we view SRL as a form of semantic parsing. Semantic parsing

has a long tradition in NLP, with many proposals for representing the semantics

3

Figure 1.2: A sentence with semantic dependencies for the predicates loves and play.

of the sentence that are much richer than SRL structures, e.g., meaning-text the-

ory (Mel’c̆uk, 1981), lambda calculus (Wong and Mooney, 2007), CCG gram-

mars (Bos et al., 2004) or dependency-based compositional semantics (Liang

et al., 2011).

SRL is often described as a shallow representation of the semantics of the

sentence. This thesis is focused on dependency-based SRL, and we will refer

to it as SRL, shallow semantic parsing or simply semantic parsing.

We take a data-driven approach to semantic role labeling. Our experimental

datasets are based on the CoNLL-2009 Shared Task data (Hajič et al., 2009).

For the English language, the datasets were extracted from the hand-annotated

PropBank and NomBank (Palmer et al., 2006; Meyers et al., 2004). These

datasets were converted to a dependency representation by a process described

in Surdeanu et al. (2008). In some of these datasets, the semantic core roles are

labeled with agnostic tags of the type ARGn that are not necessarily consistent

across different predicates.

SRL is typically addressed by a three-stage process: first pruning/filtering

of the candidates (Xue and Palmer, 2004), then identifying and classifying

the arguments and finally a global post-processing may be applied such as in

Toutanova et al. (2005). A more in-depth summary of the state of the art of

SRL can be found on chapter 2.

Syntactic-semantic parsing We consider syntactic-semantic parsing as per-

forming both the syntactic dependency analysis and the semantic role labeling.

Figure 1.3 shows these two parses for our example sentence. In the example,

Mary is a direct semantic dependent of play, but both words are syntactically

4

Figure 1.3: A sentence with syntactic and semantic dependencies

distant as they are separated by 3 syntactic dependencies. Syntax and seman-

tics are assumed to be related, but these relations appear to be non-trivial and

not governed by a set of simple rules. How these relations could be statistically

modeled is a challenging question that we will discuss along this dissertation.

Syntactic and shallow semantic parsing are typically addressed as a se-

quence of tasks (Hajič et al., 2009). Usually, complex natural language under-

standing problems such as those discussed here are typically solved by using

a pipeline architecture. In a pipeline approach the complex problem is decom-

posed into a sequence of affordable subtasks. Unfortunately, propagated errors

through the pipeline are hard to recover and severe performance degradation

is observed in the latter stages (Gildea and Palmer, 2002). Furthermore, these

models are unable to exploit some of the potential interactions between syntax

and semantics. This thesis is focused in modeling joint systems.

1.1 Goals and contributions

This dissertation has as its main goal the exploration of joint models for syntax

and shallow semantics. There have been a small number of joint proposals such

as the ones introduced by Sutton and McCallum (2005), Yi and Palmer (2005)

and Collobert and Weston (2008). Furthermore, the CoNLL-2008 and 2009

Shared Tasks were intended to boost the research in this topic. However, only

few models were proposed such as the Gesmundo et al. (2009) and Morante

et al. (2009b) systems. In general, there was a lack of controlled experiments,

5

thus the results of those shared tasks were mostly inconclusive (Surdeanu et al.,

2008; Hajič et al., 2009). A more in-depth review of joint proposals will be

found in chapter 2.

In this thesis our goal is to make progress towards understanding the follow-

ing two motivating questions. Our first question is whether a joint system can

outperform the pipeline approach. The relevance of this question is justified

by the current limitations of the pipeline architectures. A joint approach could

potentially improve the results on both tasks by capturing more interactions be-

tween the syntactic and semantic layers. Furthermore, a better understanding

of the interactions between complex NLP tasks could represent a significant

advancement in the field.

A major drawback of a joint system is the potential increase in computa-

tional cost with respect to a pipeline approach. Our second question is how to

build an efficient joint system. Joint systems are expected to search in a much

larger space to allow to reconsider some decisions previously made. We ex-

pect to pay some computational penalty by exploring this larger space in a joint

model.

To at least partially answer these previous questions and to explore joint

syntactic and semantic parsing we summarize here the main contributions of

this thesis:

• Our first contribution is to frame semantic role labeling as a weighted

linear assignment task. This framework provides an efficient way of en-

forcing unique roles for a given predicate. We exploit this contribution in

our latter joint proposals to generate the semantic parse.

• Our second contribution is to define a joint syntactic-semantic model solved

by using dual-decomposition techniques. We include an experimental sec-

tion to evaluate our proposal with respect to an equivalent pipeline system.

Regarding our first motivating question of whether a joint system can out-

6

perform the pipeline approach we give some results to at least partially

answer this question for our particular proposal.

• Our third contribution is to frame semantic role labeling as a shortest-path

problem. We jointly find the semantic roles together with the syntactic

paths linking predicates with their arguments. This latter contribution al-

lows us to efficiently process datasets with complex predicate-argument

syntactic paths and complements our previous joint proposal.

1.2 Overview of this Document

The rest of this dissertation is organized as follows. We first review the state of

the art and then each chapter describes each one of our contributions.

Chapter 2: State of the Art. This chapter gives an overview of the previous

work directly relevant to the discussed topics and categorizes the current

approaches for joint syntactic and semantic parsing.

Chapter 3: SRL as Assignment. We frame the SRL problem as finding a weighted

assignment in a bipartite graph. Under this framework we can efficiently

control for non-repeated constraints on SRL. The optimization method in-

troduced here will be applied in our joint systems described on chapters 4

and 5.

Chapter 4: Dual-decomposition Joint Syntactic-semantic Parsing. Here, we

describe our proposal for a joint system. We solve the joint optimization

problem by using dual-decomposition techniques. Our method finds the

optimal joint parse whenever it converges.

Chapter 5: Shortest-path Syntactic-semantic Parsing. We describe a seman-

tic role labeling approach that also builds the syntactic paths linking predi-

cates with their arguments. Our proposal is based on finding shortest-paths

and it is flexible enough to capture complex predicate-argument paths.

7

Chapter 6: Conclusions and Future Work. We conclude this dissertation draw-

ing our main conclusions and pointing out possible future research direc-

tions. We summarize here the discussions from the previous chapters.

The appendices will give supplementary material not included in the body of

this document for sake of clarity.

Appendix A: Algorithms. We describe our basic algorithms and related tech-

nical details.

Appendix B: The CoNLL-2006 and 2007 Shared Tasks. Here are outlined the

main results of these shared tasks.

Appendix C: Datasets, Treebanks and Measures. We sum up the main scor-

ing measures and details of our training, development and test datasets.

1.3 Published Work

We list here all our publications. The core of the chapters 3 and 4 was first

described in:

Joint Arc-factored Parsing of Syntactic and Semantic Dependencies
Xavier Lluı́s and Xavier Carreras and Lluı́s Màrquez

Transactions of the Association for Computational Linguistics (TACL), vol

1:219–230, May 2013.

The shortest-path approach for syntactic-semantic parsing was presented in:

A Shortest-path Method for Arc-factored Semantic Role Labeling
Xavier Lluı́s and Xavier Carreras and Lluı́s Màrquez

Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-

guage Processing, October 2014.

Our initial proposal for a joint syntactic-semantic system based on a first-order

graph-based parser was described in:

8

A Joint Model for Parsing Syntactic and Semantic Dependencies
Xavier Lluı́s and Lluı́s Màrquez

Proceedings of the Twelfth Conference on Computational Natural Language

Learning (CoNLL 2008): Shared Task, August 2008.

A more detailed description of this first proposal including additional mate-

rial can be found at:

Joint Learning of Syntactic and Semantic Dependencies
Master’s Thesis. Universitat Politècnica de Catalunya. September 2008.

The multilingual and second-order extension to the previous proposal including

improved results was published at:

A Second-Order Joint Eisner Model for Syntactic and Semantic Depen-
dency Parsing
Xavier Lluı́s and Stefan Bott and Lluı́s Màrquez

Proceedings of the Thirteenth Conference on Computational Natural Language

Learning (CoNLL 2009): Shared Task, June 2009

9

10

2

STATE OF THE ART

This chapter gives an overview of the state of the art of syntactic and semantic

dependency parsing. We start by reviewing syntactic dependency parsing in

the first section. Next section describes from our perspective the most relevant

semantic role labeling approaches. Finally, we give an overview of the main

proposals that generate both the syntactic and semantic analysis. We classify

these proposals starting with pipeline approaches and ending with systems that

simultaneously process both syntax and semantics.

2.1 Syntactic Dependency Parsing

Dependency parsing is the process of analyzing a string. Dependencies are

syntactic relations between words or tokens (Mel’c̆uk, 1998).

We first introduce our basic notation for dependency parsing. Let x be a

string or the input sentence. We denote the words or tokens of this sentence as

x1, . . . , xn. For convenience, we add a special root token x0. A dependency tree

is a directed graph T defined as follows: V (T) are the vertices representing the

sentence words including the root token. E(T) corresponds to the set of labeled

directed arcs, i.e., the dependencies between the words. A dependency 〈h,m〉
is a relation between a head h and a modifier or dependent m. In the context

of syntactic dependency parsing we typically add a label l that represents the

11

syntactic function between m and h as in 〈h,m, l〉. A dependency tree T is

well-formed if and only if (Nivre, 2006):

• connectedness: T is weakly connected, i.e., if we replace the arcs of T

with undirected edges the resulting graph is connected.

• single-root: T has a single root node x0 with no incoming edges.

Typically tighter constraints are enforced:

• single-head: every node except the root has a single head.

• acyclicity: there is no non-empty directed path that starts and ends on the

same node.

• projectivity: given a dependency 〈h,m〉 in any directed path from h to k,

k must be in the range h ≤ k ≤ m or m ≤ k ≤ h. Projectivity is planarity

on the upper half of the graph.

The latter projectivity property is relevant as an important family of parsing

algorithms are only able to parse projective structures.

2.1.1 Parsing algorithms

Some authors (McDonald and Nivre, 2007; Kübler et al., 2009) made a distinc-

tion on dependency parsing algorithms between graph-based and transition-

based parsers. The Maximum Spanning Tree (Chu and Liu, 1965; Edmonds,

1967) and the Eisner (2000) algorithms are considered graph-based algorithms.

In contrast, shift-reduce parsers introduced by Covington (2001) and Nivre

(2003) in the context of dependency parsing are categorized as transition-based

algorithms. In this thesis we define joint models based on graph-based algo-

rithms. Therefore along this chapter we will mainly focus on graph-based ap-

proaches and we will only briefly review other families of parsers.

Dependency parsing consists of computing the best parse tree y∗ for an input

sentence x:

y∗ = argmax
y∈Y(x)

s(x,y) ,

12

where Y(x) is the set of all dependency trees for x and and the function s(x,y)

assigns a weight, score or probability to each parse tree y given the input sen-

tence.

The feasibility of parsing algorithms (i.e., the computation of the argmax)

crucially relies on a factorization of the scores of the trees. We start by defining

an arc-based factorization. The key idea of this factorization is the fragmenta-

tion of the score of the tree by the sum of independent scores:

score(x,y) =
∑

f∈y
score(x, f) ,

where f is a factor of the dependency tree. In first-order models, factors are

single arcs. I.e., f = 〈h,m, l〉, the head, the modifier and the syntactic label.

The score of a factor is typically computed by a linear function:

score(x, f) = w · φ(x, f) ,

where w is a weight vector parameterizing the model and φ is a feature extrac-

tion function. Note that usually and in addition to the factor features, the input

sentence x is also considered, and therefore passed to the function φ.

First-order Parsing Algorithms The Eisner algorithm performs the required

first-order inference in O(n3). The algorithm details are in appendix A. The

inference is restricted to projective trees, i.e., Y(x) is in this case the set of

projective parse trees for x.

Alternatively, the Maximum Spanning Tree (MST) model solves first-order

dependency parsing without being restricted to projective parses. A maximum

spanning tree is a tree in a graph with the highest scored edges. The Chu-Liu-

Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967) efficiently solves the

MST problem in O(n2). This algorithm is also described in the appendix A.

This approach was introduced in the context of dependency parsing by McDon-

ald et al. (2005b). Unfortunately, it has not been successfully extended. Much

13

Figure 2.1: Second order sibling dependencies.

more attention had received Eisner-based algorithms (McDonald and Pereira,

2006) we believe that the reason is a higher degree of flexibility offered by this

latter family of parsers.

2.1.1.1 Higher-order Parsing

McDonald and Pereira (2006), Carreras (2007) and Koo and Collins (2010)

extended first-order models with second and third-order dependencies consid-

ering siblings and grandchildren in the factorizations.

Second-order Siblings Second-order factorizations include some degree of

sibling information. The score of a parse is equally defined by the sum of its

factors scores:

score(x,y) =
∑

f∈y
score(f) .

But now a factor is considered as the tuple 〈h, s,m, l〉:

s(x,y) =
∑

〈h,s,m,l〉∈y
s(x, h, s,m, l) .

The score function evaluates pairs of adjacent dependencies. The adjacency

is only relative to the left or right of the head, i.e., a left/right independence is

assumed. The function s(x, h, s,m) is defined for the head h, the sibling s, the

modifierm and the syntactic label l. A null sibling, i.e., no left or right modifier

is denoted as “-”. For example, considering li as the syntactic label assigned to

the i-th modifier, the second-order score for the set of dependencies shown in

figure 2.1 is

14

i−1∑

k=1

s(x, h,mk+1,mk, lk) + s(x, h,−,mi, li) +

s(x, h,−,mj, lj) +
m−1∑

k=j

s(x, h,mk,mk+1, lk+1) .

Eisner (2000) introduced an efficient O(n3) algorithm to compute the best

second-order parse in a projective tree. The algorithm was latter reintroduced

by McDonald and Pereira (2006) and it is detailed in appendix A, see algorithm

6. A latter publication by McDonald and Satta (2007) proved that the non-

projective version of this model is NP-hard to solve.

Second-order Grandchildren A further second-order improvement was in-

troduced by Carreras (2007) allowing some grandchildren information to be

captured. Improvements were reported at an expense of a higher computational

cost of O(n4). As it was in the case of the previous second-order model, this

extension is restricted to sibling and grandchildren information relative to the

span concept and left/right independence is assumed. The second-order model

considers factors as:

f = 〈h,m, l, ch, cmo, cmi〉

where h,m, l are the head, modifier and label as defined in first-order models.

ch is the child of h in [h . . .m] closest to m, i.e., the sibling as defined in the

second-order siblings model. cmi is the child of m in [h . . .m] furthest from

m and cmo is the child of m outside [h . . .m] furthest from m. Thus some

grandchildren of h are considered in the scoring function. This function is

defined as follows:

s(x, 〈h,m, l, ch, cmo, cmi〉) = s(x, h,m, l) + s(x, h,m, l, ch) +

s(x, h,m, l, cmi) + s(x, h,m, l, cmo) .

The algorithm is described in appendix A, see algorithm 7.

15

Third-order Parsing Koo and Collins (2010) introduced an algorithm to cap-

ture higher third-order dependencies. Dependencies involving up to 4 nodes are

modeled. Their algorithm extended the previous second-order models with also

an O(n4) time complexity. At a practical level it is crucial to prune the search

space to achieve reasonable computation times. The authors showed improve-

ments specially when parsing non-projective languages.

Shift-Reduce and Transition-based Parsers Shift-reduce parsers are bottom-

up parsers that can be defined as parsing a sentence from left to right and using

a stack of symbols and a queue (Aho et al., 1986).

A transition is a function between parser configurations. A configuration can

be defined by the stack, the input queue and the partially constructed tree. In the

context of dependency parsing a classifier (e.g., SVM (Joachims, 1999)) selects

the best transition given the current configuration also called the history. The

parsing algorithm is described in appendix A, see algorithm 8. The algorithm

is linear assuming a constant-time oracle function that is approximated by the

trained classifier. We will not provide here a more detailed review of these

family of parsers as this thesis is mainly focused on graph-based parsers. A

further discussion of the transition-based models can be found in Kübler et al.

(2009).

Other approaches Syntactic dependency parsing is still a very active research

topic. An overview of the results of the CoNLL-2006 and 2007 Shared task can

be found in the appendix B. As an example of recent work, Rush and Petrov

(2012) applied coarse-to-fine inference up to third-order parsing. They showed

significant speed-ups in computation time. Intuitively, given a set of parsers,

say first, second and third-order parsers they prune the search space starting

from the faster first-order parser. Each parser filters the search space of the next

parser and in some cases they allow the possibility to amend the pruning. An

analogous approach was presented by Zhang and McDonald (2012) also based

on pruning.

16

McDonald and Nivre (2011) combined an Eisner parser with a shift-reduce

parser by each parser using features extracted from the other. The best gains

were obtained in Eisner-based parsing when features from the shift-reduce

model are included. Martins et al. (2009) made a remarkable contribution by

compactly formalizing first and second-order dependency parsing as a set of

linear equations. An integer linear programming solver is then applied.

Koo et al. (2010) trained head-automata models and dependency parsers.

They applied dual-decomposition methods to take advantage of the head-auto-

mata high accuracies and also from the tree constraints enforced by dependency

parsers. This approach decomposes the problem into two sub-problems that

need to agree on the syntactic dependencies they predict.

Martins et al. (2013) presented a non-projective third-order model based on

head automata and sequential bigram models combined with a dual-decompo-

sition optimization method. Lei et al. (2014) parsed using a low-dimensional

representation of the feature space achieving remarkable results.

2.1.1.2 Remarks and Future Work

A key idea in syntactic dependency parsing is the factorization of the score or

probability of the parse tree. It implies that the factors are unrelated or condi-

tionally independent with respect to each other. This arc-based factorization is

probably an unrealistic assumption that higher-order models try to alleviate. In

these latter models, however, still only local information is mainly considered

(e.g., just immediately adjacent dependencies not crossing the position of the

head).

A common strategy to alleviate these previous limitations is to capture some

additional context information by extracting features from the surrounding to-

kens. Another approach is to use re-ranking or systems combination to improve

the final results. In that case, global properties of the output can be used as

features.

17

All these strategies have shown significant performance improvements. In

general, recent parsing proposals have increased the parsing time complexity

(e.g., third-order parsers, hybrid parsers) and are commonly handled with ag-

gressive pruning strategies. However, these latter approaches still appear not to

be flexible enough to capture long distance dependencies.

2.2 Semantic Role Labeling

Semantic role labeling (SRL) consists of identifying in a sentence the argu-

ments of the predicates and labeling them with semantic roles (Gildea and Ju-

rafsky, 2002). SRL is a relevant semantic task in NLP since predicate-argument

relations directly represent semantic properties of the type who did what to

whom, how, and why for the events expressed by the predicates.

Predicate-argument relations are strongly related to the syntactic structure

of the sentence. Most arguments correspond to some syntactic constituent, and

the syntactic structure that connects an argument with the predicate is a strong

indicator of its semantic role. Semantic roles provide an interesting level of ab-

straction with respect to syntax. While syntactic functions of arguments change

with the form of the event (e.g., active vs. passive forms), the semantic roles of

the arguments remain invariant to their syntactic realization.

SRL comprises the annotation of semantic core roles such as agent and pa-

tient, but also the adjunct arguments of the predicate, e.g., locative, temporal,

manner, cause.

The CoNLL-2008 Shared Task popularized a framework were arguments are

semantic dependents of their predicates. Under the dependency framework we

consider that predicates are linked to their arguments in a semantic dependency

graph. If we merge the semantic graphs from all predicates a directed graph is

conformed, without any further constraint.

However, in general, the introduction of this dependency formalism in SRL

did not change the consideration of SRL mainly as a classification task. The

18

task is typically addressed by the following three-stage architecture:

Pruning or filtering. The first step is intended to reduce the amount of to-

kens that will be considered as potential arguments. Any sentence token

could be identified as an argument of a predicate but most tokens are non-

arguments. This renders an unbalanced distribution that may degrade the

performance of some classifiers. Filtering alleviates this problem with al-

most no penalty regarding the argument recall. In addition, it significantly

speeds-up the computation times. Xue and Palmer (2004) introduced a

widely applied pruning rule for the English language datasets.

Argument identification and classification. Each candidate is labeled with a

role possibly including a null tag either in a single step or more commonly

in a two-stage process. In this latter case, the candidates are initially clas-

sify as arguments or non-arguments. Then semantic roles are assigned to

each argument.

Global scoring or post-processing. In this latter step a wide variety of tech-

niques are applied to improve the final results. These techniques may com-

bine a bag of candidates from the previous steps and extract global features

from all candidates. An example of these techniques is the re-ranking ap-

proach of Toutanova et al. (2005). In addition, domain constraints can be

enforced over the complete SRL parse of a sentence (Punyakanok et al.,

2004).

Besides the 3-stage classification approach, semantic role labeling can also

be addressed by BIO tagging (Màrquez et al., 2005) or by CRF on tree struc-

tures (Cohn and Blunsom, 2005; Moreau and Tellier, 2009). A summary of

SRL approaches is found in the CoNLL-2004 and 2005 Shared Tasks (Car-

reras and Màrquez, 2004; Carreras and Màrquez, 2005) that evaluated SRL

approaches under a framework of predicates already identified and syntactic

constituent trees and chunks provided.

19

team ml synt pre arch glob post comb prec
(%)

rec
(%)

F1

punyakanok SNoW n-best prun i+c yes no yes 81.18 74.92 77.92
haghighi ME n-best ? i+c yes no yes 81.87 73.21 77.30
màrquez AB 2 parses no BIO no no yes 78.34 75.78 77.04
pradhan SVM 3 parses ? BIO no no yes 78.44 74.83 76.59
surdeanu AB 1 prun c no yes no 79.35 71.17 75.04

Table 2.1: Summary of top performing CoNLL-2005 Shared Task systems

Table 2.11 shows the top 5 systems of the CoNLL-2005 Shared Task that

were among the 19 submitted results. It shows also a summary of the ap-

proaches. The column ml contains the machine learning method. The synt

column indicates if multiple syntactic trees were used to extract features. The

next column pre indicates if preprocessing was a first stage. Arch column con-

tains if the architecture performs identification and classification (i + c), only

classification (c) or it is a BIO tagging process. The glob column flags if global

information is used through the annotation process. Post contains if the system

applied a simple post-processing that could be a set of rules. The final column

comb indicates if the result is build from a system combination.

The most common approaches were based either in BIO tagging or in a

identification and classification process. System combination was a widely

used technique to improve results in the top performing systems. These sys-

tems build the SRL parse from different syntactic trees or from a set semantic

role classifiers trained with different feature sets. Almost all systems extracted

features from the syntactic path and the phrase structure around the predicate

parent. This intensive use of syntactic features reinforces the idea that these are

crucial for SRL in that task.

More recently, Punyakanok et al. (2008) introduced an approach that ex-

plicitly controls semantic role labeling constraints, as well as other constraints

1See http://www.lsi.upc.edu/ srlconll/st05/st05.html for detailed scores. This table is extracted from Carreras
and Màrquez (2005). ME: maximum entrophy, AB: AdaBoost, prun: pruning, i+c: identification and classifica-
tion.

20

that look at expressive pairwise assignments. They solve SRL using a general-

purpose integer linear programming method. In similar spirit, Riedel and Mc-

Callum (2011) presented a model for the extraction of structured events that

controls interactions between predicates and arguments. They take into account

pairwise assignments and solve the optimization problem by using dual- de-

composition techniques. Das et al. (2012) have proposed a dual-decomposition

method that deals with several assignment constraints for predicate-argument

relations. Täckström et al. (2015) presented a dynamic programming method

that enforces some SRL domain constraints. These last two approaches were

presented as alternatives to general ILP methods.

