

LEARNING AUTOMATA WITH HELP.

Adrian-Horia Dediu

Dipòsit Legal: T 1472-2015

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It

can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33349226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Adrian-Horia Dediu

LEARNING AUTOMATA WITH
HELP

DOCTORAL THESIS

Supervisor: Victor Mitrana
Co-supervisor: Claudio Moraga

Tutor: María Dolores Jiménez López

Departament de Filologies Romàniques

Tarragona
2015

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3

Departament de Filologies Romàniques
Av. Catalunya, 35
43002 Tarragona, Spain

I STATE that the present study, entitled “Learning automata with help”,
presented by Adrian-Horia Dediu for the award of the degree of Doctor, has
been carried out under my supervision, and that it fulfils all the requirements
to be eligible for the European Doctorate Award.

Date: 24.04.2014

Doctoral Thesis Supervisor

Prof. Dr. Victor Mitrana

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

A B S T R A C T

In this thesis, we analyze and propose several enhanced versions of existing
classic learning algorithms for deterministic finite automata. Our improve-
ments belong to the category of helpful learning, aiming to speed up, or to
influence the quality of the learning process. A considerable part of our work
is based on a practical approach, for each algorithm we discuss, there are
comparative results, obtained after the implementation and testing the learn-
ing processes on sets of randomly generated automata. After extended exper-
iments, we present graphs and numerical data with the comparative results
that we obtained.

We study algorithms belonging to two different learning models: active and
passive. Our algorithms have features belonging to one or more categories of
help for learning automata. Thus, an increased number of output symbols
allows a reduced number of queries; some partial guidance along the learning
path gives the results of several queries as a single one; enhancing the learning
structure permits a better exploration of the learning environment.

In the active learning framework, a modified query learning algorithm ben-
efiting by a nontrivial helpful labeling is able to learn automata without coun-
terexamples.

We review the correction queries defining them as particular types of la-
beling. We introduce minimal corrections, maximal corrections, and random
corrections. An experimental approach compares the performance and lim-
itations of various types of queries and corrections. The results show that
algorithms using corrections require fewer queries in most of the cases.

A classic algorithm learns typical automata from random walks in the on-
line passive learning framework. For the original algorithm, we cannot esti-
mate the number of trials needed to learn completely a target automaton for
some cases. Adding inverse transitions to the underlying graph of the target
automaton, the random walk acts as a random walk on an undirected graph.
The advantage is that for such graphs, there exists a polynomial upper bound
for the cover time. The new algorithm is still an efficient algorithm with poly-
nomial upper bounds for the number of default mistakes and the number of
trials.

5

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

A C K N O W L E D G E M E N T S

I thank my supervisors, Professors Victor Mitrana and Claudio Moraga for
their advice, experience, and the information I received, contributing with
their knowledge and wisdom to the final form of this thesis. I thank Professor
Carlos Martín-Vide for his patience, support, and confidence during all these
years. I also thank my tutor, María Dolores Jiménez López for her careful
reading, help and guidance.

I wish to address special thanks to Dana Angluin, Leonor Becerra-Bonache,
and Lev Reyzin: their kindness and broad vision enlarged my horizons.

I thank all my professors and teachers: during the PhD studies, during the
University and high school, during various research projects; they all con-
tributed to my knowledge and education. I am grateful to my professor of
mathematics from high school, Chiţa Popovici, and my professors from the
university, Moisa Trandafir and Paul Cristea.

I thank all my colleagues from different projects and workplaces. Their
confidence gave me the persistence and inspiration needed to finish this doc-
toral dissertation.

I thank my family for providing the support and understanding I needed,
and especially Joana, for her patience in reading and checking my results
were very helpful to me for my work.

I am grateful for the grants that I received from Universitat Rovira i Virgili
(Rovira i Virgili University), 2002CAJAL-BURV4 and the postdoctoral re-
search project 2010PFR-URV-B2-02: they allowed me to continue my work
and to improve my knowledge.

Finally, I am grateful for the free tools and software programs that helped
me to work on this dissertation, MiKTEX1, OpenOffice2, GAP3 and Visual
Studio 2010 Express (C#)4.

1 http://miktex.org/

2 http://www.openoffice.org/

3 GAP – Groups, Algorithms, Programming – http://www.gap-system.org/

4 http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express

7

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://miktex.org/
http://www.openoffice.org/
http://www.gap-system.org/
http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

C O N T E N T S

1 introduction 15

2 preliminaries 19

I Helpful Query Learning of Automata 27

3 learning dfa from queries 29
3.1 Local Definitions . 30
3.2 Data Structure—Properties . 31
3.3 Presentation of the Algorithm 33
3.4 Correctness and Complexity . 35
3.5 Illustrative Example . 36
3.6 Remarks . 42

4 label queries 45
4.1 Local Definitions . 45
4.2 Theoretical Aspects . 45
4.3 Illustrative Example . 49
4.4 Comparative Results . 50
4.5 Remarks . 52

5 correction queries 55
5.1 A Particular Case . 55
5.2 Local Definitions . 57
5.3 Theoretical Approach . 58
5.4 Experimental Results . 61
5.5 Remarks . 62

II Helpful Passive Learning of Automata 65

6 learning typical automata from random walks – reset 67
6.1 Preliminaries . 67
6.2 Uniform Properties of Automata 68
6.3 Presentation of the Algorithm Reset 69
6.4 An Example Run of Reset . 72
6.5 Reset for Almost All Automata 75
6.6 Remarks . 77

7 learning from undirected random walks 81
7.1 Preliminaries . 81
7.2 Extending Reset with Undirected Random Walks 85

9

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

10 Contents

7.3 Comparative Results . 89
7.4 Remarks and Discussion . 91

8 concluding remarks 95

9 appendix 103
9.1 Helpful Labels, Numerical Results 103
9.2 Correction Queries, Numerical Results 108
9.3 Reset and u-Resetp, Numerical Results 113

10 index 117

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

L I S T O F N OTAT I O N S

Notation Definition Page
i.e. The abbreviation of id est (Latin)

meaning “that is”
15

; The empty set 19
N The set of natural numbers 19
[n] The finite set {1, . . . ,n} 19
[0] The empty set 19
R The set of real numbers 19
|A| The number of elements in A 19

P (A) The powerset of A 19
〈x〉R The equivalence class of x, for

R⊆A×A an equivalence relation
on a set A

19

ε The empty string 19
|w| The length of the string w 19
Σ∗ The set of strings over Σ 19
Σ≤k The set of words w with |w|≤ k,

for some nonnegative integer k
19

DFA Deterministic Finite Automaton 20
M=(Q,Σ,Γ ,τ,λ,q0) A deterministic finite automaton

• Q is a finite set of states,

• Σ is a finite and nonempty
alphabet called the input
alphabet,

• Γ is a finite and nonempty
alphabet called the output
alphabet,

• τ is a partial function from
Q×Σ to Q called the
transition function,

• λ is a mapping from Q to Γ
called the output function,
and

• q0 is a fixed state of Q
called the initial state.

20

Continued on next page

11

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

12 Contents

List of Notations
Notation Definition Page
qx The state reached from q by

consecutive transitions following
the characters of x

20

q〈x〉 The sequence of length |x|+1 of
output labels observed executing
the transitions from state q
dictated by x

20

A=(Q,Σ, {0,1},τ,λ,q0) A deterministic finite acceptor 20
A=(Q,Σ,τ,F,q0) The same, a deterministic finite

acceptor, F is the set of final
states, F= {q | λ(q)= 1,q ∈Q}

20

L(A) The language of the acceptor A 20
ρ(M) The degree of distinguishability

of the DFAM
24

G=(V ,E) A graph that consists of a set V of
vertices and a set E⊆V ×V of
edges

19

O(f) The set of functions
{g :N→N | ∃c> 0 and n0 such
that c ·g(n)≥ f(n),∀n>n0}

25

Ω(f) The set of functions
{g :N→N | ∃c> 0 and n0 such
that c ·g(n)≤ f(n),∀n>n0}

25

MQ Membership Queries 29
EQ Equivalence Queries 29
L∗ The algorithm proposed by

Angluin [6] for learning DFA
29

OQ Output Queries 30
(S,E,C) An observation table, S a prefix

closed set of state accessing
strings, EA suffix closed set of
distinguishing strings, C a
function mapping (S∪S ·Σ) ·E to
Γ giving the outputs answered by
the Teacher

31

M (S,E,C) The Learner’s conjecture 31
M`=(Q,Σ,Γ ×Λ,τ,λ`,q0) A labeled automaton, the output

function λ`(q)= (λ(q),`(q)),
where the labeling function `
maps Q to Λ

45

LQ Label Queries 45
L∗
j

A variant of L∗ initializing E with
Σ≤j, for some nonnegative integer
j

45

CQ Correction Queries 58

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

Contents 13

List of Notations
Notation Definition Page
E[X] The expected value of the random

variable X
68

δ A confidence parameter, 0< δ≤ 1 68
CCP Coupon Collector’s Problem 72

HN

N∑
i=1

1

i
, the Nth harmonic number 72

∆ ′(q ′) The state signature tree of state q ′ 71
∆ ′(q ′,p ′) The node of an (incomplete)

signature tree of state q ′ accessed
by path p ′

71

v=(vi : i ∈ [n]) A vector v and its components 82
Rn The vector space of ordered

n-tuples of real numbers
82

0n or 0 A vector with all n components
equal to 0; without the subscript
n if this is clear from the context

82

A=(aij : i ∈ [m],j ∈ [n]) A matrix A and its entries 82
Mm×n The set of all the matrices withm

rows and n columns
82

In or I The identity matrix with n by n
entries, with ones on the main
diagonal and zeros elsewhere; we
drop the subscript n if this is
clear from the context

82

A−1 The inverse of matrix A 82
Probability: S, P, A S is a sample space, P probability,

A⊆ S is an event
83

Markov chain: I, u,
P,fij(n),Tj,µi

I is a countable set of states; u
the initial probability distribution;
P is a transition stochastic matrix;
fij(n) is the probability that the
first visit to state j, starting from i,
takes place at the nth step; Tj, is
the time of the first visit to state j;
µi is the mean recurrence time of
state i.

83

G an undirected graph: di,
∆ij

di is the number of edges
incident with vertex i; ∆ij is the
distance between vertices i and j

84

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

14 Contents

List of Notations
Notation Definition Page

G a graph: hij, cij, Cv, CG hij is the hitting time, the
expected number of transitions
until a random walk starting from
i reaches j; cij is the commute
time, cij=hij+hji; Cv is the
expected time to visit all the
vertices of G starting from the
vertex v; CG is the cover time,
CG=maxvCv

84

Σ−1 A one to one disjoint set of
complementary symbols of an
alphabet Σ used for inverse
transitions, Σ−1= {a−1 |a ∈Σ}

87

T−q The set of inverse transitions from
q

87

Tq The set of direct transitions from
q

87

Nbq ′ The set of states accessed by an
inverse transition starting in q ′

with the character b

87

trial type: cA, pM, dM,
ndM

Correct answer, prediction
mistake, default mistake,
nondeterministic mistake

88

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

1 I N T R O D U C T I O N

Conceptual metaphors1 associate common notions with specific aspects pro-
posed by new theories or models. The processes of learning often use concep-
tual metaphors to transmit and develop existing knowledge. There are several
disciplines investigating learning capabilities, among them machine learning
represents a relatively new domain that proposes a series of (self) improving
algorithms, trying to model the processes of knowledge acquisition. Machine
learning studies the possibilities of certain algorithms to act on new data and
to generalize the results after training on existing data. Machine learning is
a vast domain, grouping together a series of methods coming from statistics,
neural modeling, adaptive and artificial intelligence, formal language theory,
evolutionary algorithms, etc. The term “machine learning” is a conceptual
metaphor in itself, at least for those times when most of the machine actions
only follow concrete specifications.

There are several classes of machine learning algorithms, such as super-
vised, unsupervised and reinforcement learning. We mention only several of
the newly emerged paradigms in this context, such as connectionism, classi-
fication and self-organization, statistical algorithms and interpretations, and
various inference mechanisms.

Within computational learning theory, there are several directions that
serve as a reference. In 1967, Gold [25] proposed learning in the limit. Ac-
cording to Gold, a language learnability model consists in:

1. A definition of learnability,

2. A method of information presentation,

3. A naming relation, which assigns names to languages.

A Learner2 is a function assigning names to strings of units of information. A
language L is said to be identified in the limit if after some time, the guesses
of a Learner are all the same and are a name of L.

In 1984, Valiant [47] proposed probably approximately correct learning
(PAC learning). In this framework, the Learner receives samples and must se-
lect a hypothesis function from a certain class of possible functions. The goal
is that, with a high probability, the hypothesis function has a low generaliza-
tion error. The Learner has access to two special routines, called EXAMPLES

1 I.e., metaphors that are more than a matter of language, with associations at the level of
thoughts and actions (Lakoff and Johnson [34]).

2 In Angluin [6], “the Teacher” and “the Learner” are written with uppercase, however, over the
years this was changed; we prefer to use uppercase characters to show that these are special
concepts and not the usual teachers and learners as we know from the real life.

15

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

16 introduction

and ORACLE. A call to EXAMPLES provides a positive example, while OR-
ACLE tells whether the concept (the predicate) to be learned is true or false
for some presented data.

In 1987, Angluin [6] introduced query learning, which is considered the
basis of a theory called exact query learning. A Teacher knowing a target
automaton, answers correctly specific kinds of queries asked by the Learner.
We present in detail the query learning algorithm proposed by Angluin in
Chapter 3.

Although the internal representation of knowledge uses various terms, such
as learning hypotheses, concepts, subsequential functions, and so on, deter-
ministic finite automata (DFA) are widely used for their simplicity, generality
and representation power. Traditionally, a finite automaton consists of a set
of states connected by different transitions. Automata might be with or with-
out output; in the case of automata with output, this can be associated either
to states or to transitions. We give more details about this topic in the next
chapter.

We can classify the results about the learning of automata as active or pas-
sive learning. In the passive model, the Learner has no control over the data
received, while in the active model, the Learner can experiment with the tar-
get machine. Learning in the limit is an example of passive learning, while
query learning (Angluin [6]) represents an example of active learning.

Various studies have tried to improve the performance of learning algo-
rithms by introducing parallelism, enhancements in the data structure, or the
concept of a helpful Teacher. Studying the effects and costs of different tech-
niques of help is important not only to speed up the machine learning pro-
cess, but also to tell us about possible implications for real life learning en-
vironments. Parekh and Honavar [42] presented a survey of several helpful
environments. A helpful Teacher for a learning algorithm is a controversial
topic. For example, we consider providing information about the number of
states as acceptable help, while data about the internal names of the states
is an example of collusion. However, there is no clear border on how much
help a Teacher can give without oversimplifying the learning process. In this
dissertation, we study several helpful methods showing the advantages and
the limitations of such techniques.

We divided the contents into two parts: one dedicated to active learning
and the other to passive learning. Before the two parts, we have a chapter
containing common notations and definitions.

The first part starts with the well known query learning algorithm L∗, while
the next two chapters describe modifications applied to this algorithm. In
Chapter 4, starting from the definition of a label query introduced by An-
gluin et al. [9], we present a new version of L∗ that is able to learn DFA
with a helpful labeling without needing counterexamples. Finding a help-
ful labeling means automatically more resources for the Teacher’s algorithm.
However, this is balanced by far for two reasons: first, the Teacher does not
need to find counterexamples; second, and this is more important, the total

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

introduction 17

number of queries needed to learn an automaton is considerably reduced as
also shown by the results of our tests.

In Chapter 5, we present a particular type of labeling that represents packed
information about a complete learning path. This method was already inves-
tigated by Becerra-Bonache, Bibire and Dediu [14] and Becerra-Bonache,
Dediu and Tîrnăucă [17] starting from the premise that a correction gives the
shortest path from a state to a final state. We show here that other corrections
are possible as well. The total number of queries needed to learn automata
with correction queries is in general lower than the number of MQ needed. In
case of password automata we show that we need a linear number of correc-
tion queries, comparing with a quadratic number of MQ, depending on the
number of states of the target automaton. We conclude both chapters about
helpful conditions for L∗ with experimental comparative results.

The second part of this dissertation presents helpful conditions for a passive
on-line learning algorithm, Reset (Freund et al. [23]). The first chapter of the
second part describes the original algorithm that learns uniformly almost all
automata. We also discuss several inherent limitations of the algorithm, and
extend the study of Reset for almost all automata. In Chapter 7, we extend
the transitions of the learned automaton allowing the random walks to go
forward and backward on transitions. We obtain thus an upper bound for the
number of trials needed to learn almost all automata. We also implement the
new algorithm, and present a comparative study showing the improvements
and the results of the experiments.

chapter references

[6] Dana Angluin. “Learning regular sets from queries and counterexam-
ples”. In: Information and Computation 75.2 (1987), pp. 87–106. DOI:
http://dx.doi.org/10.1016/0890-5401(87)90052-6 (cit. on
pp. 12, 15, 16, 29, 30, 32, 33, 35).

[9] Dana Angluin, Leonor Becerra-Bonache, Adrian-Horia Dediu, and
Lev Reyzin. “Learning finite automata using label queries”. In:
Proceedings of the 20th International Conference on Algorithmic
Learning Theory, Porto, Portugal, October 3–5, 2009. Ed. by Ri-
card Gavaldà, Gábor Lugosi, Thomas Zeugmann, and Sandra Zilles.
Vol. 5809. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 171–185 (cit. on pp. 16, 20, 30, 45, 46, 95).

[14] Leonor Becerra-Bonache, Cristina Bibire, and Adrian-Horia Dediu.
“Learning DFA from Corrections”. In: Proc. Workshop on Theoretical
Aspects of Grammar Induction. Ed. by Henning Fernau. WSI-2005-14.
Technical Report, University of Tubingen, 2005, pp. 1–11 (cit. on
pp. 17, 45, 55, 95).

[17] Leonor Becerra-Bonache, Adrian-Horia Dediu, and Cristina Tîrnăucă.
“Learning DFA from correction and equivalence queries”. In: Proceed-
ings of the 8th International Conference on Grammatical Inference:

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/http://dx.doi.org/10.1016/0890-5401(87)90052-6

18 introduction

Algorithms and Applications. Vol. 4201. Lecture Notes in Computer
Science. Tokyo, Japan: Springer-Verlag, 2006, pp. 281–292 (cit. on
pp. 17, 30, 45, 55, 95).

[23] Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert
E. Schapire, and Linda Sellie. “Efficient Learning of Typical Finite
Automata from Random Walks”. In: Inf. Comput. 138.1 (1997), pp. 23–
48 (cit. on pp. 17, 20, 67–69, 71, 77).

[25] E. Mark Gold. “Language identification in the limit”. In: Information
and Control 10.5 (1967), pp. 447–474 (cit. on p. 15).

[34] George Lakoff and Mark Johnson. “Conceptual Metaphor in Everyday
Language”. In: The Journal of Philosophy 77.8 (1980), pp. 453–486.
DOI: 10.2307/2025464. URL: http://dx.doi.org/10.2307/
2025464 (cit. on p. 15).

[42] Rajesh Parekh and Vasant Honavar. “On the Relationship between
Models for Learning in Helpful Environments”. In: Proceedings of the
5th International Colloquium on Grammatical Inference: Algorithms
and Applications, Lisbon, Portugal, September 11–13, 2000. Ed. by
Arlindo L. Oliveira. Vol. 1891. Lecture Notes in Computer Science.
Springer-Verlag, 2000, pp. 207–220 (cit. on p. 16).

[47] Leslie Gabriel Valiant. “A theory of the learnable”. In: Communica-
tions of the ACM 27.11 (1984), pp. 1134–1142. DOI: http://doi.
acm.org/10.1145/1968.1972 (cit. on pp. 15, 29).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/10.2307/2025464
http://dx.doi.org/10.2307/2025464
http://dx.doi.org/10.2307/2025464
http://dx.doi.org/http://doi.acm.org/10.1145/1968.1972
http://dx.doi.org/http://doi.acm.org/10.1145/1968.1972

2 P R E L I M I N A R I E S

In this chapter, we present the common notations and definitions used in the
next chapters. The subsequent chapters contain sections with specific defini-
tions for the learning algorithms that we discuss. We assume that the reader
is familiar with the basic notions of combinatorics, graph theory, probability,
and complexity. We briefly present an overview of the basic concepts we use
in the thesis.

We denote by N the set of natural numbers. For n ∈ N, the notation [n] Notation [n]

represents the finite set {1, . . . ,n}, while [0] =; is the empty set. We denote
by R the set of real numbers.

For a given finite setA, we denote by |A| the number of elements inA. We
use the notation P (A) for the powerset of A, i.e. the set of all subsets of A.

Let R⊆A×A be an equivalence relation. For x ∈A, the set

〈x〉R= {z ∈A | xRz}

of all elements related to x by R is called the equivalence class of x. The set
of all equivalence classes A/R= {〈x〉R | x ∈A} is the quotient set of A by R.
For any equivalence relation R on a set A, the set A/R is a partition of A. We
recall that a partition of a set A is a set Π of nonempty subsets of A such that
the union of the elements of Π is equal to A and the intersection of any two
elements of Π is the empty set. Conversely, from any partition Π of A, we
can define an equivalence relation on A by setting xRy precisely when x and
y are in the same equivalence class of Π. We say that a partition Π ′ of a setA
is a refinement of a partitionΠ ofA (orΠ ′ is finer thanΠ), if every element of
Π ′ is a subset of some element of Π. A refinement Π ′ of Π is strict if Π ′ 6=Π.

Let Σ be a finite set of symbols, called the alphabet. A finite sequence of
elements of Σ is called a string over Σ. For a given stringw, |w| represents the
length of the string. We denote by ε the empty string, with |ε|= 0. We define
a binary operation between strings in the following way. For two strings
w= a1 . . .an and x= b1 . . .bm over Σ, the concatenation of the two strings
is the string a1 . . .anb1 . . .bm. The concatenation operation is denoted by
w ·x (or simply wx when there is no confusion).

Let Σ∗ be the set of strings over Σ. A language L over Σ is a subset of Σ∗.
The elements of L are also called words. For any given nonnegative integer k,
Σ≤k denotes the language of words w with |w|≤ k. The prefixes of a string s
is the set of all prefixes, Pref(s) = {a | ab= s, for a,b ∈ Σ∗}. A language L
is prefix-closed if Pref(s)⊆ L for all s ∈ L. Similarly, the suffixes of a string s
is the set of all suffixes, Suff(s) = {b | ab= s, for a,b ∈ Σ∗}. A language L
is suffix-closed if Suff(s)⊆ L for all s ∈ L.

A graph G = (V ,E) consists of a set V of vertices (or nodes), and a set
E⊆V ×V of edges. A path in a graph is a sequence of vertices, v1v2, . . . ,vk

19

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

20 preliminaries

for k≥ 2 such that every (vi,vi+1) is an edge in the graph, for 1≤ i≤ k−1. A
path is a cycle if the first and the last vertex are the same. A graph G=(V ,E)
is connected if for all v,w ∈V there exists a path between v and w. A graph
G is undirected if for all v,w ∈V we have (v,w) ∈E⇔ (w,v) ∈E, otherwise
G is directed. A graph G is called acyclic if there are no cycles in G.

A graph G ′ = (V ′,E ′) is a subgraph of G = (V ,E) if V ′ ⊆ V and E ′ ⊆
E∩(V ′×V ′). A tree is a connected, acyclic graph. The tree with no nodes is
called the null or empty tree. A tree that is not empty consists of a root node
r and zero or more (sub)-trees, each of whose roots connected to r. The root
of each subtree is called a child of r, and r is called the parent of each child.
In a tree, nodes with no children are called leaf nodes.

A spanning tree for a connected graph G is a tree subgraph of G including
all the vertices of G.

Next, we give the definition of a formalism that operates on strings.

Definition 2.1 (Deterministic finite automata,1 Freund et al. [23]). A deter-
ministic finite automaton (DFA) is a tuple

M=(Q,Σ,Γ ,τ,λ,q0), where

• Q is a finite set of states,

• Σ is a finite and nonempty alphabet called the input alphabet,

• Γ is a finite and nonempty alphabet called the output alphabet,

• τ is a partial function from Q×Σ to Q called the transition function,

• λ is a mapping from Q to Γ called the output function, and

• q0 is a fixed state of Q called the initial state.

We extend τ to a map fromQ×Σ∗ toQ in the usual way. We take τ(q,ε)=
q and τ(q,α ·a) = τ(τ(q,α),a), for all states q in Q, for all strings α in
Σ∗, and for all characters a in Σ, provided that τ(q,α) and τ(τ(q,α),a) are
defined. For a state q and a string x over the input alphabet, we denote by qxNotations qx and

q〈x〉 the state τ(q,x), and by q〈x〉, the sequence of length |x|+1 of output labels
observed upon executing the transitions from state q dictated by x, that is, the
string λ(q)λ(qx1), . . . ,λ(qx1, . . . ,xn), where n is the length of the string x
and x1, . . . ,xn are its characters.

A finite acceptor is a DFA with the output alphabet Γ = {0,1}; if λ(q) = 1,
then q is an accepting state, otherwise, q is a rejecting state. A string x
is accepted or recognized by a finite acceptor having the initial state q0 if
q0x is an accepting state. The definition of automata with final states (see,
for example, Hopcroft and Ullman [31]) is equivalent with our definition of
finite acceptors, with the convention that final states are the accepting states.

1 Angluin [9] uses the term “automaton with output”. In formal language books, like Hopcroft
and Ullman [31], this definition corresponds to a Moore automaton, and the notion of accep-
tors that we define below corresponds to a DFA.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

preliminaries 21

For a finite acceptor A= (Q,Σ,Γ ,τ,λ,q0), we define the language L(A) as
the set of strings accepted by the acceptor A.

The next example illustrates the way we graphically represent deterministic
finite automata.

Example 2.2. Take the automaton M1 = ([4], {a,b}, {0,1},τ,λ,1), where the
transition function τ and the output function λ are given in Table 2. In Fig-
ure 1, we see the corresponding graphical representation for the automaton
M1, where the states are labeled with the state number together with the
corresponding output symbol. We mark the initial state with an arrow.

Table 2: The transition function τ, and the output function λ of the automatonM1
State τ(a) τ(b) λ

1 2 4 1
2 1 3 0
3 4 2 0
4 3 1 0

Figure 1: A graphical representation of the automatonM1

The DFA M1 is a finite acceptor whose language is the set of all strings
over {a,b} with an even number of a’s and an even number of b’s (zero is
considered here as an even number). In the case of finite acceptors, for a
simplified graphical representation, we may also use double circles for ac-
cepting states, single circles for rejecting states, and only the state numbers
for labels. In Figure 2, we see the simplified graphical representation of the
acceptorM1.

Figure 2: An alternative graphical representation of the acceptorM1

Let two DFA be M = (Q,Σ,Γ ,τ,λ,q0) and N = (Q ′,Σ,Γ ,τ ′,λ ′,q ′
0
). We

say that M is homomorphic to N if there exists a mapping ϕ:Q→Q ′ such
that the following conditions hold for any state q ∈Q and for any letter a ∈Σ.

(i) ϕ(q0)=q ′
0
,

(ii) ϕ(τ(q,a))= τ ′(ϕ(q),a) and

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

22 preliminaries

(iii) λ(q)= λ ′(ϕ(q)).

If ϕ is bijective, we call the automata isomorphic. Two isomorphic automata
are also called equivalent. Let us note that in some works on automata
theory, there appears a more general notion of homomorphism, where the
sets of input symbols and output symbols are transformed by mappings as
well, while our previous notion of homomorphism is referred to as a “state-
homomorphism”.

