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Abstract

One of the principal problems that characterizes many studies and statistical researches is represented
by the nature of the considered variables: we cannot measure them directly, as is so often verified, and
we need some theoretical construct to identify them. Searching for this theoretical construct, which is also
known as a latent or intangible variable, means analyzing the possible relationships between the observed
variables and the “concept” by proposing different theories and models. The methodology used for this
purpose is the structural equation model (SEM), which allows great flexibility in modeling multiple rela-
tionships between sets composing blocks of variables.

There are essentially two methods available for estimating the structural equation model: (1) the SEM-
ML (Maximum Likelihood Approach to Structural Modeling Equation), also known as LISREL (Linear
Structural Relations), which is based on estimating the covariance; and (2) Partial Least Squares Path Mod-
eling (PLS-PM), developed by Herman Wold as an alternative to LISREL for estimating latent variables.
The two techniques are more complementary than conflicting, and the choice between them depends on
different factors, including the purpose of analysis, the nature of the model and the research context. LIS-
REL is suitable for confirmatory studies where models are supported by a strong theory (hard modeling),
whereas PLS-PM is suitable in studies where the goal is to estimate latent variables for each individual and
where the models do not have a definitive theory behind the constructs.

Over the past decade, PLS-PM has become a popular statistical tool in many fields, such as market-
ing, information systems, and management. The PLS-PM models do not require distributional assumptions
on the latent and observed variables, and they are particularly suitable for solving problems in marketing
applications, where the goal is to use the results of the PLS-PM model to implement policies oriented to
consumers.

Therefore, from a methodological point of view, we will use the PLS-PM approach. The PLS-PM
method is based on the use of an iterative algorithm built on NIPALS (Wold, 1966), which allows us to
estimate the latent variables (intangibles) and the relationships between them (path coefficients). Recently,
Michel Tenenhaus has proven that PLS-PM models are a special case of multi-table analysis and that they
optimize as criterion, the sum of squared covariances among the related latent variables (Tenenhaus, 2012).
Hanafi (2007) has proven the monotoneconvergence of such criterion.

Traditionally, structural equation models assume homogeneity of data: that is, all individuals belong
to the same population. In many cases, this assumption is not met in studies on real data, because it is
reasonable to think that different groups of people, defined by different socio-economic and psychographic
characteristics, present heterogeneous behaviors.

The problem of not considering the possible existence of segments between observations is that the
structural equation model may lead the analyst to obtain inadequate results. For example, if a company
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wants to start a marketing campaign for its own clients and, before beginning, it decides to estimate their
satisfaction through a unique PLS-PM model based on a sample of heterogeneous individuals (“young”
people 18-30 years old, “adults” between 30 and 50 and “older” people between 50 and 65); it seems rea-
sonable that the obtained estimations do not reflect the behavior of each of the three groups of individuals.
In these cases, considering a single model in presence of heterogeneity would be misleading. To solve this
problem, it is necessary to assume the existence of different groups in the population.

The literature distinguishes two different sources of heterogeneity: the first one is assignable, and the
second one is non-assignable. Basically, we have assignable heterogeneity when we use segmentation vari-
ables to define segments. With assignable heterogeneity we can distinguish two situations: known segments
and unknown segments. In the first case, individuals can be divided into segments a priori, and separate
models may be estimated for each of them. The hypothesis is that an individual can be uniquely assigned
to a single group that is based on one or more segmentation variables. In general, the number of groups
is known a priori, and it is based on a limited number of segmentation variables: generally two, or a max-
imum of three. In the second case, if some segmentation variables are also available and we can divide
the individuals into groups, we don’t know which partitions must be considered (unknown segments). In
this case, we need to find some criterion that allows us to identify which are the best partitions. When the
heterogeneity is not assignable beforehand, even when assuming the existence of different segments in the
data, we simply use the modeling variables to define the segments, which involves applying a technique to
obtain the class partition.

In the majority of survey studies, it is normal to “not know the causes” of heterogeneity and to collect
a relatively large set of segmentation variables: sex, age group, education level, religion and social status,
just to name a few. In these cases it would be interesting to have a tool that automatically identifies which
variables define the heterogeneous groups present in the data.

In 2009 Gaston Sánchez proposed PATHMOX as a solution to this problem. PATHMOX is a new seg-
mentation approach for detecting heterogeneity and is based on the construction of a binary tree of PLS-PM
models. The goal of PATHMOX is to analyze each partition of the tree and identify the segmentation vari-
able that maximizes the difference between the respective PLS-PM models in each child node. In other
words, it identifies the two customer segments that present different behaviors regarding relationships be-
tween latent variables. This methodology provides an important advantage over previous approaches to
heterogeneity, as it allows us to detect the existence of different models for different subsets of a data-set
without defining a priori segments: the segments are revealed as branches of the segmentation tree. How-
ever, some improvements to the technique can be considered.

The purpose of this thesis is to extend PATHMOX in the following ways:

1. Extension of the PATHMOX approach for detecting which constructs differentiate segments. The
PATHMOX approach allows us to detect the existence of different models in a data-set without iden-
tifying segmentation variables beforehand. However, the F-test used in PATHMOX as split criterion
is a global criterion: it allows us to assess whether all the coefficients for two compared models are
equal or not; but it does not indicate which particular equation and which coefficients are responsible
for the difference. To identify the significant distinct equation and the responsible coefficients of the
split, we will introduce the F-block test and the F-coefficient test.

2. Extension of the PATHMOX approach for dealing with the factor invariance problem. In the context
of PLS, the algorithm works by fixing the topology of the structural model (i.e. the model of the
causal relationship between the latent variables), and the goal is to detect segments that have different
path coefficients; however, it does not put any restriction on the measurement model (i.e. the models
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that link the observed variables with their own constructs). Thus, anytime that a significant differ-
ence is found and two child nodes are defined, the relationship among latent variables are the same
in both ”child” models, but the estimation of each latent variable is recalculated. This consideration
introduces the problem of invariance: if the estimations of the latent variables are recalculated (i.e.
they could be different) in each terminal node of the tree, we cannot be completely certain that we are
correctly comparing the distinct behaviors of two individuals who belong to two different terminal
nodes. To solve this problem,we will propose an invariance test based on the χ2 distribution, where
the goal of the test is to verify if the measurement models of each terminal node can be considered
equal or not.

3. Extension of the PATHMOX approach for overcoming the parametric hypothesis of F-test. There is
one criticism of the PATHMOX approach when it is applied in the context of partial least squares
path modeling; and that is it utilizes a parametric test based on the hypothesis that the residuals have
a normal distribution for comparing two structural models. PLS-PM is generally used to model data
that come from the survey analysis. These data are characterized by an asymmetric distribution:
when an individual expresses an opinion, for example on a specific service, the opinion will likely
be characterized by social bias. This situation produces skewness in the distribution of data. As we
well know, it does not matter when we apply the PLS methodology, because one goal of this method
is to have no assumptions about the distribution of data. However, it imposes a limitation when we
compare PLS models across PATHMOX, because we cannot guarantee the normal distribution of
our data, which is a necessary condition for applying the F-test as split criterion. To overcome this
limitation, we will extend the test to compare two least absolute deviation robust regressions (LAD)
(Koenker and Bassett, 1982) in the context of the PLS path modeling.

4. Generalization of the PATHMOX algorithm for use in any type of modeling methodology. The PATH-
MOX algorithm has been proposed for analyzing heterogeneity in the context of partial least squares
path modeling. However, this algorithm can be applied to many other kinds of methodologies ac-
cording to the appropriate split criterion. To generalize PATHMOX, we will consider three distinct
scenarios: regression analysis (OLS, LAD, GLM regression), principal component analysis (PCA)
and partial least squares path-modeling (PLS-PM).

5. Implement the methodology using the R software as a specific programming tool.



Chapter 1

Heterogeneity Overview

In many statistical applications, the most common practice is to impose homogeneity restrictions and an-
alyze data as if they were obtained from a single population. However, this hypothesis is often unrealistic
because it is unlikely that all individuals in the sample have the same set of parameter values. Consider,
for example, marketing and consumer behavior research. Potential sources of heterogeneity can be due to
brand awareness, product class knowledge, product usage rate, customer preferences, desire for specificity
and benefits. In survey research studies, heterogeneity can be expected among different subgroups defined
by gender, groups of age, ethnicity, and marital status. In educational research, assuming homogeneity
among a sample of students with varying instructional backgrounds is unrealistic. In natural sciences, a
sample may consist explicitly of groups such as experimental and control groups. Test results on a medical
test may reflect two types of patients in the sample: those with a disease and those who are healthy. In
this chapter we consider the problem of heterogeneity. In the first section, we discuss two different ways
of approaching heterogeneity: we will call them heterogeneity in population and in models. We continue
defining the segmentation variables (section (1.2)), analyzing the different sources of heterogeneity (sec-
tion (1.3)) and the different ways of dealing with heterogeneity (i.e. how two introduce it in our model)
(section (1.4)). We conclude (section (1.5)) by presenting a background of the techniques used in classical
approaches, which treat heterogeneity in models.

1.1 Approaches to the Heterogeneity Problem
Classically, heterogeneity refers to mixtures of populations forming differentiated clusters, a situation that
we may refer to as population heterogeneity. A different case is model heterogeneity, where the objective is
to find segments by following different models. Although at first glance the distinction may seem blurred,
it is not: the fundamental point is that cluster analysis does not take into account the hypothesized structural
relationships among variables, whereas modeling segmentation does consider the assumed structural rela-
tions. Furthermore, there is a different perspective in the two approaches: population heterogeneity starts
by using observations to define different groups, whereas model heterogeneity starts with models that define
segments. Finally, population heterogeneity also has a predictive purpose: we want to be able to identify
an assignment rule that can be generalized for new observations. This differs from model heterogeneity, in
which we investigate merely the presence of different models in our data.

1.2 The Nature of a Heterogeneity Variable
We assume that heterogeneity is assignable to third variables, such as socio-demographic variables (e.g.,
age, gender, family size, occupation and education), geographic variables (e.g., country, state, neighbor-
hood, size of metropolitan area and climate), psychographic variables (e.g., lifestyle, values or personality)
and behavioral variables (e.g., usage rate, seeking profits, readiness to buy and user status). From these, we

9
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have collected a set of observed covariates that are potential sources of heterogeneity; or, at least, this set
of covariates can explain heterogeneity. We call this set segmentation variables in order to distinguish them
from the modeling variables.

X Y 

1
 
 
 
 
 
N

n 

…
 

…
 

 Z 

Predictors Suplementary info. 
 (Segmentaion Var) 

Dependent  Var. 

Figure 1.1: The available data structure: Y dependent variable, X predictors, Z supplementary information
(i.e.. segmentation variables)

1.3 Sources of Heterogeneity
The source of heterogeneity may be assignable or non-assignable. Basically, we have assignable hetero-
geneity when we use segmentation variables to define segments. In the assignable heterogeneity we can
distinguish two situations: known segments and unknown segments. In the first case (see case 1 Table
(1.2)), individuals can be divided into segments a priori, and for each of them separate models may be
estimated. The hypothesis is that an individual can be uniquely assigned to a single group, based on one
or more segmentation variables. The objective is to compare the different groups (corresponding to the
different models) that have been identified. In general, the number of groups is known a priori for most
applications, and it is based on a limited number of segmentation variables: two or a maximum of three.
One example could be a division into segments based on gender (men and women), and social status (low,
medium, high). The total number of groups will be six (male with low, medium or high social status, and
female with low, medium or high social status). Table (7.1) shows all obtained groups.

Variables Social Status

Gender Male-low Male-medium Male-hight
Female-low Female-medium Female-Hight

Table 1.1: Obtained groups by segmentation variables gender and social status

In the second case (see case 2 in Table (1.2)), if some segmentation variables are also available and
we can divide the individuals into groups, we don’t know which partitions must be considered (unknown
segments). In this case, we need to find some criterion that allows us to identify which are the best partitions.
When the heterogeneity is non-assignable beforehand (see case 3 in Table (1.2)), even if we assume the
existence of different segments in the data, we just use the modeling variables to define the segments. This
involves applying a technique to obtain the class partition (Lubke and Muthén, 2005).

Assignable Non assignable
Known Case 1
Unknown Case 2 Case 3

Table 1.2: Classification of heterogeneity by assignable - no assignable, known - unknown
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1.4 Modeling Heterogeneity
There are several ways of dealing with assignable heterogeneity: introducing moderating variables in the
model, estimating the models into the potential heterogeneous groups, or by a global test comparing the
homogeneous model versus the heterogeneity we want to test.

1. Moderating variables Classically, heterogeneity is tested by including the segmentation variables as
terms in the model (called moderating variables). These represent the heterogeneity we want to test:

y = f
(

β0 +β
′
1x+β0UU +β

′
1UUx

)
+ ε (1.1)

where x represents the vector of explanatory variables of the model, and U the moderating (or in-
teraction) variable we want to test. Heterogeneity is assessed by means of a statistical test on the
coefficients of the interaction terms (β0U = 0 and β ′1U = 0). In practice, this approach has limited
possibilities of exploration; it implies that the source(s) of heterogeneity must be known a priori,
with a small number (normally one) of moderating variables (segments are defined by the levels of
the moderating variable).

2. Comparison of coefficients (multi-group approach) Another way of dealing with heterogeneity is
to fit the model in all groups, and then to assess the similarity of the obtained coefficients:

yA = f
(

β0A +β
′
1AxA

)
+ εA (1.2)

yB = f
(

β0B +β
′
1BxB

)
+ εB (1.3)

where A and B represent the two segments whose homogeneity we want to test. Here, heterogeneity
is assessed variable by variable and it forms the model by establishing whether or not the difference
in coefficients is significant (β0A = β0B and β ′1A = β ′1B ). As before, we have limited possibilities
of exploration: the source(s) of heterogeneity must be known a priori and we can only deal with a
limited number of segments (normally two).

3. Global comparison of models We test the identity of two models. One represents the homogeneity
assumption and the other represents the heterogeneity we want to test:

H0 :
[

yA
yB

]
= f

[
β0 +

(
xA
xB

)
+ β1

]
+

(
εA
εB

)
(1.4)

H1 :
[

yA
yB

]
= f

(1 xA 0
0 1 xB

)
+


β0A
β1A
β0B
β1B


+(εA

εB

)
(1.5)

where the null hypothesis represents the homogeneity situation, and the alternative hypothesis repre-
sents the heterogeneity that we want to test. Heterogeneity is then assessed by looking at the global
statistic of the model comparison (i.e. during regression, it means comparing the sum of squares of
residuals for both models: SSR0 = SSR1). With this approach, we do not need to know beforehand
the sources causing heterogeneity. We can deal with a large number of segments and we can adapt
the alternative hypothesis to test the heterogeneity that fits our a priori knowledge. In other words,
this is a very flexible approach for exploring heterogeneity; but on the other hand, we may run the
risk of overfitting.
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To explain these three different approaches, let as consider an example. We are interested in fitting the
salary (y) by age (x1) and experience (x2) of the workers in a big company. For the sake of simplicity, we
utilize a multiple regression, but we could generalize this example to other kinds of models. The model can
be written as:

y = β0 +β1x1 +β2x2 + ε (1.6)

Analyzing the data, we suspect that the men earn more than the women (factor of heterogeneity: sex) How
can we verify if female employees earn less than male employees?

The moderating variable approach introduces heterogeneity as an interaction between predictor vari-
ables and a factor. The model can be rewritten as:

y = β0 +β1x1 +β2x2 +β3F +β4Fx1 +β5Fx2 + ε (1.7)

Once the factor is introduced, we can verify if it is significant through a simple test hypothesis (testing
the nullity of interaction coefficients):

H0 : β3 = β4 = β5 = 0

H1 : H0
(1.8)

The multi-group approach considers one model for each factor level, then afterwards it compares each
coefficient in the obtained models. Considering that the factor sex presents two levels (male- M and female
- F), we obtain:

yM = β
M
0 +β

M
1 xM

1 +β
M
2 xM

2 + ε
M

yF = β
F
0 +β

F
1 xF

1 +β
F
2 xF

2 + ε
F (1.9)

The test hypothesis (testing the equality of corresponding coefficient) in this case will be:

H0 : β
M
0 = β

F
0 β

M
1 = β

F
1 β

M
2 = β

F
2

H1 : H0
(1.10)

The last possibility is to consider two models: one global, as if data were obtained from a single pop-
ulation; and another that contains the interaction with the factor. In this case we can write the two models
as:

H0 : y = β0 +β1x1 +β2x2ε

H1 : y = β0 +β1x1 +β2x2 +β3F +β4Fx1 +β5Fx2 + ε
(1.11)

So the test hypothesis (testing of equality of both models) will be:

H0 : SSR0 = SSR1

H1 : H0
(1.12)

If we consider the subgroups obtained by partitioning the data according to factor levels, the equation
(1.7) can be rewritten as:

yM = β0 + xM
1 β

M
1 + xM

2 β
M
2 + ε

M

yF = β0 + xF
1 β

F
1 + xF

2 β
F
2 + ε

F (1.13)

Thus, we can observe that the moderating variable and the multi group approaches can be formulated in
the same way. If we now consider the equation (1.11), we can note that the alternative hypothesis has the
same expression as the equation (1.7), whereas the null hypothesis is nothing more than the model without
considering the factor.
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1.5 Heterogeneity Techniques Background
The following overview focuses only on heterogeneity in the model in order to investigate the principal tech-
niques proposed in the literature for dealing with heterogeneity. This classification is made in accordance
with three criteria:

� Sources of heterogeneity: assignable and non-assignable a priori.

� Different ways in which heterogeneity can be included: moderating variables, comparing coefficients,
global comparison of models.

� Types of variables of interest: observed variables, latent variables.

It is important to remark that this is not an exhaustive overview of all the techniques available for analyzing
heterogeneity, but just a background of the classical approaches. A summary table of the classification
techniques (see Table (1.3)) is proposed in the last paragraph of the chapter.

1.5.1 Modeling with Assignable Heterogeneity
In the context of observed variables, assignable heterogeneity is analyzed in most of cases by the mod-
erating variables approach. In general, multiple linear regression (MLR) is used to model data, and the
interaction terms are tested by T-test. One alternative is based on the global comparison of models ap-
proach and is called the F-test, which was proposed independently by Chow (1960) and Lebart (1985).
When the variables are non-normal distributed (GLM context), the heterogeneity is also generally ana-
lyzed by moderating variables, in this case. The test hypothesis corresponding to the T-test is Wald’s test.
The AIC (Akaike, 1974), BIC (Schwarz, 1978) criteria and the likelihood ratio test are other possibili-
ties, and they are related with the global comparison of models approach (McCullagh and Nelder, 1989).
When the variables of interest are latent, the classical approach for detecting assignable heterogeneity is
the comparison of coefficients approach. Here, the differences can be introduced by considering whether
the analysis is confirmative (structural equation modeling (SEM)) or explorative (partial least squares path
modeling (PLS-PM)). In the first case, the classical technique is the the multi-group common factor analy-
sis (MG-CFA) (Joreskög, 1971; Sorbom, 1974). This technique generalizes the CFA situations where the
same factor structure is now specified for each level of the categorical variables (i.e.. groups). In Henseler
(2007) it is possible to find a classification of PLS-PM multi-group analysis. The principal techniques are:
the re-sampling parametric approach (Chin, 2000), the re-sampling non-parametric approach (Chin, 2003),
the moderation testing approach (Chin et al., 2003; Henseler and Fassot, 2005; Tenenhaus et al., 2006),
and Henseler’s approach (Henseler, 2007). An additional method is the possibilistic PLS path modeling
(Palumbo and Romano, 2008).

1.5.2 Modeling Assignable Heterogeneity when the Number of Segments is Un-
known

A distinct situation is when data come from surveys or researches that contain more information (i.e..
observed heterogeneity) than the one that is used for the models establishment. For instance, in many mar-
keting studies, such as those on customer satisfaction, it is usual to collect socio-demographic variables
and psycho-demographic variables like age, gender, social-status, or consumer habits, all of which take no
part in the model but can be extremely useful for segmentation purposes. In these cases, even if hetero-
geneity is observed, we don’t know which are the segmentation variables that produced the best groups. In
order to incorporate the available external variables, also known as segmentation variables, the PATHMOX
algorithm was proposed in 2009 by Gastón Sánchez y Tomas Aluja. In the context of structural equation
modeling (SEM), an additional method was recently proposed and is known as the SEM-TREE algorithm
(Brandmaier et al., 2013).
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1.5.3 Modeling with Non-assignable Heterogeneity
When we are modeling observed variables with non-assignable heterogeneity, almost all the techniques
in the literature focus on the possibility of separating the population in subgroups (clustering). Since these
techniques do not concern heterogeneity in the models, we will not include them in our classification. When
latent variables are considered in the context of SEM, factor mixture models are used (Lubke and Mutheń,
2005). This technique assumes that the heterogeneity is represented by a latent class variable. In PLS, the
simplest approach for unobserved heterogeneity consists of a sequential two-step procedure that combines
cluster analysis in the first step with a multi-group analysis in the second step: firstly, groups are formed by
performing some clustering-based procedure that takes into consideration the cause-effect structure of the
models; then, a multi-group analysis is performed among the separate models for each cluster. These ap-
proaches include the finite mixture partial least squares (FIMIX-PLS) approach (Hahn et al., 2002; Ringle
et al., 2005), and the PLS genetic algorithm segmentation (PLS-GAS) approach (Ringle and Schlittgen,
2007). An interesting approach is the response-based procedure for detecting unit segments (REBUS) ap-
proach (Trinchera et al., 2007; Esposito Vinzi et al., 2007, 2008). This technique works by first computing
the so-called residuals of the model, and then applying a hierarchical clustering to these residuals. The com-
putation of residuals is intended to take into account the structural part of the analyzed PLS path model.
The final step consists of analyzing the local models defined during the cluster procedure.

1.5.4 Summary of Heterogeneity Classification Techniques
The following table (Table (1.3)) summarizes the classification of the techniques according to: the available
sources of heterogeneity (assignable – known segments, assignable – unknown segments, non-assignable),
the three different ways in which the heterogeneity can be treated (moderating variables, comparison of co-
efficients, global comparison of models) and the two possible types of variables of interest (latent variables
(LV), manifest variables (MV)).

Heterogeneity classification techniques
Assignable No Assignable

Known segments Unknown segments
MV LV MV LV MV LV

Moderating variables T-test
Wald test

Comparison of coefficients

MG-CFA Factor Mixture Models
Re-sampling parametric REBUS-PLS

Re-sampling no parametric FIMIX-PLS
Moderation testing PLS-GAS

Henselers
Possibilistic PLS-PM

Global Comparison of models
F-test PATHMOX

AIC, BIC SEM-TREE
likelihood ratio test

Table 1.3: Classification of techniques to model heterogeneity according to the sources of heterogeneity,
the three different ways in which the heterogeneity can be treated, and the types of variables of interest



Chapter 2

Overview of Methods

Heterogeneity represents an important aspect in almost all statistical methodologies. We have differentiated
several ways to approach this problem. In this chapter, we provide some references to the techniques used
for analyzing heterogeneity and, when possible, we present a way to compare models through a global
comparison approach. We address several modeling approaches that are in accordance with the nature of
variables: we consider the regression models (section (2.1)) as models with observed variables; in this
context, we introduce linear multiple regression (LRM), quantile regression (LAD) as robust regression,
and a generalized linear model (GLM). Principal component analysis (PCA) (section (2.2)) and partial least
squares path modeling (PLS-PM) (section (2.3)) are treated as models that fit latent variables. It is important
to remark that this not an exhaustive description of techniques, but merely an overview to help the reader
understand the context in which we consider the heterogeneity.

2.1 Regression Models
Wage of an employee as a function of her work experience. Price of a house as a function of its number
of bedrooms. These are just an example of situations in which we can use regression models (RM) to an-
alyze data. Regression models are one of the most powerful statistical tools for investigating relationships
between variables. More specifically, RM help one understand how the value of the dependent variable
changes when any one of the independent variables is varied.

The developments leading to the overview of RM extend over more than a century, and they are char-
acterized by vast scientific production. The basics of regression models can be identified in the works of
Legendre and Gauss (early nineteenth century - multiple linear regression) and Fisher (1920s → 1935:
analysis of variance (ANOVA) and design of experiments (1920), likelihood function (1922), exponential
family (1934)).

From 1934 up through 1970, we find many publications on different kinds of RM based on the exponen-
tial family. In particular, these studies adapt the regression models to different distributions of dependent
variables. In the literature, we can find probit analysis (Bliss, 1935); logit for proportions (Berkson, 1944;
Dyke and Patterson, 1952); log linear models for counts (Birch, 1963); and regression models for survival
data (Feigl and Zelen, 1965; Zippin and Armitage, 1966; Glasser, 1967). However, it is in 1972 when
Nelder and Wedderburn went a step further in unifying the theory of RM by publishing their article on
generalized linear models (GLM). They showed how many of the most common linear regression models,
listed above, were in fact members of one family and could be treated in the same way: the maximum like-
lihood estimates for all of these models could be obtained using the same algorithm, iterated weighted least
squares. The year 1973 represents another important step forward. The problem of outliers is discussed,
and robust regressions are introduced as a possible solution. In this year Huber introduced M-estimation for
regression. Least absolute deviation (LAD) - introduced as a criterion in the 19th century - was formalized

15
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as an alternative to robust regression (Koenker and Bassett, 1978). In the 1980s, several alternatives to
M-estimation were proposed as attempts to overcome the lack of resistance.

Regression models involve the following elements:

� The unknown parameters (also known as coefficients), denoted by β .

� The independent variables or predictors, X .

� The dependent variable, y.

� The link function f , which relates the dependent variable with the predictors and the coefficients. In
general, the link function is known; its form depends on the distribution of the dependent variable.

� The ε term expresses the random fluctuation of the dependent variable following a specified proba-
bility distribution.

A regression model can be formalize as:

y = f (X ,β )+ ε (2.1)

The coefficient β expresses the relationship between dependent variable and predictors. This parameter
is unknown and needs to be fitted. The two most common approaches for the estimation of β are the method
of maximum likelihood (ML) and the method of least squares (OLS). Usually, the method of maximum
likelihood is used for the estimation of the parameters in generalized linear models, whereas the least
squares method is more common in linear regression. OLS and ML give the same results when f (y) is
assumed to be multivariate normally distribuated.

2.1.1 Linear Regression Model (LR)
The linear regression model assumes a linear relationship (in parameters) between a dependent variable, y,
and a set of explanatory variables, X . We can formalize the model as:

y = f (X ,β )+ ε ⇒ y = Xβ + ε (2.2)

where y is a (n×1) column vector, X is a (n× p) matrix of independent variables, β is the vector of param-
eters and ε is a (n×1) column vector of error terms.

The linear regression assumes the following hypothesis:

1. {X ,y} i.i.d. (independent and identically distributed)

2. The error terms has zero mean: E(ε) = 0 ⇒ E(y) = Xβ .

3. The variance of the error is constant and is equal to: Var(ε) = E(ε ′ε) = σ2I.

4. The error is independent from the predictors: Cov(εX) = 0.

5. The error is Normally distributed: ε ∼ N(0,σ2I).

6. Explanatory variables are fixed (i.e. they are not random variables).
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Usually, the estimation of the β coefficients is obtained by ordinary least squares (OLS). To apply this
method, we have to find the vector β , such that it minimizes the sum of the square of the difference between
the residuals of the observed y and the fitted model ŷ. Noticing that ε = (y−Xβ ), we have to find the vector
β , such that:

S(β ) = E(ε ′ε) = E((y−Xβ )′(y−Xβ )) = min (2.3)

The resulting OLS estimator of β is:

β̂ = (X ′X)−1X ′y (2.4)

2.1.1.1 Testing the Equality of Two Linear Regression Models

The equality of two regression models can be tested by using the hypothesis test introduced by Lebart et
al. (1979), which is an F-type based statistic. The test is similar to that introduced by Chow (1960), and
which was discussed in Ghilagaber (2004) and Moreno et al. (2005), for testing the equality between sets
of coefficients in two linear regressions. This test is the only one that follows a global comparison approach
that compares two models: one that is common to all data (and thus represents a homogeneous situation);
and another that includes the interaction between the factor and the predictive variables (which corresponds
to a heterogeneous situation). This approach is based on two lemmas: Lemma 1 and Lemma 2, which were
introduced by Lebart (see Lebart et al., 1979 pg. 201:202, 208:209). Thus, it is convenient to introduce
them before beginning the description of the test.

2.1.1.2 Lemma 1 and Lemma 2

Let us consider a generic linear model in matrix notation:

y = XB+ ε (2.5)

The residuals are assumed to be normally distributed with zero mean and finite variance, that is,
E(ε) = 0 and V (ε) = E(εε ′) = σ2In (with σ2 unknown).

Lemma 1

Let ε be a normally distributed vector in Rn with E(ε) = 0 and V (ε) = σ2In

1. Let Q be an (n×n) symmetric and idempotent matrix. Then, the quadratic form ε ′Qε/σ2 follows a
χ2 distribution with v degrees of freedom (where v is the rank of Q).

2. Let L be a matrix such that LQ = 0. Then, the vectors Lε and Qε follow an independent normal
distribution. In particular, the vector Lε and the variable ε ′Q0ε/ε2 are independent.

