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Abstract 

 

The present thesis deals with the analysis, design and control of a DC/DC converter for the 

powertrain of an electric vehicle. The objective is to develop an integral solution of DC/DC 

converter and control that supports bidirectional operation, in order to recover energy during 

regenerative braking.  

The proposed DC/DC converter topology is a bidirectional boost converter with output filter. 

The stability of this topology is analysed considering the electric vehicle application. A motor 

drive can behave as a constant power load, which has negative incremental impedance, and 

thus holds unstable effects. An RC snubber is presented to avoid the instability, and a 1.5-kW 

prototype is designed. 

Sliding-mode control is the chosen control method for the current loop of the bidirectional 

boost converter with output filter, due to its robustness and disturbances rejection capability. 

The stability of the converter under sliding mode control is corroborated according to the 

Routh-Hurwitz criterion. Then, the voltage PI control is designed by means of the small-signal 

transfer functions of the bidirectional boost converter with output filter. As the Middlebrook 

criterion is accomplished, the stable DC/DC converter will remain stable when the load is 

connected. An analogue implementation of both the current sliding-mode and the voltage PI 

controller for the designed converter is presented, and validated by simulation and 

experimental tests. 

In order to increase the power rating of the system, as it should be done for a real electric 

vehicle application, several converters are interleaved. A ring-configuration interleaved system 

with sliding-mode control is proposed and analysed, and later the analogue control circuit is 

developed. Finally, in the adopted solution for this thesis three 1.5-kW converters are 

interleaved, and the feasibility of the system is proven both by simulation and experimental 

results. 

Focusing on the electric vehicle application, a 4.5-kW powertrain emulator will be used to 

verify the design of the converter and the control under a realistic driving profile. The features 

of the emulator are set, and then a Matlab/Simulink model is developed in order to test the 

model in the first instance. Later, the experimental set-up is implemented, and results show 

the stability of the interleaved bidirectional boost converters with output filter under a driving 

profile, both during traction and regenerative braking.   
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1 Introduction 

1.1 The electric vehicle 

1.1.1 History of the electric vehicle 

Although the electric vehicle (EV) may seem a relatively novel invention, its origins go back to 

the XIX century. The first EV was invented in 1828 by Slovak-Hungarian priest Ányos Jedlik. It 

was a toy car that used an electric motor as a propelling force [1]. The motor consisted of a 

rudimental combination of electromagnets sequentially switched by commutators, which 

offered both low power and low efficiency. 

Successive EV were developed with electromagnet-based motors and using electrochemical 

cells as a source of energy. Although quite limited, their features overcame those of the 

internal combustion engine (ICE) vehicles, first invented in 1826 by the American inventor 

Samuel Morey.  

Further development was achieved with the use of a lead-acid rechargeable battery, by Gaston 

Planté in 1859. Moreover, the efficiency of the DC electric motors was improved thanks to the 

improvements introduced by Zénobe Gramme in 1873 [2].  The first commercial EV vehicle 

dates from 1893. This design from Paul Pouchain was able to carry six passengers at 16 km/h. 

Until 1910s, EV outnumbered ICE vehicles. However, the mass production of ICE vehicles 

introduced by Henry Ford in 1910 and the invention of the automobile starter in 1920 by 

Charles Kettering finished the prevalence of the EV over ICE vehicles. Moreover, the large-scale 

oil production that started in 1920 offered extended driving range to the ICE vehicles, with a 

lower production cost. This combination of factors made EVs less attractive [3], and after the 

1920s their use became very restricted. 

Interest was focused again on EV after the oil embargo of 1973 for price and energy availability 

reasons [4]. Moreover, there is a growing concern on environmental issues concerning ICE 

vehicles, the constantly growing energy demand and the depletion of fossil fuels [5]. As a 

consequence, several governments have incentivised both the development and the purchase 

of EVs [6]. Therefore, EVs constitute a powerful alternative, although some technological 

problems still have to be suppressed [7]. 
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1.1.2 Motivation 

In the EU transportation accounts for one quarter of the GHG emissions, becoming the second 

gas-emitting source after energy [8]. Accordingly, the EU has established several GHG 

reduction policies, including that ICE vehicles constitute only the half of the urban transport in 

2030, and become eradicated on 2050 [9]. 

However, there is criticism on EVs as they are regarded as zero-emission vehicles, although 

obtaining the electricity used to charge the EVs is a GHG-emitting process. Therefore, do EVs 

reduce the emissions compared to gasoline vehicles? The answer is clearly affirmative, but the 

reduction is subjected to the proportion of the electricity sources found in every region [10]. 

With the aim to assess the emissions reduction attained with the use of EV instead of ICE 

vehicles, the particular case of Europe will be studied. Fig. 1.1 shows the 2012 Europe 

electricity grid mix, according to the Eurostat statistics [11]. 

 

Fig. 1.1. 2012 European energy consumption by electricity source.  

In order to compare the emissions of a fuel-powered vehicle to those of an electrical one, the 

concept of l/100 km is used. In Table 1.I, the equivalent consumption of every energy source is 

presented [10]. For example, an EV only powered by electricity from coal would produce the 

same GHG emissions that a 7.84 l/100 km gasoline vehicle. The reference vehicle is a Nissan 

Leaf [12], with a consumption of 0.21 kWh/km. Combining the data in Fig. 1.1 and Table 1.I, an 

EV charged in the average European grid would have an equivalent 3.34 l/100 km 

approximately, according to GHG emissions. No gasoline vehicle can equal this emission rating, 

therefore EV do reduce the emissions that cause the climate change. However, there is plenty 

of scope for emission reduction, progressively dropping generation based on non-renewable 

products and improving the efficiency of electricity generation. These facts partially explain the 

market growing interest towards hybrid and electric vehicles, as stated in Fig. 1.2 [13]. 

According to the represented data, in 2050 there will be no ICE vehicles, and the vast majority 

of cars will be either plug-in hybrids or electric. 
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Table 1.I. EV consumption equivalent by electricity source 

coal 7.84 l/100 km 

oil 7.35 l/100 km 

natural and derived gases 4.36 l/100 km 

solar 0.47 l/100 km 

nuclear 0.12 l/100 km 

wind 0.06 l/100 km 

hydro 0.04 l/100 km 
 

 

 

Fig. 1.2. Predicted vehicle fleet composition. 

 

1.1.3 Current deployment 

Currently, there are several HEVs and EVs commercially available. While the EVs are fully-

powered by the battery, HEVs have more or less intensive usage of the battery depending on 

the model. Considering on the penetration of electrical energy in the HEV architecture, i.e. the 

power ratio between the ICE and the electric machines, it is possible to distinguish the 

following degrees of hybridization [14]: 

 Micro HEV: the electric machine has a reduced power rating (1.5 to 3 kW [15]), and it 

is only used during start-up operation as an alternator, while the engine is used for 

propulsion. The efficiency gain resides in stopping the engine every time the vehicle is 

halted, usually known as start-stop system. Some examples of micro HEV vehicles are 

Ford Fiesta and Honda Civic. 

 Mild HEV: the electric machine has a low power rating (10 to 20 kW). Apart from the 

start-stop functionality, the electric machine can provide extra power during 

acceleration or braking. The battery is only recharged by regenerative braking. 

Peugeot 308 e-HDi and BMW ActiveHybrid 7 are two mild HEV commercially available. 

 Full Hybrid: the electric machine has an intermediate to high power rating (40 to 80 

kW), allowing the vehicle to run solely on electricity depending on its speed and the 

state of charge of the battery –the limits vary in every model. Moreover, the engine 
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and the electrical machine can operate simultaneously to provide the maximum 

performance. The battery recharge is produced by regenerative braking. 

 Plug-in Hybrid: it has the features of a full hybrid, but it can also be recharged by 

plugging it in the grid. For high power ratings of the electrical machine, the engine 

actuates as a range extender, operating at its most efficient point and recharging the 

battery during propulsion.  

 

 

Fig. 1.3. ICE, HEV and EV configurations. 
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These functionalities are reached by using different powertrain architectures, which can be 

classified as follows: 

 Parallel HEV: the vehicle can be driven by the engine, the electric machine or both 

simultaneously. In order to do so, the electric machine and the engine have to be 

mechanically coupled. This architecture is particularly efficient when driving at 

constant high speeds, since the engine works at its most efficient point and the 

electrical machine supplies extra power when it is necessary [16]. 

 Series HEV: the vehicle is driven by the electric machine, which is powered from the 

battery. The engine is coupled with another electric machine that actuates as a 

generator and charges the battery during vehicle operation, depending on the driving 

conditions. This architecture is more efficient in urban driving cycles with frequent 

stop/start manoeuvres, since the motor does not run when the vehicle is halted, and 

starting an electric motor consumes less energy than starting an engine. 

 Series-parallel HEV: this architecture permits the vehicle to work either as a parallel 

or a series HEV. Consequently, the two electric machines and the engine have to be 

mechanically coupled by a planetary gear unit [17]. 

The different HEVs architectures are represented in Fig. 1.3, together with an ICE vehicle and 

an electric one. All the architectures can be seen as a special case of the series-parallel HEV 

architecture in which some parts have been removed. 

These architectures do not directly correspond to one of the aforementioned degrees of 

hybridization. As a rough approach, the parallel architecture is used in low degrees of 

hybridization, since a low power electrical machine would be unable to drive the vehicle, and 

the series architecture is used in high degrees of hybridization, since the engine is used to 

charge the battery on the go. The detailed relationship is stated in Table 1.II [14, 18].  

Table 1.II. Degree of hybridization by architecture type. 

 
ICE 

HEV 
EV 

micro mild full plug-in 

ICE x      

H
EV

 parallel  x x x x  

series-parallel    x x  

series    x x  

EV      x 
 

 

 

1.2 DC/DC converter 
Both HEV and EV have electric motors that are powered from the battery via a voltage source 

inverter. For vehicle performance optimization, it is interesting to maintain the battery rated 

voltage relatively low, since this means using fewer cells connected in series. However, from 

the motor point of view, it is necessary to have a high-voltage DC bus because the rated 

voltage and the power delivered by the motor are directly dependant. Moreover, in the case of 

permanent magnet synchronous machines, it is especially convenient to a have high-voltage 
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DC bus to displace the flux-weakening region to the high-speed region [19]. An additional 

advantageous feature of the introduction of a DC/DC converter is having a regulated DC 

voltage, which results in better performance of the motor drive [20]. As a consequence, a 

DC/DC bidirectional converter is usually inserted between the battery and the inverter, in 

order to match the different voltage rating of these two elements [21], as depicted in Fig. 1.4.  

 

Fig. 1.4. Emplacement of the DC/DC converter in the traction system of an EV. 

This DC/DC converter has to be bidirectional in order to enable power delivery from the 

battery to the motor (step-up motor) and battery recharging during regenerative braking 

(step-down mode). Galvanic isolation is not needed, opposed to the DC/DC converter between 

the high voltage and the 12 V-battery. The basic non-isolated second-order topologies 

available are boost [22, 23] and buck-boost [24-26] converters, Fig. 1.5.a and b respectively, 

and higher order converters include Duk [27, 28] and SEPIC [29-32] converters, Fig. 1.6.a and 

Fig. 1.6.b respectively. Generally, the DC/DC converter used in the powertrain of the electric 

and hybrid electric vehicles is a boost-type converter [33]. Considering this, this thesis studies a 

bidirectional boost converter with output filter (BBCOF). BBCOF is a competitive solution as 

intermediate voltage step-up stage in EVs, since this converter presents a significant reduction 

of the EMI level in comparison with conventional boost structures [34]. BBCOF also offers 

indirectly improved reliability, since the implementation of the filter capacitors require 

components of smaller capacitance in comparison to a conventional boost converter, which 

allows the natural introduction of high-quality capacitors such as polypropylene, ceramic 

multilayer, etc. In a clear-cut contrast, the use of a conventional boost converter would require 

for the same level of output ripple much bigger capacitance which eventually must be 

implemented by means of electrolytic capacitors, this resulting in a poorer reliability and 

bigger losses. 

 
a)                                                                                    b) 

Fig. 1.5. Basic second-order DC/DC converter topologies for the EV powertrain: a) boost  and b) buck-boost 
converter. 

 

battery

bidirectional 

DC/DC 
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a)                                                                                    b) 

Fig. 1.6. Fourth-order DC/DC converter topologies for the EV powertrain: a) Duk and b) SEPIC converter. 

In [35] the following essential design criteria for DC/DC converters for automotive are 

considered: 

 light weight 

 high efficiency 

 small volume 

 low electromagnetic interference 

 low current ripple drawn from the battery 

These points have to be considered during the design of the selected DC/DC converter, i.e. the 

BBCOF.  

 

1.3 Control of DC/DC converters 
Previous research on the control of bidirectional DC-DC converters has led to different 

solutions, such as using two PWM controllers [36], an adaptive control by means of two PI 

controllers [37], and a set of two hysteretic controllers for a dual active bridge, one for each 

full bridge converter, that are alternated when the operation mode of the converter changes 

[38].  

Recently, some solutions on the bidirectional control of DC/DC converters with a seamless 

transition between the operating modes have been published. A seamless transition in a 

bidirectional DC-DC converter is a transition between operation modes with uninterrupted 

power delivery and stable output voltage [39]. In [40], a bidirectional control for a soft-

switching half-bridge DC-DC converter for the electric vehicle  is presented. The seamless 

variation is guaranteed by inserting an additional switching pattern when changing from one 

operation mode to the other. A bidirectional control of a dual active bridge is presented in 

[38]. The gate signals are selected according to the sign of the demanded current, and the 

change is also performed seamlessly. Similarly, in [41] a seamless mode change strategy is 

accomplished by switching between two different controls according to a certain threshold of 

the demanded current for a bidirectional resonant converter. In [42], a certain duty cycle is 

set, and then current is allowed to circulate in both directions. Two different controls are used 

depending on the current ripple in order to avoid instability. 

In [43], a sliding-mode control strategy is used in battery energy storage applications to control 

the output current of a bidirectional buck converter with an output LCL-filter, which results in a 

higher attenuation of the high frequency harmonics in the battery current than the usual 
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L-filter. A single sliding-mode controller is used for the battery current in both step-up and 

step-down modes. However, the output voltage is not regulated. 

This thesis proposes the sliding-mode control approach for an EV bidirectional boost converter 

with output filter as the solution to achieve a seamless mode change strategy with a single 

controller guaranteeing output voltage regulation. The sliding-mode approach is the natural 

way to control variable structure systems like switching converters and it  features robustness 

and design simplicity at the expense of variable switching frequency [44]-[45]. 

 

1.4 Electric machines 
The electric machine is the key element in the powertrain of an EV, since its features 

determine the performance of the entire vehicle.  Most EV use either induction or permanent 

magnet synchronous machines as traction motors [46]. Recently, switched reluctance 

machines have gathered significant interest for researchers and automakers. These three 

machine types are strong candidates for the powertrain of EV and HEV since they have the 

torque-speed characteristic shown in Fig. 1.7 [47]. 

 

Fig. 1.7. Ideal torque-speed characteristic. 

Moreover, the selected machine has to accomplish the following set of specifications [48]: 

 High torque density and power density 

 Wide speed range and wide constant power region 

 High efficiency over wide speed and torque ranges 

 High torque for starting and hill climbing 

 High power for high-speed cruising 

 High overload capacity for overtaking 

 High reliability and robustness 

 Reasonable cost 

 Low acoustic noise 

 Low torque ripple 
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1.4.1 Induction machines 

Induction machines (IM) are a mature technology with a relatively low cost and ease of control 

[46]. Two types of induction machines can be distinguished depending on the rotor 

construction, the squirrel cage and the wound motor induction machine, although the former 

is more popular due to its robustness [33]. The arrangement of an IM with squirrel cage rotor 

is shown in Fig. 1.8.a. The voltage applied to the stator windings generates a magnetic field. 

Since this voltage is AC, the direction of the magnetic field rotates at the same frequency than 

the applied voltage. When this moving magnetic field crosses a conductor, in this case, a 

squirrel cage bar, a voltage is induced in the terminals of the bar. As the bars are connected as 

seen in Fig. 1.8.b, the induced voltage causes a current conduction through the rotor bars. 

According to the Lorentz law, when there is a conductor with circulating current exposed to a 

magnetic field, this conductor experiments a force that provokes its movement. Consequently, 

torque is produced, and the rotor spins. The same phenomenon takes place in a wounded-

rotor IM, but bars are replaced by rotor windings.  

 
Fig. 1.8. Representation of an IM: a) frontal view of the stator and squirrel cage rotor, and b) perspective of the 

squirrel cage. 

 

For torque production, it is necessary that the magnetic field crosses the rotor conductors. This 

means that in case the magnetic field and the rotor rotated at the same speed there would be 

no torque production, and the rotor would reduce its speed. Consequently, IMs are 

asynchronous machines, i.e. the magnetic field and the rotor have different rotating speeds. 

This speed difference is evaluated with the slip figure [49], defined as 

 / 2e r

e

P
s

 




 ,      (1.1) 

where ωe is the electric angular speed, ωr is the rotor angular speed and P is the number of 

poles of the machine. Then, the electromagnetic torque generated by the motor is  

 

2

2
22

3

2

sr
e

e r
s e ls lr

VrP
T

s R
R L L

s





 

   
 

,     (1.2) 
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where Rs is the stator resistance, Rr the rotor resistance, Lls the stator leakage inductance, Llr 

the rotor leakage inductance and Vs the stator voltage. Knowing the generated 

electromagnetic torque, the dynamics of the mechanical part can be obtained from the 

following equation, valid for any type of motor 

e r r L

d
T J B T

dt
    ,      (1.3) 

where J is the rotor inertia, B is the damping coefficient and TL is the load torque. 

Consequently, the motor speed and torque can be controlled by means of the stator voltage 

and the electric angular speed, i.e. the frequency. 

 

1.4.2 Permanent magnet synchronous machines 

Permanent magnet synchronous machines (PMSM) are eligible for the powertrain of an 

electric vehicle due to their high power density and efficiency, despite the cost of the rare 

earth magnets and their limited availability. The stator is wounded, whereas the rotor has rare 

earth magnets inserted. The distribution of the earth magnets has a direct effect on the drive 

characteristics and performance. The most typical PMSM structures are the surface-mounted 

magnet in Fig. 1.9.a, with constant reluctance and low power density, the inset magnet in Fig. 

