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OBJECTIVES AND OUTLINE 

OF THE THESIS 
 

 

Objectives 

Outline of the thesis 

 

 

Objectives 

Since I joined the group, the main target of study has been the functional characterization 

of Saccharomyces cerevisiae proteins involved in desiccation tolerance. Most yeast-based 

food industries are going to introduce Active Dry Yeast (ADY) due to its genetic stability 

at room temperature, reducing transport and storage costs. Unfortunately, most isolated 

strains and laboratory-developed industrial yeast strains have the biotechnological 

handicap of losing viability during the drying process. In order to understand dehydration 

cell tolerance, a number of stress-response pathways and molecules have been 

hypothesized as important, including osmoregulation, ion homeostasis, DNA damage 

repair, and protein folding. Indeed, several potential stress-response molecules appear to 

be induced in dried S. cerevisiae cells. Among them, proteins termed hydrophilin 

participate in the cellular tolerance to this stress condition (A. Garay-Arroyo 2000), 

reducing the oxidative damage during the stress imposition. A genetic screen of the S. 

cerevisiae deletion library for mutants sensitive to dehydration stress was carried out by 

our group. Among the genes characterized for overcoming dehydration stress, 

overexpression of five out of twelve genes encoding hydrophilic proteins were found 

essential for overcoming dehydration stress (SIP18, STF2, GRE1, NOP6 and YJL144w) 

(Rodríguez-Porrata et al., 2012b), demonstrating that the biochemical properties of 

hydrophilic proteins are not related to desiccation tolerance but instead to specific 

dehydration inducing genes. SIP18, which has been largely studied in our group, 

(Rodríguez-Porrata et al., 2012a) is the only one that shows an early transcriptional 

response during dehydration stress. Furthermore, the protein expression increases in 
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hyperosmotic stress, localized in the nucleus, and the SIP18 overexpressing strain 

enhances the viability in both laboratory and industrial commercial wine strains (López-

Martínez et al., 2013), apparently by acting as an antioxidant molecule and minimising 

the late apoptotic cells (Rodríguez-Porrata et al., 2012a). However, apart from Sip18p, 

only Stf2p of the other dehydration tolerant hydrophilin is involved in reducing the ROS 

cells while increase the viability after desiccation process (López-Martínez et al., 2012). 

Moreover, the viability due to STF2 overexpression is not related to the respiratory chain 

malfunction that correlates with other dehydration studies related to mitochondrial 

inheritance (Picazo et al., 2015). This result suggests that other mechanisms and 

molecules are involved in the dehydration role of Sip18p and Stf2p. Within this 

framework, the working hypothesis of this thesis was:  

Overexpression of hydrophilin proteins promote a molecular scenario in 

Saccharomyces cerevisiae that enhances desiccation tolerance. 

In order to validate this hypothesis the following objectives were attained: 

1. Characterization of STF2p hydrophilin role in overcoming the dehydration tolerance. 

We defined the relationship between overexpression of essential tolerant hydrophilin 

genes to desiccation and ROS damage after the stress imposition considering the 

hydrophilin artificial group to be protective molecules against oxidative damage. 

 

2. Validation of SIP18 role in desiccation tolerance in four wild and commercial wine 

industry strains overexpressing SIP18 hydrophilin. 

  

3. Identification of the specific yeast traits involved in dehydration stress tolerance 

using QTL (Quantitative Trait Locus) analysis across 96 segregates from three stable 

hybrid strains. It was analysed considering that other genes apart from SIP18 could 

be involved in desiccation tolerance. 

 

4. Analysis of the membrane proteomic profile of the overexpressed Sip18p strain in 

comparison to the wild type before cell dehydration and after rehydration in order to 

find other proteins involved in dehydration tolerance response.  

The results of this thesis could enhance the development of a robust yeast strain that 

satisfies the requirements of the food industries, and provides a better understanding of 
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desiccation-tolerance genetics for potential applications in plant biotechnology, bio-

ethanol technology and biomedicine with successful long-term storage of living cells for 

tissue engineering, cell transplantation and genetic technology. 

 

Outline of the thesis 

The STF2p hydrophilin from Saccharomyces cerevisiae is required for dehydration 

stress tolerance 

The yeast Saccharomyces cerevisiae is able to overcome cell dehydration; cell metabolic 

activity is arrested during this period but restarts after rehydration. The yeast genes 

encoding hydrophilin proteins were characterised to determine their roles in the 

dehydration-resistant phenotype, and STF2p was found to be a hydrophilin that is 

essential for survival after the desiccation-rehydration process. Deletion of STF2 

promotes the production of reactive oxygen species and apoptotic cell death during stress 

conditions, whereas the overexpression of STF2, whose gene product is localized in the 

cytoplasm, results in a reduction in ROS production upon oxidative stress as the result of 

the antioxidant capacity of the Stf2p protein. 

Results are reported and discussed in Chapter II 

 

Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell 

viability after desiccation stress 

In the last few decades spontaneous grape must fermentations have been replaced by 

inoculated fermentation with Saccharomyces cerevisiae strains as active dry yeast 

(ADY). Among the essential genes previously characterized to overcome the cell-drying/ 

rehydration process, six belong to the group of very hydrophilic proteins known as 

hydrophilins. Among them, only Sip18p has shown early transcriptional response during 

dehydration stress. In fact, the overexpression in S. cerevisiae of gene SIP18 increases 

cell viability after the dehydration process. The purpose of this study was to characterize 

dehydration stress tolerance of three wild and one commercial S. cerevisiae strains of 

wine origin. The four strains were submitted to transformation by insertion of the gene 

SIP18. Selected transformants were submitted to the cell-drying–rehydration process and 

yeast viability was evaluated by both viable cell count and flow cytometry. The 
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antioxidant capacity of Sip18p was illustrated by ROS accumulation reduction after H2O2 

attack. Growth data as cellular duplication times and lag times were calculated to estimate 

cell vitality after the cell rehydration process. The overexpressing SIP18 strains showed 

significantly longer time of lag phase despite less time needed to stop the leakage of 

intracellular compounds during the rehydration process. Subsequently, the transformants 

were tested in inoculated grape must fermentation at laboratory scale in comparison to 

untransformed strains. Chemical analyses of the resultant wines indicated that no 

significant change for the content of secondary compounds was detected. The obtained 

data showed that the transformation enhances the viability of ADY without affecting 

fermentation efficiency and metabolic behaviour. 

Results are reported and discussed in Chapter III 

 

ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces 

cerevisiae 

Recently, different dehydration-based technologies have been evaluated for the purpose 

of cell and tissue preservation. Although some early results have been promising, they 

have not satisfied the requirements for large-scale applications. The long experience of 

using quantitative trait loci (QTL) with the yeast Saccharomyces cerevisiae has proven 

to be a good model organism for studying the link between complex phenotypes and DNA 

variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits 

involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and 

sequenced in the Saccharomyces Genome Resequencing Project showed intermediate 

dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants 

from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis 

tolerance trait was found, suggesting that this trait is determined by multiple QTLs. 

Therefore, we carried out a QTL analysis to identify the determinants of this dehydration 

tolerance trait at the genomic level. Among the genes identified after reciprocal 

hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous 

studies. We report new phenotypes for these genes using a previously validated test. 

Finally, our data illustrates the power of this approach in the investigation of the complex 

cell dehydration phenotype. 

Results are reported and discussed in Chapter IV 
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SIP18 overexpression increases dehydration stress tolerance by modulating the 

membrane protein load 

We previously reported that overexpression of the gene encoding the yeast hydrophilin 

SIP18 in Saccharomyces cerevisiae increases dehydration stress tolerance by 100%. The 

lipoprotein membranes of the cell suffer a greater amount of damage compared with other 

cellular compartments during the dehydration and rehydration process. In the present 

study, we characterised the putative pleiotropic effects caused by the intracellular 

accumulation of Sip18p during stress, which enhances dehydration tolerance. Therefore, 

we evaluated the changes in the membrane protein profiles during the time points before 

dehydration and after rehydration in the BY4742, sip18 null mutant and SIP18-

overexpressing strains. Of the proteins identified after comparing the proteomic changes 

among the strains, the Gvp36p, Gdp1p, Ald4p, Asc1p, Pma1p, Hsp30p and Lsp1p 

proteins had not been referenced in previous studies of dehydration stress. We discuss the 

putative roles of these proteins during stress. Finally, our data illustrates the power of this 

approach for investigating the complex cell dehydration phenotype. 

Results are reported and discussed in Chapter V 
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ANHYDROBIOTES 

 

Introduction 

Defence mechanisms 

 

Introduction 

Desiccation tolerance, also referred to as anhydrobiosis, is the ability of an organism to 

withstand removal of its intracellular water content and then resume normal metabolism 

after rehydration (Crowe et al.,  1992). Desiccation-tolerant organisms, called 

anhydrobiots, are found across all three branches of life, including nematodes, rotifers, 

and tardigrades among animals, bryophytes among plants, and a number of bacteria, 

terrestrial microalgae, lichens, and yeast among microorganisms. Anhydrobiots are also 

classified according to the amount of water loss. While desiccation-sensitive 

anhydrobiots, which are almost all tested species, die if dried to 20% water content, 

desiccation-tolerant anhidrobiotes can survive drying to 10% water content. Desiccation-

tolerant organisms can survive in the dry state for a very long time, ranging from 1,100 

years in a seed of the sacred lotus Nelumbo nucifera (Shen-Miller et al., 1995), to 20-40 

years in mosses, liverworts and nematodes; and between 5 and 9 years in ptridophytes, 

rotifers and tardigrates (Alpert and Oliver, 2002; Jönsson and Guidetti, 2002). The 

recovery time also varies from a few minutes in some mosses, to about an hour in the 

larva of Polypedilum and about 1-2 days in most flowering plants (Alpert, 2000; 

Kikawada, 2005). Although anhydrobiots have similar physical characteristics such as 

length in animals which are no longer than 5 cm or flowering plants that grow up to about 

3 m tall, they do not share all the dehydration defence mechanisms and some of them 

belong to a specific kingdom (Alpert, 2006). 
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Defence mechanisms 

The structure and function of essential cell components are modified during the 

desiccation-rehydration process. Two major effects of desiccation are mechanical effects 

and macromolecule damage due to the stresses involved in desiccation, such as heat and 

osmotic stress, and oxidative damage. At least four mechanisms of desiccation tolerance 

have been found in common across desiccation-tolerant organisms, at least belonging to 

the same branch of life, which can reduce the two major effects of desiccation mention 

above. These four common mechanisms are: cell rigidity, accumulation of sugars, 

regulation of proteins and antioxidants, and the need to repair the damage accumulated 

while dry (Alpert, 2006). These strategies, which lead to desiccation tolerance, belong to 

mechanical stress or functional molecular mechanisms.  

Mechanical stress mechanisms are partly related to cell shrinkage. During the 

first step of drying, the cell volume decreases by 40% compared to physiological 

conditions (Dupont et al, 2011). Even though the cell volume decreases, the plasmatic 

membrane area is maintained due to the poor lateral compressibility of the membrane, 

thereby leading to an increased area-to-volume ratio in cells and finally to deformation 

(Beney et al., 1998). As a consequence of this process, molecules that do not interact with 

each other in their hydrated state interact (Eggers and Valentine, 2001), promoting 

structural modifications such as the denaturation and aggregation of proteins (Carpenter 

and Crowe, 1989) or leading to the coexistence of phases in a mixture of membrane 

phospholipids (Shechter, 2004). Rigid skeletons can prevent the macromolecule 

dysfunction caused by dehydration in animals, but any of desiccation-tolerant animals 

have skeletons. Plants show a greater ability than animals to combine tolerance and 

rigidity. Some plants replace large vacuoles with numerous small ones and fill them with 

non-aqueous compounds as the cells dry, or pull up rather than push up through files of 

dead cells in the xylem (Thomson, 1997; Farrant, 2000).  

Functional molecular mechanisms are the other defence activated by cells 

during dehydration-rehydration stress in combination with the mechanical mechanisms 

described above, in which some of them are activated in order to avoid structural damage. 

Progressive cell water loss increases the concentration of solutes in the medium due to 

water evaporation, while at the end of desiccation process the medium is transformed into 

a solid matrix increasing contact between the dried cells and the air, as well as molecular 

interactions. During this process, cytoplasmic hydric potential and the external potential 
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equilibrate very quickly, mainly by osmosis, but modify proteins and membranes 

(Gervais and Beney, 2001). Regardless of lipid composition, the immiscibility between 

the different structural phospholipid phases leads to the formation of domains with 

different fluidities in model membranes (Tokumasu et al,. 2003; Veatch and Keller, 

2003). This can lead to membrane reorganization, aggregation of membrane proteins 

(Billi et al., 2000), and changes in membrane permeability (Fernández Murga et al., 1999; 

Hays et al., 2001). A common mechanism for preserving the macromolecular structure 

and decreasing the contact between membrane lipids in animal, plant and microorganism 

desiccation-tolerant organisms is trehalose (Billi et al., 2000). It reduces the mobility and 

reactivity of molecules during desiccation (Carpenter and Crowe, 1989; Levine and 

Slade, 1991; Allison et al., 1999; Buitink and Leprince, 2004). Trehalose also stabilizes 

both membranes and proteins (Golovina et al., 2010) and avoids crystallization effects 

due to the formation of glasses in the last step of desiccation. The formation of stable 

glasses during drying is due to its high glass transition temperature (Levine and Slade, 

1991). Because of the high viscosity of glasses, this glassy state may maintain 

biomolecules in a form that allows them to return to their native structure and therefore 

be totally functional following rehydration (Buitink and Leprince, 2004). Furthermore, 

glasses considerably reduce the rates of chemical reactions that lead to the loss of viability 

of dry cells and deterioration in storage of dehydrated commercial products (Hoekstra et 

al., 2001; Sun and Leopold, 1997). Indeed, trehalose acts as an antioxidant since it is 

capable of reducing oxidant-induced modifications of proteins during exposure of yeast 

cells to H2O2 (Benaroudj et al, 2001).  

S. cerevisiae can survive desiccation when drying in a stationary phase, in which cells 

synthesize large amounts of trehalose compared to exponential phase cells (Calahan et 

al., 2011; Welch et al., 2013; Dupont et al., 2014; Beker and Rapoport, 1987). Many 

industries make use of special treatments, such as heat shock or a rise in osmotic pressure 

(Eleutherio et al., 1997) in order to increase the trehalose content of yeast, prior to 

subjecting them to dehydration. Dehydration tolerance in mammalian cells, including 

human cells, also increases when they are treated with trehalose (Wolkers et al., 2001; 

Wolkers et al., 2002; Crowe et al., 2003; Gordon et al., 2001; Matsuo, 2001; Satpathy et 

al., 2004). Genetic engineering has been used to synthesize trehalose in a human primary 

fibroblast using a recombinant vector with desiccation-tolerant bacteria genes. However, 

these methods have not worked on mouse cells, whole plants or metazoans. In fact, some 
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rotifers tolerate dehydration without accumulating sugar trehalose, although this sugar 

enhances desiccation in a large number of anhydrobiots. As a result, even if trehalose 

plays a major role in the dehydration resistance of many desiccation-tolerant organisms, 

it does not appear to be the only protective mechanism in anhydrobiosis, and other 

molecular mechanisms are involved in the prevention of cell death during desiccation. 

Among these, some proteins appear to be involved in desiccation tolerance. Hydrophilic 

proteins (late embryogenesis abundant proteins, LEA) and heat shock proteins (HSP) 

have often been reported in anhydrobiots, increasing viability and/or reducing cell 

damage (Collins and Clegg, 2004; López-Martínez et al., 2012; Garay-Arroyo, 2000). 

Some LEA proteins, which are found in animals, plants and microorganisms during water 

limitation, act as antioxidants, reducing oxidative damage after dehydration (Pereira et 

al., 2003; Gechev et al., 2012). In animals, LEA proteins may act as molecular chaperones 

for DNA or counter physical stress during desiccation (Wise, 2003). In plants they may 

increase the transition temperature and hydrogen bonding strength of sucrose glasses 

(Wolkers et al., 2001), helping to inhibit membrane fusion, protein denaturation, and the 

effects of free radicals (Oliver et al., 2001). However, desiccation tolerance is not induced 

in S. cerevisiae by the overexpression of all the hydrophilin proteins described. As a 

result, not all hydrophilin-like proteins belonging to this artificial (non-functional) group 

enhance desiccation tolerance, even in presence of trehalose (López-Martínez et al., 

2012). This leads us to hypothesize that several discovered and as yet undescribed 

mechanisms could be involved, and probably induce cross-protection against stresses in 

the complex desiccation process.  
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GENERAL STRESS RESPONSE 

MECHANISMS IN 

SACCHAROMYCES CEREVISIAE 

 

Introduction 

2.1 Heat shock stress 

2.2 Osmotic stress 

2.3 Oxidative stress 

 

Introduction 

In nature, as well as under laboratory conditions and in industrial processes, yeast is 

subjected to changing environmental conditions, such as desiccation, to which it must 

adapt in order to survive. Environmental stresses include osmotic stress, ionic stress, 

temperature, pH, oxidative stress, starvation and chemical solvents. In general, cells are 

susceptible to a stress imposition in the exponential phase, whereas in the stationary phase 

cells are able to overcome stress impositions. To date, comprehensive studies on yeast 

environmental stress responses at stationary phase have been conducted to understand the 

molecules and mechanisms involved in dehydration, using genomic transcriptional 

analysis and more recently proteomic techniques such as two-dimensional 

electrophoresis, mass spectrometry, and chromatography-based proteomics. According 

to previous studies, two major pathways regulate the general stress response in S. 

cerevisiae: stress proteins, known as HSP and stress response elements (STRE). HSP 

characterization leads to the description of several pathways of signal transduction and 

transcription factors involved in heat, nutrient limitations, sporulation, nitrogen 

limitation, hyperosmolarity and oxidative stress among others (Burnie et al., 2006).  

In addition to HSP genes, another stress response element is STRE, a cis-regulatory 

element with a sequence that is common in the promoter region of a large amount of 
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genes induced by stress that enable a cell tolerant state to be acquired. Among these genes, 

we found those that codified for transporters, proteases or proteins that protect cells 

against different types of stress such as nitrogen starvation, carbon starvation, osmotic, 

oxidative, acidic pH, ethanol and heat stress conditions. However, some genes contain 

the STRE element in the promoter region and it is not functional.  

Apart from the general stress response against several conditions, some stresses are also 

cross-protected by pathways that are activated by particular stresses. Two examples are 

oxidative damage and hyperosmolarity, which can be reduced or prevented during stress 

imposition by the combination of both specific and general stress response mechanism. 

Dehydration and rehydration stress includes several stresses. Of these, temperature, 

osmotic and oxidative stresses are found the most representative in desiccation tolerance. 

Cells under each particular condition can induce cross-protection between each other and 

against other types of stresses, suggesting that a general stress response against osmotic, 

temperature or oxidative damage may be involved in desiccation tolerance. In order to 

elucidate which molecules and molecular mechanisms could participate in dehydration 

tolerance, we will deal specifically with each stress belonging to desiccation (heat, 

osmotic and oxidative stress) in the following section. 
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2.1. HEAT SHOCK STRESS 

 

Introduction 

Heat shock response pathways 

 

Introduction 

Cells grow optimally within a relatively narrow temperature range but tolerate moderate 

deviations - some of which impinge upon cell structure and function – by means of rapid 

physiological adaptations. Heat shock could be induced directly by temperature upshift 

or indirectely as a consequence of other stresses such as dehydration. A heat treatment 

differs from thermal drying mainly in that the material to be dried experiences a decrease 

in water content, leading to osmotic and oxidative stresses among other factors, which 

are detrimental to dehydration tolerance. Desiccation could take place by freezing-drying 

(Santivarangkna et al., 2007; Desobry et al., 1997), convective drying (spray drying, 

fluidized bed, air drying in an oven, tunnel drying, spouted-bed drying or vacuum) 

(Elizondo and Labuza, 1974; Corcoran et al., 2004; Strasser et al., 2009; Di Salvo et al., 

2007; Dimitrellou et al., 2008; Alpas et al., 1996; Oliveira et al., 2007a) or conductive 

drying (vacuum, Berk, 2009). In a convective drying process, an air stream or gas such 

as nitrogen is passed around or through the material being dried and the moisture content 

inside the material is removed by evaporation and diffusion. In our group, desiccation is 

carried out by streaming air at 28ºC. The temperature increase during air drying is 

influenced by factors including the initial water content of the material containing yeast, 

the exposure time, the water removal rate, the rate of temperature increase and the 

temperature of the drying air, among other important factors.  

Even though starving cells are significantly more tolerant of dehydration and less 

sensitive to heat shock than cells in exponential phase, dehydration significantly damages 

the membranes. The coexistence of different phases in a mixture of phospholipids 

(Shechter, 2004) leads to an increase in the membrane gel to fluid phase transition 
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temperature (TM), increasing not only the damage to the cell wall and membrane, but 

also the other cellular compartments and molecules such as sphingolipids. These lipids 

are involved in the formation of P bodies during autophagy in the oxidative stress 

response (Cowart et al., 2010), and are required for signalling, activating the transcription 

not only of the TPS2 gene which synthetizes trehalose (Figure 1); but also STRE that 

reports on the activity of the Msn2/4p general stress pathway (Jenkins et al., 1997; 

Dickson and Lester, 2002). Preserving membranes during dehydration is thus an 

important feature of dehydration tolerance. 

 

Heat shock response pathways 

Three response pathways are induced by heat shock in order to overcome the stress: the 

CWI (cell wall integrity), the ESR (environmental stress response), and the HSR (heat 

shock response).  

 

Figure 1. Physiological effects of heat shock. Three response pathways are shown to be induced by heat 

shock: the CWI (cell wall integrity) pathway, the ESR (environmental stress response), and the HSR (heat 

shock response) (Modified from Verghese et al., 2012). 

The CWI pathway is induced by transient heat shock or growth at 37ºC in response to 

perturbations in the cell ultrastructure. The mechanism is unknown but requires at least 

one member of the putative sensors Sho1p (required for the activation of the HOG 

pathway in hyperosmolarity stress, Winkler et al., 2002), Mid2p and Wsc1p to Wsc4p 

which lead the activation of Slt2 (also present in osmotic stress response pathway, and a 

“client” of Hsp90p) (Figure 1). CWI pathway appears to be cross-talked to ESR, which 
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is mainly focused on Msn2p/Msn4p. However, one of the most powerful adaptations to 

increased temperature is the HSR which is primarily governed by the action of Hsf1p 

(Figure 1). 

As a consequence of heat shock pathway activation, gene expression programs become 

altered. They include HSPs, metabolic genes, and genes of unknown function (Gasch and 

Werner-Washburne, 2002). Some regulated genes appear not only with heat shock, but 

also in the osmotic and oxidative stress response pathways, suggesting a crosstalk 

between these three responses in dehydration cell survival. Among transcription factors, 

Hsf1p and Msn2/4p appear to be the most important regulators in heat shock activating 

heat shock elements (HSE) and STREE (Figure 2). 

Array studies examining the contributions of each factor (Msn2/4p and Hsf1p) revealed 

a significant overlap in target gene expression. The Hsf1p regulon was found to comprise 

approximately 165 genes (Hahn et al., 2004). Hsf1p is essential for cell viability at all 

temperatures, and it is constitutively bound on promoter of HSP genes as a trimer in the 

absence of stress. However, after a shift between 15ºC, 20ºC and 30ºC, Hsf1p is rapidly 

phosphorylated coincident with the transient induction of HSP genes in order to avoid 

destabilisation of cellular proteins that could cause misfolding (Ellis, 1987), a 

consequence of the desiccation process. A large number of misfolding proteins is known 

to be able to inhibit the ubiquitin-dependent proteasome system (UPS) or lead to the 

formation of toxic protein aggregates that could cause cell death. However, little to no 

protein misfolding occurs at temperatures between 36ºC and 37ºC, suggesting that major 

protein misfolding aggregation in our dehydration system might be due to oxidative stress 

and not mainly due to heat shock. Under oxidative stress, Yap1p transcription factor 

selectively induces Hsf1p-dependent expression leading to induction of HSP to protect 

nascent or misfolded proteins (Ahn, 2003; Lee et al., 2000; Liu and Thiele, 1996). Thus, 

Hsf1p might be activated during dehydration probably by oxidative stress, rather than 

heat stress, leading to induction of HSPs. 
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Figure 2. Hsf1p and Msn2/4p, primary modulators of the heat shock response. Dashed lines represent 

postulated interactions of the Yak1p kinase in the regulation of both Msn2/4p and Hsf1p. Red lines indicate 

regulatory interactions of protein kinase A. P, phosphorylation; STRE, stress response element; HSE, heat 

shock element (Verghese et al., 2012). 

The yeast genome contains more than 60 chaperones or HSP. Among them, Hsp90, 

Hsp70, Hsp104 and the small Hsp (sHsp) are the main chaperones activated by Hsf1p in 

conjunction with co-chaperone proteins. These HSPs are named according to their 

apparent molecular masses. Hsp70 are found in ER, mitochondria and cytoplasm and 

interacts with almost any partially unfolded protein it encounters. They protect nascent 

polypeptides as they emerge from the ribosome, assisting in targeting and translocation, 

and play important roles in either refolding damaged proteins or shepherding their 

ubiquitylation and degradation.  

Unlike the Hsp70 chaperon system, the Hsp90 chaperone is much more selective and 

interacts with a list of protein “clients” which rely on Hsp90 for the final steps of 
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maturation after initial interactions with Hsp70. Both chaperone machines effectively link 

in an “assembly line” of protein maturation. These two HSP are ATP binding protein with 

a chaperone cycle governed by nucleotide cycling, and a number of co-chaperones 

regulating the steps in this cycle.  

Unlike most chaperones, Hsp104 are capable of extracting misfolded proteins from 

aggregates, followed by translocation through the central channel. However, Hsp104 

cannot refold proteins alone and relies on Hsp70 to fully rescue substrates and return them 

to the appropriate native conformation. Moreover, Hsp104 is one of the few yeast protein 

chaperones absolutely required for thermotolerance (Sanchez and Lindquist, 1990).  

The last main group of chaperones induced by heat shock consists of sHSP which 

represents a diverse family of proteins with passive activity that requires the action of the 

ATP-dependent Hsp70 and Hsp104 chaperones. Instead of preventing the aggregation of 

damaged proteins, sHSPs appear to co-aggregate with their substrates in a mixed 

oligomeric agglomeration that can be resolubilized with the help of the additional 

chaperones (Haslbeck et al., 2005). Two major sHSPs have been characterized in yeast: 

Hsp26 and Hsp42. Another highly abundant sHSP is Hsp12 which partly associates with 

cellular membranes, increasing membrane stability. Cells lacking Hsp12p are 

hypersensitive to severe heat shock and osmotic stress (Welker et al., 2010). Moreover, 

Hsp12p belongs to the artificial group of hydrophilin proteins involved in desiccation 

tolerance in anhydrobiote organisms (Garay-Arroyo, 2000).  

After the termination of the activation of the heat shock response that leads to the 

transcription of HSPs, Hsf1p remains hyperphosphorylated until the replacement of the 

serine domain with alanine (Sorger, 1990), which causes a completely derepression of 

Hsf1p activity and returns it to the inactive state in the attenuation phase. Two main 

classes of HSP are also involved in repression of the transcriptional factor: Hsp70 and 

Hsp90. Moreover, cAMP-protein kinase A (PKA) indirectly inhibits Hsf1 activity 

(Ferguson, 2004). 

In addition to the heat shock gene transcription mediated by Hsf1p, a parallel pathway in 

S. cerevisiae senses and responds to a remarkable variety of stresses besides heat shock 

such as oxidative stress. These are the transcription factors Msn2p and Msn4p involved 

in ESR pathway, which mediate STRE-mediated gene expression (Schmitt and McEntee, 

1996). ESR contains between 300 and 600 genes up- or downregulated depending on the 
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type of stress. Genes related to DNA damage, heat shock, oxidative stress and osmostress 

belong to ESR. Most of the genes upregulated by ESR are involved in carbohydrate 

metabolism, protein metabolism, intracellular signalling, and defence against ROS, while 

the downregulated genes include protein synthesis and growth-related processes (Gasch 

et al., 2000; Causton et al., 2001; Capaldi et al., 2008; Berry and Gasch, 2008; López-

Martínez et al., 2012; Martínez-Montañés et al., 2010). The multistress response 

mediated by Msn2/4p is generally transient, and the intensity and duration of the response 

are dependent on the strength of the stresses (Gasch and Werner-Washburne, 2002). Of 

the two genes, MSN2 seems to play a more pronounced role in heat shock, as the 

overexpression of MSN4 can only partially suppress phenotypes of an msn2 mutant 

under stress imposition (Schmitt and McEntee, 1996).  

Two nutrient-sensing pathways have been described as playing important regulatory roles 

in controlling Msn2/4p: the cAMp-protein kinase A pathway and the TOR pathway 

(Figure 2). In the absence of PKA, Msn2p is located in the nucleus while Msn4p oscillates 

between cytoplasm and nucleus (Jacquet et al., 2003). Under stress circumstances such 

as temperature upshift, dehydration by ethanol, sorbate or osmotic stress (Görner et al., 

1998), PKA activity is downregulated by Pp1p or Bcy1p. At this point PKA activates 

Yak1p (involved in oxidative and heat stress) which in turns phosphorylates Msn2/4p, 

which remain in nucleus. Accumulation of the two factors consequently leads to an 

induction of STRE-mediated gene expression (Malcher et al., 2011). In contrast to this 

scenario, under no stress, PKA levels increase and MSN2 is exported to the cytoplasm 

compartment by MSN5 (Jacquet et al., 2003).  

The TOR pathway also impacts the activities of Msn2/4p controlling different cellular 

responses (Thomas and Hall, 1997). Unlike the cAMP-PKA pathway, which appears to 

primarily regulate nuclear exports, TOR prevents the nuclear import of Msn2p and Msn4p 

(Beck and Hall, 1999) by stimulating the association of Msn2/4p with the cytoplasmic 

protein Bmh2p (Figure 2).  

After synthesis of transcripts in the nucleus by Msn2/4p, mRNA is accumulated in the 

nucleus (Saavedra et al., 1996) and therefore efficiently exported. The mRNA 

sequestered in response to stress appears to be concentrated in P bodies or stress granules 

(SGs). 
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2.1. OSMOTIC STRESS 

 

Introduction 

HOG pathway 

 

Introduction 

Osmotic stress is caused by changes in the concentration of dissolved molecules in the 

medium surrounding a cell. Hyperosmolarity and hypo-osmolarity are different forms of 

osmotic stress that have different control mechanisms, but both involve an alteration in 

the intracellular water content. While an increase in external osmolarity (hyperosmotic 

stress) will lead to an outflow of water fromthea cell, a decrease in external osmolarity 

(hypo-osmotic stress) will cause a water inflow (Wood, 1999). Hyperosmotic stress is 

one of the stresses caused by dehydration which induces the intracellular protective 

mechanisms involved in osmoregulation. We therefore focus on the molecular response 

of S. cerevisiae in a hyperosmotic condition for further discussion.  

The osmoregulation caused by hyperosmotic stress includes transcriptional and 

translational responses, as well as accumulation of osmolites in order to overcome the 

stress imposed. These adaptive responses are mostly governed by the high osmolarity 

glycerol (HOG) signalling pathway, of which the core is the Hog1p MAP kinase (MAPK) 

cascade. However, osmoregulation is not only performed by the HOG pathway and it 

induces many genes that are considered to be part of general stress responses such as 

ESR. Among general stress responses oxidation and detoxification and the stabilization 

of cellular proteins and structures are included (Mager and Varela, 1993; Yancey, 2005), 

thus creating a cross-protection during desiccation imposition. As a result, when cells are 

subjected to a mild stress, STRE mediated responses are induced even in the absence of 

Hog1p (Berry and Gasch, 2008). However, this protection is not sufficient for cells 

lacking Hog1p to survive higher levels of osmolarity. In fact, approximately 80% of the 

genes that are induced upon osmostress depend on Hog1p MAPK for full induction 
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(Posas et al., 2000; Rep et al., 2000; O’Rourke, 2003; Capaldi et al., 2008). Taking into 

account all these considerations, we will therefore proceed with the explanation of the 

dynamics of the HOG pathway and downstream Hog1p adaptive responses.  

 

HOG pathway 

Adaptation to hyperosmolarity through the HOG pathway includes two phases: sensing 

osmotic changes and activating appropriate cellular responses (Figure 3).  

 

Figure 3. Osmo-adaptive responses in yeast. In response to an increase in extracellular osmolarity, the 

Hog1p MAPK is activated, which leads to the induction of cytoplasmic and nuclear adaptive responses. 

Cytoplasmic responses include the control of ionic fluxes and glycerol transport, metabolic enzymes, and 

protein translation. Nuclear responses include the modulation of cell-cycle progression and the control of 

gene expression (Saito and Posas, 2012). 

During the first period of hyperosmotic shock, it causes disassembly of the actin 

cytoskeleton, water loss and consequent cell shrinkage. These first dehydration 

consequences are followed by a stimulation of the HOG pathway, which induces 

transcriptional and translational responses. As a consequence, osmolite glycerol starts to 

accumulate among the other osmoprotectants, such as trehalose, induced by some other 

minor pathways. At this point a feedback on HOG pathway takes place, as well as 

transcriptional responses. Reassembly of the actin cytoskeleton occurs in this stage and 

on condition of osmotic balance is re-established (Brewster and Gustin, 1994). By the end 
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of the osmoregulation process, glycerol accumulation reaches its maximum levels and the 

final cell volume is restored, which leads to cell proliferation (Figure 4).  

 

Figure 4. Time course of different responses to hyperosmotic shock (adapted from Tamás and Hohmann, 

2003). 