Example 2.3. Let us consider two automata,M=(Q,Σ,Γ ,τ,λ,q0) andN=

(Q ′,Σ,Γ ,τ ′,λ ′,q ′
0
), where Q=Q ′ = [10], the input alphabet Σ= {a,b}, the

output alphabet Γ = [5], and the initial states are q0 = 1 and q ′
0
= 1. Table 3

shows the transition functions and the output functions of these automata.

Table 3: The transition functions and the output functions of automataM and N

Q τ(a) τ(b) λ

1 2 3 3
2 2 4 5
3 5 2 1
4 6 7 1
5 5 6 4
6 5 8 2
7 3 9 5
8 10 5 2
9 1 6 5
10 2 4 3

Q ′ τ ′(a) τ ′(b) λ ′

1 3 5 3
2 4 10 2
3 3 8 5
4 4 2 4
5 4 3 1
6 1 2 5
7 5 6 5
8 2 7 1
9 3 8 3
10 9 4 2

The two automata are isomorphic and Table 4 shows an isomorphism be-
tween them.

Table 4: An isomorphism between the automataM and N

Q 1 2 3 4 5 6 7 8 9 10

Q ′ 1 3 5 8 4 2 7 10 6 9

We say that a DFAM=(Q,Σ,Γ ,τ,λ,q0) is complete if for all states q ∈Q
and letters a ∈Σ, τ(q,a) is defined (that is, τ is a total function). At the end
of this chapter, we will give a simple construction to complete an undefined
transition. A state q is called reachable or accessible if there exists a string
w such that τ(q0,w) = q. An automaton all of whose states are accessible
is called accessible. If q1 and q2 are states of a DFA, then q1 and q2 are
distinguishable if there exists a distinguishing string for them, i.e., a stringw
such that q1〈w〉 6=q2〈w〉.

An automaton all of whose states are accessible and distinguishable is
called minimal. The algorithms for minimizing finite acceptors (see, for ex-
ample, Hopcroft and Ullman [31]) can be easily generalized for automata
with more than two symbols in the output alphabet.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

preliminaries 23

Example 2.4. Take the finite acceptor M2 = ([8], {0,1}, {0,1},τ,λ,1), where
the transition function τ and the output function λ are given in Table 5. In Fig-
ure 3, we see a corresponding graphical representation for the acceptor M2.

Table 5: The transition function τ and the output function λ of the acceptorM2
State τ(0) τ(1) λ

1 8 2 0
2 8 1 0
3 5 6 0
4 5 6 0
5 6 7 0
6 6 6 1
7 7 6 1
8 3 4 0

Figure 3: A graphical representation of the acceptorM2

After minimizing the automatonM2, we get the acceptor

M3=({{1,2}, {8}, {3,4}, {5}, {6,7}}, {0,1}, {0,1},τ,λ,1),

with the transition function and the output function described in Table 6. In
Figure 4, we see a graphical representation ofM3.

Table 6: The transition function τ and the output function λ of the acceptorM3
State τ(0) τ(1) λ

{1,2} {8} {1,2} 0
{8} {3,4} {3,4} 0
{3,4} {8} {6,7} 0
{5} {6,7} {6,7} 0
{6,7} {6,7} {6,7} 1

We note that after minimization, the new automaton has each state as a
set of states from the initial automaton in order to indicate how the new states
were obtained. We can also rename the states of the minimal automaton using
a bijective mapping form {{1,2}, {8}, {3,4}, {5}, {6,7}} to [5].

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

24 preliminaries

Figure 4: A graphical representation of the acceptorM3

Two states p, q in Q are called k-distinguishable if there exists a string w
of length ≤ k such that p〈w〉 6= q〈w〉. If for any string of length k, where
k is a nonnegative integer, we have p〈w〉= q〈w〉, the states p, q are called
k-indistinguishable. Note that k-indistinguishability defines an equivalence
relation between states. Two states are called equivalent (also indistinguish-
able) if they are k-indistinguishable for every k.

The degree of distinguishability of a minimal automaton M, denoted by
ρ(M), or simply ρ when M is clear from the context, is the minimal number
r such that for any pair of states from M, there exists a distinguishing string
not longer than r.

Definition 2.5. For d a nonnegative integer, we define the d-signature tree of
a state q as the finite function mapping each input string x of length at most
d to the output symbol of the state qx.

Of course, alternatively we can see and represent graphically a d-signature
tree as a tree, with the edges labeled by the elements of the domain of defini-
tion and the nodes with output symbols.

Example 2.6. Table 7 presents the 2-signature tree of the initial state of the
automatonM1 .

Table 7: The 2-signature tree of the initial state of automatonM1
ε a b aa ab ba bb

1 0 0 1 0 0 1

In Trakhtenbrot and Barzdin’ [46], also in Andras [1], we can find more in-
formation about automata. Automata with output on states are closely related
to automata with output on transitions, also called transducers. For more in-
formation about transducers, we recommend the book of Berstel [18] and an
article of Mohri [38].

In this thesis, we present several considerations about the time complexity
of the algorithms we discuss. Let us clarify the notation we will use. Let
f,g be functions defined from N into N. The following definitions also make
sense for real valued functions (Balcázar, Díaz, and Gabarró [10]). Although
the notations O and Ω are commonly used in computer science, there areNotations O andΩ

still several things to comment on about the operators and the definitions
associated with these notions. Some authors define O(f) = {g | ∃c > 0 and
n0 such that c ·g(n) ≥ f(n),∀n > n0} as a set of functions. In a similar

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

preliminaries 25

way, Ω(f) = {g | ∃c > 0 and n0 such that c ·g(n) ≤ f(n),∀n > n0}. If we
accept this definition, for a function g satisfying the previous conditions, we
say that g ∈ O(f) or g ∈Ω(f) Brassard [19]. Some authors, even accepting
that O and Ω are sets, use g= O(f) or “g is O(f)” for simplicity in writing,
Gurevich [30]. Of course the relation “is O(f)” is not symmetric. Moreover,
to simplify the notation, we identify functions with their expressions, as in
the following example.

Example 2.7. We define the following functions
f :N→N,f(n)=n
g :N→N,g(n)= 2n
h :N→N,h(n)=n2

We have: g= O(f) and we can also write 2n= O(n) or even 2n is O(n) or
n is O(n2).

In the following chapters, we will assume that the learned automata are
minimal, accessible, and complete. For automata that are non minimal, there
exist states that the Learner is not be able to distinguish. For automata having
inaccessible states, there is no way to get information about these states. If
the automata are not complete, there is a simple construction to make them
complete. We add a new virtual state qv not existing in Q, using as output
a special symbol # not existing in the output alphabet. All the undefined
transitions are reassigned as going to qv. The transitions from qv go to qv as
well. The Teacher and the Learner are both aware of this convention. Note
that in the case of acceptors, there is no need to add a special symbol # for
the virtual state qv: it suffices to label it with zero with the language of the
automaton remaining the same.

chapter references

[1] András Ádám. The behaviour and simplicity of finite Moore automata.
Budapest,Hungary: Akademiai Kiado, 1996 (cit. on p. 24).

[9] Dana Angluin, Leonor Becerra-Bonache, Adrian-Horia Dediu, and
Lev Reyzin. “Learning finite automata using label queries”. In:
Proceedings of the 20th International Conference on Algorithmic
Learning Theory, Porto, Portugal, October 3–5, 2009. Ed. by Ri-
card Gavaldà, Gábor Lugosi, Thomas Zeugmann, and Sandra Zilles.
Vol. 5809. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 171–185 (cit. on pp. 16, 20, 30, 45, 46, 95).

[10] José L. Balcázar, Josep Díaz, and Joaquim Gabarró. Structural Com-
plexity. Berlin: Springer-Verlag, 1990 (cit. on p. 24).

[18] Jean Berstel. Transductions and Context-free Languages. Vol. 38. Leit-
fäden der angewandten Mathematik und Mechanik. Teubner, 1979 (cit.
on p. 24).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

26 preliminaries

[19] Gillea Brassard. “Crusade for a better notation”. In: SIGACT News 17.1
(June 1985), pp. 60–64. DOI: 10.1145/382250.382808. URL: http:
//doi.acm.org/10.1145/382250.382808 (cit. on p. 25).

[23] Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert
E. Schapire, and Linda Sellie. “Efficient Learning of Typical Finite
Automata from Random Walks”. In: Inf. Comput. 138.1 (1997), pp. 23–
48 (cit. on pp. 17, 20, 67–69, 71, 77).

[30] Yuri Gurevich. “What does O(n) mean”. In: SIGACT News 17.4 (Mar.
1986), pp. 61–63. DOI: 10.1145/8307.8311. URL: http://doi.acm.
org/10.1145/8307.8311 (cit. on p. 25).

[31] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979 (cit. on
pp. 20, 22).

[38] Mehryar Mohri. “Finite-state transducers in language and speech pro-
cessing”. In: Comput. Linguist. 23.2 (June 1997), pp. 269–311 (cit. on
p. 24).

[46] Boris A. Trakhtenbrot and Ya. M. Barzdin’. Finite automata. Vol. 1.
Fundamental Studies in Computer Science. Behavior and Synthesis,
Translated from Russian by D. Louvish, English translation edited by
E. Shamir and L. H. Landweber. Amsterdam: North-Holland, 1973
(cit. on pp. 24, 68, 69, 75–77).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/10.1145/382250.382808
http://doi.acm.org/10.1145/382250.382808
http://doi.acm.org/10.1145/382250.382808
http://dx.doi.org/10.1145/8307.8311
http://doi.acm.org/10.1145/8307.8311
http://doi.acm.org/10.1145/8307.8311

Part I.

Helpful Query Learning of
Automata

27

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3 L E A R N I N G D FA F R O M Q U E R I E S

In this part, we present several helpful conditions for query learning. First, we
present the theoretical basis of a well-known algorithm, namely L∗. Although
the original algorithm worked for finite acceptors, we present a version for
DFA (the generalization is straightforward). After presenting the basic algo-
rithm, we discuss several possibilities created by a helpful Teacher’s labeling
the states with supplementary output symbols. We also study a particular
type of labeling that we call correction, which gives supplementary informa-
tion about the learning path.

After the initial presentation of Angluin [6], there have been several studies
of the use of L∗ for learning DFA. We mention Grinchtein and Leucker [28]
and a paper where similar problems have been solved in a very different man-
ner, Gasarch et al. [24].

In query learning, we assume the existence of a Teacher who knows a target
DFA and answers (correctly) specific kinds of queries asked by the Learner.
This type of learning has been intensively studied and categorized as a method
of exact learning, in contrast with the model proposed by Valiant[47] in 1984
about probably approximately correct learning.

There are various types of queries a Teacher can answer during the learn-
ing process. We give several examples: membership, equivalence, subset,
superset, disjointness, and exhaustiveness, as described by Angluin [7].

The algorithm L∗ uses the notion of a minimally adequate Teacher (MAT),
which is a fairly wide class of Teachers. A minimally adequate Teacher is able
to answer correctly two types of queries about a known target finite acceptor.

• Membership queries (MQ). The Learner asks whether a string w is
recognized by the target acceptor and the Teacher answers “yes” or
“no”.

• Equivalence queries (EQ). The Learner produces a finite acceptor M
and asks whetherM is isomorphic to the target automaton; the Teacher
answers “yes” in the affirmative case or “no” otherwise. If the answer
is “no”, the Teacher also returns a string w that is not interpreted (rec-
ognized or not recognized) correctly by M1. The returned string w is
called a counterexample.

It is not possible using only membership queries to learn finite acceptors
in polynomial time, as shown by Angluin [5]. Later, Angluin [8] proved that

1 We try to unify the terminology for DFA and acceptors, thus a DFA interprets an input string
while an acceptor recognizes or not an input string.

29

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

30 learning dfa from queries

also using only equivalence queries it is not possible to learn finite acceptors
in polynomial time.

We briefly recall several improvements made to L∗ since the original pre-
sentation. In 1993, Rivest and Schapire [43] described a more efficient ver-
sion of L∗ using homing sequences2. In 1996, Vilar [48] proposed a version
of L∗ for learning transducers, using translation queries instead of member-
ship queries. A parallel version of the algorithm L∗ was presented by Balcázar
et al. [11]. In 2006, Becerra-Bonache, Dediu and Tîrnăucă used correction
queries instead of membership queries for learning finite acceptors [17]. The
initial approach defines a correction query as a shortest string from one state
to a final state; however, there exist other corrections as well. In 2009, An-
gluin et al. [9] generalized membership queries to label queries.

3.1 local definitions

This chapter follows the line of the article presented by Angluin [6] about
learning regular sets from queries and counterexamples. Our data structure
and proofs are adapted to work for DFA. Vilar [48] presents query learning
of subsequential transducers, however, due to the fact that our automata have
output only on states and not on transitions, our version is simpler.

We define in a natural way a minimally adequate Teacher for query learning
DFA, that is, a Teacher which is able to answer correctly two types of queries
about a given target DFAM=(Q,Σ,Γ ,τ,λ,q0)3.

• Output queries (OQ). The Learner asks about the output of the state
reached following the transitions dictated by a string w, starting from
the initial state. The Teacher answers with λ(q0w).

• Equivalence queries (EQ). The Learner produces a finite DFA M ′ =
(Q ′,Σ,Γ ,τ ′,λ ′,q ′

0
) and asks whether M ′ is isomorphic to M. The an-

swer of the Teacher is “yes” in the affirmative case or “no” otherwise.
If the answer is “no”, the Teacher also returns a string w that is not
interpreted correctly by M ′, that is, λ(q0w) 6= λ ′(q ′

0
w). The returned

string w is called a counterexample.

The Learner uses a table called the observation table to store the Teacher’s
answers and to construct a hypothesis automaton.

The set of indices for rows are discovered incrementally by the Learner.
Starting with the empty string, the Learner forms a nonempty, finite, prefix-

2 Informally, a homing sequence guides the Learner such that, the outputs produced by the
homing sequence, completely determine the state reached by the automaton, regardless the
state the sequence is applied

3 Recall that at the end of Chapter 2, without loss of generality, we assumed that the target
automaton is complete, minimal, and with all states accessible. Otherwise, the Teacher can
add a virtual state, labeled with a special symbol ‘#’ and all undefined transitions are defined
as going to the virtual state. After learning the target automaton, the Learner can remove the
virtual state and the transitions to it. As a small optimization, the Learner does not need to ask
queries about transitions from the virtual state, as they go to the virtual state itself.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3.2 data structure—properties 31

closed set S over Σ. The rows of the observation table are indexed by the
set S∪S ·Σ. The indices for columns form a nonempty finite suffix-closed
set of strings E over Σ. The Teacher’s answers, collected in the observation
table, represent a finite function C, mapping (S∪S ·Σ) ·E to Γ . We denote the
observation table by (S,E,C).

An observation table can be visualized as a two-dimensional array with
rows labeled by elements of S∪S ·Σ and columns labeled by elements of E,
with the entry for row s and column e being equal toC(s·e). If s is an element
of (S∪S ·Σ), then row(s) denotes the finite function from E to Γ defined by
row(s)(e)=C(s ·e). By rows(S), we understand the set {row(s) | s ∈ S}.

An observation table is called closed if for every s in (S ·Σ\S), there ex-
ists an s ′ in S such that row(s) = row(s ′). An observation table is called
consistent if for any s1, s2 in S such that row(s1) = row(s2), we have
row(s1 ·a)= row(s2 ·a),∀a ∈ Σ.

If (S,E,C) is a closed and consistent observation table, we define a corre-
sponding DFA, also called the Learner’s conjecture, denoted by M (S,E,C)
= (Q ′,Σ,Γ ′,τ ′,λ ′,q ′

0
), where the set of states Q ′, the output alphabet Γ ′, the

transition function τ ′, the output function λ ′ and the initial state q ′
0
, are de-

fined as follows:

Q ′ = {row(s) | s ∈ S}= rows(S),
Γ ′ = {C(w) |w ∈ (S∪S ·Σ) ·E},
τ ′(row(s),a)= row(s ·a), for all s ∈ S and for all a ∈Σ,
λ ′(row(s))=C(s ·ε), for all s ∈ S,
q ′
0
= row(ε).

We use primes for the Learner automaton to avoid confusion with the target
automaton. To see that this is a well defined automaton, note that since S
is a nonempty prefix-closed set, it must contain ε, so q ′

0
is defined. Also,

since E is a nonempty suffix-closed set, it must contain ε. Thus, if s1 and
s2 are elements of S such that row(s1)=row(s2), then C(s1) = C(s1 ·ε) =
row(s1)(ε) and C(s2) = C(s2 ·ε) = row(s2)(ε) are defined and equal to
each other, hence λ ′ is well defined. To see that τ ′ is well defined, suppose
s1 and s2 are elements of S such that row(s1) = row(s2). Then since the
observation table (S,E,C) is consistent, for each a inΣ, row(s1·a) = row(s2·
a), and since it is closed, this common value is equal to row(s) for some s
in S.

Let us take a finite DFAM=(Q,Σ,Γ ,τ,λ,q0) and a function C defined on
a set of strings L over Σ∗. We say that the automaton M is consistent with
the function C, if for any element w ∈ L, we have C(w)= λ(q0w).

3.2 data structure—properties

The next series of theoretical results show several properties of closed and
consistent observation tables, as well as the relation between a target automa-
ton M and a Learner constructed conjecture M (S,E,C) such that M is con-
sistent with C.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

32 learning dfa from queries

Lemma 3.1 (Angluin [6]). Assume that (S,E,C) is a closed and consistent
observation table. For the automaton M (S,E,C) and for every s in S∪S ·Σ,
τ ′(q ′

0
,s)= row(s).

Proof. This lemma can be proved by induction on the length of s.
Induction base: For the length of s being equal to 0, that is, for s= ε, we

have τ ′(q ′
0
,ε)=q ′

0
= row(ε) by definition of M (S,E,C).

Induction hypothesis: Assume that for any string s in S∪S·Σ having length
less than or equal to some i, τ ′(q ′

0
,s)= row(s).

Induction step: For t in S∪S ·Σ having length equal to i+1, we can write
t= s ·a, where a ∈Σ and the length of s is i. As S∪S ·Σ is prefix closed and
t ∈ S∪S ·Σ, then s is also in S∪S ·Σ. We have

τ ′(q ′
0
,t) = τ ′(τ ′(q ′

0
,s),a)

= τ ′(row(s),a), by the induction hypothesis,
= row(s ·a), by the definition of τ ′ in M (S,E,C)
= row(t) as t= s ·a.

This completes the proof of Lemma 3.1.

Lemma 3.2 (Angluin [6]). Assume that (S,E,C) is a closed and consistent
observation table. Then the automaton M (S,E,C) is consistent with the finite
function C. That is, for every s ∈ S∪S ·Σ and e ∈E, λ ′(τ ′(q ′

0
,s ·e))=C(s ·e).

Proof. The proof is by induction on the length of e.
Induction base: If e= ε, and s ∈ S∪S·Σ, then τ ′(q ′

0
,s·e) is just τ ′(q ′

0
,s)=

row(s). If s is in S, then λ ′(row(s))=C(s) by definition of λ ′ in M (S,E,C).
If s is in S ·Σ, then as the observation table is closed, there exists s ′ ∈ S
such that row(s ′) = row(s). We have C(s ′ ·ε) = C(s ·ε) = λ ′(row(s)) =
λ ′(row(s ′)).

Induction hypothesis: Suppose that for all words e ′ in E of length at most
i, λ ′(τ ′(q ′

0
,s ·e ′))=C(s ·e ′). Let e be an element of E of length i+1.

Induction step: Since E is suffix-closed, e= a ·e ′ for some a in Σ and e ′

in E. Let s be an element of S∪S ·Σ. As the observation table is closed, there
exists s ′ ∈ S such that row(s)= row(s ′). We have

τ ′(q ′
0
,s ·e) = τ ′(q ′

0
,s ·a ·e ′),

= τ ′(τ ′(q ′
0
,s),a ·e ′),

= τ ′(row(s),a ·e ′), by Lemma 3.1,
= τ ′(row(s ′),a ·e ′), as row(s)= row(s ′),s ′ ∈ S,
= τ ′(τ ′(row(s ′),a),e ′),
= τ ′(row(s ′ ·a),e ′), by the definition of τ ′,
= τ ′(τ ′(q ′

0
,s ′ ·a),e ′), by Lemma 3.1,

= τ ′(q ′
0
,s ′ ·a ·e ′).

By the induction hypothesis, λ ′(τ ′(q ′
0
,s ′ ·a·e ′))=C(s ′ ·a·e ′); as row(s ′)=

row(s), then C(s ′ ·a ·e ′) =C(s ·a ·e ′). Finally, we have λ ′(τ ′(q ′
0
,s ·e)) =

λ ′(τ ′(q ′
0
,s ′ ·a ·e ′))=C(s ·a ·e ′)=C(s ·e).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3.3 presentation of the algorithm 33

Lemma 3.3 (Angluin [6]). Assume that (S,E,C) is a closed and consistent
observation table and the conjecture M (S,E,C) has n states. Any automa-
ton consistent with the finite function C either has more than n states or is
isomorphic to M (S,E,C).

Proof. Let us consider a new automaton M ′′ = (Q ′′,Σ,Γ ′,τ ′′,λ ′′,q ′′
0
) having

n or fewer states, consistent with C. For each state q ′′ in Q ′′ we define a
finite function fq ′′ from E to Γ ′ such that fq ′′(e)= λ ′′(q ′′e).

As M ′′ is consistent with C, we have λ ′′(q ′′
0
s ·e) = C(s ·e) for each s in

(S∪S ·Σ) and for each e in E. This implies that fq ′′
0
s= row(s) in M (S,E,C).

As s ranges over S, we get at least n different values for fq ′′
0
s, that is, |Q ′′|≥n.

According to the initial assumption that |Q ′′| ≤ n, it follows that Q ′′ must
have exactlyn states. We define a functionϕ fromQ ′ toQ ′′ byϕ(row(s))=
q ′′
0
s. For each distinct row(s) corresponding to a unique state in Q ′ there is

a unique q ′′, namely q ′′
0
s. This mapping is injective and surjective. Let us

check that ϕ(q ′
0
)=q ′′

0
. We have ϕ(q ′

0
)=ϕ(row(ε))=q ′′

0
ε=q ′′

0
. For each

s in S and a in Σ, there exists s1, an element of S, such that row(s ·a) =
row(s1) because the table is closed. Then

ϕ(τ ′(row(s),a))=ϕ(row(s ·a))=ϕ(row(s1))=q ′′
0 s1,

and
τ ′′(ϕ(row(s)),a)= τ ′′(q ′′

0 s,a)=q
′′
0 s ·a.

As the states q ′′
0
s1 and q ′′

0
s ·a correspond to the same row(s1) value, they

must be the same state in M ′′. Thus we can conclude that ϕ preserves the
transition function.

We now show that ϕ preserves the output function. The output of an ar-
bitrary state row(s) from M ′ is C(s). At the same time, ϕ(row(s)) = q ′′

0
s,

and as M ′′ is consistent with C, we also have that λ ′′(q ′′
0
s) = C(s), which

implies that λ ′(row(s))= λ ′′(ϕ(row(s))), as claimed.

Considering together the results of Lemma 3.2 and Lemma 3.3, we can
state the following theorem.

Theorem 3.4 (Angluin [6]). If (S,E,C) is a closed and consistent observation
table, then the conjecture M (S,E,C) is consistent with the finite function C.
Any other DFA consistent with C but not equivalent to M (S,E,C) must have
more states.

3.3 presentation of the algorithm

Next we present the way in which the L∗ algorithm develops a series of closed
and consistent observation tables to discover the target automaton4. Actually,

4 Although in the definition of automata there should be an initial state, it would be possible to
learn a target “automaton” with no states: the answer at the first OQ(ε) is the special symbol
and the learning algorithm stops.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

34 learning dfa from queries

L∗ has two parts: a Learner L∗ together with a Teacher component; we dis-
cuss separately each one of them.

The Learner algorithm uses as its main data structure the observation table.
We present L∗ for DFA as Algorithm 1.

Algorithm 1: L∗ for DFA

1 Initialize S← ε and E← ε
2 Ask OQ(ε)

3 Ask OQ(a) for each a ∈Σ
4 Construct the initial observation table (S,E,C)
5 repeat
6 repeat
7 if ((S,E,C) is not closed) then
8 find s in S and a in Σ such that row(s ·a) ∉ rows(S)
9 add s ·a to S

10 extend C to (S∪S ·Σ) ·E asking OQ(s ·a ·c ·e), c in Σ and e
in E

11 if ((S,E,C) is not consistent) then
12 find s1,s2 ∈ S, a ∈Σ and e ∈E such that row(s1)= row(s2)

and C(s1 ·a ·e) 6=C(s2 ·a ·e)
13 add a ·e to E
14 extend C to (S∪S ·Σ) ·E asking for not asked before

OQ(α ·a ·e) for all α in S∪S ·Σ
15 until ((S,E,C) is closed and consistent)
16 Construct the conjecture M (S,E,C)
17 if (the Teacher replies with a counter-example s) then
18 add s and all its prefixes to S
19 extend C to (S∪S ·Σ)E asking (not asked before) OQ(α ·c ·e),

for all α in Pref(s), c in {ε}∪Σ and e in E

20 until (the Teacher replies yes to the conjecture)
21 Output M (S,E,C)

We describe now how L∗ works. Initially S=E= {ε}. To determine C, the
Learner asks output queries for ε and each a in Σ.

The inner “repeat” loop starting at line 6 checks whether the current ob-
servation table (S,E,C) is closed and consistent. If (S,E,C) is not closed
(consistent), the algorithm adds a new string to S (to E) and updates the table
asking output queries for the missing elements.

When the Learner’s automaton is closed and consistent, the Learner asks
an equivalence query. The Teacher’s answer can be ‘yes’ (in this case the
algorithm ends with the output M (S,E,C)) or ‘no’. In this case, the Teacher
provides a counterexample, while the Learner adds all its prefixes to S and
updates the observation table using the output queries.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3.4 correctness and complexity 35

3.4 correctness and complexity

Theorem 3.5 (Angluin [6]). Given any minimally adequate Teacher present-
ing an unknown minimal DFA M, the Learner L∗ terminates and correctly
outputs a DFA isomorphic to M. If n is the number of states of M and m
an upper bound on the length of any counterexample provided by the Teacher,
then the total running time of L∗ is bounded by a polynomial inm and n.

Proof. The correctness of the algorithm follows from the following fact. If
the algorithm eventually terminates, the answer to the last conjecture is “yes”,
that is the output of the algorithm is an automaton isomorphic to the target
DFA (by the definition of a minimally adequate Teacher).

Let us note that in line number 16, the algorithm uses a closed and consis-
tent observation table. The number of different rows in the observation table
monotonically increases as L∗ runs. If a string is added to E (the “not con-
sistent” branch), the number of different rows increases, two previous equal
values row(s1) and row(s2) becoming different after adding the new string
to E. Similarly, on the “not closed” branch, a new value s is added to S, and
row(s) is different from all existing rows in S. The total number of times
the algorithm performs these operations (closing, or solving the consistency)
is bounded by n−1, as initially the observation table contains row(ε). For
an incorrect conjecture M ′(S ′,E ′,C ′), the target automatonM which is con-
sistent with C ′ but inequivalent with M ′(S ′,E ′,C ′) should have at least one
more state. Thus, there can be at most n− 1 incorrect conjectures and L∗

correctly terminates after making at most n conjectures.
Let k be the number of input symbols, that is, k= |Σ|. Let us denote by m

the maximum length of a counterexample returned by the Teacher. Initially
the sets S and E each contain one element, namely, ε. There can be at most
n “not closed” or “not consistent” operations. Thus, the total number of
elements in E cannot exceed n and the maximum length of a string in E can
be at most n−1. The total number of strings in S cannot exceed n+m(n−1),
for the first n strings a similar reasoning as for E holds, and there can be at
most n−1 counterexamples, each of which can cause at most m strings to
be added to S. The maximum length of a string from S can be n− 1+m:
for every closing operation, the maximum length a string in S is increased
by at most one, and for a counterexample, by no more than the length of the
counterexample. To conclude, we get the maximum number of elements in
(S∪S ·Σ) ·E being at most

(k+1)(n+m(n−1))n=O(mn2),

and the maximum length of any string in (S∪S ·Σ) ·E being at most

m+2n−1=O(m+n).