Proof. If the matrix Q is symmetric, there exists Λ and H, so that Q = H ′ΛH, where H is the matrix of
eigenvectors, orthonormal of Q (H ′H = HH ′ = I), and Λ is the diagonal matrix of the eigenvalues. The
eigenvalues are in this case all 0 and 1, due to Q being an idempotent matrix. If we consider v = Hε ,
then the linear transformation of ε , v follows a normal distribution with E(ε) = HE(ε) = 0 and V (ε) =
E(Hεε ′H ′) = σ In. Consequently, the reduced component v/σ follows a standardized and independent
normal distribution. The quadratic form ε ′Qε/σ2 can be written:

ε
′Qε/σ

2 = ε
′H ′ΛHε/σ

2 = v′Λv/σ
2 = ∑

i
v2

i /σ
2 (2.6)
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The last sum includes all terms of the eigenvalues equal to 1(i.e. tr(Q)), since the other values are
zero. Thus, since χ2 with p degrees of freedom is defined as the sum of squares of p standardized normal
variables, the first point of Lemma 1 is verified.

Let us consider now the second point of Lemma 1. The vectors Lε and Qε are two linear transforma-
tions of ε that follow a normal distribution. The covariance COV(Lε , Qε) is null and they are independent

COV (Lε,Qε) = E{(Lε)(Qε)′}= σ
2LE(εε

′)Q = σ
2LQ = 0 (2.7)

Since the covariance is null, the second point of Lemma 1 is verified. Then ε ′Qε = (Qε)′(Qε) is
independent of Lε .

Lemma 2

Let ε be a vector with normal distribution in Rn with E(ε) = 0 and V (ε) = σ2In. Given two matrices,
X and X0, where X0 is defined as X0 = XA (for any matrix A), we can define the following matrices Q and
Q0 as:

Q = In−X(X ′X)−1X ′ (2.8)

Q0 = In−X0(X ′0X0)
−1X ′0 (2.9)

It can be shown that the quotient:

F =

(ε ′Q0ε− ε ′Qε)

/
(v0− v)

ε ′Q0ε

/
v

(2.10)

follows an F distribution with (v0− v) and v degrees of freedom, where:

� v is the rank of Q

� v0 is the rank of Q0

Proof. A geometric representation (see Figure (2.1)) allows to proof Lemma 2. Let us consider RX0 to be a
sub-space generated from the columns of X0, the distance of y and RX to be the longitude of ε = Qε . That
means:

∑ε
2
i = ε

′
ε = ε

′Qε (2.11)

On the other hand, the relationship X0 = XA means that the space RX is generated by the columns of X .
The orthogonal projections are represented in Figure (2.1), where RX is the plane and RX0 is at the right of
the plane.
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ε’Qε 

0 

y 

Rn 

Rx 

Rx0 

ε’Q0ε 

ε’(Q0-Q)ε 

Figure 2.1: Geometric representation of the orthogonal projection of y on the sub-space RX0

From the Lemma 1, ε ′Qε/σ2 follows χ2 with Q degrees of freedom. Seeking the law of the numerator:

ε
′Q0ε− ε

′Qε = ε
′(Q0−Q)ε (2.12)

Figure (2.1) (theorem of the three perpendiculars) suggests that Q0−Q is an orthogonal projection.
Thus, Q−Q0 is symmetric and the idempotent propriety remains to be verified:

(Q0−Q)2 = Q0−Q0Q−QQ0 +Q (2.13)

Direct calculation shows that:

QQ0 = {In−X(X ′X)−1X ′}{In−X0(X ′0X0)
−1X ′0}= Q (2.14)

Therefore QQ0 = Q0 and (Q0−Q)2 = Q0−Q, the matrix is idempotent and its rank is equal to the trace:

rank(Q0−Q) = tr(Q0−Q) = tr(Q0)− tr(Q) = rank(Q0)− rank(Q) (2.15)

We know that a Fisher distribution is defined as the ratio between two χ2 independent variables divided
by their degrees of freedom and that, due to Lemma 1, the numerator of equation (2.22) follows a χ2 distri-
bution with (tr(Q0)− tr(Q)) degree of freedom; we only have to verify if the numerator and denominator
of equation (2.22) are independent. To do this, let us prove that their covariance is equal to zero:

COV{(Q0−Q)ε,Qε}= E{(Q0−Q)ε(Qε)′}= (Q0−Q)E(εε
′)Q = σ

2(Q0−Q)Q = 0 (2.16)

Since the covariance is null, Lemma 2 is verified.

2.1.1.3 Formulation of the Test Hypothesis

Let us consider a generic linear model in matrix notation:

y = XB+ ε (2.17)

The residuals are assumed to be normally distributed with zero mean and finite variance as we stated in
(2.2); that is, E(ε) = 0 and V (ε) = E(εε ′) = σ2In (with σ2 unknown). Let us split the n observations into
two groups, A and B of nA and nB observations. We want to test if the models are identical (i.e. the equality
of all coefficients) for the two sub-populations A and B. Under the alternative hypothesis, H1, the vectors
of p coefficients of the two models (BA and BB) are supposedly distinct, that is:
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yA = XABA + εA yB = XBBB + εB (2.18)

Under the null hypothesis, the coefficients are equal in both segments: BA = BB = B. We can define a
null hypothesis and an alternative hypothesis as:

H0 :

[
yA

yB

]
[n,1]

=

[
XA

XB

]
[n,p]

[
β
]

[p,1]
+

[
εA

εB

]
[n,1]

(2.19)

H1 :

[
yA

yB

]
[n,1]

=

[
XA

1 0
0 XB

1

]
[n,2p]

[
β A

β B

]
[2p,1]

+

[
εA

εB

]
[n,1]

(2.20)

Note that in the null hypothesis we consider that the vector of coefficients β is the same for both
segments (A and B); while in the alternative hypothesis, we fit different coefficients (βA and βB) for the two
models. The matrices X0, X and A are required by the Lemma 2 of Lebart et al. (1979), such that X = X0A.
To obtain the F-statistic: [

XA
1

XB
1

]
[n, p]

X0

[
XA

1 0
0 XB

1

]
[n,2p]

X

[
Ip
Ip

]
[2p,p]

A

(2.21)

where p is the number of explicative variables for y, and Ip is the identity matrix of order p.

Thus, we can apply Lemmas 1 and 2 of Lebart et al. (1979) and test the H0 hypothesis by computing
the following F-statistic with (p) y (n−2p) degrees of freedom.

F =

(SSH0−SSH1)

/
(n−2p)

SSH1

/
p

(2.22)

2.1.2 Quantile Regression (LAD)
The linear regression is well-known to be highly sensitive to outlier observations, and as a consequence
many robust estimators have been proposed as alternatives. One of the earliest proposals was the least-sum
of absolute deviations (LAD) regression (Koenker and Bassett,1978). The LAD estimators are robust to the
presence of outliers, and demonstrate to be more efficiency than OLS in cases where the term error does
not have a normal distribution. The estimates are found by minimizing the sum of the absolute values of
the residuals:

min
n

∑
i=1
|εi|= min

n

∑
i=1
|yi− ŷi|= min

n

∑
i=1
|yi−Xβ | (2.23)

We would like to use differential calculus to find the LAD estimate of β , but the derivative of the LAD
function with respect to β does not exist at the minimum value of β . However, the resulting minimization
problem can be solved very efficiently by linear programming methods (Koenker and Bassett, 1978; see
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also Koenker and d’Orey, 1994; Koenker, 2005).

LAD can be seen as a case of the more general quantile regression. In this case, the objective function
to be minimized can be written as:

min
n

∑
i=1

ρα(εi) = min
n

∑
i=1

ρα(yi−Xβ ) (2.24)

where ρα(·) is the tilted absolute value function that yields the α-th sample quantile as its solution. It is
defined as:

ρα(εi) =

{
αεi if εi ≥ 0
(1−α)εi if εi < 0 (2.25)

For a more detailed presentation, excellent references are Birkes and Dodge (1993) and Koenker and
Hallok (2001).

2.1.2.1 Testing the Equality of Two LAD Regression Models

Koenker and Bassett introduced a test for testing the equality of two LAD regression models in 1982. This
approach can be considered an approximation of the likelihood ratio test when the number of observations
is sufficiently large (see also Dielman and Pfaffenberger, 1990). The presentation of the test follows the
description of Birkes and Dodge (1993).

Consider a generic linear model in matrix notation:

y = XB+ ε (2.26)

Let us split the n observations into two groups, A and B, of nA and nB observations. As before, we want
to test if the models are identical (i.e. the equality of all coefficients) for the two sub-populations A and
B. The test hypothesis may be formulated in the same way as the hypothesis test that compares two linear
models (see equations (3.46) and (3.47)). When the number of observations is sufficiently large, the test
statistic is

FLAD =
SARH0 −SARH1

(p−q)τ̂
(2.27)

where:
- SARH0 represents the sum of absolute values of the residuals under the null hypothesis.
- SARH1 represents the sum of absolute values of the residuals under the alternative hypothesis
- τ̂ is the measure of the size of the random error
- p is the number of variables of the model in the alternative hypothesis
- q is the number of variables of the model in the null hypothesis

Thus, when n is large, the FLAD follows an F-distribution with 1 and p−q degrees of freedom.

2.1.3 Generalized Linear Model (GLM)
Linear models are one of the most used approaches in statistical applications. However, there are many
situations in which we cannot assume normal distribution of data. In many cases, we find it is more realistic
to fit the observed variable as a discrete variable. For instance, when we analyze count processes in which
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the dependent variable can assume only positive values, (i.e. number of deaths for a specific disease) it is
more suitable to fit the data considering a Poisson distribution than a Normal distribution. The generalized
linear model (GLM) allows removal of the normal hypothesis from the dependent variable and to fit the data
by adopting discrete distributions. In a GLM, each outcome of the dependent variable y is assumed to be
generated from a particular distribution of the exponential family, a large range of probability distributions
that include Normal, Binomial and Poisson, among others. For a more detailed presentation and discussion,
excellent references are Dobson (1990) and McCullagh and Nelder (1989).

The mean, µ , of the distribution depends on the independent variable X and is obtained through the
relation:

E
(

y
)
= µ = g−1

(
Xβ

)
(2.28)

where E(y) is the expected value of y; Xβ is the linear predictor (a linear combination of unknown param-
eters); and g is the link function.

The GLM model consists of three elements:

1. A probability distribution from the exponential family

y = (y1, · · · ,yn) are independent random variables with distribution from the exponential family. The
density function of an exponential family has the general form:

f
(

y,θ ,φ
)
= exp

{
yθ −b(θ)

a(φ)
+ c(y,φ)

}
(2.29)

where θ is known as a canonical parameter and φ is a fixed (known) scale (dispersion) parameter.
Note that a(·) and b(·) are some specific functions that distinguish one member of the exponential
family from the others.

2. A linear predictor

The linear predictor is the quantity that incorporates the information about the independent variables
into the model. It is related to the expected value of the data (thus, "predictor") through the link func-
tion. η is expressed as a linear combination of unknown parameters β . η can be expressed as η =Xβ .

3. A link function

The link function provides the relationship between the linear predictor and the mean of the distribu-
tion function. If we indicate with µ the mean value of random variable y, it is related with the linear
predictor by the function g(·):

g
(

µ

)
= η ⇔ µ = h

(
η

)
(2.30)

where h(·) = g−1(·)

The unknown parameters, β , are typically estimated with the maximum likelihood method. Following
the general form of the exponential family (see equation 2.29), we can define the Maximum likelihood as:
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log
(

θ ,φ ,y
)
= log ∏

i=1,··· ,n
fYi

(
y,θ ,φ

)
= ∑

{
yθ −b(θ)

a(φ)
+ c(y,φ)

}
= ∑

yθ −b(θ)
a(φ)

+∑c
(

y,φ
) (2.31)

The maximum of the ML function is obtained by differentiating the log-likelihood function with respect
to each element θ j of θ and solving the simultaneous equations:

∂L (θ)

∂θ j
= 0 j = 1, · · · , p (2.32)

In general, the equation (2.32) cannot be solved directly and an iterative procedure is used. The most
common methods are the Newton-Raphson and iteratively reweighed least squares (see Nelder and Wed-
derburn,1972); McCullagh and Nelder,1989).

2.1.3.1 Testing the Equality of Two General Linear Models

The comparison between two general linear models under the global comparison approach can be per-
formed in three ways: the likelihood ratio test, the AIC (Akaike, 1974) and BIC (Schwarz, 1980) criteria.
The first one is a test hypothesis based on the χ2 statistic; the second and the third can be considered an
indexes that measure the goodness of fit of a model: the lower the indeces are, the better the goodness of
fit. Thus, the comparison is made by choosing the model with the lowest index value.

The likelihood ratio test

The likelihood ratio test is a criterion used for comparing two nested models. The form of the test is
suggested by its name:

LRT =−2loge

(
L (θ̂s)

L (θ̂g)

)
(2.33)

the ratio of two likelihood functions. The simpler model (s) has fewer parameters than the general (g)
model. Asymptotically, the test statistic is distributed as an χ2 distribution, with degrees of freedom equal
to the difference in the number of parameters between the two models. LRT can be presented as the
difference in the log-likelihoods (recall that log(A/B) = logA− logB), and this is often handy, since they
can be expressed in terms of deviance. Then:

LRT =−2
(

loge(Ls)− loge(Lg)

)
=−2loge(Ls)+2loge(Lg) = Ds−Dg (2.34)

where D is defined as the scaled deviance (Wedderburn, 1972) of the model.

Thus, the LRT can be computed as the difference in the scaled deviance of the two models. Let us
assume that we want to compare two models: M1, (that represent the model of null hypothesis) with p1
parameters, and M2 (that represent the model of alternative hypothesis), with p2 parameters, where M1⊂M2
and p2 > p1. We then compute MLs for both models and the respective deviances (D):

DM1 =−2loge(L (M1)) DM2 =−2loge(L (M2)) (2.35)
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The LRT will be:

LRT = DM1−DM2 (2.36)

Then, under the null hypothesis that M2 is the true model, the difference between the deviances follows
an approximate χ2

v . Where v = p2− p1 is the difference of the parameters of the model M1 and M2.

The AIC and BIC Criteria

AIC and BIC are two criteria also related to the likelihood function. They are defined as:

AIC =−2L (β̂ ,y)+2p (2.37)

BIC =−2L (β̂ ,y)+ p logn (2.38)

where p is the number of parameters and n is the number of observations. The AIC (Akaike, 1974) is
the Kullback-Leibler divergence between the true model and the best choice inside a family. The BIC
(Schwarz, 1980) criterion is the Bayesian choice between models: the most probable a posteriori model is
the one with minimal BIC. Given a set of candidate models for the data, the preferred model is the one with
the minimum index value. Hence, these indices not only reward goodness of fit, but also include a penalty
that is an increasing function of the number of estimated parameters. The penalty discourages overfitting
(increasing the number of parameters in the model almost always improves the goodness of the fit).

2.2 Principal Component Analysis (PCA)
The principal component analysis is a multidimensional analysis technique that seeks to express a set of
variables using a reduced number of uncorrelated variables called components. PCA was originally intro-
duced by Pearson (1901) and independently by Hotelling (1933). Rao’s (1964) paper is remarkable for the
large number of new ideas concerning uses, interpretations and extensions of PCA. Gower (1966) discussed
links between PCA and various other statistical techniques, and also provided a number of important geo-
metric insights. Finally, Jeffers (1967) gave impetus to the actual practical side of the subject by discussing
two case studies in which the use of PCA goes beyond that of a simple dimension-reducing tool. An exten-
sive review of the topic can be found in most textbooks on multivariate techniques, such as in Escofier and
Pagés (1998), Lebart, Morineau and Piron (2000), Timm (2002), Saporta (2006) and Tenenhaus (2006). For
a more detailed presentation and discussion, excellent references are Jackson (1991), Aluja and Morineau
(1999), and Jolliffe (2002).

Let X be a matrix of n-observations, p-variables and a-rank. The goal is to reduce the number of
variables of interest (x1,x2, · · · ,xp,) into a smaller set of components (c1,c2 · · ·ca), obtained as linear com-
bination of the X variables, with each being ca of maximal variance. The linear relationships between the
components and the variables are:

c1 = u11x1 +u21x2 + · · ·+up1xp

c2 = u12x1 +u22x2 + · · ·+up2xp

c3 = u13x1 +u23x2 + · · ·+up3xp

...
ca = u1ax1 +u2ax2 + · · ·+upaxp

(2.39)

In matrix notation we have:



CHAPTER 2. OVERVIEW OF METHODS 25

C = XU (2.40)

where:

� C is a matrix (n×a) of components

� U is a matrix (a× p) of vectors indicating the direction of the components

The new variables are derived in decreasing order of importance in the sense that c1 accounts as much
as possible for the variation in the original data amongst all linear combinations of (x1,x2, · · · ,xp). Then,
c2 is chosen to account as much as possible for the remaining variation, subject to being uncorrelated with
c1, and so on. The new variables, (c1,c2 · · ·ca) defined by this process are the principal components. Figure
(2.2) shows a graphical representation of a PCA problem:

x1 

x3 

c1 
x2 

c2 

xp 
cα 

Figure 2.2: Representation of a PCA problem with a path diagram

2.2.1 Derivation of the Principal Components
Let us consider a matrix X with n observations and p variables. Given this matrix, we can define a variable
space Rp with as many dimensions as variables. Each variable represents one co-ordinate axis. Each
observation (each row) of the X-matrix is placed in the p-dimensional variable space. Consequently, the
rows of the matrix X form a swarm of points in this Rp space. Let us apply a mean-centering to our data.
This procedure involves the subtraction of the variables’ average from the data, and it corresponds to the
re-positioning of the coordinate system, such that, the average is now the origin of the axes in Rp. Let us
denote the new transformation of Rp as R̄p. After mean-centering, the data set is ready for the computation
of the first principal component c1. This component is the line in R̄p space that, passing through the average
point, best approximates data in the least squares sense (i.e it is the line that maximizes the variation in the
swarm of points).

Algebraic Derivation

Let us consider the linear combination C = XU . The first principal component, c1, will be the linear
combination c1 = Xu1 which maximizes the variance of the swarm of points, where u1 is a vector of p-
coefficients. The condition of c1 with maximum variance implies looking for u1, which maximizes:

var(Xu1) = E(Xu1)
2 = E(u′1X ′Xu1) = u′1Su1 = max (2.41)
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Figure 2.3: Geometrical derivation of the first principal component c1. The Rp space represents the space
defined by the original variables. The R̄p space represents the space defined by the original variables with
centered observations

where S is the variance-covariance matrix. It is clear that the maximum will not be achieved for finite u1,
so a normalization constraint must be imposed. The goal is to maximize u′1Su1 subject to u′1u1 = 1. Using
Lagrange multipliers, we have to maximize:

u′1Su1−λ (u′1u1) = max (2.42)

Differentiation with respect to u1 gives:

Su1−λu1 = 0 or Su1 = λu1 (2.43)

Maximization implies that λ must be as large as possible; that is, u1 is the eigenvector corresponding to the
largest eigenvalue, λ1, of S.

The second principal component, c2, is the linear combination c2 = Xu2, which is uncorrelated with c1.
It has maximum variance, so that the k-th component ck = Xuk is found to have maximum variance, subject
to being uncorrelated with the previous components c1,c2, · · · ,ck−1. Up to a ≤ p PCs could be found, but
it is hoped that most of the variation in X will be accounted for by m PCs (m << a).

2.3 Partial Least Squares Path Modeling (PLS-PM)
PLS path modeling is a statistical method that has been developed for analyzing latent variables in the
context of structural models. The objective of PLS is to obtain scores of latent variables for predictive
purposes without using the model for explaining the covariation of all the indicators. According to Chin
(1998), parameter estimates are obtained based on the ability to minimize the residual variances of all
dependent variables (both latent and observed). In Wold’s (1975 a) paper, the main principles of partial
least squares for principal component analysis (Wold, 1966) were extended to situations with more than
one block of variables. Other presentations of PLS Path Modeling given by Wold appeared in the same
year (Wold,1975 b, c). Wold (1980) provides a discussion on the theory and the application of partial
least squares for path models in econometrics. The specific stages of the algorithm are well described
in Wold (1982) and in Wold (1985). An important reference was provided by Lohmöller in 1989, when
he published the book Latent Variable Path Modeling with Partial Least Squares. The book contains his
research results and presents a detailed and wide-ranging account of the capabilities of PLS-PM. In his
book, statistical, modeling, algorithmic, and programming aspects of the PLS methodology are treated in
great depth. He also extended the basic PLS algorithm in various directions to show the scope of problems
that can be handled with PLS. Extensive reviews on the PLS approach to structural equation models with
further developments are given in Chin (1998) and in Tenenhaus et al. (2005). They describe the PLS-PM
model’s characteristics as an algorithm that allows fitting the parameters, which they base on the Handbook
of Partial Least Squares (Esposito Vinzi et al., 2010).
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2.3.1 Latent Constructs
PLS-PM is a method that allows us to analyze complex systems of relationship between variables. In this
context, we can differentiate manifest variables (MV) – which are defined also as observed variables or
indicators – and latent variables (LV), which are also known as constructs or factors. The latent variables
can also be distinguished as endogenous (LV that can be at the same time dependent and predictors of
other latent variables) and exogenous (LV that can be only predictors of other latent variables). The MV
and LV can be related in two distinct ways: reflective and formative. In the first case, manifest variables
are considered to be caused by the latent variables. In the second, the latent construct is supposed to be
formed by its indicators (Diamantopoulos and Winklhofer, 2001). The main difference between reflective
and formative patterns is related to the cause-effect relationships between indicators and their constructs.
To better understand this concept, let us consider, as an example, the performance of a firm; we can create
a reflective scale that measures a manager’s views on how well the firm is performing, or we can create a
set of metrics for firm performance that measure various elements, such as profitability, return on equity,
market share, etc.

2.3.2 Data Structure
PLS path modeling aims to estimate the relationships among Q(q = 1, · · · ,Q) blocks of manifest variables.
Each block q is an expression of one unobservable construct. In each block q, we assume P variables
P(p = 1, · · · ,P) observed on N units (n = 1, · · · ,N). The resulting data (xnpq) are collected in a column
partitioned data table X :

X =

[
X1 · · · ,Xq · · · ,XQ

]
(2.44)

where Xq is the generic q-th block made of Pq variables.

1
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Figure 2.4: Data structure in PLS-PM

2.3.3 Model Specification
The PLS model can be divided into two parts: the structural model (inner model), which relates the en-
dogenous latent variables with other latent variables, and measurement model, also known as outer model,
that analyzes the relationships between manifest and latent variables.

Structural Model

The structural model describes the cause-effect relationships between the latent variables. Associations
between LV can be represented by a recursive system of linear equations. The LV can play the role of
response variable (endogenous latent variable) or explanatory variable (exogenous latent variable). For
simplicity we will not adopt a different notation for these two types of latent variables. The expression of
the structural model is:
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ξ j = β0 j + ∑
q:ξq→ξ j

βq jξq +ζ j (2.45)

where ξ j with ( j = 1, · · · ,J) is the generic endogenous latent variable, the parameter βq j is defined as a path
coefficient (representing the link between the j-th and q-th latent variable) and ζq is the inner residual term.
Assuming the condition of the specification of the predictor, which assures desirable estimation properties
in classical ordinary least squares (OLS) model, we obtain:

E(ξ j) = β0 j + ∑
q:ξq→ξ j

βq jξq (2.46)

The predictor specification condition involves:

E(ζq) = E(ξ jζq) = 0 (2.47)

which means that the residuals have zero mean and are uncorrelated with the LVs.

Measurement Model

The measurement model formulation depends on the direction of the relationships between the latent
variables and the corresponding manifest variables (Fornell and Bookstein, 1982). As a matter of fact,
different types of measurement models (see Figure(2.5)) are available: the reflective model , the formative
model and the MIMIC model (a mixture of the two previous models).

ξq 

X1q X2q Xpq 

ε1q ε2q εpq 

λ1q λ2q λpq 

… 

ξq 

X1q X2q Xpq 

ω1q ω2q ωpq 

… 

ζq 

ξq 

X1q X2q Xhq 

ω1q ω2q ωhq 

… 

… Xh+1q Xpq 

Reflective Formative MIMIC 

λh+1q λpq 

Figure 2.5: Path diagram of the three possible relationships between latent variables and manifest variables.
In order from left to right: reflective, formative, and MIMIC

In a reflective model, the block of manifest variables related to a latent variable, is assumed to measure
a unique underlying concept. Each MV reflects (i.e. is an effect of) the corresponding LV. In more formal
terms, in a reflective model each MV is related to the corresponding LV by a simple regression model:

xpq = λp0 +λpqξq + εpq (2.48)

where λp0 is the intercept, λpq is the loading associated to the p-th manifest variable in the q-th block and
the error term εpq represents the imprecision in the measurement process. Standardized loadings are of-
ten preferred for interpretation purposes, due to the fact they represent correlations between each manifest
variable and the corresponding latent variable. An assumption (predictor specification) behind this model
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is that the error εpq has zero mean and is uncorrelated with the latent variable of the same block, that is:
E(xpq|ξq) = λp0 +λpqξq and E(εpqξq) = 0.

In the formative model, each MV of each sub-block of MV represents a different dimension of the
underlying concept. The latent variable is defined as a linear combination of the corresponding manifest
variables. Thus the measurement model could be expressed as:

ξq =
Pq

∑
p=1

ωpqxpq +δq (2.49)

where ωpq with (p = 1, · · · ,Pq), is the coefficient linking each MV of the q block to the corresponding LV,
and the error term δq represents the fraction of the corresponding latent variable not accounted for the block
of manifest variables. Also, in this case we assume the predictor specification, which in this case will be:
E(ξq|xpq) = ∑

Pq
p=1 ωpqxpq and E(εpqξq) = 0.

The MIMIC can be considered a mix of reflective and formative ways. In this case there are two linear
equations:

xhq = λh0 +λhqξq + εhq for h = 1 to p1 (2.50)

ξq =
Pq

∑
h=p1+1

ωhqxhq +δq (2.51)

the p1 first MVs follow a reflective way and (p− p1) the last ones a formative way. The predictor specifi-
cation hypotheses are both assumed by the reflective and formative ways.

2.3.4 Algorithm Estimation
In PLS path modeling an iterative procedure permits estimation of the outer weights ω̂pq and the latent
variable scores ξ̂q. The estimation procedure is named partial, since it solves blocks one at a time by means
of alternating single and multiple linear regressions. The path coefficients βpq are estimated afterwards by
means of a regular regression between the estimated latent variable scores in accordance with the specified
network of structural relations.

The procedure can be summarized in five main steps:

Imput: X =

[
X1 · · · ,Xq · · · ,XQ

]
i.e. Q blocks of centered manifest variables

1. step Outer estimation: The latent variables are defined as linear combination of their manifest vari-
ables

2. step Inner estimation: The latent variables are defined as linear combination of the adjacent latent
variables

3. step Updating Outer Weights: the outer weights are updated according to the internal and external
estimation
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4. step Convergence: outer estimation and inner estimation are compared, and they must converge. If
not, the algorithm restarts with step 1

5. step Coefficients estimation: the path and loading coefficients are estimated according to the inner
and outer models.

Output:
[

ω̂pq, ξ̂q, β̂pq

]

Step 1 Outer Estimation

In the first step, the latent variables are defined as linear combinations of their manifest variables. In
mode A, this estimation is done trying to obtain a set of weights able to estimate a latent variable accounting
for as much variance as possible for the indicators and the construct. In the case of mode B estimation we
can’t assure high cummunalities for these blocks. The weights are scaled to give ξ̂q unit variance. This
standardization is done to avoid scale ambiguity of the LV. The standardized latent variables are defined as
Yq. We can calculate the Yq as:

ξ̂q = Yq =±

(
Pq

∑
p=1

ωpqxpq

)
(2.52)

where the ± sign shows the sign ambiguity. This ambiguity is solved by choosing the sign that makes Yq
positively correlated to the majority of xpq:

sign

(
Pq

∑
p=1

sign
[

cor
(
xpqYq

)])
(2.53)

The standardized LV is finally expressed as:

Yq =
Pq

∑
p=1

ωpqxpq (2.54)

The algorithm begins with an initial outside approximation of the LV by using arbitrary weights, which are
scaled to obtain unit variance. Following Chin’s suggestion (1999), we can set initial weights with equal
value to perform a first approximation of the latent variable as a simple sum of its indicators. This option
is based on a scenario in which the researcher, having no additional information, would obtain the best first
approximation of the LV as a summation of the MV.

Step 2 Inner Estimation

In this step, the latent variables in the inner model are defined as linear combinations of the adjacent
latent variables. Only the adjacent latent variables are considered means that, estimating of each LV, we
consider only those have direct relationships with it. We indicate them with the index q′. The internal
estimation Zq, the name of the standardized ξq, is defined by:

Zq = ∑
q′ : βqq′ 6= 0

βq′q 6= 0

(
εqq′Yq

)
(2.55)



CHAPTER 2. OVERVIEW OF METHODS 31

where εqq′ are the inner weights which are assumed to be scaled so that the variable in parentheses is
standardized. There are three options for calculating the inner weights:

1. The Centroid Scheme

ε =

 sign

(
cor
(

Yq,Yq′

))
ξqξq′ ad jacents

0 otherwise
(2.56)

This scheme considers only the sign direction of the correlations between am LV and its adjacent
(neighboring) LVs. It does not consider the direction or the strength of the paths in the structural
model. Some problems may be present when a correlation is close to zero, causing sign changes
during the iterations from +1 to −1.

2. The Factor Scheme

ε =

 cor
(

Yq,Yq′

)
ξqξq′ ad jacents

0 otherwise
(2.57)

The factor scheme uses the correlation coefficient as the inner weight. It considers the strength of the
paths in the structural model.