Naradowsky et al. (2012) presented a method based on Markov random

fields that avoids the need of syntactically annotated data or automatic parses.

Their method is able to infer an intermediate syntactic-like structure while

jointly finding semantic roles. In the experiments, they have shown that for

some datasets such as the CoNLL-2009 Japanese data, this intermediate struc-

ture helps improving unlabeled SRL scores. In those datasets where there were

strong divergences between the syntactic tree and the predicate-argument de-

pendencies the inferred syntactic-like layer better correlates with the predicate-

argument induced graph.

Recently, the SemEval 2014 Task 8 was devoted to semantic dependency

parsing (Oepen et al., 2014). One of the main goals of the task was to stimu-

late parsing approaches beyond tree structures. However, many proposals only

transformed the original semantic dependency graph into a tree structure to

then apply conventional dependency parsers. There were some exceptions such

as Kuhlmann (2014) that extended the Eisner algorithm to parse a restricted

class of directed graphs. Martins and Almeida (2014) modeled the task by

scoring parts of the graph and allowing for multiple parents. Decoding is per-

formed by using a a dual-decomposition strategy. Ribeyre et al. (2014) used

a transition-based model extended with operation that allow to process a more

generic acyclic graph structure.

21

Remarks and Conclusions SRL is still mainly approached by the 3-step pro-

cess of filtering/pruning, argument identification and classification and global

scoring. The first stage is a simple and widely performed process to discard

improbable argument candidates.

The second stage, intended to identify and classify the arguments is mainly

addressed by trained classifiers based on features defined in works such as Xue

and Palmer (2004). Different learning algorithm are used in different proposals

suggesting that there is no single-best method.

The final stage of SRL systems covers a wide variety of techniques. Global

features and constraints regarding all argument candidates may be considered.

A re-ranking method or a domain constraint satisfaction approach can be ap-

plied over the set of previously generated candidates.

Some interesting alternatives to the common 3-step architecture are the ex-

tended parsers of Kuhlmann (2014) and Ribeyre et al. (2014) and also the CRF

approach of Cohn and Blunsom (2005). Naradowsky et al. (2012) presented

also a graphical model that avoids the need of a syntactic parse by inferring a

hidden syntactic-like structure.

Almost all reviewed SRL systems strongly rely on features extracted from

the input syntax. State-of-the-art proposals exploit syntax from different syn-

tactic parsers in order to avoid the limitations of a pipeline approach. However,

the possibilities of this last post-processing are still limited to the set of previous

generated candidates.

2.3 Syntactic-Semantic Parsing

In this section we give an overview of syntactic and semantic parsing. We

consider syntactic-semantic parsing as the analysis under a shared dependency

representation of syntactic dependencies and semantic roles (Surdeanu et al.,

2008). We include in this definition any model that generates both layers either

22

Mary loves to play guitar .

�

SBJ OPRD IM OBJ

P

ARG0 ARG1

ARG0

ARG1

Figure 1: An example . . .

Das et al. (2012) . . .
Riedel and McCallum (2011) . . .

3 A Syntactic-Semantic Dependency
Model

We will describe structures of syntactic and seman-
tic dependencies with vectors of binary variables.
We will denote by yh,m,l a syntactic dependency
from head token h to dependant token m labeled
with syntactic function l. Similarly we will denote
by zp,a,r a semantic dependency between predicate
token p and argument token a labeled with seman-
tic role r. We will use y and z to denote vectors of
binary variables indexed by syntactic and semantic
dependencies, respectively.

A joint model for syntactic and semantic depen-
dency parsing could be defined as:

argmax
y,z

s syn(x,y) + s srl(x, z,y) .

In the equation, s syn(x,y) gives a score for the
syntactic tree y. In the literature, it is standard to
use arc-factored models defined as

s syn(x,y) =
�

yh,m,l=1

s syn(x, h, m, l) ,

where we overload s syn to be a function that
computes scores for individual labeled syntactic
dependencies. In discriminative models one has
s syn(x, h, m, l) = wsyn · fsyn(x, h, m, l), where
fsyn is a feature vector for the syntactic dependency
and wsyn is a vector of parameters (McDonald et al.,
2005).

The other term, s srl(x, z,y), gives a score for
a semantic dependency structure using the syntactic
structure y as features. Previous work has empiri-
cally proved the importance of exploiting syntactic

features in the semantic component (Gildea and Ju-
rafsky, 2002; Xue and Palmer, 2004; Punyakanok et
al., 2008). However, without further assumptions,
this property makes the optimization problem com-
putationally hard. One simple approximation is to
use a pipeline model: first compute the optimal syn-
tactic tree, and then optimize for the best semantic
structure given the syntactic tree. In the rest of the
paper we describe a method that searches over syn-
tactic and semantic dependency structures jointly.

We first impose the assumption that syntactic fea-
tures of the semantic component are restricted to the
syntactic path between a predicate and an argument,
following previous work (Johansson, 2009). For-
mally, for a predicate p, argument a and role r we
will define a vector of dependency indicators πp,a,r

similar to the ones above: πp,a,r
h,m,l indicates if a de-

pendency �h, m, l� is part of the syntactic path that
links predicate p with token a. Figure 1 gives an ex-
ample of one such paths. Given full syntactic and
semantic structures y and z it is trivial to construct a
vector π that is a concatenation of vectors πp,a,r for
all �p, a, r� in z. We can now define a linear seman-
tic model as

s srl(x, z,π) =
�

zp,a,r=1

s srl(x, p, a, r,πp,a,r) ,

(1)
where s srl computes a score for a semantic de-
pendency �p, a, r� together with its syntactic path
πp,a,r. As in the syntactic component, this function
is typically defined as a linear function over a set of
features of the semantic dependency and its path.

With this joint model, the inference problem can
be formulated as:

argmax
y,z,π

s syn(x,y) + s srl(x, z,π) (2)

subject to

cTree : y is a valid dependency tree

cRole : ∀p, r :
�

a

zp,a,r ≤ 1

cArg : ∀p, a :
�

r

zp,a,r ≤ 1

cPath : ∀p, a, r : if zp,a,r = 1 then

πp,a,r is a path from p to a

otherwise πp,a,r = 0

cSubtree : ∀p, r, a : πp,r,a is a subtree of y

Figure 2.2: A sentence with syntactic dependencies (top) and semantic dependencies for the predicates
loves and play (bottom). The thick arcs illustrate a structural divergence where the argument Mary is
linked to play with a path involving three syntactic dependencies.

independently or jointly. Figure 2.2 shows a sentence with its syntactic and

SRL parses.

If we look at the dependency-based representation of the figure, we can ob-

serve important structural divergences between the syntactic and semantic lay-

ers. For example, the construct loves to causes the argument Mary to be syntac-

tically distant from the predicate play. Linguistic phenomena such as auxiliary

verbs, control and raising, typically result in syntactic structures where seman-

tic arguments are not among the direct dependants of their predicate. This

phenomena –the distant arguments– is not uncommon as it occurs in about

the 25% of the arguments in the English development set of the CoNLL-2009

Shared Task.

In syntactic-semantic parsing, given an input sentence x we are interested in

finding the best syntactic tree and semantic analysis pair y∗, z∗. Our objective

function can be written as:

〈y∗, z∗〉 = argmax
y∈Y,z∈Z

s(x,y, z) ,

where Y is the set of all parse trees andZ is the set of all semantic role analysis.

We assume that the previous function can be rewritten as:

〈y∗, z∗〉 = argmax
y∈Y,z∈Z

(ssyn(x,y) + ssrl(x,y, z)) . (2.1)

23

Without any further assumption or simplification this problem remains in gen-

eral unfeasible. To compute the best pair y∗, z∗ we have to explore all possible

combinations of parse trees y and semantic parses z. The functions ssyn and

ssrl compute the score of a syntactic and SRL parse respectively.

A common simplification that makes the problem feasible is to restrict the

search space Y to the k-best syntactic trees. Thus for any finite small k we

can find the optimal solution to the Eq. (2.1) by computing the ssyn and ssrl
functions only for all SRL parses over every k-best syntactic tree. Then we

choose the highest scored combination. A pipeline system is a particular case

where k = 1. These k-best trees must be previously computed by a syntactic

parser assumed to be of polynomial cost.

We next briefly review the pipeline and k-best approaches to later discuss

what we consider joint models.

2.3.1 Pipeline Models

A first approach to syntactic-semantic parsing is to use a pipeline architecture.

First the best syntactic parse tree is computed. And then an SRL system chooses

the optimal semantic roles for this first syntactic parse tree. Pipeline models

consistently obtained remarkable results across different test sets. E.g., Che

et al. (2009) presented a pipeline system that ranked first in the multilingual

CoNLL-2009 Shared Task. That system chained a second-order syntactic de-

pendency parser with an SRL system. SRL in that system was based on Max-

imum Entropy SRL classifiers combined with an integer linear programming

post-processing.

2.3.2 k-best Approaches

A k-best model is intended to alleviate some of the limitations of the pipeline

approach while avoiding the enumeration of an unfeasibly large space. k-best

models turn the optimization problem feasible by only working with a small set

of best parse trees according to some syntactic ranker.

24

Gildea and Jurafsky (2002) generated a number of syntactic candidates, and

re-scored them according to a SRL system, then the best syntactic analysis is

selected. The authors only presented the syntactic results of this strategy. How-

ever, they pointed out the possibility of working with a set syntactic trees to

improve syntactic-semantic parsing. Sutton and McCallum (2005) introduced

a proposal that generates the k-best parse trees and then reranks syntax con-

sidering the SRL analysis. Their solution is generated by either combining

scores or by training a reranker with global features. In addition, a final SRL

post-process was applied to check for argument overlaps. Unfortunately, in that

system, no joint configuration outperformed a pipeline approach using the best

parse tree. A similar approach was taken by Chen et al. (2008) also showing

mild results. Samuelsson et al. (2008) achieved similar results working with a

set of syntactic and SRL parsers, the final output was generated through a set

of combination strategies.

Johansson and Nugues (2008) presented a competitive k-best system. The

k-best syntactic trees were computed by a second-order syntactic parser. On top

of these k-best trees, an SRL system generated the semantic role analysis. The

best joint result was computed by combining the probabilities assigned by each

component. The approach was indeed costly and the authors only considered

at most the top 16 syntactic parses. The system evaluated in the context of the

CoNLL-2008 Shared Task achieved the best overall results.

Li et al. (2010) applied a k-best approach for the Chinese language. Their

model combines probabilistic scores of the syntactic parse and the SRL analy-

sis. The authors showed improvements with respect to an equivalent pipeline

system.

2.3.3 Joint Approaches

Here we consider as a joint approach any syntactic-semantic model where syn-

tax is not restricted to the k-best syntactic parses for a small value of k. We

include in this section some models that do not formalize any joint objective

25

function but that are allegedly able to capture syntactic and semantic interac-

tions beyond the limitations of the k-best systems. Note that without a formal

analysis we cannot guarantee that some of these approaches are in fact search-

ing over a larger space than the previous k-best proposals.

We classify these proposals starting by the Label Extension models that en-

rich syntactic parsing labels with semantic roles. We latter describe the Iterative

Models that sequentially run syntactic and SRL parsers for a number of itera-

tions. The Joint Graph-based and Joint Transition-based proposals introduce

extensions to these two main categories of dependency parsers to jointly pro-

cess syntax and semantics. Finally, a joint system can also be built from a set

of Shared Features.

2.3.3.1 Label Extension

Musillo and Merlo (2006) extended syntactic parsing labels with semantic roles.

The system concatenates the POS or syntactic labels with semantic tags in a sin-

gle label. (e.g., a constituent SUBJ that also is A0 for some predicate will be

labeled as SBJ-A0). With this new set of tags a classifier is trained and the sen-

tences annotated. The authors only evaluated the syntactic results of the system.

A post-process would be required to recover the separate semantic labels and

to link the roles to the corresponding predicate. A drawback of this approach is

that it generates a large amount of combined labels with a few training exam-

ples per label.

Yi and Palmer (2005) also attached semantic argument information to syn-

tactic constituent labels to train a syntactic parser. To avoid the large number of

classes generated by label combinations they only extended the syntactic labels

with an argument identification tag for core and adjunct-like arguments. They

showed improvements when the syntactic parser was extended to also predict

argument identification tags. The best results where achieved by combining

features extracted from standard syntactic parsers with their extended parsers.

Also Ge and Mooney (2005) presented a similar approach.

26

Morante et al. (2009b) described a system based on a memory-based learn-

ing strategy. A label is the concatenation of the syntactic function and the

semantic role between two tokens, e.g., NMOD-A1. A dependent may have

as many joint labels as sentence predicates and possible heads. For example, a

token with the set of labels {p1:NMOD-A1, p2: -A2} is a token that it is syntac-

tically dependent to its head p1 with the NMOD function. That head p1 is also

a predicate for which the token is filling the role A1; the same dependent token

is the A2 argument of some other predicate p2 which is not its syntactic head.

This strategy also generates a large number of labels. The architecture performs

two main steps. First, a classifier is intended to generate syntactic and semantic

dependencies. Then a ranker refines the predictions from the previous step. In

Morante et al. (2009a) a comparison to an equivalent isolated pipeline system

is presented. The results showed a slight decrease in syntactic performance for

the joint system but significant improvements in SRL scores.

2.3.3.2 Iterative Models

The Dai et al. (2009) approach is to iteratively run syntactic and SRL parsers.

Each iteration extracts features from the previous run. In their system, syntactic

parsing is approached by a two-step process. First syntactic heads are identified.

Then syntactic functions are assigned. They showed results only for the first

two iterations of their method. In most cases these first and second iterations

showed only slight improvements over the initial pipeline run.

2.3.3.3 Joint Transition-based Models

Henderson et al. (2008) and Titov et al. (2009) augmented a transition-based

dependency parser with new operations that produce both syntactic and seman-

tic structures synchronized at the word level. They use Incremental Sigmoid

Belief Networks (Titov and Henderson, 2007a) to train a joint model, which

induces latent variable representations to learn correlations between the syntac-

tic and semantic layers. A implementation of this system was presented in the

27

CoNLL-2008 and CoNLL-2009 Shared Task achieving competitive results, in

2009 they ranked 3rd of 13 teams (Gesmundo et al., 2009). See table 2.3.

2.3.3.4 Graph-based extensions

The Eisner graph-based dependency parser was extended by Lluı́s et al. (2009),

Johansson (2009) and Li et al. (2010) to generate the SRL analysis at the same

time that the syntactic tree is being parsed. Sun et al. (2008) presented a differ-

ent graph-based approach. First, the syntactic heads are identified using the

maximum spanning tree algorithm. Then the unlabeled dependency tree is

sequentialized to jointly identify semantic arguments while assigning depen-

dency labels using a two-layer Markov model. Finally, semantic role labels are

assigned and an ILP post-process is applied.

We presented a system based on the Eisner first and second-order parsers to

jointly model syntactic and semantic dependencies (Lluı́s and Màrquez, 2008;

Lluı́s et al., 2009). The predicate structure is forced to be represented in the

same syntactic dependency tree, by enriching arcs with semantic information.

A dependency has a syntactic label and as many semantic labels as predicates.

The semantic component, however, uses features of pre-computed syntactic

structures and thus requires a previous syntactic parse before the joint process-

ing.

Johansson (2009) also extended the Eisner parser. His model is able to ex-

ploit features of the syntactic path connecting the predicate and the argument

not requiring a previous syntactic parse. At every processed subtree, seman-

tic dependencies between predicates and arguments contained in that subtree

are annotated. The author uses an approximate parsing algorithm that employs

k-best inference and beam search at a subtree level. His results matched the

competitive Titov et al. (2009) results.

Li et al. (2010) compared a pipeline model, a k-best system and also an

extension of the Eisner algorithm that jointly integrates SRL. In an analogous

approach than Johansson (2009), they jointly process SRL at a subtree level.

28

Thus when the syntactic bottom-up parser had analyzed a substring then the

SRL system is called. As clauses are being syntactically analyzed, the seman-

tic roles for argument and predicates within the same clause are labeled. They

showed slight improvements for their Eisner extension with respect to a base-

line pipeline system.

2.3.3.5 Shared Features

Collobert and Weston (2008) trained a deep neural network to jointly parse POS

tags, syntactic chunks, named entities, semantic roles and semantically related

words.

The key point of their proposal is to learn a shared set of features useful for

all the related tasks. A deep layer of the neural network is expected to automat-

ically learn these shared features. The results of the joint approach regarding

SRL were slightly better compared to a baseline SRL system. The SRL system

considered as baseline was not a standard pipeline system as no feature engi-

neering nor a set of features from a syntactic parse is used. Experiments with

different number of jointly learned tasks showed that increasing the number of

tasks was not always correlated with improving the SRL results.

2.3.4 Evaluation of syntactic-semantic systems

A framework to evaluate syntactic-semantic proposals was introduced in the

CoNLL-2008 and 2009 Shared Tasks (Surdeanu et al., 2008; Hajič et al., 2009).

These Shared Tasks made available dependency treebanks with syntactic de-

pendencies and semantic roles annotated in a dependency format. The tasks

were intended to boost the research in these topics.

The task setting was very similar on both the 2008 and 2009 tasks. The first

task provided datasets with syntactic dependencies and semantic roles only for

the English language. On 2009 datasets were extended for Catalan, Spanish,

German, Czech, Chinese and Japanese with annotated predicates also provided

for the tests sets. The English language results due to some tokenization and

29

team arch syn LAS sem
F1

macro
F1

Johansson and Nugues (2008) k-best 89.3 81.6 85.5
Ciaramita et al. (2008) pipeline 87.4 78.0 82.7
Che et al. (2008) pipeline 86.7 78.5 82.7
Zhao and Kit (2008) pipeline 87.7 76.7 82.2
Henderson et al. (2008) joint 87.6 73.1 80.5
Lluı́s and Màrquez (2008) joint 85.8 70.3 78.1

Johansson (2009) joint 86.6 77.1 81.1
Henderson et al. (2013) joint 87.5 76.1 81.8

Table 2.2: Table extracted from Henderson et al. (2013) and Surdeanu et al. (2008) showing systems
evaluated with the CoNLL-2008 data. The first systems show CoNLL-2008 results or post-evaluation
results. The last two rows show latter publications. The systems are by: Johansson and Nugues (2008),
Ciaramita et al. (2008), Che et al. (2008), Zhao and Kit (2008), Henderson et al. (2008), Lluı́s and
Màrquez (2008), Johansson (2009) and Henderson et al. (2013).

team arch syn
avg

syn
eng

sem
avg

sem
eng

joint
avg

joint
eng

1 Zhao et al. (2009b) pipeline 85.23 88.48 79.94 85.51 82.64 87.00
2 Zhao et al. (2009a) k-best 85.04 89.19 79.96 86.15 82.52 87.69
3 Gesmundo et al. (2009) joint 85.77 88.79 78.42 83.24 83.24 86.03
4 Bohnet (2009) pipeline 85.65 89.98 76.00 80.39 80.85 85.14
5 Watannabe et al. (2009) pipeline 81.16 87.70 75.65 84.26 78.43 86.40

Table 2.3: Best CoNLL-2009 systems. Results labeled as eng are for the English language. The avg
columns contain the average scores for all languages. The syn columns show the syntactic LAS, sem
columns show the semantic F1 and joint columns report the macro syntactic-semantic F1. Systems by:
Zhao et al. (2009b), Zhao et al. (2009a), Gesmundo et al. (2009), Bohnet (2009), Watanabe et al. (2009).

codification small changes were not directly comparable between the 2008 and

2009 tasks.

Table 2.2 shows some of the most relevant CoNLL-2008 results including

post-evaluation and latter publications on this same dataset. Table 2.3 summa-

rizes the results of the top 5 teams for 2009. Most of the shared task systems

approached the problem with a pipeline architecture. There were the exceptions

of Gesmundo et al. (2009), Dai et al. (2009), Morante et al. (2009b) and Lluı́s et

al. (2009). The Gesmundo et al. (2009) and Lluı́s et al. (2009) systems were im-

provements of the previous year shared task systems by Henderson et al. (2008)

30

and Lluı́s and Màrquez (2008) respectively. Dai et al. (2009) and Morante et

al. (2009b) contributed with novel approaches. The best joint system of Ges-

mundo et al. (2009) ranked third globally in the 2009 task. Subsequently, the

interest in joint parsing remained and some authors published new approaches

or improved the work started at the tasks such as Johansson (2009), Titov et al.

(2009) and Henderson et al. (2013). All these proposals, among others were

previously classified and reviewed in section 2.3.3.

31

2.3.5 Remarks and Conclusions

Syntactic and semantic parsing is still mainly approached as a pipeline of tasks.

To improve the parsing results, Gildea and Jurafsky (2002) pointed out the pos-

sibility of working with many syntactic trees. Latter, Johansson and Nugues

(2008) confirmed that by relying on state-of-the-art components a competitive

k-best system can be built.

In this thesis we focus on models that are not limited to the k-best syntax.

The proposals described under the joint models section cover a wide variety

of approaches and techniques ranging from label extensions to shared features

models. A major drawback of label extension models is the large amount of

generated labels. Iterative models represent a natural proposal of building a

joint system. But unfortunately, the results were mild and the optimization

probably could easily reach a local maximum. Joint transition-based systems

and joint graph-based were extensions of common parsing algorithms. These

latter approaches avoided the need to train a large number of classifiers.

The small number of joint proposals may be explained in part by some diffi-

culties that arise when designing joint systems such as the divergence between

the syntactic and semantic layers. If we look at dependency parsing, standard

models crucially depend on an arc factorization of the dependency structure

(McDonald et al., 2005a; Nivre and Nilsson, 2005), otherwise their computa-

tional properties break. An analogous factorization of syntactic-semantic pars-

ing would allow us to feasibly search over this large space. However, it is chal-

lenging to define efficient methods for joint parsing that simultaneously exploit

features of both layers.

We will present in chapters 4 and 5 a proposal that formalizes a joint ob-

jective function intended to overcome the limitations of the previous graph-

based joint models. We solve it with dual-decomposition techniques. Johans-

son (2009) introduced a proposal based on an approximate search. In constrast,

our optimization method gives an exact solution whenever it converges. Lluı́s

32

et al. (2009) presented a system where SRL was based on a fixed precomptued

syntax. In our case, the SRL component considers many syntactic realizations

between predicates and arguments. Furthermore, in chapter 5 we point out a

more flexible approach that could be applied to extend our joint model to mul-

tiple languages and arbitrary predicate-argument relations.

33

34

3

SRL AS ASSIGNMENT

In this chapter we introduce our proposal for inference on semantic role labeling

enforcing domain constraints. The method presented in this chapter is latter

applied in our joint proposals of chapters 4 and 5. Here our focus is only on

SRL. We frame this problem as a linear assignment task on a bipartite graph.

We represent the roles to be assigned and the argument candidates as nodes in a

graph. Then we find the assignment that maximizes the sum of scores of roles

to candidates for a given predicate.

Under this framework we enforce two uniqueness constraints. The first is

that an argument candidate receives at most a single role. The second is that no

repeated roles are assigned to the arguments of a predicate.

Constraint enforcement has previously been applied in the context of seman-

tic role labeling. E.g., figure 3.11 shows the constraints defined in Punyakanok

et al. (2004). The labels A0-A5 represent the core roles. R-X and C-X are argu-

ments referring or continuing a previously labeled argument. An Integer Linear

Programming (ILP) solver enforces these constraints.

Punyakanok et al. (2004) showed experiments enforcing different subsets

these constraints with improvements as a larger number of constraints were

added. Later, Surdeanu et al. (2007) also evaluated the contribution of different

1Extracted from Punyakanok et al. (2004).