1.9.b, with variable reluctance and low power density, and the interior magnet in Fig. 1.9.c and 

Fig. 1.9.d. The difference between these two interior distributions is that the flux-

concentrating distribution of Fig. 1.9.d offers higher air gap field density with the same 

magnets, although the shaft has to be made of a non-ferromagnetic material. 

To generate the electromagnetic torque, the stator windings are fed with an AC voltage, in the 

same way that the field in IM is created. The magnets in the rotor will align with the rotating 

stator field, making the motor spin. As magnets follow the rotation of the stator field, PMSMs 

are, as their name indicates, synchronous machines. The expression for the electromagnetic 

torque is 

3

2 2
e f q e q

P
T i k i  ,      (1.4) 

where λf is the flux linkage established by the permanent magnets, and ke is the motor torque 

constant. Consequently, the electromagnetic torque is proportional to iq, the q-axis current of 

the PMSM [50], which can be calculated as 

 
2 2 2

sin sin sin
3 3 3

q a b ci i i i
 

  
    

        
    

,     (1.5) 

where θ is the electrical rotor position, and ia, ib and ic are the currents of the motor phases. 

Then, the dynamics of the mechanical part can be calculated with (1.3). Therefore the motor 

can be controlled by means of the phase currents. Considering the dq modelling of the 

machine, the PMSM can be controlled like a DC machine by iq.  
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a)                                                                                                   b) 

 
c)                                                                                                   d) 

Fig. 1.9. Typical PMSM structures: a) surface magnet, b) inset magnet, c) interior magnet and d) interior magnet 
(with axial flux). 

 

 

1.4.3 Switched reluctance machines 

Switched reluctance machines consist of a wounded stator and a stacked iron rotor with 

salient poles, as shown in Fig. 1.10. These salient poles offer different reluctance along the 

outer circumference of the rotor. When the stator windings are fed with a DC voltage, the 

rotor moves to offer the minimum reluctance. If the phase B’ from Fig. 1.10 were fed, the 

nearest rotor pole would align, in this case poles 4 and 8 would align with phase B’. By 

sequentially changing the excited phase the rotor spin is accomplished. 

The instantaneous electromagnetic torque produced can be expressed as 

 21

2
e ph ph

d
T i L

d



 ,      (1.6) 

where iph is the phase current, Lph is the phase inductance and θ is the rotor position. 

The main advantages of this machine are the reliability and the reduced cost, with a 

reasonable power density. This combination makes switched reluctance machines a matter of 
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interest. However, the high noise levels generated are preventing their use in commercial 

vehicles. 

 

Fig. 1.10. Section of a three-phase 12/8 SRM. 

 

1.5 Research objectives and outline 
Having demonstrated the environmental and energy related advantages of the EVs, and 

noticed the prevalence of EVs with a DC/DC converter in their powertrain, the objective of this 

thesis is to develop a solution for the powertrain DC/DC converter of an electric vehicle. 

Several aspects of the solution have been examined minutely. The first of them is the selection 

of an appropriate topology of bidirectional DC/DC converter for the herein considered 

application, which finally is a bidirectional boost converter with output filter. On this decision, 

the stability of the system has to be thoroughly analysed in view of the fact that the load is a 

motor drive, and thus has a destabilising effect. According to the results of the stability 

analysis, the converter has to be designed. The design of the converter is an iterative process 

that will have to be re-examined during the development of the thesis.  

As part of the DC/DC system solution, this thesis also has to cover the controller of the 

converter.  Sliding mode is proposed as the current controller technique of the converter, with 

an outer voltage control loop. This technique is thought to enable the bidirectional operation 

of the converter with no need to determine if power is flowing from the motor to the source 

or vice versa, and this point has to be demonstrated. 

The last step of the solution is to propose a method to increase the power rating of the design, 

to match the rating of a commercial EV. Paralleling several converters and establishing a ring-

configuration sliding-mode control achieves this objective, with the added value of ripple 

reduction. 

Then, this thesis focuses on verifying the proposed solution by means of a powertrain 

emulator of 4.5 kW, according to the available facilities. The specifications for the emulator 

have to be set and once designed, its model in Matlab/Simulink will be obtained. The 
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experimental setup will be used to evaluate the operation of the solution under a driving 

profile, and moreover the experimental results will be compared to the results obtained with 

the model. 

This thesis document is organised as follows. The present chapter establishes the need for EV 

vehicles and explains the basics of the powertrain of an EV. In chapter 2 the open-loop stability 

analysis of the proposed converter, a BBCOF, is performed. Part of the design and 

implementation of this converter is also covered. The system is simulated to validate the both 

the analysis and the design of the BBCOF. Chapter 3 focuses on sliding-mode control and its 

feasibility for the proposed converter. In order to verify this point, a stability analysis is 

performed. Moreover, the output voltage controller is designed. The design of the controller 

and its implementation is tested by means of simulation and also experimentally. In chapter 4, 

interleaved connection is proposed to increase the power rating of the system. First the 

analysis is performed, then the stability is verified and at last the circuit implementation is 

described. The study is also validated by simulation and experimentally. Chapter 5 presents the 

EV powertrain emulation system used to verify the analysis, design and control of the 

interleaved BBCOF with sliding-mode ring-configuration control. The system is described, 

modelled, simulated and tested experimentally. Chapter 6 shows preliminary simulation 

results of the digital version of the BBCOF controller. Finally, the conclusions and future work 

of this thesis are developed in chapter 7. 
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2 Bidirectional boost converter with 

output filter 

2.1 Introduction 
As mentioned in chapter 1, a bidirectional DC/DC converter is usually inserted between the 

battery and the electric drive in most EVs. In order to obtain a good power rating from the 

motor with a reasonable number of battery cells, a bidirectional boost converter with output 

filter (BBCOF) is proposed in this thesis. 

Fig. 2.1.a shows the electrical architecture of the BBCOF, altogether with the rest of the EV 

traction system previously described in Fig. 1.4, i.e. the battery, the inverter and the motor.  

During the step-up mode, the power is flowing from the battery to the converter and the 

inverter, and so the motor is performing a traction operation. The inverter bus voltage is 

higher than the battery voltage. Consequently, during step-up mode the MOSFET in Q1 and the 

diode in Q2 conduct alternatively, as depicted in Fig. 2.1.b. 

Conversely, during step-down mode the power flows from the inverter and motor to the 

battery, performing regenerative braking. The inverter bus voltage continues being higher than 

the battery voltage, and the diode in Q1 and the MOSFET in Q2 conduct alternatively, as shown 

in Fig. 2.1c. 

 

2.2 Output impedance and constant power loads 
BBCOF are known to be stable with resistive loads. However, tightly regulated motor drives 

behave as constant power loads (CPLs), with negative impedance at their input terminals [51]. 

Therefore, a deeper stability study must be done, analysing the BBBCOF loaded with a CPL. 

2.2.1 CPL concept 

The motor drive for the traction system of the electric vehicle has two control loops. The outer 

loop regulates the motor speed, whereas the inner loop regulates the motor torque. If the 

speed is tightly regulated and the load has a one-to-one torque speed characteristic, speed 

and torque are both constant. In this situation the power is also constant, since it is the 

product of speed by torque, as seen in Fig. 2.2.a. Considering that the drive has a fixed 

efficiency, the electrical power at the input of the motor drive will also be constant. 

Consequently, as depicted in Fig. 2.2.b, when voltage applied to a CPL increases, the current 

decreases. Conversely, when the applied voltage decreases, the current increases. Therefore, 
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the incremental impedance is negative, and this has a destabilising effect on the systems 

feeding the CPL, in this case the BBCOF. 

 

 

 
a) 

 
b) 

 
c) 

Fig. 2.1. Electrical architecture of an EV traction system: a) general view, b) during step-up mode and c) during step-
down mode. 
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a)                                                                                        b) 

Fig. 2.2. Characteristics of a constant power load: a) from the mechanical and b) from the electrical point of view. 

To understand the destabilising effect of a CPL, it is useful to compare the connection of a 

standard voltage source to both a resistive load and a CPL. This connection is represented 

generically in Fig. 2.3. An equilibrium point exists where the v-i characteristic of the source and 

the load match. However, the stability of this equilibrium point needs to be discussed. In the 

case of a resistive load, corresponding to Fig. 2.4.a, if there is a perturbation that reduces the 

current by Δi, the source voltage becomes greater than the load voltage, so there is a positive 

voltage in the terminals of the wire inductance. This positive voltage makes the current 

increase, and the perturbation is compensated. Consequently, it is a stable equilibrium point. 

In contrast, when the load is a CPL as in Fig. 2.4.b, with the same current perturbation the 

source voltage becomes lesser than the load voltage, and thus the voltage across the wire 

inductance is negative, and current decreases again. So the equilibrium point reached with a 

voltage source and a CPL is unstable. 

 

 

Fig. 2.3. Connection of a voltage source to a generic load considering the wire inductance. 
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a)                                                                                        b) 

Fig. 2.4. Characteristics of a typical voltage source with: a) a resistive load and b) a CPL. 

 

2.2.2 CPL model 

From the electrical point of view, a CPL is a load element which consumes, or delivers, a 

constant product of voltage by current, as in Fig. 2.2.b. The expression of the current curve is 

P
i

v
       (2.1) 

For a given operating point, with voltage equal to V and current equal to I, the CPL current 

curve can be approximated by a line tangent to the current curve at the operating point. The 

slope of this line is the same that the current derivative at the operating point . 

2 2
v V v V
i I i I

P P
i

v v V 
 


   


      (2.2) 

Therefore, the line equation is 

2

P
i v c

V
         (2.3) 

where c is the crossing point with the y-axis. To determine its value, it is necessary to evaluate 

(2.3) at the operating point 

2

P P
V c

V V
         (2.4) 

Finally, the CPL can be approximated, for a given operating point, as: 

2
2

P P
i v

V V
         (2.5) 

This CPL approximated expression can be translated into an electrical model shown in Fig. 2.5, 

where 
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2

CPL

V
R

P
 

      (2.6) 

2CPL

P
I

V


      (2.7)
 

 

Fig. 2.5. CPL electrical model. 

 

2.2.3 Stability of the converter with a CPL during step-up mode 

Several solutions have been presented in the literature to damp the negative impedance effect 

associated with constant power loads, which can be roughly classified into control-based and 

hardware-based techniques. Control-based techniques consist on modifying the control action 

strategy of the inverter by introducing compensation in the current reference of the bus 

voltage deviations [52]. Instead, hardware-based techniques aggregate a network to the 

circuitry to damp the resonant effect of the CPL [53]. As inverter control is not the purpose of 

this thesis, the selected option is to modify the hardware of the converter by adding a 

resistance. 

To study the effect of the negative incremental impedance of the motor drive on the stability 

of the BBCOF, the CPL shown in Fig. 2.6 is replaced by the corresponding CPL electrical model, 

described in Fig. 2.5. The obtained system is represented in Fig. 2.7. 

 

Fig. 2.6. BBCOF, CPL load and aggregate resistance Rd during step-up operation mode. 
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Fig. 2.7. Modified BBCOF, with the equivalent CPL electrical model during step-up mode. 

 
a) 

 
b) 

Fig. 2.8. BBCOF, CPL load and aggregate resistance during step-up mode when a) Q1 MOSFET is active, and b) during 
Q1 MOSFET cut-off. 

The system resulting of the conduction of Q1 MOSFET is represented in Fig. 2.8.a, and its state 

variables have the following expressions: 

      1 1 1

1

d 1

d
L g L Li t v t R i t

t L
       (2.8) 
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v t i t I
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 
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  ,
     (2.11) 

where RL1 and RL2 are the parasitic resistances of inductors L1 and L2, respectively. 

During the rest of the period, current is flowing through Q2 diode, as depicted in Fig. 2.8.b, and 

the expressions of the state variables are: 
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The system can be described during the whole commutation period by means of the following 

averaged expressions: 
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where d(t) represents the duty cycle, i.e. the proportion of the conduction time of Q1 MOSFET 

over the commutation period, and its value is between 0 and 1. 

These expressions are nonlinear. To obtain linear equations to determine the stability of the 

system around the equilibrium point, the state variables at steady state are considered as a 

sum of their steady state value at the equilibrium point and their small signal variations, as 

follows: 

   1 1 1L L Li t I i t        (2.20) 

   2 2 2L L Li t I i t        (2.21) 

   1 1 1C C Cv t V v t        (2.22) 

   2 2 2C C Cv t V v t 
,
      (2.23) 

where the steady state values are obtained by equalling the state variable derivatives (2.16)-

(2.19) to zero: 
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and the capital letters denote the steady state value of the respective instantaneous values of 

the state and control variables. Hence, the linearized expression of iL1(t) is calculated as 
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where the subscript * indicates the steady state. Hence, evaluating the previous expression, 

the linearized expression on iL1(t) around the steady state is 
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t L
          (2.29) 

Following the same procedure for the rest of state variables, the following dynamics 

representation is obtained 

        2 1 2 2 2

2

d 1

d
L C L L Ci t v t R i t v t

t L
        (2.30) 

        1 1 1 2

1

d 1
1

d
C L L Lv t i t D I d i t

t C
          (2.31) 

   
 2

2 2

2

d 1

d

C

C L

v t
v t i t

t C R

 
  

 
     (2.32) 

With these linearized expressions, it is possible to obtain the output voltage to control transfer 

function, 2 ( ) / ( )Cv s d s . The first step is to obtain a unique equation defining the relation 

between 2 ( )Cv t  and ( )d t . Isolating 
1( )Li t  in (2.31) and calculating its derivative: 
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 
   1 1 1 2

1

d

d

1

C L L

L

C v t I d i t
ti t

D

  




     (2.33) 

 
   

2

1 1 1 22

1

d d d

d d d d

d 1

C L L

L

C v t I d i t
t t ti t

t D

  




     (2.34) 

Using (2.33) and (2.34) in (2.29), the dependency on 
1( )Li t is eliminated: 

   
 

   
     

2

1 1 1 2 12

1 1 1 2 1

1 1

d d d

d d d

1

d

d
1

1

C L L

C L
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g

L L

C v t I d i t L
t t t

v t
D

C v t I d i t R
t

v t D V d t
D

 
   
 

 


 
   
 

    


    (2.35) 

To eliminate the dependency on 1( )Cv t , the expression for this variable is extracted from 

(2.30), and the first and second derivatives are calculated 

       1 2 2 2 2 2

d

d
C L L L Cv t L i t R i t v t

t
        (2.36) 
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1 2 2 2 2 22

d d d d

d d d d
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        (2.37) 

       
2 3 2 2

1 2 2 2 2 22 3 2 2

d d d d

d d d d
C L L L Cv t L i t R i t v t

t t t t
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,

     (2.38) 

and later substituted in (2.35): 

       

 
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D
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

  
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  

 


 
      
 

 (2.39) 

The expression for 2 ( )Li t  can be obtained from (2.32): 

   
 2

2 2 2

d

d

C

L C

v t
i t C v t

t R
 

,

     (2.40) 

and its first, second and third derivatives are the following 
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     
2

2 2 2 22

d d

d

1d

d d
L C Ci t C v t v t

t t R t
 

,

     (2.41) 

     
2 3 2

2 2 2 22 3 2

d d d
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     (2.42) 
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3 4 3

2 2 2 23 4 3

d d d

d d d

1
L C Ci t C v t v t

t t R t
 
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     (2.43) 

Using (2.40)-(2.43) in (2.39), the linear expression connecting 2 ( )Cv t  and ( )d t is 
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 (2.44) 

Doing the Laplace transform and collecting terms, the output voltage to control transfer 

function is finally obtained  

 

 

 1 1 1 1 1

2

12

4 3

DL C L LC CR I sL V I Rv s

a s b s c s d ss

V

ed


       

   
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    (2.45) 

where 
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R R R R R

b

R

c

R

d

e





 

 
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
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(2.46) 
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From the denominator of the transfer function in (2.45) several conditions can be extracted, 

since coefficients a, b, c, d and e have to be positive to ensure the system stability applying the 

Routh-Hurwitz stability criterion. Taking into account that L1, L2, C1, C2, RL1 and RL2 are positive, 

and the value of D is comprised between 0 and 1, the resulting stability conditions are: 

0R        (2.47) 

1 1 2

1 2 1 2 1 2 2 1L L

C L L
R

C C L R C C L R
 


     (2.48) 

 
1 1 2 1 2 1

2 2

2 2 1 1 2 1 1 2 1D 1 `

L L

L L

C L R C L R
R

C L C R R C L C L


 

   
     (2.49) 

 

 

2

2 1 1 1 2

2

2 2 1 1 2 1

D 1

D 1

L L

L L L

L L C R R
R

C R C R C R

  
 

  
     (2.50) 

 

 

2

2 1

2

D 1

D 1

L LR R
R

 
 


      (2.51) 

Among the previous expressions, the most restrictive condition is (2.47). Consequently, it is 

necessary to guarantee that R is greater than zero under any circumstances. Therefore, 

min

1
0

1 1

d CPL

R

R R

 



,      (2.52) 

which can be rearranged as 

mind CPLR R        (2.53) 

According to the CPL electrical model shown in Fig. 2.5, (2.53) can be expressed in terms of CPL 

power 

2

2

,max

C
d

CPL

V
R

P
 ,      (2.54) 

If the BBCOF output filter design accomplishes (2.54), the stability of its operation during the 

step-up mode is guaranteed. Therefore, without the aggregate resistance Rd, the system would 

be unstable, which justifies its inclusion. 

 

2.2.4 Stability of the converter with a CPL during step-down mode 

The same procedure is followed to determine the stability of the BBCOF during the step-down 

mode, depicted in Fig. 2.9. The circuit modified with the inclusion of the electrical model of the 

CPL is represented in Fig. 2.10. During the conduction of the Q2 MOSFET, the system equations 

extracted from Fig. 2.11.a. correspond to 
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        1 1 1 1
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d
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 
     (2.58) 

 

Fig. 2.9. BBCOF filter, CPL load and aggregate resistance Rd during step-down operation mode. 

 

Fig. 2.10. Simplified BBCOF, CPL load and aggregate resistance during step-down mode. 

During the rest of the period, represented in Fig. 2.11.b, the state variable expressions are 
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d
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a) 

 
b) 

Fig. 2.11. BBCOF, CPL load and aggregate resistance during step-down mode when a) Q2 MOSFET is active, and b) 
during Q2 MOSFET cut-off. 