3. The Path Scheme.

εqq′ is calculated as a coefficient of the multiple regression of Yq on Y ′q if ξq is predictor of ξ ′q. The
path weighting scheme has the advantage of taking into account both the strength and the direction
of the paths in the structural model. However, this scheme presents some problems when the LV
correlation matrix is singular.

Step 3 Updating Outer Weights

We can conceive the inside approximation as a stage in which the information contained in the inner
relations is incorporated into the estimation process of the latent variables. Once the inside approximation is
done, the internal estimates Zq must be considered with regard to their indicators. This is done by updating
the outer weights ωpq. There are basically two ways of calculating the outer weights: mode A, and mode B.
Each mode corresponds to a different way of relating the MVs with the LVs in the theoretical model. Mode
A is used when the indicators are related to their latent variables through reflective way. Instead, mode B
is preferred when indicators are associated with their latent variables in a formative way. However, there is
also a third option called mode C, which is rarely used in practice and it is supposed to be used when the
indicators of an LV are connected by MIMIC way.

1. Mode A

In the reflective way, each weight ωpq is the regression coefficient of Zq in the simple regression of
xpq on Zq, i.e. the simple regression xpq = ωpqZq where:

ωpq =

(
Z′qZq

)−1

Z′qxpq =COV
(

xpq,Zq

)
(2.58)
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2. Mode B

In the formative way, Zq is regressed on the block of indicators related to the latent construct Xq, and
the vector ωq of weights ωpq is the regression coefficient in the multiple regression:

ωpq =

(
X ′qXq

)−1

X ′qZq (2.59)

3. Mode C

Mode C is implemented in Lohmöller’s version, and it is a special case of Mode B. The MIMIC way
is a kind of mix between reflective and formative ways, so the path coefficients for the h MVs related
in a reflective way are estimated by a simple linear regression: xhq = phqYq for h = 1 to p1; and the
path coefficients for the for h = p1 + 1 to P. MVs related in a formative way are estimated by a
multiple linear regression:

Yq =
Pq

∑
h=p1+1

ωhqxhq (2.60)

Step 4 Check for Convergence

In every iteration step, say S = 1,2,3, · · · , convergence is checked by comparing the outer weights of
step S against the outer weights of step S−1. For example, Wold (1982) proposed | ˆωS−1

jk− ω̂S
jk|< 10−5

as a convergence criterion. Although convergence of the PLSPM algorithm is still an open issue, some
advances in understanding this aspect have been achieved in the last decade. On the one hand, the algo-
rithm always converges with two blocks. On the other hand, for three or more blocks there is no guarantee
that it will always converge (although in practice it usually does). Interestingly, Hanafi (2007) has proved
that convergence is achieved when using Mode B and what he calls “Wold’s procedure” (as opposed to
Lohmöller’s procedure), provided the data blocks in Mode B are of full rank.

Step 5 Coefficient Estimation

This stage of the algorithm consists of calculating of the path and loading coefficient estimates, β̂qq′ and
λ̂qq′ , according to the inner and outer models. For the structural model the path coefficients are estimated
by ordinary least squares in the multiple regression of Yq on the Y ′q’s related to it,

Yq = ∑
q′

βqq′Yq′ (2.61)

βqq′ =

(
Y ′qYq

)−1

Y ′qYq′ (2.62)

For the measurement model, the loading coefficients are estimated depending on their corresponding
way. In the reflective way, the loading coefficients are the regression coefficients of the simple linear
regression of xpq on Yq:
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xpq = λpqYq (2.63)

λpq =

(
Y ′qYq

)−1

Y ′qxpq (2.64)

In the formative way, the weight coefficients ωpq’s coincide with the outer weights obtained in the first
stage. This is because we perform the multiple linear regression of Yq on the xpq:

Yq =
Pq

∑
p=1

ωpqxpq (2.65)

ωpq =

(
X ′qXq

)−1

X ′qYq (2.66)

2.3.5 PLS - Validation
PLS path modeling lacks a well identified global optimization criterion, so there is no global fitting function
to assess the goodness of the model. Furthermore, it is a variance-based model strongly oriented to predic-
tion. Thus, model validation focuses mainly on the model’s predictive capability. According to the PLS-PM
structure, each part of the model needs to be validated: the measurement model, the structural model and
the overall model. A detailed description of PLS validation can be found in Tenenhaus et al. (2005) and in
the Handbook of Partial Least Squares (Esposito Vinzi et al., 2010).

2.3.6 Tenenhaus’ Contribution of PLS as a Special Case of the Regularized Gener-
alized Canonical Correlation Analysis (RGCCA)

In PLS path modeling, we consider that each block X j is the expression of an unobserved latent variable
(LV), and that structural relations (i.e. multiple regression equations) exist between the latent variables.
We consider that two blocks X j and Xk are connected if the associated latent variables are related: LV(X j)
explains LV(Xk) or vice versa. Let us define the design matrix C = {c jk} : c jk = 1 for when blocks X j and Xk
are connected in the structural equation model; otherwise it is 0. We know that the PLS algorithm depends
on two modes (A and B) for the latent variables’ outer estimation, and at least three schemes (centroid,
factorial and structural) for the latent variables’ inner estimation. When selecting either Mode B or A and
either the centroid or factorial schemes, the inner and outer latent variable estimations are identical to the
inner and outer components of RGCCA (Tenenhaus, 2011).

RGCCA and likewise the GCCA represent a framework for modeling linear relationships between sev-
eral blocks of variables observed for the same set of individuals. Considering a network of the connections
between these blocks, the objective of RGCCA is to find linear combinations of block variables, called
components, such that the block components explain their own block well, and/or the block components
that are assumed to be connected are highly correlated. The principal difference regarding the GCCA is
represented by the introduction of a τ j shrinkage constant (Ledoit and Wolf, 2004) for the estimation of the
Var(X ja j). This constant allows us to overcome the limitation on the number of observations (we know that
to estimate the Var(X ja j) correctly, we need, at least, n j > p j). In RGCCA, the objective can be formalized
as:

max
J

∑
j,k=1, j 6=k

c jkg(COV (X ja j,Xkak))

subject to the constraints τ j ‖ a j ‖2 +(1− τ j)Var(X ja j) = 1, j = 1, . . . ,J

(2.67)
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where X j and Xk represent two generic blocks; a j and ak are the outer weights that allow generating the two
generic latent variables; and τ j is a shrinkage constant that assumes values between 0 and 1.

The equation (2.67) has no analytical solution. Tenenhaus proposed the PLS algorithm in 2011 to solve
this problem. If we consider a generic block X j, the initial step of the algorithm defines the weights a j in
an arbitrary way. The outer component (i.e. outer PLS estimation) that summarizes the block information
is calculated as: y j = X ja j, in accordance with τ j ‖ a j ‖2 +(1− τ j)Var(X ja j) = 1. The inner compo-
nent (i.e. inner PLS estimation), which takes into account the relation between the blocks, is obtained as:
z j = ∑k 6= j e jkyk, where the inner weights e jk are defined as:
- e jk = c jksign(cor(yky j))→ Centroid scheme
- e jk = c jkcor(yky j)→ Factorial scheme

The outer weights a j is updated as:

a j =
[τ jI +(1− τ j)

1
n X ′jX j]

−1X ′jz j√
z jX j[τ jI +(1− τ j)

1
n X ′jX j]−1X ′jz j

(2.68)

These steps are iterated until the convergence of the criterion.

When τ j = 0, Mode B and the centroid or factorial schemes are selected for the inner estimation, and
when τ j = 1 (however, with Mode A selected for weight estimation in this case), the inner and outer com-
ponents of RGCCA (Tenenhaus, 2011) are equal to the inner and outer latent variable estimation obtained
by the PLS algorithm of Wold (1982).



Chapter 3

PATHMOX algorithm

In this chapter, we present the PATHMOX algorithm. We start by introducing the heterogeneity prob-
lem (section (3.1)) as one of the principal reasons for considering the existence of different sub-groups
in a dataset and, consequently, of the need to apply different models to each one of them. We describe
the PATHMOX (section (3.8.1) and (3.8.1)) algorithm as a possible solution to the heterogeneity problem.
Here, a brief introduction on segmentation trees is proposed. We continue by analyzing the F-test split
criterion (section (3.4)), utilized by the algorithm in the context of PLS-PM, and we propose three different
extensions: in the first one (section (3.5)), we discuss the possibility of achieving which constructs differen-
tiate segments; in the second one (section (3.6)), we propose a non-parametric approach to overcoming the
parametric hypothesis of the F-test; in the third one (section (3.7)), we analyze a possible solution for over-
coming the invariance problem. We conclude the chapter by discussing how to generalize the PATHMOX
approach to other methodologies (section (3.9)). To this end, we consider two different frameworks: (1)
multiple regression (section (3.10)), which takes into account ordinary least squares, least absolute deviation
and generalized linear regression; and (2) principal component analysis (section (3.11)).

3.1 The Heterogeneity Problem
A common practice, in data collection is to store some additional information as socio-demographic vari-
ables, for example: sex, social status, or age. For instance, in survey analysis, it is usual to consider some
generic information about the respondents that goes beyond the variables of interest, such as geographic,
demographic, psychographic or behavioral factors. These variables, known as segmentation variables, rep-
resent an important source of heterogeneity that must be considered through analysis. In general, if we have
some previous knowledge regarding which of these factors produces significant differences in the results of
the analysis, or if we do not have any previous knowledge but only one or two segmentation variables are
collected, we can analyze this source of heterogeneity by the splitting data in accordance with the segmenta-
tion variables. We can then consider a different model for each obtained group. However, the segmentation
variables in almost all cases are more than two, and we don’t have any previous knowledge about the factors.
Therefore, we cannot identify the groups a priori.

In order to avoid losing all this information, an algorithm solution can be considered. We propose
a solution based on the segmentation binary tree approach (where only binary partitions are considered).
As we will see, the algorithm meets three important objectives: to identify subgroups of population by
partitioning data; to compare the obtained groups; to identify the most significant differences. The last two
goals are achieved by introducing a specific “split” criterion, which is strictly related to the nature of the
analyzed variables.

35



CHAPTER 3. PATHMOX ALGORITHM 36

3.2 Introduction to the Segmentation Tree
A segmentation tree has greatly increased in popularity during recent years. It is a statistical system that
mines data to predict or classify future observations based on a set of decision rules. It is characterized by
a special form called “tree structure” because its graph has the appearance of a tree (although the tree is
generally displayed upside down). The first approaches were proposed by Sonquist and Morgan (1964) and
Sonquist, Baker and Morgan (1971) with their methodology called Automatic Interaction Detection (AID).
A different scheme was developed by Kass with the CHAID algorithm (Kass,1980). A new impulse was
given to segmentation tasks by the work of Breiman (Breiman et al., 1984) with the CART (Classification
And Regression Tree) algorithm, together with the work of Ross Quinlan and his ID3 algorithm (Quinlan,
1986). Successors to the ID3 algorithm have been developed with the C4.5 algorithm (Quinlan, 1993) and
the C5 algorithm (Quinlan, 1998). Decision trees have three types of nodes: root, internal, and leaf nodes.
The root node is that which contains the entire set of elements in the sample; the root node has no incoming
branches, and it may have zero or two (or more) outgoing branches. Internal nodes are those that have one
incoming branch and two (or more) outgoing branches. Leaf or terminal nodes have no outgoing branches.
The branches are the lines connecting the nodes. Every node that is preceded by a higher level node is called
“child” node. A node that gives origin to two (or more) child nodes is called a “parent” node. Terminal
nodes are nodes without children.

Internal 
 Node 

Leaf Node Leaf Node Leaf Node Leaf Node 

Root Node 
N 

Leaf Node Leaf Node 

Internal 
 Node 

Internal 
 Node 

Child Node 

Parent Node 

Figure 3.1: Graphical representation of a segmentation tree structure with its different types of nodes

According to Apté and Weiss (1997), the basic steps of the tree building procedure can be summarized
as follows. The initial state of a decision tree is the root node to which all the examples from the training
set are assigned. If it is the case that all examples belong to the same class, then no further decisions need
to be made to partition the examples, and the solution is complete. If the examples at this node belong to
two or more classes, then a test is made at the node, which will result in a split. The process is recursively
repeated for each of the new intermediate nodes until a completely discriminating tree is obtained.

3.2.1 Binary Segmentation Tree
When the nodes of the tree only can be partitioned into two, we have a binary segmentation tree. According
to Breiman et al. (1984), there are some steps to follow when you are building a binary segmentation
tree. The steps include: establish the set of admissible divisions for each node; adopt a criterion for the
goodness of the split, that is, the way in which the nodes are divided from parent nodes to child nodes
(split criterion); fix a rule to arrest the growth of the tree (stopping rule); and, once a node is recognized
as a terminal, set a rule that allows determining how to classify cases that are contained in it. The process
begins by establishing the set of admissible splits for each node, a procedure that is related to the nature of
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the segmentation variables. Following Sánchez (2009), the number and type of possible binary splits will
vary depending on the scale (e.g., binary, nominal, ordinal, and continuous) of the segmentation variables.
According to this classification, the number of the binary partitions can be summarized as:

Type of Variable Binary splits
Binary 1
Nominal 2k−1−1
Ordinal k−1
Continuous k−1

Table 3.1: Number of binary splits according to the type of variable

where K represents the number of variables’ levels.
The process will continue until when all observations are divided into child nodes. The criterion by

which the nodes are divided from parent nodes to child nodes will be fulfilled when a high degree of
homogeneity in each terminal node is found. The stopping rule is optional, but it is useful for avoiding
over-fitting problems. One possibility is to let the tree grow freely and, subsequently, to remove the less
significant branches (post pruning-process). Another strategy is to identify a stop criterion, like setting
the minimum number of observations that each node must contain, the number maximum of splits, or the
minimum value of the splitting criterion (pre-pruning process). The final step is to assign each terminal
node to a class. In this case you can follow a rule known as “plurality”: the terminal node is classified
according to the most represented group.

3.3 The PATHMOX Algorithm
As we have said in section (3.1), we want the algorithm to achieve three objectives: identify subgroups
of population by partitioning data, compare the obtained groups by verifying the presence of significant
differences and, if found, identify the most significant. To perform these three goals, the procedure adapts
the principles of binary segmentation processes to produce a segmentation tree with different models in
each of the obtained nodes. Unlike a classic decision tree, our algorithm has no prediction purpose (there
are no predefined classes to be predicted); but it has an identification goal to detect different models present
in the data. To this end, it identifies the set of splits (based on the segmentation variables) and does so with
superior discriminating capacity – in the sense that it separates the models as much as possible. Here, a split
criterion must be found to decide whether two models calibrated from two distinct segments (successors of
a node) can be considered different. In the context of partial least squares path modeling, this algorithm
was proposed for the first time by Gastón Sánchez in 2009 and given the name PATHMOX. It represented
a new point of view in observing heterogeneity in PLS-PM models. However, it is important to note that
PATHMOX can be generalized to many other kinds of methodologies and statistical fields according to the
appropriate split criterion. Following the same approach, the SEM tree procedure (Brandmaier et al., 2013)
has been recently proposed as a different recursive partitioning technique in the framework of structural
model equations. Differences between PATHMOX and SEM Trees primarily reflect differences in the
application orientation: the former is applied in the context of partial least squares path modeling, the latter
is utilized for the LISREL approach and, consequently, in the underlying estimation techniques. These
are least squares for PATHMOX and maximum likelihood for SEM Trees. For a comparison of PLS vs
LISREL, see Jöreskog and Wold (1982).

3.3.1 Algorithm Description
The procedure starts by establishing a set of admissible partitions for each node of the tree. This aspect is
directly related to the nature of segmentation variables (see Table (3.1)). Once all possible subgroups have
been considered, the second step is to identify the best partition (split criterion). The best split is obtained
by applying a criterion (i.e test) that allows comparison of all sub-models calculated for each partition.
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The criterion must be able to identify a degree of difference between the two compared sub-models. In
general, the degree of difference is associated with a p-value: the lower the p-value, the more different
the partitions are. The optimal partition is chosen by comparing the different p-values of each test and
selecting the lowest. The choice of the split criterion is related to both the nature of the analyzed data and
the kind of methodology utilized to approach the data. A detailed description of criteria is proposed in the
next sections. This step is repeated iteratively, thus obtaining a ranking of the best segmentation variables
and the different nodes of the tree. The last phase is to identify a criterion for discriminating whether the
segment is an intermediate node or a terminal one (stopping rule). Here, a pre-pruning rule is adopted. One
node is considered terminal when:

� The segmentation variables for that parent node have been exhausted and no more splits are feasible.

� The selected best split has an associated p-value exceeding the significance threshold.

� The number of elements in one node is less than or equal to some predefined minimum number of
elements.

The algorithm has three parameters that have to be defined by the analyst:

1. The significance p-value threshold.

2. The minimum number of elements for a node that avoids fragmentation of small size nodes.

3. The grow tree depth level that allows avoiding an intractable number of segments.

We can summarize the procedure in the following Table:

Algorithm 1 PATHMOX Algorithm
Step 1. Start with the global model at the root node

Step 2. Establish a set of admissible partitions for each segmentation variable in each node of the tree

Step 3. Detect the best partition by:

3.1. Comparing all binary partitions in all segmentation variables

3.2. Applying the test, calculating for each comparison a p-value

3.3. Sorting the p-values in a descending order

3.4. Choosing as the best partition the one associated to the lowest p-value

Step 4. If (stop criteria1 = false) than

repeat by step 3

1. Posible stop criteria:

a. The number of individuals in the group falls below a fixed level

b. The p-values test are not significant

c. Maximum number of tree depth attained
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3.4 The Split Criterion and Partial Least Squares Path Modeling
PLS-PM

Gastón Sanchéz proposed the F-global test in 2009 as a criterion for comparing two different PLS path
models by extending the test for comparing two linear regressions introduced by Lebart et al. (1979). This
test focuses on the relationships between the path coefficients of the structural model, and it is based on
the consideration that comparing two structural models can be put in terms of comparing two regression
models. Structural models are in fact nothing more than a set of regressions among latent variables, one re-
gression for each endogenous variable. This paragraph follows the proof described in his work (see Sanchéz
2009, pp.145:148).

Models Comparison in Pathmox

The F-global test comparison is based on the global model comparison at the structural level. Each bi-
nary split defines a pair of nodes, each of which will have its associated structural model, i.e. its associated
set of path coefficients. Then, we perform a global comparison test on the identity of the two models, mean-
ing that the sets of path coefficients in the two child nodes are equal to those of the parent node. The model
of the parent node corresponds to a homogeneous situation, and the model of the child nodes corresponds
to a heterogeneous situation. To that end, Sanchéz (2009) adapted the identity test of two regression models
by Lebart et al. (1979) and Chow (1960), and he used it to detect the most significant split.

Testing the Equality of Two PLS Path Models

Let us consider a path model, as in Figure (3.2), with two endogenous latent variables,η1 and η2. Its
generalization into more complex models is straightforward, with the inconvenience of complicating the
notation:

ξ1 

ξ2 

η1 η2 

β4 

β3 
β1 
β2 

ζ1 ζ2 

β5 

Figure 3.2: Path diagram of a PLS model with two endogenous variables

The structural equations for both endogenous constructs are:

η1 = β1ξ1 +β2ξ2 +ζ1 (3.1)
η2 = β3ξ1 +β4ξ2 +β5η1 +ζ2 (3.2)

The disturbance terms ζ1 and ζ2 are assumed to be normally distributed with zero mean and finite vari-
ance; that is, E(ζ1) = E(ζ2) = 0 and Var(ζ1) =Var(ζ2) = σ2I. It is also assumed that Cov(ζ1,ζ2) = 0.

We can define the following matrices:
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X1 = [ξ1,ξ2] a column matrix with the explicative latent variables of η1 (3.3)
B1 = [β1,β2] a vector of path coefficients for the regression of η1 (3.4)
X2 = [ξ1,ξ2,η1]a column matrix with the explicative latent variables of η2 (3.5)
B2 = [β3,β4,β5]a vector of path coefficients for the regression of η2 (3.6)

The structural equations in matrix form are expressed as:

η1 = X1B1 +ζ1 (3.7)
η2 = X2B2 +ζ2 (3.8)

We assume that the parent node is divided in two child nodes or segments

In each segment we compute its own structural model:

SegmentA : η
A
1 = XA

1 BA
1 +ζ

A
1 and η

A
2 = XA

2 BA
2 +ζ

A
2 (3.9)

SegmentB : η
B
1 = XB

1 BB
1 +ζ

B
1 and η

B
2 = XB

2 BB
2 +ζ

B
2 (3.10)

with ζ A
1 N(0,σ2I) and ζ A

2 N(0,σ2I),ζ B
1 N(0,σ2I) and ζ B

2 N(0,σ2I).

Now, we want to investigate if the models of the two segments A and B are different or not. Thus, the
test hypothesis will be: The coefficients of segments A and B, are equal in both equations at the same time.

We can define a null hypothesis and alternative hypothesis for each structural equation as:

H0η1 :

[
ηA

1
ηB

1

]
[n,1]

=

[
XA

1
XB

1

]
[n,p1]

[
β1
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+

[
ζ A

1
ζ B

2

]
[n,1]

(3.11)

H0η2 :

[
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2
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2

]
[n,1]

=

[
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2

]
[n,p2]

[
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[
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1
ζ B

2

]
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(3.12)

H1η1 :

[
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]
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=
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]
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(3.13)

H1η2 :
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(3.14)
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Note that in the null hypothesis we consider that the path coefficients are the same for both segments,
whereas in the alternative hypothesis we fit different path coefficients for segments A and B. Each pair of
hypotheses can be combined in more compact expressions:

H0 :


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2
.
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+
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H1 :


ηA

1
ηA

2
.

ηB
1

ηB
2


[2n,1]

=


XA

1 0 0 0
0 XA

2 0 0
. . . . . . . . .

0 0 XB
1 0

0 0 0 XB
2


[2n,2p1 +2p2]


β A

1
β B

1
.

β A
2

β B
2


[2p1 +2p2,1]

+


ζ A

1
ζ A

2
.

ζ B
1

ζ B
2


[2n,1]

(3.16)

The matrices X0, X and A required in Lemma 2 of Lebart et al. (1979), such that X = X0A. can be
defined:

X0 =


XA

1 0
0 XA

2
. . . .

XB
1 0
0 XB

2


[2n,p1 + p2]
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XA
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0 XA

2 0 0
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2
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(3.17)

A =


Ip1 0
0 Ip2
. . .

Ip1 0
0 Ip2


[2p1 +2p2,p1 + p2]

(3.18)

where IP is the identity matrix of order equal to the number of p variables.

Then, assuming that the random perturbations associated with the latent variables are uncorrelated with
equal variance, we can apply Lemmas 1 and 2 of Lebart et al. (1979). Hence, the F-statistic measuring the
discrepancy between the two models:

FGlobal =

(SSH0 −SSH1)

/
(p1 + p2)

SSH1

/
[2n−2(p1 + p2)]

(3.19)

where SSH0 and SSH1 stand for the corresponding sum of squares of residuals in both models. It then
follows, under the null hypothesis, that we have an F distribution with p1 + p2 and 2n−2(p1 + p2) degrees
of freedom.



CHAPTER 3. PATHMOX ALGORITHM 42

3.5 Extending the PATHMOX Approach for Detecting Which Con-
structs Differentiate Segments

As we can see, the PATHMOX approach allows us to detect the existence of different path models in a data-
set without identifying segmentation variables beforehand: the different segments are reveled as branches
of the segmentation tree. However, the F-test used in PATHMOX as split criterion is a global criterion: it
allows assessing whether all the path coefficients for two compared structural models are equal or not, but
it does not indicate which particular structural equation and which path coefficients are responsible for the
difference. To identify the significantly distinct structural equation and the responsible path coefficients of
the split, we introduced the F-block test and the F-coefficient test.

3.5.1 F-Block Test
To detect which structural regression (i.e. structural equation) is responsible for the global difference, we
have extended the F-global test, to compare the equality of each structural equation of the model. We will
call the statistic of this comparison F-block (or block-test) . Let us consider the same model shown in
Figure (3.2) with two endogenous variables, η1 and η2:

η1 = β1ξ1 +β2ξ2 +ζ1 (3.20)
η2 = β3ξ1 +β4ξ2 +β5η1 +ζ2 (3.21)

Let us assume that the F-global test gives a significant p-value. We want to investigate which structural
equation is responsible for the difference. The test hypothesis will be: for every one of the structural
equations, the path coefficients of segments A and B are equal, whereas the others can freely vary.

For the sake of simplicity, we test whether the first structural equation is equal in both segments while
letting equation two vary freely. In this case the null hypothesis, H0, states that the structural equation
shown in Figure (3.21) is equal for segments A and B, while the alternative hypothesis, H1, states that all
structural equations are different. The two hypotheses can be written as follows:
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(3.23)

where n = nA +nB is the number of elements in the model containing the two nodes; and p j is the number
of explicative latent variables for each j-th endogenous construct j = 1, . . . ,J (in this example J = 2).

We can define the matrices X0. The X corresponding to both hypotheses are:

X0 =


XA

1 0 0
0 XA

2 0
XB

1 0 0
0 0 XB

2


[2n,p1 +2p2]

X =


XA

1 0 0 0
0 XA

2 0 0
0 0 XB

1 0
0 0 0 XB

2


[2n,2p1 +2p2]

(3.24)
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Then, we can see that X0 = XA defining the matrix A as:

A =


Ip1 0 0
0 Ip2 0

Ip1 0 0
0 0 Ip2
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[ 2p1 +2p2,p1 +2p2]

(3.25)

where IP is the identity matrix of order equal to the number of p variables.

Then, as before, we can apply Lemmas 1 and 2 of Lebart et al. (1979). Hence, the F-statistic measuring
the discrepancy between the two models:

FBlock =

(SSH0 −SSH1)

/
p1

SSH1

/
2(n− p1− p2)

(3.26)

where SSH0 and SSH1 stands for the corresponding sum of squares of residuals in both models, follows,
under the null hypothesis, an F distribution with p1 and 2(n− p1− p2) degrees of freedom.

3.5.2 F-Coefficient Test
Let us suppose now that the difference between the first structural equation in segments one and two is
significant, that is, there is a difference between segment A and segment B. We want to investigate which
are the the responsible coefficients for such a difference. Let us consider the same structural model shown
in Figure (3.2). For the sake of simplicity, we test the equality of coefficient β1 in the first equation of both
segments. We re-adapt the same global F-test to this situation. The test hypothesis will be: for every path
coefficient of segments A and B, we test if they are equal; whereas the others can vary freely.
The two hypotheses are written as follows:

H0 :


ηA

1
ηA

2
ηB

1
ηB

2


[2n,1]

=


ξ A

1 ξ A
2 0 0 0 0 0 0 0

0 0 ξ A
1 ξ A

2 ηA
1 0 0 0 0

ξ B
1 0 0 0 0 ξ B

2 0 0 0
0 0 0 0 0 0 ξ B

1 ξ B
2 ηB

1


[2n,2∑

P
j=1 p j−1]


β1
β A

2
β A

3
...

β B
5


[2∑

P
j=1 p j−1,1]

+


ζ A

1
ζ A

2
ζ B

1
ζ B

2


[2n,1]

(3.27)

H1 :


ηA

1
ηA

2
ηB

1
ηB

2


[2n,1]

=


ξ A

1 ξ A
2 0 0 0 0 0 0 0 0

0 0 ξ A
1 ξ A

2 ηA
1 0 0 0 0 0

0 0 0 0 0 ξ B
1 ξ B

2 0 0 0
0 0 0 0 0 0 0 ξ B

1 ξ B
2 ηB

1


[2n,2∑

P
j=1 p j]


β A

1
β A

2
β A

3
...

β B
5


[2∑

P
j=1 p j ,1]

+


ζ A

1
ζ A

2
ζ B

1
ζ B

2


[2n,1]

(3.28)

Calling X0 the design matrix of the null hypothesis and X the design matrix of the alternative hypothesis,
we have X0 = XA, where:
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A =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


[ 2∑

P
j=1 p j ,∑P

j=1 p j−1]

(3.29)

Then, as before, we can apply Lemmas 1 and 2 of Lebart et al. (1979). Hence, the F-statistic measuring
the discrepancy between the two models:

FCoe f f icient =

(SSH0 −SSH1)

/
1

SSH1

/
2(n−∑

P
j=1 p j)

(3.30)

where SSH0 and SSH1 stand for the corresponding sums of squares of residuals in both models, which
follows, under the null hypothesis, an F distribution with 1 and 2(n−∑

P
j=1 p j) degrees of freedom.