35

1. Arguments cannot cover the predicate except those that contain only the verb or the

verb and the following word.

2. Arguments cannot overlap with the clauses (they can be embedded in one another).

3. If a predicate is outside a clause, its arguments cannot be embedded in that clause.

4. No overlapping or embedding arguments.

5. No duplicate argument classes for A0-A5,V.

6. Exactly one V argument per verb.

7. If there is C-V, then there should be a sequence of consecutive V, A1, and C-V pattern.

For example, when split is the verb in “split it up”, the A1 argument is “it” and C-V

argument is “up”.

8. If there is an R-X argument, then there has to be an X argument. That is, if an argument

is a reference to some other argument X, then this referenced argument must exist in

the sentence.

9. If there is a C-X argument, then there has to be an X argument; in addition, the C-X

argument must occur after X. This is stricter than the previous rule because the order of

appearance also needs to be considered.

10. Given the predicate, some argument classes are illegal (e.g., predicate stalk can take only

A0 or A1). This linguistic information can be found in PropBank Frames.

Figure 3.1: SRL constraints defined in Punyakanok et al. 2004.

sets of constraints for SRL. They found the best results on the WSJ test set by

enforcing not all constrains but some non-overlapping constraints in addition

to avoiding repeated core roles.

Punyakanok et al. (2008) confirmed that a constraint-based inference is a

simple but effective setting to achieve improvements in SRL systems. In this

chapter we present a contribution inspired by this proposal.

The first next section of this chapter briefly introduces the assignment prob-

lem. On the following section we describe how we frame semantic role labeling

as a linear assignment task. We also review some related work. Then, the exper-

imental section compares for many languages the application of the assignment

algorithm with respect to simply choosing the best set of candidates. We con-

clude this chapter by giving some final remarks. Some sections of this chapter

are based on the article of Lluı́s et al. (2013).

36

3.1 The Assignment Algorithm

The linear assignment problem is a classical and well-known combinatorial

optimization problem (Kuhn, 1955; Burkard et al., 2009). It consists of finding

a minimum cost (or maximum) perfect matching in a bipartite graph. It is

typically introduced in the literature as the problem of assigning jobs to agents.

Every job must be assigned to an agent and no agent should perform more than

one job. More precisely, the linear assignment problem is defined as follows:

minimize
∑

i∈A

∑

j∈T
Cijxij

subject to
∑

j∈T
xij = 1 ∀i

∑

i∈A
xij = 1 ∀j ,

(3.1)

where C is a finite cost matrix typically assumed to be non-negative. Negative

costs can be easily handled by simply shifting weights. A is the set of agents,

T is the set of tasks, xij is a boolean variable that represents the assignment of

agent i to task j. The two sets of constraints represent that each task is assigned

to one agent and that one agent performs a single task.

The Hungarian algorithm (Burkard et al., 2009) solves the linear assignment

problem in O(n4). An improved version runs in O(n3) (Tomizawa, 1971; Ed-

monds and Karp, 1972). In contrast, ILP is a NP-hard problem (Karp, 1972)

even though at a practical level ILP solvers are remarkably efficient (Schrijver,

1998).

3.2 Framing SRL as an assignment task

Throughout this chapter we define x as the input sentence. A sentence has a

set of predicates. For example, the sentence from figure 3.2 has two predicates

loves and play. We assume that all predicates are given. A predicate p may

37

Figure 3.2: A sentence with semantic dependencies for the predicates loves and play.

have a semantic dependency to token a with role r. In our example the triplet

p, a, r may be instantiated with the combination of predicate play, argument

token guitar and role ARG1.

For a more compact notation, we will sum up the SRL parse with the indi-

cator vector z. We note as zp,a,r = 1 that the argument a fills the role r for

predicate p. We then define the score of the SRL parse as the sum of local

scores as follows,

ssrl(x, z) =
∑

zp,a,r=1

ssrl(x, p, a, r) . (3.2)

Here we overloaded the ssrl function and assumed that it decomposes in a sum

of scores computed by some domain classifiers.

SRL constraints Under the dependency framework of the CoNLL-2008 Shared

Task datasets (Surdeanu et al., 2008) roles are assigned directly to nodes of the

dependency tree. As a consequence, this representation of role labels already

enforces some constraints. Role labels are tied to syntactic nodes that represent

subtrees. Any two subtrees cannot share any word except if one is the ancestor

of the other. Therefore, partial non-overlapping is already guaranteed, however,

embedding or complete overlapping is still possible.

Considering some of the most relevant constraints pointed out by Surdeanu

et al. (2007) we enforce only:

1. cRole. No repeated roles for a given predicate are allowed.

2. cArg. At most one role is assigned to any given token.

Therefore our inference problem is stated as follows,

38

argmax
z

ssrl(x, z)

subject to

cRole : ∀p, r :
∑

a

zp,a,r ≤ 1

cArg : ∀p, a :
∑

r

zp,a,r ≤ 1 .

(3.3)

As previously introduced, the constraint cRole states that the solution has no

repeated roles. cArg enforces that an argument fills at most a role. In general,

only a small percentage of the predicates have repeated roles. Table 3.1 of the

experimental section shows the percentage of repeated roles in our datasets.

Syntactic Paths As usual, we assume that SRL scorers (i.e., our ssrl func-

tions) have access to the syntactic dependency tree. Thus syntactic paths from

predicates to arguments are implicitly available even thought we omitted them

from Eq. (3.3) for clarity reasons. In the next chapter, on section 4.2 we will

show that it is straightforward to extend the assignment approach in the case

where we have multiple paths connecting predicates to their arguments. Fur-

thermore, in chapter 5 a different method based on shortest-path algorithms will

generate a set of syntactic paths and we will show how the assignment approach

is flexible enough to accommodate a large number of syntactic paths.

3.2.1 The Assignment Algorithm

Coming back to solving Eq. (3.3), it is easy to see that an optimal solution

satisfying constraints cRole and cArg can be found with a linear assignment

algorithm. Our method determines the predicate-argument relations separately

for each predicate. We define a bipartite graph as follows. On one side of the

graph we add k nodes r1 . . . rk for each role. On the other side of the graph, we

add n nodes a1 . . . an for each argument. Let N be the sum of n plus k. We add

39

(1)
Mary

(2)

plays
(3)

guitar
(4)

NULL
(5)

NULL
(6)

NULL

(1)

ARG0
(2)

ARG1
(3)

ARG2
(4)

NULL
(5)

NULL
(6)

NULL

W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6W1,1

W4,2W2,3

W3,4

W5,5 W6,6

Figure 3.3: Illustration of the assignment graph for the sentence “Mary plays guitar”, where the predicate
plays can have up to three roles: ARG0 (agent), ARG1 (theme) and ARG2 (benefactor). Nodes labeled
NULL represent a null role or token. Highlighted edges represent the correct assignment.

an+1, . . . , aN additional null arguments and rk+1, . . . , rN additional null roles.

The bipartite graph is of size 2N . Assume also a matrix of non-negative scores

Wi,j corresponding to assigning argument aj to role ri. A linear assignment

algorithm finds a bijection f : i → j from roles to arguments that maximizes
∑N

i=1Wi,f(i).

We construct a bipartite graph representing predicate roles and sentence to-

kens, such that some roles and tokens can be left unassigned, which is a com-

mon setting for assignment tasks. Algorithm 1 describes a procedure for con-

structing a weighted bipartite graph for SRL, and Figure 3.3 illustrates an exam-

ple of a bipartite graph. We then run the Hungarian algorithm on the weighted

graph and obtain a bijection f : ri → aj, from which it is trivial to recover the

optimal solution of Eq. (3.3).

We assume that we have the constraint that for a predicate there is at most

a single instance of a role. It is simple to allow for a fixed number of multiple

instances of a role by adding more role nodes in the step 1 of the algorithm.

In addition, it would be straightforward to add penalties in step 3 for multiple

instances of a role.

2In our model we fix the score of null assignments to 0. It is straightforward to compute a discriminative score
instead.

40

Algorithm 1 Construction of an Assignment Graph for Semantic Role Labeling

Let p be a predicate with k possible roles. Let n be the number of argument candidates in the sentence.
This algorithm creates a bipartite graph with N = n+ k vertices on each side.

1. Create role vertices ri for i = 1 . . . N , where

• for 1 ≤ i ≤ k, ri is the i-th role,

• for 1 ≤ i ≤ n, rk+i is a special NULL role.

2. Create argument vertices aj for j = 1 . . . N , where

• for 1 ≤ j ≤ n, aj is the j-th argument candidate,

• for 1 ≤ j ≤ k, an+j is a special NULL argument.

3. Define a matrix of model scores S ∈ R(k+1)×n:

(a) Optimization of syntactic paths:
For 1 ≤ i ≤ k, 1 ≤ j ≤ n
Si,j = max

πp,aj ,ri
ssrl(x, p, aj , ri,π

p,aj ,ri)

(b) Scores of NULL assignments2:
For 1 ≤ j ≤ n
Sk+1,j = 0

4. Let S0 = mini,j Si,j , the minimum of any score in S. Define a matrix of non-negative scores
W ∈ RN×N as follows:

(a) for 1 ≤ i ≤ k, 1 ≤ j ≤ n
Wi,j = Si,j − S0

(b) for k < i ≤ N, 1 ≤ j ≤ n
Wi,j = Sk+1,j − S0

(c) for 1 < i ≤ N, n < j ≤ N
Wi,j = 0

3.3 Related Work

As previously introduced, Punyakanok et al. (2004) and Punyakanok et al.

(2008) presented a system that explicitly controls semantic role constraints as

well as other constraints that look at pairwise assignments which we cannot

model. They solve SRL using general-purpose integer linear programming

methods. In similar spirit, Riedel and McCallum (2011) presented a model

for extracting structured events that controls interactions between predicate-

argument assignments. They take into account pairwise assignments and solve

41

the optimization problem with dual decomposition. Shen and Lapata (2007)

find assignments between tokens and roles to improve a question answering

system by measuring the semantic similarity between the query and document

sentences. More recently, Das et al. (2012) proposed a dual-decomposition

method that deals with several assignment constraints for predicate-argument

relations. Their method is an alternative to general ILP methods. Täckström et

al. (2015) enforced non-overlapping of the arguments of a predicate and unique

roles in a similar spirit that the approach that we describe in this chapter. In ad-

dition the authors pointed out the possibility of extending the model to control

for continuation and reference roles. Their proposal relies on dynamic pro-

gramming and the model was trained by using inside-outside methods. The

work presented a probabilistic model for SRL that enforces some constraints

in a more efficient way than previous ILP approaches. Our proposal, first pub-

lished in Lluı́s et al. (2013), frames SRL as a linear assignment task, for which

a simple and exact algorithm exists.

3.4 Experiments

We present experiments using the CoNLL-2009 Shared Task datasets (Hajič et

al., 2009). For the case of the English language, it consists of the usual WSJ

training/development/test sections mapped to dependency trees, augmented with

semantic predicate-argument relations from PropBank. Further details about

these datasets can be found in appendix C.

In all cases we run a syntactic parser and then our SRL system. All config-

urations thus represent a pipeline approach to syntactic-semantic parsing. Our

goal in this experimental section is to evaluate the contribution of the assign-

ment constraint enforcement in the following setting:

Languages. We give results for different datasets: English verbal predicates,

German, Czech and Spanish.

42

Assignment. We enforce the previously defined assignment constraints for all

systems from table 3.2 labeled as yes on the assignment column. Oth-

erwise, the baseline systems labeled as assignment no simply select the

highest ranked set of roles for the argument candidates. These inference

methods apply both to training and testing.

Candidate pruning. We use the Xue and Palmer (2004) filtering rule adapted

to a dependency-based representation. This rule constraints the search of

argument candidates to direct descendants of the predicate or direct de-

scendants of the predicate ancestors. This heuristic was originally devised

for the English language treebanks. The configurations labeled as ances-

tor enforce this rule over all candidates. Otherwise, systems labeled as all

explore all possible candidates thus any sentence token could potentially

fill a role for a given predicate.

We provide details about the implementation in the next section. Then we

present and discuss the results.

3.4.1 Implementation

All our configurations use the same type of discriminative scorers and features.

We train all our SRL classifier using an averaged Perceptron (Collins, 2002).

We take a structured prediction approach, i.e., we only make corrections or

updates on the Perceptron after we run our assignment inference method over

the output of the SRL classifiers.

Syntactic model We reimplemented the McDonald et al. (2005a) syntactic

dependency parser based on the Eisner (2000) algorithm. To learn the models,

we use a log-linear loss function following Koo et al. (2007), which trains prob-

abilistic discriminative parsers. At test time, we use the probabilistic parsers to

compute marginal probabilities p(h,m, l | x), using inside-outside algorithms

for first and second-order models. Hence, for either of the parsing models, we

always obtain a table of arc-factored marginal scores, with one score per la-

43

beled dependency. We show experiments using first-order, second-order and

also gold syntax. The syntactic LAS results are shown tables 3.3 and 3.5.

SRL model Our SRL features are based in the work of Johansson (2009). Jo-

hansson lists and categorizes a set of common features for SRL. A distinction

is made between primary, secondary and interdependency features. Primary

and secondary features can be directly computed from the input sentence x or

from local information. In contrast, interdependency features extract informa-

tion from both x and the syntactic parse tree. This distinction is relevant for

joint syntactic-semantic systems as the syntactic tree may not be completely

available at the time that these features are required.

Primary Features can be directly computed from the unparsed input. These

features are the same features as in syntactic dependency parsing. But in

this case are representing semantic arcs instead of syntactic ones.

Secondary Features are local features that can be computed without accessing

the complete syntactic tree. These features are standard for SRL. The

label feature is extracted from the syntactic function that is realizing the

argument candidate with respect to its syntactic parent.

• Predicate word (e.g., play)

• Predicate POS (e.g., NN)

• Argument word

• Argument POS

• Pred. + arg. words (e.g., play+at)

• Predicate word + label (e.g., play+OBJ)

• Predicate POS + label (e.g., VB+OBJ)

• Argument word + label

• Argument POS + label

44

• Pred. + arg. words + label (e.g., play+at+OBJ)

Interdependency Features. To compute these features the syntactic path be-

tween the predicate and the candidate argument must be known. These

features are hard to compute when jointly parsing syntax and semantics as

the complete path may not be available at that time.

• Path

• Path + arg. POS

• Path + pred. POS

• Path + arg. word

• Path + pred. word

• Path + label

• Path + arg. POS + label

• Path + pred. POS + label

• Path + arg. word + label

• Path + pred. word + label

The path feature represents the syntactic relationship between the predicate

and candidate argument and it is coded as the set of syntactic function labels

concatenated with the direction of the relation (e.g., the path from play to Mary

in figure 1.3 is IM+↑+OPRD+↑+SBJ+↓).
In addition to the previous features, we included the following:

• Unigram/bigram/trigram of the path. For all n-grams in the syntactic path,

patterns of words and POS tags (e.g., from mary-loves-to-play we extract

mary+loves+to, loves+to+play, mary+VB+to).

• Voice features. The predicate voice together with the word/POS of the

argument (e.g., passive+mary).

• Path continuity. Count of non-consecutive tokens with respect to the sen-

tence word order in a predicate-argument path.

45

3.4.2 Results

We evaluate semantic role labeling with precision recall and F1 over the la-

beled semantic dependencies. Our evaluation metrics are based on the official

CoNLL-2009 scorer which considers predicate senses as special semantic de-

pendencies and, thus, it includes them in the calculation of the scores. Here,

as we are not addressing predicate sense disambiguation, we ignore predicate

senses when presenting the evaluation results. Therefore, when we report the

performance of the CoNLL systems (e.g., Gesmundo et al. (2009), Zhao et al.

(2009b) in table 3.2), their scores will be in general noticeably lower than the

scores published at the shared task. This is because predicate sense disambigua-

tion is usually a simple task with a very high baseline. E.g., around 90% of the

English language predicate senses can be correctly identified by choosing the

most frequent sense.

We first look at the number of repeated roles. Table 3.1 shows the most com-

mon repeated role labels for the English, German, Czech and Spanish training

datasets. For each dataset we first show the total number of repeated roles per

predicate. E.g., English has 0.87% of repeated roles. Then we give the ordered

list of the most frequent repeated roles. For example, for the English language

the AM-TMP role is the most repeated label representing the 31.99% of all re-

peated roles. We provide as additional detail the number of times (1, 2, or ≥3)

that each role is repeated. For example, the German role label A2 is repeated 1

time, i.e., it appears twice for a predicate, in the 47.9% of the cases of repetition.

We observe in this table that Czech exhibits the largest amount of repeated

roles with an 11.08%. The distribution shows a large tail of tags and in many

cases we can find 3 or more repetitions of the same role. In contrast, it is

unlikely to find more than two repetitions of any given role in the Spanish

datasets.

Table 3.2 shows the results on the development set for our different config-

urations. We again first show the percentage of repeated roles for each dataset,

46

% rep. label num. of rep. % rep. label num. of rep.
1 2 ≥3 1 2 ≥3

(0.87%) English (1.05%) German

31.998 AM-TMP 29.501 2.497 0.000 59.557 A1 47.922 8.310 3.324
16.260 A1 13.240 1.916 1.103 16.620 A0 16.066 0.554 0.000
12.544 AM-ADV 11.469 0.987 0.087 16.066 A2 12.742 3.324 0.000

7.869 A2 6.243 0.929 0.697 5.263 A3 4.709 0.554 0.000
6.185 A3 5.662 0.290 0.232 1.662 A4 1.662 0.000 0.000
5.865 AM-LOC 5.168 0.348 0.348 0.831 A5 0.831 0.000 0.000
5.575 A0 5.226 0.348 0.000
5.139 AM-MNR 4.936 0.116 0.087
3.020 AM-DIS 3.020 0.000 0.000
1.626 AM-DIR 1.452 0.000 0.174
1.132 C-A1 1.132 0.000 0.000
0.842 AM-MOD 0.842 0.000 0.000
0.581 A4 0.436 0.000 0.145
0.319 AM-PNC 0.319 0.000 0.000
0.145 AM-CAU 0.145 0.000 0.000

(11.08%) Czech (1.74%) Spanish

55.133 RSTR 39.093 12.260 3.780 30.805 argM-adv 27.678 3.127 0.000
12.492 PAT 7.341 2.342 2.809 26.867 argM-tmp 25.478 1.390 0.000
11.309 ACT 6.189 2.323 2.797 12.855 arg1-pat 12.623 0.232 0.000

3.259 LOC 2.303 0.499 0.457 9.728 arg2-ben 9.728 0.000 0.000
3.076 TWHEN 2.567 0.445 0.064 7.701 argM-loc 7.470 0.232 0.000
2.804 APP 1.856 0.568 0.381 3.358 arg1-tem 3.358 0.000 0.000
1.870 EFF 1.282 0.415 0.173 1.911 arg2-atr 1.911 0.000 0.000
1.297 ID 0.556 0.262 0.479 1.621 arg3-ben 1.621 0.000 0.000
0.961 MANN 0.778 0.124 0.059 1.158 argM-mnr 1.042 0.116 0.000
0.766 EXT 0.487 0.010 0.269 1.158 arg0-agt 1.158 0.000 0.000
0.734 ACMP 0.447 0.163 0.124 0.926 argM-cau 0.926 0.000 0.000
0.702 DIR3 0.413 0.148 0.141 0.753 arg2-exp 0.753 0.000 0.000
0.628 ADDR 0.405 0.119 0.104 0.290 arg2-loc 0.290 0.000 0.000
0.600 BEN 0.432 0.114 0.054 0.290 arg2-null 0.290 0.000 0.000
0.516 MEANS 0.314 0.099 0.104 0.232 argM-fin 0.232 0.000 0.000
0.482 CAUS 0.346 0.089 0.047 0.116 argL-null 0.116 0.000 0.000
0.413 MAT 0.247 0.089 0.077 0.058 argM-atr 0.058 0.000 0.000
0.413 AIM 0.269 0.104 0.040 0.058 arg3-exp 0.058 0.000 0.000
0.373 REG 0.274 0.069 0.030 0.058 arg1-ext 0.058 0.000 0.000
0.351 DIR1 0.217 0.054 0.079 0.058 argM-ext 0.058 0.000 0.000
0.331 COND 0.259 0.049 0.022
0.175 CRIT 0.124 0.044 0.007
0.153 COMPL 0.089 0.054 0.010
0.148 ORIG 0.104 0.030 0.015

Table 3.1: Percentage of repeated roles per predicate in the English, German, Czech and Spanish
CoNLL-2009 training sets.

47

syntax candidates assignment English
F1

prec/rec

German
F1

prec/rec

Czech
F1

prec/rec

Spanish
F1

prec/rec

% of rep. all 1.01 1.20 11.19 2.03

gold ancestor yes 84.80 72.42 61.25 80.08
86.73/82.95 76.25/68.95 88.60/50.70 83.36/76.99

gold ancestor no 84.64 68.91 68.07 81.25
87.17/82.25 74.53/64.07 86.26/56.22 84.76/78.02

gold all yes 85.15 77.18 66.52 80.08
85.81/84.49 80.06/74.51 71.25/62.39 83.36/76.99

gold all no 84.93 71.78 72.98 81.25
87.05/82.91 78.01/66.47 83.50/64.81 84.76/78.02

first order

predicted ancestor yes 78.69 68.64 60.72 71.87
82.51/75.21 72.28/65.36 76.98/50.13 74.22/69.66

predicted ancestor no 78.44 66.64 68.78 72.54
82.79/74.53 71.88/62.10 86.10/57.26 74.65/70.53

predicted all yes 78.97 68.86 65.18 71.87
81.45/76.63 72.65/65.44 70.16/60.86 74.22/69.66

predicted all no 78.94 66.67 71.94 72.54
83.34/74.98 71.28/62.62 81.84/64.17 74.65/70.53

second or.

predicted ancestor yes 80.97 70.40 60.59 72.94
84.41/77.79 73.15/67.84 75.44/50.62 73.81/72.09

predicted ancestor no 80.67 68.87 67.64 74.05
85.04/76.73 73.10/65.10 84.21/56.51 75.06/73.06

predicted all yes 81.51 69.71 65.66 72.94
83.69/79.44 73.08/66.64 68.37/63.15 73.81/72.09

predicted all no 81.03 68.58 73.16 74.05
85.24/77.21 73.44/64.33 79.98/67.42 73.81/72.09

Table 3.2: Results for semantic precision, recall and F1 on the development set for English verbal,
German, Czech and Spanish for assignment and non-assignment configuration and for ancestor and no
pruning. As Spanish arguments are all syntactic direct dependants of their predicates results are identical
for all and ancestor configurations.

48

syntax English German Czech Spanish

first order 86.18 83.64 79.51 85.58
second order 88.55 85.58 81.31 88.25

Table 3.3: Syntactic LAS results for the previous table 3.2 on the development set for English, German,
Czech and Spanish.

syntax assignment English
F1

prec/rec

German
F1

prec/rec

Czech
F1

prec/rec

Spanish
F1

prec/rec

Zhao et al. 82.60 74.46 77.59 77.68
(2009b) 86.21/79.29 76.32/72.69 83.88/72.18 81.42/74.26
Zhao et al. 83.97 74.65 71.83 77.33
(2009a) 86.91/81.22 77.14/72.32 73.82/69.93 80.68/74.26
Gesmundo 81.07 69.55 75.77 73.62
et al. (2009) 83.45/78.83 75.46/64.49 78.56/73.18 76.80/70.70

second or. yes 82.84 71.76 65.65 73.25
84.97/80.81 74.03/69.62 68.41/63.10 74.21/72.31

second or. no 82.60 70.13 75.70 74.46
86.43/79.09 73.23/67.29 80.92/71.11 75.39/73.56

candidates all ancestor all all

Table 3.4: Results for semantic precision, recall and F1 on test set for English verbal, German, Czech and
Spanish. We evaluate enforcing assignment and non-assignment constraints for the best configuration
from the development set. These best configurations use second-order syntax and the candidate filtering
rule is shown in the last row. We compare to the Gestmundo et al. 2009, Zhao et al. 2009a and Zhao et
al. 2009b systems.

system English German Czech Spanish

Zhao et al. (2009b) 85.50 85.93 78.46 86.20
Zhao et al. (2009a) 89.19 86.24 79.70 86.29
Gesmundo et al. (2009) 88.79 87.29 80.38 87.64

second order 90.21 86.54 80.86 88.21

Table 3.5: Syntactic LAS results for the systems presented in the previous table 3.4 for the test set for
English verbal, German, Czech and Spanish. The Zhao et al. (2009b) system used syntax provided by
the CoNLL-2009 organizers.

