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PhD Thesis

Directed by
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Dr. Carles Pedret Ferré, associate professor at Universitat Autònoma de Barcelona,
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CERTIFIE

That the doctoral thesis entitled “Application of control strategies in wastewa-

ter treatment plants for effluent quality improvement, costs reduction and

effluent limits violations removal” by Ignacio Sant́ın López, presented in partial

fulfillment of the requirements for the degree of PhD, has been developed and written

under their supervision.
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Chapter 1

Introduction

During the last decade the importance of integrated and plant-wide control has been

emphasized by the research community and the wastewater industry is now starting

to realise the benefits of such an approach. Biological wastewater treatment plants

(WWTPs) are considered complex nonlinear systems and its control is very challenging,

due to the complexity of the biological and biochemical processes that take place in

the plant and the strong fluctuations of the influent flow rate. In addition, there are

effluent requirements defined by the European Union (European Directive 91/271 Urban

wastewater) with economic penalties, to upgrade existing wastewater treatment plants

in order to comply with the effluent standards.

In this work the evaluation and comparison of the different control strategies is based

on Benchmark Simulation Model No.1 (BSM1) and Benchmark Simulation Model No.

2 (BSM2), developed by the International Association on Water Pollution Research and

Control. These benchmarks define a plant layout, influent loads, test procedures and

evaluation criteria. They provide also a default control strategy. BSM1 corresponds

to the secondary treatment of a WWTP, where the biological wastewater treatment

is performed using activated sludge reactors. The evaluation is based on a week of

simulation. BSM2 is extended to a complete simulation of a WWTP, including also

a primary clarifier, anaerobic digesters, thickeners, dewatering systems and other sub-

processes. In BSM2, a year of simulation is evaluated.

The application of different control strategies are focused on obtaining a plant per-

formance improvement. In the literature there are many works that present different

1
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methods for controlling WWTPs. Most of the works use BSM1 as working scenario. In

some cases they put their focus on avoiding violations of the effluent limits by applying

a direct control of the effluent variables. Nevertheless, they need to fix the set-points of

the controllers at lower levels to guarantee their objective, which implies a great increase

of costs. Other works give a trade-off between operational costs and effluent quality, but

they do not tackle with the effluent violations. They usually deal with the basic control

strategy (control of dissolved oxygen (SO) of the aerated tanks and nitrate nitrogen

concentration (SNO) of the second tank (SNO,2)), or propose hierarchical control struc-

tures that regulate the SO set-points according with some states of the plant, usually

ammonium and ammonia nitrogen concentration (SNH) and SNO values in any tank or

in the influent or SO in other tanks.

Other works in the literature use BSM2 as testing plant. Some of them are focused

on the implementation of control strategies in the biological treatment, as the present

work. Specifically, they propose a multi-objective control strategy based on SO control

by manipulating oxygen transfer coefficient (KLa) of the aerated tanks, SNH hierarchical

control by manipulating the SO set-points, SNO,2 control by manipulating the internal

recycle flow rate (Qa) or total suspended solids (TSS) control by manipulating the

wastage flow rate (Qw).

The control objectives of previous works are usually based on achieving an improvement

in the effluent quality and / or costs indices. However, it is of significant importance to

avoid violations of pollution in the effluent, regarding the quality of the water from a

legal point of view, and certainly in terms of cost, as these violations involve fines to be

paid.

This thesis uses first BSM1, and secondly BSM2 as working scenarios to evaluate the

applied control strategies. The goal of the presented work is to avoid SNH in the effluent

(SNH,e) and total nitrogen (SNtot) in the effluent (SNtot,e) limits violations and, at the

same time, to improve effluent quality and to reduce operational costs. The innova-

tive proposed control strategies are based on Model Predictive Control (MPC), fuzzy

controller (FC), functions that relate the input and manipulated variables and Artificial

Neural Networks (ANN). The MPC controllers are implemented with the aim of improv-

ing the control tracking. The control strategies applied with FCs and the functions that

relate the inputs with the manipulated variables are based on the processes that take
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place in the biological reactors. And the ANNs are applied to predict effluent concentra-

tions by evaluating the influent at each sample time, in order to select the appropriate

control strategy to be applied.

1.1 Publications

This work has resulted in the papers listed next:

• Journal Papers

– I. Sant́ın, C. Pedret, R. Vilanova, Applying variable dissolved oxygen set

point in a two level hierarchical control structure to a wastewater treatment

process. Journal of Process Control 28 (2015) 40–55.

– I. Sant́ın, C. Pedret, R. Vilanova, Fuzzy control and Model Predictive Con-

trol Configurations for Effluent Violations Removal in Wastewater Treatment

Plants, Industrial and Engineering Chemistry Research 51 (2015) 2763–2775.

– I. Sant́ın, C. Pedret, R. Vilanova, M. Meneses, Removing violations of the

effluent pollution in a wastewater treatment process Chemical Engineering

Journal 279 (2015) 207-219.

– I. Sant́ın, C. Pedret, R. Vilanova, M. Meneses, Intelligent decision control

system for effluent violations removal in wastewater treatment plants, Control

Engineering Practice (Submitted).

• Conference Papers

– I. Sant́ın, C. Pedret, R. Vilanova. Model predictive control and fuzzy control

in a hierarchical structure for wastewater treatment plants, 18th International

Conference on System Theory, Control and Computing. Sinaia, Romania, 17-

19 October, 2014.

– I. Sant́ın, C. Pedret, R. Vilanova. Control strategies for ammonia violations

removal in BSM1 for dry, rain and storm weather conditions, 23rd Mediter-

ranean Conference on Control and Automation. Torremolinos, Spain, 16-19

June, 2015.
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– I. Sant́ın, C. Pedret, M. Meneses, R. Vilanova. Process Based Control Archi-

tecture for avoiding effluent pollutants quality limits violations in wastewater

treatment plants, 19th International Conference on System Theory, Control

and Computing. Cheile Gradistei - Fundata Resort, Romania, 14-16 October,

2015 (Submitted).

– I. Sant́ın, C. Pedret, M. Meneses, R. Vilanova. Artifical Neural Network for

Nitrogen and Ammonia effluent limits violations risk detection in Wastewater

Treatment Plants, 19th International Conference on System Theory, Control

and Computing. Cheile Gradistei - Fundata Resort, Romania, 14-16 October,

2015 (Submitted).

1.2 Outline

The thesis is divided in eight chapters. In Chapter 2 a description of BSM1 and BSM2

benchmarks, as well as of the control approaches are done. After this, the thesis is

divided in two parts:

The first part is focused in the objective of effluent quality improvement and costs re-

duction by the application of a hierarchical structure. Chapter 3 explains the implemen-

tation and design of the MPC with feedforward compensation (MPC+FF) controllers

that compose the lower level of the hierarchical control structure. Here is also shown

the control tracking improvement in comparison with the default control strategy and

with the literature. Chapter 4 focuses on the higher level of the hierarchical control,

choosing first, the controller alternatives for manipulating SO in the fifth tank (SO,5)

and secondly, extending the higher level control by manipulating SO of the three aerobic

reactors.

The second part is related with the goal of effluent limits violations removal. In Chapter

5, the proposed control strategies for removing effluent pollutants are presented. Chapter

6 explains the implementation of the ANNs for the required effluent predictions using

BSM2 as working scenario, in order to choose the suitable control strategy to be applied.

Chapter 7 presents the control strategies applied with the intelligent decision control

system, when there is a risk of violation and the rest of the time.



Chapter 2

Working scenarios and control

approaches

2.1 Working Scenarios

2.1.1 Benchmark Simulation Model No. 1

This section provides a description of the BSM1 working scenario ([3]). This is a simula-

tion environment defining a plant layout, a simulation model, the procedures for carrying

out the tests, the criteria for evaluating the results and a default control stretegy.

2.1.1.1 Plant layout

The schematic representation of the WWTP is presented in Fig.2.1. The plant consists

in five biological reactor tanks connected in series, followed by a secondary settler. The

first two tanks have a volume of 1000 m3 each and are anoxic and perfectly mixed. The

rest three tanks have a volume of 1333 m3 each and are aerated. The settler has a total

volume of 6000 m3 and is modeled in ten layers, being the 6th layer, counting from

bottom to top, the feed layer. Two recycle flows, the first from the last tank and the

second from the underflow of the settler, complete the system. The plant is designed for

an average influent dry weather flow rate of 18446 m3/d and an average biodegradable

chemical oxygen demand (COD) in the influent of 300 g/m3. Its hydraulic retention

time, based on the average dry weather flow rate and the total tank and settler volume

5
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Figure 2.1: Benchmark Simulation Model 1

(12000 m3), is 14.4 h. Qw is fixed to 385 m3/d that determines, based on the total

amount of biomass present in the system, a biomass sludge age of about 9 days. The

nitrogen removal is achieved using a denitrification step performed in the anoxic tanks

and a nitrification step carried out in the aerated tanks. The internal recycle is used to

supply the denitrification step with SNO.

2.1.1.2 Models

The biological phenomena of the reactors are simulated by the Activated Sludge Model

No. 1 (ASM1) [4] that considers eight different biological processes. The vertical trans-

fers between layers in the settler are simulated by the double-exponential settling ve-

locity model [5]. None biological reaction is considered in the settler. The two models

are internationally accepted and include thirteen state variables. The proposed control

strategies in this work are based on the conversion rates of SNH (rNH) and SNO (rNO).

They are shown following:

rNH = −0.08ρ1 − 0.08ρ2 −
(

0.08 +
1

0.24

)
ρ3 + ρ6 (2.1)

rNO = −0.1722ρ2 + 4.1667ρ3 (2.2)

where ρ1, ρ2, ρ3, ρ6 are four of the eight biological processes defined in ASM1. Specifi-

cally, ρ1 is the aerobic growth of heterotrophs, ρ2 is the anoxic growth of heterotrophs,

ρ3 is the aerobic growth of autotrophs and ρ6 is the ammonification of of soluble organic

nitrogen (SND). They are defined below:

ρ1 = 4

(
SS

10 + SS

)(
SO

0.2 + SO

)
XB,H (2.3)
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ρ2 = 4

(
SS

10 + SS

)(
0.2

0.2 + SO

)(
SNO

0.5 + SNO

)
0.8 ·XB,H (2.4)

ρ3 = 0.5

(
NH

1 +NH

)(
SO

0.4 + SO

)
XB,A (2.5)

ρ6 = 0.05 · SND ·XB,H (2.6)

where SS is the readily biodegradable substrate, XB,H the active heterotrophic biomass

and XB,A the active autotrophic biomass. The biological parameter values used in the

BSM1 correspond approximately to a temperature of 15 oC.

The general equations for mass balancing are as follows:

• For reactor 1:

dZ1

dt
=

1

V1
(Qa · Za +Qr · Zr +Qin · Zin + rz,1 · V1 −Q1 · Z1) (2.7)

• For reactor 2 to 5:

dZk

dt
=

1

Vk
(Qk−1 · Zk−1 + rz,k · Vk −Qk · Zk) (2.8)

where Z is any concentration of the process, Z1 is Z in the first reactor, Za is Z

in the internal recirculation, Zr is Z in the external recirculation, Zin is Z from

the influent, V is the volume, V1 is V in the first reactor, Qr is the external

recirculation flow rate, Qin is the flow rate of the influent, Q1 is the flow rate in

the first tank and it is equal to the sum of Qa, Qr and Qin, k is the number of

reactor and Qk is equal to Qk−1

2.1.1.3 Test procedure

BSM1 defines four different influent data [6]: constant influent, dry weather, rain weather

and storm weather. Each scenario contains 14 days of influent data with sampling

intervals of 15 minutes. A simulation protocol is established to assure that results are

got under the same conditions and can be compared. So first a 150 days period of

stabilization in closed-loop using constant influent data has to be completed to drive

the system to a steady-state, next a simulation with dry weather is run and finally the
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desired influent data (dry, rain or storm) is tested. Only the results of the last seven

days are considered.

2.1.1.4 Evaluation criteria

In order to compare the different control strategies, different criteria are defined. The

performance assessment is made at two levels. The first level concerns the control.

Basically, this serves as a proof that the proposed control strategy has been applied

properly. It is assessed by Integral of the Squared Error (ISE), Integral of the Absolute

Error (IAE) and average of the absolute error (mean(|e|)) criteria.

ISE =

t=609days∫

t=245days

e2
i · dt (2.9)

IAE =

t=14days∫

t=7days

|ei| · dt (2.10)

mean ( | e | ) =
1

T s

i=T s∑

i=1

|ei| (2.11)

where ei is the error in each sample between the set-point and the measured value and

T s is the total number of samples.

The second level provides measures for the effect of the control strategy on plant per-

formance. It includes effluent violations, Effluent Quality Index (EQI) and Overall Cost

Index (OCI).

The evaluation must include the percentage of time that the effluent limits are not

met. The effluent concentrations of SNtot , Total COD (CODt), NH, TSS and Biological

Oxygen Demand (BOD5) should obey the limits given in Table 2.1.

SNtot is calculated as the sum of SNO and Kjeldahl nitrogen (NKj), being this the sum

of organic nitrogen and SNH .

EQI is defined to evaluate the quality of the effluent. It is related with the fines to be

paid due to the discharge of pollution. EQI is averaged over a 7 days observation period
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Variable Value

SNtot < 18 g N.m−3

CODt < 100 g COD.m−3

NH < 4 g N.m−3

TSS < 30 g SS.m−3

BOD5 < 10 g BOD.m−3

Table 2.1: Effluent quality limits

and it is calculated weighting the different compounds of the effluent loads.

EQI =
1

1000 · T

t=14days∫

t=7days

(BTSS · TSS(t) +BCOD · COD(t) +BNKj ·NKj(t)+

+BSNO
· SNO(t) +BBOD5 ·BOD5(t)) ·Q(t) · dt (2.12)

where Bi are weighting factors (Table 2.2) and T is the total time.

Factor BTSS BCOD BNKj BSNO
BBOD5

Value(g pollution unit g−1) 2 1 30 10 2

Table 2.2: Bi values

OCI is defined as:

OCI = AE + PE + 5 · SP + 3 · EC +ME (2.13)

where AE is the aeration energy, PE is the pumping energy, SP is the sludge production

to be disposed, EC is the consumption of external carbon source and ME is the mixing

energy.

AE is calculated according to the following relation:

AE =
Ssat
o

T · 1.8 · 1000

t=14days∫

t=7days

5∑

i=1

Vi ·KLai(t) · dt (2.14)

where i is the reactor number and Ssat
o is the saturation concentration for oxygen that

is equal to 8 mg/l.
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PE is calculated as:

PE =
1

T

14days∫

7days

(0.004 ·Qin(t) + 0.008 ·Qa(t) + 0.05 ·Qw(t)) · dt (2.15)

SP is calculated from the TSS in the flow wastage (TSSw) and the solids accumulated

in the system:

SP =
1

T
· (TSSa(14days)− TSSa(7days) + TSSs(14days)− TSSs(7days)+

+

t=14days∫

t=7days

TSSw ·Qw · dt) (2.16)

where TSSa is TSS in the reactors and TSSs is TSS in the settler.

EC refers to the carbon that could be added to improve denitrification.

EC =
CODEC

T · 1000

t=14days∫

t=7days

(
i=n∑

i=1

qEC,i

)
· dt (2.17)

where qEC,i is external carbon flow rate (qEC) added to compartment i, CODEC =

400 gCOD.m−3 is the concentration of readily biodegradable substrate in the external

carbon source.

ME is a function of the compartment volume:

ME =
24

T

t=14days∫

t=7days

5∑

i=1

[
0.005 · Vi if KLai(t) < 20d−1 otherwise 0

]
· dt (2.18)

2.1.1.5 Default control strategy

The original BSM1 definition includes the so called default control strategy that is

commonly used as a reference. This strategy uses two Proportional-Integral (PI) control

loops as shown in Fig. 2.2. The first one involves the control of SO,5 by manipulating

KLa in the fift tank (KLa5). The set-point for SO,5 is 2 mg/l. The second control loop

has to maintain SNO,2 at a set-point of 1 mg/l by manipulating Qa.
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Figure 2.2: Default control strategy of BSM1

2.1.2 Benchmark Simulation Model No. 2

BSM1 was extended in a new version, BSM2, in [2] which was updated in [1]. BSM2

also defines a plant layout, a simulation model, a test procedure, evaluation criteria and

default control strategies.

2.1.2.1 Plant layout

The finalized BSM2 layout (Fig. 2.3) includes BSM1 for the biological treatment of the

wastewater and the sludge treatment. A primary clarifier, a thickener for the sludge

wasted from the clarifier of biological treatment, a digester for treatment of the solids

wasted from the primary clarifier and the thickened secondary sludge, as well as a

dewatering unit have been added. The liquids collected in the thickening and dewatering

steps are recycled ahead of the primary settler.

2.1.2.2 Models

This work is based on the implementation of control strategies in the zone of biological

treatment of BSM2. For this reason, the explanation of the simulation model is focused

on the activated sludge reactors. The activated sludge reactors consist in five biological

reactor tanks connected in series. Qa from the last tank complete the system. The

plant is designed for an average influent dry weather flow rate of 20648.36 m3/d and an

average COD in the influent of 592.53 mg/l. The total volume of the bioreactor is 12000

m3, 1500 m3 each anoxic tank and 3000 m3 each aerobic tank. Its hydraulic retention
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Figure 2.3: BSM2 plant with notation used for flow rates

time, based on the average dry weather flow rate and the total tank volume, is 14 hours.

