

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Computer Science Department

PhD in Artificial Intelligence

Regularized Approximate Policy Iteration
using kernel

for on-line Reinforcement Learning

PhD Thesis of

Gennaro Esposito

gesposit @ cs.upc.edu

PhD Supervisor : Prof. Mario Martı́n (UPC)

2015

En una isla solitaria desembarca un fugitivo
en busca de libertad y esperanza que encuentra a través del amor.
Un amor que es incapaz de mirarle a los ojos.
Que ignora que es amado.
Y la ilusión es la que le da vida, a través de la muerte
Es la ilusión de Morel

i

ii

Contents

Thesis overview xiii

1 Reinforcement Learning 1
1.1 Introduction . 1
1.2 Reinforcement Learning Definitions . 2
1.3 Markov Decision Processes . 2

1.3.1 Finite MDP . 3
1.3.2 Value Function . 5
1.3.3 Action Value Function . 6

1.4 Dynamic Programming . 6
1.4.1 Value Iteration . 8
1.4.2 Policy Iteration . 8

1.5 Model-Free Value Learning . 9
1.5.1 Monte Carlo Updates . 9
1.5.2 Temporal Difference Learning 10
1.5.3 Bias and Variance . 11

1.6 Stochastic Iterative Algorithms . 11
1.6.1 Convergence Analysis . 12

1.7 Learning Action Values . 14
1.7.1 Exploration Techniques . 15
1.7.2 Expected SARSA . 17

2 Generalization Problem in RL 19
2.1 Introduction . 19
2.2 Generalization in RL . 19

2.2.1 Generalization And Discretization Issues 21
2.3 MDPs in continuous spaces . 22
2.4 Parametric And Non-Parametric Function Approximation 27
2.5 Linear And Non Linear Function Approximation 28
2.6 Value Function Approximation in RL 30
2.7 Approximate Policy Iteration . 31
2.8 Parametric Value Function Approximation 33
2.9 Non-parametric Value Function Approximation Using Kernels 36

iii

3 Kernel Based Approximate Policy Iteration 39
3.1 Introduction . 39
3.2 Finite Data Sampling . 40
3.3 Reproducing Kernel Hilbert Spaces . 42
3.4 Regularized Non-Parametric Regression 44
3.5 Regularization and Support Vector Regression 48
3.6 Regularized API With Bellman Residuals Minimization 49
3.7 Regularized API−BRMε Algorithm Formulation 51
3.8 API with SVR . 53
3.9 API−BRMε Dual Batch Solution . 56
3.10 Bellman Kernel Characterization . 59
3.11 Incremental Equivalent To Batch API−BRMε 60
3.12 Appendix 3A: API−BRMε Incremental Solution 63
3.13 Appendix 3B: API−BRMε Primal Solution 67

4 API−BRMε Theoretical Analysis 71
4.1 Introduction . 71
4.2 Mixing Processes . 72
4.3 API−BRMε Technical Assumptions . 76
4.4 API−BRMε Policy Evaluation Error . 78
4.5 API−BRMε Error Propagation . 78
4.6 API−BRMε Performance Loss . 79
4.7 Conclusion and Discussion . 81
4.8 Future work . 81
4.9 Appendix 4A: Proof of Theorem 4.2 . 82
4.10 Appendix 4B: Proof of Proposition 4.1 87

5 API−BRMε Experimental Analysis 89
5.1 Introduction . 89
5.2 API−BRMε Computational Complexity 89
5.3 API−BRMε Algorithm Implementation 90
5.4 API−BRMε Experiments . 91
5.5 The Chain Walk Control Problem . 94
5.6 The Inverted Pendulum Control Problem 96
5.7 The Cart Pole Balancing Control Problem 100
5.8 The Car On The Hill Control Problem 102
5.9 The Bike Balancing And Riding Control Problem 110

5.9.1 Bike Balancing Control Problem 112
5.9.2 Bike Balancing And Riding Control Problem 113

Conclusions and Future Work 117

Acknowledgments 121

Bibliography 123

Appendices 133

iv

A Statistical Learning 135
A.1 Introduction . 135
A.2 Uniformly Convergent Generalization Bounds 137
A.3 Generalization and Consistency of ERM 138
A.4 Vapnik-Chervonenkis Theory . 139

B Kernel Methods 143
B.1 Introduction . 143
B.2 Feature Space Induced By Kernel . 143

B.2.1 Hilbert Spaces . 144
B.2.2 Linear Functionals . 144

B.3 Integrable Function Spaces . 145
B.4 Reproducing Kernel Hilbert Spaces . 147

B.4.1 RKHS And Regularization . 148
B.4.2 The Kernel Trick . 150

C Support Vector Machines 151
C.1 Introduction . 151
C.2 Optimization strategy . 153
C.3 Using the Kernel trick . 155
C.4 Properties of the solution . 157
C.5 Incremental SVM . 159
C.6 Support Vector Regression . 166
C.7 Incremental SVR . 170

v

vi

List of Figures

2.1 Policy Iteration scheme showing the actor critic architecture (from [48]) . 32
2.2 Approximate Policy Iteration scheme showing the actor critic architecture

(from [48]) . 33

3.1 Approximate policy iteration using SVM 40

5.1 The four states chain walk control problem from ([48]) 94
5.2 Chain walk (8-states) solved with LSPI (from [48]): Upper: state value

function Qπ(s,π(s)) of the learned policy (LSPI - solid line; exact- dot-
ted line). The approximations are shown with solid lines, whereas the
exact values are connected with dashed lines. The values for action L are
marked with o and for action R with x. Lower: Final policy (R action
- dark/red shade; L action - light/blue shade; LSPI - top stripe; exact -
bottom stripe) . 94

5.3 Chain walk (8-states) solved with API − BRMε : Upper: action value
function Qπ(s,π(s)) of the learned policy (API−BRMε o exact, x ap-
proximated values). Center: value function V π(s) of the learned policy
(API−BRMε o exact, x approximated values). Lower: Final policy (R
action - dark/red shade; L action - light/blue shade; API−BRMε - top
stripe; exact - bottom stripe) . 95

5.4 Inverted pendulum: average score for offline LSPI (left) and Q-learning
with experience replay (right) from [48] 97

5.5 Inverted pendulum: approximate suboptimal Q and V value function found
by API−BRMε . 98

5.6 Inverted pendulum: representative subsequences of policy found by on-
line API−BRMε using Method-2 (Actions are discretized and only three
grey levels show up) . 99

5.7 Inverted pendulum: (left) average score of online API−BRMε with KP =
10 over a grid of initial states; (right) average balancing time over the
same grid of initial states using Method-2 99

5.8 Inverted pendulum: States and actions in representative subsequences of
learning trials. Each trial lasts 30s max considered as the minimum bal-
ancing to reach. Using Method-3 (online growth) with a fixed initial state
S0 = (0,0) API−BRMε learns a local optimal policy in a few episodes
(20s of simulation time). 100

5.9 The cart pole balancing control problem 100

vii

5.10 Cart pole: slices of approximate suboptimal Q and V value function found
by online API−BRMε using Method-2 102

5.11 Cart pole: slices of representative subsequences of policy found by online
API−BRMε using Method-2 . 103

5.12 Cart pole: (left) average score of online API−BRMε with KP = 10 over a
grid of initial states using Method-2; (right) average balancing time over
the same grid of initial states using Method-2 104

5.13 Cart pole: States and actions in representative subsequences of learning
trials. Each trial lasts 10s max considered as the minimum balancing to
reach. Using Method-3 (online growth) with a fixed initial state S0 =
(0,0,0,0) API−BRMε learns a local optimal policy in a few episodes
(20s of simulation time). 104

5.14 Car on the Hill: shape of the hill (left), near optimal policy π(p, ṗ) (black
a =−am,white a =+am, grey equally good) from [19] 105

5.15 Car on the Hill: representative subsequences of policies found by offline
(top) and online LSPI (bottom) from [19]. See fig. 5.14 for axis and color
meanings. 105

5.16 Car on the Hill: approximate suboptimal Q and V value function found
by online API−BRMε using Method-2 106

5.17 Car on the Hill: representative subsequences of policy found by online
API−BRMε using Method-2 . 107

5.18 Car on the Hill: (left) average score of online API−BRMε with KP = 10
over a grid of initial states using Method-2; (right) typical trajectory using
a suboptimal policy found by API−BRMε 108

5.19 Car on the Hill: States and actions in representative subsequences of
learning trials. Each trial lasts 3s max (30 steps) considered sufficient
to reach the goal. Using Method-3 (online) with small perturbations of a
fixed initial state S0 = (−0.5,0) API−BRMε may learn a local optimal
policy in a few episodes (50s of simulation time). 108

5.20 Car on the Hill: States and actions in representative subsequences of
learning trials. Each trial lasts 8s max (80 steps) considered sufficient
to reach the goal. Using Method-3 (online-growth) with small perturba-
tions of a fixed initial state S0 = (−0.5,0) API−BRMε may learn a local
optimal policy in a few episodes (30s of simulation time). 109

5.21 The bike control problem: Figure (a) represents the bicycle seen from
behind where the thick line represents the bicycle. The center of mass of
the bicycle+cyclist CM with height h from the ground, ω the angle from
vertical to bicycle while φ represents the total angle of tilt of CM. Action d
is agent displacement and w is some noise to simulate imperfect balance.
Figure (b) represents the bicycle seen from above. θ is the angle the
handlebars are displaced from normal, ψ the angle formed by the bicycle
frame and the x axis and ψgoal the angle between the bicycle frame and
the line joining the back-wheel ground contact and the center of the goal.
T is the torque applied by the cyclist to the handlebars. (xb,yb) is the
contact point of the back-wheel with the ground (from [26]) 112

viii

5.22 Bike balancing: performance of online API−BRMε with KP = 10 using
Method-2 . 113

5.23 Bike balancing: (Upper A) States and actions in representative subse-
quences of learning trials. Each trial lasts 50s max (5000 steps) consid-
ered sufficient reach the goal. Using Method-3 (online-growth) with small
perturbations of a fixed initial state S0 = (0,0,0,0,π/2) API−BRMε may
learn a local optimal policy in a few episodes (50s of simulation time).
(Lower) sketch of the trajectory (B zoom, C overall) in the time interval
(0,500s) for the bicycle on the (xb,yb) plane controlled by the final policy
of API−BRMε . 114

5.24 Bike balancing and riding: performance of online API−BRMε with KP =
10 using Method-2 . 115

5.25 Bike balancing and riding: (Upper A) States and actions in representative
subsequences of learning trials. Each trial lasts 50s max (5000 steps)
considered sufficient reach the goal. Using Method-3 (online-growth)
with small perturbations of a fixed initial state S0 = (0,0,0,0,π/2) API−
BRMε may learn a local optimal policy in a few episodes (50s of simula-
tion time). (Lower) sketch of the trajectory (B zoom, C overall) in the time
interval (0,500s) for the bicycle on the (xb,yb) plane controlled by the fi-
nal policy of API−BRMε reaching the goal located at (xb,yb) = (1000,0) 116

C.1 A separating hyper-plane for a two dimensional training set controlled by
(w,b)) . 152

C.2 Representation of the mapping from input to feature space 152
C.3 Definition of a slack variable ξ j for a misclassified point 156
C.4 The soft margin loss setting for a linear SVR. 167
C.5 Decomposition of D following the KKT conditions into Margin support

vectors S, error support vectors E and E∗, and the remaining vectors R. . . 171

ix

x

List of Tables

3.1 Loss function derived from `ε,∆(z) . 69

5.1 Parameters used in the simulation for the inverted pendulum control problem 96
5.2 Parameters used in the simulation for the cart pole balancing control prob-

lem . 101
5.3 Parameters used in the simulation for the bicycle balancing and riding

control problem . 110

xi

xii

Thesis overview

Framework

By using Reinforcement Learning (RL), an autonomous agent interacting with the envi-
ronment can learn how to take adequate actions for every situation in order to optimally
achieve its own goal. RL provides a general methodology able to solve uncertain and
complex decision problems which may be present in many real-world applications. RL
problems are usually modeled as a Markov Decision Processes (MDPs) deeply studied
in the literature. The main peculiarity of a RL algorithm is that the RL agent is assumed
to learn the optimal policies from its experiences without knowing the parameters of the
MDP. The key element in solving the MDP is learning a value function which gives the
expectation of total reward an agent might expect at its current state taking a given action.
This value function allows to obtain the optimal policy. Hence, the agent will choose the
action to take by using this value function. RL algorithms estimate the value function by
observing data generated on-line by the interaction with the environment. Various value
function estimation techniques have been proposed. Among others, one well known and
used technique is the Temporal Difference (TD) algorithm [88]. However, in case of
problems with very large or even continuous state spaces, generalization seems to be
necessary. Common approach to generalization in RL is to use function approximation
methods to estimate the value function. Approaches to generalization can be classified
as parametric or non-parametric depending on the assumption that the function can be
described by using an ”a priori” fixed set of parameters or not.

On one hand, several parametric methods have been considered in the literature for
RL generalization, such as neural networks [41], linear architectures [48], [95], wavelets
[55], [54] and splines [94]. The main advantage of these methods is that they have fast
and easy learning mechanisms. However, they present the inherent problem that in some
cases the solution of the problem might not be expressed with the given architecture and
the number of chosen parameters. So, while RL algorithms require finding the optimal
solution or at least converge to some good enough policy, this may not be guaranteed (in
general) by parametric methods.

On the other hand, non-parametric methods like decision trees [26] or kernel-based
methods like Support Vector Machines (SVM) ([81], [23]) or Gaussian processes [72] for
pattern classification and regression, have been used in RL domain. The main advantage
is that these methods do not depend on a pre-fixed set of parameters and it might be
possible to obtain the optimal solution. However, the on-line feature of RL demands
that the function approximation method used should be incremental and non-monotonic,
features that (in general) might not be fulfilled by non-parametric methods.

xiii

In this thesis we will focus in value function approximation using Support Vector Re-
gression (SVR) which is the regression method for the SVM paradigm. A model-free ap-
proach for approximate value iteration is presented in [68] which uses kernel smoothers.
Some authors [85], [84], [53] developed specialized kernels exploiting state space mani-
fold structure while others [29] used Gaussian processes for computing the value function
by an approximate value iteration algorithm. Tobias and Daniel [93] proposed a Least
Squares Temporal Difference (LSTD) approach based on SVM. In [13] a kernel-based ap-
proximate Dynamic Programming (DP) using Bellman Residual Minimization (BRM) is
presented aiming at solve the cost to go function for approximate DP problems. However,
their method is not model-free as it requires the knowledge of the transition probability
function and no statistical guarantees about the convergence are presented. Moreover, it is
also a batch algorithm and cannot be directly applied to RL problem. [51] apply an incre-
mental SVR to the approximation of action value function in an actor-critic basis without
Policy Iteration (PI). However the paper suffer for a lack of rigorous statistical analysis
of their method. Dietterich [30] investigated a linear programming approach using ker-
nels and DP approximating the value function with SVR and minimizing the TD error.
However, their approach is unable to solve online learning problem because it estimates
a value function after visiting all states using a uniform random behavior policy. In their
approach, an RL agent can neither cumulate its experiences continuously nor adapt itself
to the changing environment readily. On the contrary, an RL agent should be able to learn
from data obtained sequentially from interaction with the environment.

In all the reported works, while somehow the algorithms may be attractive for some
specific problems or having interesting practical implementations, the lack of theoretical
guarantee is a fundamental flaw.

Contributions

In this thesis we study the capacity of SVR using kernel methods to adapt and solve
complex RL problems in large or continuous state space. SVR can be studied using a ge-
ometrical interpretation in terms of optimal margin [23] or can be seen as a regularization
problem given in a Reproducing Kernell Hilbert Space (RKHS) [82]. SVR have good
properties over the generalization ability and as they are based a on convex optimization
problem, they do not suffer from sub-optimality. SVR are non-parametric showing the
ability to automatically adapt to the complexity of the problem. Accordingly, applying
SVR to approximate value functions sounds to be a good approach. One important aspect
which makes SVR suitable for RL problems is that they can be solved both in batch mode
when the whole set of training sample are at disposal of the learning agents or incremen-
tally. Incremental SVM was originated by the work of [70] while for SVR by [57]. Within
SVR incrementality enables the addition or removal of training samples very effectively.
Basically incremental SVR finds the appropriate Karush-Kuhn-Tucker (KKT) conditions
for new or updated data by modifying their influences into the regression function main-
taining consistence in the KKT conditions for the rest of data used for learning. In RL
problems an incremental SVR should be able to approximate the action value function
leading to the optimal policy. Accordingly, computation load should be lower, learning
speed faster and generalization more effective than other existing methods.

xiv

The overall contribution coming from of our work is to develop, formalize, imple-
ment and study a new RL technique for generalization in discrete and continuous state
spaces with finite actions. Our method uses the Approximate Policy Iteration (API) frame-
work with the BRM criterion which allows to represent the action value function using
SVR. This approach for RL is the first one we know using SVR compatible to the agent-
interaction-with-the-environment framework of RL (contrasting with batch approaches),
which shows his power by solving a large number of benchmark problems, including very
difficult ones, like the bicycle driving and riding control problem. In addition, unlike most
RL approaches to generalization, we develop a proof finding theoretical bounds for the
convergence of the method to the optimal solution under given conditions.

We called the proposed algorithm API − BRMε which estimates the action value
functions by solving an optimization problems with regularized objective functions in
RKHS where it easy to choose the kernel function and consequently the function space.
API−BRMε is an instance of API algorithm built using BRM [8] The idea is that a small
Bellman Error (BE) may yield a good approximation to the policy evaluation function,
which in turn may imply a good final performance. In particular, we demonstrated how
the problem of finding the optimal policy minimizing the Bellman Residuals (BR) can be
cast as a regression problem using SVR and an appropriate RKHS. An important novelty
is represented by the incremental SVR based algorithm in the context of API using BRM.
Some novelties also come as technical contributions represented by the extension from
the square loss to the ε−insensitive loss and presented in lemma 4.3, theorem 4.1 and
proposition 3.2. One important result is the finite-sample bound on the performance of
the resulting policy depending on the mixing rate of the trajectory, in the approximation
power of the function set, in the capacity of the function set and finally on the discounted
concentrability of the future state distribution. This work is the first attempt to give some
theoretical justification of using SVR non-parametric regularized optimization problem,
to solve the approximation problem of action value function in RL. One major technical
difficulty of the proof is that one has to deal with dependent samples. Novelty of this
work is the finite-sample analysis using a β -mixing case for the batch algorithm which
has relevance in practical online learning. The main condition we ask is that the trajectory
should be sufficiently representative and rapidly mixing. The mixing condition is essen-
tial for efficient learning and in particular we use the exponential β -mixing condition.
The algorithm eventually converges to the optimal policy using β -mixing distributed data
samples. We also require that the states in the trajectory follow a stationary distribution.
Another contribution of this work is the experimental analysis of a non-parametric ap-
proximation algorithm for the generalization problem in RL using PI and kernel methods.
Experimental evidence and performance of API−BRMε for well known RL benchmarks
are also presented.

Some interesting properties of API−BRMε algorithm are:

• API−BRMε is quite efficient for problems where sampled experience is sparse.
The algorithm is based on API, a very powerful framework met with success mostly
among planning problems. It also open new research directions for the use of kernel
based API in the context of learning.

• API−BRMε is a model free algorithm that can be easily adapted to model based
learning. In absence of generative models samples must be collected from the actual

xv

process in real-time then the algorithm may work in an online fashion. Eventually
when there is a generative model available the offline variant of the algorithm can
be used.

• API−BRMε is an API algorithm which makes a good use of function approxima-
tion implicitly constructing an approximate model using kernels. The algorithm
place approximation directly in the value function and uses samples to perform the
necessary operations without going through any kind of model eliminating a poten-
tial source of error.

• API−BRMε solving for the SVR a convex optimization problem, does not suffer
from sub optimality looking for the global optimal solution of the approximation
problem. As non-parametric learning method has the ability to automatically adapt
to the complexity of the problem. Both properties rely on the use of SVR with
ε−insensitive loss function, which is essentially a convex quadratic programming
optimization problem.

• API−BRMε uses incremental SVR which allows for the estimation and approxi-
mation of state action value functions in RL. PI can be done implicitly any time a
new experience is obtained. API−BRMε complexity strongly depends on the cost
one has to pay in order to solve the SVR which is essentially a quadratic problem
optimization. SVR can be solved in batch mode when the whole set of training
sample are at disposal to the learning agents or in incremental mode enabling the
addition or removal of training samples effectively.

• The approach taken by API−BRMε makes full use of all samples at once either
they are i.i.d. or strongly mixing. In contrast traditional RL algorithms use stochas-
tic approximation where each sample is processed only once and contributes with
small changes. Usually a very large number of samples is required. The experi-
ence replay technique of storing samples and making multiple passes over them
might be used to partially overcome this problem which is no longer necessary with
API−BRMε .

• In traditional RL algorithms the accuracy of the approximation at different states
depends on the time and order state visitation. If the learning rate is high the al-
gorithm risks oscillatory or divergent behavior. If learning rate is kept small the
learning becomes extremely slow. API−BRMε has no risk of overshooting, oscil-
lation, or divergence because it has no learning parameters to tune up and does not
take gradient steps. Compared to standard PI there are some similarities and some
significant differences.

• API−BRMε has an alternative representations from batch to incremental, from of-
fline to online, showing effective generalization ability through SVR which makes
use of the Structural Risk Minimization theory and his extension to mixing pro-
cesses.

xvi

Thesis Roadmap
This document is organized as follows:

• in Chapter 1 we describe the Reinforcement Learning problem starting from the
finite Markov Decision Process and analyzing Dynamic Programming and Model
Free algorithms and convergence properties.

• Chapter 2 focuses on the Generalization problem in RL in the contest of continuous
MDP and also introducing parametric and non-parametric value function approxi-
mation architectures.

• Chapter 3 introduces the kernel based API problem and the tools necessary to un-
derstand our method which is finally presented in Chapter 4 we analyze our method
describing the properties of the solution.

• In Chapter 5 we focus on the statistical theoretical guarantees for the convergence
of API−BRMε providing a bound using mixing processes in regularized regression.

• Chapter 6 reports results and performance in the experiments realized using API−
BRMε on several well known RL benchmarks.

• Finally conclusion and future work are presented. To complement the presented
material we include an Appendix containing:

• Chapter A describes kernel methods from a general point of view and its connection
with regularization methods.

• Chapter B reports some generalization bounds coming from the statistical learning
theory.

• Chapter C illustrates SVM and SVR analyzing batch and incremental solutions in
the geometrical formulation.

xvii

xviii

Chapter 1

Reinforcement Learning

1.1 Introduction

Machine Learning (ML) research area is part of the broader field of Artificial Intelligence
(AI). ML algorithms allow computer to learn from observed data. Such kind of goals
can be fulfilled building a step by step procedure followed by the computer to reach the
desired result. The problem within this approach is that one should know a solution to the
problem and eventually implement it. Moreover the approach requires the programmer to
foresee possible situations the program may encounter which is sometimes not feasible.
Often it is easier to use ML algorithms based on observations allowing the computer to
find itself solutions. Learning continues using the experience and eventually might find
solutions unknown to the programmer. In this work we discuss some advances related to
RL which may be considered a subset of ML. The material for this section was referenced
from [88],[77], [11], [97].

In RL the focus is primary on learning algorithms by means of interaction with an
environment using a trial-and-error mechanism. RL lies between supervised learning
(learning with an expert who provides examples of correct behavior) and unsupervised
learning (learning with no assistance; trying to find structure in the data). In RL the reward
signal reinforces good decision making and penalizes bad ones. As such, RL represents
a large class of problems, where an interactive agent learns to act in its environment
by trial-and-error. There are two classes of problems in the context of RL: prediction
problems, in which the agent learns to predict the long-term accumulated reward of a
fixed decision policy for different starting states; and, control problems, in which the agent
learns a decision policy that maximizes the long-term cumulative reward for any starting
state. Control is, in general, harder than prediction. However, many times, prediction
and control are interleaved; in order to achieve better control, the agent has to be able to
predict the outcome of its current control policy. Basically there are two main approaches
to reinforcement learning. Model-based learning (or, indirect control) uses samples to
learn a model of the process and then calls one of the standard planning algorithms on the
learned model to generate a good decision policy. However, building an accurate model
of a complex process from samples can be very difficult and is certainly error-prone.
Model-free learning (or, direct control), on the other hand, uses the samples to learn a
good decision making policy directly without ever building a model. The focus of this

1

2 CHAPTER 1. REINFORCEMENT LEARNING

thesis is on model-free RL for control problems. Despite the amount of recent research in
this area, existing algorithms that use exact representations have not been widely applied
on real-world problems, mainly because the required resources grow extremely quickly
as a function of the size of the problem. As a result, exact (but impractical) solutions are
commonly abandoned in favor of approximate (but practical) solutions. This has sparkled
interest in approximate methods. However, it has also raised the question of stability,
beyond the question of efficiency. Research on efficient and stable approximate methods
has focused mainly on the prediction problem, leaving the problem of efficient and stable
methods for control a largely open question.

1.2 Reinforcement Learning Definitions

ML is about designing and automatically learning algorithms from available data and
can be thought as three different categories: Unsupervised Learning where the objec-
tive is to find patterns, regularities or clusters a in a set of unlabeled data. Examples
include dimensionality reduction and clustering. Supervised Learning: where the goal is
to find a function mapping inputs to outputs and with labeled data, examples may include
handwritten text and prediction or classification of handwritten numerals; Reinforcement
Learning: here the task is to find optimal strategies of behavior for an artificial agent using
only reinforcement signals indicating how the agent is able to perform. Examples include
robotics, control tasks and games. Hence, RL is a subfield ML whose task is essentially
learning functions from data. RL can be interpreted as being somewhere between these
supervised and unsupervised learning. Typically one assumes there exists some measure
which can be observed informing how well the agent is doing his job. Hence, the agent
obtain more information by trial and error. The method is appealing because might be
easier to construct a reinforcement scheme than building good policies from scratch. Hu-
mans sometimes learn using a mechanism resembling more RL rather than supervised
learning. Henceforth the idea of using punishments and incentives is often encountered
in real life. A learning agent has a set of sensors to observe the state of its environment
and a set of actions it can perform to alter this state. Basically the agent task is to learn a
control strategy called a policy for choosing actions in order to achieve its goals. In RL
we assume that the agent goals can be defined using a reward function assigning measur-
able numerical value to each distinct actions it may take in each distinct state. The reward
function may be built into the agent or only known to an external expert who provides the
reward for some actions performed by the agent. Hence we may think that an agent in RL
consists of a learning algorithm to adapt to policy of behavior. Most other elements like
the body of the agent or the source of the reinforcements, can be thought as part of the
environment. The behavior policy changes with use of the learning algorithm and can be
thought as a function mapping situations to actions.

1.3 Markov Decision Processes

RL can be used to find optimal solutions for many problems, but of course these problems
should be modeled in a way that the algorithms can be applied.

1.3. MARKOV DECISION PROCESSES 3

1.3.1 Finite MDP
Definition 1.1. (Finite MDP) A Finite MDP can be defined as a tuple (S,A,P,R,γ), with
the following definitions for its contents:

• S is a finite set of states, where st ∈ S denotes the state the agent is in at time t.

• A is a finite set of available actions in state s, where at ∈ A denotes the action the
agent performs at time t.

• P : S×A×S→ [0,1] is a transition function where Ps′
s,a denotes the probability of

ending up in state s′ when performing action a in state s.

• R : S×A× S→ R is a reward function where Rs′
s,a denotes the expected reward

when the agent transitions from state s to state s′ after performing action a. The
actual reward that is witnessed by the agent after performing action at in transition
to state st+1 may contain noise and is denoted as rt+1, where E[rt+1|(s,a,s′) =
(st ,at ,st+1)] = Rs′

s,a

• γ ∈ [0,1) is a discount factor.

The MDP is sometimes called the environment to contrast it with the inner workings
of the agent. An agent in RL is usually assumed to be very simple, consisting mainly of
an action selection policy π : S×A→ [0,1], where πt(s,a) denotes the probability that
the agent will select action a to perform if it is in state s at time t.

A deterministic policy π is a policy where ∀ s : π(s,a) = 1 for exactly one a ∈ A and
π(s,b) = 0 for all other b ∈ A while a stationary policy is a policy that does not change
over time, i.e. where ∀ t : πt = π With a slight abuse of notation, we will use π(s) to refer
to the probability distribution or the probability mass function of the actions in state s.
We will then use a∼ π(s) to indicate that action a is chosen according to the probability
function in state s. One interaction of an agent with a MDP consists of the agent observing
the present state st and choosing an action at to perform according to its policy. The MDP
then transitions to a new state st+1 with probability Pst+1

st ,at and returns a reward rt+1 with
expected value Rst+1

st ,at . Usually, any physical presence of the agent itself is also part of the
environment.

MDP by definition fulfill the Markov property: a stochastic process has the Markov
property if the conditional distribution of the next state of the process depends only on
the current state of the process. For an MDP, this property implies that the transitions P
and the rewards R do not depend on the states the agent visited in the past. Formally this
can be expressed as E[st+1|s0,a0, ...,st ,at] = E[st+1|st ,at] and E[rt+1|s0,a0, ...,st ,at] =
E[rt+1|st ,at].

Problems in which the Markov property does not hold for the observable states and
actions are modeled with Partially Observable MDPs. In POMDPs the assumption is that
there is some MDP describing the problem while the agent cannot observe the full state.
As a result the chain of observations might not fulfill the Markov property while the un-
derlying process is still Markovian. Most RL algorithms assume Markov property while
there is a separate set of algorithms especially designed for POMDPs. In a deterministic
MDP transitions and reward are deterministic and Ps′

s,a = 1 for exactly one state s′ while

4 CHAPTER 1. REINFORCEMENT LEARNING

become zero for all other states and ∀ t : rt+1 = Rst+1

st ,at
. In a stationary MDP every ele-

ment in the tuple (S,A,P,R,γ) is fixed and independent on the time step An example is a
problem where there is more than one learning agent and the agents can only observe the
behavior of the other agents. Taking the perspective of any one agent and assuming the
other agents can also affect the environment, the transition and reward functions can then
change over time.

Many RL tasks are episodic in nature. Whereas in continual learning tasks, the RL
agent is placed in some possibly random starting state, and is then allowed to wander in-
definitely. In episodic tasks the state space is assumed to contain a terminal (or absorbing)
state into which the agent is assured to transition after a finite possibly random duration
of time. In episodic RL tasks when such a state is reached, the episode terminates and
the agent is placed in a new usually random state to begin another episode. It is then
usually assumed that the MDP reaches a terminal state with probability one in the limit
otherwise the value of a state can in principle be unbounded. Note that we only need a
single terminal state for any episodic problem, since multiple terminal states would be
indistinguishable from each other. If terminal states with different values are desired, one
can model this as an equivalent MDP with a single terminal state with different rewards
on the incoming transitions. The definition of an episodic MDP does not imply that an
agent actually reaches the terminal state, whether this happens may depend on the policy.
In a large portion of the RL literature, it is assumed that a MDP is given and then the goal
is to find a suitable algorithm to solve it. However, any problem must be modeled as an
MDP before it can be solved while there is no general method do it. Often best model will
be dependent on which algorithm one likes to use and therefore the best algorithm for the
job depends on the model. Algorithms performance depends on the number of available
actions, so sometimes one limits this number in the modeling phase. Similar to the state
space, one may encounter the choice between them using a model with continuous or
discrete actions. A large majority of algorithms in the field of RL assume discrete, finite
action sets. We will see later on how to deal with continuous space MDP while keeping
the finite action hypothesis whole over our work. The transition function may be the re-
sult of interactions with a physical or simulated system and usually arises quite naturally
when the models for the state and action spaces are selected. However, these transitions
can also be a consideration in the modeling phase. A very important consideration in the
modeling phase is the choice of a reward function. Remarkably, the reward function in
the large majority of RL literature is assumed to be given. Some problems have properties
that leads naturally to a reward function. When selecting a reward function it is important
to make sure that (together with the discount factor) it has the following two properties:

- optimizing the discounted cumulative reward should result in the intended behavior
and

- reward function should have the Markov property. While this may seems trivial in
some practical cases in which this requirement is not met.

The discount factor determines the value of an action or a state, together with the
reward function. Most RL algorithms optimize the discounted cumulative reward. Even
if we compare different algorithms in terms of their performance on average rewards per
step, instead of in terms of how they optimize the discounted rewards, in many cases
algorithms that use the discounted cumulative reward paradigm outperform algorithms
that explicitly try to optimize the average rewards.

1.3. MARKOV DECISION PROCESSES 5

1.3.2 Value Function
In RL, the value of a state or an action plays a central role. In some cases, one may be
interested in the value of a certain policy of behavior in a given problem. In most cases,
one wants to optimize the total return in terms of cumulative rewards. In this section,
we formalize the notion of value in terms of the structure of the MDP. This allows us to
talk about the value of a state, action or policy unambiguously in the remainder of this
dissertation. In the next section we discuss some methods to learn these values, but first
we introduce our notation and definitions.

When we are given an MDP and a policy π , it is possible to determine the value V π

of following this policy when starting in state s. Given the policy π this value is defined
as the cumulative discounted reward:

V π(s) = E[
∞

∑
i=1

γ
i−1rt+i|st = s,π] (1.1)

Sometimes one is interested in the value of some given policy, but more often we will
be interested in maximizing the value. The optimal value of a state is the maximal pos-
sible value that can be obtained with any policy. We denote this optimal value with V ∗,
where V ∗(s) = maxπ V π(s). The goal is then to find the optimal, stationary policy π∗

that maximizes the value for each state. By definition V π∗(s) =V ∗. The value defined in
section 1.3.2 can also be defined recursively:

V π(s) = E[rt+1 + γrt+2 + γ
2rt+3|st = s,π] (1.2)

= E[rt+1 + γV π(st+1)|st = s,π]

= ∑
a

π(s,a) ·∑
s′

Ps′
s,a ·
(

Rs′
s,a + γV π(s′)

)
This then specifies a linear system of |S| quations that can be solved to find the value of
each state. Naturally, as we are dealing with finite MDP, the sets of states and actions
are of finite size. Similarly, the optimal value function can be described with a recursive
definition:

V ∗(s) = max
a ∑

s′
Ps′

s,a ·
(

Rs′
s,a + γV ∗(s′)

)
(1.3)

Unfortunately, this system of Equations is non-linear due to the max operator which
makes it harder to solve analytically. section 1.3.2 is known as the Bellman Optimal-
ity Equation. V ∗ can be found solving section 1.3.2 and the optimal policy is given by

π
∗(s) = argmax

a∈A
∑
s′

Ps′
s,a ·
(

Rs′
s,a + γV ∗(s′)

)
(1.4)

while using V π a policy improvement can be evaluated as

π
′(s) = argmax

a∈A
∑
s′

Ps′
s,a ·
(

Rs′
s,a + γV π(s′)

)
(1.5)

One may also iteratively performs policy evaluation followed by policy improvement, a
sequence of policies that are guaranteed to converge to the optimal policy π∗ is obtained
[11].

6 CHAPTER 1. REINFORCEMENT LEARNING

1.3.3 Action Value Function

Similar to state values, we can look at the value of a certain action in a state. A value of
an action a in a state s under a policy π is defined as the expected cumulative discounted
reward when performing that action and following policy π afterward. For historical
reasons, action values are often called Q− values and we denote these Q(s,a), which is
defined as

Qπ(s,a) = E
[∞

∑
i=1

γ
i−1rt+i|st = s,at = a

]
(1.6)

which can also be defined recursively:

Qπ(s,a) = ∑
s′

Ps′
s,a ·
(

Rs′
s,a + γ ∑

a′
π(s′,a′) ·Qπ(s′,a′)

)
(1.7)

Storing action values requires more space than storing state values: |S×A| compared to
|S|. However, action values have the important advantage over state values that when they
are found the optimal policy can be easily constructed, simply by selecting the action with
the highest value in each state. In contrast, when only state values are known one must
solve section 1.3.2 for each state in order to find this optimal action. This difference is
especially important for model-free algorithms that approximate the state or action values,
since then section 1.3.2 can not be solved since P and R are not known.

1.4 Dynamic Programming

Dynamic programming (DP)is a collection of methods that assumes the knowledge of a
full model of the environment and use this model to determine values or optimal policies.
DP techniques can be seen as precursors of many of the RL techniques. In this section,
we shortly discuss some of the different methods to solve MDPs. We will only look at
methods that in some way use state or action values as defined in the former section.
In principle, it is also possible to search for an optimal policy directly, if some proper
criterion to be optimized is formulated. The two main DP techniques we will discuss are
Value Iteration (VI) and Policy Iteration (PI).

In DP is that we can iteratively apply some update to the values of states or actions
which results in a better approximation of the true state. The obtained approximation can
be better because the resulting value is closer to the true value of the current policy, as
defined by the Bellman equations, or because it is closer to the optimal value, as defined
in the Bellman optimality equations. When considering simulation based RL, we may
introduce updates that only improve the values in expectancy instead of on each step.
All these updates have in common that they adapt the value function. These updates
are therefore operators mapping functions to functions. We can define the operator T π :
RS→ RS as the mapping

(T π V π)(s) = ∑
a

π(s,a) ·∑
s′

Ps′
s,a ·
(

Rs′
s,a + γV π(s′)

)
(1.8)

1.4. DYNAMIC PROGRAMMING 7

where RS denotes a space of bounded real-valued functions over a set S. A fixed point of
an operator T is a function f , such that T f = f . For operator T π as defined in section 1.4
the fixed point is V π , since by definition

(T π V π)(s) =V π(s) (1.9)

or more concisely T π V π =V π and we may also define the symbolic operators

(Πa)Q̂ = ∑
a

π(s,a)Q̂ (Ps)Q̂ = ∑
s′

Ps′
s,aQ̂

as

T πV π = ΠaPs

(
Rs,a + γV π

)
(1.10)

which in principle can be solved as

V π =
(

I− γΠaPs

)−1
ΠaPsRs,a (1.11)

Similarly we can define T ∗ as

∀ s ∈ S : (T ∗V)(s) = max
a ∑

s′
Ps′

s,a ·
(

Rs′
s,a + γV (s′)

)
(1.12)

and note that its fixed point is V ∗, since follows that T ∗V ∗ =V ∗. An operator T : RX →
RX is called a contraction mapping with factor κ if for any two functions f ,g ∈ RX the
following equation holds

‖T f −T g‖ ≤ κ‖ f −g‖ (1.13)

where ‖ f‖ is a sup-norm defined as supx∈X | f (x)| and the domain X is implicitly given by
the function f . If κ = 1, the mapping is called a non-expansion. If κ < 1, the contraction
has a unique fixed point, defined by the equation T f = f . Furthermore, this fixed point
is guaranteed to be reached by repeatedly applying the mapping. Consider the distance
‖T n f −T n g‖ , where T n stands for applying the operator n times, in general we have

‖T n f −T n g‖ ≤ κ‖T n−1 f −T n−1 g‖ ≤ κ
n‖ f −g‖ (1.14)

Since this holds for arbitrary functions f ∈ RX , this also holds when f is the fixed point.
By definition of the fixed point, we then have T n f = f and we get

‖ f −T n g‖ ≤ κ
n‖ f −g‖ (1.15)

Since g ∈RX also arbitrary, this means that for any function g ∈RX , when κ < 1 we have

lim
n→∞
‖ f −T n g‖= 0 (1.16)

This shows that repeatedly applying a contraction mapping on any function in its domain
results in convergence to the fixed point of the contraction mapping in the limit. It is
easy to prove that if you have a contraction mapping T1 with factor κ1 and a contraction
mapping T2 with factor κ2, the combined operator T1 T2 is also a contraction mapping,
with factor κ1κ2. Contraction mappings are important in the theoretical analysis of RL
and dynamic programming algorithms. If we know that an algorithm can be seen as a
contraction mapping with a factor lower than one and we know that the fixed point of the
contraction is the Bellman optimality equation, then we know that applying the algorithm
will leads to optimal values in the limit. If the contraction factor is known, an upper bound
on the rate of convergence can be given.

8 CHAPTER 1. REINFORCEMENT LEARNING

1.4.1 Value Iteration
Value iteration is an iterative algorithm that can be used to find the optimal value function,
and thus the optimal policy. The idea is to repeatedly apply the operator T ∗, as defined in
on some initial finite value function. We know that T ∗ has a unique fixed point in V ∗ that
is obtained in the limit, if we can show that the operator is a contraction with some factor
κ < 1. This is indeed the case:

‖ T ∗V −T ∗V ′‖ (1.17)

= max
s∈S
|max

a ∑
s′

Ps′
s,a

(
Rs′

s,a + γV (s′)
)
−max

a ∑
s′

Ps′
s,a

(
Rs′

s,a + γV ′(s′)
)
|

≤ max
s∈S

max
a
|∑

s′
Ps′

s,a

(
Rs′

s,a + γV (s′)
)
−∑

s′
Ps′

s,a

(
Rs′

s,a + γV ′(s′)
)
|

≤ max
s∈S

max
a

max
s′
|
(

Rs′
s,a + γV (s′)

)
−
(

Rs′
s,a + γV ′(s′)

)
|

≤ max
s′∈S
|γV (s′)− γV ′(s′)|= γ‖V −V ′‖

We identify κ = γ and therefore value iteration converges to the optimal value function in
the limit if γ < 1. There are some other requirements on the MDP, such as that any state
must be reachable. In some specific cases, it can even be guaranteed that the converges
occurs after a finite number of iterations. In this algorithm we introduce two possible stop-
ping criteria. The algorithm stops if either the maximal amount of any value is changed in
the last iteration is lower than some threshold ε , or if the number of iterations transcends
K. After the algorithm has terminated, we can find the (approximate) optimal policy with

π(s,a) =
{

1/M i f (W π V)(s,a) = (T ∗V)(s)
0 otherwise. (1.18)

where M is the number of actions that are optimal in state s according to V . Value iteration
is only applicable if the transition function P and reward function R are known. Even if
this is the case, the algorithm can be slow if the state space is too large.

1.4.2 Policy Iteration
Policy iteration uses T π instead of T ∗, with π is the current policy. It can be shown that
this operator converges to the fixed point V π . The idea is to find this value function or
an approximation thereof, and then use it to improve the current policy. Then, the value
function will no longer be accurate and the procedure repeats itself. The algorithm solve
a |S|× |S| system of linear equations. This can be done in O(|S|3) time, but this may be
too costly if the state space is large. Alternatively, it is also possible to use an iterative
method, as in the value iteration algorithm that at iteration k computes

∀ s ∈ S : Vk+1(s) = (T πk Vk)(s) = ∑
s′

Ps′
s,a

(
Rs′

s,a + γVk(s′)
)

(1.19)

for all s ∈ S until either ‖Vk+1−Vk‖ is smaller than some threshold. If the threshold con-
dition is met at iteration k, Vk+1 =Vk. There are two ways in which the policy evaluation

1.5. MODEL-FREE VALUE LEARNING 9

step can be relaxed. First, only some of the state values may be updated. The most ex-
treme example of this is when only a single state is updated between each two policy
improvement steps. Second, if more than one state is updated, one may update the values
only partially towards V πk , for instance by performing a fixed number of iterations. The
most extreme example of this is when only one update is performed. PI generates an im-
proving sequence of policies which implies that V πk+1(s)≥V πk(s) for all s and all k ≥ 0.
In practice, PI may converge in a fairly low amount of iterations, although like value it-
eration it can be prohibitively slow is the state space is reasonably large and it requires
knowledge of R and P.

1.5 Model-Free Value Learning
DP algorithms have the major disadvantage that they require a model. A good model
of the problem might not be available, although we may have access to a simulated or
real physical system interacting with the agent. As a possible extension to DP methods
mitigating these issues, one can use asynchronous updates not updating the whole state
space in every update. Another possibility is to simulate stochastic updates in place of the
models.

In asynchronous updates the whole MDP is taken as a given input and the algorithms
process this to output the policy. In several problems, parts of the state space are more
interesting than others. This could be since they might be visited more often by good
policies, or eventually rewards are higher. In this case it is worth to consider only updating
a subset of the states in each iteration. As extreme case one only updates the value of a
single state at a time.

In stochastic updates the method gives the result of a single experience of the agent
when it performs an action a in a state s. They are usually combined with asynchronous
updates, since if we learn by looking at the experience of an agent, they are processed by
the learning algorithm corresponding to the state the agent is. Learning algorithm will not
necessarily process each experience at once but sometimes process part of the information
before a terminal state is reached or the whole state space is visited.

Given a policy π estimating V π(s) can be done through equation

V π(s) = E[
T−t

∑
i=1

γ
i−1rt+i|st = s,π] (1.20)

or

V π(s) = E[rt+1 + γV π(st+1)|st = s,π] (1.21)

assuming episodic MDP such that in at most T steps the terminal state is reached. The
two definitions can than be turned into two different updates.

1.5.1 Monte Carlo Updates
In Monte Carlo updates one uses the actual sum of discounted rewards obtained until the
end of the current episode. The current value of each state s can then be updated with

10 CHAPTER 1. REINFORCEMENT LEARNING

this value in order to get a better estimate of the value of the policy that was followed.
Since the rewards may contain noise and the state transitions stochastic, one to averages
different runs from each state. Denoting the start of episode k with tk and its end with Tk
the update to the value of the state then becomes

Vk+1(st) = (1−αk(st))Vk(st)+αk(st)
(Tk−t

∑
i=1

γ
i−1rt+i

)
(1.22)

αk(s) ∈ [0,1] is a learning rate parameter and tk ≤ t < Tk. In this way section 1.5 was
turned into an update using the learning rate to average over the different outcomes we
observe from a state in different episodes. In not deterministic MDP exists the possibility
that a state is visited more than once in a single policy and to make the update using
only the summed rewards after the first visit of the state or the summed rewards after
each visit [69]. If we assume for simplicity that no state is visited more than once the
return after each episode is clearly an unbiased estimate for V π . Consider a learning rate
of αk(st) = 1/nk(st), where nk(s) is the number of times state s will have been updated
after the current update. Then, for each state Vk(s) will be equal to the average over all
the returns after visiting state s in the first k episodes. If the number of times each state
is visited increases, the variance of Vk(s) decreases and the in the limit Vk converges:
limk→∞Vk = V π . A disadvantage of Monte Carlo methods is that the returns can have
considerable variance. If we reach a state that was already visited many times, we might
want to use its value, instead of the considerably noisier rewards that actually result from
performing the policy from that state onwards.

1.5.2 Temporal Difference Learning
In Temporal Difference (TD) learning each state value gets updated with a one step Monte
Carlo update, using the actual return and the value of the next state. For Monte Carlo
methods section 1.5 was turned into an update while in TD learning we use section 1.5.
When the model is not known one samples an experience consisting of a state transition
and a reward. Such a sample may be noisy so the update must averages over the samples
with a learning rate. This results in TD learning expressed by:

Vt+1(st) = (1−αt(st))Vt(st)+αt(st)(rt+1 + γVt(st+1)) (1.23)

which can be viewed as a minimizing the expected TD error E[δt |st = s], where the TD
error δt is defined as

δt = rt+1 + γVt(st+1)−Vt(st) (1.24)

TD learning can be shown to converge in the sense that limt→∞Vt = V π as long as the
learning rates are chosen such that

∀ s ∈ S
∞

∑
t=0

αt(s) = ∞

∞

∑
t=0

α
2
t (s)< ∞ (1.25)

Such conditions on the learning rates are referred to Robbins-Monro conditions [74]. First
condition ensures that the whole possible value function space stays reachable no matter
how poor some samples are. Second condition ensures that updates become small enough
in the limit to ensure stability.

1.6. STOCHASTIC ITERATIVE ALGORITHMS 11

1.5.3 Bias and Variance
We have discussed two different methods to approximate V π without using a model:
Monte Carlo methods and TD learning. We have specified some cases in which TD learn-
ing is preferred, such as in non-episodic tasks since Monte Carlo waits until the end of
an episode before updating. Monte Carlo estimates are unbiased estimates for V π which
can be easily checked as V π(s) is defined through the expected value of the discounted
future return when following policy π from state s. Monte Carlo methods simply sam-
ple trajectories and are therefore unbiased. TD learning introduces bias by using the state
value of the next state in its estimate. This value will be content less and arbitrary and will
therefore introduce a bias in the initialization of the values which is especially true when
this state has not been visited yet. Monte Carlo methods can suffer from considerable
variance. Each update uses a sample from the whole trajectory following the updating
state and therefore variances of the consecutive random rewards are combined. In other
words, if we assume the variance of each reward is σ2, then the variance of a Monte Carlo
update is between σ2 and σ2/(1−γ)2 depending on how many steps the episode on aver-
age takes from the state under consideration. For TD learning the variance is then always
σ2, since it only uses a single stochastic reward for its updates. Moreover, the bias of all
state values decreases under TD learning, ensuring that the updates become better over
time. In contrast, in Monte Carlo methods the expected target of the update has the same
variance independent on the number of updates that have already occurred. See [97] for
more details on the subject.

1.6 Stochastic Iterative Algorithms
Optimization problems or system of equations are often solved by means of iterative
algorithms. However in many situations the information needed to carry out the iterations
is not directly available and one has to deal with the presence of noise. Stochastic iterative
algorithms are variants of deterministic iterative algorithms able to operate in presence of
noise. Following [11] suppose we are interested in solving a set of equations of the form

(T Ψ) = Ψ (1.26)

where T is an operator T : Rn→ Rn whose form may be not known precisely such that
its exact evaluation is difficult. However we may have access to the random variable
σ = T Ψ+w where w is a random noise term. Therefore one possible stochastic setting
to solve section 1.6 may be:

Ψt+1 = (1−αt)Ψt +αt (T Ψt +wt) (1.27)

where α is a positive step-size parameter usually chosen to be smaller than one and we
are using t to index the different iterations. The resulting algorithm is called a stochastic
approximation algorithm where smaller α reduce the sensitivity to the noise w. On the
other hand, the algorithm leads slower progress with smaller α and it is also possible using
variable step-size. If the algorithm converges to Ψ∗, T is continuous at Ψ∗ then the limit
must satisfy (T Ψ∗) = Ψ∗ so that Ψ∗ is the fixed point of the operator T the convergence
is guaranteed to take place.

12 CHAPTER 1. REINFORCEMENT LEARNING

A more concrete setting can be obtained considering that what we really are interested
is to solve is the equation

E[g(Ψ,v)] = Ψ (1.28)

where g is a known function and the expectation is taken with respect to the conditional
distribution P(v|Ψ) of the random variable v. If the distribution P(v|Ψ) is known it is
possible to generate random samples v̄ of v and use them to estimate E[g(Ψ,v)]. Now
considering a single sample v̄, one way to solve section 1.6 in a stochastic setting can be
the use of the Robbins-Monro approximating algorithm of the form

Ψt+1 = (1−αt)Ψt +αt g(Ψt , ṽt) (1.29)

where ṽt is a single random variable generated according to the distribution P(v|Ψ). Now
recalling the scheme in section 1.6 we may write Robbins-Monro as

Ψt+1 = (1−αt)Ψt +αt (E[g(Ψt ,vt)]+g(Ψt , ṽt)−E[g(Ψt ,vt)]) (1.30)

then we see that putting T Ψt = E[g(Ψt ,vt)] the operator and wt = g(Ψt , ṽt)−E[g(Ψt ,vt)
the zero mean noise term we are dealing with a special case of the algorithm in section 1.6.
Assume also that

Ψt+1(i) = Ψt(i) ∀ t /∈ Ni (1.31)

where Ψt = (Ψt(1), ...,Ψt(n)) ∀Ψt ∈Rn and Ψt(i) indicating the ith component. In this
framework it is crucial for the step-size to be chosen according to some general assump-
tion in order to guarantee the convergence and in particular we assume the step-size αt(i)
non negative and αt(i) = 0 for t /∈ Ni where Ni be an infinite set of integers indicating the
set of times at which the update of Ψt is performed. The noise term wt(i) as statistically
independent from Ψt with variance σ2. Allowing αt(i) to decrease to zero the effect of
the noise wt on the variance of Ψt+1(i) becomes vanishing. Therefore we assume that the
following conditions hold with probability one:

(a)
∞

∑
t=0

αt(i) = ∞ (1.32)

(b)
∞

∑
t=0

α
2
t (i)< ∞ (1.33)

Moreover during the update of the algorithm the entire history can be represented by the
increasing σ − f ields

Pt = {Ψ0(i), ...,Ψt(i),w0(i), ...,wt(i),α0(i), ...,αt(i), |i = 1, ...,n} (1.34)

and by construction Pt+1 ⊆ Pt .

1.6.1 Convergence Analysis
In some cases an algorithm may converges to some fixed point. For instance, it is good to
know if it can be proven that the value function converges to the optimal value function
for a certain algorithm. More general results have been presented in the literature [11].
The following lemma proposed by [80] applies to stochastic processes such as Markov
chains obtained by interaction of an algorithm with an MDP:

1.6. STOCHASTIC ITERATIVE ALGORITHMS 13

Lemma 1.1. [80] Consider a stochastic process (αt ,∆t ,Ft), where (αt ,∆t ,Ft) : X → R
satisfy the equations

∆t+1(xt) = (1−αt(xt))∆t(xt)+αt(xt)Ft(xt) (1.35)

where xt ∈ X and t = 0,1,2, Let Pt be a sequence of increasing σ − f ields such that
α0 and ∆0 are P0−measurable and αt , ∆t and Ft are Pt−measurable, t ≥ 1. Assume that
the following hold:

1. the set X is finite

2. αt(xt) ∈ [0,1], ∑
∞
t=0 αt(xt) = ∞,

∑
∞
t=0 α2

t (xt)< ∞ w.p.1 and ∀ x 6= xt : αt(xt) = 0,

3. ‖E{Ft |Pt}‖ ≤ κ‖∆t‖+ ct

4. Var{Ft(xt)|Pt} ≤ K(1+κ‖∆t‖2), where K is some constant

where ‖ · ‖ denotes a maximum norm. Then ∆t converges to zero with probability one.