49

that is the recall upper bound. Note that here we are enforcing unique roles

for all kind of role labels. In contrast, Punyakanok et al. (2004) only enforced

unique roles regarding the core arguments.

Results are grouped by the syntax used. As expected, we observe in general

better SRL results as we move from first-order syntax to second-order. Re-

sults further improve when we switch to gold syntax. In the case of the Czech

datasets, probably due to the recall penalization of the assignment algorithm, a

better syntax is not always correlated with better results.

The second column of the table shows the filtering strategy that we applied.

We observe that the pruning rule of Xue and Palmer (2004) penalizes the recall

specially in the Czech dataset. All arguments for the Spanish dataset are di-

rect syntactic descendants of the predicate. Thus for this last dataset the results

are identical for the all and ancestor configurations. For the English language,

when we are not applying the pruning strategy we capture in some configura-

tions a slightly larger number of arguments. This slight increase in recall comes

at a cost of larger computing times.

The third column indicates whether or not we are applying the assignment

approach. The German dataset shows consistent improvement across all tested

configurations when uniqueness constraints are enforced. In the case of the

English language we also observe some improvements when the assignment

framework is applied. These improvements are smaller than in the previous

case.

Spanish consistently suffers for about 1 point decrease in F1 when assign-

ment is applied. Czech is severely penalized when enforcing uniqueness con-

straints. These two last datasets show the largest number of repeated roles.

We finally show on table 3.4 our best development configurations for the

test set. As a reference, we included the results of Zhao et al. (2009b), Zhao

et al. (2009a), and Gesmundo et al. (2009). The fist was the top performing

shared task system, considering the averaged SRL results. The second system

achieved the best English SRL results. The third was the best joint system and

50

globally third of the task.

As reported in the development results, we observe that the German and

English datasets benefit from our assignment approach. In contrast Czech and

Spanish show a decrease in all semantic scores when unique roles are enforced.

Enforcing consistency constraints may limit the potential recall of some

classifiers. In the cases where the datasets contain the largest number of re-

peated roles the benefits will probably be smaller. Also and as classifiers

achieve better results, such as the case for the English language, we tend to

observe diminishing gains when enforcing these constraints.

3.5 Remarks

We have introduced an efficient method to control linear assignment constraints

in the predicate-argument structure. The Hungarian O(n3) algorithm is fast to

implement and offers some flexibility to introduce few other domain constraints

such as a fixed maximum number of repeated roles. Our approach is an alter-

native to the method from Punyakanok et al. (2004) to enforce a small subset

of the most relevant constraints.

We have shown results for many CoNLL-2009 Shared Task languages. We

first observe that these datasets do not contain unique roles per predicate to

some extent. Even thought, in some of these case we have seen improvements

in the semantic results.

Enforcing uniqueness adds a small overhead of ∼8% when processing the

English datasets. However, in other cases such as the Czech it speeds-up the

training times by reducing the number of updates in the classifiers.

We believe that when the margins for improvement in the classifiers are

larger we may obtain a clearer benefit by enforcing uniqueness. In addition, in

some cases such as when we work with smaller datasets, these constraints may

turn learning curves steeper. These two last hypothesis are left to be proved in

future work.

51

We applied the assignment approach in the context of pipeline systems. We

will show in the following chapters how to extend this approach when we work

with a larger set of argument candidates generated by our joint proposals.

52

4
DUAL-DECOMPOSITION

JOINT SYNTACTIC-
SEMANTIC PARSING

One of the main difficulties in designing joint syntactic-semantic systems is that

there exist important structural divergences between the syntactic and semantic

layers. This can be seen in the example in figure 4.1 where Mary is the ARG0 of

play. We highlighted the syntactic and semantic dependencies between Mary

and play. These two words are semantically directly related but syntactically

distant.

Linguistic phenomena such as auxiliary verbs, control and raising, typically

result in syntactic structures where semantic arguments are not among the di-

rect dependants of their predicate, e.g., about 25% of arguments are distant in

the English development set of the CoNLL-2009 Shared Task. Besides, stan-

dard models for dependency parsing crucially depend on arc factorizations of

the dependency structure (McDonald et al., 2005a; Nivre and Nilsson, 2005),

otherwise their computational properties break. Hence, it is challenging to de-

fine efficient methods for syntactic and semantic dependency parsing that can

exploit features of both layers simultaneously.

In this chapter we introduce our proposal for a joint syntactic-semantic model.

The contents of this chapter are extracted from Lluı́s et al. (2013). In our

method we define predicate-centric semantic models that, rather than predict-

ing just the argument that realizes each semantic role, they predict the full syn-

53

Mary loves to play guitar .

�

SBJ OPRD IM OBJ

P

ARG0 ARG1

ARG0

ARG1

Figure 1: An example . . .

Das et al. (2012) . . .
Riedel and McCallum (2011) . . .

3 A Syntactic-Semantic Dependency
Model

We will describe structures of syntactic and seman-
tic dependencies with vectors of binary variables.
We will denote by yh,m,l a syntactic dependency
from head token h to dependant token m labeled
with syntactic function l. Similarly we will denote
by zp,a,r a semantic dependency between predicate
token p and argument token a labeled with seman-
tic role r. We will use y and z to denote vectors of
binary variables indexed by syntactic and semantic
dependencies, respectively.

A joint model for syntactic and semantic depen-
dency parsing could be defined as:

argmax
y,z

s syn(x,y) + s srl(x, z,y) .

In the equation, s syn(x,y) gives a score for the
syntactic tree y. In the literature, it is standard to
use arc-factored models defined as

s syn(x,y) =
�

yh,m,l=1

s syn(x, h, m, l) ,

where we overload s syn to be a function that
computes scores for individual labeled syntactic
dependencies. In discriminative models one has
s syn(x, h, m, l) = wsyn · fsyn(x, h, m, l), where
fsyn is a feature vector for the syntactic dependency
and wsyn is a vector of parameters (McDonald et al.,
2005).

The other term, s srl(x, z,y), gives a score for
a semantic dependency structure using the syntactic
structure y as features. Previous work has empiri-
cally proved the importance of exploiting syntactic

features in the semantic component (Gildea and Ju-
rafsky, 2002; Xue and Palmer, 2004; Punyakanok et
al., 2008). However, without further assumptions,
this property makes the optimization problem com-
putationally hard. One simple approximation is to
use a pipeline model: first compute the optimal syn-
tactic tree, and then optimize for the best semantic
structure given the syntactic tree. In the rest of the
paper we describe a method that searches over syn-
tactic and semantic dependency structures jointly.

We first impose the assumption that syntactic fea-
tures of the semantic component are restricted to the
syntactic path between a predicate and an argument,
following previous work (Johansson, 2009). For-
mally, for a predicate p, argument a and role r we
will define a vector of dependency indicators πp,a,r

similar to the ones above: πp,a,r
h,m,l indicates if a de-

pendency �h, m, l� is part of the syntactic path that
links predicate p with token a. Figure 1 gives an ex-
ample of one such paths. Given full syntactic and
semantic structures y and z it is trivial to construct a
vector π that is a concatenation of vectors πp,a,r for
all �p, a, r� in z. We can now define a linear seman-
tic model as

s srl(x, z,π) =
�

zp,a,r=1

s srl(x, p, a, r,πp,a,r) ,

(1)
where s srl computes a score for a semantic de-
pendency �p, a, r� together with its syntactic path
πp,a,r. As in the syntactic component, this function
is typically defined as a linear function over a set of
features of the semantic dependency and its path.

With this joint model, the inference problem can
be formulated as:

argmax
y,z,π

s syn(x,y) + s srl(x, z,π) (2)

subject to

cTree : y is a valid dependency tree

cRole : ∀p, r :
�

a

zp,a,r ≤ 1

cArg : ∀p, a :
�

r

zp,a,r ≤ 1

cPath : ∀p, a, r : if zp,a,r = 1 then

πp,a,r is a path from p to a

otherwise πp,a,r = 0

cSubtree : ∀p, r, a : πp,r,a is a subtree of y

Figure 4.1: A sentence with syntactic dependencies (top) and semantic dependencies (bottom) for the
predicates loves and play. The thick arcs illustrate a structural divergence where the argument Mary is
linked to play with a path involving three syntactic dependencies.

tactic path that connects the predicate with the argument. We use a standard

arc-factored dependency model that predicts the full syntactic tree of the sen-

tence. Finally, we employ dual-decomposition techniques (Koo et al., 2010;

Rush et al., 2010; Sontag et al., 2010) to find agreement between the full de-

pendency tree and the partial syntactic trees linking each predicate with its argu-

ments. In summary, the main contribution of this chapter is to to solve the joint

inference of syntactic and semantic dependencies with a dual-decomposition

method, similar to that of Koo et al. (2010). Our system produces consistent

syntactic and predicate-argument structures while searching over a large space

of syntactic configurations.

In the experimental section we compare the joint and pipeline models. The

final results of our joint syntactic-semantic system are competitive with the

state of the art and improve over the results of the best joint method of the

CoNLL-2009 task.

4.1 A Syntactic-Semantic Dependency Model

We first describe how we represent structures of syntactic and semantic depen-

dencies like the one in figure 4.1. Following the notation introduced in the

previous chapters, we assume a fixed input sentence x with n tokens where lex-

ical predicates are marked. We further assume a fixed set of syntactic functions

54

Rsyn and semantic roles Rsem. We represent dependency structures using vec-

tors of binary variables. The variable yh,m,l indicates the presence of a syntactic

dependency from head token h to dependant token m labeled with the syntactic

function l. Then, a syntactic tree is denoted as a vector y indexed by syntactic

dependencies. Similarly, a variable zp,a,r indicates the presence of a seman-

tic dependency between predicate token p and argument token a labeled with

semantic role r. We represent a semantic role structure as a vector z indexed

by semantic dependencies. Whenever we enumerate syntactic dependencies

〈h,m, l〉 we will assume that they are in the valid range for x, i.e., 0 ≤ h ≤ n,

1 ≤ m ≤ n, h 6= m and l ∈ Rsyn, where h = 0 stands for the special root to-

ken. Similarly, for semantic dependencies 〈p, a, r〉 we will assume that p points

to a predicate of x, 1 ≤ a ≤ n and r ∈ Rsem.

A joint model for syntactic and semantic dependency parsing could be de-

fined as:

argmax
y,z

ssyn(x,y) + ssrl(x, z,y) . (4.1)

In the equation, ssyn(x,y) gives a score for the syntactic tree y. In the literature,

it is standard to use arc-factored models defined as

ssyn(x,y) =
∑

yh,m,l=1

ssyn(x, h,m, l) , (4.2)

where we overload ssyn to be a function that computes scores for individual syn-

tactic dependencies. In linear discriminative models one has ssyn(x, h,m, l) =

wsyn · fsyn(x, h,m, l), where fsyn is a feature vector for a syntactic dependency

and wsyn is a vector of parameters (McDonald et al., 2005a). In Section 4.5 we

describe how we train score functions with discriminative methods.

The other term in Eq. (4.1), ssrl(x, z,y), gives a score for a semantic de-

pendency structure z using features from the syntactic tree y. Previous work

has empirically proved the importance of exploiting syntactic features in the

semantic component (Gildea and Jurafsky, 2002; Xue and Palmer, 2004; Pun-

yakanok et al., 2008). However, without further assumptions, as introduced in

55

chapter 2 this property makes the optimization problem computationally hard.

In the rest of the chapter we describe a method that searches over the syntactic

and semantic dependency structures jointly.

We first note that for a fixed semantic dependency, the semantic component

will typically restrict the syntactic features representing the dependency to a

specific subtree of y. For example, previous work has restricted such features

to the syntactic path that links a predicate with an argument (Moschitti, 2004;

Johansson, 2009), and in our case we employ this restriction. Figure 4.1 gives

an example of a subtree, where we highlight the syntactic path that connects

the semantic dependency between play and Mary with role ARG0.

Formally, for a predicate p, argument a and role r we define a local syntactic

subtree πp,a,r represented as a vector: πp,a,r
h,m,l indicates if a dependency 〈h,m, l〉

is part of the syntactic path that links predicate p with token a for role r.1 Given

full syntactic and semantic structures y and z it is trivial to construct a vector

π that concatenates vectors πp,a,r for all 〈p, a, r〉 in z. The semantic model

becomes

ssrl(x, z,π) =
∑

zp,a,r=1

ssrl(x, p, a, r,π
p,a,r) , (4.3)

where ssrl computes a score for a semantic dependency 〈p, a, r〉 together with

its syntactic path πp,a,r. As in the syntactic component, this function is typically

defined as a linear function over a set of features of the semantic dependency

and its path.

1We say that structures πp,a,r are paths from predicates to arguments, but they could be more general subtrees.
The condition to build a joint system is that these subtrees must be parseable in the way we describe in Section
4.2.

56

The inference problem of our joint model is formalized as:

argmax
y,z,π

ssyn(x,y) + ssrl(x, z,π) (4.4)

subject to

cTree : y is a valid dependency tree

cRole : ∀p, r :
∑

a

zp,a,r ≤ 1

cArg : ∀p, a :
∑

r

zp,a,r ≤ 1

cPath : ∀p, a, r : if zp,a,r = 1 then

πp,a,r is a path from p to a,

otherwise πp,a,r = 0

cSubtree : ∀p, a, r : πp,a,r is a subtree of y .

Constraint cTree dictates that y is a valid dependency tree; see (Martins et al.,

2009) for a detailed specification. The next two sets of constraints concern

the semantic structure only. cRole imposes that each semantic role is realized

at most once. Conversely, cArg dictates that an argument can realize at most

one semantic role in a predicate. The final two sets of constraints model the

syntactic-semantic interdependencies. cPath imposes that each πp,a,r repre-

sents a syntactic path between p and a whenever there exists a semantic rela-

tion. Finally, cSubtree imposes that the paths in π are consistent with the full

syntactic structure, i.e., they are subtrees.

We first review in the next section how we find the paths between predi-

cates and arguments. Then, section 4.3 describes a dual-decomposition method

that iteratively runs a syntactic parser and an SRL analyzer to solve the joint

problem under the previous constraints.

57

4.2 Local Optimization of Syntactic Paths

Let ẑ and π̂ be the optimal values of Eq. (4.3). For any 〈p, a, r〉, let

π̃p,a,r = argmax
πp,a,r

ssrl(x, p, a, r,π
p,a,r) . (4.5)

For any 〈p, a, r〉 such that ẑp,a,r = 1 it has to be that π̂p,a,r = π̃p,a,r. If this

was not true, replacing π̂p,a,r with π̃p,a,r would improve the objective of Eq.

(4.3) without violating the constraints, thus contradicting the hypothesis about

optimality of π̂. Therefore, for each 〈p, a, r〉 we can optimize its best syntactic

path locally as defined in Eq. (4.5).

In this chapter, we will assume access to a list of likely syntactic paths for

each predicate p and argument candidate a, such that the optimization in Eq.

(4.5) can be solved explicitly by looping over each path in the list. The main

advantage of this method is that, since paths are precomputed, our model can

make unrestricted use of syntactic path features.

It is simple to employ a probabilistic syntactic dependency model to create

the list of likely paths for each predicate-argument pair. In the experiments we

explore this approach and show that with an average of 44 paths per predicate

we can recover 86.2% of the correct paths.

4.3 A Dual-Decomposition Algorithm

Dual-decomposition methods (Rush and Collins, 2012) allow to decompose an

optimization problem into subproblems that can be solved in an efficient way.

Typically the problem will be of the form

minimize f(x, y) + g(v, w)

subject to h(y, w) = 0 .
(4.6)

The subproblems f(x, y) and g(v, w) are assumed to be efficiently solvable,

but some complicating or agreement constraints h(y, w) must be enforced typ-

58

ically by an iterative process.

We present a dual-decomposition method to optimize Eq. (4.4). We use as

a subroutine the assignment approach presented in chapter 3. Our method is

similar to that of Koo et al. (2010), in the sense that our joint optimization

can be decomposed into two sub-problems that need to agree on the syntactic

dependencies they predict. For a detailed description of dual-decomposition

methods applied to NLP see Sontag et al. (2010) and Rush et al. (2010).

We note that in Eq. (4.4) the constraint cSubtree ties the syntactic and se-

mantic structures, imposing that any path πp,a,r that links a predicate p with an

argument a must be a subtree of the full syntactic structure y. Formally the set

of constraints is

yh,m,l ≥ πp,a,r
h,m,l ∀ p, a, r, h,m, l .

These constraints can be compactly written as

c · yh,m,l ≥
∑

p,a,r

πp,a,r
h,m,l ∀ h,m, l ,

where c is a constant equal to the number of distinct semantic dependencies

〈p, a, r〉. In addition, we can introduce a vector non-negative slack variables ξ

with a component for each syntactic dependency ξh,m,l, turning the constraints

into:

c · yh,m,l −
∑

p,a,r

πp,a,r
h,m,l − ξh,m,l = 0 ∀ h,m, l .

We can now rewrite Eq. (4.4) as:

argmax
y,z,π,ξ≥0

ssyn(x,y) + ssrl(x, z,π) (4.7)

subject to

cTree, cRole, cArg, cPath

∀h,m, l : c · yh,m,l −
∑

p,a,r

πp,a,r
h,m,l − ξh,m,l = 0 .

As in Koo et al. (2010), we will relax subtree constraints by introducing a vector

59

of Lagrange multipliers λ indexed by syntactic dependencies, i.e., each coordi-

nate λh,m,l is a Lagrange multiplier for the constraint associated with 〈h,m, l〉.
The Lagrangian of the problem is:

L(y, z,π, ξ,λ) = ssyn(x,y) + ssrl(x, z,π)

+ λ ·
(
c · y −

∑

p,a,r

πp,a,r − ξ

)
. (4.8)

We can now formulate Eq. (4.7) as:

max
y,z,π,ξ≥0

s.t. cTree,cRole,cArg,cPath
c·y−∑p,a,r π

p,a,r−ξ=0

L(y, z,π, ξ,λ) . (4.9)

This optimization problem has the property that its optimal values are the same

as the optimal of Eq. (4.7) for any value of λ. This is because whenever the

constraints are satisfied, the terms in the Lagrangian involving λ are zero. If

we remove the subtree constraints from Eq. (4.9) we obtain the dual objective:

D(λ) = max
y,z,π,ξ≥0

s.t. cTree,cRole,cArg,cPath

L(y, z,π, ξ,λ)

= max
y s.t. cTree

(
ssyn(x,y) + c · y · λ

)

+ max
z,π

s.t. cRole,cArg,cPath

(
ssrl(x, z,π)− λ ·

∑

p,a,r

πp,a,r
)

+ max
ξ≥0

(−λ · ξ) . (4.10)

Subgradient descent method Gradient descent algorithms are standard tech-

niques to solve optimization problems (Rush and Collins, 2012). These iterative

algorithms can be defined by the following rule:

xn+1 = xn − α∇F (xn) ,

where xn+1 and xn are a converging sequence of solution points, α is the step

size and ∇F (x) is the gradient of F at x. For convex differentiable functions

60

the method above converges to the global optimal points of F .

Sometimes the function is not differentiable but we analogously define the

subgradient descent method. The subgradient v of a function f is any vector

that satisfies:

f(x)− f(x0) ≥ v(x− x0) .

The dual objective is an upper bound to the optimal value of primal objective

of Eq. (4.7). Thus, we are interested in finding the minimum of the dual in order

to tighten the upper-bound. There, we solve

min
λ
D(λ) (4.11)

using a subgradient method. Algorithm 2 presents the pseudo-code of the

method. The algorithm takes advantage of the decomposed form of the dual

in Eq. (4.10), where we have rewritten the Lagrangian such that syntactic and

semantic structures appear in separate terms. This allows us to compute sub-

gradients efficiently. In particular, the subgradient of D at a point λ is:

∆(λ) = c · ŷ −
∑

p,a,r

π̂p,a,r − ξ̂ , (4.12)

where

ŷ = argmax
y s.t. cTree

(
ssyn(x,y) + c · y · λ

)
(4.13)

ẑ, π̂ = argmax
z,π s.t.

cRole,cArg,cPath

ssrl(x, z,π)− λ ·
∑

p,a,r

πp,a,r (4.14)

ξ̂ = argmax
ξ≥0

−λ · ξ . (4.15)

Whenever π̂ is consistent with ŷ the subgradient will be zero and the method

will converge. When paths π̂ contain a dependency 〈h,m, l〉 that is inconsistent

with ŷ, the associated dual λh,m,l will increase, hence lowering the score of all

paths that use 〈h,m, l〉 at the next iteration; at same time, the total score for that

dependency will increase, favoring syntactic dependency structures alternative

to ŷ. As in previous work, in the algorithm a parameter αt controls the size of

61

Algorithm 2 A dual-decomposition algorithm for syntactic-semantic dependency parsing
Input: x, a sentence; T , number of iterations;
Output: syntactic and semantic structures ŷ and ẑ
Notation: we use cSem= cRole ∧ cArg ∧ cPath
1: λ1 = 0 # initialize dual variables
2: c =number of distinct 〈h,m, l〉 in x
3: for t = 1 . . . T do
4: ŷ = argmaxy s.t. cTree

(
ssyn(x,y) + c · λt · y

)

5: ẑ, π̂ = argmax z,π
s.t. cSem

(
ssrl(x, z,π)

−λt ·∑p,a,r π
p,a,r

)

6: λt+1 = λt # dual variables for the next iteration
7: Set αt, the step size of the current iteration
8: for each 〈h,m, l〉 do
9: q =

∑
p,a,r π̂

p,a,r
h,m,l # num. paths using 〈h,m, l〉

10: if q > 0 and ŷh,m,l = 0 then
11: λt+1

h,m,l = λt+1
h,m,l + αtq

12: end if
13: end for
14: break if λt+1 = λt # convergence
15: end for
16: return ŷ, ẑ

subgradient steps at iteration t.

The key point of the method is that solutions to Eq. (4.13) and (4.14) can be

computed efficiently using separate processes. In particular, Eq. (4.13) corre-

sponds to a standard dependency parsing problem, where for each dependency

〈h,m, l〉 we have an additional score term c · λh,m,l —in our experiments we

use the projective dependency parsing algorithm by Eisner (2000). To calcu-

late Eq. (4.14) we use the assignment method described in chapter 3, where it

is straightforward to introduce additional score terms −λh,m,l to every factor

πp,a,r
h,m,l. It can be shown that whenever the subgradient method converges, the

solutions ŷ and ẑ are the optimal solutions to our original problem in Eq. (4.4),

see Koo et al. (2010) for a justification. In practice we run the subgradient

method for a maximum number of iterations, and return the solutions of the

last iteration if it does not converge.