The number of output queries could be reduced, when compared with the
size of (S∪S ·Σ) ·E: some of the queries being asked several times. The
queries from the first column of the observation table, that is, (S∪S ·Σ) ·ε,

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

36 learning dfa from queries

should be asked. The queries from the area S · (E \ {ε}) of the observation
table are initially asked in the area (S ·Σ) ·E. Counting the number of OQ,
we get n+m(n−1)+nk(n+m(n−1)) and O(OQ)=O(mn2).

We now show that L∗ performs in polynomial time. Checking whether the
observation table is closed or consistent can be done in a time polynomial
in the size of the observation table, and these operations are performed at
most n−1 times. The number of queries asked by the Learner is polynomial.
Constructing a conjecture can be done in a time polynomial in the size of the
observation table, and is performed at most n times.

Thus, the total running time of L∗ is bounded by a polynomial inm and n.

The Teacher of L∗ should answer OQ and EQ. To answer an OQ, the
Teacher receives a string and should move in the target automaton starting
from the initial state, returning back the output of the state reached, which is
an algorithm linear in the length of the interrogating word. As the maximum
length of any string in (S∪S ·Σ) ·E is at mostm+2n−1, then answering an
OQ is clearly a polynomial algorithm.

We describe now the procedure for answering an EQ. If the target au-
tomaton M = (Q,Σ,Γ ,τ,λ,q0) has more states than the conjecture M ′ =
(Q ′,Σ,Γ ′,τ ′,λ ′,q ′

0
), then the answer for the EQ is negative and a counterex-

ample should be provided. The Teacher constructs the finite acceptor D =

(Q×Q ′,Σ, {0,1},τ ′′,λ ′′,(q0,q ′
0
)), where

τ ′′((q,q ′),a)= (τ(q,a),τ ′(q ′,a))

for all states q ∈Q, q ′ ∈Q ′ and input symbols a ∈Σ. The output function λ ′′

gives an accepting state for counterexamples as follows:

λ ′′((q,q ′))=
{
1, if λ(q) 6= λ ′(q ′),
0, otherwise.

Thus, the strings recognized by D are the counterexamples.
We note that constructing an isomorphism between the target automaton

and the queried automaton is also a polynomial time algorithm (we map the
initial states, after that for each transition we map the destinations) and we
get the total running time of the Teacher and the Learner together to be poly-
nomial.

3.5 illustrative example

Now, we present the steps performed by L∗ to learn a given DFA. Take the
automaton M4 = ([10], {a,b}, [5],τ,λ,1) where the transition function τ, the
output function λ, and a corresponding graphical representation are given in
Figure 5.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3.5 illustrative example 37

State τ(a) τ(b) λ

1 3 5 3
2 4 10 2
3 3 8 5
4 4 2 4
5 4 3 1
6 1 2 5
7 5 6 5
8 2 7 1
9 3 8 3
10 9 4 2

Figure 5: The transition function τ, the output function λ, and a graphical represen-
tation of the automatonM4

In the initial observation table, Table 8, row(a) is not closed, a is added
to S. The next observation tables, Tables 9–11, are not closed, and the corre-
sponding values are added to S.

Table 8: The initial
observation table, S=E= {ε};

row(a) ∉ rows(S)

(S,E,C)1 E

Row S∪SΣ ε

1 ε 3

2 a 5

3 b 1

Table 9: S= {ε,a}, E= {ε};
row(b) ∉ rows(S)

(S,E,C)2 E

Row S∪SΣ ε

1 ε 3

2 a 5

3 b 1

4 aa 5

5 ab 1

Table 10: S= {ε,a,b},
E= {ε}; row(ba) ∉ rows(S)

(S,E,C)3 E

Row S∪SΣ ε

1 ε 3

2 a 5

3 b 1

4 aa 5

5 ab 1

6 ba 4

7 bb 5

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

38 learning dfa from queries

Table 11: S= {ε,a,b,ba},
E= {ε}; row(bab) ∉ rows(S)

(S,E,C)4 E

Row S∪SΣ ε

1 ε 3

2 a 5

3 b 1

4 ba 4

5 aa 5

6 ab 1

7 bb 5

8 baa 4

9 bab 2

The observation table described by Table 12 is closed and consistent and
L∗ constructs the first conjectureM5, presented in Figure 6.

Table 12:
S= {ε,a,b,ba,bab}, E= {ε};

table closed and consistent

(S,E,C)5 E Q ′

Row S∪SΣ ε

1 ε 3 q ′
1

2 a 5 q ′
2

3 b 1 q ′
3

4 ba 4 q ′
4

5 bab 2 q ′
5

6 aa 5 q ′
2

7 ab 1 q ′
3

8 bb 5 q ′
2

9 baa 4 q ′
4

10 baba 4 q ′
4

11 babb 2 q ′
5

Figure 6: First conjectureM5

As the conjecture M5 is not the correct automaton, the Teacher constructs
the acceptor of counterexamples. A minimized version is presented in Fig-
ure 7.

The problem of choosing the “best” counterexample still has some un-
known aspects. Choosing a larger counterexample, the Teacher communi-
cates about the existence of more states to the Learner, something which
could reduce the number of future equivalence queries, however at the price
of an increased number of output queries. In our case, a minimal counterex-
ample would be aba. But, following this way would require a supplementary
counterexample. We could choose ababa and this requires no additional

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3.5 illustrative example 39

Figure 7: A minimal acceptor for counterexamples for conjectureM5

counterexamples until the target automaton is discovered. We follow this
way.

In Table 13 we see that row(b) and row(ab) have the same value, while
a transition with a sends to different states, that is row(ba) is different from
row(aba). Thus, L∗ adds the string a to E and asks output queries for the
new entries of the observation table.

Table 14 is not closed: row(abb) is in S·Σ and not in S. The L∗ algorithm
adds abb to S and consequently the strings abba and abbb to S ·Σ, asking
output queries for the new entries.

In Table 15 we see that row(ε) and row(ababa) have the same output.
A transition with b sends to different states, that is row(b) is different from
row(ababab); more precisely, the inconsistency is in column a. Thus, L∗

adds the string ba to E and asks output queries for the new entries of the
observation table.

Table 16 is not closed: row(abbb) is in S·Σ and not in S. The L∗ algorithm
adds abbb to S and consequently the strings abbba and abbbb to S ·Σ,
asking output queries for the new entries.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

40 learning dfa from queries

Table 13: S= {ε,a,b,ba,aba,bab,abab,ababa}, E= {ε}; row(b),
row(ab) are not consistent, transition with a

(S,E,C)6 E

Row S∪SΣ ε

1 ε 3

2 a 5

3 b 1

4 ab 1

5 ba 4

6 aba 2

7 bab 2

8 abab 2

9 ababa 3

10 aa 5

11 bb 5

12 abb 5

13 baa 4

14 abaa 4

15 baba 4

16 babb 2

17 ababb 4

18 ababaa 5

19 ababab 1

Table 14:

row(abb) ∉ rows(S)

(S,E,C)7 E

Row S∪SΣ ε a

1 ε 3 5

2 a 5 5

3 b 1 4

4 ab 1 2

5 ba 4 4

6 aba 2 4

7 bab 2 4

8 abab 2 3

9 ababa 3 5

10 aa 5 5

11 bb 5 5

12 abb 5 1

13 baa 4 4

14 abaa 4 4

15 baba 4 4

16 babb 2 3

17 ababb 4 4

18 ababaa 5 5

19 ababab 1 2

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3.5 illustrative example 41

Table 15: row(ε),
row(ababa) are not

consistent, transition with b

(S,E,C)8 E

Row S∪SΣ ε a

1 ε 3 5

2 a 5 5

3 b 1 4

4 ab 1 2

5 ba 4 4

6 aba 2 4

7 abb 5 1

8 bab 2 4

9 abab 2 3

10 ababa 3 5

11 aa 5 5

12 bb 5 5

13 baa 4 4

14 abaa 4 4

15 abba 1 4

16 abbb 5 3

17 baba 4 4

18 babb 2 3

19 ababb 4 4

20 ababaa 5 5

21 ababab 1 2

The observation table described by Table 17 is closed and consistent and
L∗ constructs a second conjectureM6. This time the conjectureM6 is isomor-
phic with the target automaton and we present this isomorphism in Table 18.

Table 16:
row(abbb) ∉ rows(S)

(S,E,C)9 E

Row S∪SΣ ε a ba

1 ε 3 5 4

2 a 5 5 2

3 b 1 4 5

4 ab 1 2 1

5 ba 4 4 4

6 aba 2 4 3

7 abb 5 1 3

8 bab 2 4 3

9 abab 2 3 4

10 ababa 3 5 2

11 aa 5 5 2

12 bb 5 5 2

13 baa 4 4 4

14 abaa 4 4 4

15 abba 1 4 5

16 abbb 5 3 4

17 baba 4 4 4

18 babb 2 3 4

19 ababb 4 4 4

20 ababaa 5 5 2

21 ababab 1 2 1

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

42 learning dfa from queries

Table 17: table closed and consistent
(S,E,C)10 E Q ′

Row S∪SΣ ε a ba

1 ε 3 5 4 q ′
1

2 a 5 5 2 q ′
2

3 b 1 4 5 q ′
3

4 ab 1 2 1 q ′
4

5 ba 4 4 4 q ′
5

6 aba 2 4 3 q ′
6

7 abb 5 1 3 q ′
7

8 bab 2 4 3 q ′
6

9 abab 2 3 4 q ′
8

10 abbb 5 3 4 q ′
9

11 ababa 3 5 2 q ′
10

12 aa 5 5 2 q ′
2

13 bb 5 5 2 q ′
2

14 baa 4 4 4 q ′
5

15 abaa 4 4 4 q ′
5

16 abba 1 4 5 q ′
3

17 baba 4 4 4 q ′
5

18 babb 2 3 4 q ′
8

19 ababb 4 4 4 q ′
5

20 abbba 3 5 4 q ′
1

21 abbbb 2 4 3 q ′
6

22 ababaa 5 5 2 q ′
2

23 ababab 1 2 1 q ′
4

Table 18: The isomorphism between the conjecture and the target automaton

Q ′ q ′
1

q ′
2

q ′
3

q ′
4

q ′
5

q ′
6

q ′
7

q ′
8

q ′
9

q ′
10

Q 1 3 5 8 4 2 7 10 6 9

We note that during all these steps needed to discover the target automaton,
the Learner asks

• only two equivalent queries, the last one successful,

• 47 output queries that are enough to fill in all the entries in the observa-
tion tables.

3.6 remarks

The L∗ algorithm presented in this chapter learns DFA, generalizing the algo-
rithm presented by Angluin, about learning regular sets (finite acceptors).

This chapter constitutes the theoretical base for the next two chapters, learn-
ing with label queries and learning with correction queries, both focusing on
particular aspects of learning DFA. Thus, learning with label queries empha-
sizes the influence of a helpful Teacher, which is able to assign output sym-

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

3.6 remarks 43

bols, labeling the states for a faster learning, while learning from correction
queries represents a particular type of labeling.

The next chapter will present more experimental results, comparing the
number of queries needed by L∗ and the number of label queries needed to
learn a large set of test automata.

chapter references

[5] Dana Angluin. “A Note on the Number of Queries Needed to Identify
Regular Languages”. In: Information and Control 51.1 (1981), pp. 76–
87 (cit. on p. 29).

[6] Dana Angluin. “Learning regular sets from queries and counterexam-
ples”. In: Information and Computation 75.2 (1987), pp. 87–106. DOI:
http://dx.doi.org/10.1016/0890-5401(87)90052-6 (cit. on
pp. 12, 15, 16, 29, 30, 32, 33, 35).

[7] Dana Angluin. “Queries and Concept Learning”. In: Machine Learn-
ing 2.4 (1988), pp. 319–342. DOI: http://dx.doi.org/10.1023/A:
1022821128753 (cit. on p. 29).

[8] Dana Angluin. “Negative Results for Equivalence Queries”. In: Ma-
chine Learning 5.2 (1990), pp. 121–150. DOI: http://dx.doi.org/
10.1023/A:1022692615781 (cit. on p. 29).

[9] Dana Angluin, Leonor Becerra-Bonache, Adrian-Horia Dediu, and
Lev Reyzin. “Learning finite automata using label queries”. In:
Proceedings of the 20th International Conference on Algorithmic
Learning Theory, Porto, Portugal, October 3–5, 2009. Ed. by Ri-
card Gavaldà, Gábor Lugosi, Thomas Zeugmann, and Sandra Zilles.
Vol. 5809. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 171–185 (cit. on pp. 16, 20, 30, 45, 46, 95).

[11] José L. Balcázar, Josep Díaz, and Ricard Gavaldà. “Algorithms for
Learning Finite Automata from Queries: A Unified View”. In: Ad-
vances in Algorithms, Languages, and Complexity. 1997, pp. 53–72
(cit. on p. 30).

[17] Leonor Becerra-Bonache, Adrian-Horia Dediu, and Cristina Tîrnăucă.
“Learning DFA from correction and equivalence queries”. In: Proceed-
ings of the 8th International Conference on Grammatical Inference:
Algorithms and Applications. Vol. 4201. Lecture Notes in Computer
Science. Tokyo, Japan: Springer-Verlag, 2006, pp. 281–292 (cit. on
pp. 17, 30, 45, 55, 95).

[24] William I. Gasarch, Efim B. Kinber, Mark G. Pleszkoch, Carl H. Smith,
and Thomas Zeugmann. “Learning via QuerieswithTeams andAnoma-
lies”. In: Fundam. Inf. 23.1 (Jan. 1995), pp. 67–89. URL: http://dl.
acm.org/citation.cfm?id=2383376.2383378 (cit. on p. 29).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022821128753
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022821128753
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022692615781
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022692615781
http://dl.acm.org/citation.cfm?id=2383376.2383378
http://dl.acm.org/citation.cfm?id=2383376.2383378

44 3.6 remarks

[28] Olga Grinchtein and Martin Leucker. “Learning finite-state machines
from inexperienced teachers”. In: Proceedings of the 8th International
Conference on Grammatical Inference: Algorithms and Applications.
Vol. 4201. Lecture Notes in Computer Science. Tokyo, Japan: Springer-
Verlag, 2006, pp. 344–345. DOI: 10.1007/11872436_30. URL: http:
//dx.doi.org/10.1007/11872436_30 (cit. on p. 29).

[43] Ronald L. Rivest and Robert E. Schapire. “Inference of Finite Au-
tomata Using Homing Sequences”. In: Information and Computation
103.2 (Apr. 1993), pp. 299–347. DOI: 10.1006/inco.1993.1021.
URL: http://dx.doi.org/10.1006/inco.1993.1021 (cit. on
p. 30).

[47] Leslie Gabriel Valiant. “A theory of the learnable”. In: Communica-
tions of the ACM 27.11 (1984), pp. 1134–1142. DOI: http://doi.
acm.org/10.1145/1968.1972 (cit. on pp. 15, 29).

[48] Juan Miguel Vilar. “Query learning of subsequential transducers”. In:
Proceedings of the Third International Colloquium on Grammatical
Interference (ICGI-96): Learning Syntax from Sentences, Montpellier,
France, September. Ed. by Laurent Miclet and Colin de la Higuera.
Vol. 1147. Lecture Notes in Computer Science. Springer-Verlag, 1996,
pp. 72–83 (cit. on p. 30).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/10.1007/11872436_30
http://dx.doi.org/10.1007/11872436_30
http://dx.doi.org/10.1007/11872436_30
http://dx.doi.org/10.1006/inco.1993.1021
http://dx.doi.org/10.1006/inco.1993.1021
http://dx.doi.org/http://doi.acm.org/10.1145/1968.1972
http://dx.doi.org/http://doi.acm.org/10.1145/1968.1972

4 L A B E L Q U E R I E S

In this chapter, we study the influence of an increased number of output sym-
bols on the learning process. We allow a Teacher to add labels to a target
automaton and to answer Learner’s queries with both the output of the target
automaton and the label attached.

In 2009, Angluin et al. [9] presented label queries in a general context,
with labels carefully chosen or random labels for different learning scenar-
ios. Here, we present label queries only for L∗. Although the label queries
were introduced after correction queries (Becerra et al. [14, 17]), we find the
presentation of corrections queries as a particular type of label queries to be
more appropriate.

4.1 local definitions

If M = (Q,Σ,Γ ,τ,λ,q0) is a finite target DFA, then a labeling of M is a
function ` mapping Q to a set Λ of labels, the label alphabet. We use M
to construct a new automaton M` = (Q,Σ,Γ ×Λ,τ,λ`,q0), where the output
function λ`(q) = (λ(q),`(q)). That is, the new output for a state is a pair of
symbols, the output symbol together with the label attached by the Teacher to
that state. We call this pair of symbols the labeled output. If it is clear from
the context that we deal with a labeled automaton, then we call the labeled
output only output. We assume that ` is surjective. The Learner has access to
output queries (defined in the previous chapter) for a labeled target automaton
and this kind of query will be referred to as a label query (LQ for short).

There exists a variant of the L∗ algorithm, also discussed by Tîrnăucă and
Knuutila [45], that initializes the content of the set E of an observation table
(defined in the previous chapter) in a different way. Instead of using only the
empty word ε, the algorithm initializes Ewith Σ≤j, for j a nonnegative integer.
We denote this variant of the algorithm by L∗

j
. Clearly, L∗

0
corresponds to the

original L∗.

4.2 theoretical aspects

For labeled automata, there are two particular situations. Suppose that the
Teacher labels each of the states with the same symbol and then there is no
influence on the learning process. The other case would be when the Teacher
labels the states in such a way that for each state there results a different pair
of symbols. We easily obtain the following result.

45

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

46 label queries

Proposition 4.1 (Angluin et al. [9]). Let M` = (Q,Σ,Γ ×Λ,τ,λ`,q0) be a
finite target labeled automaton having ` : Q→Λ, a labeling function such
that the resulting output function λ` is injective. Then L∗ can learn the tar-
get automaton using |Q||Σ|+ 1 label queries and no counterexamples were
needed.

Proof. Letn be the number of states of the target automaton. The observation
table of L∗ is not closed until discovering all the states. We prove by induction
on the number of states that an accessible, minimal automaton labeled with
an injective λ` function can be learned using only |Q||Σ|+1 label queries.

Induction base: Clearly for an automaton with one state, we need one
query for the output of the initial state and |Σ| queries for transitions.

Induction hypothesis: Assume that any accessible, minimal automata with
n states and with an injective λ` function can be learned using only n|Σ|+1
label queries.

Induction step: Suppose given

Mn+1=(Qn+1,Σ,Γ ×Λ,τn+1,λ`,n+1,q0,n+1)

an accessible, minimal automaton with n+1 states with an injective labeling
function.

We mark all the states with levels, starting with the initial state, we assign
to it level 0. We assign level 1 to all states not yet assigned, reached by one
step transitions from the initial state. In general we assign level i+1 to all
states not yet assigned, reached by one step transitions from all states with
level i. The assignment should stop after all states get a level, as all the states
are reachable from the initial state, and we have a finite number of states. Let
µ be the maximum level. The states reached with transitions from one state
on level µ should also be one step transitions from some states with the level
strictly less than µ, otherwise µ would not be the maximum level.

We take one arbitrary state p, from the level µ. We replace all input tran-
sitions to p with self-loops to the states they are coming from, that is, we
construct a new transition function τ ′ : (Qn+1 \ {p})×Σ→Qn+1 \ {p}, de-
fined as follows.

τ ′(q,a)=
{
τn+1(q,a) if τn+1(q,a) 6=p,
q if τn+1(q,a)=p.

We get an automaton

Mn=(Qn+1 \{p},Σ,Γ ×Λ,τ ′,λ ′,q0,n+1),

where λ ′ is the restriction of λ`,n+1 to Qn+1 \ {p}. The automaton Mn satis-
fies the conditions of the induction hypothesis, that is, can be learned using
only n|Σ|+1 label queries. We modify the automaton Mn in the following
way. For a particular symbol b ∈ Σ, we construct a new transition function
τ ′
b

:Qn+1×Σ→Qn+1, defined as follows.

τ ′b(q,a)=

τn+1(q,a) if τn+1(q,a) 6=p,
q if τn+1(q,a)=p and a 6=b,
p otherwise.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

4.2 theoretical aspects 47

LetMn+1,b be the automaton (Qn+1,Σ,Γ×Λ,τ ′
b
,λ`,n+1,q0,n+1). To learn

the automaton Mn+1,b, the algorithm L∗ follows exactly the same steps as
for Mn except when querying for the transition connecting p, the observa-
tion table becomes non-closed. We follow the learning steps as for Mn, not
including the row accessing p in S until all the other n states are included in
S (it was possible to learn the complete Mn, and all its states are one step
transitions from some states with the level strictly less than µ). According to
the induction hypothesis, up to this moment there have been n|Σ|+1 label
queries and the observation table is not closed. We add to S the string leading
from the initial state to p; there are |Σ| queries needed to discover the transi-
tions from p. Thus, to learn the automaton Mn+1,b, we need (n+1)|Σ|+1

queries. However, if there are more than one input transitions to p, this is not
yet the automatonMn+1. For all the other transitions fromMn+1 connecting
to p, we take them one by one and we follow exactly the same learning steps
as for Mn+1,b. This time no additional query are needed, after adding to S
one of of the strings leading from the initial state to p, the observation table
becomes closed. We get thus that we need (n+1)|Σ|+1 queries to learn the
automatonMn+1.

From the complexity of L∗ we also note that the number of output symbols
does not influence the size of the observation table. However, the degree of
distinguishability depends on the number of symbols of the output alphabet,
and this could also change the number of strings from E.

We show now that for any automaton M, and j ≥ 1, there exists a label-
ing with a non-injective output function λ`, such that L∗

j
is able to learn M

without counterexamples.

Proposition 4.2. Let M= (Q,Σ,Γ ,τ,λ,q0) be a minimal automaton with n
states, m output symbols and k input symbols, such that m<n. There exists
a labeling ` of M, with |λ`(Q)| < n, such that for 1 ≤ j, L∗

j
is able to learn

the target automaton with a number of label queries that is O(nkj+1) and
without needing counterexamples.

Proof. For a nonnegative integer j, let us denote by Rj the equivalence rela-
tion of being j-indistinguishable on Q. We also denote by Πj the partition of
states that Rj defines (Πj=Q/Rj).

The partition Πj+1 is a refinement of Πj since two states that are indistin-
guishable by any string of length j+1, are also indistinguishable by any string
of length j. Moreover, if |Πj|<n, then Πj+1 is a strict refinement of |Πj|. To
show this, let us take two states, p and q in Q that are j-indistinguishable.
As we established that M is minimal, that is, that all states are distinguish-
able, then there exists r> j and a string w=w1 . . .wr, with w1, . . . ,wr in Σ,
such that w is a shortest (in terms of the length order) distinguishing string
for (p,q). Let p ′ = pw1 . . .wr−j−1 and q ′ = qw1 . . .wr−j−1 be the states
reached from p and q following the transitions with the first r− j−1 charac-
ters of w. The string wr−j . . .wr of length j+1 is a distinguishing string for
the pair (p ′,q ′) which is j-indistinguishable, otherwise it would contradict

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

48 label queries

the minimality of the length of the string w. This part of the proof followed
the lines of the proof made by Moore [39].

We associate to the partition of states Πj a labeling function `j in the fol-
lowing way. For each element p from an equivalence class π of Πj, we assign
a unique label, such that the set {`j(p) | p ∈ π} becomes a permutation of the
set {1.. . |π|}. This labeling assures unique values for the j-signature tree of
each state. To show this, let us take two states p and q in Q. If they are in
different equivalence classes, then there must exists a string no longer than j
to distinguish between p and q, thus their j-signature trees are different. If p
and q are in the same equivalence class, they have different labels; therefore,
their j-signature trees are different.

The Teacher can label the states such that each state has a unique j-signa-
ture tree. It is easy to show that there is a one-to-one correspondence between
j-signature trees and the rows in the observation table of L∗

j
. In these condi-

tions the proof that L∗
j

can learn an automaton without counterexamples is
similar with the proof of Proposition 4.1. The greater is j, the less is the
number of labels needed. For j= 0, the labels in each equivalence class are
integers from one to the number of elements in each class, thus we have

|λ`0(Q)|=
∑
p∈Π0

|p|=n.

For j > 0, the partition Πj is a strict refinement of Π0, because there are m
equivalence classes in Π0 and by hypothesis we havem<n. As Πj is a strict
refinement of Π0, there exist two states p and q in Q such that pR0q holds
while pRjq does not hold. The states p and q have the same output, that
is, λ(p) = λ(q). The labels associated with 〈p〉Rj and 〈q〉Rj must share the
common labels corresponding to the minimum from |〈p〉Rj | and |〈q〉Rj |, that
is at least one label, thus the total number of elements in |λ`j(Q)| must be less
than n.

We analyze now the size of the observation table of L∗
j
. Note that L∗

j
needs

in the observation table as many rows as L∗, that is, the size of S∪S ·Σ is
O((k+1)n). The set E contains kj+1−1 strings. The queries corresponding
to the area S ·E with the exception of column ε exist also in the area S ·Σ ·E.
Thus, the number of queries is O(nkj+1) and this concludes the proof.

In particular, it is easy to prove by induction on the number of states the
following result.

Corollary 4.3. For a minimal automaton with n states, m output symbols
and k input symbols, with m < n, there exists a labeling with less than n
labeled output symbols such that L∗

1
needs nk2+k+1 label queries and no

counterexample to learn the automaton.

Proof. For a new state s added to S in an observation table of L∗
1
, we note the

following facts.

• as the row corresponding to the new state already existed in S ·Σ, there
is no new label query needed to be asked for s itself.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

4.3 illustrative example 49

• We add k rows in S·Σ, each row labeled by s·b, for all b in Σ. However,
for the entries s ·b ·ε, we do not need label queries, since these entries
are already known from s ·b (already added to S).

• For each of the k new lines added to the observation table, we need to
ask k label queries for each symbol of the input alphabet, therefore k2

new label queries.

For an automaton with one state, there are k+1 label queries for the line in
S and k2 queries for the lines corresponding to S ·Σ. For an automaton with
n states, as for each state other than the initial state we need k2 queries, we
get k+ 1+k2+(n− 1)k2 = nk2+k+ 1 label queries needed to learn the
automaton.

4.3 illustrative example

Example 4.4. Let us consider the following target finite acceptor

M7=([6], {a,b}, {0,1},τ,λ,1),

with the transition function τ, and output function λ presented in Table 19.
For the automaton M7, we have Π0 = {{1,3,5,6}, {2,4}} and we can com-

pute Π1 using the 1-signature trees of states (Table 20).
We get Π1= {{1}, {3,5,6}, {2}, {4}}. When L∗

1
learnsM7, the first closed and

consistent observation table has the same value for the rows corresponding to
states 3,5, and 6. A helpful teacher, assigning different labels to these states,
makes also the first closed and consistent table to have different rows for
these states. We note that there is no need for helpful labels if the states have
different outputs or are distinguishable by a or b. That gives us a possible
(helpful) labeling function `1 presented in Table 21 together with the labeled
automatonM`1

7
(Figure 8). We note that the labeled automaton has only four

different outputs, (0,1),(1,1),(0,2),(0,3).