3.6 Extending the PATHMOX Approach for Overcoming the Distri-
bution Hypothesis

One criticism of the PATHMOX approach, when applied in the context of partial least squares path model-
ing, is that it utilizes a parametric test based on the hypothesis that the residuals have a normal distribution
when comparing two structural models. PLS-PM is generally used to model survey analysis data. In gen-
eral, these data are characterized by an asymmetric distribution: when an individual expresses an opinion,
for example on a specific service, the opinion will likely be skewed positive. This situation produces skew-
ness in the distribution of data. As we well know, it does not matter when we apply PLS, because one goal
of this methodology is to obviate assumptions on data distribution. However, it represents a limit when
we compare PLS models across PATHMOX, because we can not guarantee the normal distribution of our
data, which is the condition needed to apply the test. In 2009, Sánchez conducted a simulation study with
no normal data and showed that the test clearly detects differences when data also present an asymmetric
distribution. In any case, there is a theoretic limit to applying the F-test. To overcome this limit, we can
extend the test to compare two robust LAD regressions (Koenker and Bassett, 1982) in the context of partial
least squares path modeling.
When the number of the observations is sufficiently large and by following the proofs we gained from
the F-global, F-block and F-Coefficients tests, we can rewrite the F-statistics utilizing robust regression
(LAD):
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FGlobalLAD =

(SARH0 −SARH1)

/
(p1 + p2)

SARH1

/
[2n−2(p1 + p2)]

∼ Fp1+p2,2n−2(p1+p2) (3.31)

FBlockLAD =

(SARH0 −SARH1)

/
p1

SARH1

/
2(n− p1− p2)

∼ Fp1,2(n−p1−p2) (3.32)

FCoe f f icientLAD =

(SARH0 −SARH1)

/
1

SARH1

/
2(n−∑

P
j=1 p j)

∼ F1,2(n−∑
P
j=1 p j)

(3.33)

where:
- SARH0 and SARH1 are the absolute sum of residuals under the null and alternative hypothesis;
- p1 and p2 are the number of the variables for the two segments;
- n is the number of observation

3.7 Extending the PATHMOX Approach for Dealing with the Factor
Invariance Problem

In the context of PLS, the algorithm works by fixing the topology of the structural model (i.e. the model
of the causal relationships between the latent variables), and the goal is to detect segments having different
path coefficients in the structural model. However, this does not place any restrictions on the measurement
models (i.e. the models that link the observed variables with their own constructs). Thus, anytime that a
significant difference is found and two child nodes are defined, the relationships among latent variables are
the same in both “child” models, but the estimation of each latent variable is recalculated. This consideration
introduces the problem of invariance: if the estimation of the latent variables are recalculated (i.e. they
could be different) in each terminal node of the tree, how can we be completely certain that we are correctly
comparing the distinct behaviors of two individuals who belong to two different terminal nodes? As an
illustration, let us consider the customer satisfaction of a company’s clients: when PATHMOX is applied to
data and a significant difference is found between men and women, for example, how can we be sure that
we are correctly comparing the satisfaction of a man and a woman if the satisfaction is recalculated in each
terminal model? To solve this problem, an invariance test can be considered, where the goal of the test is to
verify if the measurement models of each terminal node may be assumed equal or not.

3.8 Invariance Test
To test the invariance of the measurement model across different sub PLS-PM models we follow the same
approach of model comparison, first stated by Lebart et al. (1979), Chow (1960). We propose to perform
a global comparison of models test applied to the outer model. The current model is formed by the juxta-
position of all outer models of the identified segments, each one with their corresponding specific weights
defining the constructs, whereas the null model is formed assuming the same weights for every construct
in all segments. Then, we can test the invariance of weights across the sub-models. Non significance
of the statistic reveals that we can assume a unique set of weights for every construct in all sub-models,
that is, there is factor invariance, otherwise we will accept that not only structural models differ but also
measurement models in the detected segments do.
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3.8.1 Testing the Equality of the Sub-model Weights
Let’s take a PLS-PM model with k latent variables. Without loss of generality, to formalize the test, we can
take a very simple case; let be S the number of segments in this case (S = 2) we will call them segment
A and segment B; let be a model with two latent constructs (k = 2), ξ and η each with its corresponding
associated blocks X and Y , with p1 and p2 indicators respectively (in general and pk denotes the number of
indicators of block k). Let n be the total number of individuals (n = nA +nB).

ξ1 η 
β1 

ζξ 

x1 
x2 

y3 
y4 

ω1 

ω2 

ω3 

ω4 

ζη 

Figure 3.3: Path diagram of a PLS model with two latent constructs

We want to investigate if we can assume the existence of common weights for both sub-models. The
null hypothesis means that there are common weights, for both constructs, ωξ ,ωη , whereas, the alternative
hypothesis specifies that every segments has its own specific weights. Then, we can write the measurement
model as a concatenation of all constructs in all segments and define the two hypotheses as follow:

H0 :

y
ξ A

ηA

ξ B

ηB


[Sn,1]

=

X0
XA 0
0 Y A

XB 0
0 Y B


[Sn,p1+p2]

β0[
ωξ

ωη

]
[p1 + p2,1]

+

ε0
ζ A

ξ

ζ A
η

ζ B
ξ

ζ B
η


[Sn,1]

(3.34)

H1 :

y
ξ A

ηA

ξ B

ηB


[Sn,1]

=

X1
XA 0 0 0
0 Y A 0 0
0 0 XB 0
0 0 0 Y B


[Sn,Sp1 +Sp2]

β1
ωA

ξ

ωA
η

ωB
ξ

ωB
η


[Sp1 +Sp2,1]

+

ε1
ζ A

ξ

ζ A
η

ζ B
ξ

ζ B
η


[Sn,1]

(3.35)

Then, assuming y∼ N(Xβ ,σ
2), we know that Lebart et al. (1979):

1. The quadratic form ε ′Qε/σ2, where Q is symmetric and idempotent matrix, follows a χ2 distribution
with v degrees of freedom (where v is the rank of Q).

2. Given two matrices X and X0 where X0 is defined as X0 = XA (for any matrix A), we can define the
following matrices Q and Q0 as:

Q = In−X(X ′X)−1X ′ (3.36)

Q0 = In−X0(X ′0X0)
−1X ′0 (3.37)

Then, it can be shown that ε ′(Q0−Q)ε follows an χ2 distribution with (v0−v) degrees of freedom, where:
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� v is the rank of Q

� v0 is the rank of Q0

Thus, it is easy to see that the design matrices of precedent hypothesis can be written as X0 = XA taking:

A =


Ip1 0
0 Ip2

Ip1 0
0 Ip2


[Sp1 +Sp2,p1 + p2]

(3.38)

where IPj is the identity matrix of order p j.

Assuming that every construct in every segment is normally distributed with equal variance; the differ-
ence of the residuals sum of squares of both hypotheses follows a χ2 distribution with S−1, p1+ p2 degrees
of freedom; in general:

SSHO−SSH1 ∼ χ
2
(S−1)∑

S
k=1 pk

(3.39)

3.9 Generalization of the PATHMOX Algorithm
One of the most important aspects of the PATHMOX approach is that it can be generalized to other kinds
of methodologies and statistical fields. This idea is based on the consideration that, even if it make sense
to compare models by taking into account a set of segmentation variables, and even if an appropriate split
criterion is utilized for the comparison, we can apply PATHMOX to explore the hypothesis of heterogeneity
in our data. In this section, we take into account multiple regression and principal component analysis
to show two generalization examples of the PATHMOX algorithm. We discuss different split criteria that
allow us to compare models in each of these two methodologies.

3.10 Multiple Regression
In the context of multiple regression, we consider three different scenarios: the classic ordinary least squares
regression (OLS), the least absolute regression (LAD) and the general linear regression (GLM). As in
the case of PLS-PM, we perform a global comparison test on the identity of two models, meaning that
the sets of coefficients in the two child nodes are equal to those of the parent node. The model of the
parent node corresponds to the homogeneous situation, and the model of the child nodes corresponds to the
heterogeneous situation.

3.10.1 Multiple Linear Regression
Comparing two linear multiple regressions can be performed using the hypothesis test introduced by Lebart
et al. (1979, pp. 212), that is, an F-type based statistic. It represents the simple case (i.e. when we have
just one equation) of the F-test being utilized to compare two structural models in PLS-PM.

Let us consider a generic linear model with two coefficients, β1 and β2:
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x1 
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y 

β2 

β1 ε 

Figure 3.4: Path diagram of a regression model with two coefficients β1 and β2

For sake of simplicity we does not consider intercept. The model can be written as

y = x1β1 + x2β2 + ε (3.40)

The disturbance term ε is assumed to be normally distributed with zero mean and finite variance, that
is, E(ε) = 0 and Var(ε) = σ2I. This implies that y∼ N(x1β1 + x2β2,σ

2I)

We can define the following matrices:

X = [x1,x2] a (nxp) matrix with the explicative variables of y (3.41)
B = [β1,β2] a (px1) vector of coefficients for the regression of y (3.42)

The model in a matrix form will be:

y = XB+ ε (3.43)

Let us suppose that the model in Figure (3.4) is associated with the parent node’s model and contains the
total number of n observations. Let us assume that the parent node is split into two child nodes or segments,
one segment containing nA elements and the other nB. In each segment we compute its own model:

SegmentA : yA = XABA + ε
A (3.44)

SegmentB : yB = XBBB + ε
B (3.45)

with εA N(0,σ2I) and εB N(0,σ2I).

Now we want to investigate if the models of the two segments A and B are different or not. The test
hypothesis will be: the coefficients of segments A and B are equal in both equations at the same time.

We can define a null hypothesis and alternative hypothesis for each model as:

H0 :

[
yA

yB

]
[n,1]

=

[
XA

XB

]
[n,p]

[
β
]

[p,1]
+

[
εA

εB

]
[n,1]

(3.46)

H1 :

[
yA

yB

]
[n,1]

=

[
XA

1 0
0 XB

1

]
[n,2p]

[
β A

β B

]
[2p,1]

+

[
εA

εB

]
[n,1]

(3.47)

Note that in the null hypothesis we consider the vector of coefficients β to be the same for both segments
(A and B), while in the alternative hypothesis we fit different coefficients (β A and β B) for the two models.
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To obtain the F-statistic, the matrices X0, X and A required by Lemma 2 of Lebart et al. (1979), such that
X = X0A, can be defined as:

X0 =

[
XA

1
XB

1

]
[n, p]

X =

[
XA

1 0
0 XB

1

]
[n,2p]

(3.48)

A =

[
Ip
Ip

]
[2p,p]

(3.49)

where p is the number of explicative variables for y and Ip is the identity matrix of order p.

Thus, we can apply Lemmas 1 and 2 of Lebart et al. (1979) and test the H0 hypothesis by computing
the following F-statistic with (p) and (n−2p) degrees of freedom.

F =

(SSH0 −SSH1)

/
p

SSH1

/
(n−2p)

(3.50)

3.10.1.1 The F-Coefficient Test

As in the PLS context of analyzing an OLS multiple regression and we find a significant difference between
two models, it makes sense to explore which coefficients are responsible for the split. To this end, we can
apply the test of equality on several coefficients, as introduced by Lebart et al. (1979, pp. 213). The test
hypothesis will be: for every coefficient of segments A and B, we test if it is equal, whereas the others can
vary freely.

For the sake of simplicity, we test the equality of coefficient β1 in both segments. We can re-adapt the
same F-test to this situation. The two hypotheses can be written as follows:

H0 :

[
yA

yB

]
[n,1]

=

[
xA

1 xA
2 0

xB
1 0 xB

2

]
[n,2p−1]

β1
β A

2
β B

2


[2p−1,1]

+

[
εA

εB

]
[n,1]

(3.51)

H1 :

[
yA

yB

]
[n,1]

=

[
xA

1 xA
2 0 0

0 0 xB
1 xB

2

]
[n,2p]


β A

1
β B

1
β A

2
β B

2


[2p,1]

+

[
εA

εB

]
[n,1]

(3.52)

Note that in the null hypothesis coefficient β1 is the same for both segments, while in the alternative
hypothesis we fit different coefficients for β A

1 and β B
1 . Calling X0 the design matrix of the null hypothesis

and X the the design matrix of the alternative hypothesis, we have X0 = XA, where:

A =


1 1 0
0 0 0
1 0 0
0 0 1


[ 2p,2p−1]

(3.53)

Then, as before, applying Lemmas 1 and 2 of Lebart et al. (1979), we can test the H0 hypothesis by
computing the following F-coefficient statistic with (1) and (n−2p) degrees of freedom.



CHAPTER 3. PATHMOX ALGORITHM 50

F =

(SSH0 −SSH1)

/
1

SSH1

/
2(n−2p)

(3.54)

3.10.2 Least Absolute Regression
As with OLS, LAD estimation can be applied in the context of PATHMOX in this case to obtain different
robust regression models classified by a set of segmentation variables. Since the LAD estimate is nothing
more than a robust linear regression, we can adapt the test for equality of two linear models, introduced by
Lebart et al. (1979), to compare whether two LAD models are distinct or not. The problem, in this case,
is that the Lebart approach is based on the hypothesis that the residuals of models are normal, and it is
this supposition that allows us to consider Lemmas 1 and 2 of Lebart et al. (1979) and compare models
by means of an F-statistic; whereas the LAD estimate does not guarantee the normal distribution of the
residuals. Regardless, by following the asymptotic hypothesis that is, when the number of the observations
is sufficiently large, an approximation is possible. Let us consider the same model with two coefficients,
β1 and β2, shown in Figure (3.4). Lebart’s test hypotheses are: (H0) the coefficients of the two models are
equal, and (H1) the coefficients of the two models are distinct. Let us recall the absolute sum of residuals
under the null hypothesis obtained by LAD estimation to be SARH0 and the the absolute sum of residuals
under the alternative hypothesis to be SARH1 . Thus, if n is sufficiently large, we can re-adapt equations
(3.50) and (3.54), and we can test the H0 hypothesis by computing the following F̂LAD-statistics:

FGlobalLAD =

(SARH0 −SARH1)

/
p

SARH1

/
(n−2)p

(3.55)

FCoe f f icientLAD =

(SARH0 −SARH1)

/
1

SARH1

/
2(n−∑

P
j=1 p j)

(3.56)

3.10.3 Generalized Linear Model
The comparison of two GLM regressions can be performed using the likelihood ratio test, which is an χ2-
type based statistic. Let us consider a general GLM model with two coefficients: β1 and β2 (see Figure
(3.4)). Following a global comparison approach (hypothesis formulation: equation (3.46) and (3.47)), we
can consider the residual deviance for the models under the null and alternative hypotheses: DevH0 =
l(H0;y) and DevH1 = l(H1;y), and define the DLRT likelihood ratio as:

DLRT =−2log
DevH0

DevH1

(3.57)

Under the Null hypothesis, DLRT is asymptotically distributed as χ2 with (N− k) degrees of freedom,
where N = n− p and k = n−2p.

Detecting the Responsible Coefficient
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When we find a significant difference between two models, it also makes sense in GLM to explore which
coefficients are responsible for the split. To this end, we can formulate the null and alternative hypotheses
as in equations (3.51) and (3.52); again we can consider the residual deviance for both models: DevH0 =
l(H0;y) and DevH1 = l(H1;y), and define the DLRT likelihood ratio (see equation (3.57)). Under the null
hypothesis, DLRT is asymptotically distributed as χ2 with (N−k) degrees of freedom, where N = n− p−1
and k = n−2p.

3.11 Principal Component Analysis
The basic idea of principal component analysis (PCA) is to express a set of variables using a reduced number
of variables called components. However, the possibility to express the variables across the components is
based on the hypothesis that we can represent all data with a single pattern in the relation of variables. Thus,
we could define the obtained components as an average representation of the variables of interest. However,
it is reasonable in many cases to suppose the presence of some heterogeneity in the data: the observations
behave differently according to a certain factor (segmentation variable). In this case, we cannot accept the
existence of a single pattern in the relation of variables, and distinct distributions must be considered. In
this context, it makes sense to apply PATHMOX to the PCA, with the objective of discovering different
patterns of correlation between the variables of interest, patterns that define the underlying components.
To this end, we propose an ad-hoc criterion based on the correlation of the interest variables; we call it
average correlation criterion. The criterion is presented by considering a generic PCA model (see figure
(3.5)) based on three principal components.

x1 

x3 

c2 x2 

c3 

c1 

Figure 3.5: Path diagram of a PCA model with three components c1 y c2 and c3

We can define the components as:

c1 = x1u11 + x2u12 + x3u13

c2 = x1u21 + x2u22 + x3u23

c3 = x1u31 + x2u32 + x3u33

(3.58)

in a matrix form:

C = XU (3.59)

3.11.1 Average Correlation Criterion
The average correlation criterion follows a comparison of coefficients approach. Thus, during the split
process, we calculate two local models (one for segment A and another for the segment B) for each binary
partition of all segmentation variables. We then test the equality of the two models by comparing the two
representations of the variables in Rn. The degree of similarity is measured in terms of average correlation
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between the original variables, which is represented by the principal components: the lower the correlation
is, the more different the two sub-models are. To guarantee that the degree of similarity does not depend
simply on the direction of the components, a procrustean rotation is done by one representation on the other
(see Figure (3.6).

cA 

bA 

aA 

Segment A correlation map  

cB bB 

aB 

Segment B correlation map  
cB 

bB 

aB 

Procrustean rotation of segment B on segment A 

cA 

bA aA 

cB 

bB 
aB 

New Segment B correlation map  

Figure 3.6: Graphical representation of the segment B procrustean rotation. Starting with the correlation
maps at the top of the figure, we can observe how different the two representations seem (segments A and
B). However, once we perform a procrustean rotation, the two representations present very similar patterns.
We can conclude that, if we want to measure the different degrees of similarity between two representations,
it is necessary to realize a procrustean rotation in order to avoid biased results.

Let us consider the model shown in Figure (3.5). For the sake of simplicity, we consider just the first
two components. Let us assume that the model is associated with the parent node and contains the total
number of n observations. Let us consider that the parent node is split into two child nodes or segments:
one segment containing nA elements and the other nB. In each segment, we compute its own PCA model
and we calculate the variable coordinates of the components:

SegmentA : CA = XAuA ⇒ φ
A = uA

√
λ A

SegmentB : CB = XBuB ⇒ φ
B = uB

√
λ B

(3.60)

where:
- CA and CB are the principal components of segments A and B;
- φ A and φ B are the coordinates of the variables on the first two components;
- uA, uB and λ A, λ B are the eigenvector and the eigenvalue evaluated in the two sub-models;

Let us apply the procrustean rotation (Thurstone, 1947; Kaiser, 1958; Cattell, 1978) on the representa-
tion of segment B 1, φ B obtaining φ̂ B to guarantee that the degree of similitude does not depend simply on
the direction of the components. We can calculate the average correlation as:

AC =
p

∑
i=1

φ A
i · φ̂i

B

p
(3.61)

where:
- φ A are the coordinates of the variables of the sub-model A on the first two components;

1To apply the procrustean rotation on the coordinates of the model of the segment B is just a reference; it can be applied indiffer-
ently on both segments
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- φ̂ B are the procrustean coordinates of the variables of the sub-model B on the first two components;
- p is the total number of the original variables;

As we can see, the average correlation is nothing more than the scalar product between the coordinates
φ of the two sub-models A and B for the components, divided by the total number of variables (in this case
three). This measure represents the degree of similarity between the two representations of the principal
components of the original variables: the lower the correlation is, the more different the two sub-models
are2.

2We have tried by means a permutation test to find a reference distribution of the AC coefficient. However we haven’t included it
in the solution due to its computational cost. We have found an heuristic rules about the magnitude of the average correlation, which
allows us to solve this problem.



Chapter 4

Simulations

In the following chapter we present a Monte Carlo simulation analysis in order to evaluate the sensitivity of
the split criteria used in PATHMOX. Our simulations are based mainly on the works of Chin and Newsted
(1999), Cassel et al. (1999, 2000), Westlund et al. (2001), Chin et al. (2003), Goodhue et al. (2006), and
Sánchez (2009). We begin this chapter with the description of the principal objectives of the study (section
(4.1)), we continue by reporting on the data generation process (section (4.2)) and the experimental factors
(section (4.3)), and we conclude with the analysis of the obtained results (section (4.4), (4.5) and (4.6)).

4.1 Motivation
We have realized our simulation study with three principal objectives:

� assess the coherence of the F-block and the F-coefficient statistics in respect to the F-global;

� compare the least squares statistics with the LAD approach;

� evaluate the performance of the invariance measurement test.

The main objective behind the simulation study is to evaluate the coherence of the F-block and the F-
coefficient statistics in respect to the F-global when two path models are compared. We are interested in
verifying if the same difference is identified by the other two statistics when a significant difference is found
by the F-global. This represents a necessary step in incorporating the F-block and the F-coefficient into
PATHMOX’s split process. The second objective of the study consists of comparing the three F statistics
with those obtained by the LAD approximation; in this case we are interested in evaluating the degree
of sensitivity in order to verify if the two approaches identify the same differences. The principal aim is
establish under which conditions the LAD approximation is as suitable as the classical F statistics are. The
goal of the third analysis is to investigate the performance of the invariance measurement test. Here, we
want to determine if the test is specific for each terminal node of the tree, and if not, what are the different
conditions under which this test is suitable for understanding if the measurement model can be considered
the same for all of them. Before proceeding with the simulation studies, we check the adequacy of the
simulation procedure and the corresponding PLS-PM estimation.

4.2 Simulated Models
The first step in our simulation study is the definition of the PLS model. We have considered two different
models: we will call them Model 1 and Model 2; the first one is all reflective, whereas the second one
contains a formative block.

54
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Model 1

In Model 1, the data were generated according to the structural model in Figure (4.1) by following a
two-step procedure (Reinartz et al., 2005): first, we generated the latent variable data by following the
relationship specified in the structural model;
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Figure 4.1: Path diagram of PLS model 1

The PLS model consists of one exogenous (ξ ) and two endogenous (η1 and η2) latent variables. The
inner structure is defined as:

η1 = βξ η1
ξ +ζη1

η2 = βξ η2
ξ +βη1η2η1 +ζη2

(4.1)

where β are regression coefficients and ζ are the error terms associated with the endogenous latent variables.
The manifest variables are denoted by x for ξ , and by y for η . The measurement models for ξ , η1 and η2
are reflective and defined as:

x1 = λx1ξ1 + εx1 y1 = λy1ξ2 + εy1 y4 = λy4η + εy4

x2 = λx2ξ1 + εx2 y2 = λy2ξ2 + εy2 y5 = λy5η + εy5

x3 = λx3ξ1 + εx3 y2 = λy3ξ2 + εy3 y6 = λy6η + εy6

(4.2)

The λ terms are coefficients, and the ε terms are random errors. We set the λ values for the three
constructs equal to 0.85, 0.80 and 0.75, respectively, for i = 1, · · · ,3. In the based model, the noises ε and
ζ were realized from a Normal distribution, N ∼ (µ = 0,σ2 = 0.05). We have used a Beta distribution,
B ∼ (6,3), for the exogenous latent variable, ξ , to reproduce the asymmetry that characterizes the way
respondents answered the survey studies.

Model 2

Model 2 (see Figure (4.2)) differs from Model 1 in the way that we have related the manifest variables
with the exogenous latent variable; in this case the measurement model of ξ is in fact formative and defined
as:

ξ = πξ 1x1 +πξ 2x2 +πξ 3x3 +δξ (4.3)

The π terms are coefficients, and the δξ term is the random error, introduced in the model due to the
hypothesis that some manifest variables explaining the construct are not considered. The x values have
been generated from a multivariate normal distribution with a mean vector, µ = (0,0,0), and a covariance
matrix:
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Σ =

 1 0.01 0.1
0.01 1 0.01
0.1 0.01 1

 (4.4)

For the base model, all the π terms were set to be 0.2,0.3,0.4. The noises δ were realization from the
Normal distribution N ∼ (µ = 0,σ2 = 0.1). We have used the same process adopted for the model A, to
generate the endogenous latent variables and the corresponding manifest variables.
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Figure 4.2: Path diagram of the PLS model 2

4.3 Data Generation Process
In generating the segments, an important condition is that the difference introduced in the two simulated
segments must be controlled; that is, we have to ensure that, if we want a 0.5 coefficient of the model, we
will obtain it as an average when simulating the data. To do this, let us consider the first inner equation of
the model in Figure (4.1):

η1 = βξ η1
+ζξ (4.5)

The variance and the standard deviation of η1 can be easily expressed as:

var(η1) = β
2
ξ η1

+ var(ζξ ) (4.6)

As we know, the latent variables in a PLS-PM algorithm are rescaled at each iteration. That corresponds
in our model to fitting η under the restriction that var(η) = 1. This implies:

var(η1) = β
2
ξ η1

+ var(ζη1) = 1

var(ζη1) = 1−β
2
ξ η1

(4.7)

Applying the same logic to the second inner equation of the model in Figure (4.1), we obtain:

var(η2) = β
2
ξ η2

+β
2
η1η2

+2βξ η2
βη1η2 + var(ζξ ) = 1

var(ζη2) = 1−β
2
ξ η2
−β

2
η1η2
−2βξ η2

βη1η2

(4.8)

Thus, to guarantee that we can control the value of the β coefficients, we have to estimate the standard
deviation of the endogenous error as:

SD(ζη1) =
√

1−β 2
ξ η1

SD(ζη2) =
√

1−β 2
ξ η2
−β 2

η1η2
−2βξ η2

βη1η2

(4.9)
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4.4 Adequacy of the PLS-PM Estimation
To show that these restrictions allow control of the path coefficients, we have run a simulation on Models 1
and 2. We have taken into account three different factors:

1. Sample size: {100,400,1000}

2. The error’s standard deviation of the manifest variables: {0.05, 0.2, 1}

3. The difference in the path coefficients for both models: high, medium, and small

Checking the simulated inner model

First, we want to check the goodness of the simulated data, so we present in each plot the theoretical
path coefficient with the corresponding density function of the least squares path coefficient, which was
obtained from the data results in 500 simulations. Moreover, for each simulated data-set, we proceed to
estimate the corresponding PLS-PM model. We also graphically represent the density function of the PLS-
PM estimated path coefficient. This allows us to see how accurate the PLS-PM estimation is, in respect to
the actual obtained by least squares.