The proof can be found in [80].
The same result holds if we consider Ft = (T Ψt)(xt)+wt(xt) and assuming the fol-

lowing conditions hold with probability one:

E[wt(xt)|Pt] = 0 (1.36)
E[w2

t (xt)|Pt]≤ K(1+κ‖Ψt(xt)‖2) (1.37)

and also assuming that the mapping T is a weighted maximum norm pseudo contraction
operator. This means that if we define the weighted maximum norm as:

‖Ψt‖ξ = max
i
(
|Ψt(i)|

ξ (i)
) (1.38)

(when all ξ (i) = 1 we have the maximum norm denoted as ‖ · ‖∞) and an operator T :
Rn→Rn is a weighted maximum pseudo contraction norm if if there exists some Ψ∗t ∈Rn

and a positive vector ξ = (ξ (1), ...,ξ (n)) and a constant γ ∈ [0,1) such that

‖(T Ψ)−Ψ
∗‖ξ ≤ γ‖Ψt−Ψ

∗‖ξ ∀Ψt (1.39)

If all these conditions are present Ψt converges to Ψ∗ with probability one.
The idea of the lemma 1.1 is usually to apply it with X= S×A, and ∆ = Q−Q∗. The

maximum norm specified in the lemma can then be understood as satisfying the following
equation:

‖∆t‖= max
s

max
a
|Qt(s,a)−Q∗(s,a)| (1.40)

Often, the first, second and fourth assumption are easily met and to apply the lemma one
only has to show that the contraction in the third assumption holds.

14 CHAPTER 1. REINFORCEMENT LEARNING

1.7 Learning Action Values
One may also define operators implementing the Bellman equations for action values as
T π : RS×A→ RS×A with fixed point Qπ through

(T π Q)(s,a) = ∑
s′

Ps′
s,a ·
(

Rs′
s,a + γ ∑

a′
π(s′,a′) ·Q(s′,a′)

)
(1.41)

which using the symbolic operators Πa and Ps can be written as

T πQπ = Ps

(
Rs,a + γΠaQπ

)
(1.42)

which can be solved as

Qπ =
(

I− γPsΠa

)−1
PsRs,a (1.43)

Similarly we can define T ∗ as

(T ∗Q)(s,a) = ∑
s′

Ps′
s,a ·
(

Rs′
s,a + γ max

a′
Q(s′,a′)

)
(1.44)

T ∗ is also a contraction mapping with fixed point Q∗. In fact T ∗Q∗ = Q∗ is the Bellman
optimality equation for action values and therefore Q∗ is a fixed point for T ∗. Further-
more:

‖ T ∗Q−T ∗Q′‖ (1.45)
= max

s∈S
max
a∈A
|(T ∗Q)(s,a)− (T ∗Q′)(s,a)|

= max
s∈S

max
a∈A
|∑

s′
Ps′

s,a

(
γ max

a′
Q(s′,a′)− γ max

a′
Q′(s′,a′)

)
|

≤ max
s′∈S
|γ max

a′
Q(s′,a′)− γ max

a′
Q′(s′,a′)

)
|

≤ max
s∈S

max
a

γ|Q(s′,a′)−Q′(s′,a′)|= γ‖Q−Q′‖

This holds for all Q,Q′ and since T ∗Q∗ = Q∗ implies

‖T ∗Q−Q∗‖= ‖T ∗Q−T ∗Q∗‖ ≤ γ‖Q−Q∗‖ (1.46)

showing the convergence of Q to Q∗ under the max norm with a factor of at most γ when
applying operator T ∗. This means we could implement value iteration with action values
to approximate Q∗, with ensured convergence in the limit.

In the value based approaches for solving RL problems, one aims to find the fixed
point of the Bellman operator Qπ = T πQπ for policy evaluation problem or the Bellman
optimality operator Q∗ = T ∗Q∗. To find the optimal value function it is necessary to
know how to represent an action value function Q, evaluate T πQπ or T ∗Q∗ and finally
find the calculate the fixed point of T π or T ∗ operators. When S×A is a small finite
space and Q can be represented by a finite number of real values. On the contrary we
must approximate Q with a given approximating function. This process is called function

1.7. LEARNING ACTION VALUES 15

approximation which ca ne addressed by approximation and statistical learning theory. A
reasonable way to evaluate T πQπ or T ∗Q∗ is to approximately estimate them by random
sampling from Ps′

s,a. Finally there are several approaches to find the fixed point of the
Bellman operators which will be described later on.

T π is a contraction mapping with factor γ and fixed point Qπ . This can be used as the
policy evaluation step in a PI algorithm with action values. The policy improvement step
can then be accomplished by using a policy that is greedy in the action values.

A greedy policy is defined as follows: an action a is greedy in a state s for an action
value function Q if Q(s,a) = maxa′Q(s,a′). A policy π is greedy when in all states s the
action selection probability π(s,a) is equal to zero for all non-greedy actions. Multiple
actions may be greedy in a given state. Any policy that always selects one of these actions
is called greedy, regardless of how the probabilities of selecting these multiple greedy ac-
tions are distributed. Although it is convenient to have action values, DP with state action
values suffers from the same limitations as DP with state values. The most important of
these are the requirement of a model and the computational requirements for larger state
and action spaces. In RL algorithms one usually makes a distinction between methods
following the policy they are learning called on-policy and those learning from behavior
generated by different policy called off-policy.

1.7.1 Exploration Techniques
We defined the greedy policy as the one that chooses the highest valued action in each
state. Such kind of policy can be constructed by setting the probability of all actions
corresponding to the highest action value to zero. However, this policy is of limited use
in combination with model-free algorithms since it is only able to explore a small part of
the state space. In general, one should balance the exploitation of the knowledge obtained
which can be done by choosing greedy actions with the exploration of the state and action
space in order to find new interesting actions. As a result one needs a policy able to
explore. An extreme example the use of a random policy selecting random actions on
each step. The traded off between exploration and exploitation can be managed using a
parameter ε ∈ [0,1], representing the probability of using the random policy. A greedy
action is then selected with probability (1− ε) yielding to the ε − greedy exploration.
Hence, we call a policy ε−greedy if it selects a random action with probability ε ∈ [0,1]
and a greedy action with probability (1− ε).

A requirement for the convergence of some algorithms is that the exploration policy is
greedy in the limit with infinite exploration. A policy π is greedy in the limit with respect
to some action value function Qt if for all states s it holds that limt→∞ ∑a πt(s,a)Qt(s,a) =
maxa Qt(s,a) An example of a family of policies greedy in the limit with infinite explo-
ration in a finite MDP is an ε − greedy policy where εt = 1/nt(st)

x with nt(st) denoting
the number of times the state st was visited in the first t time steps and x ∈ (0,1]. In
practice, ε − greedy exploration works fine. Eventually the main problem is that it does
not differentiate between potentially good actions that are not greedy at the moment and
actions that are known to be worthless. A better type of exploration can take into ac-
count the values of different actions. An action with a larger value should have a larger
probability of being selected and actions that are known to have very low values may be
neglected. One way to do this is to use a so-called Boltzmann distribution that yields the

16 CHAPTER 1. REINFORCEMENT LEARNING

following policy:

πt(s,a) =
eQt(s,a)/τ

∑b eQt(s,b)/τ
(1.47)

This definition fulfills the desired properties and requirements we have for a policy: the
action selection probabilities sum to one and higher values correspond to larger selection
probabilities. The τ parameter is called the temperature and regulates how greedy the
policy is. When τ decreases towards zero, the policy becomes more greedy and when it
increases toward infinity, the policy becomes more random.

Similar to the state values we can transform the Bellman equations for action values
into iterative sampled updates as:

Qπ(s,a) = E
[T−t

∑
i=1

γ
i−1rt+i|st = s,at = a,π

]
(1.48)

Qπ(s,a) = E
[
rt+1 + γQπ(st+1,at+1)|st = s,at = a,π

]
(1.49)

Q∗(s,a) = E
[
rt+1 + γ max

a′
Q∗(st+1,a′)|st = s,at = a,π

]
(1.50)

section 1.7.1 can be sampled with Monte Carlo methods whose disadvantage is that all not
selected actions in an episode are not updated. This implies that if on average there are M
actions per state, one might need M times as many episodes to reach the same accuracy as
when using state values. The difference in convergence rate is also dependent on whether
there are actions with a zero (or low) probability of being selected which might take quite
long to be approximated with reasonable accuracy.

Two TD algorithms can be derived from the Bellman Equation 1.49 and section 1.7.1.
Assume Qt as an increasingly good approximation for Qπ sampling section 1.7.1 and
updating with a learning rate αt(st ,at) ∈ [0,1] to average out stochastic noise gives:

Qt+1(st ,at) = (1−αt(st ,at))Qt(st ,at)+αt(st ,at)(rt+1 + γQt(st+1,at+1)) (1.51)

This update is known as SARSA and was investigated by [76], [42], [91]. The name
is because it uses an experience sample consisting of the tuple (st ,at ,rt+1,st+1,at+1) for
each update. It can be shown that this algorithm converges to Qπ , provided that all actions
are selected according to a fixed policy π and restrictions on the learning rates. SARSA is
an on-policy algorithm. SARSA may also converge to Q∗ under a policy slowly becoming
greedy [80].

Another possibility proposed by [103] and called Q-learning can be obtained sampling
the Bellman Equation 1.50 assuming Qt is an increasingly good approximation of Q∗ as

Qt+1(st ,at) = (1−αt(st ,at))Qt(st ,at)+αt(st ,at)(rt+1 + γ max
a

Qt(st+1,a)) (1.52)

Q-learning can be shown to converge to the optimal value function Q∗. Q-learning learns
about the optimal policy regardless of the policy that is being followed. For this reason Q-
learning is an off-policy as it learns about one policy while following another policy. For

1.7. LEARNING ACTION VALUES 17

Q-learning the conditions for convergence are that in every state every action is eventually
selected an infinite amount of times and the learning rates are chosen such that

∀ (s,a) ∈ S×A
∞

∑
t=0

αt(s,a) = ∞

∞

∑
t=0

α
2
t (s,a)< ∞ (1.53)

In a stochastic environment Q-learning will need to sample each action in every state an
infinite number of times to fully average out the noise, but in many cases the optimal
policy is learned long before the state action values are highly accurate. In a determinist
environment it is optimal to set the learning rate equal to one and Q-learning reduces to a
form of value iteration, since it performs an asynchronous update equal to section 1.7.1.
Although the off-policy capability of Q-learning is appealing, it is also source of insta-
bility. Operating in an on-policy mode and updating state action pairs according to the
same distribution they would be experienced under π is stable and convergent near the
best possible solution. However, if state action pairs are updated according to differ-
ent distribution, for example generated following the greedy policy, the estimated values
diverges to infinity. It is worth noting that the Q-learning update rule section 1.7.1 com-
bines two strong ideas: the notion that the knowledge is made of expectations and the TD
which is a method of prediction well suited for online and incremental learning. Basic
rule section 1.7.1 can also be derived from the formula of the expected value of a discrete
random variable. In fact, the expected value µ of a discrete random variable x with pos-
sible oucomes x1,x2, ...,xn and probabilities P(xi) can be calculated as µ = ∑

n
i=1 xiP(xi)

thus for a discrete variable with only two possible values becomes µ = (1−α)x1 +αx2
where α is the probability of the second value x2. Hence considering x1 as the previously
stored expected value µ and x2 as the new observation x we may write µ = (1−α)µ+αx.
Therefore we come to the conclusion that the learning rate α basically express the proba-
bility that the random variable µ get the value of the observation x .

1.7.2 Expected SARSA
Q-learning updates uses the max operator which causes the estimation policy πe

t to be
greedy which guarantees the Qt(s,a) values converge to Q∗(s,a). The behavior policy
of Q-learning is usually exploratory and based on Qt(s,a). For SARSA the behavior
policy and the estimation policy are the same making it an on-policy algorithm. Hence,
it will not converge to optimal Q∗ values as long as explorations occurs. However, by
annealing exploration over time, SARSA will converge to optimal Q∗ values just like
Q-learning. SARSA’s convergence guarantee requires every state to be visited infinitely
often, the behavior policy and therefore the estimation policy are stochastic to ensure
enough exploration. One of the main effect is that there can be large variance in SARSA
updates since at+1 is not selected deterministically. Variance can occur in any TD method
due to stochasticity of the environment through the transition probability Ps′

sa and reward
Rs′

sa. Within a model-free method it is possible to reduce stochasticity choosing a low
learning factor α . In SARSA other variance may come from policy stochasticity which is
known to the agent.

Expected SARSA is an on-policy method which can be seen as a variant of SARSA
and exploiting the knowledge of the policy being used to prevent stochasticity. To do that

18 CHAPTER 1. REINFORCEMENT LEARNING

the update is not based on Qt(st+1,at+1) but instead on E[Qt(st+1,at+1)]. As SARSA can
be viewed as an averaging sample of Bellman Equation 1.49, A closer look shows that
sampling of the policy is not necessary. Reward and transition are sampled because one
does not want to store a model for the reward and transition function. However, a known
policy is required as it is used to select the next action. Policy π at time t is always known
and there is no need to sample the action actually taken while one can instead use the
update:

Qt+1(st ,at) = (1−αt(st ,at))Qt(st ,at)+

αt(st ,at)(rt+1 + γ ∑
a

πt(st+1,a)Qt(st+1,a)) (1.54)

First mention of this algorithm in an exercise in the book by [88]. It was more recently
studied in detail and found in general to be an improvement over SARSA by [98]. It
can be proved that in general Expected SARSA has the same bias but lower variance
than the SARSA algorithm. Lower variance means that α could be increased to speed
up the learning process. Expected SARSA can be also viewed as an on-policy version of
Q-learning. In fact since Qt(s,a) is an estimate of Qπ(s,a) its expectation can be seen
as the estimate Vt(s) for V π(s) through Vt(s) = ∑a πt(s,a)Qt(s,a). If the policy we have
πt(s,a) = 0 for all a except a∗ for which Qt(s,a) has its maximal value. Hence, in case
of greedy policy we have Vt(s) = maxa Qt(s,a) showing that the Q-learning update is just
a special case of Expected SARSA when the estimation policy is greedy. The proof of
Expected SARSA convergence can be found in [97] according to the follwong theorem:

Theorem 1.1. [Expected SARSA Convergence from [97]] Expected SARSA defined by
the update section 1.7.2 converges to the optimal value function whenever the following
assumptions hold:

1. S and A are finite

2. αt(st ,at) ∈ [0,1], ∑t αt(st ,at) = ∞, ∑t α2
t (st ,at)< ∞ w.p.1

and ∀ (s,a) 6= (st ,at) : αt(s,a) = 0

3. the policy is greedy in the limit with infinite exploration

4. the reward function is bounded

Chapter 2

Generalization Problem in RL

2.1 Introduction
Goal of RL is to find the optimal policy. In the case of value function methods, this goal is
reduced to find the optimal or near optimal value function. Under this methodology, when
the state space is relatively small, the value function can be represented exhaustively by
a lookup table with entries corresponding to each state But in practice, the state space
can be very large, infinite or continuous. Tabular representation becomes impractical
due to computational requirements. RL algorithms require exact representations of the
value functions and policies. In general, an exact value function representation can be
accomplished by storing different estimates of the reward for every state-action pair when
Q-functions are used (or for every state in the case of V-functions). Different actions
have to be stored for every state to represent policies exactly. In case the variables have
a very large (or continuous) domains, one cannot make use of exact representations and
value functions or policies need to be represented approximately. As most problems of
possible interest have large or even continuous state and action spaces, approximation is
necessary. Approximators can be separated into two main types: parametric and non-
parametric. Parametric approximators can be seen as mappings from a parameter space
into the space of functions they want to represent. Number of parameters and the form
of the mapping are given a priori, while the parameters can be found using data about the
target function. In contrast, the structure of a non-parametric approximator is derived from
the data. Despite its name, a non-parametric approximator typically still has parameters.
In this case the number of parameters and their values are determined from the data.
Kernel-based approximators for example define one kernel for each point, and the target
function may be represent as a weighted linear combination of such kernels, where the
weights are the parameters The material for this section was referenced from [88],[10],
[18], [103], [12], [48], [3].

2.2 Generalization in RL
In the formalization of the RL methods presented so far we assumed that the number of
states and actions was finite, and that the value functions can be represented in a tabular
way. Each state, or state-action, has associated a value, which has to be updated inde-

19

20 CHAPTER 2. GENERALIZATION PROBLEM IN RL

pendently of each other. This makes necessary that all the entries in the table have to be
experienced many times in order to learn. Tabular representation are no longer applicable
with RL methods applied to more complex control applications having large or infinite
number of states and actions as it may require a number of experiences infeasible for the
learning to take place. As a result of this limitation, more abstract state representation are
necessary permitting to generalize the known value at one state, or state-action pair, to
other similar states, or state-action pairs reducing the number of experiences required for
learning.

Barto and Sutton [10] proposed one of the first methods for generalization in RL for
the cart pole balancing control task. The need of generalization in RL was also com-
mented in [86] and Watkins [103] where, among other things, was pointed out the neces-
sity of generalization in RL. One important aspect comes with the convergence problems
arising if the generalization of the experience in a state is transferred to other states that
produces a value different from the one they experienced. Several authors proposed dif-
ferent techniques to generalize in RL in the past few years [32], [38], [62], [63], [68],
[72], [73], [75]. Generally speaking they consist in combining the learning strategy in
such a way values resulting from actions execution are able to generalize this knowledge
using techniques coming from pattern recognition [15] or concept learning [60]. Methods
performing local regressions like [4],[68] shows better behavior with the biased sampling
and non-stationarity problems as they reduce the function capacity to adapt to smaller
regions. This comes as a compromise for generalization performed through a trade-off
between the necessary locality and the generalization issue. Another class of methods
are fitted value iteration methods [38], [72],[73] which are batch and memory-based ap-
proaches performing a single step of the function approximation over a set of points. This
gives samples representative for the learning and one step of value adaptation always on
these points using a standard RL method. Fitting the value function and the value function
adaptation on the set of points are carried out until some convergence criterion is fulfilled.

Typical problems in RL generalization may appear in different degrees at different
regions of the domain, and at different stages of the learning process. Function approxi-
mator selected should allow to cope with the approximation requirement of the most de-
manding region, independently on the complexity of the approximation in other regions
of the domain. During the learning process the estimation of the value function changes.
This is a consequence of the policy evaluation process estimating the value function for
the current policy. It is also a consequence of the policy improvement mechanisms chang-
ing the policy towards the optimal one. As a result the estimation of the value function
becomes non-stationary. Moreover, as in RL data arrive one at a time sampled along tra-
jectories which depends on the dynamics of the environment and are influenced by the
action selection strategy. This is another difficulty for generalization methods which may
produce biased sampling with large distortions in the estimations and instabilities in the
convergence. Generalization should be robust to the non-stationary target function and
biased sampling problem in order for learning to take place.

Shape and complexity of the value function uncertainties in the various regions of the
domain during the learning process can make the selection of the correct function approx-
imation quite complicated. In many cases selection has to done empirically through the
evaluation of the performance of different approximators. Nevertheless, using a single
function approximator one cannot avoid that the overall performance of the system to be

2.2. GENERALIZATION IN RL 21

related to the approximator performance. A deficiency in the approximation in several
part of the domain might turn into a failure in the whole learning process.

Various approximation architectures have been investigated for use in RL such as
Neural Networks [41], Linear Architectures [48], [95], Wavelets [55], [54] and Splines
[94]. Kernel-based methods like SVM ([81], [23]) or Gaussian Processes [72] for pattern
classification and regression have been also used in RL domain. Candidates for value
function approximation are SVR which is the regression method using SVM paradigm.
A model-free approach for approximate value iteration is presented in [68] which uses
kernel smoothers. Some authors [85], [84], [53] developed specialized kernels exploiting
state space manifold structure while others [29] used Gaussian processes for computing
the value function by an approximate value iteration algorithm. Tobias and Daniel [93]
proposed a Least Squares Temporal Difference (LSTD) approach based on SVM. In [13]
a kernel-based approximate DP using BRM is presented. Dietterich [30] investigated
a linear programming approach using kernels and DP approximating the value function
with SVR minimizing the TD error. However, their approach is unable to solve online
learning problem because it estimates a value function after visiting all states using a
uniform random behavior policy. In their approach, an RL agent can neither cumulate
its experiences continuously nor adapt itself to the changing environment readily. On the
contrary, an RL agent should generally be able to learn from data obtained sequentially
from interaction with the environment. In all the reported works, while somehow the
algorithms may be attractive for some specific problems or having interesting practical
implementations, the lack of theoretical guarantee is a fundamental flaw.

2.2.1 Generalization And Discretization Issues
There are limitations and advantages of using function approximation in RL. Consider the
tabular storage of each action value. Storing each value in a separate cell in a table has a
clear advantage: since each cell is separate, there is no interference among them and the
approximation of the value of each action for the cMDP rely on the algorithm used and the
policy. Anyway, cell separation has some disadvantage. If the state space is large before
each action is visited it can take a very long time. Furthermore, with noisy cMDP each
action has to be visited several times to average out the noise. To avoid very slow conver-
gence rates, it should be necessary to generalize over states and actions similar. Generally
speaking a learned function can misinterpret observed data (poor generalization) when the
function approximator is too inflexible. In this case the function approximator underfit the
data. On the contrary with a too flexible function approximator it can represent nearly any
function and many parameters might be tweaked with the risk that the function approx-
imator will represent the general structure and the noise eventually present in the data.
In this case then function approximator overfit the data. generalization error becomes
large in both cases on a large portion of the value space. In RL a function approxima-
tor underfitting the data might learn quickly but is incapable of each a good performance
or may not reach reasonable performance at all. A flexible function approximator might
overfit the data which could be especially true when only a small amount of data has been
observed. Usually this may result in slow learning since the estimations for states not
observed will be quite poor. A suitably, trained and flexible function approximator might
reach very good final performance levels as more experiences are obtained. Convergence

22 CHAPTER 2. GENERALIZATION PROBLEM IN RL

to good approximation in the limit can be guaranteed in some cases. Finally a more flex-
ible approximator will give a better final approximation even though it might take very
long before acceptable performance is obtained.

In practical applications of RL, states and actions are defined by continuous parame-
ters and the sets S and A have to be considered large or infinite, while learning the value
function requires function approximation. One often used method to find features for a
linear function approximator is to simply divide the continuous space into separate seg-
ments and then to attach one or more features to each segment. These features are then
active if the value of a point in the continuous space is considered that falls into the cor-
responding segment. Prominent examples of discretizing methods often used in RL are
coarse coding and tile coding [88],[87]. In tile coding [88] space variable is partitioned
into tiles and such partition is called a tiling. Tile code uses several overlapping tilings
maintaining for each tiling the its weights. Approximate value for a given point can ob-
tained considering the sum of the weights of the tiles (one per tiling). With a given a
training sample method try to adjust the weights of the tiles trying to reduce the error on
the samples set. Tile coding can be considered a piecewise constant approximator.

To explain the concept of coarse coding consider an RL problem with continuous and
bi-dimensional state space. A possible feature can be chose as corresponding to circles
or rectangles in the state space. In case the state is inside a circle the corresponding
feature has the value 1 otherwise the feature is 0 (binary feature). In a given a state,
binary features 1 indicate that the state lies within a given circle and thus coarsely code
its location. The representation of a state with overlapping features is known as coarse
coding. In coarse coding generalization from state to state depends on the number of their
features whose receptive fields overlap. In case states have one feature in common, there
will be generalization between them. If circles are small, generalization will be over a
short distance. If they are large there will be over a large distance. Shape of the features
determine the nature of the generalization and in linear function approximation methods
this is determined by the sizes and shapes of the features receptive fields. Features with
large receptive fields give broad generalization, but might also seem to limit the learned
function to a coarse approximation, unable to make discriminations much finer than the
width of the receptive fields. Initial generalization from one point to another may be
controlled by the shape and size of the receptive fields.

2.3 MDPs in continuous spaces

Much of the discussion on finite MDPs still holds in the continuous case. The main
difference is that the state space S will generally be an infinitely large bounded set. One
may discuss continuous state and continuous state action MDPs. In the first case only
the state space is continuous, but the action space is finite. In the second case both the
state and the action space are continuous. Wherever we write continuous one can also
assume that results essentially (not formally) hold for very large finite spaces. Techniques
for large finite state spaces are very similar to the continuous one. For practical real-
world applications it would nice to deal with continuous action MDPs. In this case one
major difficulty is that extending convergence results to the continuous action requires
maximizing the action at each state which except in special cases cannot be done exactly.

2.3. MDPS IN CONTINUOUS SPACES 23

So hereafter we will work in continuous space and finite action domains. For a space Ω

with a σ -algebra σΩ defineM(Ω) the set of all probability measure over σΩ and B(Ω)
the space of bounded measurable function w.r.t. σΩ and B(Ω,L) the space of bounded
measurable function with bound 0 < L < ∞

Definition 2.1. (Continuous State cMDP) A continuous state and finite action discounted
cMDP can be defined as a tuple (S,A,P,γ), with the following definitions for its contents:

• S is a measurable state space where st ∈ S denotes the state the agent is in at time
t.

• A is a finite set of available actions where at ∈ A denotes the action the agent
performs at time t.

• P : S×A→M(R×S) is a mapping that when evaluated at (s,a) ∈ S×A gives the
distribution over R×S denoted as P(r,s′|s,a).

• Marginals of P can be defined as P(·|s,a) = ∫RP(dr, ·|s,a) denotes the probability
of ending up in state s′ when performing action a in state s (transition probability)

• R(·|s,a) = ∫S P(·,ds′|s,a) is a reward function denoting the expected reward when
the agent transitions from state s to state s′ after performing action a.

• The immediate expected reward is defined as r(s,a) =
∫
R rR(dr|s,a) = E[r̂|s,a]

while r̂ his the empirical approximation of r.

• γ ∈ [0,1) is a discount factor.

At stage t an action at ∈ A is selected by the agent controlling the process and in re-
sponse the pair (rt ,s′t) is drawn from the distribution P(r,s′|st ,at) i.e (rt ,s′t)∼P(r,s′|st ,at)
where rt is the reward the agent receives and s′t the next cMDP state. The procedure con-
tinue leading to a random trajectory ξt = {s1,a1,r1,s2,a2,r2, ...} ∈ Ξ where Ξ denotes
the space of all possible trajectories.

For a cMDP an agent consists mainly of an action selection policy such that at =
π(st). A stationary stochastic policy maps states to distributions over the action space
πt : S→M(A) with πt(a|s) denoting the probability that the agent will select the action
a to perform in state s at time t. We will use π(s) to refer to the probability distribution or
the probability mass function of the actions in state s. Stochastic policies are also called
soft when they do not commit to a single action per state. π(a|s) stands for the probability
that the soft policy chooses action a in state s. An ε−greedy policy is a soft policy which
for some 0 ≤ ε ≤ 1 picks deterministically a greedy action with probability 1− ε and a
uniformly random action with probability ε . We will then use a ∼ π(·|s) to indicate that
action a is chosen according to the probability function in state s.

A continuous state and finite action cMDP encodes the temporal evolution of a discrete-
time stochastic process controlled by the agent through the policy π . A probability model
for the cMDP consists of a sample space Ω, a σ−algebra of Borel measurable subsets
of Ω denoted as B(Ω) and a probability measure on B(Ω), As a results one choose
Ω = S×A× S×A.....S×A× S and a typical element ω ∈ Ω consists in a sequence of

24 CHAPTER 2. GENERALIZATION PROBLEM IN RL

states and actions ω = {s0,a0,s1,a1,} which is called a sample path. The random
variables (st ,at) taking values in (S×A) as (st(ω),at(ω)). This means that when the
observed sequence of states and action is ω the random variable (st ,at) denotes the state-
action at the time t.

A policy π inducing the transition probability kernel of following a policy π defined
as Pπ(ds′|s) = P(ds′|s,π(s)). For a measurable subset B⊆ S×A define

(Pπ)(B|s,a) =
∫
P(ds′|s,a)I{(s′,π(s′))∈B}

and the m-step transition probability kernels are defined inductively by

(Pπ)m(B|s,a) =
∫
P(ds′|s,a)(Pπ)m−1(B|s′,π(s′))

while for a probability measure ρ ∈M(S×A) define the left-linear operator

(ρP)(B) =
∫

ρ(ds,da)P(ds′,da′|s,a)I{(s′,a′)∈B}

.
Given the policy π the cMDP reduces to a Markov chain Mπ = (S,Rπ ,Pπ) with

reward function Rπ = r(s,π(s)) and transition kernel Pπ(·|s) = P(·|,s,π(s)) with a sta-
tionary distribution ρ if it admits one.

A stationary policy and an cMDP induce what is called a Markov Reward Process
(MRP) which is determined by the pair M = (S,P), meaning that the transition proba-
bility kernel P assigns a probability measure over S×R to each state. An MRP gives
rise to the stochastic process Z′t = (st ,rt+1) where (rt+1,st+1) ∼ P(·, ·|st ,at). Note that
Zt = (st ,rt) is a time-homogeneous Markov process with r0 is an arbitrary random vari-
able. Instead Z′t = (st ,rt+1) is a second-order Markov process. Given a stationary policy
π and the cMDP M = (S,A,P) the transition kernel of the MRP (S,Pπ) induced by π

andM is defined using Pπ(·|s) = ∑a∈A π(a|s)P(·|s,a). In a MRP given the historyHt =
{s0,r1,s1, ...,st} the distribution of the states st+1 is completely determined by st while the
distribution of rt+1 is completely determined by (st ,st+1) given the historyHt+1. Besides
two different settings are possible considering πb as a behavior policy. In the off-policy
scenario the data comes in the form of tripletsHt = {(s0, r̃1, s̃1),(s1, r̃2, s̃2)...,(st−1, r̃t , s̃t)},
where the distribution of (rt+1,st+1) is independent ofHt given st and is equal to the tran-
sition kernel P. Further, it is assumed that {st}t≥0 is a Markov process. A more general
setting may be obtained when s̃t = st which is more general and is called on-policy.

Definition 2.2. (Value Function) For an agent following the policy π considering the
sequence of rewards {rt : t ≥ 1} when the cMDP is started in the state action (s1,a1)∼
ν(s,a) ∈M(S×A) the action value function Qπ is defined as

Qπ(s,a) = E[
∞

∑
t=1

γ
t−1rt |s1 = s,a1 = a,π] (2.1)

It is worth noting that if |r(s,a)|< Rmax then Qmax = Rmax/(1−γ) for any π . The optimal
value function is defined as

Q∗(s,a) = sup
π

Qπ(s,a) ∀ (s,a) ∈ S×A (2.2)

2.3. MDPS IN CONTINUOUS SPACES 25

A policy π = π̂(·,Q) is greedy w.r.t. an action value function Q if ∀ s ∈ S we choose
π(s) = argmaxa∈A Q(s,a)

Definition 2.3. (Bellman Operator) For a cMDP the Bellman operator T π : B(S×A) →
B(S×A) for action value function is defined as

(T πQ)(s,a) = r(s,a)+ γ
∫ P(ds′|s,a)Q(s′,π(s′)) (2.3)

=
∫

P(dr,ds′|s,a)(r+ γ ∑a′∈A π(a′|s′)Q(s′,a′)) = E[r+ γ ∑a′∈A π(a′|s′)Q(s′,a′)]

where B(·) represents the space of bounded measurable functions. Given a policy π a
fixed point for the Bellman operator is given by the action value function Qπ = T πQπ

while the Bellman optimality operator for action value function is defined as

(T ∗Q)(s,a) =
∫

P(dr,ds′|s,a)(r+ γ max
a′∈A

Q(s′,a′)) (2.4)

In RL (differently than DP) cMDP model is not fully available or may be difficult
to represent. Typically, the state space, the action space, and the discount factor are
available, while the transition model and the reward function are not known in advance.
Hence, RL algorithms rely on information coming from interaction between the agent
and the process or from a generative model of the process and including observations of
states, actions, and rewards. A generative model of an cMDP is a simulator of the process
that takes a state s and an action a as inputs and generates a reward r and a next state s′

sampled according to the dynamics of the cMDP. Observations are usually organized in
tuples (s,a,r,s′) meaning that at some time step the process was in state s, action a was
taken by the agent, a reward r was received, and the resulting next state was s′. Samples
(s,a,r,s′) can be collected from actual episodes of interaction with the process and the
learning agent does not have much control on the distribution of samples over the state
space, since the process cannot be reinitialized. On the opposite, with samples coming
from a generative model the agent has full control of the distribution over the state space
and queries can be made for any arbitrary state. In both cases, the action choices of the
learning agent are not restricted by the process, but only by the learning algorithm that
is running. Samples may also come from stored experiences of other agents on the same
cMDP.

Given a cMDP and a fixed policy π let Dn be a dataset Dn = {(s1,a1,r1,s′1, ...} of ob-
servations and define the ordered multiset Zn = {(s1,a1), ...,(sn,an)}. The collected data
Dn can be used to define the empirical operators and can be thought of as the empirical
approximation to the true operators.

Definition 2.4. (Empirical Bellman operators) Given the policy π consider the Dn and
Zn data sets the Empirical Bellman Operator T̂ π : Zn→ Rn is defined as

(T̂ πQ)(st ,at) = rt + γ ∑
a′∈A

π(a′|s′t)Q(s′t ,a
′) t = 1, ...,n (2.5)

while the Empirical Bellman Optimality Operator T̂ ∗ : Zn→ Rn is defined as

(T̂ ∗Q)(st ,at) = rt + γ max
a′∈A

Q(s′t ,a
′) t = 1, ...,n (2.6)

26 CHAPTER 2. GENERALIZATION PROBLEM IN RL

which provide an unbiased estimate of the Bellman operator where given the policy π

for any fixed bounded measurable deterministic function Q : S×A→ R it holds that
E[T̂ πQ(st ,at)|st ,at] = T πQ(st ,at) and also E[T̂ ∗Q(st ,at)|st ,at] = T ∗Q(st ,at) for 1≤ t ≤
n.

The empirical Bellman operators get an n-element list Zn and return an n-dimensional
real-valued vector of the single-sample estimate of the Bellman operators applied to
the value function Q at the selected points. It is worth noting that in the expression
2.5 of the empirical Bellman operator we used the average operator over the policy
∑a′∈A π(a′|s′t)Q(s′t ,a

′). Using this average helps exploiting the knowledge of the policy
which may prevent large variance in the learning process. This can be actually thought
as an extension of the Expected SARSA algorithm [99] used in tabular RL methods for
the action value function approximation case. Applying the same criteria we may extend
this to the empirical Bellman operator using an estimation of the transition matrix Ps′

st ,at
through the collected data so that the Average Empirical Bellman Operator can be defined
as

(T̂ πQ)(st ,at) = ∑
s′∈S

Ps′
st ,at

(
rt + γ ∑

a′∈A
π(a′|s′t)Q(s′t ,a

′)
)

t = 1, ...,n (2.7)

even though in continuous state space the estimation of Ps′
st ,at

based on data is a quite
difficult task. It is useful to recall here that given a continuous function space f ∈ H and
a probability distribution ν ∈M(Z) the Lp(ν)−norm (1≤ p,q < ∞) can be defined as

‖ f‖q
p,ν = (

∫
| f (z)|pdν(z))

q
p

The Lp(∞)−norm is defined as

‖ f‖q
p,∞ = (sup | f (z)|p)

q
p

Considering the random Z-valued sequence Zn = {z1, ...,zn} with zt ∼ ν(z) the empirical
p(n)-norm can be defined as

‖ f‖q
p,n = (

1
n

n

∑
t=1
| f (zt)|p)

q
p

having the property
E[‖ f‖q

p,n] = ‖ f‖q
p,ν

Finally, sometimes we might use a shorthand for the empirical version of the expectation
operator applied over a function f (Z) defining the empirical operator

En[f] =
1
n

n

∑
t=1

f (Zt)

.

2.4. PARAMETRIC AND NON-PARAMETRIC FUNCTION APPROXIMATION 27

2.4 Parametric And Non-Parametric Function Approxi-
mation

Two major classes of function approximators can be identified, namely parametric and
non-parametric approximators. Parametric approximators are mappings from a parame-
ter space into the space of functions they aim to represent value functions or eventually
policies. The functional form of the mapping and the number of parameters are typically
established in advance and do not depend on the data. Parameters of the approximator are
tuned using data about the target function. Consider a Q-function approximator parame-
terized by an r-dimensional vector w. The approximator is denoted by an approximation
mapping F : Rr→D, where Rr is the parameter space and Q is the space of Q-functions.
Every parameter vector w provides a compact representation of the corresponding ap-
proximate Q-function Q̂(s,a) = F(w,s,a) where F denotes the Q-function evaluated at
the state-action pair (s,a). So, instead of storing distinct Q-values for every pair (s,a),
which would be impractical in many cases, it is only necessary to store r parameters.
When the state action space is discrete, r is usually much smaller than |S| · |A| providing
a more compact representation. However, since the set of Q-functions representable by F
is only a subset of Q, an arbitrary Q-function can generally only be represented up to a
certain approximation error, which must be accounted for. In general, the mapping F can
be non-linear in the parameters. However, linearly parameterized approximators are often
preferred, because they make it easier to analyze the theoretical properties of the resulting
algorithms. A linearly parameterized Q-function approximator employs r basis functions
(BFs) φ1, ...,φr : S×A→ R and an (r+1)-dimensional parameter vector Θ = (w,b) and
the approximate Q-values are computed through:

Q̂(s,a) =
r

∑
j=1

φ j(s,a)w j +b = 〈Φ(s,a),w〉+b

where Φ(s,a) = [φ1(s,a), ...,φr(s,a)]T is the vector of BFs. The notation 〈·, ·〉 is used to
denote the standard inner product. BFs function are also called features in the literature
[12].

Non-parametric approximators, despite their name, still have parameters. However,
unlike in the parametric case, the number of parameters, as well as the form of the non-
parametric approximator, are derived from the available data. Kernel-based approxima-
tors are typical representatives of the non-parametric class. Consider a kernel-based ap-
proximator of the Q-function. In this case, the kernel function is a function defined over
two state-action pairs, κ : S×A× S×A→ R as (s,a,s j,a]) 7→ κ(s,a,s j,a j) that must
also satisfy certain additional conditions [81]. Under these conditions, the function κ

can be interpreted as an inner product between feature vectors of its two arguments in
a high-dimensional feature space. Using this property, powerful approximators can be
obtained by only computing the kernels, without ever working explicitly into the feature
space. Assume that a set of state-action samples is available, for this set of samples, the
kernel-based approximator takes the form:

Q̂(s,a) =
ns

∑
j=1

φ j(s,a)w j +b = 〈Φ(s,a),w〉+b

28 CHAPTER 2. GENERALIZATION PROBLEM IN RL

where w1, ...,wr are the parameters. This form looks similar to the linearly parameterized
approximator. However, there is a crucial difference between these two approximators. In
the parametric case, the number and form of the BFs were defined in advance, and there-
fore led to a fixed functional form of the approximator. In contrast, in the non-parametric
case, the number of kernels and their form, and thus also the number of parameters and
the functional form of the approximator, are determined from the samples. One situation
in which the kernel-based approximator can be seen as a parametric approximator is when
the set of samples is selected in advance. Then, the resulting kernels can be identified with
predefined BFs: φ j(s,a) = κ(s,a,s j,a j), j = 1, ...,ns and the kernel-based approximator
is equivalent to a linearly parameterized approximator. However, in many cases, such as
in online RL, the samples are not available in advance. .

Parametric approximators have to be flexible enough to accurately model the target
functions solely by tuning the parameters because they are designed in advance. Highly
flexible, non-linearly parameterized approximators such as neural networks are available.
However, when used to approximate value functions, general non-linear approximators
make it difficult to guarantee the convergence of the resulting algorithms, and indeed can
sometimes even lead to divergence. Often, linearly parameterized approximators must
be used to guarantee convergence. Such approximators are specified by their BFs. When
prior knowledge is not available to guide the selection of BFs, a large number of BFs must
be defined to evenly cover the state-action space. This is impractical in high dimensional
problems.

Non-parametric approximators are highly flexible but as their shape depends on the
data, it may change while the algorithm is running, making it difficult to provide con-
vergence guarantees. Non-parametric approximators may adapts their complexity to the
amount of available data. This is beneficial in situations where data is costly or difficult
to obtain. It may become a disadvantage when a large amount of data is used due to the
computational and memory demands of the approximator growing with the number of
samples.

Either we are using a parametric or non-parametric approximator we may call the
representation of the given function Q(s,a) into the approximating architecture Q̂(s,a) as
a projection of Q(s,a) into the space of the possible functions might be represented with
the given architecture Q̂(s,a). Projection is actually the method of finding the appropriate
parameters maximizing the accuracy of the approximation according to certain criteria
and with respect to the target function.

2.5 Linear And Non Linear Function Approximation
Apart from the parametric and non-parametric distinction, another distinction comes is we
use linear or non-linear function approximation. Many tabular methods can be interpreted
as optimizing a Bellman error through a gradient descent update. Here the idea is that if
we can minimize the Bellman error BE = ‖Q−T Q‖ we come closer to the desired fixed
point Q = T Q. The simplest of non-tabular functions is a linear function as it can be
interpreted as a linear function. The feature vector is of the same size as the state space
and for each state precisely one element of the feature vector is equal to one, while the
rest of the elements is equal to zero. Linear function approximation is easier to analyze

2.5. LINEAR AND NON LINEAR FUNCTION APPROXIMATION 29

and implement, and there are global convergence guarantees that can not be given when
non-linear function approximators are used.

When TD learning is used to estimate the value of a given stationary policy under
on policy updates, the value function converges when the feature vectors are linearly in-
dependent [88], [32]. Main drawback of linear function approximation compared to the
non-linear one is that none needs good informative features. Usually these may require
some knowledge of the domain. Even if convergence in the limit to an optimal solution
is guaranteed, the solution is only optimal in the sense that it is the best possible linear
function of the given features. As a result poor features imply bad solutions. Addition-
ally, while the theoretical guarantees are less convincing, nice empirical results have been
obtained by combining RL algorithms with non-linear function approximators (such as
neural networks).

Non-linear function approximation has the problem that it can get stuck in local op-
tima and also different functions can be represented which means that the founded solu-
tion may be of better quality than the linear function approximators. In a non-linear func-
tion approximator, the value function is represented by some predetermined parametrized
function, such that Q̂(s,a) = F(w,s,a). Here w is the parameter vector that is not neces-
sarily of the same size as the feature vector. F could be a neural network and w will be a
vector with all the weights of the network. We assume F fixed and that the value of the
state is dependent on the state action through the feature vector Φ(s,a) and the time step
through w.

An example is represented by the use of gradient descent update [9], [18] which fol-
lows the direction of the negative gradient over some metric to be minimized. The idea
is that the gradient of a parameterized function to its parameters points in the direction
in which the function increases, according to a first-order Taylor expansion. Under the
assumption that the function is smooth, changing the parameters an infinitesimally small
amount in the direction of the negative gradient should then result in a new function that
has an infinitesimally smaller value at the given input. The assumption behind the gra-
dient descent algorithms is that this usually holds when a larger step in this direction is
taken. Any update that follows the direction of the negative gradient is called a gradi-
ent descent update: Let f : Rr×RN → RM denote a parametrized function and define
ft : RN →RM to be the function that corresponds to a parameter vector w ∈Rr such that
∀ s ∈ Rr : ft(s) = f (w,s). In a gradient descent update, the parameters of ft are updated
so that the target of the update lies in the direction of the negative gradient. The update to
the parameters then is

wt+1 = wt−ηt∇w ft(s) (2.8)

where η ∈ [0,1] is a step size and s ∈ S is some input and ∇w ft(s) is the gradient to
the parameters. Then we can obtain a new function ft+1 : S→ S which is defined by
ft+1(s) = f (wt+1,s). It can be seen from this definition that a gradient descent update
is always defined for a given input, which is denoted by s in the definition. The update
eq. (2.8) is defined on the whole parameter vector. Usually, the function that we want
to minimize through a gradient descent procedure is some error measure. The goal is
then to minimize this error as much as possible. If instead we want to maximize rather
than minimize a function, the minus in update eq. (2.8) is replaced with a plus and the
procedure is called gradient ascent. Many applications of gradient descent involve a fixed

30 CHAPTER 2. GENERALIZATION PROBLEM IN RL

set of inputs and target outputs to which the parameters of the function should be adapted.
Although it can be slow to converge, one simple way to partially address the issue of
local optima is to use stochastic iterative gradient descent. This algorithm uses only one
data point at a time. This may then prevent getting stuck in a local optimum, since each
update does not necessarily move the function into the direction of the gradient. It can
not be guaranteed in general that the global optimum is found, but convergence to a local
optimum of the error function can be guaranteed if the data points are chosen at random
and the step size is chosen according to the Robbins-Monro conditions described in the
previous chapter. Unfortunately, this subset may not span the full parameter space, which
is why this is called a local optimum. An additional advantage of stochastic gradient
descent over batch learning is that it is straightforward to extend online stochastic gradient
descent to an adapting target function. In other words, one does not have to have an
independent and identically distributed training set. These features make online gradient
methods very suitable for RL.

2.6 Value Function Approximation in RL
The accuracy of an approximate solution Q̂π generated by an RL algorithm is important
to the control the performance achieved by the algorithm. For a continuous state cMDP
a simple criterion for evaluating the accuracy of the solution is to evaluate the Bellman
Error (BE) expressed in terms of Lp(ν)−norm as

BEq
p,ν = ‖Q−T πQ‖q

p,ν = (
∫
|Q(s,a)−T πQ(s,a)|pdν(s,a))

q
p (2.9)

where the individual terms Qπ(s,a)− T π Qπ(s,a) are called Bellman Residuals (BR).
Designing a RL algorithm attempting to minimize the Bellman Error in section 2.6 for
a cMDP seems to be a quite reasonable approach. In fact, finding the exact solution
correspond to achieve a zero error. However, managing directly the minimization it is a
difficult task as this requires the BR to be computed for every state in the state space. A
common approach is to solve the problem only in a small set of representative sample
states Ŝ× Â ⊆ S×A using some prior knowledge about important states in the system
by means of simulations and using approximation of the Bellman Error over the sample
states o BEq

p,ν ≈ B̂Eq
p,ν . Such class of algorithms is known as Bellman Error Methods

and a function approximation architecture must be used for the set of candidate func-
tions. Choice of the architecture is a relevant aspect in the algorithm design. Parametric
function representation may be a solution for this problem. However, as in most cases
exact function representation is either unavailable value function approximation has to be
used. Value function approximation is a difficult problem where experiences and theories
have shown the difficulty to choose an efficient and stable function approximator with
convergence guarantee in common RL algorithms.

Applications of RL in real-world problems have revealed many open research prob-
lems of value function approximation. From one side it is very difficult to choose the right
parametric form for the value function approximator. In principle value function approx-
imator should have a parametric form able to represent the optimal value function and all
of the intermediate ones. In situation where the knowledge of the domain is not enough to

2.7. APPROXIMATE POLICY ITERATION 31

help locating the exact form of the value function, it is better to choose flexible value func-
tion approximator structures. However, researchers have found that most RL algorithms
do not converge may not converge when combined with value function approximator.
Another question is that not so much is known about convergence and error bounds of
standard RL algorithms when used with value function approximators. In experimental
applications divergence or oscillation can be observed in this kind of algorithm. Some-
times divergence results from the inability to remember of the function approximator.
As an example in standard RL algorithm (like TD, Q-learning or SARSA) using neural
networks during the initial training performance improve very nicely. However, having
found a reasonable good policy the approximate version of the algorithm stop generating
bad actions [41]. As a result, the neural network value function approximator behaves in
such a way large numbers of states are predicted to have the same value. Hence, the al-
gorithm start choosing random actions because all actions seems to be equally good. Bad
experiences should lead these value function RL algorithm to improve approximation as
the process repeats itself. This problem could be solved by keeping memory of bad and
good problem so that the function approximator does not forget them.

Theoretical analysis given by [38], [39] provides insights into function approxima-
tors. They reports results about the stability of one class of function approximators, the
so called averagers used with standard RL algorithms like TD. Systematic analysis of
variants of different RL algorithms shows that the only convergence results are restricted
to linear function approximators and piecewise constant approximators based on state
aggregation. Hence, one may acknowledge that the convergence behavior of most combi-
nations of RL algorithms and valuefunction approximators has to be considered an open
and unknown issue.

2.7 Approximate Policy Iteration
Policy iteration (PI) [11] is a method of discovering the optimal policy for any given
MDP, providing an iterative procedure in the policies space. PI discovers the optimal
policy by generating a sequence of monotonically improving policies. PI scheme is based
on the observation that T π is a monotonic, a quasi linear and a contraction operator in the
L∞ norm with contraction rate γ , and for any initial vector Q successive applications of
T π converge to the action value function Qπ of policy π . Each iteration consists of two
phases: policy evaluation which computes the state-action value function Qk of the current
policy πk by solving the linear system of the Bellman equations and policy improvement
defining the improved greedy policy πk+1 over Qπk through

πk+1 = argmax
a∈A

Qk(s,a) (2.10)

The action-value function Qk is typically chosen to be such that Qk ≈ T πkQk, i.e., it is an
approximate fixed point of T πk . Policy πk+1 is as good as πk if not better. Policy eval-
uation and policy improvement steps are repeated until there is no change in the policy
reaching a convergence on the final policy. fig. 2.1 shows a block diagram of PI scheme
showing the actor critic architecture and the dependencies among the various components.
Convergence guarantees to the optimal policy of PI scheme, strongly relies on the tabular

32 CHAPTER 2. GENERALIZATION PROBLEM IN RL

Figure 2.1: Policy Iteration scheme showing the actor critic architecture (from [48])

representation of the value function, exact solution of the Bellman equations, and tabular
representation of each policy. In continuous space and finite action cMDP exact repre-
sentations are infeasible and approximation methods must be used. In the framework of
PI, approximations can be introduced into the value function or the policy representation.
In this context API algorithms are also referred to as actor-critic architectures and repre-
sented as in fig. 2.2 borrowed from [48]. The actor performs actions by interacting with its
environment while the critic evaluates the actions and gives feedback to the actor, leading
improvement in the performance of next actions. Approximations in the PI framework
may be introduced for the representation of the value function replacing its tabular rep-
resentation by a parametric or non-parametric function approximator. Also the tabular
representation of the policy π(s) might be replaced by a parametric or non-parametric
representation. In the API scheme value function projection and policy evaluation are es-
sentially mixed into one procedure as there is no intermediate representation of the value
function facilitating their separation. since there is no intermediate representation for a
complete policy, the same also is true for policy improvement and policy projection. This
clearly shows the difficulty involved in the use of function approximation within policy
iteration algorithms. An important factor for a successful approximate algorithm is the
choice of the approximation architecture. An obvious question is whether the sequence
of policies and value functions generated by an API algorithm converges to a policy (if
convergence is fulfilled) and value functions are close to the optimal ones. An answer is
given by the following general theorem adapted from [11] showing that API can be con-
sidered a well defined algorithm. If the error in policy improvement, the projection and
the error in policy evaluation are bounded, API generates policies having performance
close to the optimal one. Further, this difference tends to zero as the errors come close to
zero.

Theorem 2.1. Let π̂0, ..., π̂K−1 be the sequence of policies generated by an API algorithm
and let Q̂π̂0, ..., Q̂π̂K−1 be the corresponding approximate value functions. Let ε and δ be
positive scalar numbers bounding the error in all the approximations over all iterations
to value functions and policies respectively. If ∀ k = 0,1, ..., ‖Q̂π̂k −Qπ̂k‖∞ ≤ ε, and

2.8. PARAMETRIC VALUE FUNCTION APPROXIMATION 33

Figure 2.2: Approximate Policy Iteration scheme showing the actor critic architecture
(from [48])

∀k = 0,1, ..., ‖T π̂k+1 Q̂π̂k−T ∗ Q̂π̂k‖∞≤ δ , Then this sequence eventually produces policies
whose performance is at most a constant multiple of ε and δ away from the optimal
performance: limk→∞ sup‖Q̂π̂k−Q∗‖∞ ≤ δ+2γε

(1−γ)2

This generic theorem and experimental evidence provides that API is a quite inter-
esting algorithm. In case of parametric approximation the crucial factor for a successful
approximate algorithm is the choice of the parametric approximation architecture and the
choice of the parameter adjustment method. For the non-parametric case the approximate
is successful depending on the capacity of the kernel. This will be described in details in
the next chapter.

2.8 Parametric Value Function Approximation

In the actor critic architecture for any state use the representation of the value function, the
policy is not physically stored anywhere. Hence, we have to compute action values for the
whole set of actions to evaluate the policy and to derive the greedy action performing the
maximization at each state. As a consequence, for each query to the policy, one eliminates
approximations and errors in representation and policy improvement paying the price of
some extra optimization. Closing the loop in the procedure require the evaluation of a
policy using data samples producing as a result the approximate value function. In Least
Squares Policy Iteration (LSPI) algorithm of [48] this step is performed by Least Squares
Temporal Difference Learning (LSTD) an algorithm efficiently learning the approximate
action value function by using a linear architecture.