Table 19: The finite acceptorM7

State τ(a) τ(b) λ

1 2 2 0
2 6 4 1
3 1 6 0
4 3 5 1
5 1 3 0
6 1 1 0

Table 20: and the 1-signature trees

State ε a b

1 0 1 1
2 1 0 1
3 0 0 0
4 1 0 0
5 0 0 0
6 0 0 0

We present now the first observation table of L∗
1

learning M`1
7

(Table 22).
After a series of non-closed observations tables, we get the final observation
table (Table 23). We need 27 label queries (no counterexamples) to find a
Learner’s conjecture that is isomorphic to the target automaton.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

50 label queries

Table 21:The finite DFAM`1
7

State τ(a) τ(b) λ `1
1 2 2 0 1
2 6 4 1 1
3 1 6 0 1
4 3 5 1 1
5 1 3 0 2
6 1 1 0 3

Figure 8: A graphical representation ofM`1
7

Table 22:The initial observation table of L∗
1

learningM`1
7

, S= {ε},
E= {ε,a,b}; row(a) ∉ rows(S)
(S,E,C)1 E

Row S∪SΣ ε a b

1 ε 0,1 1,1 1,1
2 a 1,1 0,3 1,1
3 b 1,1 0,3 1,1

4.4 comparative results

We present some of the results of testing more than 200 minimal, accessi-
ble and complete finite acceptors. Our test set contains randomly generated
automata using a binary alphabet and a number of states between 1 and 20.
Table 24 presents a sample from the results of our tests. In the Appendix,
Table 35 gives the complete set of results for our experiments.

We present in parallel the comparative results after testing the original L∗

algorithm and the version of L∗
1

with helpful labels. We show the number of
MQ and EQ for L∗ as well as the number of LQ, the number of labels, and
the number of output symbols after labeling for L∗

1
.

We observe that for the automaton P167 having 17 states, we need 16 dif-
ferent output symbols to allow L∗

1
to work without counterexamples. We can

see this automaton represented in Figure 9.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

4.4 comparative results 51

Table 23: The final observation table of L∗
1

learningM`1
7

,
S= {ε,a,aa,ab,aba,abb}, E= {ε,a,b}

(S,E,C)6 E

Row S∪SΣ ε a b

1 ε 0,1 1,1 1,1
2 a 1,1 0,3 1,1
3 aa 0,3 0,1 0,1
4 ab 1,1 0,1 0,2
5 aba 0,1 0,1 0,3
6 abb 0,2 0,1 0,1
7 b 1,1 0,3 1,1
8 aaa 0,1 1,1 1,1
9 aab 0,1 1,1 1,1
10 abaa 0,1 1,1 1,1
11 abab 0,3 0,1 0,1
12 abba 0,1 1,1 1,1
13 abbb 0,1 0,1 0,3

Figure 9: For the automaton P167 having 17 states, we need 16 different output
symbols to allow L∗

1
to work without counterexamples

The number of label queries is concordant with Corollary 4.3, not depend-
ing on the automaton structure. We wish to represent graphically the depen-
dency on the number of states of the number of queries needed by L∗ and L∗

1

to learn different automata. We have 11 different automata for each number
of states. In Table 25, for each number of states, we collect the minimum, the
average, and the maximum number of membership queries (asked by L∗), as
well as the number of label queries (asked by L∗

1
with a helpful labeling).

These results are presented graphically in Figure 10, the axis y is logarith-
mic for better visualization.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

52 label queries

Table 24: A sample from a test set for learning DFA with L∗ and L∗
1

with
helpful labels

Test L∗ L∗
1

with helpful labels
Id States MQ EQ LQ Labels |λ`1 | Observations
P1 2 5 1 11 1 2 m=n

P2 2 5 1 11 1 2 m=n

.. .

P160 16 242 5 67 4 7
P161 16 509 9 67 11 13
P162 16 415 9 67 10 11
P163 16 167 6 67 3 6
P164 16 206 6 67 4 7
P165 16 215 4 67 6 8
P166 17 247 6 71 9 12
P167 17 506 7 71 15 16 |λ`1 |=n−1

P168 17 383 8 71 8 10
P169 17 351 8 71 10 12
P170 17 285 7 71 8 11
P171 17 351 7 71 8 11
P172 17 239 5 71 7 9
P173 17 274 5 71 11 14
P174 17 206 6 71 6 9
P175 17 175 5 71 3 6
P176 17 233 6 71 4 7
. .

P199 20 242 5 83 4 8
P200 20 467 7 83 16 17
P201 20 224 5 83 5 8
P202 20 279 5 83 5 8
P203 20 269 6 83 5 8
P204 20 854 9 83 16 17
P205 20 215 6 83 5 9
P206 20 314 7 83 8 10
P207 20 231 6 83 4 7
P208 20 274 6 83 8 11
P209 20 269 5 83 7 10

4.5 remarks

From the proof of Proposition 4.2, it clearly results that the complexity of a
helpful Teacher labeling a DFA for allowing L∗

1
to learn the target automaton

without needing counterexamples is polynomial.

The d-signature trees represent a common aspect between the algorithms
discussed in this chapter and passive learning.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

4.5 remarks 53

Table 25: Comparative results, number of queries depending on the number of
states

States Min MQ Avg MQ Max MQ LQ
2 5 5.00 5 11
3 11 14.00 17 15
4 14 20.45 27 19
5 23 33.18 54 23
6 31 57.09 83 27
7 39 68.18 90 31
8 44 76.00 111 35
9 49 80.00 125 39

10 65 137.73 269 43
11 77 139.09 229 47
12 90 159.45 215 51
13 101 151.73 263 55
14 143 234.36 615 59
15 95 205.27 389 63
16 167 277.91 509 67
17 175 295.45 506 71
18 231 356.91 629 75
19 183 278.64 405 79
20 215 330.73 854 83

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5

50

500

Max MQ

Avg MQ

Min MQ

LQ

States

Q
ue

rie
s

Figure 10: Membership and label queries depending on the number of states

We believe that the minimal number of labels needed to learn automata
without counterexamples could be considerably reduced for various classes
of automata, as in general the same state appears in different d-signature trees
on different levels, from the root to the leaves.

From the experimental results, we see that only if the number of states is
less than five does L∗

1
(with a helpful labelling) not perform better than L∗.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

54 4.5 remarks

chapter references

[9] Dana Angluin, Leonor Becerra-Bonache, Adrian-Horia Dediu, and
Lev Reyzin. “Learning finite automata using label queries”. In:
Proceedings of the 20th International Conference on Algorithmic
Learning Theory, Porto, Portugal, October 3–5, 2009. Ed. by Ri-
card Gavaldà, Gábor Lugosi, Thomas Zeugmann, and Sandra Zilles.
Vol. 5809. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 171–185 (cit. on pp. 16, 20, 30, 45, 46, 95).

[14] Leonor Becerra-Bonache, Cristina Bibire, and Adrian-Horia Dediu.
“Learning DFA from Corrections”. In: Proc. Workshop on Theoretical
Aspects of Grammar Induction. Ed. by Henning Fernau. WSI-2005-14.
Technical Report, University of Tubingen, 2005, pp. 1–11 (cit. on
pp. 17, 45, 55, 95).

[17] Leonor Becerra-Bonache, Adrian-Horia Dediu, and Cristina Tîrnăucă.
“Learning DFA from correction and equivalence queries”. In: Proceed-
ings of the 8th International Conference on Grammatical Inference:
Algorithms and Applications. Vol. 4201. Lecture Notes in Computer
Science. Tokyo, Japan: Springer-Verlag, 2006, pp. 281–292 (cit. on
pp. 17, 30, 45, 55, 95).

[39] Edward F. Moore. “Gedanken Experiments on Sequential Machines”.
In: Automata Studies. Princeton U., 1956, pp. 129–153 (cit. on p. 48).

[45] Cristina Tîrnăucă and Timo Knuutila. Efficient Language Learning
with Correction Queries. Technical Report 822. Turku Center for Com-
puter Science, May 2007 (cit. on pp. 45, 55).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

5 C O R R E C T I O N Q U E R I E S

In this chapter, we study a labeling method combined with some partial guid-
ance along the learning path, which we call correction. The target automata
are only acceptors, as the answer to a correction query u gives a word w
such that uw is in the target language. That is, when the learner asks u, the
Teacher answers, “you mean uw.” There are two particular cases: if w= ε,
then this answer could be interpreted as “yes, u is in the target language”; if
there is no such word w, then the answer is a special symbol not belonging
to the input alphabet.

We discuss a new type of query, introduced by Becerra-Bonache, Bibire
and Dediu [14] and Becerra-Bonache, Dediu and Tîrnăucă [17]. Since then,
correction queries have been studied intensively. We mention only several
papers, such as Tîrnăucă and Knuutila [45], Kinber [32], Becerra-Bonache et
al. [15], and Mitrana and Tîrnăucă [37]. Although, in the introductory articles
a correction gives the shortest path from a state to a final state, we show that
there are possible other corrections as well.

First, we give an example of a problem where corrections perform best.
After that, we discuss the theoretical aspects and limitations of corrections,
concluding with several comparative results.

5.1 a particular case

Example 5.1. Take the finite acceptor M8 = ([5], {0,1}, {0,1},τ,λ,1) where
the transition function τ, and the output function λ are given in Table 26. In
Figure 11, we see a corresponding graphical representation for acceptorM8.
Note that the language of this acceptor consists in a single word, which is
111.

Table 26: The transition function τ, and the output function λ of the acceptorM8
State τ(0) τ(1) λ

1 2 3 0
2 2 2 0
3 2 4 0
4 2 5 0
5 2 2 1

In our experiments with L∗ and the shortest counterexample we need 3EQ
and 44MQ to learn this automaton. In accordance with Proposition 4.1, if a
Teacher labels this automaton with an injective labeling output function, then

55

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

56 correction queries

Figure 11: A graphical representation of acceptorM8

we need 11 LQ and no counterexamples for L∗ to learn automaton M8. Let
us analyze what happens if the Teacher answers a query u with a correction
w such that uw is a word in the target language. For all the states from q0u
until q0uw there is no need for new queries, the answers can be deduced
fromw. In our example, we also see that for state number two there is no path
reaching a final state. In this case, the Teacher should answer with a special
symbol, # not existing in Σ, showing that there is no correction available. In
Table 27 we give the final observation table of L∗ learning the automatonM8,
assuming the Teacher answers with corrections.

Table 27: The final observation table of L∗ learningM8,
S= {ε,0,1,11,111}, E= {ε}

(S,E,C)1 E

Row S∪SΣ ε

1 ε 111

2 1 11

3 11 1

4 111 ε

5 0 #
6 00 #
7 01 #
8 10 #
9 110 #
10 1110 #
11 1111 #

From the answer to query ε, the Learner can infer the results of the queries
1, 11, and 111, adding them to the observation table together with the answer
for ε. The same for 00 and 01, as these represent transitions from a state
without a path to a final state. Thus, we can conclude that the Learner needs
to ask only six queries, lines 1–4 count together as a single query, and the
same for lines 5–7.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

5.2 local definitions 57

5.2 local definitions

A finite acceptor is a password automaton if it accepts a single word. The
automaton M8 is a password automaton accepting the word 111. In order
to be complete, a password automaton has a dead state, that is a non-final
state from which we cannot reach a final state. Note that for a given word
w with length |w|= n, there exists a password automaton with n+2 states
accepting w.

Let M = (Q,Σ, {0,1},τ,λ,q0) be a finite target acceptor, and # a special
symbol not existing in the input alphabet Σ. If θ is a labeling ofM that maps
Q to Σ≤|Q|−1 ∪ {#}, then θ is called a correction function if the following
conditions hold.

θ(q)=

ε if λ(q)= 1, (1a)

bθ(q ′) if ∃q ′ ∈Q,b ∈Σ,qb=q ′ and θ(q ′) is defined, (1b)

otherwise. (1c)

For an acceptor labeled with a correction function, there is no need for the
Teacher to communicate the output of the states together with the labeling.
The output can be deduced by the Learner, employing condition (1a): if the
label of a state q is ε, then the state has the output λ(q) = 1, otherwise, the
output is λ(q)= 0.

After labeling the final states, there might be several states for which the
condition (1b) holds, which means that for a given automaton there might
exist several correction functions. The condition (1b) creates the possibility
of reducing the number of queries: once the Teacher answers with the label
of a state, the Learner can deduce the output for all the states along the path
until the final state.

Given an acceptor M = (Q,Σ, {0,1},τ,λ,q0), we present a simple algo-
rithm to construct a correction function for it (Algorithm 2). Let F be the
set of final states, that is, F= {q ∈Q | λ(q) = 1}. Let n be |Q|, the number
of states of the acceptor. The algorithm works with a set of candidate as-
signments Θ containing pairs formed by a state and a string (q,w) such that
qw ∈ F and θ(q) is not defined yet.

Algorithm 2: Constructing a correction function

1 Initialize θ(q)← ε for all q ∈ F
2 Initialize Θ← (q,c), q ∈Q,c ∈Σ, θ(q) not defined, qc ∈ F
3 while Θ is nonempty do
4 select (r,w), a pair from Θ

5 remove all pairs containing r from Θ

6 assign θ(r)←w
7 Add to Θ all pairs (p,bw), p ∈Q, b ∈Σ, θ(p) not defined, pb= r

8 assign θ(q)← # to the states q where θ(q) is not defined

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

58 correction queries

We note that once an element r is removed fromΘ there are no other states
adding r to Θ, the elements in Θ are added only in increasing lexicographic
order (of the access string of states).

The algorithm ends, the cycle “while” assigns each time one state (remov-
ing all the other appearances of the same state), the number of non-final states
is clearly bounded by n, and in Θ, (even with repeated appearances) there
cannot exist more than n different states.

Algorithm 2 follows exactly the definition of a correction function, the ini-
tialization of θ corresponds to condition (1a), the cycle “while” implements
condition (1b), and the last line corresponds to condition (1c).

If in Line 4 there is more than one element available in Θ, then there exists
more than one correction function for the given automaton. For a password
automaton, there exists only one correction function, while for other automata
there could exist several correction functions.

When constructing a correction function, Algorithm 2 could select con-
stantly one candidate employing, e.g., any of the following strategies.

• Select one state from the candidate assignments with a minimum length
of the word reaching a final state. If the algorithm works in this way,
then we call the resulting correction function a minimal correction.

• If the algorithm selects always one of the candidates with the maximum
length of the word reaching a final state, then we call the resulting
correction function a maximal correction.

• Selecting a random candidate, we get a random correction.

Selecting a minimal or a maximal correction there could be also several
choices, depending on the input alphabet, however we believe that the order
in the input alphabet should not influence the results of the learning algorithm.
Actually, we tested a version of lexicographic correction and the results were
similar to those of a minimal correction.

We present a minimal, a maximal, and a random correction for the automa-
ton P167 (Table 28). In Figure 12, we see a graphical representation of the
automaton P167 labeled with the random correction from the example.

The Learner has access to the labels assigned to states of a target automa-
ton by a correction function and this kind of query will be referred to as a
correction query (CQ for short).

5.3 theoretical approach

Lemma 5.2. If for a state q of an acceptor there exists a word w such that
qw is a final state, then a correction function maps q to a string other than #.

Proof. The proof follows easily after observing that once a state has been
added to Θ, it is removed only if the state is labeled by Algorithm 2 either by
a direct selection of the candidate itself, or from another path to a final state.

The proof is by induction on the length of the words leading to a final state.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

5.3 theoretical approach 59

Table 28: Correction functions examples
Automaton Correction

State τ(a) τ(b) λ minimal maximal random
1 9 6 0 b2a2 b3a2b2a3 aba2

2 17 14 0 a2 ba2b2a3 a2

3 17 12 0 a2 ba3 a2

4 12 12 0 aba2 ba3 ba3

5 7 1 0 b3a2 ab5a2b2a3 a2ba2

6 16 2 0 ba2 b2a2b2a3 ba2

7 9 11 0 aba2 b5a2b2a3 aba2

8 7 11 1 ε ε ε

9 10 13 0 ba2 ab2a3 ba2

10 10 4 0 baba2 b2a3 b2a3

11 5 1 0 b3a2 b4a2b2a3 baba2

12 13 2 0 ba2 a3 a3

13 17 4 0 a2 a2 a2

14 9 3 0 ba2 a2b2a3 ba2

15 6 1 0 aba2 ab2a2b2a3 aba2

16 3 15 0 a3 bab2a2b2a3 a3

17 8 7 0 a a a

Labels 9 16 10

Induction base: For any state q, and for any b ∈ Σ, if qb is a final state,
then q is added to Θ, according to the initialization of Θ by Algorithm 2.

Induction hypothesis: For any state q for which there exists a wordw with
length less than or equal to i such that qw is a final state, then q is labeled
with a word other than #.

Induction step: Let us consider a state r for which there exists a character
b ∈ Σ such that rb= q. The state r is either already assigned, or is added to
Θ when q is assigned. Thus, there exists a word bw of length i+1, such that
rbw is a final state.

Proposition 5.3. Let q be a state of an acceptor and w = θ(q) the value
assigned to q by a correction function. Then on the path from q obtained by
following w, there are no loops.

Proof. Let us assume the contrary, that there exists a state q ′ appearing twice
following the path from q dictated by w. As the values for the correction
function are unique for each state, then necessarily the state q ′ that appears
twice will appear the next time, following the same loop a second time, and
so on, so there is no exit from the loop, which is false, as a correction value
is a finite string.

This is the reason we can bound by |Q|−1 the length of correction values,
and hence we have a finite labeling alphabet in the definition of a correction
function.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

60 correction queries

Figure 12: A graphical representation of the automaton P167 labeled with a random
correction function

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

5.4 experimental results 61

Proposition 5.4. Let M = (Q,Σ,Γ ,τ,λ,q0) be a password automaton with
|Σ| ≥ 2. Then L∗ can learn the target automaton using (|Q|−1)(|Σ|−1)+2

correction queries and no counterexamples are needed.

Proof. Let us assume that the Teacher labels the states of the automatonM in
such a way that the output function of the labeled automaton becomes injec-
tive. According to Proposition 4.1, the Learner needs |Q||Σ|+1 label queries
and no counterexamples. Learning the automaton with correction queries, we
can reduce the number of queries as follows. The answer for querying with
ε contains the path to the only word in the language, w, where the length of
w= |Q|−2. The Learner gets information about |Q|−2 other states different
from the initial one. Also for the dead state, there is no need to ask |Σ| queries,
corresponding to each character of the input alphabet, the answer for all these
queries being the special symbol #. The number of queries needed becomes
|Q||Σ|+1− |Q|+2− |Σ|=(|Q|−1)(|Σ|−1)+2.

Note that for |Σ| = 2 we get |Q|+ 1 correction queries needed to learn a
password automaton.

5.4 experimental results

We use the same test set as for the label queries. There are 11 different au-
tomata for each number of states between 2 and 20. We experimented with
three different correction functions: one minimal, another random, and the
last one a maximal correction. Table 29 shows a sample from the compara-
tive results, that is, the number of EQ and MQ/CQ for L∗ with membership
queries and corrections. In the Appendix, Table 37 presents the complete set
of results from our experiments.

We also represent graphically the comparative results. We take the average
MQ/CQ per number of states, according to our tests (Table 30), and we repre-
sent graphically their values. Figure 13 shows on the same graph the average
number of MQ and CQ depending on the number of states, while Figure 14
shows the number of queries for three different corrections.

Table 29: A sample from a test set for learning DFA with L∗ and correction queries
Correction

L∗ Minimal Random Maximal
Test States EQ MQ EQ CQ EQ CQ EQ CQ
P1 2 1 5 1 4 1 4 1 4
P2 2 1 5 1 4 1 4 1 4
P3 2 1 5 1 4 1 4 1 4
· ·
P111 12 5 167 5 94 5 150 3 56
P112 12 5 186 3 60 3 53 1 14
P113 12 6 215 3 55 3 38 2 31

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

62 correction queries

Correction
L∗ Minimal Random Maximal

Test States EQ MQ EQ CQ EQ CQ EQ CQ
· ·
P206 20 7 314 5 182 6 257 5 172
P207 20 6 231 6 167 5 130 4 73
P208 20 6 274 4 89 4 90 3 61
P209 20 5 269 4 188 4 143 4 187

Table 30: Average number of queries (MQ/CQ) per number of states
States MQ (L*) CQ (minimal) CQ (random) CQ (maximal)

2 5.00 3.82 3.82 3.82
3 14.00 8.09 7.27 7.36
4 20.45 10.36 10.45 10.27
5 33.18 19.36 19.18 18.55
6 57.09 25.18 22.55 22.18
7 68.18 34.64 34.82 29.82
8 76.00 43.00 40.45 40.27
9 80.00 49.00 50.55 47.64

10 137.73 46.55 39.82 38.27
11 139.09 65.91 65.09 60.09
12 159.45 65.36 63.82 45.91
13 151.73 90.73 83.09 80.64
14 234.36 151.73 150.64 146.45
15 205.27 125.82 114.09 116.09
16 277.91 107.18 82.27 87.36
17 295.45 141.18 150.36 128.18
18 356.91 185.18 185.45 182.64
19 278.64 147.45 142.82 155.27
20 330.73 147.18 142.55 125.82

5.5 remarks

Analyzing the results, we observe that, for almost all our test problems, the
number of correction queries is lower than the number of MQ needed to
learn the automata. We note several exceptions for automata such as P132,
P172 and P199. We believe that the negative influence comes from different
choices of counterexamples. In addition, the maximal correction performs
better in almost all cases, because for a maximal correction there are more
chances to have more labeling symbols attached as corrections.

Recall that according to the proof of Theorem 3.5, the number of OQ (MQ)
needed by L∗ is O(OQ) =O(mn2). As in the particular case of Proposition

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

5.5 remarks 63

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

350

400

MQ (L*)

CQ (minimal)

States

Q
ue

rie
s

Figure 13: Comparative results MQ/CQ

10 11 12 13 14 15 16 17 18 19 20
30

50

70

90

110

130

150

170

190

CQ (minimal)

CQ (random)

CQ (maximal)

States

Q
ue

rie
s

Figure 14: Comparative results, CQ minimal, random and maximal

5.4 we have O(CQ) = O(n), this shows that a correction function has the
potential to reduce considerably the number of queries. However, this is not
the general case, for example for automata with a single non-final state, cor-
rection queries behave exactly as membership queries, that is, the worst case
complexity is the same as shown for L∗ and the CQ behave in the same way
as the OQ (MQ).

We could also try to generalize corrections for DFA (that is for more than
two symbols in the output alphabet), in fact Becerra-Bonache and Dediu [16],
propose a method to learn DFA using a query similar with a correction query,
however, the method is not a pure generalization of correction queries, addi-
tional information was used for marking the visited states.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

64 5.5 remarks

chapter references

[14] Leonor Becerra-Bonache, Cristina Bibire, and Adrian-Horia Dediu.
“Learning DFA from Corrections”. In: Proc. Workshop on Theoretical
Aspects of Grammar Induction. Ed. by Henning Fernau. WSI-2005-14.
Technical Report, University of Tubingen, 2005, pp. 1–11 (cit. on
pp. 17, 45, 55, 95).

[15] Leonor Becerra-Bonache, Colin de la Higuera, Jean-Christophe Jan-
odet, and Frédéric Tantini. “Learning Balls of Strings from Edit Correc-
tions”. In: Journal of Machine Learning Research 9 (2008), pp. 1841–
1870 (cit. on p. 55).

[16] Leonor Becerra-Bonache and Adrian-Horia Dediu. “Learning from a
Smarter Teacher”. In: Proceedings of the 10th International Confer-
ence on Intelligent Data Engineering and Automated Learning, Bur-
gos, Spain, September, 2009. Ed. by Emilio Corchado and Hujun Yin.
Vol. 5788. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 200–207 (cit. on pp. 63, 95).

[17] Leonor Becerra-Bonache, Adrian-Horia Dediu, and Cristina Tîrnăucă.
“Learning DFA from correction and equivalence queries”. In: Proceed-
ings of the 8th International Conference on Grammatical Inference:
Algorithms and Applications. Vol. 4201. Lecture Notes in Computer
Science. Tokyo, Japan: Springer-Verlag, 2006, pp. 281–292 (cit. on
pp. 17, 30, 45, 55, 95).

[32] Efim Kinber. “On Learning Regular Expressions and Patternsvia Mem-
bership and Correction Queries”. In: Proceedings of the 9th Interna-
tional Colloquium on Grammatical Inference: Algorithms and Applica-
tions, Saint-Malo, France, September 22–24, 2008. Ed. by Alexander
Clark, François Coste, and Laurent Miclet. Vol. 5278. Lecture Notes in
Computer Science. Berlin: Springer-Verlag, 2008, pp. 125–138 (cit. on
p. 55).

[37] Victor Mitrana and Cristina Tirnăucă. “New bounds for the query com-
plexity of an algorithm that learns DFAs with correction and equiva-
lence queries”. In: Acta Inf. 48.1 (2011), pp. 43–50 (cit. on p. 55).

[45] Cristina Tîrnăucă and Timo Knuutila. Efficient Language Learning
with Correction Queries. Technical Report 822. Turku Center for Com-
puter Science, May 2007 (cit. on pp. 45, 55).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

Part II.

Helpful Passive Learning of
Automata

65

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

6 L E A R N I N G T Y P I C A L A U TO M ATA
F R O M R A N D O M W A L K S –
R E S E T

In this chapter, we present the theoretical base for a passive learning algo-
rithm called Reset that was introduced by Freund et al. [23]. We describe the
original algorithm, together with several considerations about the expected
number of default mistakes. This chapter ends by mentioning several inher-
ent problems of the algorithm and several possible improvements.

Learning subsequential transducers—a broader class of transduction than
the class of DFA presented here—was first presented by Oncina, Garcia and
Vidal [41]. The class of subsequential functions (transducers) can be identi-
fied in the limit with positive presentation.

Well-known intractability results about passive learning show that finding
a minimal automaton consistent with a set of positive and negative examples
is NP-complete, Gold [26] and Angluin [4]. To deal with a possible infinite
learning protocol, Freund et al. [23] use the notion of efficient learning. They
presented two efficient algorithms, one based on a mechanism they called
Reset and the other in a more general framework based on homing sequences.
Although it does not look so passive, we consider the existence of a reset
mechanism that brings the target machine into the initial state as a convention.

Practical implementations of the algorithms of Freund et al. experience
real difficulties. The recommended signature depth leads to data structures
that are difficult to handle, allowing experiments only for automata with a
reduced number of states.

6.1 preliminaries

We follow the definitions and notations used by Feller [22] for the theory of
probability. We also use several notions about graphs in this chapter.

We consider the concept of a sample space S and its points as given, being
a set of all possible outcomes of an experiment. A sample space is called dis-
crete if it contains only finitely many points or a countable number of points.
In what follows, we will use only discrete sample spaces. For a discrete sam-
ple space S, an event A is a subset A ⊆ S of possible outcomes. Given a
discrete sample space S with sample points E1,E2, . . . , we assume that with

67

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

68 learning typical automata from random walks – reset

each point Ej there is associated a number called the probability of Ej and
denoted by P(Ej). It is to be non-negative and such that

P(E1)+P(E2)+ · · ·= 1.