The HOG pathway is activated by extracellular stimuli that subsequently initiates a 

multistep phosphorelay and interactive system bound to MAP kinase cascades. The HOG 

pathway core, Hog1p MAPK, is activated by Pbs2p, a MAPK kinase (MAPKK), by dual 

phosphorylation of the conserved Thr and Tyr residues. The MAPKK is similarly 

activated, but this could be carried out by a different MAPKK kinase (MAPKKK) which 

comprises two functionally redundant signal branches: Sln1p and Sho1p (Figure 5). Sln1p 

branch is well understood, while the activation of the Sho1p branch is still only vaguely 

defined.  

Sln1p governs two distinct signalling pathways: the Sln1p-Ypd1p-Ssk1p multistep 

phophorelay, which regulates hyper-osmolarity responses, and the Sln1p-Ypd1p-Skn7p 

multistep phophorelay, which makes a contribution to hypo-osmolarity responses. 

Moreover, Skn7p is involved in oxidative and heat shock response through Hf1p. 

Regarding the Sln1-Ypd1-Ssk1 signalling pathway, the first sensor is thought to respond 

to changes in the plasma membrane due to osmotic stress (Reiser et al., 2003; Hayashi 

and Maeda, 2006; Panadero et al., 2006). Under normal osmotic conditions Sln1p remains 
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active and it interacts with Ypd1p which constitutively phosphorylates Ssk1p. (Maeda et 

al., 1994; Fassler and West, 2010). However, under hyperosmotic conditions, 

unphosphorylated Ssk1-OH is accumulated, and it binds and activates Ssk2/Ssk22p 

which exclusively phosphorylates Pbs2p MAPKK, and thereby activates Hog1p MAPK 

(Maeda et al., 1994; Reiser et al., 2000).  

 

Figure 5. A schematic diagram of the yeast HOG pathway. The protein names separated by a thrash (/) are 

functionally redundant. Proteins that are specific to the Sln1p branch are colored green, those that are 

specific to the Sho1p branch are colored blue, and those that are common are colored black. The black 

horizontal bar represents the plasma membrane. Arrows indicate activation, whereas the T-shaped bars 

represent inhibition (Saito and Posas, 2012). 

Unlike Sln1p branch, signalling response in the Sho1p branch is initiated by the putative 

osmosensors Msb2p and Hkr1p, which are highly glycosylated single-pass 

transmembrane proteins. Through an as yet undefined mechanism, this response seems to 

lead the activation not only of the Ste20p kinase but also the Cla4p kinase, which partially 

compensates for the function of the Ste20p (Tatebayashi et al., 2006), by inducing their 

association with the membrane-bound small protein Cdc42p (Lamson et al., 2002). 

Activated Ste20/Cla4p then phosphorylates and activates the Ste11p MAPKKK (Raitt et 

al., 2000; Kikawada, 2005; Drogen et al., 2000) which is dependent on Ste50p 

(Ramezani-Rad, 2003) recruited to the membrane by the anchor protein Opy2 (Wu et al., 

2006; Yamamoto et al., 2010). Ste11p, as well as other signalling elements, can be 

activated by several MAPK cascades involved in the mating response, filamentous and 

invasive growth (FIG) besides hyperosmolarity. In order to activate Ste11p by HOG 

pathway, which in turns phosphorilates Pbs2p, crosstalk from one MAK pathway to 
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another can be prevented by a number of mechanisms, including negative regulation and 

cross-inhibition between the same signalling element that activates strongly in the HOG 

pathway under osmotic stress conditions but weakly in the FIG or mating pathway. 

However, the mechanism of cross-inhibition remains obscure.  

After the activation of Hog1p by either the Sln1p branch or the Sho1p branch under 

hyperosmosis or other non-osmotic stresses, including cold (Hayashi and Maeda, 2006; 

Panadero et al., 2006), heat (Winkler et al., 2002), and low pH (Kapteyn et al., 2001), 

Hog1p is rapidly accumulated in the nucleus in order to activate a program for cell 

adaptation that includes long- and short-term responses. Long-term adaptation involves 

transcriptional and translational regulation. Hog1p can induce activation of a subset of 

osmoresponsive genes by phosphorylation of promoter-specific transcription factors and 

binding to RNA Pol II (Alepuz et al., 2003) concomitantly with the fact that Hog1p is 

present in the coding regions of these genes and it travels with elongating RNA Pol II 

(Pascual-Ahuir et al., 2006; Pokholok et al., 2006; Proft et al., 2006). In addition to 

phosphorylating components of the transcriptional and cell-cycle machineries, the Hog1p 

MAPK also phosphorylates other cytoplasmic and nuclear proteins that have been found 

in a recent phospho-proteomic study (Soufi et al., 2009). Short-term adaptation is 

accomplished by the accumulation of compatible solutes, also known as osmolites. 

Glycerol seems to be the most important osmolyte for the growth of S. cerevisiae in the 

presence of high osmolarity, although trehalose, amino acids, and ions contribute 

differently to adaptation to osmostress (Hohmann et al., 2007).  

The production and accumulation of glycerol maintains the water balance and restablishes 

the volume and the turgor of the cells (Blomberg and Adler, 1989; Hohmann et al., 2007; 

Westfall et al., 2008; de Nadal et al., 2011). Glycerol accumulates by several 

mechanisms: GPD1 expression via the Hog1p pathway, Fps1p mediated channel and by 

metabolic adjustments. The first takes at least 15 minutes to achieve the maximum 

glycerol levels through the induction of Gpd1p, Gpp2p and other genes involved in 

downregulation of the Hog1p pathway (Hirayarna et al., 1995; Hohmann, 2002). 

Meanwhile, specific aquaporin transmembrane channel Fps1p mediates the rapid import 

and export of glycerol. Fps1p closes apparently independently of Hog1p in response to 

osmostress (Tamás et al., 1999). Nevertheless, Fps1p is regulated by Rgc2p which is 

partially controlled by the Hog1p MAPK. Finally, glycerol accumulation causes 

metabolic adjustments and cells must redirect carbon resources toward the enhanced 
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production of glycerol, leading to significant modulation of central carbon metabolism 

during osmo-adaptation (Klipp et al., 2005; Mollapour and Piper, 2007; Westfall et al., 

2008; Beese et al., 2009; Bouwman et al., 2011; Dihazi et al., 2004).  

As adaptation proceeds, and osmotic balance is re-established, Hog1p activity falls to 

near basal levels, and it is exported back to the cytoplasm under conditions of adaptation 

to high osmolarity or after returning to an iso-osmotic environment. Finally, it is still 

necessary to inactivate the kinases by dephosphorylation to bring the system to a 

prestimulation state. In order to achieve this state, the two activating phosphorylation sites 

in Hog1p are dephosphorylated by different enzymes, of which Ptc1p phosphatase is the 

most important (Warmka et al., 2001; Saito and Tatebayashi, 2004; Martín et al., 2005). 

Another negative feedback mechanism of Hog1p is focused on the Ste50-Opy2p 

complex. Phosphorylation of Ste50p by Hog1p reduces the affinity for the membrane 

anchor Opy2p, and leads to deactivation of the HOG pathway.  
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2.3. OXIDATIVE STRESS 

 

Introduction 

Sources of oxidative stress 

Intracellular degradation of oxidized biomolecules 

Transcriptional regulation of gene expression 

Antioxidant defences 

Translational regulation of gene expression and metabolic reconfiguration 

Late Embryogenesis Proteins 

Yeast hydrophilin proteins 

 

Introduction 

All organisms exposed to radical-generating compounds or normal aerobic metabolism 

accumulate reactive oxygen species (ROS) (Halliwell, 2006). ROS are continuously 

produced and eliminated and their concentration is therefore a dynamic parameter. When 

the balance between ROS production and elimination is disturbed, cells accumulate ROS, 

leading to the state of oxidative stress which can either activate stress responses for cell 

survival or program cell death (PCD) (Figure 6). Briefly, stress signals relayed by ROS 

themselves (such as H2O2) can activate transcription factors which upregulate the 

expression of genes encoding enzymatic (such as catalases) and non-enzymatic 

antioxidants (such as GSH). These systems will be explained below. These response 

mechanisms, together with the targeted removal of small, oxidized proteins by the 

ubiquitin-dependent proteasome system (UPS), help to ensure the survival of cells. 
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Additionally, cells can activate cytoprotective autophagic pathways that remove 

irreparably oxidized macromolecules or dysfunctional organelles, such as mitochondria. 

However, an abnormally high degree of autophagy might also mediate PCD. Finally, 

exposure of cells to severe oxidative insults can elicit lethal response pathways such as 

apoptosis, necrosis, and possibly other forms of PCD which have yet to be discovered 

(Farrugia and Balzan, 2012).  

Then, PCD is activated under severe oxidative insults leading cell death, which can 

proceed via apoptosis, necrosis or autophagy depending on the physiological state of the 

cells and the nature of the oxidative insult. We will focus on each PCD response in the 

following section. 

 

 

Figure 6 Cellular responses to oxidative stress in S. cerevisiae. Oxidative stress, induced by the accumulation of ROS, can elicit a 

range of stress responses in budding yeast cells, that either result in cell survival (shown in green) or cell death (shown in red). 

Additionally, cells can activate cytoprotective autophagic pathways (bordered in yellow) (Farrugia and Balzan, 2012). 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 



Chapter I 

36 
 

Apoptosis, which is typically induced by exposure to low doses of oxidants such 

as H2O2 (Madeo et al., 1999), can be detected by morphological hallmarks such as 

phosphatidylserine externalization, chromatin condensation and DNA fragmentation, 

among others (Rodríguez-Porrata et al., 2012b) (Figure 6 and 7).  

 

Figure 7 Overview of methods to study apoptotic hallmarks in yeast S. cerevisiae (Muñóz et al., 2012). 

Despite morphological hallmarks, the most compelling evidence of apoptosis in yeast is 

derived from the discovery of several apoptotic regulators. Yeast cell death induced by 

ROS-associated stress stimuli can proceed via either caspase-dependent apoptosis or 

caspase-independent apoptosis (Madeo et al., 2009). Accumulation of ROS by salt, heat 
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or hyperosmotic stress leads to a caspase-mediated apoptotic phenotype attributed to the 

yeast caspase protein 1 (Yca1p) with the participation of other caspase-like proteases 

(Wilkinson and Ramsdale, 2011). One such protein is Esp1p, which induces disruption 

of the mitochondrial membrane potential and cytochrome c release, followed by apoptosis 

(Reyes et al., 2008). Another yeast protein associated with caspase-like activity is Kex1p, 

which mediates apoptotic cell death by defective N-glycosylation, acetic acid and 

chronological aging (Hauptmann and Lehle, 2008). Apoptotic cell death in yeast caused 

by ROS-associated stress stimuli can also take place with no need for Yca1p activity. 

Caspase-independent apoptosis requires functional mitochondria because it is the source 

of important yeast apoptotic regulators capable of operating independently of Yca1p. 

Among the regulators, Aif1p and Nuc1p (Wissing, 2004; Büttner et al., 2007) are 

translocated from the mitochondrion to the nucleus, in response to oxidative pro-apoptotic 

stimuli such as H2O2, resulting in a caspase-independent apoptotic phenotype. 

Additionally, the yeast nucleus itself contains the Yca1p-independent death regulator, 

Nma111p, which in response to H2O2, starts to aggregate in the nucleus and induces yeast 

cell apoptosis (Fahrenkrog et al., 2004).  

Necrosis can also occur in response to oxidative stress (Madeo et al., 1999) such 

as exposure to H2O2, acetic acid and heavy metals (Madeo et al., 1999; Ludovico et al., 

2001; Liang and Zhou, 2007) (Figure 6). Necrosis is characterized by bioenergetics 

failure and morphological features such as random DNA fragmentation, an increase in 

cell volume and loss of cell plasma membrane integrity and subsequent leakage of 

intracellular contents (Zong and Thompson, 2006). As a result, necrosis can be detected 

by specific hallmarks such as rupture of the plasma membrane, disintegration of 

subcellular structures, or activation of cathepsins (Wloch-Salamon and Bem, 2013). 

Necrosis was long dismissed as an accidental form of cell death (Galluzzi et al., 2011) 

which generally occurs in response to extreme environmental stresses (Madeo et al., 

1999). However, this paradigm has changed, since necrotic cell death is regulated by 

factors such as signalling and catabolic proteins (Baines, 2010) as well as the heat shock 

protein Hsp90 (Dudgeon et al., 2008). Peroxisomes, which generate ROS, can also act 

as key regulators of necrosis in yeast through important proteins such as Pex6p 

(Jungwirth et al., 2008) and Pmt20p (Bener Aksam et al., 2008). Another prominent 

regulator of necrosis in yeast, which also participates in caspase-independent apoptosis 
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system, is Nuc1p. Moreover, Pep4p is also a common regulator in both types of PCD in 

chronologically aging yeast cells (Carmona-Gutiérrez et al., 2011).  

Autophagy might also act as a mediator of cell death when it occurs at high levels 

due to ROS accumulation (Pattingre et al., 2005; Kissová et al., 2004) (Figure 6). There 

is a complex interplay between autophagy and cell death - two distinct stress responses 

which depending on the circumstances of the cells, can either compete against each other 

or cooperate in a manner which is probably at least partially regulated by the ROS-

dependent mitophagic turnover of mitochondria (Carmona-Gutierrez et al., 2010). 

Various disease processes, including cancer, neurological diseases and aging have been 

shown to involve oxidative damage (Hansen et al., 2006) causing cell death or cell 

survival due to positive stress response activation. In fermented food industries, such as 

baking and brewing, S. cerevisiae is exposed to oxidative stresses during processing, 

transportation and storage (especially in the dry state). Oxidation damage can ruin the 

industrial end product due to lipid peroxidation, protein oxidation or genetic damage 

(Richards et al., 2002). Appropriate activation of molecular mechanisms against death 

could partially prevent these dehydration consequences. For this reason, we will now 

focus on the ROS sources and the stress response for cell survival during induced 

oxidative stresses, which could elucidate the molecular mechanisms and cell components 

involved in dehydration tolerance. 

 

Sources of oxidative stress 

Yeast cells can become exposed to ROS production after exposure to numerous 

exogenous agents including xenobiotics, carcinogens and ionizing radiations. However, 

the main source of ROS is provided by leakage of the electrons in the respiratory chain 

used to produce ATP and water from oxygen consumption. All these sources of oxidative 

stress generate different forms of ROS: free radicals such as superoxide anion (O2
-) and 

hydroxyl radical (•HO), non-radical reactive species such as hydrogen peroxide (H2O2) 

and singlet oxygen (Figure 8). Other less studied reactive species can enhance oxidative 

stress, such as reactive nitrogen species (RNS) and their derivatives (Li and Moore, 2007).  
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Figure 8 Oxidative stress. Different sources of oxidative stress stress can damage a wide variety of cellular 

components resulting in a lipid peroxidation, protein oxidation, and genetic damage through the 

modification of DNA (Morano et al., 2011). 

Of all the ROS sources, the most widely used as a model of oxidative stress is H2O2. This 

non-radical reactive species plays a role as a signalling molecule in the regulation of many 

biological processes (Veal et al., 2007). However, its cellular production from the 

superoxide anion precursor (O2
-), the major ROS product from electron leakage, increases 

oxidative damage, and it must therefore be removed. Otherwise, H2O2 leads to the 

formation of highly reactive hydroxyl radicals (•HO) from the Fenton and Haber-Weis 

reactions (Halliwell, 2006) (Figure 9).  

 

Figure 9 ROS and other radicals generated in cells. Intermediates are in red and antioxidant enzymes in 

green (Temple et al., 2005) 
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•HO can also be generated by free redox active metals such as iron or copper via the 

Fenton reaction by oxidation of Fe2+, or via Haber-Weiss by reduction of Fe3+ (Figure 9) 

(Liochev and Fridovich, 1999; Freitas et al., 2003). Apart from H2O2 and free redox active 

metals, other complexes are frequently used to induce oxidative stress, such as thiol-

reactive compounds. These include indirect oxidative stress inducers by binding to and 

depleting thiol groups, as well as compounds which directly oxidize thiol groups 

(Sheehan et al., 2001).  

Under normal metabolic conditions, all the free radicals mentioned above would be 

scavenged by antioxidant defence systems, but under dehydration these mechanisms 

might not function, and oxidative damage becomes one of the most deleterious effects of 

water depletion. In fact, yeast cells showed a more than tenfold increase in oxidation after 

dehydration, confirming the oxidative damage produced during the dehydration-

rehydration process (Rodríguez-Porrata et al., 2011; López-Martínez et al., 2012; Pereira 

et al., 2003).  

Free radical accumulation during desiccation causes damage to lipids, proteins and DNA 

(Figure 8). In lipids, the cell membranes become fluidized and perturbed during 

dehydration, and may be susceptible to beattack by ROS (Carpenter and Crowe, 1989). 

These radicals often cause an extensive peroxidation and de-esterification of membrane 

lipids at intermediate ranges of water loss (Senaratna et al., 1987). Moreover, water 

deficiency produces a large rise in the levels of malondialdehyde (MDA), a product of 

lipid peroxidation that in combination with free chlorine produces hypochlorite, 

increasing the oxidative cell damage (Espindola et al., 2003; Pereira et al., 2003; França 

et al., 2005a). As a result of lipid oxidation and the increase in the phase transition 

temperature in phospholipids due to heat shock, membranes become a crucial cell 

component for repair after rehydration in order to overcome the stress.  

During desiccation, proteins can denature and misfold principally as a consequence of 

oxidative stress, resulting in a loss of biological activity upon rehydration. One of the 

difficulties in maintaining the viability of fragile proteins is to ensure their chemical 

integrity, which could be disturbed due to the oxidation of the functional groups. After 

that, proteins become sensitive to proteolysis and may be inactivated or may show 

reduced activity (Dalle-Donne et al., 2003). Another oxidative injury caused by 

dehydration is the protein carbonylation produced during storage of dried S. cerevisiae 

cells (França et al., 2005b). In genetic damage, DNA chemical bonds can be impaired by 
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oxidative degradation in the native DNA structure, causing a possible mutation or aging 

(Finkel and Holbrook, 2000; Nohmi et al., 2005).  

In order to avoid cell damage due to exposure to oxidants, S. cerevisiae has an oxidative 

stress response that ensures the survival of the cell through the reestablishment of an 

appropriate redox balance during dehydration-rehydration and other stresses. The defence 

systems that detoxify ROS include reduction of their rate of production, and repair of the 

damage caused by them (Figure 6). We will therefore discuss each oxidative stress 

response below. 

 

Intracellular degradation of oxidized biomolecules 

Cell biomolecules exposed to stress can sustain severe oxidative damage that cannot be 

repaired, such as carbonylated proteins and oxidatively damaged mitochondria. Yeast has 

two stress response mechanisms that facilitate the removal of irreparably oxidized 

biomolecules when overcoming oxidative stress: the ubiquitin-dependent proteasome 

system (UPS) and autophagy. 

The ubiquitin-dependent proteasome system facilitates the removal of small 

oxidized proteins from cells via proteasome with the participation of ubiquitin receptor 

proteins such as Rad23p, Dsk2p, Ddilp and Rad4p (Schauber et al., 1998; Chen and 

Madura, 2002; Wilkinson et al., 2001; Bertolaet et al., 2001; Elsasser et al., 2004; Li et 

al., 2010). Because the UPS mainly operates in the cytosol, oxidized proteins located 

within cell compartments segregated by membranes cannot be degraded by this 

mechanism unless they are exported into the cytosol. In the case of ER, the ER-associated 

degradation (ERAD) pathway facilitates the translocation, while in the case of 

mitochondria, it is the mitochondria-associated degradation (MAD) pathway that carries 

out the translocation for UPS degradation.  

Autophagy involves the intracellular degradation and recycling of long-lived 

biomolecules such as macromolecular proteins and organelles via vacuoles (Klionsky et 

al., 2011). Autophagy plays a crucial pro-survival role not only in response to ROS 

accumulation but also in nutrient starvation. This is important during dehydration stress, 

since cells are in a stationary state before the dehydration process. The autophagy 

pathway is activated by the expression of autophagy-related genes (ATG), of which there 

are at least 33 in yeast (Reggiori and Klionsky, 2002; Goldman et al., 2010). Two types 
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of autophagy exist: non-selective sequestration of intracellular macromolecules and 

portions of cytosol, and selective autophagy for the degradation of large oxidized 

biomolecules. The first is performed by a double-membraned vesicle called the 

autophagosome, which then delivers its enclosed material to a vacuole (Klionsky et al., 

2011). Non-selective autophagy often takes place in conjunction with selective 

autophagy. The second one, selective degradation of biomolecules, takes place in 

organelles. As an example, during oxidative stress, mitochondrial damage stimulates the 

specific and selective degradation of irreparably damaged mitochondria by mitophagy 

(Goldman et al., 2010; Lemasters, 2005; Kissová et al., 2004) which is dependent on an 

outer micochondrial membrane protein, Uth1p. Two mitogen-activated protein kinases 

(MAPKs) have been discovered in this process, Slt2p and Hog1p (Mao et al., 2011), and 

are both involved in osmoregulation. Selective autophagic degradation of specific 

biomolecular targets can also take place in Golgi apparatus (crinophagy), ER 

(reticulophagy), ribosomes (ribophagy) and peroxisomes (pexophagy), as well as 

mitochondria (Glaumann, 1989; Hamasaki et al., 2005; Kraft et al., 2008; Sakai et al., 

1998).  

 

Transcriptional regulation of gene expression 

As in osmotic stress regulation, some ROS responses belong to general stress, but there 

are also many ROS specific responses which also cross-talk. A key feature in this 

response is the transcriptional reprogramming of gene expression to provide the necessary 

changes in proteins to return the redox status of the cell to an acceptable range. The most 

important transcriptional regulators (some of them involved in heat shock responses) are 

Yap1p, Skn7p and Msn2/4p. 

 Yap1p is critical for tolerance to oxidants such as H2O2 and diamide, as well as 

heavy metals like cadmium (Schnell and Entian, 1991; Kuge and Jones, 1994; Wu and 

Moye-Rowley, 1994), although it is involved in heat shock response through Hsf1p. Yap1 

belongs to a family of AP-1 type transcription factors that bind to AP-1 binding sequences 

of the DNA molecule (Wiatrowski and Carlson, 2003; Kuge et al., 2001; Netto et al., 

2007; Lushchak, 2010) 
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Figure 10 Operation of Yap1p regulatory protein during treatment of S. cerevisiae with hydrogen peroxide 

(Lushchak, 2010). 

In yeast cells, at least eight Yap proteins have been found, named Yap1-Yap8p 

respectively. They have slightly different although similar specificities to bind with DNA. 

However, their function may differ (Fernandes et al., 1997; Moye-Rowley et al., 1989; 

Stephen et al., 1995). The activity of Yap1p is mainly regulated at the level of its export 

from the nucleus (Figure 10).  

Under normal conditions Yap1p is mostly localized in cytosol, due to its active export 

from the nucleus by the participation of protein Crm1p (Kuge et al., 1998; Yan et al., 

1998) which interacts with Yap1p at the C-terminal domain (CRD-cysteine rich domain) 
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(Kudo et al., 1999). Under hydrogen peroxide and other oxidant agents, the cysteine 36 

of the sensor Gpx3p is oxidized to sulfoxide, which further interacts with the cysteine 

residue 598 of Yap1p, forming an intermolecular disulfide bond between cysteine 303 

and cysteine 598 (Figure 10). In addition, a disulfide bond linking C310-C629 seems to 

be required for dissociation between Yap1p and Crm1p (Coleman et al., 1999; Delaunay 

et al., 2000; Wood et al., 2004). Finally, both Ybp1p and Ybp2p are required for the 

correct folding of Yap1p in conjuction with Gpx3. While overproduction of Ybp2p can 

bypass a gpx3, overproduction of Ybp1p cannot (Veal et al., 2003; Gulshan et al., 2004; 

Okazaki et al., 2007).  

The oxidation of cysteine residues of Yap1p and consequent prevention of interaction 

with Crm1p results in an accumulation of Yap1p in the nucleus, with concomitant 

induction of target gene expression via binding with the specific DNA sequences 

localized in promoter regions of regulated genes (Toone and Jones, 1999). Many of these 

genes are known to respond to oxidative stress, including TRX2 encoding thioredoxin, 

GSH1-glutamylcysteine synthase, GSH2-glutathione synthase, TRR1-thioredoxin 

reductase 1, GPX2-glutahione peroxidase 2, TSA1-thioredoxin peroxidase 1, GLR1- 

glutaredoxin 1 and AHP1-alkylhdroperoxide reductase 1, as well as genes encoding 

transporters YCF1, ATR1 and FLR1 (Kuge and Jones, 1994; Wu and Moye-Rowley, 

1994; Sugiyama et al., 2000; Morgan et al., 1997; Grant et al., 1996; Inoue et al., 1999; 

Lee et al., 1999a; Lee et al., 1999b; Wemmie et al., 1997; Coleman et al., 1999; Alarco 

et al., 1997). Finally, after recovering the redox balance, the nucleus oxidized Yap1p may 

be reduced by thioredoxin and become sensitive once again to hydrogen peroxide 

(Carmel-Harel et al., 2001). Furthermore, thioredoxin is reduced by thioredoxin 

reductasee (EC 1.8.1.9) at the expense of NADPH.  

Skn7p is another transcriptional factor in oxidative stress. Skn7p is also 

phosphorylated in the Sln1p branch of the HOG pathway under hypo-osmotic stress 

(Saito and Posas, 2012), and thus cannot interfere with the oxidative stress response in 

dehydration-rehydration stress (Figure 5). Skn7p regulates the transcription of TRX2 as 

well as Yap1p under hydrogen peroxide resistance, but Yap1p is bound to the TRX2 

promoter at a different site to Skn7p (Figure 11). Nevertheless, TRX2 is not the only case 

where Yap1p and Skn7p act at a common promoter to induce oxidative stress tolerance. 

Of the 32 different polypeptide chains where Yap1p control their expression, 15 require 

the presence of both Yap1p and Skn7p (Lee et al., 1999b). In this group, we found, two 
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SOD1 and SOD2 dismutases, a TSA1 peroxiredoxin and the alkyl hydroperoxide 

reductase, among others. Other factors are required to support the transcriptional 

activation of Skn7p, such as Ccp1p, a mitochondrial cytochrome c peroxidase (Charizanis 

et al., 1999) or Fap7p that is also implicated in ribosome subunit processing (Juhnke et 

al., 2000; Granneman et al., 2005). Skn7p could also interact independently of Yap1p 

with a wide range of genes such as SSA1, transcriptional regulators of cell cycle 

progression (Mbp1p) (Machado et al., 1997) or general transcription regulators Cdk8p 

and Ccr4p (Cooper et al., 1999; Vincent et al., 2001; Lenssen et al., 2007; Lensen et al., 

2002). The constitutive nuclear protein Skn7p presents homology to heat shock factor 

protein Hsf1p. In fact, both Skn7p and Hsf1p upregulate heat shock proteins by binding 

to heat shock elements (HSE) in H2O2-treated S. cerevisiae cells exposed to heat shock 

(Raitt et al., 2000).  

Figure 11 The role of Skn7. Skn7 transcription factor is involved in two different signal transduction 

pathways (He et al., 2009). 

Msn2/Msn4p are considered important participants in heat shock tolerance 

(Figure 2), yet also play roles in resistance to oxidative stress in conjunction with Yap1p 

and Snk7p and upon osmotic stress (Görner et al., 1998; Boisnard et al., 2009). Msn2p 

and Msn4p are reversibly translocated into the nucleus and recruited by Trx1/2p 

thioredoxins (Boisnard et al., 2009) in response to desiccation-related stresses (oxidation, 

heat and hyperosmolarity). Msn2/4p can then activate about 30 proteins such as the 

catalase Ctt1p (Toledano et al., 2007; Izawa et al., 1996) by binding Msn2p and Msn4p 

to DNA at STRESS regions due to their Zn-type DNA-binding domains (Cys2-His2).  

Additional levels of regulation, different sorts of effectors or intermediate shuffling 

between sensors and targets provide a very accurate response by yeast to oxidative and 

other stresses. 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 



Chapter I 

46 
 

Antioxidant defences 

In response to ROS, cells alter global transcription patterns of stress protective molecules 

such as metabolic enzymes (Gasch et al., 2000; Causton et al., 2001) and genes encoding 

antioxidants (Shenton et al., 2006), some of which are transcriptionally activated by 

Skn7p, Yap1p and other transcriptional regulators. 

Antioxidant defences include a number of protective enzymes and non-enzymatic 

molecules that are present in different subcellular compartments and can be upregulated 

in response to ROS exposure (Kuge and Jones, 1994; Izawa et al., 1999). Enzymatic ROS 

detoxification includes two groups (Table 1, Figure 13). One group of enzymes act 

directly as ROS detoxifiers, while members of the second group consists of enzymes 

which act as redox regulators of protein thiols and contribute to maintaining the redox 

balance of the cells. However, both types of strategies overlap. Non-enzymatic defences 

typically consist of small molecules that can act as free radical scavengers. To date, only 

ascorbic acid and GSH have been extensively characterized in yeast.  

Table 1 Protective enzymes that can be upregulated in response to ROS exposure (Morano et al., 2011)  

Antioxidant Gene Location Activity 

The thioredoxin system    

     Thioredoxin TRX1, 

TRX2 

Cyt Disulfide oxidoreductase activity 

 TRX3 Mit Mitochondrial disulphide oxidoreductase activity 

     Thioredoxin 

reductase 

TRR1 Cyt Reduces oxidized thioredoxins (Trx1p, Trx2p) 

 TRR2 Mit Reduces oxidized thioredoxin (Trx3p) 

     Peroxiredoxin TSA1, 

TSA2 

Cyt 2-Cys Prx, thioredoxin peroxidase and chaperone 

activity 

 AHP1 Cyt 2-Cys Prx, thioredoxin peroxidase particularly with 

alkyl hydroperoxides 

 DOT5 Nuc Nuclear 2-Cys Prx, functions in telomeric silencing 

 PRX1 Mit Mitochondrial 1-Cys Prx, thioredoxin peroxidase 

activity 

The glutathione system    

     GSH synthesis GSH1, 

GSH2 

Cyt Catalyzes two ATP-dependent steps in GSH 

biosynthesis 

     Glutathione 

reductase 

GLR1 Cyt/Mit Recycles oxidized GSSG to reduced GSH, co-localizes 

to Cyt and Mit 

     Glutathione 

transferase 

GTT1 ER Catalyzes the conjugation of GSH to various 

electrophiles 

 GTT2 Mit  

 GTO1 Per Omega class glutathione transferase 

 GTO2, 

GTO3 

Cyt Omega class glutathione transferase 

     Glutathione 

peroxidase 

GPX1, 

GPX2 

Cyt Phospholipid hydroperoxide glutathione peroxidase 

 GPX3 Cyt Phospholipid hydroperoxide glutathione peroxidase, 

Yap1p signal transducer 
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Although many studies have shown that tolerance to drying is correlated with an increase 

in the antioxidant potential in anhidrobiotes, regulation of the antioxidant defence system 

is complex and its role in desiccation tolerance has not yet been firmly established (Figure 

13). 

 

Figure 13 Enzymatic systems involved in ROS detoxification and in control of the redox state of protein 

sulphydryl groups in S. cerevisiae, with their interrelationship (Herrero et al., 2008). 

continue    

Antioxidant Gene Location Activity 

     Glutaredoxin GRX1 Cyt Glutathione disulfide oxidoreductase activity 

 GRX2 Cyt/Mit Glutathione disulfide 

oxidoreductase activity 

 GRX3, 

GRX4 

Nuc Monothiol glutaredoxin 

 GRX5 Mit Monothiol glutaredoxin, synthesis/assembly of iron-

sulfur centers 

 GRX6, 

GRX7 

Gol Cis-Golgi localized monothiol glutaredoxins 

 GRX8 Cyt Glutathione disulfide oxidoreductase activity 

     Superoxide 

dismutase 

SOD1 Cyt/Nuc Catalyzes the dismutation of superoxide into 

oxygen and hydrogen peroxide 

 SOD2 Mit  

     Catalase CTT1 Cyt Catalyzes the reduction of hydrogen peroxide to water 

and oxygen 

 CTA1 Per  

     Methionine 

sulphoxide 

     reductase 

MXR1 Cyt Catalyzes thiol-dependent reduction of methionine (S)-

sulfoxide 

 MXR2 Mit Catalyzes thiol-dependent reduction of methionine 

(R)-sulfoxide 

 FRMsr Cyt Catalyzes thiol-dependent reduction of free Met-R-SO 

     Erythroascorbate ALO1 Mit D-arabinono-1,4-lactone oxidase, final step of 

erythroascorbate synthesis 
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The thioredoxin system includes thioredoxin, thioredoxin reductase and 

peroxiredosin (Prx) and can be found in cytoplasm, nucleus or mitochondria (Table 1). 

Two thioredoxins (TRX1 and TRX2), a thioredoxin reductase (TRR1) and the 

peroxiredoxin TSA1, TSA2 and AHP1 are localized in cytoplasm (Gan, 1991). TRX2 

expression is strongly upregulated in response to oxidative stress conditions, whereas 

TRX1 may serve an ancillary or back-up role when TRX2 is insufficient to provide an 

antioxidant defence (Garrido and Grant, 2002). Oxidized thioredoxins are reduced by 

NADPH in conjunction with the cytoplasmic thioredoxin reductase TRR1 forming the 

oxidized disulphide form (Figure 14). 