To derive LSPI consider the operator implementing the Bellman equations for action

34 CHAPTER 2. GENERALIZATION PROBLEM IN RL

values T π with fixed point Qπ defined as

(T πQ)(s,a) =
∫

P(dr,ds′|s,a)(r+ γ ∑
a′∈A

π(a′|s′)Q(s′,a′)) (2.11)

defining stochastic operators

(Πa)Q̂ = ∑
a

π(s,a)Q̂ (Ps)Q̂ =
∫

P(dr,ds′|s,a)Q̂

the resulting linear system (
I− γPsΠa

)
Qπ = PsRs,a (2.12)

which in principle can be solved analytically as

Qπ =
(

I− γPsΠa

)−1
PsRs,a (2.13)

or iteratively to obtain exact Qπ values while the optimal Bellman operator is defined as

(T ∗Q)(s,a) =
∫

P(dr,ds′|s,a)(r+ γ max
a′

Q(s′,a′)) (2.14)

In parametric value function approximation the parameters may be adjusted appropriately
so that the approximate values are close enough to the original values, and, therefore,
Q̂π can be used in place of the exact value function Qπ . The characterization accepts a
variety of interpretations in this context and it does not necessarily refer to a minimiza-
tion of some norm. Value function approximation should be regarded as a functional
approximation rather than as a pure numerical approximation, where functional refers to
the ability of the approximation to play closely the functional role of the original function
within a decision making algorithm. The difficulty associated with value function ap-
proximation, beyond the loss in accuracy, is the choice of the projection method. This is
the method of finding appropriate parameters that maximize the accuracy of the approx-
imation according to certain criteria and with respect to the target function. Typically,
for ordinary function approximation, this can be done using a training set of examples of
the form {(s,a), Qπ(s,a)} providing the value Qπ(s,a) of the target function at certain
sample points (s,a) likewise in supervised learning. Unfortunately, in the context of de-
cision making, the target function Qπ is not known in advance, and must be inferred from
the observed system dynamics. The implication is that policy evaluation and projection
to the approximation architecture must be mixed together. This is usually achieved by
trying to find values for the free parameters so that the approximate function has certain
properties that are similar to those of the original value function. Now consider a linear
architectures approximating the value function Qπ using a linear parametric combination
of r Basis Functions (BF) as

Q̂π(s,a) =
r

∑
j=1

φ j(s,a)w j +b = 〈Φ(s,a),w〉+b

2.8. PARAMETRIC VALUE FUNCTION APPROXIMATION 35

where the (w,b) are the parameters. The BFs φ j(s,a) are fixed but arbitrary and in general,
non-linear functions of s and a. BSs φ j are assumed to be linearly independent to ensure
that there are no redundant parameters and that the matrices involved in the computations
are full rank. In general r� |S||A| and the basis functions φ j have compact descriptions.
As a result, the storage requirements of a linear architecture are much smaller than those
of the tabular representation. Typical linear approximation architectures are polynomials
of any degree (each basis function is a polynomial term) and radial basis functions (each
basis function is a Gaussian with fixed mean and variance). Linear architectures have
their own virtues: they are easy to implement and use, and their behavior is fairly trans-
parent, both from an analysis standpoint and from a debugging and feature engineering
standpoint. It is usually relatively easy to get some insight into the reasons for which a
particular choice of features succeeds or fails. This is facilitated by the fact that the mag-
nitude of each parameter is related to the importance of the corresponding feature in the
approximation (assuming normalized features).

Let Qπ be the value function of a policy π given as a column vector of size |S| · |A|
and Q̂π the vector of the approximate action values as computed by a linear approxi-
mation architecture with parameters (w,b) and basis functions φ j, j = 1,2, ...,r. Define
Φ(s,a) = (φ1(s,a), ...,φr(s,a))T to be the column vector of size r where each entry j is the
corresponding basis function φ j computed at (s,a). Now defining the |S||A|× (r+1) ma-
trix Φ= [Φ(s1,a1), ...,Φ(s|S|,a|A|) 1]T and the vector w= [w b]T then Qπ can be expressed
in matrix form as Qπ = Φw. Each row of Φ contains the value of all basis functions for
a certain pair (s,a) and each column contains the value of a certain basis function for
all pairs (s,a). If the basis functions are linearly independent, then the columns of Φ are
linearly independent as well. We seek to find a combined policy evaluation and projection
method that takes as input a policy π and the model of the process and outputs a set of
parameters (w,b) such that is Q̂π a good approximation to Qπ . Now recall that the action
value function Qπ is the solution of the Bellman equation

Qπ = PsRs,a + γPsΠaQπ

An obvious approach in deriving a good approximation is to require that the approximate
value function satisfies the Bellman equation as closely as possible. Substituting the ap-
proximation Q̂π in place of Qπ yields an overconstrained linear system over the r + 1
parameters (w,b)

Q̂π ≈ PsRs,a + γPsΠaQ̂π

(Q̂π − γPsΠaQ̂π)≈ PsRs,a

(Φ− γPsΠaΦ)w≈ PsRs,a

Solving this system of overcontrained equations in the least-squares sense yields a solu-
tion [48]

w =
(
(Φ− γPsΠaΦ)T (Φ− γPsΠaΦ)

)−1
(Φ− γPsΠaΦ)T PsRs,a

minimizing the L2 norm of the BR (the difference between the left-hand side and the right-
hand side of the Bellman equation) and can be called the BR minimizing approximation

36 CHAPTER 2. GENERALIZATION PROBLEM IN RL

to the true value function. Note that the solution w of the system is unique since the
columns of Φ (the basis functions) are linearly independent by definition.

Implementing API with parametric approximation can be also done using the BRM
approach [90] computing the approximate state value functions from the model of the
process. In fact, the action value function Qπ is also the fixed point of the Bellman opera-
tor T π Qπ = Qπ and another way to find a good approximation is to force the approximate
value function to be a fixed point under the Bellman operator as T π Q̂π ≈ Q̂π For that to
be possible, the fixed point has to lie into the space of approximate value functions which
is the space spanned by the basis functions. Even though Q̂π lies in that space by defi-
nition, T π Q̂π may, in general, be out of that space and must be projected. Considering
the orthogonal projection (Φ(Φ)T (Φ)−1(Φ)T) which minimizes the L2 norm, we seek
an approximate value function Q̂π that is invariant under one application of the Bellman
operator T π followed by orthogonal projection

Q̂π ≈ (Φ(ΦT
Φ)−1

Φ
T)(T π Q̂π)

Q̂π ≈ (Φ(ΦT
Φ)−1

Φ
T)(PsRs,a + γPsΠaQ̂π)

Note that the orthogonal projection to the column space of Φ is well-defined because the
columns of Φ (the basis functions) are linearly independent by definition. Manipulating
the equation above, one may derive an expression for the desired solution that amounts to
solve a (r+1× r+1) linear system, where r is the number of basis functions [48]

w =
(

Φ
T (Φ− γPsΠaΦ)

)−1
Φ

T PsRs,a

is guaranteed to exist for all values of γ ([47],[44]). Since the orthogonal projection min-
imizes the L2 norm, the solution w yields a value function Q̂π which can be called the
least-squares fixed-point approximation to the true value function. Clearly, the solutions
found by these two methods will be different since their objectives are different, except in
the case where the true value function Qπ lies in the Φ plane; in that case, both methods
are in fact solving the Bellman equation and their solutions are identical. If Qπ does not
lie in the Φ plane, there is no clear evidence that any of the two methods will find a good
solution or even the solution (w,b) that corresponds to the orthogonal projection of Qπ to
the plane. Munos [66] provides a theoretical comparison of the two approximation meth-
ods in the context of state value-function approximation when the model of the process is
known concluding that the least-squares fixed point approximation is less stable and less
predictable compared to the BRM approximation depending on the value of the discount
factor.

2.9 Non-parametric Value Function Approximation Us-
ing Kernels

In [30] Diettrich makes use of two different techniques using Linear Programming (LP)
([106], [2]) with kernel to find the value function approximation for the RL problems.
The first formulation is based on Bellman Error and SVR while the other one uses the
advantage with respect to the best action trying to ensure that good action should have

2.9. NON-PARAMETRIC VALUE FUNCTION APPROXIMATION USING KERNELS37

an advantage over bad ones. Both formulations try to minimize the support vectors num-
ber fitting the data of the value function. Unlike other approximation architecture, kernel
methods can be adapted to the final complexity of the approximator fitting the value func-
tion. Virtually all existing work on value function approximation and policy gradient
methods starts with a parameterized formula for the value function or policy and then
seeks to find the best policy that can be represented in that parameterized form. This can
give rise to very difficult search problems for which the Bellman equation is of little or
no use. However, rather than fixing the form of the function approximator and searching
for a representable policy, one may instead identify a good policy and then search for a
function approximator that can represent it. This approach exploits the ability of math-
ematical programming to represent a variety of constraints including those that derive
from supervised learning, from advantage learning and from the Bellman equation. By
combining the kernel trick with mathematical programming, one may obtain a function
approximator that seeks to find the smallest number of support vectors sufficient to repre-
sent the desired policy. This sidesteps the difficult problem of searching for a good policy
among those policies representable by a fixed function approximator. A way to do that is
to consider a continuous state cMDP and assume that estimation of the average transition
probability and rewards are known and available to the agent. Let S̃ be a set of train-
ing states for which we have an approximation Ṽ (s) to the optimal value function V ∗(s),
s ∈ S̃. Moreover, also assume the availability of a policy π consistent with Ṽ (s). The
goal is to construct a parameterized approximation V̂ (s) that can be applied to all states
in the cMDP to yield a good policy π via one step look-ahead search. In the experiments
reported in [30], the set S̃ contains states that lie along trajectories from a small set of
training starting states S̃0 to terminal states. A successful learning method should be able
to generalize to give a good policy for new starting states not in S̃0. To represent states
for function approximation, let Φ(s) denote a vector of features describing the state s. In
the Linear Programming ([27], [100]) formulation of the function approximation problem
is introduced, expressing each of these formulations in terms of a generic fitted function
approximator V̂ (s) and then implement V̂ (s) as the dot product of a weight vector w with
the features vector Φ(s) such that V̂ (s) = 〈Φ(s),w〉 using a given kernel and considering
the expansion of w as a weighted sum of the training points as w = ∑s∈S̃ αsΦ(s) In all
linear programming formulations linear objective functions are used and all slack vari-
ables are constrained to be non negative. The first formulation treats the value function
approximation problem as a supervised learning problem and applies the ε− insensitive
loss function to fit the function approximator. The objective function seeks to minimize
these absolute deviation errors. A key idea of support vector methods is to combine this
objective function with a penalty on the norm of the weight vector. The 1−norm of the
weight vector is minimized because it is possible to implement it via linear programming
which brings to the following optimization problem

min
w,ξ

‖w‖1 +C ∑s∈S̃(ξs +ξ ∗s) (2.15)

s.t. 〈Φ(s),w〉+ξs ≥ Ṽ (s)− ε

〈Φ(s),w〉−ξ ∗s ≤ Ṽ (s)+ ε

ξs,ξ
∗
s ≥ 0 ∀ s ∈ S̃

38 CHAPTER 2. GENERALIZATION PROBLEM IN RL

In the advantage learning formulation linear programming is also used and the focus is on
the minimal constraints that must be satisfied to ensure that the greedy policy computed
from Ṽ will be identical to the greedy policy computed from V̂ requiring that the backed
up value of the optimal action a∗ be greater than the backed up values of all other actions a
in a given state s. In this way there is one constraint and one slack variable ξs,a∗,a for every
action executable in state s except for the chosen optimal action a∗(s) = π(s). The backed
up value of a∗ must have an advantage of at least ε over any other action a considering s′

or s′′ successors state of s applying respectively the action a or a∗ we have

min
w,ξ

‖w‖1 +C ∑s∈S̃,a∗,a∈Ã(s) ξs,a∗,a (2.16)

s.t. ∑s′′∈S̃ Ps′′
sa∗(R

s′′
sa∗+ 〈Φ(s′′),w〉)+ξs,a∗,a ≥

∑s′∈S̃ Ps′
sa(R

s′
sa + 〈Φ(s′),w〉)+ ε

ξs,a∗,a ≥ 0 ∀ s,s′,s′′ ∈ S̃ a∗,a ∈ Ã(s)

Experimental evidence applying both linear programming methods on a maze problem
shows that these methods are able to learn and generalize well with advantage learning
formulation easier and more reliable to train.

Advantage updating was also explored in several interesting directions in [7] where
they replaces the single value function approximator Q(s,a), with two approximators.
One for values and one for the advantages. Suppose the agent is in state s and is con-
sidering possible actions a∗ and a with backed-up values Q(s,a∗) and Q(s,a). Then the
quantity

A(s,a∗,a) = Q(s,a∗)−Q(s,a)

is called the advantage of action a∗ over action a in state s . In [7] Baird uses only the
advantages with respect to the best actions a∗ so A(s,a) = A(s,a∗,a) and the advantage
of the best action a∗ is 0, while the advantages of all of the other actions are positive. The
value of the state V (s) is stored separately. So the predicted value of executing action a
in state s is the sum V (s)+A(s,a). The motivation for this approach is the following.
Suppose that the current estimated value for state s is very wrong. It is still possible that
the values of the best actions relative to alternative actions are correct, and thus the agent
is still going to make a correct choice of action according to V . The separation of V and A
allows the advantage learning algorithm to update V without disturbing the relative values
of the actions. In contrast, other algorithms, such as Q-learning, cannot do this without
temporarily damaging the relative values of the actions.

Chapter 3

Kernel Based Approximate Policy
Iteration

3.1 Introduction

Starting from this chapter we consider the problem of finding an optimal policy in con-
tinuous space finite actions cMDP given the trajectory of some behavior policy. The idea
is to present here and in the next two chapters an API algorithm where in successive iter-
ations the action value functions of the intermediate policies are obtained approximating
the value functions using SVR and then the optimal policy. The algorithm repeatedly
computes an evaluation function of the policy of the previous step and then uses this eval-
uation function to compute the next improved policy. To avoid the need of learning a
model, action value functions are computed, making the policy improvement step simple,
similarly as in the parametric approximation of LSPI algorithm of [48]. LSPI rely on
LSTD while our algorithm makes use of a regularized version of the BRM described in
section 2.8. The idea of using BR in PI goes back to [8] who proposed it for comput-
ing approximate state value functions given the model of a finite-state and action cMDP.
Seeking small Bellman Error may yield to a good approximation of the policy evaluation
function, which in turn may imply a good final performance. To introduce our regularized
API-BRM method using SVR we still have to introduce several elements useful both for
the theoretical analysis and the practical implementation of the algorithm. Henceforth,
we start with a discussion about data collection and processing. Hence, we introduce
some important elements about RKHS and error evaluation in a regularized approxima-
tion framework. The main result of this work presented in chapter 4, is a finite-sample
bound on the performance of the resulting policy depending on the mixing rate of the tra-
jectory, in the approximation power of the function set, in the capacity of the function set
and finally on the discounted concentrability of the future state distribution. One major
technical difficulty of the proof is that one has to deal with dependent samples. The main
condition we ask is that the trajectory should be sufficiently representative and rapidly
mixing. We also require that the states in the trajectory follow a stationary distribution.
The mixing condition is essential for efficient learning and in particular we use the expo-
nential β -mixing condition. The particular mixing condition assumed allows us to derive
polynomial decay rates for the estimation error as a function of the sample size. An im-

39

40 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

Control error
with SV

= w+b

Figure 3.1: Approximate policy iteration using SVM

portant contribution of the present work relates to the finite-sample analysis for the batch
algorithm in the β -mixing case which can be used in practical online learning. Further-
more our algorithm is based on exact incremental SVR in the context of BRM with API.
Some technical lemmas are also proved in order to study the statistical property of our
method requiring the extension to ε-insensitive losses while in standard regression anal-
ysis quadratic losses are normally used. A heuristic and practical implementation can be
derived from our algorithm where policy improvements can be performed on the basis of
incompletely evaluated value functions and is presented in chapter 5.

3.2 Finite Data Sampling

An important aspect of any method solving RL problems is the way that data are col-
lected and processed. Data collection setting can be categorized as online or offline and
the data processing method can be categorized as batch or incremental. The online sam-
pling setting is when the agent chooses the action sequence at ∼ πt(·|st) and directly
influences how the data stream is generated Dn = {(s1,a1,s′1,r1), ...,(sn,an,s′n,rn)} which
we may assume as a stationary process that in general could be non-i.i.d. The stochastic
functions πt(·|s), whenever evaluated for the states s′ in Dn define the stochastic process
Πn = {π1(·|s′1), ...,πn(·|s′n)}. Assuming controlled mixing condition for the non-i.i.d. pro-
cess, allows for the generalization of strictly i.i.d. scenarios. Accordingly we may define
the ordered multisets {(s1,a1), ...,(sn,an)} and {(r1,s′1), ...,(r1,s′1)} with at = πbt (st) and
st ∼ νs(s) and νs(s)∈M(S) while (rt ,s′t)∼ P(r,s′|st ,at). Here πb is a behavior stationary
Markov policy producing (st ,at) ∼ ν(s,a) with ν(s,a) ∈M(S×A) the resulting state
action distribution. In the online setting the behavior policy should be the same as the
learning policy (fully optimistic) or can be updated (improved) once every several transi-
tions (partially optimistic). On the contrary in the offline setting the agent does not have
control on how the data are generated and the agent is provided with a data set Dn which

3.2. FINITE DATA SAMPLING 41

can be assumed in general non-i.i.d. according to some unknown distribution. In the of-
fline setting the behavior policy is usually stochastic and might be unknown to the agent.
Generally speaking different heuristics can be used to define the behavior policy πb for
example selecting a fixed stochastic stationary policy πb generates i.i.d. samples; or us-
ing a policy based on the most recent estimate of the action-value function Q̂ which can
be the ε−greedy policy w.r.t. Q̂. Data processing while learning may use a batch or an
incremental algorithm. A batch algorithm processes the whole data set Dn and can freely
access any element at any time. An incremental algorithm continues to learn whenever a
new data sample is available while the computation in principle might not directly depend
on the whole data set Dn but could rely on the last sample. Boundary between incremental
and batch algorithm may be not so clear and, as a matter of fact, an incremental algorithm
might be considered as a special case of a batch one whenever data are processed in a spe-
cific temporal ordering. In batch RL problems, the learner cannot make any assumptions
on the sampling procedure of the transitions. Sampling could be done using a random
policy, uniform in the state action space or along non connected trajectories. Using only
this information, the learner has to come up with a policy that will then be used by the
agent to interact with the environment. During this application phase the policy is fixed
and no further improved as new observations come in. Since the learner itself is not al-
lowed to interact with the environment, and the given set of transitions is usually finite,
the learner cannot be expected to always come up with an optimal policy. There is a dis-
tinct separation of the whole procedure into three aspects: exploring the environment and
collecting state transitions and rewards, learning a policy, and finally apply the learned
policy. Exploration has a relevant impact on the quality of the learned policies. Transition
probabilities of the system should be present into the distribution of transitions of the pro-
vided batch to allow the derivation of good policies. A simple way to achieve this result
consists in collecting the training examples from the system itself, by simply interacting
with it. In any case when sampling comes from the real system the covering of the state
space by the transitions used for learning becomes an important issue. When important
regions (for example states close to the goal) are not represented by any samples, learn
a good policy from the data it is not possible, since important information is missing. In
practice this might be a real problem because a purely random policy is often not able to
achieve an adequate covering of the state space. This could be especially true in the case
of attractive starting states and hard to reach desirable states. It is often necessary to al-
ready have a rough idea of a good policy in order to be able to explore interesting regions
that are not in the direct vicinity of the starting states. Alternating exploration phases (
where a set of training samples is grown by interacting with the system) and exploitation
phases (where the batch set of observations is used) and called growing batch learning
problem. Alternations number between episodes of learning and exploration can be in the
whole range of being as close to the pure batch approach to recalculating the policy after
every few interactions. Such growing batch approach represents in practice the modeling
of choice when applying batch RL algorithms to real systems. Since from the interaction
perspective the growing batch approach is very similar to the pure online approach, the
distinction between online and offline, might be not that useful anymore.

42 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

3.3 Reproducing Kernel Hilbert Spaces
A kernel function κ(·, ·) plays an important role in any kernel-based learning method
mapping any two elements from a space of input patterns to the real numbers taken the
state space of the cMDP, and can be thought of as a similarity measure on the input
space. In the derivation of kernel methods, the kernel function arises naturally as an inner
product in a high-dimensional features space. Hence the kernel satisfy several important
properties of an inner product: it must be symmetric and positive semidefinite, meaning
that the associated Gram matrix Ki j = κ(si,ai,s j,a j) must be positive semidefinite. A
kernel that satisfies these properties is said to be admissible. The key idea of the kernel
technique is to invert the chain of arguments, choosing a kernel rather than a mapping
before applying a learning algorithm. Of course, not any symmetric function κ can serve
as a kernel. One fundamental property comes with Mercer’s kernels (adapted from [82])

Proposition 3.1. (Mercer’s Kernel)
The function κ : (S× A) × (S× A) → R is a Mercer kernel if and only if for each
n∈N and Zn = {(s1,a1), ...,(sn,an)}, the n× n matrix Ki j = k((si,ai),(s j,a j)) is positive
semidefinite.

Given a kernel function his smallest feature space which can serve as a canonical
feature space is the RKHS defined as (adapted from [25]):

Definition 3.1. (Reproducing Kernel Hilbert Spaces) Consider a subset of measurable
functions F : S→ R and a subset of vector values measurable functions F |A| : S×A→
R|A| such that

F |A| = {(Q1, ...,Q|A|) : Qi ∈ F , i = 1, ..., |A|} (3.1)

called the hypothesis space H. A natural choice for H is within the framework of RKHS
H : S×A → R which is an Hilbert space defined in S×A with the inner product 〈·, ·〉 and
characterized by a symmetric positive definite function κ : (S×A)× (S×A) → R called
reproducing kernel, continuous in S×A such that for each (s,a) ∈ S×A the following
reproducing property holds:

∀ (s,a) ∈ S×A Q(s,a) = 〈Q(·),κ(·,s,a)〉H κ(·,s,a) ∈H (3.2)

assuming as measurable function space F |A| = H. H is the closure of the linear span
of the set of functions Φspan = {Φ(s,a) = κ(·,s,a) | (s,a) ∈ S×A} considering the map
from Φ : S×A→ C0S×A which denotes the function that assigns the value κ(st ,at ,s,a)
to (st ,at) ∈ S×A and C0(S×A) the space of continuous functions on S×A.

RKHS spaces have the important property that norm convergence implies point-wise
convergence. The full power of RKHS can be expressed by the following Theorem (
adapted from [78]):

Theorem 3.1. (Representer Theorem) Let κ be a Mercer Kernel and Dn be a training
set while Remp : Z × Rn→ R∪{∞} be any arbitrary function. Now let be Rreg : R →
[0,∞) be a strictly monotonically increasing function. DefineHK as RKHS induced by κ .
Then any Q ∈ HK minimizing the regularized risk Rreg(Q) = Remp(Q)+λ‖Q‖2

H admits
a representation of the form Q(·) = ∑

n
t=1 βtκ(·,st ,at)

3.3. REPRODUCING KERNEL HILBERT SPACES 43

Let κ̄ = sup(s,a)∈S×A
√

κ(s,a,s,a) then the reproducing property tells us that ‖Q‖∞ ≤
κ̄‖Q‖H ∀Q ∈H.

Using the Representer Theorem the function in HK can be expressed as linear com-
bination of the elements in the span Φspan = {Φ(s,a) = κ(·,s,a) | (s,a) ∈ S×A} which
can be expressed as Q(s,a) = ∑t βtκ(s,a,st ,at). Hereafter we introduce the regularized
regression using RKHS as functions spaces and quadratic norm into the Hilbert space
‖Q‖2

H as regularizer term. In fact, as we want that the regularizer measures the com-
plexity of the action value function Q(s,a), more complex functions should have larger
regularizer which means larger norm. Moreover, we have to point out that dealing with
finite action space one should define the norm of Q(·,a) a ∈ A in a proper way. As a
mild condition the complexity of Q should upper bound the complexity of Q(·,a) for all
a ∈ A and in RHKS this can be achieved defining ‖Q(s,a)‖2

H = ∑a∈A ‖Q(·,a)‖2
H.

A useful concept related to the complexity of the function space is represented by the
covering numbers (adapted from [40]):

Definition 3.2. (Covering Number) Let ε > 0 andH be a set of real-valued functions de-
fined on X and νx a probability measure on X. Every finite collection of Nε = { f1, ..., fNε

}
defined on X with the property that for every f ∈ H there is a function f ′ ∈ Nε such that
‖ f − f ′‖q

p,νx ≤ ε is called ε−cover ofH w.r.t. ‖·‖q
p,νx . LetNp(ε,H,‖·‖q

p,νx) be the size of
the smallest ε−cover ofH w.r.t. ‖·‖q

p,νx . If no finite ε−cover existsN (ε,H,‖·‖q
p,νx) =∞.

Then Np(ε,H,‖ · ‖q
p,νx) is called an ε−covering number of F and log Np(ε,H,‖ · ‖q

p,νx)
is called the metric entropy of H. Considering the empirical norm based ‖ · ‖q

p,n on the
sequence of random variable Xn = {X1, ...,Xn} we may define the empirical covering
number as Np(ε,H,‖ · ‖q

p,n)

Given an admissible kernel κ and the RKHS H assume that for each R > 0 let be
HR = { f ∈H : ‖ f‖H ≤ R} then exists a constant C > 0 and 0 < α < 1 such that for any
(R,ε) the following metric entropy condition is satisfied (from [82])

log Np(ε,HR,‖ f‖q
p,n)≤C

(R
ε

)2α

(3.3)

Since some of the presented results involve expectations of suprema over uncountable sets
it is useful to introduce the following notion [82]:

Definition 3.3. (Charatheodory Set) Let (T,d) be a metric space and (Z,σZ) a measur-
able space. A family of measurable maps { ft}t ∈ T is called a Caratheodory family if
t 7→ ft(z) is continuous for all z ∈ Z. Moreover, if T is separable or complete, we say
that { ft}t ∈ T is separable or complete, respectively. A measurable set F ⊂ Z (separable
or complete) is a Caratheodory set if there exists a (separable or complete) metric space
(T,d) and a Caratheodory family { ft}t ∈ T such that F = { ft : t ∈ T}. Note that, by the
continuity of t 7→ ft(z), Caratheodory sets satisfy

sup
f∈F

f (z) = sup
t∈T

ft(z) = sup
t∈Z

ft(z), z ∈ Z (3.4)

for all dense Z ⊂ T . For separable Caratheodory sets F , there exists a countable and
dense Z ⊂ T , and hence the map z 7→ supt∈T ft(z) is measurable for such F . Also for a
complete Charatheodory set F the map (z, t) 7→ ft(z) is measurable.

44 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

3.4 Regularized Non-Parametric Regression
In this section we introduce some insights about regularized regression in RKHS. Let
X ⊂Rd be a measurable space and Y ⊆R a Polish space (separable completely metrizable
topological space). In non-parametric regression the goal is to estimate a functional rela-
tionship between an input random variable X and an output random variable Y under the
assumption that the joint distribution P(X ,Y) is (almost) completely unknown. To solve
this problem, one typically assumes a set of observations (Xi,Yi) from i.i.d. random vari-
ables (xi,yi), i= 1, ...,n, all having distribution P with the corresponding Borel σ−algebra
and consider the finite sequence of gathered samples Zn = {(X1,Y1), ...,(Xn,Yn)}. Even-
tually, within a stationary process we may also try to cope with mixing scenarios.

The learning goal aims to build a predictor f : X → R on the basis of these observa-
tions such that f (x) is a good approximation of y. To formalize this aim, one assumes a
loss function `, that is, a continuous function ` : R×R → [0,∞) assessing the quality
of a prediction f (x) for an observed output y by `(y, f (x)). Here it is commonly assumed
that the smaller `(y, f (x)) is, the better the prediction is. The quality of a predictor f is
then measured by the risk

R`,P(f) = E[`(y, f (x))] =
∫

X ,Y
`(y, f (x))dνx(x)dP(y|x)

which is a random variable defined by the average loss obtained by predicting with f.
Following the interpretation that a small loss is desired, one tries to find a predictor with
risk close to the optimal risk

R∗`,P = inf{R`,P(f) | f : X → R}.
Moreover one may also define the inner risk as

C`,P(f (x)) =
∫

Y
`(y, f (x))dP(y|x).

We are interested in the cost function having the property:

R`,P(f)−R∗`,P =
∫

X
(C`,P(f (x))−C∗`,P)dνx(x)

Consequently one can analyze R`,P(f)−R∗`,P looking at the inner risk excess C`,P(f (x))−
C∗`,P investigating its measure with respect to νx.

In regression problems, the loss function is typically distance based and putting t =
f (x) it only relies on the variable η = y− t and the mapping η 7→ `(η) is convex ∀η ∈R
which implies ` is a Lipschitz continuous function

∀N > 0 ∃LN s.t. |`(y, t1)− `(y, t2)| ≤ LN |t1− t2|
∀ t1, t2 ∈ [−N,N] ,∀ y ∈ [−M,M]

∃C0 s.t.∀ y ∈ [−M,M] `(y,0)≤C0

where LN ,C0 values depend on the specific form of the loss function. For regression using
the inequality ||a|p−|b|p| ≤ p|a−b||max(a,b)|p−1 we consider the following losses:

square `2(y, t) = |y− t|2 [LN = 2N +M C0 = M2]

absolute value `1(y, t) = |y− t| [LN = 1C0 = M]

ε− insensitive `ε(y, t) = max(0, |y− t|− ε) [LN = 1C0 = M]

3.4. REGULARIZED NON-PARAMETRIC REGRESSION 45

In the supervised setting when we put t = f (x) with a slight abuse of notation we write
the loss function as `(f (x)) = `(f (x),x). The classical loss function for regression is
the square loss `2(y, t) mainly because it simplifies the mathematical treatment and leads
naturally to estimates which can be computed rapidly. Besides it is well-known that the
squares risk is minimized by the conditional mean of Y given x [40] i.e.

f ∗`2,P(x) = argmin
f :X→R

R`2,P(f) =
∫

Y
ydP(y|x) = E[Y |X = x].

Though this loss seems mathematically rather easy to handle and the corresponding learn-
ing algorithms are often computational feasible, it is well-known that minimizing an em-
pirical risk based on the squares loss is a method which is quite sensitive to outliers.
Therefore, a number of more robust surrogate loss functions have been proposed. Hence,
from a practical point of view, there are situations in which a different loss is more appro-
priate.

Moreover, ε−insensitive loss function `ε(y, t) promises algorithmic advantages in
terms of sparseness compared to the absolute and square losses when used in the kernel-
based regression. Besides if the conditional distributions of Y given x P(·|x) are known
to be symmetric it can be shown [82] that using ε−insensitive loss the only minimizer of
R`ε ,P(f) is represented by the the conditional median of Y given x

f ∗`ε ,P(x) = argmin
f :X→R

R`ε ,P(f) = f ∗1/2,P(x)

Another possibility which could be explored is the so called quantile regression [82]
which tries to estimate the conditional quantile meaning the set valued function:

f ∗τ,P(x) = { t ∈ RP((−∞, t]|x)≥ τ and P((t,∞]|x)≥ 1− τ} (3.5)

where τ ∈ (0,1) is a fixed constant and P(·|x), x ∈ X is the conditional probability. This
is strictly related to the τ−pinball loss function defined as

`τ(y, t) = (τ−1)(y− t) i f (y− t)< 0 and τ(y− t) i f (y− t)> 0 (3.6)

Empirical methods estimating quantiles using the pinball loss may obtain functions fD for
which R`τ ,P(fD) is close to R∗`τ ,P with high probability. In general this only implies that
fD is close to f ∗

τ,P in a weak sense meaning that we may obtain fDn → f ∗
τ,P in probability

for all sequences { fDn} with R`τ ,P(fDn) → R∗`τ ,P. As a result the approximate risk min-
imizers approximate the unique risk minimizer in probability. However under realistic
assumptions on the distribution P one may have an inequality of the form

‖ f − f ∗τ ‖2,ν ≤ cp[R`τ ,P(fD)−R∗`τ ,P] (3.7)

where cP depends on the distribution P (see [82]) so that we may hope to control the error
of fD in a wider sense. A similar argument may be invoked also for the ε−insensitive loss
function.

Since the distribution P generating the input/output pairs is unknown, the risk R`,P
is unknown and consequently we cannot directly find f . To resolve this problem, it is
tempting to replace the risk R`,P(f) in by its empirical counterpart (the empirical risk)

R`,D(f) = En[`(y, f (x))] =
1
n

n

∑
t=1

`(yt , f (xt)).

46 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

Unfortunately even though the law of large numbers shows that R`,D is an approxima-
tion of R`,P for each single f, solving inf f :X→R R`,D(f) does not in general lead to an
approximate minimizer of R`,P(·). This is an example of overfitting in which the learning
method produces a function that models too closely the output values in Zn bringing to
poor performance on future data. One common way to avoid overfitting is to choose a
small set of functions f ∈H that is assumed to contain a reasonably good approximation
of the solution. Then, instead of minimizing R`,D over all functions, one minimizes only
overH solving inf f∈H R`,D(f).

Building a good non-parametric predictor f can be achieved using kernel-based re-
gression, which finds a minimizer fP,λ of the regularized empirical risk

fP,λ = argmin
f∈H

{R`,P(f)+λ‖ f‖2
H} (3.8)

where λ > 0 is a regularization parameter to reduce the danger of overfitting, H is a
RKHS of a kernel κ : X ×X → R and `(y, ·) : R → [0,∞) is convex for all y ∈ Y .
Because section 3.4 is strictly convex in f , the minimizer fP,λ is uniquely determined
and a simple gradient descent algorithm can be used to find it. However, for specific
losses such as ε−insensitive more efficient algorithmic approaches are used in practice.
Using the sequence of collected samples Zn the corresponding empirical problem can be
formulated as

fD,λn = argmin
f∈H

{R`,D(f)+λ‖ f‖2
H} (3.9)

Following the interpretation that a small risk is desired, one tries to find a predictor whose
risk is close to the optimal risk R∗`,P which is a much stronger requirement than con-
vergence in probability of R`,P(f) to R`,P,H = inf f∈H R`,P(f) as is not obvious whether
R`,P,H = R∗`,P or not even for large Hilbert spaces H. Throughout this work we assume
that for some M ≥ 0 the distribution P(·|x) is almost everywhere supported on [−M,M]
that is |y| ≤ M almost surely with respect to P which means that for the loss functions
we are taking into account always | f ∗`,P| ≤M (truncation assumption). The efficiency of
the algorithm in section 3.4 can be measured by the difference between fD,λn and the re-
gression function f ∗`,P. One can see [40] that using the squares loss function `2(y, t) the
approximation error can be expressed as:

‖ fD,λn− f ∗`2P‖2
2,νx

= R`2,P(f)−R∗`2,P = E[(y− fD,λn(x))
2|Zn]−E[(y− f ∗`2,P(x))

2] (3.10)

for any distribution P on X ×Y . On the contrary using the ε−insensitive loss function
`ε(y, t) we can only lower bound the error [82] using the Liptschitz continuity property of
`ε as

|R`ε ,P(fD,λn)−R∗`ε ,P |= |E[`ε(y, fD,λn(x))|Zn]−E[`ε(y, f ∗`ε ,P(x))] | ≤ ‖ fD,λn− f ∗`ε ,P‖1,νx . (3.11)

Hence, using ε−insensitive losses one typically obtains functions fD,λn for which R`ε ,D(f)
is close to R∗`ε ,P with high probability. In general this only implies that fD,λn can be close
to f ∗`ε ,P in a weak sense. In fact using convex loss functions one may obtain fD,λn → f ∗`,P
in probability for all sequences fD,λn with R`ε ,D(f) → R∗`ε ,P and the approximate risk
minimizers approximate the unique risk minimizer f ∗`,P in probability [82]. Nevertheless

3.4. REGULARIZED NON-PARAMETRIC REGRESSION 47

we may get a stronger notion of approximation if we make some realistic assumptions on
the probability distribution P assuming an inequality of the form

‖ fD,λn− f ∗`ε ,P‖2,νx ≤ cP

[
R`ε ,P(fD,λn)−R∗`ε ,P

]
= cP

[
E[`ε(y, fD,λn(x))|Zn]−E[`ε(y, f ∗`ε ,P(x))]

]
. (3.12)

The constant cP ≥ 1 depends on the distribution P and section 3.4 can be used to bound
the approximation error. It is out of the scope of this work to further analyze under which
conditions on P section 3.4 holds which we will take as an assumption when dealing with
`ε losses.

Estimation of the error using section 3.4 for `2 losses or section 3.4 for the `ε losses
depends on P and H. We should expect that the minimizer of the regularized empirical
error fD,λn to be a good approximation of the minimizer f ∗`,P of R`,P(f) as n → ∞ and
λ = λ (n) → 0 which is actually true if f ∗`,P can be approximated using functions fromH
and measured by the regularization error defined as

A(λ) = inf
f∈H
{‖ f − f ∗`,P‖q

p,νx +λ‖ f‖2
H} (3.13)

where p = q = 2 for `2 losses and q = 1 and p = 2 for `1 of `ε losses. Now the regular-
ization function can be written as

fλ = argmin
f∈H

{‖ f − f ∗`,P‖q
p,νx +λ‖ f‖2

H} (3.14)

Since the minimization in section 3.4 rely on the discrete quantity R`,D(f) the approxi-
mation f ∗`,P by fD,λn involves the capacity of the function spaceH which can be measured
using the covering numbers. If we define the loss space as LH = { `(y, f (x)) x ∈ X , y ∈
Y, f ∈ H} the covering number of LH and H can be easily related using the Lipschitz
condition |`(y, f (x1))− `(y, f (x2))| ≤ LM| f (x1)− f (x2)| and it can be shown ([59]) that
the following condition holds :

Np(ε,LH(Zn),‖ · ‖q
p,n)≤Np(ε/LM,H(Xn),‖ · ‖q

p,n)

where for the `ε and `1 norm LM = 1.
The following proposition from [104] and extended to take into account both `2 and

`ε losses gives an estimation of the excess error for the regularization function fD,λn by
decomposition

Proposition 3.2 (Extended from [104]). Let fλ ∈ H and fD,λn defined as in section 3.4.
Then results

cP[R`,P(fD,λn)−R∗`,P]≤ cP[R`,P(fD,λn)+λ‖ fD,λn‖2
H−R∗`,P]

which can be bounded by ED,H+D(λ) defining the regularization error as

D(λ) = cP[R`,P(fλ)+λ‖ fλ‖2
H−R∗`,P]

48 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

and the estimation error as

ED,H = cP[R`,P(fD,λn)−R`,D(fD,λn)+R`,D(fλ)−R`,P(fλ)]

with cP = 1 for `2 losses and cP ≥ 1 for `ε losses if section 3.4 holds. Defining the two
variables

ζ1(x,y) = `(y, fD,λn(x))− `(y, f ∗`,P(x))

and
ζ2(x,y) = `(y, fλ (x))− `(y, f ∗`,P(x))

the sample error can be written as

ED,H = cP[E[ζ1]−En[ζ1]]+ cP[En[ζ2]−E[ζ2]]

Proof is omitted for brevity but can be easily obtained using a similar procedure used
in [104].

The rate of the regularization error D(λ) is important for bounding both estimation
and regularization error. The decay of λ and n → ∞ determines the size of the hypothesis
space and hence the sample error estimate. If the RKHS is large enough we may consider
that the approximation errorD(λ) = 0 as λ → 0 and n→ ∞ as shown for bounded spaces
X and Y and the squared losses in [40] and we only have to bound the estimation error
ED,H.

3.5 Regularization and Support Vector Regression
Theoretical results in [24] show that kernel regression methods using a loss function with
bounded first derivative in combination with a bounded and rich enough continuous ker-
nel like RBF kernel are not only consistent and computational tractable, but also offer
attractive robustness properties. SVR shows good performance in practical applications
and a robust theoretical justification in terms of universal consistency and learning rates
when training samples come from an i.i.d. process [83]. Sometimes i.i.d. assumption
might not be strictly justified in real-world problems. Some ML applications (system
diagnosis, market prediction, speech recognition) are not i.i.d. processes. Moreover, sam-
ples are often gathered from different sources and might not be identically distributed.
SVR in such non-i.i.d. scenarios have no theoretical justification but they are sometimes
applied successfully. Nevertheless, for any process that satisfies laws of large numbers,
a sequence of regularization parameters exists such that the corresponding SVR can be
considered consistent. Universal consistency for stationary processes has general nega-
tive results on this kind of sequence and regularization parameters cannot be adaptively
chosen and should rely on stochastic properties of the process. However, if the process
satisfies certain mixing properties an adequate regularization sequence can be chosen.

Whenever ε−insensitive loss functions are used in SVR the classical geometrical for-
mulation can be obtained looking at the regularization problem

1
n

n

∑
t=1

`ε(yt , f (xt))+λ‖ f‖2
H (3.15)

3.6. REGULARIZED API WITH BELLMAN RESIDUALS MINIMIZATION 49

which is equivalent (meaning that the same function minimizes both functionals) [34]
to solve the following optimization problem in which an additional set of parameters is
introduced

min
w,b,ξ ,ξ ∗

C ∑
n
t=1(ξt +ξ ∗t)+

1
2‖w‖2

H0
(3.16)

s.t. fw,b(xt)− yt ≤ ε +ξt

yt− fw,b(xt)≤ ε +ξ ∗t
ξt ,ξ

∗
t ≥ 0 ∀ (xt ,yt) ∈ Zn

The model function is expressed by fw,b(xt) = 〈Φ(xt),w〉+b, λ = 1
2nC and ξ ,ξ ∗ are slack

variables. Eventually the problem can be solved through the technique of Lagrange multi-
pliers. Hereafter with a slight abuse of notation we keep referring only to the Hilbert space
H (without explicitly mention H0) and using both geometric and regularized version of
SVR as the case may be.

The main difference between the regularized and the geometric formulation of SVR
can be found on the meaning of the constant b [82]. The geometrical approach considers
an Hilbert space H0 and define a function fw,b in terms of an affine hyperplane specified
by (w,b). In the regularized formulation one directly considers an RKHS H with the
functions contained in it. However the two approaches are equivalent whenever we fix b
and the functions 〈Φ(·),w〉 with w ∈H0 form an RKHSH whose norm can be computed
by

‖ f‖H = inf{‖w‖H0 : w ∈H0 with f = 〈Φ(·),w〉} (3.17)

The offset term makes a real difference and, in general, the decision functions produced
by both approaches might be different.

Some final remarks about SVR: the algorithm is based on solid theoretical guarantees,
the solution returned is sparse, and it allows a natural use of positive definite symmetric
kernels, which extend the algorithm to non-linear regression solutions. SVR also admits
favorable stability properties as already mentioned previously. However, one drawback
of the algorithm is that it requires the selection of two parameters, C and ε . These can
be selected via cross-validation but this requires a relatively large validation set. Some
heuristics are often used to guide the search for their values: C is searched near the max-
imum value of the labels in the absence of an offset (b = 0) and for a normalized kernel,
and ε is chosen close to the average difference of the labels. Moreover, the value of ε

determines the number of support vectors and the sparsity of the solution.

3.6 Regularized API With Bellman Residuals Minimiza-
tion

As already illustrated in section 2.8, a way to implement API is through BRM. API pro-
ceeds at iteration k evaluating πk choosing Qk such that the Bellman Residuals to be small
(i.e. is the approximate fixed point of T πk). API calculates πk+1 = π̂(·,Qk) producing the
sequence Q0 → π1 → Q1 Hence for the sequence {Qk}K−1

k=0 the Bellman Residuals
can be defined at each iteration as εBR

k = Qk−T πkQk.

50 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

Algorithm 1 Offline API−BRMε

Require: (k,κ,λ ,γ,n)
initialize Q0(s,a) arbitrarily for all (s,a)
for all k do

repeat
πk(·) ← π̂(·, Q̂k−1)
generate/update training sample set Dk

n and Πk
n

Q̂k ← Batch−API−BRMε(Πk,Dk
n,κ,λ)

until k=K
end for
return

Algorithm 2 Online API−BRMε

Require: (κ,λ ,γ,εk f unction)
initialize Q0(s,a) arbitrarily for all (s,a)
for all time step k do

update greedy policy πk(·) ← π̂(·, Q̂k−1)
choose action ak = {πk(·) w.p.1− εk ∨ uniform random action w.p. εk}
apply ak and measure next state sk+1 and reward rk+1
update training sample set Dk ← Dk−1 ∪ (sk,ak,rk+1,sk+1) and Πk ← Πk−1 ∪
πk(·,sk+1)
Q̂k ← Incremental−API−BRMε(Πk,Dk,κ,λ)

end for
return

Hereafter, we focus on two different ways to implement API using BRM to find the
approximating value function. Assuming data collection done in the offline sampling
setting and the data processing in batch mode, a way to implement API is presented in
Algorithm 1. In this case the behavior policy πbk is different from the training policy πk
and we assume the data are non i.i.d. distributed unless πbk is known to be completely
random. On the other way whenever we consider that interaction with the environment
is possible, we may collect data using the online sampling setting. Data processing is
still possible in both batch or incremental mode but in the Algorithm 2 we present an
incremental mode which can be more efficient in practical situations. In this case behavior
and learning policy can be assumed optimistically to be the same or eventually to change
every few iteration. Exploration is done using an ε-greedy policy. We assume that sample
are in general non-i.i.d. distributed.

Standard BRM algorithm as in [8] uses least squares regression to approximate the
action minimizing the Bellman Error given the distribution of the input data ν defined as

LBRM2(Q,π) = ‖Q−T πQ‖2
ν =

∫
|Q(s,a)−T πQ(s,a)|2dν(s,a). (3.18)

Using the sample data set Dn and the policy process Πn the finite-sample empirical esti-
mate L̂BRM2(Q,Πn,Dn) given the loss function `2 can be written as

L̂BRM2(Q,Πn,Dn) = En[|Q(st ,at)− T̂ πQ(st ,at)|2]. (3.19)

3.7. REGULARIZED API−BRMε ALGORITHM FORMULATION 51

BRM problem can be solved in the context of regularized API method using a RKHS
by taking linear combinations of the form Q(s,a) = ∑

n
t=1 βtκ(st ,at ,s,a) where βt ∈ R.

Accordingly the regularized BRM problem can be written as

Q̂ = argmin
Q∈H

{L̂BRM2(Q,Πn,Dn)+λn‖Q‖2
H}. (3.20)

Unfortunately this approach brings to a biased estimate of LBRM2(Q,π). In fact when
evaluating the quadratic terms in the summation gives the unwanted additional variance
term:

E[|Q(st ,at)− T̂ πQ(st ,at)|2|st ,at ,πt] = |Q(st ,at)−T πQ(st ,at)|2+Var[rt +γ ∑
a′∈A

π(a′|s′t)Q(s′t ,a
′)].

As a result

E[En[|Q− T̂ πQ|2] |Πn,Dn] = ‖Q−T πQ‖2
ν +E[En[T πQ− T̂ πQ|2] |Πn,Dn]

leading to E[L̂BRM2(Q,Πn,Dn)|Πn,Dn] 6= LBRM2(Q,π). To overcome this problem a com-
mon suggestion is to use uncorrelated, or double sampling L̂BRM2(Q,Πn,Dn). Accord-
ingly for each state and action it means that at least two next states should be generated
for each (st ,at). In principle reuse of samples close in space is also possible but this
approach requires the definition of a proximity function.

An alternative approach presented in [6] defines a modified BRM optimization prob-
lem apt to cancel the unwanted variance term by introducing an auxiliary function h and
a new loss function defined as

LBRMh2(Q,h,π) = ‖Q−T πQ‖2
ν −‖h−T πQ‖2

ν . (3.21)

It can be shown [6] that the empirical version of this loss is an unbiased estimator and one
has to reformulate the problem as a coupled optimization expressed as:

ĥ = argminh∈H{En[|h− T̂ πQ|2]+λh‖h‖2
H } (3.22)

Q̂ = argminQ∈H{En[|Q− T̂ πQ|2]−En[|h− T̂ πQ|2]+λQ‖Q‖2
H }.

We may evaluate the solution of the regularized optimization problem in the section 3.6
which may be expressed in closed form using the Representer Theorem. The optimal
functions can be expressed as a linear combination of the kernel functions centered into
the training samples. However this regression problem is less intuitive and more difficult
to solve also having a dense solution meaning that the whole set of Dn participate to the
solution. Furthermore it can be solved as batch problem while one can not take profit of
the incrementality and it also needs a model for the cMDP. Some theoretical convergence
guarantees of this method are reported in [6] (parametric approximation) and in [35] (non-
parametric approximation) working for model based batch solution and using i.i.d. data
samples

3.7 Regularized API−BRMε Algorithm Formulation
As all the ingredients have been presented, starting from this section we are ready to
introduce our method aiming to solve the BRM problem using SVR. API−BRMε can

52 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

be formulated considering the BR for a continuous state and finite actions cMDP as
BR(s,a) = Q(s,a)− T πQ(s,a) = DπQ(s,a)− r(s,a) where the approximating function
to be considered is

DπQ(s,a) = Q(s,a)− γ

∫
P(ds′|s,a) ∑

a′∈A
π(a′|s′)Q(s′,a′)

i.e

DπQ(s,a) = E[Q(s,a)− γ ∑
a′∈A

π(a′|s′)Q(s′,a′)|s,a] = E[D̂πQ(s,a,s′)|s,a]

while r(s,a) = E[r̂|s,a] and the BRM using the ε−insensitive loss can be written as

LAPI−BRMε
(Q,π) = E[`ε(DπQ− r)] = E[`ε(Q−T πQ)] (3.23)

Using the data sets Πn,Dn the empirical estimate becomes:

L̂API−BRMε
(Q,Πn,Dn) = En[`ε(D̂πQ− r̂)] = En[`ε(Q− T̂ πQ)] (3.24)

with D̂πQ(st ,at ,s′t) = Q(st ,at)− γ ∑a′t∈A πt(a′t |s′t)Q(s′t ,a
′
t). Hence the API−BRMε opti-

mization problem becomes

Q̂ = argmin
Q∈H

{ L̂API−BRMε
(Q,Πn,Dn)+λn‖Q‖2

H } (3.25)

where the regularization term use the norm in the Hilbert spaceH . API−BRMε shows a
remarkable sparsity property in the solution which essentially relies on the training sup-
port vectors. L̂API−BRMε

(Q,Πn,Dn) is an almost unbiased estimator of LAPI−BRMε
(Q,π)

as results evaluating the expectation over the empirical losses

E[L̂API−BRMε
(Q,Πn,Dn)|Πn,Dn] = E[En[`ε(D̂πQ− r̂)]|Πn,Dn] (3.26)

= E[En[`ε(Q− T̂ πQ)]|Πn,Dn]≥ E[`ε(DπQ− r)] = LAPI−BRMε
(Q,π)

where we used the Jensen’s inequality `(E[X]) ≤ E[`(X)] holding for any convex func-
tion ` (we used DπQ(s,a) = E[D̂πQ(s,a,s′)|s,a], r(s,a) = E[r̂|s,a] and T πQ = E[T̂ πQ]).
In practice the empirical estimate can be biased whenever slacks are presents i.e. the er-
rors on the regression function are above the fixed threshold ε . It is unbiased when the
error is contained in the resolution tube of the SVR. Nevertheless the choice of the SVR
parameters C and ε gives a way to control this effect so the bias cannot be considered
random. In the experimental section we show how our method is able to identify a near
optimal policy without being affected by the bias which can be obtained using a fine tun-
ing of the approximation parameters. In the next section analyzing the implementation
of API−BRMε we will show how this may affect the solution. Moreover if we want to
evaluate the error according to the expression 3.11 we may write∣∣∣E[`ε(D̂πQ− r̂)|Πn,Dn]−E[`ε(r− r̂)]

∣∣∣≤ ‖Q−T πQ‖1,ν (3.27)

and eventually if the condition of section 3.4 are met we might also write

‖Q−T πQ‖2,ν ≤ cP[E[`ε(D̂πQ− r̂)|Πn,Dn]−E[`ε(r− r̂)]] (3.28)

which can be used to bound the sample error of BRM using SVR.

3.8. API WITH SVR 53

3.8 API with SVR
In order to gain insights into the regularized API−BRMε we analyze the SVR solution
in the dual solving the geometrical version of the SVR and the corresponding constrained
optimization problem using the Lagrangian multipliers. At the first we consider the in-
finite sample formulation and then we move to the finite sample version. Consider the
subset of observed samples Dn and express the approximation of the value function using
a linear architecture as

Q(s,a) = 〈Φ(s,a),w〉+b (3.29)

where w= (w1, ...,wd)
T is the weight vector and Φ(s,a) = (φ1(s,a), ...,φd(s,a))T the fea-

tures vector of the point (s,a) from which we may build the kernel function κ(st ,at ,s,a)=
〈Φ(st ,at),Φ(s,a)〉. The action value function belongs the Hilbert space Q ∈H so it does
the weight vector w ∈ H. Using the Representer Theorem we also know that the func-
tion in H can be expressed as linear combination of the elements in the span Φspan =
{Φ(s,a)= κ(·,s,a) (s,a)∈ S×A}which can be expressed as Q(s,a)=∑t αtκ(s,a,st ,at).
Using the definition of the Bellman operator T πQ the BR at each training point for a fixed
policy π we may write:

BR(st ,at) = Q(st ,at)−T π Q(st ,at) = DπQ(st ,at)− r(st ,at) (3.30)

= Q(st ,at)− γ

∫
P(ds′|st ,at) ·∑a′∈A π(a′|s′) ·Q(s′,a′)− r(st ,at)

and substituting the functional form of section 3.8 yields

BR(st ,at) = 〈Φ(st ,at),w〉− γ

∫
P(ds′|st ,at) · ∑

a′∈A
π(a′|s′) · 〈Φ(s′,a′),w〉+(1− γ)b− r(st ,at)

expressing the BR using the weight w and the features mapping Φ(·). Policy and the
cMDP dynamic are not included into the Hilbert space H. An alternative way to express
the BR is through the combination of the two terms using the Bellman feature mapping

Ψπ(st ,at) = Φ(st ,at)− γ

∫
P(ds′|st ,at)∑a′∈A π(a′|s′)Φ(s′,a′) (3.31)

which takes into account the structure of the cMDP dynamics and the policy. BR are now
expressed as

BR(st ,at) = 〈Ψπ(st ,at),w〉+(1− γ)b− r(st ,at)

and with the Bellman feature vector Ψπ(st ,at) we may build the Bellman kernel

κ̃(st ,at ,s,a) = 〈Ψπ(st ,at),Ψ
π(s,a)〉

The function DπQ and weight vector w belong to the Bellman Hilbert space HΨπ . Using
the Representer Theorem the function in HΨπ can be expressed as linear combination of
the elements in the span Ψspan = {Ψ(s,a) = κ̃(·,s,a) (s,a) ∈ S×A} which can be ex-
pressed as DπQ(s,a) = ∑t βt κ̃(s,a,st ,at). With this choice the policy as well as the MDP
dynamic are directly incorporated into the Hilbert spaceHΨπ . Under simple assumptions
one may shows that if the set of vectors VΦ = {Φ(st ,at) |(st ,at) ∈ S×A} are linearly
independent then the set of vectors VΨ = {Ψπ(st ,at) |(st ,at) ∈ S×A} are also linearly
independent (see also [13] for a similar discussion).

54 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

Theorem 3.2. Assume the kernel κ(st ,at ,s,a) = 〈Φ(st ,at),Φ(s,a)〉 is non degenerate
then for any fixed policy π the Bellman kernel κ̃π(st ,at ,s,a) = 〈Ψπ(st ,at),Ψ

π(s,a)〉 is
also non degenerate.