62

4.4 Related Work

There have been a number of approaches to joint parsing of syntactic and se-

mantic dependencies that have been reviewed in chapter 2. Focusing more

specifically in dual-decomposition works, Riedel and McCallum (2011) pre-

sented a model for extracting structured events that controls interactions be-

tween predicate-argument assignments. They take into account pairwise as-

signments and solve the optimization problem with dual decomposition. Das

et al. (2012) proposed a dual-decomposition method that deals with several

assignment constraints for predicate-argument relations. Their method is an

alternative to general ILP methods. We should note that these works model

predicate-argument relations with assignment constraints, but none of them pre-

dicts the underlying syntactic structure.

Our dual-decomposition method follows from that of Koo et al. (2010). In

both cases two separate processes predict syntactic dependency structures, and

the dual-decomposition algorithm seeks agreement at the level of individual

dependencies. One difference is that our semantic process predicts partial syn-

tax (restricted to syntactic paths connecting predicates and arguments), while

in their case each of the two processes predicts the full set of dependencies.

4.5 Experiments

We present experiments using our syntactic-semantic parser on the CoNLL-

2009 Shared Task English benchmark (Hajič et al., 2009). The dataset con-

sists of dependency trees, augmented with semantic predicate-argument rela-

tions from PropBank (Palmer et al., 2005) and NomBank (Meyers et al., 2004)

also represented as dependencies. It also contains a PropBanked portion of the

Brown corpus as an out-of-domain test set. Further details can be found on

appendix C.

Our goal is to evaluate the contributions of parsing algorithms in the follow-

ing configurations:

63

Base Pipeline. Runs a syntactic parser and then an SRL system constrained to

paths of the previously computed best syntactic tree. Regarding semantic

constraints, we only enforce cArg, by simply classifying the candidate

argument in each path into one of the possible semantic roles or as NULL.

Pipeline with Assignment. Runs the assignment algorithm for SRL, enforcing

the cRole and cArgconstraints, but restricted to paths of the best syntactic

tree.

Forest. Runs the assignment algorithm for SRL on a large set of precomputed

syntactic paths, described below. This configuration corresponds to run-

ning Dual Decomposition for a single iteration, and is not guaranteed to

predict consistent syntactic and semantic structures.

Dual Decomposition (DD). Runs dual decomposition using the assignment al-

gorithm on the set of precomputed paths. Syntactic and semantic struc-

tures are consistent when it reaches convergence.

4.5.1 Implementation

All four systems use the same type of discriminative scorers and features. Next

we provide details about these systems. Then we present the results.

Syntactic model In a similar setting than the approach introduced in chap-

ter 3, we used two discriminative arc-factored models for labeled dependency

parsing: a first-order model, and a second-order model with grandchildren in-

teractions, both re-implementations of the parsers by McDonald et al. (2005a)

and Carreras (2007) respectively. We compute probabilistic scores based on

Koo et al. (2007). Marginal probabilities are obtained by running inside-outside

algorithms. As a result we get one score per dependency.

We found that the higher-order parser performed equally well on develop-

ment using this method as using second-order inference to predict trees: since

we run the parser multiple times within Dual Decomposition configuration, our

strategy results in faster parsing times.

64

Precomputed Paths Both Forest and Dual Decomposition run assignment on

a set of precomputed paths, and here we explain how we build it. We first

observe that 98.4% of the correct arguments in development data are either

direct descendants of the predicate, direct descendants of an ancestor of the

predicate, or an ancestor of the predicate.2 All methods we test are restricted to

this syntactic scope captured by the Xue and Palmer (2004) rules. To generate

a list of paths, we proceed as follows:

• Calculate marginals of unlabeled dependencies using the first-order parser:

p(h,m | x) =
∑

l p(h,m, l | x). Note that for each m, the probabilities

p(h,m|x) for all h form a distribution (i.e., they sum to one). Then, for

each m, keep the most-likely dependencies that cover at least 90% of the

mass, and we prune the rest.

• Starting from a predicate p, generate a path by taking any number of de-

pendencies that ascend, and optionally adding one dependency that de-

scends. We constrained paths to be projective, and to have a maximum

number of 6 ascendant dependencies.

• Label each unlabeled edge 〈h,m〉 in the paths with l = argmaxl p(h,m, l |
x).

On development data, this procedure generated an average of 43.8 paths per

predicate covering 86.2% of the correct paths. In contrast, enumerating paths

of the single-best tree covers 79.4% of correct paths for the first-order parser. 3

SRL model Our SRL features are based in the work of Johansson (2009).

Johansson lists and categorizes his set of features. The features are standard

for SRL but a distinction is made between primary, secondary and interdepen-

dency features. This distinction is relevant to the fact that some of these require

a previous syntactic parse. These categories are defined in the previous chapter
2This is specific to CoNLL-2009 data for English. In general, for other languages the coverage of these rules

may be lower. See chapters 3 and 5 for a discussion.
3One can evaluate the maximum recall on correct arguments that can be obtained, irrespective of whether the

syntactic path is correct: for the set of paths it is 98.3%, while for single-best trees it is 91.9% and 92.7% for first
and second-order models.

65

3 on section 3.4.1. To train SRL models we used the averaged Perceptron

(Collins, 2002). For the base pipeline system we trained standard SRL clas-

sifiers. For the rest of models we used the structured Perceptron running the

assignment algorithm as inference routine. In this latter case, we generate a

large set of syntactic paths for training using the procedure described above,

and we set the loss function to penalize mistakes in predicting the semantic role

of arguments as well as their syntactic path.

Dual Decomposition We added a parameter β weighting the syntactic and

semantic components of the model as follows:

(1− β) ssyn(x,y) + β ssrl(x, z,π) .

We used normalized marginal probabilities of dependencies for syntactic scores,

either from the first or the higher-order parser. The scores of all factors of the

SRL model were normalized at every sentence to be between -1 and 1. The

rest of details of the method were implemented following Koo et al. (2010),

including the strategy for decreasing the step size αt. We ran the algorithm for

up to 500 iterations, with an initial step size of 0.001.

4.5.2 Results

To evaluate syntactic dependencies we use as usual, the unlabeled attachment

score (UAS), i.e., the percentage of words with the correct head, and the labeled

attachment scores (LAS), i.e., the percentage of words with the correct head

and syntactic label. Semantic predicate-argument relations are evaluated with

precision (semp), recall (semr) and F1 measure (semF1
) at the level of labeled

semantic dependencies. In addition, we measure the percentage of perfectly

predicted predicate structures (sempp). Appendix C describes in further detail

these metrics. 4

4As a convection in this thesis and as reported in the previous chapter, our evaluation metrics slightly differ
from the official metric at CoNLL-2009. That metric considers predicate senses as special semantic dependencies
and, thus, it includes them in the calculation of the evaluation metrics. Here, we are not addressing predicate

66

order LAS UAS semp semr semF1 sempp

Pipeline 1 85.32 88.86 86.23 67.67 75.83 45.64
w. Assig. 1 85.32 88.86 84.08 71.82 77.47 51.17

Forest - - - 80.67 73.60 76.97 51.33
Pipeline 2 87.77 90.96 87.07 68.65 76.77 47.07
w. Assig. 2 87.77 90.96 85.21 73.41 78.87 53.80

Table 4.1: Results on development for the baseline and assignment pipelines, running first and second-
order syntactic parsers, and the Forest method.

Table 4.1 shows the results on the development set for our three first meth-

ods. We see that the pipeline methods running assignment improve over the

baseline pipelines in semantic F1 by about 2 points, due to the application of

the cRole constraint. 5 The Forest method also shows an improvement in recall

of semantic roles with respect to the pipeline configuration. Presumably, the

set of paths available in the Forest model allows to recognize a higher num-

ber of arguments at an expense of a lower precision. Regarding the percentage

of perfect predicate-argument structures, there is a remarkable improvement in

the systems that apply the full set of constraints using the assignment algo-

rithm described in chapter 3. We believe that the cRole constraint that ensures

no repeated roles for a given predicate is a key factor to predict the full set of

arguments of a predicate, evaluated in the sempp column.

The Forest configuration is our starting point to run the dual-decomposition

algorithm. We ran experiments for various values of the β parameter. Table

4.2 shows the results. We see that as we increase β, the SRL component has

more relative weight, and the syntactic structure changes. The DD methods

are always able to improve over the Forest methods, and find convergence in

sense disambiguation and, consequently, we ignore predicate senses when presenting evaluation results. When we
report the performance of CoNLL systems, their scores will be noticeably lower than the scores reported at the
shared task. This is because predicate disambiguation for the English dataset is a reasonably simple task with a
very high baseline around 90%.

5The results presented in this chapter for the English datasets are not directly comparable to the assignment
results from chapter 3. Here we evaluate both nominal and verbal predicates. In contrast, the previous chapter
only showed results for verbal predicates. In addition, here we present experiments from the 2012 version of our
parsers that were latter improved to run the assignment experiments of chapter 3. Across different chapters and
configurations, we consistently observe improvements regarding the enforcement of the assignment constraints
for the case of the English datasets.

67

o β LAS UAS semp semr semF1 sempp %conv
1 0.1 85.32 88.86 84.09 71.84 77.48 51.77 100
1 0.4 85.36 88.91 84.07 71.94 77.53 51.85 100
1 0.5 85.38 88.93 84.08 72.03 77.59 51.96 100
1 0.6 85.41 88.95 84.05 72.19 77.67 52.03 99.8
1 0.7 85.44 89.00 84.10 72.42 77.82 52.24 99.7
1 0.8 85.48 89.02 83.99 72.69 77.94 52.57 99.5
1 0.9 85.39 88.93 83.68 72.82 77.88 52.49 99.8
2 0.1 87.78 90.96 85.20 73.11 78.69 53.74 100
2 0.4 87.78 90.96 85.21 73.12 78.70 53.74 100
2 0.5 87.78 90.96 85.19 73.12 78.70 53.72 100
2 0.6 87.78 90.96 85.20 73.13 78.70 53.72 99.9
2 0.7 87.78 90.96 85.19 73.13 78.70 53.72 99.8
2 0.8 87.80 90.98 85.20 73.18 78.74 53.77 99.8
2 0.9 87.84 91.02 85.20 73.23 78.76 53.82 100

Table 4.2: Results of the dual-decomposition method on development data, for different values of the β
parameter. o is the order of the syntactic parser. %conv is the percentage of examples that converged.

more than 99.5% of sentences. Compared to the pipeline running assignment,

DD improves semantic F1 for first-order inference, but not for higher-order

inference, suggesting that 2nd order predictions of paths are quite accurate. We

also observe slight benefits in syntactic accuracy.

Table 4.3 presents results of our system on the test sets, where we run

Pipeline with Assignment and Dual Decomposition with our best configura-

tion (β = 0.8/0.9 for 1st/2nd order syntax). For comparison, the table also

reports the results of the best CoNLL–2009 joint system by Gesmundo et al.

(2009), which proved to be very competitive ranking third in the closed chal-

lenge. We also include the Lluı́s et al. (2009) system, which is another joint

syntactic-semantic system from CoNLL–2009.6 In the WSJ test DD obtains

the best syntactic accuracies, while the Pipeline obtains the best semantic F1.

The bottom part of table 4.3 presents results on the out-of-domain Brown test

corpus. In this case, DD obtains slightly better results than the rest, both in

terms of syntactic accuracy and semantic F1.
6Another system to compare to is the joint system by Johansson (2009). Unfortunately, a direct comparison is

not possible because it is evaluated on the CoNLL-2008 datasets, which are slightly different. However, note that
Gesmundo et al. (2009) is an application of the system by Titov et al. (2009). In that paper authors report results
on the CoNLL-2008 datasets, and they are comparable to Johansson’s.

68

WSJ LAS UAS semp semr semF1 sempp

Lluı́s et al. (2009) 87.48 89.91 73.87 67.40 70.49 39.68
Gesmundo et al. (2009) 88.79 91.26 81.00 76.45 78.66 54.80
Pipe-Assig 1st 86.85 89.68 85.12 73.78 79.05 54.12
DD 1st 87.04 89.89 85.03 74.56 79.45 54.92
Pipe-Assig 2nd 89.19 91.62 86.11 75.16 80.26 55.96
DD 2nd 89.21 91.64 86.01 74.84 80.04 55.73

Brown LAS UAS semp semr semF1 sempp

Lluı́s et al. (2009) 80.92 85.96 62.29 59.22 60.71 29.79
Gesmundo et al. (2009) 80.84 86.32 68.97 63.06 65.89 38.92
Pipe-Assig 1st 80.96 86.58 72.91 60.16 65.93 38.44
DD 1st 81.18 86.86 72.53 60.76 66.12 38.13
Pipe-Assig 2nd 82.56 87.98 73.94 61.63 67.23 38.99
DD 2nd 82.61 88.04 74.12 61.59 67.28 38.92

Table 4.3: Comparative results on the CoNLL-2009 English test sets, namely the WSJ test (top table)
and the out of domain test from the Brown corpus (bottom table).

Table 4.4 shows statistical significance tests for the syntactic LAS and se-

mantic F1 scores from table 4.3. We have applied the sign test (Wackerly et

al., 2007) and the approximate randomization test (Yeh, 2000) to all pairs of

systems outputs. The differences between systems in the WSJ test can be con-

sidered significant in almost all cases with p = 0.05. In the Brown test set,

results are more unstable and differences are not significant in general, proba-

bly because of the relatively smaller size of that dataset.

Regarding running times, our implementation of the baseline pipeline with

2nd order inference parses the development set (1,334 sentences) in less than 7

minutes. Running assignment in the pipeline increases parsing time by ∼8%

due to the overhead from the assignment algorithm. The Forest method, with an

average of 61.3 paths per predicate, is∼13% slower than the pipeline due to the

exploration of the space of precomputed paths. Finally, Dual Decomposition

with second order inference converges in 36.6 iterations per sentence on aver-

age. The first iteration of DD has to perform roughly the same work as Forest,

while subsequent iterations only need to re-parse the sentence with respect to

the dual updates, which are extremely sparse. Our current implementation did

69

WSJ Brown
ME PA1 DD1 PA2 DD2 ME PA1 DD1 PA2 DD2

LL ◦•�� ◦•�� •�� ◦•�� ◦•�� �� �� �� ◦•�� ◦•��

ME ◦• ◦•�� ◦•�� ◦•�� • •
PA1 ◦•�� ◦•�� ◦•�� • ◦•� ◦•��

DD1 ◦•�� ◦•�� ◦•� ◦•��

PA2 •��

Table 4.4: Statistical tests of significance for LAS and semF1 differences between pairs of systems from
table 4.3. ◦/• = LAS difference is significant by the sign/ approximate randomization tests at 0.05 level.
�/� = same meaning for semF1 . The legend for systems is: LL: Lluı́s et al. (2009), ME: Gesmundo et al.
(2009), PA1/2: Pipeline with Assignment, 1st/2nd order, DD1/2: Dual Decomposition, 1st/2nd order.

not take advantage of the sparsity of updates, and overall, DD was on average

13 times slower than the pipeline running assignment and 15 times slower than

the baseline pipeline.

4.6 Remarks

We have introduced efficient methods to parse syntactic dependency structures

augmented with predicate-argument relations. A key idea is to predict the local

syntactic structure that links a predicate with its arguments, and seek agreement

with the full syntactic tree using dual-decomposition techniques.

Regarding the dual-decomposition technique for joint parsing, it does im-

prove over the pipeline systems when we use a first-order parser. This means

that in this configuration the explicit semantic features help to find a solution

that is better for both layers. To some extent, this empirically validates the

research objective of joint models. However, when we move to second-order

parsers the differences with respect to the pipeline become insignificant. It is to

be expected that as syntactic parsers improve, the need of joint methods is less

critical. It remains an open question to validate if larger improvements can be

achieved by integrating additional syntactic-semantic features in the joint pro-

cess. To study this question, it is necessary to have efficient parsing algorithms

for joint dependency structures. Here we contribute with an efficient method

that has optimality guarantees whenever it converges.

70

Our method can incorporate richer families of features. It is straightforward

to incorporate better semantic representations of predicates and arguments than

just plain words, e.g., by exploiting WordNet or distributional representations

as in (Zapirain et al., 2013). Potentially, this could result in larger improvements

in the performance of syntactic and semantic parsing.

It is also necessary to experiment with different languages, where the per-

formance of syntactic parsers is lower than in English, and hence there is po-

tential for improvement. Our treatment of local syntactic structure that links

predicates with arguments, based on explicit enumeration of likely paths, was

simplistic. In the next chapter we will explore methods that model the syn-

tactic structure linking predicates with arguments using shortest-path methods.

Whenever these structures can be efficiently parsed, our dual-decomposition

algorithm can be employed to define an efficient joint system.

71

72

5

SHORTEST-PATH SYNTACTIC-
SEMANTIC PARSING

In this chapter we introduce a Semantic Role Labeling parser that finds se-

mantic roles for a predicate together with the syntactic paths linking the predi-

cates with their arguments. Our main contribution is to formulate SRL in terms

of a shortest-path inference, under the assumption that the SRL model is arc-

factored. Overall and compared to chapters 3 and 4, our method for SRL is a

novel way to exploit larger variability in the syntactic realizations of predicate-

argument relations, moving away from pipeline architectures and from a set of

precomputed paths. We show experiments pointing that our approach improves

the robustness of the predictions, producing arc-factored models that perform

closely to methods using unrestricted features from the syntax. The contents of

this chapter are extracted from Lluı́s et al. (2014).

5.1 Motivation

In this chapter we take a different approach to syntactic-semantic parsing. In

our scenario SRL is the end goal, and we assume that syntactic parsing is only

an intermediate step as in Naradowsky et al. (2012). In contrast, in our setting,

we explicitly generate the syntactic paths from which we extract features to

support the SRL predictions. We define a model that, given a predicate, iden-

73

tifies each of the semantic roles together with the syntactic path that links the

predicate with their arguments.

As in previous chapters and following the work of Moschitti (2004) and

Johansson (2009), we take the syntactic path as the main source of syntactic

features, but instead of just conditioning on it, we predict it together with the

semantic role.

Table 5.1 shows the most frequent path patterns on CoNLL-2009 data for

several languages, where a path pattern is a sequence of ascending arcs from the

predicate to some ancestor, followed by some descending arcs to the argument.

For English, the distribution of path patterns is rather simple and was captured

as pruning heuristics by Xue and Palmer (2004). We observe in the table that

the German, Czech and Chinese datasets cover over the 90% of all arguments

with the first three most frequent pattern types. In contrast, Japanese exhibits

much more variability and a long tail of infrequent types of patterns.

We believe that it is not feasible to capture these patterns manually, and it

is not desirable that a statistical system depends on rather sparse non-factored

path features. For this reason we think it’s worth exploring arc-factored models.

The method presented on this chapter might be specially useful in applica-

tions were we are interested in some target semantic role, i.e., retrieving agent

relations for some verb, since it processes semantic roles independently of each

other. Our method might also be generalizable to other kinds of semantic rela-

tions which strongly depend on syntactic patterns such as relation extraction in

information extraction or discourse parsing.

Furthermore, this method could be combined with our dual-decomposition

strategy introduced in chapter 4 to allow for a more general approach to syntactic-

semantic parsing considering more syntactic diversity and arbitrary predicate-

argument paths.

Note that in the previous chapters we were limited to a single-best or a set of

precomputed paths from predicates to arguments. Applying the Xue and Palmer

(2004) rule we were able to discard all paths for the English dataset that were

74

English German Czech Chinese Japanese∑
% % path

∑
% % path

∑
% % path

∑
% % path

∑
% % path

63.63 63.6298↓ 77.22 77.2202↓ 63.90 63.8956↓ 78.09 78.0949↓ 37.20 37.1977↓↓
73.97 10.3429↑↓ 93.51 16.2854↑↓ 86.26 22.3613↓↓ 85.36 7.26962↑↓ 51.52 14.3230↓
80.63 6.65915◦ 97.43 3.92111↑↑↓ 90.24 3.98078↑↓ 91.27 5.90333↑↑↓ 60.79 9.27270↓↓↓
85.97 5.33352↑ 98.19 0.76147↓↓ 93.95 3.71713↓↓↓ 95.93 4.66039↑↑ 70.03 9.23857↑
90.78 4.81104↑↑↓ 98.70 0.51640↑↑↑↓ 95.48 1.52168↑↓↓ 97.53 1.60392↑ 74.17 4.13359↓↓↓↓
93.10 2.31928↑↑↑↓ 99.17 0.46096↑ 96.92 1.44091↑ 98.28 0.75086↑↑↑↓ 76.76 2.59117↑↑
95.19 2.09043↑↑ 99.43 0.26841↑↓↓ 97.68 0.76714↑↑↓ 98.77 0.48734↓↓ 78.82 2.06111↑↑↓↓
96.26 1.07468↑↑↑↑↓ 99.56 0.12837↑↑↓↓ 98.28 0.59684↓↓↓↓ 99.13 0.36270↑↑↑ 80.85 2.03381↓↓↓↓↓
97.19 0.92482↓↓ 99.67 0.10503↑↑↑↑↓ 98.60 0.31759↑↓↓↓ 99.45 0.31699↑↑↑↑↓ 82.66 1.80631↑↓↓
97.93 0.74041↑↑↑ 99.77 0.10503↑↑ 98.88 0.28227↑↑↓↓ 99.72 0.27041↑↑↑↑ 83.71 1.05558↑↑↑
98.41 0.48565↑↑↑↑↑↓ 99.82 0.04960↓↓↓ 99.15 0.26721↑↑↑↓ 99.82 0.10049↓↓↓ 84.74 1.02828↑↑↑↓↓
98.71 0.29769↑↑↑↑ 99.87 0.04960↑↑↑ 99.27 0.12430↓↓↓↓↓ 99.86 0.03623↑↓↓ 85.68 0.93500↑↑↓↓↓
98.94 0.22733↑↑↑↑↑↑↓ 99.90 0.02626◦ 99.37 0.10103↑↑↑↑↓ 99.89 0.02890↑↑↓↓ 86.61 0.93273↓↓↓↓↓↓
99.11 0.17805↑↓↓ 99.92 0.02042↑↑↑↓↓ 99.47 0.09747↑↑ 99.92 0.02890↑↑↑↑↑↓ 87.29 0.68249↑↑↑↑↓↓
99.27 0.15316↓↓↓ 99.94 0.02042↑↑↑↑↑↓ 99.56 0.08515↑↑↓↓↓ 99.94 0.02846◦ 87.90 0.60969↑↓↓↓
99.39 0.12065↑↑↑↑↑ 99.95 0.01459↑↑↓↓↓ 99.63 0.07419↑↑↑↓↓ 99.96 0.02070↑↑↑↑↑ 88.47 0.56646↑↑↓↓↓↓
99.50 0.11024↑↑↓↓ 99.96 0.01167↓↓↓↓ 99.69 0.05667↑↓↓↓↓ 99.97 0.00992↑↑↓↓↓ 89.01 0.53689↓↓↓↓↓↓↓
99.60 0.09931↑↑↑↑↑↑↑↓ 99.97 0.00875↑↓↓↓ 99.73 0.04216↑↑↑↑↑↓ 99.98 0.00733↑↑↑↑↑↑↓ 89.49 0.48684↑↑↑↓↓↓
99.65 0.05283↑↓↓↓ 99.98 0.00875↑↑↑↑↑↑↓ 99.76 0.02875↑↑↑↓↓↓ 99.99 0.00431↑↑↑↑↓↓ 89.94 0.45044↑↑↑↑

Table 5.1: Summary of the most frequent paths on the CoNLL-2009 Shared Task datasets. ↑ indicates
that we traverse a syntactic dependency upwards from a modifier to a head. ↓ is for dependencies
following a descending head to modifier edge. The symbol ◦ represents that the argument is the predicate
itself. We exclude from this table Catalan and Spanish as predicates and arguments are always trivially
related by a single syntactic dependency that descends.

not matching the pattern of a sequence of ancestors plus a single descendant.