A major part of the antioxidant function of thioredoxins is mediated by peroxiredoxins 

that have multiple roles in stress protection, acting as antioxidants, molecular chaperones, 

and in the regulation of signal transduction (Wood, et al., 2003). Prx have been divided 

into two classes, the 1-Cys and 2Cys Prx’s, on the basis of the number of Cys residues 

directly involved in catalysis to reduce peroxides. The 1-Cys peroxiredoxin class includes 

the mitochondrial Prx1p, which is active as a peroxidase (Pedrajas et al., 2000), while 2-

Cys group has three cytoplasmic and a nuclear peroxiredoxin. The three cytoplasmic 2-

Cys Prx’s are: Tsa1p, Tsa2p and Ahp1p (Figure 14). All of them play distinct 

physiological roles apart from the detoxification of hydroperoxides (Garrido and Grant, 

2002; Wong et al., 2004; Jang et al., 2004; Lee et al., 1999a; Park et al., 2000). Tsa2p is 

highly homologous to Tsa1p and possesses similar peroxidase and chaperone activities, 

but it is expressed at significant lower levels than Tsa1p (Jang et al., 2004). Ahp1p is 

active as an antioxidant, but in contrast to Tsa1p, its catalytic efficiency is greater with 

alkyl hydroperoxides than with H2O2 (Lee et al., 1999a; Park et al., 2000). Finally, the 

nuclear 2-Cys Prx, Dot5p, is mostly active against alkyl hydroperoxides (Cha et al., 

2003).  

The thioredoxin reductase TRR2 and the thioredoxin TRX3 are localized in mitochondria 

besides PRX1. TRR2 has an antioxidant role independently of mitochondria thioredoxin 

TRX3 (Pedrajas et al., 2000; Trotter and Grant, 2005) which is reduced by TRR2 and 

NADPH to regenerate (Figure 14). The redox states of the cytoplasmic and mitochondrial 

thioredoxin systems are independently maintained, and cells can survive in the absence 

of both systems (Trotter and Grant, 2005).  
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Figure 14 Comparison of cytoplasmic and mitochondrial thioredoxin systems. Reduced components are 

shown in blue. Among all three peroxiredoxin, only Tsa1p is shown for simplicity (Morano et al., 2011).  

The glutathione system seems to be the most important in desiccation resistance 

among all antioxidants, with special emphasis on catalase, superoxide dismutase and 

GSH synthesis (Figure 13). The glutathione system comprises the following enzymes: 

Catalase catalyzes the dismutation of H2O2 into H2O and O2 (Figure 9). Yeast has 

two such enzymes, Cta1p and Ctt1p. The first may function in the detoxification of H2O2 

generated from fatty acid β-oxidation (Hiltunen et al., 2003), while Ctt1p is thought to 

play a more general role, since CTT1 expression is induced by various stress conditions 

including heat, osmotic, starvation, and hydrogen peroxide stress (Martínez-Pastor et al., 

1996). Focussing on dehydration, tolerance is dependent on catalase since strain deficient 

in cytosolic catalase showed a more oxidized intracellular environment and thus higher 

sensitivity to water loss (França et al., 2005a) suggesting that this enzyme plays a role in 

the maintenance of the intracellular redox balance during dehydration. 

Superoxide dismutases (SODs) convert the superoxide anion to hydrogen 

peroxide, which can then be reduced to water by catalases or peroxidases (Figure 9). 

Yeast has two SODs which differ in location and the metal cofactor requirement for their 

activation, Cu, Zn-DOS (Sod1) and Mn-SOD (Sod2). The cytoplasmic Sod1 is also 

localized to the mitochondrial inner membrane space (Sturtz et al., 2001) and the 

mitochondrial matrix Mn-SOD (Sod2) is particularly required during stationary phase 

growth (Longo et al., 1996). However, the absence of only one of them does not impair 

desiccation tolerance (Pereira et al., 2003). Moreover, overexpression of SOD1 in yeast 
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cells leads to a fivefold increase desiccation tolerance, whereas overexpression of both 

enzymes, SOD1 and SOD2, increase eightfold (Pereira et al., 2001).  

Methionine sulfoxide reductase (MSR) protects against methionine oxidation by 

ROS, catalysing thiol-dependent reduction of oxidized amino acid residues especially in 

methionine, avoiding the formation of Met-S-sulfoxide and Met-R-sulfoxide in cells 

(Dean et al., 1997; Stadtman et al., 2003). Yeast contains three MSR: FRMsr is thought 

to be the main enzyme responsible for the reduction of free Met-R-SO, whereas MXR1 

and MXR2 are active with Met-S-SO and Met-R-SO (Le et al., 2009).  

GSH synthesis takes place via two ATP-dependent steps (Figure 15). Gsh1p 

catalyzes the first step (Lisowsky et al., 1993 ) whereas the second is catalysed by 

glutathione synthetase Gsh2p (Grant et al., 1997). GSH is involved in a variety of cellular 

processes apart from ROS, including amino acid transport, synthesis of nucleic acids and 

proteins, modulation of enzyme activity, and the metabolism of carcinogens and 

xenobiotics (Schafer and Buettner, 2001). During dehydration, glutathione plays a key 

role in protecting cell membranes and in maintaining redox homeostasis under water 

deficiency, favouring tolerance to the dry state (Espindola et al., 2003). Glutathione is 

predominantly present in its reduced GSH form in yeast due to the constitutive action of 

glutathione reductase (Glr1p) which transfers electrons from NADPH to glutaredoxins 

(López-Barea et al., 1999). However, oxidative stress converts glutathione to its oxidized 

disulphide form (GSSG) (Figure 15). In addition, GSH can be oxidized in reactions 

catalysed by Grx1-8p and Gto1-3p.  

Figure 15 The glutathione system (Morano et al., 2011) 

Glutaredoxins (Grx) are small heat-stable oxidoreductases. They have been 

proposed as having roles in protein folding and the regulation and reduction of 

dehydroascorbate (Holmgren, 1989) besides protection against ROS. Yeast contains eight 
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Grx (Grx1-8). Grx1p is induced by superoxide anion, whereas Grx2p is induced by 

hydrogen peroxide (Luikenhuis et al., 1998). Both are regulated in response to oxidative 

stress conditions via stress-responsive STRE elements, although the induction of GRX2 

is much more rapid and stronger than GRX1 (Grant et al., 2000). Grx3-8p are found in 

different subcellular compartments and are important during the oxidative stress response 

(Rodríguez-Manzaneque et al., 1999; Molina et al., 2004; Izquierdo et al., 2008; Mesecke 

et al., 2008; Eckers et al., 2009; Mühlenhoff et al., 2010), except for Grx8p, which is not 

thought to function in the oxidative stress response (Eckers et al., 2009). 

Glutathione transferases (GST) catalyze the conjugation of electrophilic 

substrates to GSH prior to their removal from cells via glutathione conjugate pumps 

(Figure 15). Yeast contains two classes of GSTs. On the one hand, GTT1 and GTT2 have 

an overlapping function with GRX1 and GRX2 under cell exposure to xenobiotics, heat 

and oxidants (Collinson et al., 2002; Collinson and Grant, 2003). On the other, GTO1, 

GTO2 and GTO3 are induced in response to oxidants such as hydroperoxides and thiol 

oxidants, under the control of Yap1p and STRE-responsive elements (Barreto et al., 2006; 

Garcerá et al., 2006).  

Glutathione peroxidase (Gpx’s) provides the major enzymatic defence against 

oxidative stress caused by hydroperoxides. Yeast expresses three Gpx’s encoded by 

GPX1-3 (Avery and Avery, 2001; Inoue et al., 1999) that are able to protect membrane 

lipids against peroxidation. Gpx3p has an additional function as a peroxide sensor and 

activator of Yap1p (Delaunay et al., 2002) (Figure 10). 

Ascorbic acid is a non-enzymatic defence (Winkler et al., 1994). ALO1 encodes 

D-arabinono-1,4-lactone oxidase, which catalyzes the final step in erythroascorbate 

biosynthesis and is induced by hydrogen peroxide and the superoxide anion (Huh et al., 

1998). However, the extremely low levels of erythroascorbate detected in yeast make its 

functional role as an antioxidant questionable (Spickett et al., 2000). Moreover, 

supplementation of ascorbic acid during rehydration period of desiccation process does 

not enhance the yeast vitality, indicating that this antioxidant agent has no beneficial 

effects on some desiccated strains (Rodríguez-Porrata et al., 2008). 
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Translational regulation of gene expression and metabolic reconfiguration 

Although some genes are translationally active, most mRNAs are inhibited in response 

to oxidative stress conditions, when the number of P bodies is significantly increased, 

suggesting their storage (Teixeira et al., 2005; Mazzoni et al., 2007). Indeed, under low 

adaptive concentrations of hydrogen peroxide, more than 60% of the proteins inhibit their 

synthesis in a reversible way within 15 min (Godon et al., 1998; Shenton and Grant, 2003; 

Shenton et al., 2006).  

The inhibition is largely mediated by the Gcn2p protein kinase which can be activated by 

exposure to an organic hydroperoxide, a thiol oxidant and a heavy metal (cadmium) 

(Mascarenhas et al., 2008). Gcn2p phosphorylates the -subunit of the translation 

initiation factor 2 (elF2p) (Shenton et al., 2006) resulting in a decrease in elF2Bp activity 

which leads to reduced ternary complex levels and concomitantly inhibits translation 

initiation (Pavitt et al., 1998) (Figure 12). The depletion of amino acids leads to an 

accumulation of uncharged tRNA which activates Gcn2p. Nevertheless, a significant 

number of genes that are translationally downregulated in response to high H2O2 

concentrations are increased at the transcript level and viceversa (Shenton et al., 2006). 

 

Figure 12 Control of translation initiation by Gcn2p (Morano et al., 2011). 

Apart from mRNA and proteins, a number of metabolic genes are also up- or 

downregulated in response to low concentrations of H2O2, consistent with significant 

metabolic reconfiguration during oxidative stress conditions. In fact, metabolic changes 

are detected within seconds of an oxidative stress, before slower changes in gene 

expression are measured (Chechik et al., 2008; Ralser et al., 2009).  

The key to these metabolic changes appears to be the reprogramming of the carbohydrate 

metabolism, and specifically the metabolic flux from glycolysis to the pentose phosphate 

pathway, with the concomitant generation of NADPH in response to oxidative stress 
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(Ralser et al., 2007). NADPH is particularly important since it provides the reducing 

potential for most antioxidant and redox regulatory enzymes that have been explained in 

the previous section. Additionally, glucose 6-phosphate dehydrogenase and 6-

phophogluconate, which catalyse the first two steps of the pentose phosphate pathway, 

maintain their activities during oxidant exposure, confirming their role in the oxidative 

stress response (Izawa et al., 1998; Shenton and Grant, 2003). Furthermore, reduction in 

the activity of glycolytic enzymes such as triosephosphate isomerase and glyceraldehyde 

3-phosphate dehydrogenase confers resistance against oxidative stress conditions (Ralser 

et al., 2007; Ralser et al., 2006). Modification of glycolytic enzymes is thought to be at 

post-transcriptional level and then causes rapid and reversible changes in enzyme activity, 

not only under oxidative stress but also during glycerol production in HOG pathway due 

to hyperosmolarity (Biswas et al., 2006). 

 

Late Embryogenesis Abundant proteins 

Stress response against desiccation includes gene regulation in heat shock, osmotic stress 

and oxidative stress as it was explained above. However, regulation of other important 

protective macromolecules also correlates with desiccation resistance. Among these, late 

embryogenesis abundant (LEA) proteins can act as an antioxidant molecules and their 

abundance can also increase tolerance against heat shock and osmotic individual stresses. 

Most LEA proteins are part of a more widespread group of proteins called hydrophilins. 

However, a distinguishing feature of the hydrophilins is a high glycine content and 

therefore not all LEA proteins are included in the hydrophilins. However, some non-LEA 

hydrophilins are essential for yeast desiccation tolerance (Dang and Hincha, 2011; López-

Martínez et al., 2012) suggesting that a large number of molecules and molecular systems 

may be involved in such a complex stress besides LEA proteins. However, knowledge of 

hydrophilin proteins can lead to biotechnology engineering not only in microorganisms, 

but also in eukaryotic cells such as tissue preservation in drying state.  

LEA proteins were first described about 30 years ago as accumulating in cotton seed 

development, when the embryo becomes desiccation-tolerant (Dure et al., 1981). They 

have been classified in different groups according to sequence motifs in plant LEA, but 

the groupings and nomenclature of the groups have not been consistent in the literature 

(Table 2). Although LEA have been discovered and classified in plants, closely related 
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proteins have also been found in bacteria (Dure, 2001; Stacy and Aalen, 1998; Battista et 

al., 2001), cyanobacteria (Close and Lammers, 1993), slime molds (Eichinger et al., 

2005) and fungi (Abba et al., 2006; Katinka et al., 2001; Sales et al., 2000; Garay-Arroyo, 

2000). In addition, more than 30 protein sequences for LEA and LEA-like proteins appear 

in animals such as nematodes (Browne et al., 2004; Browne et al., 2002; Solomon et al., 

2000; Tyson et al., 2007; Gal et al., 2003; Haegeman et al., 2009; Gal et al., 2004), rotifers 

(Denekamp et al., 2010; Denekamp et al., 2009; Tunnacliffe et al., 2005) and tardigrades 

(Förster et al., 2009).  

Table 2 Main classifications of LEA proteins with time-introduction of class nomenclature (Amara et al., 

2014) 

Pfam Dure 

et al. 

1989 

Bray 

1993 

Tunnacliffe 

and Wise 

2007 

Battaglia et 

al. 2008 

Bies-

Esthève 

et al. 

2008 

Hundermark 

and Hincha 

2008 

LEAPdb 

2010 

PF00257 D11  

D19 

Group 2 

Group 1 

Group 2 

Group 1 

Group 2 

Group 1 

Group 2 

Group 1 

Dehydrin 

LEA_5 

Classes 1 to 

4 

Classes 5 

PF00477 D132  

D7 

 

Group 3 

 

Group 3 

 

Group 3A 

 

Group 6 

 

LEA_4 

 

Classes 6 

PF02987 D29 Group 5  Group 3B    

PF03168 D95   Group 5C Group 7 LEA_2 Classes 7 

and 8 

PF03242 D73  LEA_5 Group 5B Group 6 LEA_3 Classes 9 

PF03760  

D113 

Group 4 Group 4 Group 4A 

Group 4B 

Group 4 LEA_1 Classes 10 

PF04927 D34 Group 6 Group 6 Group 5A  

Group 6 

Group 5 

Group 8 

SMPO 

PvLEA18 

Classes 11 

Classes 12 

PF03168    Group 5A    

While the nomenclature is unsatisfactory in plants, the nature and categorisation of LEA 

proteins became even more problematic when they were discovered in organisms outside 

the plant kingdom and were classified in the established plant groups. Nevertheless, here 

we will adopt Battaglia’s classification to explain each group (Battaglia et al., 2008).  

LEA Group 1 contains an internal 20-mer sequence present in several copies arranged in 

tandem, from one to four in plant species, and up to eight in other organisms 

(Hundertmark and Hincha, 2008; Galau et al., 1986; Dure, 1986; Goday et al., 1988; 
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Campos et al., 2013). Group 1 LEA proteins are mostly found in seeds, while they are 

not induced by stress conditions in vegetative tissues (Manfre et al., 2006; Manfre et al., 

2009). Moreover, they have also been found in Bacillus subtilis (Borovskii et al., 2002). 

The second group of LEA proteins, also known as “dehydrins”, are a Lys-rich 15-residue 

motif. This motif is named the K-segment (Campbell and Close, 1997) which can be 

found in one to 11 copies within a single polypeptide. Additional motifs are also found, 

such as the Y-segment, which is usually found in one to 35 copies or Ser residues 

segment, the S-segment, acting as a site for protein phosphorylation (Campbell et al., 

1998). This group of proteins are accumulated in response to low temperature and salinity, 

as well as water deficit and seed desiccation (Ismail, 1999; Nylander et al., 2001; Brini et 

al., 2007). Many accumulate in the cytoplasm, and some are also located in the nucleus 

in plants.  

In contrast to group 1 and 2, LEA Group 3 are characterized by a motif of 11 amino acids 

repeated several times across the polypeptide (Dure, 1993). The variability in the 11-mer 

motif leads to a sub-classification of the group 3 LEA: proteins. The first subclass, 3A, 

have almost two of the motifs corresponding to the same 11-mer, whereas 3B is 

characterized by four variations of the 11-mer. Group 3 LEA proteins are localized in the 

cytoplasm and vacuoles, as is the case for HVA1 from barley, Hordeum vulgare (Marttila 

et al., 1996). The expression of group 3 LEA proteins in plants appears to be regulated 

by abscisic acid (ABA) during specific developmental stages (Curry et al., 1991; Ried 

and Walker-Simmons, 1993) and is one of the expression hallmarks for LEA proteins. 

Proteins similar to group 3 LEA are accumulated in several non-plant organisms in 

response to dehydration, in the fungi, microbial and animal kingdoms. They have been 

found in prokaryotes and in nematodes, where the expression is correlated with the 

survival of the organism under conditions of desiccation, osmosis, and heat stress 

(Battista et al., 2001; Dure, 2001; Gal et al., 2004). LEA Group 4 has the motif named 1 

located in the N-terminal region (Battaglia et al., 2008). However, four additional motifs 

can be distinguished in many group 4 LEA proteins. The presence or absence of the motif 

defines two subgroups within the family: the first, 4A, consist of small proteins (80-124 

residues long) and 4B has longer representatives (108-180 residues). Plants deficient in 

one, two or three members of group 4 LEA are more susceptible than wild-type plants to 

water deficit. 
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Unlike all LEA defined groups, LEA Group 5 contains a higher proportion of 

hydrophobic residues leading to an atypical LEA group. The smaller LEA proteins belong 

to LEA Group 6 (7-14KD) (Battaglia et al., 2008) and 36 genes of this family have been 

described from vascular plants to date. LEA Group 7 includes Abscisic acid-stress-and 

ripening induced proteins (ASR) which are small, heat-stable and unstructured (69, 70 de 

Amara 2014). However, no ASR-like genes are found in Arabidopsis, the LEA grouping 

plant model. This group shares physiochemical properties with other LEA proteins and 

they consequently accumulate in seeds during late embryogenesis and in response to 

water-limiting conditions (Silhavy et al., 1995). 

Even though LEA proteins have been classified in different groups, they share common 

biochemical and structure characteristics, and similar functions, although very little is 

known about how they act. In the next section we will focus on these features, which in 

some cases will be related to LEA plant proteins because even though LEA proteins are 

spread widely across different kingdoms, LEA plants are the most extensively studied 

and knowledge of them could be useful in the investigation of LEA proteins’ properties 

and functions in yeast.  

The physicochemical properties of LEA proteins are: a hydrophilicity index 

greater than 1, a glycine content that differs from hydrophilin which is 6%, and a lack of 

or low proportion of Cys and Trp residues (Raghavendra et al., 2010; Baker et al., 1988; 

Garay-Arroyo, 2000; Dure, 1993; Oliveira et al., 2007b; Anchordoguy and Carpenter, 

1996). The hydrophilicity is likely to be responsible for their lack of a conventional 

secondary structure in the fully hydrated state. As a result, LEA proteins are considered 

members of the broader classification of intrinsically disordered proteins (Tompa and 

Kovacs, 2010; Uversky and Dunker, 2010). This phenomenon was also observed in 

animals as well as plants (Goyal et al., 2003; Wolkers et al., 2001; Boudet et al., 2006; 

Mouillon et al., 2006; Tolleter et al., 2007). In the fully hydrated state, most LEA proteins 

are predominately unstructured with a preponderance of random coils, and become more 

ordered as dehydration proceeds, developing a secondary structure. Li and He (2009) 

utilized a 66-amino-acid fragment of AavLEA1, where they showed that the protein 

assumes a more folded conformation at different water contents from 83.5 to 2.4 wt% 

H2O. This group concludes in vitro that at below 50.4 wt% H2O the protein starts to fold, 

and at less than 20 wt% the protein begins to adopt a significant amount of the secondary 

structure (Figure 16). The random coil structure is predominantly found at a water content 
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of more than 20%, whereas -Helical is mainly present in the dehydrated state. Consistent 

with the gain of secondary structure as LEA proteins are dehydrated, the numbers of 

intraprotein hydrogen bonds are projected to increase and the number of hydrogen bonds 

present between the protein and water are projected to markedly decrease as the water is 

removed.  

 

Figure 16 Representative conformations of the 66-amino-acid fragment of a LEA protein (AavLEA1) from 

the nematode Aphelenchus avenae are shown at different water contents. The smaller water molecules (gray 

and red) are depicted in the line style, and the larger LEA protein molecules are denoted using the solid 

ribbon style (αhelix, red; βsheet, green; random coil, gray). NN wt% means water content expressed in % 

(Hand et al., 2011). 

Although LEA proteins have similar biochemical properties and structure, they vary in 

size, ranging from 5 to 77kDa for the same LEA protein in different organisms, and the 

net charge, which may be acid, neutral or basic. Moreover, subcellular localization also 

depends on each LEA protein. Indeed, they are expressed in a number of subcellular 

compartments depending on the cell organism to protect critical cellular components from 

desiccation-induced damage such as maintaining the integrity of mitochondria (Hand and 

Menze, 2008). 

Functional role. Several possible activities of LEA proteins in the dry state have 

been described. These include RNA, DNA, water or ion binding, antioxidant activity, 

83.5 wt% 
H O 

50.4 wt% 
H O 

α helix 

 

20.2 wt% 
H O 

13.2 wt% 
H O 

4.8 wt% 
H O 

2.4 wt% 
H O 
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stabilization of enzymes, proteins and membranes, molecular shield, chaperone role, 

hydration buffer and sugar glass stabilization. Although LEA proteins appear to carry out 

similar functions, the existence of distinctive groups is indicative of functional diversity. 

However, these functional roles are widespread among animals and microorganism 

anhydrobiots, with the most experimental evidence of their functional role in plants 

(Tunnacliffe and Wise, 2007; Wise, 2003; Wolkers et al., 2001; Oliver et al., 2001; Reyes 

et al., 2005; Goyal et al., 2005; Sales et al., 2000; Tunnacliffe et al., 2010).  

Enzyme protection is one of the functions observed in various LEA proteins in 

plant groups 1, 2 and 3. They can preserve the activity of isolated enzymes such as citrate 

synthase and LDH after desiccation or freezing by preventing conformational enzyme 

changes that otherwise may lead to loss of their activity and under more severe water 

restriction conditions, to denaturation and consequently to protein aggregation (Figure 

17) (Boucher et al., 2010; Chakrabortee et al., 2007; Goyal et al., 2005; Kovacs et al., 

2008).  

 

Figure 17 This scheme illustrates a hypothetic model for the function of LEA proteins and other 

hydrophilins. Hydrophobic residues are shown in red and LEA proteins in blue  (Olvera-Carrillo et 

al., 2011). 

The enzyme protection role can be achieved at a 1:1 hydrophilin:enzyme ratio under 

moderate water stress, suggesting that protein-protein interactions are necessary for their 

function to be accomplished; however, during severe dehydration the action of more than 

one hydrophilin per enzyme is needed (Reyes et al., 2005). 
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The enzyme protection activity of LEA proteins is also apparent in non-plant groups such 

as bacterial, yeast and nematode hydrophilin during desiccation (Goyal et al., 2003; 

Reyes et al., 2005). Moreover, this role of LEA protein could be linked to a molecular 

chaperone role without the ATP requirement. Furthermore, Tunnacliffe’s group proposed 

that LEA proteins may exert a “molecular shield” activity (Tunnacliffe et al., 2005; Goyal 

et al., 2005) with a space-filling role, helping to prevent the collapse of the cell as its 

water is lost, thus decreasing the interaction between partially denatured polypeptides and 

preventing their aggregation. 

Membrane protection is another role attributed to LEA proteins during drying. 

Since LEA proteins contain no transmembrane segments, they are unlikely to be able to 

integrate into membranes. However, LEA proteins that form amphipathic -helices 

during drying may enable peripheral interaction with membranes, contributing to 

membrane protection. This membrane-stabilizing function has been shown in vitro for 

both rotifer and plant proteins (Popova et al., 2011; Thalhammer et al., 2010; Pouchkina-

Stantcheva et al., 2007; Rahman et al., 2010; Tolleter et al., 2010), but it has been shown 

in few LEA proteins in vivo (Artus et al., 1996). 

Ion binding is another LEA function, since they can sequestrate ions that 

concentrate in intracellular components as a result of dehydration damage (Danyluk et 

al., 1998; Dure, 1993). Group 2 and 3 LEA proteins are known to bind a number of metal 

ions that may otherwise increase ROS damage and liposome peroxidation. Moreover, 

LEA proteins are not only linked to antioxidant properties due to metal ion sequestration, 

but also due to scavenging for hydroxyl and peroxyl radicals that could also increase 

ROS species (Hara et al., 2004; Danyluk et al., 1998; Dure, 1993; Tunnacliffe and Wise, 

2007; Iturbe-Ormaetxe et al., 1998). 

Stabilization of sugar glasses was reported by Wolkers (Wolkers et al., 2001) in 

an in vitro assay, concluding that LEA plant proteins can stabilize vitrified sugar glasses 

(trehalose and sucrose), an important property for substantial dehydration tolerance 

(Crowe et al., 1998; Crowe et al., 1997). This effect is enhanced by the presence of non-

disacharide molecules. The mixture increases the density of the sugar glasses by 

strengthening the hydrogen-bonding of the sugar/LEA mixture (Buitink and Leprince, 

2004). As an example, the combination of trehalose and LEA-like peptides exhibits a 7ºC 

increase in Tg compared with mixtures using the control peptide (Timasheff, 2002). 
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Hydrogen buffer is the last suggested function for LEA proteins, whereby 

unstructured hydrophilic proteins bind greater numbers of water molecules in their 

hydration shells than a typical globular protein (Mouillon et al., 2006; Roberts et al., 

1993; Garay-Arroyo, 2000; McCubbin et al., 1985). This suggests that LEA proteins 

might delay water loss during dehydration (Garay-Arroyo, 2000; McCubbin et al., 1985; 

Cuming, 1999) and could retain a protein function. 

LEA across different domains is now an established fact, even though LEA 

proteins were first discovered in plants. The homology of some hydrophilin genes are 

found in animals and also microbes in the eubacterial and eukaryotic domains. 

Plant LEA proteins are overexpressed during the last stage of seed formation, 

during periods of water shortage in vegetative organs and osmotic and/or low temperature 

stress (Bray, 1997; Bray, 1993; Bies-Ethève et al., 2008; Hundertmark and Hincha, 2008; 

Dure et al., 1989). Plant LEA mRNAs are maintained at high levels in the dehydrated 

mature embryos, while transcripts of storage protein genes are completely degraded 

during the last embryogenesis stage (Goldberg et al., 1989). Expression of LEA in plants 

is thus important in overcoming not only seed formation but also dehydration after the 

plant is adult. In the wine industry, LEA proteins in the berry are also important because 

water deficit stress causes a tissue-specific accumulation of enzymes that catalyse the 

formation of key flavour and aroma compounds in wine, including organic acids, specific 

sugars, phenylpropanoids, proanthocyanins and volatile compounds. LEA plants are 

mainly found in cytoplasm and nuclear regions (Zahn and Zhao, 2003); however, they 

are also located in the mitochondrion, chloroplast, endoplasmic reticulum, vacuole, 

peroxisome, and plasma membrane (Tunnacliffe and Wise, 2007).  

Many transgenic plants expressing some LEA proteins enhance tolerance against 

environmental stress such as desiccation, hyperosmolarity or freezing. As an example, in 

group 3, HVA1 confers water stress and salt stress in transgenic rice (Xu et al., 1996; 

Rohila et al., 2002; Chandra Babu et al., 2004). Another group 3 LEA protein from 

rapeseed was used to make transgenic lines of Chinese cabbage, resulting in improved 

salt and drought tolerance (Park et al., 2005). Although most of the evidence concerning 

the participation of LEA proteins in plants’ tolerance to water deficit has been obtained 

by overexpression experiments, these data should be interpreted with caution, since 

ectopic expression may be misleading evidence for the function of the endogenous 

protein. Rather than enhancing tolerance stresses, some reports showed only a slight 
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effect or no effect on stress tolerance in transgenic plants expressing group 2 proteins. 

For example, the introduction of two dehydrins and a group 3 LEA protein from 

Craterostigma plantagineum did not improve the drought tolerance of transgenic tobacco 

(Iturriaga et al., 1992). Likewise, overexpression of RAB18 in Arabidopsis thaliana did 

not improve freeze or drought tolerance (Lång, 1993).  

Animal LEA protein cannot be related to seed maturation. However, on the basis 

of relatedness to plant sequences (Table 2), all non-plant LEA proteins have been 

categorised as group 3, with the single exception of LEA protein from Bacillus subtilis, 

which belongs to group 1.  

In animals, a link to tolerance of water stress is maintained in invertebrates (McGee, 

2006). As an example, a gene encoding group 3 LEA protein in the nematode 

Aphelenchus avenae is upregulated by desiccation and osmotic upshift, but not by cold, 

heat or oxidative independent stresses (Browne et al., 2004; Browne et al., 2002). Other 

examples are found in the model nematode Caenorhabditis elegans which increases 

desiccation resistance associated with the expression of an LEA-like protein. However, 

many other nematode species possess LEA proteins. Group 3 LEA proteins are also found 

in desiccation tolerant rotifers such as Brachionus plicatilis (Tunnacliffe et al., 2005; 

Denekamp et al., 2009). In the arthropod Polypedilum vanderplanke there are also several 

LEA proteins that are expressed during desiccation or osmotic stress (Kikawada et al., 

2006). Finally, group 3 LEA proteins have also been described in the crustacean Artemia 

franciscana (Hand et al., 2007).  

Experiments in human cells have also recently been carried out (Li et al., 2012). In these 

experiments, an LEA protein naturally expressed in embryos of the brine shrimp A. 

franciscana, AfrLEA3m, were transfected into human HepG2 cells and dried. 

Immediately after rehydration, control cells without the LEA protein exhibited 0% 

membrane integrity, compared with 94% in cells expressing AfrLEA3m (Li et al., 2012). 

Moreover, the in vivo coexpression of aggregation-prone proteins containing long 

polyglutamine or polyalamine sequences with a group 3 AavLEA1 LEA protein in 

mammalian cells showed a reduction in the expression of protein aggregates associated 

to neurodegenerative diseases (Chakrabortee et al., 2010). The mechanisms by which 

animals protect cellular structure and function in the state of anhydrobiosis, or “life 

without water” (Keilin, 1959; Crowe and Clegg, 1978; Crowe et al., 1997), are not only 
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of fundamental interest, but also of potential biomedical importance for cell stabilization 

(Crowe et al., 2005; Huang and Tunnacliffe, 2007; Hand and Hagedorn, 2008). 

Microorganism LEA proteins appear to be homolog to those in plants (Garay-

Arroyo, 2000; (Sales et al., 2000; Stacy and Aalen, 1998) and in animals, but with the 

characteristic that these organisms can easily be manipulated by genetic engineering due 

to their genetic properties. This advantage led us to discover the functional role and the 

mechanism in which both microscopic organisms and higher eukaryote cells may be 

involved.  

Bacteria, and specifically the genome of Escherichia coli, contains five encoding 

proteins with the characteristics of hydrophilins (YCIG, PRTL, YJBJ, YHDL, RMF) 

(Garay-Arroyo, 2000), while B. subtillis contains two (GSB and COTT). All the E. coli 

hydrophilin transcripts mentioned above, except for YHDL, accumulated in response to 

osmotic stress, with the highest accumulation for the YCIG occurring after 20 minutes’ 

treatment (Garay-Arroyo, 2000). Transgenic strains transfected with original plant LEA 

also demonstrate tolerance against environmental stresses in bacteria, such as 

recombinant PM2 group 3 LEA proteins from soybeans (Liu and Zheng, 2005) and other 

LEA proteins from group 2, 3 and 4 from A. thaliana (Campos et al., 2006). 

Yeast is a good eukaryotic model organism for testing the functional role of the 

artificial LEA group proteins in order to ascertain their role in higher eukaryotes. 

Hincha’s group (Dang et al., 2014) tested 15 candidate genes from six A. thaliana LEA 

protein families (group 2, 3, 4 and 5) expressing them in S. cerevisiae. Of these selected 

LEA proteins, three of four dehydrin and all the groups 3 and 5 enhance tolerance to 

desiccation, but not to hyperosmotic or oxidative stress. The recombinant proteins 

showed enzyme but not membrane protection during drying. This experiment showed that 

even though the biochemical properties of these proteins are similar, not all of them play 

a role in desiccation tolerance in yeast. Twelve important hydrophilin have been 

discovered in S. cerevisiae genome. They have been also tested for possible functions. 

However, only 6 have been functionally characterized. Only some of the twelve selected 

genes containing the characteristics of hydrophilins are involved in desiccation tolerance, 

as explained below. Knowledge of these can be useful for the wine industries in order to 

enhance the desiccation tolerance of Active Dry Wine Yeast (ADWY) and save transport 

and storage costs, as well as medical engineering future investigations. 
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Yeast hydrophilin proteins 

The twelve yeast hydrophlin proteins are small (from 79 to 225 amino acids) and by 

definition highly hydrophilic (hydrophatic index from 1.02 to 1.87) (Garay-Arroyo, 2000) 

(Table 3). However, they share no common sequence features. The charge distribution 

also varies widely, from uncharged to basic and acidic. Regarding subcellular 

localization, six out of twelve are localized in cytoplasm, even though some of them are 

also shown in other compartments (Table 3). Only Stf2p, Sip18p, Gre1p and Yjl144wp 

show exclusive cytoplasmic localization under no stress conditions. The nucleus is also 

well represented by Hsp12p, Wwm1p and Gon7p. Whereas the first two proteins are also 

localized in the cytoplasm and plasma membrane or mitochondrion, Gon7p is shown only 

in the nucleus. Ribosomal subunits and membrane localizations are the other 

compartments where yeast hydrophilin are present. While the first includes Tif11p, 

Nop6p and Rpl42ap; Hsp12p, Ybr016wp, Wwm1p and Ynl190wp belong to membrane 

localizations. 