Note that we do not exclude the possibility that a point has probability zero.
The probability P(A) of any event A is the sum of probabilities of all sam-

ple points in it.
For a discrete sample space S, a random variable is a function X : S→ R,

that assigns a real value to each outcome in the sample space. Let X be
a random variable and x1,x2, . . . be the values of X. The set of all sample
points on which X takes the value xj forms the event X = xj and its proba-
bility is denoted by P{X= xj}. The function P{X= xj}= f(xj), j= 1,2, . . . is
called the probability distribution of the random variable X. Clearly f(xj)≥ 0
and
∑
j

f(xj) = 1. The mean or expected value of X is defined by E[X] =∑
j

xjf(xj) if the series converges absolutely. If
∑
j

|xj|f(xj) diverges, then

we say that X has no finite expectation.
A random walk on a graph is a sequence of vertices v1v2, . . . ,vt . . ., for

t≥ 0, where (vt,vt+1) ∈E and the vt are chosen randomly.
Given an automaton M= (Q,Σ,Γ ,τ,λ,q0), we can define the underlying

graph of the automaton GM = (Q,E= {(q,τ(q,a)) | q ∈Q,a ∈ Σ}). A ran-
dom walk on an automaton refers to a random walk on the underlying graph
of the automaton.

6.2 uniform properties of automata

Let δ be a confidence parameter, 0< δ≤ 1, in the sense of Freund et al. [23],
that is 1−δ represents the confidence level.

Definition 6.1 (Uniform properties of automata, Freund et al. [23]). We say
that uniformly almost all automata have property Pn,δ if for all δ and for any
n-state underlying automaton graph GM, if we randomly choose the output
labeling of states associated to the vertices of GM, then with probability at
least 1−δ, the property Pn,δ holds for the resulting automatonM.

The term uniform property, also used by Trakhtenbrot and Barzdin’ [46],
refers to a property holding with high probability for any fixed underlying
graph (even for the worst case) when assigning random output labels to the
states associated with the vertices. From now on, δ indicates the confidence
only over the random choice of labeling for the target automaton.

The following theorem exemplifies a uniform property.

Theorem 6.2 (Distinguishability degree for uniformly almost all automata,
Freund et al. [23]). For uniformly almost all automata with n states and m
symbols in the output alphabet, every pair of inequivalent states has a short-
est distinguishing string of length at most 2 logm(n

2/δ).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

6.3 presentation of the algorithm reset 69

The proof results from using the following theorem.

Theorem 6.3 (Trakhtenbrot and Barzdin’ Theorem 5.1 [46]). For any nat-
ural number d and for any finite automaton with n states and randomly
chosen outputs from an alphabet with m symbols, the probability that the
distinguishability degree ρ is greater than d satisfies the relation P(ρ> d)<
n2m−d/2.

We give only a sketch of the proof, there are complete proofs available in
both Freund et al. [23] and Barzdin’ and Trakhtenbrot [46].

Let us consider a pair of different states (q1,q2) from an n-state automa-
tonM. First, let us observe that for any shortest distinguishing string x for the
states q1 and q2, any prefix x(i) of length i passes through at least i+1 states
when taking x-walks from q1 and q2. We denote by (ri

1
,ri
2
) the pair of states

(q1x
(i),q2x(i)). The set

⋃
j=1,2

{rij | 1≤ i≤ |x|} contains at least i+1 elements

as x is a shortest distinguishing string, at least one of the paths starting from
q1 and q2 should have no loops, if both have loops, then x is not a shortest
distinguishing string. The two paths might overlap, however, when assigning
labels to the states of each path, there are at least (i+1)/2 independent events.

Let us fix d. If for any labeling of the underlying graph, the states q1 and q2
are distinguished by a string of length at most d, then the probability that q1
and q2 are distinguishable but not distinguished by any string of length d is
zero. Otherwise for any labeling, there would exist a prefix x(d) of length d,
1 ≤ d < |x|, such that x is a shortest distinguishing string. When assigning
output labels to the states of the x-paths starting from q1 and q2, there are
at least (d+1)/2 independent events, each of which has probability 1/m of
not making x(d) a distinguishing string for q1 and q2. Thus, the probability
that x(d) fails to become a distinguishing string for q1 and q2 is less than
m−(d+1)/2. For all pairs of states inM, the probability that a string of length
d is not a distinguishing string is at most n2 ·m−(d+1)/2. If d≥ 2 logm(n

2/δ),
this probability becomes smaller than δ.

6.3 presentation of the algorithm reset

The main idea of the learning algorithm is to use distinct d-signature trees to
identify the states, when d is the value indicated by Theorem 6.2. The model
works for uniformly almost all automata, that is the worst-case underlying
automaton graph, but with respect to a random labeling. The Teacher knows
the target automaton and the Learner gradually constructs a hypothesis au-
tomaton homomorphic to the target automaton, the number of states being
less than or equal to the number of states of the target automaton. We recall
that in active learning algorithms, the Learner queries the Teacher, while in
passive learning, the strategy is the opposite: the Teacher indicates the moves
and queries the Learner about the output of the reached state. The Learner
can be in one of the following situations:

a) does not know the answer—a default mistake,

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

70 learning typical automata from random walks – reset

b) gives the correct answer, or

c) gives an answer, but the answer is not the correct one—a prediction mis-
take.

While the Learner indicates the correct answers, the Teacher follows a ran-
dom walk within the target automaton, communicating to the Learner the
input symbol to follow and querying again about the output of the new state
reached. We call a trial the sequence of actions and events that happen when
the Teacher is in one state until moving to a new state. In case of a default
mistake, both the Teacher and the Learner move back to the initial state of
their automata. This action is called a Reset, after which the algorithm was
named. The sequence of queries continues indefinitely, until eventually the
Learner makes no mistakes.

Since the trial sequence is infinite, we measure the efficiency of such a pro-
tocol by the amount of computation per trial. We say that such an algorithm
is efficient if the amount of computation in each trial is bounded by a fixed
polynomial in the number n of states of the target machine and 1/δ.

The Teacher knows a target automaton M= (Q,Σ,Γ ,τ,λ,q0). We assume
that the Teacher informs the Learner about the number of states ofQ, and the
input alphabet Σ, while the output alphabet Γ can be discovered during the
learning process. At trial t, the Learner is asked to predict the output label
of M at the current state q(t) ∈Q. The current state is the initial state q0 at
trial 0 and is updated after each trial in the following manner. If no prediction
mistake is made, a random input symbol bt+1 is presented by the Teacher,
and the current state is updated to q(t+1) =q(t)bt+1 and then the protocol
proceeds with trial t+ 1. For a default mistake, the current state becomes
q(t+1)=q0.

From the Teacher’s answers, the Learner constructs distinct d-signature
trees, where d is the value indicated by Theorem 6.2. The Learner keeps a set
Q ′
inc

of incomplete states and fills in the nodes of the signature trees associ-
ated with the states. When a signature tree is complete, the Learner moves the
state associated with the complete signature tree to a setQ ′ of complete states.
The Learner constructs a hypothesis automaton M ′ = (Q ′,Σ,Γ ,τ ′,λ ′,q ′

0
).

Based on the number of states n= |Q| and the confidence parameter δ, the
Learner computes d, the depth of the signature trees. The Learner keeps the
current state q ′(t) ∈Q ′∪Q ′

inc
. When q ′(t) ∈Q ′, the Learner predicts the

output λ(q ′(t)) and updates the next current state q ′(t+1) in the same way
as the Teacher. When q ′(t) is incomplete, then the Learner needs to keep
the current position p ′(t) within the d-signature tree. On entering into an
incomplete state q ′(t), the path p ′(t) is the empty string ε. The state for
the next trial remains the same, and p ′(t+ 1) = p ′(t)bt+1. If the Learner
does not know the output of the incomplete signature in position p ′(t), then
the Learner predicts ‘?’ (a symbol not existing in the output alphabet). The
current state q ′(t+1) becomes the initial state q ′

0
and the protocol proceeds

with trial t+1. The Learner also predicts ‘?’ when the path p ′(t) goes out of
the signature tree.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

6.3 presentation of the algorithm reset 71

We present this learning protocol (Reset) as Algorithm 3. In the descrip-
tion of the algorithm, we denote by ∆ ′(q ′) the signature tree of the state q ′

and by∆ ′(q ′,p ′) the node of an incomplete signature tree of state q ′ accessed
by the path p ′. The sequence ResetLearner assigns the initial state to q ′, the
empty string to p ′, and predicts ‘?’, allowing the Teacher to reset the internal
state of the target automaton as well.

The Learner and the
Teacher perform an
unending protocol.
Focusing on the
Learner’s answers,
the main result of
this learning protocol
is that in appropriate
conditions, there are
no prediction
mistakes and there
exists a finite upper
bound for the
number of default
mistakes.

Algorithm 3: Reset
1 Initialize Q ′←; and Q ′

inc
← {q ′

0
}

2 q ′←q ′
0

and p ′← ε
3 do {Description of the protocol for each trial}
4 if q ′ 6∈Q ′

inc
then

5 predict λ ′(q ′) and on input symbol b, set q ′← τ ′(q ′,b)

6 if q ′ ∈Q ′
inc

then
7 predict c, the output symbol of ∆ ′(q ′,p ′)
8 if c is ‘?’ then
9 label ∆ ′(q ′,p ′) with the output symbol

10 if ∆ ′(q ′) is complete then
11 if it exists r ′ a state in Q ′ such that ∆ ′(r ′)=∆ ′(q ′) then
12 Replace all transitions to q ′ with transitions to r ′

13 else
14 Q ′←Q ′∪ {q ′}
15 foreach b ∈Σ do
16 Create a new state r ′

b

17 Q ′
inc
←Q ′

inc
∪ {r ′

b
}

18 Assign τ ′(q ′,b)← r ′
b

19 Partially fill in ∆ ′(r ′
b
) using ∆ ′(q ′)

20 Q ′
inc
←Q ′

inc
\{q ′}

21 ResetLearner

22 else
23 on input symbol b, set p ′←p ′b
24 if |p ′|>d then ResetLearner

25 forever

All states except q0 have almost complete signature trees when they are
created (Line 19 of Algorithm 3), needing only the leaves to be completed by
the learning process.

Theorem 6.4 (Complexity of Reset, Freund et al. [23]). Algorithm Reset
takes n and the confidence parameter δ as input and efficiently learns uni-
formly almost all n-state automata, making no prediction mistakes and hav-
ing an expected number of default mistakes that is at most

O((n5/δ2) log(n/δ)),

where this expectation is taken over the space of all random walks.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

72 learning typical automata from random walks – reset

Proof. The statement about no prediction mistakes is easy to prove if we
select the depth of signatures according to Theorem 6.2.

For state q ′
0
, we can imagine a restrictive scenario in which the algorithm

fills in, layer by layer, the nodes of the signature. Of course, we get an upper
bound for the expected number of default mistakes if we count them in this
way. For 0 ≤ i ≤ d and q ′ ∈Q ′

inc
, let us denote by Xiq ′ the random variable

counting the number of default mistakes encountered when completing the
nodes of layer i of state q ′. The expected number of default mistakes is the
sum of the expected values for the variables previously defined. For q ′

0
, all

layers should be filled in, while for all the other states, only the last layer
is incomplete. Let X denote the random variable giving the total number of
default mistakes.

E[X] = 1+
d∑
i=1

E[Xiq ′
0
]+

∑
q ′∈Q ′,q ′ 6=q ′

0

E[Xdq ′]. (2)

Computing the expected number of default mistakes made until an incom-
plete signature is filled in is similar to the so called “Coupon Collector’s Prob-
lem” (CCP), see for example Mosteller [40]. There are N types of coupons.
At each step, we are given a uniformly chosen coupon. The expected number
of steps before we obtain at least one coupon of each type is given by the
formula

∑N
i=1

N
i . The sum

∑N
i=1

1
i that usually is denoted by HN, is also

known as the Nth harmonic number. The connection between CCP and the
number of default mistakes while filling in an incomplete state is simple if we
imagine the leaves of the incomplete signature as coupons and a random walk
reaching one leaf as a coupon extraction. A good upper bound for N ·HN is
N(lnN+ 1). Using this approximation for the expected number of default
mistakes, we get

E[X]≤ 1+
d∑
i=1

ki(lnki+1)+knkd(lnkd+1), (3)

because we have at most kn states inQ ′
inc

, and for each state inQ ′ there are
k possible transitions. Recall that d= 2 logm(n

2/δ) (see Theorem 6.2). Thus,
after some simple computations we get

E[X] =O((n4/δ2) log(n/δ))+O((n5/δ2) log(n/δ))=O((n5/δ2) log(n/δ).

The term O((n4/δ2) log(n/δ) corresponds to the expected number of de-
faults mistakes while filling in the initial state, and as we see, we can ignore
it when we compare with the expected number of defaults mistakes for the
rest of the states, that is O((n5/δ2) log(n/δ)). This completes the proof of
Theorem 6.4.

6.4 an example run of reset

Take the automatonM9=([4], {0,1}, {+,−},τ,λ,1), where the transition func-
tion τ and the output function λ are given in Table 31. In Figure 15, we see a
graphical representation for the automatonM9.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

6.4 an example run of reset 73

Table 31: The transition function τ and the output function λ of the automatonM9
State τ(0) τ(1) λ

1 2 4 +
2 1 3 -
3 4 2 -
4 3 1 -

Figure 15: A graphical representation of the automatonM9

We present a possible learning scenario for Reset, imagining that we ob-
serve the main variables of the algorithm after a default mistake, that is, the
Learner does not know the output of a node of an incomplete state and pre-
dicts ‘?’. For a reasonable δ= 0.1, from Theorem 6.2 there results a recom-
mended depth for the signature trees d≤ 2 log2(4

2/0.1), that is, d≤ 2 ·7.32=
14.64. However, for this problem, it suffices that d= 1 to get all pairwise dis-
tinguishable 1-signature trees. We recall that the domain of the 1-signature
trees for this problem is the set {ε,0,1}. To simplify the notation, we represent
a 1-signature tree f as a string f(ε)f(0)f(1): there is no danger of ambiguity,
as for this problem we have only one character output symbol. For example,
“+ - -” represents the 1-signature tree of state 1, and to not overload the no-
tation we also drop the quotation marks. In the header of Table 32, dM, cA,
and dE represent the value of the variables counting the default mistakes, cor-
rect answers, and depth exceeded, respectively. We recall that a depth exceed
appears when a random walk goes out from an incomplete signature tree, and
all the answers along the random walk were known. After a depth exceeded,
the algorithm restarts the learning protocol from the initial state. The descrip-
tion of the learning process by Table 32 is a compromise between the details
we give and the space used: we presented only the actions following a de-
fault mistake, as it is easy to imagine what happens for a correct answer or
for a depth exceeded. If no action is given in the Note field, then one of the
incomplete signatures received a useful answer from the Teacher.

Table 32: Reset learning the automaton M9; the table shows the results after de-
fault mistake, before incrementing dM and before the Teacher’s answer;
the Note describes the action after the Teacher’s answer

M ′ Random walk
dM cA dE Q ′ τ(0) τ(1) λ Q ′

inc
Note

0 0 0 1 ? ? ? 1:??? ε

1 1 0 1 ? ? + 1:+?? 0
Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

74 learning typical automata from random walks – reset

M ′ Random walk
dM cA dE Q ′ τ(0) τ(1) λ Q ′

inc
Note

2 4 1 1 ? ? + 1:+-? 1
move 1 to Q ′

3 6 1 1:+ - - 2 3 + 2:-?? 11
3:-??

4 8 1 1:+ - - 2 3 + 2:-?? 10
3:-?+ move 3 to Q ′

5 10 1 1:+ - - 2 3 + 2:-?? 01
3:- - + 4 5 - 4:-??

5:+??
6 13 1 1:+ - - 2 3 + 2:-?- 111

3:- - + 4 5 - 4:-??
5:+??

7 16 1 1:+ - - 2 3 + 2:-?- 110
3:- - + 4 5 - 4:-?? merge 5 to 1

5:+?-
8 24 2 1:+ - - 2 3 + 2:-?- 11101

3:- - + 4 1 - 4:-??
9 26 2 1:+ - - 2 3 + 2:-?- 00

3:- - + 4 1 - 4:-?- move 2 to Q ′

10 29 2 1:+ - - 2 3 + 4:-?- 010
2:- + - 6 7 - 6:+??
3:- - + 4 1 - 7:-??

11 36 2 1:+ - - 2 3 + 4:-?- 1111011
2:- + - 6 7 - 6:+?? move 7 to Q ′

3:- - + 4 1 - 7:- -?
12 41 2 1:+ - - 2 3 + 4:-?- 11001

2:- + - 6 7 - 6:+??
3:- - + 4 1 - 8:-??
7:- - - 8 9 - 9:-??

13 52 4 1:+ - - 2 3 + 4:-?- 100
2:- + - 6 7 - 6:+?- merge 4 to 7
3:- - + 4 1 - 8:-??
7:- - - 8 9 - 9:-??

14 58 4 1:+ - - 2 3 + 6:+?- 111010
2:- + - 6 7 - 8:-??
3:- - + 7 1 - 9:-??
7:- - - 8 9 -

15 62 4 1:+ - - 2 3 + 6:+?- 1001
2:- + - 6 7 - 8:-??
3:- - + 7 1 - 9:-+?
7:- - - 8 9 -

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

6.5 reset for almost all automata 75

M ′ Random walk
dM cA dE Q ′ τ(0) τ(1) λ Q ′

inc
Note

16 72 5 1:+ - - 2 3 + 6:+?- 111011
2:- + - 6 7 - 8:-?+ merge 9 to 2
3:- - + 7 1 - 9:-+?
7:- - - 8 9 -

17 82 6 1:+ - - 2 3 + 6:+?- 01100
2:- + - 6 7 - 8:-?+ merge 6 to 1
3:- - + 7 1 -
7:- - - 8 2 -

18 135 9 1:+ - - 2 3 + 8:-?+ 10100110001000
2:- + - 1 7 - merge 8 to 3
3:- - + 7 1 -
7:- - - 8 2 -

19 135 9 1:+ - - 2 3 +
2:- + - 1 7 - Q ′

inc
is empty

3:- - + 7 1 - Stop
7:- - - 3 2 -

For this problem, we may stop the learning protocol when there are no
more states in Q ′

inc
. The learned automaton is isomorphic to the target au-

tomaton.

6.5 reset for almost all automata

In the framework of “uniform properties of automata,” we assumed the under-
lying graph of the automaton to be fixed while we assign random symbols as
the outputs of the states. In contrast, in this Section, we assume that also the
graphs of the automata are randomly generated. The properties of automata
with randomly generated underlying graphs were studied by Soviet mathe-
maticians during the 60s, Korshunov [33] presents the results of more than a
decade of work. We underline the importance of the distinguishability degree
ρ of automata for learning algorithms, and in particular, for Reset, before
introducing the framework of “almost all automata”. First, we give a result
about the upper and lower bound of ρ for DFA.

Theorem 6.5 (Trakhtenbrot and Barzdin’ [46]). LetM be an automaton with
n states, k input symbols, andm output symbols. Then the distinguishability
degree ρ of the automatonM satisfies

(logk logmn)−1< ρ≤n−m.

Proof. We follow the proof as cited in Trakhtenbrot and Barzdin’ [46]. Al-
though the theorem is for automata with output on transitions, the change for
automata with output on states is straightforward.

As in the proof of Proposition 4.2, let us denote by DM(j) the number of
equivalence classes given by the relation “j-indistinguishable over the states

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

76 learning typical automata from random walks – reset

of automaton M”. The function DM(j) (defined for j a nonnegative integer)
is a nondecreasing function having the property

DM(0)=m<DM(1)< . . .<DM(ρ)=DM(ρ+1)= . . .=n.

Even for the slowest possible growth of DM(j), that is
DM(1)=m+1, DM(2)=m+2, . . . , DM(n−m)=m+n−m=n,
the value of ρ can never exceed n−m.

For the second part of the inequality, we start counting how many different
ρ-signature trees exist. Each signature tree has

1+k+k2+ . . .+kρ < 2kρ

states, labeled in no more than m2kρ ways. Thus, the number of states satis-
fies the inequality

n<m2kρ ,

and by taking logarithms we get

logmn< 2kρ and logk logmn< logk2+ρ,

that is, for k≥ 2 we have (logk logmn)−1< ρ.

Definition 6.6 (Korshunov [33]). Let F be an arbitrary class of automata
with n states, m output symbols, and k input symbols. We say that almost
all automata in F have the property B if the fraction of the automata in F

having the property B approaches 1 as n→∞.

The following results illustrate this definition.

Theorem 6.7 (Trakhtenbrot and Barzdin’ Theorem 5.4 [46]). There exist pos-
itive constants C1 and C2 such that almost all automata with k input symbols
and n states have the following property: for any state qi and natural num-
ber d≤C1 logkn the set A(qi,d) of states accessible from qi with strings no
longer than d satisfies

|A(qi,d)|≥ kC2d.

In other words, for almost all automata, the number of states accessible
from any state with strings no longer than d is an exponential function on
d, when d satisfies the condition from the theorem. The proof is based on a
stochastic procedure that generates an underlying graph of an automaton.

We start from the initial state (level 0) and we generate transitions (for each
letter of the input alphabet) to arbitrary states, the new states constitute the
level 1. We repeat this procedure until there are no transitions going to a new
level, but only to the current level, or to one of the preceding levels. The
vertices of level 0,1, . . . ,i, for i a nonnegative integer, together with the edges
issuing from them form an i-base.

The proof starts with the following Lemma.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

6.6 remarks 77

Lemma 6.8 (Trakhtenbrot and Barzdin’ [46]). For d ≤ 1/6 logkn, the prob-
ability p(n) that the stochastic procedure generates an automaton graph
whose d-base differs from a tree at most at one point, satisfies, for sufficiently
large n,

p(n)≤n−8/7.

We denote by p(n,C1,C2) the probability that the stochastic procedure
generates an automaton graph not satisfying the statement of the theorem,
and p0(n,C1,C2) the probability that the stochastic procedure generates an
automaton graph not satisfying the statement of the theorem for the initial
state. We have p(n,C1,C2) ≤ np0(n,C1,C2). Using the result of Lemma
6.8, there exist constants C1 and C2 such that for sufficiently large n,

p0(n,C1,C2)≤
1

n8/7
.

If the d-base of a generated graph differs from a tree at most at one point,
then for i≤ d we have |A(q0,i)|≥ 1+(k−1)+(k−1)k+ . . .+(k−1)ki−1,
and thus |A(q0,i)|≥ ki.
Corollary 6.9 (Korshunov [33]). If k≥ 2,m≥ 1 and n→∞, then for almost
all automata with n states, k input symbols andm output symbols, the degree
of distinguishability ρ satisfies

logk logmn − 1< ρ≤ logk logmn + 4.

From the proof of Theorem 6.4, using the distinguishability degree given
by Corollary 6.9, after some simple computations we can also complete the
characterization of the performance of Reset for almost all automata.

Corollary 6.10 (Dediu and Moraga [21]). Algorithm Reset can efficiently
learn almost all n-state automata making no prediction mistakes and an ex-
pected number of default mistakes that is at most O(n(logn) loglogn), where
this expectation is taken over all choices of random walks.

Proof. We rewrite equation 3 from the proof of Theorem 6.4 before making
the logarithmic approximation for the harmonic number, and we get

E[X] ≤ 1+∑d
i=1k

iHki+knk
dHkd+ ≤ 1+(d+kn)kdHkd

≈ 1+(d+kn)kd(lnkd+1).

Recall that d ≤ logk logmn + 4 (see Corollary 6.9). Thus, after some
simple computations we get E[X] = O(n(logn) loglogn). This completes
the proof of Corollary 6.10.

6.6 remarks

In this chapter, we described the theoretical aspects of a passive learning al-
gorithm called Reset. The original approach presented by Freund et al. [23]

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

78 learning typical automata from random walks – reset

within the framework of “uniformly almost all automata” was a starting point
for our treatment. For practical implementations of Reset, we find the frame-
work of “almost all automata” to be more appropriate since it yields more
tractable sizes for the signature trees. During our experiments with the al-
gorithm we found several other inherent difficulties in experimenting with
Reset. The algorithm Reset does not say anything about prediction mistakes.
The theoretical background of the algorithm gives the depth for the signature
trees for (uniformly) almost all automata; however, in practical approaches,
unexpected distinguishability degrees might appear. That the value of the
distinguishability degree ρ is close to logk logmn for almost all automata
suggests the following simple solution for the case when a prediction mistake
appears. We start with a depth d of the signature trees equal to logk logmn
and if a prediction mistake appears, we simply increment d and restart the
learning algorithm.

During our experiments, we also remarked on several automata for which
Reset was not able to learn all the states: it was cycling, and giving only
correct answers, however, in the incomplete states there were always several
states not reached anymore. We will try to formalize the conditions when
Reset is not able to learn all the states.

Let M be an automaton with the set of states Q, the input alphabet Σ, and
the transition function τ. If R is a subset ofQ and if τ(q,x) ∈R for any q ∈R
and x ∈Σ, then:

• R,

• the restriction of τ to R,

• the restriction of the output function λ to R and

• the initial state being one of the states reached with a transition from
Q\R,

form an automaton called a subautomaton. That is, a subautomaton absorbs
all transitions: there are transitions to the states of a subautomaton from the
outside, but all the transitions from inside a subautomaton remain inside the
subautomaton (Liskovets [36]). For a j ≥ 1, we call a subautomaton with j
states a j-subautomaton.

Note that from the assumption that all states are accessible, it follows that
there is no j-subautomaton containing the initial state such that 1≤ j<n.

Suppose that the following conditions hold:

i) In the target automaton there exists a subautomaton;

ii) All states from the subautomaton are learned while there exist other in-
complete states;

iii) The random walk reaches the learned subautomaton.

Then the learning process “stagnates”: Reset makes no mistakes, but does no
longer learn any more states. As the goal of an on-line learning scenario is to

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

6.6 remarks 79

give correct answers, not learning all the states is not considered a problem:
however, avoiding stagnation during the learning process gives the Learner
more possibilities in the case of unexpected situations. Let us observe that a
1-subautomaton can be obtained quite easily: for one state with all transitions
as self-loops (qb=q for all b in the input alphabet).

Wishing to improve the performance of the original Reset, we tried sev-
eral helpful Teachers showing similar results as the algorithm without help.
Using extended answers, we tried to reduce the number of trials in the sense
that instead of one input character, the Teacher could communicate a whole
string (possibly even with the length d given by Theorem 6.2). The Learner
could also answer with a sequence, meaning the string of outputs obtained
following Teacher’s path. A partial answer could stand for a default mistake.
As we can easily see from the proof of Theorem 6.4, this type of extended an-
swer does not change the complexity class of the expected number of default
mistakes, since the unknown outputs are located only on the leaves of states,
for all states except for the initial state.

The same argument holds if we try a modified algorithm performing reset
only on depth exceeded, that is after a default mistake there is no need to go to
the initial state, but the learning could continue from the next node. Certainly,
for the initial state, there are fewer trials, while for all the other states, the
default mistakes and hence the number of trials would be the same.

In the next chapter, we present a helpful teacher that improves the perfor-
mances of Reset.

chapter references

[4] Dana Angluin. “On the Complexity of Minimum Inference of Regular
Sets”. In: Information and Control 39.3 (1978), pp. 337–350 (cit. on
p. 67).

[21] Adrian-Horia Dediu and Claudio Moraga. “Efficient Learning of Finite
Automata from Undirected Random Walks”. Submitted to Theoretical
Computer Science-A, Elsevier, August, 2014 (cit. on pp. 77, 81, 86, 88,
95).