Table 5.1 shows that most of the English path patterns end in fact with zero or

one descending arcs.

That enumeration strategy offered at a reasonable cost enough syntactic di-

versity for some particular datasets. But for example, Czech and Japanese

show a larger portion of paths with two or more descending arcs. As predicate-

arguments relations become more complex the pruning strategy becomes infea-

sible as enumerating all paths takes an impractical amount of time and space.

In the next section 5.2 we introduce an arc-factorization of SRL analogous

to first-order dependency parsing. Section 5.3 frames the factorized semantic

role labeling problem as a shortest-path problem. We review some alternatives

to train the classifiers in section 5.4. Finally, we present and discuss our exper-

iments in section 5.5 and we give our final remarks in section 5.6.

75

5.2 Arc-factored SRL

We define an SRL parsing model that retrieves predicate-argument relations

based on arc-factored syntactic representations of paths connecting predicates

with their arguments. We assume a fixed sentence x = x1, . . . , xn and a fixed

predicate index p. An indicator vector z, where zr,a = 1 flags that token a is

filling role r for predicate p. Our SRL parser performs the following optimiza-

tion:

argmax
z∈Z(x,p)

s(x, p, z) , (5.1)

where Z(x, p) defines the set of valid argument structures for p, and s(x, p, z)

computes a plausibility score for z. Our first assumption is that the score func-

tion factors over role-argument pairs:

s(x, p, z) =
∑

zr,a=1

s(x, p, r, a) . (5.2)

Then we assume two components in this model, one that scores the role-argument

pair alone, and another that considers the best (max) syntactic dependency path

π that connects the predicate p with the argument a:

s(x, p, r, a) = s0(x, p, r, a) + max
π

ssyn(x, p, r, a,π) . (5.3)

The model does not assume access to the syntactic structure of x, hence in

Eq. (5.3) we locally retrieve the maximum-scoring path for an argument-role

pair. Furthermore, we assume that the syntactic component factors over labeled

syntactic dependencies of the path:

ssyn(x, p, r, a,π)=
∑

〈h,m,l〉∈π
ssyn(x, p, r, a, 〈h,m, l〉) . (5.4)

This will allow us to employ an efficient shortest-path inference. Note that

since paths are locally retrieved per role-argument pair, there is no guarantee

that the set of paths across all roles forms a (sub)tree.

76

As we introduced in the previous chapters we consider a constrained space

of valid argument structures in Z(x, p): where (a) each role is realized at most

once, and (b) each token fills at most one role. This can be efficiently solved

as a linear assignment problem as we described in chapter 3 whenever the SRL

model factors over role-argument pairs, as in Eq. (5.2).

5.3 SRL as a Shortest-path Problem

We now focus on solving the maximization over syntactic paths in Eq. (5.3).

Finding the path that maximizes a score or a longest path without any further

assumption is an NP-hard problem (Karp, 1972). Under some simplifications,

we will turn it into a minimization problem which can be solved with a poly-

nomial algorithm, in our case a shortest-path method.

Assume a fixed argument and role, and define θ〈h,m,l〉 to be a non-negative

penalty for the syntactic dependency 〈h,m, l〉 to appear in the predicate-argument

path. We describe a shortest-path method that finds the path of arcs with the

smaller penalty:

min
π

∑

〈h,m,l〉∈π
θ〈h,m,l〉 . (5.5)

We find these paths by appropriately constructing a weighted graphG = (V,E)

that represents the problem. Later, we show how to adapt the arc-factored

model scores to be non-negative penalties, such that the solution to the Eq.

(5.5) will be the negative of the maximizer of Eq. (5.3) under the previous fac-

torization.

It remains only to define the graph construction where paths correspond to

arc-factored edges weighted by θ penalties. We start by noting that any path

from a predicate p to an argument vi is formed by a number of ascending syn-

tactic arcs followed by a number of descending arcs. The ascending segment

connects p to some ancestor q (q might be p itself, which implies an empty

ascending segment); the descending segment connects q with vi (which again

might be empty). To compactly represent all these possible paths we define the

77

Algorithm 3 Construction of the Graph for Shortest-path Semantic Role Labeling

1. Add node p as the source node of the graph.
2. Add nodes u1, . . . , un for every token of the sentence except p.
3. Link every pair of these nodes ui, uj with a directed edge ai←j weighted by the corre-

sponding ascending arc, namely minl θ〈j,i,l〉. Also add ascending edges from p to any ui.
So far we have a connected component representing all ascending paths.

4. Add nodes v1, . . . , vn for every token of the sentence except p, and add edges di→j

between them weighted by descending arcs, namely minl θ〈i,j,l〉. This adds a second
strongly-connected component representing descending segments.

5. For each i, add an edge from ui to vi with weight 0. This ensures that ascending and
descending path segments are connected consistently.

6. Add direct descending edges from p to all the vi nodes to allow for only-descending
paths, weighted by minl θ〈p,i,l〉.

graph in algorithm 3. The algorithm consists in building two sets nodes. First

we add all nodes involved in the ascending portion of the path. Then we add all

nodes for the descending portion of the path. Ascending nodes are connected

to descending nodes but we don’t allow to reach an ascending node from a

descending node. See figure 5.1 for a representation of this graph.

Our method builds the graph for each possible role of the predicate. We then

find the shortest-paths from p to all arguments vi that minimize Eq. (5.5). The

Dijkstra’s algorithm (Dijkstra, 1959) finds the optimal path from predicate p to

all tokens in time O(V 2), see Cormen et al. (2009) for an in-depth description.

5.4 Adapting and Training Model Scores

The shortest-path problem is undefined if a negative cycle is found in the graph

as we may indefinitely decrease the cost of a path by looping over this cycle.

Furthermore, Dijkstra’s method requires all arc scores to be non-negative penal-

ties. However, the model in Eq. (5.4) computes plausibility scores for depen-

dencies, not penalties. And, if we set this model to be a standard feature-based

linear predictor, it will predict unrestricted real-valued scores.

One approach to map plausibility scores to penalties is to assume a log-linear

78

Figure 5.1: Graph representing all possible syntactic paths from a single predicate to their arguments.
Algorithm 3 builds this graph. We find in this graph the best SRL using a shortest-path algorithm.
Note that many edges are omitted for clarity reasons. The nodes and arcs are labeled as follows: p is
the predicate and source vertex; u1, . . . , un are tokens reachable by an ascending path; v1, . . . , vn are
tokens reachable by a ascending path (possibly empty) followed by a descending path (possibly empty);
aj←i is an ascending dependency from node ui to node uj ; dj→i is a descending dependency from node
vi to node vj ; 0i→i is a 0-weighted arc that connects the ascending portion of the path ending at ui with
the descending portion of the path starting at vi.

form for our model. Let us denote by x̄ the tuple 〈x, p, r, a〉, which we assume

fixed in this section. The log-linear model predicts:

Pr(〈h,m, l〉 | x̄) =
exp{w · f(x̄, 〈h,m, l〉)}

Z(x̄)
, (5.6)

where f(x̄, 〈h,m, l〉) is a feature vector for an arc in the path, w are the param-

eters, and Z(x̄) is the normalizer. We can turn predictions into non-negative

penalties by setting θ〈h,m,l〉 to be the negative log-probability of 〈h,m, l〉; namely

θ〈h,m,l〉 = −w · f(x̄, 〈h,m, l〉) + logZ(x̄). Note that logZ(x̄) shifts all values

to the non-negative side. The score of a path will be computed as a sum of

negative log-probabilities, i.e., as the product of probabilities.

However, log-linear estimation of w is typically expensive since it requires

to repeatedly compute feature expectations. Furthermore, our model as defined

in Eq. (5.3) combines arc-factored path scores with path-independent scores,

and it is desirable to train these two components jointly. We opt for a mistake-

driven training strategy based on the Structured Averaged Perceptron (Collins,

2002), which directly employs shortest-path inference as part of the training

79

process.

To do so we predict plausibility scores for a dependency directly as w ·
f(x̄, 〈h,m, l〉). To map scores to penalties, we define

θ0 = max
〈h,m,l〉

w · f(x̄, 〈h,m, l〉) (5.7)

and we set

θ〈h,m,l〉 = −w · f(x̄, 〈h,m, l〉) + θ0 . (5.8)

Thus, θ0 has a similar purpose as the log-normalizer Z(x̄) in a log-linear model,

i.e., it shifts the negated scores to the positive side; but in our version the nor-

malizer is based on the max value, not the sum of exponentiated predictions as

in log-linear models. We set our model function to be

ssyn(x̄, 〈h,m, l〉) = −w · f(x̄, 〈h,m, l〉) + θ0 . (5.9)

for which the shortest-path method is exact. Note however, that shifting by the

max unfairly penalizes longer paths. If we shift every dependency weight by a

value θ0, a path of length l will be penalized by θ0 · l. Despite this drawback and

to prove the overall architecture, for practical reasons we perform experiments

in the next section using this training strategy.

5.5 Experiments

As in previous chapters, we present experiments using the CoNLL-2009 Shared

Task datasets (Hajič et al., 2009). We only run experiments here for the verbal

predicates of the English datasets. Evaluation, as usual, is based on precision,

recall and F1 over correct predicate-argument relations1. Our system uses the

feature set of the state-of-the-art system by Johansson (2009). These features

are described in the previous chapter 3 on section 3.4.1 but here we ignore the

features that do not factor over single arcs of the path.
1Unlike in the official CoNLL-2009 evaluation and following the convention of this thesis we exclude the

predicate sense from the features and the evaluation. All results shown here including the Zhao et al. (2009a)
results are computed ignoring predicate sense disambiguation.

80

We jointly find semantic roles and paths linking predicates and their argu-

ments. But rather than searching over all possible dependencies to build the

paths we only consider the most likely ones. To do so, we employ a probabilis-

tic dependency-based model, following Koo et al. (2007), that computes the dis-

tribution over head-label pairs for a given modifier, i.e., Pr(h, l | x,m). Specif-

ically, for each modifier token we only consider the dependencies or heads

whose probability is above a factor γ of the most likely dependency for this

given modifier. Thus, γ = 1 selects only the most likely dependency similar

to a pipeline system, but without enforcing tree constraints, and as γ decreases

more dependencies are considered, to the point where γ = 0 would select all

possible dependencies. Table 5.2 shows the ratio of dependencies included with

respect to a pipeline system for the development set. As an example, if we set

γ = 0.5 for a given modifier we consider the most likely dependency and also

the dependencies with a probability larger than 1/2 of the probability of the

most likely one. In this case the total number of dependencies is 10.3% larger

than only considering the most likely one.

Table 5.3 shows results of the method on development data, when train-

ing and testing with different γ values. The general trend is that testing with

the most restricted syntactic graph results in the best performance. However,

we observe that as we allow for more syntactic variability during training, the

results largely improve. Setting γ = 1 for both training and testing gives a

semantic F1 of 75.9. This configuration is similar to a pipeline approach but

considering only factored features. If we allow to train with γ = 0.1 and we

test with γ = 1 the results improve by 1.96 points to a semantic F1 of 77.8

points. When syntactic variability is too large, e.g., γ = 0.01, no improvements

are observed. The results point that some amount of variability during training

could potentially make classifiers more robust.

Finally, table 5.4 shows results on the verbal English WSJ test set using our

best configuration. We compare to the state-of-the art system by Zhao et al.

(2009a) that was the top-performing system for the English language in SRL

81

Threshold γ 1 0.9 0.5 0.1 0.01
Ratio 1 1.014 1.103 1.500 2.843

Table 5.2: Ratio of additional dependencies in the graphs with respect to a single-tree pipeline model
(γ = 1) on development data.

at the CoNLL-2009 Shared Task. The Gesmundo et al. (2009) system was the

best joint system of that task.

We also show the results for a system trained and tested with γ = 1 thus

similar to a pipeline system but using our shortest-path approach and therefore

restricted to factored features. In addition, we include an equivalent pipeline

system using all features, both factored and non-factored, as defined in Jo-

hansson (2009). The results of our factored model are behind the non-factored

approach. We observe that by not being able to capture these non-factored

features the final performance drops by 1.6 F1 points, a result that confirms

previous work such as Xue and Palmer (2004).

Our baseline non-factored system is behind the state of the art by about 2.9

points. Note however that this system represents a fairly simple approach using

only features extracted from a path. We do not apply any post-processing, ex-

cept our assignment inference method from chapter 3. Our approximate train-

ing strategy based on shift-normalizations could also contribute this decrease

in F1 results. This hypothesis is left to be tested as future work.

5.6 Remarks

We have formulated SRL in terms of shortest-path inference. Our model pre-

dicts semantic roles together with associated syntactic paths. A key idea is to

assume an arc-factored representation of the path. This property allows for ef-

ficient shortest-path algorithms that, given a predicate and a role, retrieve the

most likely arguments and their paths.

In the experimental section we observe that arc-factored models are in fact

more restricted, with a drop in accuracy with respect to unrestricted models.

82

test threshold prec (%) rec (%) F1

training γ = 1

1 77.91 73.97 75.89
0.9 77.23 74.17 75.67
0.5 73.30 75.03 74.16
0.1 58.22 68.75 63.05
0.01 32.83 53.69 40.74
training γ = 0.5

1 81.17 73.57 77.18
0.9 80.74 73.78 77.10
0.5 78.40 74.79 76.55
0.1 65.76 71.61 68.56
0.01 42.95 57.68 49.24
training γ = 0.1

1 84.03 72.52 77.85
0.9 83.76 72.66 77.82
0.5 82.75 73.33 77.75
0.1 77.25 72.20 74.64
0.01 63.90 65.98 64.92
training γ = 0.01

1 81.62 69.06 74.82
0.9 81.45 69.19 74.82
0.5 80.80 69.80 74.90
0.1 77.92 68.94 73.16
0.01 74.12 65.92 69.78

Table 5.3: Results of our shortest-path system for different number of allowed dependencies showing
precision, recall and F1 on development set for the verbal predicates of the English language.

However, we also observe that our method largely improves the robustness of

the arc-factored method when training with a degree of syntactic variability.

Overall, ours is a simple strategy to bring arc-factored models close to the per-

formance of unrestricted models.

The purpose of the experimental section is mainly to show the feasibility

of the approach. Even thought the results of the shortest-path system are be-

hind the state of the art, we think that are promising considering that we are

evaluating a simpler factored model.

We performed experiments using averaged Perceptron classifiers. Our sim-

83

system prec(%) rec(%) F1

Zhao et al. (2009a) 86.91 81.22 83.97
Gesmundo et al. (2009) 83.45 78.83 81.07
Non-factored 86.96 75.92 81.06
Factored γ = 1 79.88 76.12 77.96
Factored best 85.26 74.41 79.46

Table 5.4: Test set results for verbal predicates of the in-domain English dataset. The configurations are
labeled as follows. Factored γ = 1: our shortest-path system trained and tested with γ = 1, similar to
a pipeline system but without enforcing tree constraints and restricted to arc-factored features. Factored
best: our shortest-path system with the best results from table 3. Non-factored: an equivalent pipeline
system that includes both factored and non-factored features.

ple transform of these scores unfairly penalizes longer paths. We left as future

work to implement other probabilistic classifiers.

The approach introduced in this chapter may be combined with the dual-

decomposition strategy of chapter 4 to allow for processing languages with ar-

bitrary predicate-argument paths that are not feasible to capture by hand-written

rules. The shortest-path approach will complement and extend to multiple lan-

guages our joint dual-decomposition previous proposal.

Future work should explore further approaches to parse partial syntactic

structure specific to some target semantic relations such as in information ex-

traction. Our strategy could be useful in the cases where we are only interested

in semantic role labels and we view syntactic parsing only as an intermediate

step.

84

6

CONCLUSIONS AND

FUTURE WORK

We conclude this thesis by summarizing the main points discussed along the

previous chapters. We also give the possible future research directions. We

start by reviewing the tree main contributions presented in chapters 3, 4 and 5:

• Our first contribution is to frame the SRL problem as a linear assignment

task. Under this framework we can efficiently control uniqueness con-

straints over the arguments of a predicate.

• The second contribution is to define a joint model largely based on stan-

dard components that finds the optimal joint parse by using dual-decompo-

sition techniques.

• Finally, we introduce a shortest-path framework to jointly generate predica-

te-argument relations and the syntactic paths linking the predicates with

their arguments.

Our first two contributions are also described in Lluı́s et al. (2013) and our third

contribution was initially presented in Lluı́s et al. (2014).

SRL as assignment In chapter 3 we set up a bipartite graph to compute an

assignment of roles to arguments. In our approach we enforce unique roles per

predicate and at most a single role per argument. Previous work has solved SRL

applying a larger number of domain constraints (Punyakanok et al., 2004).

85

We presented experimental data evaluating our assignment method in mul-

tiple languages. Our experiments showed for the English and German datasets

that enforcing uniqueness improves the final performance of the classifiers. In

contrast, the Czech and Spanish datasets showed better results when these con-

straints are not enforced. These last two datasets contained a slightly larger

number of repeated annotated roles per predicate. However, the experiments

point out that the percentage of repeated roles may not be the most relevant fac-

tor to identify the datasets which will show improvements when the assignment

approach is applied.

Enforcing uniqueness on semantic roles reduces the search space and poten-

tially makes learning curves steeper for some classifiers. However, as a conse-

quence the most accurate classifiers will probably be penalized when searching

on this constrained space. Our hypothesis is that enforcing uniqueness could

improve the final results specially in the cases were we work with smaller

datasets.

Regarding the efficiency, our proposal can be solved by an exact O(n3) al-

gorithm. Our approach is less expressive than Punyakanok et al. (2004) but it

covers some of the most relevant SRL constraints identified by Surdeanu et al.

(2007). In addition, the assignment algorithm is simple and straightforward to

implement avoiding the need of external ILP solvers.

Our assignment proposal has two main strong points. First, it can be applied

as a post-processing step in a pipeline system. Also it offers the possibility of

finding the optimal solution within a large set of predicate-argument combina-

tions extracted from a set of different syntactic parse trees.

A second relevant point is that this framework can be easily extended to

allow for a finite number of repeated roles per predicate. Thus the approach

can be adapted for a particular dataset with more than one argument filling the

same role for a given predicate.

A drawback of our framework is that it does not control for solutions that

contain inconsistent syntax. By choosing the optimal combination we may

86

select the best candidates generated from different syntactic trees. This problem

is addressed in our joint models.

Dual-decomposition joint parsing We defined a model that finds the optimal

joint parse by using dual-decomposition optimization techniques. We enforce

agreement constraints between the syntactic and semantic layers to find the

global solution. Our joint model incorporates the assignment framework previ-

ously described. By forcing a shared syntax we avoid the potential inconsistent

syntax problems.

We set up equivalent pipeline and joint models based on components using

standard features and linear classifiers for learning. Our main experimental

goal was to compare the joint approach with the pipeline systems. We observed

improvements in our joint model in the cases where a first-order syntactic parser

was providing the syntax. We also compared our system with the state-of-the-

art joint approach of Gesmundo et al. (2009). Results for the English language

proved that our proposal is competitive.

Our method has two main advantages. First it generates the best joint so-

lution to our optimization problem whenever it converges. In experiments we

observe convergence in over 99% of the cases. Converge in that cases is reached

in an average of ∼37 iterations.

A second advantage of our proposal is, as previously introduced, that it relies

on standard components and features. However, as a consequence we may

still suffer from limitations common to other pipeline systems, e.g., a drop in

performance when testing on out-of-domain data.

Given the experimental data, we believe that our approach may be well-

suited in the cases were syntactic parsers show mild results and larger margins

for improvements. Experiments point that as individual components improve

the benefit of a joint optimization is less clear.

Shortest-path semantic role labeling This last contribution has as its key

point a factorization of the SRL scores over dependencies in an analogous way

87

that syntactic parsers factorize scores over syntactic dependencies. As a re-

sult we were able to use polynomial algorithms to find the optimal predicate-

argument paths.

We have implemented and run experiments for the English verbal datasets.

The experiments proved the feasibility of the approach that was one of our main

goals. We also observed results pointing that potentially more robust classifiers

are learned under this framework.

We presented experiments comparing our shortest-path model with respect

to an equivalent baseline. In our shortest-path approach we discarded all fea-

tures that were non-factorizable over path arcs. Thus we observed accordingly

slightly better results for our baseline system that exploits both factorized and

non-factorized features.

The introduced shortest-path approach represents a novel framework for se-

mantic parsing. SRL is usually considered a classification task with some ex-

ceptions such as BIO tagging, CRF over trees or more recently, extended pars-

ing algorithms (Màrquez et al., 2005; Cohn and Blunsom, 2005; Oepen et al.,

2014). Our proposal may be appropriate in an scenario were we are interested

in SRL as the end goal, assuming that syntactic parsing is only an intermediate

step.

As noted before, our model may generate inconsistent syntactic paths for the

arguments of a given predicate. This issue can be addressed by combining this

approach with the dual-decomposition method of chapter 4.

In addition, this combination will offer the possibility to overcome the pre-

vious limitation of our dual-decomposition method to a set of precomputed

paths generated following a set of rules. Datasets such as the Japanese and

Czech present syntactic paths that are hard to capture by a simple set of rules.

The shortest-path approach will allow to semantically parse arbitrary predicate-

argument relations under our joint approach.

88

Final remarks This thesis started with two motivating questions. Our first

question was whether a joint system will outperform the pipeline approach.

Our particular proposal described in chapter 4 showed promising results when

syntax was computed by first-order parsers. Unfortunately, we have not seen

consistent improvements as we replaced first-order parsers with better second-

order analyzers.

To at least partially answer this question for a particular proposal it is im-

portant to set up controlled experiments. These experiments should compare

equivalent pipeline and joint models. We implemented pipeline and joint sys-

tems sharing features, learning and parsing algorithms.

We have shown results for the English datasets. It remains to evaluate our

system for multiple languages. The combination of the shortest-path method

of chapter 5 with the dual-decomposition joint model from chapter 4 will allow

us to process these datasets. The engineering effort to put all these components

together is left as future work.

The second initial motivating question regards the efficiency of joint sys-

tems. If we look at the case of syntactic dependency parsing, a factorization

of the search space allows to efficiently search over this large space. However,

no analogous factorization is defined for joint syntactic-semantic parsing. A

main difficulty in formalizing such factorization is the divergence between the

syntactic and semantic layers.

We opted for a strategy that independently computes syntactic trees and se-

mantic roles. Consistency between both layers is enforced by forcing a shared

syntax. We solve the optimization problem by using dual-decomposition tech-

niques. It is implemented as a process that iteratively calls standard components

and updates typically few agreement variables. Our model thus feasibly com-

putes the optimal joint parse whenever it converges that is in over the 99% of

the sentences of our datasets.

89

Future Work

There are a number of research directions started in thesis that can be further

explored. The combination of the shortest-path model with our assignment and

dual-decomposition proposal will finally offer a flexible and efficient frame-

work to jointly parse syntax and semantics for multiple languages. This generic

parsing method will allow us to present a widely applicable joint model.

Another extension of our dual-decomposition model would be incorporate

other related tasks in our optimization function, e.g., word sense disambigua-

tion. In addition, richer sets of features could be incorporated to our classifiers.

E.g., distributional representations such as in Zapirain et al. (2013) extracted

from predicates and arguments. These features could potentially improve the

performance of syntactic and semantic parsing.