Table 3 S. cerevisiae hydrophilin proteins. Function and subcellular localization from yeastgenome.org 

Hydrophilin 

protein 

Function Subcellular localization 

Hsp12p Lipid binding Cytoplasm, nucleus, plasma membrane 

Tif11p Translational initiation factor activity 43S preinitiation complex 

Nop6p RNA binding 90S preribosome, nucleus 

Gon7p Chromatin DNA binding Nucleus 

Rpl42ap Structural constituent of ribosome 60S ribosomal subunit 

Stf2p Unknown Cytoplasm 

Sip18p Unknown Cytoplasm 

Ybr016wp Unknown Plama membrane 

Wwm1p Unknown Nucleus, cytoplasm, mitochondrion 

Gre1p Unknown Cytoplasm 

Ynl190wp Unknown Cell wall 

Yjl144wp Unknown Cytoplasm 

Among the twelve hydrophilin yeast proteins, only Hsp12p, Tif11p, Nop6p, Gon7p and 

Rpl42ap have been functionally characterized, yet the other yeast hydrophilin proteins 

have specific and different roles from each other. The expression pattern of 8 of 12 S. 

cerevisiae hydrophilin transcripts showed an accumulation in response to osmotic stress: 

GRE1, STF2, SIP18, YBR016W, HSP12, YJL144W, GON7 and YNL190W (Garay-
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Arroyo, 2000). Moreover, HSP12 and GRE1 are induced by oxidative stress such as H2O2 

as well as heat shock. Transcriptional gene screening in response to desiccation and 

rehydration also showed an upregulation of some hydrophilin genes, GRE1 (7.6 fold), 

SIP18 (9.3 fold) and YJL144W (3 fold) (Singh et al., 2005).  

Under no circumstances can S. cerevisiae strains survive to desiccation stress if cells are 

not in a stationary state. At this point transcripts of HSP12, STF2, SIP18, GRE1, 

YNL190W and YJL144W are upregulated, showing the same pattern in osmotic stress. By 

contrast, TIF11 and RPL42A are downregulated and NOP6 and YBR016 showed no 

significant up- or downregulation (Gasch et al., 2000).  

Nevertheless, even though a transcription level of some hydrophilins in a stationary state 

and/or desiccation related stresses suggests the participation of some yeast hydrophilin in 

desiccation tolerance, it does not mean an appropriate accumulation of hydrophilin 

protein to overcome the stress, which could in fact be more closely linked to cell survival. 

Regarding this possibility, Soufi et al. (2009) characterized more than one hundred 

proteins that increase in abundance after osmotic stress. Of the 3,383 identified proteins, 

three hydrophilins were included in the first 25 changed proteins (Stf2p, Sip18p and 

Hsp12p), yet Sip18p showed the highest upregulation, with a more than sevenfold 

change.  

Regardless of the transcriptional and translational level of some hydrophilins, only some 

of them are definitely involved in desiccation stress phenotype, although other proteins 

not belonging to the LEA proteins are also involved in desiccation stress to a certain 

extent . Focusing on this hypothesis, our group analyzed the viability of the complete 

collection of non-essential genes in S. cerevisiae, deleting each one upon dehydration and 

rehydration stress. A group of 102 deletion mutants with viability of less than 10% were 

detected, which is a very stringent cutoff. Most belong to the protein synthesis and 

biogenesis of cellular component functional classes (Rodríguez-Porrata et al., 2011). In 

this 102 protein group, only SIP18 appear among all S. cerevisiae hydrophilins, while 

three more hydrophilin genes showed less than 20% viability (López-Martínez et al., 

2012). In contrast to this pattern, 12 deletion mutants with viability values higher than 

those of the reference strain were also found, some of which are directly connected to the 

PCD (Rodríguez-Porrata et al., 2012a). These results may suggest that other proteins 

apart from hydrophilin may be involved in cell survival under desiccation stress.  
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Characterization of the rest of S. cerevisiae hydrophilin proteins, only null strains in 

NOP6, STF2,  YJL144W and YNL190W hydrophilins decrease their mortality besides 

SIP18 (López-Martínez et al., 2012), yet YNL190W showed no variation in desiccation 

tolerance in yeast hydrophilin screening by the Hincha group (Dang and Hincha, 2011). 

Furthermore, overexpression of all of them except YNL190W significantly increases 

desiccation tolerance (López-Martínez et al., 2012; Dang and Hincha, 2011). Moreover, 

overexpression of GRE1 also increases the viability, even though its knock-out strain 

showed no difference in desiccation tolerance compared to the reference strain (López-

Martínez et al., 2012; Dang and Hincha, 2011). Since the proteins with a positive effect 

on desiccation are predicted to be unstructured and since they share no sequence 

similarity, it is unfortunately not possible to identify any sequence or structural features 

that may be related to their ability to stabilize cells during desiccation. Thus, enhancement 

of the desiccation tolerance is not due to the biochemical properties of hydrophilin 

proteins. On the other hand, the unchanged desiccation tolerance of the other hydrophilin 

proteins overexpressing and/or knockout strains (Hsp12p, Tif11p, Gon7p, Rpl12ap, 

Ybr016wp, Wwm1p and Ynl190wp) (López-Martínez et al., 2012; Dang and Hincha, 

2011b) may either indicate that the respective hydrophilins play no functional role in 

cellular desiccation tolerance or that their absence can be compensated by other proteins 

or even that they indirectly regulate other molecules involved in desiccation tolerance.  

We can divide S. cerevisiae hydrophilin proteins into two groups since not all S. 

cerevisiae hydrophilin-like proteins could thus enhance desiccation tolerance besides the 

conclusion that other proteins non-hydrophilin proteins could enhance cell survival 

against desiccation. The first group includes NOP6, STF2, SIP18, GRE1 and YJL144W 

whose overexpression increases the viability after desiccation stress by up to 30 to 60% 

compared to the reference strain (López-Martínez et al., 2012). Second, we classified the 

rest other hydrophilins with no effect on desiccation tolerance: HSP12, TIF11, GON7, 

RPL42A, YBR016W, WWM1 and YNL190W. We will therefore deal specifically with the 

first group below.  

Of the proteins belong to the firt group, GRE1 is the only that has a SIP18 paralog but 

maintaining the same role in desiccation. The cytoplasmic gene GRE1 is regulated by the 

HOG pathway and it is regulated negatively by the cAMP-PKA transduction pathway 

and positively by the transcriptional factors Msn2p and Msn4p (Garay-Arroyo and 

Covarrubias, 1999).  
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NOP6 is localized on chromosome IV and is the longest S. cerevisiae hydrophilin protein 

(225 amino acids). In addition, it is highly basic (pI >10.0) since it is rich in Lys and Arg. 

NOP6 is a transactivating factor involved in 40S ribosomal subunit biogenesis, and has 

been predicted to function in rRNA processing due to its RNA recognition motif (Samanta 

and Liang, 2003; Sigrist et al., 2010). Indeed NOP6 interacts with 90S pre-ribosomal 

particle, and specifically 35S and 32S.  

YJL144W is another hydrophilin gene with overexpression increasing desiccation 

tolerance and also freezing tolerance. Localized on chromosome X, its transcriptionally 

upregulation during desiccation (3 fold) (Singh et al., 2005), also correlates with positive 

dehydration tolerance phenotype (López-Martínez et al., 2012; Dang and Hincha, 2011). 

Moreover YJL144W is also upregulated more than tenfold in five different starvation 

treatments (glucose, ethanol, ammonium, phosphate and sulphate limiting nutrient) (Wu 

et al., 2004).  

Of the STF2, SIP18, GRE1, NOP6 and YJL144W overexpressing strains, accumulation of 

Sip18p showed the highest increase in viability after rehydration in comparison to its 

knock out strain (80%) (López-Martínez et al., 2012). Even if the abundance of these five 

proteins increase desiccation tolerance, only STF2 and SIP18 contribute to reducing the 

cell damage done by ROS in oxidative stress imposition (H2O2) and during desiccation, 

exhibiting antioxidant properties (López-Martínez et al., 2012). On the other hand, GRE1, 

NOP6 and YJL144W overexpression do not decrease ROS damage during desiccation, 

even though GRE1 is induced transcriptionally by oxidative stress and desiccation (Singh 

et al., 2005).  

Overexpression of SIP18 or STF2 could lead to a reduction of apoptotic or necrotic cells 

since its abundance decrease ROS counting cells. We showed that while SIP18 reduces 

the secondary necrotic cells (Rodríguez-Porrata et al., 2012a), STF2 reduces the number 

of apoptotic cells during stress induction (López-Martínez et al., 2012) as a putative 

consequence of the reduction of ROS accumulation. The cytoplasmic gene STF2, 

localized on chromosome VII, has no functional role conferred as yet. Stf2p is the major 

modulator of Inh1p, which acts as the inhibitor of the hydrolytic activity of the F1F0-

ATP synthase, preventing the hydrolysis of ATP to ADP and Pi. During oxygen 

deprivation or cytosol acidification, the Inh1 binds directly to the F1 sector promoting the 

inhibition of ATP hydrolysis and thereby preserving cellular ATP. This mechanism is 

carried out thanks to the modulation of Inh1p, but also Stf1p by Stf2p which binds to the 
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F0 sector of mitochondrial FIF0 ATPase (Dienhart et al., 2002). Nevertheless, we found 

that viability values in the overexpressing strain were not a consequence of ATP levels 

(López-Martínez et al., 2012), which does not correlate with the literature.  

SIP18 not only enhances desiccation tolerance but also freezing stress. It may be part of 

an osmotic stress response locus on chromosome XIII, with regulation occurring through 

the HOG signaling cascade (Miralles and Serrano, 1995) as well as through the cyclin-

dependent kinase Ssn3p (Holstege et al., 1998). Indeed osmotic study based on 

proteomics found Sip18p to have the highest upregulation value among whole proteome, 

showing more than a sevenfold change (Soufi et al., 2009). Analysis of Sip18p 

demonstrated that the carboxy-terminal lysisne residues of the protein are essential for 

binding to phospholipids in vitro (Scheglmann et al., 2002), which are involved in 

transcriptional regulation. The participation of Sip18p in desiccation tolerance is also 

corroborated by the upregulation of the transcript during the stress imposition (9.3 fold) 

(Singh et al., 2005). As well as YJL144W, SIP18 is also upregulated more than tenfold in 

five different starvation treatments (glucose, ethanol, ammonium, phosphate and sulphate 

limiting nutrient) (Wu et al., 2004). Although Sip18p is localized in cytoplasm, it appears 

in the nucleus under osmotic and dehydration stress. Taking into account the specific 

cytolocalization of this protein and the reduction of necrotic cells during stress imposition 

acting as an antioxidant molecule, we can hypothesize that Sip18p may be involved in 

preventing cell death-regulating factors (Rodríguez-Porrata et al., 2012a). The 

enhancement of desiccation tolerance due to the overexpression of SIP18 is apparent not 

only in haploid and diploid laboratory strains (López-Martínez et al., 2012; Dang and 

Hincha, 2011b), but also in commercial and wild wine strains used in alcoholic 

fermentation products with the same viability pattern under desiccation stress, without 

affecting the fermentative parameters (López-Martínez et al., 2012).  

Hydrophilin research in different organisms has enabled us to make significant advances 

towards understanding some of their biological properties, including their roles as 

antioxidants and as membrane and protein stabilizers during water stress, either by direct 

interaction or by acting as a molecular shield among other roles. However, further studies 

will be necessary to completely understand their function. In addition, the knowledge of 

the cellular mechanisms involved in water deficit periods is of particular interest for the 

development of long-term preservation strategies for functional biomolecules, cells, 

organisms, tissues, and organs. We can assume that not all LEA proteins are necessarily 
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involved in desiccation tolerance due to their biochemical properties because it is an 

artificial group and not a functional group. Furthermore, other non-LEA related proteins 

could also participate independently of hydrophilin proteins, and some of them might be 

activated under one of the related desiccation stresses or PCD. Otherwise, hydrophilin 

may act as a target gene of these, or have physical roles instead of functional ones, or a 

mix of both.  
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Abstract 

The yeast Saccharomyces cerevisiae is able to overcome cell dehydration; cell metabolic 

activity is arrested during this period but restarts after rehydration. The yeast genes 

encoding hydrophilin proteins were characterised to determine their roles in the 

dehydration-resistant phenotype, and Stf2p was found to be a hydrophilin that is essential 

for survival after the desiccation-rehydration process. Deletion of STF2 promotes the 

production of reactive oxygen species and apoptotic cell death during stress conditions, 

whereas the overexpression of STF2, whose gene product localises to the cytoplasm, 

results in a reduction in ROS production upon oxidative stress as the result of the 

antioxidant capacity of the Stf2p protein. 

 

Introduction 

The kingdoms of bacteria, fungi and plants contain anhydrobiotic organisms that can 

survive during water-deficient periods (Reyes et al., 2005). During dehydration, the 

metabolic processes of these organisms are in a suspended state. However, during 

desiccation stress, genes are expressed that promote cellular tolerance to dehydration 

through protective functions in the cytoplasm, an alteration in the cellular water potential 

to promote water uptake, the control of ion accumulation, and the further regulation of 

gene expression (Bray, 1993). Some of the proteins termed hydrophilins participate in the 

cellular tolerance to this stress condition and are biochemically characterised by a Gly 

content greater than 6%, a hydrophilicity index of .1.0, and a secondary structure of 50–

80% coils. The genome of S. cerevisiae contains genes (GON7, GRE1, HSP12, NOP6, 

RPL42A, STF2, SIP18, TIF11, WWM1, YBR016w, YJL144w, and YNL190w) that code 

for proteins with the characteristics of hydrophilins. The fact that the transcripts of all of 

these genes accumulate in response to osmotic stress suggests that the expression of 

hydrophilins represents a widespread adaptation to water deficit (Garay-Arroyo et al., 

2000). The properties of hydrophilins include their roles as antioxidants and as membrane 

and protein stabilisers during water stress, either by direct interaction or by acting as 

molecular shields (Tunnacliffe and Wise, 2007). Although the functional role of most S. 

cerevisiae hydrophilins remains speculative, there is evidence supporting their 

participation in the acclimation or adaptive response to stress (Battaglia et al., 2008). The 

ectopic expression of some hydrophilins in yeast confers tolerance to water-deficit 
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conditions (Imai et al., 1996; Swire-Clark and Marcotte, 1999; Zhang et al., 2000), and 

the presence of these proteins has been associated with chilling tolerance (Ismail et al., 

1999). In this study, we evaluated the role of the aforementioned S. cerevisiae 

hydrophilins in dehydration stress. Five strains overexpressing SIP18, STF2, GRE1, 

YJL144w or NOP6 were identified as dehydration tolerant. For STF2, we found that the 

cell viability after desiccation and rehydration process was due to the antioxidant capacity 

of this protein, which reduced the number of apoptotic cells during stress conditions by 

minimising the accumulation of ROS in the cells. 

 

Materials and Methods 

Strains and plasmids 

Table 1 summarises the yeast strains and plasmids used in this study. The single null 

mutant strains and the reference strain, all in the BY4742 genetic background, were 

purchased from EUROSCARF (Frankfurt, Germany). The yeast strain expressing the 

GFP-STF2 chromosomal fusion was purchased from Invitrogen. Recombinant DNA 

techniques were performed according to standard protocols (Sambrook and Russell, 

2001). The synthetic genes (GON7, GRE1, HSP12, INH1, NOP6, RPL42A, SIP18, STF2, 

WWM1, YBR016w, and YNL190w) were obtained by PCR and cloned into the pGREG505 

yeast expression vector (under the control of the GAL1 promoter) digested with SalI. The 

plasmids were then used to transform a yeast strain in which the corresponding gene had 

been deleted. The pGREG575 vector was used to express GFP-tagged proteins. 

Transformants were selected by plating on synthetic glucose media lacking leucine. Leu+ 

transformants were selected and re-streaked to obtain single colonies, which were 

confirmed by PCR using the primer pair GALFw and CYCRv (Table 2) and by testing 

for the loss of the LEU marker. The PCR fragments were obtained using BY4742 genomic 

DNA as a template together with the primer pairs shown in Table 2. The amplification 

reactions contained single-strength PCR buffer (Roche, Mannheim, Germany), 1.25 mM 

dNTPs, 1.0 mM MgCl2, 0.3 μM of each primer, 2 ng μl-1 template DNA and 3.5 U DNA 

polymerase (Roche) in a total volume of 100 μl. All of the reactions were carried out 

using a PCR Express thermal cycler for 15 cycles, as follows: denaturation, 2 min at 94°C; 

primer annealing, 30 s at 55°C; and primer extension, 1 min at 68°C. 
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Table1 Plasmids and yeast strains used in this study 

 

  

 Jansen et al., 2005 

Jansen et al., 2005 

  Brachmann et al.,1998 

Jansen et al., 2005 
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Table 2 Primers designed for PCR 

 

Growth conditions and desiccation-rehydration process 

Yeast strains were grown in shake flasks at 150 rpm in SC medium containing 0.17% 

yeast nitrogen base (Difco), 2% glucose, 0.5% (NH4)2SO4, 25 mg·l-1 uracil, and 42 mg·l-

1 lysine and histidine. The desiccation-rehydration process and yeast viability 

determinations were performed as described previously (Rodríguez-Porrata et al., 2011). 

Tests for apoptotic markers 

The DHE staining, Annexin V/PI co-staining and TUNEL staining were performed as 

described in Buttner et al. (2007). The same samples were analysed by fluorescence 

microscopy. To determine the frequencies of the morphological phenotypes revealed by 

the TUNEL, DHE and Annexin V/PI staining, at least 106 cells from three independent 

experiments were evaluated using flow cytometry and FloMax software (Partec GmbH, 

Germany). 

Microscopy 

Cultures of strains harbouring the GFP-tagged genes were grown to the stationary phase 

in SC medium. The cells were washed with 1 x PBS buffer (pH 7.4) and fixed with 70% 

ethanol for 10 min at R.T. Fluorescence was viewed using a Leica fluorescence 
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microscope (DM4000B, Germany). A digital camera (Leica DFC300FX) and the Leica 

IM50 software were used for the image acquisition. Confocal images were obtained using 

a laser microscope (Nikon TE2000-E) equipped with a digital camera (Nikon 

DXM1200C), and overlaid images using NIS-Elements software (Nikon). 

Determination of ATP and pyruvate concentrations 

The cellular pyruvate concentration was determined using the Pyruvate Assay Kit 

(BioVision Research Products, USA), and the ATP content was assessed with the ATP 

Bioluminescence Assay Kit HS II (Roche Applied Science, Germany). The quantification 

was carried out using a POLARstar Omega microplate reader equipped with two reagent 

injectors (BMG LABTECH, USA). 

Assessment of mitochondrial changes 

The changes in mitochondrial mass and m were assessed using JC-1 (Molecular Probes 

Inc.) as previously described (Pina-Vaz et al., 2001). JC-1 allows the simultaneous 

quantification by flow cytometry of both the mitochondrial mass (green fluorescence) and 

m (red fluorescence). We defined the relative mitochondrial function (RMF) as the 

ratio of JC-1 red:green, which reflects the changes in m per unit mitochondrial mass. 

Statistical analysis 

The results were statistically analysed by one-way ANOVA and the Scheffé test using 

the SPSS 15.1 statistical software package. The statistical significance was set at p≤0.05 

and p≤0.01. 

 

Results 

Hydrophilins from S. cerevisiae enhance dry stress tolerance 

Among the 12 proteins of the hydrophilin group found in S. cerevisiae, Tif11p and 

Rpl42Ap are encoded by essential genes. Therefore, the desiccation tolerance capacity of 

a set of 10 viable mutant haploid strains (BY4742) for the genes encoding these 

hydrophilins was assessed using a colony-counting assay. The mean CFU (colony-

forming units) ml-1 value for survival after rehydration was calculated after taking into 

account the viability before drying. Only the stf2 and sip18 strains (BY4742 

background) exhibited lower values of viability after stress induction, ~10% and <10%, 
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respectively (Figure 1). The viability of the hsp12, YBR016w, wwm1, gre1, nop6, 

gon7, and YNL190w strains did not exhibit statistically significant differences from the 

reference strain (at ~35%).  

 

Figure 1.  Effect of over-expressing hydrophilin genes on the yeast viability after the drying and 

rehydration process. The scale of viability (%) indicates the percentage of experimental values for the 

different strains. Values shown are the means of at least n= 3 independent samples ± the standard deviation. 

a,bSignificant differences (p≤0.05) with respect to the BY4742 and to the BY4742, GALp strain, respectively. 

We next characterised the effects of increasing the Stf2p, Sip18p, Hsp12p, YBR016wp, 

Wwm1p, Tif11p, Gre1p, YJL144wp, Nop6p, Gon7p, YNL190wp and Rpl42ap 

expression levels in stationary-state cells using a plasmid that allows expression of these 

genes under the control of the GAL1 promoter (pGAL1) in the corresponding yeast gene-

deletion strain (except for the two essential genes, TIF11 and RPL42, which were over-

expressed in the BY4742 strain). After rehydration, the following strains exhibited 

approximately 50% higher viability than the BY4742, GALp strain: stf2, GALp-STF2; 

sip18, GALp-SIP18; gre1, GALp-GRE1; and nop6, GALp-NOP6 (Figure 1). 

Furthermore, the other transformant strains showed cell viability values similar to that of 

the reference strain harbouring the empty vector (i.e., BY4742, GALp). These results 

allowed us to conclude that the STF2 and SIP18 genes, this last was the subject of a 

previous study (Dang and Hincha, 2011), are essential to overcome the simple stress of 

the desiccation-rehydration process. Moreover, the increased levels of STF2, SIP18, 
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GRE1, and NOP6 gene products before stress induction might enhance the dehydration 

stress tolerance. 

Overexpression of STF2 prevents cellular ROS accumulation 

Based on the reported antioxidant role of hydrophilins in different organisms, as reviewed 

by Tunnacliffe and Wise (2007), we wanted to ascertain, in stationary-state cells, whether 

the higher viability rate of the Stf2p, Gre1p, YJL144wp and Nop6p over-expressing 

strains relative to the wild type after the de- and rehydration process could be due to 

differences in ROS accumulation (Szeto et al., 2007). Yeast cells in the stationary phase 

and after rehydration were incubated in the presence of dihydroethidium (DHE) to 

quantify the ROS accumulating cells (Figure 2).  

 

Figure 2. Yeast cells accumulate ROS during stress induction. Quantification of the ROS accumulation 

using DHE staining before cell dehydration (BD, white bars) and after the rehydration process (AR, grey 

bars). Values are the means of at least n= 3 determinations ± the SD. aSignificant differences (p≤0.05) 

during stress induction with respect to the BD step. bSignificant differences (p≤0.05) during stress induction 

of overexpressing strain with respect to the knock-out strain. cSignificant differences (p≤0.05) during stress 

induction with respect to the BY4742, GALp strain. In each experiment 500 cells were evaluated. 

Before dehydration, approximately 29% of the cells of each evaluated strain showed 

fluorescence after DHE incubation. After rehydration, the cultures of BY4742, GALp and 

stf2 strains contained up to 35% more cells that exhibited intense intracellular DHE 

staining. During stress induction, the stf2, GALp-STF2 cells (30%) showed a statistically 

significant reduction in ROS accumulation in comparison to the stf2 cells (45%). 
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However, the gre1, GALp-GRE1; YJL144w, GALp-YJL144w; and nop6, GALp-

NOP6 cells did not show statistically significant reduction in fluorescence in comparison 

to gre1, YJL144w and nop6 cells. Notably, around 32% of gre1; gre1, GALp-

GRE1; YJL144w, GALp-YJL144w; nop6; and nop6, GALp-NOP6 cells showed 50% 

lower ROS levels during stress induction than BY4742, GALp cells. Considering the cell 

viability results for the over-expressing strains (Figure 1) and their ROS reduction values 

in comparison to the corresponding knockout strain (Figure 2), we suggest that only Stf2p 

overexpression correlates with the increase in the desiccation survival rate and the 

reduction in ROS levels after stress induction.  

Therefore, we explored whether the changes in the cell viability observed in the stf2, 

GALp-STF2 strain with elevated dehydration tolerance correlated with other apoptotic 

processes, such as phosphatidylserine externalisation (Annexin V/PI staining) and DNA 

strand breaks (TUNEL assay) (Figure 3). Using flow cytometry, we were able to quantify 

apoptotic (Annexin V+ /PI2), secondary necrotic (Annexin V+ /PI+), and true necrotic 

(Annexin V2/PI+) cells. After stress induction, the stf2 strain showed amounts of 

apoptotic (12%, as BY4742, GALp strain) and secondary necrotic (29%) fluorescent cells 

significantly higher than stf2, GALp-STF2 cells, 5% and 15% respectively, whereas the 

reference strain and the dehydration-tolerant clone had similar percentages of Annexin 

V/PI and PI cells, 15% and 29%, respectively. Additionally, before dehydration, the 

percentages of Annexin V, Annexin V/PI and PI cells for the BY4742, GALp; and stf2 

strains did not exhibit significant differences, with staining levels of 15% for Annexin, 

5% for Annexin V/PI and, 11% for PI, respectively for both strains, whereas the stf2, 

GALp-STF2 strain showed similar percentages Annexin V/PI and PI cells but only 5% 

for Annexin V cells. These results suggest that the overexpression of Stf2p minimised the 

number of apoptotic cells during stress induction as a putative consequence of the 

reduction of ROS accumulation in the cells. By the contrary, cell death of gre1, 

YJL144w and nop6 strains might be linked to some molecular pathway in a ROS 

accumulation-independent way. 
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Figure 3. Apoptotic hallmarks in the STF2p-over-expressing strain. Stained cells: light grey, necrotic; dark 

grey, secondary necrotic; and black, apoptotic cells. The scale of Annexin V/PI-stained cells (%) indicates 

the percentage of experimental values for the different strains BD and AR. The represented values are the 

means of n= 3 determinations ± the SD. a,bSignificant differences (p≤0.05) with respect to BY4742, GALp 

and stf2 strains, respectively. In each experiment, 16105 cells were evaluated. 

GFP-STF2 fusion protein accumulates in the cytoplasm 

With the aim of investigating the localisation of Stf2p, a strain carrying a fusion of 

Stf2p and green fluorescent protein (GFP) integrated in the STF2 locus (GFP-STF2) 

was analysed by microscopy after 2 days of growth [STF2 is mainly expressed during 

the stationary phase (Gasch et al.,2000)]. After 48 h of growth, a culture of the stf2 

strain with the plasmid expressing GFP-STF2 under GALp (stf2, GALpG-STF2) was 

divided, and the stationary-state cells were observed after a 4 h supplementation with 

2% galactose or 2% glucose. The fusion protein was expressed at a very low level in the 

presence of glucose, resulting in the diffuse labelling of the cells, mainly due to the 

low activity of GALp even after glucose starvation. However, the stf2, GALpG-STF2 

cells with galactose exhibited a high fluorescent signal, with most cells exhibiting 

green fluorescence in the cytoplasm (Figure 4A).  

In order to better note the localization of the full protein in the cytoplasm, cells of the 

over-expressing GFP-Stf2p fusion strain were observed after 4 h of galactose induction, 

using a confocal microscope. Labelling of the cell surface, nucleus or vacuolar system 

was not observed in any case (Figure 4B). Additionally, cells of both the stf2, GALpG-

STF2 and stf2, GALp-STF2 strains (Figure 4C) showed the same increase in viability 
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after rehydration in comparison with the reference strains harbouring the empty vectors 

(Figures. 1 and 4C). Therefore, the GFP tag did not result in any phenotypic defect in 

the viability of the BY4742 strain after the dehydration and rehydration process. 

 

Figure 4. GFP-STF2 fusion localises to the cytoplasm. A) Each column shows images of the same field, 

with the fluorescence of the green fluorescent protein (GFP) in the top row and the differential interference 

contrast (DIC) images of the cultured yeast cells in the bottom row. The stf2 cells transformed with the 

vector expressing GFP-STF2 under the control of the GAL1 promoter were photographed after 4 h of 

galactose or glucose supplementation. Cells expressing the GFP-STF2 fusion protein under the STF2 

promoter were photographed after 24 h in the stationary phase. B) Analysis of cells expressing GFP-STF2 

using the confocal microscope image generated by the average of a pile of five optical sections. C) The 

scale of viability (%) indicates the percentage of the experimental values for the different strains after the 

dehydration and rehydration process relative to the highest value for the fresh cultures before the induction 

of the stress. Values are the means of n = 3 determinations ± the SD. *Significant differences (p≤0.01) of 

overexpressing strains with respect to the BY4742, GALp strain. 

A 
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Respiration deficiency in the GALp-STF2 strain does not promote dehydration tolerance 

Mitochondria are both the source of and the site for the detoxification of ROS in 

yeast. A physiological stimulus for ATP synthesis can become a pathological 

stimulus for ROS generation (Brookes et al., 2004). The Stf2p protein may act as 

stabilising factor that enhances the inhibitory action of the Inh1p protein in the F1F0-

ATP synthase; homodimers of the Inh1p protein bind directly to the F1-sector, 

allowing the maintenance of intracellular ATP levels (Bienhart et al., 2002). Therefore, 

we evaluated whether changes in the regulation of ATP hydrolysis correlated with the 

enhancement of the cell dehydration tolerance. Both the inh1 and inh1, Galp-

INH1 strains did not show improved survival relative to the reference strain (at 

~35%) (Figure 4C). The increase in the cellular ATP level reduces the flux through 

the glycolytic pathway, thus inducing a reduction in pyruvate accumulation 

(Larsson et al., 2000). Figure 5 shows the evaluation of the cellular pyruvate and 

ATP concentrations for the stf2 and stf2, GALp-STF2 strains before cell 

dehydration (BD) and after the rehydration process (AR). The cells of the BY4742, 

GALp and stf2 strains showed similar patterns of ATP content BD and AR, increasing 

4 fold and 2 fold, respectively. In the stf2, GALp-STF2 cells AR, less than 90% 

of the ATP level of the reference strain was observed (Figure 5A). The mutated 

strains did not exhibit statistically significant changes in their pyruvate 

concentrations relative to the reference strain BD and AR (Figure 5B). With regard 

to BD and AR, a minor discrepancy was observed between the mitochondrial mass 

and m in the cells of the BY4742, GALp; stf2 and stf2, GALp-STF2 strains, but 

no significant change in their RMFs was observed (Figure 5C), suggesting that 

variations in the mitochondrial function did not play a significant role in the cellular 

ATP content during the dehydration process. Therefore, we evaluated three petite 

mutant strains (mtg1, msh1, and nam1) overexpressing the STF2 gene to exclude the 

possibility that the increase in cell dehydration tolerance was a consequence of lack of 

synchronicity between ATP and pyruvate metabolism (Figure 4C). Stationary cells 

from the mtg1, GALp-STF2; msh1, GALp-STF2; and nam1, GALp-STF2 strains 

after galactose induction showed survival rates (75%) similar to that of the stf2, 

GALp-STF2 strain (Figure 1). 
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Figure 5. Quantification of ATP (A), pyruvate (B), and the relative mitochondrial function (C) BD 

(white bars), AR (grey bars) and relative mitochondrial function (RMF). Value shown are the means of 

at least n = 3 independent samples ± the SD. *Significant differences (p≤0.05) with respect to the BD step. 

Cells over-expressing Stf2p show a reduction in DHE fluorescence after H2O2 stress 

Stationary-state cells of the BY4742, GALp and stf2, GALp-STF2 strains were 

induced for 4 h with 2% galactose and exposed to 4 mM H2O2 (Figure 6). The Stf2p-

overexpressing strain showed a reduction in the number of DHE-positive cells. As 

shown in figure 6, after 10 min of H2O2 treatment, the percentage of cells 

accumulating ROS was 10% less of the value for the reference strain, supporting the 

hypothesis that Stf2p acts as an antioxidant. However, after 20 min and 40 min of 

H2O2 stress, the number of DHE-positive cells did not exhibit significant differences, 

suggesting that Stf2p does not have a strong positive effect on H2O2 clearance. 
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Figure 6. Levels of DHE accumulation after oxidative stress induced by H2O2. BY4742 (white bars) and 

stf2, pGAL-STF2 (grey bars) cells were exposed to 4 mM H2O2, and at the indicated times, aliquots were 

collected to determine the number of DHE-positive cells. The represented data are the means of n = 6 

determinations ± the SD. *Significant differences (p≤0.05) for each time with respect to the stf2, pGAL-

STF2 strain. 