Again, the switched system can be represented by a series of averaged equations using the 

control variable d. In order to maintain the nomenclature, d value is 1 when the current is 

circulating through Q1 switch, in this case through the diode, and is 0 when the Q2 MOSFET is 

active. Consequently, the averaged state variable expressions are 

           1 1 1 1

1

d 1
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d
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t L
          (2.63) 
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d 1
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d

C

C L CPL

v t
v t i t I

t C R

 
   

 
     (2.66) 

The only difference between (2.63)-(2.66) and (2.16)-(2.19) is the sign of the CPL current 

source in (2.66). As done previously for the step-up mode analysis, the averaged state variable 

expressions have to be linearized around steady state considering (2.20)-(2.23): 

            1 1 1 1 1

1
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Note that the linearized expressions of the state variables in step-up and step-down are 

identical. Subsequently, the transfer function C2v (s)/d(s)  for the step-down mode is (2.45), and 

the stability conditions (2.47)-(2.51)  are also maintained. The most restrictive stability 

condition, (2.47), forces the R resistance to be positive. For the CPL model corresponding to 

the step-down operation, RCPL is already positive, so the step-down operation will be stable as 

long as Rd is positive, condition which is compatible with the Rd restriction for the step-up 

mode (2.54). In a nutshell, stability can be guaranteed if the value of Rd satisfies the following 

condition 

2

2

,max

0 C
d

CPL

V
R

P
        (2.71) 

 

2.2.5 Stability of the converter during the mode transition 

During the transition from step-up to step-down mode and vice versa, there is an instant when 

the current consumed (or delivered) by the inverter is null. According to the CPL model, at this 

point the value of the current source ICPL is 0, and the RCPL resistance is infinite, so the system 

can be modelled as in Fig. 2.12.  

 

Fig. 2.12. BBCOF and CPL load during mode transitions. 

From the step-down mode stability analysis, it is known that the value of the current source 

ICPL does not modify the transfer function C2v (s)/d(s) . Particularising (2.45) for an infinite CPL 

resistance, the transfer function of the converter during transitions is 
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    (2.72) 
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where 
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 (2.73) 

The effect of not including the resistance Rd can be derived by calculating the limit of the 

transfer function when this resistance tends to infinity: 
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   (2.75) 

If the parasitic resistances of the inductors are neglected, the transfer function is 

 
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 (2.76) 

Note that the missing terms of s3 and s denote the system instability. Consequently, unless the 

aggregate resistance Rd is connected, the BBCOF will be unstable. This instability is predictable, 

since without Rd the BBCOF is unloaded.  

 

2.2.6 Rd dissipation reduction 

As proven in the previous analysis, Rd is necessary to ensure the stability of the BBCOF 

connected to a CPL. However, this solution adds dissipation to the converter, impoverishing 

the BBCOF efficiency. An effective solution to this phenomenon is to connect a damping 

capacitor (Cd) in series with the aggregate resistance Rd. The capacitor prevents DC dissipation, 

but has to be designed so that the corner frequency of the Rd-Cd snubber is considerably lower 

than the resonance peak frequency of the converter [53]. Then, a factor of 5 between both 

frequencies is chosen, and then the expression for the snubber capacitor is 

1

1
2

5

d

d r

C

R f

 ,      (2.77) 
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where fr is the resonance peak frequency. In case that C1>>C2, the resonance peak frequency 

of the BBCOF can be considered as [54] 

2 1

1

2
rf

L C
       (2.78) 

 

2.3 Converter implementation 
The design of the passive components of the BBCOF is performed between chapters 2 and 4, 

according to the following steps: 

1) L1 design: a ripple criterion is adopted for the current ripple in L1 inductor, and 

correspondingly the value for L1 is obtained. 

2) L2 design: the value of L2 inductor is constrained to approximately one tenth of L1, 

according to the converter design rules described in [54]. 

3) C2 design: the value of C2 capacitor is chosen so that the resonance peak of the output 

impedance of the BBCOF is below 0 dB. 

4) C1 design: C1 is constrained to approximately one fifth of C2, also according to the 

design rules found in [54]. 

The stability of the designed BBCOF has been already demonstrated by the previous analysis, 

provided that the RC snubber is added to the circuit. Then, once the passive components are 

designed, it will be verified if the Middlebrook criterion is accomplished, and consequently if 

the BBCOF remains stable when the studied load is connected.  

 

2.3.1 Ripple analysis of the BBCOF 

The small-ripple approximation [55] is used for the converter analysis. This approximation is 

based on the fact that, in any well-designed converter, the ripple of the variable states found 

after a switching element should be much smaller than the DC component. Then, neglecting 

the damping network and the resistive losses in the inductors, the waveforms of interest to 

calculate the ripple of the circuit state variables are represented and analysed below. The first 

element to be analysed is the inductor L1, with pulsating voltage characteristics, which has the 

current waveform shown in Fig. 2.13 [55]. The values of the current slopes are extracted from 

(2.16).  

 

Fig. 2.13. Current waveform in inductor L1. 

From this representation, the current ripple ΔiL1 is calculated 
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1

1

1

2

g

L s

v
i dT

L
  ,      (2.79) 

and therefore, the value of inductor L1 can be expressed as 

1

1

1

2

g

s

L

v
L dT

i



      (2.80) 

In a similar manner, the value of the voltage ripple in capacitor C1 can be represented as in Fig. 

2.14 according to (2.18), since the current in the capacitor is also pulsating. 

 

Fig. 2.14. Voltage waveform in capacitor C1. 

The voltage ripple ΔiL1 is deduced graphically, and the analytical value of capacitor C1 can be 

isolated according to the voltage ripple. 

2
1

1

1

2

L
s

C

i
C dT

v



      (2.81) 

 
a)                                                                                 b) 

Fig. 2.15. Considerations for ripple calculation in inductor L2: a) C1 ripple distribution between L2 and C2, and b) 
voltage and current waveforms of inductor L2. 

 

The other two elements, C2 and L2, have nonpulsating current and voltage, respectively. 

Therefore, the ripple of the previous components is the only component for the state variables 

of L2 and C2, and thus the small-ripple approximation in no longer applicable. Consequently, 

the ripple in these elements has to be estimated considering the switching ripple, neglected 
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for C1 and L1. In the study of inductor L2, the ripple in C1 has to be considered. Recalling the 

relevant part of the BBCOF topology for this analysis in Fig. 2.15.a, for a well-designed 

converter almost all the voltage ripple in C1 will fall across L2, so that the voltage in C2 is 

continuous. Therefore, the voltage and current waveforms of inductor L2 are the ones 

represented in Fig. 2.15.b. 

The shaded area in Fig. 2.15.b is the inductor total flux linkage, which is defined as 

 2 2 22L LL i   ,      (2.82) 

but can also be calculated from its graphical representation 

 
 

1
1

2
12 2 1

2

1

4

s sdT d T

L L s C
dTs

v t dt T v
 

        (2.83) 

Equating (2.82) and (2.83), the value of the inductor L2 is obtained according to the voltage 

ripple in C1 and the current ripple of C1 and L2, respectively 

1
2

2

1

8

C s

L

v T
L

i





      (2.84) 

To study the value of capacitor C2, it is assumed from the analysis of Fig. 2.16.a that the current 

ripple in inductor L2 will entirely circulate through C2 and not through the load, and so the load 

current will be continuous. In Fig. 2.16.b the voltage of inductor L2 is depicted, and the current 

waveforms of L2 and C2 are extracted. Since the current in L2 is 

   2 2

2

1
L Li t v t dt

L
  ,      (2.85) 

the time-dependent expressions for the current in capacitor C2 are known, and thus the 

shaded area, which is the total charge of C2 capacitor, can be calculated 

3 3
2 22

2
0

1 2 1 2

1

2 8

sdT
L sL

C

i d Ti
q t dt

C L C L


       (2.86) 

As well, it is defined as 

 2 2 22C Cq C v        (2.87) 

As a result, the following expression for the value of C2 capacitor is found 

3 3

2
2

1 2 2

1

16

L s

C

i d T
C

C L v



      (2.88) 
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a)                                                                                 b) 

Fig. 2.16. Considerations for ripple calculation in capacitor C2: a) L2 ripple distribution between C2 and the load, and 
b) voltage and current waveforms of inductor L2, and current waveform of capacitor C2. 

 

Once the expressions for the component values are known, the design criteria in Table 2.I have 

been established to proceed. Note that the values of L2 and C1 have been constrained 

according to L1 and C2, respectively, in order to accomplish the design rules in [54] that make 

sure that the converter impedance is not degraded. Consequently, the values of the inductors 

can be automatically derived from (2.80) 

1

1 200 200 1
1 816
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     (2.89) 

1
2 81.6
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L
L H        (2.90) 

Considering the desired capacitance ratio, the expression for C2 can be rewritten as follows 

3 3

2
2

2 2 2

5

16

L s

C

i d T
C

C L v



      (2.91) 

With the adopted design criteria it is also possible to determine the values of the damping 

network that stabilises the BBCOF. The damping resistance must accomplish (2.71) 

 
22

2
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d
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VV
R
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so Rd has been fixed to the commercial value of 75 Ω. The damping capacitor that avoids 

dissipation at low frequencies has the following value, according to (2.77) and (2.78), 

1 1
602

1 1 1
2 75

5 5 81.6 1

d

d r

C nF

R f
H F


 

  




     (2.93) 

In order to maintain a minimum ratio of 5 between the resonance peak frequency and the 

corner frequency of the RC snubber, a 820 nF value is chosen for Cd. Although the value of the 

capacitors is designed in chapter 4, the values of all the components are summarised in Table 

2.II. The values of the inductors’ parasitic inductance have been measured and included in the 

table. 

Table 2.I. Design criteria for the BBCOF. 

input voltage Vg 200 V 

output voltage VC2 350 V 

rated power Pn 1.5 kW 

switching frequency fs 40 kHz 

input current ripple ΔiL1,% 17.5% 

input current ripple ΔiL1 1.3125 A 

output voltage ripple ΔvC2,% 0.5% 

inductance ratio L1/L2 10 

capacitance ratio C2/C1 5 
 

 

Table 2.II. Component values of the designed BBCOF. 

inductance L1 816 µH 

parasitic resistance RL1  45 mΩ 

inductance L2 82 µH 

parasitic resistance RL2 20 mΩ 

capacitance C1 1 µF 

capacitance C2 6.2 µF 

damping resistance Rd 75 Ω 

damping capacitor Cd 820 nF 
 

 

2.3.2 Relocating the RC snubber 

From the simple inspection of the expression for the resonance peak frequency, it can be 

observed that the two elements that form the resonant tank are C1 and L2, provided that 

C2>>C1. It is straightforward that introducing the RC snubber between these components, the 

damping effect is greater, but it has been corroborated by repeating the analysis in section 

2.2.3 relocating the aggregate resistance as specified in Fig. 2.17. The following transfer 

function has been obtained 

 
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    (2.94) 
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where 
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 (2.95) 

 

Fig. 2.17. BBCOF with the aggregate resistance in parallel with C1. 

The frequency responses of the BBCOF with the aggregate resistance in parallel with C1, and 

the BBCOF with the relocated aggregate resistance are compared in Fig. 2.18. It can be 

observed that the attenuation of the resonance peak by placing the aggregate resistance in 

parallel with C1 is remarkable, and thus justifies relocating the RC snubber as suggested. 

 

Fig. 2.18. Frequency response of the BBCOF with the damping network in parallel with C2 and C1. 
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2.3.3 External diodes for MOSFET switches 

MOSFETs are switching devices that only block positive voltages but, due to their body diode, 

exhibit current-bidirectional operation. The v-i characteristic of an ideal MOSFET is 

represented in Fig. 2.19.a. However the switching speed of the body diode is much lower than 

the MOSFET switching speed. This phenomenon causes high peak-currents during diode turn-

off, leading to MOSFET failure [55]. To avoid this problem, two additional diodes are used, one 

in series and one in antiparallel to the MOSFET, as depicted in Fig. 2.19.b. 

 
a)                                                                                    b) 

Fig. 2.19. MOSFET considerations for the BBCOF: a) v-i characteristic of an ideal MOSFET, and b) connection of the 
additional diodes. 

 

2.3.4 Component selection 

The final component selection for the BBCOF is shown in Fig. 2.20. It has 600 V-rated switching 

elements, Infineon IPW60R041C6 MOSFETs and Infineon IDH16S60C diodes. An IR2110 driver 

is used to generate the gate signals for the MOSFETS of the converter. C1, C21 and C22 are 

metallized polypropylene (MKP) capacitors. The output filter C2 is the parallel association of 

the MKP capacitors C21 and C22 with the ceramic capacitors C23, C24 and C25. This 

combination of capacitor technologies offers improved filtering and reliability capabilities. The 

damping capacitor Cd is the parallel association of two 220 nF and four 100 nF capacitors, 

although not represented in Fig. 2.20. The input current is sensed by the current transducer 

LEM LTS 15-NP, with a gain ksens of 0.092, and the output voltage is sensed by means of the 

voltage divider formed by R1, R2, R3 and R4.  

i

v

MOSFET on

(transistor conducts)

MOSFET on

(diode conducts)

MOSFET off
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Fig. 2.20. Schematic of the 1.5 kW BBCOF implementation. 

 

2.4 Simulation results 
The designed converter has been simulated using PSIM, and its schematic is reproduced in Fig. 

2.21. The gating signals of the MOSFETs have been set to have 350 V at the output. The 

constant power load is modelled by a voltage-controlled current source, with the value defined 

in (2.1). The current is limited to the maximum current consumption of the 1.5 kW load at 350 

V, i.e. 4.29 A. A zero-order hold (ZOH) is inserted after voltage sensing to avoid time step 

influence on the simulation results. The frequency has been set 20 times lower than the BBCOF 

switching frequency.  

 

Fig. 2.21. Schematic of the PSIM simulation of the designed converter. 

The step-up operation has been simulated by fixing the power reference source P to 1.5 kW, 

and the results are reproduced in Fig. 2.22. After the start-up transient, the BBCOF output 

voltage vC2 is 350 V, and it can be observed that the converter is delivering power to the load, 

since the current circulating through L1 is positive. On the contrary, setting the power 

reference source to -1.5 kW forces the step-down operation in Fig. 2.23. The current iL1 is 

negative, and the output voltage of the converter is 350 V. From these results, it can be 

concluded that the operation of the BBCOF with a CPL is stable in both operation modes, as 
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analysed in sections 2.2.3 and 2.2.4. The high ripple during in the input current and output 

voltage during start-up is due to the open-loop start-up operation of the BBCOF with a CPL. 

 

Fig. 2.22. Simulation results of the designed converter under step-up operation. 

 

Fig. 2.23. Simulation results of the designed converter under step-down operation. 

The input current and output voltage ripple have also been verified in this simulation, as 

shown in Fig. 2.24. The input current ripple value is 1.32 A as set by the design criteria. The 
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output voltage ripple is 0.74 V, which slightly differs from the 0.525 V criterion due to the 

approximations made during the ripple analysis. It represents an output ripple of 0.211%, 

which is still considered valid for this application. 

 

Fig. 2.24. Simulated input current and output voltage ripple at 1.5 kW step-up operation. 

 

2.5 Conclusions 
This chapter analyses thoroughly the DC/DC converter chosen for the powertrain of the EV, i.e. 

the BBCOF. As the motor drive behaves as a constant-power load, with incremental negative 

impedance, this effect has been considered in the stability study of the converter. It has been 

proven that the BBCOF is stable during step-up and step-down operations, as well as during 

transitions, by means of an RC snubber connected in parallel to the capacitor of the boost 

converter. 

Moreover, the design of the converter is partly covered in this chapter. The calculation of the 

ripple yields the specification for the inductor values, whereas the value of the capacitors for 

the BBCOF will be derived in successive chapters. Component selection for the voltage and 

power rating of the implemented converters is also covered in detail. 

The model of the converter has been developed with PSIM, and results are in good agreement 

with the conclusions drawn during the stability analysis of the system. 
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3 Sliding-mode control 

3.1 Introduction 
Sliding mode refers to the phenomenon in which a dynamic system described by differential 

equations has a high-frequency (ideally infinite) switching motion. The cause of this 

high-frequency switching motion is that either the control or the dynamics of the system is 

discontinuous. As DC/DC converters are systems which inherently have a discontinuous 

control, it is straightforward to consider sliding mode for their control [44]. 

Sliding mode is an effective method to control complex nonlinear systems with uncertainty 

conditions, at the expense of operating at variable frequency. Due to its advantages, sliding-

mode control has been extensively covered in the literature. Regarding to topics related with 

power electronics, sliding-mode control has been proposed for DC power distribution systems 

[56], inductive power transfer [57] and power factor correction [58, 59] among other 

applications. Sliding-mode control has been widely used in renewable energy systems. In [60, 

61] it is employed for power conditioning of renewable generation. [62] proposed a 

second-order sliding-mode control for wind energy conversion, and several solutions for 

impedance matching [63] and MPPT tracking [64-66] for photovoltaic applications are also 

discussed. 

Sliding-mode control has been considered for several DC/DC topologies recently in the 

literature, as buck [67, 68], boost [45, 69], quadratic boost [70] and resonant converters [71, 

72], certifying the interest on this control technique. 

The aim of the proposed sliding-mode control is to regulate the output voltage of the BBCOF, 

i.e. the high-voltage DC bus of the EV traction system. This sliding-mode control is required to 

regulate the output voltage of the converter with seamless transitions regardless of the 

operation mode [73]. As in most DC/DC converters, the fast dynamics of the BBCOF is 

associated with the input current, whereas the slow dynamics is related to the output voltage 

[44].  Fig. 3.1 details the structure of the proposed cascaded control, with an inner loop that 

regulates the input current, and an outer one that regulates the output voltage. 
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Fig. 3.1. Two-loop control architecture. 

 

3.1.1 State-space representation of the BBCOF 

In order to simplify the calculus, the sliding-mode control analysis is performed with the matrix 

expressions of the converter. The state-space variables and their derivatives are defined, 

respectively, as 
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     (3.1) 

The dynamics of the BBCOF can be expressed by means of the following state-space 

representation 

 
 
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, 0
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,     (3.2) 

where u represents the control, i.e. the switching state of the Q1 MOSFET in Fig. 3.2, where u= 

1 corresponds to the on state of the switch, and u=0 to the off state. The matrices A1, A2, B1 

and B2 can be derived from the analysis of Fig. 3.2 and the obtained expressions are shown in 

Table 3.I. 