The internal recycle is used to supply the denitrification step with SNO.

ASM1 describes the biological phenomena that take place in the biological reactors.

They define the conversion rates of the different variables of the biological treatment.

Unlike BSM1, the temperature is considered in the BSM2. The proposed control strate-

gies in this work are based on rNH and rNO. They are shown following:

rNH = −0.08ρ1 − 0.08ρ2 −
(

0.08 +
1

0.24

)
ρ3 + ρ6 (2.19)

rNO = −0.1722ρ2 + 4.1667ρ3 (2.20)

where ρ1, ρ2, ρ3, ρ6 are four of the eight biological processes defined in ASM1. Specifi-

cally, ρ1 is the aerobic growth of heterotrophs, ρ2 is the anoxic growth of heterotrophs,

ρ3 is the aerobic growth of autotrophs and ρ6 is the ammonification of SND. They are

defined below:

ρ1 = µHT

(
SS

10 + SS

)(
SO

0.2 + SO

)
XB,H (2.21)
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where µHT is:

µHT = 4 · exp
((

Ln
(

4
3

)

5

)
· (Tas − 15)

)
(2.22)

where Tas is the temperature

ρ2 = µHT

(
SS

10 + SS

)(
0.2

0.2 + SO

)(
SNO

0.5 + SNO

)
0.8 ·XB,H (2.23)

ρ3 = µAT

(
SNH

1 + SNH

)(
SO

0.4 + SO

)
XB,A (2.24)

where µAT is:

µAT = 0.5 · exp
((

Ln
(

0.5
0.3

)

5

)
· (Tas − 15)

)
(2.25)

ρ6 = kaT · SND ·XB,H (2.26)

where kaT is:

kaT = 0.05 · exp
((

Ln
(

0.05
0.04

)

5

)
· (Tas − 15)

)
(2.27)

The general equations for mass balancing are as follows:

• For reactor 1:

dZ1

dt
=

1

V1
(Qa · Za +Qr · Zr +Qpo · Zpo + rz,1 · V1 −Q1 · Z1) (2.28)

where Qpo is the Q from the primary clarifier and Zpo is Z from the primary

clarifier.

• For reactor 2 to 5:

dZk

dt
=

1

Vk
(Qk−1 · Zk−1 + rz,k · Vk −Qk · Zk) (2.29)

2.1.2.3 Test procedure

The influent dynamics are defined for 609 days by means of a single file, which takes

into account rainfall effect and temperature. Following the simulation protocol, a 200-

day period of stabilization in closed-loop using constant inputs with no noise on the

measurements has to be completed before using the influent file (609 days). Nevertheless,
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only the data generated during the final 364 days of the dynamic simulation are used

for plant performance evaluation.

2.1.2.4 Evaluation criteria

The performance assessment is made at two levels. The first level concerns the control.

Basically, this serves as a proof that the proposed control strategy has been applied

properly. It is assessed by ISE and IAE criteria.

The second level measures the effect of the control strategy on plant performance. It

includes the percentage of time that the effluent limits are not met, EQI and OCI. The

effluent concentrations of SNtot , CODt, SNH , TSS and BOD5 should obey the limits

given in Table 2.1.

EQI is defined to evaluate the quality of the effluent. EQI is averaged over a 364 days

observation period and it is calculated weighting the different compounds of the effluent

loads.

EQI =
1

1000 · T

t=609days∫

t=245days

(BTSS · TSS(t) +BCOD · COD(t) +BNKj · SNKj(t)+

+BNO · SNO(t) +BBOD5 ·BOD5(t)) ·Q(t) · dt (2.30)

where Bi are weighting factors (Table 2.2).

OCI is defined to evaluate the operational cost as:

OCI = AE + PE + 3 · SP + 3 · EC +ME − 6 ·METprod +HEnet (2.31)

where METprod is the methane production in the anaerobic digester and HEnet is the

net heating energy.

AE is calculated according to the following relation:

AE =
8

T · 1.8 · 1000

t=609days∫

t=245days

5∑

i=1

Vi ·KLai(t) · dt (2.32)
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PE is calculated as:

PE =
1

T

609days∫

245days

(0.004·Qin(t)+0.008·Qa(t)+0.06·Qw(t))+0.06·Qto(t))+0.004·Qdu(t))·dt

(2.33)

where Qto is the overflow rate from the thickener and Qdu is the underflow rate.

SP is calculated as:

SP =
1

T
· (TSSa(609days)− TSSa(245days) + TSSs(609days)− TSSs(245days)+

+ 0.75 ·
t=609days∫

t=245days

TSSw ·Qw · dt) (2.34)

EC is defined as:

EC =
CODEC

T · 1000

t=609days∫

t=245days

(
i=n∑

i=1

qEC,i

)
· dt (2.35)

ME is defined as:

ME =
24

T

t=609days∫

t=245days

5∑

i=1

[
0.005 · Vi if KLai(t) < 20d−1 otherwise 0

]
· dt (2.36)

2.1.2.5 Default control strategies

The original BSM2 definition ([2]) proposes a PI control strategy (defCL). The closed-

loop control configuration consists of a PI that controls SO in the fourth tank (SO,4) at

a set-point of 2 mg/l by manipulating KLa in the third tank (KLa3), KLa in the fourth

tank (KLa4) and KLa5, with KLa5 set to the half value of KLa3 and KLa4. qEC in the

first reactor (qEC,1) is added at a constant flow rate of 2 m3/d. Two different Qw values

are imposed dependent on time of the year: from 0 to 180 days and from 364 to 454

days Qw is set to 300 m3/d; and for the remaining time periods Qw is set to 450 m3/d.

The finalisation of BSM2 plant layout is reported by [1], in which two new control

strategies are proposed. The first control strategy (CL1) is based on modifying the
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defCL, controlling the SO,4 set-point at 2 mg/l, by manipulating KLa3 and KLa4, and

adding another loop to control SO,5 by manipulating KLa5. PI controllers are applied

for both control loops. The second control strategy (CL2) adds a hierarchical control to

CL1. Therefore, a PI controller is applied to control SNH in the fifth tank (SNH,5) at a

set-point of 1.5 mg/l by manipulating SO,5 set-point. In the case of CL2, qEC,1 is added

at a constant value of 1 m3/d.

Fig. 2.4 shows the three explained control strategies.

Qpo

Qa

 PI

SO,4

Activated sludge reactors

KLa5KLa4KLa3

SO,4
set-point
(2 mg/l)

(a) defCL control strategy

Qpo

Qa

 PI

SO,4

Activated sludge reactors

KLa5KLa4KLa3

SO,4
set-point
(2 mg/l)

 PI SO,5
set-point

SO,5

 PI
SNH,5
set-point
(1.5 mg/l)

SNH,5

CL1

CL2

(b) CL1 and CL2 control strategies

Figure 2.4: Default control strategies of BSM2

2.2 Control Approaches

The control strategies applied in this thesis are based on MPC controllers, FCs and

ANNs. They are implemented using Matlab R© for the simulation and on-line control.

Specifically, MPC controllers have been designed with MPC toolbox, FCs with FIS editor
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and ANNs with Neural Network Fitting toolbox. The prediciton models of MPC con-

trollers have been identified with System Identification toolbox. To solve the quadratic

objective of MPC in equation (2.39), the Quadratic Dynamic Matrix Control solver ([7])

with hard linear constraints in the inputs provided by Matlab R© MPC toolbox has been

used.

2.2.1 Model Predictive Control

The basis of MPC is the use of an optimization algorithm to solve the control problem

and the use of a model of the plant to make predictions of the output variables ([8]). At

each control interval, 4t, for a prediction horizon, p, and a control horizon, m, (m < p),

the MPC algorithm computes the sequences of control moves over the horizon m:

4u(k),4u(k + 1), ...,4u(k +m− 1) (2.37)

makes predictions of the outputs variables over a future horizon p (see Fig. 2.5):

ŷ(k + 1|k), ŷ(k + 2|k), ..., ŷ(k + p|k) (2.38)

and selects the sequence of control moves that minimizes a quadratic objective of the

form:

J =

p∑

l=1

||Γy[y(k + l|k)− r(k + l)]||2 +

m∑

l=1

||Γ4u[4u(k + l − 1)]||2 (2.39)

where the output prediction y(k + l|k) means a predicted controlled output for the

future sampling instant k + 1, performed at the current instant k, and Γy and Γ4u

are the output weight and input rate weight respectively, which penalize the residual

between the future reference and the output variable prediction, and the control moves.

The MPC algorithm requires a state-space linear model to foresee how the plant outputs,

y(k), react to the possible variations of the control variables, u(k), and to compute the

control moves at each 4t. WWTPs are nonlinear systems, but their operation can be

approximated in the vicinity of a working point by a discrete-time state-space model as:

x(k + 1) = Ax(k) +Bu(k)
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K-1 K K+1 K+2 K+p

Figure 2.5: Model Predictive Control performance

y(k) = Cx(k) +Du(k) (2.40)

where x(k) is the state vector, and A, B, C and D are the state-space matrices.

Due to the presence of strong disturbances on WWTPs, MPC has difficulties in keeping

the controlled variables at their reference level. To compensate the disturbances, a feed-

forward control action is added, as in [9], [10], [11] and [12]. MPC provides feedforward

compensation for the measured disturbances as they occur to minimize their impact

on the output. The combination of feedforward plus feedback control can significantly

improve the performance over simple feedback control whenever there is a major dis-

turbance that can be measured before it affects the process output. The idea of the

feedforward control is to act on the process when the disturbances appear and before

they cause deterioration in the effluent quality.

2.2.2 Fuzzy Control

Fuzzy logic is described as an interpretative system in which objects or elements are

related with borders not clearly defined, granting them a relative membership degree

and not strict, as it is customary in traditional logic. The typical architecture of a FC,

shown in Fig. 2.6, consists of: a fuzzifier, a fuzzy rule base, an inference engine and a

defuzzifier ([13, 14]).

Fuzzy control is defined as a control based on human expertise, determined by words

instead of numbers and sentences instead of equations ([13, 14]). In fact this does not
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Fuzzifier

Fuzzy Rule

Base

Defuzzifier Plant
Interference

Engine xx yµ(x) µ(y)

Figure 2.6: Architecture of a FC

mean at all that a knowledge of the process dynamics is not needed. Good knowledge of

the dynamic behavior of the controlled plant is to be available to the designer. However,

process variables are measured in numbers instead of words. For this reason, the fuzzifier

adapts the input variables into suitable linguistic values by membership functions. There

are different forms of membership functions, e.g. triangular, trapezoidal or gaussian,

and they are chosen according to the user’s experience. Range of membership functions

values are also set: minimum value of the input variable (MinIn), maximum value of the

input variable (MaxIn), minimum value of the output variable (MinOut), maximum

value of the output variable (MaxOut). The fuzzy rule base is a set of if-then rules

that store the empirical knowledge of the experts about the operation of the process.

First the fuzzy logic computes the grade of membership of each condition of a rule,

and then aggregates the partial results of each condition using fuzzy set operator. The

inference engine combines the results of the different rules to determine the actions to be

carried out, and the defuzzifier converts the control actions of the inference engine into

numerical variables, determining the final control action that is applied to the plant.

There are two different methods to operate these modules: Mamdani ([15]) and Sugeno

([16]). Mamdani system aggregates the area determined by each rule and the output

is determined by the center of gravity of that area. In a Sugeno system the results of

the if − then rules are already numbers determined by numerical functions of the input

variables and therefore no deffuzifier is necessary. The output is determined weighting

the results given by each rule with the values given by the if conditions.

For example, Fig. 2.7 shows three triangular membership functions (mf1, mf2 and

mf3) with MinIn = 0 and MaxIn = 5. Thus, an input of 1.5 can be transformed into

fuzzy expressions as 0.25 of mf1 and simultaneously 0.5 of mf2. Fig. 2.8 shows the

three membership functions (mf4, mf5, mf6) of the Mamdani defuzzifier with MinOut

= 0 and MaxOut = 5. The if − then rules implemented are:
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if (Input is mf1) then (Output is mf4)

if (Input is mf2) then (Output is mf5)

if (Input is mf3) then (Output is mf6)

The output is the result of the aggregation of two rules, one that gives 0.25 of mf4 and

other that gives 0.5 of mf5.

0.25

0.5

0.5

1

1 1.5 2 2.5 3 3.5 4 4.5

mf1 mf2 mf3

Input variable “Input"

0 5

MinIn MaxIn

Figure 2.7: Example of membership functions of fuzzifier

0.25

0.5

0.5

1

1 1.5 2 2.5 3 3.5 4 4.5

mf4 mf5 mf6

Output variable “Output"

0 5

MinOut MaxOut

Figure 2.8: Example of membership functions of defuzzifier

2.2.3 Artificial Neural Network

ANNs are inspired by the structure and function of nervous systems, where the neuron is

the fundamental element ([17]). ANNs are composed of simple elements, called neurons,

operating in parallel. ANNs have proved to be effective for many complex functions,
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as pattern recognition, system identification, classification, speech vision, and control

systems ([18, 19]). ANNs are frequently used for nonlinear system identification, to

model complex relationships between the inputs and the outputs of a system, as it is

the case of WWTPs.

An artificial neuron is a device that generates a single output y from a set of inputs xi

(i = 1 ... n). This artificial neuron consists of the following elements:

• Set of xi inputs with n components

• Set of weights wij that represent the interaction between the neuron j and neuron

i.

• Propagation rule, a weighted sum of the scalar product of the input vector and

the weight vector: hi(t) =
∑
wij · xj .

• Activation function provides the state of the neuron based on of the previous state

and the propagation rule (i.e. threshold, piecewise linear, sigmoid, Gaussian):

ai(t) = f(ai(t− 1), hi(t)) :.

• The output y(t) that depends on the activation state.

The architecture of an ANN is the structure of network connections. The connections

between neurons are directional and the information is transmitted only in one direction.

In general, neurons are usually grouped into structural units called layers. Within a

layer, the neurons are usually of the same type. Figure 2.9 shows the typical network

architecture with three layers: input layer, hidden layer (processing neurons between

the input and the output) and output layer.

ANNs are subjected to a learning process also called training. Typically, a large data

set of inputs and outputs is needed to design an ANN, and the input and output data

are divided into a set used for training the ANN and the rest for testing the results of

the ANN. The network learns the connection weights from available training patterns.

Performance is improved by updating iteratively the weights in the network. When the

training is over, the ANN performance is validated, and depending on the difference

between the outcome and the actual outputs, the ANN has to be trained again or can

be implemented.
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Figure 2.9: Structure of Artificial Neural Network layers

The number of input nodes, output nodes and the nodes in the hidden layer depend

upon the problem being studied. If the number of nodes in the hidden layer is small,

the network may not have sufficient degrees of freedom to learn the process correctly,

and if the number is too high, the training will take a long time and the network may

sometimes over-fit the data ([20]).
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Effluent quality improvement and

costs reduction
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Chapter 3

Lower level control: tracking

improvement

This chapter presents the lower level control of a hierarchical structure using BSM1 as

working scenario. This level is based on the default control strategy, SO,5 and SNO,2

control by manipulating KLa5 and Qa respectively. Next, the SO control is extended to

the third and fourth tanks by manipulating KLa3 and KLa4.

Other works dealt with the default control strategy applying different controllers, as

PI/PID ([21, 22]), fuzzy ([23]) or MPC ([12, 24, 25]). In this work, MPC+FF has been

proposed with the objective of improving the SO and SNO,2 tracking in comparison with

the default control strategy and with the literature.

3.1 MPC+FF configuration

The two PI controllers of the default BSM1 control strategy are replaced by an MPC+FF

with two inputs (SO,5 and SNO,2) and two outputs (KLa5 and Qa), in order to improve the

tracking of SO,5 and SNO,2 set-points, whose results are evaluated by the ISE criterion.

Some studies deal with this basic control strategy (SO of the aerated tanks and SNO of

the last anoxic tank), but testing with different controllers such MPC and FC ([12, 21–

25]).

25
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In addition, two MPC+FF controllers are added to control SO in the third tank (SO,3)

and SO,4 by manipulating KLa3 and KLa4 respectively (see Fig. 3.1).

Different variables have been considered for the feedforward action in the literature, but

in our case Qin has been selected for its better results. Any change in Qin affects directly

the flow rates of all the tanks, modifying their hydraulic retention time. Therefore, it

is necessary to adjust the manipulated variables immediately to compensate the Qin

disturbances.

Qr

Qw

QeQin

Qa

 MPC+FF

KLa,5

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

m=10

m=6

m=1

Inlet flow rate feedforward control

KLa,4KLa,3

 MPC+FF

 MPC+FF

SNO,2

SO,5SO,4SO,3

Figure 3.1: BSM1 with MPC+FF for the control of SNO,2 and SO in the three aerobic
tanks

The variables of the state-space model (2.40) for the three MPC controllers are described

following: u1(k) is Qa, u2(k) is KLa5, u3(k) is Qin and y1(k) is SNO,2 and y2(k) is SO,5

in the controller of SO,5 and SNO,2; u1(k) is KLa4, u2(k) is Qin and y1(k) is SO,4 in the

controller of SO,4 and u1(k) is KLa3, u2(k) is Qin and y1(k) is SO,3 in the controller of

SO,3.