Experimentally, it remains to be tested the hypothesis that our dual-decompo-

sition system may improve the final results specially in the cases were there are

larger margins for gains. We could run experiments with datasets of different

sizes that will complement a multilingual evaluation of our joint system.

Our shortest-path method defined in chapter 3 is based on probability distri-

butions over edges. However, for simplicity we trained unbounded linear clas-

sifiers. A first simple strategy to implement would be to use a softmax trans-

formation on these trained classifiers. Our current projection strategy unfairly

penalizes longer paths. It will be interesting to complement the experimental

section implementing a probabilistic approach. In addition, our proposal could

be evaluated in the context of other semantic analysis tasks such as information

extraction or the broad-coverage semantic parsing SemEval 2014 task 8 (Oepen

et al., 2014).

These are some of the many research directions and hypothesis to be con-

firmed regarding joint approaches. Given the potential of joint approaches and

the limitations of current pipeline models we believe that it is worth continuing

the research in this area.

90

A

ALGORITHMS

We describe in this appendix the basic algorithms and we summarize the rele-

vant technical details for the main models introduced in chapter 2.

A.1 Chu-Liu-Edmonds

The Chu-Liu-Edmods algorithm (Chu and Liu, 1965; Edmonds, 1967; Tarjan,

1977) solves the Maximum Spanning Tree problem in O(n2). For clarity rea-

sons we show here the O(n3) implementation, see algorithm 4.

The sketch of the algorithm is as follows. We select the highest scoring

incoming edge for each vertex. If a tree results, it is the MST. Otherwise the

graph contains a cycle. We remove every cycle by contracting it to a single

node, we then recompute the weight of the incoming edges to this new node,

and select the new maximum scoring edges. In contrast to the Eisner family of

parsers, this algorithm is not restricted to projective trees.

A.2 Eisner First-order

The Eisner algorithm (Eisner, 1996) was adapted to the dependency parsing

framework by McDonald et al. (2005a), see algorithm 5.

91

Algorithm 4 Chu-Liu-Edmonds
Input: vertices of the graph (sentence tokens) and score(i, j) function
M ← the highest scoring incoming arcs for each vertex {# GM is the subgraph induced by
M arcs}
while cycles(GM) do
K ← ∅
for all c ∈ cycles(GM) do
k ← contract(c)
K ← K ∪ k
for all (i, j) s.t. j ∈ vertex(C), i ∈ vertex(G)rvertex(c) do

score(i, k) ← score(i, j) − (score(l, j) − maxj(score(l, k)), where l is all node in
vertex(G)rvertex(c)

end for
end for
for all k ∈ K do
l← argmaxl′score(l′, k)
a← (l, k) ∈ S
S ← S r a
S ← S ∪ (l, k)

end for
end while
return GM

Algorithm 5 Eisner first order
Input: sentence of length n and score(i, j) function
C[s][t][d][c]← 0,∀s, t, d, c
for k = 1, . . . , n do

for s = 0, . . . , n− k do
t← s+ k
C[s][t][←][0] = maxs≤r<tC[s][r][→][1] + C[r + 1][t][←][1]+score(t, s)
C[s][t][→][0] = maxs≤r<tC[s][r][→][1] + C[r + 1][t][←][1]+score(s, t)
C[s][t][←][1] = maxs≤r<tC[s][r][←][1] + C[r][t][←][0]
C[s][t][→][1] = maxs<r≤tC[s][r][→][0] + C[r][t][→][1]

end for
end for

Table C[s][t][↔][{0, 1}] represents the best span from start token s to end

token t. The arrows ↔ indicate which endpoint acts as a partial head. The

index {0, 1} indicates if the span is open or closed:

open spans can be extended in both ends.

closed spans are finished structures but can be extended in only one of their

ends.

92

A span is a subsequence of tokens where one of the endpoints is its head or

partial root. This first-order arc-factorization is a main limitation as discussed

in chapter 2. In the context of syntactic dependency parsing as dependencies

are independently scored, longer constructions such as prepositional phrases

are hard to capture. The O(n3) algorithm is considered fast at a practical level.

A.3 Second-order Siblings

McDonald and Pereira (2006) extended the first-order algorithm to capture sib-

ling information. The cost of the algorithm is still O(n3), i.e., the same asymp-

Algorithm 6 Eisner second order with siblings
Input: sentence of length n and score(h, s,m) function
C[s][t][d][c]← 0,∀s, t, d, c
for k = 1, . . . , n do

for s = 0, . . . , n− k do
t← s+ k
sibling construction
C[s][t][↔][2] = maxs≤r<tC[s][r][←][1] + C[r + 1][t][→][1]
building of a dependency without sibling
C[s][t][←][0] = C[s][t− 1][→][1] + C[t][t][←][1] + score(t,−, s)
C[s][t][→][0] = C[s][s][→][1] + C[s+ 1][t][←][1] + score(s,−, t)
building of a dependency with sibling
C[s][t][←][0] = maxs≤r<t {C[s][t][→][0],

maxs≤r<tC[s][r][↔][2] + C[r][t][←][0] + score(t, r, s)}
C[s][t][→][0] = maxs≤r<t {C[s][r][→][0],

maxs<r≤tC[r][t][←][0] + C[r][t][↔][2] + score(s, r, t)}
building of complete spans
C[s][t][←][1] = maxs≤r<tC[s][r][←][1] + C[r][t][←][0]
C[s][t][→][1] = maxs<r≤tC[s][r][→][0] + C[r][t][→][1]

end for
end for

totic cost as the first-order algorithm even though at a practical level is notice-

ably slower, see algorithm 6.

A.4 Second-order Grandchildren

Carreras (2007) further improved the second-order parsing algorithm adding

93

factors that look at some grandchildren of the head, potentially capturing deeper

relations, see algorithm 7.

Algorithm 7 Eisner second order with grandchildren
Input: sentence of length n and score{hm,ch,cmi,cmo} function
C[s][t][d][m]← 0,∀s, t, d,m
O[s][t][d][l]← 0,∀s, t, d, l
for k = 1, . . . , n do

for s = 0, . . . , n− k do
t← s+ k
∀l O[s][t][←][l] = maxr,cmi,ch

C[s][r][→][cmi] + C[r + 1][t][←][ch]
+score(t, s, l)+scorecmi(t, s, cmi, l)+
scorech(t, s, l, ch)+∑

pi
maxlsemscoresem(t, s, pi, lsem)/q

∀l O[s][t][→][l] = maxr,cmi,ch

C[s][r][→][ch] + C[r + 1][t][←][cmi]+
score(s, t, l)+scorecmi(s, t, cmi, l)+
scorech(s, t, l, ch)+∑

pi
maxlsemscoresem(t, s, pi, lsem)/q

∀m C[s][t][←][m] = maxl,cmo

C[s][m][←][cmo] +O[m][t][←][l]+
scorecmo(s,m, l, cmo)

∀m C[s][t][→][m] = maxl,cmo

O[s][m][→][l] + C[m][t][→][cmo]+
scorecmo(m, t, l, cmo)

end for
end for

The key idea of this algorithm is an efficient indexing of closed and open

structures that are also defined in a chart table C. We describe these structures:

Closed structures are indexed by the start of the span s, the end token t, and

in this case also by the syntactic label l.

Open structures are indexed by the start of the span s, the end token t, and in

addition a child m that is the closet child to the head of the span whether

s or t.

94

These structures require a space of O(n2L + n3). Algorithm 7 shows a com-

bined table of O(n4L) only for clarity reasons.

A.5 Shift-reduce and Transition-based Parsers

Shift-reduce (Nivre and Nilsson, 2005) are bottom-up parsers that can be de-

fined as parsing a sentence from left to right using a stack of symbols. This

definition is not strictly applicable to bottom-up Eisner parsers.

We start by defining an abstract shift-reduce parser. Let {α,w} be the con-

figuration of the parser in any given time, where α is a stack of symbols or

partially processed items and w is the remaining input sequence.

Two basic processing rules define a bottom up parser:

• shift 〈α, aw〉 → 〈αa,w〉

• reduce 〈βα,w〉 → 〈βA,w〉, for some grammar rule or transformation

A −→ α.

Note that the algorithm is indeterministic and searches for any derivation

from 〈λ,w〉 to the final configuration 〈S, λ〉. Where λ is the empty string sym-

bol, and S the start symbol of a grammar.

MaltParser Model Shift-reduce parsers were extended and adapted by Nivre

(2003) and Covington (2001) to the context of dependency parsing. We de-

scribe these extensions in terms of transitions T and configurations C as fol-

lows:

• C is the set of configurations c, where a configuration c = 〈α,w,A〉 is:

– α is a stack of tokens.

– w is the remaining part of the word.

– A is a set of labeled dependency arcs. We note the set as A = {i l→
j}. The induced graph by A is GA with vertices V = {0, . . . , n} and

edges in A. It represents the partially constructed tree.

95

• T is the set of transitions t that are mappings between configurations. The

function is not necessary defined for all configurations in C.

We note the stack as α|i representing that the token i is on the top of the

stack and α is the remaining part of the stack. String operations noted by j|w
represent that j is the first token of the sequence jw. The initial configuration

of the parser for an input string x is C(α,w,A) = {λ, x, ∅}.
We define the set of transitions between states for the arc-eager Nivre’s ap-

proach:

• left arc for label l 〈α|i, j|w,A〉 →
〈
α, j|w,A ∪ (j

k→ i, k)
〉

if i is not the root node and there is no previous assigned head for token j

(one head constraint).

• right arc for label l 〈α|i, j|w,A〉 →
〈
α|i|j, w,A ∪ (i

k→ j, k)
〉

if there is

no previous assigned head for token j.

• reduce 〈α|i, w,A〉 → 〈α,w,A〉
if i has not an assigned head.

• shift 〈α, i|w,A〉 → 〈α|i, w,A〉

The previous parsing model definition is non-deterministic. Usually, as in Nivre

et al. (2007b) we isolate the non-deterministic component of the parser in an or-

acle function, later this function can be approximated by for example a machine

learning classifier. Algorithm 8 is a linear time sketch based on the MaltParser

procedure with an oracle function assumed to be constant-time.

SVM (Joachims, 1999) and MBL (Memory-Based Learning, k-nearest neigh-

bors) (Daelemans and van den Bosch, 2005) are widely chosen machine learn-

ing methods for this task, and are implemented in the publicly available Malt-

Parser. Even though the algorithm is O(n), it is costly to train at a practical

level.

The constraints imposed by the admissible transitions restrict the set of

parseable dependency trees to the projective trees.

96

Algorithm 8 Oracle shift-reduce parser
initial configuration c = {λ, x, ∅}
while is not terminal(c) do

if α = λ then
c← shift(c)

else
t←oracle(c)
c←t(c)

end if
end while
return graph(c)

A.6 Structured Perceptron

Algorithm 9 Structured perceptron
Input: examples (x, y) from the training set
w ← 0
for t← 1 to num epochs do

for all (x, y) ∈ training set do
ŷ =inference algorithm(x,w)
for all factor ∈ y \ ŷ do
w(l) ← w(l) + φ(factor, x, ŷ)

end for
for all factor ∈ ŷ \ y do
w(l) ← w(l) − φ(factor, x, ŷ)

end for
end for

end for
return wavg # the average over the training set and epochs

The structured perceptron (Collins, 2002) is a simple learning strategy widely

applied in NLP. We show an example of this method in algorithm 9. If we as-

sume a dependency parsing setting, the inference algorithm is the parser (e.g.,

Eisner). This parser generates a dependency tree ŷ, that can be decomposed in

a set of factors 〈h,m, l〉 for the first-order case. For any misclassified factor, we

update the weights of missing (i.e., f ∈ y \ ŷ) or overpredicted (i.e., f ∈ ŷ \ y).

A version of this strategy (Shen and Joshi, 2005) shown in algorithm 10

evaluates and ranks a higher number of factors and the update rules are applied

97

whenever the ranked score of the output inference algorithm does not match the

reference ranking.

Algorithm 10 Reranking perceptron
Input: examples (x, y) from the training set and GEN function
w ← 0

for t← 1 to num epochs do
for all (x, y) ∈ training set do
Ŷ = GEN(x)

ŷ = argmaxŷ′∈Ŷ score(x, y′,w)

for all factor ∈ y \ ŷ do
w(l) ← w(l) + φ(factor, x, ŷ)

end for
for all factor ∈ ŷ \ y do
w(l) ← w(l) − φ(factor, x, ŷ)

end for
end for

end for

98

B

THE CONLL-2006 AND

2007 SHARED TASKS

The CoNLL-2006 and CoNLL-2007 Shared Tasks (Buchholz et al., 2006; Nivre

et al., 2007a) were devoted to syntactic dependency parsing. These tasks boosted

research on the field and summarized some of the most relevant approaches.

Table B.11 shows the top 5 systems among the 23 presented at the CoNLL-

2007 Shared Task closed challenge. The Shared Task evaluated 10 languages

but here we only briefly review the top performing systems for the English

dataset.

Table B.21 summarizes the architecture of these 5 systems. The prep col-

umn of the table indicates if a system applied a preprocessing step such as the

Nivre and Nilsson pseudo-projective algorithm, see Nivre et al. (2007b). The

next model columns shows that most systems build the labeled syntactic tree

in a single step process. An exception is the Nakagawa two-step process. The

first step of that system is the unlabeled dependency graph generation and then

syntactic label are annotated. The inference column shows the different pars-

ing algorithms applied. The learning column indicates the machine learning

method, among them ISBN (Titov and Henderson, 2007b) that are Bayesian

probabilistic graphical models and Gibbs sampling (Geman and Geman, 1984)

to estimate probabilities.

1Extracted from http://depparse.uvt.nl/depparse-wiki/AllScores.

99

Team LAS (%)

Carreras 89.61
Sagae 89.01
Nakagawa 88.41
Titov 88.39
Nilsson 88.11

Table B.1: Best CoNLL-2007 systems for the English language

Team prep model inference learning comb

Carreras no Eisner-
Carreras

Eisner-Carreras perceptron —

Sagae yes Shift-
reduce

LR greedy best-
first, left-right

SVM —

Nakagawa no probabilistic
model +
classifica-
tion

MST + classifi-
cation

Gibbs
sam-
pling +
SVM

—

Titov yes shift-
reduce

probabilistic,
beam of se-
quences

ISBN —

Nilsson yes shift-
reduce

arc-eager SVM CLE

Table B.2: Summary of top performing CoNLL-2007 Shared Task systems

Most participants did not report the consumed resourced for training there-

fore, unfortunately, efficiency cannot be evaluated but we suspect that top per-

forming teams invested large amounts of computational resources.

We observe that shift-reduce and Eisner-based models are the most com-

mon approaches. These models offer simplicity, reduced training times and a

competitive performance as their main advantages.

Classification tasks, if tractable, can be performed by SVM classifiers. In

Eisner-based systems it is more common to apply the Perceptron algorithm, or

at a higher cost, MIRA.

The features defined by McDonald et al. (2005b) are widely used with al-

most no modifications by all teams.

100

C

DATASETS, TREE-
BANKS AND MEASURES

Along this dissertation, our main sources of training and testing data are the

CoNLL-2008 and 2009 Shared Task datasets (Surdeanu et al., 2008; Hajič et

al., 2009). These Shared Tasks made available and popularized in a common

format datasets for Catalan and Spanish (Taulé et al., 2008), English (Surdeanu

et al., 2008), German (Burchardt et al., 2006), Czech (Hajič et al., 2006), Chi-

nese (Palmer and Xue, 2009) and Japanese (Kawahara et al., 2002).

• Catalan and Spanish. The Catalan and Spanish dataset was built by an

automatic conversion process to dependencies from a constituent repre-

sentation. The source of the data is the AnCora corpus consisting mainly

in news.

• English. The English datasets merge the Penn Treebank 3, the BBN Cor-

pus, the PropBank I and the NomBank. The merging and conversion pro-

cess is described by Surdeanu et al. (2008).

• German. The German dataset is based on the SALSA corpus and only

contains verbal predicates. In addition, out-of-domain data is provided

from a sample of the Europarl corpus.

• Czech. The Czech datasets are from the Prague Dependency Treebank

2.0. Lemmas were automatically added. The analytical and tectogram-

101

cat spa eng ger cze chi jap

sentences 13.2 14.3 39.3 36 38.7 22.3 4.4
tokens 390 427 958 649 653 609 113
avg len 29.6 29.8 18.7 18 16.8 27.3 18.0

Table C.1: Summary of CoNLL-2009 datasets

matical layers provide the data for dependencies and semantic roles re-

spectively.

• Chinese. The Chinese corpus was generated from the Chinese Treebank

6.0 and the Chinese Proposition Bank 2.0. Also converting constituent

structure to a dependency formalism.

• Japanese. Japanese datasets consists of sentences from the Kyoto Univer-

sity Text corpus extracted form Mainichi Newspapers. For further details

see the previous references.

An overview of the datasets in terms of number of sentences, number of

tokens and average length of sentences is shown in Table C.11. Before these

Shared Tasks some of these datasets were not available following a depen-

dency framework. Generally, automatic procedures were implemented for this

conversion process from a constituent to a dependency formalism.

For example, for the English dataset, the main idea of the conversion proce-

dure is to extract the head from each phrase and then set all other tokens as its

dependents. Further details can be found in Surdeanu et al. (2008). As a side-

effect the number of dependency labels increased. This constitutes a practical

burden for many dependency parsing and machine learning algorithms.

Regarding semantic roles there was also a conversion process from the orig-

inal annotations of PropBank and NomBank on top of the constituents to the

new dependency formalism. Semantic predicates were already originally as-

signed to individual tokens. A procedure aimed to avoid incompatibilities takes

the boundaries of semantic arguments and then identifies the head. If more than
1Extracted from Hajič et al. (2009).

102

one head is found the argument is split, e.g., if we are dealing with the argument

A0, the two splits will be tagged as A0 and C-A0. These cases accounts for only

the 0.7% of the arguments.

Some of the semantically annotated datasets were inspired from the Prop-

Bank and NomBank approach. Following this, the argument labels are neutrally

named as A0, A1,. . . representing the arguments a predicate can take. Adjunct

arguments are labeled as AM-TMP, AM-MNR, AM-LOC, AM-NEG,. . . and are

not predicate-specific. Even though an effort by the annotators is made by mak-

ing the corpus consistent across the AX labels for different predicates, there is

no guarantee that the meaning is always the same. E.g., A3 for go is the start

point but A3 for do is the instrument. Therefore a single data-driven classifier

trained for the AX argument must in fact predict substantially different roles.

The datasets were split in the usual training, development and test sections.

In some languages (English, German and Czech) out-of-domain data was pro-

vided only for testing purposes. An extract from the Brown corpus was pro-

vided as a out-of-domain dataset for the English language. Consistently, in

syntactic dependency parsing and SRL a significant drop in performance is ob-

served when testing on out-of-domain data. This domain adaptation problem

is also common in other machine learning tasks (Daumé III and Marcu, 2006).

C.1 Relevant Measures and Metrics

A stating point to define our evaluation measures and metrics is the official

CoNLL-2008 Shared Task scores (Surdeanu et al., 2008). These scores allow

us to compare to other state-of-the-art systems and are commonly reported in

SRL and dependency parsing data-driven research.

C.1.1 Syntactic scoring

The CoNLL-2008 and 2009 Shared Tasks brought in a convenient way a set

of common evaluation measures and scripts to automatically compute these

103

measures.

Labeled attachment score (LAS) measures the percentage of tokens with a

correct head (i.e., a correct dependency arc) and also a correct syntactic

label.

Unlabeled attachment score (UAS) measures the percentage of tokens with a

correct head (i.e., only a correct dependency arc).

Labeled accuracy score (LAC) measures the percentage of tokens with a cor-

rect syntactic label without regarding if the dependency points to a correct

or incorrect head.

The main measure to compare syntax across systems is the LAS.

C.1.2 Semantic scoring

The semantic arguments are considered as semantic dependencies between the

predicate and each argument, i.e., the predicate is considered as a root and its

semantic arguments as its semantic dependents. In addition, each predicate

sense is considered as a dependency from a virtual root node to the predicate.

This is merely intended to provide a unified point of view for semantic scoring.

The semantic structures formed are always single-rooted connected graphs, but

not necessary acyclic. This approach allows us to define a unified scoring in-

cluding predicate sense predictions. Along this dissertation we do not address

predicate sense disambiguation thus we will not consider it when reporting se-

mantic scores. We briefly review the precision and recall measures.

Precision is the fraction of correctly identified/tagged arguments with respect

to the number of predicted arguments.

precision =
|correct predictions|
|total predictions|

104

Recall is the fraction of correctly identified/tagged arguments with respect to

the total number of arguments to predict.

recall =
|correct predictions|

|total number of predictions to made|

F1 is the harmonic mean between Precision and Recall

F1 =
2 · Precision · Recall
Precision + Recall

We distinguish between labeled and unlabeled measures. Unlabeled mea-

sures do not regard semantic labels, they only account for the identification of

the semantic link between and argument and a predicate.

Unlabeled Precision the precision of predicted unannotated semantics links.

Unlabeled Recall the recall of predicted unannotated semantics links.

Unlabeled F1 the F1 of the two previous measures.

Labeled Precision precision of the predicted semantic links and their labels.

Labeled Recall recall of the predicted semantic links and their labels.

Labeled F1 the F1 of the two previous measures.

Labeled measures consider a correct prediction when both the argument is iden-

tified and the role label is correct. In the case of predicates, according to the

official scorer the predicted senses must be correct. For example2, if a correct

semantic parse is to identify a verb and 3 predicates, say:

verb.01: ARG0, ARG1, ARGM-TMP

And the system output is

verb.02: ARG0, ARG1, ARGM-LOC

2Example extracted from the CoNLL-2008 Shared Task website http://www.yr-bcn.es/conll2008/

105

The labeled precision score will be 2/4. The incorrect sense for the verb (‘01’

instead of ‘02’) accounts for one error.

Lastly, another semantic measure accounts for the complete correct semantic

annotations.

Perfect Proposition F1 scores the entire semantic frame. It is computed as the

F1 of the completely correct set of arguments and sense for each predi-

cate. Note that in the setting where predicates are not provided, it cannot

be computed as the percentage of semantic propositions with all their ar-

guments and sense correct as we can overpredict or underpredict the pred-

icates that defines each semantic proposition.

A semantic frame comprises a given predicate and all its arguments. Note

that in other contexts a semantic frame also refer to the set of admissible argu-

ments for a predicate. The main measure to compare semantics across systems

is the Labeled F1.

C.1.3 Global scoring

Finally, several other measures combine the syntactic and semantic scores.

Exact Match is the percentage of sentences that are completely correct, in-

cluding syntactic dependencies, semantic dependencies and predicates.

Labeled Macro F1 This measure is computed using the F1 averaging of the

Labeled macro precision and Labeled macro recall which are

LabeledMacroPrecision = LabelSemanticPrecision + LAS

LabeledMacroRecall = LabelSemanticRecall + LAS .

Micro F1 . This measure is computed considering all syntactic and semantic

dependencies within the same bag, i.e., each prediction is considered an

individual problem, precision and recall are computed and finally the F1

score.

106

semantic labeled F1 / syntactic LAS . This measure is intended to measure

the relative performance of the semantic component. The measure tries

to capture the performance of the semantic component with respect to

the syntactic parse. As the syntactic parse could significantly affect the

semantic component this measure is aimed to give a more fair comparison

of the semantic components of the systems.

107

108

REFERENCES

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley.

Hans C. Boas. 2002. Bilingual framenet dictionaries for machine translation. In Language Resources
and Evaluation.