Proof. Considering the real space vector VΦ spanned by the set of vectors Φ(st ,at) then
the corresponding space vector VΨ spanned by the set of vectors Φ(st ,at) comes from a
linear combination of vectors in VΦ as

Ψ
π(st ,at) = Φ(st ,at)− γ

∫
P(ds′|st ,at) ∑

a′∈A
π(a′|s′)Φ(s′,a′) =Dπ

Φ(st ,at) (3.32)

where Dπ is a linear operator mapping vectors Φ(st ,at) ∈ VΦ to vectors Ψπ(st ,at) ∈
VΨ. Now if we look at this operator it has full rank because its eigenvalues depends
on the combination of the unity and stochastic matrices and the factor γ < 1 leading to
the fact that the kernel of the Dπ operator must have dim(Ker(Dπ)) = 0. As a result
dim(VΦ) = dim(VΨ) so the vectors Ψπ(st ,at) ∈ VΨ are linearly independent. From the
linear independence of the vectors Ψπ(st ,at) ∈ VΨ it follows that if the kernel κ is non
degenerate then also the corresponding Bellman kernel κ̃ is non degenerate.

Hence, while the kernel κ corresponding to the features mapping Φ(·) is given by

κ(st ,at ,s,a) = 〈Φ(st ,at),Φ(s,a)〉 (st ,at), (s,a) ∈ S×A (3.33)

the Bellman kernel κ̃ corresponding to the features mapping Ψπ(·) is given by

κ̃
π(st ,at ,s,a) = 〈Ψπ(st ,at),Ψ

π(s,a)〉 (st ,at), (s,a) ∈ S×A (3.34)

and the connection between the two kernels can be formally expressed using the linear
operator Dπ as

κ̃π(st ,at ,s,a) = 〈Ψπ(st ,at),Ψ
π(s,a)〉= 〈DπΦ(st ,at),DπΦ(s,a)〉

〈Φ(st ,at),(Dπ)TDπ Φ(s,a)〉 ≤ λ1〈Φ(st ,at),Φ(s,a)〉= λ1κ(st ,at ,s,a) (3.35)

with λ1 ≤ 1 max eigenvalue of (Dπ)TDπ . Plugging the operator (Dπ) into the above
expression we have

κ̃π(st ,at ,s,a) = 〈Ψπ(st ,at),Ψ
π(s,a)〉 (3.36)

= 〈Φ(st ,at)− γ

∫
P(dy′|st ,at)∑b′∈A π(b′|y′)Φ(s′,a′),

Φ(s,a)− γ

∫
P(ds′|s,a)∑a′∈A π(a′|s′)Φ(s′,a′)〉

= κ(st ,at ,s,a)− γ

∫
P(dy′|st ,at)∑b′∈A π(b′|y′)κ(y′,b′,s,a)

−γ

∫
P(ds′|s,a)∑a′∈A π(a′|s′)κ(s′,a′,st ,at))

+γ2
∫
P(ds′|st ,at)∑a′∈A π(a′|s′)

∫
P(dy′|s,a)∑b′∈A π(b′|y′)κ(s′,a′,y′,b′)

Defining the auxiliary functions

κ̂
π(st ,at ,s,a) = κ(st ,at ,s,a)− γ

∫
P(dy′|st ,at) ∑

b′∈A
π(b′|y′)κ(y′,b′,s,a)

3.8. API WITH SVR 55

we may also write

κ̃π(st ,at ,s,a) = κ̂π(st ,at ,s,a)− γ
∫ P(ds′|st ,at)∑a′∈A π(a′|s′)κ̂π(s,a,s′,a′)

Moving to the finite sample version consider the empirical Bellman operator T̂ πQ where
the BR can be written as

B̂R(st ,at ,s′t) = Q(st ,at)− T̂ π Q(st ,at) = D̂πQ(st ,at ,s′t)− r̂t (3.37)
= Q(st ,at)− γ ∑a′t∈A π(a′t |s′t) ·Q(s′t ,a

′
t)− r̂t

and substituting the functional form of section 3.8 yields

B̂R(st ,at ,s′t) = 〈Φ(st ,at),w〉− γ ∑
a′t∈A

π(a′t |s′t) · 〈Φ(s′t ,a
′
t),w〉+(1− γ)b− r̂t

expressing the BR using the weight w and the features mapping Φ(·). Then proceeding
as before using the empirical Bellman features mapping

Ψ̂π(st ,at ,s′t) = Φ(st ,at)− γ ∑a′t∈A π(a′t |s′t)Φ(s′t ,a
′
t) = D̂πΦ(st ,at) (3.38)

with D̂π the empirical counterpart of Dπ results

Ψ
π(st ,at) = E[Ψ̂π(st ,at ,s′t)] = E[D̂π

Φ
π(st ,at)] =Dπ

Φ
π(st ,at)

The same kind of argument presented in theorem 3.2 applies also for the empirical oper-
ator D̂π . Hence the empirical BR may be expressed as

B̂R(st ,at ,s′t) = 〈Ψ̂π(st ,at ,s′t),w〉+(1− γ)b− r̂t

with the empirical Bellman feature vector Ψ̂π(st ,at ,s′t) we may build the Bellman kernel

κ̃
π(st ,at ,s′t ,s,a,s

′) = 〈Ψ̂π(st ,at ,s′t),Ψ̂
π(s,a,s′)〉

The function D̂πQ as well as weight vector w belongs to the empirical Bellman Hilbert
space H

Ψ̂π . It is clear that by construction for any function D̂πQ ∈ H
Ψ̂π results DπQ =

E[D̂πQ] ∈ HΨπ . Assuming that the true action value function T πQ(s,a) belongs to the
Hilbert spaceH generated by the kernel κ , we also need to collect enough data in order to
build a Bellman kernel κ̃π able to capture the dynamics of the cMDP. In this way solving
the regression problem with BRMε in the limit ε → 0 is equivalent to solve the Bellman
equation of the cMDP. The connection between the empirical kernels can be found using
the linear operator D̂π as

κ̃π(st ,at ,s′t ,s,a,s
′) = 〈Ψ̂π(st ,at ,s′t),Ψ̂

π(s,a,s′)〉= 〈D̂πΦ(st ,at),D̂πΦ(s,a)〉
〈Φ(st ,at),(D̂π)T D̂π Φ(s,a)〉 ≤ λ̂1〈Φ(st ,at),Φ(s,a)〉= λ̂1κ(st ,at ,s,a) (3.39)

with λ̂1 ≤ 1 max eigenvalue of (D̂π)T D̂π . Plugging the operator D̂π in the above expres-
sion we have

κ̃π(st ,at ,s′t ,s,a,s
′) = 〈Ψ̂π(st ,at ,s′t),Ψ̂

π(s,a,s′)〉 (3.40)
= 〈Φ(st ,at)− γ ∑a′t∈A π(a′t |s′t)Φ(s′t ,a

′
t),

Φ(s,a)− γ ∑a′∈A π(a′|s′)Φ(s′,a′)〉
= κ(st ,at ,s,a)− γ ∑a′t∈A π(a′t |s′t)κ(s′t ,a′t ,s,a)

−γ ∑a′∈A π(a′|s′)κ(s′,a′),st ,at)

+γ2
∑a′∈A π(a′|s′)∑a′t∈A π(a′t |s′t)κ(s′,a′,s′t ,a′t)

56 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

Defining the auxiliary functions

κ̂π(st ,at ,s′t ,s,a) = κ(st ,at ,s,a)− γ ∑a′t∈A π(a′t |s′t)κ(s′t ,a′t ,s,a) (3.41)

we may also write

κ̃π(st ,at ,s′t ,s,a,s
′
t) = κ̂π(st ,at ,s′t ,s,a)− γ ∑a′∈A π(a′|s′)κ̂π(s′,a′,st ,at ,s′t) (3.42)

3.9 API−BRMε Dual Batch Solution
The weighting vector w can be found minimizing the BR |BR(st ,at)| ≤ ε and assuming
Q(s,a) = 〈Φ(s,a),w〉+b with Q∈H formulating a regularized regression problem using
an SVR as

min
w,b,ξ ,ξ ∗

1
2‖w‖2

H+C ∑
n
t=1(ξt +ξ ∗t) (3.43)

s.t. r(st ,at)−〈Φ(st ,at),w〉+ γ
∫ P(ds′|st ,at) ·∑a′∈A π(a′|s′)〈Φ(st ,at),w〉− (1− γ)b≤ ε +ξt

−r(st ,at)+ 〈Φπ(st ,at),w〉− γ
∫ P(ds′|st ,at) ·∑a′∈A π(a′|s′)〈Φ(st ,at),w〉+(1− γ)b≤ ε +ξ ∗t

ξt ,ξ
∗
t ≥ 0 t = 1, ...,n

Using the Bellman kernel we way also find the same weighting vector w using the features
mapping Ψπ(s,a) and searching for a solution of the regression function DπQ(s,a) =
〈Ψπ(s,a),w〉+b with DπQ ∈HΨπ and solving the SVR problem

min
w,b,ξ ,ξ ∗

1
2‖w‖2

HΨπ
+C ∑

n
t=1(ξt +ξ ∗t) (3.44)

s.t. r(st ,at)−〈Ψπ(st ,at),w〉− (1− γ)b≤ ε +ξt

−r(st ,at)+ 〈Ψπ(st ,at),w〉+(1− γ)b≤ ε +ξ ∗t
ξt ,ξ

∗
t ≥ 0 t = 1, ...,n

Once the Bellman kernel κ̃π(st ,at ,s,a) and the rewards r(st ,at) are provided can be
solved in principle using any standard SVM package. The main difference within the two
formulations depends on how we express the regularizing term where ‖w‖2

H = ‖w‖2
HΨπ

.
From a practical point of view we may consider the Hilbert space HΨπ richer as it con-
tains not only the function capacity ofH but also the dynamics of the MDP and the policy
π .

Now we may solve the SVR in the dual using standard Lagrange multipliers technique
based on the formulation in section 3.9 which is more compact but whenever necessary
we may exploit the equivalence of the two formulations through the connection between
the Hilbert spaces H and HΨπ . Solving the problem in section 3.9 requires introducing
the multipliers α ,α∗,η ,η∗ so we can write the corresponding Lagrangian as:

LQP =
1
2
‖w‖2

HΨπ
+C

n

∑
t=1

(ξt +ξ
∗
t)−

n

∑
t=1

(ηtξt +η
∗
t ξ
∗
t) (3.45)

−
n

∑
t=1

αt [ε +ξt− r(st ,at)+ 〈Ψπ(st ,at),w〉+(1− γ)b]

−
n

∑
t=1

α
∗
t [ε +ξ

∗
t + r(st ,at)−〈Ψπ(st ,at),w〉− (1− γ)b]

3.9. API−BRMε DUAL BATCH SOLUTION 57

the dual variables have to satisfy positive constraints

αt ,α
∗
t ,ηt ,η

∗
t ≥ 0. (3.46)

It follows from the saddle point conditions that the partial derivatives of LQP with respect
to the primal variables (w,b,ξ ,ξ ∗) have to vanish for optimality:

∂ LQP

∂ w
= 0 −→ w =

n

∑
t=1

(αt−α
∗
t)Ψ

π(st ,at) (3.47)

∂ LQP

∂ b
= 0 −→

n

∑
t=1

(αt−α
∗
t) = 0 (3.48)

∂ LQP

∂ ξt
= 0 −→ C−αt−ηt = 0 (3.49)

∂ LQP

∂ ξ
∗
t

= 0 −→ C−α
∗
t −η

∗
t = 0 (3.50)

(3.51)

Substituting section 3.9,section 3.9,section 3.9,section 3.9 into section 3.9 and eliminating
the dual variables ηt =C−αt and η∗t =C−α∗t yields to the dual optimization problem

min
α,α∗,b

1
2 ∑

n
t=1 ∑

n
p=1 Kπ

t p(αt−α∗t)(αp−α∗p)+ ε ∑
n
t=1(αt +α∗t) (3.52)

−∑
n
t=1 r(st ,at)(αt−α∗t)+b(1− γ)∑

n
t=1(αt−α∗t)

s.t. ∑
n
t=1(αt−α∗t) = 0 αt ,α

∗
t ∈ [0,C] ∀ t = 1, ...,n

where Kπ
t p = κ̃π(st ,at ,sp,ap) = (Ψπ

t)
T Ψπ

p is the Bellman Error kernel matrix where

(Ψπ)T = [Ψπ(s1,a1), ...Ψ
π(sn,an)]

T .

The problem in section 3.9 can be written in more compact form as

min
α,α∗,b

1
2(α−α∗)T Kπ(α−α∗)+ ε(α +α∗)−RT (α−α∗)+b(1− γ)(α−α∗) (3.53)

s.t. IT
n (α−α∗) = 0 αt ,α

∗
t ∈ [0,C] ∀ t = 1, ...,n

with R = [r(s1,a1) ...r(sn,an)]
T and In the identity matrix with n elements or even in more

compact form defining β = [α α∗] as

min
β ,b

1
2β

T Qπ
Kβ +(cT +bdT)β (3.54)

s.t. [In − In]
T β = 0 βt ∈ [−C,C] ∀ t = 1, ...,n

where we put dT = [(1− γ)In − (1− γ)In] and cT = [εIn +R εIn−R] and the kernel
matrix

Qπ
K =

[
Kπ −Kπ

−Kπ Kπ

]
. (3.55)

58 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

Moreover the Karush-Kuhn-Tucker (KKT) conditions require that at the point of the so-
lution the product between the dual variables and constraints has to vanish:

αt [ε +ξt− r(st ,at)+ 〈Ψπ(st ,at),w〉+(1− γ)b] = 0 (3.56)
α
∗
t [ε +ξ

∗
t + r(st ,at)−〈Ψπ(st ,at),w〉− (1− γ)b] = 0

(C−αt)ξt = 0
(C−α

∗
t)ξ

∗
t = 0

As a result only samples (st ,at) with corresponding αt = C or α∗t = C lie outside the
ε−insensitive tube. Secondly αtα

∗
t = 0 i.e. there can never be a set of dual variables

αt ,α
∗
t simultaneously non zero. The same kind of argument exposed for the SVR can be

applied to the calculation of the b parameter. Once the dual variables are known defining
βt = αt−α∗t the weight vector is given by

w =
n

∑
t=1

βtΨ
π(st ,at)

Hence, the dual problem has Lagrangian

LPP =
1
2

n

∑
t=1

n

∑
p=1

Kπ
t pβtβp + ε

n

∑
t=1

(αt +α
∗
t)−

n

∑
t=1

(αt−α
∗
t)r(st ,at) (3.57)

+b̂(1− γ)
n

∑
t=1

(αt−α
∗
t)−

n

∑
t=1

(δtαt +δ
∗
t α
∗
r)+

n

∑
t=1

[υt(αt−C)+υ
∗
t (α

∗
t −C)]

where δt ,δ
∗
t ,υt ,υ

∗
t and b̂ are the Lagrange multipliers. Optimizing this Lagrangian leads

to the following KKT conditions:

∂ LPP

∂ αt
= 0 →

n

∑
p=1

Kπ
t pβp + ε− r(st ,at)+ b̂(1− γ)−δt +υt = 0 (3.58)

∂ LPP

∂ α
∗
t

= 0 → −
t

∑
p=1

Kπ
t pβ
∗
p + ε + r(st ,at)− b̂(1− γ)−δ

∗
t +υ

∗
t = 0 (3.59)

δt ≥ 0 δtαt = 0 δ
∗
t ≥ 0 δ

∗
t α
∗
t = 0 (3.60)

υt ≥ 0 υt(αt−C) = 0 υ
∗
t ≥ 0 υ

∗
t (α

∗
t −C) = 0. (3.61)

Note that b is equal to b̂ at optimality and defining (g∗t =−gt +2ε)

gt =
n

∑
p=1

Kπ
t pβp +b(1− γ)− r(st ,at)+ ε

. As the αtα
∗
t = 0 condition holds the βt parameter completely determine both αt and

α∗t . Recalling that from KKT we have w = ∑
n
t=1 βtΨ

π(st ,at) the margin function may be
expressed as

h(st ,at) = 〈Ψπ(st ,at),w〉+b(1− γ)− r(st ,at) (3.62)

=
n

∑
p=1

βp〈Ψπ(st ,at),Ψ
π(sp,ap)〉+b(1− γ)− r(st ,at)

=
n

∑
p=1

Kπ
t pβp +b(1− γ)− r(st ,at)

3.10. BELLMAN KERNEL CHARACTERIZATION 59

It is also worth noting that the following conditions descend from the KKT:

δt = h(st ,at)+ ε +υt = gt +υt αt [h(st ,at)+ ε +υt] = 0 (3.63)
δ
∗
t =−h(st ,at)+ ε +υ

∗
t = g∗t +υ

∗
t α

∗
t [−h(st ,at)+ ε +υ

∗
t] = 0

and combining h(st ,at) definition with the KKT conditions we obtain:
h(st ,at)≥ ε βt =−C, αt = 0, α∗t =C
h(st ,at) = ε −C < βt < 0, αt = 0, 0 < α∗t <C
−ε ≤ h(st ,at)≤ ε βt = 0, αt = 0, α∗t = 0
h(st ,at) =−ε 0 < βt <C, 0 < αt <C, α∗t = 0
h(st ,at)≤−ε βt =C, αt =C, α∗t = 0

(3.64)

Hence, the conditions in section 3.9 allows for the identification of three subsets of train-
ing set and can be classified as:

• the set E Error support vectors E = {t s.t. | |βt |=C}

• the set S Margin support vectors S = {t s.t. |0 < |βt |<C}

• the set R Remaining samples R = {t s.t. | |βt |= 0}

3.10 Bellman Kernel Characterization
Finally we may investigate the connection of the SVR solution between the Hilbert spaces
H and HΨπ for the infinite sample formulation. Consider the weighting vector w =

∑
n
t=1 βtΨ

π(st ,at) if we plug

Ψ
π(st ,at) = Φ(st ,at)− γ

∫
P(s′|st ,at) ∑

a′∈A
π(s′|a′)Φ(s′,a′)

may write

w = ∑
n
t=1 βt [Φ(st ,at)− γ

∫ P(s′|st ,at) ∑a′∈A π(s′|a′)Φ(s′,a′)]
= ∑

n
t=1 βtΦ(st ,at)− γ ∑

n
t=1 βt

∫ P(s′|st ,at) ∑a′∈A π(s′|a′)Φ(s′,a′) (3.65)

giving the weighting vector w in terms of a linear combination of vectors in the span of
Φ(s,a). According to the expression section 3.10, while in the Hilbert space HΨπ the
KKT conditions tells us that the vector w is a linear combination of {Ψπ(st ,at) : t =
1, ..,n}. Hence in general in the Hilbert spaceH the whole set of functions Φ(st ,at) may
be necessary to represent the same vector w.

Now to avoid clutter with notation we move to the empirical version of API−BRMε

using the finite sample formulation

min
w,b,ξ ,ξ ∗

1
2‖w‖2

H
Ψ̂π

+C ∑
n
t=1(ξt +ξ ∗t) (3.66)

s.t. r̂t−〈Ψ̂π(st ,at ,s′t),w〉− (1− γ)b≤ ε +ξt

−r̂t + 〈Ψ̂π(st ,at ,s′t),w〉+(1− γ)b≤ ε +ξ ∗t
ξt ,ξ

∗
t ≥ 0 t = 1, ...,n

60 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

and the solution of the regression problem may be expressed as

D̂πQ̂(s,a,s′) = 〈Ψ̂(s,a,s′),w〉+(1− γ)b =
n

∑
t=1

βt κ̃
π(s,a,s′,st ,at ,s′t) (3.67)

where the Hilbert norm can be written as

‖D̂πQ̂‖2
H

Ψ̂π
=

n

∑
i, j=1

βiβ jκ̃
π(si,ai,s′i,s j,a j,s′j) (3.68)

and the action value function

Q̂(s,a) = 〈Φ(s,a),w〉+b = ∑
n
t=1 βt κ̂

π(s,a,st ,at ,s′t)
= ∑

n
t=1 βt [κ(s,a,st ,at)− γ ∑a′t∈A π(a′t |s′t)κ(s,a,s′t ,a′t)] (3.69)

So defining

(si,ai) = (st ,at) and αi = βt i f j = 0
(si,ai) = (s′t ,a

′
j) and αi =−γβtπ(a′j|s′t) i f j > 0

i = (t−1)(1+ |A|)+ j+1 t = 1, ..,n j = 0, ..., |A| (3.70)

we may express the weighting vector as

w =
(1+|A|)n

∑
i=1

αiΦ(si,ai). (3.71)

section 3.10 tells that the weighting vector w is the result of a linear combination of
(1+ |A|)n vectors Φ(si,ai) ∈ H. This essentially depends on the choice to keep the av-
erage over the policy (which reduces the variance on this term) and might be reduced to
2n vectors using the max policy (as in Q-learning) or one of the possible actions (as in
SARSA). The action value function is expanded as

Q̂(s,a) = 〈Φ(s,a),w〉+b =
(1+|A|)n

∑
i=1

αiκ(s,a,si,ai) (3.72)

and the Hilbert norm

‖Q̂‖2
H =

(1+|A|)n
∑

i, j=1
αiα jκ(si,ai,s j,a j) (3.73)

with ‖D̂πQ̂‖2
HΨπ

= ‖Q̂‖2
H.

3.11 Incremental Equivalent To Batch API−BRMε

SVR can be also solved very efficiently using an incremental algorithm (see [70], [49]
for SVM and [57] for the extension to SVR) which updates the trained SVR function
whenever a new sample zc is added to the training set Dn. The basic idea is to change the
coefficient βc corresponding to the new sample zc in a finite number of discrete steps until
it meets the KKT conditions while ensuring that the existing samples in Dn continue to
satisfy the KKT conditions at each step. Moreover to build an exact incremental SVR one
needs to define three primitive actions:

3.11. INCREMENTAL EQUIVALENT TO BATCH API−BRMε 61

• add a new vector D′ = D∪{zc}

• remove an existing vector D′ = D\{zc}

• update an existing vector D′ = D\{zc}∪{z′c}
In each case the resulting incremental SVR should be the same that would be training
from the scratch using the whole final set of data as done in batch mode.

Now to transform batch API−BRMε formulation into an incremental version we have
to arrange the primal problem in section 3.9 or equivalently the dual problem in sec-
tion 3.9. This has to be done considering that in batch mode the data samples have been
collected at some time while interacting with the cMDP. In the incremental version data
sample are generated one step t at the time using some behavior policy. Assume now that
into the data set

Dn = {(s1,a1,r1,s′1), ...,(sn,an,rn,s′n)}= {(st ,at ,rt ,s′t) t = 1, ...,n}
any given point (s̄i, āi) may be repeated a number ni of times such as n = ∑

N
i=1 ni where N

is number of actually different samples. For the sake of the argument imagine we arranged
the repeated samples as

s1 = ...= sn1 = s̄1 and a1 = ...= an1 = ā1

sn1+1 = ...= sn1+n2 = s̄2 and an1+1 = ...= an1+n2 = ā2

......

snN−1+1 = ...= snN = s̄N and anN−1+1 = ...= anN = āN

Now for each (s̄i, āi) the total number of transitions ni = ∑
ni
j=1 ni j are also present in Dn

{s̄′i j = s′t r̄i j = rt t = (i−1)ni +1, ...,(i−1)ni +ni+1, i = 1, ...N, j = 1, ...,ni}
In practice we are considering Dn organized in repeated experiences as

Dn = {(s̄i, āi, r̄i j, s̄′i j) i = 1...,N, j = 1, ...,ni, ni =
ni

∑
j=1

ni j, n =
N

∑
i=1

ni}

which means N different points (s̄i, āi) repeated ni times with ni j different transactions
(r̄i j, s̄′i j). If Dn is large enough we may build an unbiased estimation of the transition

probability as P
s̄′i j
s̄i,āi
≈ ni j

ni
. Hence the feature mapping Ψπi(s̄i, āi) defined for the batch

API−BRMε may be written as

Ψ̄π(s̄i, āi)≈ ∑s̄′i j
P

s̄′i j
s̄i,āi

Ψ̂πi j(s̄i, āi, s̄′i j) =
1
ni

∑
ni
j=1 ni jΨ̂

πi j(s̄i, āi, s̄′i j) (3.74)

where with πi j(a′|s̄′i j) we indicated the probability for selecting a given action in the state
s̄′i j which has to be thought as a stochastic matrix. Now considering dual formulation of
the batch API−BRMε as

min
β̄

1
2 β̄

T
Qπt

K β̄ +(cT +bdT)β̄ (3.75)

s.t. [IN − IN]
T β̄ = 0 β̄t ∈ [−C,C] ∀ (s̄t , āt) ∈ S×A

62 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

where we put dT = [(1− γ)IN − (1− γ)IN] and cT = [εIN + R̄ εIN− R̄] with

R̄ = [r̄(s̄1, ā1) ... r̄(s̄N , āN)]
T = [

n1

∑
j=1

n1 j

n1
r̄1 j ...

nN

∑
j=1

nN j

nN
r̄N j]

T

and r̄i j = r
s̄‘

i j
s̄i,āi

and the kernel matrix

Q̄π
K =

[
K̄π −K̄π

−K̄π K̄π

]
=

[
Ψ̄π

−Ψ̄π

][
(Ψ̄π)T (−Ψ̄π)T] (3.76)

The features mapping are used to build the matrix K̄π = (Ψ̄π)T Ψ̄π where

Ψ̄
π = [Ψ̄π(s̄1, ā1)...Ψ̄

π(s̄N , āN)]
T = [

n1

∑
j=1

n1 j

n1
Ψ̂

π1 j(s̄1, ā1, s̄′1 j)...
nN

∑
j=1

nN j

nN
Ψ̂

πN j(s̄N , āN , s̄′N j)]
T

Hence, the matrix product can be decomposed as

β̄
T
[

Ψ̄π

−Ψ̄π

]
=
[
ᾱ ᾱ∗

][Ψπ

−Ψπ

]
=
[
ᾱ1 ᾱN ᾱ∗1 ᾱ

∗
N
][Ψ̄π(s̄1, ā1) ... Ψπ(s̄N , āN)
−Ψ̄π(s̄1, ā1) ... −Ψπ(s̄N , āN)

]
(3.77)

and for each product

ᾱiΨ̄
π(s̄i, āi) =

ni

∑
j=1

ᾱi
ni j

ni
Ψ̂

πi j(s̄i, āi, s̄′i j) =
ni

∑
j=1

ni jα̂i jΨ̂
πi j(s̄i, āi, s̄′i j) (3.78)

where we put α̂i j =
ᾱi
ni

(and α̂∗i j =
ᾱ∗i
ni

) which suggests that the same solution of the op-
timization problem may be obtained by a particular kind of SVR where we control that
the same Lagrangian multipliers have been used for any repeated sample (s̄i, āi, r̄i j, s̄′i j).
This can be easily understood considering that the set of events having the same (s̄i, āi)
but different (r̄i j, s̄′i j), from the point of view of the feature mapping Ψ̄π(s̄i, āi) are linearly
dependent and as a consequence must share the same lagrangian multipliers (ᾱi, ᾱ

∗
i).

min
w,b,ξ̄ ,ξ̄ ∗

1
2‖w‖2

HΨπ
+C ∑

N
i=1 ∑

ni
j=1 ni j(ξ̄i j + ξ̄ ∗i j) (3.79)

s.t. r̄i j−〈Ψ̂πi j(s̄i, āi, s̄′i j),w〉− (1− γ)b≤ ε + ξ̄i j ni j times

−r̄i j + 〈Ψ̂πi j(s̄i, āi, s̄′i j),w〉+(1− γ)b≤ ε + ξ̄ ∗i j ni j times

ξ̄i j, ξ̄
∗
i j ≥ 0 i = 1, ...,N, j = 1, ..,ni

when a new point is added to the SVR we must check if it is already present in order to
apply the constraints on the α̂i j. In the empirical case this check will be only necessary
for discrete state domains, while in the general case of continuous state domain it is quite
unlikely that the MDP will make transitions on exactly the same point. Moreover it is

not necessary to store the probability transition matrix P
s̄′i j
s̄i,āi

= P̄i j
i as the incremental SVR

algorithm implicitly takes this task into account.
Analysis of the properties of the incremental solution for problem section 3.11 follows

the methodology reported in [57] while some technical details can also found in Appendix
3.12.

A possible generalization of API−BRMε using different loss functions are presented
also in Appendix 3.13 together with a methodology involving the solution of the approx-
imation problem in the primal.

3.12. APPENDIX 3A: API−BRMε INCREMENTAL SOLUTION 63

3.12 Appendix 3A: API−BRMε Incremental Solution
Consider the formulation of the incremental API−BRMε reported in problem section 3.11.
Looking for the solution we may proceed as in the batch case, the weight vector w of the
problem in section 3.11 can be expanded as:

w =
N

∑
k=1

nk

∑
h=1

β̂khP̄kh
k Ψ̂

πhk(s̄k, āk, s̄′hk) (3.80)

and the approximated action value function will be expressed as

Q(s̄i, āi) = 〈Φ(s̄i, āi),w〉+b = ∑
N
k=1 ∑

nk
h=1 β̂khP̄kh

k 〈Φ(s̄i, āi),Ψ̂
πhk(s̄k, āk, s̄′hk)〉+b

= ∑
N
k=1 ∑

nk
h=1 β̂khP̄kh

k K̂π
ikh +b (3.81)

where the auxiliary function K̂π is defined as

K̂π
ikh = 〈Φ(s̄i, āi),Ψ̂

πhk(s̄k, āk, s̄′hk)〉= κ̂(s̄i, āi, s̄k, āk, s̄′kh)

= κ(s̄i, āi, s̄k, āk)− γ ∑a′ πkh(a′|s̄′kh)κ(s̄i, āi, s̄′kh,a
′) (3.82)

and the regression function

D̂πQ̂r(s̄i, āi) = ∑
ni
j=1 P̄i j

i Q̂π
r (s̄i, āi, s̄′i j)) = ∑

ni
j=1 P̄i j

i 〈Ψ̂πi j(s̄i, āi, s̄′i j),w〉+(1− γ)b

= ∑
N
k=1 ∑

nk
h=1 ∑

ni
j=1 β̂khP̄i j

i P̄kh
k 〈Ψ̂πi j(s̄i, āi, s̄′i j),Ψ̂

πhk(s̄k, āk, s̄′hk)〉+(1− γ)b

= ∑
N
k=1 ∑

nk
h=1 ∑

ni
j=1 β̂khP̄i j

i P̄kh
k K̃π

i jkh +(1− γ)b (3.83)

using D̂πQ̂(s̄i, āi, s̄′i j) = 〈Ψ̂πi j(s̄i, āi, s̄′i j),w〉+(1− γ)b and the Bellman kernel K̃π is de-
fined with elements as

K̃π
i jkh = 〈Ψ̂πi j(s̄i, āi, s̄′i j),Ψ̂

πhk(s̄k, āk, s̄′hk)〉= κ̃(s̄i, āi, s̄′i j, s̄k, āk, s̄′kh)

= κ̂(s̄i, āi, s̄k, āk)− γ ∑a′ πi j(a′|s̄′i j)κ̂(s̄i, āi, s̄′i j,a
′) (3.84)

One that aspect we have to take into account regards the policy πi j used to build the feature
vector Ψ̂πi j(s̄i, āi, s̄′i j). In this case the function πi j(·,s′t) remains implicitly stored into the
kernel matrix of the machine K̂π = (Ψ̂π)T Ψ̂π where

Ψ̂
π = [Ψ̂π11(s̄1, ā1, s̄′11) ... Ψ̂

πNnN (s̄N , āN , s̄′NnN
)]T

which according to the API Algorithm 2 should be evaluated as the greedy policy coming
form the previously known action value function approximation as πt(·) ← π̂(·, Q̂t−1).
This means that whenever we add a new sample into the incremental API−BRMε the
history of the greedy policies Πn = {π11, ...,πNnN} used in any next state transition s′t is
implicitly stored into the machine. Hence the action value function Q̂t updated into the
policy evaluation step takes into account this policy history. Nevertheless the new policy
π̂(·, Q̂t) is still the greedy policy of the last approximation of the action value function Q̂t
coming from the API−BRMε problem.

In order to show how the incremental SVR algorithm finds solution of the optimization
problem in section 3.11, consider the sample (st ,at) with the initially set value of βt and

64 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

gradually change (increase o decrease) its value preserving KKT conditions. Adding a
sample means that for a given state st applying the action at we reach the state s′t and
getting the reward rt . Therefore two situations are possible: either the point (st ,at) was
visited before and is already present as (st ,at ,rt ,s′t) = (s̄i, āi, r̄i j, s̄′i j) (for a given i and j)
with a given set of transitions (r̄i j, s̄′i j) j = 1, ...,ni or not. In the first case the estimated

transition probability is P̄
s̄′i j
s̄i,āi

= P̄i j
i =

ni j
ni

is going to change during the incremental step.
In the last one the sample is a completely new we have to start building the transition
matrix from scratch. According to the analysis of the batch API−BRMε we may write
the margin function for the samples in Dn before the incremental update expressed as

h(s̄i, āi) = ∑
N
k=1 ∑

nk
h=1 ∑

ni
j=1 β̂hkP̄i j

i P̄kh
k 〈Ψπi j(s̄i, āi, s̄′i j),Ψ̂

πkh(s̄k, āk, s̄′kh)〉+
b(1− γ)− r̄(s̄i, āi) = ∑

N
k=1 ∑

nk
h=1 β̂hkP̄i j

i P̄kh
k K̃π

i jkh +b(1− γ)− r̄(s̄i, āi) (3.85)

Hence, after adding a completely new point (sc,ac,rc,s′c) = (s̄c, āc, r̄cq, s̄cq) according to
the KKT the margin function becomes

h′(s̄i, āi) = ∑
N
k=1 ∑

ni
j=1 ∑

nk
h=1 β̂ ′hkP̄i j

i P̄kh
k K̃π

i jkh + β̂ ′cq ∑
ni
j=1 P̄i j

i K̃π
i jcq +b(1− γ)− r̄(s̄k, āk)(3.86)

so the changes in the margin function during the update of a new training point according
to the KKT as

∆h(si,ai) =
N

∑
k=1

nk

∑
h=1

ni

∑
j=1

∆β̂hkP̄kh
k P̄i j

i K̂π
ikh +∆β̂cq

ni

∑
j=1

P̄i j
i K̂π

i jcq ++∆b(1− γ) (3.87)

In case we are updating a point already present the transition probability P̄ch
c will also

change to P̄′ch
c for h = 1, ...,nc and we have

h′(si,ai) = ∑
N
k=1
k 6=c

∑
nk
h=1 ∑

ni
j=1 β̂ ′hkP̄′kh

k P̄′i j
i K̃π

i jkh + β̂ ′cq ∑
nc
h=1
h6=q

∑
ni
j=1 P̄′ch

c P̄′i j
i K̃π

i jch

+β̂ ′cq ∑
ni
j=1 P̄′cq

c P̄′i j
i K̃π

i jcq +b(1− γ)− r̄(s̄i, āi)

As a result we may evaluate the changes in the margin function during the update of a
new training point according to the KKT as

∆h(si,ai) = ∑
N
k=1 ∑

nk
h=1 ∑

ni
j=1 ∆β̂hkP̄kh

k P̄′i j
i K̂π

ikh +∆β̂cq ∑
nc
h6=q
h=1

∑
ni
j=1 P̄′ch

c P̄′i j
i K̂π

ickh

+∆β̂cq ∑
ni
j=1 P̄′cq

c P̄′i j
i K̃π

i jcq +∆b(1− γ)

while from the equality condition coming from b we have

∆β̂cq +
N

∑
k=1

∆β̂hk = 0 (3.88)

which are the equations connecting the changes in the β̂hk coefficients due to the updating
of the sample sample. From the expressions section 3.12 and section 3.12 we may un-
derstand that the kernel matrix enters into the update of the lagrangian coefficients β not
directly but combined with probabilities and we may define the average kernel matrix as:

Q̄k
i =

nk

∑
h=1

ni

∑
j=1

P̄i j
i P̄kh

k K̂π
i jkh (3.89)

3.12. APPENDIX 3A: API−BRMε INCREMENTAL SOLUTION 65

Considering for the moment only the case where we are inserting a new training point
which was not present before. Hence, we may define the index of the samples in the
support vectors set S as S = {s1,s2, ...,sl} and the section 3.12 and section 3.12 can be
represented in matrix form as

0 1 ... 1
(1− γ) Q̄pl

sl ... Q̄pl
s1

. . . .
(1− γ) Q̄p1

sl ... Q̄pl
sl




∆b
∆βs1

.
∆βsl

=−


1

Q̄k
s1
.

Q̄k
sl

∆βk (3.90)

that is 
∆b

∆βs1

.
∆βsl

= β̂∆βk (3.91)

where

β̂ =


β

βs1

.
βsl

=−R


1

Q̄k
s1
.

Q̄k
sl

 (3.92)

where

R =


0 1 ... 1

(1− γ) Q̄pl
sl ... Q̄pl

s1

. . . .
(1− γ) Q̄p1

sl ... Q̄pl
sl


−1

(3.93)

Define the non support vector set N = E∪R = {n1, ...,nl} and combining the above equa-
tions leads to: 

∆h(sn1,an1)
∆h(sn1,an2)

.
∆h(snl ,anl)

= γ̂∆βk (3.94)

with γ̂ defined as

γ̂ =


1

Q̄k
n1
.

Q̄k
nl

+


0 1 ... 1
(1− γ) Q̄pl

n1 ... Q̄pl
nl

. . . .
(1− γ) Q̄p1q1

nl ... Q̄pl
nl

 β̂ (3.95)

Given ∆βk one can update βt , t ∈ S and b according to section 3.12 and update ∆h(st ,at), t ∈
N according to section 3.12. Moreover section 3.9 suggests that βt , t ∈N and h(st ,at), t ∈
S are constant if the set S stays unchanged. Hence it only necessary to solve the problem

66 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

on how to find the appropriate value ∆βk. On the other side, when we are updating the
API−BRMε with a sample already present into the training set, we keep the average ker-
nel matrix section 3.12 for the incremental update of the lagrangian coefficients βt . Now
the section 3.12 may also be obtained removing the point (si,ai) from the training set, up-
dating the transition probability P̄cq

c considering that we have a new point (sc,ac,rcq,s′cq)
and then adding it again to the training set now taking into account the updated probability
P̄′cq

c and therefore the update of the average kernel matrix Q̄c
i .

All the above incremental equations are valid while the vectors do not migrate from
set R,E or S to another one. This suggest a way to cope with the problem of finding the
correct ∆βk choosing it to be the largest value that either can maintain the set S unchanged
or eventually leads to the termination of the incremental algorithm. As a matter of fact the
first step is to determine if the change ∆βk should be positive or negative according to the
section 3.9 sign(∆βk) = sign(−h(sk,ak)) Then, eventually, one has to find out the bound
on ∆βk imposed by each sample in the training set D′. Considering only the case ∆βk > 0
(the opposite case ∆βk < 0 is quite similar), for a new (multi) sample (sc,ac,rcq,s′cq) we
have two cases:

• [1] h(sc,ac) changes from h(sc,ac)<−ε to h(sc,ac) =−ε then the new sample is
added to the set S and the algorithm terminates

• [2] if βc increases from βc < 0 up to βc = 0 the new sample is added to the set E
and the algorithm terminates

for each sample t ∈ S

• [3] if βi changes from 0 < |βi|<C to |βi|=C then sample (si,ai) migrates from S
to E. If βi = 0 sample (si,ai) migrates from S to R

for each sample t ∈ E

• [4] if h(si,ai) changes from |h(si,ai)| > ε to |h(si,ai)| = ε then sample (si,ai) mi-
grates from E to S

for each sample t ∈ R

• [5] if h(si,ai) changes from |h(si,ai)| < ε to |h(si,ai)| = ε then sample i migrates
from R to S.

The book-keeping procedure then is to trace for each sample into the training set D′

against these five cases and to determine the allowed ∆βc for each sample according to the
section 3.12 and section 3.12 while the final ∆βk is defined as the one with the minimum
absolute value among the possible ∆βk.

The migration process needs that the matrix R must be updated whenever the set S
changes its composition. It is possible to do the task efficiently without explicitly com-
puting the matrix inverse. When the sample k ∈ S is removed the updated Rnew can be
obtained as follows:

Rnew = RI,I−
RI,kRk,I

Rk,k
(3.96)

I = {1, ...,k,k+2, ...,sl +1}

3.13. APPENDIX 3B: API−BRMε PRIMAL SOLUTION 67

while when a new sample is added to set S the update can be found through:

Rnew =


0

R .
.

0 . . 0

+ 1
γ̂p

[
µ

1

][
µ 1

]
(3.97)

where µ and γ̂p are defined as

µ =−R


1

Q̄p
1
.

Q̄p
1

 γ̂i = Q̄p
p +


1

Q̄p
1
.

Q̄p
l

µ (3.98)

when the sample (sp,ap) was moved from E to R. Whenever the sample (si,ai) is added
to S µ and γ̂p can be obtained from the section 3.12 and section 3.12. An initial SVR
solution in general can be obtained from a batch SVR solver often being the most efficient
approach. If we want to unlearn an existing sample from the training set D we can also
provide a decremental algorithm. If the sample to unlearn i∈R clearly does not contribute
to the SVR solution and its removal does not require adjustments. However, if on the other
hand (si,ai) has βi 6= 0 one can gradually reduce βi while ensuring all the other samples
in the training set to satisfy the KKT conditions. As a result the decremental algorithm
follows the same strategy of the incremental one taking into account:

• the direction of the change of βi from sign(∆βi) = sign(h(si,ai))

• there is no case [1] because the removed (sk,ak) does not need to satisfy the KKT
conditions

• the condition of case [2] becomes: βi changing from |βi|> 0 to |βi|= 0.

3.13 Appendix 3B: API−BRMε Primal Solution
Now we focus on the solution of the API−BRMε optimization problem in the primal
looking for the approximation action value function for each iteration of the API algo-
rithm. According to the previous section we are able to process the data in batch mode
solving the optimization problem in section 3.9 or eventually in incremental mode solving
the optimization problem in section 3.11. We have already shown the connection between
the two formulations when solving the problem in the dual. However SVR can also be
solved directly in the primal formulation [21], [52]. Consider the data set

Dn = {(s̄t , āt , r̄t , s̄′t) t = 1, ...,n}= {(s̄i, āi, r̄i j, s̄′i j) i= 1...,N, j = 1, ...,ni, ni =
ni

∑
j=1

ni j, n=
N

∑
i=1

ni}

as described in the previous section. Now the slack variables of ξt ,ξ
∗
t in section 3.9 and

using the Jensen’s inequality can be written as
1
n ∑

n
t=1(ξt +ξ ∗t) =

1
n ∑

N
i=1 ni(ξ̄i + ξ̄ ∗i) =

1
n ∑

N
i=1 ni`ε(D̂πQ(s̄i, āi)− r̄(s̄i, āi))

= 1
n ∑

N
i=1 ni`ε(∑

ni
j=1 P̄i j

i (D̂πQ(s̄i, āi, s̄′i j)− r̄i j))≤ 1
n ∑

N
i=1 ∑

ni
j=1 ni j`ε(D̂πQ(s̄i, āi, s̄′i j)− r̄i j)

= 1
n ∑

n
t=1 `ε(D̂πQ(st ,at ,s′t)− r̂t) = En[`ε(D̂πQ(st ,at ,s′t)− r̂t)] (3.99)

68 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

Hence BRMε in the primal requires solving the optimization problem

Q̂ = argmin
Q∈H

{En[`ε(D̂πQ(st ,at ,s′t)− r̂t)]+λn‖Q‖2
H} (3.100)

and D̂πQ(st ,at ,s′t) = Q(st ,at)− γ ∑a′t∈A π(a′t |s′t)Q(s′t ,a
′
t) where we have dropped b for

simplicity which does not affect the generalization performance of SVR. Now according
to the Representer Theorem the optimal function can be expressed as a linear combination
of the kernel functions κ̃π(η ,ζ) with η ,ζ = (s,a,s′) centered into the training samples
as:

D̂πQ(s,a,s′) =
n

∑
t=1

βt κ̃
π(st ,at ,s′t ,s,a,s

′) (3.101)

assuming Q(s,a) = ∑
n
t=1 βt κ̂

π(st ,at ,s′t ,s,a) and Q(s′,a′) = ∑
n
t=1 βt κ̂

π(st ,at ,s′t ,s
′,a′). Us-

ing these expansion in BRMε minimization problem section 3.13 this reduces to finding
the expansion coefficients vector β

∗ such that

β
∗ = argmin

β

{En[`ε(Kπ
t β − r̂t)]+λnβ

T Kπ
β} (3.102)

where Kπ
i j = {κ̃(ηi,ζ j)} is the Bellman kernel matrix and Kπ

t the t− th row of Kπ . In
principle as long as lε(·) is differentiable one may optimize the section 3.13 by a gradient
descent algorithm. In fact the finite Newton algorithm can be proved to converge in a finite
number of steps and can efficiently solve the SVR. However this is not directly applicable
to the linear loss function case since lε(·) is not differentiable everywhere. One alternative
may be to slightly modify the loss function to overcome the problem defining `ε,∆ as in
[52]

`ε,∆(z) =


0 i f |z| ≤ ε

(|z|− ε)2 i f ε < |z|< ∆

(∆− ε)(2|z|−∆− ε) i f |z| ≥ ∆

assuming ∆ > ε the first order derivative can be written as

∂`ε,∆(z)
∂ z

=


0 i f |z| ≤ ε

2sign(z)(|z|− ε) i f ε < |z|< ∆

2sign(z)(∆− ε) i f |z| ≥ ∆

The properties of this loss function are controlled by the two parameters (ε,∆) which is
able to encompass different type of losses as reported in table 3.1.

Introducing the new definition of the loss function into section 3.13 we have the fol-
lowing nonlinear SVR problem

β
∗ = argmin

β

{En[`ε,∆(Kπ
t β − r̂t)]+λnβ

T Kπ
β} (3.103)

Now define the residual vectors:

r̃π
t (β) = Kπ

t β − r̂t (3.104)
r̃π(β) = Kπβ − r

3.13. APPENDIX 3B: API−BRMε PRIMAL SOLUTION 69

∆ ε Loss type sparse
0 < ∆ < ∞ 0 Huber no

∆ = ∞ 0 quadratic no
∆→ ε 0 linear no
∆ = ∞ 0 < ε < ∞ quadratic insensitive yes
∆→ ε 0 < ε < ∞ linear insensitive yes

Table 3.1: Loss function derived from `ε,∆(z)

where r is the reward vector. Moreover defining the sign vectors sπ(β)= [sπ
1 (β), ...,s

π
n (β)]

T

and s̄π(β) = [s̄π
1 (β), ..., s̄

π
n (β)]

T by

sπ
t (β) =


1 i f ε < r̃π

t (β)< ∆

−1 i f −∆ < r̃π
t (β)<−ε

0 otherwise

and

s̄π
t (β) =


1 i f r̃π

t (β)≥ ∆

−1 i f r̃π
t (β)≤−∆

0 otherwise

and putting wπ
t (β)= (sπ

t (β))
2 we define the active matrix Wπ(β)= diag[wπ

1 (β), ...,w
π
n (β)]

one may define the function Lπ
ε,∆(β) as

Lπ
ε,∆(β) = (r̃π(β))T Wπ(β)r̃π(β)−2ε(r̃π(β))T sπ(β) (3.105)

+2(∆− ε)(r̃π(β))T sπ(β)+λβ
T Kπβ + εT Wπ(β)ε− (∆2− ε2)(s̄π(β))T s̄π(β)

and write the section 3.13 as

β
∗ = argmin

β

Lπ
ε,∆(β) (3.106)

The function Lπ
ε,∆(β) in the optimization problem in section 3.13 is piecewise quadratic

and convex function with a unique minimizer and continuously differentiable with respect
to β . Although Lπ

ε,∆(β) is not twice differentiable it is possible to define a generalized
Hessian matrix which allows for the use of the finite Newton algorithm. Eventually the
finite Newton algorithm applied iteratively solve the problem in section 3.13 proceed as
follows

1. fix k = 0 and choose a starting point β
0

2. if β
k is the minimizer of section 3.13 stop

3. compute the Newton step hπ

4. choose step size ρ and set β
k+1 = β

k +ρhπ

70 CHAPTER 3. KERNEL BASED APPROXIMATE POLICY ITERATION

For any given value of β a point (st ,at ,s′t) is a support vector if |r̃π
t (β)| > ε and let

SV 1 = {t |sπ
t (β) 6= 0} denote the index set of supports lying in the quadratic part of the

loss function, SV 2 = {t |s̄π
t (β) 6= 0} the index set of support vectors lying in the linear

part of the loss function and nnSV the index set of the non support vectors. The gradient
of Lπ

ε,∆(β) with respect to β is:

∇ Lπ
ε,∆(β) = 2(Kπ)T Wπ(β)r̃π(β)−2ε(Kπ)T sπ(β) (3.107)

+2(∆− ε)(Kπ)T s̄π(β)+2λKπ
β

while if we define the set Aπ such that

Aπ = {β ∈ Rn | ∃ t |r̃π
t (β)|= ε or |r̃π

t (β)|= ∆} (3.108)

the Hessian exists for β /∈ Aπ while for β ∈ Aπ can be arbitrarily defined to one of its
limits and we have the generalized Hessian as:

∇
2 Lπ

ε,∆(β) = 2(Kπ)T Wπ(β)Kπ +2λKπ (3.109)

Hence the Newton step at the k− th iteration is given by

hπ =−(∇2 Lπ
ε,∆(β

k))−1
∇ Lπ

ε,∆(β
k) (3.110)

Reordering the training samples such that the first nSV 1 are supports of the quadratic part
of the loss function, then we have nSV 2 supports of the linear part and finally the nnSV the
non support training samples the section 3.13 can be written as:hπ

SV 1
hπ

SV 2
hπ

nSV

=

Kπ
SV 1,SV 1 +λ ISV 1,SV 1 Kπ

SV 1,SV 2 Kπ
SV 1,nSV

0 λ ISV 2,SV 2 0
0 0 λ InSV,nSV

−1

×

 rSV 1 + ε[sπ(β k)]SV 1

−(∆− ε)[s̄π(β k)]SV 2
0

−
β

k
SV 1

β
k
SV 2

β
k
nSV


which can be simplified ashπ

SV 1
hπ

SV 2
hπ

nSV

=

(Kπ
SV 1,SV 1 +λ ISV 1,SV 1)

−1(rSV 1 + ε[sπ(β k)]SV 1 +(∆− ε)λ−1Kπ
SV 1,SV 2[s̄π(β k)]SV 2)−β

k
SV 1

−(∆− ε)λ−1[s̄π(β k)]SV 2−β
k
SV 2

−β
k
nSV


allowing the evaluation of the solution in a finite number of steps at a cost of O(n3

SV 1)
using for example the Cholesky factorization. Accordingly we may extend the batch or
the incremental methods presented into the previous section in order to cope with the
modified ε−insensitive loss function `ε,∆. We keep this exercise as future work.

Chapter 4

API−BRMε Theoretical Analysis

4.1 Introduction
Theoretical guarantees on the RL algorithm’s performance can be described using the
Bellman Error BE = ‖Q∗−Qπ‖q

p,ρ as a performance loss measure. In fact, we may con-
sider testing a RL algorithm giving a greedy policy π with respect to an estimated action
value function. If the agent initial state is distributed according to some performance mea-
suring distribution ρ ∈M(S) one may use the Lq

p,ρ norm of the Bellman Error evaluate
the expected difference between the value following the optimal policy π∗ and the one ob-
tained following the policy π . In this case, the probability distribution ρ should represent
the importance of the different regions of the state space and the initial state distribution.
Hence, in this section we analyze the statistical properties of the regularized API−BRMε

providing a finite sample bound of the performance loss ‖Q∗−QπK‖q
p,ρ where πK is the

greedy policy w.r.t. QK−1 after K PI as depicted in Algorithm 1 with ρ is a performance
evaluation measure. This chapter is rather technical and the theoretical analysis proceeds
as follows:

• in section 4.2 we introduce the mixing processes and discuss the implications of
using non-i.i.d. data samples proving some technical lemmas

• in section 4.3 we make some technical assumption and discuss possible implications

• in section 4.4 we prove Theorem 4.2 which gives an upper bound on the statistical
performance of the API−BRMε policy evaluation step

• in section 4.5 we report Theorem 4.3 about the effect of the error propagation for
the ε-insensitive loss function in the BR sequence

• in section 4.6 in Theorem 4.4 we prove an upper bound on the performance loss
‖Q∗−QπK‖1,ρ of API−BRMε

• and finally in section 4.7 we discuss the results and characteristics of the statistical
bound

In practice we study the policy evaluation error of API−BRMε using the SVR regulariza-
tion scheme where we suppose that given any policy π one may obtain Qπ by solving the

71

72 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

regularized problem in section 3.7 with a given πk at step k of the API procedure. Theorem
4.2 provides an upper bound on the Bellman error defined as ‖Q−T πQ‖1,ν . Hence one
may show how the Bellman errors of the policy evaluation procedure propagate through
the API−BRMε in Theorem 4.4.

In the evaluation of the theoretical bound, we adapt to API−BRMε some ideas from
by [35]. However, for API−BRMε we assume the data samples to be β -mixing distributed
and make use of non-parametric function approximation within the BRM approach based
on ε−insensitive loss function. In the work of [35] they assume i.i.d. data samples, non-
parametric approximation function and the alternative formulation of BRM approach (as
described in the optimization problem section 3.6) based on quadratic loss function. As a
result the differences between the two methods are remarkable. In API−BRMε we take
advantage of the sparsity property as well as of the incrementality enabling the addition
or removal of training samples very effectively. An upper bound of the performance
loss using a parametric function approximation is presented in [6] where they use β -
mixing sequences and the alternative formulation of BRM approach (as described in the
optimization problem section 3.6) using quadratic loss function. However, they work
with finite dimensional space while we use non-parametric function spaces which are
essentially infinite dimensional. As a result our work is the first attempt to give some
theoretical justification of using regularized non-parametric approximation function using
SVR to solve the generalization problem in RL with action value function.