The identification of the linear predictive models of the MPC controllers was performed

using Matlab R© System Identification Tool. The data of the output variables (SO,3, SO,4,

SO,5 and SNO,2) are obtained by making changes to the input variables (KLa3, KLa4,

KLa5 and Qa) with a maximum variation of 10% regarding its operating point, which

is the value of KLa necessary to obtain 2 mg/l of SO and the value of Qa necessary

to obtain 1 mg/l of SNO,2. Specifically, the working points are 264.09 day −1, 209.23

day −1, 131.65 day −1 and 16486 m3/day for KLa3, KLa4, KLa5 and Qa respectively.

Different sources were tested to modify the input variables as random, sinusoidal or
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step, and finally the best fit was obtained with random source. These input variations

are performed every 2.4h, sufficient time to ensure the effect of these variations on the

output signals. Furthermore, for the feedforward compensation, a step to Qin of +10%

is added over 18446 m3/day, which is the average value during the stabilization period.

Two methods were tested for determining the model with the obtained data, prediction

error method (PEM) ([26]) and subspace state spacesystem identification (N4SID) ([27]).

Finally PEM were selected because it fits better with the real response of the plant. The

order of the models was chosen from a trade-off between the best fit and the lowest order.

Therefore the following third order state-space models are obtained:

• SO,5 and SNO,2 control

A =




0.8748 0.04463 0.1314

0.04091 0.7331 0.1796

0.2617 −0.1318 0.3007




B =




7.641 · 10−6 0.004551 −2.749 · 10−5

−2.631 · 10−5 0.006562 −4.551 · 10−6

−9.63 · 10−6 −0.02161 2.447 · 10−5




C =


 0.8812 −0.5948 0.02114

1.187 0.9893 −0.3754




D =


 0 0 0

0 0 0




(3.1)

• SO,3 control

A =




0.7859 0.4576 −0.131

0.3334 0.2599 0.2718

−0.003132 0.03235 −1.003




B =




0.009308 −2.285 · 10−5

−0.01546 3.503 · 10−6

0.003654 −1.987 · 10−5




C =
[

0.6376 −0.4621 0.03698
]

D =
[

0 0
]

(3.2)



Chapter 3. Lower level control: tracking improvement 28

• SO,4 control

A =




0.8201 0.371 −0.1016

0.3054 0.307 0.2544

−0.003381 0.03144 −0.9993




B =




0.007712 −4.65 · 10−5

−0.0148 8.164 · 10−6

0.004523 −2.526 · 10−5




C =
[

0.947 −0.496 0.02472
]

D =
[

0 0
]

(3.3)

Data acquisition for the model identification is based on simulations, as this work is

a first step to be subsequently tested in a pilot plant and finally in a real plant. In

order to predict the possible application in a real plant, the data acquisition for the

identification is performed while the plant is kept at a certain desired operating point,

whose values are considered suitable for the biological wastewater treatment of this

plant. Therefore, what the identification needs is only the possibility of adding some

incremental changes to those operating conditions. As mentioned before, the inputs

used for identification purposes represent a maximum variation of 10%. Therefore they

will not disturb the actual plant operation. The generated outputs will reflect the

effect of such input variables manipulation. Data for identification have been generated

simulating one week. However, in the case of the real plant, the identification could be

carried out in different periods and not necessarily in consecutive days. Plants operator

knowledge can in addition be used to know the more appropriate days to perform the

experiment.

With regard to the tuning of the MPC controllers, the parameters are: 4t, m, p, Γ4u,

Γy and the overall estimator gain.

• 4t has a significant effect on the effectiveness of the controller. High 4t can give

less controller performance, mainly when there are important input disturbances,

and low 4t can produce changes too quickly in the actuators and also high energy

consumption.

• Lower Γ4u or higher Γy give better performance of the controlled variable that

could otherwise produce strong oscillations in the actuators that must be avoided.
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• m and p should be adjusted depending on system control in each case. However

values that are too high can increase the computational time in excess, and on the

other hand, values that are too small may result in oscillatory responses or may

not work at all.

• At each4t the controller compares the true value of the outputs with the expected

values. The difference can be due to noise, to measurements errors and to unmea-

sured disturbances. With the overall estimator gain parameter, it is determined

the percentage of this difference that is attributed to unmeasured disturbances and

the calculation matrix is consequently adjusted. Higher overall estimator gains im-

prove the results, but too high values can make the controller unfeasible.

The selected values to tune the MPC controllers are m = 5, p = 20, 4t = 0.00025 d

(21.6 s), Γy = 1 and Γ4u = 0.01 for SO,3, SO,4 and SO,5 control and Γy = 1 and Γ4u =

0.0001 for SNO,2 control and overall estimator gain = 0.8. It should be noted that the

values of m and p are not critical and they can be slightly changed with similar results.

3.2 Simulations Results

3.2.1 SO,5 and SNO,2 control

Fig. 3.2 shows SO,5 and SNO,2 for the dry weather case compared with the default PI

control. Table 3.1 shows that MPC+FF reduces ISE of SNO,2 control more than 99%

and ISE of SO,5 control more than 97% in comparison with the default PI controllers.

This control performance improvement results in a 1.1% of EQI reduction, keeping a

similar OCI (increase of 0.0063%).

This comparison is also done for the rain (see Fig. 3.3 and Table 3.1) and storm influents

(see Fig. 3.4 and Table 3.1), obtaining similar percentages of improvement: ISE 99.6%

(rain) and 99.5% (storm) for SNO,2 control and 92.02% (rain) and 90.8% (storm) for SO,5

control, and reducing EQI with MPC+FF 1.03% for rain and 1.09% for storm. OCI is

similar, increasing a 0.037% for rain and 0.044% for storm; nevertheless this difference

is not significant.
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Figure 3.2: Dry influent: Control performance of SO,5 and SNO,2 with default PI
controllers and with MPC+FF
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Figure 3.3: Rain influent: Control performance of SO,5 and SNO,2 with default PI
controllers and with MPC+FF

For a more comprehensive comparison, the results of the referenced papers which provide

indicators of the control performance have been added and compared with the proposed

MPC+FF for dry influent in Table 3.2. To ensure a fair comparison, it is done with

the referenced papers, which control SO,5 at the set-point of 2 mg/l and/or SNO,2 at

the set-point of 1 mg/l and use the original version of BSM1. To allow the comparison

with the greatest possible number of papers, two control performance criteria have been

added to the usual ISE: IAE and mean(|e|).
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Figure 3.4: Storm influent: Control performance of SO,5 and SNO,2 with default PI
controllers and with MPC+FF

Dry weather
PI MPC+FF %

ISE (SNO,2 control) 0.47 0.0013 -99.7%
ISE (SO,5 control) 0.022 0.00067 -96.9%

EQI (kg pollutants/d) 6115.63 6048.25 -1.1%

OCI 16381.93 16382.97 +0.0063%
Rain weather

PI MPC+FF %

ISE (SNO,2 control) 0.69 0.0028 -99.6%

ISE (SO,5 control) 0.016 0.0013 -92.02%

EQI (kg pollutants/d) 8174.98 8090.29 -1.03%

OCI 15984.85 15990.85 +0.037%

Storm weather

PI MPC+FF %

ISE (SNO,2 control) 0.69 0.0032 -99.5%

ISE (SO,5 control) 0.020 0.0018 -90.8%

EQI (kg pollutants/d) 7211.48 7132.60 -1.09%

OCI 17253.75 17261.39 +0.044%

Table 3.1: ISE, EQI and OCI results using default PI controllers and MPC+FF for
dry, rain and storm influents

SO,5 control SNO,2 control SO,5 and SNO,2 control

ISE IAE mean(|e|) ISE IAE mean(|e|) mean(|e|)
Proposed MPC+FF 0.00067 0.047 0.0068 0.0013 0.067 0.0096 0.0082

[25] - - - - - - 0.024

[21] - - 0.9 - - - -

[24] 0.0026 0.0892 - - - - -

[23] 0.0012 0.0792 - - - - -

[22] 0.00092 0.049 - 0.408 1.21 - -

Table 3.2: Comparison of the performance of SO,5 and SNO,2 control between
MPC+FF and the referenced works

The improvement of SNO,2 and SO,5 tracking as a result of applying MPC+FF compared

to the rest of the referenced papers is shown.
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3.2.2 SO,3 and SO,4 control

It is also important to obtain a good SO,3 and SO,4 tracking, because the variation of

the SO set-point is applied to the three aerobic reactors, as shown in the next chapter.

Fig. 3.5 and Fig, Fig. 3.6 and Fig. 3.7 show SO,3 and SO,4 evolution applying MPC+FF

controllers for the dry, rain and storm influents. Table 3.3 shows satisfactory results

of SO,3 and SO,4 control with the MPC+FF controllers. Comparison of the results has

been accomplished only with [21] for dry weather, due to it is the only referred work

that provides results of SO,3 and SO,4 control. However, it can be seen that the control

performance results are similar to those obtained with SO,5, and even better in the case

of SO,3, as it is shown in Table 3.2 and Table 3.1 of previous section.
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Figure 3.5: Dry influent: Control performance of SO,3 and SO,4 with MPC+FF

Dry weather

SO,3 control SO,4 control

ISE IAE mean(|e|) ISE IAE mean(|e|)
MPC+FF 0.00037 0.038 0.0054 0.0027 0.096 0.014

[21] - - 1.5 - - 2.7

Rain weather

SO,3 control SO,4 control

ISE IAE mean(|e|) ISE IAE mean(|e|)
MPC+FF 0.0004 0.039 0.0055 0.0027 0.094 0.013

Storm weather

SO,3 control SO,4 control

ISE IAE mean(|e|) ISE IAE mean(|e|)
MPC+FF 0.00056 0.043 0.0062 0.004 0.11 0.015

Table 3.3: Results of SO,3 and SO,4 control with MPC+FF controllers for dry, rain
and storm weather conditions
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Figure 3.6: Rain influent: Control performance of SO,3 and SO,4 with MPC+FF
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Figure 3.7: Storm influent: Control performance of SO,3 and SO,4 with MPC+FF

3.3 Summary

In this chapter, the lower level of a hierarchical control structure has been implemented

using BSM1 as working scenario. This is based on SO,3, SO,4 , SO,5 and SNO,2 control

by manipulating KLa3, KLa4, KLa5, Qa respectively.

First, the default control strategy is evaluated. Next, a MPC+FF controller tracks SO5

and SNO,2, improving the control performance with an ISE reduction of more than 90%
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compared to the default PI controllers for the three influents. The control performance

of the MPC+FF controllers has been also compared to the referenced papers, showing

the improvement of the proposed method and thus the successful tracking. Next, the SO

control is extended to the third and fourth tanks. Thus, two MPC+FF controllers are

added to control SO,3 and SO,4 by manipulating KLa3 and KLa4 respectively, obtaining

similar control performance results as in SO,5 control.

The tracking improvement of SO,5 and SNO,2 using MPC+FF controllers result in a

EQI reduction of around 1% with a similar OCI, in comparison with the default PI

controllers. In addition, the importance of the satisfactory SO tracking achieved in the

three aerobic tanks is remarkable, especially for the implementation of the hierarchical

control structure explained in next chapter, to ensure that the value of SO is as close as

possible to the set-point provided by the higher level.



Chapter 4

Higher level control:

manipulation of dissolved oxygen

set-points

In this chapter the higher level control of a two-level hierarchical structure is proposed

using BSM1 as testing plant. The lower level is composed of the MPC+FF controllers

described in the previous chapter. The higher level controller has to manipulate SO

set-points of the lower level controllers according to SNH,5 (see Fig. 4.1). The biological

treatment of SNH and SNO is the result of various processes given by ASM1. When

SNH increases, more SO is needed for nitrification (2.1, 2.5). On the contrary, when

SNH decreases, less SO is required, producing less SNO (2.2, 2.5).

Some investigations propose a hierarchical control that regulates the DO set-points,

depending on some states of the plant, usually SNH and SNO concentration values in

any tank or in the influent ([22, 28–31]) or DO in other tanks ([32]). Nevertheless,

these investigations use PI controllers or MPC as higher level control, trying to keep the

controlled variable at a fixed set-point, but with a large resulting error. In this work,

three alternatives are tested for the higher level: An MPC, an affine function and a FC.

For each of these alternatives a range of tuning parameters are proposed. The control

alternatives have been tested only by controlling the fifth reactor.

35
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Figure 4.1: BSM1 with MPC+FF and Hierarchical control

4.1 Testing alternatives for the higher level control

4.1.1 Proposed alternatives

First, a MPC is proposed for the higher level control, with the aim of keeping SNH,5 at

a fixed set-point by manipulating SO,5.

Next, an affine function is applied based on the biological processes. The nitrification

process is performed by the autotrophic bacteria whose growth is obtained by ρ3 (2.5).

As it can be observed, higher SNH and SO produce a greater SNH removal. However,

increasing the SO value also increases SNO and operational costs, as it can be observed

in equations 2.2 and 2.13. For this reason it is important to increase SO when SNH

increases to reduce SNH peaks, and decrease SO when SNH decreases, producing less

SNO and reducing costs. Unlike MPC, the affine function regulates SO,5 set-point based

on SNH,5, to obtain the SO,5 value, but without having the aim of keeping SNH,5 at a

reference level. Thus the following affine function is proposed:

SO,5 set− point(t) = SNH,5(t)− k (4.1)

where k is a constant. SO,5 value obtained is directly proportional to SNH,5, subtracting

the k value. Also, a constraint of a maximum value of SO,5 has been added to improve

the EQI and OCI trade-off. Values of k and SO,5 maximum are considered tuning

parameters.
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Finally, a higher level FC is also implemented, with the same idea of the higher level

affine function. Thus, the higher level FC modifies SO,5 based on SNH,5, but does not

try to keep SNH,5 at a given set-point. However, the methodology to obtain the SO,5

set-point is modified, using fuzzy logic in this case.

4.1.2 Controllers tuning

Higher level MPC: As it has been done with lower level MPC in the previous

chapter, a linear model (2.40) of the plant is needed to compute predictions of the

output variables of the MPC. In this case, the plant model has one input and one

output. Concretely, u(t) is the set-point value of SO,5 and y(t) is SNH,5.

In order to identify the linear model, SNH,5 has been determined by varying SO,5 set-

point around 2 mg/l, with maximum values of ±10%.

By using a prediction error method, a second order state-space model (2.40) is obtained,

as:

A =


 0.2531 0.3691

0.2781 −0.2695


 B =


 −0.4507

−0.1712




C =
[

0.08655 −0.01681
]

D =
[

0
]

(4.2)

The following tuning parameters have been selected: 4t=0.035 days (50.4 minutes),

m=2, p=10. To determine Γ4u and SNH,5 set-point values, a trade-off representation

for OCI and EQI is provided and showed in Fig. 4.2. Every line corresponds to the

results obtained for different Γ4u (0.1, 0.05, 0.01 and 0.001), and the points marked

with crosses are the results for a range of SNH,5 set-point values, from 0.5 to 6.5 with

increments of 0.25.

The results with MPC+FF alone and with default PI controllers alone are also repre-

sented. Fig. 4.2 shows an area in which results obtained with higher level MPC controller

improve simultaneously OCI and EQI in comparison with MPC+FF and with default

PI controllers alone. This is the proposed tuning region.

The OCI and EQI trade-off representation has also been done for rain and storm influents

(Fig. 4.3 and Fig. 4.4 respectively), obtaining also the corresponding tuning regions.

However, they are smaller than the one obtained for the dry influent.
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Figure 4.2: Dry influent: OCI and EQI trade-off with higher level MPC for a range of
SNH,5 values (points marked with crosses) and Γ4u = 0.001 (dashed line), 0.01 (solid

line), 0.05 (dash-dotted line) and 0.1 (dotted line)

Figure 4.3: Rain influent: OCI and EQI trade-off with higher level MPC for a range
of SNH,5 values (points marked with crosses) and Γ4u = 0.001 (dashed line), 0.01 (solid

line), 0.05 (dash-dotted line) and 0.1 (dotted line)

Taking into account the OCI and EQI trade-off representations for dry, rain and storm

influents (Fig. 4.2, 4.3 and Fig. 4.4 respectively), Γ4u and SNH,5 set-points have been

selected for the cases of lowest EQI without increasing OCI and the lowest OCI without

worsening EQI for every influent in comparison with MPC+FF alone (Table 4.1).

Higher level affine function: For the affine function, k values and maximum
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Figure 4.4: Storm influent: OCI and EQI trade-off with higher level MPC for a range
of SNH,5 values (points marked with crosses) and Γ4u = 0.001 (dashed line), 0.01 (solid

line), 0.05 (dash-dotted line) and 0.1 (dotted line)

dry rain storm
lowest lowest lowest lowest lowest lowest
EQI OCI EQI OCI EQI OCI

Γ4u 0.001 0.05 0.05 0.05 0.05 0.05
SNH,5 set-point 3.1 5.4 3.75 4.6 3.7 5

Table 4.1: Higher level MPC tuning: Γ4u and SNH,5 set-point

values of SO,5 have been selected for the OCI and EQI trade-off representation showed

in Fig. 4.5. In this case, each line corresponds to the results obtained with different

SO,5 maximum values (2.5-k; 3-k; 3.5-k; 4-k and 4.5-k), while each one of the points

marked with crosses are the results obtained for different values of k (from 0.3 to 1.6

with increments of 0.1). In the same way, the results obtained with MPC+FF alone and

with PI default controllers alone are also shown.