 

Discussion 

It has been reported previously that some highly hydrophilic proteins are commonly 

induced during water-deficit conditions (Garay-Arroyo et al., 2000). Among the 12 S. 

cerevisiae hydrophilin proteins, we found that only Stf2p, Sip18p, Gre1p, YJL144wp 

and Nop6p are necessary for the cells to overcome dehydration stress; only Stf2p 

(involved in the regulation of the mitochondrial F1F0-ATP synthase) and Nop6p (an 

rRNA-binding protein required for 40S ribosomal subunit biogenesis) have known 

functions in yeast (Lebowitz and Pedersen, 1996; Buchhaupt et al., 2007). The 

overexpression of the above proteins significantly enhanced cell viability under stress 

conditions. Therefore, considering the cell viability results and the apparently 

uncoupled cellular roles of the yeast Stf2p, Sip18p, Gre1p, YJL144w, and Nop6p 

hydrophilins, we suggest that the roles as putative intracellular cell protectors might 

not be their only activity, as was shown for the group 3 late embryogenesis abundant 

(LEA) proteins, which prevent both protein aggregation and membrane fusion (Török 

et al., 2001). In this present study, we characterised the role of Stf2p in dehydration 

stress and examined the possible physiological relationship between the overexpression 

of Stf2p and the enhancement of viability after the induction of stress. The prevention 
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of ROS accumulation in cells of the stf2, GALp- STF2 strain, during both the 

desiccation-rehydration process and H2O2 oxidative stress, indicates that STF2p is a 

protein with antioxidant capabilities, as has been reported for some plant LEA proteins 

(Battaglia et al., 2008). Thus, the overexpression of STF2 prevents ROS accumulation 

and, consequently, cell apoptosis (Mazzio and Soliman, 2004; Li et al., 2003). The strains 

with highly significant viability rates, the Gre1p-, YJL144wp- and Nop6p-

overexpressing strains, yielded viability and ROS results that were contrary to those for 

the stf2, GALp- STF2 strain. Perhaps, as was suggested for the LEA proteins, Gre1p, 

YJL144wp and Nop6p behave as molecular shields that prevent protein aggregation by 

steric or electrostatic repulsion, analogous to the polymer stabilisation of colloidal  

suspensions (Chakrabortee et al., 2007); however, no direct evidence of functional 

mechanisms were described. It is well documented that mitochondrial function is 

necessary to maintain low intracellular ROS levels under both saline and osmotic stress 

conditions (Koziol et al., 2005). In addition, a physiological stimulus for ROS 

generation can become a stimulus for ATP synthesis in growing cells (Brookes et al., 

2004). Most of the mechanisms of cellular tolerance to harsh conditions are driven via 

plasma membrane ATPase and vacuolar ATPase functions, processes that require large 

amounts of ATP to overcome acidic or osmotic stress; thus, a low ATP concentration 

could compromise cell viability during stress conditions (Martínez-Muñoz and Kane, 

2008; Hamilton et al., 2002). However, the accumulation of ATP reduces S. cerevisiae 

glycolytic activity, preventing pyruvate formation (Larsson et al., 2000). During the 

drying and rehydration process, the stf2, GALp-STF2 strain showed lower levels of 

accumulated ATP than the stf2 strain, and both strains had similar pyruvate 

concentrations after the stress induction, supporting the idea that the different viability 

values were not a consequence of achieving critical values for ATP and pyruvate. Stf2p 

is a modulator of the Inh1p regulatory peptide, which acts on the F1F0-ATP synthase 

complex (Hong and Pedersen, 2002), and the deletion or altered expression of the INH1 

gene could decrease the ATP supply or enhance cell growth and pyruvate production, 

respectively (Zhou et al., 2009). Considering the lack of correlation between the 

ATP and pyruvate concentrations in the STF2 strains during the dehydration-

rehydration process and the similar viabilities of the inh1, GALp-INH1 and inh1 

strains, we conclude that the lack of synchronicity between the glycolytic pathway 

and ATP synthesis did not have a major role in the improved survival rate of the stf2, 
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GALp-STF2 strain. Moreover, the overexpression of the STF2 gene in the petite and 

non-petite strains resulted in similar viability rates. This result provides evidence that 

Stf2p may allow the cell to survive by stabilising other cellular proteins rather than 

by interacting with apoptotic proteins, such as Nuc1p, shuttling from the 

mitochondria to the nucleus or by a reconfiguration of metabolism via the 

mitochondrial retrograde signal that is involved in nutrient sensing and cell aging 

(Büttner et al., 2006; Liu and Butow, 2006). The present work provides evidence that 

Stf2p allows yeast cells to survive during dehydration stress by contributing to the 

cellular antioxidant capacity that prevents ROS accumulation rather than by the 

inhibition of apoptotic proteins.  

Further studies will be necessary to establish the functional mechanisms of yeast 

hydrophilins which provide dehydration stress tolerance to the cells. With recent 

advances in tissue engineering, cell transplantation and genetic technology, the 

successful long-term storage of living cells is of critical importance. Studies in yeast 

may provide a better understanding of desiccation-tolerance genetics for potential 

applications in biomedicine, plant biotechnology, and beverage and bio-ethanol 

technology. 
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Abstract 

In the last few decades spontaneous grape must fermentations have been replaced by 

inoculated fermentation with Saccharomyces cerevisiae strains as active dry yeast 

(ADY). Among the essential genes previously characterized to overcome the cell-drying-

rehydration process, six belong to the group of very hydrophilic proteins known as 

hydrophilins. Among them, only SIP18 has shown early transcriptional response during 

dehydration stress. In fact, the overexpression in S. cerevisiae of gene SIP18 increases 

cell viability after the dehydration process. The purpose of this study was to characterize 

dehydration stress tolerance of three wild and one commercial S. cerevisiae strains of 

wine origin. The four strains were submitted to transformation by insertion of the gene 

SIP18. Selected transformants were submitted to the cell-drying-rehydration process and 

yeast viability was evaluated by both viable cell count and flow cytometry. The 

antioxidant capacity of SIP18p was illustrated by ROS accumulation reduction after H2O2 

attack. Growth data as cellular duplication times and lag times were calculated to estimate 

cell vitality after the cell rehydration process. The overexpressing SIP18 strains showed 

significantly longer time of lag phase despite less time needed to stop the leakage of 

intracellular compounds during the rehydration process. Subsequently, the transformants 

were tested in inoculated grape must fermentation at laboratory scale in comparison to 

untransformed strains. Chemical analyses of the resultant wines indicated that no 

significant change for the content of secondary compounds was detected. The obtained 

data showed that the transformation enhances the viability of active dry wine yeast 

(ADWY) without affecting fermentation efficiency and metabolic behaviour. 

 

Introduction 

The inoculum of grape must with selected S. cerevisiae strains is nowadays a general 

winemaking practice because the use of starters reduces the risk of sluggish fermentations 

and contributes to reproducible sensorial properties and quality in wine. Actually, the 

most widely used starter formulation in this sector is represented by ADWY. The 

performance of dry yeast products, including their fermentation capacity and flavour 

release, depends by factors related to the production, such as industrial practice during 

biomass propagation and desiccation (Attfield et al., 2000; Pretorius, 2000). The 

ADWYs, used in most yeast-based food industries, undergo several stress conditions 
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during technological processes production. In S. cerevisiae, strain genetic constitution 

plays a fundamental role in desiccation tolerance. Among the genes required by the yeast 

to overcome dehydration stress, some of the genes encoding for the proteins termed 

hydrophilins are essentials (Rodríguez-Porrata et al., 2012). On the other hand, the 

overexpression of genes encoding hydrophilins in some yeasts confers tolerance to water-

deficit conditions (Dang and Hincha, 2011; López-Martínez et al., 2012). Hydrophilin 

research in different organisms has allowed significant advances to be made towards the 

understanding of some of their biological properties, including their roles as antioxidants 

and as membrane and protein stabilizers during water stress, either by direct interaction 

or by acting as a molecular shield (Tunnacliffe and Wise, 2007). Among yeast hydrophilin 

proteins, SIP18p was characterized as an inhibitor for cell apoptosis during the 

dehydration-rehydration process, by its antioxidative capacity through the reduction of 

ROS accumulation after an H2O2 attack (Rodríguez-Porrata et al., 2012). 

Due to the demanding nature of modern winemaking practice, there is a continuously 

growing quest for specialized S. cerevisiae strains (Capece et al., 2012), possessing a 

wide range of optimized or novel oenological properties. The great advances in yeast 

genetics has led wine microbiologists to look for alternative ways to exploit yeast natural 

genetic diversity or even to genetically manipulate yeast strains in order to improve 

specific properties. The publication of the complete S. cerevisiae genome (Goffeau et al., 

1996), together with a growing arsenal of recombinant DNA technologies, led to major 

advances in the fields of molecular genetics, physiology and biotechnology and the 

construction of specialised strains, mainly by heterologous gene expression or by altered 

gene dosage (overexpression or deletion). Over the last 15 years, different genetically 

improved yeast strains useful for winemaking have been developed (reviewed by Blondin 

and Dequin, 1998; Dequin, 2001; Dequin et al., 2003; Pretorius, 2000; Pretorius and 

Bauer, 2002; Pretorius et al., 2003; Schuller and Casal, 2005). The most important target 

for strain improvement was related to enhancement of fermentation performance, higher 

ethanol tolerance, better sugar utilization and nitrogen assimilation and enhanced 

organoleptical properties. 

The objectives of this study were to increase the dehydration tolerance in S. cerevisiae 

strains of wine origin. For this purpose, four S. cerevisiae strains were transformed with 

SIP18 gene from the strain BY4742 (Brachmann et al., 1998), transcriptionally bonded 

to the promoter of the GAL1 gene, in order to enhance its expression during biomass 
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production before ADWY preparation. The consequences of overexpression of gene 

SIP18 for yeast viability and fermentative performance were investigated. The results 

obtained showed that the transformation improved the viability of ADWY without 

affecting fermentation efficiency and metabolic behaviour. 

 

Materials and methods 

Microbial strains, plasmids and media  

Table 1 summarizes the S. cerevisiae strains and plasmids used in this study. 

Recombinant DNA techniques were performed according to standard protocols 

(Sambrook and Russell, 2001). The synthetic SIP18 gene was obtained by PCR and 

cloned into the pGREG505Δh yeast expression vector (under the control of the GAL1 

promoter) digested with SalI. The plasmids, containing the KanMX (geneticin resistance; 

GtR) marker gene, were then used to transform the wine yeast strains. Transformants were 

selected by plating on synthetic glucose medium with 200 mg/ml geneticin. GtR 

transformants were selected and restreaked to obtain single colonies, which were 

confirmed by PCR using the primer pair: GALFw, 5′-GAAAAAACCCCGGATTCTAG-

3′; and CYCRv, 5′-ATAACTAATTACATGACTCGAG-3′ and by testing for the loss of 

the KanMX marker. The PCR fragments were obtained using BY4742 genomic DNA as 

a template together with the primer pairs:  

SIP18F,5′GAATTCGATATCAAGCTTATCGATACCGTCGACAATGTCTAACATG

ATGAATAA-3′ 

SIP18R,5′GCGTGACATAACTAATTACATGACTCGAGGTCGACTTATTTTTTCA

TGTTTTCGT-3′.  

The amplification reactions contained single-strength PCR buffer (Roche, Mannheim, 

Germany), 1.25 mm dNTPs, 1.0 mm MgCl2, 0.3 μm each primer, 2 ng/µl template DNA 

and 3.5 U DNA polymerase (Roche) in a total volume of 100 µl. All the reactions were 

carried out using a PCR Express thermal cycler for 15 cycles, as follows: denaturation, 2 

min at 94°C; primer annealing, 30 s at 55°C; and primer extension, 1 min at 68°C. 
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Table1. Saccharomyces cerevisiae strains and plasmids used in this study 

Strain Genotype/description Source/reference 

BY474 MATa, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0 EUROSCARF/Brachmann et al. (1998) 

4LB2 Wild wine strain UBYC/Capece et al. (2011) 
F15 Commercial wine strain Laffort 

RB3-7Sc2 Wild wine strain UBYC/Capece et al. (2010) 

Sc9-11 Wild wine strain UBYC/Siesto et al. (2013) 
LB, GALp 4LB + pGREG505Δh This work 

F, GALp  F15 + pGREG505Δh This work 

RB, GALp RB3-7Sc2 + pGREG505Δh This work 

Sc, GALp Sc9-11 + pGREG505Δh This work 

LB, GALp-SIP18a 4LB + pGREG505si This work 

LB, GALp-SIP18b 4LB + pGREG505si This work 

F, GALp-SIP18a F15 + pGREG505si This work 

F, GALp-SIP18b F15 + pGREG505si This work 

RB, GALp-SIP18a RB3-7Sc2 + pGREG505si This work 

RB, GALp-SIP18b RB3-7Sc2 + pGREG505si This work 

Sc, GALp-SIP18a Sc9-11 + pGREG505si This work 

Sc, GALp-SIP18b Sc9-11 + pGREG505si This work 
   

Plasmids   

pGREG505Δh GAL1p-SalI-SalI-CYC1t-KanMX4-LEU2-bla Rodríguez-Porrata et al. (2012) 

pGREG505si GAL1p-SIP18-CYC1t-KanMX4-LEU2-bla Rodríguez-Porrata et al. (2012) 

Dehydration and rehydration treatment 

The desiccation-rehydration process was performed as described by Rodríguez-Porrata et 

al. (2011). 

Flow cytometry analysis 

Flow cytometry was carried out using a CYFlow® space instrument (PARTEC GmbH, 

Germany) fitted with a 22 mW ion laser for excitation (488 nm), while monitoring with 

a single emission channel (575 nm band-pass filter). FloMax software (Quantum Analysis 

GmbH, Germany) was used for instrument control, data acquisition and data analysis. As 

control of full viability (99% by propidium iodide stain), an overnight YPD culture of 

each reference strain (4LB, F15, RB3-7Sc2 and Sc9-11) was used. 

Tests for intracellular ROS accumulation 

The dihydroethidium (DHE) staining was performed as described by López-Martínez et al. 

(2012). The samples were analysed by fluorescence microscopy. To determine the 

frequencies of the morphological phenotypes revealed by the DHE staining, at least 103 

cells from three independent experiments were evaluated, using a Leica fluorescence 

microscope (DM4000B, Germany). A digital camera (Leica DFC300FX) and Leica IM50 

software were used for the image acquisition. 

Measurement of intracellular nucleotide leakage 

The rehydrated yeast cells were harvested by centrifugation at 5000 rpm for 3 min at 

4ºC. The supernatant absorbance values at 260 and 280 nm were used to calculate the 
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nucleotide equivalents in mg/ml = (0.063 A260) -  (0.036 A280) (Herbert et al., 1971). The 

total intracellular nucleotide calculated was around 3 mg/g rehydrated cells. These 

analyses were done at least in triplicate and standard deviations (SDs) were  < 10%. 

Determination of biological parameters 

The growth data from microplate wells were monitored at 600 nm every 20 min, after 20 

s shaking, for 24 h at 28ºC in a POLARstar OMEGA instrument (BMG Labtech, 

Germany). Microplate wells, filled with 190 ml YPD medium, were inoculated with 10 

ml rehydrated cells inoculum, measured by flow cytometry cell counting, to reach 0.4 

OD (4.3 x 106 cells/ml), which is above the minimal limit detection previously 

established by calibration. Blanks were determined from quintuplicate non-inoculated 

wells for each experimental 96 well plate. Two independent transformants of each 

construction were evaluated, and each was evaluated in triplicate. The growth data from 

plate counts were enumerated as log10 values. The biological parameters, duplication 

time (DT) and lag phase time (l), were estimated by fitting the growth curves into the 

model of Baranyi and Roberts (1994), using MicroFit software (Institute of Food 

Research, Norwich, UK). 

Fermentation at the laboratory scale 

Small-scale fermentations were carried out in triplicate using natural grape must. After 

pasteurization for 20 min at 100ºC, standard analyses (titratable acids, pH, assimilable 

nitrogen concentration, YAN, and sugar content) were done on the unfermented must. 

The yeast strains were grown for 24 h at 28ºC in 150 ml YPD containing culture 

flasks at 180 rpm, whereas the strains carrying the plasmid pGREG505 were grown in 

YPD with 400 mg/ml geneticin. After settling, 0.75 g/l diammonium phosphate (DAP) 

was added to the must to adjust the nitrogen concentration. The strains were inoculated 

into the grape must to a final concentration of 1 x 107 cells/ml and the fermentations 

were performed in 100 ml flasks at 25ºC. The fermentation process was followed daily 

by measuring the decrease in weight, and the fermentation process was considered 

complete when the weight of the flasks was stabilized. Upon completion of 

fermentation, the wines were racked and then stored at 4ºC until analytical evaluation. 

Measurement of volatile compounds 

Higher alcohols, ethyl acetate, acetaldehyde and acetic acid were determined by direct 

injection gas chromatography, using an Agilent 7890A gas-liquid chromatograph fitted 
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with a flame ionization detector (FID) and a split-splitless injector, and provided with an 

automatic sampler and a Supelco glass column packed with 80/120 Carbopack BAW/5% 

Carbowax 20 M (180 cm x 2 mm i.d.). Chromatographic conditions entailed the following: 

helium carrier gas, head pressure of 140 kPa; total flow of 20 ml/min; purge flow of 7.0 

ml/min; injector and detector temperature of 250ºC; initial column temperature of 80ºC, 

held for 2 min, then raised to 200ºC at 4ºC/min; make-up gas He at 30 ml/min; detector 

FID, H2 at 30 ml/min; air 300 ml/ min; injected volume, 1 ml. The identification and 

quantification of volatile compounds were determined by comparing each 

chromatographic peak with the retention times and relative areas of standard solutions. 

Volatile compounds were determined by solid-phase microextraction (SPME). Ten ml wine 

samples were transferred to 20 ml glass vials with 2 g NaCl, and 100 ml isoctane 

(concentration 10000 mg/l) was added as internal standard. The equilibration was 

performed by stirring for 20 min at 46ºC, whereas the adsorption phase was carried out 

at 50ºC for 15 min under agitation. A carboxenpolydimethylsiloxane-coated fibre (100 mm) 

was used. After extraction, the fibre was placed in the injector of the GC for 10 min. A 

DB-WAXTER (Agilent) column was used (length 30 m, i.d. 0.250 mm). The analysis 

was performed in splitless mode and the following conditions were used: 220ºC as 

injection temperature; 250ºC as detector temperature; helium as carrier gas with a flow 

rate of 20 ml/min. The initial temperature was 40ºC and then it was raised to 240ºC at 

7ºC/min. 

Statistical analysis 

The results were statistically analysed by one-way ANOVA and the Scheffé test, using 

SPSS 15.1 statistical software package (SPSS Inc., 2001). Furthermore, multivariate 

analysis of variance-canonical variants analysis (MANOVA/CVA) was carried out using 

the statistical package PAST, v. 1.90 (Hammer et al., 2001). The statistical significance was 

set at p ≤ 0.05. 

 

Results 

SIP18p hydrophilin enhances wine yeast dry stress tolerance 

In the first step, the effects of increasing the SIP18p expression levels were evaluated 

in stationary phase cells of four different S. cerevisiae wine strains (Table 1). For this 

purpose, a plasmid was used that allows expression of this gene under the control of the 
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GAL1 promoter (GAL1p), which is less active than the endogenous SIP18 promoter in the 

stationary phase. Both kinds of transformant strains, harbouring the empty vector or the 

plasmid expressing SIP18 under GALp, after 48 h cultivation in selective dropout (SD) 

medium with 400 mg/ml geneticin were dried after 4 h supplementation with 2% 

galactose. The desiccation tolerance capacity of the yeast LB, GALp; Sc, GALp; RB, GALp; 

and F, GALp strains after cell rehydration with pure water at 37ºC exhibited viability values 

of 20%, 30%, 55% and 60%, respectively (Figure 1).  

 

Figure 1. Effect of overexpressing SIP18 hydrophilin gene on yeast viability after stress induction. The 

scale of viability indicates the experimental values (%) for the different strains. Values shown are mean 

± SD of at least three independent samples. *Significant differences (p ≤ 0.05) with respect to the 

respective transformant reference strain. 

After rehydration, the strains LB, GALp-SIP18; Sc, GALp-SIP18; RB, GALp-SIP18, and 

F, GALp-SIP18 exhibited 70%, 50%, 40% and 20% higher viability than the reference 

strains harbouring the empty vector, respectively (i.e. LB, GALp). Furthermore, the non-

transformant yeast 4LB, F15, RB3-7Sc2 and Sc9-11 strains showed cell viability values 

similar to those of the transformant reference strains (data not shown). On the basis of 

these results, it is possible to conclude that the increased levels of SIP18 gene product 

before stress induction in four different genetic backgrounds enhance the dehydration 

stress tolerance, as was previously shown in the laboratory haploid strain BY4742 

(Rodríguez-Porrata et al., 2012). 
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Overexpressing SIP18 gene strains show reduced ROS accumulation  

The relationship between the increased viability rate of SIP18p overexpressing strains 

after stress induction and differences in accumulating ROS cells was evaluated. Yeast 

strains were grown in SD medium with 400 mg/ml geneticin, and cells from the 

stationary phase before desiccation and after rehydration were analysed for the 

accumulation of reactive oxygen species (ROS). Before dehydration, around 17% of cells 

from all evaluated strains showed fluorescence after DHE incubation, whereas after 

rehydration the strains overexpressing SIP18 showed DHE accumulation only reaching 

~20% less than the strains harbouring pGREG505Δh. Taking into consideration the cell 

viability results of overexpressing SIP18p wine strains (Figure 1) and the ROS 

accumulation values (Figure 2), we can confirm, as previously observed in the haploid 

strain BY4742, that there is a correlation between the increase in desiccation survival rate 

and the reduction of intracellular ROS levels after stress imposition. 

 

Figure 2. ROS accumulation by yeast cells during stress induction. (A) Quantification of ROS accumulation 

using DHE staining before drying (white bars) and after rehydration (grey bars). Values are mean ± SD of 

three determinations. DHE pos., DHE- positive cells. *Significant differences (p ≤ 0.05) compared to the 

respective transformant reference strain after stress induction 

Tolerant strain dehydration shows reduction in DHE cells after oxidative stress by H2O2 

Cells from LB, GALp; LB, GALp-SIP18; Sc, GALp; Sc, GALp-SIP18; RB, GALp; RB, 

GALp-SIP18; F, GALp and F, GALp-SIP18 strains, after 4 h galactose induction, were 

subjected to 4 mM H2O2. After this treatment, the SIP18-overexpressing strains showed 
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40% reduction in the number of DHE cells after 10 or 20 min (Figure 3), whereas for 

all the strains at 30 and 40 min, the number of DHE-positive cells was similar. These 

results confirmed antioxidant properties by Sip18p, validating the previous results 

obtained in strain BY47472 by Rodríguez-Porrata et al. (2012), also in these four 

different wine yeast strains. 

 

Figure 3. Levels of DHE accumulation after oxidative stress by H2O2. Cells in stationary state from 

the transformant reference (white bars) and the overexpressing SIP18 strains (grey bars) were exposed to 

4 mM H2O2 at the indicated times; aliquots were taken to evaluate DHE-positive (DHE pos.) cells. (A) LB, 

GALp-SIP18 and LB, GALp strains; (B) Sc, GALp-SIP18 and Sc, GALp strains; (C) RB, GALp-SIP18 and 

RB, GALp strains; (D) F, GALp-SIP18 and F, GALp strains. The represented data are values ± SD from 

at least three independent experiments. *p≤ 0.05 compared to the respective transformant reference 

strain at each time. 

Cell leakage during cell rehydration and ADY vitality 

Dehydrated yeast can lose up to 30% of soluble cell compounds when rehydrated, which 

proves the non-functionality of the cell membrane. A faster reduction in leakage may 

therefore be beneficial for the vitality of rehydrated yeast cells. The degree of intracellular 

compound leakage was assessed by evaluating 260 nm light absorbtion, at each point in 
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time, of nucleotide concentration in the rehydrating supernatants of the transformant wine 

yeast strains (Figure 4A-D). On the other hand, after the rehydration process, cells were 

inoculated into YPD at 28°C and evaluated biomass time course production (Figure 4a-

d). For the experimental rehydration of LB, GALp; Sc, GALp; and RB, GALp strains, the 

nucleotide concentration time course in the supernatant appeared to exhibit two periods 

that were delimited at the inflection points 20, 15 and 15 min, respectively, where cell 

leakage rate was inhibited (Figure 4A-C). The leakage trend exhibited by the LB, GALp-

SIP18; Sc, GALp-SIP18; and RB, GALp-SIP18 strains showed a first period of ~5 min 

and a relative total nucleotide leakage of ~16%. Neither two leakage trend periods nor 

relative total nucleotide leakage differences between F, GALp and F, GALp-SIP18 strains 

were observed (Figure 4D). These experiments reveal that most of the overexpressing 

SIP18 strains show at least 25% lower relative leakage than the transformant reference 

strains (Fig 4A-C). 
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Figure 4. Time course of extracellular nucleotide concentration at the rehydration process (A, B, C and D, 

page121) and growth curve of rehydrated cells (a, b, c and d). Overexpressing SIP18 strains (white bars) 

and their respective transformant reference strains (grey bars) were incubated at 37ºC in pure water. 

The data represented are mean ± SD of triplicate rehydration experiments. The graphs are a representative 

example of growth experiments performed, with two independent transformants for each strain. (A,a) LB, 

GALp-SIP18 and LB, GALp strains; (B,b) Sc, GALp-SIP18 and Sc, GALp strains; (C,c) RB, GALp-

SIP18 and RB, GALp strains; and (D,d) F, GALp-SIP18 and F, GALp strain.  

Strains overexpressing SIP18 gene show longer lag phase after rehydration process 

In this phase, it was evaluated whether the relative lower leakage of the overexpressing 

SIP18 strains during the rehydration process was correlated with a shorter lag phase, 

compared to the transformant reference strains, once inoculated in complete medium. The 

LB, GALp-SIP18; Sc, GALp-SIP18; and RB, GALp-SIP18 strains exhibited a λ which was 

135, 160, 141 and 176 min longer than the transformant reference strains, respectively 

(Figure 4a-d). On the other hand, the LB, GALp-SIP18 and F, GALp-SIP18 strains showed 

0.15 and 0.22 higher DTs than their transformant reference strains, respectively, whereas 

Sc, GALp-SIP18 strain 0.21 lower DT than the transformant reference strains and the RB 

transformant strains did not show significant differences between them. The combination 

of these results with cell leakage data might confirm that there is not a correlation between 

faster-recovering membrane permeability and the strains showing shorter lambda phase 
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(Figure 4a-d). The overexpressing SIP18 strains exhibited an increase of λ phase even 

though, in general, they stopped the intracellular compounds leakage earlier after stress 

induction. 

SIP18p hydrophilin did not affect fermentative performance 

The wild strains and the corresponding transformants were tested during inoculated 

fermentation at the laboratory scale in order to evaluate the influence of transformation 

on strain fermentative performance. For all the strains, no statistically significant 

differences in fermentative vigour, expressed as amount of CO2 produced when the strains 

fermented 15% of the total sugar present in the grape must, were found between the 

original and both kinds of transformant strains (data not shown). Furthermore, for all 

strains except Sc9-11, the transformants produced amounts of CO2 slightly higher than 

those shown by non-transformant strains. The highest increase of fermentative vigour was 

exhibited by the transformants harbouring the empty vector (LB, GALp, RB,GALp and 

F,GALp), which produced about 0.2 g CO2 more than non-transformant strains. These 

results revealed that the transformation did not negatively affect the fermentative 

performance of modified strains. 

SIP18p hydrophilin did not affect metabolic behaviour of the strains 

The successive step was to verify the effect of SIP18 hydrophilin on the metabolic 

behaviour of the transformants in comparison to the wild strains. The amounts of the 

principal secondary compounds determined in the experimental wines by gas 

chromatography are reported in Table 2. The four original strains exhibited a very 

similar metabolic behaviour in these fermentations; in fact, the contents of all the 

determined compounds were similar among the wines obtained from the four original 

strains, even though some differences occurred. In particular, the n-propanol level 

detected in the wine produced by 4LB was statistically significant different from the 

content of the wine produced by F15, whereas the acetaldehyde content in the wine 

produced by Sc9-11 differed significantly from the level found in the wine produced by 

RB3-7Sc2. However, it must be underlined that all the compounds tested were present 

at acceptable levels, including acetic acid, which was below the critical threshold of 

about 0.7 g/l (range 201–330 mg/l). As regards the wines produced by transformant 

strains, obtained by each of the four S. cerevisiae wild strains, generally, the secondary 

compounds were present at levels comparable to the wines obtained by the non-
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transformant strains. Only two transformants (LB, GALp derived from 4LB and RB, 

GALp obtained from RB3-7Sc2) showed concentrations of acetic acid significantly 

higher than those of the original strains (p<0.05) although also in this case the values 

were below the threshold value (Table 2).  

Table 2. Main volatile compounds produced during laboratory-scale fermentations by four S. cerevisiae 

strains and two transformants for each strain. Data are expressed in mg/l and are mean ±SD of three 

independent experiments. *Values significantly different from the control (p<0.05), represented by non-

transformant strains. Different letters (a, b) in the same column correspond to statistically significant 

differences for each non-transformant strain (p<0.05). 

 

The data of secondary compounds determined in the experimental wines were submitted 

to MANOVA/CVA analysis in order to maximize the differences among the four 

predefined groups, represented by wines obtained by each strain and the corresponding 

transformants. Two tests were used in this analysis, the Wilks’ λ and the Pillai trace, which 

yielded p values < 0.05 (6.57E–5 and 2.31E–6, respectively), indicating that the variation 

among the four groups was highly significant. The scatter plot obtained by CVA analysis 

revealed that the four groups (each composed of wines obtained by original and 

corresponding transformant strains) are located in the four different quadrants (Figure 5a), 

indicating that the wines produced by the transformant strains were very similar to those 

produced by the corresponding wild strains. The analysis of loading values revealed that 

the first component explains 98% of the variance and the compounds mainly influencing 

the variance in this component were n-propanol and isobutanol (Figure 5b). 
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Figure 5. (a) Scatter plot and (b) loadings of MANOVA/CVA analysis of main secondary compounds 

determined in wines obtained by non-transformant and transformant strains. Values are eported as mean 

of three independent experiments. Each group, composed by wines obtained by non-transformant strain 

and corresponding transformants, is represented with a different symbol: +, wines by 4LB, LB, GALp-

SIP18 and LB, GALp strains; ■, wines by RB3-7Sc2, RB, GALp-SIP18 and RB, GALp strains; □, wines 

by Sc9-11, Sc, GALp-SIP18 and Sc, GALp strains; ◊, wines by F15, F, GALp-SIP18 and F, GALp 

strains. 

Furthermore, the effect of strain transformation on yeast metabolic behaviour was 

evaluated by analysing the experimental wines for the content of volatile organic 

compounds (VOCs), present at low level but known to influence the final organoleptic 

quality of wine. These compounds, determined by SPME analysis, are represented 

mainly by terpenes, esters and higher alcohols. Figure 6 reports the comparison in VOC 

number between wines produced by inoculating both kinds of transformant strains and 

wines produced by the wild strains. Each compound is indicated with a different 

number. In this context, it is interesting to notice that the number and the VOCs 

determined in wines obtained by original and corresponding transformant strains were 

very similar. The wines containing the highest number of VOCs were those obtained by 

inoculating strains 4LB and F15 (the original strains and both the transformants). The 

main percentage of compounds is common to all the wines, whereas some compounds 

were present only in some cases. For example, eugenol was present in all the wines except 

those derived by fermentation with Sc9-11 (original and transformants), whereas 

dimethyl sulphone was found only in wines obtained by inoculating 4LB (original and 

both the transformant strains). This means that these compounds are related to the specific 

metabolic activity of 4LB strain and, in addition, the presence of this compound also in 

wines produced with its transformants, demonstrates that the treatment had not affected 

this metabolism in 4LB strain. Therefore, the results obtained by both gas 
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chromatographic analyses suggest that the transformation did not significantly affect the 

production of the secondary compounds involved in wine aroma. 

 

Figure 6. Volatile organic compounds (VOCs) determined by SPME in wines obtained by non-

transformant and transformant strains: 1, acetone; 2, dimethyl sulphone; 3, b-pinen; 4, n-butanol; 5, 

limonen; 6, isobutyl formate; 7, isobutyl acetate; 8, ethyl-butyrate; 9, ethylhexanoate; 10, 2,3 butanediol; 

11, terpinene; 12, exanol; 13, geranial; 14, b-citronellol; 15, decanol; 16, 2-phenylethanol; 17, b-jonon; 

18, eugenol. 

 

Discussion 

Desiccation tolerance by the wine yeast S. cerevisiae has enabled the food industry to 

work with a more technologically secure product, but still excluding those yeast strains 

of higher interest and the newly isolated or created hybrid strains for beverage industry 

(Saccharomyces sp. and non-Saccharomyces) that cannot cope with the treatment of 

drying and rehydration (Rodríguez-Porrata et al., 2011). Natural yeasts possessing high 

survival to desiccation are not very diffused and the genetic manipulation of strains 

possessing interesting oenological properties, but low tolerance to desiccation, could 

represent an interesting tool. In the present study, we analysed four different wine strains. 

Three of them (4LB, RB3-7Sc2 and Sc9-11) were wild S. cerevisiae strains, isolated 

during spontaneous fermentation of grapes collected in different Italian regions and 

selected on the basis of interesting oenological characteristics, whereas the last one (F15) 

was a commercial strain, widely used as ADY in Italian cellars. On the basis of previous 

results reporting that the overexpression in S. cerevisiae of gene SIP18 increases cell 
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viability after the dehydration process (Rodríguez-Porrata et al., 2012), the four strains 

were submitted to transformation by insertion of the gene SIP18. In the case of 

transformed strains, it is very important to verify whether the introduced modifications 

should not change the characteristics essential in the fermentation process (Schuller and 

Casal, 2005). For most genetic modifications it was shown that, apart from the introduced 

metabolic change, no significant differences were found between wines produced with 

non-modified strains and the corresponding transformed strain, whereas in other cases 

genetic modification affected the characteristics of the final wines (Michnick et al., 1997; 

Remize et al., 2000). In this study, different techniques were used to evaluate the 

influence of transformation on the characteristics of analysed strains. The 'fitness' of 

active dried wine yeast cultures is related to the maintenance of cell 'viability' and 'vitality' 

during the process of yeast manufacture, including desiccation and storage (Pretorius, 

2000). In our research, yeast 'viability' was assessed both directly, by determining loss of 

cell viability (plate counts), and indirectly, by assessing the preventing ROS accumulation 

effect of SIP18 even after an H2O2 attack, as was already shown in a laboratory haploid 

strain by Rodríguez-Porrata et al. (2012). On the other hand, we also evaluated the 'fitness' 

of the modified strains by simulating real vinification conditions. After grape must 

inoculation, during biomass formation, the absence of both the selection pressure by 

geneticin and galactose activation (in glucose-less medium) reduces at a very low level 

the cellular Sip18p content during vinification. In this way, the putative Sip18p impact is 

negligible in the organoleptic profile of wines, elaborated with strains for which SIP18 

was overexpressed during ADY production. The transformants obtained in this study did 

not negatively impact wine profile, although at the beginning of the fermentation they 

carry on a high level of the SIP18 stress peptide. Our results demonstrated that, apart from 

the introduced change related to improved dehydration tolerance, no significant 

differences were found between original and modified strains as regards the fermentative 

performance and production of secondary compounds influencing wine aroma. These 

findings indicate that strain oenological characteristics are not affected by genetic 

modifications used in this study. 