The results of the simulation are presented in Figures (4.3) and (4.4). Here, each plot of the figures
represents the density function of the coefficients obtained by least squares estimation (i.e., the estimated
value from the simulation) and PLS-PM estimation (i.e., the estimated value from the PLS-PM algorithm).
For the sake of simplicity, we present just the results obtained from a sample size of 400 and a small standard
deviation of the measurement error (σMV = 0.05). We summarize the results under the other error’s standard
deviation levels and sample sizes in Tables (4.1) and (4.3).
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Figure 4.3: Density function of the coefficients estimated by least squares and PLS-PM algorithm - Model1

We can note that the least squares and the PLS-PM estimation are very similar: the curves overlap. In
particular, the mean of the PLS-PM coefficient estimation is very similar to the theoretical value, including
when we vary the coefficient values from high to small. Similar results were obtained for Model 2, with
minor discrepancies for the PLS estimation.
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Figure 4.4: Density function of the coefficients estimated by least squares and PLS-PM algorithm - Model
2

In Tables (4.1) and (4.3), we present, in order, the theoretical value, the mean of the least squares
estimation and the mean of PLS estimation, when we vary the error’s standard deviation levels (from 0.05
to 1) and sample size (from 100 to 1000).
We can observe that, when we change the magnitude of the error’s standard deviation, we note an increase
in the discrepancies between the least squares and PLS estimations. In almost all cases, the difference is
represented by an underestimation of the path coefficients fitted by the PLS algorithm. The coefficients
estimated in Model 2 reproduce similar trends.
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σMV βξ η1 µLS µPLS βξ η2 µLS µPLS βη1η2 µLS µPLS

Sample: 100

0.9000 0.9011 0.8999 0.8000 0.8092 0.8035 0.1000 0.0972 0.1023
σMV = 0.05 0.5000 0.4967 0.4959 0.4000 0.4519 0.4517 0.5000 0.5557 0.5553

0.1000 0.1034 0.1038 0.1000 0.1130 0.1132 0.8000 0.8654 0.8641

0.9000 0.9003 0.7982 0.8000 0.8092 0.5792 0.1000 0.0989 0.2695
σMV = 0.2 0.5000 0.5005 0.4500 0.4000 0.4488 0.4227 0.5000 0.5577 0.5051

0.1000 0.1020 0.1023 0.1000 0.1083 0.1105 0.8000 0.8653 0.7669

0.9000 0.9003 0.6007 0.8000 0.8065 0.4205 0.1000 0.1027 0.3009
σMV = 1 0.5000 0.4926 0.3445 0.4000 0.4454 0.3472 0.5000 0.5624 0.4076

0.1000 0.0967 0.0867 0.1000 0.1065 0.1027 0.8000 0.8657 0.5790

Sample: 400

0.9000 0.9001 0.8990 0.8000 0.8083 0.8039 0.1000 0.0986 0.1024
σMV = 0.05 0.5000 0.5019 0.5015 0.4000 0.4463 0.4460 0.5000 0.5597 0.5590

0.1000 0.0996 0.0995 0.1000 0.1073 0.1073 0.8000 0.8645 0.8634

0.9000 0.9001 0.7979 0.8000 0.8071 0.5769 0.1000 0.1005 0.2732
σMV = 0.2 0.5000 0.4999 0.4427 0.4000 0.4469 0.4185 0.5000 0.5594 0.5087

0.1000 0.1004 0.0914 0.1000 0.1084 0.1066 0.8000 0.8641 0.7637

0.9000 0.9000 0.5942 0.8000 0.8097 0.4137 0.1000 0.0976 0.2999
σMV = 1 0.5000 0.4997 0.3337 0.4000 0.4440 0.3445 0.5000 0.5619 0.4051

0.1000 0.1035 0.0838 0.1000 0.1072 0.0950 0.8000 0.8649 0.5720

Sample: 1000

0.9000 0.8998 0.8986 0.8000 0.8078 0.8027 0.1000 0.0995 0.1041
σMV = 0.05 0.5000 0.4992 0.4985 0.4000 0.4483 0.4481 0.5000 0.5584 0.5577

0.1000 0.1004 0.1001 0.1000 0.1080 0.1081 0.8000 0.8640 0.8628

0.9000 0.9000 0.7959 0.8000 0.8050 0.5747 0.1000 0.1024 0.2749
σMV = 0.2 0.5000 0.5002 0.4423 0.4000 0.4478 0.4207 0.5000 0.5585 0.5052

0.1000 0.0993 0.0898 0.1000 0.1075 0.1044 0.8000 0.8648 0.7650

0.9000 0.8999 0.5914 0.8000 0.8071 0.4119 0.1000 0.1002 0.3019
σMV = 1 0.5000 0.4996 0.3305 0.4000 0.4470 0.3483 0.5000 0.5591 0.3997

0.1000 0.0989 0.0720 0.1000 0.1084 0.0918 0.8000 0.8650 0.5715

Table 4.1: Theoretical value, mean of least squares and PLS estimation by the distinct error’s standard
deviation levels of the manifest variables and distinct sample size - Model 1
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σMV βξ η1 µLS µPLS βξ η2 µLS µPLS βη1η2 µLS µPLS

Sample: 100

0.9000 0.9007 0.8879 0.8000 0.8014 0.7138 0.1000 0.1064 0.1927
σMV = 0.05 0.5000 0.5063 0.5104 0.4000 0.4464 0.4367 0.5000 0.5582 0.5601

0.1000 0.0963 0.1326 0.1000 0.1069 0.0864 0.8000 0.8664 0.8617

0.9000 0.8999 0.8771 0.8000 0.8088 0.7265 0.1000 0.0977 0.1678
σMV = 0.2 0.5000 0.4963 0.4977 0.4000 0.4465 0.4409 0.5000 0.5619 0.5427

0.1000 0.0993 0.1316 0.1000 0.1106 0.0961 0.8000 0.8659 0.8387

0.9000 0.9005 0.6926 0.8000 0.8086 0.6583 0.1000 0.0989 0.0530
σMV = 1 0.5000 0.4998 0.4075 0.4000 0.4485 0.4459 0.5000 0.5590 0.3023

0.1000 0.0946 0.1046 0.1000 0.1088 0.1167 0.8000 0.8655 0.5185

Sample: 400

0.9000 0.9001 0.8866 0.8000 0.8055 0.7099 0.1000 0.1025 0.1967
σMV = 0.05 0.5000 0.5004 0.4950 0.4000 0.4477 0.4374 0.5000 0.5585 0.5647

0.1000 0.1021 0.1192 0.1000 0.1080 0.0997 0.8000 0.8647 0.8620

0.9000 0.9002 0.8760 0.8000 0.8063 0.7211 0.1000 0.1008 0.1726
σMV = 0.2 0.5000 0.5021 0.4920 0.4000 0.4456 0.4403 0.5000 0.5603 0.5461

0.1000 0.0973 0.1141 0.1000 0.1099 0.1026 0.8000 0.8649 0.8397

0.9000 0.8995 0.6867 0.8000 0.8050 0.6536 0.1000 0.1026 0.0465
σMV = 1 0.5000 0.5010 0.3901 0.4000 0.4469 0.4424 0.5000 0.5598 0.3021

0.1000 0.0995 0.0952 0.1000 0.1085 0.1110 0.8000 0.8655 0.5168

Sample: 1000

0.9000 0.9006 0.8872 0.8000 0.8041 0.7088 0.1000 0.1033 0.1971
σMV = 0.05 0.5000 0.5001 0.4939 0.4000 0.4470 0.4365 0.5000 0.5596 0.5662

0.1000 0.0991 0.1058 0.1000 0.1073 0.1025 0.8000 0.8647 0.8629

0.9000 0.9005 0.8757 0.8000 0.8072 0.7203 0.1000 0.1001 0.1737
σMV = 0.2 0.5000 0.5002 0.4882 0.4000 0.4468 0.4402 0.5000 0.5590 0.5462

0.1000 0.1003 0.1047 0.1000 0.1089 0.1055 0.8000 0.8652 0.8410

0.9000 0.9002 0.6868 0.8000 0.8078 0.6508 0.1000 0.0995 0.0479
σMV = 1 0.5000 0.5005 0.3831 0.4000 0.4488 0.4418 0.5000 0.5576 0.2972

0.1000 0.1028 0.0869 0.1000 0.1072 0.1111 0.8000 0.8651 0.5152

Table 4.2: Theoretical value, mean of least squares and PLS estimation by the distinct error’s standard
deviation levels of the manifest variables - Model 2

Observing the results, we can draw two principal conclusions:

1. The simulated data approximate the theoretical data well when the causal-relationship model is
“easy”

2. The PLS path estimation approximates the real value (simulated value) if the model presents a small
standard deviation error of the manifest variables and strong relationship between latent variables.
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4.5 Software and Computational Aspects
For the computational aspects, we employed the statistical software R, version 2.15.2. We used its pseudo-
random generator function ’rbeta’ for the latent variables and the ’mvnorm’ function for the manifest vari-
ables of the formative block of Model 2. For calculating PLS path models, we utilized the function ‘plspm’;
whereas for the PATHMOX approach, we programmed the required algorithms .

4.6 Performed Simulations
The simulations present three distinct objectives. In the first one, we evaluate the coherence of the F-
block and the F-coefficient statistics in respect to the F-global, when two path models are compared. We
are interested in verifying if a significant difference found by the F-global is the same difference that is
identified by the other two statistics. In the second, our aim is to compare the three F statistics with those
obtained by the LAD approximation; in this case we want to check if the two approaches identify the same
differences. In the third one, we investigate the performance of the invariance measurement test. Here,
we want to determine the different conditions under which this test is suitable for understanding if the
measurement model can be considered the same for all terminal nodes of the tree, or if it is specific for each
one of them.

4.6.1 Experimental Factors
We have evaluated the performance of the tests under different experimental conditions. The factors of the
experimental design are the following: sample size, difference between coefficients, the distinct levels of
standard deviation of measurement error . In the invariance measurement test simulation study, we also take
into account the difference between measurement model coefficients, because in this case we are interested
in verifying if the test is suitable for identifying the difference in the measurement model of the terminal
nodes obtained by PATHMOX. The impact of this factor is not considered in the other simulation studies,
because PATHMOX does not make any restrictions on the measurement model during the split process:
PATHMOX just takes into account the inner model, whereas the outer model can vary freely.

4.6.1.1 Simulation Factors Description

I. SIZE. We consider three sample sizes as the total number of cases: {100, 400, and 1000}.

II. DIFFERENCE BETWEEN COEFFICIENTS. The model has been estimated in two segments, A and B, by
varying the level of the difference between path coefficients (see Figure (4.5)). In other words, they can be
EQUAL in both segments, or the difference can be SMALL, MEDIUM and LARGE. Due to the restriction on
the standard deviation of the error of the endogenous latent variables η1 and η2, the path coefficient values
have been fixed by taking into account the conditions of admissibility, which are:

SD(ζη1)⇒ 1−βξ η1
> 0

SD(ζη2)⇒ βξ η2
< 1−βη1η2

(4.10)
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Figure 4.5: Comparison by path coefficients between segments A and B

III. STANDARD DEVIATION OF MEASUREMENT ERRORS. We assume that the error terms ε follow a
Normal distribution with zero expectation and three levels of standard deviation: small noise σ = 0.05,
moderate noise σ = 0.2 and high noise σ = 1.

IV. DIFFERENCE BETWEEN COEFFICIENTS OF MEASUREMENT MODEL. As in the case of the differ-
ence between the path coefficients, we have considered different levels of difference between the measure-
ment model coefficients (see Figure (4.6)). In other words, they can be EQUAL in both segments, or the
difference can be SMALL MEDIUM and LARGE.
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Figure 4.6: Comparison by measurement model coefficients of a reflective and formative block between
segments A and B

4.6.2 Simulation Study to Asses the Coherence of the F-block and the F-coefficient
Statistics Respect the F-global

In this simulation study, we want to assess the performance of the F-block and the F-coefficient statistics
in respect to: the F-global regarding the different sample sizes (100, 400, and 1000); the different levels in
error’s standard deviation terms of the manifest variables; and the various levels of difference between the
path coefficients. Our aim is to compare our simulation with that realized by Sánchez in 2009; in this way
we can verify if the same difference is identified by the other two statistics when a significant difference
is found by the F-global. We perform this study only on Model 1, since the PATHMOX approach only
compares the path coefficients of the inner model without taking into account the definition of the blocks
(reflective or formative).
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In total, we have 3× 3 × 4 = 36 scenarios, which are the number of possible combinations of sample sizes,
noise levels and differences between coefficients. We run 50 repetitions for each experimental condition
and present the mean of each 50 repetitions as an aggregate result.

Observing the results, we can note that the three tests present very similar behaviors. We can see that:

1. There is a clear effect of sample size: the larger the sample size is, the more sensitive the tests are.

2. There is a clear effect of the level of noise: the larger the level of noise is, the less sensitive are the
tests.

3. There is a clear effect of the difference in the path coefficients in the two segments: the greater the
difference in the path coefficients, the more sensitive the tests are.

These results are graphically illustrated in Figure (4.7). There are nine plots which represent each of the
trends mentioned above: from left to the right we graph first the F-global’s p-value, second the F-block and
finally the F-coefficient’s p-value. This allows us to obtain a direct comparison of the three tests. For the
sake of interpretation, we have included in each plot the LOWESS (Cleveland, 1979) regression line of the
p-value with respect to the evaluated experimental condition. In the first three plots, it is possible to observe
how the p-values decrease (i.e., they become more significant) as the sample size increases. In the second
set of plots, we can see that a lower sensitivity occurs when the level of noise in the standard deviation of
manifest variable error term becomes higher. The influence of the difference between the path coefficients
can be clearly appreciated in the last three plots, in which the p-values decrease as the difference between
path coefficients increases.
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Figure 4.7: Comparison of the F-block and the F-coefficient statistics in respect to the F-global by the
distinct simulation factors

Some difference between our simulation and Sánchez’s work is evidenced by the factor different levels
of variance of the endogenous latent variables. We didn’t include this in our study, because controlling
the path coefficient values in the simulation process causes the path coefficients to absorb the effect of the
variance of the endogenous latent variable, meaning that high values of path coefficients produce lower
variability in the residuals. Conversely, lower values will cause residuals with more variability.

Summarized results

The results of the simulations are summarized in Figure (4.8), (4.9) and (4.10). Each figure corresponds
to a different sample size. For instance, Figure (4.8) shows the summarized results for different levels of
error variance terms, as well as the various levels of difference between path coefficients obtained with a
sample size of 100. We can see that, when the sample size is small (see Figure (4.8)), the trend of the
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p-value for the three statistics is not so marked when the standard deviation error terms of the manifest
variables are equal to 1 (the last three plots in Figure (4.8)): the p-value decreases, as we expected, but it
never goes below 0.2. This effect disappears when the sample size increases to 400 and 1000 (see Figure
(4.9) and (4.10)). As in the aggregated results presented in Figure (4.7), the F-global, the F-block and the
F-coefficient present very similar results.
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Figure 4.8: Comparison of the F-block and the F-coefficient statistics in respect to the F-global. Sample
size 100
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Figure 4.9: Comparison of the F-block and the F-coefficient statistics in respect to the F-global. Sample
size 400
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Figure 4.10: Comparison of the F-block and the F-coefficient statistics in respect to the F-global. Sample
size 1000

4.6.3 Simulation Study to Compare the F Statistics with the FLAD Approach
In this second study we want to compare the three F statistics obtained by least squares estimation with
those obtained by the LAD approximation. The goal is to evaluate the degree of sensitivity in order to
verify if the two approaches identify the same differences. In this way, we can establish under which
conditions the LAD approximation is as suitable as the classic F-statistics are. To do this, we have used
the same data generated by the first simulation study. Again, the performance of the tests is analyzed by
the different sample sizes (100, 400, and 1000), the different levels of the standard deviation terms of the
manifest variables, and the various levels of difference between the path coefficients. In total, 3 × 3 ×
4 = 36 scenarios, which are the number of possible combinations of sample sizes, noise levels, and the
differences between coefficients. We run 50 repetitions for each experimental condition and present the
mean of each 50 repetitions as an aggregate result.
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Observing Figure (4.11)), we can observe the same patterns shown by the F statistics that were obtained
by least squares estimation (Figure (4.7)):

1. The larger the sample size is, the more sensitive the tests are.

2. The larger the level of noise is, the less sensitive the tests are.

3. The greater the difference in the path coefficients, the more sensitive the tests are.

As we expected, the trend of the three statistics is similar to those obtained by the least squares estimation;
the only difference is that the p-values calculated with the LAD approximation are more conservative. This
aspect is fully explainable by the nature the LAD approximation statistics.
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distinct simulation factors - LAD approach
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Summarized results

The summarized results from the simulations are contained in Figures (4.12), (4.13) and (4.14). As
before, each figure corresponds to a different sample size. Again, we find the same pattern observed with
least squares estimation. When the sample size is small (see Figure (4.8)), and the error terms of the
manifest variables are equal to 1, the trend of the p-value for the three statistics is not so marked. But,
again, this effect disappears when the sample size increases.
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Figure 4.12: Comparison of F-global, F-block, and the F-coefficient statistics, LAD approach. Sample
size 100
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Figure 4.13: Comparison of F-global, F-block, and the F-coefficient statistics, LAD approach. Sample
size 400
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Figure 4.14: Comparison of F-global, F-block, and the F-coefficient statistics, LAD approach. Sample
size 1000

4.6.3.1 Comparing the Least Squares and LAD P-value’s Test

As we have seen, the least squares and the LAD have very similar behavior, the only difference being that
the LAD statistics are more conservative. In Tables (4.3), (4.4) and (4.5) we compare the performance of
the p-value of both tests under normal data and considering: the difference between coefficients, the sample
size and the standard deviation error of the manifest variables . We can observe that in all cases the LAD
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p-values are higher, even if there is a difference between the path coefficients; whereas the p-values are
lower when the path coefficients are equal in both segments. When we vary the standard deviation error
of the manifest variables and the sample size (from 100 to 1000), we continue to observe the same pattern.
These results suggest that the LAD statistics will be more adequate if the PLS-PM model contains outliers,
or if the data are clearly non-normal.
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4.6.4 Simulation Study to Evaluate the Performance of the Invariance Measure-
ment Test

The goal of the third analysis is to investigate the performance of the invariance measurement test. Here,
we want to determine the different conditions under which this test is suitable for understanding if the
measurement model can be considered the same for all terminal nodes of the tree, or if it is specific for each
one of them. We will take into account: different sample sizes (100, 400, and 1000); the different levels
in the error’s standard deviation terms of the manifest variables; the various levels of difference between
the path coefficients; and the various levels of difference between the coefficients (loadings in Model 1 and
weights in Model 2) of the measurement model. In total, we have 3 × 3 × 4 × 4 = 36 scenarios, which are
the number of possible combinations of sample sizes, noise levels, differences between path coefficients
and differences between measurement coefficients. We run 50 repetitions for each experimental condition
and present the mean of each of the 50 repetitions as an aggregate result.

We provide the results for both Model 1 and Model 2 in order to verify the effectiveness of the invariance
measurement test when the relationship between the manifest variables and the construct is both reflective
and formative.

Observing the results for both models, we can conclude that:

1. There is a clear effect of sample size: the larger the sample size is, the more sensitive the tests are.

2. There is a clear effect of the difference between the loadings in the two segments: the greater the
difference in the loadings, the more sensitive the test is.

3. There is no difference in the invariance measurement test between Models 1 and 2.

In the case of the level of noise and the difference between the path coefficients, the trend is not so marked.

These results are graphically illustrated in Figure (4.15). There are four plots which represent each of
the trends mentioned above. Also, for the sake of interpretation in this case, we have included in each plot
the LOWESS (Cleveland, 1979) regression line of the p-value with respect to the evaluated experimental
condition. In the first plot, it is possible to observe how the p-values decrease (i.e., they become more
significant) as the sample size increases. In the second plot, we can see that lower sensitivity occurs when
the level of noise becomes higher for the standard deviation of the error terms of the manifest variables. In
this case the effect is almost null. As in the case of the factor level of noise, the influence of the difference
between the path coefficients does not produce a significant trend. We can explain this by the fact that the
test of invariance only takes into account the measurement model of the terminal nodes. The influence of
the difference between loadings can be clearly appreciated in the last plot, where the p-values decrease as
the difference between path coefficients increases.
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Figure 4.15: Comparison of the Invariance Measurement test by the Distinct Simulation Factors Model 1

Summarized results

The summarized results from the simulations are contained in the Figure (4.16). Here, we graph the
different levels in error’s standard deviation terms of the manifest variables, the different level of difference
between the path coefficients and different level of difference between the measurement model coefficients
taking in account the three sample size: 100, 400, 1000. We can see that again, there is no significative
trend when different levels of errors of standard deviation, and different levels of differences between the
path coefficients are considered. The only significative result is obtained by the factor different level of
difference between the measurement model coefficients (last three plots in the Figure (4.16)).
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Figure 4.16: Comparison of the invariance measurement test by the distinct simulation factors in Model 1
- Sample size: 100, 400, 1000

The results of Model 2 are presented in Figure (4.17).The outcomes show that when the relationship
between latent variables and manifest variables is also formative (ξ blocks in our case), the test detects very
well the differences between measurement model coefficients.
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Figure 4.17: Comparison of the Invariance measurement test by the distinct simulation factors Model 2

Summarized results

The summarized results from the simulations for Model 2 are presented in Figure (4.18). Again we can
find the same trends shown in Figure (4.16)
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Chapter 5

PATHMOX applications

In this chapter we present an application of PATHMOX with real data for each technique treated in Chapter
3. To this end, we consider a data-set on the evaluation of alumni Satisfaction and its comparison in two
main ICT schools: the Informatics and Telecommunications schools of the UPC (Universitat Politécnica de
Catalunya). In the context of partial least squares path modeling, we also present an application based on
the mental health data-set, where we analyze three mental disorders that are common in elderly populations:
Dementia, Delirium and Depression. We can divide this chapter into three main sections: in the first one,
we describe data (section 5.1); in the second one, we present four applications of PATHMOX with multiple
linear regression (section 5.2), robust absolute regression (section 5.3), logistic regression (section 5.5) and
principal component analysis (section 5.6); in the last one, we consider two real-world study with partial
least squaress path modeling, using data-sets on both, alumni satisfaction (section 5.7) and mental health
(section 5.9). All the results have been obtained by the “genpathmox” R package (Lamberti, 2014) available
on CRAN.

5.1 Data
To illustrate the application of PATHMOX, we will use two data-sets on alumni satisfaction and mental
health. The first one is based on the evaluation of the alumni satisfaction and its comparison in two main
ICT schools at UPC (Universitat Politécncia de Catalunya) : Informatics and Telecommunications schools;
the second one contains information related to three mental disorders that are typically found in elderly
populations: Dementia, Delirium and Depression.

5.1.1 Alumni Satisfaction Data-set
The data come from a survey of 147 students realized in 2008. It consists of a total of 32 variables collected
by a questionnaire based on the ECSI model questions (see Table (5.1)). The students were asked to provide
measures on a 11-point ordinal scale, ranging from very satisfied (10) to very dissatisfied (0). The goal of the

83
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study was to explain the Satisfaction from its drivers, Image of the school, Expectations on generic skills 1,
Expectations on technical skills 2, Perceived Quality on generic skills, Perceived Quality on technical skills
and Value or Profit obtained after graduation. This variables are defined in the following way:

� Satisfaction Degree of alumni satisfaction about the formation in school respect to their actual work
conditions;

� Image Generic alumni perception of ICT schools: (internationally recognition, ranges of courses,
leadership in research, . . . );

� Specific Expectation Perceived Expectation on specific skills (technical or applied skills);

� Generic Expectation Perceived Expectation on generic skills (abilities in problem solving, commu-
nication skills);

� Generic Quality Perception about achieved quality on the generic skills in the school (abilities in
solving problem, communication skills);

� Specific Quality Perception about the achieved quality on the specific skills in the school;

� Value The advantage or profit that the alumni may draw from the school degree (well paid job,
motivating job, prospectives for improvement and promotion).

1We understand by general skills a broad - spectrum of capabilities not specific to a profession or organizational environment,
such as the ability of problem solving, communication, time management team working initiative . . .

2The technical skills refers to the knowledge and abilities, specific to a profession, either mathematical or engineering based, or
specific to accomplish a technical tasks.
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Table 5.1: Description of the manifest variables for each of the latent constructs - alumni satisfaction data-
set

Latent variables Description
Image 1 - It is the best college to study IE

2 - It is internationally recognized
3 - It has a wide range of courses
4 - The professors are good
5 - Facilities and equipment are good
6 - It is a leader in research
7 - It is well regarded by companies
8 - It is oriented to new needs and technologies

Specific expectations 1 - Basic skills
2 - Specific Technical skills
3 - Applied skills

Generic expectations 1 - Achieved abilities in solving problem
2 - Training in business management
3 - Written and oral communication skills
4 - Planning and time management acquired
5 - Team-work skills

Specific Quality 1 - Basic skills
2 - Specific Technical skills
3 - Applied skills

Generic Quality 1- Achieved abilities in solving problem
2 - Training in business management
3 - Written and oral communication skills
4 - Planning and time management acquired
5 - Team-work skills

Value 1 - It has allowed me to find a well paid job
2 - I have good prospectives for improvement and
promotion
3 - It has allowed me to find a job that motivates
me
4 - The training received is the basis on which I
will develope my career

Satisfaction 1 - I am satisfied with the training received
2 - I am satisfied with my current situation
3 - I think I’ll have a good career
4 - How prestigious is your job?

10 segmentation variables were also collected to serve as observed sources of heterogeneity variables.
A description is shown in Table (5.2).
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Table 5.2: Codification of segmentation variables according to their type of scale and levels

Segmentation variables
Name Scale N. levels Levels description
Career nominal 3 EI / ETS / TEL
Gender binary 2 female / male
Age ordinal 4 25-26 years / 27-28 years / 29-30 years / more than 30 years
Studying binary 2 yes studying / no studying
Contract nominal 3 fixed / temporary / other types
Salary ordinal 5 less than 18k / 25k / 35k / 45k / more than 45k
Firm-type binary 2 private / public
Access grade ordinal 3 acc-note less than 7 / acc-note 7-8 / more than 8
Grade ordinal 4 note less than 6.5 / note 6.5-7 / note 7-7.5 / more than 7.5
Start-work binary 2 after graduating / before graduating

5.1.2 The Mental Health Data-set
In the mental Health data set, we analyze data on 138 elderly patients from seven Quebec hospitals, ob-
served between July 2005 and January 2007. The data were assembled from a team of St. Mary’s Hospital
Research Centre and were previously analyzed to answer a number of specific research questions. Our aim
was, to use the partial least squares methodology, to investigate the relationship between three constructs
representing three mental disorders that are common in elderly populations: Dementia, Delirium and De-
pression. A total of 27 variables were available, divided into two groups; one group was formed by 24
manifest variables; and the other by 3 segmentation variables: patient’s gender, duration of hospitalizations,
patient’s age. We defined a measurement model for Dementia based on the items of two well-known in-
struments: the Hierarchical Dementia Scale (HDS) (Cole, 1988) and the Mini Mental State Examination
MMSE (Folstein et al., 1975). Similarly, to define the measurement models for Depression and Delirium,
we used, respectively the Cornell scale for assessing Depression (Alexopoulos et al., 1988) and of the
Delirium Index (Pompei et al., 1995) as measure of Delirium severity.

A description of the manifest variables used to estimate the latent variables is showed in the following
table:
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Table 5.3: Description of the manifest variables for each of the latent construct - Mental health data-set

LV MV Item

MMSE

mmse3 What month of the year is this?
mmse8 What city are we in?
mmse11 I am going to say 3 words. After I have said all three, I want you to

repeat them
mmse12 Spell the word “world”
mmse16 Repeat the following phrase: “no ifs, ands or buts”
mmse17 Take this paper in your right/left hand, fold the paper in half and put

it on the floor
mmse19 Copy this design

HDS

hds2 Prefrontal subscale
hds6 Denomination subscale.
hds7 Verbal comprehension subscale
hds11 Reading subscale.
hds12 Recent memory subscale
hds18 Motor subscale
hds20 Writing subscale
hds22 Similarities subscale

Depression

corn5 Agitation: restlessness, hand wringing, hair pulling
corn8 Loss of interest: less involved in usual activities
corn15 Early morning awakening: earlier than usual for this individual
corn19 Mood congruent delusions: delusions of poverty, illness or loss

Delirium

del4 Disorganized thinking
del5 Altered level of consciousness
del7 Memory impairment
del8 Perceptual disturbances

del10−11 Psychomotor agitation and Psychomotor retardation
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5.2 PATHMOX Approach Applied to the Context of Linear Regres-
sion Model

As a first application, we consider the linear multiple regression model. In this case, using the alumni
satisfaction data-set will allow us to explain with a simple additive model, the Satisfaction from its drivers,
Image of the school, Expectations on general skills, Expectations on technical skills, Perceived Quality on
general skills, Perceived Quality on technical skills and Value or Profit obtained after graduation.

5.2.1 Global Linear Model
We start our analysis with the estimation of one global model for all students. In Table (5.4) we show, from
the left to right, the coefficient estimate, the standard deviation, the value of the statistic t and the associated
p-value. As we can see, the main drivers of Satisfaction are: Value with a coefficient of 0.575 and a p-value
of zero; and Image, with a coefficient of 0.240 and a p-value of 0.002; followed by the Generic Expectations
(coefficient: 0.111, and p-value: 0.043) and Specific Quality (coefficient: 0.123 and p-value: 0.067). The
coefficients Specific Expectations (-0.083), and Generic Quality (0.026) are not significant. The model
presents an R2 of 0.649, which is considered as adequate value for good predictive power of the model.

Table 5.4: Coefficient estimate and statistics, global model

LS regression Estimate Std. error t value Pr(>|t|)
Image 0.240 0.078 3.086 0.002
Generic Expectations 0.111 0.054 2.045 0.043
Specific Expectations −0.083 0.054 −1.544 0.125
Generic Quality 0.026 0.071 0.373 0.710
Specific Quality 0.123 0.067 1.847 0.067
Value 0.575 0.055 10.415 0.000

As a second step in the analysis, we could repeat the estimation of the model without considering the
non-significant coefficients: Specific Expectations and Generic Quality. But, since we utilize this data to
show how PATHMOX works, we consider this model valid and we proceed to apply PATHMOX to our
data.

5.2.2 Least Squares PATHMOX Approach
In order to calculate the PATHMOX segmentation tree, it is necessary to specify the scale (e.g., binary,
ordinal, or nominal) of the segmentation variables (see Table (5.2)). In addition, we have to determine the
parameters and stop conditions of the algorithm.

We have decided to establish a value of 0.05 for the threshold of the p-value in looking for those par-
titions that are highly significant. Given that we have a total sample of 147 students, it seems to us that
15 students (10% of the total sample) is a reasonable minimum number to stop the growth of a node. The
depth level (= 2) has been selected with the aim of obtaining a simple segmentation tree with a possible
maximum number of four final segments.

In Figure (5.1), we present the obtained tree, where we can observe that in fact, there are four distinct
models. The F-global statistics, the p-values and the obtained partitions for each node are summarized in
Table (5.5). At the first split, PATHMOX defines two different models one for students with a “low" access
grade (< 7), and the other, for students with a “high" access grade (7-8 and > 8). Let as define the students
with a “low" access grade (< 7) as students with a“low profile", and students with a “high" access grade
(7-8 and > 8) as students with a “high profile". We see that the produced split is highly significant, giving a
F-statistic of 2.823 with a p-value of 0.013. The tree continues by splitting node two (students with a “low"
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profile) and three (students with a “high" profile). The most significant split for the node two is obtained by
the variable age, giving a F-statistic of 2.529 with a p-value of 0.029. A child node (node four) is obtained
for the students with less than 30 years (≤ 30), and another (node five), for students of more than 30 years
(> 30). Node three is split again by variable acc-grade, giving an F-statistic of 2.757 with a p-value of
0.020. We divide now the students with a better profile, into students with a “good" profile (acc-note 7-8),
and students with the “best" profile (acc-note 8 >). This ends the splitting process, as the maximum depth
of two levels has been reached. Hence, in the end, we have four final segments, each one corresponding to
a distinct model: node four model of less or equal to than 30 years, with “low" profile students; node five
model of more than 30 year, with “low" profile students; node six model of students with a “good" profile;
node seven model of students with the “best" profile.

Root
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Node 2
76

Node 3
71

Node 4
51

Node 5
25

Node 6
48

Node 7
23

Accgrade
p.val=0.0128

Age
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27-28years
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31years+ 7-8accnote accnote>8

PATHMOX Regression Tree

Figure 5.1: PATHMOX segmentation tree - least squares method
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Table 5.5: F-global values and partitions - least squares method

Split Fg statistic Fg p-value Variables Mod G1 Mod G2
Split one 2.823 0.013 Access grade accnote<7 7-8accnote/accnote>8
Split two 2.529 0.029 Age 25-26years/27-28years/29-30years 31years+

Split three 2.757 0.020 Access grade 7-8accnote accnote>8

The last part of the analysis consists of the comparison between the terminal nodes of the tree. The
coefficients and R2 index calculated for each node are shown in Table (5.6), whereas the p-values associated
to each coefficient are shown in the Table (5.7).