4.2 Mixing Processes

A sequence of random variables is called a time series in the statistics literature and a (dis-
crete time) stochastic process in the probability literature. Let X be a measurable space
and Y ⊆ R be closed. Furthermore let (Ω,σΩ,ν) be a probability space and Z = (Z)i≥1
be a stochastic process such that Zi : Ω → X ×Y for all i ≥ 1. For n ≥ 1 we write
Zn = {(X1,Y1), ...,(Xn,Yn))} = {Z1, ...,Zn)} for a training set of length n distributed ac-
cording to the first n components of Z . Moreover we assume Z to be a stationary process
i.e. the (X×Y)n-valued random variables (Zi1 , ...,Zin) and (Zi1+i, ...,Zin+i) have the same
distribution for all n, i, i1, ..., in≥ 1. We further write P for the distribution of one (and thus
all) Zi for all measurable A⊆ X×Y we have P(A) = ν({ω ∈Ω : Zi(ω)∈ σΩ}). Knowing
a set of samples Zn drawn from the probability distribution ν our goal is to find a good ap-
proximation of a function f . However, approximating a function from sparse samples is
an ill-posed problem. To deal with it we may use the regularization theory. Learning rates
measure the quality of the function approximation and certainly play an important role in
learning theory. Mostly the assumption that the samples were drawn independently from
the unknown probability P(X ,Y) is made in learning theory. However, independence in
some context can be a restrictive concept and to learn from stationary processes whose
components are not independent it is necessary to replace the independence assumption
by a notion that still guarantees certain concentration inequalities. The mixing condition
allows a firm mathematical foundation of the notion of near independence and permits
one to derive a more robust theory. In RL the mixing scenario can be easily encountered
in the context of online policy scenario as the actual distribution may be dependent on
some of the previous observations. In general we prefer to drop the assumption on the in-

4.2. MIXING PROCESSES 73

dependence of sample sequence and study the error analysis of regularized regression for
the strongly exponentially mixing sequence. Differently from the i.i.d. case, the learning
performance of the algorithms with mixing sequence is not measured directly by the sam-
ple size (or the number of observations). Instead, it is related to the effective number of
observations. On the other hand we also rely on the approximation property and capacity
of the RKHS.

To learn from stationary processes whose component are not independent [83] sug-
gests that it is necessary to replace the independence assumption by a notion that still
guarantees certain concentration inequalities. Thus, the index t or time, does not affect
the distribution of a variable Zt in a stationary sequence. This does not imply indepen-
dence however. In particular, for i < j < k, P(Z j|Zi) may not equal P(Zk|Zi), that is,
conditional probabilities may vary at different points in time. The following is a standard
definition giving a measure of the dependence of the random variables Zt within a sta-
tionary sequence. We recall some standard mixing coefficients and their basic properties
from [105]. The α−mixing is based on the α−mixing coefficients:

αn = sup{ |µ(A∩B)−µ(A)µ(B)| i≥ 1, A ∈ Ai
1 and B ∈ A∞

i+n}, n≥ 1 (4.1)

where Ai
1 and A∞

i+n are the σ−algebras generated by (Z1, ...,Zi) and (Zi+n,Zi+n+1, ...)
respectively. Moreover the process Z is called strong α−mixing if for some ᾱ0, ᾱ1, ᾱ2 >
0 we have αn ≤ ᾱ0 exp(−ᾱ1nᾱ2). Accordingly the β -mixing coefficients are defined as

βn =
1
2

sup{
∞

∑
i, j=1
|µ(Ai∩B j)−µ(Ai)µ(B j)| : Ai ⊂Ai

1 B j ⊂A∞
i+n partitions} (4.2)

and the process is said to be β -mixing if βn → 0 with n→ ∞ and exponentially β -mixing
if for some constant β̄0, β̄1 > 0 we have βn ≤ β̄0 exp(−β̄1n) It is obvious from the defi-
nitions that all mixing coefficients equal 0 if A and B are independent. Both αn and βn
measure the dependence of an event on those that occurred more than n units of time in
the past. Moreover β -mixing imply α-mixing in the non-i.i.d. scenario. In the most gen-
eral version, future samples depend on the training sample Zn and thus the generalization
error or true error of the hypothesis trained on Zn must be measured by its expected error
conditioned on the sample Zn. The stability of a learning algorithm generally assumes
the i.i.d. property. Replacing an element in a sequence with another has no effect on the
expected value of a random variable defined over that sequence. Hence, the following
equality holds, E[`(Z1, ...,Zi, ..,Zn)|Zn] = E[`(Z1, ...,Z′, ...,Zn)|Zn,Z′] for a random vari-
able ` that is a function of the sequence of random variables Zn = (Z1, ...,Zn). However,
if the points in that sequence Zn are dependent, this equality may not hold anymore. The
main technique working with this problem, is based on the independent block sequence
which consists on eliminating several blocks of contiguous points from the original de-
pendent sequence, leaving us with some remaining blocks of points. Instead of these
dependent blocks, we then consider independent blocks of points, each with the same
size and the same distribution (within each block) as the dependent ones.

Several lemmas can be proved using α or β -mixing distribution, the expected value
of a random variable defined over the dependent blocks is close to the one based on these
independent blocks. As a result using independent blocks brings us back to a situation
similar to the i.i.d. case, with i.i.d. blocks replacing i.i.d. points [105],[61]. The blocking

74 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

device of [105] may be built partitioning the set {1, ...,n} determined by the choice of
an integral block length an with n = 2µnan for appropriate µn,an ∈ N. The partition will
have 2µn blocks of integral block length an such that n−2an ≤ 2µnan ≤ n and a residual
block for 1≤ j ≤ µn we have

H j = {i : 2(j−1)an +1≤ i≤ (2 j−1)an} head
Tj = {i : (2 j−1)an +1≤ i≤ 2 jan} tail
R = {2µnan +1, ...,n} residual (4.3)

The structure of the blocks goes as H1,T1,H2,T2, ...,Hµn,Tµn,R where we define H =
∪1≤ j≤µnH j. The samples in every second block are replaced by ghosts samples whose
joint marginal distribution is kept the same as that of the original samples. For the new
random variables the new blocks are now independent of each other. Consider the se-
quence of random variables Z̄′(H) = {Z′i i ∈ H} such that Z̄′(H) is independent of Z̄n
and the blocks Z̄′(H j) with j = 1, ..,µn are i.i.d. each block having the same distribution
as a block from the original sequence. Let F be some space of measurable real-valued
functions with a domain Z . Now for any f ∈ F we may derive a the function space
F̄ = { f̄ : f ∈ F} and f̄ : Zan → R. Now we quote the following result:

Lemma 4.1. [[105] Lemma 4.1] Suppose (Z1, ...,Zn) ∈ Z is a stationary β -mixing pro-
cess with mixing coefficients βn and Z̄′ ∈ Z the block independent samples For any mea-
surable function f : Zµnan → R we have E[f (Z̄(H))− f (Z̄′(H))]≤ ‖ f‖∞(µn−1)βan

Now we report a technical Lemma which apply for the β -mixing process as stated in
[5] which will come in handy in the next sections:

Lemma 4.2. (Relative Deviation Inequality) Lemma 2 in [5] Consider a Z−valued sta-
tionary β -mixing sequence Z = {Zt}n

t=1 and a permissible class F of real functions f with
domain Z. Assume that for some M > 0 we have sup f∈F ‖ f‖∞ ≤M. Then fix n ∈ N and
ε,η > 0. Let Z̄′(H) be a (µn,an)−independent blocks sequence with a residual block R
satisfying |R| ≤ εη

6M . Then

P
{

sup f∈F
∣∣∣ 1

n ∑
n
i=1 f (Zi)−E[f (Z)]
η+|E[f (Z)]|

∣∣∣> ε

}
≤ 2P

{
sup f∈F

∣∣∣ 1
µn ∑

µn
j=1 f̄ (H ′j)−E[f̄ (H1)]

anη+|E[f̄ (H1)]|

∣∣∣> 2
3 ε

}
+2βan µn (4.4)

The following Lemma generalizing for p,q = 1,2 Lemma 3 in [5] relates the covering
number of Np(ε,F ,‖z‖q

p,n) with Np(ε̄, F̄ ,‖z̄(H)‖q
p,µn):

Lemma 4.3. (Covering Number)[Extension of Lemma 3 in [5]] For any (z1,,zn)∈Zn

and for p = 1,2 we have

Np(ε, F̄ ,‖z̄(H)‖p
p,µn)≤Np

([2(1− |R|n)

4ap
n

] 1
p
ε,F ,‖z‖p

p,n

)
(4.5)

Proof. Consider that for any function f : Z → R we may bound ‖ f̄‖p
p,z̄(H)µn

in terms of

‖ f‖p
p,zn . In fact considering that 2anµn = n−|R| and using the Jensen’s inequality and the

4.2. MIXING PROCESSES 75

fact thar H ⊂ {1, ...,n} we have

‖ f̄‖p
p,z̄(H)µn

=
1
µn

µn

∑
j=1

∣∣∣ ∑
i∈H j

f (zi)
∣∣∣p ≤

ap
n

µnan
∑
i∈H
| f (zi)|p ≤

4ap
n

2(1− |R|n)
‖ f (z)‖p

p,zn
(4.6)

Now considering that for any f1, f2 ∈ F using the previous inequality we have f1− f2 =

f̄1− f̄2 hence we get ‖ f̄1− f̄2‖p
p,z̄(H)µn

≤
(

4ap
n

2(1− |R|n)

)
‖ f1− f2‖p

p,zn therefore any
[

2(1− |R|n)

4ap
n

] 1
p
ε

cover of F is an ε−cover of F .

We may introduce a slightly modified version of Theorem 4 in [5] and working for
both cases p = 1,2 (which generalizes for exponentially β -mixing stochastic processes
Theorem 19.3 in [40] and stated only for p = 2 and i.i.d. processes):

Theorem 4.1. (Relative Deviation Concentration Inequality)[Theorem 4 in [5]] Con-
sider a Z−valued stationary β -mixing sequence Z̄ = {Zt}n

t=1 and a permissible class F
of real valued functions f with domain Z . Let n ∈ N and K1,K2 ≥ 1 and choose η > 0
and 0 < ε < 1. Hence assume that for any f ∈ F the following conditions hold:

• C1 - ‖ f‖∞ ≤ K1

• C2 - E[f 2(Z)]≤ K2E[f (Z)]

further we consider the (an,µn) independent blocks with residual block R assuming that
the following conditions also hold:

• C3 -
√

n
√

1− ε
√

η ≥ 576max{2K1an,
√

2anK2}

• C4 - |R|n ≤
εη

6K1
and |R| ≤ n/2

• C5 - For all z1, ...,zn ∈ Z and all δ > ηan
8 we have

√
µnε(1− ε)δ

96
√

2an max{K1,2K2}
≥
∫ √

δ

ε(1−ε)δ
16an max{K1,2K2}

(
log Np

(u

(4ap
n)

1
p
,F ,‖z‖p,n

)) 1
p
du

Then there exists universal constants c1,c2 > 0 such that

P
{

sup
f∈F

∣∣∣ 1
n ∑

n
t=1 f (Zt)−E[f (Z)]

η +E[f (Z)]

∣∣∣> ε

}
≤ c1 exp

(
− c2

µnanηε2(1− 2
3 ε)

max{a2
nK2

1 ,anK2}
)
+2βan µn (4.7)

The constants can be set to c1 = 120 and c2 =
1

21234 .

The proof of this theorem can be found in [40] for the quadratic norm p = 2 and i.i.d.
samples. The proof of the generalization to the β -mixing processes for the quadratic norm
p = 2 case can be found in [5]. Extension to p = 1,2 norms follows same argument as
in the proof of lemma 4.3 and is omitted for brevity. Note that the difference of using

76 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

p = 1,2 norms essentially is reflected into the covering number expression in condition
C5 meaning the ε−cover for the two cases should be different.

Lastly, as some proofs presented in this work rely on it, we introduce in this section
a useful tool called peeling device [96]. Intuitively, the peeling device considers some
function of larger and larger balls centered around a given one, it will allow us to peel off
sets of increasingly smaller probability. To introduce the peeling lets define the functions
τ : F → [ρ,∞) with ρ > 0 and a strictly increasing sequence {σl}l≥0 starting with σ0 =
0 but growing to infinity. We can peel the function space F into F = ∪l≥1Fσl where
Fσl = { f ∈ F : σl−1 ≤ τ(f)≤ σl, l = 1,2, ..}. Then for any ρ > 0 and a residual Xn(f)
stochastic process indexed by F (meaning that implicitly depends on the functions f) we
have:

Definition 4.1. (Peeling Device)[[96]] Consider the function space F and let be Xn(f)
a stochastic process indexed by F . Now consider the function τ : F → [ρ,∞) with ρ > 0
with goal to have a probability upper bound on the weighted process |Xn(f)|/τ(f). Let
{σl}l≥0 be a strictly increasing sequence with σ0 = 0 and liml→∞ σl = ∞. The function
space F can be peeled off into smaller function space F = ∪l≥1Fσl with Fσl = { f ∈ F :
σl−1 ≤ τ(f)≤ σl, l = 1,2, ..} For any a > 0 results

P
{

sup
f∈F

|Xn(f)|
τ(f)

> a
}
≤∑

l≥1
P
{

sup
f∈Fσl

|Xn(f)|
τ(f)

> a
}
≤∑

l≥1
P
{

sup
f∈F ,τ(f)<σl

|Xn(f)|> aσl−1

}
(4.8)

which is called peeling device where each l = 1,2, .. denotes the level of peeling.

This result lets us get probability inequalities for the weighted process from probabil-
ities for the original process.

4.3 API−BRMε Technical Assumptions
To analyze the statistical performance of API−BRMε procedure we make the following
assumptions:

Assumption 4.1. (MDP Regularity) The set of states S⊂Rd is a compact subspace of the
d-dimensional Euclidean space. The random immediate reward rt ∼R(·|st ,at) as well as
the expected immediate rewards r(s,a) are bounded by Rmax.

Results are stated for RL problems whose state space is a compact subset of Rd but
other generalization to other spaces are possible. The reward boundness is a reasonable
assumption in many practical problems.

Assumption 4.2. (Data Sampling) Trajectory should be sufficiently representative and
rapidly mixing. Samples are drawn from a stationary distribution ν ∈ M(S×A) and
{(st ,at ,rt ,s′t)}n

t=1 is the sample path induced by a stochastic stationary behavior policy
πb. {st ,at}n

t=1 is strictly stationary and exponentially β -mixing with the actual rate given
by the parameters β̄0, β̄1 with (st ,at)∼ ν(s,a) at ∼ πb(st) and s′t ∼P(·|st ,at)

One might simplify the proof asking for i.i.d. data samples and proceed as in [35]
eventually asking for fresh independent samples drawn at each PI step. The mixing as-
sumption has to be considered a more realistic thinking of an agent interacting with the

4.3. API−BRMε TECHNICAL ASSUMPTIONS 77

environment. Hence, we stay with data samples generated in the single trajectory sce-
nario where samples are not independent anymore but under certain conditions of the
cMDP the process (st ,at) gradually forgets its past (see [6] and [5]). Mixing processes
represent a way to quantify this forgetting were the independent blocks technique can
be used [105]. Globally exponentially stable unforced dynamical systems subjected to
finite-variance continuous density input noise give rise to exponentially β -mixing Markov
processes [45]. This class encompasses many dynamical systems common in the system
identification and adaptive control. Moreover given the Borel σ−algebra σ(R) and the
distribution ν , a strictly stationary Markov chain X = {Xk, k ∈ Z} satisfy the geometric
ergodicity if for each x ∈ R there exist functions a,c : R → (0,∞) such that

∀n≥ 1 ,∀B ∈ B(R), |P(Xn|X0 = x)−ν(B)| ≤ a(x)e−c(x)n

It can be shown that for Markov processes, geometric ergodicity implies exponential β -
mixing [28]. Hence, for such processes there is no loss of generality assuming exponential
β -mixing. Finally it can be also shown that if the process {st}n

t=1 is β -mixing the Markov
process {(st ,at ,rt)}n

t=1 is also β -mixing with the same rate [20].

Assumption 4.3. (Function Space Capacity) For any R> 0 let beHR = { f ∈H : ‖ f‖H≤
R} then there exists C > 0 and 0≤ α < 1 such that for any u > 0 and all z1, ...,zn ∈Z the
following metric entropy condition is satisfied:

logN1(u,HR,‖z‖n)≤C
(R

u

)2α

(4.9)

As we only deal with RKHS function space this assumption works fine. The α value
enters into the convergence bound as the metric entropy measures the minimum number
of balls with radius u required to completely cover a ball with radius R in H. It is worth
to point out that in case of finite function spaces the metric entropy condition has α = 0
and C = log |H| (see [82]).

Assumption 4.4. (Function Space Boundness) The subset F |A| is a separable and com-
plete Caratheodory set with Rmax ≤ Qmax ≤ ∞.

We require all the functions in F |A| to be bounded in order to have bounded solution
for the regularized BRMε problem. Eventually a truncation operator should be applied to
fulfill the assumption but we miss an explicit indication to avoid clutter. Hence to avoid
measurability problems related to the use of taking supremum over uncountable function
spaces it is also necessary to play with separable and complete Caratheodory set (see
[82]).

Assumption 4.5. (Function Approximation Property) The action value function of any
policy belongs to F |A|

Assuming this we are considering a function space large enough to include the true
action value function and therefore we don’t have to worry about the function approxima-
tion error. As described in section 3.4, when the approximation error exists, the result of
bound described in the following apply only for the estimation error. Results regarding
the behavior of the approximation error for small RKHS are discussed in [107]. Model
selection procedures could used to balance estimation and approximation errors leading
to optimal learning rates [46]. The way model selection should be implemented and ana-
lyzed is outside the scope of this work.

78 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

4.4 API−BRMε Policy Evaluation Error
In this part we focus on the k-iteration of API−BRMε and we prove the following theorem
which provides an upper bound on the statistical performance of the API−BRMε policy
evaluation step.

Theorem 4.2. (BRMε Policy Evaluation Error) For any fixed policy π let Q̂ be the solu-
tion of the regularized API−BRMε optimization problem

Q̂ = argmin
Q∈H

{ L̂API−BRMε
(Q,Πn,Dn)+λn‖Q‖2

H } (4.10)

with the choice of λn =
(

1
n‖Qπ‖2

H

) 1
1+2α

. If the assumptions 4.3,..,4.5 hold, there exists

c(δ)> 0 such that for n ∈ N and 0 < δ < 1 with n sufficiently large we have

‖Q̂−T πQ̂‖2,ν ≤ c(δ)n−
1

1+2α (4.11)

and

c(δ) = c1(‖Qπ‖2
H)

α

1+2α

[log(max(n,c2)/δ)

β̄1

]3

with probability at least 1− δ . In particular when α = 0 the above bound holds for
n≥ c3 exp(β̄1) while in case of α > 0 it holds when

n≥max(c3 exp(β̄1),1/‖Qπ‖2
H)

and also

1
n

(c4 log(max(n,c2)/δ)

β̄1

) 4
α ≤ ‖Qπ‖2

H (4.12)

where c3,c4 > 0 depending only on Qmax.

Proof of this Theorem can be found in Appendix 4.9.
Hence we proved that there is a way to control the estimation error for any fixed

policy π . Given the solution of the regularized API−BRMε regularization problem Q̂ if

the assumptions 4.3,..,4.5 hold with the choice λn =
(

1
n‖Qπ‖2

H

) 1
1+2α there exists c(δ)> 0

such that for n ∈ N and 0 < δ < 1 with n sufficiently large we have

‖Q̂−T πQ̂‖2,ν ≤ c(δ)n−
1

1+2α (4.13)

with probability at least 1−δ .

4.5 API−BRMε Error Propagation
In this subsection we study the effect of the ε-insensitive loss function in the BR sequence
εBR

k = |Qk−T πkQk| on the performance loss ‖Q∗−QπK‖1,ρ πK after K PI steps on the
resulting policy πk. The task of analyzing the error propagation and reduction in an API

4.6. API−BRMε PERFORMANCE LOSS 79

algorithm has been performed by [66] and with some more details in [36] and [35]. Ba-
sically when we use an API algorithm generating a sequence of greedy policies πk−1

w.r.t. the approximate value function Qk the resulting policy (remembering Q∗ the opti-
mal value defined in definition 2.2) one wishes to control the effects of the BR sequence
εBR

k = |Qk−T πkQk| on the performance loss ‖Q∗−QπK‖1,ρ πK after K PI steps. This in
practice depends on the cMDP dynamics and in particular the performance loss relies on
the difference between the sampling distribution ν and the future state action distribution
in the form of ρPπ1Pπ2...PπK left linear operators. Essentially the necessary result can
be obtain specializing for the norm p = 1 case the Theorem 3 in [36]. Before stating the
theorem we need to define the following concentrability coefficients:

Definition 4.2. (Expected Concentrability Distribution) Given ν ,ρ ∈M(S×A) m ≥ 0
and an arbitrary sequence of stationary policies {πk}m

k=1 let ρPπ1Pπ2...Pπm ∈M(S×A)
denote the future state-action distribution obtained when the first state-action is dis-
tributed according to ρ and then we follow the sequence of policies {πk}m

k=1. Define
the concentrability coefficients:

cPI1,ρ,ν(m1,m2;π) =

√
E
[∣∣∣d(ρ(Pπ∗)m1(Pπ∗)m2)

dν
(s,a)

∣∣∣2] (4.14)

with (s,a) ∼ ν . If the future state distribution ρ(Pπ∗)m1(Pπ∗)m2 is not absolutely contin-
uous w.r.t. ν we assume cPI1,ρ,ν(m1,m2;π) = ∞

Hence we are ready to present the result on error propagation in API from [36] using
case p = 1.

Theorem 4.3. (API−BRMε Error Propagation - Theorem 3 of [36]) For 0 ≤ k ≤ K
define ak =

(1−γ)γK−k−1

1−γK+1 and assume Qmax ≤ Rmax
1−γ

. Then for any sequence {Qk}K−1
k=0 and the

corresponding BR sequence {εBR
k }K−1

k=0 with εBR
k = Qk−T πkQk we have

‖Q∗−QπK‖1,ρ ≤
2γ

(1− γ)2

[
inf

r∈[0,1]

√
CPI,ρ,ν(K,r) · E(εBR

0 , ...,εBR
K−1,r)+ γ

K−1Rmax

]
(4.15)

where E(εBR
0 , ...,εBR

K−1,r) = ∑
K−1
k=0 a2r

k ‖εBR
k ‖2,ν and

CPI,ρ,ν(K,r) =
(1− γ

2

)2
sup

π0,...,πK

K−1

∑
k=0

a2(1−r)
k

(
∑

m≥0
γ

m
(

cPI1,ρ,ν(K− k−1,m+1,πk+1)

+cPI1,ρ,ν(K− k,m,πk)
))2

(4.16)

The proof of the theorem can be found in [36].

4.6 API−BRMε Performance Loss
Finally using Theorem 4.3 on error propagation as well as the policy evaluation error
given in Theorem 4.2 it is possible to derive an upper bound on the performance loss
‖Q∗−QπK‖1,ρ of API−BRMε . To prove the result we define the set of all policies that
are greedy w.r.t. a member of F |A| as Π̂(F |A|) = {π̂(·,Q) : Q ∈ F |A|}.

80 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

Theorem 4.4. (API − BRMε Performance Loss) Let {Qk}K−1
k=0 be the solutions of the

regularized BRMε optimization problems given in section 4.9 for each API step k with

the choice of λ k =
(

1
n‖Qπk‖2

H

) 1
1+2α

. If the assumption 4.3,..,assumption 4.5 hold for any

π ∈ Π̂(F |A|) and infr∈[0,1]CPI,ρ,ν(K,r)<∞. Then, there exists CAPI−BRMε
(δ ,K,ρ,ν) such

that for n ∈ N and 0 < δ < 1 and n sufficiently large we have

‖Q∗−QπK‖1,ρ ≤
2γ

(1− γ)2

[
CAPI−BRMε

(δ ,K,ρ,ν)n−
1

2(1+2α) + γ
K−1Rmax

]
(4.17)

with probability 1−δ

Proof. For each iteration k= 0, ...,K−1 consider 0< δ < 1 according to Theorem 4.2 and
with confidence parameter δK = δ/K we may upper bound the BR taking the supremum
over all polices as

‖Qk−T πkQk‖2,ν ≤ sup
π∈Π̂

c(δK)n−
1

1+2α (4.18)

which holds with probability 1− δK . Hence for any r ∈ [0,1] and using the definition of
ak putting c′(δK) = sup

π∈Π̂
c(δK) we have

E(εBR
0 , ...,εBR

K−1,r) =
K−1

∑
k=0

a2r
k ‖εBR

k ‖2,ν ≤ c‘(δK)n−
1

1+2α

(1− γ

1− γK+1

)2r 1− (γ2r)K

1− γ2r (4.19)

Now if we apply Theorem 4.3 to propagate the error in the API procedure with probability
at least 1−δ we have

‖Q∗−QπK‖1,ρ ≤
2γ

(1− γ)2

[
CAPI−BRMε

(ρ,ν ,K)n−
1

1+2α + γ
K−1Rmax

]
(4.20)

where

CAPI−BRMε
(ρ,ν ,K) =

√
c′(δK) inf

r∈[0,1]

(1− γ

1− γK+1

)r
√

CPI,ρ,ν(K,r)
1− (γ2r)K

1− γ2r (4.21)

Theorem 4.2 upper bounds the performance loss showing the connection between the
number of samples n, the capacity of the function space α , the number of PIs K and the

other properties of the cMDP indicating that the upper bound is O(n−
1

2(1+2α)). The rate of
convergence of API−BRMε has a behavior similar to the one obtained using Least Square
Regression in [5]. Exponential β -mixing as well as the form of the loss function depen-
dence considered in this work have little effect on the efficiency of learning. The term
CAPI−BRMε

contains the effect of the sampling distribution ν and the evaluation distribu-
tion ρ as well as the transition probability kernel of the cMDP itself on the performance
loss.

4.7. CONCLUSION AND DISCUSSION 81

4.7 Conclusion and Discussion

API−BRMε algorithm estimates the action value functions by solving an optimization
problems with regularized objective functions in some RKHS. The RKHS formulation
has some advantages such as the ease of choosing the kernel function and consequently
the function space. Hence, we focused on the statistical properties of API−BRMε and
provided an error upper bound on the performance loss of the resulting policy. The error
bound showed the role of the sample size, complexity of function space and the intrinsic
properties of cMDP such as the behavior of concentrability coefficients. As a result our
work is the first attempt to give some theoretical justification of using the non-parametric
SVR to solve the value function approximation problem in RL. Kernel methods using
SVR where used in [13] to solve the cost-to-go RL problem with a batch and model
based approach. However no statistical guarantees about the convergence was presented.
Similarly [51] apply incremental SVR to the approximation of action value function in
an actor-critic basis without PI. However the paper lacks a rigorous statistical analysis
of their method. The methodology used to find the statistical bound has been adapted
from [35] where squares losses and i.i.d. samples have been used to find the API−BRM
bound. The analysis contained in [35] introduces regularization based API algorithms
analyzing their statistical properties providing upper bounds on the performance loss of
the resulted policy compared to the optimal one. The same authors provide the analysis
of the rate of convergence of the estimation error in regularized least-squares regression
when the data is exponentially β -mixing in [5]. [6] also introduced an API-BRM proce-
dure and studying its statistical properties considering parametric function spaces, which
have finite effective dimension while our work as well as [35] consider non-parametric
function spaces, which essentially are infinite dimensional. [56] also performed a finite-
sample analysis studying the statistical analysis in the framework of BRM using linear
function space under the simpler hypothesis of i.i.d. data samples obtained using a gener-
ative model (to cope with the double sampling problem). Other authors like [50] analyzed
LSPI with linear function approximators and the statistical properties of LASSO-TD is
analyzed although these results address different algorithms. [43] studied Least Squares
SVM with solution restricted to deterministic problems. Their main contribution is the de-
velopment of fast incremental algorithm even though it has limited practical application.
They also use sparsification selecting a subset of data points based on some criteria and
used to identify the basis functions. In fact it is known that Least Squares SVM differently
than SVR, are not sparse. Sparsification then is necessary to control the complexity of the
estimate but the effect on the generalization error is not well-understood. [92] unified
several kernelized RL algorithms showing the equivalence of kernelized value function
approximators with a model-based RL algorithm that has certain regularization on the
transition kernel estimator, reward estimators, or both.

4.8 Future work

As possible future works we aim to follow some potential improvements of our method. In
particular we aim to better analyze some of the assumptions we made in order to find the
theoretical bound. From one side empirical processes and statistical learning theory with

82 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

dependent data allow us to find the theoretical bound involving the β -mixing scenario.
However, presently there is no simple way to actually estimate those coefficients from
data. While general functional forms are known for some common classes of processes
specific coefficients are generally beyond calculation. Nevertheless following [58] we
foresee to investigate the empirical process contained in the collected data checking for
consistent estimators for the β -mixing coefficients based on a single stationary sample
path. On the other hand to evaluate the bound we eventually asked for a stronger notion of
approximation which need some assumptions on the probability distribution P assuming
an inequality of the form

‖ fD,λn− f ∗`ε ,P‖2,νx ≤ cP

[
R`ε ,P(fD,λn)−R∗`ε ,P

]
= cP

[
E[`ε(y, fD,λn(x))|Zn]−E[`ε(y, f ∗`ε ,P(x))]

]
(4.22)

Hence, as suggested in [82] we foresee to further investigate under which conditions on
P the inequality section 4.8 holds when dealing with `ε losses. Finally, in this work we
deal with continuous state and finite actions cMDPs which are essential ingredients into
the asymptotic convergence bound. However, looking at performance obtained in several
benchmarks, it seems to be possible to extend our result to cMDPs with continue action
space. Further investigation in this sense might be promising and also interesting from a
practical point of view.

4.9 Appendix 4A: Proof of Theorem 4.2
Proof. The proof partly follows the scheme of Theorem 5 in [5] which is similar to Theo-
rem 21.1 in [40]. Essentially consists in decomposing the error into two terms T1n and T2n
(defined later), using the minimizer property of the empirical risk minimizer to control
T1n and then applying the peeling device to analyze T2n.

Consider the regularized API−BRMε optimization problem

Q̂ = argmin
Q∈H

{L̂API−BRMε
(Q,Πn,Dn)+λn‖Q‖2

H} (4.23)

Using the data sets Πn,Dn the empirical estimate L̂API−BRMε
(Q,Πn,Dn) can be written as:

L̂API−BRMε
(Q,Πn,Dn) = En[`ε(D̂πQ− r̂)] = En[`ε(Q− T̂ πQ)] (4.24)

and the regression function as D̂πQ(st ,at ,s′t) = Q(st ,at)− γ ∑a′t∈A π(a′t |s′t)Q(s′t ,a
′
t). We

assume that API−BRMε solution to be bounded and according to assumption 4.4. Now
according to the error analysis for the API−BRMε procedure presented in section 3.6
and considering assumption 4.5 we only have to bound the estimation error which can be
controlled according to the following expressions∣∣∣E[`ε(D̂πQ− r̂) |Πn,Dn]−E[`ε(r− r̂)]

∣∣∣≤ ‖Q−T πQ‖1,ν (4.25)

and if we meet the condition for the section 3.4 using

‖Q−T πQ‖2,ν ≤ cP

[
E[`ε(D̂πQ− r̂)|Πn,Dn]−E[`ε(r− r̂)]

]
(4.26)

4.9. APPENDIX 4A: PROOF OF THEOREM 4.2 83

In any case the policy evaluation error relies on the expression

Eπ
n (Q̂) = E[`ε(D̂πQ̂− r̂)|Πn,Dn]−E[`ε(r− r̂)]. (4.27)

Define the following error decomposition:

Eπ
n (Q̂) = T1n +T2n (4.28)

where

1
2

T1n = En[`ε(D̂πQ̂− r̂)]−En[`ε(r− r̂)]+λn‖Q̂‖2
H (4.29)

T2n = E[`ε(D̂πQ̂− r̂)|Πn,Dn]−E[`ε(r− r̂)]−T1n (4.30)

In this way we may try to control the estimation error working on T1n and T2n. Now we
may use use the minimizer property of Q̂ and the fact that for the action value function
we have Qπ = T πQπ and also DπQπ = Qπ−T πQπ + r = r. According to the assumption
4.4 we have |r̂| ≤ Rmax and |Q|< Qmax for any Q ∈H. This imply that we may write

En[`ε(D̂πQ̂− r̂)]−En[`ε(r− r̂)]+λn‖Q̂‖2
H ≤

En[`ε(DπQπ − r̂)]−En[`ε(r− r̂)]+λn‖Qπ‖2
H (4.31)

suggesting that T1n may be controlled by

1
2

T1n ≤ En[`ε(DπQπ − r̂)]−En[`ε(r− r̂)]+λn‖Qπ‖2
H (4.32)

and considering that DπQπ = r we have T1n ≤ 2λn‖Qπ‖2
H.

Now to bound T2n fix a number t satisfying t ≥ 1
n and the goal is to study P{T2n > t}.

We have

P{T2n > t}= P
{

2(E[`ε(D̂πQ̂− r̂)|Πn,Dn]−E[`ε(r− r̂)])

−2En[`ε(D̂πQ̂− r̂)− `ε(r− r̂)]

> t +2λn‖Q̂‖2
H+E[`ε(D̂πQ̂− r̂)|Πn,Dn]−E[`ε(r− r̂)]

}
(4.33)

Let w = (s,a,r,s′) and for a fixed policy define the function g : S×A×R×S → R as

g(w) =
[
`ε

(
Q(s,a)− γ ∑

a′
π(s′,a′)Q(s′,a′)− r̂

)
− `ε

(
r− r̂

)]
Hence the function space for l = 0,1, ...

Gl =
{

g : S×A×R×S → R, Q ∈H, ‖Q‖2
H ≤ 2lt

λn

}
(4.34)

Note that the functions in Gl satisfy ‖g‖∞ ≤ K1 = 2Qmax. Now consider a stochastic
process involving the random variables wt = (st ,at ,rt ,s′t) ∈ W . Applying the peeling
device we get

P{T2n > t} ≤
∞

∑
l=0

P
{

supg∈Gl

E[g(W)|Πn,Dn]−En[g(W)]
2lt+E[g(W)|Πn,Dn]

> 1
2

}
(4.35)

84 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

Here we used the fact that g ∈ Gl so we have ‖Q‖2
H ≤ 2lt

λn
.

We want to study the behavior of the lth term of the above summation by verifying the
condition of Theorem 4.1. Hence we have to select an independent block sequence tuned
separately for each value of l. If we fix some value l ∈ N0 and let the block size and the
number of blocks defined according to:

an,l = ba′n,lc µn,l = b
n

2an,l
c (4.36)

assuming for certain γ, p > 0 that we have

a′n,l = (nt)γ(2l)p
µ
′
n,l =

n
2a′n,l

=
n1−γ

2tγ(2l)p (4.37)

As by assumption results t ≥ 1
n and γ, p > 0 we have an,l ≥ 1. Now let Rl be the residual

block in the (an,l,µn,l)−partitioning of {1, ...,n}. The block size an,l and the residual
block size |Rl| have the properties:

n−|Rl|= 2an,lµn,l ≤ n |Rl|< 2an,l µ
′
n,l ≤ µn,l (4.38)

If we analyze the summand expression in section 4.9 assuming γ ≤ p and 4nK1≤ (a′n,l)
1/p

hold then

E[g(W)|Πn,Dn]−En[g(W)]

2lt +E[g(W)|Πn,Dn]
≤ 1

2
(4.39)

In particular results

E[g(W)|Πn,Dn]−En[g(W)]

2lt +E[g(W)|Πn,Dn]
≤ 2K1

2lt
(4.40)

Considering that t ≥ 1
n and γ ≤ p we get a′n,l = (nt)γ(2l)p ≤ (nt2l)p which is equivalent

to n−1(a′n,l)
1/p which combined with 4nK1 ≤ (a′n,l)

1/p gives the result. The expression
4nK1 ≤ (a′n,l)

1/p follows from the following assumptions:

p≤ 1
2
≤ 1 a′n,l ≥

n
8

n≥ c1 = 482K1 ≥ 4
p

1−p 8
1

1−p K
p

1−p
1 (4.41)

and we may assume that conditions section 4.9 holds together with t ≥ 1
n . This help

the analysis because it suffices to study the case when l is such that an,l ≤ n/8. Hence
following Proposition 6 in [5] we may prove the result:

Proposition 4.1. Consider l such that an,l ≤ n/8 and assume

0 < γ < p≤ 1
2+6α

(4.42)

Then there exists constants c3,c4 > 1 and c5 > 0 depending only on Qmax such that for
any

t > c
1

1−γ(2+6α)

3
1

nλ

2α

1−γ(2+6α)
n

+
c4

n
(4.43)

4.9. APPENDIX 4A: PROOF OF THEOREM 4.2 85

we have

P
{

sup
g∈Gl

E[g(W)|Πn,Dn]−En[g(W)]

2lt +E[g(W)|Πn,Dn]
>

1
2

}
≤ 120exp

(
− c5

µ2
n,l2

lt

n

)
+βan,l µn,l (4.44)

Proof of this Proposition can be found in Appendix 4.10.
We apply the last proposition to the terms of the RHS of expression section 4.9 when

l is such that an,l < n/8. Remembering the conditions t ≥ 1
n and conditions section 4.9 as

well as proposition 4.1 we may write

P{T2n > t} ≤ ∑
l∈N0,an,l<

n
8

[
120exp

(
− c5

µ2
n,l2

lt
n

)
+βan,l µn,l

]
≤ ∑

l∈N0

[
120exp

(
− c5

µ2
n,l2

lt
n

)
+βan,l µn,l

]
(4.45)

As it is necessary to bound βan,l µn,l fix some l ≥ 0 and using assumption 4.2 we have

βan,l µn,l ≤ β̄0 exp(−β̄1an,l + log µn,l) (4.46)

and if log µn,l

β̄1an,l
< 1

2 holds we have 2βan,l µn,l ≤ 2β̄0 exp(− β̄1
2 an,l) ≤ c6 exp− β̄1

2 a′n,l where

c6 = 2β̄0 exp(β̄1
2). Using the fact that a′n,l ≤ 2an,l and µn,l ≤ n as well as the definition of

a′n,l condition section 4.9 is satisfied whenever

t >
(4log n

β̄1
)

1
γ

n
(4.47)

Hence we have

P{T2n > t} ≤ ∑
l≥0

[
c7 exp

(
− c5

µ2
n,l2

lt
n

)
+ c6 exp− β̄1

2 a′n,l
]

(4.48)

which substituting the expression of µn,l can be bounded as

P{T2n > t} ≤ c9 exp(−c8(nt)1−2γ)+ c10 exp(−c11β̄1(nt)γ) (4.49)

fixing 0 < δ < 1 we may invert section 4.9 which gives that if t > 1
n and also satisfies

proposition 4.1 and section 4.9 with holding conditions proposition 4.1 and section 4.9
then we may conclude

T2n ≤
1
n

[(log(2c10
δ
)

c11β̄1

) 1
γ

+
(log(2c9

δ
)

c8

) 1
1−2γ
]

(4.50)

with probability 1− δ . As a final step of the proof we may analyze the error decompo-
sition combining conditions proposition 4.1 and section 4.9 and redefining in a suitable
way the constants we get

Eπ
n (Q̂) = T1n +T2n ≤ 2λn‖Qπ‖2

H+ c
1

1−γ(2+6α)

2
1

nλ

2α

1−γ(2+6α)
n

+

(
c3
β̄1

ln c7
δ

) 1
γ

n +

(
c4
β̄1

logn
) 1

γ

n +

(
c5
β̄1

ln c7
δ

) 1
1−2γ

n + c6
n (4.51)

86 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

holding with probability at least 1−δ

Now let us assume that 0< γ ≤ 1
8 <

1
2+6α

and in this range of γ as n gets large the third
element of the RHS of section 4.9 dominates the last two terms and it is only necessary to
deal only with the first four terms. It is possible to investigate that the choice of λn which
minimizes the sum of these terms disregarding the constants can be expressed as:

λn =
[1

n‖Qπ‖2
H

] 1−γ(2+6α)
1−γ(2+6α)+2α (4.52)

making the sum of the firsts terms proportional to

λn‖Qπ‖2
H =

[
n‖Qπ‖2

H

] α

1−γ(2+6α)+2α

n
=

exp(α

1−γ(2+6α)+2α
B)

n
(4.53)

where B = log(n‖Qπ‖2
H). Looking at section 4.9 the sum of the third and forth terms

is upper bounded by a constant multiple of exp(A/γ)
n where A = log(c8

β̄1
log(c7

max(δ ,n))). In
order to choose γ we have to study two different cases for α ≥ 0. The case α = 0 imply
that being λn‖Qπ‖2

H = 1/n the best choice for γ ∈ (0, 1
3] is γ = 1

3 . In fact exp(A/γ)
n is

decreasing in γ . When A > 0 the dominating term in the bound is exp(A/γ)
n and a suitable

choice for p = 1
2 . The case for α > 0 brings to the solution of the minimization of

1
n

(
exp(A/γ)+ exp(

α

1− γ(2+6α)+2α
B)
)

(4.54)

which can obtained solving

A/γ =
α

1− γ(2+6α)+2α
B (4.55)

bringing to

γ =
(1+2α)A

αB+(2+6α)A
(4.56)

A suitable choice can be γ ≤ 1
3 where the term under investigation becomes

1
n exp(A/γ) = 1

n(exp(B))
α

1+2α (exp(A))
2+6α

1+2α

= (‖Qπ‖2
H)

α

1+2α n−
1

1+2α

(
log(c8

β̄1
log(c7

max(δ ,n)))
) 2+6α

1+2α (4.57)

and as n gets larger γ → 0. Moreover γ > 0 when A,B > 0 which are satisfied if

n≥max(exp(β̄1/c8),)1/‖Qπ‖2
H

Any p such that 0 < γ < p < 1
2+6α

satisfies all conditions only affecting the constants and
this terminates the proof.

4.10. APPENDIX 4B: PROOF OF PROPOSITION 4.1 87

4.10 Appendix 4B: Proof of Proposition 4.1
Proof. In order to prove the theorem we need to verify that the conditions of Theorem
4.1 apply with the choice ε = 1

2 and η = 2lt. Firstly conditions C1 and C2 are verified
with choice K1 = K2 = 2Qmax. For conditions C3 since Qmax ≥ 1 we have an,l ≥ 1 which
imply that 2K1an,l >

√
2an,lK2. Therefore it is enough to verify that

√
nε
√

1− ε
√

η ≥
1152K1an,l . Considering that an,l ≤ a′n,l suffices to verify the condition using a′n,l . Putting
this definition means that condition C3 becomes

√
nε
√

1− ε
√

η ≥ 1152K1(nt)γ(2l)p can

be satisfied when t ≥ c′2
n for some c′1 > 0 depending on Qmax. Regarding condition C4 by

construction we have |Rl| < 2an,l ≤ 2a′n,l and considering the conditions on γ, p results
2a′n,l

n < 2lt
12K1

which can be satisfied by some t ≥ c′2
n for some c′2 > 0 depending on Qmax.

Moreover we have by assumption that an,l <
n
8 and |Rl| < 2an,l thus results |Rl| < n

4 .
Finally we have to verify that the condition C5 hold in the form: for all w1, ...,wn ∈ W
and all δ > 2ltanl

8 we have

√
µn,lε(1− ε)δ

96
√

2an,l max{K1,2K2}
≥
∫ √

δ

ε(1−ε)δ
16an,l max{K1,2K2}

log N1

(u
4an,l

,Gl,‖w‖1,n

)
du

Now let z = (s,a) and z′ j = (s′,a′j) consider the function space

Fl = {Q ∈H : ‖Q‖2
H ≤

2lt
λn
}

as results

|g1(w)−g2(w)|= |`ε(Q̂r1(z,z′)− r̂)− `ε(Q̂r2(z,z′)− r̂)| ≤ |Q̂r1(z,z′)− Q̂r2(z,z′)|

where we used the fact Q̂r(z,z′) = Q(z)− γ ∑z′ j Q(z′ j) j = 1, ..., |A| then we have

N1(u,Gl,‖w‖1,n)≤N |A|1 (u,Fl,‖z‖1,n)×
|A|
∏
j=1

[
N |A|1 (u,Fl,‖z‘

j‖1,n)
]

and according to assumption 4.3 we may conclude that

log N1(
u

4an,l
,Gl,‖w‖1,n)≤ c(|A|)(an,l)

2α

(2lt
λn

)α

u−2α

and we may bound the condition using c′3(an,l)
2α(2lt

λn
)αδ

1−2α

2 for some constant c′3 > 0.
Now to verify condition C5 noting that µn,l ≥ µ ′n,l and also that we have to assume that

δ ≥ 2ltan,l
8 it suffices to show that√

µ ′n,lδ

an,l
≥ c′4(an,l)

2α

(2lt
λn

)α

δ
1−2α

2

88 CHAPTER 4. API−BRMε THEORETICAL ANALYSIS

This condition can be satisfied whenever t ≥ c′5
(an,l)

6α+1

µ ′n,l2
lλ 2α

n
for a give c′5 > 0. Using a′n,l ≥ an,l

and µ ′n,l =
n

2a′n,l
and a′n,l = (nt)γ(2l)p one may show that it suffices to have

t ≥ c′6
1

n(λn)
2α

1−γ(2+6α) (2l)
1−p(2+6α)
1−γ(2+6α)

Now using the assumption that γ < p≤ 1
2+6α

to get a non decreasing function on (2l)
1−p(2+6α)
1−γ(2+6α)

the entropy condition can be satisfied if

t ≥ c′7
1

n(λn)
2α

1−γ(2+6α)

then by choosing the appropriate constants the conditions of Theorem 4.1 are satisfied.
Therefore plugging all we got into theorem 4.1 of Theorem 4.1 and considering an,lµn,l ≤
n
2 and also that Qmax ≥ 1 we have

P
{

sup
g∈Gl

E[g(W)|Πn,Dn]−En[g(W)]

2lt +E[g(W)|Πn,Dn]
>

1
2

}
≤ 120exp

(
− c5

µ2
n,l2

lt

n

)
+βan,l µn,l (4.58)

for c5 > 0 which finally proves the theorem.

Chapter 5

API−BRMε Experimental Analysis

5.1 Introduction
Parametric approximators need Basic Functions (BFs) to build their solution while non-
parametric approximators instead are automatically constructed from the data without the
need of designing the BFs. Among other non-parametric approximators, kernel based
are computationally demanding with cost growing with the number of samples. In prac-
tice since this number can be large, many approaches employ sparsification techniques to
limit the number of samples contributing to the solution. However using ε−insensitive
loss function with a given kernel allows to build intrinsically sparse approximator in a
RKHS. Sparsity directly depends on the combination of kernel and loss function param-
eters. Hence one aspect that is needed to be discussed is the computational complexity
of our kernel method included in API−BRMε . In the previous chapter we extensively
analyze the statistical properties of API−BRMε founding a bound which controls the
performance error of the algorithm while considering the batch formulation of the prob-
lem. API−BRMε algorithm eventually converges to the optimal policy using β -mixing
distributed data samples.

5.2 API−BRMε Computational Complexity
SVM are powerful tools, but their compute and storage requirements increase rapidly
with the number of training vectors. Solving SVM relies on Quadratic Programming
(QP) optimization, which is able to separate support vectors from the rest of the train-
ing data. For our SVR implementation test having an optimal solution involves O(n2)
dot products, while solving the QP problem directly involves inverting the kernel matrix,
which has complexity O(n3) where n is the size of the training set. Hence the computa-
tional complexity of a K-iteration API−BRMε algorithm is dominated by three factors:
first computing Gram matrix of the Bellman kernel κ̃π(zi,z j) for each pair zi = (si,ai),
z j = (s j,a j), second solving the regularized regression problem and third the number of
PIs steps used by the algorithm. Computing κ̃π for each pair involves enumerating each
successor state of both si and s j and evaluating the base kernel κ(·, ·) for each pair of
successor states. Empirically me may define the average branching factor of a finite state
MDP β̂ as the average number of possible successor states for any state s ∈ S which in

89

90 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

the limit of continuous state space can be assumed β̂ = 1. Equivalently given the dataset
Dn and an estimation of the transition kernel Ps′

s,a, the branching factor β̂ is the average
number of terms Ps′

s,a that are non zero given (s,a). Assuming we have a n samples data set
with an cMDP that empirically presents an average branching factor β̂ each state, com-
puting a single element of the Gram matrix requires O(β̂ 2) operations. Since the Gram
matrix has dimension n× n but is symmetric there are n(n+ 1)/2 unique elements that
must be computed. Therefore, the total number of operations to compute the full Gram
matrix is O(kernel) =O(β̂ 2n(n+1)/2). Once the Gram matrix is constructed in principle
its inverse must be evaluated. Since the Gram matrix is positive definite and symmetric,
Cholesky decomposition might be used, resulting in a total complexity of O(n3). As a
result, the total complexity of the BRMε algorithm is O(n3 + β̂ 2n(n+ 1)/2) and with K
PIs steps we assume a complexity O(K(n3+ β̂ 2n(n+1)/2)). This is clearly a pessimistic
result and thanks to the sparsity property of SVR, assuming an average number of support
vectors nsv� n one may obtain a posterior complexity O(K(n3

sv+ β̂ 2nsv(nsv+1)/2)). For
the incremental implementation of API−BRMε if we consider the worst case, to add a
new sample we need O(n3) ·O(kernel) when all the training samples are support vec-
tors [49], [57]. On average the algorithm has complexity O(n2) and for the incremental
API−BRMε we may assume O(K(n2 + β̂ 2n(n+ 1)/2))) as complexity bound with an
optimist posterior bound O(K(n̂2

sv + β̂ 2n̂sv(n̂sv + 1)/2))) with n̂sv the average number of
support vectors in K PI.

5.3 API−BRMε Algorithm Implementation

Speed of learning depends mostly on the number of support vectors, influencing signi-
ficatively the performance. This is the first reason to implement an incremental version of
the API−BRMε algorithm. Another reason comes from the fact that this version of the
algorithm can be easily implemented in an online setting whenever the agent may interact
with the environment. After each incremental step (or at least after some of them) which
allows to implement a policy evaluation updating the approximation of the value func-
tion, one might perform the policy improvement updating the policy. In fact, differently
from the offline case where only the final performance matters, in online learning the
performance should improve once every few transition samples. PI can take this require-
ment into account by performing policy improvements once every few transition samples,
before an accurate evaluation of the current policy can be completed. In the practical im-
plementation of online API−BRMε , by using the current behavior policy the algorithm
collects its own samples interacting with the system. As a consequence some exploration
has to be added to the policy which becomes soft. As already mention an ε−greedy pol-
icy is a soft policy which for some 0 ≤ ε ≤ 1 picks deterministically a particular action
with probability 1− ε and a uniformly random action with probability ε . Hence policy
improvements have to be implemented without waiting for the action value function es-
timates to get close to their asymptotic values for the current policy. Henceforth these
estimates have to be updated continuously without reset after some policy changes as this
in practice corresponds to having multiple policies. In principle one may assume that
value function estimates remain similar for subsequent policies or al least do not change

5.4. API−BRMε EXPERIMENTS 91

too much. Another possibility would be to rebuild the action value function estimates
from the scratch before every update (some sort of purge for the SVR). Unfortunately
this alternative can be computationally costly and might not be necessary in practice. The
number of transitions between consecutive policy improvements is a crucial parameter
of the algorithm and should not be too large, to avoid potentially bad policies from being
used too long. Given the policy π the cMDP reduces to a Markov chainMπ = (S,Rπ ,Pπ)
with reward function Rπ = r(s,π(s)) and transition kernel Pπ(·|s) = P(·|,s,π(s)) with a
stationary distribution ρ if it admits one. Hereafter we make the assumption that the pol-
icy π induces a stationary β -mixing process on the cMDP with a stationary distribution
ν . The fast β -mixing process starts from an arbitrary initial distribution and following the
current policy, the state probability distribution rapidly tends to the stationary distribution
of the Markov chain. In particular, we consider the case in which the samples {s1, ..,sn}
are obtained by following a single trajectory in the stationary regime Mπ considering
that s1 is drawn from ρ (see [50] for an insightful discussion on the subject). In fact,
to guarantee the convergence of the online version of API−BRMε we additionally re-
quire that the samples follow the stationary distribution over state-action pairs induced by
the policy considered ρ . Intuitively this means that the weight of each state-action pair
(s,a) is equal to the steady-state probability of this pair along an infinitely-long trajectory
generated with the policy π . Moreover assuming that the distribution ρ is stationary the
resulting Bellman equation has a unique solution as the Bellman operator is a contraction
and it admits one unique fixed point. Consider now the incremental online API−BRMε

algorithm, the performance guarantees rely on small policy evaluation errors assuming
that the policy is improved before an accurate value function is available. In practice
this means that the policy evaluation error can be very large and this might affects the
performance. Nevertheless, the algorithm works fine in practice for several standard RL
benchmarks. In chapter 4 we provide a finite sample bound of the performance loss
‖QπK −Q∗‖q

p,ρ where πK is the greedy policy w.r.t. QK−1 after K PIs as depicted in Al-
gorithm 1 and ρ is the performance evaluation measure. The analysis proceeds studying
the policy evaluation error of API−BRMε using the SVR regularization scheme where
we suppose that given any policy π one may obtain Q by solving the regularized problem
section 3.7 with a given πk at step k of the API procedure.