The same range of k and SO,5 maximum values have been tested for rain and storms

influents, obtaining also the trade-off representations (Fig. 4.6 and Fig. 4.7 respectively).

The areas of the tuning regions, which result in a simultaneous improvement of OCI

and EQI in comparison with MPC+FF alone and with default PI controllers alone, are

larger than those obtained with higher level MPC.

Taking into account the trade-off representations (see Fig. 4.5, Fig. 4.6, and Fig. 4.7),

Table 4.2 shows SO,5 maximum and k values for the extreme cases of lowest EQI with-

out increasing OCI and the lowest OCI without worsening EQI in comparison with
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Figure 4.5: Dry influent: OCI and EQI trade-off with higher level affine function for
a range of k values (points marked with crosses) and SO,5 maximum = 4 (dashed line),

3.5 (solid line), 3 (dash-dotted line), 2.5 (dotted line)

Figure 4.6: Rain influent: OCI and EQI trade-off with higher level affine function for
a range of k values (points marked with crosses) and SO,5 maximum = 4 (dashed line),

3.5 (solid line), 3 (dash-dotted line), 2.5 (dotted line)

MPC+FF alone and default PI controllers alone.

Higher level Fuzzy Controller: The implementation of the proposed FC was

based on the observation of the simulations results obtained by operating the plant with

the default control of BSM1.
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Figure 4.7: Storm influent: OCI and EQI trade-off with higher level affine function
for a range of k values (points marked with crosses) and SO,5 maximum = 4 (dashed

line), 3.5 (solid line), 3 (dash-dotted line), 2.5 (dotted line)

dry rain storm
lowest lowest lowest lowest lowest lowest
EQI OCI EQI OCI EQI OCI

k 0.59 1.23 0.48 0.79 0.39 0.96
SO,5 maximum 3.41 1.27 2.52 1.71 2.61 1.54

Table 4.2: Higher level affine function tuning: k and SO,5 maximum values

The input of the FC is SNH,5. Three triangular membership functions are applied to

the input to fuzzyfy. The following fuzzy sets have been used: low, medium and high.

The output is the SO,5 set-point of the lower level control. Also three triangular member-

ship functions have been applied to the output with the same fuzzy sets: low, medium

and high.

The if-then fuzzy rules that relate the input and output are:

if (SNH,5 is low) then (SO,5 is low)

if (SNH,5 is medium) then (SO,5 is medium)

if (SNH,5 is high) then (SO,5 is high)

The Mamdani method has been chosen to defuzzify the results of the above if-then

fuzzy rules and thereby to obtain a single value of the SO,5 set-point based on the value

of SNH,5.
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Values of MinIn and MinOut are both fixed to 0.1. Several OCI and EQI results have

been obtained for different values of MaxIn (3, 4, 5 and 7) and MaxOut (2, 2.5, 3,

3.5, 4, 4.5, 5 and 5.5). With these results, trade-off representations of EQI and OCI for

the three influents (dry, rain and storm) are made (Fig. 4.8, Fig. 4.9, and Fig. 4.10),

obtaining a tuning area where both OCI and EQI are improved in comparison with

MPC+FF alone and with the default PI controllers.

Figure 4.8: Dry influent: OCI and EQI trade-off with higher level FC for a range of
MaxOut values (points marked with crosses) and MaxIn = 3 (dashed line), 5 (solid

line), 7 (dash-dotted line) and 9 (dotted line)

Figure 4.9: Rain influent: OCI and EQI trade-off with higher level FC for a range of
MaxOut values (points marked with crosses) and MaxIn = 3 (dashed line), 5 (solid

line), 7 (dash-dotted line) and 9 (dotted line)
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Figure 4.10: Storm influent: OCI and EQI trade-off with higher level FC for a range
of MaxOut values (points marked with crosses) and MaxIn = 3 (dashed line), 5 (solid

line), 7 (dash-dotted line) and 9 (dotted line)

The areas of the tuning regions, which result in a simultaneous improvement of OCI

and EQI in comparison with MPC+FF alone and with default PI controllers alone, are

similar to the ones corresponding to the higher level with affine function.

Table 4.3 shows the MaxIn and MaxOut values for the extreme cases of lowest EQI

without increasing OCI and lowest OCI without worsening EQI in comparison with

MPC+FF alone and default PI controllers alone for the three influents.

dry rain storm
lowest lowest lowest lowest lowest lowest
EQI OCI EQI OCI EQI OCI

MaxIn 5 9 5 3 5 5
MaxOut 4.78 2.76 4.1 2.41 4.14 2.5

Table 4.3: Higher level FC tuning: MaxIn and MaxOut values

4.1.3 Simulations results

Higher level MPC: In order to improve EQI, the values of SNH and SNO have to

be reduced because they are the pollutants with largest influence on the effluent quality.

Fig. 4.11 shows SNH,5, SNO in the fifth tank (SNO,5) and SO,5 for dry influent with the

tuning parameters where the best EQI without increasing OCI is obtained. As it is

shown in Fig. 4.11, by varying SO,5 set-point with two level hierarchical control, SNH,5
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peaks and SNO,5 are reduced. In the case of higher level MPC, when SNH,5 is over

the fixed set-point, SO,5 reference of the lower level control is increased, which produces

more oxidation of SNH,5 and consequently softens its peaks, while SNO,5 and the aeration

costs grow. In opposition, when the SNH,5 is under the fixed set-point, SO,5 reference is

decreased, SNH,5 goes up and SNO,5 and aeration costs go down. The final balance from

day 7 to day 14 is a reduction of 1.8% of EQI in comparison with MPC+FF alone (see

Table 4.4).

The same concentrations (SNH,5, SNO,5 and SO,5) for rain and storm influents are shown

in Fig. 4.12 and Fig. 4.13 respectively. Within 7 days of simulation (day 7 to 14), two

days are shown coinciding with a rainfall (Fig. 4.12) and a storm (Fig. 4.13) events. As it

is observed, during the rain and storm events, the differences of SNH,5 peaks and SNO,5

for higher level MPC and MPC+FF are lower compared with dry weather. This has a

direct consequence on the EQI results shown in Table 4.4. As it can be seen, there is

also an improvement by working with higher level MPC in comparison with MPC+FF

alone, but with a lower percentage compared with dry weather. For the rain influent

case, EQI is decreased by 0.4% and for the storm influent case, EQI is decreased by

0.5%.

In the opposite point of the trade-off representations (Fig. 4.2, 4.3, 4.4 (best OCI without

worsening effluent quality), OCI results are compared for the different control structures

with the three weather conditions. Fig. 4.14 shows KLa5 for the higher level MPC.

The aeration costs depend directly on the KLa5 values. Fig. 4.14 shows that the

values of KLa5 with higher level MPC are lower most of the time than those obtained

with MPC+FF alone, proving that costs can be reduced without increasing EQI with

a better optimization of KLa5. This reduction of KLa5 results in a reduction of 0.8% of

OCI (Table 4.4).

The KLa5 evolution is also shown for rain and storm influents (Fig. 4.15 and 4.16 re-

spectively), obtaining also an OCI reduction when working with the higher level MPC

in comparison with MPC+FF alone. In this case, with less percentage in comparison

with dry influent results (see Table 4.4): For rain influent, higher level MPC reduces

OCI by 0.3%, and for storm influent the reduction is 0.4%. The optimization of the SO,5

set-point value results in an AE reduction of 202.2 KWh/d, 96.42 KWh/d and 137.92

KWh/d for dry, rain and storm influents respectively, compared with default BSM1
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control, which corresponds, in terms of percentage, to an AE reduction of 5.4%, 2.6%

and 3.7% respectively.

Higher level affine function: With the tuning parameters where the best EQI

without increasing OCI is obtained (see Table 4.2), comparing SNH,5 peaks and SNO,5

for higher level affine function and higher level MPC for the three influents (see Fig. 4.11,

Fig. 4.12 and Fig. 4.13), a remarkable difference is not observed. However Table 4.4 show

that affine function is able to reduce EQI in comparison with higher level MPC by 0.6%

for dry influent, 0.7% for rain influent and 1% for storm influent. In comparison with

MPC+FF alone the reduction is 2.4% for dry influent, 1.1% for rain influent and 1.5%

for storm influent.

Applying the tuning parameters to obtain the best OCI without worsening effluent qual-

ity, KLa5 is compared with the other control structures for the three weather conditions

(see Fig. 4.14, Fig. 4.15 and Fig. 4.16), obtaining better KLa5 optimization compared

with MPC+FF alone and higher level MPC for the three influents, which result in an

OCI reduction in comparison with higher level MPC of 0.3% for dry influent, 0.3% for

rain influent and 0.4% for storm influent. In comparison with MPC+FF the reduction

is 1.1% for dry influent, 0.6% for rain influent and 0.8% for storm influent (see Table

4.4).

This cost reduction is due primarily to an AE reduction of 259.45 KWh/d, 170.87

KWh/d and 209.85 KWh/d for dry, rain and storm influents respectively, compared

with default BSM1 control, which corresponds, in terms of percentage, to an AE reduc-

tion of 7%, 4.7%, 5.6% respectively.

Higher level Fuzzy Controller: For the case of the best EQI obtained, Fig. 4.11,

Fig. 4.12 and Fig. 4.13 show that SNH,5 and SNO,5 for the three influents are similar

compared to higher level affine function. The EQI results are shown in Table 4.4 and

they are very similar to the ones obtained with the higher level affine function.

Applying the tuning parameters for obtaining the lowest OCI, Fig. 4.14, Fig. 4.15 and

Fig. 4.16 show KLa5 for the three weather conditions. Looking at the OCI results in

Table 4.4, there is no significant difference compared with higher level affine function,

getting also the same percentages of improvement over MPC+FF alone and higher level

MPC.
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The reduction of AE is also similar to the results obtained using an affine function as

higher level controller: 255.67 KWh/d, 199.99 KWh/d and 199.72 KWh/d for dry, rain

and storm influents respectively, compared with default BSM1 control, which corre-

sponds, in terms of percentage, to an AE reduction of 6.9%, 5.4%, 5.3% respectively. As

a result, for the higher level control, with affine function and FC, the following improve-

ments are obtained in comparison with higher level MPC: For dry influent, AE reduction

of 57.25 KWh/d and 53.47 KWh/d respectively. For rain influent, 74.45 KWh/d and

103.57 KWh/d respectively. And for storm influent, 71.93 KWh/d and 61.8 KWh/d

respectively.

The reason of the improvement of the results of EQI and OCI by using the higher level

FC or the higher level affine function compared to the higher level MPC is that the

higher level MPC tries to maintain the value of SNH,5 at a fixed reference, but the

error is too high. Specifically, the ISE is 36.21 to achieve the best EQI and the ISE is

22.69 to achieve the best OCI. Conversely, higher level affine function and higher level

FC regulate SO,5 set-point based on the biological process dynamics that take place in

the reactors (2.1, 2.2, 2.3, 2.4, 2.5, 2.6). On the one hand improving the nitrification

process (2.5) when SNH,5 increases, and therefore reducing its peaks. On the other

hand, reducing the SO,5 set-point level when SNH,5 decreases in order to reduce the SNO

generation (2.2) and the operational costs (2.13).
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Figure 4.11: Dry influent: Comparison of SNH,5, SNO,5 and SO,5. MPC+FF (dash-
dotted line), higher level MPC (dotted line), higher level affine function (dashed line)

and higher level FC (solid line)

.
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Figure 4.12: Rain influent: Comparison of SNH,5, SNO,5 and SO,5. MPC+FF (dash-
dotted line), higher level MPC (dotted line), higher level affine function (dashed line)

and higher level FC (solid line)
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Figure 4.13: Storm influent: Comparison of SNH,5, SNO,5 and SO,5. MPC+FF (dash-
dotted line), higher level MPC (dotted line), higher level affine function (dashed line)

and higher level FC (solid line)

.

4.2 Application of variable dissolved oxygen in the three

aerobic reactors

As it is shown in previous section, the results of OCI and EQI with higher level affine

function and higher level FC were similar and better than those obtained with higher

level MPC. Thus, the manipulation of the three aerobic reactors (see Fig. 4.17) has been
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Figure 4.14: Dry influent: Comparison of KLa5 in the fifth tank. MPC+FF (dash-
dotted line), higher level MPC (dotted line), higher level affine function (dashed line)

and higher level FC (solid line)
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Figure 4.15: Rain influent: Comparison of KLa5 in the fifth tank. MPC+FF (dash-
dotted line), higher level MPC (dotted line), higher level affine function (dashed line)

and higher level FC (solid line)
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Figure 4.16: Storm influent: Comparison of KLa5 in the fifth tank. MPC+FF (dash-
dotted line), higher level MPC (dotted line), higher level affine function (dashed line)

and higher level FC (solid line)
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Dry weather

Higher level Higher level Higher level

MPC+FF MPC affine function FC

lowest lowest lowest lowest lowest lowest

EQI OCI % EQI OCI % EQI OCI %

EQI 6048.31 5936.16 6045.44 -1.8% 5900.98 6047.52 -2.4% 5900.73 6047.95 -2.4%

(kg pollutans/d)

OCI 16382.97 16382.64 16248.79 -0.8% 16381.54 16196.68 -1.1% 16382.67 16197.86 -1.1%

Rain weather

Higher level Higher level Higher level

MPC+FF MPC affine function FC

lowest lowest lowest lowest lowest lowest

EQI OCI % EQI OCI % EQI OCI %

EQI 8090.29 8056.07 8089.98 -0.4% 7994.58 8090.38 -1.1% 7998.78 8090.27 -1.1%

(kg pollutans/d)

OCI 15990.85 15982.47 15939.32 -0.3% 15984.16 15887.47 -0.6% 15984.23 15884.21 -0.6%

Storm weather

Higher level Higher level Higher level

MPC+FF MPC affine function FC

lowest lowest lowest lowest lowest lowest

EQI OCI % EQI OCI % EQI OCI %

EQI 7132.60 7094.90 7131.57 -0.5% 7019.08 7132.21 -1.5% 7020.83 7132.25 -1.5%

(kg pollutans/d)

OCI 17261.39 17252.84 17186.58 -0.4% 17252.51 17126.55 -0.8% 17252.6 17123.01 -0.8%

Table 4.4: EQI and OCI results with MPC+FF, higher level MPC, higher level affine
function and higher level FC for dry, rain and storm influents

tested with an affine function and a FC in the higher level of the hierarchical structure,

but not with an MPC.
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Figure 4.17: BSM1 with MPC+FF and Hierarchical control for the three aerobic
reactors
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4.2.1 Controllers tuning

Higher level affine function: The same affine function (4.1) is proposed to manip-

ulate the three aerobic reactors. Thus, the SO,5 set-point value is also applied to SO,3

and SO,4 set-points. Also a constraint for the maximum SO,3, SO,4 and SO,5 values has

been considered. The OCI and EQI trade-off representations of the higher level affine

function are made based on k and SO maximum values, which is the same for the three

aerobic tanks. These trade-off analysis for the three weather conditions are shown in

Fig.4.18, Fig.4.19 and Fig. 4.20. Each line corresponds to one of the SO maximum

values considered: 2, 3, 4, and 4.5. And each point of one line, marked with crosses, is

obtained with a different value of k.

Figure 4.18: Dry weather: OCI and EQI trade-off representation with higher level
affine function for a range of k values from -0.6 to 1.4 with increments of 0.1 (points
marked with crosses) and SO maximum = 4 (solid line), 3.5 (dashed line), 3 (dotted

line), 2 (dash-dotted line)

A tuning area is obtained where OCI and EQI are reduced compared to the default PI

controllers. SO maximum and k values have been selected for the extreme cases of lowest

EQI without increasing OCI and the lowest OCI without worsening EQI are achieved.

Table 4.5 shows these tuning parameters selection for the three influents.

Higher level Fuzzy Controller: For the higher level FC, three triangular mem-

bership functions for input and for output are used (low, medium and high). The rules

implemented are:
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Figure 4.19: Rain weather: OCI and EQI trade-off representation with higher level
affine function for a range of k values from -0.6 to 1.4 with increments of 0.1 (points
marked with crosses) and SO maximum = 4 (solid line), 3.5 (dashed line), 3 (dotted

line), 2 (dash-dotted line)

Figure 4.20: Storm weather: OCI and EQI trade-off representation with higher level
affine function for a range of k values from -0.6 to 1.4 with increments of 0.1 (points
marked with crosses) and SO maximum = 4 (solid line), 3.5 (dashed line), 3 (dotted

line), 2 (dash-dotted line)

if (SNH,5 is low) then (SO is low)

if (SNH,5 is medium) then (SO is medium)

if (SNH,5 is high) then (SO is high)

MinIn and MinOut are 0.1 and 0.8 respectively. MaxIn and MaxOut have been de-

termined with OCI and EQI trade-off representations, for the three weather conditions,
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dry rain storm

lowest lowest lowest lowest lowest lowest
EQI OCI EQI OCI EQI OCI

k -0.08 1.37 -0.1 0.62 -0.09 1.08

SO maximum 4.5 2 3.5 2 3.5 2

Table 4.5: Higher level affine function tuning of the three aerobic tanks: k and SO

maximum values

shown in Fig. 4.21, Fig. 4.22 and Fig. 4.23. Each one of the lines corresponds to the

results obtained with different MaxIn, i.e. 3, 5, 7, and each one of the points marked

with crosses is the result of a different MaxOut. The results obtained with default PI

controllers are also shown.