Bernd Bohnet. 2009. Efficient parsing of syntactic and semantic dependency structures. In Proceedings
of the Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared
Task, pages 67–72, Boulder, Colorado, June. Association for Computational Linguistics.

Johan Bos, Stephen Clark, Mark Steedman, James R. Curran, and Julia Hockenmaier. 2004. Wide-
coverage semantic representations from a ccg parser. In In Proceedings of the 20th International
Conference on Computational Linguistics (COLING ’04, pages 1240–1246.

Sabine Buchholz, Erwin Marsi, Amit Dubey, and Yuval Krymolowski. 2006. CoNLL-X shared task on
multilingual dependency parsing. In Proceedings of the 10th Conference on Computational Natural
Language Learning (CoNLL-2006).

Aljoscha Burchardt, Katrin Erk, Anette Frank, Andrea Kowalski, Sebastian Padó, and Manfred Pinkal.
2006. The SALSA corpus: a German corpus resource for lexical semantics. In Proceedings of the
5th International Conference on Language Resources and Evaluation (LREC-2006), Genoa, Italy.

Rainer Burkard, Mario Dell’Amico, and Silvano Martello. 2009. Assignment Problems. Society for
Industrial and Applied Mathematics.

Xavier Carreras and Lluı́s Màrquez. 2004. Introduction to the conll-2004 shared task: Semantic role
labeling. In Proceedings of CoNLL-2004, pages 89–97. Boston, MA, USA.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to the CoNLL-2005 shared task: Semantic role
labeling. In Proceedings of the Ninth Conference on Computational Natural Language Learning
(CoNLL-2005), pages 152–164, Ann Arbor, Michigan, June. Association for Computational Lin-
guistics.

Xavier Carreras. 2007. Experiments with a higher-order projective dependency parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 957–961, Prague, Czech
Republic, June. Association for Computational Linguistics.

Wanxiang Che, Zhenghua Li, Yuxuan Hu, Yongqiang Li, Bing Qin, Ting Liu, and Sheng Li. 2008. A
cascaded syntactic and semantic dependency parsing system. In CoNLL 2008: Proceedings of the
Twelfth Conference on Computational Natural Language Learning, pages 238–242, Manchester,
England, August. Coling 2008 Organizing Committee.

109

Wanxiang Che, Zhenghua Li, Yongqiang Li, Yuhang Guo, Bing Qin, and Ting Liu. 2009. Multilingual
dependency-based syntactic and semantic parsing. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning (CoNLL 2009): Shared Task, pages 49–54, Boulder,
Colorado, June. Association for Computational Linguistics.

Enhong Chen, Liu Shi, and Dawei Hu, 2008. CoNLL 2008: Proceedings of the Twelfth Conference on
Computational Natural Language Learning, chapter Probabilistic Model for Syntactic and Semantic
Dependency Parsing, pages 263–267. Coling 2008 Organizing Committee.

Y. J. Chu and T. H. Liu. 1965. On the shortest arborescence of a directed graph. Scientia Sinica, pages
1396–1400.

Massimiliano Ciaramita, Giuseppe Attardi, Felice Dell’Orletta, and Mihai Surdeanu. 2008. Desrl: A
linear-time semantic role labeling system. In CoNLL 2008: Proceedings of the Twelfth Confer-
ence on Computational Natural Language Learning, pages 258–262, Manchester, England, August.
Coling 2008 Organizing Committee.

Trevor Cohn and Philip Blunsom. 2005. Semantic role labelling with tree conditional random fields. In
Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005).

Michael Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis.
Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and exper-

iments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical Methods
in Natural Language Processing, pages 1–8. Association for Computational Linguistics, July.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New York, NY, USA. ACM.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to
Algorithms. The MIT Press.

Michael A. Covington. 2001. A fundamental algorithm for dependency parsing. In Proceedings of the
39th Annual ACM Southeast Conference.

Walter Daelemans and Antal van den Bosch. 2005. Memory-Based Language Processing. Cambridge
University Press.

Qifeng Dai, Enhong Chen, and Liu Shi. 2009. An iterative approach for joint dependency parsing and
semantic role labeling. In Proceedings of the Thirteenth Conference on Computational Natural Lan-
guage Learning (CoNLL 2009): Shared Task, pages 19–24, Boulder, Colorado, June. Association
for Computational Linguistics.

Dipanjan Das, André F. T. Martins, and Noah A. Smith. 2012. An exact dual decomposition algorithm
for shallow semantic parsing with constraints. In *SEM 2012: The First Joint Conference on Lexical
and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval
2012), pages 209–217, Montréal, Canada, 7-8 June. Association for Computational Linguistics.

Hal Daumé III and Daniel Marcu. 2006. Domain adaptation for statistical classifiers. Journal of
Artificial Intelligence Research.

Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271.

Jack Edmonds and Richard M. Karp. 1972. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2):248–264, April.

Jack Edmonds. 1967. Optimum branchings. Journal of Research of the National Bureau of Standards.
Jason Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In

Proceedings of the 16th International Conference on Computational Linguistics (COLING-96).

110

Jason Eisner. 2000. Bilexical grammars and their cubic-time parsing algorithms. In Harry Bunt and
Anton Nijholt, editors, Advances in Probabilistic and Other Parsing Technologies, pages 29–62.
Kluwer Academic Publishers, October.

Charles J. Fillmore, Josef Ruppenhofer, and Collin F. Baker, 2004. FrameNet and Representing the Link
between Semantic and Syntactic Relations, pages 19–62. Language and Linguistics Monographs
Series B. Institute of Linguistics, Academia Sinica, Taipei.

Ruifang Ge and Raymond Mooney, 2005. Proceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL-2005), chapter A Statistical Semantic Parser that Integrates
Syntax and Semantics, pages 9–16. Association for Computational Linguistics.

Stuart Geman and Donald Geman. 1984. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. EEE Transactions on Pattern Analysis and Machine Intelligence.

Andrea Gesmundo, James Henderson, Paola Merlo, and Ivan Titov. 2009. A latent variable model of
synchronous syntactic-semantic parsing for multiple languages. In Proceedings of the Thirteenth
Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task, pages 37–
42, Boulder, Colorado, June. Association for Computational Linguistics.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational Lin-
guistics, 28(3):245–288, September.

Daniel Gildea and Martha Palmer. 2002. The necessity of parsing for predicate argument recognition.
In Proceedings of 40th Annual Meeting of the Association for Computational Linguistics, pages
239–246, Philadelphia, Pennsylvania, USA, July. Association for Computational Linguistics.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiřı́ Havelka, Marie
Mikulová, and Zdeněk Žabokrtský. 2006. Prague Dependency Treebank 2.0.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štěpánek, Pavel Straňák, Mihai Sur-
deanu, Nianwen Xue, and Yi Zhang. 2009. The CoNLL-2009 shared task: Syntactic and semantic
dependencies in multiple languages. In Proceedings of the 13th Conference on Computational Nat-
ural Language Learning (CoNLL-2009), June 4-5, Boulder, Colorado, USA.

James Henderson, Paola Merlo, Gabrielle Musillo, and Ivan Titov. 2008. A latent variable model
of synchronous parsing for syntactic and semantic dependencies. In Proceedings of CoNLL-2008
Shared Task.

James Henderson, Paola Merlo, Ivan Titov, and Gabriele Musillo. 2013. Multilingual joint parsing of
syntactic and semantic dependencies with a latent variable model. Comput. Linguist., 39(4):949–
998, December.

Thorsten Joachims. 1999. Making large-scale SVM learning practical. Advances in Kernel Methods
- Support Vector Learning, Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola
eds., MIT Press, Cambridge, USA, 1998.

Richard Johansson and Pierre Nugues. 2008. Dependency-based syntactic–semantic analysis with prop-
bank and nombank. In CoNLL 2008: Proceedings of the Twelfth Conference on Computational
Natural Language Learning, pages 183–187, Manchester, England, August. Coling 2008 Organiz-
ing Committee.

Richard Johansson. 2009. Statistical bistratal dependency parsing. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Processing, pages 561–569, Singapore, August.
Association for Computational Linguistics.

Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. Complexity of Computer Com-
putations.

Daisuke Kawahara, Sadao Kurohashi, and Kôiti Hasida. 2002. Construction of a Japanese relevance-
tagged corpus. In Proceedings of the 3rd International Conference on Language Resources and
Evaluation (LREC-2002), pages 2008–2013, Las Palmas, Canary Islands.

111

Fang Kong, Yancui Li, Guodong Zhou, Qiaoming Zhu, and Peide Qian. 2008. Using semantic roles for
coreference resolution. Advanced Language Processing and Web Information Technology, Interna-
tional Conference on, 0:150–155.

Terry Koo and Michael Collins. 2010. Efficient third-order dependency parsers. In Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, pages 1–11, Uppsala,
Sweden, July. Association for Computational Linguistics.

Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. 2007. Structured prediction models
via the matrix-tree theorem. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pages 141–150, Prague, Czech Republic, June. Association for Computational Linguistics.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head automata. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1288–1298, Cambridge, MA,
October. Association for Computational Linguistics.

Marco Kuhlmann. 2014. Linköping: Cubic-time graph parsing with a simple scoring scheme. In
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 395–
399, Dublin, Ireland, August. Association for Computational Linguistics and Dublin City University.

Harold W. Kuhn. 1955. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan & Claypool
Publishers.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2014. Low-rank tensors for
scoring dependency structures. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1381–1391, Baltimore, Maryland, June.
Association for Computational Linguistics.

Junhui Li, Guodong Zhou, and Hwee Tou Ng. 2010. Joint syntactic and semantic parsing of chinese.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL
’10, pages 1108–1117, Stroudsburg, PA, USA. Association for Computational Linguistics.

Percy Liang, Michael Jordan, and Dan Klein. 2011. Learning dependency-based compositional se-
mantics. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 590–599, Portland, Oregon, USA, June. Association for
Computational Linguistics.

Xavier Lluı́s and Lluı́s Màrquez. 2008. A joint model for parsing syntactic and semantic dependen-
cies. In CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural Language
Learning, pages 188–192, Manchester, England, August. Coling 2008 Organizing Committee.

Xavier Lluı́s, Stefan Bott, and Lluı́s Màrquez. 2009. A second-order joint eisner model for syntactic
and semantic dependency parsing. In Proceedings of the Thirteenth Conference on Computational
Natural Language Learning (CoNLL 2009): Shared Task, pages 79–84, Boulder, Colorado, June.
Association for Computational Linguistics.

Xavier Lluı́s, Xavier Carreras, and Lluı́s Màrquez. 2013. Joint Arc-factored Parsing of Syntactic and
Semantic Dependencies. Transactions of the Association for Computational Linguistics (TACL),
1(1):219–230, May.

Xavier Lluı́s, Xavier Carreras, and Lluı́s Lei Màrquez. 2014. A shortest-path method for arc-factored
semantic role labeling. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, Qatar, August.

Luı́s Màrquez, Pere R. Comas, Jesús Giménez, and Neus Català. 2005. Semantic role labeling as
sequential tagging. In Proceedings of the Ninth Conference on Computational Natural Language
Learning (CoNLL-2005).

112

Lluı́s Màrquez, Marta Recasens, and Emili Sapena. 2013. Coreference resolution: An empirical study
based on semeval-2010 shared task 1. Lang. Resour. Eval., 47(3):661–694, September.

André F. T. Martins and Mariana S. C. Almeida. 2014. Priberam: A turbo semantic parser with sec-
ond order features. In Proceedings of the 8th International Workshop on Semantic Evaluation (Se-
mEval 2014), pages 471–476, Dublin, Ireland, August. Association for Computational Linguistics
and Dublin City University.

André F. T. Martins, Noah Smith, and Eric Xing. 2009. Concise integer linear programming formula-
tions for dependency parsing. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP,
pages 342–350, Suntec, Singapore, August. Association for Computational Linguistics.

André F. T. Martins, Miguel Almeida, and Noah A. Smith. 2013. Turning on the turbo: Fast third-
order non-projective turbo parsers. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 617–622, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency parsing
models. In Empirical Methods in Natural Language Processing and Natural Language Learning
(EMNLP-CoNLL 2007).

Ryan McDonald and Joakim Nivre. 2011. Analyzing and integrating dependency parsers. Computa-
tional Linguistics, 37(1), March.

Ryan McDonald and Fernando Pereira. 2006. Online learning of approximate dependency parsing
algorithms. In 11th Conference of the European Chapter of the Association for Computational
Linguistics (EACL-2006).

Ryan McDonald and Giorgio Satta. 2007. On the complexity of non-projective data-driven dependency
parsing. In International Conference on Parsing Technologies (IWPT 2007).

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91–98, Ann Arbor, Michigan, June. Association for Computational
Linguistics.

Ryan McDonald, Kiril Ribarov, and Jan Hajič. 2005b. Non-projective dependency parsing using span-
ning tree algorith. In Human Language Technologies and Empirical Methods in Natural Language
Processing HLT-EMNLP 2005.

Gabor Melli, Zhongmin Shi, Yang Wang, Yudong Liu, Anoop Sarkar, and Fred Popowich. 2006. De-
scription of squash, the sfu question answering summary handler for the duc-2006 summarization
task. In DUC-2006 Summarization Task.

Igor A. Mel’c̆uk. 1981. Meaning-text models: A recent trend in soviet linguistics. In Annual Review of
Anthropology 10, pages 27–62.

Igor A. Mel’c̆uk. 1998. Dependency Syntax: Theory and Practice. State University of New York Press.
Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika Zielinska, Brian Young, and

Ralph Grishman. 2004. The nombank project: An interim report. In A. Meyers, editor, HLT-NAACL
2004 Workshop: Frontiers in Corpus Annotation, pages 24–31, Boston, Massachusetts, USA, May.
Association for Computational Linguistics.

Roser Morante, Vincent Van Asch, and Antal van den Bosch. 2009a. Dependency parsing and semantic
role labeling as a single task. In Proceedings of the International Conference RANLP-2009, pages
275–280, Borovets, Bulgaria, September. Association for Computational Linguistics.

Roser Morante, Vincent Van Asch, and Antal van den Bosch. 2009b. Joint memory-based learning
of syntactic and semantic dependencies in multiple languages. In Proceedings of the Thirteenth
Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task, pages 25–
30, Boulder, Colorado, June. Association for Computational Linguistics.

113

Erwan Moreau and Isabelle Tellier. 2009. The crotal srl system : a generic tool based on tree-structured
crf. In Proceedings of the Thirteenth Conference on Computational Natural Language Learning
(CoNLL 2009): Shared Task, pages 91–96, Boulder, Colorado, June. Association for Computational
Linguistics.

Alessandro Moschitti. 2004. A study on convolution kernels for shallow statistic parsing. In Proceed-
ings of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main Volume,
pages 335–342, Barcelona, Spain, July.

Gabriele Musillo and Paola Merlo. 2006. Accurate parsing of the proposition bank. In Proceedings
of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers,
pages 101–104, New York City, USA, June. Association for Computational Linguistics.

Jason Naradowsky, Sebastian Riedel, and David Smith. 2012. Improving nlp through marginalization
of hidden syntactic structure. In Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, pages 810–820,
Jeju Island, Korea, July. Association for Computational Linguistics.

Srini Narayanan and Sanda Harabagiu. 2004. Question answering based on semantic structures. In
International Conference on Computational Linguistics.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In Proceedings of the
43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages 99–106,
Ann Arbor, Michigan, June. Association for Computational Linguistics.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007a. The CoNLL 2007 shared task on dependency parsing. In Proceedings of the 11th
Conference on Computational Natural Language Learning (CoNLL-2007).

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav Mari-
nov, and Erwin Marsi. 2007b. Maltparser: A language-independent system for data-driven depen-
dency parsing. Natural Language Engineering.

Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies (IWPT 03).

Joakim Nivre. 2006. Constraints on non-projective dependency parsing. In EACL, pages 73–80.
Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina

Ivanova, and Yi Zhang. 2014. Semeval 2014 task 8: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
pages 63–72, Dublin, Ireland, August. Association for Computational Linguistics and Dublin City
University.

Martha Palmer and Nianwen Xue. 2009. Adding semantic roles to the Chinese Treebank. Natural
Language Engineering, 15(1):143–172.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An annotated corpus
of sematnic roles. Computational Linguistics, 31(1):71–105, March.

Martha Palmer, Paul Kingsburry, and Daniel Gildea. 2006. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zimak. 2004. Semantic role labeling via integer
linear programming inference. In Proceedings of Coling 2004.

Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2008. The importance of syntactic parsing and infer-
ence in semantic role labeling. Computational Linguistics, 34(3):257–287, June.

Corentin Ribeyre, Eric Villemonte de la Clergerie, and Djamé Seddah. 2014. Alpage: Transition-based
semantic graph parsing with syntactic features. In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014), pages 97–103, Dublin, Ireland, August. Association for
Computational Linguistics and Dublin City University.

114

Sebastian Riedel and Andrew McCallum. 2011. Fast and robust joint models for biomedical event
extraction. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 1–12, Edinburgh, Scotland, UK., July. Association for Computational Linguistics.

Alexander M. Rush and Michael Collins. 2012. A tutorial on dual decomposition and lagrangian
relaxation for inference in natural language processing. Journal of Artificial Intelligence Research,
45:305–262.

Alexander M. Rush and Slav Petrov. 2012. Vine pruning for efficient multi-pass dependency parsing.
In Proceedings of the 2012 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 498–507, Montréal, Canada, June.
Association for Computational Linguistics.

Alexander M. Rush, David Sontag, Michael Collins, and Tommi Jaakkola. 2010. On dual decompo-
sition and linear programming relaxations for natural language processing. In Proceedings of the
2010 Conference on Empirical Methods in Natural Language Processing, pages 1–11, Cambridge,
MA, October. Association for Computational Linguistics.

Yvonne Samuelsson, Oscar Täckström, Sumithra Velupillai, Johan Eklund, Mark Fishel, and Markus
Saers, 2008. CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural Lan-
guage Learning, chapter Mixing and Blending Syntactic and Semantic Dependencies, pages 248–
252. Coling 2008 Organizing Committee.

Alexander Schrijver. 1998. Theory of Linear and Integer Programming. John Wiley & sons.

Libin Shen and Aravind K. Joshi. 2005. Ranking and reranking with perceptron. Machine Learning.

Dan Shen and Mirella Lapata. 2007. Using semantic roles to improve question answering. In Pro-
ceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 12–21.

David Sontag, Amir Globerson, and Tommi Jaakkola. 2010. Introduction to dual decomposition for
inference. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for Machine Learning.
MIT Press.

Weiwei Sun, Hongzhan Li, and Zhifang Sui, 2008. CoNLL 2008: Proceedings of the Twelfth Conference
on Computational Natural Language Learning, chapter The Integration of Dependency Relation
Classification and Semantic Role Labeling Using Bilayer Maximum Entropy Markov Models, pages
243–247. Coling 2008 Organizing Committee.

Mihai Surdeanu, Sanda M. Harabagiu, John Williams, and Paul Aarseth. 2003. Using predicate-
argument structures for information extraction. In Meeting of the Association for Computational
Linguistics, pages 8–15.

Mihai Surdeanu, Lluı́s Màrquez, Xavier Carreras, and Pere R. Comas. 2007. Combination strategies
for semantic role labeling. Journal of Artificial Intelligence Research.

Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluı́s Màrquez, and Joakim Nivre. 2008. The
conll 2008 shared task on joint parsing of syntactic and semantic dependencies. In CoNLL 2008:
Proceedings of the Twelfth Conference on Computational Natural Language Learning, pages 159–
177, Manchester, England, August. Coling 2008 Organizing Committee.

Charles Sutton and Andrew McCallum. 2005. Joint parsing and semantic role labeling. In Proceedings
of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005), pages 225–
228, Ann Arbor, Michigan, June. Association for Computational Linguistics.

Robert E. Tarjan. 1977. Finding optimum branchings. Networks.

Mariona Taulé, Maria Antònia Martı́, and Marta Recasens. 2008. AnCora: Multilevel Annotated Cor-
pora for Catalan and Spanish. In Proceedings of the 6th International Conference on Language
Resources and Evaluation (LREC-2008), Marrakesh, Morroco.

115

Ivan Titov and James Henderson. 2007a. Incremental bayesian networks for structure prediction. In
Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pages 887–894,
New York, NY, USA. ACM.

Ivan Titov and James Henderson. 2007b. A latent variable model for generative dependency parsing. In
Proceedings of the International Conference on Parsing Technologies (IWPT-07).

Ivan Titov, James Henderson, Paola Merlo, and Gabriele Musillo. 2009. Online graph planarisation
for synchronous parsing of semantic and syntactic dependencies. In Proceedings of ICJAI, pages
1562–1567.

N. Tomizawa. 1971. On some techniques useful for solution of transportation network problems. Net-
works, 1(2):173–194.

Kristina Toutanova, Aria Haghighi, and Christopher D. Manning. 2005. Joint learning improves se-
mantic role labeling. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, ACL ’05, pages 589–596, Stroudsburg, PA, USA. Association for Computational Lin-
guistics.

Oscar Täckström, Kuzman Ganchev, and Dipanjan Das. 2015. Efficient inference and structured learn-
ing for semantic role labeling. Transactions of the Association for Computational Linguistics, 3:29–
41.

Dennis D. Wackerly, William Mendenhall, and Richard L. Scheaffer, 2007. Mathematical Statistics with
Applications, chapter 15: Nonparametric statistics. Duxbury Press.

Yotaro Watanabe, Masayuki Asahara, and Yuji Matsumoto. 2009. Multilingual syntactic-semantic
dependency parsing with three-stage approximate max-margin linear models. In Proceedings of the
Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task,
pages 114–119, Boulder, Colorado, June. Association for Computational Linguistics.

Yuk Wah Wong and Raymond Mooney. 2007. Learning synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 960–967, Prague, Czech Republic, June. Association for Computational
Linguistics.

Nianwen Xue and Martha Palmer. 2004. Calibrating features for semantic role labeling. In Dekang
Lin and Dekai Wu, editors, Proceedings of EMNLP 2004, pages 88–94, Barcelona, Spain, July.
Association for Computational Linguistics.

Alexander S. Yeh. 2000. More accurate tests for the statistical significance of result differences. In
Proceedings of the 18th conference on Computational linguistics, pages 947–953.

Szu-ting Yi and Martha Palmer. 2005. The integration of syntactic parsing and semantic role labeling.
In Proceedings of CoNLL-2005.

Beñat Zapirain, Eneko Agirre, Lluı́s Màrquez, and Mihai Surdeanu. 2013. Selectional preferences for
semantic role classification. Computational Linguistics, 39(3).

Hao Zhang and Ryan McDonald. 2012. Generalized higher-order dependency parsing with cube prun-
ing. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning, pages 320–331, Jeju Island, Korea, July.
Association for Computational Linguistics.

Hai Zhao and Chunyu Kit. 2008. Parsing syntactic and semantic dependencies with two single-stage
maximum entropy models. In CoNLL 2008: Proceedings of the Twelfth Conference on Compu-
tational Natural Language Learning, pages 203–207, Manchester, England, August. Coling 2008
Organizing Committee.

Hai Zhao, Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa. 2009a. Multi-
lingual dependency learning: Exploiting rich features for tagging syntactic and semantic dependen-
cies. In Proceedings of the Thirteenth Conference on Computational Natural Language Learning

116

(CoNLL 2009): Shared Task, pages 61–66, Boulder, Colorado, June. Association for Computational
Linguistics.

Hai Zhao, Wenliang Chen, Chunyu Kity, and Guodong Zhou. 2009b. Multilingual dependency learn-
ing: A huge feature engineering method to semantic dependency parsing. In Proceedings of the
Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task,
pages 55–60, Boulder, Colorado, June. Association for Computational Linguistics.

117