5.4 API−BRMε Experiments

API−BRMε algorithm was implemented using a combination of Matlab and C routines
and was tested on the following standard RL benchmarks: chain walk, inverted pendulum,
cart pole, hill car, bicycle balancing and riding. The simulation is implemented using a
generative model capable of simulating the environment while the learning agent is repre-
sented by the API−BRMε algorithm. The chain walk class of problems is useful because
allows to compare the approximations learned by API−BRMε to the true action value
functions. The domains are standard benchmark in RL literature featuring continuous
state spaces and non-linear dynamics. Moreover in our experiments, we compare perfor-
mance of API−BRMε algorithm with other learning methods such as Q-learning or the
parametric linear approximation architecture of LSPI algorithm implementations for of-
fline [48] and online [19]. To rank performance it is necessary to introduce some metrics

92 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

measuring the quality of the solutions. In each benchmark a specific goal is foreseen and a
performance measure is represented by the fulfillment of a given task. For example for the
inverted pendulum, and the bicycle domains we may assess the quality of a policy through
its ability to avoid crashing during a certain period of time. To measure the quality of a
solution we can use the stationary policy it produces, compute the expected return and say
that the higher this expected return is, the better the RL algorithm performs. This can be
done defining a set of initial states S0 where we compute the average expected return of
the stationary policy chosen independently from the set of tuples Dn. Such kind of metric
is called as the score of a policy (see [26] for more details). Given the learned policy

π̂ its score is defined by Scoreπ̂ =
∑s0∈S0

R̂π̂ (s0)

|S0| where R̂π̂(s0) is the empirical estimate of

Rπ̂(s) = E[∑n−1
t=0 γ tr(st , π̂(st))|s0 = s] the average return. In order to evaluate the score

one has to estimate the average empirical return for every initial state s0 ∈ S0 by Monte-
Carlo simulations. As we consider all the benchmarks non deterministic the average of
the score in more than 10 different simulations. Another important aspect to keep in mind
is the rather large flexibility of our method which is based upon the generalization ability
of SVR and the use of incrementality. Generalization relies on the statistical properties
of the structural risk minimization of SVR and the use of a suitable kernel function. In
all our experiments for any pair of zi = (si,ai) and z j = (s j,a j) we use the RBF kernel
κ(zi,z j) = e−

1
2 (zi−z j)

T Σ2(zi−z j) where Σ is a diagonal matrix specifying the weight for any
state-action vector component. Using this kernel also allows to manage possible variant
of the problems where the action space may be considered continuous or eventually noisy.
Even though we studied the statistical properties using finite action spaces, in practice the
algorithm may also works fine using a continuous action space. A part from the matrix
Σ we also have to define the SVR parameters (C,ε). We performed an grid search to
find the appropriate set of parameters (Σ,C,ε) looking at the resulting performance of the
learning system. In fact, using different set of parameters might help finding near-optimal
policies whose performance can be measured using the score or their ability to reach the
goal. Finally, another important aspect which may affect the performance of the algorithm
is represented by the way we collect data and therefore how we manage the compromise
between the need of exploration and exploitation of the learned policy. Thanks to the
flexibility of our method, we may run experiments using three different methods:

1. Method-1 (offline API−BRMε) data are generated offline using a random behavior
policy which produces a set Dn of tuples i.i.d. using eventually a set of different
initial states S0 or a fixed one s0. Hence API−BRMε algorithm learns a policy
processing the collected data batch or incrementallly. In this case exploration relies
on the stochastic initial state set and behavior policy used while exploitation is
performed in the learning stage. In principle it is also possible to generate a new set
of data in each PI.

2. Method-2 (online API−BRMε) some data are generated offline using a random
behavior policy which produces a set D0 of tuples i.i.d. using eventually a set of
different initial states S0 or a fixed one s0. (This step can be also avoided setting
directly Q = 0 in each state). This data set is only used to initialize the algorithm
solving the BRMε and providing an initial approximation of the value function.
Hence API−BRMε algorithm proceed incrementally adding new experiences and

5.4. API−BRMε EXPERIMENTS 93

Algorithm 3 Online API−BRMε with ε−greedy exploration
Require: (κ,λ ,γ,KP,εk f unction)

l← 0 initialize Q̂0(s,a) (π̂0)
solve initial SVR:
Q1 ← API−BRMε(Π0,D0,κ,λ) (policy evaluation)
store initial next state policy Π0
measure initial state s0
for all time step k > 0 do

update exploration factor εk
choose action: ak = {πk(·)w.p.1− εk ∨ random action w.p. εk}
apply ak and measure next state sk+1 and reward rk+1
update training sample set:
Dk ← Dk−1∪ (sk,ak,rk+1,sk+1)
update next state policy Πk ← Πk−1∪πk(·,sk+1)
solve incremental SVR:
Q̂k ← IncrementalAPI−BRMε(Πk,Dk,κ,λ)
if k = (l +1)KP then

update policy πl(·) ← π̂(·, Q̂k−1)
end if
l← l +1

end for
return

improving the policy any KP steps (with KP a tunable parameter) using an ε−greedy
policy. The exploration partly relies on the initial data set D0 and partly depends
on the way we manage the exploration ε . Generally one may foresee an exponen-
tial decay for the ε factor starting from some value ε0 ≤ 1 and when no further
exploration is required fix a minimum value ε∞ = 0.1. We assume that the process
underlying the collected data Dn follows an unknown β -mixing distribution.

3. Method-3 (online-growth API−BRMε) another possibility consists to alternate ex-
plorative samples using a random behavior policy with exploitative samples every
Ke steps (with Ke a tunable parameter) and using the ε−greedy policy learned with
a small exploration ε . This can be considered an online variant of the batch-growth
method. We assume that the process underlying the collected data Dn follow an
unknown β -mixing distribution.

Algorithm 3 illustrates the online variants of API − BRMε using an ε−greedy ex-
ploration policy. The algorithm allows the definition of two parameters which are not
present into the offline version: the number of transition KP ∈ N0 between consecutive
policy improvements and the exploration schedule Ke. Policy is fully optimistic when-
ever KP = 1 and the policy is updated after every sample while while is partially optimistic
with 1 < KP ≤ Kmax where in experiments we choose Kmax = 10. Extensive study about
how this parameters affects the quality of the solution for the online LSPI can be found
in [17] which in principle might apply to our method. The exploration schedule can be
controlled by the parameter Ke and the decay factor εdecay which should be chosen not too

94 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

1 2 3 4
R R R

LLLL

R

0.9 0.9 0.9

0.9

0.90.90.9

0.9

0.1

0.1 0.1 0.1

0.1

0.10.10.1

r=0 r=1 r=1 r=0

Figure 5.1: The four states chain walk control problem from ([48])

Iteration4
2 4 6 8

0.5

1

1.5

2

2.5
2 4 6 8

0

2

4

6

8

10

Iteration4 statesstates

Q(s,ππ(s))

Iteration4
2 4 6 8

0.5

1

1.5

2

2.5
2 4 6 8

0

2

4

6

8

10

Iteration4 statesstates

Q(s,ππ(s))

Figure 5.2: Chain walk (8-states) solved with LSPI (from [48]): Upper: state value func-
tion Qπ(s,π(s)) of the learned policy (LSPI - solid line; exact- dotted line). The approx-
imations are shown with solid lines, whereas the exact values are connected with dashed
lines. The values for action L are marked with o and for action R with x. Lower: Final
policy (R action - dark/red shade; L action - light/blue shade; LSPI - top stripe; exact -
bottom stripe)

large while a significant amount of exploration is necessary. However several alternatives
are possible as described in section 3.2 and we also implemented an online variant of the
batch-growth method. In this way we perform learning alternating exploration trials us-
ing some exploration factor ε f with exploitation trials using a ε0. In practice this method
works well and allows to easily found local optimal solution starting from a fixed initial
state s0 . Nevertheless if we need to find a global optimal valid for any initial state, it
becomes necessary to explore through the set of initial states and Method 1 or Method 2
must be applied while learning becomes slower.

5.5 The Chain Walk Control Problem
The chain walk control problem [47] consists of a chain with S= {1,2, ...,N} states shown
in fig. 5.1 for case N=4 which can be easily generalized for any integer N. Two actions

5.5. THE CHAIN WALK CONTROL PROBLEM 95

4

4

4

Figure 5.3: Chain walk (8-states) solved with API−BRMε : Upper: action value function
Qπ(s,π(s)) of the learned policy (API−BRMε o exact, x approximated values). Center:
value function V π(s) of the learned policy (API−BRMε o exact, x approximated values).
Lower: Final policy (R action - dark/red shade; L action - light/blue shade; API−BRMε

- top stripe; exact - bottom stripe)

are allowed A = {−L,R} moving to the left or right direction. Applying the actions a ∈ A
the probability of success in changing the state in the wanted direction is Ps = 0.9 while
Pf = 0.1 is the probability to fail. The boundaries of the chain Sb = {1,N} are dead-ends.
The reward over N states is

r(st ,at) =

{
0 i f st ∈ Sb
+1 otherwise

while the discount factor is set to 0.9. The optimal policy is moving to the right in any
state SR = {1, ...,N/2} while is moving to the left in any state SL = {N/2+1, ...,N} and
for the N = 4 case is π∗ = {RRLL}. For the case N = 4 [47] shows that starting with the
policy πR = {RRRR} the model oscillates between the suboptimal policies πR = {RRRR}
and πL = {LLLL} which makes the chain walk problematic. For us chain walk is par-
ticularly interesting as it is possible to compare the approximations learned to the true
underlying value functions, and therefore understand better the way the algorithm works.
Offline LSPI [48] finds the optimal policy collecting 4000 samples using random actions
for about 200 episodes of 20 steps and 4 PIs. A linear approximation architecture using
polynomials of grade two Basis Functions (BFs). The approximation captures the quali-
tative structure of the value function. One problem with this benchmark arises from the

96 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

Parameter Description Value UM

g gravity constant 9.8 m/s2

m pole mass 2.0 Kg
M cart mass 8.0 Kg
l pole length 0.5 m
α 1/(m+M) 0.1 Kg−1

dt simulation step 0.1 s
r reward 0/-1
γ discount factor 0.95

Table 5.1: Parameters used in the simulation for the inverted pendulum control problem

state visitation distribution for this training which should be uniform to prevent uneven
approximation errors over the state-action space. fig. 5.2 shows the policy learned by of-
fline LSPI for the more problematic 8−states variant. In this case we run API−BRMε

using Method-1 (offline API−BRMε) collecting 1000 samples using random actions sim-
ulating 50 episodes of 20 steps and 4 PIs. Results are shown in fig. 5.3 confirming that
the algorithm is able to find the correct solution. The qualitative structure of the approx-
imation is captured by the value function with relatively small quantitative errors. For
this simulations an RBF kernel was used with Σ = I9σ where σ = 1 and the regression
parameters where chosen as C = 1 and ε = 0.01 selected using an grid search which are
able to well approximate the value function and the correct optimal policy. Experiments
not shown using Methods-2 and 3 confirm that the same quality of the solution can be
reached with a rather uniform state visitation distribution.

5.6 The Inverted Pendulum Control Problem
For the inverted pendulum benchmark, the control problem consists in balancing at the
upright position a pendulum of unknown length and mass. This can be done by applying
a force on the cart where the pendulum cart is attached to [102]. Due to its simplicity but
still challenging control task, this benchmark is widely used to test the performance of
state of the art methods for function approximation in RL. In this version of the problem
we only have one degree of freedom which can be obtained by fixing the pole to an axis
of rotation. A version with two degrees of freedom is presented in the next section. The
state space S \ST = {(θ , θ̇) ∈ R2} is continuous and consists of the vertical angle θ and
the angular velocity θ̇ of the inverted pendulum and a terminal state ST described later.
Three actions are allowed A = {−am,0,am} where am = 50N and some uniform noise in
σa ∈ [−10,10] might be added to the chosen action. The transitions are governed by the
non-linear dynamics of the system as:

θ̈ = gsin(θ)−αml(θ̇)2 sin(2θ)/2−α cos(θ)u
4/3l−mα cos(θ)2 (5.1)

where θ is the angular position, m the mass of the pole, l the length of the pole, M the mass
of the cart, u = a+σa the control action with noise consisting in the acceleration applied
to the cart, g the gravity constant. The parameters of the model used in the simulation
are reported in table 5.1. The angular velocity θ̇ is restricted to [−4π,4π]rads−1 using

5.6. THE INVERTED PENDULUM CONTROL PROBLEM 97

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

Number of training episodes

St
ep

s

Best

Worst

0 100 200 300 400 500 600 700 800 900 1000
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

Simulation time(s)

S
co

re

0 100 200 300 400 500 600 700 800 900 1000
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Simulation time (s)

Sc
or

e

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

Number of training episodes

S
te

ps

Worst

Best

Figure 5.4: Inverted pendulum: average score for offline LSPI (left) and Q-learning with
experience replay (right) from [48]

saturation. The discrete-time dynamics is obtained by discretizing the time between t and
t +1 chosen with dt = 0.1s. If θt+1 is such that |θt+1|> θm a terminal state ST = {|θ |>
θm} is reached where we fixed θm = π/2. The reward function r(st ,at) is defined through
the following expression:

r(st ,at) =

{
−1 i f |θ |> θm
0 otherwise

The discount factor γ has been chosen equal to 0.95. The dynamical system is inte-
grated by using an Euler method with a 0.001s integration time step. To generate data
samples we may consider episodes starting from the same initial state s0 = (θ0, θ̇0) or
using a random initial state and stopping when the pole leaves the region represented
by S \ ST meaning enter in a terminal states ST . In [48] an analysis of the same
benchmark is reported comparing performance with offline LSPI and Q-learning. In this
case simulation runs for 1000s (10000 samples) separated in 1000 trials of max 1s (10
samples) stopping eventually when reaching a terminal state. Offline LSPI uses a linear
approximation architecture with a set of 10 Basis Functions (BFs) for each one of the
3 actions, thus a total of 30 basis functions, to approximate the value function. These
10 BFs included a constant term and 9 RBF functions arranged in a 3× 3 grid over the
2−dimensional state space with BFi(s) = e−‖s−µi‖2/(2σ2) where µi are the 9 points of the
grid {−π/4,0,+π/4}×{−1,0,+1} and σ = 1. Training samples were collected starting
in a randomly perturbed state very close to the equilibrium state s0 = (0,0) and following
a policy that selected actions uniformly at random. Results are shown in fig. 5.4 show-
ing the performance in terms of balancing steps from the analysis detailed in [48]. Each
episode was allowed to run for a maximum of 300s (3000 steps) of continuous balanc-
ing. A run that balanced for this period of time was considered to be successful. The
optimal policy found by LSPI is good enough using the initial state s0 = (0,0) while is
much worse with other initial states. In our simulation of the same benchmark using on-
line API−BRMε we run for 1000s of simulated time collecting around 10000 samples.
Run was split into separate learning episodes initiated at random initial states and stop-
ping when a terminal state has been reached or otherwise after 30s (300 steps). Policy
improvement were performed once every KP = 10 steps (0.1s) using an ε−greedy policy

98 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

Figure 5.5: Inverted pendulum: approximate suboptimal Q and V value function found
by API−BRMε

with ε0 = 1 and reaching a value of ε∞ = 0.1 after 350s. We also used an RBF kernel with
parameters Σ = I3σ with σ = 0.5 and the regression parameters where chosen as C = 10
and ε = 0.01 selected using an grid search. fig. 5.6 shows a subsequence of policies found
during representative run taken after simulation times t = 10s,50s,200s,1000s. Clearly
the generalization ability of the SVR makes possible to capture the structure of the ap-
proximated policy only after 50s of simulation time which closely resembles the final
policy obtained after 1000s of simulation time. fig. 5.5 shows the final approximation
of Q and V value functions. fig. 5.7 shows the performance of the final policy found by
online API−BRMε along the online learning process. The performance was measured
evaluating the score over a grid of initial states simulating balancing up to 300s (3000
steps). Using Q-learning requires state discretization which seriously influences the per-
formance and it cannot estimate the state action value properly until the state is visited
which slows the learning. On the contrary the generalization property of SVR our algo-
rithm can estimate state values of unvisited states reasonably using the experience gained
with the other states. Moreover being a non-parametric regression it can easily adapt to
different situation while in general parametric approximation may work well but in a spe-
cific context without the possibility to eventually adapt to changes. In fig. 5.8 we report
states and actions in subsequences of learning trials. Each trial lasts 30s max considered
as the minimum balancing to reach. Using Method-3 (online growth) with a fixed initial
state S0 = (0,0) an optimal local approximation can be found in less then 30s of simula-
tion time. Finally the number of support vectors necessary to represents the approximate

5.6. THE INVERTED PENDULUM CONTROL PROBLEM 99

simulation time 10 sec simulation time 50 sec

simulation time 200 sec simulation time 1000 sec

Figure 5.6: Inverted pendulum: representative subsequences of policy found by online
API−BRMε using Method-2 (Actions are discretized and only three grey levels show up)

0 200 400 600 800 1000
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01
Policy score

Simulation time (s)

S
co

re

0 200 400 600 800 1000
0

50

100

150

200

250

300

Average balancing time

Simulation time (s)

B
al

an
ci

ng
 ti

m
e

(s
)

Figure 5.7: Inverted pendulum: (left) average score of online API−BRMε with KP = 10
over a grid of initial states; (right) average balancing time over the same grid of initial
states using Method-2

action value function with the set of parameters used in the approximation usually stays
below 5% of the total number of collected samples which is also a indication of the quality
of the approximation.

100 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

0 5 10 15 20 25 30 35 40 45

−1

0

1

time (s)

th
et

a

0 5 10 15 20 25 30 35 40 45
−5

0

5

time (s)

th
et

a−
do

t

0 5 10 15 20 25 30 35 40 45
−50

0

50

time (s)

ac
tio

n

Figure 5.8: Inverted pendulum: States and actions in representative subsequences of
learning trials. Each trial lasts 30s max considered as the minimum balancing to reach.
Using Method-3 (online growth) with a fixed initial state S0 = (0,0) API−BRMε learns
a local optimal policy in a few episodes (20s of simulation time).

m

M u

Figure 5.9: The cart pole balancing control problem

5.7 The Cart Pole Balancing Control Problem

The cart pole balancing control problem [89] consists in a pole mounted on cart that has
to be stabilized inside an acceptable region by the motions of the cart (fig. 5.9). This
benchmark is of interest since it involves a 5−dimensional state action space. The state
space S\ST = {(θ , θ̇ ,x, ẋ)∈R4} is continuous and consists of the vertical angle θ and the
angular velocity θ̇ of the pendulum, the cart position x and velocity ẋ and a terminal state
ST described later. Two actions are allowed A = {−am,am} with left force LF = −am,
right force RF =+am where am = 10N and some uniform noise in σa ∈ [−1,1] might be
added to the chosen action. The transitions are governed by the nonlinear dynamics of the
system:

θ̈ =
gsin(θ)−mlα sin(2θ)/2−uα cos(θ)+µc cos(θ)sign(ẋ)− µpθ̇

ml
4/3l−mα cos(θ)2

ẍ = u+mlαθ̇ 2 sin(θ)−mlαθ̈ cos(θ)−αµcsign(ẋ) (5.2)

5.7. THE CART POLE BALANCING CONTROL PROBLEM 101

Parameter Description Value UM

g gravity constant 9.8 m/s2

m pole mass 0.1 Kg
M cart mass 1.0 Kg
l pole length 0.5 m
α 1/(m+M) 0.91 Kg−1

µp pole friction coefficient 0 Kg rad/s2

µc cart friction coefficient 0 Kg m/s2

dt simulation step 0.02 s
r reward 0/-1
γ discount factor 0.9

Table 5.2: Parameters used in the simulation for the cart pole balancing control problem

where x is the cart position, θ the angular position, m the mass of the pole, l the length
of the pole, M the mass of the cart, u = a+σa the control action with noise consisting in
the acceleration applied to the cart, g the gravity constant and µc and µp the cart and pole
friction coefficients respectively. The parameters of the model used in the simulation are
reported in table 5.2. The pole angular velocity ω̇ is restricted to [−π,π]rads−1 while the
cart velocity ẋ is restricted to [−1,1]ms−1 using saturation. The discrete-time dynamics is
obtained by discretizing the time between t and t+1 chosen with dt = 0.02s. If θt+1,xt+1
are such that |θt+1| > θm or |xt+1| > xm a terminal state ST = |θ |> θm or |x|> xm is
reached where we fixed θm = π/15 and xm = 2.4. The reward function r(st ,at) is defined
through the following expression:

r(st ,at) =

{
−1 i f |θ |> θm or |x|> xm
0 otherwise

Variant of the cart pole problem are possible using a more informative reinforcement
function but we keep with the original formulation in [89]. The discount factor γ has
been chosen equal to 0.95. The dynamical system is integrated by using an Euler method
with a 0.001s integration time step. To generate data samples we may consider episodes
starting from the same initial state s0 = (θ0, θ̇0,x0, ẋ0) or using a random initial state and
stopping when the cart pole leaves the region represented by S \ ST meaning enter in a
terminal states ST . In our simulation of this benchmark using online API−BRMε we run
for 500s of simulated time collecting around 10000 samples. Run was split into separate
learning episodes initiated at random initial states and stopping when a terminal state has
been reached or otherwise after 10s (500 steps). Policy improvement were performed
once every KP = 10 steps (0.1s) using an ε−greedy policy with ε0 = 1 and reaching a
value of ε∞ = 0.1 after 400s. We also used an RBF kernel with parameters Σ = I5σ with
σ = 1 and the regression parameters where chosen as C = 10 and ε = 0.02 selected using
an grid search. fig. 5.11 shows a subsequence of slices of policies fixing some state vari-
ables found during representative run taken after simulation times t = 10s,50s,200s,500s.
Clearly the generalization ability of the SVR makes possible to capture the structure of
the approximated policy only after 50s of simulation time which is closely resembles the
final policy obtained after 500s of simulation time. fig. 5.10 shows the final approxima-

102 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

Figure 5.10: Cart pole: slices of approximate suboptimal Q and V value function found
by online API−BRMε using Method-2

tion V value functions and a slice of the Q value function fixing some state variables.
fig. 5.12 shows the performance of the final policy found by online API−BRMε along the
online learning process. The performance was measured evaluating the score over a grid
of initial states simulating balancing up to 60s (3000 steps). In fig. 5.13 we report states
and actions in subsequences of learning trials. Each trial lasts 10s max considered as the
minimum balancing to reach the goal. Using Method-3 (online growth) with a fixed initial
state S0 = (0,0) an optimal local approximation can be found in less then 30s of simula-
tion time. Finally the number of support vectors necessary to represents the approximate
action value function with the set of parameters used in the approximation usually stays
below 10% of the total number of collected samples which is also a indication of the
quality of the approximation.

5.8 The Car On The Hill Control Problem

The hill car problem is a classical benchmark for approximate RL [63]. Here we present
the much more problematic variant of [26]. This last version of the benchmark has
been analyzed in [26] and [19] and due to the peculiar structure of the reward func-
tion it represents a challenge for the value function approximation task. A car mod-
eled by a point mass is traveling on a hill with shape given by the function H(p) in
fig. 5.14. The state space S of dimension two is composed car position p and velocity

5.8. THE CAR ON THE HILL CONTROL PROBLEM 103

Simulation time 10 s

Simulation time 50 s

Simulation time 500 s

Simulation time 200 s

Figure 5.11: Cart pole: slices of representative subsequences of policy found by online
API−BRMε using Method-2

ṗ S \ ST = {(p, ṗ) ∈ R2 |p| ≤ pm = 1 and |ṗ| ≤ ṗm = 3} and a terminal state ST de-
scribed later with p position and ṗ speed of the car. The action space A with dimension
two defined as A = {−am,am} acts directly on the acceleration of the car and can only
assume two extreme values am = 4. The control problem objective is to bring the car as
soon as possible to the top of the hill (p = +pm) while preventing the position p of the
car to become smaller than p = −pm and its speed ṗ to go outside the interval |ṗ| ≤ ṗm.
The system has a continuous-time dynamics:

p̈ = a/m−g H ′(p)−ṗ2 H ′(p)H ′′(p)
1+(H ′(p))2 (5.3)

where the mass m = 1 g and g = 9.81 ms−2 are fixed parameters and

H(p) =

{
p2 + p i f p < 0

p√
1+5p2

i f p≥ 0

104 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

0 100 200 300 400 500
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01
Policy score

Simulation time (s)

S
co

re

0 100 200 300 400 500
0

10

20

30

40

50

60

70
Average balancing time

Simulation time (s)

B
al

an
ci

ng
 ti

m
e

(s
)

Figure 5.12: Cart pole: (left) average score of online API−BRMε with KP = 10 over a
grid of initial states using Method-2; (right) average balancing time over the same grid of
initial states using Method-2

0 5 10 15 20 25 30

−1
0
1

time (s)

th
et

a

0 5 10 15 20 25 30
−5

0

5

time (s)

th
et

a−
do

t

0 5 10 15 20 25 30
−2

0

2

time (s)

po
si

tio
n

0 5 10 15 20 25 30
−4
−2
0
2
4

time (s)

ve
lo

ci
ty

0 5 10 15 20 25 30
−50

0

50

time (s)

ac
tio

n

1 1.2 1.4 1.6 1.8 2
−0.115

−0.11

−0.105

Action

Q
va

lu
e

Figure 5.13: Cart pole: States and actions in representative subsequences of learning
trials. Each trial lasts 10s max considered as the minimum balancing to reach. Using
Method-3 (online growth) with a fixed initial state S0 = (0,0,0,0) API−BRMε learns a
local optimal policy in a few episodes (20s of simulation time).

is a function defining the shape of the hill while H(p)′ = dH(p)
d p and H(p)′′ = d2H(p)

d p2 . The
discrete-time dynamics is obtained by discretizing the time between t and t + 1 chosen
with dt = 0.1s. If pt+1, ṗt+1 are such that |pt+1|>+pm or |ṗt+1|>+ṗm a terminal state

5.8. THE CAR ON THE HILL CONTROL PROBLEM 105

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

a

mg

p

H
(p

)

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p

p’

π(p,p’)

Figure 5.14: Car on the Hill: shape of the hill (left), near optimal policy π(p, ṗ) (black
a =−am,white a =+am, grey equally good) from [19]

Figure 5.15: Car on the Hill: representative subsequences of policies found by offline
(top) and online LSPI (bottom) from [19]. See fig. 5.14 for axis and color meanings.

ST is reached. The reward function r(st ,at) is defined through the following expression:

r(st ,at) =


−1 i f pt+1 <−pm and |ṗt+1|> ṗm
1 i f pt+1 >+pm and |ṗt+1| ≤ ṗm
0 otherwise

The discount factor γ has been chosen equal to 0.95. The dynamical system is in-
tegrated by using an Euler method with a 0.001s integration time step. As a potential

106 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

Figure 5.16: Car on the Hill: approximate suboptimal Q and V value function found by
online API−BRMε using Method-2

variants one may consider adding some uniform random noise σa � am to the action
value a as well as moving from a discrete action set to a continuous one in the interval
[−am,am]. To generate data samples we may consider episodes starting from a fixed initial
state corresponding to the car stopped at the bottom of the hill s0 = (p0, ṗ0) = (−0.5,0)
or with random initial state and stopping when the car leaves the region represented by
S\ST meaning a terminal state ST .

As we want to compare the performance of our method with LSPI both online and
offline, we refer to the analysis of the same benchmark presented in [19]. In this analysis a
comparison among LSPI both online an offline are presented. LSPI was applied to the hill
car benchmark using a random collected dataset of 10000 samples, i.i.d. distributed and
collected according to some random behavior policy. As LSPI uses a parametric approach
the action value function is approximated using a bilinear interpolation on an equidistant
13 grid. In this case the approximation can be expressed as Q̂LSPI(s,a j) = ∑

169
t=1 Φt(s)wt, j

where the Basic Functions (BFs) φt(s) provide the interpolation coefficients and j = 1,2
for the two possible actions. Samples in LSPI are reused to evaluate the policy typically
converging in less than 10 PI steps. The upper part of fig. 5.15 illustrates subsequences
of policy found by these implementation of offline LSPI for the given benchmark. In
this case simulation runs for 1000s (10000 samples) separated in 350 trials of max 3s
(30 samples) stopping eventually when reaching a terminal state. Policy improvements
are performed once every 1s (10 samples) using an ε−greedy exploration strategy with
an initial value of ε0 = 1 decaying exponentially and reaching the value of ε∞ = 0.1 after

5.8. THE CAR ON THE HILL CONTROL PROBLEM 107

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p

pd
ot

Optimal Policy

 −4

−3

−2

−1

0

1

2

3

4
simulation time =10s

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p

pd
ot

Optimal Policy

 −4

−3

−2

−1

0

1

2

3

4
simulation time=50 s

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p

pd
ot

Optimal Policy

 −4

−3

−2

−1

0

1

2

3

4
simulation time=200 s simulation time= 500 s

Figure 5.17: Car on the Hill: representative subsequences of policy found by online API−
BRMε using Method-2

350s (3500 samples). Lower part of fig. 5.15 illustrates the subsequences of policies found
during representative runs. Difference among online and offline LSPI arises basically
from the fact that while offline LSPI processes the data once at every iteration, online e
LSPI processes each sample only once.

For comparison the experiment runs for 1000s of simulated time so that ends up col-
lecting 10000 samples. The samples have been split into separate episodes with an initial
random state and stopping when a terminal state has been reached or in any case af-
ter 3s (30 samples). Policy improvements are performed every 1s (10 samples) and an
ε−greedy strategy is used with an initial value of ε0 = 1 decaying exponentially and
reaching the value of ε∞ = 0.1 after 350s (3500 samples). In fig. 5.15 in the upper part
the results coming from iterations of an LSPI In our simulation of this benchmark using
online API−BRMε we run for 500s of simulated time collecting around 5000 samples.
Run was split into separate learning episodes initiated at random initial states and stop-
ping when a terminal state has been reached or otherwise after 3s max (30 steps). Policy
improvement were performed once every KP = 10 steps (0.1s) using an ε−greedy policy
with ε0 = 1 and reaching a value of ε∞ = 0.1 after 350s (3500 steps). We also used an RBF
kernel with parameters Σ= I5σ with σ = 2 and the regression parameters where chosen as
C = 10 and ε = 0.01 selected using an grid search. fig. 5.17 shows a subsequence of poli-
cies found during representative run taken after simulation times t = 10s,50s,200s,500s.
Clearly the generalization ability of the SVR makes possible to capture the structure of the
approximated policy only after 50s of simulation time which is closely resemble the final

108 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

0 100 200 300 400 500 600 700

•0.3

•0.2

•0.1

0

0.1

0.2

Policy score

Simulation time (s)

S
co

re

Optimal Trajectory

Figure 5.18: Car on the Hill: (left) average score of online API−BRMε with KP = 10
over a grid of initial states using Method-2; (right) typical trajectory using a suboptimal
policy found by API−BRMε

GOAL

GOAL

Figure 5.19: Car on the Hill: States and actions in representative subsequences of learning
trials. Each trial lasts 3s max (30 steps) considered sufficient to reach the goal. Using
Method-3 (online) with small perturbations of a fixed initial state S0 = (−0.5,0) API−
BRMε may learn a local optimal policy in a few episodes (50s of simulation time).

policy obtained after 500s of simulation time. fig. 5.16 shows the final approximation V
value functions and a slice of the Q value function fixing some state variables. In the right

5.8. THE CAR ON THE HILL CONTROL PROBLEM 109

0 5 10 15 20 25
•1
0
1

time (s)

p
o

s
it
io

n

0 5 10 15 20 25

•2
0
2

time (s)

v
e

lo
c
it
y

0 5 10 15 20 25
•10

0
10

time (s)

a
c
ti
o

n

0 5 10 15 20 25
•1
0
1

time (s)

re
tu

rn

1 1.2 1.4 1.6 1.8 2
•0.88
•0.87
•0.86

Action

Q
v
a

lu
e

GOAL

GOAL

Figure 5.20: Car on the Hill: States and actions in representative subsequences of learning
trials. Each trial lasts 8s max (80 steps) considered sufficient to reach the goal. Using
Method-3 (online-growth) with small perturbations of a fixed initial state S0 = (−0.5,0)
API−BRMε may learn a local optimal policy in a few episodes (30s of simulation time).

of fig. 5.18 we represents a typical trajectory obtained when starting from s0 and using the
found policy π̂ to control the system. In the left side of fig. 5.18 we show the performance
of the final policy found by online API−BRMε along the online learning process. The
performance was measured evaluating the score over a grid of initial states. In fig. 5.20
we report states and actions in subsequences of learning trials. Each trial lasts 8s max (80
steps) considered sufficient to reach the goal using Method-3 (online-growth) using small
perturbations of a fixed initial state S0 = (−0.5,0). In this case policy improvement were
performed once every KP = 10 steps (0.1s) and an optimal local approximation can be
found in less then 30s (300 steps) of simulation time. However while the online-growth
helps speeding the learn, the probability to reach the goal strongly depends on the dis-
tribution of the data. A local optimal approximation can be also found with experiments
performed using Method-2 (online) with shown in fig. 5.19. Each trial lasts 3s max (30
steps) considered sufficient to reach the goal using using small perturbations of a fixed
initial state S0 = (−0.5,0). In this case we used an ε−greedy policy with ε0 = 1 and
reaching a value of ε∞ = 0.1 after 40s (400 steps). Policy improvement were performed
once every KP = 10 steps (0.1s) and an optimal local approximation can be found in
less then 50s (500 steps) of simulation time. reveals that this method is quite sensitive
to local minima of the value function. Hence, even though it is possible to find a good
local approximation due to the peculiar structure of the problem exploration should be

110 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

Parameter Description Value UM

g gravity constant 9.8 m/s2

Mr Ryder mass 60.0 Kg
Mc Bicycle mass 15.0 Kg
Md Tyre mass 1.7 Kg
v bicycle velocity 10.0/3.6 ms−1

h height from the ground 0.94 m
l distance back-front tyres 1.11 m
r wheel radius 0.34 m
dCM vertical distance bicycle-ryder CM 0.3 m
c horizontal distance wheel-CM 0.66 m
dt simulation step 0.01 s
r reward 0/-1
γ discount factor 0.98

Table 5.3: Parameters used in the simulation for the bicycle balancing and riding control
problem

stressed with respect to exploitation. Finally the number of support vectors necessary to
represents the approximate action value function with the set of parameters used in the
approximation usually stays below 10% of the total number of collected samples which is
also a indication of the quality of the approximation. The higher fraction of support vec-
tors with respect to other benchmarks reveals the difficulty of the function approximation
problem.

5.9 The Bike Balancing And Riding Control Problem

We consider two control problems related to a bicycle [71] moving at constant speed on a
horizontal plane (fig. 5.21). For the bicycle balancing the agent has to learn how to balance
the bicycle. For the bicycle balancing and riding he has not only to learn how to balance
the bicycle but also how to drive it to a specific goal which in our simulation is located
in a radius of ten meters around the point (xg,yg) = (1000,0). The system dynamics is
composed of seven state variables S\ST = {(ω, ω̇,θ , θ̇ ,ψ)∈R5 | ω ∈ [−ωm,ωm] θ ∈
[−θm,θm] ωm = π

15rad θm = π

2.25rad} plus a terminal state ST . Four states are related
to the bicycle itself and three to the position of the bicycle on the plane. The state variables
related to the bicycle are ω, ω̇ (the angle and radial speed from vertical to the bicycle),
θ , θ̇ (the angle and radial speed the handlebars are displaced from normal). If |ω| > ωm
the bicycle has fallen down reaching a terminal state ST . The state variables related to
the position of the bicycle on the plane are the coordinates (xb,yb) of the contact point
of the back tire with the horizontal plane and the angle Ψ formed by the bicycle with the
x-axis. The actions space A = {(u,T) ∈ {−0.02,0,0.02}×{−2,0,2}} is composed of 9
elements and depends on the the torque T applied to the handlebars and the displacement
d of the rider. The noise in the system is a uniformly distributed term σdt = [−0.02,0.02]
added to action d. The system has a continuous time dynamics described by the following

5.9. THE BIKE BALANCING AND RIDING CONTROL PROBLEM 111

differential equations:

ω̈ = I−1
cp (Mghsin(φt)− cos(φt)(Idcσ̇ θ̇t

+sign(θt)v2(Mdr(invr ft + invrbt)+Mh invrCMt)))

θ̈ =
T − Idvσ̇ ω̇

Idl
ψ̇t = sign(θt)v invrbt

ẋbt = vcos(ψt) ẏbt = vsin(ψt)

where

φt = ωt +
arctan(dt +σdt)

h
invr ft =

|sin(θt)|
l

invrbt =
|tan(θt)|

l
invrCMt =

{ 1√
(l−c)2+invr−2

bt

i f θt 6= 0

0 otherwise

The quantity used in the equations are

σ̇ =
v
r

M = Mc +Mr Idl =
1
2

Mdr2 Idv =
3
2

Mdr2

Idc = Mdr2 Icp =
13
3

Mch2 +Mp(h+dCM)2

with noise in the action σdt drawn according to a uniform distribution. The various pa-
rameter with meanings are described in section 5.9 and in fig. 5.21, and the details of
the dynamic can be found in [71]. The dynamic holds valid if |ωt+1| ≤ ωm while if
|ωt+1| > ωm the bicycle is supposed to have fallen down reaching a terminal state ST .
We suppose that the state variables (xb,yb) cannot be observed. Since these two state
variables do not intervene in the dynamics of the other state variables nor in the reward
functions considered. Hence they may be considered no relevant variables which does not
make the control problem partially observable. The two optimal control problems have
the same system dynamics and differ only by their reward function which for the bicycle
balancing control problem is define hereafter

r(st ,at) =

{
−1 i f |ωt+1|> ωm
0 otherwise

while the reward function for the bicycle balancing and riding control problem is

r(st ,at) =

{
−1 i f |ωt+1|> ωm
cr(δ (ψt)−δ (ψt+1)) otherwise

with cr = 0.1 and δ (ψ) = mink∈N |ψ +2kπ| representing some sort of distance between
an angle ψ and the angle 0 and non-zero rewards are also observed when the bicycle
is riding. The reward function for the bicycle balancing is such that zero rewards are
always observed, except when the bicycle has fallen down and in that case the reward
is equal to -1. For the bicycle balancing and riding control problem, a reward of -1 is
also observed when the bicycle has fallen down. Positive rewards are therefore observed
when the bicycle frame gets closer to the position ψ = 0 and negative rewards otherwise.

112 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

ϕ
h

d +w Fcen
CM

ω

Mg

x-axis

ψ

ψgoal

contact

θ

T

front wheel

back wheel - ground

goal

(xb,yb)

frame of the bike

center of goal (coord. = (xgoal ,ygoal))

(a) (b)

Figure 5.21: The bike control problem: Figure (a) represents the bicycle seen from behind
where the thick line represents the bicycle. The center of mass of the bicycle+cyclist CM
with height h from the ground, ω the angle from vertical to bicycle while φ represents the
total angle of tilt of CM. Action d is agent displacement and w is some noise to simulate
imperfect balance. Figure (b) represents the bicycle seen from above. θ is the angle the
handlebars are displaced from normal, ψ the angle formed by the bicycle frame and the
x axis and ψgoal the angle between the bicycle frame and the line joining the back-wheel
ground contact and the center of the goal. T is the torque applied by the cyclist to the
handlebars. (xb,yb) is the contact point of the back-wheel with the ground (from [26])

With such a choice for the reward function, the optimal policy π̂ tends to control the
bicycle so that it moves to the right with its frame parallel to the x-axis. Such an optimal
policy π̂ can be used to drive the bicycle to a specific goal. If ψg represents the angle
between the bicycle frame and a line joining the point (xb,yb) to the center of the goal
(xg,yg) this is achieved by selecting at time t the action π̂(ωt , ω̇t ,θt , θ̇t ,ψgt), rather than
π̂(ωt , ω̇t ,θt , θ̇t ,ψt). In this way, we proceed as if the line joining (xb,yb) to (xg,yg) were
the x-axis when selecting control actions, which makes the bicycle moving towards the
goal. See [26] for further discussion. The value of the discount factor γ has been chosen
for both problems equal to 0.98. The dynamical system is integrated by using an Euler
method with a 0.001s integration time step. To generate data samples we may consider
episodes starting from the same initial state corresponding to the bicycle standing and
going in straight line with s0 = (ω0, ω̇0,θ0, θ̇0,ψ0) = (0,0,0,0,Ψ0) with a fixed value of
Ψ or chosen at random Ψ0 ∈ [−π,π] and stopping when the bicycle leaves the region
represented by S\ST meaning a terminal state ST .

5.9.1 Bike Balancing Control Problem
In our simulation of this benchmark using online API−BRMε we run for 500s of simu-
lated time collecting around 50000 samples. Run was split into separate learning episodes
initiated at random initial states s0 = (0,0,0,0,Ψ0) with Ψ0 ∈ [−π,π] and stopping when
a terminal state has been reached or otherwise after 1s (100 steps). Policy improvement

5.9. THE BIKE BALANCING AND RIDING CONTROL PROBLEM 113

0 100 200 300 400 500

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Policy score

Simulation time (s)

S
co

re

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

550
Average balancing time

Simulation time (s)

B
al

an
ci

ng
 ti

m
e

(s
)

Figure 5.22: Bike balancing: performance of online API−BRMε with KP = 10 using
Method-2

were performed once every KP = 10 steps (0.1s) using an ε−greedy policy with ε0 = 1
and reaching a value of ε∞ = 0.1 after 200s. We also used an RBF kernel with parameters
Σ = I7σ with σ = 1.5 and the regression parameters where chosen as C = 10 and ε = 0.01
selected using an grid search.

fig. 5.22 shows the performance of the final policy found by online API−BRMε along
the online learning process. The performance was measured evaluating the score over a
grid of initial states S0 = {(0,0,0,0,Ψ0} with Ψ0 ∈ [−π,π]. In fig. 5.23 we report states
and actions in subsequences of learning trials. Each trial lasts 50s max (5000 steps)
considered as the minimum balancing to reach the goal. Using Method-3 (online growth)
with a fixed initial state S0 = (0,0,0,0,Ψ0) an optimal local approximation can be found
in less then 50s of simulation time. In the lower part of fig. 5.23 we also show some of
the trajectories during the learning process as well as the final one. Finally the number
of support vectors necessary to represents the approximate action value function with the
set of parameters used in the approximation usually stays below 5% of the total number
of collected samples which is also a indication of the quality of the approximation.

5.9.2 Bike Balancing And Riding Control Problem

In our simulation of this benchmark using online API−BRMε we run for 500s of simu-
lated time collecting around 50000 samples. Run was split into separate learning episodes
initiated at random initial states s0 = (0,0,0,0,Ψ0) with Ψ0 ∈ [−π,π] and stopping when
a terminal state has been reached or otherwise after 1s (100 steps). Policy improvement
were performed once every KP = 10 steps (0.1s) using an ε−greedy policy with ε0 = 1
and reaching a value of ε∞ = 0.1 after 200s. We also used an RBF kernel with parameters
Σ = I7σ with σ = 1.5 and the regression parameters where chosen as C = 10 and ε = 0.01
selected using an grid search. As already mention the main difference in this case relies
on the choice of the reward function which should be able to drive the bicycle to the right
and parallel to the x−axis as soon as the learned policy represents a good approximation
of the optimal one. fig. 5.24 shows the performance of the final policy found by online
API−BRMε along the online learning process. The performance was measured evalu-

114 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

A

B C

Figure 5.23: Bike balancing: (Upper A) States and actions in representative subsequences
of learning trials. Each trial lasts 50s max (5000 steps) considered sufficient reach the
goal. Using Method-3 (online-growth) with small perturbations of a fixed initial state
S0 = (0,0,0,0,π/2) API−BRMε may learn a local optimal policy in a few episodes (50s
of simulation time). (Lower) sketch of the trajectory (B zoom, C overall) in the time
interval (0,500s) for the bicycle on the (xb,yb) plane controlled by the final policy of
API−BRMε

ating the score over a grid of initial states S0 = {(0,0,0,0,Ψ0} with Ψ0 ∈ [−π,π]. In
fig. 5.25 we report states and actions in subsequences of learning trials. Each trial lasts
50s max (5000 steps) considered as the minimum balancing and riding to reach the goal.
Using Method-3 (online growth) with a fixed initial state S0 = (0,0,0,0,Ψ0) an optimal

5.9. THE BIKE BALANCING AND RIDING CONTROL PROBLEM 115

0 100 200 300 400 500

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Policy score

Simulation time (s)

S
co

re

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

550
Average balancing and riding time

Simulation time (s)

B
al

an
ci

ng
 ti

m
e

(s
)

Figure 5.24: Bike balancing and riding: performance of online API−BRMε with KP = 10
using Method-2

local approximation can be found in less then 50s of simulation time. Since the bicycle
rides at constant speed v = 2.77 ms−1 and the time step is 0.01s the bicycle has to cover
a distance around 1278 m before reaching the goal. Hence in the lower part of fig. 5.25
we show the learned trajectories and the final one which was able to reach the goal in less
that 50000 time steps. As in [26] we also analyzed the influence of the parameters cr,γ
over the trajectories. Our analysis confirms that taking cr < 0.1 the bicycle tends to turn
more slowly and to take more time to reach the goal while choosing cr = 1 trajectories
reach rapidly to a terminal state. On the other hand taking the discount γ = 0.95, influ-
ences the trajectories obtained and the bicycle may crashes rapidly as smaller value of γ

tends to increase the importance of short-term rewards over long-term ones. However it
is still possible to reach the goal by modifying the parameters C,Σ,ε . Finally the number
of support vectors necessary to represents the approximate action value function with the
set of parameters used in the approximation usually stays below 5% of the total number
of collected samples which is also a indication of the quality of the approximation.

116 CHAPTER 5. API−BRMε EXPERIMENTAL ANALYSIS

A

B C

Figure 5.25: Bike balancing and riding: (Upper A) States and actions in representative
subsequences of learning trials. Each trial lasts 50s max (5000 steps) considered sufficient
reach the goal. Using Method-3 (online-growth) with small perturbations of a fixed initial
state S0 = (0,0,0,0,π/2) API−BRMε may learn a local optimal policy in a few episodes
(50s of simulation time). (Lower) sketch of the trajectory (B zoom, C overall) in the time
interval (0,500s) for the bicycle on the (xb,yb) plane controlled by the final policy of
API−BRMε reaching the goal located at (xb,yb) = (1000,0)

Conclusions and Future Work

Conclusions
Main contribution of this thesis are the theoretical and experimental analysis of a non-
parametric approximation algorithm for the generalization problem in RL using PI and
kernel methods. We developed a model free BRM approach called API−BRMε able to
find the optimal policy in continuous state RL problems, studied its theoretical properties
and practical implementation issues. In particular, we demonstrated how the problem of
finding the optimal policy solution minimizing the BR can be cast as a regression problem
using SVR and an appropriate RKHS. The algorithm were proved to eventually converge
to the optimal policy using β -mixing distributed data samples providing also a theoretical
bound expressed in terms of number of events, capacity of the function space and number
of PI steps. Some interesting properties of API−BRMε algorithm are:

• API−BRMε is quite efficient for problems where sampled experience is sparse.
The algorithm is based on API, a very powerful framework met with success mostly
among planning problems.It also open new research directions for the use of kernel
based API in the context of learning.

• API−BRMε is a model free algorithm need no to access to a model of the process
but can be easily adapted to model based learning. In absence of generative models
samples must be collected from the actual process in real-time then the algorithm
may work in an online fashion. However when there is a generative model available
the offline variant of the algorithm can be used.

• API−BRMε is an API algorithms and compared to other API algorithms eliminates
either the actor or the critic part of the actor-critic architecture. API−BRMε makes
a good use of function approximation implicitly constructing an approximate model
using kernels. The algorithm place approximation directly in value function and use
samples to perform directly the necessary operations (Bellman update and policy
improvement) without going through any kind of model eliminating one potential
source of error.

• API−BRMε does not suffer from sub-optimality always finding the global opti-
mal solution to the approximation problem. Also being a non-parametric learning
method has the ability to automatically adapt to the complexity of the problem.
Both properties rely on the use of SVR with ε−insensitive loss function, which is
essentially a convex quadratic programming optimization problem.

117

• API−BRMε uses incremental SVR which allows for the estimation and approxi-
mation of state action value functions in RL. PI can be done implicitly any time
a new experience is obtained. Accordingly, computation lowers, while learning
speed goes faster and generalization more effective than other existing methods. In
fact API−BRMε complexity strongly depends on the cost one has to pay in or-
der to solve the SVR which is essentially a quadratic problem optimization. SVR
can be solved in batch mode when the whole set of training sample are at disposal
of the learning agents or incrementally (incremental SVM [70] and SVR by [57]).
Incrementality enables the addition or removal of training samples very effectively.

• The approach taken by API−BRMε makes full use of all samples at once either
they are i.i.d. or strongly mixing. In contrast traditional RL algorithms use stochas-
tic approximation where each sample is processed once and contributes with small
changes. Usually a very large number of samples is required. Experience replay
technique may partially solve the problem in traditional RL algorithms, storing
samples through multiple passes over them. However, with API−BRMε this is
no longer necessary.

• Also in traditional RL algorithms, the accuracy of the approximation at different
states or state-action pairs depends on the time, order state visitation. If the learning
rate is high the algorithm risks oscillatory or divergent behavior. On the other hand,
if the learning rate is kept small the learning becomes extremely slow. In contrast
API−BRMε has no risk of overshooting, oscillation, or divergence because it has
no learning parameters to tune up and does not take gradient steps.

• API−BRMε has an alternative representations from batch to incremental, from of-
fline to online, showing effective generalization ability through SVR which makes
use of the Structural Risk Minimization theory and his extension to mixing pro-
cesses. Moreover it shows a theoretical bound on his performance and statistical
convergence guarantee.

Future work

As possible future works we aim to follow some potential improvements of our method.
In particular among other possibilities to use kernel based PI methods we foresee to in-
vestigate Bellman Advantage [7], [30] which uses a different approach to find the optimal
policy within the approximation of the state action value function. Advantage learning
seeks an approximation focusing on the minimal constraints that must be satisfied to en-
sure that the greedy policy computed from the action value function will be identical to
the greedy policy computed from Q̂π requiring that the backed up value of the optimal
action a∗ be greater than the backed up values of all other actions a in a given state s.
The basic idea is to use preference learning and in particular a ranking SVM instead of
a regression able to find a partial order in the action set for each state. Ranking SVM
can be also implemented using icrementality as we did for SVR and we hope to raise a
representation of the optimal policy using a reduced set of support vectors.

Another possibility could be to better analyze some of the assumptions we made in
order to find the theoretical bound. From one side empirical processes and statistical
learning theory with dependent data allow us to find the theoretical bound involving the
β -mixing scenario. However, presently there is no simple way to actually estimate those
coefficients from data. While general functional forms are known for some common
classes of processes specific coefficients are generally beyond calculation. Nevertheless
following the ideas in expressed in [58] we foresee to investigate the empirical process
contained in the collected data checking for consistent estimators for the β -mixing coef-
ficients based on a single stationary sample path.

Furthermore, to evaluate the convergence bound we asked for a stronger notion of
approximation making assumptions on the probability distribution P and assuming that
the inequality

‖ fD,λn− f ∗`ε ,P‖2,νx ≤ cP

[
R`ε ,P(fD,λn)−R∗`ε ,P

]
= cP

[
E[`ε(y, fD,λn(x))|Zn]−E[`ε(y, f ∗`ε ,P(x))]

]
(5.4)

holds true. As a results we need to further investigate under which conditions or limita-
tions on P the we may correctly use the inequality 5.4 dealing with `ε losses.

In this work we managed continuous state and finite actions cMDPs as essential ingre-
dients to achieve the asymptotic convergence bound. Besides in experiments performed
in several benchmarks, it seems to be possible to extend the convergence result to cMDPs
with continue action space. So further investigation in this sense might be promising and
also interesting from a practical point of view.

Acknowledgments

During my thesis work I had the opportunity to meet several people whose help made my
scientific experience and personal efforts fruitful and quite exciting.

First of all a cheerful word of thanks to all the member of the Knowledge Engineering
and Machine Learning Group (KEMLG) sharing space and experiences during the past
four years. In particular thanks to the senior members Profs. Kárina Gilbért, Miquél
Sánchez and Jávier Vásquez for sharing their experience and ideas.

Then I’d like to thank you Prof. Jávier Bejár for the fruitful conversations he shared
with me help me finding hints and suggestions useful form my work.

To Prof. Ulises Cortés, coordinator of the doctorate program, I would like to express
my personal thanks and appreciations for the many stimulating discussions and the op-
portunity he gave me.

I am particulary grateful to prof. Csaba Szepesvári and Dr. Amir-massoud Farahmand
which were willing to share their work on regularized API methods and also for the very
helpful suggestion they give me.

I also have to thank Prof. Lucián Busoniú for his very helpful suggestions.
Finally I want to give a special word of thanks to Prof. Mario Martı́n for the amount

of things he taught me and for the way he shared with me his knowledge and experience.
Without his help and friendship this work would not have been possible.

Barcelona, Catalunya February 2015

121

Bibliography

123

Bibliography

[1] S. Abe. Support vector machines for pattern classification. Springer-Verlag, Lon-
don, 2005.

[2] S. Abe and Y. Torii. Decomposition techniques for training linear programming
svm. Neurocomputing, 72(4-6):973–984, 2009.

[3] Alejandro Gabriel Agostini. Q-learning with degenerate function approximation.
PhD Thesis, UPC, Barcelona, 2011.

[4] Alejandro Gabriel Agostini and Enrique Celaya. Learning in complex environ-
ments with feature-based categorization. In Proc. of the 8th Conference on Intelli-
gent Autonomous Systems, pages 446–455, 2004.

[5] Farahmand Amir-massoud and Csaba Csaba Szepesvári. Regularized least-squares
regression: Learning from a β -mixing sequence. Journal of Statistical Planning
and Inference, 142(2):493 – 505, 2012.

[6] András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal poli-
cies with bellman-residual minimization based fitted policy iteration and a single
sample path. Machine Learning Journal, 71:89–129, 2008.

[7] Leemon Baird. Advantage updating. Report WL-TR-93-1146, Wright Patter-
son(AFB), 1993.

[8] Leemon Baird. Residual algorithms: Reinforcement learning with function approx-
imation. In In Proceedings of the Twelfth International Conference on Machine
Learning, pages 30–37. Morgan Kaufmann, 1995.

[9] Lemon Baird. Reinforcement learning trough gradient descent. PhD Thesis,
Carnegie Mellon University, Pittsburg, 1999.

[10] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on systems, man,
and cybernetics, 13(5):834846, 1983.

[11] D. P. Bertsekas. Dynamic Programming and Optimal Control vol. II. Athena
Scientific, Boston, 2007.

[12] D. P. Bertsekas and J. N. Tsitsiklis. Neuro Dynamic Programming. Athena Scien-
tific, Boston, 1996.