Figure 4.21: Dry weather: OCI and EQI trade-off with higher level FC for a range of
MaxOut from 2.5 to 8 with increments of 0.5 (points marked with crosses) and MaxIn

= 3 (solid line), 5 (dashed line), 7 (dash-dotted line)

In the same way as higher level affine function, for the three weather conditions, a

tuning region is obtained where OCI and EQI are improved in comparison with default

PI controllers. The MaxIn and MaxOut values of the extreme cases of lowest EQI

without increasing OCI and lowest OCI without worsening EQI are shown in Table 4.6.

dry rain storm
lowest lowest lowest lowest lowest lowest

EQI OCI EQI OCI EQI OCI

MaxIn 3 3 3 3 3 3

MaxOut 6.5 2.75 5.6 3.4 5.6 3.15

Table 4.6: Higher level FC tuning of the three aerobic tanks: MaxIn and MaxOut
values
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Figure 4.22: Rain weather: OCI and EQI trade-off with higher level FC for a range of
MaxOut from 2.5 to 7 with increments of 0.5 (points marked with crosses) and MaxIn

= 3 (solid line), 5 (dashed line), 7 (dash-dotted line)

Figure 4.23: Storm weather: OCI and EQI trade-off with higher level FC for a range
of MaxOut from 2.5 to 7 with increments of 0.5 (points marked with crosses) and

MaxIn = 3 (solid line), 5 (dashed line), 7 (dash-dotted line)

4.2.2 Simulations results

Table 4.7 presents the results of best EQI without increasing OCI and best OCI without

worsening EQI of the hierarchical control for the three aerobic reactors in comparison

with the default control strategy. The comparison is done with the two higher level

alternatives (affine function and FC), using the three influent files (dry, rain and storm).

As it is shown, a satisfactory reduction in OCI and EQI is achieved with the proposed
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hierarchical control. This reduction is higher in dry weather conditions, especially the

EQI reduction. The results obtained with higher level affine function and higher level

FC are similar, in the same way as the hierarchical control by manipulating only SO,5,

as shown in the previous section.

Dry weather

Hierarchical Control (three aerobic tanks) Hierarchical Control (three aerobic tanks)

Default PI higher level affine function higher level FC

controllers lowest lowest % of lowest lowest % of

EQI OCI reduction EQI OCI reduction

EQI 6115.63 5807.77 6046.51 5% 5804.38 6037.07 5%

(kg pollutans/d)

OCI 16381.93 16381.51 15779.58 3.7% 16377.51 15743.91 3.9%

Rain weather

Hierarchical Control (three aerobic tanks) Hierarchical Control (three aerobic tanks)

Default PI higher level affine function higher level FC

controllers lowest lowest % of lowest lowest % of

EQI OCI reduction EQI OCI reduction

EQI 8174.98 7865.31 8172.01 3.8% 7910.26 8168.45 3.2%

(kg pollutans/d)

OCI 15984.85 15977.56 15445.31 3.4% 15959.92 15466.01 3.2%

Storm weather

Hierarchical Control (three aerobic tanks) Hierarchical Control (three aerobic tanks)

Default PI higher level affine function higher level FC

controllers lowest lowest % of lowest lowest % of

EQI OCI reduction EQI OCI reduction

EQI 7211.48 6895.74 7211.48 3.3% 6919.2 7200.51 3%

(kg pollutans/d)

OCI 17253.75 17251.71 16721.06 3.1% 17254.25 16711.96 3.1%

Table 4.7: EQI and OCI results with default PI controllers and hierarchical control
of the three aerobic tanks

In order to explain the EQI improvement, Fig. 4.24 shows the behaviour of SO of the

aerated tanks, SNH,5 and SNO,5 from day 7 to day 14. This is performed with the default

control strategy and the proposed hierarchical control with the tuning parameters that

give the lowest EQI for dry weahter. Due to the results obtained with higher level

affine function and higher level FC are very similar, only the variables of one of the

two controllers (specifically affine function) are shown. As it is shown, with hierarchical

control, when SNH increases more SO is added for nitrification, reducing SNH peaks (2.1

and 2.5). On the contrary, when SNH decreases, less SO is required, producing less SNO

in comparison with the default control strategy (2.2 and 2.5).

In order to clarify the reason of the cost reduction, Table 4.8 shows the average values
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of the parameters that compose the OCI equation. They are the values obtained for dry

influent by using the default control strategy and by applying hierarchical control with

higher level FC that is the alternative that achieves the lowest OCI. As it is seen, the

cost reduction is the result of an AE reduction of 683.72 KWh/d. This fact is due to

the reduction of SO (and hence a reduction of KLa) of the aerated tanks when SNH,5

is low. Although there is a PE increase of 53.43 kWh/d, the saving energy, considering

both parameters, is 630.29 kWh/d.

7 8 9 10 11 12 13 14
0

2

4

6

S
O

 (
m

g/
l)

 

 

7 8 9 10 11 12 13 14
8

10

12

14

16

S
N

O
,5

 (
m

g/
l)

 

 

7 8 9 10 11 12 13 14
0

5

10

time (days)

S
N

H
,5

 (
m

g/
l)

 

 

S
O,3

, S
O,4

 and S
O,5

 of hierarchical control

S
O,3

 of default PI controllers

S
O,4

 of default PI controllers

S
O,5

 of default PI controllers

hierarchical control
default PI controllers

hierarchical control
default PI controllers

Figure 4.24: SO in the aerated tanks, SNO,5 and SNH,5 evolution form day 7 to day
14 with the default PI controllers and with the proposed hiearchical control with higher

level affine function for the case of lowest EQI

Average values of the OCI parameters Default PI controllers Hierarchical control Reduction

AE (KWh/d) 3696.67 3012.95 683.72

PE (KWh/d) 241.72 295.15 -53.43

ME (KWh/d) 240 240 0

EC (Kg/d) 0 0 0

SP (Kg/d) 2440.71 2439.16 1.55

Table 4.8: Average values of the parameters that compose the OCI equation for PI
controllers of the default control strategy and the proposed hierarchical control of the

three aerobic tanks with higher level FC for the case of lowest OCI

4.3 Summary

In this chapter, the higher level control of the hierarchical structure has been applied

using BSM1 as testing plant. This level regulates the SO set-points of the aerated tanks

based on SNH,5.
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First, for the selection of the higher level controller, three different alternatives were

proposed manipulating only SO,5 set-point: a MPC, an affine function and a FC. They

were tested and compared in the three weather conditions: dry, rain and storm. As a

result, EQI and OCI were reduced significantly. The results of OCI and EQI with higher

level affine function and higher level FC were similar and better than those obtained

with higher level MPC. This is due to the fact that the higher level MPC tries to keep

the value of SNH,5 at a reference level, but this is not possible. For that reason, the

alternatives of affine function and FC for the higher level were tested with the idea of

varying SO,5 based on the SNH,5 measured, taking into account the variables behavior

in the biological processes, but without trying to keep SNH,5 at a fixed reference. Thus,

improving the nitrification process when SNH,5 increases, to oxidize more SNH and

worsening the nitrification process when SNH,5 decreases to generate less SNO and to

reduce costs. To ensure the right tuning of the controllers and therefore the correct

relationship between the applied control and the results, a trade-off analysis between

OCI and EQI has been performed by varying two tuning parameters for each controller.

Next, the higher level control has been extended, manipulating the three aerobic tanks.

Simulation results show that manipulating the SO set-points of the three aerobic tanks,

an EQI reduction of 5% and an OCI reduction of 3.9% is achieved for dry weather

compared to the default control strategy. For the rain and storm influent cases, also a

satisfactory reduction of EQI and OCI is obtained, higher than 3%.



Part II

Effluent limits violations removal
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Chapter 5

Control Strategies for

denitrification and nitrification

processes improvement

Some works of the literature put their focus on avoiding violations of the effluent limits

by applying a direct control of the effluent variables, mainly SNH,e and SNtot,e (Corriou

and Pons [9], Shen et al. [10, 11]). Nevertheless, they need to fix the set-points of the

controllers at lower levels to guarantee their objective, which implies a great increase of

costs.

In this chapter, different control strategies are applied with the aim of avoiding SNtot,e or

SNH,e violations using BSM1 as testing plant. These control strategies are implemented

simultaneously with the hierarchical control structure explained in previous chapter, in

order to achieve, at the same time, an EQI and OCI reduction. The tuning of both

higher level controllers is modified based on the required objective.

The controllers applied for the proposed control strategies are divided into two alterna-

tives: functions that relate the inputs and the manipulated variables, and FCs. There-

fore, on one hand, an affine function is proposed to eliminate SNtot,e violations and a

combination of a linear function with an exponential function to remove SNH,e viola-

tions. At the same time, the higher level affine function (4.1) is applied. On the other

hand, two FCs are proposed to avoid SNtot,e and SNH,e violations. The higher level FC

is also applied.

59
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For the cases of a rain or storm event and for the simultaneous SNtot,e and SNH,e viola-

tions removal, an extra control is added based on affine functions, for both alternatives.

5.1 Control for SNtot,e
violations removal

The variables with the highest influence in SNtot,e are SNO and SNH . Further efforts

to reduce more SNH increasing nitrification results also in an increment of SNO and

consequently SNtot,e is not decreased. According to the biological processes of ASM1, an

increase of substrate produces a growth of XB,H and therefore the denitrification process

and the consequently reduction of SNO are improved. Therefore, SNtot,e is reduced with

the dosage of EC in the first tank (EC1). However dosing EC1 results in an increase

of operational costs (2.13), so it is important to dosage EC1 only when a violation of

SNtot,e could take place. Consequently, the control strategy is based on the manipulation

of qEC,1 according to SNH,5 plus SNO,5 (see Fig. 5.1). An affine function with a sliding

window and a FC are proposed for this control strategy.
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Figure 5.1: BSM1 with a control strategy for SNtot,e
violations removal
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5.1.1 Controllers tuning

Functions: Here, the tunings of the both affine functions, for the higher level control

and for the control for SNtot,e violations removal, are described.

First, for the higher level affine function, a trade-off analysis is made considering the

percentage of operating time that SNH,e and SNtot,e is over the limits. The purpose of this

trade-off analysis is, besides the SNtot,e violations removal, not to increase OCI and to

reduce EQI and the percentage of time of SNH,e violations in comparison with the default

control strategy. This is done with hierarchical control strategy and without adding

EC1 (see Fig. 5.2). Tuning parameters are chosen for the point where the percentage

of operating time of SNH,e over the limits is the same as with default control strategy

(17.26%). The tuning parameters of the higher level affine function are k = 1.07 and

SO maximum = 3, and the percentage of operating time of SNtot,e violation with these

parameters is 6.35%.
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Figure 5.2: Trade-off representation of the percentage of the operating of SNH,e and
SNtot,e

violations for a range of k values from -0.6 to 1.4 with increments of 0.1 (points
marked with crosses) and SO,5 maximum = 4.5 (solid line), 4 (dashed line), 3 (dotted

line), 2.5 (dash-dotted line)

The OCI and EQI trade-off representation shown in Fig. 4.18, in the points of the

tuning parameters mentioned, a difference in OCI of 2.5% is observed regarding the

default control strategy, which may be used for the EC1 dosage.
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Then, the following affine function is proposed for qEC,1 manipulation with the objective

of SNtot,e violations removal:

qEC1 = ((SNH,5 + SNO,5)− a) · b (5.1)

where a and b are used as tuning parameters, whose values are set depending on the

maximum value of SNtot,e given by a sliding window, which is shift at each sample time

and presents only the values measured the day one week before. Specifically, following

are shown the chosen equations for a and b values:

b = Md · 2− 35.5 (5.2)

a = 34.25−Md (5.3)

where Md is the maximum value of the day, one week before. This approach tries to

dosage the minimum of qEC,1 to remove SNtot,e violations. The maximum qEC,1 value

was limited to 5m3/d.

Fuzzy Controllers: The tuning of the FCs is implemented with the objectives

of removing SNtot,e violations and, at the same time, reducing EQI, OCI and the per-

centage of time of SNH,e violations. First for the higher level FC and next for the FC

that manipulates qEC,1 for SNtot,e violations removal.

For the tuning parameters selection of the higher level FC, a trade-off analysis of the

percentage of time over the limits of SNH,e and SNtot,e is made (see Fig. 5.3). For this

analysis, the hierarchical control strategy is included but not the addition of EC1. The

tuning parameters of the higher level FC are selected in the point whose percentage of

operating time of SNH,e over the limits is the same as with the default control strategy

(17.26%). These tuning parameters are MaxIn = 3 and MaxOut = 4.1, and the

percentage of operating time of SNtot,e violation with these parameters is 6.39%.

The OCI and EQI trade-off representation shown in Fig. 4.21, in the points of the

tuning parameters mentioned, a difference in OCI of 2.6% is observed regarding the

default control strategy, which may be used for the EC1 dosage.

With these parameters selected for the higher level, a FC is added to manipulate qEC,1.

For this controller, three triangular membership functions for input and for output are
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Figure 5.3: Higher level FC: trade-off of the time percentage of SNH,e and SNtot,e

violations for MaxIn = 3 and a range of MaxOut values from 3 to 7 with increments
of 0.5 (points marked with crosses)

used (low, medium and high). The rules implemented are:

if (SNH,5+SNO,5 is low) then (qEC,1 is low)

if (SNH,5+SNO,5 is medium) then (qEC,1 is medium)

if (SNH,5+SNO,5 is high) then (qEC,1 is high)

The range of membership functions values are: MinIn = 10, MaxIn = 17.5, MinOut

= -8, MaxOut = 6.75.

5.1.2 Control for rain and storm influents

During a rain or storm event, Qin increases and SNH in the influent (SNH,in) decreases.

The Qin increment has the effect of reducing the hydraulic retention time and the SNH,in

reduction decreases the growth of XB,A and therefore the nitrification process (2.5) is

worsened. Due to this reason, there is an increase of SNH without incrementing the

generation of SNO (2.2 and 2.5). Therefore, the resulting SNtot,e is lower than for dry

weather. However, in the periods after the rain or storm events, the Qin reduction has

an immediate effect on the hydraulic retention time, but XB,H and XB,A need more time

to recover their normal levels and it causes a small SNtot,e increase. To compensate this,
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qEC,1 is added based on SNH,5 plus SNO,5 and on the average of SNH,in of the two days

before (SNH,inmean2) with the following affine function:

qEC,1 = (SNH,5 + SNO,5) · 5− SNH,inmean2 · 0.2857− 75.7143 (5.4)

where the constants values are found by three experimental cases.

5.2 Control for SNH,e violations removal

With the goal of removing SNH,e violations, Qa is manipulated based on SNH,5 and

SNH,in. Therefore the MPC of the lower level that controls SO,5 and SNO,2 by manipu-

lating KLa5 and Qa is replaced by a MPC with one input (SO,5) and one output (KLa5)

(see Fig. 5.4).
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Figure 5.4: BSM1 with a control strategy for SNH,e violations removal

To facilitate the understanding of the proposed solution some considerations about the

propagation of the peaks in the reactor are provided: When a peak of pollution enters

in the reactors, it is propagated through them with a delay determined by the retention

time. Thus, any change in Qin or in the Qa directly affects the propagation of the peaks
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of pollution inside the tanks. On the contrary, the peaks of flow rate are transmitted

to all the plant immediately, because the system is always full and any variation in

the influent causes an identical variation in the effluent and inside the system. Thus,

according to the mass balance equation in the first reactor (2.7), when SNH,in increases,

Qa is incremented to reduce the rise of SNH in the first tank (SNH,1), and when the

increase of SNH arrives to the fifth tank, Qa is reduced to increase the retention time

and so to improve de nitrification process.

Two controllers are proposed for this control strategy: first, a combination of a linear

function and a exponential function, and next, a FC with two different tunings.

5.2.1 Controllers tuning

MPC+FF: As mentioned, to perform the control for removing violations of SNH,e,

the MIMO MPC+FF that controls SO,5 and SNO,2 by manipulating KLa5 and Qa, has

been replaced by a SISO MPC+FF that controls SO,5 by manipulating KLa5, because

Qa is manipulated based on SNH,5 and SNH,in.

The model identification of the new MPC+FF was performed with the same method-

ology as with the previous controller, but with one input and one output. However, in

this case it is a second order state-space model:

A =


 0.8349 0.2746

0.2512 0.2894




B =


 0.008745 −2.729 · 10−5

−0.02118 1.307 · 10−5




C =
[

1.512 −0.3525
]

D =
[

0 0
]

(5.5)

The selected values to tune the MPC are m = 5, p = 20, 4t = 0.00025 days (21.6

seconds), Γy = 1 and Γ4u = 0.01 and overall estimator gain = 0.8.