[22] William Feller. An Introduction to Probability Theory and its Applica-
tions. Vol. I. 3rd ed. New York: Wiley, 1968 (cit. on p. 67).

[23] Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert
E. Schapire, and Linda Sellie. “Efficient Learning of Typical Finite
Automata from Random Walks”. In: Inf. Comput. 138.1 (1997), pp. 23–
48 (cit. on pp. 17, 20, 67–69, 71, 77).

[26] E. Mark Gold. “Complexity of Automaton Identification from Given
Data”. In: Information and Control 37.3 (1978), pp. 302–320 (cit. on
p. 67).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

80 6.6 remarks

[33] Aleksej D. Korshunov. “The number of automata, boundedly deter-
mined functions and hereditary properties of automata”. In: Kyber-
netika 12.1 (1976), pp. 31–37 (cit. on pp. 75–77).

[36] Valery A. Liskovets. “Exact enumeration of acyclic deterministic au-
tomata”. In: Discrete Appl. Math. 154.3 (Mar. 2006), pp. 537–551. DOI:
10.1016/j.dam.2005.06.009. URL: http://dx.doi.org/10.
1016/j.dam.2005.06.009 (cit. on p. 78).

[40] Frederick Mosteller. Fifty Challenging Problems in Probability with
Solutions. Dover, 1965 (cit. on p. 72).

[41] José Oncina, Pedro García, and Enrique Vidal. “Learning Subsequen-
tial Transducersfor Pattern Recognition InterpretationTasks”. In: IEEE
TransactionsonPattern Analysis and Machine Intelligence 15.5 (1993),
pp. 448–458 (cit. on p. 67).

[46] Boris A. Trakhtenbrot and Ya. M. Barzdin’. Finite automata. Vol. 1.
Fundamental Studies in Computer Science. Behavior and Synthesis,
Translated from Russian by D. Louvish, English translation edited by
E. Shamir and L. H. Landweber. Amsterdam: North-Holland, 1973
(cit. on pp. 24, 68, 69, 75–77).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/10.1016/j.dam.2005.06.009
http://dx.doi.org/10.1016/j.dam.2005.06.009
http://dx.doi.org/10.1016/j.dam.2005.06.009

7 L E A R N I N G F R O M U N D I R E C T E D
R A N D O M W A L K S

The motivation for using a helpful Teacher for a passive on-line learning al-
gorithm is complex, justified by the possibility of speeding up the learning
process, in the context of the additional resources needed. In this chapter, we
extend the study of the efficient passive learning algorithm Reset by allowing
the algorithm to learn from undirected random walks. Thus, we can estimate
an upper bound for the number of trials needed to completely learn almost all
automata. A large number of experiments support the theoretical results.

Banderier and Dobrow [12] present an interesting metaphor, which, due to
several similarities with the learning algorithm Reset, partially inspired our
work. Imagine some guests around a table. One of them has a water carafe.
Let p be the probability that a guest pours water into his glass; after that, he
passes the carafe to his neighbor on the left or to the neighbor on the right.
It is interesting to study the number of carafe moves needed before everyone
receives some water. This problem is related to the cover time for random
walks on graphs. In a passive learning algorithm like Reset, an incomplete
state is the empty glass, while filling in the nodes of a signature tree is like
pouring water into the glass.

This chapter represents the base of a journal article by Dediu and Mor-
aga [21].

7.1 preliminaries

There are general definitions about probability and graphs in the preliminaries
of the previous chapter. In this section, we present for self-consistency several
well-known notions from linear algebra, Markov chains and an important
theorem about cover times in undirected graphs.

For linear algebra, we follow the notations and the results from Schay [44].
A scalar is a real number.

Definition 7.1 (Vector Space, Schay [44]). A set V is called a (real) vector
space and its elements are called vectors if V is not empty and to each p, q
∈ V and each real number c a unique sum p+q ∈ V and a unique product
cp ∈V are associated, satisfying the following eight axioms:

1. p+q=q+p (commutativity of addition),

2. (p+q)+r=p+(q+r) (associativity of addition),

3. There is a vector 0 ∈ V such that p+0 = p for every p (existence of
zero vector),

81

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

82 learning from undirected random walks

4. For every vector p there is an associated vector −p ∈V such that p+
(−p)= 0 (existence of additive inverse),

5. 1p=p (rule of multiplication by 1),

6. a(bp)= (ab)p (associativity of multiplication by scalars),

7. (a+b)p=ap+bp (first distributive law),

8. a(p+q)=ap+aq (second distributive law),

where a,b are scalars.

Example 7.2. For any positive integer n, the vector space of ordered real
number n-tuples v=(vi : i ∈ [n]) is denoted by Rn.

The basic operations defined for vectors in Rn are

(vi : i ∈ [n])+(ui : i ∈ [n]) = (vi+ui : i ∈ [n])

and
c(vi : i ∈ [n]) = (cvi : i ∈ [n])

for all vectors v = (vi : i ∈ [n]) and u = (ui : i ∈ [n]) and every scalar c.
The scalars v1,v2, . . . ,vn are called the components of the vector v= (vi : i ∈
[n]), and two vectors are said to be equal if and only if their corresponding
components are equal. We denote by 0n a vector with all n components equal
to zero, or only 0 when n is clear from the context.

For all vectors p = (p1,p2, . . . ,pn) and q = (q1,q2, . . . ,qn) in Rn, their
scalar or dot product is p ·q= p1q1+p2q2+ . . .+pnqn. In Rn, we define
two vectors p and q to be orthogonal to each other if p ·q= 0.

The number of components of a vector is also called the dimension or the
size of the vector.

A matrix with m rows and n columns (size m by n) is a rectangular array
of numbers1. We can see a matrix as being formed by row vectors or column
vectors. The individual items in a matrix are called its elements (or sometimes
entries). We denote a matrix A and its entries by A= (aij : i ∈ [m],j ∈ [n]).
We can add two matrices with the same size by adding their corresponding
entries. The set Mm×n of all the matrices with m rows and n columns to-
gether with the operation of addition and the usual multiplication of matrices
by scalars has the structure of a vector space. We define the multiplication of
two matrices A= (aij : i ∈ [m],j ∈ [n]) and B= (bij : i ∈ [n],j ∈ [p]) accord-
ing to the formula AB= (cij : i ∈ [m],j ∈ [p]), where cij =

∑n
k=1aikbkj. We

denote by In the identity matrix, In=(cij : i,j ∈ [n]), where

cij=

{
1, if i= j,
0, otherwise.

When the size of the identity matrix is clear from the context we denote it
only by I. For any m by n matrix A, we have AIn = ImA=A. Let A and

1 In what follows, we need only real-valued vectors and matrices, although other types can be
defined as well.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

7.1 preliminaries 83

B be two n by n matrices. The matrix B is called inverse of A if and only if
AB=BA= I and in this case, we also write B=A−1.

We use the basic notions about vectors and matrices to introduce Markov
chains. To fix notation, we work with a discrete sample space S and a proba-
bility P. A subsetA⊆ S is an event and P(A) is the probability of the eventA.

Let I = {i1,i2, . . .} be a countable set of states2. We start with an initial
probability distribution over I specified as a row vector

u=(ui : i ∈ I),0≤ui ≤ 1,
∑
i∈I
ui= 1.

We also have a transition matrix

P=(pij : i,j ∈ I),

where P is a stochastic matrix, meaning that pij ≥ 0, for all i,j ∈ I and∑
j∈Ipij = 1. A sequence of random variables (Xn)n≥0, Xn : S→ I is a

Markov chain with the initial distribution u and the transition matrix P if
for all n≥ 0 and i0, . . . in+1 ∈ I,

1. P(X0= i0)=ui0 and

2. P(Xn+1 = in+1 |X0 = i0, . . . ,Xn = in) = P(Xn+1 = in+1 |Xn = in) =
pinin+1 .

Theorem 7.3 (Grinstead and Snell [29]). Let P be the transition matrix of a
Markov chain, and let u be the initial distribution of the Markov chain. Then
the probability that the chain is in state si after n steps is the ith entry in the
vector uPn.

Definition 7.4. A Markov chain with the set of states I is irreducible, if for
all states i,j ∈ I there is an n such that P(Xn= j |X0= i)> 0.

The states of a Markov chain can be classified as follows. A state i ∈ I
is recurrent if P(Xn = i for some n ≥ 1 | X0 = i) = 1, which means that the
probability of eventual return to i, having started from i is one. Otherwise i is
called transient. Let fij(n) = P(X1 6= j,X2 6= j, . . . ,Xn−1 6= j,Xn = j |X0 = i)
be the probability that the first visit to state j, starting from i, takes place at
the nth step. Let Tj =min{n ≥ 1 | Xn = j} be the time of the first visit to
state j, with the convention that Tj =∞ if this visit never occurs. The mean
recurrence time µi of a state i is defined as

µi=E(Ti |X0= i)=

{ ∑
nnfii(n) if i is recurrent,∞ if i is transient.

Note that

• the mean recurrence time may be infinite even for recurrent states.

• an irreducible Markov chain has all the states either recurrent or tran-
sient.

2 We distinguish between I and the identity matrix I.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

84 learning from undirected random walks

A recurrent state i is called positive if µi is finite.
For a Markov chain with the transition matrix P, a probability distribution

π is called a stationary probability distribution if πP=π.

Theorem 7.5 (Grimmett and Stirzaker [27]). An irreducible Markov chain
has a stationary distribution π if and only if all states are positive recurrent;
in this case π is unique and is given by πi= 1/µi.

Let us note that the existence of a stationary probability distribution π does
not also mean that, starting from an arbitrary probability distribution other
than π, the Markov chain will ever reach the stationary probability distribu-
tion3.

A Markov chain can be represented by a directed graph with a vertex asso-
ciated to each state and an edge labeled pij from vertex i to vertex j if pij > 0.

Let G be an undirected connected graph with n vertices. Let di denote
the number of edges incident with vertex i and let ∆ij denote the distance
between vertices i and j, defined as the number of edges in the minimal path
between i and j. To any random walk on G, we can associate a Markov chain
in which the states are the vertices of G and the transition probability pij is
given by

pij=

{
0, if (i,j) is not an edge,
1
di

, otherwise.

We define the hitting time hij as the expected number of transitions until a
random walk starting from i reaches j. In particular, hii is the mean recur-
rence time. The commute time between i and j is cij=hij+hji.

Lemma 7.6 (Aleliunas et al. [2]). For each vertex i of a connected undirected
graph G(V ,E), the hitting time hii=

2|E|
di

.

Proof. To a random walk in G, we associate a Markov chain that is strongly
connected and has the transition matrix P. According to Theorem 7.5, there
exists a unique stationary probability distribution π such that πP = π. By
direct substitution, it is easy to confirm that π= (di

2|E|
: i ∈ [|V |]). The mean

recurrence time of a state is the reciprocal of its stationary probability, thus
hii=

2|E|
di

.

Lemma 7.7 (Aleliunas et al. [2]). For any edge (i,j) of a connected undi-
rected graph G(V ,E), the commute time between i and j is cij ≤ 2|E|.

Proof. We interpret the result of Lemma 7.6 in the following way. The long-
run frequency between successive traversals of an edge (i,j) from i to j is
1/2|E|. We observe that all the transitions have the same long-run frequency.
The expected number of transitions during a round trip from i to j and back
is exactly 2|E|tr, where tr is the expected number of transitions from i to j
and back during such a round trip. We conclude the proof by observing that
tr ≤ 1 during such a round trip.

3 This would require an additional condition, called aperiodicity.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

7.2 extending reset with undirected random walks 85

Lemma 7.8 (Aleliunas et al. [2]). For a connected undirected graphG(V ,E),
for all i,j ∈V , the commute time between i and j is cij ≤ 2|E|∆ij.

Proof. The proof results from Lemma 7.7 and induction on ∆ij.

For a graph G= (V ,E) and a random walk starting at v ∈ V , let Cv be the
expected time to visit all the vertices of G. The cover time CG is defined as
maxv∈VCv.

Theorem 7.9 (Aleliunas et al. [2]). For a connected undirected graph G=

(V ,E), if |V |=n and |E|=m, then CG ≤ 2m(n−1).

Proof. Let G ′ = (V ′,E ′) be a spanning tree of G. For any vertex v ∈ V it
is possible to traverse the entire tree G ′ starting at and returning to v, cov-
ering each edge exactly once in each direction. Let the successive vertices
visited in this walk be v = i0,i1,i2, . . . ,i2n−2 = v. Clearly, Cv ≤ hi0i1 +
hi1i2+ . . .+hi2n−3i2n−2+hi2n−3i2n−2 =

∑
(i,j)∈E ′ cij ≤ 2m(n−1) according

to Lemma 7.7. If for any vertex v ∈ V we have Cv ≤ 2m(n−1), then also
CG ≤ 2m(n−1).

7.2 extending reset with undirected ran-
dom walks

For the rest of this section, we fix the following notation. We denote by
M= (Q,Σ,Γ ,τ,λ,q0) the target automaton and by M ′ = (Q ′,Σ,Γ ,τ ′,λ ′,q ′

0
)

the Learner constructed hypothesis automaton. There are k symbols in Σ, m
symbols in the output alphabet Γ , and n states in the target automaton.

We recall the learning protocol Reset, and we present it is as Algorithm 4.
In fact, we kept the same description for our implementation and also for the
next algorithms that we discuss. We note the protocol structure with a “do–
forever” loop. However, “return” should be understood as jumping out of
the loop.

We wish to present a simplified version of Reset which we can see as a
Teacher’s help, partially due to the extended answers we will introduce, par-
tially by adjusting a probability coefficient p to get answers from the Teacher,
can lead to a faster or slower learning process.

In the original algorithm, we allow the Teacher’s answers to use a (helpful)
labeling of states such that for each state q the labeling gives the output sym-
bol λ(q) together with the rest of the d-signature tree of state q. That is, for
each state q, the Teacher constructs the set Sq = {(x,λ(qx) | x ∈ Σ∗,1≤ |x|≤
d} and takes the labeling alphabet Λ= {Sq |q ∈Q} and `(q)= Sq.

Using only this labeling with Reset seems somehow oversimplifying the
learning protocol, a collusion. To avoid this, we also introduce a probability
p for the Teacher to answer with the labeled output in case of a default mis-
take. We denote this version of the learning algorithm by Resetp. The new
algorithm presents the same problems in case of an inappropriate selection of

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

86 learning from undirected random walks

Algorithm 4: Reset Type Learning Protocol

1 Q ′←; // Learner’s set of states

2 Q ′
inc
← {q ′

0
} // Learner’s incomplete set of states

3 q ′←q ′
0

// Learner’s current state

4 q←q0 // Teacher’s current state

5 do
6 tR←Trial() // tR keeps trial result

7 if Q ′
inc

=; then
output :M ′

8 return learnComplete

9 if tR=pM then return pM // prediction mistake

10 if tR=dM then // default mistake: Reset

11 q ′←q ′
0

12 q←q0
13 forever

d for the d-signature trees. Moreover, we can choose p in such a way as to
simulate Reset.

Theorem 7.10 (Dediu and Moraga [21]). LetX be the random variable giving
the total number of default mistakes for Reset and Yp be the random variable
giving the total number of default mistakes for Resetp when both algorithms
successfully learn the same automaton M. Then there exists a probability p
such that O(E[X]) =O(E[Yp]).

Proof. Assume that Reset uses an appropriate d for the d-signature trees, that
is d≥ ρM. Recall that there are k input symbols and n states. From the proof
of Corollary 6.10, we see that O(E[X]) =O(knkdHkd).

For Resetp, for every state, the expected number of default mistakes is 1
p

(a shifted geometric distribution with parameter p). The expected number of
default mistakes for Resetp is E[Yp] = (kn+1)/p. Thus for p= 1/(kdHkd),
we get O(E[X]) =O(E[Yp]).

When implementing the algorithm Resetp there is only a slight simplifi-
cation, the incomplete states are either empty or filled in when the Teacher
answers. The rest of the algorithm works exactly in the same way as Reset.

Now, we present the changes to generalize the learning algorithm to work
on undirected graphs. Thus, we can estimate an upper bound for the number
of trials needed to learn almost all automata.

For directed graphs, the cover time has been less studied, and there are
graphs with exponential cover time in the number of vertices (Cooper and
Frieze [20]). For example, the graphs Gn = (V ,E) where V = {1, . . . ,n} and
E= {(i,i+1) | i= 1, . . . ,n−1}∪ {(i,1) | i= 2, . . . ,n} have C1 =Ω(2n). On
the other hand, for undirected graphs there is the theorem of Aleliunas et
al. [2] giving a cover time polynomial in the number of vertices (see also The-

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

7.2 extending reset with undirected random walks 87

orem 7.9). Thus, modifying the original Reset to allow undirected random
walks is strongly recommended from the theoretical point of view.

The modifications to be made in the Teacher in order to allow undirected
random walks are quite simple. For the target automaton M, the Teacher
constructs the extended labeled underlying graph G ′

M
= (Q,E ′). For each

state q ∈ Q, the Teacher also constructs a set of inverse transitions T−q =

{(r,c) | (q,r,c) ∈ E ′,c ∈ Σ−1}. The direct transitions are Tq = {(τ(q,c),c) |
c ∈Σ}. Assuming that the current state in trial t is q(t), the Teacher chooses
randomly (uniformly) one element (r,c) from the set Tq ∪ T−q , making the
current state for the next trial q(t+1)= r and communicating c to the Learner
as the input symbol. Changing the current state with an input symbol c is a
positive move if c ∈Σ, and a negative move otherwise.

For the Learner, there are several problems related with the inverse tran-
sitions, which can be nondeterministic. For each state q ′, the Learner also
constructs the set of possible transitions Tq ′ ∪T−

q ′ and for one input character
b, the set Nbq ′ = {q ′′ | (q ′′,b) ∈ T−

q ′ }. In order to communicate to the Teacher
that the Learner selected one particular state q ′′ from Nbq ′ , instead of the
simple output symbol λ(q ′′), the Learner answers with the whole signature
∆ ′(q ′′).

In the case of an inverse transition, the Teacher can distinguish between
three situations:

(i) The Learner is in the right state—a correct answer;

(ii) The Learner gives a wrong answer due to the nondeterminism of the
move—the Teacher returns a new type of answer that we call a nonde-
terministic mistake;

(iii) There is simply a prediction mistake.

In Algorithm 5, we present all the changes made to Resetp for learning
automata from undirected random walks, and we call the new algorithm u-
Resetp.

We use several variables with self-explanatory names: such as the Boolean
variable negativeMove, which indicates a negative move. For several vari-
ables we explain as a comment their meaning, for example tA stores the
Teacher’s answer. We use doDefaultMistke to denote the sequence of ac-
tions for a default mistake in case of a positive move: this sequence is similar
to the one from Reset but also adding the inverse transitions. We consider the
possible results of a trial as an enumeration type {cA,pM,dM} that stands
for {correct answer, prediction mistake, default mistake}, respectively. The
Teacher can also return an answer ndM in case of a nondeterministic mis-
take.

When the Teacher is in one state, the number of all possible nondetermin-
istic mistakes that can appear in one trial is bounded by n, thus u-Resetp is
still an efficient algorithm.

From now on, we fix the probability p= 1/(kdHkd) as we wish to compare
u-Resetp with Reset.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

88 learning from undirected random walks

Algorithm 5: u-Resetp Trial

1 trialType Trial()
2 if negativeMove then
3 tA←ndM // needed only if Nbq ′ =;
4 foreach q ′′ ∈Nbq ′ do // nondeterministic candidates

5 tA←ndCheck(∆ ′(q ′′))
6 if tA=pM then return pM // prediction mistake

7 q ′←q ′′

8 if tA= cA then Break; // correct answer

9 if tA=ndM then // exhausted all possible moves

10 tA←predict(‘?’)
11 if tA= ε then return dM; // default mistake

12 if ∃q ′
a ∈Q ′ such that ∆ ′(q ′

a)= tA then add {(q ′
a,b)} to T−

q ′

13 else
14 create a new state q ′′ and set ∆ ′(q ′′)← tA
15 Q ′←Q ′∪ {q ′′}, assign τ ′(q ′′,b−1)←q ′

16 Add {(q ′′,b)} to T−
q ′

17 foreach c ∈Σ\{b−1} do
18 Create a new state r ′c and set Q ′

inc
←Q ′

inc
∪ {r ′c}

19 Assign τ ′(q ′′,c)← r ′c and add {(q ′′,c−1)} to T−
r ′c

20 return dM // default mistake

21 if q ′ ∈Q ′ then
22 tA← predict ∆ ′(q ′)
23 if tA=pM then return pM // prediction mistake

24 get an input string b
25 if b ∈Σ then set q ′← τ ′(q ′,b)
26 else Nbq ′← {q ′′ | (q ′′,b) ∈ T−q ′}
27 negativeMove← (b 6∈Σ) // boolean value

28 return cA // correct answer

29 if q ′ ∈Q ′
inc

then doDefaultMistake and return dM
30 end Trial

Theorem 7.11 (Dediu and Moraga [21]). The algorithm u-Resetp efficiently
learns almost all n-state automata with k input symbols, making no predic-
tion mistakes, and:

1. The expected number of default mistakes is at most n(2k−1)/p;

2. The expected number of trials is in O(n3/p).

Here, the expectations are taken over all choices of all random walks and the
choice of the Teacher of answer or not to default mistakes.

Proof. For every state, the expected number of default mistakes is 1p (a shifted
geometric distribution with parameter p). Let us denote by ti= |T−qi∪Tqi | the

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

7.3 comparative results 89

number of transitions for state qi, for 1 ≤ i ≤ n. We have
∑n
i=1 ti = 2kn.

From the initial state q1 there are at most t1 direct and inverse transitions.
For a state qi other than the initial state, for 2≤ i≤n, there are at most ti−1
possible transitions to states producing default mistakes; one transition is to
the state that allowed the creation of state qi. We sum all the possible transi-
tions that actually produce default mistakes, and we get t1+

∑n
i=2(ti−1) =

2kn−n−1. If we add the initial state (producing default mistakes without
any transition) and use the fact that for each state there are 1/p expected de-
fault mistakes, then we get the result stated by the theorem.

To find an upper bound for the expected number of trials we use the result
stated by Theorem 7.9. A random walk on the Learner’s automaton starts
in the initial state and ends with a default mistake. Thus, there is an upper
bound for the expected number of trials: the product of the expected number
of default mistakes by the cover time for the largest graph that the Learner
can develop. There are at most kn+1 states and kn transitions in this graph.
Making the computations, we get an upper bound for the expected number of
trials: 2(kn)2n(2k−1)/p.

Comparing with Reset, there are more expected default mistakes, due to
the undirected random walks; however, for u-Resetp, we can give an upper
bound for the expected number of trials. Next, we present the results of our
experiments and for all the cases we tested, the number of trials was consid-
erably lower for u-Resetp than for Reset.

7.3 comparative results

There are several well-known methods to generate random automata, we men-
tion the ones proposed by Bassino and Nicaud [13], or Almeida et al. [3]. For
simplicity, we prefer the algorithm described by Lang [35], which we briefly
present in the following.

We construct the underlying graph of a random automaton as shown in
Algorithm 6. We generate random edges for each node of the underlying
graph and for each character in the input alphabet. After assigning random
output symbols to the states and after selecting the accessible automaton, we
check whether the resulting automaton is minimal: if not, we generate a new
automaton. We denote by N the initial number of nodes for the underlying
graph the algorithm generates, Σ represents the input alphabet, and Γ is the
output alphabet.

In practice, mostly of the generated accessible automata are already mini-
mal.

Using the described procedure, we generate a large number of automata
and we check the number of different d-signature trees for several values
of d. We generate two sets of automata with the output alphabet containing
two symbols: one by starting the generation routine from an initial number of
nodesN= 1000 and the other fromN= 64000. We also check the number of
different signatures obtained for each automaton from using 4-signature trees

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

90 learning from undirected random walks

Algorithm 6: Generate an accessible, minimal random automaton
input : N, Σ, Γ

1 repeat
2 foreach node i, 1≤ i≤N do
3 foreach character b in Σ do
4 add an edge (i,j) labeled by b, j a random number, 1≤ j≤N
5 assign to i a random output label from Γ

6 selectM, the accessible automaton
7 untilM is minimal

output : M

and also from using 5-signature trees. In the case of automata starting from
1000 nodes, all automata except one have a number of signatures equal to the
number of states when using 4-signature trees.

Table 33: Random automata obtained starting from 1000 nodes

Test 4-signature
Number States trees

1 809 809
2 779 779
3 792 792

.
33 814 814
34 808 807
35 796 796
.
99 813 813

100 806 806
Average 795.63 795.62

We note that for all automata using 5-signature trees, we get as many signa-
tures as states. In Tables 33 and 34, we see several samples from our results.

For our tests, for each number between 140 and 300, we randomly gen-
erated ten different automata with that many states. For each automaton we
tested how our algorithms worked for 10 different executions. For each num-
ber of states we recorded the average values for the number of trials and the
number of default mistakes. We compared the results obtained by Reset and
u-Resetp. The expected number of default mistakes is concordant with the
results from the experiments. The experimental average number of trials for
u-Resetp is much lower than the upper bound from Theorem 7.11. Figure 16
compares the number of trials for Reset and u-Resetp.

The very high values for the number of trials used by Reset at some points
come from experiments that “stagnated.” Due to the undirected random walk,
the algorithm u-Resetp simply avoids this problem.

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

7.4 remarks and discussion 91

Table 34: Random automata obtained starting from 64000 nodes

Test 4-signature 5-signature
Number States trees trees

1 50923 50923 50923
2 50938 50938 50938
3 50931 50930 50931
4 51011 51008 51011
5 51213 51213 51213

.
97 51065 51065 51065
98 51095 51095 51095
99 50937 50936 50937

100 51231 51230 51231
Average 50997.48 50996.22 50997.48

7.4 remarks and discussion

Using undirected random walks, we were able to estimate a polynomial upper
bound for the number of trials needed to learn completely almost all automata
in the on-line passive learning framework. A natural question arises: do we
really need a more verbose Teacher for this result? Undirected random walks
should use negative moves, thus Σ−1 should be included in the learning pro-
tocol. Could we imagine a Teacher without nondeterministic Mistakes? After
all, the Teacher could answer simply with a prediction mistake. This could be
a solution; however, recall that in theory, Reset does not use prediction mis-
takes at all, thus automatically a Teacher using prediction mistakes would be
a more verbose one. In practice, we use prediction mistakes for Reset when
the depth of the signature trees was not enough to discriminate between all
the states. Hence, using the same mistake for a nondeterministic error that
could appear quite often and a prediction error that appears rarely is in fact
rather undesirable.

An interesting aspect would be to study what changes are needed to come
up with an algorithm that could be called u-Reset, that is, undirected random
walks while filling in the signature trees step by step as in Reset, the Teacher
answering a default mistake only with the output of the state. The problem
is how to deal with the nondeterministic mistakes? How could the Teacher
know in case of a negative move only from a (partial) path in a d-signature
tree that the Learner is in the correct state or not? What answer could the
Teacher give to a default mistake, if the Learner is in an incorrect state, but
the answers until the default mistake were correct?

We also considered a simplified version of negative moves, from time to
time the Teacher could say “go back one step”. In this case the Teacher should
keep a trace of a random walk, and for our tests this was requesting extensive
memory, slowing down considerably the performances of our algorithms. An-
other difficulty for this scenario is also the fact that the Teacher should take

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

92 7.4 remarks and discussion

100000

1000000

10000000

100000000

1000000000

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Trials
Reset

Undirected Random Walks

Figure 16: Reset and u-Resetp—The average number of trials depending on the
number of states

care to not go back more than the starting point of the random walk, with
implications for the model of the new type of “random walk”. Our approach
of u-Resetp avoided these problems.