 

Fig. 3.2. BBCOF with time-dependant sources. 
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Table 3.I. Matrix description of the BBCOF. 
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3.2 Sliding-mode current control 
The general bilinear description of a variable structure system with two states is 

       x t A x t B x t u t             ,     (3.3) 

where 

2 1 2

2 1 2

;
;

A A B A A
B B B

  
    

      (3.4) 

The sliding surface to seamlessly control [34] the bidirectional flux of energy in the converter is 

defined as  

    1 0LS x t i t k   ,      (3.5) 

where k is the constant value of the current reference. The system will exhibit a sliding motion 

if the following condition is accomplished 

      0S x t S x t        (3.6) 

According to (3.3), the derivative of the sliding surface in (3.5) will be given by  

  
 

      1

1 1 1

1

1
1

L

C g L L

d i t
S x t v t u t v R i t

d t L
            (3.7) 

Since the control action can be defined as 

     
1

1
2

u t sign S x t  
 

,        (3.8) 

then, omitting the resistive losses in the inductor L1, the condition in (3.6) can be reformulated 

as 

     
 

  
 

     1 1

1

1
    0

2 2

C C

g

v t v t
S x t S x t S x t S x t v S x t

L

 
      

 
  (3.9) 
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Therefore, two reachability conditions can be derived from (3.9), depending on the sign of the 

sliding surface 

    1 0C gv t v if S x t        (3.10) 

  0 0gv if S x t        (3.11) 

The system motion will be attracted to the sliding surface once the capacitor voltage vc1 

exceeds the source voltage vg as depicted in Fig. 3.3. 

 

Fig. 3.3. Representation of the attraction domain of the sliding surface. 

 

3.2.1 Stability under sliding-mode control 

The equivalent control ueq is the control action that constraints the motion of the system on 

the surface once it is reached. For sliding mode to exist locally on S(x(t))=0, the corresponding 

equivalent control has to satisfy 

0 1equ  ,      (3.12) 

which is equivalent to the previously obtained reachability conditions (3.10) and (3.11). The 

existence condition of the equivalent control [44] is given by  

    , 0
d

S x t t B x t
u dt


 



 
        

 
     (3.13) 

The partial derivative of the sliding surface with respect to the control is not null, and hence 

the existence condition is fulfilled.  

   1

1

1
0CB x t v t

L
             (3.14) 

From the calculus of the existence condition with constant current control in (3.5), it is proven 

that the sliding-mode will exist, and so iL1 will converge to k. Then, the ideal switching 

dynamics is obtained after substituting ueq in (3.3).  
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 1 0L

d
i t

dt
           (3.15) 

 
     1 2 2 2

2

2L

C L L Cv t R i td
t

d

v t

L
i

t

 
       (3.16) 

 
          

1

1

1 2 11d

C

L eq d L C Cd

d

R i t u t R i t vd
v

t
t

d

v t

C Rt

   
    (3.17) 

 
     2

2

2

2

C

C

L oRi t Ri td
v t

v

C Rdt

t 
       (3.18) 

 
   1C Cd

Cd

d d

v t v td
v t

dt C R


         (3.19) 

By equalling the derivatives of the state variables to zero, the following steady state values are 

found 

1LI k           (3.20) 

2 2 2 2

1 1 2 2

2

2

1 1
4 4 4 4

2 2
o o L L L

L

g g L

L

RI R I RR k R R k V Rk V R k

R
I

R

    




    (3.21) 

2 2 2 2

1 1 21 2

1 1
4 4 4 4

2 2
o o L L L g LC gRI R I RR k R R k V Rk V R kV         (3.22) 

2 2 2 2

1 1

2

2 2

2

1 1
4 4 4 4

2 2
o o L L L g g L

o

L

C

R RI R I RR k R R k V Rk V R

R
R R

V

k

I

 
     

  


  (3.23) 

2 2 2 2

1 1 2 2

1 1
4 4 4 4

2 2
o o L L L g g LCd RI R I RR k R R k V Rk R kV V     ,   (3.24) 

where IL1, IL2, VC1, VC2, VCd ,Vg and Io denote the steady state values of iL1(t), iL2(t), vC1(t), vC2(t), 

vCd(t), vg(t)and io(t), respectively. Note that equations (3.15)-(3.19) correspond to a fourth-

order system. The order reduction is caused by the addition of the sliding-mode current 

control, which regulates iL1(t). Therefore, (3.16)-(3.19) are used to calculate the characteristic 

polynomial. The first step is to isolate vcd(t) in (3.17) 

   
    
 

   
1 1

1 1 2 1

1

d

d

L g C d

Cd d C d d L C

C

k R k v t v t R
v t C R v t kR R i t v t

t v t

 
      (3.25) 
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The derivative of vcd(t) is found by evaluating (3.25) in (3.19) 

 
 

    
 

 
1 1

1 2

1

d
1

dd

d

L g C d

d d d L

C

Cd

d d

k R k v t v t R
C R vC t kR R i t

t v t
v t

t C R

 
   

   (3.26) 

The result of using (3.26) in the expression of the derivative of vC1(t) (3.17)  is 

 

    
 

     
1 1

2 1

1

1

1

d

d

L g C d

d d L C Cd

C

C

d

k R k v t v t R
kR R i t v t v t

v t
v t

t C R

 
   

    (3.27) 

Differentiating (3.27), the following expression for the second derivative of vC1(t) is obtained 

 

   

 
   

      

 
 

1

2 12
1
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1

1 1 1

2

1

d d

d dd d

d dd 1

d d

dd

d

g C d

L d C

C

C

d

L g C d C

Cd

C

k v t v t R
t t

i t R v t
v t t t

v t
t C R

k R k v t v t R v t
t v t

v t t

  
   
    

 
   

  
  
 
 

 (3.28) 

By using (3.26) in (3.28), the second derivative of vC1(t) can be expressed as 

    2

1 1 1 1

2
2

1 1 1 22 2

1 1

2 2

1 1 1 2 1

( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

d d g L d C C

C d C d g d d C L

d d C

L C C L C g

d
R C k v t kR C C v t v t

dt

d d d
v t kR v t C v t R C v t i t

dt C C R v t dt dt

R k v t v t i t kv t v t

 
    

 
     

 
 
   
 
 

 (3.29) 

In parallel, an expression for vC1(t) and its first and second derivatives can be obtained from 

(3.16) 

       1 2 2 2 2 2

d

d
C L L L Cv t L i t R i t v t

t
         (3.30) 

       
2

1 2 2 2 2 22

d

d
C L L L C

d d d
v t L i t R i t v t

dt t dt dt
        (3.31) 

       
2 3 2 2

1 2 2 2 2 22 3 2 2

d

d
C L L L C

d d d
v t L i t R i t v t

dt t dt dt
       (3.32) 

Evaluating (3.30)-(3.32) in (3.29), the system dynamics is expressed by a function with 

dependencies on iL2(t), vC2(t) and k, not reproduced here due to its extension. The dependency 
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on iL2(t)) is eliminated by substituting in this function the expressions of iL2(t) and its first, 

second and third derivatives obtained from (3.18) 

     
 2

2 2 2

d

d

C

L C o

v t
i t C v t i t

t R
          (3.33) 

       
2

2 2 2 22

d 1

d
L C o C

d d d
i t C v t i t v t

dt t dt R dt
        (3.34) 

       
2 3 2 2

2 2 2 22 3 2 2

d 1

d
L C o C

d d d
i t C v t i t v t

dt t dt R dt
       (3.35) 

       
3 4 3 3

2 2 2 23 4 3 3

d 1

d
L C o C

d d d
i t C v t i t v t

dt t dt R dt
        (3.36) 

Therefore, the expression that relates the dynamics of iL2(t) and the current reference k is 

found. By linearizing around steady state and doing the Laplace transform the transfer 

function of the system is obtained, and annotated as (8.1) in section 8.1. The study of the 

characteristic polynomial gives the stability conditions that the system should accomplish to be 

stable. In order to simplify this study, the inductor losses RL1 and RL2 have been neglected. As 

they are dissipative elements, the stability conditions obtained after this simplification will be 

slightly stricter, but it is not an inconvenience. Therefore, the obtained characteristic 

polynomial is 

4 3 2as bs dsp cs e    ,        (3.37) 

where 

3 2

1 2 2 2
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C C L R R V k C C L R V C C L R R V C C L R V
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



  

    

 

    

3 2 2

2

g

g C

V k

e R V k R V 

 (3.38) 

Following the Routh-Hurwitz stability criterion, the study of this characteristic polynomial 

proves that the system is stable as long as R is positive, since all the terms have to be positive. 

This condition is in good agreement with the study of the stability of a BBCOF with a CPL load, 

since the BBCOF operation will be stable providing that the aggregate resistance presented in 

section 2.2.3 is inserted. 
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3.3 Small-signal analysis of the BBCOF with sliding mode control 
For the small-signal analysis, the BBCOF can be seen as three different transfer functions 

describing the relation between the perturbation inputs of the system, i.e. output current, 

input voltage and current reference, and the output. Consequently, the two-loop system 

architecture of Fig. 3.1 can be represented as in Fig. 3.4. 

 

Fig. 3.4. Small-signal model of the BBCOF with sliding-mode current control and PI voltage control loop. 

Note that in the preceding stability analysis of the BBCOF, the slow dynamics of the voltage 

control loop have been neglected. However, it is necessary to consider a time-varying current 

reference in order to design the output voltage controller. Consequently, the proposed sliding 

surface is   

     1 0L refS t i t i t   ,      (3.39) 

which can be rewritten in matrix form as 

      , refS x t t x t i t   ,     (3.40) 

where 

 1 0 0 0 0        (3.41) 

Then, the derivative of the sliding surface with respect to time is 

      , ref

d d
S x t t i t x t

dt dt
         (3.42) 

By combining (3.3) and (3.42), the sliding surface time-derivative is expressed in terms of the 

state-space variables and the derivative of the current reference as follows 

         , ref

d d
S x t t i t A x t B x t u

dt dt
            

   
 (3.43) 
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The sliding motion will exist if the following condition is accomplished 

    , 0
d

S x t t B x t
u dt


 



 
        

 
     (3.44) 

The partial derivative of (3.43) with respect to the control is not null, and hence the existence 

condition is fulfilled.  

   1

1

1
0CB x t v t

L
             (3.45) 

By imposing the condition(3.46), the equivalent control (3.47)  is obtained. 

  , 0
u ueq

d
S x t t

dt 

       (3.48) 

   

 

ref

eq

d
i t A x t

dtu
B x t



  

  


   

      (3.49) 

Particularizing the equivalent control for the BBCOF leads to 

         0ref eq

d
i t A x t B x t u t

dt
                  (3.50) 

 
   

 

1 1

1

ref g C

eq

C

d
L i t v v t

dtu t
v t

 

      (3.51) 

And thus the state variables derivatives, considering (3.39) and (3.51) are 

 1 0Li t        (3.52) 

 
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2

2

2 2C L L C

Li t
v t i t R v t

L


 
     (3.53) 

 
           

 

        

1 1 1
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ref ref L ref g C

C

Cd L ref

C
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d

i t i t L R i t v t v t
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v t i t i t R v t

C

t

R

v
  

 

  




    (3.54) 

 
     2 2

2

2

L o C

C

Ri t Ri t t

R
v

v

C
t 

 
     (3.55) 

 
   1C Cd

d

d

d

C

v t v t
v t

C R



      (3.56) 
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Deriving and combining (3.53)-(3.56), it is possible to obtain an expression relating the system 

inputs and output, following a procedure similar to the used in the stability analysis of the 

BBCOF with a CPL, seen in section 3.2. The first step is to derivate (3.54) 
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     

 

   

 

   

 

   

 

   

 

 

2

1 1 12

12 2

1 1 1 1

2

2
12 1 1 1

2

1 1 1 1 1 1

1 1

2

ref ref ref C

C

C C

ref ref ref L ref ref L C

C C C

ref g ref g

C

d d d
i t L i t i t L v t

d dt dt dt
v t

dt C v t C v t

d d d
i t i t L i t R i t i t R v t

dt dt dt

C v t C v t C v t

d
i t v t i t v

dt

C v t

     
     
     

   

     
     
     

   

 
 
 

 

   

 

   

 

     

1

2

1 1 1 1

2 1

1 1 1

C ref g

C C

L C Cd

d d

d d
t v t i t v t

dt dt

C v t C v t

d d d
i t v t v t

dt dt dt

C C R R C

   
   
   

 

  

 (3.57) 

The next step is to eliminate the dependency on vCd(t). With this aim, the expression for vCd(t) 

is isolated from (3.54) 
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 (3.58) 

The derivative of vCd(t) is obtained by substituting (3.58) in (3.56): 
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  (3.59) 

Replacing (3.59) in (3.57) 
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 (3.60) 

To eliminate the dependency on vC1(t), the variable is isolated from (3.53), and its first and 

second derivatives are calculated as follows 
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     (3.63)

 

Using (3.61)-(3.63) in (3.60), the cumbersome expression obtained –not reproduced for the 

sake of brevity– has dependency on the output voltage, the three small-signal converter inputs 

and iL2(t). To eliminate this dependency, the expression for iL2(t) is isolated from (3.55) and 

derived 
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Replacing (3.64)-(3.67) in the combination of (3.60)-(3.63), a nonlinear expression is obtained, 

and it is annotated in Appendix as (8.2). Note that this expression is only dependent on the 

system inputs and output defined in Fig. 3.4, but it is nonlinear. In order to obtain the output 

voltage to any of the inputs transfer function, it is necessary to obtain a linear expression that 

uniquely relates the output voltage and the input. With this aim, function (8.2), denominated 

g(t) for simplicity, is linearized by using the first term of the Taylor expansion around steady 

state. g(t) is a function with the following form 

          2 , , ,C o g refg t f v t i t v t i t ,       (3.68) 

and the values of these variables evaluated at steady state are  

       2 2* * * *
V ; I ; V ;C C o o g g ref refv t i t v t i t I    ,    (3.69) 

where * denotes the steady state. Then, this function can be approximated as 
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,  (3.70) 

where the superscript ~ denotes the small-signal variations of the variable. Consequently, the 

system is perceived as a superposition of a steady-state part and a small-signal part 

   x t X x t           (3.71) 

 

3.3.1 Output current to output voltage transfer function 

To obtain the output current to output voltage transfer function, the small-signal variations of 

other two inputs, vg(t) and iref(t), are neglected 

   0; 0g refv t i t  ,         (3.72) 

and the description of the small-signal part is 
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    (3.73) 

Applying (3.73) to (8.2) and doing the Laplace transform, the transfer function (8.3) is 

obtained, and annotated in Appendix for brevity. However, if the resistive losses of the 

inductors are omitted, the output current to output voltage transfer function is 
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where 
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3.3.2 Input voltage to output voltage transfer function 

In this case, the neglected variables are 

   0; 0o refi t i t  ,         (3.78) 

Thus the small-signal part of the linear approximation of (8.2) is 
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    (3.79) 

The result of applying (3.79) to (8.2) and doing the Laplace transform is (8.4). Omitting the 

inductor losses, the simplified expression is 
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As expected, the transfer function denominator is the same that in the output current to 

output voltage transfer function, defined at (3.76) and (3.77). 

3.3.3 Current reference to output voltage transfer function 

To evaluate the effects of current reference small-signal variations in the output voltage, the 

rest of the inputs are neglected 

   0; 0o gi t v t  ,         (3.81) 

and then the description of the small-signal part is 
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    (3.82) 
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Applying (3.82) to (8.2) and doing the Laplace transform, the obtained transfer function is (8.5)

, found in Appendix. Omitting the resistive losses of the inductors, the simplified expression is 
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3.4 Output voltage controller 
The output voltage controller Gc(s) depicted in Fig. 3.4 gives the current reference to the 

sliding-mode current controller. A PI controller with an additional pole, at the frequency of the 

non-minimum-phase zero of the converter, will be used. The voltage and current sensors used 

in the converter add gains to the system, which have to be considered during the design of the 

voltage controller. After considering the sensor gains, the system can be represented by the 

block diagram in Fig. 3.5. 

 

Fig. 3.5. Small-signal model of the converter in the frequency domain considering the gain of the sensors, with 
io(s)=0 and vg(s)=0. 

Note that the gain of the current sensor appears in the feedback of the sliding-mode current 

control. It is possible to represent an equivalent system that eliminates the gain from the 

feedback loop, by moving the sensor gain and adding another gain block, as depicted in Fig. 

3.6. This disposition enables the designer to see that the output-input transfer function of the 

current control loop is not modified with the inclusion of the current sensor. The only 

difference comes to the magnitude of the hysteresis margins when non-ideal surface switching 

is considered. 

 

Fig. 3.6. Modified small-signal model to eliminate the gain in the current feedback loop. 
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Then, the plant of the voltage control loop is the already calculated ṽC2(s)/ĩref(s) transfer 

function with the 1/ki gain, as seen in Fig. 3.7. This representation is the one used to adjust the 

PI with additional pole voltage controller. 

 

Fig. 3.7. Small-signal model of the output voltage loop. 

The transfer function of the voltage controller is 

 
 
(1 )

1

z
c

p

s
G s k

s s









,         (3.84) 

with gain k, and zero and additional pole frequencies ωz and ωp, respectively. The design of 

these three values is performed with Matlab/Sisotool. ṽC2(s)/ĩref(s) in (8.5) has been evaluated 

with the values of the components detailed in Table 2.II, and then the additional pole is 

located the frequency of the non-minimum-phase zero of the BBCOF. The zero and the gain 

are designed in order to achieve the desired phase margin with the maximum bandwidth. 

Moreover, the bandwidth of the current loop has been determined with Matlab, and it is 

approximately 10 kHz. As the bandwidth of the voltage controller has to be significantly lower 

than this value, at least 10 times, an approximate design value of 500 Hz has been adopted. 

Finally, 

 
 

1 1920
590

1 33200
c

s
G s

s s





        (3.85) 

The frequency response of the open-loop gain is depicted in Fig. 3.8. As it can be observed, the 

designed control for the BBCOF has a phase margin of 47.2°, a gain margin of 20.8 dB and a 

457 Hz bandwidth. 
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Fig. 3.8. Bode diagram of T(s) for the designed converter and control. 

 

3.4.1 Analogue implementation of the output voltage controller 

The designed PI controller with an additional pole has been implemented analogously by 

means of the circuit in Fig. 3.9. The values of the elements have to be adjusted in order to 

obtain a transfer function as close to the designed (3.85) as possible. 

 

Fig. 3.9. Analogue implementation of the PI voltage controller with an additional pole. 