Functions: Here, the tunings of the controllers based on functions are described.

First, the tuning of the higher level affine function, and next, the combination of the

linear function and the exponential function for SNH,e violations removal.
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For the higher level affine function (4.1), any parameters value inside the tuning region

given by the OCI and EQI trade-off representation (see Fig. 4.18) can be selected. In

this case the chosen parameters are: k = 0.1 and SO maximum = 4.5.

For the control of SNH,e violations removal, a combination of exponential function and

linear function is proposed for this control strategy. When there are peaks of SNH,in or

SNH,5, the following exponential function is applied:

Qa =
c

exp(SNH,5 · d)
(5.6)

Otherwise the following linear function is applied:

Qa =
SNH,in

SNH,5
· e (5.7)

where c, d and e are used as tuning parameters.

A trade-off analysis of OCI and percentage of operating time of SNtot,e violation is made

by varying the tuning parameters c and e of the exponential and linear functions, re-

flecting only the results that avoid the SNH,e violations. It is obtained an area where

OCI and the operating time of SNtot,e violation are decreased compared to default PI

controllers (see Fig. 5.5). The value of d is fixed at 6, and c and e values are chosen ac-

cording with the Nash Solution (Aumann and Hart [33]): c = 2.5 · 1014 and e = 7 · 10−4.

Fuzzy Controllers: Following, the tuning parameters of the higher level FC and

the FC for SNH,e violations removal are defined.

The MaxIn and MaxOut values of the higher level FC have been selected by a trade-off

analysis of OCI and percentage of operating time of SNH,e violation (see Fig. 5.6), choos-

ing the less percentage of SNH,e violation in order to facilitate its later total elimination,

but considering the increased costs that will be generated by the new control strategy.

In this case the chosen parameters are: MaxIn = 3 and MaxOut = 5.5.

In the case of the FC for the SNH,e violations removal, two tunings are determined, one

when there are peaks of SNH,in or SNH,5, and the other the rest of the time. For both

cases three triangular membership functions for input and for output are used (low,

medium and high). The rules implemented are:
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Figure 5.5: Trade-off representation of OCI and the percentage of operating time of
SNtot,e

violations for a range of c values from 0.5 to 4 with increments of 0.5 (points
marked with crosses) and e values = 7 (solid line), 6 (dash-dotted line), 5.5 (dotted

line), 5 (dashed line)

if (SNH,5 is low) then (Qa is high)

if (SNH,5 is medium) then (Qa is medium)

if (SNH,5 is high) then (Qa is low)

When there are peaks of SNH,in or SNH,5, the tuning parameters are set looking for a

great variation in Qa when SNH,e is increasing. Therefore, MinIn, MaxIn, MinOut

and MaxOut are 3.5, 4.1, -2·104 and 14·104 respectively. For the rest of the time,

MinOut and MaxOut are set by a trade-off analysis of OCI and percentage of operating

time of SNtot,e violation, reflecting only the results that avoid the SNH,e violations. An

area is obtained where OCI and the operating time of SNtot,e violation are decreased

compared to default PI controllers (see Fig. 5.7). Each one of the lines corresponds

to the results obtained with MaxIn = 2, 2.2, 2.4 and 2.6 and each one of the points

marked with crosses is the result of a different MaxOut that varies from 90000 to 180000

with increments of 10000. The results obtained with default PI controllers alone are

also shown. The parameters have been selected according to the Nash Solution ([33]):

MaxIn = 2.4 and MaxOut = 100000.
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Figure 5.6: Trade-off representation of OCI and the percentage of operating time of
SNH,e violations for MaxIn = 3 and a range of MaxOut from 3 to 7 with increments

of 0.5 (points marked with crosses).

Figure 5.7: Trade-off representation of OCI and the percentage of operating time
of SNtot,e

violations for a range of MaxOut from 90000 to 180000 with increments of
10000 (points marked with crosses) and MaxIn = 2 (dotted line), 2.2 (dashed line),

2.4 (solid line), 2.6 (dash-dotted line)
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5.2.2 Control for rain and storm influents

For rain and storm events the reduction of SNH,e using this control strategy is not

enough to eliminate violations. This is due to that, during rain and storm periods,

the Qin · SNH,in relationship is similar to that of dry weather, but Qin increases and

SNH,in decreases. This SNH,in reduction decreases the growth of XB,A and therefore the

nitrification process (2.5) is worsened. For this reason, during a rain or storm event,

when there is a peak of SNH,in · Qin and until SNH,5 is decreased, a dosage of 5 m3/d

of qEC in the fourth and fifth tanks (qEC4−5) is added, which is the maximum limit

value. Normally, qEC4−5 is added to reduce SNO, nevertheless in rNH equation (2.1) it

is observed that although the elimination of SNH largely depends on nitrification (2.5),

SNH is also reduced with the growth of XB,H (2.3, 2.4).

The days after the rain and storm events present also problems with SNH,e limits vi-

olations due to the fact that the XB,A population decreases during those periods and

does not recover its normal level until some days later. During those days qEC4−5 is

added. As XB,A reduction is due to a SNH,in decrease, the addition of qEC4−5 is based

on SNH,inmean2 , using the following affine function:

qEC4−5 = SNH,inmean2 · (−0.2667) + 7; (5.8)

where the constants values are found by two experimental cases, which correspond to

the extreme cases of highest and lowest dosage of qEC4−5 that is needed to eliminate

violations of SNH,e.

5.3 Simulation results

5.3.1 SNtot,e violations removal

Fig. 5.8 correspond to the evolution of qEC,1, SNtot,e and SNH,e from day 7 to 14, with

default PI controllers, applying control strategies for SNtot,e violations removal with

functions and applying control strategies for SNtot,e violations removal with FCs. It is

observed that, for both alternatives (functions and FCs), SNtot,e violations are removed

and the behavior of the variables are very similar. As it is shown, qEC,1 dosage varies
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every day, while SNtot,e peaks are very similar. It proves that the minimum necessary

qEC,1 is added, increasing the lowest possible costs. For this reason, and with the correct

selection of the tuning parameters of the higher level explained in previous sections, the

removal of SNtot,e violations without increasing OCI, in comparison with default control

strategy is possible. The choice of the right tuning parameters of the higher level affine

function also makes possible to reduce the time of SNH,e violation.
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Figure 5.8: qEC,1, SNH,e and SNtot,e
evolution form day 7 to day 14 with default

PI controllers (dash-dotted line), applying control strategies for SNtot,e violations re-
moval with functions (dashed line) and applying control strategies for SNtot,e violations

removal with FCs (solid line)

Table 5.1 presents the results for EQI and OCI as well as the percentage of operating

time out of the limits of SNtot,e and SNH,e obtained with the control strategies for SNtot,e

violations removal and compared to the default control strategy of BSM1. It is shown

that by adding qEC,1 and applying a hierarchical control of SO in the three aerated tanks,

the violations of SNtot,e can be avoided. Moreover, the results of EQI and OCI as well

as the operating time percentage of SNH,e violations are also improved in comparison

with the default PI controllers. This is achieved for the three influents provided by the

BSM1 scenario.
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Fig 5.9 and Fig. 5.10 show the time evolution of the most important variables for

the cases of simulating with rain and storm influents. Due to the great similarity of

the results between functions and FCs, only the simulated variables using functions

are shown. During a rain or storm event, the nitrification process (2.5) is worsened

as explained in Section 5.2.2. Due to this reason, there is an increase of SNH without

incrementing the generation of SNO (2.2 and 2.5). Therefore, the resulting SNtot,e is

lower than for dry weather and less qEC,1 is nedded for removing SNtot,e violations. In

the periods after the rain or storm events, qEC,1 needs to be added until XB,H and XB,A

recover their normal levels. Even so, this qEC,1 addition is small, and OCI is reduced

for the three influents with the proposed control strategy in comparison with the default

control strategy. Nonetheless, it has to be said that that the reduction of costs would

be greater if the savings costs obtained by avoiding effluent violations were considered.
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Figure 5.10: Storm influent: time evolution of the most important variables applying
the proposed control strategy for SNtot,e

violations removal with functions and applying
the default control strategy of BSM1.

5.3.2 SNH,e violations removal

Fig. 5.11 shows the evolutions of Qa, SNtot,e and SNH,e from day 7 to 14 with default PI

controllers, applying control strategies for SNH,e violations removal with functions and

applying control strategies for SNH,e violations removal with FCs. It can be observed

that, with this control strategy, SNH,e peaks are reduced under the limits established.

This fact is due to the increment of SO by the hierarchical control (explained in the

previous section) and mainly to the Qa manipulation. As shown in Fig. 5.11, Qa

evolution by applying control strategies for SNtot,e violations removal is very different

from the one obtained with the default control strategy. When a SNH,in peak is detected,

Qa is increased to its maximum allowed value (92280 m3/d) in order to dilute SNH , and

when this increase of SNH arrives to the fifth tank, the exponential function rapidly

reduces Qa in order to decrease also the hydraulic retention time and so to improve the

nitrification process. As a result, a large decrease of SNH,e peaks is achieved and limits
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Dry influent

Default PI controllers Control for SNtot,e % of Control for SNtot,e % of

violations removal reduction violations removal reduction

with functions with FCs

EQI 6115.63 5910.83 3.3% 5862.03 4.1%

OCI 16381.93 16242.97 0.8% 16336.36 0.3%

SNtot,e violations 17.56 0 100% 0 100%

(% of operating time)

SNH,e violations 17.26 16.81 2.6% 16.66 3.4%

(% of operating time)

Rain influent

Default PI controllers Control for SNtot,e % of Control for SNtot,e % of

violations removal reduction violations removal reduction

with functions with FCs

EQI 8174.98 8072.5 1.2% 8021.54 1.88%

OCI 15984.85 15780.83 1.3% 15770.78 1.34%

SNtot,e violations 10.86 0 100% 0 100%

(% of operating time)

SNH,e violations 27.08 26.04 3.8% 25.3 6.57%

(% of operating time)

Storm influent

Default PI controllers Control for SNtot,e % of Control for SNtot,e % of

violations removal reduction violations removal reduction

with functions with FCs

EQI 7211.48 7022.25 2.6% 6979.22 3.22%

OCI 17253.75 17243.73 0.06% 17229.49 0.14%

SNtot,e violations 15.03 0 100% 0 100%

(% of operating time)

SNH,e violations 26.79 25 6.6% 25 6.6%

(% of operating time)

Table 5.1: Results with default PI controllers and with control for SNtot,e
violations

removal for dry, rain and storm influents

violations are avoided. The correct choice of the tuning parameters of the higher level

controller results also in obtaining a decrease in OCI and time of SNtot,e violation.

Table 5.2 shows the results of EQI, OCI and percentage of time over the limits of SNH,e

and SNtot,e for the three weather conditions. It can be seen that with the regulation of

Qa based on SNH,5 and SNH,in, and also with the hierarchical control of SO in the three

aerated tanks, it is possible to avoid SNH,e violations. In addition, an improvement of

5.8% or 4.26% of EQI and 0.4% or 0.45% of OCI in comparison with the default control

strategy of BSM1 is achieved for dry influent.

For rain and storm events, the elimination of SNH,e violations is completely achieved with

the proposed control strategy and, in addition, a reduction of EQI and the percentage of

time of SNtot,e violation is achieved. However, an increase of costs is required, due to the
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Figure 5.11: Qa, SNH,e and SNtot,e
evolution form day 7 to day 14 with default PI

controllers (dash-dotted line), applying control strategies for SNHe
violations removal

with functions (dashed line) and applying control strategies for SNHe
violations removal

with FCs (solid line)

fact that, during rain and storm periods, the nitrification process (2.5) is worsened as

explained in Section 5.2.2. For this reason, extra addition of qEC is needed when there

is a rain or storm event, generating an increase of costs (see Fig. 5.12 and Fig. 5.13).

It should be noted that costs saved due to avoid violations are not reflected in the OCI

equation and therefore the cost comparison is not completely fair.

OCI and percentage of operating time of SNtot,e violation are influenced by qEC4−5 value

and therefore by the intensity and the duration of the rainfall. When there is rain or

storm event, greater nitrification is performed by Qa manipulation and therefore SNO

and also SNtot,e increase. However, adding qEC4−5 also decreases the value of SNO and

thus SNtot,e . With storm influent, the percentage of the cost increase is lower than in the

case of rain influent because less qEC4−5 is needed for the SNH,e removal. On the other

hand, as in the case of rain influent the dosage of qEC4−5 is greater, there is a reduction

in the percentage of operating time of SNtot,e violation in comparison with the storm
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influent.
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Figure 5.12: Rain influent: time evolution of the most important variables applying
the proposed control strategy for SNH,e violations removal with functions and applying

the default control strategy of BSM1.

5.3.3 SNtot,e and SNH,e violations removal

Finally, both control strategies for SNtot,e and SNH,e violations removal have been tested

together. As SNH,e violations present more difficulties to be removed than the ones of

SNtot,e , especially during rain and storm events, the tuning for the higher level determined

to avoid SNH,e violations is also applied in this case.

Table 5.4 shows the results obtained by applying the control strategies to eliminate both

SNtot,e and SNH violations for the three weather conditions. As it can be observed, the

SNtot,e and SNH violations removal is possible for dry, rain and storm weather conditions.

However, removing the two pollutants simultaneously gives rise to an increase of OCI.

It is due to the fact that the reduction of SNH peaks is based on an improvement in

the nitrification process, what causes a great generation of SNO (2.2 and 2.5) and also a
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Figure 5.13: Storm influent: time evolution of the most important variables applying
the proposed control strategy for SNH,e violations removal with functions and applying

the default control strategy of BSM1.

SNtot,e increase. To counteract it, the dosage of qEC is increased, and qEC in the second

tank (qEC,2) is also added, as shown in Fig. 5.14 in the case of applying functions, and in

Fig. 5.15 for the application of FCs. Therefore, when a peak of SNH,in · Qin, and there

is not a rainfall or storm event, qEC,1 is added at its maximum value (5m3/d) and qEC,2

is calculated with the affine function or the FC implemented for the control strategy for

SNtot,e violations removal. This qEC increase results in the total elimination of SNtot,e

and SNH,e violations and an EQI reduction, but also in an OCI increase. However,

as explained in the previous section, the OCI equation does not take into account the

reduction of costs of avoiding violations and thus, the cost comparison is not completely

fair. The OCI increase is higher using FCs because the addition of qEC,2 is based on

NH5 plus NO5. In the case of using functions, the addition of qEC2 is only based on

the maximum value of the previous week. This alternative lets to add qEC,2 in advance

and therefore reduces their doses and consequently reduces costs. However, this option

would not be entirely satisfactory in the case of having a more variable dry influent.
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Dry influent

Default PI controllers Control for SNH,e % of Control for SNH,e % of

violations removal reduction violations removal reduction

with functions with FCs

EQI 6115.63 5760.95 5.8% 5854.06 4.26%

OCI 16381.93 16323.48 0.4% 16307.26 0.45%

SNtot,e violations 17.56 15.62 11.04% 15.62 11.04%

(% of operating time)

SNH,e violations 17.26 0 100% 0 100%

(% of operating time)

Rain influent

Default PI controllers Control for SNH,e % of Control for SNH,e % of

violations removal reduction violations removal reduction

with functions with FCs

EQI 8174.98 7814.98 4.4% 7829.12 4.23%

OCI 15984.85 17463.78 -9.2% 17675.26 -10.57%

SNtot,e violations 10.86 13.84 -27.4% 8.93 17.77%

(% of operating time)

SNH,e violations 27.08 0 100% 0 100%

(% of operating time)

Storm influent

Default PI controllers Control for SNH,e % of Control for SNH,e % of

violations removal reduction violations removal reduction

with functions with FCs

EQI 7211.48 6903.02 4.3% 6925.24 3.97%

OCI 17253.75 17582.3 -1.9% 17633.58 -2.2%

SNtot,e violations 15.03 22.32 -48.5% 20.24 -34.66%

(% of operating time)

SNH,e violations 26.79 0 100% 0 100%

(% of operating time)

Table 5.2: Results with default PI controllers and with control for SNH,e violations
removal for dry, rain and storm influents

5.4 Summary

This chapter has been focused on the objective of effluent violations removal using BSM1

as testing plant. With this aim, two control loops are added to the hierarchical structure

explained in previous chapters. These control loops consist in the manipulation of qEC,1

based on SNH,5 plus SNO,5 and the manipulation of Qa based on SNH,5, SNH,in and Qin.

Functions and FCs are proposed for these control strategies basing their control on the

biological processes.