125

[13] Brett M. Bethke. Kernel-Based Approximate Dynamic Programming Using Bell-
man Residual Elimination. PhD thesis, Massachusetts Institute of Technology,
Department of Aeronautics and Astronautics, Cambridge MA, February 2010.

[14] J. Bi. Dimensionality reduction via sparse support vector machines. Journal of
Machine Learning Research, 3:1229–1243, 2003.

[15] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[16] J. Burges and D. Crisp. Uniqueness of the svm solution. Advances in Neural
Information Processing Systems, 12, 2000.

[17] L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska. Online least-squares policy
iteration for reinforcement learning control. In US Baltimore, editor, In Proceed-
ings of American Control Conference ACC-10, pages 486–491, 2010.

[18] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforce-
ment Learning and Dynamic Programming Using Function Approximators. CRC
Press, Inc., Boca Raton, FL, USA, 2010.

[19] Lucian Busoniu, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos,
Robert Babuska, and Bart Schutter. Least-squares methods for policy iteration. In
Marco Wiering and Martijn Otterlo, editors, Reinforcement Learning, volume 12
of Adaptation, Learning, and Optimization, pages 75–109. Springer Berlin Heidel-
berg, 2012.

[20] M. Carrasco and X. Chen. Mixing and moment properties of various garch and
stochastic volatility model. Econometric Theory, 18:17–39, 2002.

[21] Olivier Chapelle. Training a support vector machine in the primal. Neural Compu-
tation, 19:1155–1178, 2007.

[22] Olivier Chapelle. Training a support vector machine in the primal. Neural Compu-
tation, 19(5):1155–1178, 2007.

[23] N. Christianini and J. Shawe-Taylor. Support Vector Machines and Other kernel-
based Learning Methods. Cambridge University Press, 2000.

[24] Andreas Christmann and Ingo Steinwart. On robust properties of convex risk mini-
mization methods for pattern recognition. Journal of Machine Learning Research,
5:1007–1034, 2004.

[25] Felipe Cucker and Steve Smale. On the mathematical foundations of learning.
Bulletin of the American Mathematical Society, 39:1–49, 2002.

[26] Ernst Daniel, Geurts Pierre, and Whenkel Luis. Tree based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6:503–556, 2005.

[27] G. B. Dantzig. Linear programming and extensions. Princeton University Press,
page Princeton, 1963.

[28] Yu A. Davydov. Mixing conditions for markov chains. Teor. Veroyatnost. i Prime-
nen., 18:321–338, 1973.

[29] M. Deisenroth, J. Peters, and C. Rasmussen. Approximate dynamic programming
with gaussian processes. In Proceedings of the American Control Conference,
2008.

[30] T. Diettrich and X. Wang. Batch value function approximation via support vectors.
NIPS, MIT Press:14911498, 2001.

[31] T. Downs. Simplifications of support vector solutions. Journ. of Machine Learning
Resarch, 2:293–297, 2001.

[32] K. Doya. Reinforcement learning in continuous time and space. Neural Computa-
tion, 12(1):219–245, 2000.

[33] Gennaro Esposito. Lp-type methods for Optimal Transductive Suppport Vector
Machines. PhD Thesis, University of Perugia, 2011.

[34] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. A unified frame-
work for regularization networks and support vector machines. Technical report,
MIT, Cambridge, MA, USA, 1999.

[35] Amir-massoud Farahmand. Regularization in Reinforcement Learning. PhD thesis,
University of Alberta, 2011.

[36] Amir-massoud Farahmand, Rémi Munos, and Csaba Szepesvári. Error propagation
for approximate policy and value iteration. In John D. Lafferty, Christopher K. I.
Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors, NIPS,
pages 568–576. Curran Associates, Inc., 2010.

[37] G. Fung. Minimal kernel classifiers. Journ. of Machine Learning Research, 3:203–
321, 2002.

[38] G. Gordon. Stable function approximation in dynamic programming. Proceedings
of 12th ICML, pages 261–268, 1985.

[39] G. Gordon. Approximate Solutions to Markov Decision Processes. PhD thesis,
Carnegie Mellon University, 1999.

[40] László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A Distribution-
Free Theory of Nonparametric Regression. Springer, 2002.

[41] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

[42] T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 4:11851201, 1994.

[43] Tobias Jung and Daniel Polani. Least squares svm for least squares td learning.
In Proceedings of 17th European Conference on Artificial Intelligence, pages 499–
503, 2006.

[44] S. Kalyanakrishnan and P. Stone. An empirical analysis of value function-based
and policy search reinforcement learning. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems, 2:749–756, 2009.

[45] R. L. Karandikar and M. Vidyasagar. Probably approximately correct learning with
beta mixing input sequences, 2004.

[46] Michael Kohler, Adam Krzyzak, and Dominik Schfer. Application of structural
risk minimization to multivariate smoothing spline regression estimates, 2000.

[47] D. Koller and R. Parr. Policy iteration for factored mdps. Proceedings of the Six-
teenth Conference on Uncertainty in Artificial Intelligence, pages 326–334, 2000.

[48] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of
Machine Learning Research, 4:1107–1149, 2003.

[49] Pavel Laskov, Christian Gehl, Stefan Krüger, Klaus robert Mller, Kristin Bennett,
and Emilio Parrado-Hern. Incremental support vector learning: Analysis, imple-
mentation and applications. Journal of Machine Learning Research, 7, 2006.

[50] Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample
analysis of least-squares policy iteration. Journal of Machine Learning Research,
13:3041–3074, 2012.

[51] Dong-Hyun Lee, Jeong-Jung Kim, and Ju-Jang Lee. Online support vector regres-
sion based actor-critic method. In IECON 2010 - 36th Annual Conference on IEEE
Industrial Electronics Society, pages 193–198, Nov 2010.

[52] Bo Liefeng, Wang Ling, and Licheng Jiao. Recursive finite newton algorithm for
support vector regression in the primal. Neural Computation, 19(4):1082–1096,
2007.

[53] M. Maggioni and S. Mahadevan. Fast direct policy evaluation using multiscale
analysis of markov diffusion processes. ACM International Conference Proceeding
Series, 148:601–608, 2006.

[54] S. Mahadevan. Proto-value functions: Developmental reinforcement learning. In
International Conference on Machine Learning, 2005.

[55] S. Mahadevan and M. Maggioni. Value function approximation with diffusion
wavelets and laplacian eigenfunctions. NIPS Conference 2005, 2005.

[56] Odalric-Ambrym Maillard, Rémi Munos, Alessandro Lazaric, and Mohammad
Ghavamzadeh. Finite-sample analysis of bellman residual minimization. In
Masashi Sugiyama and Qiang Yang 0001, editors, ACML, JMLR Proceedings,
pages 299–314. JMLR.org, 2010.

[57] Mario Martin. On-line support vector machine regression. In Proceedings of
the 13th European Conference on Machine Learning, ECML ’02, pages 282–294,
London, UK, UK, 2002. Springer-Verlag.

[58] D. J. McDonald, C. Rohilla Shalizi, and M. Schervish. Estimating beta-mixing
coefficients via histograms. ArXiv e-prints, September 2011.

[59] Ron Meir and Lisa Hellerstein. Nonparametric time series prediction through adap-
tive model selection. In Machine Learning, pages 5–34, 2000.

[60] Tony Mitchell. Learning from Delayed Rewards. McGraw-Hill Education, ISE
Editions, 1997.

[61] Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for stationary
β−mixing and α-mixing processes. Journal of Machine Learning Reasearch,
11:789–814, 2010.

[62] A. W. Moore. Variable resolution dynamic programming: Efficiently learning ac-
tion maps in multivariate real-valued state-spaces. In Proceedings of the Eighth
International Workshop on Machine Learning, pages 333–337, 1991.

[63] A. W. Moore and C. G. Atkeson. The parti-game algorithm for variable resolu-
tion reinforcement learning in multidimensional state-spaces. Machine Learning,
21(3):199–233, 1995.

[64] Sayan Mukherjee. Statistical learning: Algorithms and theory. Technical report,
Duke University, Duke University, USA, 2007.

[65] K.R. Muller and al. An introduction to kernel based learning algorithms. IEEE
Trans. on Neural Networks, 12(2):181–202, 2001.

[66] Rémi Munos. Error bounds for approximate value iteration. In Proceedings of the
20th National Conference on Artificial Intelligence - Volume 2, AAAI’05, pages
1006–1011. AAAI Press, 2005.

[67] G. Nehmauser. Optimization, vol 1. North-Holland, London, 1989.

[68] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning,
49(2):161178, 2002.

[69] Singh S. P. and Sutton R. S. Reinforcement learning with replacing eligibility
traces. Machine Learning, 22:123–158, 1996.

[70] Thomaso Poggio and Geurth Cauvemberghs. Incremental and decremental support
vector machine learning. Adv. in Neural Inform. procesing, MIT Press(13):409–
415, 2001.

[71] Jette Randlov and Paul Alstrom. Learning to drive a bycicle using reinforcement
learning an shaping. In Proceeding of the fifth International Conference on Ma-
chine Learning, pages 463–471, 1998.

[72] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT
Press, Boston, 2006.

[73] M. Riedmiller. Neural fitted q iteration-first experiences with a data efficient neural
reinforcement learning method. In Proceedings of the European Conference on
Machine Learning, ACM:317–328, 2005.

[74] H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

[75] A. Rottmann and W. Burgard. Adaptive autonomous control using online value
iteration with gaussian processes. In Proceedings of the 2009 IEEE international
conference on Robotics and Automation, page 30333038, 2009.

[76] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist sytems.
Technical Report CUED/F-INFENG-TR 166, Cambridge University, 1994.

[77] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice
Hall, 2009.

[78] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer
theorem. In David P. Helmbold and Bob Williamson, editors, COLT/EuroCOLT,
volume 2111 of Lecture Notes in Computer Science, pages 416–426. Springer,
2001.

[79] Rohan Shiloh Shah. Support Vector Machines for Classification and Regression.
Master of Science Thesis, Montreal, Quebec, 2007.

[80] S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári. Convergence results
for single-step on-policy reinforcement-learning algorithms. Machine Learning,
38(3):287–308, 2000.

[81] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Journal
Statistics and Computing, 14(3):199–222, 2004.

[82] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer Pub-
lishing Company, Incorporated, 1st edition, 2008.

[83] Ingo Steinwart, Don Hush, and Clint Scovel. Learning from dependent observa-
tions. J. Multivar. Anal., 100(1):175–194, January 2009.

[84] M. Sugiyama, H. Hachiya, C. Towell, and S. Vijayakumar. Geodesic gaussian
kernels for value function approximation. In Workshop on Information-Based In-
duction Sciences, 2006.

[85] M. Sugiyama, H. Hachiya, C. Towell, and S. Vijayakumar. Value function approx-
imation on non-linear manifolds for robot motor control. In Proc. of the IEEE
International Conference on Robotics and Automation, 2007.

[86] R. S. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis,
University of Massachusetts, Department of Computer Science, 1984.

[87] R. S. Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. Advances in Neural Information Processing Systems 8, MIT
Press:10381045, 1996.

[88] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge MA, 1998.

[89] R. S. Sutton, A. G. Barto, and C. W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on systems, man
and cybernetics, 13(5):834–846, 1983.

[90] P. J. Sweitzer and A. Seidmann. Generalized polynomial approximations in marko-
vian decision processes. Journal of Mathematical Analysis and Applications,
110(6):568–582, 1985.

[91] C. Szepesvári and W. D. Smart. Interpolation-based q-learning. In Proc. of the
twenty-first ICML04, page 791798, 2004.

[92] Gavin Taylor and Ronald Parr. Kernelized value function approximation for rein-
forcement learning. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 1017–1024, 2009.

[93] J. Tobias and P. Daniel. Least squares svm for least squares td learning. Proceed-
ings of the 2006 conference on ECAI, page 499503, 2006.

[94] M. A. Trick and S. E. Zin. Multilayer feedforward networks are universal approx-
imators. Macroeconomic Dynamics, 1:255–277, 1997.

[95] Mario Valenti. Approximate Dynamic Programming with Applications in Multi-
Agent Systems. PhD thesis, MIT, Boston, 2007.

[96] Sara van de Geer. Empirical Processes in M-Estimation. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, 2009.

[97] Hado van Hasselt. Insights in reinforcement learning. PhD Thesis, Utrecht Uni-
versity, 2011.

[98] H. van Seijen and al. A theoretical and empirical analysis of expected sarsa. Pro-
ceedings of the IEEE International Symposium on Adaptive Dynamic Program-
ming and Reinforcement Learning, pages 177–184, 2009.

[99] Harm van Seijen, Hado van Hasselt, Shimon Whiteson, and Marco Wiering. A
theoretical and empirical analysis of expected sarsa. In ADPRL 2009: Proceedings
of the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, pages 177–184, March 2009.

[100] Robert J. Vanderbei. Linear Programming. Academic Press, New York, 1996.

[101] Vladimir Vapnik. The nature of statistical learning theory. Springer, New York,
1995.

[102] H. O. Wang, K. Tanaka, and M. F. Griffin. An approach to fuzzy control of non-
linear systems: stability and design issues. Fuzzy Systems, IEEE Transactions on,
4(1):14–23, Feb 1996.

[103] C. J. Watkins. Learning from Delayed Rewards. PhD thesis Kings College, Cam-
bridge, 1989.

[104] Qiang Wu, Yiming Ying, and Ding-Xuan Zhou. Learning rates of least-square
regularized regression. Found. Comput. Math., 6(2):171–192, 2006.

[105] Bin Yu. Rates of convergence for empirical processes of stationary mixing se-
quences. The Annals of Probability, 22(1):94–116, 01 1994.

[106] W. D. Zhou and al. Linear programming support vector machines. Pattern Recog-
nition, 35(12):2927–2936, 2002.

[107] Ding-Xuan Zhu and Steve Smale. Estimating the approximation error in learning
theory. Analysis and Applications, 1-1:1–49, 2003.

Appendices

133

Appendix A

Statistical Learning

A.1 Introduction
In this chapter we briefly introduce some fundamentals about statistical learning theory
largely referenced from [101], [25], [64], [79].

A natural approach to find for an optimal prediction function may be to define an
optimization over a loss function `(y, f (x)) to each hypothesis in the hypothesis space
f ∈ H able to measure the precision of admissible model functions over the training set
D = {(xi,yi) ∈ X ×Y}n

i=1. The resulting space is defined as the loss class L(H, ·) =
{`(y, f (x)) : f ∈ H} Performance of a test hypothesis can be evaluated by a fixed loss
function over the whole observation space. We may assume the generation of observa-
tions distribution according to P(x,y) one has to integrate with losses with respect to this
distribution. The Expected Risk (ER) is represented by the average loss produced by a
fixed function over the observation space X×Y and integrated with respect to P(x,y)

R`,P(f) = E[`(y, f (x))] =
∫

X ,Y
`(y, f (x))dP(x,y) (A.1)

A learning method minimize R`,P(f) for a fixed loss funtion over all measurable functions
in the hypothesis spaceH:

f ∗ = arg inf
f∈H

R`,P(f) (A.2)

and the optimal expected risk can be expressed as R∗`,P = inf f∈H R`,P(f). Finding f ∗ using
section A.1 is not possible since P(x,y) is unknown. Usually one try to approximate the
ER by modeling the distribution P(x,y) = ν(x)P(y|x) using the Bayes rule estimating it
from the training data and then integrating section A.1. An alternative is represented by
estimating the Empirical Risk over the training data approximating the ER as

R`,D(f) = En[`(y, f (x))] =
1
n

n

∑
t=1

`(yt , f (xt)) (A.3)

The methodology called Empirical Risk Minimization (ERM) tries to minimizes R`,D(f)
looking for an hypothesis while minimizing ER. This is assumed to make prediction in

135

test samples coming from the same distribution P(x,y) as

f ∗n = arg inf
f∈H

R`,D(f) (A.4)

Usually a learning algorithm combines ERM with an exploration algorithm. ERM per-
formance rely on the exploration algorithm inspecting the hypothesis space allowing the
computation of the inf while it could find local minima. Consider measuring the deviation
between ER of the hypothesis f ∗n obtained with ERM principle and his asymptotic behav-
ior can be studied defining the Sample Error RS = R`,P(f ∗n)−R∗`,P Whenever until data is
not available, empirical risk remains zero as such as long as the model function correctly
predicts all components in the training set. Empirical risk is a function monotonically
increasing function with the number of training data.

Analysis of the convergence for the empirical risk can be done introducing a proba-
bilistic generalization bound.

Lemma A.1. (Chernoff’s Inequality) Given a fixed function f ∈ H and a loss function
A≤ `(y, ·)≤ B, the probability of an absolute ε−difference (at least) in the middle empir-
ical and expected risk is bounded

P
(

R`,P(f)−R`,D(f)≥ ε

)
≤ e−nε2/(B−A)2

(A.5)

and varies only with ε and n while the loss function bounds are A and B.

expressing essentially the law of large numbers (increasing n the bound 2e−2nε2
ex-

ponentially reduces implying an exponential convergence in probability). As a result,
empirical risk can be considered a probabilistically unbiased estimate of ER

limn→∞ R`,D(f)→P R`,P(f) (A.6)

⇔∀ ε > 0∃δ = e−nε2/(B−A)2
s.t.P

(
R`,P(f)−R`,D(f)≥ ε

)
≤ δ

⇔∀ ε > 0∃δ = e−nε2/(B−A)2
s.t.P

(
R`,P(f)−R`,D(f)< ε

)
> 1−δ

with ε defining the confidence interval and δ corresponding confidence level. Notion of
generalization comes from the proximity of the empirical risk to the expected risk which
assures that as we minimize the empirical risk the closer we are to select a function having
little ER. The generalization error can than be defined as the difference in the middle
expected and empirical risk. In a learning method the potential of generalization depends
on the ability to regulate the convergence rate which can be defined using a generalization
bound. Expression in section A.1 defines what is called Probably Approximately Correct
Generalization (PACG) occurring when the empirical risk is ε−approximately close to
the expected risk with probability at least 1− δ and therefore the generalization error
is almost surely close to zero. However, we cannot identify a model function satisfying
lemma A.1 with large empirical risk using the ERM approach and model functions chosen
by ERM sometimes are unable to generalize. The reason is because there can be infinitely
many functions having minimal risk, in the middle of which a unique component having
best generalization potential.

A.2 Uniformly Convergent Generalization Bounds
Due to the convergence weakness of the in section A.1, the function f ∗ minimizing ER
it is not necessarily equivalent to the function f ∗n (for any n) minimizing the empirical
risk. This means that there is a point-wise limit entailing that convergence rate may differ
between the different functions in the function space H. As a result, even for large value
of n where the convergence for some subset of H it is possible, may exist functions not
approaching their limits. Considering the worst case scenario for the convergence of
the empirical risk, this means to extend the Chernoff’s inequality. The way this could
be done is to consider all the functions at once by bounding from above the sup of the
generalization error as

sup
f∈H

(R`,P(f)−R`,D(f))≤ ε (A.7)

which is a generalization criteria stronger than lemma A.1. One has to contemplate the
worst case for every function to form a uniform bound because it is unknown which
function is optimal at during the learning process. Considering the union over H and
the sub additivity coming from probability, allows to determine a generalization bound
similar to Chernoff’s inequality for all functions inH as:

P(∃ f ∈H (R`,P(f)−R`,D(f))≥ ε) = P(∪ f∈H((R`,P(f)−R`,D(f))≥ ε))

≤ ∑ f∈HP(R`,P(f)−R`,D(f))≥ ε)≤ ∑ f∈H e−nε2/(B−A)2
= |H|e−nε2/(B−A)2

(A.8)

It is possible to formulate section A.2 similarly to section A.2 taking into account that
if the sup of the generalization error ε-bounded then all functions in H have to be also
bounded by ε

P(sup f∈H(R`,P(f)−R`,D(f))≤ ε) = P(∀ f ∈H : (R`,P(f)−R`,D(f))≤ ε)) =

1−P(∃ f ∈H : (R`,P(f)−R`,D(f))≥ ε)> 1−|H|e−nε2/(B−A)2
(A.9)

Putting δ = |H|e−nε2/(B−A)2
and solving for ε one may found

ε =

√
log
(|H|

δ

)(B−A)2

n

from which we resort the following Hoeffding’s Inequality:

Lemma A.2. (Hoeffding’s Inequality) A distribution free bound quantifying the deviation
over the empirical mean R`,D(f) from its expected value R`,P(f) overH

sup
f∈H

(R`,P(f)−R`,D(f))≤
√

log
(|H|

δ

)(B−A)2

n
(A.10)

holding with probability at least 1−δ for a finite hypothesis space |H|< ∞.

Convergence is exponentially fast while the generalization bound depends on the
choice of function classH the dimension of the training set and a parameter 0≤ δ ≤ 1. As

the inequality holds independently of P(x,y) it is distribution free. For the ERM model
function f ∗n the bound holds with probability at least 1− δ and being a uniform conver-
gence bound, it holds with probability 1−δ for any other hypothesis in the function space
H. Formally one may define the one sided uniform convergence as

∀ ε > 0∃N ∈ N s.t.∀n > N and ∀ f ∈H (R`,P(f)−R`,D(f))< ε (A.11)

where inequality lemma A.2 satisfies section A.2 being a uniform convergence bound.
Taking a large value of N(ε,δ) such that Hoeffding’s inequality is also bounded by ε for
all n > N(ε,δ) √

log
(|H|

δ

)(B−A)2

n
< ε (A.12)

Value of N(ε,δ) is the sample complexity of the learning algorithm. In other words it is
an estimate of the necessary and sufficient quantity training examples for an algorithm to
learn and generalize an unknown target concept. Now rather than of solving for ε one can
evaluate n getting n≥ ((B−A

ε
) log(H

δ
) with at least n≤ N samples and probability at least

1−δ , the generalization error is ε−bounded for all functions.
In case all the function f ∈ H individually satisfies the Chernoff’s inequality then

they have to satisfy the Hoeffding’s inequality collectively. There are two different way
to tighten the generalization bound lemma A.2: by bounding the sensitivity of the model
function or the capacity of the hypothesis space. Search of optimal model function is
realized using the loss class defined over a given hypothesis space extendinf the notion of
uniform convergence over the hypothesis space characterizing uniformly convergent loss
classes as:

Definition A.1. (Uniform Glivenko-Cantelli Class UGC) An UGC class of functions
L(H) = {`(y, f) : f ∈ H} can be defined for a fixed loss function A < `(y, f) < B such
that the functions f ∈ H are integrable with respect to the probability measure P(x,y)
and the one-sided uniform convergence is satisfied as

∀ ε > 0 lim
n→∞

P(sup
`(y, f)∈L(H)

(R`,P(f)−R`,D(f))> ε) = 0 (A.13)

A sufficient and necessary condition for ERM consistency needs the class L(H) to be
UGC.

A.3 Generalization and Consistency of ERM
A learning method is consistent for a function class H and distribution P(x,y) if the
empirical risk for the model function fn converges in probability to the ER

limn→∞ R`,D(fn)→P inf f∈H R`,P(f)
⇔ ∀ ε > 0∃δ s.t.P(|R`,D(fn)− inf f∈H R`,P(f)|
≥ R`,D(fn)→P inf f∈H R`,P(f)| ≥ ε)≤ δ (A.14)

Consistency is defined through convergence in the empirical risk of the model function
given by the learning algorithm where weaker generalization section A.1 is point-wise
convergence over a fixed model and the stronger generalization lemma A.2 is uniform
convergence over all models. As a result consistency depends on the learning algorithm
while generalization does not. Consistency of ERM learning algorithm and uniform con-
vergence and are essentially equivalent while the ER represents bound of the consistency
convergence. Consistency is stronger than generalization but less strong than stronger
generalization requiring a learning algorithm to guess on functions optimality in the hy-
pothesis space before precisely estimating its ER. ERM performance is optimal if the
function f ∗n minimizing the empirical risk is equivalent (in probability) to the function f ∗

minimizing the ER:

∃N ∈ N s.t.∀n > N : f ∗n = arg inf
f∈H

R`,D(fn) = arg inf
f∈H

R`,P(f) = f ∗ (A.15)

For ERM consistency entails

lim
n→∞

arg inf
f∈H

R`,D(fn) =
P arg inf

f∈H
R`,P(f) = f (A.16)

whose choice in model function satisfies section A.1. Uniform convergence section A.2
in probability to zero of the generalization error is implied by consistency of the ERM
learning algorithm (and vice versa). Moving from point-wise to uniform convergence
allows for the consistency criteria section A.3 to be satisfied and UGC loss class is suffi-
cient for consistency of ERM. Error of the optimal model function made by the empirical
process is fixed by the sample error RS. From generalization we have that R`,D(f ∗n) tends
to R`,P(f ∗n) while from small sample error ensues that R`,P(f ∗n) goes to R`,D(f ∗n). Finally
we may say that consistency essentially demands needs generalization of the empirical
process with a sample error RS tending to zero

R`,P(f ∗n)≤ R`,D(f ∗n)+ ε ≤ R`,D(f ∗)+ ε ≤ R`,P(f ∗n)+2ε (A.17)

Exponentially fast amount of uniform convergence is close to half of the proportion at
which there are guarantees that the sample error decrease to zero. The learning process
rely on the distribution P(x,y) and the function spaceH.

A.4 Vapnik-Chervonenkis Theory

As we assumed function space finite |H| < ∞ (through the sub additivity of probability
measures) Hoeffding’s inequality is of limited use. It is possible to extend Hoeffding’s
bound for countably infinite hypothesis spaces. The idea is that one would like to study
learning in an infinite uncountable function space where the union bound it is not defined.
Cardinality of a function space represents the number of functions measuring its complex-
ity. As one deals with infinite hypothesis spaces, it is necessary to consider some measures
able to control the complexity of the hypothesis space related to the generalization error
uniformly converging to zero.

Definition A.2. (ε-cover) Given a function space H and some ε > 0 a subset U ⊂ H is
an ε-cover forH if

∀ f ∈H∃ f̂ ∈ U s.t.‖ f − f̂‖< ε (A.18)

Representative of the set U are referred to as model functions. If for all ε > 0 H has a
finite ε−cover then it is totally bounded. Together with Cauchy completeness this implies
compactness (converse holds true). A bounded space has to be totally bounded (opposite
is not necessarily implied).

Intuitively one may think that in any function space, functions are ε-close and it makes
sense to assume they will behave similarly on a fixed training set. Generalization bound
holding for one function will hold for the other. Measure defined above groups of func-
tions together ensures that each one is totally contained into the ε-tube.

Definition A.3. (ε-separation) Given a function space H and some ε > 0 a subset of l
functions ofH are ε−separated if

{ fi}l
i=1 ⊂H satis f ies‖ fi− f j‖> ε ∀ i 6= j (A.19)

All hypothesis producing the same model function on a given training data set might
be grouped into equivalence classes having the same empirical risk. VC-Entropy of H is
the number of this equivalence classes with binary outputs y ∈ {+1,−1}. For regression
this is called the covering number ofH.

Definition A.4. (ε-covering Number) Let ε > 0 and H be a set of real-valued func-
tions defined on X and νx a probability measure on X. Every finite collection of Nε =
{ f1, ..., fNε

} defined on X with the property that for every f ∈H there is a function f ′ ∈Nε

such that ‖ f − f ′‖q
p,νx ≤ ε is called ε−cover of H w.r.t. ‖ · ‖q

p,νx . Let Np(ε,H,‖ · ‖q
p,νx)

be the size of the smallest ε−cover of H w.r.t. ‖ · ‖q
p,νx . If no finite ε−cover exists

N (ε,H,‖ · ‖q
p,νx) = ∞. Then Np(ε,H,‖ · ‖q

p,νx) is called an ε−covering number of F
and log Np(ε,H,‖ · ‖q

p,νx) is called the metric entropy of H. Considering the empirical
norm based ‖ · ‖q

p,n on the sequence of random variable Xn = {X1, ...,Xn} we may define
the empirical covering number as Np(ε,H,‖ · ‖q

p,n)

It is smallest number of functions in H serving as an ε−cover for H while geometri-
cally is the minimal number of balls in H with radius ε needed to cover H. In a general-
ization bound the of the expected empirical covering number results in its dependence on
P(x,y). Covering number for most compact real spaces of interest may be not calculable.
Generally distribution independent bounds is practically impossible to evaluate.

Definition A.5. (ε packing number) Given a function spaceH the packing numberD(ε,H)
is the maximal l ∈ N such that:

{ fi}l
i=1 ⊂H satis f ies‖ fi− f j‖p > ε ∀ i 6= j (A.20)

D(ε,H) is the maximal quantity of functions inH that can be ε−separated. To upper and
lower bound the covering number using the packing number we may use the following
inequalities

D(2ε,H)≤Np(ε,H,‖ · ‖q
p,νx)≤D(ε,H) (A.21)

which can be used to get an approximation of the covering number.

If HT is totally bounded have a finite minimal ε−cover U = { f̂1, f̂2, ..., f̂c} ⊂ HT (c
covering number N (rε(`),HT)). The radius rε(`) of the covering depends on ε used to
bound the sup of the generalization error and the loss function `.

If we consider the ε-cover of the model function f̂t ∈ Ct satisfying ∪c
t=1Ct =HT and

a given function f ∈ Ct we may write

|R`,P(f)−R`,D(f)−R`,P(f̂t)−R`,D(f̂t)| ≤ |R`,P(f)−R`,P(f̂t)|+ |R`,D(f̂)−R`,D(f̂t)|
≤ |∫ (`(y, f)− `(y, f̂t))dP(x,y)|+ |En[(`(y, f)− `(y, f̂t))]| (A.22)

A particular interesting class of loss functions (including ε−insensitive square loss and
hinge loss) are Lipschitz class of functions satisfying the following inequality

‖`(·, f1)− `(·, f2)‖∞ ≤ L‖ f1− f2‖∞ (A.23)

for a given Lipschitz constant L. As a result, for any Lipschitz loss function, we can upper
bound the integral in section A.4 as∫

(`(y, f)− `(y, f̂t))dP(x,y)≤ ∫ ‖`(y, f)− `(y, f̂t)‖∞dP(x,y)
≤ L‖ f − f̂t‖∞ (A.24)

and for the sum in section A.4

En(`(y, f)− `(y, f̂t))≤ L‖ f − f̂t‖∞ (A.25)

It follows

|R`,P(f)−R`,D(f)−R`,P(f̂t)−R`,D(f̂t)| ≤ 2L|‖ f − f̂t‖∞| (A.26)

Therefore using an arbitrarily set radius of the covering function of ε and Lipschitz
loss functions we have ∀ f ∈ Ct ‖ f − f̂t‖∞ ≤ rε(`) = ε/4L We see that the difference
between the generalization errors of f̂t and f is bounded by ε/2

sup
f∈Ct

|R`,P(f)−R`,D(f)−R`,P(f̂t)−R`,D(f̂t)| ≤ 2L|‖ f − f̂t‖∞| ≤ 2Lrε(`)≤ ε/2 (A.27)

assuming largest generalization error of functions in Ct at least ε then the generalization
error of the model function ft must be at least ε/2:

sup
f∈Ct

|R`,P(f))−R`,D(f))| ≥ ε ⇒ |R`,P(ft)−R`,D(f))| ≥ ε/2 (A.28)

Hence, in probability this means

P(sup
f∈Ct

|R`,P(f))−R`,D(f))| ≥ ε)≤ P(|R`,P(f)−R`,D(f)| ≥ ε/2) (A.29)

and we may use the Chernoff’s inequality to f̂t as

P(|R`,P(f)−R`,D(f)| ≥ ε/2)≤ 2e−n(ε/2)2/(B−A)2
(A.30)

holding for all model functions while we may also use the union bound using ∪c
t=1Ct =

HT as well as section A.4 and section A.4 to get an exponentially fast converging PAC
bound as

P(sup f∈HT
|R`,P(f)−R`,D(f)| ≥ ε)≤ ∑

|U |
t=1P(sup f∈Ct

|R`,P(f)−R`,D(f)| ≥ ε) (A.31)

≤ ∑
|U |
t=1P(|R`,P(f̂t)−R`,D(f̂t)| ≥ ε/2)≤ 2Np(rε(`),HT ,‖ · ‖q

p,νx)e
−n (ε/2)2

(B−A)2

' 2E[Np(rε(`),HT ,‖ · ‖q
p,νx),‖ · ‖n] e

−n (ε/2)2

(B−A)2 (A.32)

(sup is taken overHT) and using section A.2 we finally get

P(sup f∈HT
|R`,P(f)−R`,D(f)| ≤ ε)1−2E[N (rε(`),HT),‖ · ‖n] e

−n (ε/2)2

(B−A)2 (A.33)

which is similar to Hoeffding’s inequality once we change |H| with the expected empir-
ical covering number E[Np(rε(`),HT ,‖ · ‖q

p,νx),‖ · ‖n] Puting δ = 2E[Np(rε(`),HT ,‖ ·

‖q
p,νx),‖ · ‖n] e

−n (ε/2)2

(B−A)2 and evaluating ε ensues

sup
f∈HT

|R`,P(f)−R`,D(f)| ≤ 2(B−A)

√
log(2E[Np(rε(`),HT ,‖ · ‖q

p,νx),‖ · ‖n])+ log(1/δ)

n
(A.34)

With expression section A.4 and using the covering number (the other terns vanish to zero)
we have the condition for uniform convergence necessary and sufficient for consistency

lim
n→∞

log(E[Np(rε(`),HT ,‖ · ‖q
p,νx)])

n
= 0, ∀ ε (A.35)

satisfied as long as the capacity of the hypothesis space increases polynomially at most in
n while with exponentially increasing there is no convergence to zero. Sufficient criteria
for UGC classes are compact hypothesis spaces (where finite cover always exists) and
Lipschitz loss functions so that uniform convergence and consistency are implied.

Appendix B

Kernel Methods

B.1 Introduction
In this chapter we show how a certain class of kernel functions exist in all Hilbert spaces
of real valued functions under a few simple conditions Kernel methods use kernel func-
tions providing an implicit mapping of a training data set into a feature space F where
regression or classification can be performed. A kernel function can be seen implicitly as
an inner product between two data points into the feature space. Explicitly is a function
evaluation for this data points in the input space X before applying any mapping. In the
second part of the chapter we also briefly introduce some fundamentals about statistical
learning theory and mixing processes. The material for this section was referenced from
[79], [25], [64], [65] [23], [101], [45], [105].

B.2 Feature Space Induced By Kernel
The complexity of a training data set affects the performance of any learning algorithms.
In given cases some classes of learning algorithms might not be able to appropriately learn
a prediction function for a training data set. In this case to make the learning possible one
has to manipulate the data. In some cases training data may have a format not suitable
for the learning algorithm and is required a mapping of the data. Transform training
data in feature space might offer a structure which could be exploited by the learning
algorithm. A simple representation results from defining a non linear mapping function
Φ(·)∈H over the inputs xi ∈ X in the training set D = {(xi,yi)∈ X×Y}n

i=1 with X×Y ⊂
Rr×R representing the data as the set of data mapped DΦ = {(Φ(xi),yi) ∈ X ×Y}n

i=1
with Φ(xi)∈H, yi ∈Y A potential computational problem may rise since Φ map elements
into a feature space of possible infinite dimension. Kernel methods represent the data as
a set of pairwise computations κ : X ×X → R instead of map each training example
xi individually into features Φ(xi) using the map Φ : X → F . A kernel function κ is
defined over a space X which could be infinite. Consider observations in the training set
D and define a finite kernel κS : xi× x j → R ∀ 1 ≤ i ≤ n which can be represented
as n× n matrices with κi j = κS(xi,x j) ∈ R. If inputs are defined in an inner product
space, one may construct a function for linear comparison function by taking the dot
product κ(xi,x j) = 〈xi,x j〉X . The dot product evaluates the geometric angle between the

143

normalized vectors xi and x j (‖xi‖=
√
〈xi,x j〉= 1). A map Φ projecting the inputs into

a dot product space must be applied in case the inner products are not well defined in the
input space X. One may build the comparison function κ(xi,x j) = 〈Φ(xi),Φ(x j)〉H.

The linear algebra associated by using finite kernel matrices over D×D comes in a
finite dimensional vector space. Another possibility arises using kernels defined over a
dense space and integral operator theory in an infinite dimensional function space have to
be used as hypothesis function. In classification/regression tasks any possible hypothesis
function has to be evaluated in a given data point requiring the function to be point-wise
defined, meaning that all function evaluations exist in Y . RX denotes the space of all
real valued point-wise defined functions on the domain X. In RKHS is shown to hold
that convergent sequences of functions are be point-wise convergent, which is not true in
general for any Hilbert spaces (and in particular for L2).

‖ fn− f‖H→ 0 ⇒ lim
n→∞

fn(x)− f (x) = 0.∀x ∈ X (B.1)

and it can be shown that point-wise convergence inH implies the continuity of evaluation
functionals onH.

B.2.1 Hilbert Spaces

Hilbert spaces are complete inner product spaces with distances and angles that are well
defined. Formally they are function spacesH having an inner product 〈h,g〉 defined for all
h,g ∈ H such that the norm defined using the inner product ‖h‖H =

√
〈h.h〉H completes

the space. Given a closed or open subset N of a Hilbert space H one may define the
complement orthogonal as the space: N⊥ = {h ∈ H| 〈h,g〉= 0, ∀g ∈ N̄} The direct sum
of these two spaces equals H: H = N⊥⊕ N̄ = {g+ h | g ∈ N̄, h ∈ N⊥} Any function
h ∈ H can be expressed as h = g+ l with g ∈ N⊥ and l ∈ N̄. Hilbert spaces H can be
decomposed into two different closed subspaces. Infinite dimensional Hilbert spaces are
similar to finite dimensional spaces thanks to the Zorn’s Lemma and using the Gram-
Schmidt orthogonalization. An orthonormal basis satisfies normalization, orthogonality
and completeness so that every function in H can be represented uniquely as a linear
combination of his elements For finite dimensional Hilbert spaces there exists a finite
orthogonal basis so that every function in the space and every linear operator can be
represented in matrix form. For infinite dimensional spaces cardinality is infinite while
the span of the orthonormal must be dense in it. Hence, expressing every element in
the space as a linear combination of given elements into the orthonormal basis it is not
possible to. One assumes Hilbert spaces having countable orthonormal basis, separable
and containing a dense subset with the entire space as closure.

B.2.2 Linear Functionals

A functional F is a real-valued function with arguments that are functions taken from
space H as F : H(X → Y) → R An evaluation functional Ex[f] : H(X) → Y simply
evaluates a hypothesis function f ∈ H at some fixed point x ∈ X in the domain Ex[f] =
f (x). In the hypothesis space, point-wise convergence ensures continuity of the evaluation

functional:

fn(x) → f (x), ∀x,⇒ Ex[fn] →Ex[f], ∀x (B.2)

Linear functionals are defined over a linear space with elements which can be scaled and
added through the functional: F(α1h1 +α2h2) = α1F(h1) +α2F(h2), ∀ h1,h2 ∈ H.
If the set of functionals can be added and scaled they form a vector space J The Null
space and Image space of the functional F are defined as: NF = {h ∈ H : F(h) =
0} IF = {F(h) : h ∈ H} are subspaces of the domain H and co-domain R. For finite
dimensional spaces states results dim(H) = dim(NF)+ dim(IF) A linear functional is
bounded (then continuous) if ∃α s.t. |F(h)| ≤ α‖h‖H ∀ h ∈ H. Any linear and
continuous functional over an infinite dimensional Hilbert space may be decomposed as
a linear combination of linear functionals as:

F(h) =
∞

∑
i=1
〈h,hi〉F(hi) =

∞

∑
i=1
〈h,hiF(hi)〉 (B.3)

Given an Hilbert space H the associated inner product can be used to define a linear
bounded functional: Fg(·) = 〈g, ·〉H ∈ H∗ The functional defined in terms of a kernel
function κ(x, ·) ∈ H is given by Fκ(·) = 〈κ(x, ·), ·〉H ∈ H for some input vector x ∈ X .
Every element g ∈ H has a linear bounded functional corresponding in a dual space H∗:
g 7→ Fg(·) = 〈g, ·〉H ∈ H∗ The dual space H∗ of all linear bounded functionals on a
Hilbert spaceH is a Hilbert space. This has a dual basis function of the orthonormal basis
from the original space. The spacesH and its dualH∗ are isomorphic.

A functional F is a real-valued function whose arguments are functions from space
H defined as F : H(X → Y) → R An evaluation functional Ex[f] : H(X) → Y evalu-
ates a hypothesis function f ∈ H at some fixed point x ∈ X in the domain Ex[f] = f (x).
Point-wise convergence in the hypothesis space ensures the continuity of the evaluation
functional:

B.3 Integrable Function Spaces
Consider the infinite dimensional space L2(Z) of all square integrable, real-valued and
Lebesgue measurable functions on the measure space (Z,Σ,µ) where Σ is a σ−algebra
of subsets ofZ and µ is a measure on Σ. Any open or closed subset of a finite dimensional
real space Z = Rn is Lebesgue measurable and therefore the space L2(Rn) is infinite-
dimensional. Considering an infinite dimensional measure space the Lebesgue measure
is not well defined. Using the Lebesgue integral an inner product is given by: 〈 f ,g〉L2 =∫
Z f (z)g(z)dµ(z). One can define the norm in the space L2(Z) as as ‖ f‖L2 =

√
〈 f , f 〉L2

and having all functions that are square integrable on Z: L2(Z) = { f ∈ RZ : | f‖L2 =√
〈 f , f 〉L2 = (

∫
Z f (z)dµ(z))1/2 Hence, the function space L2(Z) is a Hilbert space and

one can generalize the L2(Z) function space as follows: L(Z)p = { f ∈ RZ : ‖ f‖p =(∫
Z | f (z)|pdµ(z)

)1/p
< ∞} and being only for p = 2 a Hilbert space, while for p = 1

the space contains all absolutely integrable functions on Z: L1(Z) = { f ∈ RZ : ‖ f‖1 =∫
Z | f (z)|dµ(z)< ∞} while for p = ∞ the uniform norm is defined using the sup operator:

L∞(Z) = { f ∈ RZ : ‖ f‖∞ = supz∈Z | f (z)| < ∞}. The norm in Lp(Z) space is given

by: ‖z‖p =
(

∑
∞
i=1 |zi|p

)1/p
and convergence of the series depends on the vector z and

the space `p is taken as the set of all vectors of infinite length that have a finite p-norm:
`p(Z) = {z ∈ Z : ‖z‖p < ∞}.

A bounded continuous linear operator T is compact if the resulting image space is
totally bounded when applied to the elements of any bounded subset of the domain. A
bounded continuous linear operator T : L2(RX) → L2(RX) from one Hilbert space to
another one is compact if for every bounded subset S of the domain L2(RX) the closure
of the image space ¯(T f) : f ∈ S⊂ L2(RX) is compact

A linear operator T is self-adjoint if it is equal to its Hermitian adjoint T ∗ which
satisfies 〈T h,g〉= 〈h,T ∗g〉 and all the eigenvalues of a self-adjoint operator are real while
in the finite dimensional case, a self-adjoint operator T is conjugate symmetric. Adjoint
for every operator T exists defining a bounded continuous linear functional F : h 7→
〈g,T h〉, ∀h,g∈H such that ∃rF ∈HF(h) = 〈g,T h〉= 〈rF ,h〉, ∀ h∈H and the adjoint
T ∗g = rF .

The following theorem can be used to characterize existence of image space basis for
a self-adjoint and compact operator:

Theorem B.1. (Spectral Theorem) Every compact, self-adjoint operator T : HD → HR
when applied to a function in a Hilbert space f ∈ H has the following decomposition:
T f = ∑

∞
i=1 αiPHi [f] ∈ H αi are complex numbers and each Hi is a closed subspace of

HD such that PHi[f] is the orthogonal projection of f ontoHi.

When the operator T induces T vi = λivi where λi an eigenvalue of T and vi eigenfunc-
tions forming a complete and countable orthonormal basis of the image space.

A linear operator TK : L2(X) → L2(X) is integral if the following transformation of
one function space into another holds almost everywhere for all f ∈ L2(X) defined as
(TK f)(·) = ∫X κ(·,x) f (x)dµ(x) for a given kernel function κ ∈ L∞(X×X) where µ is the
Lebesgue measure. In case of finite dimensional image space, the integral transformation
can be expressed as a linear combination of a finite set of orthogonal basis functions as
(TK f) = ∑

b
i=1 αi fi s.t. 〈 fi, f j〉= 0 ∀ i, j < b

A function κ ∈ L∞(X ×X) is called a positive kernel if any quadratic form over it is
positive: ∫

X×X
κ(x,z)v(x)v(z)dµ(x)dµ(z)

For positive definite and finite kernel over all possible finite sets of vectors in the space
X×X then the kernel is positive.

A projection P : H → L over a vector spaceH= G⊕L is a linear operator mapping
points fromH along the subspace G onto the subspace L. A projection is called orthogonal
if its associated image space and null space are orthogonal complements.

The space of all real valued, continuous functions on the domain X that are differ-
entiable up to k times is denoted by Ck(RX). A function κ ∈ C0(X ×X) is continuous
at a point (b,c) ∈ X ×X if it satisfies: ∀ ε ∃ δ ,∀ x,s ∈ X ,b− δ < x < b+ δ , c− δ <
s < c+ δ ,⇒ κ(b,c)− ε < κ(x,s) < κ(b,c)+ ε If the kernel κ is symmetric the inte-
gral operator TK must be self-adjoint. Assume further that the kernel κ is continuous
κ ∈C0(X×X) then results

∫
X×X κ(x,z)2dµ(x)dµ(z)< ∞

For any bounded subspace of the domain X ×X one can show the integral operator
TK is compact. As a result with symmetric, positive and square integrable kernel κ the
resulting integral operator TK is positive, self-adjoint and compact. Therefore from the
Spectral Theorem follows that TK must have a countable set of non-negative eigenvalues
and the corresponding eigenfunctions {λ1,λ2, ...} must form an orthonormal basis for
L2(X).

Theorem B.2. (Mercer’s Theorem) For all positive (TK f) = ∑
b
i=1 αi fi s.t. 〈 fi, f j〉 =

0 ∀ i, j < b continuous and symmetric kernel functions κ ∈ L2(X ×X) over a compact
domain X×X, defining a positive, self-adjoint and compact integral operator TK with an
eigen-decomposition TKvi = λivi the following five conditions are satisfied:

1. {λ1,λ2, ...} ∈ `1 the sequence of eigenvalues are absolutely convergent

2. λi > 0, ∀ i the eigenvalues are strictly positive

3. vi ∈ L∞(X) the individual eigenfunctions are bounded.

4. supi ‖vi‖∞ < ∞ the set of all eigenfunctions is also bounded

5. ∀ s,x ∈ X κ(s,x) = ∑
∞
i=1 λivi(s)vi(x) = 〈Φ(s),Φ(x)〉 converges absolutely for

each (s,x) ∈ X×X converges uniformly for almost all (s,x) ∈ X×X.

B.4 Reproducing Kernel Hilbert Spaces
A RKHS is the hypothesis space for SVM. Points from the observation space are mapped
into a RKHS having the necessary structure to define the regression or discrimination
problem. In RKHS observations are mapped into features whose explicit are taken as a
kernelized metric distance between any pairs of observations implicitly expressed as inner
product. RKHS combines a Hilbert space with a positive kernel function.

Definition B.1. (Reproducing Kernel Hilbert Spaces) Consider a subset of measurable
functionsF : X → R called the hypothesis spaceH. A Reproducing Kernel Hilbert Space
(RKHS) H : X → R is a point-wise Hilbert space defined in X with the inner product
〈·, ·〉H characterized by a symmetric positive definite function κ : X ×Y → R called
reproducing kernel, continuous in X such that for each x ∈ X the following reproducing
property holds:

∀x ∈ X f (x) = 〈 f (·),κ(·,x)〉H κ(·,x) ∈H (B.4)

H is the closure of the linear span of the set of functions Φspan = {Φ(x) = κ(·,x) x∈X}
considering the mapping Φ : X → C0(X) which denotes the function assigning the value
κ(·,x) to x ∈ X and C0(X) the space of continuous functions on X with norm ‖ · ‖∞ =
max{...}.
Theorem B.3. (Moore-Aronszajn Theorem) Every positive definite kernel κ(·, ·) on X×
X is a reproducing kernel for a unique RKHS of functions in X. Conversely, every RKHS
has an associated unique positive-definite kernel whose span is dense in it. A bijection
exists between the set of all RKHS and the set of all positive kernel functions.

Given any positive definite kernel function it is possible to build its associated RKHS
(unique) and vice versa by using Mercer’s Theorem. Consider the space spanned by the
eigenfunctions of the eigen-decomposition of the integral operator defined using some
kernel κ:

HK = { f ∈ RX : f =
∞

∑
i=1

αivi, ‖ f‖HK < ∞ αi ∈ R, vi ∈ L∞(X)} (B.5)

such that the dimension of the space HK is equal to the number of non-zero eigenvalues
of the integral operator. Defining the norm on this RKHS in terms of an inner product:
〈 f ,g〉HK = 〈∑∞

i=1 αivi,∑
∞
i=1 βivi〉HK = ∑

∞
i=1 αiβi/λi It then follows from Mercer’s Theo-

rem that the function κ(x, ·) is a representer of the evaluation functional Ex and therefore
reproduces in the RKHSHK :

〈 f (·),κ(x, ·)〉HK = 〈
∞

∑
i=1

αivi,
∞

∑
i=1

λivi(x)vi(·)〉HK =
∞

∑
i=1

αivi(x) = f (x) (B.6)

Instead of minimizing the regularized risk functional defined as R`,D(f)= 1
n ∑

n
t=1 `(yt , f (xt))

over all functions in the hypothesis space

f ∗ = arg inf
f∈H

{1
n

n

∑
t=1

`(yt , f (xt))+λ‖ f‖2
HK

}
(B.7)

we can minimize the following functional over all sequences of expansion coefficients
{α1,α2, ...}:

f ∗ = arg inf
α

{1
n

n

∑
t=1

`(yt ,
∞

∑
j=1

α jv j(·))+λ

∞

∑
j=1

α2
j

λ j

}
(B.8)

The number of expansion coefficients is equal to the number of non-zero eigenvalues
which is also the dimension of the RKHS constructed. Since this number is possibly
infinite the above optimization might be infeasible.

B.4.1 RKHS And Regularization
In a learning algorithm, the selected hypothesis needs to conform to the following criteria:

Definition B.2. (Well-Posed Optimization) An optimization Ψ is well posed provided the
solution f ∗ : X → Y

• Exists: if the hypothesis space is too small then the solution may not exist ∃ f̂ ∗ ∈
H : f̂ ∗ = arg inf f∈H Ψ

• is Unique: if the hypothesis space is too large or the training set is too small then
the solution may not be unique ∀ f̂ ∗1 , f̂ ∗2 ∈H : f̂ ∗1 , f̂ ∗2 = arg inf f∈H Ψ ⇒ f̂ ∗1 = f̂ ∗2

• is Stable: f ∗ depends continuously on the training set, so that slight perturbations
in the training set do not affect the resulting solution, especially as the number of
training examples gets larger.

The model function of the learning algorithm must be generalizable and well-posed.
The third criterion above is especially important as it relates to the generalization ability
of a hypothesis. A stable transform is less likely to overfit the training set. ERM principle
guarantees the existence of a solution assuming H is compact and the loss function ` is
continuous. In general, neither of these conditions are satisfied. However, ERM does
not guarantee the uniqueness nor the stability of the solution and the method is therefore
ill-posed. We must use prior information to determine which solution of functions with
minimal empirical risk is better for prediction. The question how to constrain the hypoth-
esis space is answered by Occam’s Razor stating that the simplest solution is often the
best while all other variables remain constant.

Regularization attempts to provide well-posed solutions to a learning task by con-
straining the capacity of the hypothesis space eliminating complex functions unlikely
to generalize. We may constrain the capacity of the hypothesis space (Ivanov Regular-
ization) or implicitly optimize a parameter (Tikhonov Regularization) that regulates the
capacity of the hypothesis space. Both methods are equivalent and make use of a measure
of the smoothness of a function to regulate the hypothesis space.

A map f : X → Y is Lipschitz continuous if it satisfies: | f (x1)− f (x2)| ≤M|x1−x2|
The smallest M ≥ 0 that satisfies the above inequality for all x1,x2 ∈ X is called the Lip-
schitz constant of the function. Every Lipschitz continuous map is uniformly continuous
which is a stronger condition than simple continuity. Functions in a RKHS are Lipschitz
continuous and the distance between two elements in the domain is given by the square
of the difference of their kernelized positions.

Ivanov Regularization requires that all functions in the hypothesis space f ∈ HT of
which there might be an infinite number, exist in a T-bounded subset of a RKHS HK :

f̂ ∗ = arg inf
f∈H

R`,D(f) sub ject to ‖H‖HK ≤ T (B.9)

Another way to see why this works is to consider functions from two hypothesis spaces,
one significantly less complex, smoother functions than the other

HTi = { f : f ∈HK and ‖ f‖2
HK
≤ Ti}, i ∈ {1,2}T1�T2

Small perturbations in the training data cause prediction functions from the more com-
plex class HT2 to fluctuate more whereas functions from the smoother class HT1 remains
relatively stable. Bounded finite dimensional RKHS HTi is a totally bounded space and
hence must have a finite ε-cover which implies the covering number of HTi may be used
in deriving generalization bounds.

Tikhonov Regularization penalizes the complexity and instability of the hypothesis
space in the objective function of the optimization instead of explicitly bounding it by
some constant:

f̂ ∗ = arg inf
f∈H,λ

{
R`,D(f)+λ‖ f‖2

HK

}
(B.10)

with λ a regularization parameter that has to be optimized to ensure good generalization
performance, uniqueness of the solution and stability. Although the hypothesis space is
a potentially infinite dimensional Hilbert function space, the solution of the Tikhonov
optimization has the form of a finite basis expansion:

Theorem B.4. (Representer Theorem) Consider the objective function of the Tikhonov
Regularization method optimizing the sum of a loss function and a regularization term:

f ∗ = arg inf
f∈H

{1
n

n

∑
t=1

`(yt , f (xt))+ϒ(‖ f‖2
H)
}

(B.11)

If ` is a point-wise defined loss function and ϒ monotonically increasing, the solution
of the optimization exists and can be written as a linear combination of a finite set of
functions defined over the training data; f ∗=∑

n
j=1 α jκ(·,x j) with κ(·,x j) the representer

of the functional Ex j [f] = f (x j) for all f ∈H.