The current reference iref(t) to voltage error verror(t) transfer function obtained with the 

proposed circuit is the following 
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where Gc,circuit(s) is the transfer function of the controller implemented by means of the 

analogue circuit described above. Then, the design of the circuit elements of Fig. 3.9 has been 

done identifying values. First, an arbitrary value of 10 kΩ is set for R2. Therefore, the value of 

C2 should be 

2

2

1
52

1950
C nF

R
           (3.87) 

As this value is not commercial, C2 will be composed of two parallel capacitors of 47 and 4.7 

nF, and so the real value of C2 in the analogue control circuit will be of 51.7 nF. Next, the ideal 

value of C1 can be deduced 

2
1

2 2

3.2
33200 1

C
C nF

C R
 


        (3.88) 

In order to obtain this value, C1 will be the parallel association of two capacitors of values 2.2 

and 1 nF. Finally, the resistor R1 will be adjusted to get the designed gain according to 

 
1

1 2

1
30.9

590
R k

C C
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
        (3.89) 

Two parallel resistors of 39 and 150 kΩ will be used to obtain a resistance of 31 kΩ. The values 

of the design PI controller are detailed in Table 3.II. 

Table 3.II. Component values of the designed PI controller. 

resistance R 10 kΩ 

resistance R1 31 kΩ 

resistance R2 10 kΩ 

capacitance C1  3.2 nF 

capacitance C2 52 nF 
 

 

3.5 Output impedance of the BBCOF 
As seen previously in section 2.3.1, the inductances of the BBCOF, L1 and L2, are design fixing a 

ripple specification for the current in L1, and then choosing L2 value ten times smaller according 

to the stability design criteria in [54]. The same criteria establish that the value of C1 capacitor 

has to be at least 5 times bigger than C2. However, the selection of the C2 capacitor is not made 

according to ripple specifications, but to output impedance design. From the small signal 

description of the system in Fig. 3.4, the closed-loop output voltage to current voltage transfer 

function is represented in Fig. 3.10. 
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Fig. 3.10. Closed-loop small-signal output voltage to output current relation. 

By analysing the block diagram, the closed-loop output current to output voltage transfer 

function is obtained 
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,       (3.90) 

where Zo(s) is the output impedance transfer function v o(s)/ i o(s) and T(s) represents the open-

loop gain of the system. This output impedance transfer function has been evaluated with the 

controller and the converter design values, found in Table 2.II and Table 3.II, respectively. The 

obtained frequency response is depicted in Fig. 3.11. Note that there is a resonance peak that 

surpasses the 0 dB limit at approximately 22 kHz. This means that the harmonics in the vicinity 

of 22 kHz will be amplified instead of attenuated. The effects of the resonance peak are 

critical, since these frequencies are relatively near to the common switching frequencies of 

motor drives. This problem will be addressed during the design of the interleaved system in 

section 4.3, which in fact is the one that will be loaded with a PMSM drive. 
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Fig. 3.11. Zo(s) bode representation for the designed converter. 

 

3.5.1 Middlebrook criterion verification 

Moreover, in order to ensure the stability of the loaded converter the Middlebrook criterion 

has to be accomplished, i.e. the magnitude of the frequency response of the output 

impedance of the BBCOF has to be lower than the magnitude of the input impedance of the 

load, the CPL load, modelled as in Fig. 2.5. This comparison has been performed for several 

power ratings of the CPL, both positive and negative to verify the Middlebrook criterion in 

step-up and step-down mode, respectively. Results are shown in Fig. 3.12 to Fig. 3.24. 

 

Fig. 3.12. Impedance comparison with P=1.5 kW. 
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Fig. 3.13. Impedance comparison with P=1.25 kW. 

 

Fig. 3.14. Impedance comparison with P=1 kW. 

 

Fig. 3.15. Impedance comparison with P=750 W. 
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Fig. 3.16. Impedance comparison with P=500 W. 

 

Fig. 3.17. Impedance comparison with P=250 W. 

 

Fig. 3.18. Impedance comparison with P=-1 W (approximately null power). 
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Fig. 3.19. Impedance comparison with P=-250 W. 

 

Fig. 3.20. Impedance comparison with P=-500 W. 

 

Fig. 3.21. Impedance comparison with P=-750 W. 
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Fig. 3.22. Impedance comparison with P=-1 kW. 

 

Fig. 3.23. Impedance comparison with P=-1.25 kW. 

 

Fig. 3.24. Impedance comparison with P=-1.5 kW. 
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Consequently, the designed BBCOF with output filter satisfies the Middlebrook criterion for 

power values from 1.5 to -1.5 kW. For 0 W, the CPL input impedance is infinite, so the 

comparison has been graphically represented for -1 W, with no loss of validity. Results show 

that the magnitude of the resonance peak near 22 kHz varies depending on the power. The 

worst cases occur for negative power values. This means that during step-down mode, part of 

the ripple in the output voltage will be amplified, and thus will be higher than calculated in 

chapter 2. As previously mentioned, this problem will be addressed in section 4.3. 

 

3.6 Implementation 
The BBCOF with design values in Table 2.II is implemented as shown in Fig. 3.25. The load is 

left unconnected, since different loads will be simulated. The input current and output voltage 

are sensed, and the high-side and low-side gating signals are received from the control.  

 

Fig. 3.25. Implementation of the 1.5 kW BBCOF. 

The output voltage controller is represented in differentiating two parts. The first part is the 

voltage error calculation. The sensed voltage is scaled to obtain the 1/110 gain, and subtracted 

from the voltage reference, which is adjusted by means of the R25 potentiometer. As the 

control circuit has a unipolar excitation of 5 V, the error voltage is centred at 2.5 V. The second 

part is the PI controller with additional pole itself, as designed previously and also centred 

2.5 V. 

 

Fig. 3.26. Implementation of the output voltage controller for the BBCOF. 

The current reference obtained from the PI with additional pole control is subtracted to the 

sensed input current of the BBCOF. The result is the sliding surface, which is compared to the 

hysteresis margins. The upper hysteresis margin can be adjusted by means of R43 

potentiometer, while the lower one can be adjusted with R47. The results of the comparisons 

are introduced in an S-R flip-flop, and the gating signals for the converter are obtained. 
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Fig. 3.27. Implementation of the current controller for the BBCOF. 

 

3.7 Simulation results 

3.7.1 Simulation with a resistive load 

The first simulation consist on connecting a resistive load to the BBCOF with sliding-mode 

control for the input current and PI control for the output voltage. As a resistive load four 

lamps have been used as shown in Fig. 3.28. When lighted, the lamps have a resistance of 

102 Ω. 

 

Fig. 3.28. Connection of the four lamps to obtain a 1.2 kW resistive load.  

 

Fig. 3.29. Input current and output voltage waveforms of the BBCOF with a resistive load. 
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As it can be observed in Fig. 3.29, a sliding motion appears in the input current of the BBCOF 

after the start-up of the converter. The input current is then regulated by means of the 

sliding-mode control to match the current reference coming from the output voltage control 

loop. Once the sliding motion starts, the output voltage starts to increase until it is regulated 

to the specified voltage of 350 V. 

 

3.7.2 Bidirectional simulation 

A bidirectional experiment is proposed here in order to observe the response of the BBCOF 

and its control both in step-up and down operations, and also during transitions. The 

experiment consists on connecting two sources to the BBCOF as shown in Fig. 3.30, one at the 

input, Vg, and one at the output, Iaux. For this simulation, the adopted values of the resistors 

are Ri=36 Ω and Rload=108 Ω. The input voltage source has a fixed value of Vg=200 V. The value 

output current source varies with time, and determines the operating mode of the BBCOF. If 

the value of the current source is lower than the current flowing through the resistances, the 

BBCOF will be operating in step-up mode. Otherwise, the current source will be injecting more 

current to the BBCOF, and thus the converter will be operating in step-down mode. The Iaux 

current profile and the obtained results are reproduced in Fig. 3.31. During the first 30 s, the 

value of the Iaux source is lower than the current consumption of Rload, and the BBCOF is 

delivering power to the load, as can be deduced from the positive value of the input current. 

For the next 4 s the Iaux current constantly increases, making the BBCOF change its operating 

mode to step-down mode. At t=80 s the Iaux source decreases until reaching the exact value  of 

current that the Rload  consumes, and therefore the BBCOF provides no power. It can be 

observed that during transitions there is a variation in the output voltage of the BBCOF. The 

magnitude of these variations is acceptable from the point of view of a load drive. 

 

Fig. 3.30. Schematic of the proposed bidirectional experiment. 
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Fig. 3.31. Current profile, output voltage and input current for the bidirectional simulation. 

 

3.7.3 Bidirectional simulation with a CPL 

The objective of this simulation is to evaluate the stability of the BBCOF with a sliding-mode 

controller when the BBCOF is loaded with a CPL, and thus verify the analysis previously 

presented in this chapter. The model of the CPL load is depicted in Fig. 3.32. 

 

Fig. 3.32. Model of the CPL load model used for simulation. 

The power rating of the CPL has a time-varying profile, in order to study the system stability 

during step-up and step-down mode, as well as the transitions.  First, a slow transition from 

the PI voltage controller point of view is performed. The results are represented in Fig. 3.33. 

The power of the CPL corresponds to the Pload(t) signal. First, the power of the CPL is 1.5 kW, 
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so the BBCOF is operating in step-up mode. When the sliding motion of the input current 

begins, the output voltage starts to increase until reaching the set-point of 350 V. At instant 

t=10 ms, the power of the CPL starts to constantly decrease. As the load current of the BBCOF 

is continuously changing, the output voltage controller is not capable of regulating the voltage 

to the set-point until a fixed value for the power of the CPL is reached again, causing an 

overvoltage of 3 V. At t=60 ms a CPL power of -1.5 kW is fixed, and thus the BBCOF is operating 

in the step-down mode, recovering energy from the load. The output voltage of the BBCOF 

decreases and reaches the set-point value. Therefore, the sliding-mode-controlled BBCOF with 

a CPL load has been proven to be stable for step-up and step-down operations, and also during 

transitions. 

 

Fig. 3.33. Input current and output voltage waveforms of the BBCOF with a slow time-varying CPL. 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND CONTROL OF A BIDIRECTIONAL DC/DC CONVERTER FOR AN ELECTRIC VEHICLE APPLICATION. 
Laura Albiol Rendillo 
Dipòsit Legal: T 1361-2015



Chapter 3. Sliding-mode control 

 

95 

Fig. 3.34 shows the result of applying a fast time-varying CPL to the BBCOF. The start-up at a 

fixed power of 1.5 kW is exactly the same that in the previous simulation. However, when the 

fast power transient occurs, there appears a current overshoot, since the load variation is 

faster than the PI controller. The voltage overshoot is higher than 150 V. However, this fast 

transition is not achievable in the EV application that the BBCOF has been designed for. 

Consequently, no voltage overshots are expected in the final system. Even in the case this 

overshot occurred, the converter would suffer no damage since it has been designed with 

600-V rated components, as stated in section 2.3.4. 

 

Fig. 3.34. Input current and output voltage waveforms of the BBCOF with a fast time-varying CPL. 

 

3.8 Experimental results 

3.8.1 Bidirectional experiment 

The bidirectional simulation of section 3.7.2 has been reproduced experimentally to validate 

the results. The input resistance Ri is implemented with three lamps in parallel of 108 Ω each 

one, whereas the load resistance Rload is composed of two legs of lamps, in which each leg has 

two lamps connected in series. A DC source in current control mode is used as the Iaux source, 

and its profile is entered manually repeating the defined for simulation in Fig. 3.31. The 

obtained waveforms are shown in Fig. 3.35, and it is possible to observe that, the input current 
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of the BBCOF is comparable to the obtained by simulation, while the output voltage is 

regulated at the set-point voltage. 

 

Fig. 3.35. Output voltage, input voltage and input current waveforms of the BBCOF under a bidirectional current 
profile. 

 

3.9 Conclusions 
This chapter presents sliding-mode control as a feasible option to control of the proposed 

BBCOF for EV applications. After obtaining the bilinear description of the converter, the 

stability of the BBCOF under sliding-mode control is demonstrated, provided that the RC 

snubber of chapter 3 is included. Furthermore, the circuit for the analogue sliding-mode 

controller has been designed.  

The small-signal transfer functions of the converter under sliding-mode control are extracted. 

The output voltage to current reference expression has been used to analytically design the PI 

voltage controller, and the analogue implementation of this controller has also been 

described. The output voltage to output current transfer function has been used to calculate 

the output impedance of the BBCOF. This output impedance has been compared to the input 

impedance of the CPL for different power ratings, and from this study it has been drawn that 

the system accomplishes the Middlebrook criterion. 

Both the simulation and the experimental results corroborate the validity of the theoretical 

analysis, and sliding-mode control is proven as an effective and robust method to control the 

BBCOF. 
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4 Interleaving 

 

4.1 Why is interleaving necessary? 
The EV market is progressively demanding more powerful powertrains, in order to offer to the 

driver enhanced driveability, equal or even better than ICE vehicles. Regarding the DC/DC 

converter, this means higher power capability. So as to maintain a reasonable converter 

efficiency and power density, the solution is to use several DC/DC converters, and thus share 

the current among them. Depending on the connection between the converters, it is possible 

to distinguish [74]: 

 Paralleled Converters: the converters are connected in parallel, which allows current 

sharing. The commutation of the switching elements of all the converters is 

synchronous.  

 Interleaved Converters: the converters are also connected in parallel, but the gating 

signals of the switching elements are shifted over equal fractions of a switching period. 

The mere fact of dividing the power rating between several converters yields several 

advantages [75], such as: 

 Reduced power rating of the switching elements, as current will be shared between 

the N converters 

 Improved dynamic performance and controllability, since the reactive elements have 

smaller values than those of a unique full-power converter. 

 Fault-tolerant capability, since the DC/DC system can continue operating, at reduced 

power, in case of a converter failure. 

Moreover, interleaved converters show ripple reduction due to harmonic compensation or 

even cancellation. Fig. 4.1 shows the ripple of the input current of a BBCOF considering N 

interleaved converters, where N ranges from 1 (no interleaving) to 5. The current ripple value 

has been normalized to the maximum current ripple, which corresponds to N=1 and a duty 

cycle of 0.5. From this representation, one can conclude that the ripple is drastically reduced 

by interleaving several converters. This is a key point for an automotive DC/DC converter, as 

stated in section 1.2. For example, the ripple with one converter is approximately an order of 

magnitude higher than with three interleaved converters. This phenomenon also occurs in the 

output voltage of the BBCOFs, where in addition the output capacitor sees a higher ripple 

frequency, which benefits the filtering properties. Therefore, the interleaving strategy offers 

several possibilities to redesign the converter: maintain the component values and reduce the 
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switching frequency in order to reduce the switching losses, maintain the switching frequency 

and thus reduce the size of the reactive elements, or maintain the switching frequency and the 

component values in order to have reduced ripple.  

 

Fig. 4.1. Normalized current ripple versus duty cycle. 

The main drawback of both paralleled and interleaved converters is that non-ideal converters 

will show small differences in the values of their components, and thus they will be 

unbalanced. Some control techniques could address this issue, but are out of the scope of this 

thesis. 

 

4.2 Ring-configuration interleaving of BBCOFs 
The analysis, design and implementation of sliding-mode control have been already studied in 

the literature for boost converters [76-79]. For instance, in [76] two multiple-device boost 

converters are interleaved, and used in a fuel-cell hybrid electric vehicle. In this thesis, the 

ring-configuration methodology proposed in [80] is applied. The ring configuration consists on 

generating the current reference for one DC/DC converter from the current of the previous 

converter, with all the converters connected in parallel. The advantage of ring configuration 

over other configurations is that it does not require an external synchronizing signal. 

In this thesis, a sliding regime is induced in the current of all the input inductors (L1) of the 

BBCOFs, connected in parallel, as shown in Fig. 4.2. In [80] it is suggested to create the current 

reference for the converter from the sum of the reference from the PI voltage regulator h(t) 

and the current from the previous BBCOF. However, in this thesis the current reference for 

each BBCOF is obtained superimposing the reference from the PI voltage regulator h(t) with 

only the AC component of the current from the previous BBCOF.  
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Fig. 4.2. Connection of n interleaved BBCOF. 

 

4.2.1 Current reference composition 

The described current reference composition is made by means of the analogue circuit 

depicted in Fig. 4.3. 

 

Fig. 4.3. Analogue circuit that generates the current reference iref(t) for each converter. 
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a)                                                                                b) 

Fig. 4.4. Analysis of the circuit in Fig. 4.3  by superposition: a) considering the reference input h(t), and b) 
considering the previous phase current in-1(t). 

 
The circuit in Fig. 4.3 can be analysed by considering the superposition of the two inputs, i.e. 

h(t) and in-1(t). Considering h(t) and making in-1(t) null as in Fig. 4.4.a, the input-output transfer 

function is 
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      (4.1) 

Otherwise, considering in-1(t) and making h(t) null, which corresponds to the circuit in Fig. 4.4, 

the resulting transfer function is 
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Capacitor C2 is included to deliver additional delay to the system. As its value is in the order of 

hundreds of picofarads, its effects occur at high frequencies, and therefore can be omitted in 

this analysis. Thus, the transfer functions (4.1) and (4.2) can be approximated by 
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where 

1 2C R            (4.5) 

 

4.2.2 Sliding surface calculation for the ring-configuration interleaving 

Bearing in mind the transfer functions previously obtained and assuming ideal surface 

switching, the system with n interleaved BBCOFs is depicted in Fig. 4.5. The current reference 

for the first converter is indeed the sum of the reference from the PI voltage regulator h(t) and 
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the ripple of the current from the n BBCOF. The input current of the first BBCOF is sensed and 

subtracted to the current reference, obtaining the sliding surface signal s1(s). Note that a block 

for the gain of the current sensor, ksens, has been introduced in the model. For the stability 

analysis, ideal commutation is considered, and then gating signal u1(s) is obtained. The block 

BBCOF is described by the equations of the converter. 

 

Fig. 4.5. Model of the system with n interleaved BBCOFs. 

 

With no loss of generality, the transfer function iref,n(s)/h(s) has been considered part of the 

outer control stage, i.e. the output voltage control loop. As a result, the model of the system 

presented in Fig. 4.5 is simplified as shown in Fig. 4.6. 
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Fig. 4.6. Simplified model of the n interleaved BBCOFs. 