The improvement of the denitrification process, by adding qEC,1, achieves the complete

elimination of SNtot,e violations. This control strategy has been tested with an affine

function with a sliding window and with an FC. Both are implemented to dosage the

minimum qEC,1 necessary for this aim. The improvement of the nitrification process by
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Figure 5.14: qEC , Qa, SNH,e and SNtot,e
evolution form day 7 to day 14 with default

PI controllers (dash-dotted line) and with the control strategies for SNH,e and SNtot,e

violations removal using functions (solid line)
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Figure 5.15: qEC , Qa, SNH,e and SNtot,e
evolution form day 7 to day 14 with default

PI controllers (dash-dotted line) and with the control strategies for SNH,e and SNtot,e

violations removal using FCs (solid line)

manipulating Qa makes possible the SNH,e violations removal. It has been tested first,

with the combination of a linear function and an exponential function, and next, with an

FC which uses different tuning parameters depending on if there are peaks of pollution
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Dry influent

Default PI controllers Control for % of Control for % of

SNtot,e and SNH,e reduction SNtot,e and SNH,e reduction

violations removal reduction violations removal reduction

with functions with FCs

EQI 6115.63 5624.41 8.03% 5598.4 8.46%

OCI 16381.93 17494.44 -6.8% 17747.85 -8.34%

SNtot,e violations 17.56 0 100% 0 100%

(% of operating time)

SNH,e violations 17.26 0 100% 0 100%

(% of operating time)

Rain influent

Default PI controllers Control for % of Control for % of

SNtot,e and SNH,e reduction SNtot,e and SNH,e reduction

violations removal reduction violations removal reduction

with functions with FCs

EQI 8174.98 7695.03 5.9% 7658.32 6.32%

OCI 15984.85 18524.71 -15.9% 18735.84 -17.21%

SNtot,e violations 10.86 0 100% 0 100%

(% of operating time)

SNH,e violations 27.08 0 100% 0 100%

(% of operating time)

Storm influent

Default PI controllers Control for % of Control for % of

SNtot,e and SNH,e reduction SNtot,e and SNH,e reduction

violations removal reduction violations removal reduction

with functions with FCs

EQI 7211.48 6685.15 7.3% 66615.09 7.75%

OCI 17253.75 19524.67 -13.2% 19672.72 -14.02%

SNtot,e violations 15.03 0 100% 0 100%

(% of operating time)

SNH,e violations 26.79 0 100% 0 100%

(% of operating time)

Table 5.3: Results with default PI controllers and with control strategies for the
simultaneous SNtot,e

and SNH,e violations removal with functions for dry, rain and
storm influents.

in the tanks or not.

Simulation results show that SNtot,e and SNH,e violations are removed for dry, rain and

storm influents. In the cases of SNtot,e violations removal for the three weather conditions

and SNH,e violations removal for dry weather, a simultaneous reduction of EQI and OCI

is achieved in comparison with the default control strategy. The SNH,e violations removal

for rain and storm influents and the simultaneous elimination of SNtot,e and SNH,e makes

inevitable an increase of OCI. In any case, it has to be said that, with the removal of

effluent violations, a reduction of costs is obtained for not paying fines, which is not

considered in OCI.
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Dry influent

Default PI Control for SNH,e and SNtot,e % of

controllers violations removal reduction

EQI 6115.63 5624.41 8.03%

(kg pollutants/d)

OCI 16381.93 17494.44 -6.8%

SNtot,e violations 17.56 0 100%

(% of operating time)

SNH,e violations 17.26 0 100%

(% of operating time)

Rain influent

Default PI Control for SNH,e and SNtot,e % of

controllers violations removal reduction

EQI 8174.98 7695.03 5.9%

(kg pollutants/d)

OCI 15984.85 18524.71 -15.9%

SNtot,e violations 10.86 0 100%

(% of operating time)

SNH,e violations 27.08 0 100%

(% of operating time)

Storm influent

Default PI Control for SNH,e and SNtot,e % of

controllers violations removal reduction

EQI 7211.48 6685.15 7.3%

(kg pollutants/d)

OCI 17253.75 19524.67 -13.2%

SNtot,e violations 15.03 0 100%

(% of operating time)

SNH,e violations 26.79 0 100%

(% of operating time)

Table 5.4: Results with default PI controllers and with control strategies for the
simultaneous SNtot,e and SNH,e violations removal with functions for dry, rain and

storm influents.



Chapter 6

Effluent predictions for violations

risk detection

In the previous chapter, the elimination of SNtot,e and SNH,e violations have been shown

using BSM1 as working scenario. However, BSM2 provides a more elaborated and

variable influent with an assessment of one year. Applying control strategies to avoid

effluent violations, only when an increase of contaminants is already detected in the

reactors, is not enough in BSM2. Due to this fact, an effluent prediction of the pollutants

based on some variables in the influent is required. ANNs are implemented with this

aim.

6.1 Implementation of Artificial Neural Networks

For an efficient elimination of effluent violations, a prognostication of the situations of

risk is essential to react as soon as possible and to apply immediately the necessary

preventive actions to the plant; otherwise most violations cannot be avoided. This

prediction is carried out by ANNs that estimate the future effluent values, based on

information of the entrance of the biological treatment.

Specifically, two ANNs are proposed in this paper. One ANN predicts the value of

SNH,e (SNH,ep) and the other ANN predicts the value of SNtot,e (SNtot,ep). When a risk

of violation of SNtot,e or SNH,e is foreseen, special control strategies using FCs (explained

in the next subsection) are applied to avoid them. When a risk of SNH,e violation is

81
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detected, Qa is manipulated based on SNH,5 to reduce SNH,e peak, instead of being

manipulated to control SNO,2, as it occurs the rest of the time. Regarding SNtot,e , when

a risk of violation is detected, qEC is manipulated based on this prediction, instead of

being kept at a fixed value as usual.

An accurate prediction of SNH,e and SNtot,e is not possible due to the fact that ANNs

use only influent variables as inputs, while the effluent concentrations also depend on

other variables of the process. Those variables can not be taken into account because

it is necessary to predict the risk of effluent violations with enough time in advance.

Moreover, all data used to predict the risk has to be easily measurable. However, with

an adequate choice of the input variables of ANNs, it is possible to achieve an adequate

approximation in order to detect a risk of violation for applying the suitable control

strategy.

Therefore, the inputs of ANNs have been determined according to the mass balance

equations (2.28 and 2.29). The variables used to perform the prediction for both ANNs

are Qpo, Zpo and Tas. The variable Qa has also been used as an input for the ANN that

predicts SNtot,e , but it is not used to predict SNH,e because it is a manipulated variable

in the control strategy applied to remove SNH,e violations. Specifically, SNH from the

primary clarifier (SNH,po) is the pollutant concentration chosen as a predictor for both

ANNs. On one hand, SNH and SNO are the pollutants with higher influence in SNtot,e ,

but SNO,po is very low and it is not taken in account. On the other hand, SNH,po not

only affects largely SNH,e, but also affects the nitrification process, the consequent SNO

production and therefore the resulting SNtot,e . Tas is also added as a predictor variable

due to its influence in the nitrification and denitrification processes (2.23; 2.24; and

2.25). SNH,e and SNtot,e values are inversely proportional to the Tas values.

Finally, due to the mentioned reasons, the inputs for the ANNs are:

• Inputs of ANN for SNH,e model prediction: Qpo, SNH,po, Qpo · SNH,po, Tas.

• Inputs of ANN for SNtot,e model prediction: Qpo, SNH,po, Qpo · SNH,po, Tas, Qa.

To train and validate ANNs, a collection of input and output data is necessary. The

variations in the inputs affect the outputs with a variable delay that depends on the

hydraulic retention time. Due to this fact and, in order to simplify the data collection
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process, for the ANNs inputs and outputs only the maximum and minimum values of

each day have been selected. Except for Tas, where the daily average value has been

considered. As it is necessary a large number of data to generate a satisfactory model for

an ANN, the data are obtained in a one year simulation period with the plant working

without the control strategies for avoiding SNtot,e and SNH,e violations. In a real plant,

the stored historical data could be used for this purpose. The number of hidden layers

for both ANNs is 10. The structures are shown in Fig.6.1.

SNHpo

Qpo

S QNHpo po 

Tas

SNHe

10

Hidden Layer

(a) ANN for SNH,e prediction

SNHpo

Qpo

S QNHpo po 

Tas

SNtot,e

10

Hidden Layer

Qa

(b) ANN for SNtot,e prediction

Figure 6.1: Structures of the proposed ANNs

For the training of the ANN the MATLAB c© NNToolbox has been used. As already

mentioned, recorded data corresponding to one year of running the plant with the hier-

archical control in place has been used. The data is partitioned in different sets that are

used for training (70% of data), another one to validate the network is generalizing and

to stop training before overfitting (15% of data). The rest of the data (the remaining

15%) is used as a completely independent test of network generalization. The training

results are evaluated by means of error histogram. Figure (6.2) shows the error his-

tograms corresponding to both ANN. The blue bars represent training data, the green
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bars represent validation data, and the red bars represent testing data. As it can be

seen, the ANN for SNtot,e prediction is more difficult to train. Even this, there are prac-

tically no significant outliers and, if any, their magnitude is really small. It remains a

subject of further exploration about the suitability of more complex network structures

if precise effluent following is needed.
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Figure 6.2: ANN training error histograms.

As a result, figure 6.3 show the effluent concentrations of SNH,e and SNtot,e predicted by

the trained ANN. As it can be seen, the prediction does not follow with high precision

the real effluent profile. Instead, the ANN have been trained to generate the peaks that

are of interest, those that are significant for Ntot,e and NHe limit violation. The idea is



Chapter 6. Effluent predictions for violations risk detection 85

not to predict the whole effluent profile with precision but to detect where possibly high

values will occur.
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Figure 6.3: ANN Effluent prediction for SNH,e and SNtot,e

6.2 Simulation results

There are moments where the high disturbances coming from the influent make plant

operation very difficult. Therefore, the ANN prediction will show the potential risk of

effluent limit violations.
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The BSM2 is now simulated by applying the hierarchical control scheme explained in

next chapter. In parallel, the influent data feeds both ANN and output pollutant concen-

trations are predicted. As mentioned when describing the BSM2 scenario, the assessment

period is extended to one year instead of one week. Figure 6.4 shows, as an example,

the simulation results for SNH,e risk detection for a time window of 150 days. It can

be seen that the hierarchical two-level control system operates the plant quite well, and

only three risk situations are detected. It is in these cases when supplementary control

actions will be needed.

In order to better show how the risk detection works, figures 6.5 and 6.6 show the risk

detection for both output concentrations SNH,e and SNtot,e in an enlarged time window.

As it can be observed, the way of ANN have been trained allows for a real effluent

pollutants prediction. This allows for an early detection of the possible limit violation.

A flag signal is activated during 6h. For future use, this boolean signal could be used to

activate a decision system that signals for appropriate corrective actions regarding these

violations.

On the other hand, in figure 6.6, we can see there is a mismatch between the number

of real limit violations and the times the risk signal is activated. This is because of the

three maximums the effluent do has during the violation period. In any case, the fact

that during one day the signal is activated three times, corresponds to a really dangerous

situation.
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Figure 6.5: SNH,e limit violation risk detection
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Figure 6.6: SNtot,e limit violation risk detection
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6.3 Summary

For the application of the control strategies for effluent violations removal in BSM2,

effluent predictions are necessary in order to select the suitable control strategy to be

applied. In this chapter, the implementation of the ANNs for these effluent predictions

is described.

Specifically two ANNs have been applied, one for SNtot,e prediction and the other for

SNH,e prediction. For the case of SNtot,e prediction, the input variables have been: Qpo,

SNH,po, Qpo · SNH,po and Tas. And for SNH,e prediction: Qpo, SNH,po, Qpo · SNH,po, Tas

and Qa.

Simulations show satisfactory predictions of SNtot,e and SNH,e, which are used for risk

detection and thus for selecting the suitable control strategy. For SNH,e prediction, the

threshold is established at 4 mg/l, the same as the limit value. For the case of SNtot,e

prediction, the threshold is reduced to 17 mg/l (1 mg/l less than the established limit)

to ensure the avoidance of violation, but without reducing it too much for not increasing

costs.



Chapter 7

Intelligent decision control system

This chapter presents the control strategies applied in BSM2 for SNtot,e or SNH,e viola-

tions removal. An intelligent control system selects the control strategies to be applied

based on the effluent predictions explained in the previous chapter.

7.1 Control configurations for the proposed objectives

The simulations and evaluations of the control strategies presented in this chapter are

carried out with BSM2. In the literature some works use BSM2 as testing plant. Some of

them are focused on the implementation of control strategies in the biological treatment,

as the present work. Specifically, they propose a multi-objective control strategy based

on SO control by manipulating KLa of the aerated tanks, SNH hierarchical control by

manipulating the SO set-points, SNO,2 control by manipulating Qa or TSS control by

manipulating Qw ([34–37]).These referred works have different goals, but all of them

obtain an improvement in effluent quality and/or a reduction of costs. However, none

of them aim to avoid the limits violations of the effluent pollutants.

The control configurations proposed in this work are based on MPC+FF and FCs.

MPC+FF are used in order to keep the SO,4, SO,5 and SNO,2 at the given set-point. FCs

are applied, on one side, as higher level controller in a hierarchical structure to vary the

SO references to be tracked by the MPC controllers, and, on the other hand, to remove

SNtot,e and SNH,e violations by determining qEC,1 and Qa values. The application of

FCs are based on the biological processes, but without the goal of keeping the controlled

89
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variable at a set-point. In this case, the control objectives are: the improvement of OCI

and EQI, and the violations removal of SNtot,e and SNH,e. An intelligent control system

selects the control strategies to be applied based on the effluent predictions explained

the in previous chapter (see Fig. 7.1).
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Figure 7.1: Proposed control strategies for SNtot,e
or SNH,e violations removal with

a simultaneously EQI and OCI reduction

7.1.1 SO,4, SO,5 and SNO,2 tracking

Two MPC+FF controllers are proposed for the aerated zone, to control SO,5 by manip-

ulating KLa5 and to control SO,4 by manipulating KLa3 and KLa4 based on [1]. The
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aim of these MPC+FF controllers is to improve the set-points tracking regarding the

PI controllers of defCL. Also, an MPC+FF is applied to control SNO,2 at a reference

value of 1mg/l by manipulating Qa, based on the default strategy of BSM1. In the same

way as in BSM1, in order to adjust the manipulated variables immediately to compen-

sate the disturbances, Qpo has been selected for the feedforward action of the MPC+FF

controllers.

In this work, unlike the defCL, SO,4 and SO,5 references are not maintained at a fixed

value. Instead of this, a FC varies the set-point, adapting it based on the conditions of

the nitrification process. Due to this reason, it should be noted the importance of the

MPC+FF controllers performance to ensure that the SO,4 and SO,5 values are as close

as possible to the set-point given by the FC.

The variables of the state-space model (2.40) for the three MPC+FF controllers are

described following: u1(k) is KLa4 and KLa3, u2(k) is Qpo and y1(k) is SO,4 in the

MPC+FF for SO,4 control; u1(k) is KLa5, u2(k) is Qpo and y1(k) is SO,5 in the MPC+FF

for SO,5 control; u1(k) is Qa, u2(k) is Qpo and y1(k) is SNO,2 in the MPC+FF for SNO,2

control.

The identification of the linear predictive models of the MPC+FF controllers was per-

formed using Matlab R© System Identification toolbox. The data of the output variables

(SO,4, SO,5 and SNO,2) are obtained by making changes to the input variables (KLa3,

KLa4, KLa5 and Qa) with a maximum variation of 10% regarding its operating point,

which is the value of KLa necessary to obtain 2 mg/l of SO,4, 1 mg/l of SO,5 and the

value of Qa necessary to obtain 1 mg/l of SNO,2. Specifically, the working points are 120

day −1, 60 day −1 and 61944 m3/day for KLa3 / KLa4, KLa5 and Qa respectively. PEM

was selected to determine the model with the obtained data. Therefore the following

second order state-space models are obtained:
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• SO,4 control

A =


 0.9768 0.1215

0.09664 0.2635




B =


 0.002984 −3.673 · 10−6

−0.01796 8.318 · 10−6




C =
[

3.682 −0.4793
]

D =
[

0 0
]

(7.1)

• SO,5 control

A =


 0.9794 0.1109

0.0976 0.3544




B =


 0.001836 −1.259 · 10−5

−0.01153 7.04e− 005




C =
[

8.412 −0.1429
]

D =
[

0 0
]

(7.2)

• SNO,2 control

A =


 0.8301 0.2828

0.0578 0.8674




B =


 3.264 · 10−6 −1.358 · 10−5

−1.767 · 10−6 −2.87 · 10−6




C =
[

5.035 0.2777
]

D =
[

0 0
]

(7.3)

The selected values to tune the MPC+FF controllers are m = 5, p = 20, 4t = 0.00025

days (21.6 seconds), Γy = 1 and Γ4u = 1·10−5 and overall estimator gain = 0.8 for SO,4

control; m = 5, p = 20, 4t = 0.00025 days (21.6 seconds), Γy = 1 and Γ4u = 5·10−4

and overall estimator gain = 0.8 for SO,5 control; m = 5, p = 50, 4t = 0.00025 days

(21.6 seconds), Γy = 1 and Γ4u = 1·10−5 and overall estimator gain = 0.9 for SNO,2

control.
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7.1.2 Manipulation of SO set-points, qEC and Qa

Five FCs have been implemented in the proposed control strategies with three objectives:

to reduce EQI and OCI, to remove SNtot,e violations and to eliminate SNH,e violations.

They are based on the biological processes given by ASM1.

For the five FCs applied, Mamdani ([15]) is the method selected to defuzzify. The design

of the FCs was based on the observation of the simulations results obtained by operating

the plant with the default control of BSM2.