We use a value for the probability p (in Resetp and u-Resetp) such that
Reset and Resetp give comparable results. The probability p depends on
d, and hence on the number of states n. For experiments, we can use other
values for p, creating the possibility of accelerating the learning process.

chapter references

[2] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz,
and Charles Rackoff. “Random walks, universal traversal sequences,
and the complexity of maze problems”. In: Proceedings of the 20th
Annual Symposium on Foundations of Computer Science. Washing-
ton, DC, USA: IEEE Computer Society, 1979, pp. 218–223. DOI: 10.
1109/SFCS.1979.34. URL: http://dx.doi.org/10.1109/SFCS.
1979.34 (cit. on pp. 84–86).

[3] Marco Almeida, Nelma Moreira, and Rogério Reis. Enumeration and
Generation of Initially Connected Deterministic Finite Automata. Tech.
rep. Series: DCC-2006-07, Universidade do Porto, 2010 (cit. on p. 89).

[12] Cyril Banderier and Robert P. Dobrow. “A Generalized Cover Time
for Random Walks on Graphs”. In: FPSAC’00. Springer-Verlag, June
2000, 113–124 (cit. on p. 81).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1109/SFCS.1979.34

Chapter References 93

[13] Frédérique Bassino and Cyril Nicaud. “Enumeration and random gen-
eration of accessible automata”. In: Theoretical Computer Science 381
(2007), pp. 86–104 (cit. on p. 89).

[20] Colin Cooper and Alan M. Frieze. “Stationary distribution and cover
time of random walks on random digraphs”. In: Journal of Combina-
torial Theory, Series B 102.2 (2012), pp. 329–362 (cit. on p. 86).

[21] Adrian-Horia Dediu and Claudio Moraga. “Efficient Learning of Finite
Automata from Undirected Random Walks”. Submitted to Theoretical
Computer Science-A, Elsevier, August, 2014 (cit. on pp. 77, 81, 86, 88,
95).

[27] Geoffrey R. Grimmett and David R. Stirzaker. Probability and random
processes. Oxford science publications. Clarendon Press, 1985. ISBN:
9780198531852 (cit. on p. 84).

[29] Charles M. Grinstead and J. Laurie Snell. Grinstead and Snell’s Intro-
duction to Probability. Orange Grove Texts Plus, 2009 (cit. on p. 83).

[35] Kevin J. Lang. “Random DFA’s Can Be Approximately Learned from
Sparse Uniform Examples”. In: COLT. Ed. by David Haussler. ACM,
1992, pp. 45–52 (cit. on p. 89).

[44] Géza Schay. A Concise Introduction to Linear Algebra. SpringerLink :
Bücher. Springer, 2012. ISBN: 9780817683252 (cit. on p. 81).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

8 C O N C L U D I N G R E M A R K S

We investigated three major helpful conditions for the two different research
directions of query learning and passive learning:

• an increased number of output symbols allows a reduced number of
queries;

• some partial guidance along the learning path gives the results of sev-
eral queries as a single one;

• enhancing the learning structure permits a better exploration of the
learning environment.

During our research, we published the following papers presenting results
related to the domain of learning automata: Becerra-Bonache, Bibire and
Dediu [14], Becerra-Bonache, Dediu and Tîrnăucă [17], Angluin et al. [9],
and Becerra-Bonache and Dediu [16]. These papers contains some of the
ideas appearing in this thesis as well. We also submitted a journal article,
Dediu and Moraga [21].

In Chapter 4, we presented a version of L∗ based on a helpful labeling, en-
abling one to learn automata using only label queries without needing coun-
terexamples. The lower bound of the number of labels needed for learning
without counterexamples could be considerably improved, at least for some
particular classes of automata.

In Chapter 5, we showed that besides the minimal corrections, there exist
other types of corrections, such as maximal or random corrections. We think
that further research on this subject, especially within the labeling context,
could yield more results.

In Chapter 7, we allowed the random walks to go also “backwards” on
transitions, by enhancing the structure of the target automaton with inverse
transitions. Thus, we were able to estimate a polynomial upper bound for the
number of trials needed to completely learn almost all automata in the on-line
passive learning framework.

The following remarks are valid for the algorithms we discussed and we
can interpret them metaphorically as well, for general learning methodolo-
gies.

• Learning is a process of gradually connecting new states with previ-
ously learned states.

• Some help could make a learning process faster.

• Too much help could constitute collusion.

95

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

96 concluding remarks

• Learning with help is not necessarily working faster or giving better
results.

• Helpful learning needs more resources.

The large number of experimental results presented in this thesis are in con-
cordance with the theoretical background and could inspire future research.

personal results about learning automata

[9] Dana Angluin, Leonor Becerra-Bonache, Adrian-Horia Dediu, and
Lev Reyzin. “Learning finite automata using label queries”. In:
Proceedings of the 20th International Conference on Algorithmic
Learning Theory, Porto, Portugal, October 3–5, 2009. Ed. by Ri-
card Gavaldà, Gábor Lugosi, Thomas Zeugmann, and Sandra Zilles.
Vol. 5809. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 171–185 (cit. on pp. 16, 20, 30, 45, 46, 95).

[14] Leonor Becerra-Bonache, Cristina Bibire, and Adrian-Horia Dediu.
“Learning DFA from Corrections”. In: Proc. Workshop on Theoretical
Aspects of Grammar Induction. Ed. by Henning Fernau. WSI-2005-14.
Technical Report, University of Tubingen, 2005, pp. 1–11 (cit. on
pp. 17, 45, 55, 95).

[16] Leonor Becerra-Bonache and Adrian-Horia Dediu. “Learning from a
Smarter Teacher”. In: Proceedings of the 10th International Confer-
ence on Intelligent Data Engineering and Automated Learning, Bur-
gos, Spain, September, 2009. Ed. by Emilio Corchado and Hujun Yin.
Vol. 5788. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 200–207 (cit. on pp. 63, 95).

[17] Leonor Becerra-Bonache, Adrian-Horia Dediu, and Cristina Tîrnăucă.
“Learning DFA from correction and equivalence queries”. In: Proceed-
ings of the 8th International Conference on Grammatical Inference:
Algorithms and Applications. Vol. 4201. Lecture Notes in Computer
Science. Tokyo, Japan: Springer-Verlag, 2006, pp. 281–292 (cit. on
pp. 17, 30, 45, 55, 95).

[21] Adrian-Horia Dediu and Claudio Moraga. “Efficient Learning of Finite
Automata from Undirected Random Walks”. Submitted to Theoretical
Computer Science-A, Elsevier, August, 2014 (cit. on pp. 77, 81, 86, 88,
95).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

B I B L I O G R A P H Y

[1] András Ádám. The behaviour and simplicity of finite Moore automata.
Budapest,Hungary: Akademiai Kiado, 1996 (cit. on p. 24).

[2] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz,
and Charles Rackoff. “Random walks, universal traversal sequences,
and the complexity of maze problems”. In: Proceedings of the 20th
Annual Symposium on Foundations of Computer Science. Washing-
ton, DC, USA: IEEE Computer Society, 1979, pp. 218–223. DOI: 10.
1109/SFCS.1979.34. URL: http://dx.doi.org/10.1109/SFCS.
1979.34 (cit. on pp. 84–86).

[3] Marco Almeida, Nelma Moreira, and Rogério Reis. Enumeration and
Generation of Initially Connected Deterministic Finite Automata. Tech.
rep. Series: DCC-2006-07, Universidade do Porto, 2010 (cit. on p. 89).

[4] Dana Angluin. “On the Complexity of Minimum Inference of Regular
Sets”. In: Information and Control 39.3 (1978), pp. 337–350 (cit. on
p. 67).

[5] Dana Angluin. “A Note on the Number of Queries Needed to Identify
Regular Languages”. In: Information and Control 51.1 (1981), pp. 76–
87 (cit. on p. 29).

[6] Dana Angluin. “Learning regular sets from queries and counterexam-
ples”. In: Information and Computation 75.2 (1987), pp. 87–106. DOI:
http://dx.doi.org/10.1016/0890-5401(87)90052-6 (cit. on
pp. 12, 15, 16, 29, 30, 32, 33, 35).

[7] Dana Angluin. “Queries and Concept Learning”. In: Machine Learn-
ing 2.4 (1988), pp. 319–342. DOI: http://dx.doi.org/10.1023/A:
1022821128753 (cit. on p. 29).

[8] Dana Angluin. “Negative Results for Equivalence Queries”. In: Ma-
chine Learning 5.2 (1990), pp. 121–150. DOI: http://dx.doi.org/
10.1023/A:1022692615781 (cit. on p. 29).

[9] Dana Angluin, Leonor Becerra-Bonache, Adrian-Horia Dediu, and
Lev Reyzin. “Learning finite automata using label queries”. In:
Proceedings of the 20th International Conference on Algorithmic
Learning Theory, Porto, Portugal, October 3–5, 2009. Ed. by Ri-
card Gavaldà, Gábor Lugosi, Thomas Zeugmann, and Sandra Zilles.
Vol. 5809. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 171–185 (cit. on pp. 16, 20, 30, 45, 46, 95).

[10] José L. Balcázar, Josep Díaz, and Joaquim Gabarró. Structural Com-
plexity. Berlin: Springer-Verlag, 1990 (cit. on p. 24).

97

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022821128753
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022821128753
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022692615781
http://dx.doi.org/http://dx.doi.org/10.1023/A:1022692615781

98 Bibliography

[11] José L. Balcázar, Josep Díaz, and Ricard Gavaldà. “Algorithms for
Learning Finite Automata from Queries: A Unified View”. In: Ad-
vances in Algorithms, Languages, and Complexity. 1997, pp. 53–72
(cit. on p. 30).

[12] Cyril Banderier and Robert P. Dobrow. “A Generalized Cover Time
for Random Walks on Graphs”. In: FPSAC’00. Springer-Verlag, June
2000, 113–124 (cit. on p. 81).

[13] Frédérique Bassino and Cyril Nicaud. “Enumeration and random gen-
eration of accessible automata”. In: Theoretical Computer Science 381
(2007), pp. 86–104 (cit. on p. 89).

[14] Leonor Becerra-Bonache, Cristina Bibire, and Adrian-Horia Dediu.
“Learning DFA from Corrections”. In: Proc. Workshop on Theoretical
Aspects of Grammar Induction. Ed. by Henning Fernau. WSI-2005-14.
Technical Report, University of Tubingen, 2005, pp. 1–11 (cit. on
pp. 17, 45, 55, 95).

[15] Leonor Becerra-Bonache, Colin de la Higuera, Jean-Christophe Jan-
odet, and Frédéric Tantini. “Learning Balls of Strings from Edit Correc-
tions”. In: Journal of Machine Learning Research 9 (2008), pp. 1841–
1870 (cit. on p. 55).

[16] Leonor Becerra-Bonache and Adrian-Horia Dediu. “Learning from a
Smarter Teacher”. In: Proceedings of the 10th International Confer-
ence on Intelligent Data Engineering and Automated Learning, Bur-
gos, Spain, September, 2009. Ed. by Emilio Corchado and Hujun Yin.
Vol. 5788. Lecture Notes in Computer Science. Springer-Verlag, 2009,
pp. 200–207 (cit. on pp. 63, 95).

[17] Leonor Becerra-Bonache, Adrian-Horia Dediu, and Cristina Tîrnăucă.
“Learning DFA from correction and equivalence queries”. In: Proceed-
ings of the 8th International Conference on Grammatical Inference:
Algorithms and Applications. Vol. 4201. Lecture Notes in Computer
Science. Tokyo, Japan: Springer-Verlag, 2006, pp. 281–292 (cit. on
pp. 17, 30, 45, 55, 95).

[18] Jean Berstel. Transductions and Context-free Languages. Vol. 38. Leit-
fäden der angewandten Mathematik und Mechanik. Teubner, 1979 (cit.
on p. 24).

[19] Gillea Brassard. “Crusade for a better notation”. In: SIGACT News 17.1
(June 1985), pp. 60–64. DOI: 10.1145/382250.382808. URL: http:
//doi.acm.org/10.1145/382250.382808 (cit. on p. 25).

[20] Colin Cooper and Alan M. Frieze. “Stationary distribution and cover
time of random walks on random digraphs”. In: Journal of Combina-
torial Theory, Series B 102.2 (2012), pp. 329–362 (cit. on p. 86).

[21] Adrian-Horia Dediu and Claudio Moraga. “Efficient Learning of Finite
Automata from Undirected Random Walks”. Submitted to Theoretical
Computer Science-A, Elsevier, August, 2014 (cit. on pp. 77, 81, 86, 88,
95).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/10.1145/382250.382808
http://doi.acm.org/10.1145/382250.382808
http://doi.acm.org/10.1145/382250.382808

Bibliography 99

[22] William Feller. An Introduction to Probability Theory and its Applica-
tions. Vol. I. 3rd ed. New York: Wiley, 1968 (cit. on p. 67).

[23] Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert
E. Schapire, and Linda Sellie. “Efficient Learning of Typical Finite
Automata from Random Walks”. In: Inf. Comput. 138.1 (1997), pp. 23–
48 (cit. on pp. 17, 20, 67–69, 71, 77).

[24] William I. Gasarch, Efim B. Kinber, Mark G. Pleszkoch, Carl H. Smith,
and Thomas Zeugmann. “Learning via QuerieswithTeams andAnoma-
lies”. In: Fundam. Inf. 23.1 (Jan. 1995), pp. 67–89. URL: http://dl.
acm.org/citation.cfm?id=2383376.2383378 (cit. on p. 29).

[25] E. Mark Gold. “Language identification in the limit”. In: Information
and Control 10.5 (1967), pp. 447–474 (cit. on p. 15).

[26] E. Mark Gold. “Complexity of Automaton Identification from Given
Data”. In: Information and Control 37.3 (1978), pp. 302–320 (cit. on
p. 67).

[27] Geoffrey R. Grimmett and David R. Stirzaker. Probability and random
processes. Oxford science publications. Clarendon Press, 1985. ISBN:
9780198531852 (cit. on p. 84).

[28] Olga Grinchtein and Martin Leucker. “Learning finite-state machines
from inexperienced teachers”. In: Proceedings of the 8th International
Conference on Grammatical Inference: Algorithms and Applications.
Vol. 4201. Lecture Notes in Computer Science. Tokyo, Japan: Springer-
Verlag, 2006, pp. 344–345. DOI: 10.1007/11872436_30. URL: http:
//dx.doi.org/10.1007/11872436_30 (cit. on p. 29).

[29] Charles M. Grinstead and J. Laurie Snell. Grinstead and Snell’s Intro-
duction to Probability. Orange Grove Texts Plus, 2009 (cit. on p. 83).

[30] Yuri Gurevich. “What does O(n) mean”. In: SIGACT News 17.4 (Mar.
1986), pp. 61–63. DOI: 10.1145/8307.8311. URL: http://doi.acm.
org/10.1145/8307.8311 (cit. on p. 25).

[31] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979 (cit. on
pp. 20, 22).

[32] Efim Kinber. “On Learning Regular Expressions and Patternsvia Mem-
bership and Correction Queries”. In: Proceedings of the 9th Interna-
tional Colloquium on Grammatical Inference: Algorithms and Applica-
tions, Saint-Malo, France, September 22–24, 2008. Ed. by Alexander
Clark, François Coste, and Laurent Miclet. Vol. 5278. Lecture Notes in
Computer Science. Berlin: Springer-Verlag, 2008, pp. 125–138 (cit. on
p. 55).

[33] Aleksej D. Korshunov. “The number of automata, boundedly deter-
mined functions and hereditary properties of automata”. In: Kyber-
netika 12.1 (1976), pp. 31–37 (cit. on pp. 75–77).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dl.acm.org/citation.cfm?id=2383376.2383378
http://dl.acm.org/citation.cfm?id=2383376.2383378
http://dx.doi.org/10.1007/11872436_30
http://dx.doi.org/10.1007/11872436_30
http://dx.doi.org/10.1007/11872436_30
http://dx.doi.org/10.1145/8307.8311
http://doi.acm.org/10.1145/8307.8311
http://doi.acm.org/10.1145/8307.8311

100 Bibliography

[34] George Lakoff and Mark Johnson. “Conceptual Metaphor in Everyday
Language”. In: The Journal of Philosophy 77.8 (1980), pp. 453–486.
DOI: 10.2307/2025464. URL: http://dx.doi.org/10.2307/
2025464 (cit. on p. 15).

[35] Kevin J. Lang. “Random DFA’s Can Be Approximately Learned from
Sparse Uniform Examples”. In: COLT. Ed. by David Haussler. ACM,
1992, pp. 45–52 (cit. on p. 89).

[36] Valery A. Liskovets. “Exact enumeration of acyclic deterministic au-
tomata”. In: Discrete Appl. Math. 154.3 (Mar. 2006), pp. 537–551. DOI:
10.1016/j.dam.2005.06.009. URL: http://dx.doi.org/10.
1016/j.dam.2005.06.009 (cit. on p. 78).

[37] Victor Mitrana and Cristina Tirnăucă. “New bounds for the query com-
plexity of an algorithm that learns DFAs with correction and equiva-
lence queries”. In: Acta Inf. 48.1 (2011), pp. 43–50 (cit. on p. 55).

[38] Mehryar Mohri. “Finite-state transducers in language and speech pro-
cessing”. In: Comput. Linguist. 23.2 (June 1997), pp. 269–311 (cit. on
p. 24).

[39] Edward F. Moore. “Gedanken Experiments on Sequential Machines”.
In: Automata Studies. Princeton U., 1956, pp. 129–153 (cit. on p. 48).

[40] Frederick Mosteller. Fifty Challenging Problems in Probability with
Solutions. Dover, 1965 (cit. on p. 72).

[41] José Oncina, Pedro García, and Enrique Vidal. “Learning Subsequen-
tial Transducersfor Pattern Recognition InterpretationTasks”. In: IEEE
TransactionsonPattern Analysis and Machine Intelligence 15.5 (1993),
pp. 448–458 (cit. on p. 67).

[42] Rajesh Parekh and Vasant Honavar. “On the Relationship between
Models for Learning in Helpful Environments”. In: Proceedings of the
5th International Colloquium on Grammatical Inference: Algorithms
and Applications, Lisbon, Portugal, September 11–13, 2000. Ed. by
Arlindo L. Oliveira. Vol. 1891. Lecture Notes in Computer Science.
Springer-Verlag, 2000, pp. 207–220 (cit. on p. 16).

[43] Ronald L. Rivest and Robert E. Schapire. “Inference of Finite Au-
tomata Using Homing Sequences”. In: Information and Computation
103.2 (Apr. 1993), pp. 299–347. DOI: 10.1006/inco.1993.1021.
URL: http://dx.doi.org/10.1006/inco.1993.1021 (cit. on
p. 30).

[44] Géza Schay. A Concise Introduction to Linear Algebra. SpringerLink :
Bücher. Springer, 2012. ISBN: 9780817683252 (cit. on p. 81).

[45] Cristina Tîrnăucă and Timo Knuutila. Efficient Language Learning
with Correction Queries. Technical Report 822. Turku Center for Com-
puter Science, May 2007 (cit. on pp. 45, 55).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/10.2307/2025464
http://dx.doi.org/10.2307/2025464
http://dx.doi.org/10.2307/2025464
http://dx.doi.org/10.1016/j.dam.2005.06.009
http://dx.doi.org/10.1016/j.dam.2005.06.009
http://dx.doi.org/10.1016/j.dam.2005.06.009
http://dx.doi.org/10.1006/inco.1993.1021
http://dx.doi.org/10.1006/inco.1993.1021

Bibliography 101

[46] Boris A. Trakhtenbrot and Ya. M. Barzdin’. Finite automata. Vol. 1.
Fundamental Studies in Computer Science. Behavior and Synthesis,
Translated from Russian by D. Louvish, English translation edited by
E. Shamir and L. H. Landweber. Amsterdam: North-Holland, 1973
(cit. on pp. 24, 68, 69, 75–77).

[47] Leslie Gabriel Valiant. “A theory of the learnable”. In: Communica-
tions of the ACM 27.11 (1984), pp. 1134–1142. DOI: http://doi.
acm.org/10.1145/1968.1972 (cit. on pp. 15, 29).

[48] Juan Miguel Vilar. “Query learning of subsequential transducers”. In:
Proceedings of the Third International Colloquium on Grammatical
Interference (ICGI-96): Learning Syntax from Sentences, Montpellier,
France, September. Ed. by Laurent Miclet and Colin de la Higuera.
Vol. 1147. Lecture Notes in Computer Science. Springer-Verlag, 1996,
pp. 72–83 (cit. on p. 30).

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

http://dx.doi.org/http://doi.acm.org/10.1145/1968.1972
http://dx.doi.org/http://doi.acm.org/10.1145/1968.1972

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

9 A P P E N D I X

9.1 helpful labels, numerical results

Table 35: Comparative results, learning DFA with L∗ and L∗
1

with helpful
labels

Test L∗ L∗
1

with helpful labels
Id States EQ MQ LQ Labels |λ`1 |

P1 2 1 5 11 1 2
P2 2 1 5 11 1 2
P3 2 1 5 11 1 2
P4 2 1 5 11 1 2
P5 2 1 5 11 1 2
P6 2 1 5 11 1 2
P7 2 1 5 11 1 2
P8 2 1 5 11 1 2
P9 2 1 5 11 1 2
P10 2 1 5 11 1 2
P11 2 1 5 11 1 2
P12 3 2 14 15 1 2
P13 3 2 14 15 1 2
P14 3 2 14 15 1 2
P15 3 2 11 15 1 2
P16 3 2 14 15 1 2
P17 3 2 14 15 1 2
P18 3 2 11 15 1 2
P19 3 2 14 15 1 2
P20 3 2 11 15 1 2
P21 3 2 14 15 1 2
P22 3 2 14 15 1 2
P23 4 3 27 19 2 3
P24 4 3 27 19 2 3
P25 4 2 19 19 2 3
P26 4 2 14 19 1 2
P27 4 2 14 19 1 2
P28 4 2 19 19 2 3
P29 4 2 19 19 2 3
P30 4 2 17 19 1 2
P31 4 3 27 19 2 3
P32 4 2 23 19 2 3
P33 4 2 19 19 1 2

Continued on next page

103

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

104 appendix

Test L∗ L∗
1

with helpful labels
Id States EQ MQ LQ Labels |λ`1 |

P34 5 3 39 23 2 3
P35 5 2 23 23 2 3
P36 5 3 31 23 2 3
P37 5 2 23 23 1 2
P38 5 2 23 23 2 3
P39 5 3 27 23 1 2
P40 5 4 49 23 2 3
P41 5 4 54 23 3 4
P42 5 2 34 23 2 4
P43 5 3 39 23 2 4
P44 5 2 23 23 2 3
P45 6 3 44 27 2 3
P46 6 3 35 27 1 2
P47 6 3 71 27 4 5
P48 6 4 44 27 2 3
P49 6 4 77 27 4 5
P50 6 3 65 27 4 5
P51 6 4 65 27 3 4
P52 6 4 71 27 4 5
P53 6 4 71 27 4 5
P54 6 3 31 27 2 3
P55 6 3 34 27 2 4
P56 7 4 71 31 2 4
P57 7 3 49 31 2 3
P58 7 3 39 31 3 5
P59 7 5 89 31 3 4
P60 7 4 76 31 2 3
P61 7 4 90 31 3 4
P62 7 4 65 31 2 4
P63 7 3 53 31 3 4
P64 7 4 83 31 2 4
P65 7 3 59 31 3 5
P66 7 4 69 31 4 5
P67 8 4 90 35 4 6
P68 8 5 83 35 3 4
P69 8 3 44 35 2 4
P70 8 4 59 35 2 3
P71 8 4 65 35 2 4
P72 8 5 111 35 4 5
P73 8 4 77 35 2 4
P74 8 4 77 35 2 4
P75 8 3 69 35 4 5
P76 8 4 90 35 3 4
P77 8 4 71 35 3 4

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

9.1 helpful labels, numerical results 105

Test L∗ L∗
1

with helpful labels
Id States EQ MQ LQ Labels |λ`1 |

P78 9 5 125 39 4 5
P79 9 4 83 39 2 4
P80 9 4 97 39 3 4
P81 9 4 59 39 3 5
P82 9 4 77 39 3 5
P83 9 4 54 39 2 4
P84 9 4 95 39 5 7
P85 9 4 104 39 3 5
P86 9 4 54 39 2 4
P87 9 3 49 39 2 4
P88 9 4 77 39 3 4
P89 10 2 76 43 8 9
P90 10 5 132 43 4 6
P91 10 6 269 43 8 9
P92 10 4 90 43 3 5
P93 10 4 89 43 3 4
P94 10 6 143 43 3 6
P95 10 5 179 43 6 7
P96 10 6 170 43 6 7
P97 10 5 101 43 4 6
P98 10 4 97 43 3 5
P99 10 6 229 43 8 9
P100 11 5 229 47 9 10
P101 11 5 161 47 5 6
P102 11 5 135 47 3 5
P103 11 6 170 47 6 7
P104 11 5 104 47 3 5
P105 11 3 111 47 3 5
P106 11 4 83 47 3 5
P107 11 4 127 47 3 6
P108 11 4 97 47 3 5
P109 11 6 229 47 8 9
P110 11 3 77 47 2 3
P111 12 5 159 51 3 5
P112 12 5 186 51 10 11
P113 12 6 197 51 3 6
P114 12 5 161 51 6 8
P115 12 7 242 51 9 10
P116 12 6 199 51 4 8
P117 12 5 119 51 4 6
P118 12 5 170 51 3 6
P119 12 4 118 51 6 8
P120 12 4 90 51 3 5
P121 12 6 143 51 6 8

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

106 appendix

Test L∗ L∗
1

with helpful labels
Id States EQ MQ LQ Labels |λ`1 |

P122 13 6 167 55 3 5
P123 13 5 132 55 4 6
P124 13 5 101 55 5 8
P125 13 4 101 55 3 6
P126 13 5 159 55 4 6
P127 13 7 197 55 3 6
P128 13 5 151 55 4 6
P129 13 5 167 55 5 8
P130 13 5 189 55 5 7
P131 13 6 274 55 11 12
P132 13 4 113 55 5 7
P133 14 4 208 59 10 12
P134 14 8 615 59 12 13
P135 14 4 135 59 7 9
P136 14 6 209 59 5 7
P137 14 5 151 59 4 6
P138 14 7 407 59 12 13
P139 14 5 189 59 4 8
P140 14 5 161 59 5 7
P141 14 5 181 59 3 6
P142 14 6 167 59 4 6
P143 14 6 199 59 8 10
P144 15 3 95 63 3 6
P145 15 6 219 63 7 9
P146 15 8 319 63 7 9
P147 15 4 101 63 3 6
P148 15 6 389 63 11 12
P149 15 6 233 63 7 9
P150 15 5 249 63 8 11
P151 15 4 151 63 5 8
P152 15 6 219 63 7 9
P153 15 5 167 63 3 6
P154 15 6 183 63 4 6
P155 16 7 359 67 7 10
P156 16 6 274 67 9 11
P157 16 5 179 67 4 7
P158 16 7 285 67 5 8
P159 16 6 259 67 7 10
P160 16 5 215 67 4 7
P161 16 9 463 67 11 13
P162 16 8 347 67 10 11
P163 16 6 175 67 3 6
P164 16 6 206 67 4 7
P165 16 6 224 67 6 8