The sliding surface is  
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As h’(t) is a slow-dynamics signal coming from the PI voltage controller, it can be regarded as 

constant. Therefore, the time derivative of the sliding surface is 

     1,j j sens L j

d d d
s t z t k i t

dt dt dt
         (4.7) 

where the signal zj(t) can be described in the frequency domain as 
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The previous equation can be rearranged as  
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and then, by doing the inverse Laplace transform, the expression for the time derivative of the 

signal zj(t) is obtained 
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Evaluating (4.10) in (4.7) 
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4.2.3 Reachability conditions 

Once the sliding surface of the system has been obtained, it is necessary to determine the 

reachability conditions, or domains of attraction to the sliding regime. It is essential to ensure 

that these conditions will be satisfied to guarantee that the sliding motion will take place. The 

sliding motion is reachable if the following condition is accomplished 

    0j j

d
s t s t

dt
           (4.12) 

In case the sliding surface of the j converter sj(t) is positive, the time derivative of the sliding 

surface has to be negative. Therefore, the derivative surface in (4.11) now accomplishes 

       1, 1 1,

1 1
0

2 2
j sens L j j sens L j

d d d
s t k i t z t k i t

dt dt dt
        (4.13) 

Considering ideal commutation, with a positive sliding surface the control signal of this 

converter, uj(t), will be equal to 1. Evaluating (4.21) in (4.13), the first reachability condition is 

extracted 

           1, 1 1, 1 1, 1,

1, 1 1,

1 1
0

2 2

sens sens
j g L j L j j g L j L j

j j

k kd
s t v t R i t z t v t R i t

dt L L
 



           
 (4.14) 

Assuming that the value of the input inductor is equal over all the converters 

1, j 1, 1, ,L L j n           (4.15) 

the condition for the time derivative of the sliding surface is simplified 

       1 1, 1, 1 1, 1

1

1 1 1
0

2 2 2

sens
j j L L j g L j L j

kd
s t z t R i t v t R i

dt L
 

 
      

 
   (4.16) 

Neglecting the resistive losses, a simplified reachability condition can be obtained 

     
1

1 1
0

2

sens
j g j

kd
s t v t z t

dt L 

 
   

 
,       (4.17) 

which depends on the gain of the current sensor, the inductance of L1, the input voltage, the 

time constant τ and the input current ripple of the previous converter. Otherwise, for a 

negative value of the sliding surface, its time derivative has to be positive 

       1, 1 1,

1 1
0

2 2
j sens L j j sens L j

d d d
s t k i t z t k i t

dt dt dt
        (4.18) 

Still considering ideal commutation, the signal uj(t) will be 0 in this case, and therefore a 

second reachability condition is obtained 

         

     

1, 1 1, 1 1, 1

1, 1

1, 1, 1,

1,

1 1

2 2

0

sens
j g C j L j L j j

j

sens
g C j L j L j

j

kd
s t v t v t R i t z t

dt L

k
v t v t R i t

L


  



      

     

   (4.19) 
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Neglecting again the parasitic resistances and considering (4.15), the condition in (4.19) can be 

rewritten as 

         1, 1 1,

1 1 1

1 1 1
0

2 2 2

sens sens sens
j g C j j C j

k k kd
s t v t v t z t v t

dt L L L



        (4.20) 

The second reachability condition also depends on the current ripple from the previous 

converter, the time constant τ, the gain of the current sensor, the inductance of L1, the input 

voltage and the voltage of capacitor C1. 

 

4.2.4 Steady state calculation 

Note from Fig. 4.2 that the C2j capacitors are connected in parallel, so the output voltage is the 

same for every converter, and thus a unique output voltage control loop is necessary. 

Therefore, considering the resistive losses of the inductors, the state variable expressions for 

any of the BBCOFs are 

 1,L j j

d
i t U

dt
           (4.21) 

       2, 1, 2, 2, 2,

2,

1
L j C j C j L j L j

j

d
i t v t v t R i t

dt L
    

     (4.22) 

 
   

      , 1,

1, 1, 2,

1, , ,

1
1

Cd j C j

C j L j j L j

j d j d j

v t v td
v t i t u t i t

dt C R R

 
     

  

   (4.23) 

 
   1, ,

,

, , ,

1 C j Cd j

Cd j

d j d j d j

v t v td
v t

dt C R R

 
  

  

       (4.24) 

   
 

 2

2 2,

1
2,

1

1 n
C

C o L jn
j

j

j

v td
v t i t i t

dt R
C 



 
   

 



,      (4.25) 

where Uj are the discontinuous control actions, as defined in 

        1, 1, 1,

1,

1
1j g C j j L j L j

j

U v t v t u t R i t
L

    
 

     (4.26) 

If the capacitance value is considered to be the same for all C2 capacitors 

2, j 2 , 1, ,C C j n  ,         (4.27) 

the output voltage can be expressed as 

   
 

 2

2 2,

12

1 n
C

C o L j

j

v td
v t i t i t

dt nC R 

 
   

 


 

     (4.28) 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND CONTROL OF A BIDIRECTIONAL DC/DC CONVERTER FOR AN ELECTRIC VEHICLE APPLICATION. 
Laura Albiol Rendillo 
Dipòsit Legal: T 1361-2015



Chapter 4. Interleaving 

 

105 

The equivalent control method consists on determining the values of the controls that make 

null the time derivative of the sliding surface in (4.11). These values for the controls are called 

equivalent controls 

       1, ,

1 1
0

2 2
j sens j eq j sens j eq

d
s t k U t z t k U t

dt 
         (4.29) 

The expression for the variable zj(t) can be isolated from (4.6) 

     '

1,j sens L jz t k i t h t          (4.30) 

Using (4.30) in (4.29), the derivative of the sliding surface is 

         '

1, 1, ,

1 1 1
0

2 2 2
j sens j eq sens L j sens j eq

d
s t k U t k i t h t k U t

dt  
        (4.31) 

Considering balanced converters where 

     1, ,j eq j eq eqU t U t U t   ,        (4.32) 

the expression in (4.31) can be simplified as 

       '

1, ,

1 1 1
0

2 2 2
j sens L j sens j eq

d
s t k i t h t k U t

dt  
          (4.33) 

Consequently, the expression obtained for the equivalent control is 

     '

, 1,

1 1
j eq L j

sens

U t h t i t
k

 
  

 
       (4.34) 

In matrix form, the equivalent controls are 

 

 

 

 

 

 

 

 

 

1,1
'

1,1

'

1,21,2

'

1,n

1,n

1 0 0

0 1 01

0 0 1

L

L sens

L sensL

L sens

QL

U

d
i t

dt i t h t k
d

i t h t ki t
dt

i t h t k
d

i t
dt



 
  
     
                  
               
    

 

    (4.35) 

Since the determinant of matrix Q is not null 

 1
n

Q   ,          (4.36) 

there exists a unique steady state solution. At steady state, the equivalent control is zero 

 , , 0j eq ssU t  ,          (4.37) 

so the input current deduced from (4.34) is 
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   '

1, ,

1
L j ss ss

sens

i t h t
k

 ,         (4.38) 

where the subscript ss denotes the steady state condition. It can be observed that the current 

in the input inductor is equal to the reference value divided by the current sensor gain, as 

expected.  

 

4.2.5 Stability of the steady state solution 

The next step is to determine whether the found steady state solution is stable. Then, from the 

auxiliary variable  

     1, 1, ,j L j L j ssi t i t i t  ,        (4.39) 

the following positive definite Lyapunov function is defined 

         
1 1

n n

j j j

j j

V t i t i t sign i t
 

    ,      (4.40) 

From the system (4.35), the time derivative of this Lyapunov function is 

    
1 1

1 1n n

j j j

j j

d
V t i sign i i

dt   

 
          (4.41) 

Since τ is positive, the time derivative of the Lyapunov function is negative definite, and thus 

the system is stable. 

 

4.3 C2 impedance-oriented design 
Returning to the study of the output impedance of section 3.5, it is desirable that the 

resonance peak is found under 0 dB in order to attenuate its effects. The adjustment of this 

peak has been performed with the design of the C2 capacitor, considering the interleaved 

system. If a single converter were considered, the value of this capacitor would be much 

larger, deprecating the size and volume characteristics of the BBCOF. The incremental output 

impedance of n interleaved BBCOFs, deduced from (4.21)-(4.25), is  

         1, 1 1,

1 1 1

1 1 1
0

2 2 2

sens sens sens
j g C j j C j

k k kd
s t v t v t z t v t

dt L L L



        (4.42) 

Effectively, the frequency response of the output impedance expression for the interleaved 

system presents a gain of 1/3 with respect to the single BBCOF system. This effect, shown in 

Fig. 4.7, occurs since the three output impedances of each converter have been paralleled.  
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Fig. 4.7. Comparison of the incremental output impedance of the system without and with interleaving. 

The incremental output impedance of the three paralleled BBCOF with different values for the 

C2 capacitor has been represented in Fig. 4.8. As it can be observed, capacitances below 1 µF 

are unacceptable, since the peak would be over 0 dB. For slightly bigger capacitances, the gain 

of the first resonant peak is too high. This is an undesirable effect, since it means that the 

system would become more susceptible to current variations in the output of the BBCOFs. 

Consequently, only values higher than 6 µF will be considered for C2 capacitor. Finally, a value 

of C2=6.2 µF is chosen, and in order to guarantee that the C2/C1 ratio is greater than 5, the 

value of the first capacitor is set as C1=1 µF. With these values, the obtained output impedance 

frequency response is represented in Fig. 4.9. As it can be observed, the resonance peak has a 

magnitude below 0 dB, and consequently it is attenuated. This attenuation is especially 

important, since the resonance frequency is in the vicinity of the switching frequency of the 

PMSM drive. 
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Fig. 4.8. Study of the incremental output impedance for different values of C2. 

 

Fig. 4.9. Incremental output impedance of the three interleaved BBCOFs, with the final design of C2=6.2 µF. 

 

4.4 Middlebrook criterion verification 
The components of the BBCOFs have already been designed following ripple criterion for the 

input inductor L1, impedance criterion for output capacitor C2, and a sizing ratio with respect to 

L1 and C2 has been applied to L2 and C1, respectively. The final step to verify this design is to 
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verify whether the Middlebrook criterion is accomplished, i.e. the input impedance of the 

motor drive is higher than the output impedance of the interleaved BBCOFs, or not. 

Consequently, it is necessary to determine the input impedance of the PMSM drive. In [52] the 

incremental input admittance of a PMSM drive is described as 

    

2

2
* 2

dc

dc
dc s s Ip Ii

I as bs c

V J V s L s R k k

  


   

,      (4.43) 

where the a, b and c parameters correspond to 

 * * * *1.5s q q dc dca JL I V I V          (4.44) 

    * * * * *1.5 q dc s q dc dc s Ipb J V I R V I V R k          (4.45) 

 * 2 2 * * *2.25 q f q dc dc Iic I P V I V Jk  ,       (4.46) 

where Vdc
* and Idc

* are the voltage and current of the DC bus between the BBCOF and the drive 

at steady state, Vq
* and Iq

* are the q-axis voltage and current at steady state, Rs and Ls are the 

stator resistance and inductance of the PMSM, J is its rotor inertia, P is the number of pole 

pairs, and kIp and kIi are the proportional and integral gains of the PMSM current controller. 

The PMSM is modelled by means of the following equations 

1.5e f qT P I           (4.47) 

  r e LJs B T T            (4.48) 

   q s s q f s d rV R sL I L I P     ,       (4.49) 

where Te is the electromagnetic torque generated by the PMSM, TL is the load torque and B is 

its viscous friction. Besides, the model of a lossless inverter is given by 

dc dc e rV I T ,          (4.50) 

 Taking into account these expressions, and the machine and controller characteristics, it is 

possible to evaluate the input admittance transfer function. To obtain the steady state value of 

the q-axis current, (4.47) and (4.48) are evaluated when s tends to zero 

 *

0lim
1.5 1.5

r L r L
q s

f f

Js B T B T
I

P P

 

 


  
        (4.51) 

As surpassing the base speed is not considered, flux-weakening operation will not take place, 

and consequently the d-axis current of the PMSM Id will be null 

* 0dI             (4.52) 
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Therefore, the q-axis voltage can be obtained from (4.49), and evaluated at steady state by 

calculating the limit when s tends to zero 

   * *

0limq s s s q f s d r s q f rV R sL I L I P R I P   
      
      (4.53) 

Moreover, the current of the DC bus between the BBCOF and the PMSM drive at steady state 

can be derived from (4.47) and (4.50), and its expression is 

*

*
1.5 f q r

dc

dc

P I
I

V

 
          (4.54) 

Replacing (4.51), (4.53) and (4.54) in (4.43), the incremental input admittance is obtained as a 

function of the triplet of variables that determine the operating point: the DC bus voltage Vdc, 

the rotor speed ωr and the load torque TL. The characteristics of the PMSM drive are detailed 

in Table 4.I. Therefore, the incremental input admittance transfer function for the described 

PMSM drive is 

 
3 2

.1515151515

0.01929500000 251.2770000 4

0

49

dc

d cc dV s

num sI

sV



  
 ,   (4.55) 

where the numerator of the transfer function is 

2 2 2 2 2

2 2 2

3 2 2

0.071720849 0.014344170 0.00071720849

8.7539540 17.294246 4.746

( )

6973

1640.6225 1.6418850 149.14466 1277

737.56839 8

dc L dc r L dc r

r L r L L dc

L r dc r r dc L dc

L r dc

s V T s V T s V

s T s T s

num s

T V

sT V s s V T V

T V

 

 

  



  

   

    



  26.526839 r dcV

 (4.56) 

Table 4.I. Characteristics of the PMSM drive. 

stator resistance Rs 1.277 Ω 

stator inductance Ls 19.295 mH 

electrical constant ke 223 Vpk/krp 

torque constant kt 1.8442 N·m/Apk 

rotor inertia J 0.0066 kg·m2 

rotor viscous friction B 0.1 N·m·s 

proportional gain of the PI speed controller kωp 0.0 

integral gain of the PI speed controller kωi 1 

proportional gain of the PI current controller kIp 250 

proportional gain of the PI current controller kIi 494 
 

 

As it is unfeasible to compare the output impedance of the BBCOF with the input admittance 

of the PMSM for any possible operating point, the driving profile of figure Fig. 4.10 has been 

established, and this comparison will be done for the most representative points, which are 

marked in the image. A negative load torque means that energy is being recovered from the 

load, and consequently the BBCOF is in step-down mode. 
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Fig. 4.10. Driving profile for the PMSM with marked operating points. 

Next, the magnitude comparison of the output impedance of the BBCOF and the input 

impedance of the PMSM are compared for all the operating points previously shown in Fig. 

4.11, and are presented from Fig. 4.11 to Fig. 4.25. 

 

Fig. 4.11. Impedance comparison with ω=500 rpm, TL=7.5 N·m. 
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Fig. 4.12. Impedance comparison with ω=1000 rpm, TL=7.5 N·m. 

 

Fig. 4.13. Impedance comparison with ω=1500 rpm, TL=7.5 N·m. 

 

 

Fig. 4.14. Impedance comparison with ω=1500 rpm, TL=11.25 N·m. 
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Fig. 4.15. Impedance comparison with ω=1500 rpm, TL=15 N·m. 

 

 

Fig. 4.16. Impedance comparison with ω=1125 rpm, TL=15 N·m. 

 

 

Fig. 4.17. Impedance comparison with ω=750 rpm, TL=15 N·m. 
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Fig. 4.18. Impedance comparison with ω=750 rpm, TL=0 N·m. 

 

Fig. 4.19. Impedance comparison with ω=750 rpm, TL=-10 N·m. 

 

 

Fig. 4.20. Impedance comparison with ω=625 rpm, TL=-10 N·m. 
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Fig. 4.21. Impedance comparison with ω=500 rpm, TL=-10 N·m. 

 

Fig. 4.22. Impedance comparison with ω=500 rpm, TL=-6.25 N·m. 

 

Fig. 4.23. Impedance comparison with ω=500 rpm, TL=-2.5 N·m. 
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Fig. 4.24. Impedance comparison with ω=250 rpm, TL=-2.5 N·m. 

 

Fig. 4.25. Impedance comparison with ω=100 rpm, TL=-2.5 N·m. 

 

From the study of the magnitude representation of the output impedance of the BBCOF and 

the input impedance of the PMSM drive, it is possible to observe that for all the operating 

points the following condition is true 

o iZ Z ,          (4.57) 

and thus the Middlebrook criterion is accomplished. Furthermore, the results for the selected 

operating points can be extended to the whole driving profile, and ensure that the designed 

system is stable. However, it can be noticed that the operating point at which the modulus of 

the two impedances is closer coincides with the step-up operation of the BBCOF at nominal 

conditions. This fact is in good agreement with the stability analysis of chapter 2, as stability 

problems raised during step-up operation, and the CPL equivalent resistance value decreases 

and is nearer to the aggregate resistance value when the power increases. 
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4.5 Implementation of the ring-configuration interleaving 
The interleaved system presented in this thesis consists of three BBCOF with the 

characteristics of Table 2.II, connected as depicted in Fig. 4.26. The 200 V voltage source is the 

same for all the BBCOFs, as well as the load. Note that the voltage is sensed by means of two 

voltage dividers, one in the power circuit, with resistances R1 to R4, and the other one in the 

control circuit of Fig. 4.27, with resistances R40 to R42. The voltage gain obtained with this 

design is 1/110. Then, the output voltage reference value, which can be adjusted by means of 

R45 potentiometer, is subtracted to the sensed voltage with the 1/110 gain. The control circuit 

is unipolar and fed with 5 V. Consequently, a null voltage error has to be centred at 2.5 V, so 

this voltage is added with the operational amplifier (OA) OA3, the same used to calculate the 

voltage error.  This resulting voltage is the input of the PI with additional pole controller, and 

its output is the current reference. The current reference in a regenerative braking event is 

limited with the Z1 zener, in order to avoid voltage overshoots when changing from step-up to 

step-down operation. 

 

 

Fig. 4.26. Schematic of the three interleaved BBCOFs. 
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Fig. 4.27. Output voltage controller of the three BBCOFs. 

The ring sliding-mode controller is represented in Fig. 4.28. As aforementioned, to obtain the 

hysteresis margins for one converter the continuous part of the current reference is added to 

the AC part of the current of the previous converter. This value is used as the high margin 

value. The difference between the high and the low margin is determined by the threshold 

voltage of the diode. The sensed current of the converter is compared to these hysteresis 

margins, and an SR flip-flop is used to obtain the gating signals for the MOSFETs. 