In conclusion, the transformation of wine strains by overexpression of the SIP18 gene 

could represent an useful tool to improve strains tolerance to dehydration. Further studies 

are in progress in order to test the behaviour of these modified strains, in particular by 
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evaluating the strain imposition capacity during real vinification trials, where the 

inoculated starter has to compete with the indigenous microflora. 
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Abstract 

Recently, different dehydration-based technologies have been evaluated for the purpose 

of cell and tissue preservation. Although some early results have been promising, they 

have not satisfied the requirements for large-scale applications. The long experience of 

using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven 

to be a good model organism for studying the link between complex phenotypes and DNA 

variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits 

involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and 

sequenced in the Saccharomyces Genome Resequencing Project showed intermediate 

dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants 

from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis 

tolerance trait was found, suggesting that this trait is determined by multiple QTLs. 

Therefore, we carried out a QTL analysis to identify the determinants of this dehydration 

tolerance trait at the genomic level. Among the genes identified after reciprocal 

hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous 

studies. We report new phenotypes for these genes using a previously validated test. 

Finally, our data illustrates the power of this approach in the investigation of the complex 

cell dehydration phenotype. 

 

Keywords: anhydrobiosis, dehydration stress, FAB1, ATG18, yeast  

 

Introduction 

Almost all yeast-based food industries are steadily expanding their use of active dry 

yeast (ADY) because of its greater genetic stability at room temperature and lower 

transport and storage costs. Unfortunately, most laboratory-developed industrial yeast 

strains, as well as strains isolated from industrial environments, have the 

biotechnological handicap of losing viability during the drying process (Dupont et al., 

2014). Therefore, such strains are excluded from the commercial catalogues of yeast 

manufacturers, awaiting a breakthrough that would allow their desiccation to be 

optimized. In a previous study, we performed a genetic screen of the Saccharomyces 

cerevisiae deletion library for mutants sensitive to dehydration stress (Rodríguez-

Porrata et al., 2012b). Among the genes characterized as essential for overcoming 
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dehydration stress, only five (SIP18, STF2, GRE1, YJL144w, and NOP6) were found to 

have protective effects against dehydration stress when overexpressed (Rodríguez-

Porrata et al., 2012b; López-Martínez et al., 2012). Recent studies investigating 

whether the response to desiccation involves regulation at the transcriptional and/or 

translational level detected changes in genes involved in lipid binding and synthesis, 

protein synthesis and mobility, and metabolism (Novo et al., 2007; Singh et al., 2005; 

Miermont et al., 2007; Rossignol et al., 2006; Nakamura et al., 2008). However, 

correlations were rare between these transcriptomic studies and genetic screens using 

the S. cerevisiae deletion library of mutants sensitive to dehydration stress (Rodríguez-

Porrata et al., 2012b; Ratnakumar et al., 2011; Cubillos et al., 2011). In contrast, 

haploid strains overexpressing yeast genes encoding hydrophilic proteins (Stf2p, 

Sip18p, Gre1p, Yjl144wp, and Nop6p), which are essential for overcoming 

dehydration stress, are tolerant of dry conditions (Rodríguez-Porrata et al., 2012b; 

López-Martínez et al., 2012).  

On the other hand, Rodríguez-Porrata et al. (2012a) showed that the knockout mutants 

for four nuclear apoptotic-related genes with mitochondrial functions (Δaif1, Δnuc1, 

Δcpr3, and Δqcr7) were hyper-tolerant of dehydration stress. Most S. cerevisiae genes 

involved in qualitative traits related to their basic biology have been identified using 

recombinant DNA techniques. However, many phenotypes important to industrially 

appear to be quantitative traits that are determined by quantitative trait loci (QTLs), 

such as growth temperature, ethanol tolerance, acetic acid production, sporulation 

rate, sake aromatic compounds production, and nitrogen utilization (Cubillos et al., 

2011; Yang et al., 2013; Hu et al., 2007; Marullo et al., 2007; Deutschbauer et al., 

2005; Katou et al., 2008; Ambroset et al., 2011). Considering the large amount of 

genetic variability in industrial yeast, a characteristic as crucial as dehydration 

tolerance is likely controlled by multiple QTLs that cannot be identified by 

conventional molecular genetic approaches. 

In this paper, we performed QTL analysis on 96 segregants derived from a cross 

between two haploid strains derivatives of two strains of wine yeast using statistical 

linkage analysis between dehydration tolerance characteristics and DNA marker 

genotype data. We functionally characterized two QTLs encompassing six genes 

involved in dehydration stress tolerance that contribute to the natural phenotypic 

variation in the paternal strains (Cubillos et al., 2011). 
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Materials and Methods 

Strains and plasmids 

Table 1 summarizes the yeast strains and plasmids used in this study. The RIM15, BST1, 

BUD27, BLM10, YFH7, FAB1, ATG18, CBT1, MRP49, RSM22, and DBR1 genes were 

deleted using a short-flanking homology PCR technique in which URA3 was the 

selectable marker (Figure S1B) in the Mat α and Mat a versions of the WA (HygR), WA 

(NatR), WE (HygR), and WE (NatR) strains (Schiest and Gietz, 1989). Degenerative 

primers (shown in Table S1) were used to amplify the URA3 deletion module from the 

pNSU114 plasmid (Louis and Borts, 1995). Transformants were obtained using the 

lithium acetate transformation protocol and selected by plating on synthetic glucose 

media lacking uracil (Schiest and Gietz, 1989). URA+ transformants were selected and 

restreaked to obtain single colonies, for which integrations were confirmed by PCR using 

the primer pair URA3Fw and GENERv, a reverse primer that anneals at the downstream 

region of the deleted gene (Table S1). The URA3 module was deleted from the WE, 

Δatg18 strain by transforming single mutant strains with the PCR DNA fragment obtained 

using the ATGufw-ATGurv primer pair from the atg18::URA3 locus. The transformants, 

which were able to grow in the presence of 5FOA and unable to grow on SC-ura medium, 

were further evaluated by PCR. The validated WE, Δatg18u strain was further 

transformed, as mentioned previously, to obtain the WE, Δatg18u, Δfab1 strain. Haploid 

strains with opposite mating types were crossed on yeast peptone dextrose agar (YPDA) 

medium supplemented with 100 μg·ml−1 hygromycin B and 200 μg·ml−1 nourseothricin 

sulfate. Diagnostics for isolates from individual colonies were made with the MAT locus 

by PCR using WA (NatR) and WE (HygR) as tester strains (Huxley et al., 1990). 

Recombinant DNA techniques were carried out according to standard protocols 

(Sambrook et al., 2001). The amplification reactions contained a 1x PCR buffer, 1.25 mM 

dNTPs, 1.0 mM MgCl2, 0.3 μM of each primer, 2 ng·μl−1 template DNA, and 3.5 U DNA 

Polymerase in a total volume of 100 μl. All reactions were performed using a PCR thermal 

cycler for 25 cycles, as follows: denaturation, 2 min at 94°C; primer annealing, 30 s at 

55°C; and primer extension, 1.5 min at 68°C. 
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Table 1. Strains and plsmid used in the study 

   Strain Relevant characteristics References 

BY4742 MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0 Bryant and Stevens, 1998 

DBVPG6044 (WA HygR) MATa, ho::HygMX, ura3::KanMX Kim et al., 2000 

DBVPG6044 (WA NatR) MATα, ho::NatMX, ura3::KanMX Kim et al., 2000 

DBVPG6765 (WE HygR) MATa, ho::HygMX, ura3::KanMX Kim et al., 2000 

DBVPG6765 (WE NatR) MATα, ho::NatMX, ura3::KanMX Kim et al., 2000 

Y12 (SA HygR) MATa, ho::HygMX, ura3::KanMX Kim et al., 2000 

YPS128 (NA HygR) MATa, ho::HygMX, ura3::KanMX Kim et al., 2000 

WE/NA WE NatR/NA HygR Cubillos et al., 2011 

WE/WA WE NatR/ WA HygR Cubillos et al., 2011 

WA/WE WA NatR/ WE HygR This work 

WE/SA WE NatR/ SA HygR Cubillos et al., 2011 

96 spores WE/NA F1 from WE NatR/NA HygR Cubillos et al., 2011 

96 spores WE/WA F1 from WE NatR/ WA HygR Cubillos et al., 2011 

96 spores WE/SA F1 from WE NatR/ SA HygR Cubillos et al., 2011 

WA, Δrim15 MATα, ho::NatMX, rim15::URA3 This work 

WA, Δbst1 MATα, ho::NatMX, bst1::URA3 This work 

WA, Δbud27 MATα, ho::NatMX, bud27::URA3 This work 

WA, Δblm10 MATα, ho::NatMX, blm10::URA3 This work 

WA, Δyfh7 MATα, ho::NatMX, yfh7::URA3 This work 

WA, Δfab1 MATα, ho::NatMX, fab1::URA3 This work 

WA, Δatg18 MATα, ho::NatMX, atg18::URA3 This work 

WA, Δcbt1 MATα, ho::NatMX, cbt1::URA3 This work 

WA, Δmrp49 MATα, ho::NatMX, mrp49::URA3 This work 

WA, Δrsm22 MATα, ho::NatMX, rsm22::URA3 This work 

WA, Δdbr1 MATα, ho::NatMX, dbr1::URA3 This work 

WE, Δrim15 MATα, ho::NatMX, rim15::URA3 This work 

WE, Δbst1 MATα, ho::NatMX, bst1::URA3 This work 

WE, Δbud27 MATα, ho::NatMX, bud27::URA3 This work 

WE, Δblm10 MATα, ho::NatMX, blm10::URA3 This work 

WE, Δyfh7 MATα, ho::NatMX, yfh7::URA3 This work 

WE, Δfab1 MATα, ho::NatMX, fab1::URA3 This work 

WE, Δatg18 MATα, ho::NatMX, atg18::URA3 This work 

WE, Δrpl2a MATα, ho::NatMX, rpl2a::URA3 This work 

WE, Δcbt1 MATα, ho::NatMX, cbt11::URA3 This work 

WE, Δmrp49 MATα, ho::NatMX, mrp49::URA3 This work 

WE, Δrsm22 MATα, ho::NatMX, rsm22::URA3 This work 

WE, Δdbr1 MATα, ho::NatMX, dbr1::URA3 This work 

WE, Δatg18u MATa, ho::HygMX, atg18::ura3 This work 

WE, Δatg18u, ∆fab1 MATa, ho::HygMX, atg18::ura3, fab1::URA3 This work 

WA/Δrim15WE WA HygR/WE, Δrim15 This work 

WA/Δbst1WE WA HygR/WE, Δbst1 This work 

WA/Δbud27WE WA HygR/WE, Δbud27 This work 

WA/Δblm10WE WA HygR/WE, Δblm10 This work 

WA/Δyfh7WE WA HygR/WE, Δyfh7 This work 

WA/Δfab1WE WA HygR/WE, Δfab1 This work 

WA/Δatg18WE WA HygR/WE, Δatg18 This work 

WA/Δrpl2aWE WA HygR/WE, Δrpl2a This work 

WA/Δcbt1WE WA HygR/WE, Δcbt1 This work 

WA/Δmrp49WE WA HygR/WE, Δmrp49 This work 

WA/Δrsm22WE WA HygR/WE, Δrsm22 This work 

WA/Δdbr1WE WA HygR/WE, Δdbr1 This work 

WE/Δrim15WA WE HygR/WA, Δrim15 This work 

WE/Δbst1WA WE HygR/WA, Δbst1 This work 

WE/Δblm10WA WE HygR/WA, Δblm10 This work 

WE/Δyfh7WA WE HygR/WA, Δyfh7 This work 

WE/Δfab1WA WE HygR/WA, Δfab1 This work 

WE/Δatg18WA WE HygR/WA, Δatg18 This work 

WE/Δcbt1WA WE HygR/WA, Δcbt1 This work 

WE/Δmrp49WA WE HygR/WA, Δmrp49 This work 

   WE/Δrsm22WA WE HygR/WA, Δrsm22 This work 

WE/Δdbr1WA WE HygR/WA, Δdbr1 This work 

WA/Δatg18uwe, ∆fab1we WA NatR/WE, Δatg18u, Δfab1 This work 

Plasmid     

pNSU114   Weedon et al., 2008 
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Growth conditions and desiccation-rehydration process 

Yeast strains were grown in shake flasks at 150 rpm in SC medium containing 0.17% 

yeast nitrogen base, 2% glucose, 0.5% (NH4)2SO4, and 25 mg·l-1 uracil. The desiccation-

rehydration process and yeast viability assays were performed as previously described 

(Rodríguez-Porrata et al., 2011). 

Linkage analysis 

Linkage analysis was performed using the rQTL software, and the LOD score was 

calculated using a normal model (Cubillos et al., 2011; Broman et al., 2003; Salinas et 

al., 2012). Briefly, the significance of a QTL was determined from permutations. For each 

trait and cross, we permuted the phenotype values within tetrads 1,000 times and recorded 

the maximum LOD score each time. A QTL was considered significant if its LOD score 

was greater than the 0.05 tail of the 1,000 permuted LOD scores. 

RNA isolation and cDNA synthesis 

The total RNA was obtained from: WE, WA, WE, Δatg18, WE, Δfab1, WA, Δatg18, WA, 

Δfab1, and WA/Δatg18uWE, Δfab1WE yeast cells using a GeneJET RNA Kit (Thermo 

Scientific, Lithuania) according to the manufacturer’s protocol. The RNA was 

resuspended in 100 μL RNase-free water. The DNase I RNAase free kit (Fermentas, 

Thermo Scientific) was used to remove the 16 genomic DNA from the RNA preparations. 

The RNA was quantified with a spectrophotometer (Nanodrop 1,000 Spectrophotometer, 

Thermo Scientific) at an absorbance of 260 nm and tested for purity (by the A260/280 

ratio) and integrity by denaturing gel electrophoresis. The first strand of cDNA was 

reverse transcribed from 1 μg total RNA from each sample using a First Strand cDNA 

Synthesis Kit (Fermentas, Thermo Scientific) according to the manufacturer’s protocol. 

An identical reaction without the reverse transcription was performed to verify the 

absence of genomic DNA. The cDNA was subsequently amplified by PCR using yeast 

strain specific couple of primers forward-reverse for: ATG18, FAB1, ALG9 and TAF10 

genes (Table S1). 

Real-time RT-PCR 

Quantitative PCR for ATG18 and FAB1, was carried out using a Real Time qPCR kit 

according to the manufacturer's protocol and was analysed on a Real-Time PCR 

Detection System. The thermal cycling was composed of an initial step at 50°C for 2 

min followed by a polymerase activation step at 95°C for 10 min and a cycling step 
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with the following conditions: 40 cycles of denaturation at 95°C for 15s, annealing at 

63°C for 1 min, and extension at 72°C for 1 min. Oligonucleotides of varying lengths 

produce dissociation peaks at different melting temperatures. Therefore, at the end of 

the PCR cycles, the PCR products were analysed using a heat dissociation protocol to 

confirm that a single PCR product was detected by the SYBR Green dye. The 

fluorescence data was acquired at the 72°C step. The threshold cycle (Ct) was 

calculated using a software to indicate significant fluorescence signals above the noise 

during the early cycles of amplification. The software calculated copy numbers for the 

target samples from the Ct using interpolation from the standard curve. The relative 

levels of expression of the target genes were measured using ALG9 and TAF10 mRNA 

as an internal control and calculated according to the 2-C
T method (Livak and 

Schmittgen, 2001). 

Microscopy 

Cultures of strains were grown to the stationary phase in selective medium. The cells were 

washed with 1× PBS buffer (pH 7.4) and fixed in 70% ethanol for 10 min at room 

temperature. Fluorescence was viewed using a fluorescence microscope. A digital camera 

and a software were used for image acquisition. 

Statistical analysis 

To determine the statistical significance of data the results were analysed by one-way 

ANOVA, the Shapiro-Wilk test and the Scheffé test were carried out using a statistical 

software package. Statistical significance was set at p<0.001. 

 

Results 

Variation in dehydration stress tolerance in recombinant yeast populations 

Using a colony-counting assay, desiccation tolerance was assessed for a set of three 

recombinant populations of 96 segregants generated from a cross of divergent S. 

cerevisiae isolates (WE [Wine European] x WA [West African], WE x NA [North 

American], and WE x SA [Sake]) previously described (Figure S1A) (Cubillos et al., 

2011). The mean CFU (colony-forming units) per ml value for survival after 

rehydration was calculated, taking into account the viability before drying (Figure 1A-

C). The W value obtained from the Shapiro-Wilk test carried out with the three sets of 
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segregants were lower than 0.5, therefore, for an α level of 0.05, the phenotypic 

distributions of segregants did not show a normal distribution, suggesting a polygenic 

contribution to cellular desiccation tolerance (Figure 1A-C). The highest number of 

transgressive segregants (24%) was observed in the cross between the low 

dehydration stress-resistant strains WE (20.3%) and WA (49.4%) (Figure 1A). 

However, when the highly sensitive WE strain was crossed with the resistant SA and 

NA strains (75.9% and 70.5%, respectively), approximately 5.5% of segregants 

exceeded the phenotypic range of their parents by at least 2 SD, criteria previously used 

to name these segregants as transgressive, (Figure 1B-C) (Marullo et al., 2006).  

 

Figure 1. Viability rate variation after dehydration stress. Viability rate values are shown on the y-axis for 

the 96 ranked segregants of the WE x WA cross (A), WE x NA cross (B), and WE x SA cross (C). Dots 

indicate segregants with transgressive phenotypes (exceeding two parental standard deviations, black), 

parental and hybrid strains (yellow), and segregants within the phenotypic range of the parental strains (green). 

D) Linkage analysis for dehydration stress tolerance from WE/WA segregants. The chromosomes are 

displayed on the x-axis, and LOD viability values, according to each molecular marker across the 16 yeast 

chromosomes, are displayed on the y-axis. The significant LOD score threshold is indicated by a red line and 

was determined by a permutation test. The significant QTLs are indicated by arrows. 
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By running a linkage analysis using ~200 previously reported genotype markers, we 

evaluated whether the different genotypes correlated with the viability trend observed in 

the WE/WA strain segregants (Cubillos et al., 2011). Only the genetic markers Y034W, 

BST1, FRS2, RPN11, ROG3, TRP3, and FAS1 showed significant differences (p<0.005). 

The same analysis performed for the segregants from the WE/NA and WE/SA strains did 

not show any correlation between genomic region and cell viability. 

Identification of QTLs involved in dehydration tolerance 

To identify the QTL intervals responsible for natural phenotypic variations in 

dehydration stress, linkage analysis was performed based on the cellular viability after 

stress induction and the genotypes of the 96 F1 segregants (Cubillos et al., 2011, Louis 

and Borts, 2009). In total, two significant regions were mapped using the marker 

regression model and permutation method in the WE x WA cross, allowing the 

identification of 15 candidate genes (Figure 1D; Table 2). A region in chromosome XI 

(from 37 to 137 kb) with a peak LOD score of 3.10 was identified and after further 

inspections, we identified seven candidate genes (CBT1, YKT6, FAS1, MRP49, RSM22, 

DBR1 and AVT3) within this QTL. In the second QTL (Chr VI, LOD 5.1), eight candidate 

genes (RIM15, BST1, BUD27, BLM10, YFH7, FAB1, ATG18 and ROG3) were identified 

between 65 KB and 196 KB. After a sequence alignment, only 11 of the genes 

encompassed by either QTL interval (RIM15, BST1 BUD27, BLM10, YFH7, FAB1, 

ATG18, CBT1, MRP49, RSM22 and DBR1) contained single nucleotide polymorphisms 

(SNPs) (Table 2). Furthermore, the SNPs did not create premature stop codons in the 

coding sequence of the WE and WA strains. Among these genes, only BUD27, FAB1, 

and CBT1 were found to be necessary for the yeast to overcome desiccation stress 

(Rodríguez-Porrata et al., 2012b; Ratnakumar et al., 2011; Salinas et al., 2012). 
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Table2. The position in the genome, significance value, genes in the respective regions and the 

differences in the amino acid sequence for each gene in WE strain versus WA are described. – allele 

without mismatch 

Chromosome QTL's Position (cM) LOD Gene / Position Position of amino acid change WA allele→WE allele 

VI Y034w 65 3.85 RIM15 / 69.11 
161 E → K; 240 S→G; 249 E→D; 251 T→S; 366 

T→S; 399 V→A; 771 R→P; 1020 T→I; 1022 C→Y 

 BST1 84 5.11 BST1 / 84.14 
202 A→T; 221 N→D; 253 A→P; 432 N→D; 438 
K→M; 506 Q→L; 610K→R; 636S→W; 849 D→V 

    BUD27 /90.9 32 Δ→E; 33D→Y; 75 S→F; 177 E→G; 182 D→E 

 HTX10 111 4.95 BLM10 / 123.47 

99 Q→R; 220 T→A; 258 G→A; 729 S→N; 759 I→V; 
791 N→D; 902 C→Y; 1102 R→K; 1315 G→S; 

1444 D→N; 1586 P→A; 1592 R→C; 1698 T→A; 
1782 G→D; 1861 D→Y; 1900 I→V; 1971 M→I 

 ARS605 136 4.93 -  

 RPN11 153 4.50 YFH7 / 159.29 109 V→I; 138 A→T; 149 V→A 

 YFR016c 180 3.32 FAB1 / 184.50 

120 S→N; 126 N→S; 333 A→S; 583 Δ→N; 1273 

N→D; 1300 Y→H; 1524 G→E; 1604 R→M; 1780 
P→S; 1878 I→M; 1882 S→A; 1884 Q→Δ 

    ATG18 / 194.81 195 N→S 

 ROG3 196 2.40 -  

XI TRP3 37 2.72 CBT1 / 47.15 29 S→G; 109 T→A 

 ARS1103 58 3.03 -  

 YKT6 75 2.46 -  

 FAS1 103 2.58 -  

 TP05 121 3.10 MRP49 / 133.72 131 G→R 

 PIR1 142 2.34 RSM22 / 159.45 228 E→K; 474 D→S; 619 S→N 

    DBR1 / 167.61 223 Q→R; 286 K→E; 325 N→D 

 AVT3 173 1.16 -  

Dissection of the QTLs associated with stress tolerance 

To identify causative genes within the mapped QTL intervals on chromosomes VI and 

XI, we generated a set of haploid strains with deletions in the candidate genes (Table 

1). Then, their desiccation tolerance capacity was assessed (Figure 2). After 

rehydration, four strains (WA, Δbud27; WA, Δfab1; WA, Δatg18; and WA, Δcbt1) 

exhibited a similar reduction in cell viability values, which were ~20% lower than in 

the WA strain (49%). Surprisingly, the same set of gene deletions in the WE genetic 

background showed the opposite effect, with viability values ~30% higher than the 

WT. In addition, both versions of the Δdbr1 strain showed significantly higher 

viability values after dehydration stress compared with the WT WA and WE strains 

(20% and 80%, respectively). Furthermore, the WE, Δrsm22 strain displayed 30% 

higher viability than its reference strain, whereas the WA, Δrsm22 strain had similar 

viability to the WA strain. The viabilities of the Δrim15, Δbst1, Δblm10, Δyfh7, and 

Δmrp49 strains were not significantly different from the WT strains, WA and WE, 
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suggesting that these genes are not involved in desiccation-rehydration stress 

resistance. Therefore, two-thirds of the WE mutants enhanced dehydration stress 

tolerance, suggesting that the BUD27WE, FAB1WE, ATG18WE, CBT1WE, and RSM22WE 

alleles have a detrimental effect on the ability of the WE strain to overcome this type of 

stress.  

 

Figure 2. Effect of knockout haploid strains on yeast viability after dehydration-rehydration stress (DRS). 

The scale of viability (%) indicates the percentage of experimental values for the different strains. The 

values shown are means of n = 3 independent samples ± SD. *Significant differences (p<0.01) between 

knockout and its own parental strains. 

To confirm the impact of these alleles on dehydration stress, we used a reciprocal 

hemizygosity analysis (Figure S1B) (Marullo et al., 2006). A set of isogenic hybrid 

strains was developed by crossing the haploid knockout strains with the 

complementary WA (NatR) or WE (HygR) strain [e.g., WA (NatR) x WE Δrim15 (HygR) 

or WA Δrim15 (HygR) x WE (NatR), Table 1]. The desiccation tolerance of the 

hemizygous strains was measured (Figure 3). The WA/Δbud27WE strain showed ~40% 

higher viability than the WA/WE strain, which correlated with the increased viability 

of the WE, Δbud27 strain after stress induction, suggesting an adverse effect of the 

BUD27WE allele on stress resistance. Additionally, the WE/Δbud27WA strain could not 

be obtained, suggesting a certain level of incompatibility between the BUD27WE allele 

and the WA genetic background. After dehydration stress induction, the hybrid strains 

carrying FAB1WA, ATG18WA, CBT1WE, and RSM22WA showed viability values nearly 

30% higher than the hybrids carrying FAB1WE, ATG18WE, CBT1WA, and RSM22WE and 

the reference strains. The detrimental effects of the FAB1WE, ATG18WE, CBT1WA, and 
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RSM22WE alleles on overcoming dehydration stress were concomitant with the 

enhanced viability values obtained for the WE, Δfab1, WE, Δatg18, WA, Δcbt1, and 

WE, Δrsm22 strains (Figure 2). Furthermore, hybrids carrying either the DBR1WE or 

DBR1WA allele exhibited 30% higher viability than the heterozygous strains (Figure 3). 

From the cell viability results for the WA, Δdbr1, WE, Δdbr1 and heterozygous strains, 

a correlation can be assumed between the increasing number of DBR1 allele copies per 

cell and the decreasing desiccation survival rate. The desiccation tolerances of a 

collection of 4,850 viable mutant haploid strains (BY4742) were previously assessed 

(Rodríguez-Porrata et al., 2012b; Shima et al., 2008). For the genes above, only the 

Δrsm22 and Δdbr1 strains (BY4742 background) exhibited significantly higher viability 

values after stress induction (73% and 77%, respectively) compared with the BY4742 

strain. The viability of the Δrim15, Δbst1, Δbud27, Δyfh7, Δfab1, Δatg18, and Δcbt1 

strains did not significantly differ from the reference strain (34%) (Rodríguez-Porrata et 

al., 2012a). However, the BY4742, Δmrp49 strain showed 20% viability, which 

contrasts with the unchanging viability values for the WA, Δmrp49 and WE, Δmrp49 

strains. These results confirm that RSM22WE, which has 98% sequence identity to the 

RSM22BY4742, DBR1WA, DBR1WE, and DBR1BY4742 gene products, has a detrimental effect 

on dehydration stress tolerance. 

 

Figure 3. Hybrid viability after DRS. The scale of viability (%) indicates the percentage of experimental 

values for the different strains. The values shown are the means of at least n = 3 independent samples ± SD. † 

Non-viable strain. *Significant differences at p<0.01 between hemizygous strains. ‡ Significant differences at  

p<0.01 between the hemizygous and reference strains. 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 



Chapter IV 

 

143 
 

The ATG18WE allele compromises vacuole function  

Atg18p is a key component in retrograde membrane trafficking from the vacuole to 

the Golgi apparatus via the endosome and is also an apparent effector and modulator 

of phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] (Efe et al., 2007). It 

should be noted that the vacuole is responsible for amino acid storage and therefore 

represents the cellular reserve of nitrogen and phosphate. When yeast cells are exposed 

to starvation conditions, such as upon entrance into the stationary phase or during 

sporulation, vacuolar hydrolases are upregulated to obtain recycled nutrients through the 

turnover of macromolecules (Klionsky et al., 1990). It follows then that malfunctions 

in the nutrient storage or recycling machinery are likely to compromise cell viability. 

Homozygous diploid Δatg18 is defective in autophagy prior to vacuole fusion of 

autophagosomes, causing the development of cell sensitivity to nitrogen starvation 

and non-sporulating cells (Barth et al., 2001). The hybrid carrying ATG18WA showed 

35% higher asci formation than the WE (NatR)/WA (HygR) and WA (NatR)/WE (HygR) 

strains, at 7% and 3%, respectively. However, the hybrid carrying ATG18WE showed the 

lowest asci formation, at 0.5% of the total cells (Figure 4A). The wild-type and 

hemizygous strains were first grown to the mid-log phase and then shifted to nitrogen 

starvation conditions, and their viability was determined over time (Figure 4B). The 

hybrid strains survived nine days of nitrogen starvation with no significant decrease 

in viability. In contrast, the number of viable cells for the hybrid carrying ATG18 WE 

and the hybrid carrying ATG18 WA decreased by up to 60% and 20%, respectively, over 

the same time period. Additionally, Δatg18 cells exhibited phenotypic defects, 

including non-acidic and conspicuous vacuoles and the loss of osmotic stress tolerance 

(Yamamoto et al., 1995). To determine putative changes in vacuole morphologies, 

samples of aerated wild-type, WA/Δatg18WE, and WE/Δatg18WA cells in the stationary 

phase were analysed by fluorescence microscopy using FM4-64 and the blue 

fluorescent dye Arg-CMAC, which accumulates in acidic vacuoles (Figure 4D).  
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Figure 4. Phenotypic characterization of ATG18 and FAB1 alleles. A) After 48 hours on 1% K-acetate, the 

count of asci were expressed as a percentage of total cells. B) Effect of nitrogen starvation on cell viability of 

the Δatg18 strains. The hybrid WE (NatR)/WA (HygR) (●), WA (NatR)/WE (HygR) (▲), WE/ATG18 WA (o), 

and WA/ATG18 WE (Δ). The scale of viability (%) indicates the percentage of viable cells for the different 

strains against the time in starvation medium. Values are the mean of triplicate measurements, and the standard 

deviation was less than 15%. C) FAB1WA and ATG18WE rescue cells from ionic-hyperosmotic stress at 37°C 

plated on YPD medium, YPD medium containing 1 M NaCl, and 1 M sorbitol. D) Hemizygous cells show 

vacuole fragmentation and vacuole acidification deficiency. Each pair of image columns show phase 

microscopy of the same field, which shows cells stained with FM4-64 to visualize vacuole membrane, pH 

vacuolar dye cell blue Arg-CMAC, and the differential interference contrast (DIC) images. 

Both Δatg18 hemizygous strains had larger vacuoles than the WE/WA cells, but the 

hybrid carrying ATG18WE showed abnormal vacuolar acidification compared with the 

hybrid carrying ATG18WA and the WE/ WA strains. To assess the consequences of the 

ATG18WE allele, the osmotic sensitivity was tested when the cells were grown on media 

containing 1 M NaCl or 1 M sorbitol at 28°C and 37°C (Figure 4C). On the 1 M NaCl 

plates, the hybrid carrying ATG18WA showed better growth performance at 37°C and 

28°C relative to the hybrid carrying ATG18WE. No significant growth differences were 

exhibited between hybrids for the other serial dilutions grown on YPD and 1 M 
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sorbitol at 37°C and 28°C. The data indicates that ATG18WE may not provide adequate 

nutrient storage to tolerate starvation conditions, thereby inducing both low cell 

viability under nitrogen starvation conditions and impaired asci formation. The 

ATG18WE allele was more sensitive to osmotic stress at high temperatures than the 

ATG18WA allele, which correlated with the differences in dehydration tolerance 

observed for these alleles. Furthermore, the ionic osmotic sensitivity showed by the 

hybrids carrying either the ATG18WA or the ATG18WE allele reverted to a resistant 

phenotype when the cells were grown at a high temperature. 

The FAB1WE allele enhances osmotic ionic stress tolerance 

Retrograde membrane traffic from the vacuole to the Golgi apparatus via the 

endosome depends on PtdIns(3,5)P2 (Gary et al., 2002; Dove et al., 2002). The kinase 

FAB1p generates PtdIns(3,5)P2 via phosphatidylinositol (3)-phosphate 

phosphorylation (Gary et al., 1998; Dove et al., 2004). Abnormal levels of 

PtdIns(3,5)P2 were observed in Δatg18 yeast cells, suggesting that Atg18p is an 

inhibitor of the Fab1p kinase (Merz and Westermann, 2009). Yamamoto et al. (1995) 

suggested that fab1 mutations in yeast cells cause aberrant chromosome segregation, 

defects in cell surface integrity, and deficiencies in vacuole morphology and function. 