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

9.1 helpful labels, numerical results 107

Test L∗ L∗
1

with helpful labels
Id States EQ MQ LQ Labels |λ`1 |

P166 17 5 191 71 9 12
P167 17 7 506 71 15 16
P168 17 6 285 71 8 10
P169 17 7 318 71 10 12
P170 17 8 340 71 8 11
P171 17 6 285 71 8 11
P172 17 5 239 71 7 9
P173 17 5 274 71 11 14
P174 17 6 206 71 6 9
P175 17 5 183 71 3 6
P176 17 6 233 71 4 7
P177 18 10 615 75 13 15
P178 18 6 335 75 10 12
P179 18 8 461 75 13 15
P180 18 7 340 75 9 12
P181 18 6 215 75 5 8
P182 18 7 269 75 7 11
P183 18 6 239 75 5 9
P184 18 8 601 75 12 14
P185 18 5 239 75 9 11
P186 18 7 323 75 4 7
P187 18 6 233 75 7 9
P188 19 6 405 79 12 13
P189 19 5 241 79 6 8
P190 19 6 278 79 6 10
P191 19 7 314 79 6 9
P192 19 4 175 79 4 7
P193 19 6 319 79 9 11
P194 19 6 371 79 14 15
P195 19 7 260 79 4 8
P196 19 5 188 79 5 7
P197 19 6 296 79 8 11
P198 19 7 233 79 4 7
P199 20 5 242 83 4 8
P200 20 8 419 83 16 17
P201 20 7 329 83 5 8
P202 20 5 279 83 5 8
P203 20 5 233 83 5 8
P204 20 9 873 83 16 17
P205 20 6 215 83 5 9
P206 20 7 323 83 8 10
P207 20 6 231 83 4 7
P208 20 6 274 83 8 11
P209 20 5 251 83 7 10

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

108 appendix

9.2 correction queries, numerical results

Table 37: Comparative results for learning finite acceptors with L∗ and correction
queries

Correction
L∗ Minimal Random Maximal

Test States EQ MQ EQ CQ EQ CQ EQ CQ
P1 2 1 5 1 4 1 4 1 4
P2 2 1 5 1 4 1 4 1 4
P3 2 1 5 1 4 1 4 1 4
P4 2 1 5 1 3 1 3 1 3
P5 2 1 5 1 4 1 4 1 4
P6 2 1 5 1 4 1 4 1 4
P7 2 1 5 1 4 1 4 1 4
P8 2 1 5 1 3 1 3 1 3
P9 2 1 5 1 4 1 4 1 4
P10 2 1 5 1 4 1 4 1 4
P11 2 1 5 1 4 1 4 1 4
P12 3 2 14 2 13 2 13 2 13
P13 3 2 14 1 5 1 5 1 5
P14 3 2 14 1 5 1 5 1 5
P15 3 2 11 1 5 1 5 1 5
P16 3 2 14 2 12 2 12 2 13
P17 3 2 17 1 5 1 5 1 5
P18 3 2 11 1 5 1 5 1 5
P19 3 2 17 2 14 1 5 1 5
P20 3 2 11 1 5 1 5 1 5
P21 3 2 14 1 5 1 5 1 5
P22 3 2 17 2 15 2 15 2 15
P23 4 3 27 2 12 2 12 2 12
P24 4 3 27 1 5 1 5 1 5
P25 4 2 19 2 18 2 18 2 18
P26 4 2 14 2 11 2 11 2 11
P27 4 2 14 2 11 2 11 2 11
P28 4 2 19 1 6 1 6 1 6
P29 4 2 19 1 6 1 6 1 6
P30 4 2 17 2 15 2 14 2 14
P31 4 3 27 1 5 1 5 1 5
P32 4 2 23 2 19 2 21 2 19
P33 4 2 19 1 6 1 6 1 6
P34 5 3 39 2 14 2 14 2 14
P35 5 2 23 2 21 2 21 2 21
P36 5 3 31 2 13 2 14 2 13
P37 5 2 23 2 22 2 19 2 22
P38 5 2 23 2 14 2 14 2 14

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

9.2 correction queries, numerical results 109

Correction
L∗ Minimal Random Maximal

Test States EQ MQ EQ CQ EQ CQ EQ CQ
P39 5 3 27 2 16 2 14 2 12
P40 5 4 49 2 13 2 15 2 16
P41 5 4 54 4 52 4 52 4 52
P42 5 2 34 2 31 2 31 2 23
P43 5 3 39 2 10 2 10 2 10
P44 5 2 23 1 7 1 7 1 7
P45 6 3 44 3 25 2 15 2 15
P46 6 3 31 3 22 3 22 3 22
P47 6 3 71 1 8 1 8 1 8
P48 6 4 44 3 28 3 28 3 28
P49 6 4 77 1 8 1 8 1 8
P50 6 3 71 3 69 3 69 3 69
P51 6 4 71 3 36 3 29 2 16
P52 6 4 83 2 24 2 24 2 24
P53 6 4 71 2 16 1 8 1 8
P54 6 3 31 2 20 2 20 2 20
P55 6 3 34 2 21 2 17 3 26
P56 7 4 71 2 20 2 20 2 20
P57 7 3 49 3 32 3 32 2 18
P58 7 3 39 3 37 3 37 3 37
P59 7 5 89 3 38 4 63 3 38
P60 7 4 90 3 40 2 20 1 9
P61 7 4 83 4 77 4 77 4 77
P62 7 4 65 3 23 2 15 2 14
P63 7 3 53 2 14 2 14 2 16
P64 7 4 83 4 56 4 63 4 56
P65 7 3 59 3 35 3 33 3 34
P66 7 4 69 1 9 1 9 1 9
P67 8 4 90 3 80 4 77 3 80
P68 8 5 83 4 45 4 45 3 38
P69 8 3 44 3 35 3 30 3 32
P70 8 4 59 3 28 3 41 3 38
P71 8 4 65 3 30 3 30 2 24
P72 8 5 111 4 98 4 98 4 90
P73 8 4 77 3 45 3 34 4 51
P74 8 4 77 2 16 2 18 2 21
P75 8 3 69 2 21 2 24 2 21
P76 8 4 90 2 18 2 20 2 20
P77 8 4 71 4 57 3 28 3 28
P78 9 5 125 5 116 5 120 5 120
P79 9 4 83 2 26 2 21 2 26
P80 9 3 76 3 46 3 53 3 31
P81 9 4 59 4 58 3 43 4 55

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

110 appendix

Correction
L∗ Minimal Random Maximal

Test States EQ MQ EQ CQ EQ CQ EQ CQ
P82 9 4 83 3 40 4 63 3 40
P83 9 4 77 3 46 3 50 3 47
P84 9 4 95 2 20 2 22 2 18
P85 9 5 97 5 83 2 44 2 44
P86 9 4 59 2 37 3 41 3 41
P87 9 3 49 3 36 4 50 3 53
P88 9 4 77 3 31 4 49 4 49
P89 10 2 76 2 75 2 74 2 75
P90 10 3 65 3 60 2 30 3 45
P91 10 6 269 1 12 2 23 2 23
P92 10 4 90 3 34 2 32 2 25
P93 10 4 95 4 55 3 36 2 27
P94 10 6 143 3 59 3 55 3 55
P95 10 5 189 2 32 2 28 1 12
P96 10 6 161 3 35 2 24 2 24
P97 10 5 101 5 76 4 64 4 72
P98 10 4 97 2 36 3 43 4 51
P99 10 6 229 2 38 2 29 1 12
P100 11 5 229 2 30 3 32 2 22
P101 11 5 161 6 124 6 97 6 97
P102 11 5 135 2 25 3 38 2 24
P103 11 6 170 3 42 3 58 3 37
P104 11 5 104 4 62 4 62 4 62
P105 11 4 111 3 61 3 55 3 50
P106 11 4 83 3 32 3 36 2 23
P107 11 5 143 4 66 2 34 3 44
P108 11 5 118 3 39 3 51 3 39
P109 11 5 199 5 176 5 195 5 195
P110 11 3 77 4 68 4 58 4 68
P111 12 5 167 5 94 5 150 3 56
P112 12 5 186 3 60 3 53 1 14
P113 12 6 215 3 55 3 38 2 31
P114 12 5 161 3 49 5 79 2 29
P115 12 6 197 4 63 3 49 2 24
P116 12 5 188 5 178 5 127 5 168
P117 12 5 119 3 51 3 51 4 43
P118 12 5 170 3 43 3 44 3 39
P119 12 4 118 4 43 3 38 3 37
P120 12 4 90 3 44 3 44 2 38
P121 12 6 143 3 39 2 29 2 26
P122 13 6 175 6 147 4 58 4 58
P123 13 5 132 4 67 3 40 3 51
P124 13 5 101 5 96 5 113 5 96

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

9.2 correction queries, numerical results 111

Correction
L∗ Minimal Random Maximal

Test States EQ MQ EQ CQ EQ CQ EQ CQ
P125 13 4 101 4 74 5 91 3 50
P126 13 5 159 5 115 5 99 5 117
P127 13 5 118 3 64 4 64 4 59
P128 13 5 151 5 123 5 117 5 123
P129 13 5 167 4 96 5 123 5 151
P130 13 5 189 3 47 4 50 2 26
P131 13 6 263 3 47 3 37 2 33
P132 13 4 113 5 122 5 122 5 123
P133 14 4 208 4 204 4 204 4 204
P134 14 8 615 8 607 8 607 8 607
P135 14 5 143 2 38 2 32 2 31
P136 14 6 209 5 106 5 95 5 111
P137 14 5 143 2 49 4 69 3 45
P138 14 6 337 6 334 6 334 6 334
P139 14 5 199 3 55 3 47 3 59
P140 14 5 170 4 71 3 57 2 31
P141 14 5 188 4 82 5 109 4 81
P142 14 6 167 4 81 3 59 4 67
P143 14 6 199 3 42 3 44 3 41
P144 15 3 95 3 81 3 81 3 67
P145 15 6 219 6 182 4 130 4 144
P146 15 8 319 8 293 8 294 8 304
P147 15 4 101 4 77 4 76 4 87
P148 15 6 389 2 34 2 33 3 39
P149 15 6 224 3 48 4 74 4 83
P150 15 5 259 5 248 5 232 5 221
P151 15 4 167 4 153 4 99 5 116
P152 15 4 135 5 88 4 48 3 44
P153 15 5 167 4 80 5 115 3 71
P154 15 6 183 5 100 4 73 5 101
P155 16 7 383 6 204 4 70 3 66
P156 16 7 285 4 62 3 49 2 36
P157 16 5 167 3 74 3 68 4 82
P158 16 5 209 5 186 4 121 5 193
P159 16 6 259 4 61 2 38 2 36
P160 16 5 242 3 86 4 83 4 76
P161 16 9 509 2 32 2 33 2 33
P162 16 9 415 4 53 3 41 3 61
P163 16 6 167 4 99 4 77 5 108
P164 16 6 206 7 175 7 182 6 150
P165 16 4 215 4 147 4 143 5 120
P166 17 6 247 5 182 5 182 6 204
P167 17 7 506 3 58 2 42 2 36

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

112 appendix

Correction
L∗ Minimal Random Maximal

Test States EQ MQ EQ CQ EQ CQ EQ CQ
P168 17 8 383 8 313 8 368 8 308
P169 17 8 351 3 46 3 44 2 35
P170 17 7 285 4 61 4 55 3 39
P171 17 7 351 7 329 5 239 5 229
P172 17 5 239 5 224 7 320 5 224
P173 17 5 274 3 54 2 44 3 44
P174 17 6 206 4 105 4 120 5 109
P175 17 5 175 4 103 5 134 4 95
P176 17 6 233 4 78 5 106 4 87
P177 18 10 629 10 608 10 608 10 608
P178 18 7 359 7 307 7 307 7 354
P179 18 7 402 3 64 2 32 2 35
P180 18 7 362 7 351 7 356 7 320
P181 18 6 231 6 120 5 110 5 135
P182 18 7 278 4 101 4 102 3 75
P183 18 6 269 3 51 4 70 3 67
P184 18 8 601 2 39 2 38 2 36
P185 18 5 239 5 214 5 217 5 221
P186 18 7 323 4 107 5 113 4 81
P187 18 6 233 4 75 4 87 4 77
P188 19 6 405 2 51 2 56 2 53
P189 19 5 241 4 79 2 52 4 80
P190 19 7 287 6 230 6 244 6 244
P191 19 6 263 6 212 6 207 6 207
P192 19 4 207 4 103 4 100 5 136
P193 19 6 319 6 268 6 304 6 283
P194 19 6 371 2 36 2 38 2 56
P195 19 7 260 5 128 3 63 5 123
P196 19 5 183 6 157 6 148 6 135
P197 19 6 296 6 243 6 249 7 276
P198 19 7 233 5 115 5 110 5 115
P199 20 5 242 6 251 5 208 7 273
P200 20 7 467 3 69 2 49 3 54
P201 20 5 224 6 230 6 199 4 178
P202 20 5 279 2 56 4 105 3 67
P203 20 6 269 5 157 4 116 5 153
P204 20 9 854 2 46 3 61 2 33
P205 20 6 215 5 184 6 210 4 133
P206 20 7 314 5 182 6 257 5 172
P207 20 6 231 6 167 5 130 4 73
P208 20 6 274 4 89 4 90 3 61
P209 20 5 269 4 188 4 143 4 187

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

9.3 reset and u-resetp , numerical results 113

9.3 reset and u-resetp , numerical results

For each number of states we generated 10 automata and for each automa-
ton we made 10 experiments, thus every average value is the result over 100
experiments.

Table 38: The dependency on the number of states of the average number of trials
and default mistakes for algorithms Reset and u-Resetp

Trials Default Mistakes
States ρ Reset u-Resetp Reset u-Resetp
160 3.8 3225759.15 487963.22 15331.06 22840.39
161 3.7 1605061.02 454013.80 14358.36 21545.99
162 3.6 1321297.02 411024.46 13346.27 20034.94
163 3.6 3293322.77 428253.02 13435.02 20268.22
164 3.8 1461496.77 471152.77 15684.01 23462.52
165 3.5 1345003.01 392643.10 12556.01 18726.91
166 3.6 2049730.59 418400.13 13723.58 20446.87
167 3.9 2116047.56 541333.77 17035.24 25562.22
168 4.0 3792841.39 552036.72 18301.44 27228.84
169 3.7 3175057.03 476707.76 15095.73 22543.97
170 3.5 1921302.26 387371.61 12931.41 19475.92
171 3.9 2352590.86 527618.10 17481.51 25979.40
172 3.6 3210228.59 425197.24 14235.90 21435.21
173 3.6 401392485.40 454031.76 14089.28 21478.39
174 3.6 2065874.08 461259.44 14369.92 21471.06
175 4.0 1959710.88 592896.99 18992.04 28320.75
176 3.7 3064743.49 488223.67 15714.59 23489.01
177 3.6 2074627.97 454308.68 14622.12 21879.88
178 3.8 7184280.94 521656.14 16985.41 25532.73
179 3.8 3386415.87 547816.68 17137.22 25725.44
180 3.8 1473318.24 538866.74 17238.59 25833.59
181 3.5 2389289.77 441675.51 13802.08 20682.98
182 3.6 201909982.40 474731.41 14658.23 22425.80
183 3.8 2354465.51 524287.67 17493.37 26329.53
184 4.0 4691493.22 660954.89 20031.51 29803.02
185 3.4 1816213.73 419674.49 12857.01 19354.70
186 3.9 3103902.56 591045.79 19005.39 28381.73
187 3.4 2536153.38 416177.78 13009.01 19395.30
188 3.7 2574357.97 534494.64 16767.38 25188.98
189 3.6 2396955.95 480822.94 15649.62 23457.02
190 3.8 3508076.34 564830.62 18150.62 27399.38
191 3.7 3596472.32 519425.97 17015.18 25396.01

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

114 appendix

Average results for Reset and u-Resetp
Trials Default Mistakes

States ρ Reset u-Resetp Reset u-Resetp
192 3.7 3314483.28 533425.96 17142.46 25613.90
193 3.7 4741768.76 547656.81 17205.70 25635.93
194 3.7 1564162.76 535735.11 17234.36 25981.80
195 3.8 2394527.00 585075.99 18602.09 27977.70
196 3.8 201988965.30 631818.34 17561.76 28082.32
197 3.9 7827275.09 646010.87 20141.15 30128.26
198 3.7 2415728.35 553601.53 17675.17 26191.45
199 3.8 8152643.70 610000.43 19056.07 28590.87
200 3.7 1206167.92 560573.57 17780.49 26739.66
201 3.7 1505935.58 582977.46 17883.28 26850.18
202 3.8 1478967.02 618458.07 19264.33 28970.92
203 3.8 7383185.44 617197.96 19366.87 29255.97
204 3.5 2529460.38 483504.43 15529.15 23137.05
205 3.7 5341931.63 573653.13 18315.74 27343.84
206 3.8 2638599.40 609310.26 19723.35 29508.98
207 4.0 3306409.49 716714.48 22444.90 33722.40
208 3.7 2069852.29 583305.43 18534.77 27735.40
209 3.9 5755170.75 739197.65 23100.78 34739.80
210 3.9 2239504.30 777141.93 23291.84 34899.89
211 3.6 7395634.57 548158.53 17427.44 26063.62
212 3.7 3045121.06 595935.21 18855.58 28304.37
213 3.7 201470197.10 623553.58 18273.67 28467.50
214 3.9 2862977.23 724427.61 21810.17 32701.19
215 4.0 1831839.03 770838.30 23401.26 35092.65
216 3.7 4502989.05 618943.98 19316.70 28796.70
217 3.8 1673145.17 649936.27 20772.15 30923.51
218 3.8 2350931.85 655690.99 20766.78 31080.77
219 3.8 4379143.54 698168.38 20980.93 31404.67
220 3.7 202656760.40 640473.53 19424.02 29460.48
221 3.6 2673817.91 585965.05 18240.58 27187.80
222 3.8 2661508.76 682171.53 21166.29 31781.26
223 3.9 4353756.87 736009.84 22731.25 34024.13
224 3.7 201313685.50 659505.93 18430.06 29997.73
225 3.8 6607527.05 683412.22 21428.29 32121.84
226 3.7 2432660.94 647071.57 20111.93 30051.32
227 3.7 6027616.40 648305.46 20203.62 30401.93
228 3.7 3831202.08 693565.20 20252.34 30459.42
229 3.7 2641495.62 653268.93 20369.20 30595.12
230 3.7 1979366.54 748928.81 22462.41 33853.34
231 3.8 10119778.89 743711.14 22039.70 33064.33
232 3.8 6309661.94 726493.94 22110.11 33139.73
233 3.9 4442435.51 777454.64 23812.64 35702.47
234 4.0 2125158.36 831799.44 25416.97 37864.89

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

9.3 reset and u-resetp , numerical results 115

Average results for Reset and u-Resetp
Trials Default Mistakes

States ρ Reset u-Resetp Reset u-Resetp
235 3.8 3939086.74 730288.96 22448.07 33522.70
236 3.9 5235290.78 779274.89 24108.64 35669.26
237 3.7 10705245.22 673228.07 21115.60 31422.05
238 3.8 4959422.56 737159.37 22688.54 34160.59
239 3.8 5011833.83 734648.27 22813.72 34328.70
240 3.8 4136124.65 762349.38 22972.01 34468.56
241 3.9 6988195.27 831516.38 24522.12 36740.41
242 3.6 2503846.07 641125.16 19938.02 29873.42
243 3.9 2782307.47 809132.63 24776.52 37181.63
244 3.8 3188193.45 763582.48 23340.39 34892.33
245 3.8 204427892.50 824156.80 23231.22 35228.22
246 4.0 6466309.44 860047.72 26713.72 39906.47
247 3.8 5050543.59 743212.92 23610.74 35148.94
248 3.9 10458876.40 820570.06 25321.77 37728.88
249 3.5 2752615.80 607026.22 18948.31 28444.94
250 3.8 7793425.52 798595.71 23872.31 35539.22
251 4.0 6394471.88 892542.04 27332.68 40685.47
252 4.0 6163770.86 904043.99 27350.35 40955.60
253 3.9 4584967.12 848258.20 25803.82 38758.13
254 3.5 2893218.72 682788.62 19334.11 28862.73
255 4.0 4384857.30 883275.29 27659.10 41405.07
256 3.9 8902215.33 899222.89 26123.13 39464.32
257 3.9 4371363.64 856472.59 26262.85 39268.26
258 3.9 9000753.24 872662.36 26242.52 39384.46
259 4.0 207096867.50 957595.81 25978.33 41862.53
260 4.2 6771981.22 1177340.70 36104.47 54318.82
261 3.9 3350722.73 901239.62 26615.43 40106.78
262 3.8 16249242.60 835733.23 25037.06 37442.07
263 3.9 4670861.18 873823.86 26839.60 40235.52
264 4.1 21736861.78 1096740.35 32659.65 48716.76
265 3.9 3716401.86 900157.77 27008.13 40325.92
266 3.6 9567927.59 746364.52 22032.92 32637.22
267 3.6 3143397.61 735077.34 21990.23 33005.77
268 3.9 7495350.59 907493.55 27310.01 41030.56
269 3.7 91576813.38 792793.48 23958.28 36042.14
270 3.9 7477106.92 895554.41 27549.48 41261.96
271 3.9 9059258.99 909997.19 27631.29 41469.24
272 4.0 12433357.23 1011286.33 29526.93 44389.67
273 4.0 20130170.43 1040333.91 29606.49 44626.60
274 3.9 3711213.21 928706.94 27917.63 41887.75
275 3.9 2991109.71 930405.04 28023.25 41937.78
276 3.8 12981076.22 891823.76 26330.04 39501.74
277 3.9 7005703.73 981264.37 28267.40 42324.25

Continued on next page

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

116 appendix

Average results for Reset and u-Resetp
Trials Default Mistakes

States ρ Reset u-Resetp Reset u-Resetp
278 3.9 19866795.68 925357.70 28278.96 42703.94
279 3.9 9712444.75 966917.91 28451.30 42569.73
280 4.0 25132533.75 1030403.93 30368.59 45701.01
281 3.8 9260768.50 889242.28 26795.16 40312.14
282 4.0 4220604.68 996894.01 30559.84 45442.04
283 3.9 4040927.00 1048490.49 31308.11 46846.16
284 3.9 3105644.34 989351.14 28940.63 43335.87
285 3.9 25589375.80 967967.05 29077.30 43501.16
286 4.0 13864264.92 1021932.62 31138.67 46468.35
287 3.9 5900294.80 983114.16 29350.38 43742.79
288 3.8 5698089.81 953231.50 27507.94 41136.14
289 4.0 7684203.74 1070355.74 31286.10 47018.39
290 4.0 6362297.94 1035057.67 31428.88 46983.61
291 3.9 7054778.17 998842.31 29718.07 44337.66
292 3.9 5480572.96 1010681.43 29773.14 44557.92
293 3.9 5588150.31 1027038.82 29881.74 44540.02
294 3.9 5215099.23 1033923.85 29976.29 44974.16
295 3.7 5663352.82 883022.90 26187.58 39236.25
296 4.0 13355695.92 1092415.92 32159.12 48254.75
297 4.0 6938859.30 1064523.63 32254.93 47907.97
298 3.9 5920746.17 1046166.53 30338.17 45470.85
299 4.0 9289344.15 1117959.71 32419.48 48620.51
300 3.9 6622445.18 1030060.91 30580.33 46116.52

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

10 I N D E X

acceptor, 20
dead state, 57
language, 21

alphabet, 19
automaton, 20

accessible, 22
complete, 22
consistent with a function, 31
equivalent, 22
initial state, 20
input alphabet, 20
minimal, 22
output alphabet, 20
output function, 20
set of states, 20
transition function, 20
underlying graph, 68

commute time, 84
computational learning theory, 15
correction, 56

maximal, 58
minimal, 58
random, 58

correction function, 57
counterexample, 29

d-signature tree, 24
default mistake, 69
degree of distinguishability, 24
deterministic finite automaton, 20
DFA, 20

efficient algorithm, 70
equivalence class, 19
event, 67
expected value, 68
experiment, 67
extended answers, 79

finite acceptor, 20

graph, 19
acyclic, 20
connected, 20
cover time, 85
directed, 20
edges, 19
nodes, 19
path, 19
tree, 20
undirected, 20
vertices, 19

harmonic number, 72
hitting time, 84
homomorphism, 21
hypothesis automaton, 69

identity matrix, 82
isomorphism, 22

k-distinguishable, 24
k-indistinguishable, 24

label alphabet, 45
labeled output, 45
labeling, 45
language, 19
language learnability model, 15
Learner’s conjecture, 31
learning

active, 16
exact, 16
in the limit, 15
passive, 16
probably approximately cor-

rect (PAC), 15
reinforcement, 15
supervised, 15
unsupervised, 15

machine learning, 15
Markov chain, 83

117

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

118 index

irreducible, 83
MAT, 29
matrix, 82

element, 82
entry, 82
inverse, 83
size, 82

minimally adequate Teacher, 29

observation table, 30
closed, 31
consistent, 31

partition, 19
finer, 19
refinement, 19
strict refinement, 19

password automaton, 57
prediction mistake, 70
prefix-closed, 19
prefixes, 19
probability, 68
probability distribution, 68

stationary, 84

query
correction, 58
equivalence, 29, 30
label, 45
membership, 29
output, 30

quotient set, 19

random variable, 68
random walk, 68
Reset, 70

sample space, 67
discrete, 67

scalar, 81
spanning tree, 20
state

accepting, 20
accessible, 22
dead state, 57
distinguishable, 22
equivalent, 24
final, 20
indistinguishable, 24
reachable, 22
recurrent, 83
rejecting, 20
transient, 83

stochastic matrix, 83
string, 19

accepted, 20
concatenation, 19
distinguishing, 22
empty, 19
length, 19
recognized, 20

subautomaton, 78
subgraph, 20
suffix-closed, 19
suffixes, 19

target automaton, 69
time of the first visit, 83
trial, 70

vector, 81
components, 82
dimension, 82
dot product, 82
scalar product, 82
size, 82
space, 82

vector space, 81
vectors, 82
vextor

orthogonal, 82

words, 19

UNIVERSITAT ROVIRA I VIRGILI
LEARNING AUTOMATA WITH HELP.
Adrian-Horia Dediu
Dipòsit Legal: T 1472-2015

	1 Introduction
	2 Preliminaries
	I Helpful Query Learning of Automata
	3 Learning DFA from Queries
	3.1 Local Definitions
	3.2 Data Structure—Properties
	3.3 Presentation of the Algorithm
	3.4 Correctness and Complexity
	3.5 Illustrative Example
	3.6 Remarks

	4 Label Queries
	4.1 Local Definitions
	4.2 Theoretical Aspects
	4.3 Illustrative Example
	4.4 Comparative Results
	4.5 Remarks

	5 Correction Queries
	5.1 A Particular Case
	5.2 Local Definitions
	5.3 Theoretical Approach
	5.4 Experimental Results
	5.5 Remarks

	II Helpful Passive Learning of Automata
	6 Learning Typical Automata from Random Walks – Reset
	6.1 Preliminaries
	6.2 Uniform Properties of Automata
	6.3 Presentation of the Algorithm Reset
	6.4 An Example Run of Reset
	6.5 Reset for Almost All Automata
	6.6 Remarks

	7 Learning from Undirected Random Walks
	7.1 Preliminaries
	7.2 Extending Reset with Undirected Random Walks
	7.3 Comparative Results
	7.4 Remarks and Discussion

	8 Concluding Remarks
	9 Appendix
	9.1 Helpful Labels, Numerical Results
	9.2 Correction Queries, Numerical Results
	9.3 Reset and u-Resetp, Numerical Results

	10 Index