Table 5.6: Coefficients estimate & R2 computed for each terminal node of the PATHMOX - least squares
method

Coefficients & R2 comparison
Variables Root node Node four Node five node six Node seven
Image 0.240 0.168 0.308 0.112 0.415
Generic Expectations 0.111 0.132 0.068 −0.011 0.302
Specific Expectations −0.083 0.019 −0.602 −0.030 −0.216
Generic Quality 0.026 0.186 0.377 −0.005 −0.068
Specific Quality 0.123 0.059 0.031 0.174 0.375
Value 0.575 0.576 0.873 0.458 0.313
R2 0.688 0.759 0.767 0.742 0.812

Table 5.7: P-value validation for the coefficients for each terminal node of PATHMOX

P-value coefficients comparison
Variables Root node Node four Node five Node six Node seven
Image 0.002 0.195 0.346 0.214 0.054
Generic Expectations 0.043 0.112 0.707 0.880 0.032
Specific Expectations 0.125 0.840 0.021 0.679 0.072
Generic Quality 0.710 0.163 0.139 0.956 0.654
Specific Quality 0.067 0.569 0.895 0.169 0.015
Value 0.000 0.000 0.002 0.000 0.064

In order to provide a visual way to appreciate the differences among segments, we have decided to show
bar charts of the coefficients compared to the values obtained for the global model (see Figure (5.2)).

We can see that the node four (less or equal than 30 years,with “low" profile students), the coefficients
also do no present a high degree of significance, which indicates Generic Quality as the most important
effect in defining the Satisfaction. Node five (more than 30 years, with “low" profile students) indicates
Value as the most significant effect. The model of students with a“good" profile (node six) is similar
to the global model. Node seven (students with the “best" profile) is defined mainly by Image, Generic
Expectations, and Specific quality. All the R2 are highly significant. In particular node five and seven
present an R2 index, respectively, of 0.767 and 0.812. One important consideration concerns the p-values
of the coefficients of each terminal nodes: we can see, for example, that Value is significant in all groups.
Also, if the coefficients are highly distinct in respect to the global model, they are sometimes not significant:
for example node five has Generic Quality distinct in respect to the global model but this is not significant.
Thus, we have to take care when we interpret the models of the terminal nodes.
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Figure 5.2: Effects on Satisfaction: comparison of the four segments with respect to the global model - least
squares method

5.2.3 Extending the PATHMOX Approach for Detecting which Constructs Differ-
entiate Segments

As we can see, the PATHMOX approach allows us to detect the existence of different models in a data-
set without identifying segmentation variables beforehand: the different segments are revealed as branches
of the segmentation tree. However, the F-test used in PATHMOX as split criterion is a global criterion: it
allows us to assess whether all coefficients for two compared models are equal or not, but it does not indicate
which particular coefficients are responsible for the difference. For instance, when PATHMOX detects a
difference between the two groups: good profile students and best profile students, we don’t know which
ones of the coefficients are responsible for the detected difference. To identify the responsible coefficients
of the split, we have introduced the F-coefficient test. Table (5.8) contains the statistic and the p-value of
each coefficient for the three splits identified by PATHMOX through of the F-global criterion.

Table 5.8: F-coefficients values from least squares estimation: identification of the coefficients responsible
for the partition

F-coefficient Split one: access grade Split two: age Split three: access grade
Variables Stat. P-value Signific. Stat. P-value Signific. Stat. P-value Signific.
Image 0.493 0.484 NO 0.254 0.616 NO 2.411 0.126 NO
Generic Expectations 0.611 0.436 NO 0.159 0.691 NO 5.542 0.022 YES
Specific Expectations 0.000 0.996 NO 9.214 0.003 YES 2.337 0.132 NO
Generic Quality 2.175 0.143 NO 0.650 0.423 NO 0.157 0.694 NO
Specific Quality 4.574 0.034 YES 0.018 0.894 NO 1.311 0.257 NO
Value 5.471 0.021 YES 2.293 0.135 NO 0.879 0.352 NO

Starting from the split of the root node (split one), we can see that the significant difference identified by
PATHMOX between students with a “low" profile and students with a “high" profile, depends on the coeffi-
cient Value (F-coefficient statistic: 5.471 and associated p-value: 0.021) and Specific Quality (F-coefficient
statistic: 4.574 and associated p-value: 0.034). The partition of node two (split two) in the “≤ 30" and
“> 30" students with “low" profile is imputed to Specific Expectations with an F-coefficient statistic of
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9.214 and an associated p-value of 0.003. In the last partition (split three), students with a “good" and
“best" profile, the difference is imputed to Generic Expectations with an F-coefficient statistic of 5.542 and
an associated p-value of 0.022.

5.3 PATHMOX Approach Applied to the Context of LAD Robust Re-
gression

The least squares linear regression estimator is well-known to be highly sensitive to the outliers. To over-
come this drawback, we propose the least-sum of absolute deviations (LAD) regression (Koenker and Bas-
sett (1978)) which is robust to the presence of outliers and proves to be the most efficient of least squares, in
cases where the error term does not have a normal distribution. As in the least squares regression, we will
use the example based on the evaluation of Alumni Satisfaction: we want to explain the satisfaction from
its drivers, Image of the school, Expectations on general skills, Expectations on technical skills, Perceived
Quality on general skills, Perceived Quality on technical skills and Value or profit obtained after graduation.

5.3.1 Global LAD Robust Regression Model
We start the analysis with the global model estimated for all students. In Table (5.9), we show, from left to
right the coefficient estimate and an interval of confidence at 95% for each of them, which is useful for a
validation purposes since, in this case, we don’t have any statistic to evaluate the coefficients. As we can
see, that main drivers of Satisfaction are Value with a coefficient of 0.528, and Image, with a coefficient of
0.142. The other coefficients are not significant.

Table 5.9: Coefficient estimate and statistics from global LAD satisfaction model

LAD regression Coefficients Lower bd Upper bd
Image 0.142 0.042 0.352
Generic Expectations 0.167 −0.059 0.299
Specific Expectations −0.081 −0.238 0.088
Generic Quality −0.002 −0.170 0.134
Specific Quality 0.196 −0.030 0.282
Value 0.528 0.434 0.684

5.3.2 LAD Robust Regression PATHMOX Approach
In order to calculate PATHMOX, we have to specify again the scale of the segmentation variables (see
Table (5.2)). We choose 0.1 for the threshold of the p-value due to the conservative nature of the F-statistic
calculated by the LAD approximation. We maintain the same stop conditions of the algorithm in the least
squares example; these are: 15 students (10% of total sample) as the minimum number to stop the growth
of a node and the depth level = 2.

In Figure (5.3), we present the obtained tree in which we can observe three distinct models. The F-
global statistics, the p-value and the obtained partitions for each node are summarized in Table (5.10). At
the first split, PATHMOX defines two different models one for students with a “low" profile, and the other,
for students with a “higher" profile as in the least squares example; we see that the produced split is highly
significant, giving an F-statistic of 2.008 with a p-value of 0.069. The tree continues by splitting node two
(students with “low" profile) and three (students with a “higher" profile). The most significant split for the
node two is obtained by the variable age, giving an F-statistic of 1.907 with a p-value of 0.093, obtaining
the child node (node four) of the students with less than 30 years (≤ 30), and child node (node five), with
students of more than 30 years (> 30). Node three is taken to be a final node, due to the fact that no
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significant partitions have been found. Hence, in the end, we have three final segments each corresponding
to a distinct model: node three model of “higher" profile students; node four model of less or equal than to
30 years, with “low" profile students; node five model of more then 30 years, with “low" profile students.
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Figure 5.3: PATHMOX segmentation tree - LAD method

Table 5.10: F-global values and partitions - LAD method

Split Fg statistic Fgpvalue Variables Mod G1 Mod G2
Split one 2.008 0.069 Access grade accnote<7 7-8accnote/accnote>8
Split two 1.907 0.093 Age 25-26years/27-28years/29-30years 31years+
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The last part of the analysis consists of the comparison between the terminal nodes of the tree. The
coefficients of each node are shown in Table (5.11). In order to provide a visual way to appreciate the dif-
ferences among segments, we use again the bar charts to compare the coefficients with the values obtained
for the global model (see Figure (5.4)).

Table 5.11: Coefficients estimate computed for each terminal node of the PATHMOX - LAD method

Coefficients comparison
Variables Root node Node three Node four Node five
Image 0.142 0.118 0.120 0.928
Generic Expectations 0.167 0.064 0.054 0.007
Specific Expectations −0.081 −0.132 0.193 −0.407
Generic Quality −0.002 −0.006 0.140 0.175
Specific Quality 0.196 0.286 0.018 0.007
Value 0.528 0.437 0.422 0.591

We can see that node three, model of students with “higher" profile, indicates that the most important
effects are Value, and Specific quality. node four, model of less or equal than 30 years, among “low"
profile students, indicates that Specific Expectations and Generic Quality are the most important effects.
The model of more than 30 year, among “low" profile students (node five) is characterized, above all by the
coefficient Image.
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Figure 5.4: Effects on Satisfaction: comparison of the four segments with respect to the global model -
LAD method

5.3.3 Extending the PATHMOX Approach for Detecting which Constructs Differ-
entiate Segments: Robust Regression

As in the case of least squares linear regression, we can investigate which are the coefficients responsible
for the difference by means of the F-coefficient statistic. We show the F-statistic as the associated p-value
for each variable in Table (5.12). Starting from the split of the root node (split one), we can see that the
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significant difference identified by PATHMOX between the “low" and “higher" profile depends on the co-
efficient Value (F-coefficient statistic: 3.305 and associated p-value: 0.071). In the case of students with
less or equal than 30 and more than 30 years with a “low" profile (split 2), the difference depends above all,
on the coefficients Specific Expectations (F-coefficient statistic: 4.393 and associated p-value: 0.040) and
Image (F-coefficient statistic: 3.089 and associated p-value: 0.083).

Table 5.12: F-coefficients values from LAD estimation: identification of the coefficients responsible for the
partition

F-coefficient Split one: access grade Split two: age
Variables Stat. P-value Signific. Stat. P-value Signific.
Image 0.286 0.594 NO 3.089 0.084 YES
Generic Expectations 0.558 0.456 NO 0.056 0.814 NO
Specific Expectations 0.065 0.799 NO 4.393 0.040 YES
Generic Quality 0.118 0.732 NO 0.034 0.854 NO
Specific Quality 1.992 0.160 NO 0.003 0.958 NO
Value 3.305 0.071 YES 0.846 0.361 NO

5.4 Least Squares vs LAD PATHMOX
Least squares and LAD approaches can be compared with the segmentation tree developed by PATHMOX.
Observing the two trees shown in Figure (5.1) and (5.3), we can see that the first split is the same. The
root node is split by the variable acc-grade and produces the same partitions: students with a “low" profile
(acc-note < 7) and students with a “higher" profile (acc-note≥ 7). Conversely, when PATHMOX arrives to
the second depth level of the tree, there is a difference in the partition of node three: with the least squares
estimation, the node three is split again by variable acc-grade. Whereas, with the LAD estimation the node
three is taken as a terminal node.
We can justify the difference considering the diversity the two statistics: the F-statistic obtained by least
squares finds a significant difference, whereas the more robust F-statistic computed by LAD does not.

5.5 PATHMOX Approach Applied to Logistic Regression
As an example of generalized linear model, we have chosen logistic regression. To use the same data on the
evaluation of alumni satisfaction, we have modified the dependent variable Satisfaction from continuous
to binary (0: not satisfied, 1: satisfied). As threshold for discriminating if a student was satisfied or not,
we have utilized the value of the median: 0.16 of variable Satisfaction. Thus, we obtain 75 no satisfied
students and 72 satisfied students. Again, we just consider a simple additive model: we want to explain the
Satisfaction from its drivers, Image of the school, Expectations on general skills, Expectations on technical
skills, Perceived Quality on general skills, Perceived Quality on technical skills and Value or profit obtained
after graduation.

5.5.1 Global Logistic Regression Model
We start the analysis with the global model. In Table (5.13) we show, from left to right the coefficient’s
estimate, the standard deviation, the value of the statistic z and the p-value. As we can see, the main drivers
of Satisfaction, in this case are also Value, with a coefficient of expβ = 6.652 and a p-value of zero, and
Image with a coefficient of expβ = 2.611 and a p-value of 0.018. The model present a null deviance of
203.72 and a residual deviance of 127.81.
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Table 5.13: Coefficient estimate and statistics of the global logistic satisfaction model

GLM regression expβ Std. error z value Pr(>|z|)
Image 2.337 0.405 2.368 0.018
Generic Expectations 0.986 0.259 −0.191 0.848
Specific Expectations 0.892 0.261 −0.553 0.580
Generic Quality 1.315 0.331 0.817 0.414
Specific Quality 1.088 0.343 0.328 0.743
Value 5.344 0.414 4.571 0.000

5.5.2 Logistic Regression PATHMOX Approach
In order to calculate the PATHMOX, we have to specify the scale of the segmentation variables (see Tables
(5.2)) and the stop conditions parameters of the algorithm. We have decided to establish a value of 0.05
for the threshold of the p-value to look for those partitions that are highly significant. Given that we have a
total sample of 147 students and to avoid small segments that are no realistic in the context of the logistic
regression, we have chosen a number of 28 students (20% of total sample) to stop the growth of a node.
Also in this case, the depth level is = 2, with the aim of obtaining a simple segmentation tree with a possible
maximum number of four final segments.

In Figure (5.5), we present the obtained tree. The Likelihood ratio (LRT) statistic, the p-value and the
obtained partitions for each node are summarized in Table (5.14). As we can see, PATHMOX identifies two
different models according to the variable salary: one for students with a “low - middle" salary (≤ 35) and
another for students with a “high" salary (> 40). We see that the produced split is highly significant, giving
a LRT -statistic of 16.546 with a p-value of 0.020.
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Figure 5.5: PATHMOX segmentation tree - GLM method

Table 5.14: Likelihood test values and partitions

Split LRT statistic LRT p-value Variables Mod G1 Mod G2
Split one 16.546 0.020 Salary <18k/25k/35k 45k/>45k
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The last part of the analysis consists of the comparison between the terminal nodes of the tree. The
coefficients of each node, as the Akaike’s criterion (AIC) are shown in Table (5.15), whereas the p-values
are shown in Table (5.16). The bar charts are presented in Figure (5.6).

Table 5.15: Coefficients estimation & AIC computed for each terminal node of the PATHMOX - GLM
method

Coefficients comparison
Variables Root node Node two Node three
Image 2.337 2.373 1.659
Generic Expectations 0.986 1.284 0.331
Specific Expectations 0.892 0.746 1.221
Generic Quality 1.315 1.168 4.914
Specific Quality 1.088 0.823 2.387
Value 5.344 6.746 9.994
AIC 141.805 107.124 32.135

Table 5.16: P-value validation for the coefficients for each terminal node of PATHMOX - GLM method

P-value comparison
Variables Root node Node two Node three
Image 0.018 0.034 0.657
Generic Expectations 0.848 0.605 0.039
Specific Expectations 0.580 0.379 0.165
Generic Quality 0.414 0.558 0.055
Specific Quality 0.743 0.589 0.640
Value 0.000 0.000 0.082

We can see that node two (students with a salary of less than 40) is similar to the global model. Con-
versely, node three indicates that the most important effect is Generic Quality. Both models, as in the case
of the global one, indicate that the coefficient Value is highly significant. The AIC improves in both models
with respect to the global, above all in node three, where the AIC decreases down to 32.135.
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Figure 5.6: Effects on Satisfaction: comparison of the four segments with respect to the global model -
GLM method

5.5.3 Extending the PATHMOX Approach to Detect which Constructs Differenti-
ate Segments: Logistic Regression

Also in the case of logistic regression, we can investigate which are the coefficients responsible for the
difference by means of the LRT -coefficient statistic. We show the LRT -statistic as the associated p-value
for each variable in Table (5.17). Observing the table, we can see that the significant difference identified by
PATHMOX between students with a “low - middle" salary (≤ 35) and students with a “high" salary (> 40)
depends on the coefficients Generic Expectations (LRT -coefficient statistic: 15.786 and associated p-value:
0.046) and Generic Quality (LRT -coefficient statistic: 13.898 and associated p-value: 0.084)

Table 5.17: LRT -coefficients values: identification of the coefficients responsible for the partition

LRT -coefficient Split one: salary
Variables Stat. P-value Signific.
Image 3.829 0.872 NO
Generic Expectations 15.786 0.046 YES
Specific Expectations 6.739 0.565 NO
Generic Quality 13.898 0.084 NO
Specific Quality 0.892 0.999 NO
Value 0.054 1.000 NO

5.6 PATHMOX Approach Applied to Principal Component Analysis
In the context of Principal component Analysis (PCA), it makes sense to apply PATHMOX when we are
interested in discovering different patterns of correlation between the variables of interest that define the
principal components. As in the previous application, we will use the example based on the evaluation of
alumni Satisfaction to show how PATHMOX works.
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5.6.1 Global PCA Model
Let us start with the analysis of the global model. We have decided to consider two components that allow us
to describe 65% of the variance in the swarm of points, which, we consider in this context to be an adequate
value for good description power of the model. In Figure (5.7) we provide the correlation circle plot that
is useful for investigating the relation between the original variable and the two principal components. In
addition, we calculate the correlation, the squares cosine and the contribution values (see Table (5.18)). The
correlation is the correlation value between the original value and the component. The squares cosine is
the cosine of the angle formed by the variable and the component (the bigger it is, the higher the relation
between component and variable is). The contribution is how much a variable contributes to explaining a
component.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Circle of Correlation

Dim 1 (51.77%)

D
im

 2
 (1

4.
03

%
)

Image

Exp.gen

Exp.spec

Qual.gen
Qual.specValue
Satisfact

Figure 5.7: Correlation circle: global model

Table 5.18: Analysis of Rn space: coordinates, correlation, cos2, contribution - component 1 & 2

Summary Rn space
Variable Correlation cos2 Contribution

Comp1 Comp2 Comp1 Comp2 Comp1 Comp2
Image 0.828 −0.280 0.685 0.079 18.907 8.009
Generic Expectations 0.579 0.465 0.336 0.216 9.260 22.006
Specific Expectations 0.450 0.773 0.203 0.598 5.588 60.847
Generic Quality 0.778 −0.005 0.605 0.000 16.692 0.003
Specific Quality 0.773 −0.107 0.598 0.011 16.501 1.165
Value 0.719 −0.132 0.516 0.017 14.249 1.767
Satisfaction 0.825 −0.247 0.681 0.061 18.802 6.204

As we can see, the first component is highly correlated, above all, with Image (0.828) and Satisfaction
(0.825). Generic and Specific Quality follow, with a correlation value of 0.778 and 0.773, then the variable
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Value (0.719). Conversely, the second component, is highly related to Specific Expectations, with a corre-
lation of 0.773, and to Generic Expectations (0.465). The squares cosine and the contribution value confirm
that Image and Satisfaction are the two most important variables for explaining the first component, whereas
the second component is influenced only by Expectations. Thus, we can conclude that the first component
can be defined as a “global opinion" of the students, and the second component as their “expectations".

As we are interested only in analyzing different patterns of relationships among variables, we conclude
here our analysis without considering the student projections on the components.

5.6.2 PATHMOX PCA
In order to calculate the PATHMOX, we have to specify the scale of the segmentation variables (Table (5.2))
and the stop conditions parameters of the algorithm. Due to the fact that in the PCA-PATHMOX we utilized
a no-parametric criterion, we don’t have a reference distribution and an associated p-value. Thus, to realize
a split, we just take into consideration the average correlation value. We have chosen a value of 0.6 for the
threshold of the statistic. We have fixed the limit of the tree depth = 1 to avoid a high number of terminal
nodes, which are difficult to interpret in the context of PCA analysis. The limit of node size is the same as
in the multiple linear regression application (15 students: 10% of total sample).

Root

147

Node 2
92

Node 3
55

Grade
statistic=0.51

<6.5note
6.5-7note
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PATHMOX PCA Tree

Figure 5.8: PCA PATHMOX segmentation tree - average correlation method
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Table 5.19: Average correlation values and partitions

Split Average correlation Variables Mod G1 Mod G2
Split one 0.510 Grade <6.5note/6.5-7note 7-7.5note/>7.5note

In Figure (5.8), we present the obtained tree. The average correlation value and obtained partitions for
each node are summarized in Table (5.19).

As we can see, PATHMOX identifies two different models according to the variable grade: one for
students with a “middle" grade (grade ≤ 7), and another, for the “good" students (grade > 7). We see that
the produced split is highly significant, giving a average correlation value of 0.510.

As in the other applications, the last step is to analyze the differences among the terminal nodes. The
correlation values, the squares cosine, and the contribution values are shown in Tables (5.20), (5.21) and
(5.22).

Table 5.20: Correlation between component and variables, root and terminal nodes

Correlation node comparison
Dim1 Dim2

Variables Root node Node two Node three Root node Node two Node three
Image 0.828 0.841 0.803 −0.280 −0.290 −0.387
Generic Expectations 0.579 0.549 0.656 0.465 0.614 −0.084
Specific Expectations 0.450 0.556 0.276 0.773 0.657 0.078
Generic Quality 0.778 0.817 0.691 −0.005 −0.053 −0.539
Specific Quality 0.773 0.723 0.846 −0.107 −0.179 −0.063
Value 0.719 0.750 0.669 −0.132 −0.122 0.658
Satisfaction 0.825 0.818 0.830 −0.247 −0.238 0.397

Table 5.21: cos2 values, root and terminal nodes

Cos2 node comparison
Dim1 Dim2

Variables Root node Node two Node three Root node Node two Node three
Image 0.685 0.707 0.644 0.079 0.084 0.150
Generic Expectations 0.336 0.301 0.430 0.216 0.377 0.007
Specific Expectations 0.203 0.310 0.076 0.598 0.432 0.006
Generic Quality 0.605 0.668 0.478 0.000 0.003 0.291
Specific Quality 0.598 0.523 0.716 0.011 0.032 0.004
Value 0.516 0.562 0.447 0.017 0.015 0.433
Satisfaction 0.681 0.669 0.689 0.061 0.057 0.158
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Table 5.22: Contribution values, root and terminal nodes

Contribution node comparison
Dim1 Dim2

Variable Root node Node two Node three Root node Node two Node three
Image 18.907 18.904 18.505 8.009 8.437 14.285
Generic Expectations 9.260 8.054 12.347 22.006 37.680 0.670
Specific Expectations 5.588 8.276 2.191 60.847 43.254 0.579
Generic Quality 16.692 17.861 13.724 0.003 0.280 27.716
Specific Quality 16.501 13.985 20.582 1.165 3.190 0.380
Value 14.249 15.035 12.850 1.767 1.481 41.307
Satisfaction 18.802 17.885 19.801 6.204 5.678 15.061

In order to provide a visual way to appreciate the differences among segments, we have decided to
show the correlation circles of the terminal nodes in comparison to those obtained for the global model (see
Figure (5.9)).

Observing the graphic, we can note that node two, the model of students with a “middle" grade (≤ 7),
is similar to the global node. We have all variables highly related to the first component (correlation with
the first component: satisfaction (0.818), Image (0.841), Value (0.750); Generic and Specific Expectations
are highly correlated with the second component (correlation value with the second component: 0.614 and
0.657). In the case of the model of “good" students (node three), we note now a contraposition between
Value and Satisfaction on the one hand, and Image and Generic Quality on the other. To summarize, we
can say that the students with a “middle" note (≤ 7) can differentiate just the Expectations by the other
variables that are perceived as one latent construct: “global opinion". The “good" students differentiate
own opinion, identifying the Satisfaction and Value on the one hand, and Image and Generic Quality on the
other.
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5.7 Partial Least Squares PATHMOX Application
Traditionally, PLS models assume the homogeneity of all observations: it is supposed that a single model is
able to represent all individuals. This assumption is often not met in real-data studies. In many cases, it is
reasonable to think that different groups of people, characterized by heterogeneous behavior, are observable
in data. The trouble of not considering the possible existence of segments among observations is that the
conventional PLS models may lead the analyst to inadequate and inaccurate results. To solve these prob-
lems, it is necessary to assume the existence of different groups among the observations, which implies that
more than one parameter set is necessary to describe the data. In this context, PATHMOX (Sánchez, 2009)
represent a powerful tool for analyzing the heterogeneity. In this section we use the alumni satisfaction
data-set to apply PATHMOX to partial least squares path modeling. The F-block, the F-coefficients and
the invariance measurement test also have also been included, to offer a more complete analysis.

5.7.1 PLS-PM and Student Satisfaction
In accordance to Kerlin (2000), the research on student satisfaction was developed according to three dif-
ferent perspectives. One of the approaches considers the student as an employee. This approach measures
the educational and career value for the time and effort spent, as well as the relationship of the student with
the institution. Another approach is that considers the student as a person fully integrated in his or her envi-
ronment (person - environment fit). In this case, what is measured is the congruence of the student’s values
with the institution’s values. If incongruence occurs, the student will probably leave. The third approach is
the one that views the student as a consumer or client. Following this last approach:“student-as-customer",
student satisfaction has been approached as a customer satisfaction problem. In this context, PLS-PM has
became a reference methodology for analyzing the students’ preference. Martensen et al. (2000) and Es-
kildsen et al. (1999) did the initial work in adapting the ECSI concept to measuring student satisfaction
and loyalty. Taking these works as a reference, almost all other applications were proposed with the aim
of evaluating the most important drivers of student satisfaction, by adapting the customer satisfaction index
(see Brown et al. (2009); Serenko (2010); Temizer et al. (2010)). Trinchera and Balzano (2011), using
PLS-PM methodology, proposed a model in which four variables where analyzed: course organization,
teaching, facilities, and interest and satisfaction; the study highlighted the importance of teaching quality
in defining the student satisfaction. Grace et al. (2012) used the PLS-PM framework and the Course Ex-
perience Questionnaire (CEQ) to analyzed the student satisfaction of 164 Australian students attending one
third-year course of a Bachelor degree in business; Duarte et al. (2012) also analyze the student satisfaction
in Portugal Universities by PLS-PM, highlighting the importance of a double measure: the first during the
students’ courses and the second after some time had passed since they had finished.

5.7.2 Manifest and Latent Variables Relationship
In our model, we consider two main constructs: Value and Satisfaction. As we show in Figure (5.10), we
have considered Image, Generic Quality and Specific Quality as antecedents of Value and Image, Generic
Quality and Specific Quality and Value as antecedents of Satisfaction. All latent variables are reflective.
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Figure 5.10: Path diagram of Alumni satisfaction latent variables relationship

5.8 PLS-PM Main Results
We present the main results of the fitted PLS-PM model, just to give an idea about the worth of the estimated
model. As indicated by (Chin, 2010) we reported as brief summary of the main results:

1. Unidimensionality of the reflective latent constructs (Table (5.23)). All Dillon-Goldstein ρ are higher
than 0.80. Furthermore the sizes of the first and second eigenvalues confirm that every construct is
unidimensional. Hence we can consider every composite factor as expression of a single concept;

Table 5.23: Different measures to assess unidimensionality of blocks of indicators

Unidimensionality blocks of indicators
Constructs Indicators Crombach’s α Dillon ρ 1-Eigenvalue 2-Eigenvalue
Image 8 0.916 0.932 5.046 0.726
Specific Quality 3 0.739 0.854 1.993 0.727
Generic Quality 4 0.785 0.862 2.439 0.756
Value 4 0.788 0.864 2.455 0.650
Satisfaction 4 0.773 0.857 2.422 0.773

2. Reliability, measured by the average variance extracted by each construct respect of its indicators
(Table (5.24)). In all cases is greater than 0.5, meaning that each construct is measured by a set of
coherent indicators;

Constructs Type Measure Number of R.square Av. Av. AVE
type indicators communality redundance

Image Exogen Rflct 8 0.000 0.629 0.000 0.629
Specific Quality Exogen Rflct 3 0.000 0.662 0.000 0.662
Generic Quality Exogen Rflct 4 0.000 0.608 0.000 0.608
Value Endogen Rflct 4 0.232 0.612 0.142 0.612
Satisfaction Endogen Rflct 4 0.653 0.584 0.382 0.584

Table 5.24: Summary results per blocks

3. The estimated inner model (Table (5.11) and Figure (5.25)). We can see that the main drivers of
Satisfaction are Value with a path coefficient of 0.566, and Image with a path coefficient of 0.299
whereas, in the case of Value, the most important effect is, above all, Image with a path coefficient of
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0.363, followed by Specific Quality (path coefficient: 0.199). The Generic Quality presents very low
path coefficients either when it is related with Value (path coefficient: -0.048) and with Satisfaction
(path coefficient: -0.014). In any case, we have decide to keep it in the model, because we suspect
that it could become significant when we will take in account the heterogeneity.

Table 5.25: Results of the structural model (R2 and path coefficients)

Results of the structural model (R2 and path coefficients)
Value Satisfaction

R2 0.232 R2 0.653
Intercept 2.086 Intercept 0.683
Image on Value 0.363 Image on Satisfaction 0.299
Specific Quality on Value 0.199 Specific Quality on Satisfaction 0.106
Generic Quality on Value -0.048 Generic Quality on Satisfaction -0.014

Value on Satisfaction 0.566
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Figure 5.11: Path diagram of the students Satisfaction model

4. Significance of the path coefficients (Table (5.38)). We assess it by looking to the bootstrap con-
fidence intervals of path coefficients , where all of them are significant except Specific Quality on
Satisfaction, Generic Quality on Value and Generic Quality on Satisfaction.