 

Fig. 4.28. Ring configuration of sliding-mode controller for three BBCOFs. 

 

4.5.1 Verification of the reachability conditions 

Once the circuits for voltage and current control of the interleaved BBCOFs have been 

designed, it is time to verify that the reachability conditions are satisfied during the system 

start-up, and thus the sliding regime eventually starts. The first reachability condition, (4.17), 

can be rewritten to obtain the condition for the input voltage as follows 
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   1 1
g j

sens

L
v t z t

k 
           (4.58) 

As the control circuit has an unipolar supply of 5 V, the value of the signal zj(t) will be 

comprised between 0 and 5V. Therefore, for the worst case, corresponding to zj(t)=0 V, the 

input voltage of the converter has to accomplish 

  0gv t            (4.59) 

As the input voltage of the converter will be always positive, the first reachability condition is 

accomplished. The second reachability condition depends on the voltage of the C1 capacitor of 

the converter itself and of the previous converter. These voltages might have slight variations, 

but the following approximation can be done 

   1, 1 1,C j C jv t v t
,         (4.60) 

and then the condition is simplified to 

       1,

1 1

1 1 1
0

2 2 2

sens sens
j g C j j

k kd
s t v t v t z t

dt L L 


         (4.61) 

Therefore, there will be an attraction to the sliding domain when the value of the C1 capacitor 

satisfies the following inequality 

     1
1,C j j g

sens

L
v t z t v t

k 
          (4.62) 

At the worst case for this condition, the value of the current ripple signal will be zj(t)=5 V. Then, 

considering the design values of the converter and the controller, the previous expression can 

be evaluated as 

   1, 1.34C j gv t v t V          (4.63) 

Consequently, when the voltage of the capacitor reaches a value over vg(t) plus 1.34 V, the 

dynamics of the system will be attracted to the sliding surface, as depicted previously in Fig. 

3.3. 

 

4.6 Simulation results 
In order to validate that the system previously described and analysed effectively work in 

interleaving, the system described in section 4.3 has been simulated with a resistive load in 

PSIM. In chapter 5 the interleaved converters are simulated with the powertrain setup, and 

experimental results are also obtained. 

The load for this resistive-load simulation is a parallel connection of six legs, where each leg 

has two lamps connected in series. The lamps have an approximate resistance of 102 Ω once 

turned on. The disposition of the lamps, together with the second voltage divider to sense the 

output voltage, is represented in Fig. 4.29.  
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Fig. 4.29. Lamps with sensing stage for interleaving simulation.  

The waveforms of the output voltage and the input currents of the BBCOFs are represented in 

Fig. 4.30. The output voltage is regulated at 350 V, and a transient the sliding motion appears 

in the currents of the converters. Fig. 4.31 is a close-up of this start-up, where the attraction to 

the sliding domain and the eventual displacement of the currents can be observed. 

 

Fig. 4.30. Output voltage and input currents of three interleaved BBCOFs simulated with PSIM. 
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Fig. 4.31. Start-up transient of the three interleaved BBCOFs. 

The mean and ripple values at steady state have been represented in Fig. 4.32. The mean value 

of the output voltage is 350.19 V, and the peak ripple is 6.36 mV, which supposes a 0.0018 %. 

Note that the ripple has been strongly reduced by interleaving respect to the results of chapter 

2. The mean value of the input current is 6.12 A. As the input voltage of the converters is 

200 V, the power consumed by each converter is 1.224 kW. The hysteresis margins have been 

adjusted to obtain a switching frequency of 40 kHz at steady state, and then the current peak 

ripple is 1.37 A, approximately the same that in chapter 2. 

 

Fig. 4.32. Output voltage and input current ripples at steady state. 
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4.7 Experimental results 
The experiment has been performed with the same system parameters used in the previous 

section, i.e. three interleaved BBCOFs with twelve lamps connected as defined in Fig. 4.29. The 

obtained waveforms of the output voltage and input currents are reproduced in Fig. 4.33. The 

three converters are working in interleaving, but in contrast to the simulation results, the 

average current has different values for each converter. The difference comes from the 

irregularity of component values and the wires used for connection. These small unbalancing 

prevents the interleaving system to fully cancel the third harmonic in the output, and thus the 

resulting output ripple is considerably higher (94.37 mV) than the 6.36 mV of the simulation 

results. On average, each converter consumes 1.259 kW. There is a difference of 35 W 

between the simulation and experimental results, which is due to the losses. 

 

Fig. 4.33. Waveforms of the output voltage and input currents for the interleaved system obtained experimentally. 

 

4.8 Conclusions 
At the start of the chapter, interleaving is presented as a solution to effectively increase the 

power rating of the system by connecting several converters in parallel, apart from offering 

enhanced switching ripple features. A ring configuration is chosen, analysed and demonstrated 

to be stable for the BBCOF with the RC snubber. 

The capacitors of the BBCOF have been designed for a system of three interleaved converters 

of 1.5 kW each one. The specification is to have the resonance peak below 0 dB. With this 

design of BBCOF, the output impedance of the converter has been compared to the input 

impedance of the PMSM drive. As the input impedance of the motor drive is greater than the 

output impedance of the BCCOF for any frequency, the Middlebrook criterion is accomplished. 

Consequently, the connection of the PMSM drive does not cause instability to the BBCOF. 
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Finally, an analogue circuit performing the analogue interleaved control has been proposed, 

simulated and experimentally tested. Results show the correct operation of the system, and 

verify the power ratio increase and ripple reduction that lead to the adoption of the ring-

configuration interleaving for BBCOF.  
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5 EV traction system emulation 

 

5.1 System description 
The 4.5 kW platform that emulates the powertrain of an electric vehicle is represented in Fig. 

5.1. The traction part of the system is fed with a DC source, with a nominal value of 200 V. This 

voltage is elevated to 350 V by means of a DC/DC system, which is composed of three BBCOFs 

in interleaving configuration and their respective control, as seen in Chapter 4. The traction 

motor is a PMSM, model LSRPM100L, controlled by the Unidrive SP2202 inverter. The traction 

motor is mechanically coupled to the machine that emulates the load of the traction motor, a 

PMSM model LSR90SL. Consequently, this load machine has to be able to absorb energy during 

most part of the operation, but also to deliver energy in case of regenerative braking, or even 

downhill climbing. The bidirectional power flow is allowed by means of the back-to-back 

connection of the two Unidrive SP1405 inverters. During motoring operation, the load motor 

controlled by its inverter (Unidrive SP1405 #1) forces a resistant torque to the traction motor. 

The inverter is fed from the three-phase electric power, and the voltage is rectified by Unidrive 

SP1405 #2 inverter. Otherwise, during regenerative braking the load motor forces a torque 

with the same direction that the torque generated by traction motor, and this provokes the 

energy recovery. The voltage in the phases of the load motor is rectified by Unidrive SP1405 

#1, and later inverted respecting the frequency and phase of the three-phase electric power 

supply with Unidrive SP1405 #2. The regenerative inductances absorb the voltage differences 

between the PWM output of Unidrive SP1405 #2 and the sinusoidal voltage in the three-phase 

power supply [81]. A switching frequency filter and an EMC filter have also been included. 

 

Fig. 5.1. 4.5 kW platform for experimental purposes.  
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5.2 Simulink model 

5.2.1 Description of the system model 

The EV traction system emulation previously described has been modelled with Simulink. The 

general view of this model is reproduced in Fig. 5.2. In the model it is possible to distinguish 

the traction and the load drives, as well as the driving profile references, a visualization 

interface and three blocks to convert the mechanical torque to electrical torque and vice-

versa.  

 

Fig. 5.2. View of the complete model of the EV traction system in Simulink. 
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In order to clarify the model explanation, the hierarchy of the most relevant subsystems that 

constitute the EV traction system model is detailed in Table 5.I., and a Hierarchy Reference 

(HR) is assigned. 

Table 5.I. Hierarchy of the Simulink model. 

HR subsystem 

1 traction drive 

1.1 traction motor control 

1.2 traction inverter 

1.2.1 DC/DC stage 

1.2.1.1 BBCOF 

1.2.1.2 ring SMC 

1.2.1.2.1 hyst 

1.2.1.2.2 SMC 

2 load drive 

2.1 load inverter 
 

 

The traction drive in Fig. 5.3 (HR 1) includes the traction inverter and its control. The traction 

motor control (HR 1.1) is a two-loop cascaded control, as shown in Fig. 5.4. The outer loop is a 

speed controller, whereas the input loop is a vector torque controller. The vector torque 

controller generates the gate signals for the traction inverter. 

 

Fig. 5.3. Traction drive subsystem (HR 1). 

 

Fig. 5.4. Traction motor control subsystem (HR 1.1). 

The traction inverter (HR 1.2) depicted in Fig. 5.5 contains the DC source, the DC/DC stage and 

the inverter. The rest of the blocks are measuring elements for the current in the phases of the 

motor and the filtered current of the DC bus.  
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Fig. 5.5. Traction inverter subsystem (HR 1.2). 

The so called DC/DC stage (HR 1.2.1) corresponds to the system proposed in chapter 4, i.e. 

three interleaved BBCOFs with ring-configuration sliding-mode control, as it can be 

appreciated in Fig. 5.6. The ring-configuration sliding-mode control generates the gating 

signals for the converters. The input of the converters is the DC source, and the output is the 

DC bus, where the load inverter is connected. The input current is sensed for each BBCOF, and 

sent to the sliding-mode controller. As the three BBCOFs are parallel-connected at their 

output, the output voltage is sensed only in the first BBCOF, the other ones are sent to 

terminator elements. 

The implementation of the BBCOF subsystem (HR 1.2.1.1) with Simulink has been performed 

as reproduced in Fig. 5.7. The parasitic inductor resistances have been included in the 

simulation, as well as the characteristics of the MOSFETs and diodes provided by the 

manufacturers. 

The ring SMC subsystem (HR 1.2.1.2) receives the sensed input current of each converter and 

the current reference from the output voltage control loop. The ring-configuration sliding-

mode control is then divided in two types of subsystems. The function of the first one, hyst, is 

to calculate the hysteresis margins for the sliding-mode control of one converter from the 

sensed current of the previous converter and the current reference from the output voltage 

loop. The second one, SMC, generates the gating signals for each BBCOF from the sensed input 

current of that inverted and the calculated hysteresis margins. 
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Fig. 5.6. DC/DC stage subsystem (HR 1.2.1). 
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Fig. 5.7. BBCOF subsystem (HR 1.2.1.1). 

 

 

 

Fig. 5.8. Ring SMC subsystem (HR 1.2.1.2). 

The hysteresis limits for the sliding mode controllers are obtained in the hyst subsystems 

(HR 1.2.1.2.1), represented in Fig. 5.9. The sensed current and the reference current are 

summed and then a 0.5 gain is applied, as in the analogue circuit proposed in chapter 4. A 

saturation block is introduced to consider the voltage limitation introduced by the 5 V unipolar 

excitation. The result is the high hysteresis margin. The low margin is obtained by subtracting a 

fixed value to the high margin, so that this value will determine the switching frequency at 

steady state. 

vC2

2

iL1

1

in_n

4

in_p

3

out_n

2

out_p

1

v
+
-

g

D
S

g D
S

i
+

-
Nu

2

u

1

Nu3

6

u3

5

Nu2

4

u2

3

Nu1

2

u1

1

hyst3

IL

Iref

H+

H-

hyst2

IL

Iref

H+

H-

hyst1

IL

Iref

H+

H-

SMC3

iL

Hp

Hn

u

nu

SMC2

iL

Hp

Hn

u

nu

SMC1

iL

Hp

Hn

u

nu

[Hn1]

[Hp1]

[Hn3]

[Hp3]

[Hn2]

[Hp2]
[Hn1]

[Hp1]

[Hn3]

[Hp3]

[Hn2]

[Hp2]

Iref

4

iL3

3

iL2

2

iL1

1

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND CONTROL OF A BIDIRECTIONAL DC/DC CONVERTER FOR AN ELECTRIC VEHICLE APPLICATION. 
Laura Albiol Rendillo 
Dipòsit Legal: T 1361-2015



Chapter 5. EV traction system emulation 

 

131 

 

Fig. 5.9. Hyst subsystem (HR 1.2.1.2.1). 

The block SMC (HR 1.2.1.2.2) performs the hysteretic switching, according to the received 

sensed current and the hysteresis margins, as seen in Fig. 5.10. An SR flip-flop is used as a 

memory element to generate the gating signals for the MOSFETs of the converters. 

 

Fig. 5.10. SMC subsystem (HR 1.2.1.2.2). 

The load drive (HR 2) only has a torque control loop, performed by means of a vector 

controller. The subsystem, represented in Fig. 5.11, contains this vector controller and the load 

inverter. 

 

Fig. 5.11. Load drive subsystem (HR 2). 

The load inverter (HR 2.1) has been simulated by a three-phase inverter connected to a DC 

source. This DC voltage source corresponds to the DC bus between the two back-to-back 

converters of the load part of the system. As this voltage is well regulated, simulating the 

grid-connected inverter is not relevant from the studied system point of view, and the 

power-absorption capability has been reproduced by connecting a resistor in parallel with the 

DC source, as shown in Fig. 5.12. 
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Fig. 5.12. Load inverter subsystem (HR 2.1). 

 

5.2.2 Simulation results 

For the simulation, the driving profile shown in Fig. 5.13 has been considered. This profile has 

been designed in order to include both traction and regenerative braking operations within a 

limited amount of time. The simulation is time and memory consuming as the simulated 

converters are not averaged but circuital models are used, and longer profiles could not be 

applied. 

 

Fig. 5.13. Torque and speed profile for the load and traction motor, respectively. 
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is decreased again. Finally a null load torque is applied, and shortly later the speed is 

constantly decreased until reaching standstill again. 

The current values of mechanical torque and speed obtained by simulation are shown in Fig. 

5.14 and Fig. 5.15, respectively. It can be appreciated that both the torque and the speed 

closely follow their reference, and thus the speed control for the traction motor and the 

torque control for both the traction and load motor has been correctly modelled. 

 

Fig. 5.14. Reference and real mechanical torque obtained by simulation. 

 

Fig. 5.15. Reference and real speed obtained by simulation. 

Fig. 5.16 reproduces the current drawn by the traction motor during the driving profile, or 

equivalently, the current supplied by the BBCOFs. Note that during regenerative braking the 

current is negative. This means that energy is being recovered from the traction motor and 

transferred to the DC source by the BBCOFs. Therefore, these results validate the correct 

operation of the designed converters under sliding-mode control working in interleaving. 

Moreover, it can be observed in Fig. 5.17 that the ripple in the DC bus is maintained low during 

the whole driving profile. 
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Fig. 5.16. Current consumed by the traction motor obtained by simulation. 

 

Fig. 5.17. DC bus voltage obtained by simulation. 

 

5.3 Experimental EV traction system emulation 

5.3.1 Description of the set-up 

In order to test the design of the BBCOFs and their interleaved SMC, the system described in 
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energy during the regenerative braking, as depicted in Fig. 5.18. Then, the adopted solution 
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electronic load. When regenerative braking occurs, the recovered current is injected to the 
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the electronic load. The DC source is protected with a diode to ensure that it is not damaged. 
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Fig. 5.18. Set-up of the experimental traction system emulator. 

The three BBCOFs are connected in parallel, as shown in Fig. 5.19. The sensed input currents 
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current control. As a result, the gating signals for the MOSFETs are obtained and sent to their 

corresponding IR2110 driver. 

 

Fig. 5.19. Detailed view of the three BBCOFs connected in parallel with the current probes used for the oscilloscope 
results. 

 

Fig. 5.20. Detailed view of the control board. 

As shown in Fig. 5.1, two PMSM are mechanically coupled. The first one, LSRPM100L, is a 

4.5 kW machine that is part of the EV emulator powertrain. The other one, LSRPM90SL, is a 

3 kW machine that sets a determinate load to the traction motor. Therefore, the load motor 

has a torque control, which regulates the load torque applied to the traction motor. The 

traction motor has an outer speed loop control and an inner torque loop. Thus, it is necessary 

to establish references for the load torque and the speed of the whole powertrain. These 

references are provided by means of two profiles created with Matlab/Simulink and sent to 
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the inverters using a PCI-6024E Texas Instruments digital acquisition board. The speed is 

sensed by means of an encoder and sent to the inverter. 

 

Fig. 5.21. Detailed view of the two mechanically coupled PMSMs. 

The inverter for the traction machine is a Unidrive SP2202. As it is an industrial inverter, it has 

an undervoltage relay protection. In this case, it means that if the voltage is lower than 280 V 

the inverter is inactive, and so no load is applied to the BBCOFs. Consequently, it is not 

possible to start the system without providing a bus voltage above this value. The solution has 

been connecting a second DC source (an Amrel SPS800X13-K02D), named DC source 2, 

configured to work in voltage control mode and feed 340 V, a voltage rating that is 10 V below 

the desired DC bus voltage. As a consequence, this source will only deliver power when the 

BBCOFs are not operating. Once they have started up, the voltage in the bus is higher than the 

configured current rating, and thus no current circulates. The three inverters with their filters 

and protections are mounted in the steel enclosure shown in Fig. 5.22. 

Moreover, a resistive load has been connected in parallel to the inverter, which ensures that 

the BBCOFs are not unloaded in case of inverter failure and disconnecton. A total resistance of 

1.37 kΩ is inserted with the series connection of 680, 470 and 220 Ω resistors. The DC bus has 

a regulated voltage of 350 V, so the resistors provide an additional power consumption of 90 

W to the system, once the system has started up. 

Both the Voltech PM6000 power analyser and the Yokogawa DLM4038 oscilloscope are used 

to register the most relevant signals of the system, which are the DC source voltage, the DC 

bus voltage (which is the voltage in the C2 capacitors of the BBCOFs), the input currents of the 

BBCOFs, the speed of the PMSMs and the torque of the load PMSM. Both the torque and the 

speed are read from the analogue outputs available in the inverters, and scaled appropriately 

in the measuring devices, namely the power analyser and the oscilloscope. 
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Fig. 5.22. Steel enclosure with the inverters, filters and protections. 

 

Fig. 5.23. Front view of the cart containing the three BBCOFs (1), the electronic load (2), a DC source for the cooling 
fans (3), a DC source for the control board (4), the DC source 1 (5) and the DC source 2 (6). 
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Fig. 5.24. Side view of the cart with the oscilloscope (7), the control board (8) and the power analyser (9). 