As a consequence instead of searching the infinite dimensional hypothesis space HK
one must consider a finite dimensional subspace spanned by a finite number of basis
functions.

B.4.2 The Kernel Trick
The kernel trick simplifies the quadratic optimizations used in SVM by replacing a dot
product of feature vectors in the feature space with a kernel evaluation over the input
space. Use of the reproducing kernel trick can be justified by mapping a vector x ∈ X
in the input space to a vector in a feature RKHS. This can be derived from the Moore-
Aronzajn construction of a RKHS with map defined as Φ : x→ κ(·,x)∈H. Reproducing
property is used to show that the inner product of two functions in the feature space is
equivalent to a simple kernel evaluation 〈Φ(x),Φ(z)〉HK = κ(x,z)

Applying the kernel trick in SVM gives the solution f (x) of a kernelized classification
or regression task expressed in terms of the weight vector w orthogonal to the separating
hyperplane. This is computed using a constraint derived from the dual form of a quadratic
optimization and expressed as a linear combination of support vectors which must be
mapped into the feature space: The hypothesis function can be kernelized by mapping the
test sample xt in its definition using Φ and substituting a kernel evaluation with the dot
product; Nevertheless, it is not necessary to know the structure of the implicit map (or
feature space) associated with a kernel function and learning is performed implicitly in a
complex non linear feature space while all computation are performed in the input space.

Appendix C

Support Vector Machines

C.1 Introduction
In this chapter we introduce some fundamental aspects about Support Vector Machines
and Support Vector Regression in the original geometric formulation with main references
to [101], [14], [22], [16] and [33].

Given a set of training data X = {x1, ...,xl} where xi ∈ Rd , and their labels Y =
{y1, ...,yl} such that yi ∈ {±1}, a binary classifier is a real valued function f (x) where
x is assigned to the positive class if f (x) ≥ 0 and otherwise to the negative class. The
objective is to create a classifier assigning labels to set of interesting unlabeled points.
Consider as hypothesis space a linear function of x

f (x) = 〈w,x〉+b =
r

∑
i=1

wixi +b (C.1)

the (w,b) ∈ Rr × R are parameters controlling the function. The separating plane of
dimension r−1 defined by 〈w,x〉+b = 0 is represented in fig. C.1 in the bidimensional
case and splits the space into two half spaces which correspond to two distinct classes.
An alternative is represented by non-linear separators which may be thought as linear
separators in a different space. The complexity of learning the classifier function depends
on the way it is represented, and so the difficulty of the learning task can vary accordingly.
Quite often in ML changing the representation of the data might be a good strategy. This
is equivalent to mapping the input space X to a new space F:

X→Φ(x) = (Φ1(x), ...,Φm(x))

where Φ : X ⊆ Rd → F ⊆ Rm is a non linear map from the input space to some feature
space (see fig. C.2) which might simplify the classification task.

Using the feature map Φ the learning machine learns a non-linear function hence we
can write:

f (x) = 〈w,Φ(x)〉+b =
m

∑
i=1

wiΦi(x)+b (C.2)

Any SVM computes an hyperplane separating the training data in two classes. SVM
classifier chooses the hyperplane maximizing some distance measure of the points on

151

w

×

×

×

◦
◦

◦

◦

◦

×
×

×

Figure C.1: A separating hyper-plane for a two dimensional training set controlled by
(w,b))

×

◦

◦

◦ ◦
×

X F

φ(×)

φ(◦)
φ(◦)

φ(◦)

φ(◦)
φ(×)

φ(×)

φ(×)

φ

×

×

Figure C.2: Representation of the mapping from input to feature space

either side which is often referred as the margin. The closest instances of the training data
lying to the hyperplane are called support vectors

Definition C.1. Given an hyperplane (w,b) the functional margin of an example (xi,yi)
is defined as:

γi = yi(〈w,xi〉+b)

a positive margin γi > 0 implies the correct classification of the example (xi,yi). Hy-
perplane with largest margin can be considered the most confident for the separating task.
SVM finds the maximal margin hyperplane optimizing the geometric margin γg corre-
sponding to the functional margin

γgi = yi(〈w,xi〉+b)/‖w‖

measuring the Euclidean distance of the points from the decision boundary in the input

space. Maximizing the geometric margin gives the following optimization problem:

max
w,b

γg (C.3)

s.t. yi(〈w,xi〉+b)/‖w‖ ≥ γg

i = 1, ..., l

Instead of maximizing the margin typically one minimizes ‖w‖2 as

min
w,b

‖w‖2 (C.4)

s.t. yi(〈w,xi〉+b)≥ 1
i = 1, ..., l

following the fact that the geometric margin is 1
‖w‖2 which can be easily derived consid-

ering the functional margin
yi(〈w,xi〉+b) = γ f

in two support vectors x+ and x− from which one obtains respectively +1(〈w,x+〉+b) =
γ f and −1(〈w,x−〉+b) = γ f . Then adding the two terms and substituting γ f = γg/‖w‖2

results
2γg‖w‖2 = (〈w,x+〉−〈w,x−〉)

from which fixing γ f = 1 implies

(〈w,x+〉−〈w,x−〉) = 2

and therefore γg = 1/‖w‖2.
SVM optimization problems are convex which guarantee a global optimum. Using the

scalar product to define the margin ‖w‖2 brings to the optimization problem

min
w,b

1
2〈w,w〉 (C.5)

s.t. yi(〈w,xi〉+b)≥ 1
i = 1, ..., l

C.2 Optimization strategy
A strategy to minimize the problem section C.1 consists of finding its Lagrangian and
applying the Karush-Kuhn-Tucker (KKT) [67] theorem which gives the necessary and
sufficient conditions for the optimal solution of a constrained optimization:

Definition C.2. Given the optimization problem defined as

min
X

f (X) (C.6)

s.t. gi(X)≤ 0, i = 1, ...,k
hi(X) = 0 j = 1, ...,m

the Lagrangian primal is defined as:

L (X,αi,βi) = f (X)+
k

∑
i=1

αigi(X)+
m

∑
j=1

β jh j(X) (C.7)

where αi and β j are the Lagrangian multipliers

KKT theorem gives necessary and sufficient conditions for the optimal solution.

Theorem C.1. (KKT) Given the optimization problem

min
X

f (X), X ∈Ω (C.8)

s.t. gi(X)≤ 0, i = 1, ...,k
hi(X) = 0 j = 1, ...,m

with the convex domain Ω⊆ Rd , f ∈ C1 convex and gi, h j affine, X∗ is an optimum point
if and only if there exist α∗i , β ∗j such that the following conditions subsists:

∂L (X∗,α∗i ,β
∗
i)

∂w∗
= 0,

∂L (X∗,α∗i ,β
∗
i)

∂β
∗
i

= 0,

α
∗
i gi(X∗) = 0, i = 1, ...,k

β
∗
j h j(X∗)≤ 0, j = 1, ...,m

α
∗
i ≥ 0, i = 1, ...,k

Applying the Lagrangian definition to the SVM problem we get:

L (w,b,αi) =
1
2
〈w,w〉−

l

∑
i=1

αi[yi(〈w,xi〉+b)−1] (C.9)

From the KKT conditions we have

∂ L (w,b,αi)

∂ w
= 0−→ w =

l

∑
i=1

αiyixi

∂ L (w,b,αi)

∂ b
= 0−→

l

∑
i=1

αiyi = 0

where αi ≥ 0 are the Lagrangian multipliers. As a result the hypothesis w is expressed
as linear combination of the support vectors (xi with corresponding αi > 0). Putting the
results in the Lagrangian after some algebra we obtain:

W (α) =
l

∑
i=1

αi−
1
2

l

∑
i, j=1

αiα jyiy j〈xi,x j〉

Therefore instead of solving the primal problem we can solve its dual corresponding to
maximizing the αi in the Lagrangian primal subject to the necessary and sufficient condi-
tions of the KKT theorem. The optimization problem becomes:

max
α

W (α) = ∑
l
i=1 αi− 1

2 ∑
l
i, j=1 αiα jyiy j〈xi,x j〉 (C.10)

s.t. ∑
l
i=1 yiαi = 0 αi ≥ 0, i = 1, ..., l

Once the solution α∗i of the above problem is substituted in the corresponding equation
of w∗ = ∑

l
i=1 yiα

∗
i xi we get the geometrical margin γ = 1

‖w∗‖ . The value b∗ comes from
the primal problem (b does not appear in the dual). From the constraints

yi(〈w,xi〉+b)≥ 1, i = 1, ..., l

substituting w∗ for both labels we obtain b ≥ 1−〈w∗,xi〉 f or yi = 1. Hence b ≤ −1−
〈w∗,xi〉 f or yi =−1 and the b∗ giving the largest margin from both classes is

b∗ =
1
2
[max
yi=−1

(〈w∗,xi〉)−min
yi=1

(〈w∗,xi〉)]

From the KKT complementary conditions must hold among the optimal values:

α
∗
i [1− yi(〈w∗,xi〉+b∗)] = 0, i = 1, ..., l

implying that only for xi with functional margins equal to one are the corresponding
α∗i > 0. Hence, all α∗i = 0 except those lying closest to the hyperplane.

This formulation SVM is called hard margin which can be applied when the classes
are clearly separable. Whenever classes are not completely separable the soft margin SVM
formulation one assumes that a certain amount of misclassification exists. Consider point
xi with label yi = +1 but is instead classified as yi = −1, hence yi(〈w,xi〉+ b) = −ξi
where ξi > 0. In order to satisfy the constraint yi(〈w,xi〉+ b) ≥ 1 one has to add the
distance ξi of that misclassified point from the true class to the left hand side of the
constraint. For each misclassified point xi a resulting slack variable ξi can be used and the
generalized hyperplane problem is obtained with p = 1,2 for linear and squared Hinge
loss with Lp(ξi) = ξ

p
i = max(0,1− yi f (xi))

p as

min
w,b,ξ

1
2‖w‖2 + C

p ∑
l
i=1 Lp(ξi) (C.11)

s.t. yi f (xi)≥ 1−ξi i = 1, ..., l

with C a penalty parameter (correctly classified points shows ξi = 0). The way we penalize
the misclassified points depends the loss function.

C.3 Using the Kernel trick
Learning a non-linear separators can be done by mapping the data into some feature space
and then using a linear classifier in that space. Most of the time, this feature space has
higher dimension than the original one, which suggests that finding a classifier will be

ξ i

-

++

+ +
+

- - - -

-

+

-

margin

Figure C.3: Definition of a slack variable ξ j for a misclassified point

computationally more expensive. However, by exploiting the fact that SVM finds a clas-
sifier based only on the inner products of the data points, it is sometimes possible to work
in higher dimensions without paying computationally any price.

Given two points x,z from the input space X⊆Rd , the kernel function k returning the
inner product between their images into the feature space F can be written

k(x,z) = 〈Φ(x),Φ(z)〉, ∀x,z ∈ X (C.12)

where Φ is a mapping from input space to the feature space.
Defining k(xi,x j) = 〈Φ(xi),Φ(x j)〉 and given a set of points X = (x1, ...,xn) we call

the n × n matrix K with Ki j = k(xi,x j) the Gram matrix of k at X.
Properties of kernel and RKHS have been presented in section B.4.2 and how to take

profit of the Mercer’s theorem. Mercer’s theorem not only gives necessary and sufficient
conditions for k to be a kernel, but also suggests a constructive way of obtaining features
Φ from a given kernel k.

Some commonly used kernels in SVM are:

• Identity Function (IF): k(x,z) = 〈x,z〉

• Radial Basis Function (RBF): k(x,z) = e−
1

2σ
‖x−z‖2

• Polynomial of degree p: k(x,z) = (〈x,z〉+1)p

Accordingly, the decision function can be written as

f (x) =
l

∑
i=1

αiyi〈Φ(xi),Φ(x)〉+b =
m

∑
j=1

l

∑
i=1

αiyiΦ(xi) jΦ(x) j +b (C.13)

which using the kernel definition becomes

f (x) =
l

∑
i=1

αiyik(xi,x)+b (C.14)

SVM task is to find the αi corresponding to the maximal margin hyperplane in the feature
space. The choice of feature space has an impact on the complexity of inner product. A
good choice can allow the inner product to be easily computed. In particular, for some
feature spaces, the inner product in feature space is a simple function of the point’s coor-
dinates in the original space.

C.4 Properties of the solution
Here we focusing on the properties of the solution fir the soft margin SVM using kernel.
Assuming

f (x) = 〈w,Φ(x)〉+b = wT
Φ(x)+b

which can be summarized (see [1], [31], [37]) in:

min
w,b,ξ

1
2‖w‖2 + C

p ∑
l
i=1 Lp(ξi) (C.15)

s.t. yi f (xi)≥ 1−ξi i = 1, ..., l

Similar to the linearly separable case, introducing the nonnegative Lagrange multipliers
αi and βi we obtain the Lagrangian for the L1 SVM soft-margin SVM

L (w,b,ξi,αi,βi) =
1
2
‖w‖2 +C

l

∑
i=1

ξi

−
l

∑
i=1

αi[yi(〈w,Φ(xi)〉+b)−1+ξi]−
l

∑
i=1

βiξi

From the derivative of the KKT conditions we have

∂ L (w,b,ξi,αi,βi)

∂ w
= 0−→ w =

l

∑
i=1

αiyiΦ(xi)

∂ L (w,b,ξi,αi,βi)

∂ b
= 0−→

l

∑
i=1

αiyi = 0

∂ L (w,b,ξi,αi,βi)

∂ ξi
= 0−→ αi +βi =C

αi[yi(〈w,Φ(xi)〉+b)−1+ξi] = 0
βiξi = 0
αi ≥ 0, βi ≥ 0, ξi ≥ 0

and substituting those expressions we obtain the dual problem as:

W (α) =
l

∑
i=1

αi−
1
2

l

∑
i, j

αiα jyiy jk(xi,x j) (C.16)

subject to the constraints

l

∑
i=1

yiαi = 0, 0≤ αi ≤C, i = 1, ..., l (C.17)

which is a convex quadratic programming problem. The only difference between L1 SVM
soft-margin SVM and hard-margin SVM is that αi cannot exceed C. From the KKT there
are three cases for αi:

• αi = 0 then ξi = 0 thus xi is correctly classified.

• 0 < αi < C then yi f (xi)− 1+ ξi = 0 and ξi = 0 therefore yi f (xi) = 1 and xi is a
support vector. The support vectors with 0 < αi <C are called unbounded

• αi =C then ξi = 1− yi f (xi) and xi is a bounded support vector. If 0≤ ξi < 1 xi is
correctly classified, if ξi > 1 xi is misclassified.

Because αi are nonzero, for unbounded support vectors b= yi−〈w,Φ(xi)〉 is satisfied,
to ensure the precision of calculations the average of b that is calculated for unbounded
support vectors.

Conversely for L2SVM the Lagrangian becomes:

L (w,b,ξi,αi) =
1
2
‖w‖2 +

C
2

l

∑
i=1

ξ
2
i −

l

∑
i=1

αi[yi(〈w,Φ(xi)〉+b)−1+ξi]

where we do not need to introduce the Lagrange multipliers associated with ξi ≥ 0 due to
the presence of ξ 2

i .
From the KKT conditions we have

∂ L (w,b,ξi,αi)

∂ w
= 0−→ w =

l

∑
i=1

αiyiΦ(xi)

∂ L (w,b,ξi,αi)

∂ b
= 0−→

l

∑
i=1

αiyi = 0

∂ L (w,b,ξi,αi)

∂ ξi
= 0−→Cξi = αi

αi[yi(〈w,Φ(xi)〉+b)−1+ξi] = 0 i = 1, ..., l

from which we can understand that the optimal solution must satisfy either αi = ξi or

αi[yi(
l

∑
j=1

α jy j(k(x j,xi)+δi j/C)+b)−1] = 0

Thus the value of the bias term b may be calculated for αi > 0 through

b = yi−
l

∑
j=1

α jy j(k(x j,xi)+δi j/C)

which is different from the one of the L1 SVM but the decision function is the same. Now
substituting the derived expression we obtain the dual objective function:

W (α) =
l

∑
i=1

αi−
1
2

l

∑
i, j

αiα jyiy j(k(xi,x j)+δi j/C) (C.18)

subject to the constraints

l

∑
i=1

yiαi = 0, 0≤ αi, i = 1, ..., l (C.19)

which is again a convex QP problem. Therefore, for the L1SVM if we replace k(xi,x j)
with k(xi,x j) + δi j/C and remove the upper bound given by C for αi, we obtain the
L2SVM.

Because 1/C is added to the diagonal elements of the kernel matrix, the resulting
matrix becomes positive definite. Thus the associated optimization problem is compu-
tationally more stable. Moreover, setting C = ∞ in L1SVM and L2SVM, we obtain the
hard-margin SVM. Hence it is possible to show that for L1SVM and L2SVM as C ap-
proaches infinity, the sets of support vectors becomes the same, and the weight vectors in
the feature space converges. One of the most important property offered by the solution
of a SVM is that the solution is sparse in αi i.e. many patterns are outside the margin
area and the optimal α ′i s are zero. Specifically the KKT conditions show that only such αi
connected to a training pattern xi, which is inside the margin area are non-zero. Without
this sparsity property SVM learning would hardly be practical for large datasets.

C.5 Incremental SVM

Online learning is a learning scenario in which training data is provided one example at the
time, opposed to the batch mode in which all examples are available at once. Such form
of learning can be of any convenience when dealing with a very large or non stationary
data and many problems in ML can be viewed as online ones. An exact solution to the
problem of online SVM learning has been found by Cauwenberghs and Poggio [70] where
the incremental algorithm updates an optimal solution after one training example is added
(or removed).

The incremental algorithm for SVM ([70], [49]) updates of the trained SVM whenever
a new sample xc is added to the training set D and the basic idea is to change the coefficient
αc corresponding to the new sample xc in a finite number of discrete steps until it meets
the KKT conditions while ensuring that the existing samples in D continue to satisfy the
KKT conditions at each step.

Moreover to build an exact on-line SVM one needs to define three primitive actions:

• add a new vector D′ = D∪ (xc,yc)

• remove an existing vector D′ = D\ (xc,yc)

• update an existing vector D′ = D\ (xc,yc)∪ (xc,y′c)

in each case the resulting incremental SVM should be the same that would be training
from the scratch using the whole final set of data.

Considering the approximating function f (xi) = 〈Φ(xi),w〉+ b the SVM training
problem is posed as the following quadratic optimization problem

min
w,b,ξ

1
2‖w‖2 +C ∑

n
i=1 ξi (C.20)

s.t. yi(〈Φ(xi),w〉+b)≥ 1−ξi

∀ i ∈ {1, ...,n}
Introducing the Lagrange multipliers α and η we can write the corresponding Lagrangian
as:

LP =
1
2
‖w‖2 +C

n

∑
i=1

ξi−
n

∑
i=1

ηiξi (C.21)

−
n

∑
i=1

αi[yi(〈Φ(xi),w〉+b)−1+ξi]

hence the dual variables have to satisfy positive constraints

αi,ηi,≥ 0 (C.22)

It follows from the saddle point condition that the partial derivatives of LP with respect
to the primal variables (w,b,ξ) have to vanish for optimality:

∂ LP

∂ w
= 0 −→ w =

n

∑
i=1

αiyiΦ(xi) (C.23)

∂ LP

∂ ξi
= 0 −→ C−αi−ηi = 0 (C.24)

Substituting section C.5,section C.5,into section C.5 and eliminating the dual variables
ηi =C−αi yields to the dual optimization problem

min
α

1
2 ∑

n
i, j=1 k(xi,x j)yiy jαiα j−∑

n
i=1 αi +b∑

n
i=1 yiαi (C.25)

s.t. ∑
n
i=1 yiαi = 0 αi ∈ [0,C] ∀ i ∈ {1, ...,n}

where k(xi,x j) = 〈Φ(xi),Φ(x j)〉 and Qi j = yiy jk(xi,x j) is the kernel function. Moreover
the Karush-Kuhn-Tucker (KKT) conditions require that at the point of the solution the
product between the dual variables and constraints has to vanish:

αi[yi(〈Φ(xi),w〉+b)+ξi−1] = 0 (C.26)
(C−αi)ξi = 0

Once the dual variables are known, the weight vector is given by

w =
n

∑
i=1

αiyiΦ(xi) (C.27)

and the function f (x) can be computed using the support vector expansion

f (x) = 〈Φ(x),w〉+b =
n

∑
i=1

αiyi〈Φ(x),Φ(xi)〉+b (C.28)

=
n

∑
i=1

αiyik(x,xi)+b

The Lagrange formulation of section C.5

LD = 1
2 ∑

n
i, j=1 k(xi,x j)yiy jαiα j−∑

n
i=1 αi +b∑

n
i=1 yiαi

−∑
n
i=1 δiαi +∑

n
i=1 υi(αi−C) (C.29)

where δi,υi and b are the Lagrange multiplier. Optimizing this Lagrangian leads to the
following KKT conditions:

∂ LD

∂ αi
= 0 −→

n

∑
j=1

Qi jα j +byi−1−δi +υi = 0 (C.30)

δi ≥ 0 δiαi = 0 (C.31)
υi ≥ 0 υi(αi−C) = 0 (C.32)

Defining gi = ∑
n
j=1 Qi jα j + byi− 1 is useful to define the margin function for the i− th

sample as

h(xi) = yi f (xi) =
n

∑
j=1

Qi jα j +byi (C.33)

such that gi = h(xi)−1 It is also worth noting that the following conditions descend from
the KKT:

δi = h(xi)−1+υi = gi +υi αi[h(xi)−1+υi] = 0 (C.34)

and combining h(xi) definition with the KKT conditions we can obtain:
h(xi)≥ 1 αi = 0
h(xi) = 1 0 < αi <C
h(xi)≤ 1 αi =C

(C.35)

There are three conditions in section C.5 and they can be identified with three subsets into
which the samples in the training set D can be classified:

• the set E Error support vectors E = {i |αi =C}

• the set S Margin support vectors S = {i |0 < αi <C}

• the set R Remaining samples R = {i |αi = 0}
In order to derive the incremental relations, consider xc with the initially set value of

αc = 0 and gradually change (increase o decrease) its value under KKT of section C.5
According to the KKT the incremental relation between ∆h(xi), ∆αi and ∆b is given by:

∆h(xi) = Qic∆αc +
n

∑
j=1

Qi j∆α j +∆b (C.36)

while from the equality condition coming from b we have

ycαc +
n

∑
i=1

yiαi = 0 (C.37)

Combining section C.5, section C.5 with definition of E,S and R sets we obtain:

n

∑
j∈S

Qi j∆α j +∆b =−Qic∆αc ∀ i ∈ S (C.38)

n

∑
j∈S

∆yiα j =−∆ycαc

Now if we define the index of the samples in the S set as S = {s1,s2, ...,sls} the section C.5
can be represented in matrix form as

0 1 ... 1
1 Qsls1 ... Qslsls
. . . .
1 Qslss1 ... Qslssls




∆b
∆αs1
.

∆αsls

=−


1

Qs1c
.

Qslsc

∆αc (C.39)

that is 
∆b

∆αs1

.
∆αsls

= β̂∆αc (C.40)

where

β̂ =


β

βs1

.
βsls

=−R


1

Qs1c
.

Qslsc

 (C.41)

where

R =


0 1 ... 1
1 Qsls1 ... Qslsls
. . . .
1 Qslss1 ... Qslssls


−1

(C.42)

Define the non support vector set N = E ∪ R = {n1, ...,nls} and combining the above
equations leads to: 

∆h(xn1)
∆h(xn2)

.
∆h(xnls

)

= γ̂∆αc (C.43)

where we define γ̂ as

γ̂ =


Qn1c
Qn2c
.

Qslsc

+


0 1 ... 1
1 Qn1s1 ... Qnlsls
. . . .
1 Qnlss1 ... Qnlssls

 β̂ (C.44)

Given ∆αc one can update αi, i∈ S and b according to section C.5 and update ∆h(xi), i∈N
according to section C.5. Moreover section C.5 suggests that αi, i ∈ N and h(xi), i ∈ S are
constant if the set S stays unchanged. Hence it is only necessary to solve the problem on
how to find the appropriate value ∆αc.

All the above incremental equations are valid while the vectors do not migrate from
set R,E or S to another one. This suggest a way to cope with the problem of finding the
correct ∆αc choosing it to be the largest value that either can maintain the set S unchanged
or eventually leads to the termination of the incremental algorithm.

As a matter of fact the first step is to determine if the change ∆αc according to the
section C.5

sign(∆αc) = sign(yc f (xc)) = sign(h(xc))≥ 0 (C.45)

Then eventually one has to find out the bound on ∆αc imposed by each sample in the
training set D′. Considering that ∆αc > 0 for a new sample (xc,yc) we have two cases:

• [1] h(xc) changes from h(xc)< 1 to h(xc) = 1 then the new sample is added to the
set S and the algorithm terminates

• [2] if αc increases from αc <C up to αc =C the new sample is added to the set E
and the algorithm terminates

for each sample xi ∈ S

• [3] if αi changes from 0 < αi <C to αi =C then sample xi migrates from S to E. If
αi = 0 sample xi migrates from S to R

for each sample xi ∈ E

• [4] if h(xi) changes from h(xi)< 1 to h(xi) = 1 then sample xi migrates from E to S

for each sample xi ∈ R

• [5] if h(xi) changes from h(xi) > 1 to h(xi) = 1 then sample xi migrates from R to
S.

The bookkeeping procedure then is to trace for each sample into the training set D′ against
these five cases and to determine the allowed ∆αc for each sample according to the sec-
tion C.5 and section C.5 while the final ∆αc is defined as the one with the minimum
absolute value among the possible ∆αc. In order to identify the largest increase ∆αc such
that some point migrates between the sets S and R we have to consider the following
cases:

1. some αi ∈ S reaches an upper or lower bound and considering a small number ε

compute the sets IS
+ = {i ∈ S|β̂i > ε} and IS

− = {i ∈ S|β̂i <−ε}. Clearly examples
in IS

+ have positive sensitivity and should be tested for reaching the upper bound
C while the ones in IS

− should be tested for reaching zero. Therefore examples in
−ε < β̂i < ε insensitive to ∆αc should be ignored. Hence possible updates are
∆αmax

i = C−αi if i ∈ IS
+ while ∆αmax

i = −αi if i ∈ IS
− and the largest possible

∆αS
c = absmini∈IS

+∪IS
−

∆αmax
i

β̂i
where absmini(x) = mini |xi|sign(x(argmini |xi|))

2. some gi in R reaches zero then we have to compute the sets IR
+ = {i ∈ E|γ̂i > ε} and

IR
− = {i ∈ R|γ̂i < −ε}. Examples in IR

+ have positive while those in IR− negative
sensitivity of the gradient with respect to weight of the current sample. Hence the
largest possible increase of ∆α

g
c before some point in R or in E moves to S can be

evaluates according to ∆αR
c = mini∈IR

+∪IR
−
−gi
γ̂i

3. gc becomes zero and this case is similar to the case 2 with feasibility test in the form
of γc > ε . The largest possible update in this case looks like ∆α

g
c = −gc

γ̂c

4. αc reaches C and the largest possible increment is ∆αα
c

Finally the smallest of the four possible values will be

∆α
max
c = min(∆α

S
c ,∆α

R
c ,∆α

g
c ,∆α

α
c) (C.46)

which constitutes the largest possible increment of αc.
The migration process needs that the matrix R must be updated whenever the set S

changes its composition. It is possible to do the task efficiently without explicitly com-
puting the matrix inverse. When the sample xk ∈ S is removed the updated Rnew can be
obtained as follows:

Rnew = RI,I−
RI,kRk,I

Rk,k
(C.47)

I = {1, ...,k,k+2, ...,sls +1}

while when a new sample is added to set S the update can be found through:

Rnew =


0

R .
.

0 . . 0

+ 1
γ̂i

[
µ

1

][
µ 1

]
(C.48)

where µ and γ̂i are defined as

µ =−R


1

Qs1i
.

Qsls i

 γ̂i = Qii +


1

Qs1i
.

Qsls i

µ (C.49)

when the sample xi was moved from E to R. Whenever the sample xc is added to S µ and
γ̂i can be obtained from the section C.5 and section C.5.

An initial SVM solution in general can be obtained from a batch SVM solver often
being the most efficient approach. However, sometimes can be also convenient to build
an incremental solution from scratch and in this case one need to provide a starting point
and can be used the two sample solution. The sets E,S and R can be initialized from these
two points based on Equations section C.5,section C.5,section C.5 and if S is non empty
the matrix R can also be initialized from section C.5 while as long as the set S remains
empty, the matrix R will not be used. Finally, to end the recursive definition of the R

Algorithm 4 Algorithm incremental SVM
Require: (α,R,S,E,R) if any

read (xc,yc) set αc = 0 compute gc
while gc < 0 and αc <C do

compute β̂ and γ̂ according to section C.7 and section C.7
compute ∆αmax

c according section C.5
update b,αc,αs,gc,gr,ge
Let k be the index of sample yielding the minimum in section C.5
if k ∈ S then

move k from S to R or E
end if
if k ∈ E ∪R then

move k from E or R to S
end if
if then
{k=c do nothing and terminate}

end if
update R according to section C.7 or section C.7

end while
return

matrix it remains to define the base case. When adding the first margin support vector, the
matrix should be initialized as follows:

R = Q−1 =

[
0 1
1 Qcc

]−1

=

[
−Qcc 1

1 0

]
(C.50)

If we want to unlearn an existing sample from the training set D we can also provide a
decremental algorithm. If the sample to unlearn xc ∈ R clearly does not contribute to the
SVM solution and its removal does not require adjustments. However, if on the other
hand xc has αc 6= C one can gradually reduce αc while ensuring all the other samples
in the training set to satisfy the KKT conditions. As a result the decremental algorithm
follows the same strategy of the incremental one taking into account:

• the direction of the change of αc from

sign(∆αc) = sign(−yc f (xc)) = sign(−h(xc))≤ 0 (C.51)

• there is no case [1] because the removed xc does not need to satisfy the KKT condi-
tions

• the condition of case [2] becomes: αc changing from αc > 0 to αc = 0.

The computational complexity of Algorithm 4 constitutes a minor iteration of the
overall training algorithm. In fact a major iteration corresponds to inclusion of a new
example; therefore, all complexity estimates must be multiplied by a number of examples
to be learned. This is, however, a worst case scenario, since no minor iteration is needed

for many points that do not become support vectors at the time of their inclusion. Asymp-
totically, the complexity of a minor iteration is quadratic in a number of examples learned
so far O(n2

t) as re-computation of β̂ and γ̂ involves matrix-vector multiplications having
quadratic complexity. Moreover the recursive update of an inverse matrix can be shown
to be quadratic in the number of examples. These estimates have to be multiplied by a
number of minor iterations needed to learn an example. The number of minor iterations
depends on the structure of a problem, namely on how often examples migrate between
the index sets until an optimal solution is found. This number cannot be controlled in the
algorithm and may be potentially exponentially large as the structure of the problem is
determined by the geometry of a set of feasible solutions in a feature space. On the basis
of the pseudo-code of Algorithm 4 we may see the key issues of the implementation of
the incremental SVM.

• computation of gc requires partial computation of the kernel row for the current
example and examples in the set S. Computation of a kernel row is expensive since
a subset of input points has to be selected using the index sets S, E and R.

• computation of gi is especially costly since a two-dimensional selection has to be
performed to obtain the kernel matrix (O(n−nsv) memory access operations), fol-
lowed by a matrix-vector multiplication (O(n− nsv) arithmetic operations). The
influence of gi scales with the size of set S and the number of data points.

• operations for sets S and R have inferior complexity. If a kernel row of the example
k is not present (in case of xk entering the S from R) then it has to be re-computed
for the update of the inverse matrix.

• update the inverse matrix requires the O(nsv) arithmetic operations) and the expan-
sion requires memory operation which is expensive for a large inverse matrix.

In [49] a detailed complexity analysis shows that memory access operations dominate
the runtime and particular attention should be taken in order to improve efficiency of the
incremental SVM.

C.6 Support Vector Regression
This section provides a brief overview of SVR for more details see [81]. The objective of
the SVR problem is to learn a function f (x) of the form

f (x) =
r

∑
l=1

φl(x)wl +b =< Φ(x),w >+b (C.52)

providing a good approximation to a given set of training data

D = {(x1,y1), ...,(xn,yn)}

where xi ∈ Rm is the input data and yi ∈ R is the observed output. The vector

Φ(x) = (φ1(x), ...,φr(x))T

x

x

x
x

x

x
xx

x

x
x

x

x

x

x

Figure C.4: The soft margin loss setting for a linear SVR.

is referred as features vector of the point x, where each features (also called a basis func-
tion) φi(x) is a scalar-valued function of x. The vector

w = (w1, ...,wr)
T

is referred to as the weight vector. The notation < ·, · > is used to denote the standard
inner product.

In SVR, following the maximum margin paradigm presented for the SVM, the training
problem is posed as the following quadratic optimization problem

min
w,b,ξ ,ξ ∗

1
2‖w‖2 +C ∑

n
i=1(ξi +ξ ∗i) (C.53)

s.t. yi−〈Φ(xi),w〉−b≤ ε +ξi

−yi + 〈Φ(xi),w〉+b≤ ε +ξ ∗i
ξi,ξ

∗
i ≥ 0 ∀ i ∈ {1, ...,n}

Here, the regularization term 1
2‖w‖2 penalizes model complexity, and the ξi,ξ

∗
i are slack

variables which are active whenever a training point yi lies farther than a distance ε from
the approximating function f (xi), giving rise to the so-called ε− insensitive loss function
|ξ |ε described as

|ξ |ε =
{

0 i f |ξ | ≤ ε

|ξ |− ε otherwise. (C.54)

The parameter C trades off model complexity with accuracy of fitting the observed
training data. As C increases, any data points for which the slack variables are active
incur higher cost, so the optimization problem tends to fit the data more closely (note that
fitting too closely may not be desired if the training data is noisy).

The minimization problem section C.6 is difficult to solve when the number of features
r is large, for two reasons. First, it is computationally demanding to compute the values of
all r features for each of the data points. Second, the number of decision variables in the

problem is r+2n+1 (since there is one weight element wi for each basis function φi() the
coefficient b and two slack variables ξi,ξ

∗
i for each training point), so the minimization

must be carried out in an (r + 2n+ 1)-dimensional space. To address these issues, one
can solve the primal problem through its dual, which can be formulated by computing the
Lagrangian and minimizing with respect to the primal variables w and ξ ,ξ ∗. Introducing
the Lagrange multipliers α ,α∗,η and η∗ we can write the corresponding Lagrangian as:

LP =
1
2
‖w‖2 +C

n

∑
i=1

(ξi +ξ
∗
i)−

n

∑
i=1

(ηiξi +η
∗
i ξ
∗
i) (C.55)

−
n

∑
i=1

αi[ε +ξi− yi + 〈Φ(xi),w〉+b]

−
n

∑
i=1

α
∗
i [ε +ξ

∗
i + yi−〈Φ(xi),w〉−b]

hence the dual variables have to satisfy positive constraints

αi,α
∗
i ,ηi,η

∗
i ≥ 0 (C.56)

It follows from the saddle point condition that the partial derivatives of LP with respect
to the primal variables (w,b,ξ ,ξ ∗) have to vanish for optimality:

∂ LP

∂ w
= 0 −→ w =

n

∑
i=1

(αi−α
∗
i)Φ(xi) (C.57)

∂ LP

∂ b
= 0 −→

n

∑
i=1

(αi−α
∗
i) = 0 (C.58)

∂ LP

∂ ξi
= 0 −→ C−αi−ηi = 0 (C.59)

∂ LP

∂ ξ
∗
i

= 0 −→ C−α
∗
i −η

∗
i = 0 (C.60)

(C.61)

Substituting section C.6,section C.6,section C.6,section C.6 into section C.6 and elimi-
nating the dual variables ηi = C−αi and η∗i = C−α∗i yields to the dual optimization
problem

min
α,α∗

1
2 ∑

n
i, j=1 k(xi,x j)(αi−α∗i)(α j−α∗j) (C.62)

+ε ∑
n
i=1(αi +α∗i)−∑

n
i=1 yi(αi−α∗i)+b∑

n
i=1(αi−α∗i)

s.t. ∑
n
i=1(αi−α∗i) = 0 αi,α

∗
i ∈ [0,C] ∀ i ∈ {1, ...,n}

where k(xi,x j) = 〈Φ(xi),Φ(x j)〉=Qi j is the kernel function. Moreover the Karush-Kuhn-
Tucker (KKT) conditions require that at the point of the solution the product between the
dual variables and constraints has to vanish:

αi[ε +ξi− yi + 〈Φ(xi),w〉+b] = 0 (C.63)
α
∗
i [ε +ξ

∗
i + yi−〈Φ(xi),w〉−b] = 0

(C−αi)ξi = 0
(C−α

∗
i)ξ

∗
i = 0

From which one may come to some useful conclusions. First only samples (xi,yi) with
corresponding αi =C or α∗i =C lie outside the ε− insensitive tube. Secondly αiα

∗
i = 0

i.e. there can never be a set of dual variables αi,α
∗
i simultaneously non zero. This allow

us to conclude that:

ε− yi + 〈Φ(xi),w〉+b≥ 0 and ξi = 0 i f αi <C (C.64)
ε− yi + 〈Φ(xi),w〉+b≤ 0 i f αi =C

ε + yi−〈Φ(xi),w〉+b≥ 0 and ξ
∗
i = 0 i f α

∗
i <C

ε + yi−〈Φ(xi),w〉+b≤ 0 i f α
∗
i =C

from which one may conclude that

max{−ε + yi−〈Φ(xi),w〉 |αi <C or αi∗> 0} ≤ b≤ (C.65)
min{−ε + yi−〈Φ(xi),w〉 |αi > 0 or αi∗<C}

and if some αi or α∗i the inequalities become equalities which allow to compute b.
Note that the features vectors Φ(xi) now enter into the optimization problem only as

inner products. This is important, because it allows the kernel function to be defined
whose evaluation may avoid the need to explicitly calculate the vectors Φ(xi), resulting
in significant computational savings. Also, the dimensionality of the dual problem is re-
duced to only 2n decision variables, since there is one αi and one α∗i for each of the
training points. When the number of features is large, this results in significant com-
putational savings. Furthermore, it is well known that the dual problem can be solved
efficiently using specialized techniques such as Sequential Minimal Optimization. Once
the dual variables are known, the weight vector is given by (defining θi = αi−α∗i)

w =
n

∑
i=1

(αi−α
∗
i)Φ(xi) =

n

∑
i=1

θiΦ(xi) (C.66)

and the function f (x) can be computed using the support vector expansion

f (x) = 〈Φ(x),w〉+b =
n

∑
i=1

θi〈Φ(x),Φ(xi)〉+b (C.67)

=
n

∑
i=1

θik(x,xi)+b

The Lagrange formulation of section C.6

LD = 1
2 ∑

n
i, j=1 k(xi,x j)(αi−α∗i)(α j−α∗j) (C.68)

+ε ∑
n
i=1(αi +α∗i)−∑

n
i=1 yi(αi−α∗i)+ b̂∑

n
i=1(αi−α∗i)

−∑
n
i=1(δiαi +δ ∗i α∗i)+∑

n
i=1[υi(αi−C)+υ∗i (α

∗
i −C)]

where δi,δ
∗
i ,υi,υ

∗
i and b̂ are the Lagrange multiplier. Optimizing this Lagrangian leads

to the following KKT conditions:

∂ LD

∂ αi
= 0 −→

n

∑
j=1

Qi jθ j + ε− yi + b̂−δi +υi = 0 (C.69)

∂ LD

∂ α
∗
i
= 0 −→ −

n

∑
j=1

Qi jθ j + ε + yi− b̂−δ
∗
i +υ

∗
i = 0 (C.70)

δi ≥ 0 δiαi = 0 δ
∗
i ≥ 0 δ

∗
i α
∗
i = 0 (C.71)

υi ≥ 0 υi(αi−C) = 0 υ
∗
i ≥ 0 υ

∗
i (α

∗
i −C) = 0 (C.72)

Note that b is equal to b̂ at optimality and defining gi = ∑
n
j=1 Qi jθ j + ε − yi + b results

g∗i = −gi + 2ε . As the αiα
∗
i = 0 condition holds the θi = αi−α∗i parameter completely

determine both αi and α∗i . Now is useful to define the margin function for the i− th
sample as

h(xi) = f (xi)− yi =
n

∑
j=1

Qi jθ j +b− yi = gi− ε =−g∗i + ε (C.73)

It is also worth noting that the following conditions descend from the KKT:

δi = h(xi)+ ε +υi = gi +υi αi[h(xi)+ ε +υi] = 0 (C.74)
δ
∗
i =−h(xi)+ ε +υ

∗
i = g∗i +υ

∗
i α

∗
i [−h(xi)+ ε +υ

∗
i] = 0

and combining h(xi) definition with the KKT conditions we can obtain:
h(xi)≥ ε θi =−C, αi = 0, α∗i =C
h(xi) = ε −C < θi < 0, αi = 0, 0 < α∗i <C
−ε ≤ h(xi)≤ ε θi = 0, αi = 0, α∗i = 0
h(xi) =−ε 0 < θi <C, 0 < αi <C, α∗i = 0
h(xi)≤−ε θi =C, αi =C, α∗i = 0

(C.75)

There are five conditions in section C.6 and they can be identified with three subsets into
which the samples in the training set D can be classified:

• the set E Error support vectors E = {i | |θi|=C}

• the set S Margin support vectors S = {i |0 < |θi|<C}

• the set R Remaining samples R = {i | |θi|= 0}

C.7 Incremental SVR
The incremental algorithm for SVR ([70], [49] and [57]) updates of the trained SVR
function whenever a new sample xk is added to the training set D and the basic idea is
to change the coefficient θc corresponding to the new sample xc in a finite number of
discrete steps until it meets the KKT conditions while ensuring that the existing samples
in D continue to satisfy the KKT conditions at each step.

Moreover to build an exact on-line SVR one needs to define three primitive actions:

Figure C.5: Decomposition of D following the KKT conditions into Margin support vec-
tors S, error support vectors E and E∗, and the remaining vectors R.

• add a new vector D′ = D∪ (xc,yc)

• remove an existing vector D′ = D\ (xc,yc)

• update an existing vector D′ = D\ (xc,yc)∪ (xc,y′c)

in each case the resulting incremental SVR should be the same that would be training
from the scratch using the whole final set of data.

In order to derive the incremental relations, consider xc with the initially set value of
θc = 0 and gradually change (increase o decrease) its value under KKT of section C.6
According to the KKT the incremental relation between ∆h(xi), ∆θi and ∆b is given by:

∆h(xi) = Qic∆θc +
n

∑
j=1

Qi j∆θ j +∆b (C.76)

while from the equality condition coming from b we have

θc +
n

∑
i=1

θi = 0 (C.77)

Combining section C.7, section C.7 with definition of E,S and R sets we obtain:
n

∑
j∈S

Qi j∆θ j +∆b =−Qic∆θc ∀ i ∈ S (C.78)

n

∑
j∈S

∆θ j =−∆θc

Now if we define the index of the samples in the S set as S = {s1,s2, ...,sls} the section C.7
can be represented in matrix form as

0 1 ... 1
1 Qsls1 ... Qslsls
. . . .
1 Qslss1 ... Qslssls




∆b
∆θs1
.

∆θsls

=−


1

Qs1c
.

Qslsc

∆θc (C.79)

that is 
∆b

∆θs1

.
∆θsls

= β̂∆θc (C.80)

where

β̂ =


β

βs1

.
βsls

=−R


1

Qs1c
.

Qslsc

 (C.81)

where

R =


0 1 ... 1
1 Qsls1 ... Qslsls
. . . .
1 Qslss1 ... Qslssls


−1

(C.82)

Define the non support vector set N = E ∪ R = {n1, ...,nls} and combining the above
equations leads to: 

∆h(xn1)
∆h(xn2)

.
∆h(xnls

)

= γ̂∆θc (C.83)

where we define γ̂ as

γ̂ =


Qn1c
Qn2c
.

Qslsc

+


0 1 ... 1
1 Qn1s1 ... Qnlsls
. . . .
1 Qnlss1 ... Qnlssls

 β̂ (C.84)

Given ∆θc one can update θi, i∈ S and b according to section C.7 and update ∆h(xi), i∈N
according to section C.7. Moreover section C.6 suggests that θi, i ∈ N and h(xi), i ∈ S are
constant if the set S stays unchanged. Hence it only necessary to solve the problem on
how to find the appropriate value ∆θc.

All the above incremental equations are valid while the vectors do not migrate from
set R,E or S to another one. This suggest a way to cope with the problem of finding the
correct ∆θc choosing it to be the largest value that either can maintain the set S unchanged
or eventually leads to the termination of the incremental algorithm.

As a matter of fact the first step is to determine if the change ∆θc should be positive
or negative according to the section C.6

qc = sign(∆θc) = sign(yc− f (xc)) = sign(−h(xc)) (C.85)

Then eventually one has to find out the bound on ∆θc imposed by each sample in the
training set D′. Considering only the case ∆θc > 0 (the opposite case ∆θc < 0 is quite
similar), for a new sample (xc,yc) we have two cases:

• [1] h(xc) changes from h(xc)<−ε to h(xc) =−ε then the new sample is added to
the set S and the algorithm terminates then check ∆θ 1

c = (−h(xc)−qcε)/γ̂c

• [2] if θc increases from θc < 0 up to θc = 0 the new sample is added to the set E
and the algorithm terminates then check ∆θ 2

c = (qcC−θc)

for each sample xi ∈ S

• [3] if θi changes from 0 < |θi|<C to |θi|=C then sample xi migrates from S to E.
If θi = 0 sample xi migrates from S to R then check:

– if qcβ̂i > 0 and 0≥ θi <C then ∆θ 3
c = (C−θi)/β̂i

– if qcβ̂i > 0 and −C ≥ θi < 0 then ∆θ 3
c =−θi/β̂i

– if qcβ̂i < 0 and 0≥ θi <C then ∆θ 3
c =−θi/β̂i

– if qcβ̂i < 0 and −C ≥ θi < 0 then ∆θ 3
c = (−C−θi)/β̂i

for each sample xi ∈ E

• [4] if h(xi) changes from |h(xi)|> ε to |h(xi)|= ε then sample xi migrates from E
to S then check ∆θ 4

c = (−h(xi)− sign(qcβ̂i)ε)/β̂i

for each sample xi ∈ R

• [5] if h(xi) changes from |h(xi)| < ε to |h(xi)| = ε then sample xi migrates from R
to S then check ∆θ 5

c = (−h(xi)− sign(qcβ̂i)ε)/β̂i .

The bookkeeping procedure then is to trace for each sample into the training set D′ against
these five cases and to determine the allowed ∆θc for each sample according to the sec-
tion C.7 and section C.7 while the final ∆θc is defined as the one with the minimum
absolute value among the possible ∆θc is defined as the one with the minimum absolute
value among the possible ∆θc according to

∆θ
max
c = qc min(∆θ

1
c ,∆θ

2
c ,∆θ

3
c ,∆θ

4
c ,∆θ

5
c) (C.86)

which constitutes the largest possible increment of θc.
The migration process needs that the matrix R must be updated whenever the set S

changes its composition. It is possible to do the task efficiently without explicitly com-
puting the matrix inverse. When the sample xk ∈ S is removed the updated Rnew can be
obtained as follows:

Rnew = RI,I−
RI,kRk,I

Rk,k
(C.87)

I = {1, ...,k,k+2, ...,sls +1}

while when a new sample is added to set S the update can be found through:

Rnew =


0

R .
.

0 . . 0

+ 1
γ̂i

[
µ

1

][
µ 1

]
(C.88)

where µ and γ̂i are defined as

µ =−R


1

Qs1i
.

Qsls i

 γ̂i = Qii +


1

Qs1i
.

Qsls i

µ (C.89)

when the sample xi was moved from E to R. Whenever the sample xc is added to S µ and
γ̂i can be obtained from the section C.7 and section C.7.

An initial SVR solution in general can be obtained from a batch SVR solver often
being the most efficient approach. However, sometimes can be also convenient to build an
incremental solution from scratch and in this case one need to provide a starting point and
can be used the two sample solution. Considering as initial set D2 = {(x1,y1),(x2,y2)}
with y1 ≥ y2 a solution for the optimization problem section C.6 is

θ1 = max(0,min(C, y1−y2−2ε

2(K11−K12)
)) (C.90)

θ2 =−θ1 (C.91)
b = (y1− y2)/2 (C.92)

The sets E,S and R can be initialized from these two points based on section C.6,section C.6,section C.6
and if S is non empty the matrix R can also be initialized from section C.7 while as long
as the set S remains empty, the matrix R will not be used. Finally, to end the recursive
definition of the R matrix it remains to define the base case. When adding the first margin
support vector, the matrix should be initialized as follows:

R = Q−1 =

[
0 1
1 Qcc

]−1

=

[
−Qcc 1

1 0

]
(C.93)

If we want to unlearn an existing sample from the training set D we can also provide
a decremental algorithm. If the sample to unlearn xc ∈ R clearly does not contribute to
the SVR solution and its removal does not require adjustments. However, if on the other
hand xc has θc 6= 0 one can gradually reduce θc while ensuring all the other samples in the
training set to satisfy the KKT conditions. As a result the decremental algorithm follows
the same strategy of the incremental one taking into account:

• the direction of the change of θc from

sign(∆θc) = sign(f (xc)− yc) = sign(h(xc)) (C.94)

• there is no case [1] because the removed xc does not need to satisfy the KKT condi-
tions

• the condition of case [2] becomes: θc changing from |θc|> 0 to |θc|= 0.

The computational complexity of Algorithm 5 follows the same history depicted for
the Algorithm 4 which constitutes a minor iteration of the overall training algorithm. In
fact a major iteration corresponds to inclusion of a new example; therefore, all complexity
estimates must be multiplied by a number of examples to be learned. This is, however, a

Algorithm 5 Algorithm incremental SVR
Require: (θ ,R,S,E,R) if any

read (xc,yc) set θc = 0 compute gc g∗c and qc
while (gc ≤ 0 or g∗c ≤ 0) do

compute β̂ and γ̂ according to section C.7 and section C.7
compute ∆θ max

c according section C.7
update b,θc,θs,gc,gr,ge
Let k be the index of sample yielding the minimum in section C.5
if k ∈ S then

move k from S to R or E
end if
if k ∈ E ∪R then

move k from E or R to S
end if
if then
{k=c do nothing and terminate}

end if
update R according to section C.7 or section C.7

end while
return

worst case scenario, since no minor iteration is needed for many points that do not become
support vectors at the time of their inclusion. Asymptotically, the complexity of a minor
iteration is quadratic in a number of examples learned so far O(n2

t) as re-computation of
β̂ and γ̂ involves matrix-vector multiplications having quadratic complexity. Moreover
the recursive update of an inverse matrix can be shown to be quadratic in the number
of examples. These estimates have to be multiplied by a number of minor iterations
needed to learn an example. The number of minor iterations depends on the structure
of a problem, namely on how often examples migrate between the index sets until an
optimal solution is found. This number cannot be controlled in the algorithm and may
be potentially exponentially large as the structure of the problem is determined by the
geometry of a set of feasible solutions in a feature space.

	Thesis overview
	Reinforcement Learning
	Introduction
	Reinforcement Learning Definitions
	Markov Decision Processes
	Finite MDP
	Value Function
	Action Value Function

	Dynamic Programming
	Value Iteration
	Policy Iteration

	Model-Free Value Learning
	Monte Carlo Updates
	Temporal Difference Learning
	Bias and Variance

	Stochastic Iterative Algorithms
	Convergence Analysis

	Learning Action Values
	Exploration Techniques
	Expected SARSA

	Generalization Problem in RL
	Introduction
	Generalization in RL
	Generalization And Discretization Issues

	MDPs in continuous spaces
	Parametric And Non-Parametric Function Approximation
	Linear And Non Linear Function Approximation
	Value Function Approximation in RL
	Approximate Policy Iteration
	Parametric Value Function Approximation
	Non-parametric Value Function Approximation Using Kernels

	Kernel Based Approximate Policy Iteration
	Introduction
	Finite Data Sampling
	Reproducing Kernel Hilbert Spaces
	Regularized Non-Parametric Regression
	Regularization and Support Vector Regression
	Regularized API With Bellman Residuals Minimization
	Regularized API-BRM Algorithm Formulation
	API with SVR
	API-BRM Dual Batch Solution
	Bellman Kernel Characterization
	Incremental Equivalent To Batch API-BRM
	Appendix 3A: API-BRM Incremental Solution
	Appendix 3B: API-BRM Primal Solution

	API-BRM Theoretical Analysis
	Introduction
	Mixing Processes
	API-BRM Technical Assumptions
	API-BRM Policy Evaluation Error
	API-BRM Error Propagation
	API-BRM Performance Loss
	Conclusion and Discussion
	Future work
	Appendix 4A: Proof of Theorem 4.2
	Appendix 4B: Proof of Proposition 4.1

	API-BRM Experimental Analysis
	Introduction
	API-BRM Computational Complexity
	API-BRM Algorithm Implementation
	API-BRM Experiments
	The Chain Walk Control Problem
	The Inverted Pendulum Control Problem
	The Cart Pole Balancing Control Problem
	The Car On The Hill Control Problem
	The Bike Balancing And Riding Control Problem
	Bike Balancing Control Problem
	Bike Balancing And Riding Control Problem

	Conclusions and Future Work
	Acknowledgments
	Bibliography
	Appendices
	Statistical Learning
	Introduction
	Uniformly Convergent Generalization Bounds
	Generalization and Consistency of ERM
	Vapnik-Chervonenkis Theory

	Kernel Methods
	Introduction
	Feature Space Induced By Kernel
	Hilbert Spaces
	Linear Functionals

	Integrable Function Spaces
	Reproducing Kernel Hilbert Spaces
	RKHS And Regularization
	The Kernel Trick

	Support Vector Machines
	Introduction
	Optimization strategy
	Using the Kernel trick
	Properties of the solution
	Incremental SVM
	Support Vector Regression
	Incremental SVR