Paths Original path Bootstrap Bootstrap Bootstrap Bootstrap
value mean stand. error perc. 0.025 perc. 0.975

Image on Value 0.363 0.356 0.118 0.099 0.563
Image on Satisfaction 0.299 0.295 0.072 0.159 0.423
Specific Quality on Value 0.199 0.216 0.108 0.037 0.427
Specific Quality on Satisfaction 0.106 0.110 0.071 -0.025 0.256
Generic Quality on Value -0.047 -0.038 0.104 -0.269 0.152
Generic Quality on Satisfaction -0.014 -0.006 0.076 -0.175 0.116
Value on Satisfaction 0.566 0.558 0.063 0.448 0.668

Table 5.26: Bootstrap confidence intervals for path coefficients (0.025 and 0.975 percentiles)

5. Predictability of the model (Table (5.11)) with a R2 of 0.653 and 0.232 for the Satisfaction and Value
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constructs respectively. The R2 of Value is clearly too low for predictability purposes, however we
consider it for the sake of comparison between potential subgroups of alumni.

5.8.1 PATHMOX PLS
Despite of the reduced sample size of the study, it seems that the obtained model is good enough to take
conclusions about how Satisfaction and Value are formed in the alumni. However, the question is whether
the effects we have detected are valid for the whole population or they are in fact artificial averages of un-
derlying subpopulations. To answer to that question and to discover potential sources of heterogeneity we
perform a PATHMOX analysis employing all available segmentation variables of (Table (5.2)). Necessarily,
the tree we are interested in has to be small, since the sample size is not big at all and because, in model
segmentation we are not looking for big trees with a large number of leaves, prone to incur in overfitting,
instead we are interested in a moderate final number of segments which can be interpreted and made oper-
ational for management purposes. In that case we have limited the tree to a maximum depth of two levels
(limiting to four at most the final number of segments). We have chosen a number of fifteen alumni (10% of
total sample) as the minimum admissible size for nodes and a threshold significance for the split criterion
set at 0.05. The obtained PATHMOX tree is shown in Figure (7.3). It is a tree with a total number of three
nodes. The root node corresponds to the previous global model calculated over the entire sample of one
hundred forty-seven alumni.
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Figure 5.12: PLS PATHMOX segmentation tree - LS estimation

Table 5.27: F-global statistics values and partitions

Split FG statistic FG pvalue Variables Mod G1 Mod G2
Split one 4.056 0.000 Salary <18k/25k/35k 45k/>45k
Split two 3.034 0.002 Grade <6.5note/6.5-7note 7-7.5note/>7.5note

At the first split, PATHMOX defines two different models one for alumni with a lower salary (≤ 35K),
and the other, for alumni with a higher salary (> 35K); we see that the produced split is highly significant,
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giving a F-statistic of 4.056 with a p-value of zero. The tree continues by splitting node two (alumni with
lower salary); in this case the most significant split is obtained by the variable grade, giving a F-statistic of
3.034 with a p-value of 0.002, obtaining two child nodes, one of the alumni with a “low" grade (≤ 7) and
another with a “good" grade (> 7); the node three is taken as final node due to no significant partitions have
been found. Hence, at the end, we have three final segments each corresponding to a distinct model: node
three model of alumni with “high salary"; node four model of alumni with “regular salary and low grade";
node five model of alumni with “regular salary and good grade".

5.8.2 Extending the PATHMOX Approach: F-block and F-coefficient
The obtained tree allows us to identify which splits maximizes the difference between the PLS-PM models
in the child nodes, for example, splitting the root node by salary (> 35K), we identify the two most different
models. However, we don’t know which of the equations forming the PLS-PM model (two in that case, one
for satisfaction and the other for value) are really different; and in that case, which are the coefficients of
the latent predictors in every equation responsible of the detected difference. To that purpose PATHMOX
goes deeper in the split process by computing two statistics: F-block and the F-coefficient. The F-block
allows us the detect which are the equations responsible of the split; the F-coefficient statistic allows us to
identify the responsible predictors of the obtained partitions. The results of these tests as applied to our data
are given in the Table (5.28) and Table (5.29).

5.8.2.1 F-block Results

Starting from the split of the root node (node one), PATHMOX identifies both constructs Value and Sat-
isfaction as the ones responsible for the difference of the inner models: the F-block presents, in the case
of value, a p-value of zero and for Satisfaction, a p-value of 0.045. Looking at the split of node two: the
partitions depends just from the construct Value; the F-block presents a high significant p-value equal to
zero. Finally, for each of the equation identified by the F-block test as responsible of the difference, we can
identify the responsible path coefficients for such difference by the F-coefficient test.

Split Value Satisfaction
FB P-value Significance FB P-value Significance

Split one: salary 6.250 0.000 YES 2.301 0.045 YES
Split two: grade 5.304 0.000 YES 1.217 0.302 NO

Table 5.28: F-block statistics values

5.8.2.2 F-coefficient Results

Observing the F-coefficient results (see Table (5.29)), we can appreciate that the responsible path coeffi-
cients of the split of the root node are Image on Satisfaction (p-value: 0.044), the Intercept on Satisfaction
and the Intercept on Value (p-value: 0.004), meaning that the difference between the node two and three
is marked not only by a coefficient: Image on satisfaction, but also by a different level of the alumni satis-
faction (Intercept on Satisfaction) and a different level of the alumni Value (Intercept on Value), in the two
models. The F-coefficient’s p-value of the path coefficient Generic Quality on Satisfaction is not signifi-
cant; however, it is near the threshold of 0.05 (it is equal to 0.069) thus, we suspect that this path coefficient
can vary across the models of node two and three.

Regarding the split of the node two the F-coefficient identifies three path coefficients: Image on Value
with a p-value of zero, Specific Quality on Value with a p-value of 0.005, and the Intercept on Value with
a p-value of 0.020; we observe that any driver of Satisfaction is significant. Again, we can interpret these
results. Thus, the difference between the node three and the node four depends on two path coefficient:
Specific Quality on value and Image on Value, and on a different level of the alumni Value (Intercept on
Value). The drivers of Satisfaction don’t vary across the models of the two terminal nodes.
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Split one: salary Split two: grade
Paths FC P-value Significance FC P-value Significance

Intercept on Value 8.211 0.004 YES 5.515 0.020 YES
Image on Value 1.110 0.293 NO 18.060 0.000 YES
Specific Quality on Value 0.662 0.416 NO 8.108 0.005 YES
Generic Quality on Value 0.359 0.550 NO 0.145 0.704 NO

Intercept on Satisfaction 3.896 0.049 YES 1.138 0.287 NO
Image on Satisfaction 4.100 0.044 YES 0.001 0.980 NO
Specific Quality on Satisfaction 0.101 0.751 NO 0.718 0.398 NO
Generic Quality on Satisfaction 3.412 0.066 NO 0.432 0.512 NO
Value on Satisfaction 0.982 0.322 NO 1.339 0.249 NO

Table 5.29: F-coefficient statistics values

At this point we have clear idea of how and why we have obtained the three final segments shown in
Figure (7.3). Thus, we can proceed to compare and to analyze the difference between the three sub-models.

5.8.3 Terminal Nodes Comparison
To better appreciate the differences between the structural models of the leaves nodes obtained, we visualize
them graphically. In Figure (5.13) and Figure (5.14) we can see the differential models in each leaf corre-
sponding to Satisfaction and Value intangibles. For both latent constructs we represent its global model and
the difference in the paths coefficients of the local model respect to the global one in each terminal node.

5.8.3.1 Satisfaction

In the node three, the alumni with “high salary", we can observe, as principal difference respect to the other
models are the Generic Quality giving a higher Value respect to the models of node four and five, also if
the F-coefficients was not significant, and the Image with a lower value respect to the other models. As
we have said before when we have analyzed F-coefficients p-values of the satisfaction drivers, there is no
significant difference in the models of the nodes four and five.
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Figure 5.13: Effects on Satisfaction: comparison of the four segments with respect to the global model

5.8.3.2 Value

In the node three, the alumni with “high salary", we can observe that there are not significant difference
respect the others model. We remember that the F-coefficient identified as responsible of the first split only
the intercept on value meaning that the difference between the models was just for a different level of the
alumni Value. Regarding the alumni with a “regular salary and low grade" (node four) and the alumni with
“regular salary and good grade" (node five) we can appreciate important differences: the alumni with a
“regular salary and low grade" (node four) gives more importance to the Image to define the Value whereas
the alumni with “regular salary and good grade" (node five) consider more important the Specific Quality.
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Figure 5.14: Effects on Value: comparison of the four segments with respect to the global model
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5.8.4 Extending the PATHMOX Approach for Dealing with the Factor Invariance
Problem

The Pathmox approach doesn’t assume factor invariance, i.e., it does not impose the equality of the mea-
surement model across nodes. Therefore, at different nodes the measurement models may also differ sub-
stantially. As a result, the meaning of the latent variables (inner model) may vary from node to node.
Although such an occurrence is not necessarily undesirable, it is important to detect it in order to provide
correct interpretations. To this end, we perform the invariance test. The obtained result (see Table (5.30))
is a Chi-square statistic of 190.9751 with 50 degrees of freedom, giving a p-value of zero, which is largely
non-significant. This implies that the measurement models are different in the three terminal nodes, and
that the meaning of every latent variable is specific to its segment.

Table 5.30: Invariance test results

Invariance test
χ2 Statistic df p-value

190.975 50 0

5.8.5 Extending the PATHMOX Approach for Overcoming the Parametric Hy-
pothesis of the F-test

One criticism of the PATHMOX approach is that, when applied to partial least squares path modeling, it
utilizes a parametric test based on the hypothesis that the residuals have a normal distribution for compar-
ing two structural models. PLS-PM is generally utilized to model data that come from the survey analysis.
These data are usually characterized by an asymmetric distribution: when an individual expresses an opin-
ion, for example on a specific service, the opinion will likely be skewed due to social bias. This situation
produces skewness in the distribution of data. As we well know, it does not matter when we utilize PLS
methodology, because one goal of this method is the absence of assumptions about the distribution of data.
However, it represents a limit when we compare PLS models across PATHMOX, because we cannot guar-
antee the normal distribution of our data, a condition needed to apply the F-test split criteria. To overcame
this limit, we can extend the test to compare two robust LAD regressions to PLS path modeling.

Let us consider now the LAD approximation, and apply the PATHMOX the alumni satisfaction data-set.
Let us assume the same stopping rules as in the the classic PATHMOX approach, which are:

� 0.05 as significant threshold;

� 10% as node size limit;

� 2 as tree depth level;

In Figure (5.15) we present the obtained tree. The F-global statistics calculated with the LAD approxi-
mation and the associated p-values of the obtained partitions for each node are summarized in Table (5.31).
We can note that PATHMOX identifies just one significant partition by the segmentation variable salary
with a F statistic of 2.5091 and a corresponding p-value of 0.0021. In the end we obtain just two distinct
models: node two model of students with “regular" salary; node three model of students with “high"
salary;
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Figure 5.15: PLS PATHMOX segmentation tree - LAD approximation estimation

Table 5.31: F-global statistics values and partitions - LAD approximation

Split FG statistic FG pvalue Variables Mod G1 Mod G2
Split one 2.509 0.002 Career TEL EI/ETS

In Tables (5.32) and (5.33), we present the results obtained from applying the F-block and F-coefficient
tests which are calculated by LAD approximation. We can see that the split between students with a “regu-
lar" and a “high" salary depends on the Value construct. The F-block presents in a F statistic of 2.546 and
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a p-value of 0.040. Looking at the F-coefficient results (Table (5.33)), we can see that the path coefficient
responsible for the split is just the Intercept on Value.

Table 5.32: F-block statistics values - LAD approximation

Split Value Satisfaction
FB P-value Significance FB P-value Significance

Split one: career 2.546 0.040 YES 1.469 0.200 NO

Table 5.33: F-coefficient statistics values - LAD approximation

Split one: career
Path coefficients FC P-value Significance

Intercept on Value 4.034 0.046 YES
Image on Value 0.461 0.498 NO
Specific Quality on Value 0.704 0.402 NO
Generic Quality on Value 0.625 0.430 NO

Intercept on Satisfaction 0.611 0.435 NO
Image on Satisfaction 2.281 0.132 NO
Specific Quality on Satisfaction 0.299 0.585 NO
Generic Quality on Satisfaction 1.862 0.174 NO
Value on Satisfaction 0.283 0.595 NO

5.9 PATHMOX Approach: Application to Mental Health Data-set
In the mental health data set, we analyze data on 138 elderly patients from seven Quebec hospitals. Our
aim is, to use the partial least squares methodology and PATHMOX , to investigate the relationship between
three constructs representing three mental disorders that are common in elderly populations: Dementia,
Delirium and Depression. The variable description is reported in details in section (5.1.2). The manifest
variables are re-propose in the following table:
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Table 5.34: Description of the manifest variables for each of the latent construct - Mental health data-set

LV MV Item

MMSE

mmse3 What month of the year is this?
mmse8 What city are we in?
mmse11 I am going to say 3 words. After I have said all three, I want you to

repeat them
mmse12 Spell the word “world”
mmse16 Repeat the following phrase, “no ifs, ands or buts”
mmse17 Take this paper in your right/left hand, fold the paper in half and put

it on the floor
mmse19 Copy this design

HDS

hds2 Prefrontal subscale
hds6 Denomination subscale
hds7 Comprehension subscale Verbal
hds11 Reading subscale
hds12 Recent memory subscale
hds18 Motor subscale
hds20 Writing subscale
hds22 Similarities subscale

Depression

corn5 Agitation; restlessness, hand wringing, hair pulling
corn8 Loss of interest; less involved in usual activities
corn15 Early morning awakening; earlier than usual for this individual
corn19 Mood congruent delusions; delusions of poverty, illness or loss

Delirium

del4 Disorganized thinking
del5 Altered level of consciousness
del7 Memory impairment
del8 Perceptual disturbances

del10−11 Psychomotor agitation and Psychomotor retardation

5.9.1 Manifest and Latent Variables Relationship
In our model, the Dementia construct is treated as a second order latent variable estimated among HDS and
MMSE (treated as first order latent variables). As we show in Figure (5.16), we have considered Dementia
as an antecedent of Depression and Delirium, and Depression, as an antecedent of Delirium. All latent
variables are formative as their own indicators describe different aspects of the diseases; Between HDS
3 and MMSE 4 and Dementia we have considered a reflective relation since these two indices reflect the
presence or not of the disease in the patients.

3The HDS Hierarchic Dementia Scale (Cole and Dastoor, 1987) measures specific cognitive abilities and is designed to cover
the broad range of performance seen in these patient groups. HDS ranks from 0 to 200; scores can indicate severe (0-39), moderate
(40-99), mild (99-159) and minimal (160-200) loss of cognitive abilities.

4The MMSE mini-mental state examination (Folstein et al., 1975) is a brief 30-point questionnaire test that is used to screen for
cognitive impairment. It is also used to estimate the severity of cognitive impairment and to follow the course of cognitive changes
in an individual over time; any score greater than or equal to 27 points indicates a normal cognition. Below this, scores can indicate
severe (9 points), moderate (10-18 points) or mild (19-24 points) cognitive impairment.
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Figure 5.16: Path diagram of 3D latent variables relationship

5.10 3 D PLS Global Model
The first step in PATHMOX analysis consists of specifying the global structural model that describes the
relationship between the variables of interest. In this section we present the main results obtained with the
classical PLS-PM approach. We first discuss the validation of the outer model and after we analyze the
inner model.

For sake of interpretation we just present the results regarding the three latent variables: Dementia, De-
pression and Delirium.

Outer model

All constructs are specified as formative. As said previously, this can be verified in Figure (5.17), which
shows for each construct the first and second eigen-values obtained by principal component analysis. For
all constructs, the first two eigenvalues are similar in magnitude, which suggests that they describe different
aspects of the latent variables. This result is confirmed by a correlation circle of variables for the PCA of
each block, showing clear evidence that they are not unidimensional.

Dementia Depression Delirium

1 eigen
2 eigen

Eigen values Princincipal Component Analysis

Latent variable

0.
0

1.
0

2.
0

3.
0

Figure 5.17: Unidimensionality validation

In Table (5.35), we present the weights, which express how each manifest variable contributes to the
construct it is supposed to measure.
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Dementia Depression Delirium
DM_mmse_3 0.232 corn_5 -0.003 del_7 0.620
DM_mmse_8 0.029 corn_15 0.581 del_5 0.342
DM_mmse_12 0.158 corn_8 0.578 del_4 0.497
DM_mmse_19 0.238 corn_19 0.462 del_9_10 0.333
DM_mmse_17 0.1440 del_8 0.248
DM_mmse_11 0.100
DM_mmse_16 0.151
DM_hds_20 0.179
DM_hds_12 0.205
DM_hds_11 0.083
DM_hds_7 0.051
DM_hds_22 0.357
DM_hds_2 0.087
DM_hds_18 0.033
DM_hds_6 0.053

Table 5.35: Results of the outer model: outer weights

The most important weights are:

� Dementia: DM_mmse_3 (What month of the year is this?), DM_mmse_19 (Copy this design) and
DM_hds_12 (Recent memory sub-scale) and DM_hds_22 (Similarities sub-scale);

� Depression: corn_8 (Loss of interest; less involved in usual activities), corn_15 (Early morning
awakening; earlier than usual for this individual), corn_19 (Mood congruent delusions; delusions of
poverty).

� Delirium: del_7(Memory impairment), del_4 (Disorganized thinking) and del_5 (Altered level of
consciousness)

The Table (5.36), shows the correlations between manifest variables and constructs. It should be noted
that, as we would expect, the manifest variables (MV) are more correlated with their own constructs (LV)
than with the others
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LV MV Dementia Depression Delirium

Dementia

DM_mmse_3 0.567 0.053 0.309
DM_mmse_8 0.211 -0.074 0.125
DM_mmse_12 0.435 -0.013 0.179
DM_mmse_19 0.561 0.207 0.307
DM_mmse_17 0.353 0.113 0.196
DM_mmse_11 0.286 0.019 0.153
DM_mmse_16 0.428 -0.024 0.147
DM_hds_20 0.473 -0.046 0.183
DM_hds_12 0.545 -0.022 0.280
DM_hds_11 0.316 0.029 0.131
DM_hds_7 0.228 -0.047 0.147
DM_hds_22 0.707 -0.0310 0.441
DM_hds_2 0.135 0.049 0.077
DM_hds_18 0.257 -0.064 0.135
DM_hds_6 0.162 0.019 0.172

Depression

corn_5 0.014 0.167 0.039
corn_15 -0.032 0.463 0.123
corn_8 0.047 0.530 0.123
corn_17 0.017 0.553 0.135
corn_19 0.056 0.521 0.119

Delirium

del_7 0.376 0.085 0.650
del_5 0.212 0.054 0.371
del_4 0.267 0.161 0.533
del_9_10 0.157 0.191 0.383
del_8 0.150 0.102 0.308

Table 5.36: Correlations between the manifest variables and the latent constructs

Inner model

The inner model validation is presented in Figure (5.18):
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Figure 5.18: Path diagram of 3D latent variable relationships. In parenthesis, we show the significance’s
p-value the path coefficients

We can see that when we analyze the Depression construct, the effect of Dementia on Depression is very
low, (path coefficient: 0.052 not significant) and the R2 is practically zero. When we consider the Delirium
construct we find an important effect of Dementia on Delirium (path coefficient: 0.517), whereas the effect
of Depression on Delirium is lower (path coefficient: 0.214); in this case the R2 is 0.325. Both coefficients
are significant. The goodness of fit, a global criterion for assessing the quality of PLS model, is 0.308.
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5.11 PATHMOX Tree
We can now investigate by a tree analysis whether or not the global PLS model is valid for the whole pop-
ulation taking in account the segmentation variables: patientÕs gender, time of hospitalizations, patients’
age. Our analysis suggests that the sample can be split into two subsamples, each with a distinct PLS model.
The tree-structure obtained by PATHMOX is given in Figure (3.1).
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Figure 5.19: PATHMOX’s Segmentation Tree

Table 5.37: F-global statistics values and partitions

Split FG statistic FG pvalue Variables Mod G1 Mod G2
Split one 4.056 0.000 time less than one year (time = 0) more than one year (time = 1)

The partition is obtained by the segmentation variable duration of hospitalization (indicated withe the
codification “time" in the Figure (5.19)) with an F-global statistic of 1.912 and a corresponding p-value
of 0.047. The root node is split into two children nodes: the node two with 61 patients and a duration of
hospitalization less than one year and the node three with 95 patients and a duration of hospitalization of
more than one year.



CHAPTER 5. PATHMOX APPLICATIONS 121

5.11.1 Terminal Nodes Comparison
The last step in PATHMOX consists in the terminal nodes comparison. Further details are contained in the
following Figure (5.20), which represents the inner models at the two terminal nodes.
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Figure 5.20: Path diagram of the two terminal nodes identified by PATHMOX. From left to right, we find
the path diagram of node two: shorter term hospitalization patients and the path diagram of node three:
longer term hospitalization patients.

For the shorter hospitalization node, we can see there is a large difference in the path coefficient De-
pression on Delirium: 0.600 and significant (p-value: zero). For the longer term hospitalization patients the
path coefficient Depression on Delirium is very small (-0.052) and not significant.

5.11.2 Extended PATHMOX Analysis
As discussed above, PATHMOX also provides very useful aid to interpretation through the F-block and
F-coefficient tests. The results of these tests as applied to our data are given in Table (5.38):

F-block test
Constructs Statistic P-value Significance
Depression 2.192 0.110 NO
Delirium 3.792 0.011 YES

F-coefficient test
Path coefficients Statistic P-value Significance
Intercept on Depression 2.912 0.087 NO
Dementia on Depression 1.503 0.222 NO
Intercept on Delirium 1.568 0.218 NO
Dementia on Delirium 2.043 0.152 NO
Depression on Delirium 8.011 0.000 YES

Table 5.38: F-block and F-coefficients results

Note that the F-block test identifies the Delirium construct as the one responsible for the difference in
the inner models at the two child nodes (F-block statistic = 3.792, p-value: 0.011) . The F-coefficient tests
identify the path coefficient that links Depression to Delirium as significantly different across the two child
nodes (F-coefficient statistic: 8.011, p-value: zero). Hence we can conclude that model heterogeneity exists
at the inner model level.
Now we turn to the measurement models. The invariance test is highly significant, with a Chi-squares
statistic of 93.391 on 50 degrees of freedom (p-value: zero).
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Table 5.39: Invariance test results

Invariance test
χ2 Statistic df p-value

93.391 50 0

This implies that the measurement models are different in the two terminal nodes and that the meaning
of every latent variable is specific to its segment. This can be seen from the three bar-charts of Figure
(5.21), which graph the difference of the weights of two PLS model nodes.The bars in red indicate the most
significant difference.
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Figure 5.21: Bar-chart of the weights difference of the two PATHMOX’s terminal nodes
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Conclusion and Further Works

This work deals with the problem of modeling heterogeneity. We conducted our research following the
path of Gastón Sánchez’s 2009 work on PLS Path Modeling. We started with two principal objectives: we
wanted to improve the PATHMOX approach by going deeper into the analysis of the obtained partitions;
and we wished to investigate the possibility of extending PATHMOX to other methodologies.

To achieve the first purpose, we considered three distinct aspects of PATHMOX that could be been
improved:

� extend PATHMOX to detect which constructs differentiate segments;

� extend PATHMOX to deal with the factor invariance problem;

� extend PATHMOX to overcome the parametric hypothesis of the F-test.

The first aspect is related with the split criterion used in PATHMOX. Granted that the PATHMOX approach
allows us to detect the existence of different models in a data-set without identifying segmentation variables
beforehand, we have underlined that the F-test is a global criterion. We have also questioned if it allows
assessing whether all the coefficients for two compared models are equal or not. We found that it does not
indicate which particular equation and which coefficients are responsible for the difference. To asses the
endogenous equation and path coefficients that are responsible for a split, we have proposed the F-block
and the F-coefficient tests. Considering the same lemma of Lebart et al. (1979) that was also used by
Sánchez in 2009 to justify the F-global test distribution, we have shown that we can readapt the F-global
test to achieve these statistics. We have proof by simulation that the coherence of the F-block and the
F-coefficient respects the F-global when two path models are compared. In the end, we reprogrammed the
PATHMOX algorithm to include these two tests in order to verify by real-data whether the interpretation
of the identified partitions can be improved. The second aspect refers to the restriction that PATHMOX
applies to generate partitions. The PATHMOX approach doesn’t assume factor invariance, i.e., it does not
impose equality of the measurement model across nodes. Therefore, the measurement models may also
differ substantially at different nodes. As a result, the meaning of the latent variables (inner model) may
vary from node to node. Although such an occurrence is not necessarily undesirable, it is important to
detect it in order to provide correct interpretations. To overcome the problem of factor invariance, we have
suggested the invariance measurement test. We have used again the second Lemma of Lebart et al. (1979) to
provide an argument to justify the χ2 distribution of the test. We have shown by simulation the effectiveness
of the test to detect differences in the measurement weights of the tree’s terminal nodes. Again, we have
included this statistic in the PATHMOX procedure, showing the importance of analyzing whether or not the
weights in terminal nodes are equivalent in real data applications. The last aspect that we have considered is
the parametric hypothesis of the F-test. The PATHMOX approach utilizes a parametric test to compare two
structural models, based on the hypothesis that the residuals have a normal distribution. This imposes a limit
when we compare PLS models across PATHMOX, because we cannot guarantee the normal distribution of

123



CHAPTER 6. CONCLUSION AND FURTHER WORKS 124

our data. To overcame this limit, we can extend the test to compare two robust LAD regressions (Koenker
and Bassett, 1982) in PLS path modeling. We proved by a simulation study that the F-tests calculated
through LAD approximation provide the same results as the classic F-test, the only difference being that
LAD approximation tests are more conservative. In the end, we programmed the PATHMOX approach with
LAD approximation to test the functionality with real-data.

Starting with the consideration that even if it makes sense to compare models by taking into account a
set of segmentation variables, and even if an appropriate split criterion is utilized for the comparison, we
can apply PATHMOX to explore the hypothesis of heterogeneity in our data. We have shown that we can
generalize PATHMOX to other methodologies. We have taken into account different scenarios regarding
linear regression, robust regression, generalized linear regression and principal component analysis. We
have individuated an appropriate split criterion in order to compare partitions in each one of them, and we
have programmed PATHMOX to be applied to this distinct methodology. In the end, we have achieved
improvements in the analysis and interpretation of real-data.

6.1 Further Works
Granted that the simulation showed that the invariance measurement test works well and is suitable for
detecting differences in the terminal nodes at measurement levels, this test is a global criterion: we know
if the weights of the terminal nodes are the same or not, but we do not know which nodes or weights are
responsible for the difference. Thus, an interesting work would consider the possibility of extending the
same logic of the F-block and the F-coefficient test to a measurement model. More simulations should
be done to analyze the F-test LAD approximation. One interesting aspect would be to simulate data with
outliers, in order to investigate changes in the effectiveness of the statistics. Again, as underlined by Sánchez
(2009), more complex models should be considered in order to investigate more deeply the behavior of the
three F-tests. More advances can be made by going deeper into the differences between formative and
reflective models in PATHMOX.

Regarding the second issue of this dissertation, extending PATHMOX to other methodologies, we can
argue that we are just at the beginning. We have proof that it is possible to apply it in different scenarios,
but many other methodologies could certainly be considered. For example, we could extend PATHMOX to
the mixture regression by taking the maximum likelihood as a criterion for model comparison. We could
go deeper into the analysis of the GLM models by analyzing PATHMOX in the context of other models as
a multinomial regression. We could also analyze the behavior of PATHMOX in the context of LISREL.



Chapter 7

The genpathmox R Package

7.1 Introduction
In the present annex we present the genpathmox package that provides a solution for handling segmentation
variables in complex statistical methodology. It contains a generalized version of the PATHMOX algorithm
to approach different methodologies: linear regression and least absolute regression models. Furthermore,
it implement en extended version of the PATHMOX algorithm in the context of partial least square path
modeling (Sánchez, 2009) including the F-block test (to detect the responsible latent equations of the
difference), the F-coefficient (to detect the path coefficients responsible of the difference) and the invariance
test (to realize a comparison between the sub-models’ latent variables).

7.2 The PATHMOX Algorithm Description
The package genpathmox implements the PATHMOX. The algorithm starts with establishing a set of ad-
missible partitions for each node of the tree using the segmentation variables information. Once considered
all possible subgroups, the algorithm, following a global comparison approach (Aluja 2013b) (i.e split cri-
terion), compares all sub-models calculated for each partition defining a degree of difference (i.e p-value)
by a statistic test. The optimal partition is chosen by comparing the different p-values, selecting the low-
est. The choice of the split criterion is related with both, the nature of the analyzed data, and the kind of
methodology used to approach data. This step is repeated iteratively thus obtaining a ranking of the best
segmentation variables and the different nodes of the tree. The last phase is to identify a criterion for dis-
criminating whether the segment is an intermediate node or terminal (stopping rule). Here a pre-pruning
rule is adopted. One node is considered terminal when: 1) the segmentation variables for that parent node
have been exhausted and no more splits are feasible; 2) the selected best split has an associated p-value
exceeding the significance threshold, 3) the number of elements in one node is less than or equal to some
predefined minimum number of elements. The procedure that can be summarized in the following four
main steps:

125
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Algorithm 2 PATHMOX Algorithm
Step 1. Start with the global model at the root node
Step 2. Establish a set of admissible partitions for each segmentation variable in each node of the tree
Step 3. Detect the best partition by:

3.1. Compare all binary partitions in all segmentation variables
3.2. Apply the test, calculating for each comparison a p-value
3.3. Sort the p-values in a descending order
3.4. Chose as the best partition the one associated to the lowest p-value

Step 4. If (stop criteria1 = false) than
repeat by step 3
1. Posible stop criteria:
a. The number of individuals in the group falls below a fixed level
b. The p-values test are not significant
c. Maximum number of tree depth attained

7.2.1 Split Criterion Implemented in genpathmox
The package genpathmox implements different split criteria according the selected methodology (see Table
(7.1)):

Table 7.1: genpathmox split criterion

Methodology genpathmox split criteria References
OLS regression F-global test, F-coefficient test Lebart et al. (1979)
LAD regression FLAD-global, FLAD-coefficient Birkes (1993)
PLS-PM F-global, F-block, F-coefficient Sánchez (2009); Aluja (2013)

7.3 genpathmox Installation and Usage
genpathmox is freely available from the Comprehensive R Archive Network, better known as CRAN, at:
http://cran.r-project.org/web/packages/genpathmox/

7.3.1 Installation
The main version of the package is the one hosted in CRAN. You can install it like you would install any
other package in R by using the function install.packages(). In your R console simply type:

> # installation
> #
> install.packages("genpathmox")

Once genpathmox has been installed, you can use one of the functions library() or require()
to load the package.