To determine the incidence of FAB1 alleles in vacuole activity, WA/Δfab1WE and 

WE/Δfab1WA cells were grown on medium containing 1 M NaCl or 1 M sorbitol at 

28°C and 37°C (Figure 4C). The hybrid carrying FAB1WE grew on 1 M NaCl at 28°C, 

whereas the hybrid carrying FAB1WA and the WE/WA strain did not. However, all of 

the strains grew similarly on 1 M sorbitol. At 37°C, the hybrid carrying FAB1WE was 

osmoremediated on 1 M NaCl but was not recovered on 1 M sorbitol. The data 

indicates that ionic osmotic stress rescues the growth of FAB1WE hemizygous cells at 

this non-permissive temperature. The vacuolar morphology and activity of hybrid-

carrying FAB1WA or FABWE in the stationary phase were analysed using FM4-64 and 

Arg-CMAC dyes, respectively (Figure 4D). The vacuolar acidity Arg-CMAC dye 

profile of the hemizygote cells was similar to that of the reference cells. However, Arg-

CMAC and FM4-64 staining revealed vacuolar fragmentation in the hybrid carrying 

FAB1WE, which contrasts with the single large vacuole per cell observed in both the 

hybrid carrying FAB1WA and the WE/WA strain. The FAB1WE allele is more sensitive 

than the FAB1WA allele to osmotic stress at high temperatures, which correlates with 

the differences in dehydration tolerance observed for these alleles. Alternatively, an 
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isogenic strain was developed by crossing the haploid double knockout strain WE, 

Δatg18u, Δfab1 with the complementary WA (NatR) strain (Table 1). The 

WA/Δatg18uWE, Δfab1WE strain showed ~60% higher viability than the WA/WE 

strain, which was correlated with the increase in viability of the WE, Δatg18u, Δfab1 

strain after dehydration stress, which showed 65% viability (data not shown). 

Surprisingly, the double knockout WA, Δatg18u, Δfab1 strain could not be obtained. 

To exclude putative artificial regulatory effect of the deletions over the genes ATG18 or 

FAB1, which are in the same chromosome at a distance of 3.5 kb, we quantified their 

expression in samples from WA; WE; WA, Δfab1; WA, Δatg18; WE, Δfab1; WE, 

Δatg18 and WA/Δatg18uWE, Δfab1 strains (Figure S2 ). Our data showed no statistically 

significant differences between the controls and the strain samples in the expression of 

any of the tested genes. 

The CBT1 and RSM22 alleles do not show respiratory deficiencies 

From a gene pool identified after a large-scale functional analysis of respiratory-

deficient yeast, the mutant Δcbt1 and Δrsm22 strains showed impaired respiratory 

performance (Merz and Westermann, 2009). The mitochondrial small ribosomal 

subunit protein Rsm22p participates in mitochondrial mRNA translation, and Cbt1p 

is involved in mt mRNA stabilization. Both of these proteins are essential for 

respiratory growth. To assess the putative effects of these alleles on respiration activity, 

serial dilutions of the wild-type, WA/Δcbt1WE, WE/Δcbt1WA, WA/Δrsm22WE, and 

WE/Δrsm22WA strains were plated on YPD and YPG media and incubated at 28°C for 

24 h and48 h. No significant differences in growth were observed between the different 

hybrids on YPG medium with glycerol as the respiratory carbon source (Figure 5A), 

suggesting that the CBT1 and RSM22 alleles do not significantly affect the respiratory 

activity of hybrid cells. Therefore, both the hybrid carrying CBT1WE and the hybrid 

carrying RSM22WA enhance dehydration tolerance with no apparent variation in 

cellular respiration. 
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Fig 5. Phenotypic characterization of CBT1, RSM22, and DBR1 alleles. A) CBT1 and RSM22 alleles did not 

show respiratory deficiency. Serial dilutions of heterozygous and hemizygous strain cells were plated on YPD 

medium and YPG medium containing 2% glycerol, which were grown at 28°C for one and two days, 

respectively. B) The hybrid carrying DBR1WA shows defective competitive fitness. Optical density at 600 nm 

(OD600) was monitored every 10 min as a growth measure at 28°C of the strains in SD medium and SD 

medium containing 3.5 mM ZnCl2. 

The DBR1WA allele provides competitive disadvantages to yeast cells 

The RNA lariat debranching enzyme Dbr1p is involved in intron turnover, which is 

required for efficient Ty1p transposition (Chapman and Boeke, 1991). The 
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phenotypes already described for the Δdbr1 strain include decreasing competitive 

fitness and lower resistance to zinc deficiency (Breslow et al., 2008; North et 

al.,2012). We aimed to ascertain the growth performance of the Δdbr1 hemizygous 

strains in minimal medium and minimal medium supplemented with 1 μM, 3.5 mM, 

or 7 mM zinc dichloride (Figure 5B shows the growth with 3.5 mM ZnCl2). Hybrids 

carrying DBR1WA and DBR1WE exhibited doubling times (DT) that were 5.8 min and 

67.7 min higher, respectively, than the WE/WA strain. Both the hybrid carrying 

DBR1WE and the reference strain showed similar DT in media with or without Zn, but 

the hybrid carrying DBR1WA exhibited a 24.8 min higher DT in the presence of Zn than 

when grown in minimal medium alone. 

 

Discussion 

Most of the genetic determinants of dehydration tolerance in yeast are still unknown. 

In this paper, two dehydration-tolerant QTLs were identified using a segregating 

population. By analysing strains with deleted genes in each QTL and by reciprocal 

hemizygosity assays, six genes have been confirmed to affect the capacity of yeast 

cells to survive dehydration and rehydration, namely the BUD27, FAB1, and ATG18 

genes mapped to QTLs on chromosome VI and the CBT1, RSM22, and DBR1 genes in 

QTLs on chromosome XI. Furthermore, their phenotypic effects have been estimated. 

The genes ATG18, RSM22, and DBR1 were not found to be necessary for desiccation 

tolerance in yeast cells (Rodríguez-Porrata et al., 2012b; Ratmakumar et al., 2011). 

The fact that the genes mapped in our results do not fully coincide with previous 

genetic studies carried out with the S. cerevisiae deletion libraries of mutants sensitive 

to dehydration stress may indicate that different cellular mechanisms for overcoming 

stress imposition were caused by dissimilar selective forces exerted during the 

evolution of the yeast strains, or because the mutations present in the laboratory strains 

used for these studies are the effectors of these particular phenotypes (Lettre et al., 

2008; Maher, 2008; Weedon et al., 2008; Romano et al., 2010). Therefore, small 

discrepancies among the genes associated with cell dehydration tolerance from 

different studies support the idea that different allelic combinations exert different 

effects. The nitrogen-deficient sporulation medium contains acetate as a carbon 

source to promote high levels of respiration, which induce sporulation in diploid yeast 

strains. In S. cerevisiae, the Δatg18 mutant is defective in sporulation but does not 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 



Chapter IV 

 

149 
 

exhibit impaired vacuolar acidification (Barth et al., 2001). The sequences of the 

ATG18WA and ATG18WE alleles revealed seven non-identical nucleotides. However, 

only one point mutation at nucleotide 584, from G to A, causes a single amino acid 

change of a serine to an asparagine residue (S195N; Tabl e 2). Multiple sequence 

alignment of the WE and WA ATG18 alleles with 25 sequences of the ATG18 gene 

from different S. cerevisiae strains annotated in the Saccharomyces Genome Database 

(SGD), as well as the Atg18p sequence characterized in this study, showed that the S 

residue is present in 16 genes, the N in eight genes, and the R in only one. This residue 

is located in the N-terminal region before the two WD40 domains and within a patch 

of highly conserved residues in Atg18p from Pichia pastoris, Schizosaccharomyces 

pombe, and Homo sapiens (Guan et al., 2001). The immediate response of yeast cells to 

osmotic challenge involves the release of calcium from the vacuole and the formation 

of fragmented vacuoles (Li and Kane, 2008). Our results suggest that the FAB1WE 

allele principally affects vacuolar morphology, which might allow the hybrid carrying 

FAB1WE to adapt quickly to ionic stress. However, 1 M sorbitol osmotic stress at 37°C 

is lethal to these cells when the WE/ WA strain and the hybrid carrying FAB1WA are 

adapted. The FABWA and FAB1WE allele sequences revealed 15 non-identical 

nucleotides, producing differences in 12 residues (Table 2); however, only the 

N1273D and Y1300H mutations are located in a region of conserved residues within 

the Zn-finger domain (Shaw et al., 2003). Furthermore, none of these residues have a 

high identity ratio among the Fab1p sequences from the 28 S. cerevisiae strains (SGD). 

Fab1p governs vacuole homeostasis by generating PtdIns(3,5)P2 on the vacuolar 

membrane. Atg18p colocalizes with Fab1p, and its deletion causes an abnormal 

elevation in the levels of PtdIns(3,5)P2, which suggests that Atg18p is also a negative 

regulator of the Fab1p kinase pathway (Efe et al., 2007). The hybrid carrying FABWA 

and the hybrid carrying ATG18WE exhibit an osmotic pressure-dependent growth 

phenotype (Figure 4C), indicating that the genes are essential for growth only at high 

temperatures in the presence of osmotic ionic stress. At the permissive temperature, 

the hybrids carrying FAB1WA and the hybrid carrying ATG18WE exhibited extremely 

defective growth. These phenotypes are comparable to the ones exhibited by some of 

the temperature-sensitive isolated vacuolar protein sorting (vps) mutants, which 

require one or more vacuolar functions at the permissive temperature that cannot be 

provided at 37°C by other vacuolar components in these mutant cells (Bryant and 

Stevens, 1998).  
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The DBR1 gene is conserved in humans (hDBR1) and maintains the same function in 

both human and yeast cells (Kim et al., 2000). Among other phenotypes of the Δdbr1 

strain, decreases in competitive fitness and Zn deficiency stress resistance have been 

previously described (Breslow et al., 2008; North et al., 2012). The growth fitness of 

a strain with the DBR1WE allele is affected and this strain is less sensitive to Zn stress 

than the DBR1WA allele, for which the opposite effect on growth is observed. The 

DBR1WA allele had K286 and N325 residues in the putative HMM domain, replacing 

E286 and D325, respectively (Table 2), which are 100% conserved in other Dbr1p 

deduced from the genomic sequences of 26 different S. cerevisiae strains (SGD). The 

deduced sequence of Cbt1WA showed two residue differences with Cbt1WE, S29G, and 

T109A. In addition, three mutations were observed between the deduced peptide 

sequences of the RSM22WA and RSM22WE genes: E228K, D474S, and S619N (Table 

2). These mutations do not affect the respiratory capacity of the different strains, thus 

enabling the separation of dehydration stress tolerance from respiration capacity. 

However, the above-mentioned variations in the sporulation efficiency of the ATG18 

hemizygous strains are not due to a pleotropic effect of the RSM22 or CBT1 alleles that 

affects cellular respiration. 

The genetic approach used in this study, with a population of 96 segregants, allowed 

the detection of yeast dehydration resistance QTLs. The RSM22 and ATG18 genes 

enclosed within these QTLs that provide dehydration tolerance to the cell were not 

referenced in previous studies. Additionally, a detrimental effect on dehydration stress 

tolerance was shown to be provided by DBR1 gene products. Our results further the 

understanding that dehydration stress tolerance is not a phenotype that results from 

the individual addition of independent genes. Furthermore, the monogenic approach 

is not suitable for summarizing all of the epistatic effects driven by a group of alleles. 

Currently, the successful long-term storage of living cells is of critical importance, but 

the contradictory results with complex eukaryotic cells make the application of a 

simpler model desirable. There are a number of advantages, including ease of growth 

and modification and well-characterized cell physiology, genetics and biochemistry, 

which make yeast cells the model of choice for anhydrobiotic engineering. 
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Supporting information 

 

Figure S1. Diagrams of strain generation. A) Production of F1 population (Liti et al., 2009). B) Haploid 

strains were disrupted for the identified genes (e.g., ATG18) using URA3 and used to develop 

heterozygous diploid strains by reciprocal hemizygous crossover. 

 

Figure S2. Quantitative real-time PCR analysis of gene expression before stress. Data represent mean 

relative expression ± SD (y axis, Log2 values) of each individual gene (show at the bottom) before 

dehydration of different strains. Genes ALG9 and TAF10 were simultaneously used as constitutive 

reference genes as determined by the geNorm algorithm (Vandesompele et al., 2002). Relative 

expression was calculated using REST-MCS v2 software (Pfaffl et al., 2002)]. 
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Table S1. Primers used in this study. 

Primer Nucleotide sequence (5'-3') 
HXT10fw ACGAAATCCCATACGCAAAT1 

HXT10rv AGCCGATGAGATGAGGATTG1 

ARS605fw1 CCATGTAGCTTATCGCAGCA1 

ARS605rv1 CCAAGCAGTTCTCTAGCTCCA1 

ARS605fw2 TGGCACTTCGTATATGCAACA1 

ARS605rv2 AGGAACCAAAAATCGCCAAC1 

YFR016Cfw2 TGACCTTTCAATTTAGAAGATTTCC1 

YFR016Crv2 CTGGTGTGCTTGATTACTCTGG1 

ARS1103fw TGGGCTATTTCATCCCATTG1 

ARS1103rv GAGAAGGAGGCAGCAGGAG1 

YKT6fw CGCCACCCAATAAGAAAAA1 

YKT6rv CTTGTTTGGTGTCGGCATAA1 

TP05fw TCGTCAGCTAAAGCAGGTAACA1 

TP05rv ACAAAGTCTGTGTTTATTGGATCA1 

PIR1fw TGAGAATTGTAGCATTACGATCTTCT1 

PIR1rv GCCTTTTTATGTCCTGCCAAT1 

PIR3fw1 AGGTATGTGCGCAGCTCTTT1 

PIR3rv1 CCGGTGACCTTACCGATCTA1 

PIR3fw2 GAGCAACCATTTCCGAATGT1 

PIR3rv2 ACGGCGAAATATGCCAAA1 

RIM15fw 
ATTATTCTCAGATTTGCTTTCAAGCAAAGTTTTTATTCAGTTATTTTTTTTAATTATCTTTATCTTAAAATTTATAGCTTTTCAATTCAATTCA

TCAT1 

RIM15rv 
AGCATTTTCCCTTTTTTTTTTTCCCTTTCCTTTCTCTTGCCTCATTTGATAGAATAGATAAGCCCAGTAGAGGAAGACAGAAGCTTTTTCTTT

CCAATT1 

RIM15A1fw ATTCTGCTTTTAATATTTCCAGATTT1 

BST1fw 
CAAGCTTTTTTCTTGCCATGATCTAGAACTCTCAGGCAATATATACAGTTAATCTTTTTTTACTGGGTTGTAGTTCAGCTTTTCAATTCAATT

CATCAT1 

BST1rv 
CACACTCGAAATACTCCCTCTACTTTAAAGCATTGGCCTATATCTTAGGCTTACCATCATACAAAAATCTTCATTTCGTTAAGCTTTTTCTTT

CCAATT1 

BST1A1fw TGATCAAAATTTACGGCTTTGA1 

BUD27fw GAATTTTATAGTAAACAGGTATCCTCAGACTGTAATAGCCAAGCTTTTCAATTCAATTCATCAT1 

BUD27rv GTTAATATAGATTCTGATTTACTTTCTGTCTCCATATGGGTAGCTTTTTCTTTCCAATT1 

BUD27A1fw AATTTTGTGGTCGGATCGTG1 

BLM10fw 
TGTATTTGCATACATAAACTTTATCATTGTTCGTTAGCTAGCTTTGCACATTAATTTTTCGATTTGTTACCGCCAAAGCTTTTCAATTCAATT

CATCAT1 

BLM10rv 
AATCAGCAGATAGCTCCAGCTATTTGTTTAGATGTACATATATGTCTAGATATGTGCTTAATATCCTATACTAATATGAATAGCTTTTTCTT

TCCAATT1 

BLM10A1fw GGCCGAGGTATCCCTTAGAA1 

YFH7fw 
AACCTTGTTAGGTTAATTTCACTAGTACTATACATATTTTATCCTGTATCATACCAGAGGATCATTCTAGCCACAAAGCTTTTCAATTCAAT

TCATCAT1 

YFH7rv 
TGCCGTTTTTGCTTGCGCGCCTTAATTATCTGTATTCAGTTCGATTTTACAAAAATATATACAAGGTTCCGCCTAACCTTCAGCTTTTTCTTT

CCAATT1 

YFH7A1fw TGGGCTTATCAGACTTGTCCA1 

FAB1fw 
ATAAAGGGCCAAACAAAAAACTATTTCGAATAGCAAGGTAGCTTCCATCCTGTACATGCAAGACCGTCACACAGCAAGCTTTTCAATTCA

ATTCATCAT1 

FAB1rv 
TACTGAAAGTTAAAGAACACTAATGTGCGTGATAGTGTATAAAAAAAAGTTACAGAATATAACTTGTACACGTTTATGTATAGCTTTTTCT

TTCCAATT1 

FAB1A1fw TAACTCTCCCTCTCCCCCTCT1 

ATG18fw 
CACGACCCTCCCTTATTAATCAGTTAGTAATAGTGTTCCAGTTAACTCTGTATCCTTTTCTTCTTCGGCCTGACAAAGCTTTTCAATTCAATT

CATCAT1 

ATG18rv 
AGATTATACGCAGGAGTTTATATAAACTATATTGTGTATGCGTTGTGACGTACGGAAGGCAGCGCGAGACACTTCCGTGATAGCTTTTTCT

TTCCAATT1 

ATG18A1fw CATTCGGAAGTGCGACAATA1 

RPL2Afw ACAATCACATGGTTGTTAAATCACGGTGCTGACATACCCATAGCTTTTCAATTCAATTCATCAT1 

RPL2Arv GAACTGGTTTGTTACGTGGTTCTCAAAAGACCCAAGATTAGAGCTTTTTCTTTCCAATT1 

RPL2AA1fw AACTTGGCAGCACCTTGTCT1 

CBT1fw 
GATTGATCAGAAGTTTACTGCGCTTTTGGGTAAAGAAGCATTAAACAAAGGAGAGAGAAATATTGCAAGGAAAAAAAGCTTTTCAATTCA

ATTCATCAT1 

CBT1rv 
AGCCAGTGCTATAGTCACCAAATAATACGCATTATATATGGATATGTACAGTTCGCAGATCTTTATGGCATATTTATCGTTAGCTTTTTCTT

TCCAATT1 

CBT1A1fw GCCATTTGCCTATAGCTTGG1 

MRP49fw 
AGTTTTGAATTTACATATTTCCATGAAGGGCAATGTTTTTTGATATATACATGAACAAACTTATCGAGAGAAAGCTAGCTTTTCAATTCAA

TTCATCAT1 

MRP49rv 
CAGGATATCTGTAAGAATCGGCCATAAAACTCATTAATAGAAGAACAGTATAACATAAGTGAGCCTGCTACAATAAGAAGAAGCTTTTTC

TTTCCAATT1 

MRP49A1fw TCTCCTCCTGCATTACCATTG1 

RSM22fw 
ATATTCACGTATGTAGAATATTAAAGTATTGAATATATTAATATTATTACTTTATTTCCAGTTACTTACAATTTCCAGCTTTTCAATTCAATT

CATCAT1 

RSM22A1fw GTTACCTGCGAATCCTGCTC1 

DBR1fw 
GTATGACTAAAAATTCTCTCAAGAAGGCTTGGCTTTAAGCTCTAATTCCGTCTGCATTCGTAATAGAAATATCTCTAGCTTTTCAATTCAAT

TCATCAT1 

DBR1rv 
AAATGAGCAGGAGAAAGTCATATGGCGAACGTAAATATGTAACTAAAAATTAAGATGGGCAGACATTTATCATTTTGCTTAAGCTTTTTC

TTTCCAATT1 

DBR1A1fw GTCCCCCACCATTTATGAAC1 

ATGufw 
CACGACCCTCCCTTATTAATCAGTTAGTAATAGTGTTCCAGTTAACTCTGTATCCTTTTCTTCTTCGGCCTGACAAATCACGGAAGTGTCTC

GCGCTGC 

ATGurv 
AGATTATACGCAGGAGTTTATATAAACTATATTGTGTATGCGTTGTGACGTACGGAAGGCAGCGCGAGACACTTCCGTGATTTGTCAGGCC

GAAGAAG 

S8rv CCTCTAGGTTCCTTTGTTACTTCT2 

MATaspe ACTTCCACTTCAAGTAAGAGTTTG3 

MATαspe GCACGGAATATGGGACTACTTCG3 

MATfla AGTCACATCAAGATCGTTTATGG3 

ATG18fw GAAACTTCCCGTTGAAACCA1 

ATG18rv CCGGATACTCGGATGTGTCT1 

FAB1fw TTGATCGCATTTTGCTTGAG1 

FAB1rv TTGGGCATTCAAGTTCATCA1 

ALG9fw GCCGTCTACGAGCAATTTTC1 

ALG9rv TCTGGCAGCAGGAAAGAACT1 

TAF10fw CCAGGATCAGGTCTTCCGTA1 

TAF10rv AGCTCTCGCCTGACTGTTGT1 
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Absract 

We previously reported that overexpression of the gene encoding the yeast hydrophilin 

SIP18 in Saccharomyces cerevisiae increases dehydration stress tolerance two-fold. The 

lipoprotein membranes of the cell suffer a greater amount of damage compared with other 

cellular compartments during the dehydration and rehydration process. In the present 

study, we characterised the putative pleiotropic effects caused by the intracellular 

accumulation of Sip18p during stress, which enhance dehydration tolerance. Therefore, 

we evaluated the changes in the membrane protein profiles during the time points before 

dehydration and after rehydration in the BY4742, sip18 null mutant and SIP18-

overexpressing strains. Of the proteins identified after comparing the proteomic changes 

among the strains, the Gvp36p, Gdp1p, Ald4p, Asc1p, Pma1p, Hsp30p and Lsp1p 

proteins had not been referenced in previous studies of dehydration stress. We discuss the 

putative roles of these proteins during stress. Finally, our data illustrate the power of this 

approach for investigating the complex cell dehydration phenotype. 

 

Keywords: Saccharomyces cerevisiae, dehydration, membrane proteome, SIP18p 

 

Introduction 

The yeast Saccharomyces cerevisiae, along with many plants and bacteria, is part of a 

group of anhydrobiotic organisms that are able to overcome extreme dehydration stress 

through various molecular mechanisms and metabolites (Reyes et al., 2005). These 

metabolites include sugars (trehalose) and proteins (hydrophilins) that stabilise 

macromolecules and membranes, as well as antioxidants that protect against reactive 

oxygen species (ROS) damage (Leslie et al., 1994, Rodríguez-Porrata et al., 2012b). 

Dehydration causes a rapid water efflux through the membrane, resulting in cytoskeletal 

collapse (Walker and van Dijck, 2006) that arrests cellular metabolism. The dehydration 

of cells alters the structure and function of the vacuole and the integrity and functionality 

of nuclear and cell membranes (Walker and Van Dijck, 2006). Therefore, lipoprotein 

membranes are one of the targets damaged during the dehydration-rehydration process. 

Our group previously reported that phosphatidylcholine (PC) is the only lipid among fatty 

acids, phospholipids and sterols that plays a primary role in yeast dehydration tolerance. 

By increasing the amount of intracellular PC in commercial yeast strains before 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 



Chapter V 

 

159 
 

dehydration (BD), cells viability was increased by approximately 55% (Rodríguez-

Porrata et al., 2011). Hydrophilins accumulate in response to water deficits in plants, 

bacteria and yeast (Garay Arroyo et al., 2000, Yale and Bohnert 2001). Among the 12 

hydrophilin proteins described for S. cerevisiae, we demonstrated previously that the 

overexpression of GRE1, NOP6, YJL144W, STF2 and SIP18 in laboratory and 

commercial yeast strains increases cell viability by a range of 30% to 60% after stress 

treatment (López-Martínez et al., 2012, López-Martínez et al. 2013). In the present study, 

we hypothesised that hydrophilins protect the proteomic profile of cell membranes to 

overcome dehydration stress. To validate this hypothesis, we evaluated the yeast 

membrane proteome of the haploid strain BY4742, sip18 null mutant (sip18, pGAL) and 

a SIP18-overexpressing strain (sip18, pGAL-SIP18) at time point zero, (cells in 

stationary phase after 4 h of galactose induction, BD) and after 30 min of rehydration 

(AR). By comparing their proteomic profiles, we identified 19 membrane proteins that 

were significantly up- or downregulated among the three strains during stress. The 

proteomic approach used in this study provides the first demonstration of the putative 

roles of the Gvp36p, Gdp1p, Ald4p, Asc1p, Pma1p, Hsp30p and Lsp1p proteins in yeast 

dehydration stress tolerance. 

 

Material and methods 

Strains and plasmids 

The S. cerevisiae BY4742 (MATα, his3∆1, leu2∆0, lys2∆0, ura3∆0) and sip18 null 

mutant (BY4742, sip18::kanMX4) strains were purchased from EUROSCARF 

(Frankfurt, Germany) (Brachmann et al. 1998). The SIP18-overexpressing strain (∆sip18, 

pGAL-SIP18) and its reference strain transformed with an empty vector (∆sip18, pGAL) 

were developed previously by our group (Rodríguez-Porrata et al., 2012a). 

Growth conditions and the dehydration-rehydration process 

The yeast BY4742 strain was grown in shake flasks (150 rpm, 28°C) in complete drop-

out synthetic glucose media, and the ∆sip18, pGAL and ∆sip18, pGAL-SIP18 strains were 

grown in complete synthetic glucose media devoid of leucine. All strains were cultivated 

for 48 h, and cells were harvested after 4 h supplementation with 2% galactose. The 

dehydration-rehydration process was performed as described by Rodríguez-Porrata et al. 

(2011). 
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Lysis and digestion 

Cells from three independent cultures of BY4742; ∆sip18, pGAL; and ∆sip18, pGAL-

SIP18 strains were harvested at time point BD and AR. The cells from each triplicate 

sample were harvested, immediately washed with ice-cold water and pelleted. The 

membrane protein fractions were isolated in the presence of protease inhibitor tablets 

(Roche, Basel, Switzerland) using a FOCUS Membrane Proteins Kit according to the 

manufacturer’s instructions (BD Biosciences, USA). The protein amount was determined 

using a 2D Quant Kit (GE Healthcare, Zeist, The Netherlands). Next, the proteins were 

reduced, carbamidomethylated and digested using an adaptation of the FASP method 

(Wisniewski et al., 2009, Wisniewski et al., 2012). Briefly, 250 µg of sample was mixed 

with 0.1 mL of UA solution (8 M urea in 0.1 M Tris-HCl [pH 8.5]) and 10 mM DTT. 

After the mixtures were incubated at 56°C for 20 min at 600 rpm, they were loaded into 

Microcon-30 kDa filtration devices (Millipore, Darmstadt, Germany) and centrifuged at 

14,000×g for 15 min. The concentrates were diluted in the devices with 0.2 mL of UA 

solution and centrifuged again. Then, the concentrates were mixed with 0.1 mL of 50 mM 

iodoacetamide in UA solution and incubated in the dark at room temperature for 20 min. 

After the concentrates were centrifuged for 15 min, they were diluted with 0.1 mL of UB 

solution (8 M urea in 0.1 M Tris-HCl [pH 8]) and concentrated again. This step was 

repeated twice. Subsequently, 5 µg of Lys-C in 40 µL of UB was added to the filter, and 

the samples were incubated at 37°C for 4 h. Next, 5 µg of trypsin in 180 µL of NH4HCO3 

was added to the sample and incubated at 37°C overnight. The peptides were collected 

by centrifuging the filter units, followed by the addition of 50 µL of 0.5 M NaCl and 

centrifugation at 14,000×g for 15 min. The collected samples were acidified with 1% 

formic acid, and peptides were desalted using reverse-phase Sep-Pak C18 cartridges 

(Waters Corporation, Milford, MA, USA) and a Supelco Visiprep DL system (Sigma, 

The Netherlands). 

LC-MS/MS analysis 

LC-MS/MS was used to analyse the digested and purified samples. The samples were 

analysed using a Proxeon Easy-nLC 1000 (Thermo Scientific) connected to a Q Exactive 

mass spectrometer (Thermo Scientific). The injected samples were first trapped (Dr. 

Maisch Reprosil C18, 3 µm, 2 cm, 100 μm) at a maximum pressure of 600 bar with 

solvent A (0.1% formic acid in water) before being separated on an analytical column 

(Agilent Zorbax SB-C18, 1.8 μm, 40 cm, 50 μm) at a stable temperature of 40°C. Peptides 
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were separated chromatographically by a 90 min gradient from 7% to 30% solvent B 

(0.1% formic acid in acetonitrile) at a flow rate of 100 nL·min-1. The column eluent was 

introduced directly into the electrospray source of the mass spectrometer. The 

electrospray voltage was set to 1.7 kV using a fused silica capillary (360 μm o.d., 20 μm 

i.d., 10 μm tip i.d., constructed in-house). The mass spectrometer was used in data-

dependent mode, which automatically switched between MS and MS/MS using a Top10 

method (higher-energy collision dissociation fragmentation). 

MS data analysis 

The mass spectrometry raw data were quantified in a label-free manner using the 

MaxQuant software (version 1.4.1.2) with the integrated Andromeda search engine and 

with the match between runs and label-free quantification (LFQ) options selected (Cox 

and Mann, 2008; Cox et al., 2011). Analysis was performed against a decoy database of 

the predicted proteome from S. cerevisiae downloaded from the SGD homepage 

(www.yeastgenome.org). Peptide tolerance was set initially to 20 ppm for the first search 

and to 4.5 ppm after recalibration. Enzyme specificity was set as C-terminal to Arg and 

Lys for full tryptic digestion with a maximum of two missed cleavages. 

Carbamidomethylation of cysteine was set as mixed modification, and N-terminal protein 

acetylation and methionine oxidation were set as variable modifications. All peptide 

spectrum matches (PSMs) and proteins were validated with a 1% false discovery rate. 

Only PSMs with a minimum length of 6 amino acids were kept. 

Post-acquisition data analysis 

Before analysis using the Perseus software, the “proteingroups.txt” table generated by 

MaxQuant was filtered for contaminants, reverse hits and hits only identified by site. 

Subsequently, Perseus software analysis was performed to identify specific proteins 

involved in dehydration tolerance that showed a significant change at both the BD and 

AR time points in the ∆sip18, pGAL-SIP18 strain versus the ∆sip18, pGAL and BY4742 

strains. First, the LFQ values were transformed to a logarithmic scale (log2), and the 

resulting Gaussian distribution of the data was used to replace missing values based on 

the normal distribution. Then, statistical analysis was performed using an ANOVA or t-

test with a highly stringent cut-off value (FDR 0.001 for BD and FDR 0.01 for AR) in 

which low-intensity peptides and proteins were efficiently removed from the “significant” 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 

http://www.yeastgenome.org/


Chapter V 

 

162 
 

data set. The ANOVA test was applied to LFQ for BD samples, and t-test-based statistics 

were applied to LFQ for AR samples. 

Gene Ontology enrichment, protein interaction and co-expression analyses 

Gene Ontology categories for molecular function and cellular component were based on 

the Saccharomyces Genome Database (SGD) for the presence-absence pattern of each 

category (Cherry et al., 2012). We examined the enrichment of pathways using the 

DAVID database (Huang et al., 2009a and 2009b). All P values below 0.015 were 

reported. To show the relation among proteins in terms of co-expression and protein-

protein interactions, we used the STRING network database at confidence 0.400 (Jensen 

et al., 2009). 

 

Results and discusion 

LC-MS/MS 

We compared the yeast membrane proteome among the strains BY4742; ∆sip18, pGAL; 

and ∆sip18, pGAL-SIP18 to identify proteins that are significantly involved in the 

observed higher dehydration tolerance in response to SIP18 overexpression, as was 

shown previously in different yeast strains (Rodríguez-Porrata et al., 2012a; López-

Martínez et al., 2013). The protein profiles were examined BD and AR. For each 

condition, three biological replicates were analysed. Protein samples were subjected to 

LS-MS/MS-based proteomic analysis and then Perseus data analysis, in which the 

obtained values were filtered for contaminants, reverse hits and hits only identified by 

site; after data transformation, we obtained 534 proteins. Unexpectedly, a higher 

abundance of the hydrophilin Gre1p was observed in ∆sip18, pGAL-SIP18 cells 

compared with the ∆sip18, pGAL and BY4742 cells BD (1.060±0.040, -0.456±0.034, and 

-0.238±0.016, respectively). Among the other identified proteins, the overexpression of 

GRE1 enhanced dehydration tolerance similar to SIP18 (López-Martínez et al., 2012). 

Nonetheless, Gre1p showed a significant decrease in abundance AR in ∆sip18, pGAL-

SIP18 cells compared with BY4742 cells (-0.565±0.284 and 0.181±1.343, respectively). 

In additional analyses, we accounted for the 313 proteins that met the condition of having 

a quantitative value for the three replicates of at least one of the three evaluated strains. 

BD samples were statistically analysed using ANOVA at FDR 0.001, whereas AR 

samples were analysed using a t-test at FDR 0.01. In both cases, Pearson correlation 
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coefficient and R-squared values were determined for each sample and plotted on a scatter 

plot (data not shown). Significant data in all the combinations of biological replicates 

were defined as those between 0.97 and 0.99 for Pearson correlation coefficients and 

between 0.96 and 0.98 for R-squared values, except for ∆sip18, pGAL AR that was 

excluded of this study because did not show good correlation values. After statistical 

analysis, 158 proteins BD and 112 proteins AR were found to be significantly up- or 

downregulated among the three strains for each condition (Figure 1A, B and C).  
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Figure 1. Clustering of all identified proteins. (A, page 163) Hierarchical clustering of all identified proteins 

at the BD and AR time points. (B, page 163) and (C) Proteins that were significantly up- or downregulated 

upon dehydration/rehydration stress. (B) Hierarchical clustering of all 158 proteins that changed at the BD 

time point. Significance was determined by ANOVA analysis at FDR 0.001. (C) Volcano plot showing t-

test P values (-log10) versus protein change (log2) of all 112 altered proteins at the AR time point (empty 

red squares). Significance was determined by a two-sample test at FDR 0.01.  