 

5.3.2 Dynamic profile experiment 

The first experiment to test the feasibility of sliding-mode control for the EV powertrain is to 

apply the same dynamic profile that was used for simulation purposes, shown in Fig. 5.13. The 

profile is sent by the acquisition board to the analogue inputs of the inverters, which have a 

voltage range of 0 to 10 V. The maximum value of 10 V corresponds to 1500 rpm in the case of 

the reference speed, and to 35.6 N·m for the torque reference. Therefore, in order not to work 

in one extreme of the voltage range, the reference speed has been limited slightly below. Fig. 

5.25 shows the sensed value of the load torque and the speed of the EV powertrain emulator. 

It can be observed that the load motor follows the reference torque profile, as well as the 

traction motor follows the speed profile.  

The current consumption of each BBCOF has been sensed and reproduced in Fig. 5.26. Note 

that the current waveform reproduces the product of the torque per the speed waveform. As 

no field weakening is performed, the power of the motor is directly proportional to the current 

consumed by the drive. Alike the results of the interleaving experiment, the current is not 

equally divided between the three BBCOF due to the slight differences in the components 

values and length of the cables. These results prove the bidirectional operation of the BBCOF 

with sliding-mode control. When the load torque is negative, the load machine is operating as 

a motor and the traction one as a generator. Then the current flowing through the BBCOF is 

negative, so regenerative braking is occurring. 
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Fig. 5.25. Sensed torque and speed of the EV emulator. 

 

Fig. 5.26. Sensed currents of the three BBCOF. 

During the whole driving profile the input DC source feeds the BBCOFs with 200 V, and the 

output voltage is regulated to the set-point, as shown in Fig. 5.27. 

The power of the system is studied by means of the signals registered with the power analyser, 

and represented in Fig. 5.28. Specifically, electrical power is registered at the input of the 

BBCOFs and at the DC bus (i.e. the output of the BBCOFs), and the mechanical power of the 

traction motor is also registered. Moreover, the mechanical power is added to the electrical 

power dissipated in the aggregate resistances of the DC bus, so that the efficiency of the 

inverter can be evaluated. It can be observed that during the step-up mode the power at the 
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input of the BBCOFs is higher than at the DC bus, except for the instant when the motor stops 

accelerating. Conversely, during step-down mode the power at the DC bus exceeds the power 

at the input of the BBCOF. The power of the motor, calculated as the product of the sensed 

torque and speed, is slightly lower than the power of the DC bus but in the instant when the 

motor abruptly decelerates. Although the efficiency of the BBCOFs and the inverter will be 

numerically evaluated by means of the static experiments, it can be appreciated that both 

converter systems have a good performance. 

The power of the system is studied by means of the signals registered with the power analyser, 

and represented in Fig. 5.28. Specifically, electrical power is registered at the input of the 

BBCOFs and at the DC bus (i.e. the output of the BBCOFs), and the mechanical power of the 

traction motor is also registered. Moreover, the mechanical power is added to the electrical 

power dissipated in the aggregate resistances of the DC bus, so that the efficiency of the 

inverter can be evaluated. It can be observed that during the step-up mode the power at the 

input of the BBCOFs is higher than at the DC bus, except for the instant when the motor stops 

accelerating. Conversely, during step-down mode the power at the DC bus exceeds the power 

at the input of the BBCOF. The power of the motor, calculated as the product of the sensed 

torque and speed, is slightly lower than the power of the DC bus but in the instant when the 

motor abruptly decelerates. Although the efficiency of the BBCOFs and the inverter will be 

numerically evaluated by means of the static experiments, it can be appreciated that both 

converter systems have a good performance. 

 

Fig. 5.27. Input and output voltage of the three BBCOFs. 
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Fig. 5.28. Power at the input of the BBCOFs, at the DC bus, at the motor drive and at the motor drive plus the 
aggregate resistances. 

The results of the dynamic experiment are summarised with the capture of the oscilloscope in 

Fig. 5.29. The top window shows the voltage both at the input of the BBCOF (in red) and at the 

DC bus (in orange). The window in the middle contains the input currents of the three BBCOFs, 

which are superimposed, the current at the DC bus with a cyan-coloured line, and also the 

current supplied by DC source 1 in an orange line, calculated as the sum of the input currents 

of the BBCOFs. Finally, the bottom window contains the mechanical variables of the system, 

namely the speed (in purple) and torque (in blue) of the traction motor. These magnitudes are 

obtained from the inverters, and thus their value is normalised to 10 V. 

 

5.3.3 Step-up static experiment 

The objective of the step-up static experiment is to evaluate the efficiency of the interleaved 

BBCOFs. The speed of the traction motor is set to 1400 rpm, and the torque of the load motor 

to 21 N·m. The motor is operated in these conditions for 15 minutes, in order not to have 

temperature drifting, and then the power at different parts of the system is represented in Fig. 

5.30. From this data, the efficiency of the BBCOFs and the inverter are calculated. The former 

is the division of the DC bus by the DC source power, whereas the latter is the division of the 

drive and the aggregate resistances by the DC bus power. The results reproduced in Fig. 5.31 

show an average of 97.9% efficiency for the BBCOFs and 92.9% for the inverter. The achieved 

efficiency for the BBCOF meets the high efficiency criterion for automotive DC/DC converters, 

outlined in the introduction of this thesis. 
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Fig. 5.29. Results of the dynamic profile experiment obtained with the oscilloscope. 
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Fig. 5.30. Power at the DC source, DC bus and drive with power dissipated in the aggregate resistances during the 
step-up experiment. 

 

Fig. 5.31. Efficiency of the BBCOFs and motor drive during static step-up operation. 

 

5.3.4 Step-down static experiment 

For the step-down static experiment, the speed reference is maintained at 1400 rpm, whilst 

the load torque is set to -13.75 N·m. The motor is operated also for 15 minutes, and the 

measured power is referred in Fig. 5.32. From these power measurements, the efficiency of 

the BBCOFs and the inverter is inferred, and represented in Fig. 5.33. The efficiency of the 

BBCOFs is reduced to 97%, but still is a good efficiency rating. Moreover, as the powertrain is 

usually operating in the step-up mode, obtaining a high efficiency of the step-down mode is 

not critical. The efficiency of the inverter is also reduced to 86.4%. 
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Fig. 5.32. Power at the DC source, DC bus and drive with power dissipated in the aggregate resistances during the 
step-down experiment. 

 

 

Fig. 5.33. Efficiency of the BBCOFs and motor drive during static step-down operation. 
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tool that allows the user to test possible system modifications before implementation, as 

results are in good agreement with those obtained experimentally. Furthermore, experimental 

results validate that the BBCOF with ring-configuration sliding-mode control is a feasible 

solution for the DC/DC system of an EV powertrain. 
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6 Digital control of the BBCOF 

 

6.1 Introduction 
The inherent advantages of digital devices such as high noise immunity,  absence of ageing 

effects, ability to implement complex control algorithms and flexibility in changing controller 

parameters have contributed to establishing digital control strategies as a real and feasible 

alternative to the classical analogue control techniques applied to switching converters 

regulation [82]. Another advantage of digital devices is the communication ability that allows 

them to interface other digital systems as in the battery control system of an electric vehicle. 

Recently in [83-86] the discrete-time sliding-mode approach [44] was used to design and 

implement PWM digital controllers based on sliding-mode theory. In those works, it was 

proven that this methodology can be shown as a natural way of implementing fixed-frequency 

sliding-mode-based controllers. Although the digital control of BBCOF is expected to be 

studied as part of a future work, some promising simulation results have been obtained after 

applying the discrete-time sliding mode theory to digitally implement the previous analogue 

sliding-mode controllers of the BBCOF, and are shown in this thesis due to their interest. 

Moreover, besides the inherent advantages of digital controllers, the use of PWM digital 

controllers to regulate switching power converters facilitates their operation in interleaving. 

The study outlined in this chapter is based on the PhD thesis of Adrià Marcos-Pastor [87], who 

has collaborated with the following analysis. 

6.2 Design of the digital current-control loop 
In order to design the digital control for the BBCOF, the first step is to obtain the discrete-time 

model of the BBCOF by means of the Euler method following [87], expressed as 

     1  x k F x k E Hx k G      ,       (6.1) 

where 

2H I A T  ,          (6.2) 

1 2F A A  ,          (6.3) 

2G B T ,          (6.4) 

1 2E B B            (6.5) 
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The matrices A1, A2, B1 and B2 correspond to the averaged model matrices of the BBCOF, 

annotated in Table 3.I, I is the identity matrix, T is the switching period and τ in the conduction 

time of Q1 MOSFET. Following the procedure described in [83], the discrete sliding surface is 

defined as 

   1L refs k i k i           (6.6) 

The objective of the discrete-time sliding-mode control is that in the following sampling period 

the current flowing through L1 reaches the reference current value, thus implying 

   11 1 0L refs k i k i             (6.7) 

From (6.1) the value for iL1(k+1) is extracted, and substituted in (6.7). Then, isolating τ the 

action control that guarantees the current reference is achieved in the next period is obtained 

       
 

1 1 1

1

ref L C g

eq

C

L i i k T v k v k

v k


  
       (6.8) 

In order to validate this approach, the digitally current-controlled system is simulated and 

compared to its analogue equivalent, both loaded with a resistance. Then, the obtained 

control action (6.8) is implemented by means of arithmetical blocks in PSIM as shown in Fig. 

6.1, and PWM modulation is performed. iL1 current and vC1 voltage are sampled with ZOH 

blocks.  

 

Fig. 6.1. Schematic of the current digital control of the BBCOF. 

The current digital control of the BBCOF has been simulated and compared to the analogue 

sliding-mode control of Fig. 6.2. The results reproduced in Fig. 6.3 show that the digital and the 

analogue dynamics are comparable and thus the digital control obtained by the application of 
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discrete-time sliding-mode theory to the discrete-time model of the BBCOF obtained through 

the Euler’s Method. In the represented waveforms, letter ‘a’ denotes the analogue control, 

and ‘d’ the digital control. 

 

Fig. 6.2. Schematic of the current analogue control of the BBCOF. 

 

Fig. 6.3. Comparison between the digital and analogue current control for the BBCOF. 
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6.3 Design of the digital voltage-control loop 
As it can be observed in the simulation results of the previous section, the current of the 

BBCOF is effectively regulated by the digital sliding-mode control, and its dynamics is really 

close to the dynamics of the analogously controlled BBCOF. Therefore, a second voltage 

discrete control loop is designed according to the digital redesign approach procedure [82]. As 

the current-control surface now has a variable current reference 

     1 1 0L refs k i k i k    ,        (6.9) 

a time delay of one period is added to the current reference to output voltage transfer 

function ṽC2(s)/ĩref(s) of the continuous system. Then, following the same procedure of section 

3.4, a new PI controller with an additional pole is designed to obtain a phase margin of 50°. 

From this controller, the equivalent digital controller obtained by means of the bilinear 

transform is 

 
1 2

1 2

0.03838 0.001471 0.03691

1 1.412z 0.4118
c

z z
G z

z



 

 


 
      (6.10) 

 

Fig. 6.4. Simulation results of the two-loop digital control of the BBCOF. 

The simulated results presented in Fig. 6.4 show that the digital implementation of the 

sliding-mode control has a similar dynamic behaviour to the analogue one and also maintains 

its seamless bidirectional characteristics when the load is a CPL. 
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6.4 Interleaved connection of BBCOF with digital control 
Since this digital control relies on PWM modulation, the interleaving connection of the three 

BBCOF is straightforward. The system has been simulated with a time-varying CPL, and results 

are reproduced in Fig. 6.5. It can be appreciated that the interleaved system with the two-loop 

digital controller  

 

Fig. 6.5. Simulation results of the interleaving of three BBCOF with the two-loop digital control. 

 

6.5 Conclusions 
The simulated results show the feasibility and good behaviour of the discrete-time version of 

the seamless analogue control based on sliding-mode theory. The interleaved connection of 

three BBCOF converters also shows similar simulation results to the analogue version when it 

is connected to a CPL. However, the procedure to operate the converters in interleaving is 

easier. 

The detailed study of the stability of the current discrete control is left as a future work of 

interest, as well as the connection to the motor drive and the experimental implementation. 
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7 Conclusions and future work 

In this thesis the design, analysis, control and implementation of a bidirectional DC/DC 

converter for an EV powertrain are proposed, and later with a 4.5 kW prototype. The 

development of this solution comprises the analysis and design of the chosen BBCOF topology, 

the design and implementation of a sliding-mode current control for the BBCOF, the addition 

of a PI control to regulate the output voltage, the adoption of interleaving to increase the 

power rating of the system and testing the solution both with a real emulation platform and its 

Matlab/Simulink model. 

Concerning the load of the converter, which is the motor drive system, it has to be taken into 

account that it can behave as a CPL, which have an unstabilising effect due to their negative 

incremental impedance. Therefore the stability of the BBCOF with the model of a CPL has been 

verified, provided that an RC snubber is included in the design. Then the selected topology is 

confirmed as an appropriate candidate for the EV powertrain application, and a 1.5 kW 

prototype is designed. 

Sliding-mode control has been proven to be a robust technique in front of system 

uncertainties. In this case, it is shown that regenerative operation is allowed with no need to 

change the control method, and not even determining whether the BBCOF is operating in step-

up or step-down mode. The small-signal transfer functions of the BBCOF under sliding-mode 

control have been extracted, and the PI controller to regulate the output voltage has been 

designed accordingly. An analogue implementation of the current sliding-mode and voltage PI 

control is developed, simulated and experimentally tested. 

In order to obtain a 4.5 kW system from the 1.5 kW designed BBCOF, three converters have 

been interleaved. Due to the variable switching frequency of the sliding-mode control, a ring 

configuration strategy has been used in order to achieve the interleaved behaviour of the 

converter. The current control is still a sliding mode control, where the reference is the sum of 

the AC component of the current of the previous converter plus the DC component of the 

output of the PI controller. The result is a system of the desired power-rating with reduced 

ripple in comparison to the individual converters. Simulation and experimental results 

corroborate the theoretical study of this solution. 

Finally, the specifications for a 4.5 kW EV powertrain emulator have been defined. This EV 

powertrain is composed of a PMSM drive for traction mechanically coupled to a load PMSM. 

The load motor is fed with two back-to-back inverters, so as to extract and supply energy to 

the AC grid. Then, the model of the entire system has been obtained with Matlab/Simulink. 

This model proves to be a useful tool to test system modifications before its real 
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implementation. The EV powertrain emulator is run under a realistic driving profile, and results 

show the stability and regenerative braking capability, as the simulation results of the 

Matlab/Simulink do. Consequently, the proposed system can be fairly considered as an 

appropriate solution for the EV powertrain, with the added value of a unique control of the 

DC/DC converter for both traction and regenerative braking modes. 

During this thesis, many ideas on how to continue with the present work have arisen. The first 

and more obvious is to increase the power rating of the system from 4.5 kW to a value over 

100 kW, which corresponds to the power of a standard EV. An in-depth study should be done, 

but basically the solution depends on both increasing the number of BBCOF and increasing the 

maximum power delivered by each of them. At this point, the construction of the passive 

elements to minimize the weight and volume of the system should be considered. By 

connecting more converters in parallel the ripple would be reduced, and so would be the 

inductors and capacitors. Consequently, it would be possible to increase the power per 

converter ratio. The subsequent design could be tested before implementation by means of 

the developed Matlab/Simulink model. 

A second future work that deserves further attention is the digital implementation of the 

sliding-mode control for the BBCOF. Digital sliding-mode control has recently drawn the 

interest of researchers in power electronics. In [88] the implementation of a sliding-mode 

control for an inverter is presented, whereas [89] discusses about a hybrid digital-analogue 

control for a photovoltaic boost converter. A two-loop digital sliding-mode control for DC/DC 

converters is first introduced in [90], and further developed with a PWM strategy in [83], 

where the sliding-mode approach is derived to obtain PWM-controlled system. With this 

digital implementation, sliding-mode control operates at a fixed frequency, eliminating its 

main drawback. Therefore, it would be interesting to apply the same procedure to obtain a 

discrete-time PWM control based on sliding-mode control. Another advantageous feature of 

the digital implementation to be considered is the simplicity of the interleaved system, since it 

consists on phase-shifting the control signals. Preliminary simulation results of this future work 

have also been presented in this thesis. 

Moreover, a digital management of the DC/DC system enables the connection and 

disconnection of individual BBCOF in order to supply the required power at every instant, as 

well as modifying the DC bus voltage rating online in order to maximise the efficiency of the 

system. 

The modularity provided by interleaving several BBCOF modules makes it possible to achieve a 

fault-tolerant system. In case of failure of one of the modules, it could be disconnected while 

the rest continue operating. Therefore the EV could continue its way with reduced power and 

a warning for the driver. This failure management would also be more practical if it were 

digitally implemented.  

Last but not least, the electromagnetic interferences (EMI) generated by the BBCOFs should be 

evaluated and the design should be adapted to accomplish the EMI regulation concerning EV, 

i.e. SAE J-1113.   

 

UNIVERSITAT ROVIRA I VIRGILI 
DESIGN AND CONTROL OF A BIDIRECTIONAL DC/DC CONVERTER FOR AN ELECTRIC VEHICLE APPLICATION. 
Laura Albiol Rendillo 
Dipòsit Legal: T 1361-2015



 

155 

8 Appendix 

 

This appendix contains the equations that, due to their excessive dimensions, have not been 

included in their corresponding chapter. 

8.1 Stability under sliding-mode control 
The constant current reference to output voltage transfer function from section 3.2.1 is 

(8.1) 

 

> > 

(3)(3)

> > 

(3)(3)
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> > 

(3)(3)

> > 

> > 

(3)(3)

 

 

8.2 Small-signal analysis expression 
The following equation is the nonlinear expression between the converter inputs, i.e. voltage 

input, output current and current reference, and the output voltage. It is obtained by 

combining (3.60)-(3.67) as explained in section 3.3. 

  (8.2) 
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8.3 Output current to output voltage transfer function 
The small-signal output current to output voltage transfer function has been calculated 

according to the procedure described in section 3.3.1, and the resulting expression is 

(8.3) 
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8.4 Input voltage to output voltage transfer function 
The obtained expression for the small-signal input voltage to output voltage transfer function 

of section 3.3.2 is 

(8.4) 
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8.5 Current reference to output voltage transfer function 
The small signal current reference to output voltage is obtained as described in section 3.3.3, 

and its expression is the following 

(8.5) 
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