7.4 What’s in genpathmox
genpathmox comes with a number of functions to perform a series of different types of analysis. The
functions pls.pathmox() and pls.treemodel() are designed to run the pathmox analysis in the

http://cran.r-project.org/web/packages/genpathmox/
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context of the PLS-PM including some specific tools as the F-block and the F-coefficients tests that al-
low to detect the responsible equations and the responsible coefficients of the difference, and the invari-
ance test that allows to compare the latent variables’ weights of the identified sub-models. The functions
reg.pathmox() and reg.treemodel() generalize the PATHMOX algorithm to the context of the
multiple linear and least absolute deviation regression. The accessory functions of pls.pathmox() and
reg.pathmox() are the plotting, the summary and print functions, whereas pls.treemodel() and
reg.treemodel() just have the plotting function.

7.5 genpathmox Data-sets
To illustrate the different tools of the genpathmox we will consider an example on two ICT schools. It
comes from a survey realized in 2008, collected on 147 students. It consists in a total of 39 variables
collected in a questionnaire inspired on the ECSI model questions. The goal of the study was to explain the
satisfaction from its drivers, image of the school, expectations on generic skills 1, expectations on technical
skills 2, perceived quality on generic skills, perceived quality on technical skills and value or profit obtained
after graduation. This variables are defined in the following way:

� Satisfaction Degree of alumni satisfaction about the formation in school respect to their actual work
conditions;

� Image Generic alumni perception of ICT schools: (internationally recognition, ranges of courses,
leadership in research, . . . );

� Specific Expectation Perceived Expectation on specific skills (technic or applied skills);

� Generic Expectation Perceived Expectation on generic skills (abilities in problem solving, commu-
nication skills);

� Generic Quality Perception about achieved quality on the generic skills in the school (abilities in
solving problem, communication skills);

� Specific Quality Perception about the achieved quality on the specific skills in the school;

� Value The advantage or profit that the alumni may draw from the school degree (well paid job,
motivated job, prospectives in improvement and promotion).

10 segmentation variables, which serve as observed sources of heterogeneity variables, were also col-
lected. A description is showed in Table (7.2).

1We understand by general skills a broad - spectrum of capabilities not specific to a profession or organizational environment,
such as the ability of problem solving, communication, time management team working initiative . . .

2The technical skills refers to the knowledge and abilities, specific to a profession, either mathematical or engineering based, or
specific to accomplish a technical tasks.
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Table 7.2: Codification of segmentation variables according to their type of scale and levels

Name Scale N. levels Levels description
Career nominal 3 EI / ETS / TEL
Gender binary 2 female / male
Age ordinal 4 25-26years / 27-28years / 29-30years / more than 30
Studying binary 2 yes studying / no studying
Contract nominal 3 fixed / temporary / others types
Salary ordinal 5 less then 18k / 25k / 35k / 45k / more then 45k
Firm-type binary 2 private / public
Access grade ordinal 3 acc-note less then 7 / acc-note 7-8 / more then 8
Grade ordinal 4 note less than 6.5 / note 6.5-7 / note 7-7.5 / more then 7.5
Start-work binary 2 after graduated / before graduated

In genpathmox we have two data-sets. The first one contains an estimation of the variable: satisfaction,
image, specific expectation, generic expectation, generic quality, specific quality and the value, and the 10
segmentation variables showed in Table (7.2). We use it to show how PATHMOX works in the context
of regression models. The second one, called fibtele contains the survey’s questions and again the 10
segmentation variables. We handle it to run an example of PATHMOX in the partial least square path-
modeling context.

7.6 An genpathmox Example in Regression Model
In order to calculate the PATHMOX segmentation tree, it is necessary to specify the scale (e.g., binary,
ordinal, or nominal) of the segmentation variables (see Table (7.2)). In addition, we have to indicate in the
function reg.pathmox(), by the code method="lm", that we want to run PATHMOX in the context
of the multiple linear model and we have to fix the stop conditions of the algorithm. We have decided to
establish a value of 0.05 (signif=0.05) for the threshold of the p-value to look for those partitions that
are highly significant. Given that we have a total sample of 147 students, a number of 22 students (15% of
total sample) (size=0.15), seems us to be a reasonable minimum number to stop the growth of a node.
The depth level = 2 (deep=2), has been selected with the aim to obtain a simple segmentation tree with a
possible maximum number of four final segments. We can easily read our data and indicate the scale of our
factors by the code:

> #load data set
> #
> data(fibtelereg)
> #
> data.fib = fibtelereg
> #
> #Identifying the segmentation variables
> #
> segvar = data.fib[,2:11]
> #
> #Identifying the manifest variables
> #
> data.fib = data.fib[,12:18]
> #
> #Rescaling the segmentation variables
> #
> segvar$Age = factor(segvar$Age, ordered=T)
> #
> segvar$Salary = factor(segvar$Salary,
+ levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
> #
> segvar$Accgrade = factor(segvar$Accgrade,
+ levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
> #
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> segvar$Grade = factor(segvar$Grade,
+ levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

Then, we can perform the PATHMOX analysis by using function reg.pathmox().

> #Run the PAthmox analysis
> #
> fib.reg.pathmox = reg.pathmox(Satisfact~.,data=data.fib,segvar,signif=0.05,
+ deep=2,method="lm",size=0.15, tree=FALSE)

REGRESSION SEGMENTATION TREE

---------------------------------------------
Info Parameters Algorithm
parameters Algorithm value

1 Threshold signif 0.05
2 Node size limit(%) 0.15
3 Tree depth level 2
4 Method lm

---------------------------------------------
Info Segmentation Variables

Nlevels Ordered Treatment
Career 3 FALSE nominal
Gender 2 FALSE binary
Age 4 TRUE ordinal
Studying 2 FALSE binary
Contract 3 FALSE nominal
Salary 5 TRUE ordinal
Firmtype 2 FALSE binary
Accgrade 3 TRUE ordinal
Grade 4 TRUE ordinal
Startwork 2 FALSE binary

We can see that the first results that we obtain are some informations about the algorithm parameters
(imputed in the function reg.pathmox()) and a summary of the segmentation variables; in order we
have the name of the segmentation variables, the number of levels of each one of them, if they are ordered
and the the way in which we treat them (i.e if we consider them as ordinal, binary or nominal).
Let us to use now the function plot() to obtain a graphic visualization of the tree.
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Figure 7.1: Output function plot() for the fib.reg.pathmox object. PATHMOX segmentation tree

In Figure (7.1), we present the obtained tree, where we can observe that in fact, there are three distinct
models. At the first split, PATHMOX defines two different models one for students with a “low” access
grade (< 7), and the other, for students with a “higher” access grade (7-8 and > 8). Let as define the
students with a “low” access grade (< 7) as students with “low profile”, and the students with a “higher”
access grade (7-8) and (> 8) as students with “higher profile”; we see that the produced split is significant,
giving a F-statistic of 2.384 with a p-value of 0.025. The node two is taken as final because no significative
partitions has been found. The tree continues by splitting the node three. The most significant partition is
obtained, again by variable acc-grade, giving a F-statistic of 2.283 with a p-value of 0.040, dividing now
the students with a better profile, in students with a “good profile” (acc-note 7-8), and students with the
“best profile” (acc-note > 8). This ends the splitting process, as the maximum depth of two levels has been
reached. Hence, at the end, we have three final segments each one corresponding to a distinct model: node
2 model of students with a “low profile”; node 6 model of students with a “good profile”; node 7 model of
students with the “best profile”.

Running the function summary() we have a complete information on the obtained PATHMOX tree.
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The first result (Info Parameters Algorithm) is a table with the parameters fixed to run the
PATHMOX analysis: the threshold of the p-value, minimum node’s size, depth level and the method.

The second information that we achieve is the Info Tree, that informs about the tree depth and the
number of the terminal nodes.

The third result is the Info nodes, that contains the description of each node of the tree; here the
algorithm provides the corresponding number of the node (variable node), what is the parent node of
each node (variable parent), which is the depth corresponding to a node (depth), which nodes are root,
intermediates and leaves (type and terminal), the number of the individuals (size) in each node,
the % size respect the total (variable percent) and the segmentation variable used to generate the node
(variable and category).

The last information (Info Splits) allows to investigate the reasons of the splits. Here the PATH-
MOX provides the segmentation variables, the F statistic and the p-value of the obtained partitions (F-global
test). Next in Info Splits we find the F-coefficient test results (Lebart et al. 1979) that allows to go
deeper and to identify the responsible coefficients of the splits.

Looking this last result, we can see that the significant difference identified by PATHMOX between
students with a “low profile”, and students with a “higher profile”, depends on the coefficients Value (F-
coefficient statistic: 5.389 and associated p-value: 0.021) and Specific Quality (F-coefficient statistic: 4.507
and associated p-value: 0.036); in the partition of node 3: students with a “good" and “best profile”, the
difference is due to Generic Expectations with a F-coefficient statistic of 5.534 and an associated p-value
of 0.024.

> summary(fib.reg.pathmox)

REGRESSION SEGMENTATION TREE

---------------------------------------------
Info Parameters Algorithm:
Parameters Algorithm value

1 Threshold signif 0.05
2 Node size limit(%) 0.15
3 Tree depth level 2
4 Method lm
---------------------------------------------
Info Tree:

Parameters Tree value
1 Deep tree 2
2 Number terminal nodes 3
---------------------------------------------
Info nodes:
Node Parent Depth Type Terminal Size Percent Variable Category

1 1 0 0 root no 147 100.00 <NA> <NA>
2 2 1 1 leaf yes 76 51.70 Accgrade accnote<7
3 3 1 1 node no 71 48.30 Accgrade 7-8accnote/accnote>8
4 6 3 2 leaf yes 48 32.65 Accgrade 7-8accnote
5 7 3 2 leaf yes 23 15.65 Accgrade accnote>8
---------------------------------------------
Info Splits:

Variable:
node variable mod.g1 mod.g2

1 1 Accgrade accnote<7 7-8accnote/accnote>8
2 3 Accgrade 7-8accnote accnote>8

F.statistic global:
node fg.statistic fg.pvalue

1 1 2.3838 0.02502 *
2 3 2.2832 0.04024 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

F.statistic coefficient:

Node 1 :
fc.statistic fc.pvalue

Intercept 0.2098 0.64764
Image 0.4855 0.48714
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Exp.gene 0.6015 0.43939
Exp.spec 0.0000 0.99636
Qual.gen 2.1425 0.14563
Qual.spec 4.5067 0.03561 *
Value 5.3897 0.02178 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Node 2 :
fc.statistic fc.pvalue

Intercept 0.0042 0.9487
Image 2.3290 0.1325
Exp.gene 5.3539 0.0243 *
Exp.spec 2.2575 0.1385
Qual.gen 0.1514 0.6987
Qual.spec 1.2665 0.2651
Value 0.8490 0.3607
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The last part of the analysis consists in the comparison between the terminal nodes of the tree. We can re-
alize this last step by the function reg.treemodel(). This function allows to visualize the main results
of the analysis for each one of the identified sub-models. In order, we can appreciate the the method used to
fit the regression models ($method), the estimated coefficients ($coefficients) the standard deviation
($Std.), the p-value significance ($pval.coef) and R2 ($r2). In the function reg.treemodel()
we can also use the code label=TRUE and label.nodes to give a specific name to each node of the
tree. In our example we have used the label “global model” for the root node, “low profile” for the node
two, “good profile” for the node six, and “best profile” for the node seven.

> fib.treemodel=reg.treemodel(fib.reg.pathmox, label=TRUE,
+ label.nodes=c("Global model","low profile","good profile", "best profile"))
> fib.treemodel

$method
[1] "lm"

$coefficients
global model low profile good profile best profile

predImage 0.240 0.271 0.128 0.368
predExp.gene 0.111 0.154 0.003 0.276
predExp.spec -0.083 -0.136 -0.045 -0.214
predQual.gen 0.026 0.171 -0.025 -0.051
predQual_spec 0.123 0.016 0.199 0.398
predValue 0.575 0.660 0.461 0.325

$Std.
global model low profile good profile best profile

predImage 0.078 0.124 0.089 0.186
predExp.gene 0.054 0.081 0.070 0.122
predExp.spec 0.053 0.096 0.071 0.110
predQual.gen 0.071 0.121 0.091 0.145
predQual_spec 0.066 0.099 0.125 0.132
predValue 0.055 0.086 0.073 0.154

$pval.coef
global model low profile good profile best profile

predImage 0.002 0.031 0.156 0.064
predExp.gene 0.042 0.063 0.961 0.037
predExp.spec 0.123 0.160 0.532 0.069
predQual.gen 0.709 0.162 0.786 0.728
predQual_spec 0.066 0.870 0.119 0.008
predValue 0.000 0.000 0.000 0.050

$r2
global model low profile good profile best profile

0.688 0.7167 0.728 0.8056

attr(,"class")
[1] "treemodelreg"

In order to provide a visual way to appreciate the differences among segments, we can use the plot()
function. It provides the bar charts of the coefficients of each terminal nodes (see Figure7.2).
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Figure 7.2: Output function plot() for the fib.treemodel object. Effects on Satisfaction: compari-
son of the three segments with respect to the global model

We can see that the difference between the node 2 (“low profile” students) and the other two terminal
nodes depends, above all, on the Value as underlined by the F-coefficients results; the difference between
the model of students with “good profile” (node six) and the model of students with “best profile” (node
seven) is defined mainly by the Generic Expectations confirming the F-coefficients results. All the R2 are
high significant. In particular the node six and seven present a R2 index respectively of 0.767 and 0.812.
An important consideration is about the p-values of the coefficients of each terminal node. We can see for
example, that the Value is significant in all groups; sometimes, also if the coefficients are highly distinct
respect the other models, they could be not significant: for example node two has Specific Quality distinct
respect the other two models but not significant; the node six is different from the node seven also for the
coefficient Generic Expectations but again it is significant in node seven. Thus, we have to take care when
we interpret the models of the terminal nodes.

7.7 An genpathmox Example in Partial Least Squares Path Model-
ing PLS-PM

Partial least squares path modeling (PLS-PM) is one of the methods from the broad family of PLS tech-
niques. It was originally developed by Herman Wold and his research group during the 1970s and the early
1980s. Around the PLS community, the term path modeling is preferred to that of structural equation mod-
eling, although both terms can be found within the PLS literature. Our preferred definition of PLS-PM is
based on three fundamental concepts:

1. It is a multivariate method for analyzing multiple blocks of variables

2. Each block of variables plays the role of a latent variable

3. It is assumed that there is a system of linear relationships between blocks

In other words: PLS-PM provides a framework for analyzing multiple relationships between a set of
blocks of variables (or data tables). It is supposed that each block of variables is represented by a latent
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construct or theoretical concept; the relationships among the blocks are established taking into account
previous knowledge (theory) of the phenomenon under analysis. There are plenty of references about PLS-
PM, but we will only mention one from Wold, and two more recent ones: (Vinzi 2010; Tenhenaus 2005;
Wold 1982).

7.7.1 Partial Least Squares Segmentation Tree: PATHMOX Analysis
In order to calculate the PATHMOX segmentation tree in the context of PLS-PM, we have to fit first the
global model. We realize this step by using the R function plspm() of the plspm package (Sánchez 2009).
The genpathmox package works integrating the plspm(), thus, to run a PATHMOX analysis in PLS-PM
by genpathmox we have to use the plspm() function to calculate the global model.

To run the plspm() function we have define at least four different parameters:

� the data parameter. It is a matrix or data frame containing the manifest variables.

� the path_matrix parameter. It is a square (lower triangular) boolean matrix representing the inner
model (i.e. the path relationships between latent variables).

� the blocks parameter. It is a list of vectors with column indices or column names from Data
indicating the sets of manifest variables forming each block (i.e. which manifest variables correspond
to each block).

� the modes parameter. It is character vector indicating the type of measurement for each block.
Using the code modes=A we indicate a reflective block, whereas by the code modes=B, we indicate
a formative block.

We recommend to examine the plspm reference manual at: http://cran.r-project.org/
web/packages/plspm/plspm.pdf to understand in details the different tools of the function. In
our example we consider a simple inner model. We want to investigate the alumni satisfaction considering
the following causal model:

Figure 7.3: Path diagram representing the casual relationship between the latent variables of the model

We have considered as antecedent of the value the image and the specific quality, and, as antecedent of
satisfaction, the value, the image and the specific quality. We have specified our model by the path_matrix
parameter. The measurement model of the latent variables is taken in a reflective way (modes.fib =
rep("A", 4) ) in all cases, that is, we assume that every intangible represents a concept being their
indicators, reflects of that concept. We can run the plspm() function by the following code:

> data(fibtele)
> #
> data = fibtele[,12:35]
> #
> data.fib = data[,-c(12:16)]
> #
> #Defining the inner model
> #
> Image = rep(0,4)
> Qual = rep(0,4)
> Value = c(1,1,0,0)
> Satis = c(1,1,1,0)

http://cran.r-project.org/web/packages/plspm/plspm.pdf
http://cran.r-project.org/web/packages/plspm/plspm.pdf
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> #
> inner.fib = rbind(Image,Qual, Value, Satis)
> #
> colnames(inner.fib) = rownames(inner.fib)
> #
> #Defining the blocks of indicators (outer model)
> #
> outer.fib = list(1:8,9:11,12:15,16:19)
> #
> #Defining the modes
> #
> modes.fib = rep("A", 4)
> #
> #Calculating the global model
> #
> pls.fib = plspm(data.fib, inner.fib, outer.fib, modes.fib)

Computed the global model, we can start the PATHMOX analysis by specifying the scale (e.g., bi-
nary, ordinal, or nominal) of the segmentation variables and by fixing the parameters of the function
pls.pathmox(). We have decided to establish a value of 0.05 (signif=0.05) for the threshold
of the p-value to look for those partitions that are highly significant. Given that we have a total sample of
147 students, we fix, as reasonable minimum number to stop the growth of a node, the 20% of total sample
(size=0.2). The depth level = 1 (deep=1), has been selected with the aim to obtain a simple segmen-
tation tree with a possible maximum number of two final segments. We indicate the scale of our factors by
the code:

> #Identifying the segmentation variables
> #
> segvar = fibtele[,2:11]
> #
> #Rescaling the segmentation variables
> #
> segvar$Age = factor(segvar$Age, ordered=T)
> #
> segvar$Salary = factor(segvar$Salary,
+ levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
> #
> segvar$Accgrade = factor(segvar$Accgrade,
+ levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
> #
> segvar$Grade = factor(segvar$Grade,
+ levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

Then, we can perform the PATHMOX analysis by using function pls.pathmox().

> #Run the PAthmox analysis
> #
> fib.pls.pathmox=pls.pathmox(pls.fib,segvar,signif=0.05, deep=1,
+ size=0.2,n.node=20)

PLS-PM SEGMENTATION TREE

---------------------------------------------
Info Parameters Algorithm
parameters Algorithm value

1 Threshold signif 0.05
2 Node size limit(%) 0.20
3 Tree depth level 1.00

---------------------------------------------
Info Segmentation Variables

Nlevels Ordered Treatment
Career 3 FALSE nominal
Gender 2 FALSE binary
Age 4 TRUE ordinal
Studying 2 FALSE binary
Contract 3 FALSE nominal
Salary 5 TRUE ordinal
Firmtype 2 FALSE binary
Accgrade 3 TRUE ordinal
Grade 4 TRUE ordinal
Startwork 2 FALSE binary
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Again, we obtain, as in the case of the function reg.pathmox(), the algorithm parameters and a
summary of the segmentation variables as first output. We use the function plot() to provide a graphic
visualization of the tree.

Root

147

Node 2
113

Node 3
34

Age
p.val=1e-04

25-26years
27-28years
29-30years

31years+

PATHMOX Tree

Figure 7.4: Output function plot() for the fib.pls.pathmox object. PATHMOX segmentation tree

In Figure (7.4), we present the obtained tree, where we can observe that in fact, there are two distinct
models. PATHMOX splits the root node in two partitions (the node two and three) by the segmentation
variables age of alumni; in the node two we have the “younger alumni” and in the node three the “older
alumni”. The produced split is highly significant, giving a F statistic of 4.679 with a p-value of 0. As in the
case of regression example, we can run the function summary() to visualize all the information about he
obtained tree.

> summary(fib.pls.pathmox)

PLS-PM SEGMENTATION TREE

---------------------------------------------
Info Parameters Algorithm:
Parameters Algorithm value

1 Threshold signif 0.05
2 Node size limit(%) 0.2
3 Tree depth level 1
---------------------------------------------
Info Tree:

Parameters Tree value
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1 Deep tree 1
2 Number terminal nodes 2
---------------------------------------------
Info nodes:
Node Parent Depth Type Terminal Size Percent Variable

1 1 0 0 root no 147 100.00 <NA>
2 2 1 1 leaf yes 113 76.87 Age
3 3 1 1 leaf yes 34 23.13 Age

Category
1 <NA>
2 25-26years/27-28years/29-30years
3 31years+
---------------------------------------------
Info Splits:

Variable:
node variable g1.mod g2.mod

1 1 Age 25-26years/27-28years/29-30years 31years+

F.statistic global:
node fg.statistic fg.pvalue

1 1 4.6797 5.584e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

F.statistic block:
$fbtable

Value Satis
node 1 9.309329 1.207548

$pfbtable
Value Satis

node 1 6.908909e-06 0.3077828

F.statistic coefficient:

Node 1 :
fc.statistic fc.pvalue

int -> Value 0.9172 0.3390
Image -> Value 17.9325 3.108e-05 ***
Qual -> Value 23.7933 1.802e-06 ***
int -> Satis 1.8905 0.1702
Image -> Satis 0.1514 0.6975
Qual -> Satis 0.0056 0.9404
Value -> Satis 0.8007 0.3716
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The summary() function presents the same structure of the summary() function implemented for
the reg.pathmox(). In order we visualize: the algorithm parameters, the tree structure, the nodes’ in-
formation, and the obtained splits. In the context of PLS-PM, we can go further the F-global test by using
F-block and F-coefficient test . The F-block allows us to detect which are the equations responsible of the
split; the F-coefficient statistic allows us to identify the responsible predictors of the obtained partitions.
Starting by the F-block we can see that the difference identified by PATHMOX between “younger” and
“older alumni” depends on the Value construct (p-value equal to zero); looking for the responsible path
coefficients of the split PATHMOX identifies the Image on Value and Quality on Value; in both cases the
F-coefficient test gives p-values highly significant ( i.e. equal to 0). We can interpret these results; the
difference between the two PLS-PM of the terminal nodes depend on two path coefficients: Image on Value
and Quality on Value, whereas the satisfaction doesn’t vary across the models.

The last part of the analysis consists in the comparison between the terminal nodes of the tree. We can
realize this last step by the function pls.treemodel(). This function allows us to visualize the most im-
portant results of the analysis for each one of the identified sub-models. The function pls.treemodel()
also provides the invariance test that allows to verify the factor invariance, i.e. equality of the measurement
model across nodes. Calling the function we can appreciate the considered inner model ($IDM), the invari-
ance test ($invariance.test), the weights ($weights), the loadings ($loadings), the path coef-
ficients ($paths), the R2 ($r2) and the significance of the path coefficients assesed by t-test ($sign).
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Again, we can use the code label=TRUE and label.nodes to give a specific name to each node of the
tree. We start by comparing the the sub-models and we finished interpreting the invariance test.

> fib.pls.treemodel=pls.treemodel(pls.fib,fib.pls.pathmox,labe=TRUE,
+ label.nodes=c("Global model","younger alumni","older alumni"))
> #
> fib.pls.treemodel

$IDM
Image Qual Value Satis

Image 0 0 0 0
Qual 0 0 0 0
Value 1 1 0 0
Satis 1 1 1 0

$invariance.test
chisq.statistic p.value dfH0 dfH1

1 2.583691 1 565 542

$weights
global model younger alumni older alumni avg.weights

ima1 0.194 0.196 0.194 0.199
ima2 0.146 0.136 0.161 0.140
ima3 0.181 0.184 0.168 0.187
ima4 0.153 0.160 0.149 0.154
ima5 0.145 0.163 0.118 0.152
ima6 0.139 0.125 0.154 0.134
ima7 0.140 0.145 0.123 0.139
ima8 0.159 0.173 0.128 0.162
quaf1 0.438 0.412 0.561 0.432
quaf2 0.379 0.415 0.237 0.396
quaf3 0.420 0.428 0.374 0.413
val1 0.366 0.424 0.210 0.390
val2 0.337 0.347 0.310 0.327
val3 0.291 0.230 0.406 0.271
val4 0.281 0.274 0.321 0.290
sat1 0.500 0.526 0.439 0.513
sat2 0.309 0.358 0.237 0.346
sat3 0.288 0.287 0.272 0.287
sat4 0.203 0.167 0.253 0.166

$loadings
global model younger alumni older alumni

ima1 0.804 0.789 0.845
ima2 0.812 0.791 0.860
ima3 0.875 0.877 0.883
ima4 0.718 0.683 0.823
ima5 0.727 0.727 0.749
ima6 0.799 0.786 0.825
ima7 0.811 0.797 0.841
ima8 0.793 0.780 0.839
quaf1 0.732 0.680 0.882
quaf2 0.847 0.845 0.873
quaf3 0.851 0.863 0.799
val1 0.778 0.796 0.744
val2 0.863 0.880 0.776
val3 0.764 0.708 0.864
val4 0.718 0.709 0.784
sat1 0.774 0.785 0.787
sat2 0.835 0.834 0.843
sat3 0.787 0.736 0.867
sat4 0.633 0.457 0.867

$paths
global model younger alumni older alumni

Image->Value 0.320 0.098 0.857
Image->Satis 0.290 0.238 0.231
Qual->Value 0.210 0.473 -0.334
Qual->Satis 0.117 0.149 0.171
Value->Satis 0.575 0.608 0.582

$r2
global model younger alumni older alumni

Image 0.000 0.000 0.000
Qual 0.000 0.000 0.000
Value 0.235 0.295 0.467
Satis 0.681 0.712 0.691



CHAPTER 7. THE GENPATHMOX R PACKAGE 139

$sign
$sign$Value

global model younger alumni older alumni
Intercept 1.000 1.000 1.000
Image 0.001 0.364 0.000
Qual 0.031 0.000 0.066

$sign$Satis
global model younger alumni older alumni

Intercept 1.000 1.000 1.00
Image 0.000 0.001 0.21
Qual 0.069 0.049 0.24
Value 0.000 0.000 0.00

attr(,"class")
[1] "treemodel"

In order to provide a visual way to appreciate the differences among segments, we can use the plot
function. It provides the differential models in each leaf corresponding to satisfaction and value intangibles
(see Figure (7.5) and Figure (7.6) ). For both latent constructs we represent its global model and the
difference in the paths coefficients of the local model respect to the global one in each terminal node.

Figure 7.5: Output function plot() for the fib.treemodel object. Effects on Satisfaction: compari-
son of the three segments with respect to the global model
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Figure 7.6: Output function plot() for the fib.treemodel object. Effects on Vale: comparison of the
three segments with respect to the global model

Starting by the satisfaction we can see that there is no difference between the node 2 (“younger alumni”)
and the node 3 (“older alumni”). The models are similar each others and both similar to the global model.
Furthermore, the scale of the bar-chart vary from -0.04 to +0.06 confirming that there is no difference re-
spect the global model and F-coefficients p-values of the satisfaction drivers, analyzed before, remark the
absence of difference. In the case of Value, confirming the F-coefficients results, we can note two important
difference: starting by the node two, we can observe that the most important effect is the Quality, whereas,
in the case of the alumni with more than 30 years (node 3) the most important effect on Value is the Image.
Looking the t-test (fib.pls.treemodelsignValue) we appreciate that both path coefficients are sig-
nificant.

Finally, once we have established the existence of model heterogeneity at structural level, we consider
whether the measurement model is invariant across the detected terminal nodes or they are specific for every
segment by the code fib.pls.treemodel$invariance.test. The obtained result is a Chi-square
statistic of 14.4950, giving a p-value of 0.9118, which is largely non significant, hence we can admit a com-
mon measurement model in the two leaves, as the invariant weights obtained by fitting the corresponding
null hypothesis. When a common measurement model is admitted, the function pls.treemodel() also
provides the common weights:

> fib.pls.treemodel$weights[,4]

ima1 ima2 ima3 ima4 ima5 ima6 ima7 ima8 quaf1 quaf2 quaf3 val1 val2
0.199 0.140 0.187 0.154 0.152 0.134 0.139 0.162 0.432 0.396 0.413 0.390 0.327
val3 val4 sat1 sat2 sat3 sat4
0.271 0.290 0.513 0.346 0.287 0.166
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