The statistical analysis of the AR samples was also performed with a more stringent cut-

off (FDR 0.001) in which only 38 proteins were significant. Thus, we continued our study 

of the 112 AR proteins that were defined (data not shown). Next, we evaluated which of 

these 158 significant proteins in the BD condition were common to those that were 

significant in the AR condition. When comparing BD samples with AR samples at the 

FDR 0.01 cut-off, 78 significant proteins were common in both conditions (Figure 2A), 

whereas only 29 were identified with the highly stringent cut-off (data not shown). Of the 

78 common significant proteins in the BD and AR conditions, we investigated which of 

these proteins have a putative role in overcoming dehydration stress in the cell. We 

clustered these proteins into one of the following profiles: i) those showing at least two-

fold differences in the BD and AR conditions of sip18, pGAL-SIP18 cells compared 

with BD-sip18, pGAL cells and for BD and AR time points in the BY4742 strain (Table 

1) and ii) those showing the highest values in the BD condition for sip18, pGAL-SIP18 

cells but with AR values lower than those in AR BY4742 cells (Table 2). According to 

these profiles, 45 proteins were highlighted. In the first profile, 27 proteins were found to 

be up-regulated in AR-sip18, pGAL-SIP18 cells (Figure 2B, Table 1). These results 

C 
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suggest that although these proteins decrease in abundance during dehydration, the 

accumulation of some of these proteins in the sip18, pGAL-SIP18 strain may contribute 

to the 90% viability observed for this strain after rehydration. In contrast, the BY4742 

and sip18, pGAL strains showed 40% and 10% viability, respectively, after rehydration 

(López-Martinez et al., 2012). The 18 proteins that were categorised into the second 

profile may be cellular background noise in the sip18, pGAL-SIP18 strain during stress 

(Figure 2B, Table 2). Additionally, the faster elimination of some of these proteins, which 

may have a toxic effect during the dehydration/rehydration process, may have a positive 

effect on cellular reorganisation after the rehydration process. 

 

Figure 2. (A) Overlap between significant proteins expressed BD and AR. (B) Clustering of 45 common 

proteins that were altered between the BD and AR time points that belong to both profiles. 

 

Table 1: LFQ of overlapped significant of the first protein profile proteins between BD and AR 

Accession 

number 
Name Name description 

BD  AR 

BY4742 ∆sip18, pGAL 
∆sip18, pGAL-

SIP18 
 BY4742 

∆sip18, 

pGAL-SIP18 

YBR039W Atp3p ATP synthase -0,840±0.098 -0.739±0,114 1,288±0,061  -0,540±0,501 0,000±1,000 

YBR230C Om14p 
Outer Membrane Protein of 14 

kDa 
-1,226±0.024 0,209±0,055 1,038±0,022  -0,525±0,590 0,000±1,000 

YCL040W Glk1p GLuco Kinase -0,954±0.064 -0,329±0,031 1,283±0,002  -0,550±0,430 0,000±1,000 

YCR004C Ycp4p Unknown function -1,392±0.102 0,321±0,055 0,953±0,044  -0,576±0,101 0,560±0,343 

YDL022W Gpd1p 
Glycerol-3-phosphate 

dehydrogenase 
-0,814±0,003 -0,436±0,083 1,265±0,020  -0,535±0,534 0,565±0,295 

YDL067C Cox9p Cytochrome c OXidase -1,310±0,094 0,236±0,052 1,080±0,039  -0,554±0,400 0,000±1,000 

YDR032C Pst2p Protoplasts-Secre Ted -0,855±0,020 0,000±0,109 1,121±0,031  -0,577±0,074 0,577±0,056 

YDR155C Cpr1p 
Cyclosporin A-sensitive 

Proline Rotamase 
-1,144±0,059 0,202±0,048 1,158±0,101  -0,577±0,038 0,571±0,206 

YEL054C Rpl12ap 
Ribosomal Protein of the Large 

subunit 
0,108±0,024 -1,416±0,152 1,086±0,053  -0,574±0,151 0,573±0,175 

YFL014W Hsp12p Heat Shock Protein -0,910±0,027 0,023±0,201 1,389±0,031  -0,570±0,222 0,000±1,000 

YGL008C Pma1p Plasma Membrane ATPase -0,965±0,024 0,091±0,091 0,883±0,010  0,000±1,000 0,543±0,480 

YGL191W Cox13 Cytochrome c OXidase -0,859±0,077 -0,793±0,165 1,269±0,005  -0,569±0,245 0,565±0,290 

YGL255W Zrt1p Zinc-Regulated Transporter -0,970±0,001 -0,527±0,093 1,345±0,017  -0,576±0,090 0,577±0,035 

YGR043C Nqm1p Non-Quiescent Mutant -1,216±0,024 0,281±0,042 1,010±0,007  -0,532±0,552 0,548±0,445 

YGR180C Rnr4p RiboNucleotide Reductase -1,152±0,037 -0,077±0,012 1,273±0,025  -0,577±0,060 0,512±0,653 

YGR234W Yhb1p Yeast HemogloBin-like protein -1,116±0,034 0,423±0,098 0,867±0,041  -0,567±0,262 0,000±1,000 

YIL041W Gvp36p Golgi Vesicle Protein -0,511±0,039 -0,840±0,058 1,123±0,187  0,000±1,000 0,556±0,385 

YIR038C Gtt1p GlutaThione Transferase -0,858±0,086 0,334±0,068 0,940±0,013  -0,577±0,022 0,571±0,202 

YJL034W Kar2p KARyogamy -0,115±0,293 -1,030±0,459 0,997±0,341  -0,559±0,355 0,000±1,000 
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continue         

Accession 

number 
Name Name description BD  AR    

   BY4742 ∆sip18, pGAL 
∆sip18, 

pGAL-SIP18 
 BY4742 

∆sip18, 

pGAL-SIP18 

YKL085W Mdh1p Malate DeHydrogenase -1,237±0,004 0,471±0,013 0,842±0,019  -0,577±0,058 0,000±1,000 

YLR044C Pdc1p Pyruvate DeCarboxylase -0,641±0,018 -0,586±0,034 1,384±0,031  0,552±0,418 0,558±0,359 

YLR058C Shm2p 
Serine 

HydroxyMethyltransferase 
-1,129±0,027 0,304±0,101 0,854±0,027  0,000±1,000 0,539±0,505 

YNR034W Sol1p Suppressor Of Los1-1 -1,558±0,187 0,275±0,044 1,034±0,016  -0,562±0,326 0,567±0,271 

YOR374W Ald4p ALdehyde Dehydrogenase -0,751±0,059 0,049±0,042 1,033±0,024  -0,535±0,529 0,573±0,175 

YPL106C Sse1p Heat Shock Protein component -0,870±0,111 -0,494±0,007 1,351±0,042  -0,574±0,160 0,530±0,563 

YPL281C Err2p Enolase-Related Repeat -0,603±0,239 -0,996±0,062 1,266±0,033  -0,511±0,657 0,532±0,547 

YPR191W Qcr2p 
QH2:cytochrome-C 

oxidoReductase 
-1,223±0,018 0,462±0,007 0,849±0,038  -0,577±0,073 0,000±1,000 

 

Table 2: LFQ of overlapped significant of the second protein profile proteins between BD and AR 

Accession 

number 
Name Name description 

BD  AR 

BY4742 ∆sip18, pGAL 
∆sip18, pGAL-

SIP18 
 BY4742 

∆sip18, 

pGAL-SIP18 

YAL003W Efb1p Elongation Factor Beta -0,851±0,001 -0,417±0,061 1,144±0,112  0,564±0,307 -0,527±0,578 

YBL015W Ach1p Acetyl CoA Hydrolase -1,066±0,043 0,382±0,062 0,949±0,044  0,541±0,494 0,000±1,000 

YBL075C Ssa3p Stress-Seventy subfamily A -0,967±0,099 0,134±0,077 1,191±0,011  0,577±0,038 -0,567±0,269 

YBR072W Hsp26p Heat Shock Protein -1,144±0,015 0,286±0,036 1,002±0,060  0,571±0,209 0,000±1,000 

YCL035C Grx1 GlutaRedoXin -1,195±0,327 -0,126±0,042 1,012±0,135  0,575±0,124 -0,532±0,549 

YCR021C Hsp30p Heat Shock Protein -1,091±0,046 -0,167±0,047 1,243±0,015  0,000±1,000 -0,541±0,492 

YDR513W Grx2p GlutaRedoXin -0,952±0,052 -0,031±0,052 1,029±0,035  0,566±0,279 -0,543±0,480 

YDR533C Hsp31p Heat-Shock Protein -0,972±0,156 -0,339±0,173 1,283±0,078  0,556±0,382 -0,524±0,596 

YEL060C Prb1p PRoteinase B -0,882±0,001 -0,002±0,148 1,127±0,014  0,000±1,000 -0,577±0,037 

YER177W Bmh1p 
Brain Modulosignalin 
Homologue 

-0,152±0,010 -1,065±0,012 1,161±0,009  0,563±0,316 -0,562±0,327 

YJR121W Atp2p ATP synthase -1,238±0,032 0,209±0,008 1,047±0,039  0,000±1,000 -0,566±0,280 

YKR097W Pck1p 
Phosphoenolpyruvate 
CarboxyKinase 

-1,166±0,052 0,488±0,031 0,821±0,013  0,529±0,564 -0,571±0,207 

YLR340W Rpp0p Ribosomal Protein P0 -1,190±0,205 0,036±0,071 0,990±0,061  0,577±0,045 -0,576±0,089 

YLR355C Ilv5p 
IsoLeucine-plus-Valine 
requiring 

-1,061±0,003 0,383±0,054 0,945±0,065  0,576±0,082 -0,524±0,594 

YMR116C Asc1p 
Absence of growth Suppressor 
of Cyp1 

-1,069±0,032 -0,228±0,231 1,167±0,003  0,566±0,282 -0,576±0,078 

YOR065W Cyt1p Cytochrome c OXidase -1,060±0,483 -0,515±0,050 1,203±0,059  0,000±1,000 -0,576±0,092 

YPL004C Lsp1p 
Long chain bases Stimulate 
Phosphorylation 

-1.589±0,125 0,316±0,025 0,880±0,128  0,550±0,432 -0,572±0,183 

YPL078C Atp4p ATP synthase -1.038±0,107 0,448±0,009 0,877±0,008  0,570±0,219 -0,509±0,669 

Gene Ontology enrichment, protein interactions and co-expression analysis 

To determine whether these 45 proteins were involved in maintaining and/or restoring the 

cell from the damage produced by dehydration stress, we searched for their molecular 

function GO term and subcellular distribution using the Saccharomyces Genome 

Database (Figure 3). Of the 45 proteins, only 19 are membrane proteins (Figure 3a), which 

belong to the first established profile, except for Atp2p, Atp4p, Cyt1p and Lsp1p (Figures 

4a and 5a, Table 2). Some of these 19 membrane proteins localised specifically to the 

plasma membrane (Glk1p, Ycp4p, Hsp30p, Pst2p, Bmh1p, Pma1p, Zrt1p, and Lsp1p), 

whereas others localised to endomembranes (Hsp12p, Gtt1p, Kar2p and Gvp36p) or to 

mitochondrial envelopes (Atp2p, Atp3p, Atp4p, Cox9p, Cox13p, Cyt1p, Om14p and 

Qcr2p) (Figure 6a).  
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Figure 3. Functional category analysis of the 45 common proteins that were altered BD and AR that belong 

to both profiles. (A) subcellular distribution and (B) functional annotation.  

Next, we investigated the putative relations of the abundance of the proteins of each 

profile by co-expression and protein-protein interaction data using the STRING database. 

Figure 4 shows the network analysis for the first profile of 27 selected proteins, of which 

22 show co-expression and/or interaction links; the exceptions include Zrt1p, Rnr4p, 

Rpl12ap, Cpr1p and Gvp36p. According to the co-expression data, Om14p had the 

highest association score and a major protein interaction (Figure 4). Om14p showed co-

expression with Glk1p, Hsp12p, Cox13p, Mdh1p, Ald4p and the transaldolase of 

unknown function Nqm1p (Figure 4B). Additionally, Om14p is co-expressed with Sip18p 

with a medium-high association score (data not shown). Om14p is a mitochondrial outer 

membrane receptor for cytosolic ribosomes that participates in co-translational 

mitochondrial import by interacting with Por1p and Om45p (Lesnik et al., 2014; Lauffer 
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et al., 2012). Nevertheless, the ∆om14 strain shows high resistance to osmotic stress; 

therefore, the accumulation of Om14p is unexpected in cells subjected to the osmotic 

stress that occurs during the dehydration/rehydration process (Troppens et al., 2013). 

However, the cytoplasmic protein Gpd1p and the membrane protein Gvp36p contribute 

to high tolerance to hyperosmotic stress, but only GPD1 shows co-expression with GLK1 

(Ansell et al., 1997). The BAR domain protein Gvp36p localises to Golgi vesicles, and 

the glycerol-3-phosphate dehydrogenase Gpd1p synthesises glycerol (Yoshikawa et al., 

2009; Albertyn et al., 1994). The apparent contradiction of Omp14p suggests that its 

major role may be related to the resumption of mitochondrial activity and that Gvp36p 

and Gpd1p provide osmotic robustness to sip18, pGAL-SIP18 cells during stress. The 

second highest score was exhibited by Glk1p (Figure 4A), which is co-expressed with 

Gpd1p, Pst2p, Hsp12p, Mdh1p and Ald4p (Figure 4B). Additionally, in an anti-tag co-

immunoprecipitation assay, interactions between Glk1p and Cpr1p, Pma1p, Pdc1p, 

Shm2p and Sol1p were detected, but the only member of the first protein profile that 

showed a high score value with Pdc1p was Pma1p (Figure 4B) (Ossareh-Nazari et al., 

2010). The glucokinase Glk1p catalyses the phosphorylation of glucose in the first 

irreversible step of glycolysis as sucrose or trehalose degradation. This specific function 

may be related to the idea that intracellular trehalose glycolysis supplies the sip18, 

pGAL-SIP18 cells with ATP earlier by Glk1p accumulation after stress compared with 

the BY4742 strain (Herrero et al., 1995). The endomembrane protein Hsp12p 

accumulated during all processes in sip18, pGAL-SIP18 cells and is an S. cerevisiae 

hydrophilin protein similar to Sip18p; with Lsp1p (present in the second profile). Hsp12p 

is a constituent of the GO functional annotation term lipid binding (López-Martínez et 

al., 2012) (Figure 3B). Hsp12p is involved in pathways that respond to water deficit and 

acts in an analogous manner to trehalose by protecting membrane integrity and stability 

against dehydration without altering the overall plasma membrane lipid composition 

(Mtwisha et al., 1998; Sales et al., 2000). Despite this membrane protection, an HSP12-

overexpressing strain exhibited detrimental effects after the dehydration process (López-

Martínez et al., 2012). However, a hsp12 strain shows low tolerance to oxidative stress 

driven by the dehydration/rehydration process (Welker et al., 2010, Rodríguez-Porrata et 

al., 2012b). The apparent contradiction between Hsp12p accumulation in sip18, pGAL-

SIP18 cells during stress and the detrimental effect of HSP12 overexpression suggests 

that a dose-dependent effect of Hsp12p allows the cells to overcome dehydration stress. 
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The null mutant of the mitochondrial aldehyde dehydrogenase, the ∆ald4 strain, shows 

low tolerance to oxidative stress; therefore, Ald4p accumulation in ∆sip18, pGAL-SIP18 

cells contributes to the mitigation of the oxidative stress caused by stress imposition. On 

the other hand, the null mutant of the ATPase component of heat shock protein Hsp90 

chaperone complex, the ∆sse1 strain, shows low tolerance to dehydration; consequently, 

it suggests that ∆sip18, pGAL-SIP18 cells accumulation of Sse1p allow to reduce cell 

damages during dehydration (Shima et al., 2008). The mitochondrial malate 

dehydrogenase Mdh1p is involved in the tricarboxylic acid (TCA) cycle, which 

Ratnakumar et al. (2011) showed decreases in the dehydration-resistant ∆mdh1 strain. 

Therefore, Mdh1p accumulation induced by SIP18 overexpression may play a role in 

overcoming cell dehydration stress. 
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Figure 4. Enriched protein network analysis of the first profile. STRING network analysis (A, page 169). 

STRING interaction confidence was set at 0.4. The dark line corresponds to co-expression prediction, the 

pink line corresponds to a protein-protein interaction, and turquoise corresponds to a protein interaction 

group. Protein co-expression association score (B). 

Figure 5 shows the network analysis for the 18 selected proteins in the second profile. 

The co-expression data showed two primary non-interconnected sub-groups that include 

the following proteins: i) Cyt1p, Atp4p, Atp2p, Ach1p, Pck1p, Asc1p, Ilv5p, Rpp0p and 

Efb1p; and ii) rx1p, Grx2p, Lsp1p, Bmh1p, Hsp26p, Hsp30p, Hsp31p, Ssa3p and Prb1p 

(Figure 5A). The proteins from each sub-group exhibited varying levels of co-expression, 

but only the members that belong to the first sub-group showed a high association score.  

 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 



Chapter V 

 

171 
 

 

 

 

 

 

 

 

 

 

 

Figure 5. Enriched protein network analysis of the second profile. STRING network analysis (A, page 170). 

STRING interaction confidence was set at 0.4. The dark line corresponds to co-expression prediction, the 

pink line corresponds to a protein-protein interaction, and turquoise corresponds to a protein interaction 

group. Protein co-expression association score (B). 

Atp2p showed high co-expression with Atp4p and Cyt1p, and Rpp0p showed high co-

expression with Asc1p. Co-immunoprecipitation studies have shown protein-protein 

interactions among Efb1p, Bmh1p, Rpp0p, Ilv5p and Asc1p (Ossareh-Nazari et al., 2010; 

Lee et al., 2011) (Figure 5B). The ribosomal protein P0 (Rpp0p), which is involved in the 

interaction between translational elongation factors and the ribosome, did not show any 

protein-protein interactions but was highly co-expressed with the gene that encodes the 

core component of the small (40S) ribosomal subunit Asc1p (Krokowski et al., 2006). 

The ∆asc1 strain shows an enhanced oxidative tolerance phenotype, which correlates with 

the second established profile for ∆sip18, pGAL-SIP18 cells and which contributes to the 

moderation of the oxidative stress induced by the dehydration/rehydration process 

(Brown et al., 2006). However, single null strain characterisation studies for stress 

dehydration showed that the presence of Bmh1p or Rpp0p has a deleterious effect on 

dehydration-stressed cells (Welch et al., 2013, Ratnakumar et al., 2011).  

The 14-3-3 proteins form a family of conserved eukaryotic proteins that bind to over 200 

different proteins involved in nearly all cellular processes. The yeast S. cerevisiae has two 

genes encoding 14-3-3 proteins, Bmh1p and Bmh2p (Bruckmann et al., 2007). Co-

expression between Bmh1p and the rest of the membrane proteins has not been 

established (Figure 6B), but Bmh1p has a documented protein-protein interaction with 

the membrane protein Lsp1p, which is the second constituent of the GO functional 

annotation term lipid binding (Figure 3B).  

B 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 



Chapter V 

 

172 
 

  

Figure 6. Enriched protein network analysis of membrane proteins. STRING network analysis (A). 

STRING interaction confidence was set at 0.4. The dark line corresponds to co-expression prediction, the 

pink line corresponds to a protein-protein interaction, and turquoise corresponds to a protein interaction 

group. Protein co-expression association score (B). 

Lsp1p downregulates resistance to heat stress and specifically participates in down-

regulating the activity of the Pkc1p-MAP kinase cascade and the partially parallel 

Ypk1/2p pathway that control growth and cell integrity (Zhang et al., 2004). Therefore, 

the over-degradation of Lsp1p contributes to the enhanced stress tolerance of sip18, 

pGAL-SIP18 cells (Table 2). Nevertheless, Lsp1p was highly co-expressed and showed 

protein-protein interactions with membrane proteins with unknown functions, Ycp4p and 

Pst2p, which are induced by oxidative stress and which are found in the first established 

profile (Lee et al., 1999) (Figure 6). In contrast, PST2 was co-expressed with the 

endoplasmic reticulum-associated glutathione S-transferase GTT1, for which little 

information is available on which to base a hypothesis regarding its effect during stress 

(Figure 6B). Considering our data, we suggest that the faster degradation of proteins such 

as Bmh1p, Lsp1p and Rpp0p in sip18, pGAL-SIP18 cells compared with BY4742 cells 

after stress may help to resume growth after stress, although these proteins are involved 

in important cell metabolic processes. Seven of the eight members of the GO functional 

annotation term transmembrane transporter activity (Atp2p, Atp3p, Atp4p Cox9p, 

Cox13p, Pma1p and Qcr2p) are involved in the oxidative phosphorylation KEEG 

pathway (Figure 3B). Among them, Qcr2p, Cox9p, Cox13p and Cyt1p showed protein-

protein interactions as detected by PSI-MI assay (Claypool et al., 2008) (Figure 6A). 

B 
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Cytochrome c1 (Cyt1p) is contained in the second profile and is a component of the 

mitochondrial respiratory chain. Furthermore, the ∆cyt1 strain shows severe 

mitochondrial deficiencies. However, the cytochrome c oxidase subunits Cox9p and 

Cox13p and the cytochrome c reductase subunit Qcr2p, which are essential to for energy 

generation showed accumulation in ∆sip18, pGAL-SIP18 cells during stress (Hunte et al., 

2003). The same profile was exhibited by the H+-ATPase plasma membrane efflux pump 

Pma1p, which is the major regulator of cytoplasmic pH and plasma membrane potential 

and which is essential for rehydrated cells to recover membrane selectivity and, indirectly, 

vacuolar activity by restoring cytoplasmic pH (Ambesi et al., 2000). However, Hsp30p, 

which is a negative regulator of Pma1p, showed an opposite profile in ∆sip18, pGAL-

SIP18 cells that correlated with the dehydration sensitivity phenotype described for the 

∆hsp30 strain (Rodriguez-Porrata et al., 2012a). Atp2p, Atp3p and Atp4p are subunits of 

the mitochondrial F1F0 ATP synthase complex that is required for ATP synthesis 

(Devenish et al., 2000). Both Atp2p and Atp4 are contained in the second established 

profile (Table 2), which contrasts with the published phenotype of the single mutants 

∆atp2 and ∆atp4, which show decreased dehydration stress tolerance (Ratnakumar et al., 

2011). Thus, we suggest that the significant reduction of Atp2p, Atp4 and Cyt1p in 

∆sip18, pGAL-SIP18 cells may create a bottleneck in ATP stock recovery to resume 

growth after the rehydration process. The disruption of the cellular energy supply after 

stress may be lethal for the cell or may delay growth by causing a 120 min longer lag 

phase compared with the reference strain as was observed by López-Martínez et al. 

(2013). The final member of the transmembrane transporters group is the high-affinity 

plasma membrane zinc transporter Zrt1p, which was part of the first established profile 

but which did not show protein-protein interactions or co-expression with any of the other 

45 proteins (Figure 4 and 6). Curiously, the ∆asc1 strain showed high resistance to growth 

under Zn-limited conditions, and in our study of Asc1p, the ∆sip18, pGAL-SIP18 cells 

displayed the second established profile (North et al., 2012). 

 

Conclusion 

The present work provides evidence that the SIP18-overexpressing strain creates a 

synergetic abundance of certain proteins that allows yeast cells to overcome dehydration 

stress. From the first protein profile, we obtained 534 proteins expressed in cells BD and 

AR. We found 158 statistically significant proteins BD and 112 proteins AR, but only 78 

UNIVERSITAT ROVIRA I VIRGILI 
FUNCTIONAL CHARACTERIZATION IN VIVO OF ESSENTIAL SACCHAROMYCES CEREVISIAE'S HYDROPHILIN FOR DESICCATION TOLERANCE 
Gema Isabel López Martínez 
Dipòsit Legal: T 1354-2015 



Chapter V 

 

174 
 

proteins were common for both time points. Finally, we pooled 45 of these proteins into 

two profiles: the 1st profile contained 27 proteins that showed at least a two-fold change 

in BD and AR ∆sip18, pGAL-SIP18 cells compared with BD ∆sip18, pGAL cells and BD 

and AR BY4742 cells. The 18 proteins showing the highest values in BD ∆sip18, pGAL-

SIP18 cells but lower AR values than AR BY4742 cells were classified into the 2nd 

profile. Of these 45 proteins, only 19 were membrane proteins. In particular, by 

combining the published data of co-immunoprecipitation and co-expression assays and 

the phenotype of null mutants, we were able to explain the putative contribution of 

variations in protein abundance among ∆sip18, pGAL-SIP18; BY4742; and ∆sip18, pGAL 

cells and their viabilities, which were 90%, 40% and 10%, respectively, after dehydration 

stress (López-Martinez et al., 2012). When cells are subjected to dehydration stress, they 

are actually being subjected to a variety of stresses, such as oxidative, heat, osmotic and 

pH, which alter the structure and function of the vacuole and the integrity and 

functionality of nuclear and cell membranes (Walker and van Dijck, 2006; Porrata-

Rodríguez et al., 2012b). In previous studies of null and overexpressing strains, genes 

that were essential for the cell to overcome dehydration stress could be characterised 

(Rodríguez-Porrata et al., 2012a; Ratnakumar et al., 2011; Shima et al., 2008; López-

Martínez et al., 2012). Consistent with the null mutant strain studies, we found that the 

over-degradation of Bmh1p, Lsp1p and Rpp0p in ∆sip18, pGAL-SIP18 cells correlated 

with enhanced dehydration stress tolerance. Consistent with the increase in osmotic stress 

tolerance, the SIP18-overexpressing cells accumulated Gvp36p and Gdp1p. The 

accumulation of Ald4p and the over-degradation of Asc1p in ∆sip18, pGAL-SIP18 cells 

correlated with increased oxidative stress tolerance. Additionally, the accumulation of 

Pma1p and the degradation of its negative regulator Hsp30p are consistent with the idea 

of rapid restoration of cytoplasmic pH and membrane potential. However, the significant 

reduction of Lsp1p during stress supports the improvement of the Pkc1p/Ypk1p stress 

resistance pathways. This study is the first to demonstrate the putative roles of Gvp36p, 

Gdp1p, Ald4p, Asc1p, Pma1p, Hsp30p and Lsp1p proteins in yeast dehydration stress 

tolerance. 
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Conclusions and future outlook 

Anhydrobiote organisms can remain in dry state for years and then restart their cellular 

activity after rehydration. They have been described among animals, plants and 

microorganisms belonging to both the eukaryote and prokaryote domains (Crowe et al., 

1993). The yeast S. cerevisiae is an excellent eukaryotic anhydrobiote for research 

(Garay-Arroyo, et al., 2000) because it is easy to manipulate and the genetics are simpler 

in comparison with other eukaryotic organisms. These features have led us to study the 

structural and functional cell damage and molecular responses caused by desiccation 

stress. Genetic engineering studies of S. cerevisiae not only deepen our understanding of 

this process, but also serve as a model for future research in tissue storage without the 

need for a hydric solution. Moreover, S. cerevisiae in ADWY formulations is widely used 

in the food industry in the production of fermented products such as beverages because 

in this dried format the yeast has greater genetic stability at room temperature, resulting 

in savings in transport and storage costs. However, the loss of cell viability during the 

industrial drying and rehydration processes and the resulting lower activity have to some 

extent hindered the development of a high-quality inoculum (Rodríguez-Porrata et al., 

2011). For this reason, a better understanding of the molecular processes involved in yeast 

desiccation tolerance is required.  

ADWY production results in several stress situations for the cell. Heat, osmotic and 

oxidative stresses cause particular damage to cells. Although desiccation is carried out in 

the optimum conditions of the stationary phase, adaptive responses are needed to ensure 

cell survival. Of all the cross-talking molecules and pathways involved in tolerance to 

desiccation-related stresses, yeast hydrophilin proteins have been described as the most 

important because they enhance viability after rehydration. Hydrophilin proteins form an 

artificial rather than functional group and share common physicochemical properties such 
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as Gly content and hydrophilicity (Battaglia et al., 2008). This biochemical group is well 

represented not only among yeast species but also bacterial, animal and plant 

anhydrobiots (Alpert, 2006). LEA genes may act as binding molecules, antioxidants, 

molecular shields, chaperons, sugar glass stabilizers, membrane protector and in other 

roles that have yet to be discovered (Olvera-Carrillo, et al., 2011; Hand et al., 2010). 

Twelve yeast hydrophilin proteins were identified in desiccation-related stresses at 

different omic levels (Garay-Arroyo et al., 2000; Gash et al., 2000; Singh et al., 2005). 

Indeed, previous research by our group showed that the over-expression of the SIP18 

hydrophilin gene enhances dehydration tolerance by acting as an antioxidant (Rodríguez-

Porrata et al., 2012a). In the present doctoral thesis we have found that some S. cerevisiae 

hydrophilin proteins are involved in dehydration and rehydration tolerance (see chapters 

II and III) through the regulatory expression of other metabolites (see chapter V). 

However, desiccation tolerance is a complex mechanism involving not only hydrophilin 

proteins but also other molecules identified in our results for the first time (see chapter 

IV).  

We characterized the twelve S. cerevisiae hydrophilins in a laboratory strain (see chapter 

II). Despite possessing biochemical features, not all hydrophilins play a role in yeast 

desiccation tolerance. Over expression of STF2 and SIP18 has a positive effect on 

desiccation tolerance because they both reduce ROS damage without causing apoptotic 

cell fraction (Rodriguez-Porrata et al., 2012a, see chapter II). Consequently, it is possible 

that the two hydrophilins have not shared functional role against desiccation, although, it 

is also possible that they have a common structural role such as protecting nucleic acid or 

acting as a molecular shield arresting intracellular water content. These hypothesis should 

be evaluated in the future.  

Over expression of SIP18 in wild and commercial wine yeast strains produced the same 

desiccation phenotype as in the laboratory strain without altering fermentative 

performance (see chapters II and III). These common results lead us to propose the over 

expression of Sip18 as a possible way of reducing inoculum expenses since it would 

enhance the viability of dried commercial wine strains (see chapter III). These strains 

were treated with H2O2 and it was found that not all of them reduced ROS accumulation 

as they did after rehydration. These results led us to hypothesize that Sip18p reduces not 

only non-radical reactive species, but also other minor reactive species such as RNS (Li 
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and Moore, 2007) and free radicals such as O2
- (Sheehan et al., 2001) that might remain 

in the cell before Haber-Weis reaction (Halliwell, 2006).  

Although the mechanism by which over-expression of SIP18 decreases ROS and thus 

increases viability in S. cerevisiae remains unclear, we have shown that desiccation 

tolerance involves other molecules and molecular mechanisms belonging to desiccation 

related stresses (see chapters IV and V). Among them, membrane proteins could be one 

of the most important molecules since membrane is damaged primarily during stress 

imposition even though the starvation-induced stationary phase allows to the cell to 

withstand different stresses (Werner-Washburne et al., 1993). Nevertheless, prior over-

expression of the SIP18 hydrophilin ‘preadapts’ cells by increasing their capacity to 

overcome and enhance dehydration and rehydration stress. This cell preadaptation could 

be due to both SIP18 accumulation and changes in the expression of the membrane’s 

proteomic profile as a consequence of SIP18 accumulation (see chapter V). Among the 

78 fold-changed proteins, 45 increase in numbers after stress imposition and 27 were 

found to be downregulated, some of which were identified for the first time in this study. 

It is worth to note that Gre1p hydrophilin protein appears significantly changed due to 

overexpression of Sip18p. These results lead us to hypothesize that these 78 proteins 

could be activated or inhibited as a result of transcriptional regulation by different cross-

talked pathways related to desiccation stresses in which SIP18 might participate or by 

specific degradation of some proteins by SIP18 action. This hypothesis is strengthened 

by the co-expression of SIP18 leads to the up and downregulation of certain proteins. 

However, the role of SIP18 in signaling and inducing degradation needs to be studied in 

the future.  

The results shown in chapters II, III and V confirm that other metabolites in addition to 

hydrophilins are involved in desiccation stress tolerance. We used QTL analysis to 

identify which other molecules play a leading role in enhancing dehydration tolerance 

(see chapter IV). This technique has also been used in several studies to link genotype 

and phenotype (Jara et al., 2014). We evaluated the link between dehydration phenotype 

and DNA variations in 96 segregants derived from a cross between two haploid strains 

(WAxWE) created from two strains of wine yeast. Characterization of genes with 

sequence changes between alleles showed that only five out of eleven genes had different 

viability for both genetic backgrounds. These results led us to suggest that dehydration 

tolerance is not gene induced but rather depends on the specific amino acid sequence of 
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each allele, possibly in conjunction with other genes activating or inhibiting their function 

(see chapter V). However, it would be interesting to carry out further studies for the genes 

which did not show any sequence evaluation in the QTL analyses. Evaluating these genes 

in other backgrounds is needed to confirm the sequence similarity and their role in 

dehydration tolerance. This would enable possible molecular markers to be identified that 

could be used in for selecting high-quality yeast strains for the food industry.  

Finally, it would be worth to evaluate the molecular scenario involving overexpression of 

Gre1p, Stf2p, YJL144wp and Nop6p, which also increase yeast desiccation tolerance, in 

order to find common molecules and molecular mechanisms with a Sip18p molecular 

scenario or find some of the proteins described in chapter IV. Taking all into account 

could be useful for producing robust ADWY or for further investigation in tissue 

engineering. 

The results presented in this doctoral thesis deepen knowledge of the cross-talked 

desiccation tolerance mechanism and the metabolites involved in it. 
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