7.1.2.1 Fuzzy Controller for EQI and OCI reduction

A FC is applied as higher level controller to manipulate SO,4 and SO,5 set-points based

on the SNH,5 with the aim to reduce EQI and OCI. Specifically, it is based on the

nitrification process, improving it or making it worse based on a trade-off between the

values of SNH and SNO. The idea of this control is to improve the nitrification process

by increasing SO,4 and SO,5 references (2.24) when there is an SNH,5 increase caused by

the influent, reducing thus SNH,e peaks. Conversely, to reduce the XB,H growth when

the SNH,5 level is low, in order to produce less SNO (2.24) and (2.20) and at the same

time to reduce operational costs (2.31).

For the higher level FC, three triangular membership functions for input and for output

are used (low, medium and high). The implemented if − then rules are:

if (SNH,5 is low) then (SO,4 set is low)

if (SNH,5 is medium) then (SO,4 is medium)

if (SNH,5 is high) then (SO,4 is high)

The range of the input values is from 0.2 to 4, and the range for the output values is

from -0.75 to 4.5. SO,5 set-point is equal to the half value of SO,4.

7.1.2.2 Fuzzy Controllers for SNtot,e violations removal

The idea of this control strategy is to add qEC only when there is a risk of violation in

order to reduce operational costs, unlike the default control strategy, which keeps qEC,1
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at 2 m3/d continuously. Three FCs are proposed. One FC is used as predictive control,

adding qEC in the first and second reactors (qEC,1−2) when a violation is predicted,

based on SNtot,ep value given by the ANN (explained above). This control strategy

is necessary, because acting only when a high SNtot value in the reactors is detected

could not be enough if SNtot is quite high. The second FC adds qEC in the fifth tank

(qEC,5) based on SNH,5 plus SNO,5, which are the contaminants with more influence on

SNtot . This control acts when, in spite of the predictive control, SNH,5+SNO,5 increases

excessively. As the biological process is designed to treat a maximum flow rate of 60420

m3/d, when the flow rate coming from the primary treatment surpasses this value, the

excess is bypassed directly to the effluent without being treated. In state of bypass, the

third fuzzy control manipulates qEC,5 based on the bypass flow rate (Qbypass) multiplied

by SNH in the bypass (SNH,bypass), in order to compensate the increase of SNH,e due to

the flow rate that cannot be treated.

The first FC, which is based on the SNtot,ep , has one input and one output, with three

membership functions for each (low, medium and high). The implemented if − then
rules are:

if (SNtot,ep is low) then (qEC,1−2 is low)

if (SNtot,ep is medium) then (qEC,1−2 is medium)

if (SNtot,ep is high) then (qEC,1−2 is high)

If qEC,1−2 value is less than the maximum value of qEC set in each reactor (5 m3/d),

it is only added to the first reactor. If qEC is greater than 5 m3/d, qEC,1 is equal to 5

m3/d and qEC,2 is equal to the value of qEC,1−2 minus 5. The range of the input values

of the fuzzifier is from 17 to 19.5, and the range for the output values is from 4 to 15.

Therefore, qEC,1−2 is added when SNtot,ep is over 17 mg/l instead of 18 mg/l which is

the limit value, thus a margin of error of 5.5% in the prediction is established.

Since a situation of risk is detected (SNtot,ep > 17 mg/l), the predict control is kept

running until the three following conditions are met to ensure that the risk has disap-

peared: SNtot,ep is lower than 16 mg/l, SNH,5 plus SNO,5 is lower than 13.5 mg/l and the

controller has been operating 6 hours at least. The controller calculates a qEC,1−2 value
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at each sample time, but the true value applied to the plant is the maximum of all the

previous samples, in order to ensure that the effluent violation is avoided.

The second FC, which manipulates qEC,5 based on SNH,5+SNO,5, has one input and one

output, with three membership functions for each input and output (low, medium and

high). The range of the input values is from 15.3 to 15.9, and the range of the output

values is from -1 to 6. The implemented if − then rules are:

if (SNH,5+SNO,5 is low) then (qEC,5 is low)

if (SNH,5+SNO,5 is medium) then (qEC,5 is medium)

if (SNH,5+SNO,5 is high) then (qEC,5 is high)

The third FC, which manipulates qEC,5 based on SNH,5+SNO,5 and Qbypass · SNH,bypass,

has two inputs and one output, with three membership functions for each input and

output (low, medium and high). The range of the SNH,5+SNO,5 input values is from

12 to 12.5, the range of the Qbypass · SNH,bypass input values is from 0 to 1.4·105 and the

range for the output values is from -1·104 to 6·105. The implemented if−then rules are:

if (SNH,5+SNO,5 is low and Qbypass · SNH,bypass is low) then (qEC,5 is low)

if (SNH,5+SNO,5 ismedium and Qbypass · SNH,bypass ismedium) then (qEC,5 ismedium)

if (SNH,5+SNO,5 is high and Qbypass · SNH,bypass is high) then (qEC,5 is high)

This controller works while there is bypass. As in the first FC, the qEC,5 value applied

to the plant by the second and third FCs is the maximum of all the previous calculated

values during the situation of risk.

7.1.2.3 Fuzzy Controller for SNHe violations removal

A FC is proposed to eliminate SNH,e violations by manipulating Qa based on SNH,5.

This control strategy is applied only when a SNH,e violation is predicted by the ANN,

explained in the previous chapter. The rest of the time Qa is manipulated to control

SNO,2.
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When a risk of violation is detected (SNH,ep > 4 mg/l), the proposed FC is applied,

first to dilute SNH,po and subsequently to reduce the hydraulic retention time when the

increase of SNH reaches the reactors. Thus, according to the mass balance equation in

the first reactor (2.28), when SNH,po increases, Qa is incremented to reduce the rise of

SNH,1, and when the increase of SNH arrives to the fifth tank, Qa is reduced to increase

the retention time and so to improve de nitrification process. When, in spite of this

control, SNH,5 reaches the value of 3.5 mg/l, a complementary action is applied and the

SO,4 ans SO,5 set-points are increased by multiplying its value by 1.5.

The FC has one input and one output, with three membership functions for each (low,

medium and high). The implemented if − then rules are:

if (SNH,5 is low) then (Qa is high)

if (SNH,5 is medium) then (Qa is medium)

if (SNH,5 is high) then (Qa is low)

The tuning parameters are set looking for a great variation in Qa. Thus, the range of

the input values is from 3 to 4.1, and the range for the output values is from -3·104 to

2·105.

This control is interrupted when the risk of violation disappears (SNH,ep < 4 mg/l and

SNH,5 < 3.5 mg/l). When it happens, the MPC+FF controller needs time to recover a

successfully SNO,2 control. In order to avoid abrupt changes in the manipulated variable,

variations of Qa are limited during one day after of the control strategy application.

7.2 Simulation Results

In this section the control configurations proposed in the above section are tested and

compared. Ideal sensors have been considered. The simulation protocol is established in

[2]: First, a steady state simulation of 200 days, and next a dynamic simulations of 609

days. Nevertheless, only the data generated during the final 364 days of the dynamic

simulation are used for plant performance evaluation.
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In Table 7.1 the results obtained with the proposed control strategies are shown. The

chosen indicators to show the results obtained are based on the proposed objectives:

EQI to evaluate the quality of effluent, OCI to evaluate costs, and the percentages of

time of SNH,e and SNtot,e violations.

EQI OCI SNtot,e violation SNH,e violation

(% of time) (% of time)

[2] defCL 5577.97 9447.24 1.18 0.41

[1] CL1 5447 9348 N/A 0.29

% 2.35 1.05 N/A 29.27

CL2 5274 8052 N/A 0.23

% 5.45 14.77 N/A 43.9

[37] S1 5249 7154 N/A N/A

(different simulation time) % 5.9 24.27 N/A N/A

S2 5927 8773 N/A N/A

% -62.6 7.14 N/A N/A

S3 5530 8072 N/A N/A

% 0.86 14.56 N/A N/A

S4 5593 7442 N/A N/A

% 0.27 21.22 N/A N/A

[36] A1 6239 13324 2.17 19.44

(different EQI equation) % -11.85 -41.04 -83.9 -4641.46

A2 6172 13323 1.09 20.83

% -10.65 -41.02 7.63 -4980.49

A3 5995 13580 1.35 5.4

% -7.48 -43.74 -14.4 -1217.07

Control strategy for qEC,1=0 5318.95 6289.59 0.046 0.15

SNtot,e violations removal % 4.64 33.42 96.1 63.41

qEC,1=0.5 5197.49 6873.65 0.037 0.14

% 6.82 27.24 96.86 65.85

qEC,1=1 5069.51 7573.34 0.037 0.14

% 9.11 19.83 96.86 65.85

qEC,1=2 4852.49 9196.59 0.028 0.13

% 13 2.65 97.63 68.29

Control strategy for qEC,1=0 5387.81 5942.77 2.39 0

SNH,e violations removal % 3.41 37.09 -102.54 100

qEC,1=0.5 5217.9 6680.66 1.027 0

% 6.45 29.28 12.97 100

qEC,1=1 5112.01 7399.13 0.69 0

% 8.17 21.68 41.52 100

qEC,1=2 4875.14 9066.01 0.25 0

% 12.6 4.03 78.81 100

Table 7.1: Comparative results of control strategy for SNHe
violations removal and

control strategy for SNtot,e
violations removal

The results have been compared with the default control strategy provided in [2], and

with the two control strategies presented in the finalization of the plant layout in [1]. In

addition, the results of [37] and [36] are also shown for for illustrative purposes. However,

it should be noted that the comparison in these cases is not completely fair. In the case
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of [36], the EQI equation includes the different oxidized nitrogen forms, what makes

worse the EQI result, and the simulation in [37] is carried out using only 275 days of

influent data, what results in lower EQI and OCI. On the other hand, the comparison

with the referenced works [34, 35, 38] is not possible. The reason is that [34] and [35]

use an earlier version of BSM2 (instead of the modified version in [1]), and [38] presents

EQI and OCI graphs, but they do not provide numeric values.

As shown in Table 7.1, the results of the proposed strategies are obtained for various

fixed qEC,1 values. Obviously, when the control strategy for SNtot,e violations removal is

applied, the qEC,1 value is modified. Logically, as qEC,1 is increased, EQI is reduced but

OCI is increased. In comparison with defCL, [37] and [36], applying qEC,1 = 0.5, both

OCI and EQI are reduced, while the percentage of time of SNtot,e and SNH,e violations

is lower and sometimes zero. EQI and OCI reduction is mainly achieved with the

hierarchical control structure. Important aspects to be considered in this hierarchical

control are: first to get a good tracking through the lower level MPC+FF controllers

and, on the other hand, to give a suitable SO set-points by the higher level FC.

Regarding the tracking of the lower level control, Fig. 7.2 shows one week evolution

of SO,4 control, where the improvement of MPC+FF controller compared to the PI

controllers of defCL can be observed. Table 7.2 shows the numerical results of the

performance of both controllers, including the percentage of improvement of MPC+FF

for the SO,4 control. The results of SO,5 and SNO,2 control obtained in this work are also

shown. To the best knowledge of the authors, the performance results of the lower level

control in other works of the literature based on BSM2 are not shown. Therefore they

can not be compared.

Fixed SO set-points and fixed Qa Hierarchical control and SNO,2 control

SO,4 control SO,5 control SO,4 control SO,5 control SNO,2 control

PI of defCL MPC+FF % MPC+FF MPC+FF MPC+FF MPC+FF

IAE 9.079 0.33 96.36 0.44 0.44 0.37 3.91

ISE 0.4 0.0005 99.87 0.001 0.0049 0.0011 2.76

Table 7.2: Control performance results with fixed SO,4 and SO,5 set-points (2 mg/l
and 1 mg/l respectively) and fixed Qa (61944 m3/d) and with SNO,2 control at a

set-point of 1 mg/l and varying SO,4 and SO,5 set-points with hierarchical control

One reason of the EQI and OCI reduction obtained with the proposed control strategies,

in comparison with the referred works of Table 7.1, is the way how the controllers of the
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Figure 7.2: Simulation of the first evaluated week of the control performance of
the MPC+FF controllers with fixed SO,4 and SO,5 set-points (2 mg/l and 1 mg/l
respectively) and fixed Qa (61944 m3/d) (a); and with SNO,2 control at a set-point of

1 mg/l and varying SO,4 and SO,5 set-points with hierarchical control (b)

higher level work. The referred papers try always to control SNH at a fixed reference,

but always with a very large error. This is not the case of the FC of the present

work, which modifies the SO set-points based on the biological processes, but without

trying to maintain SNH,5 at a fixed reference. It is also important to note that the

referred works only vary the SO set-point of one aerobic reactor, whereas in the present

work SO,4 and SO,5 set-points are modified. Fig. 7.3 shows one week evolution of

the most important variables when there are SNH,5 peaks. It shows the comparison

between hierarchical control and the control strategy with fixed SO set-points. In the
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case of hierarchical control, when SNH,5 increases, SO,4 and SO,5 set-points are also

increased and SNH,e peaks are reduced, and when SNH,5 decreases, SO,4 and SO,5 are

also decremented generating less SNO and reducing operational costs.
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Figure 7.3: One week simulation comparison between control strategy with fixed SO

set-points and varying SO set-points with hierarchical control

Regarding the effluent violations, Table 7.1 shows that all SNH,e violations are removed,

while the vast majority of SNtot,e violations are also eliminated. There are a few special

cases where the SNtot,e violation is not possible to be avoided. Specifically, it happens

three times in the simulation year in the cases of qEC,1 is equal to 0, 0.5 and 1; and one

time in the simulation year in the case of qEC,1 is equal to 2. These violations are due

to an increased flow rate just when peaks of pollutants are in the last reactors, possibly

due to a heavy rain. Furthermore, in two of these three times, the influent flow rate

exceeds the capacity of the plant and is partially led directly to the effluent through the

bypass, without being treated. Therefore, although the FC acts adding qEC,5, there is

not enough time in advance to avoid the violation. Fig. 7.5 and Fig. 7.4 show some

cases where SNtot,e and SNH,e violations are eliminated, unlike what happens with only

hierarchical control. Fig. 7.5 (c) shows one case where SNtot,e violation removal is not

possible.

As explained in previous sections, the most important novelty of this work is the appli-

cation of ANNs to predict the values of SNtot,e and SNH,e. As seen in Fig. 7.4 and Fig.
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Figure 7.4: Simulation of two cases of the control strategy for SNH,e violations removal
aplication and its comparison with hierarchical control alone

7.5, the prediction made by the ANNs allows to apply the appropriate control strategy

enough in advance to prevent violations. In case that a violation of SNH,e is predicted,

Qa is increased by a FC to dilute SNH , and when the increasing of SNH reaches the fifth

reactor, Qa is decreased to reduce the hydraulic retention time and thus to improve the

nitrification process. In the case that a violation of SNtot,e is predicted, qEC,1−2 is added

according to the value calculated by a FC.
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Figure 7.5: Simulation of some cases of the control strategy for SNtot,e violations
removal aplication and its comparison with hierarchical control alone
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7.3 Summary

In this chapter, control strategies for effluent violations removal, similar to the ones

applied in BSM1 in previous chapters, have been tested in BSM2. The main novelty

is that, due to the variability of the influent, an intelligent control system selects the

control strategies to be applied based on the effluent predictions.

For the lower level of the hierarchical structure, a satisfactory SO,4, SO,5 and SNO,2

control performance, by applying MPC+FF controllers, have been also achieved. Due

to the similar results obtained with functions and FCs in BSM1, in this case only FCs

have been proposed for the higher level and also to manipulate qEC and Qa when a risk

of SNtot,e or SNH,e violation is detected.

Simulation results have shown the complete elimination of SNH,e violations. Regarding

SNtot,e violations, they have been avoided except one time in a simulation year, in which

a large increase of flow rate coincides with a peak of pollutants in the last reactor and

with a situation of bypass. In addition, an EQI and OCI reduction has been achieved in

comparison with defCL, CL1, CL2 and the referred articles. The percentage of reduction

is compared to defCL, obtaining a maximum EQI reduction of 13% and a maximum OCI

reduction of 37%.
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Conclusions

In this paper new control strategies have been applied in WWTPs, with the objectives

of improving effluent quality, reducing operating costs (evaluated by EQI and OCI in-

dices respectively) and avoiding to exceed the established limits of effluent pollutants

concentrations.

The evaluation and comparison of different control strategies have been based on two

benchmarks, developed by IWA: BSM1 and BSM2. First, BSM1 has been used as

a testing plant because it requires a smaller simulation time and therefore different

control strategies can be tested more quickly. Subsequently, the operation of these

control strategies, adding some modifications, has been tested in BSM2. This is an

updated version of BSM1, closer to a real plant, extending to one year of simulation,

with a much more complex plant model, including also a pre-treatment process and a

sludge treatment processes. In this case, a prediction of the effluent has been required

for the election of the control strategy to be applied. In any case, control strategies have

been applied in the zone of the activated sludge reactors.

The proposed control strategies have been based on MPC, FC, functions that relate the

input with the manipulated variable and ANN. MPC controllers have been applied in

order to improve the tracking. The control of the FCs and the functions was based on the

biological processes that take place in the reactors. ANNs have been proposed in BSM2

to detect risks of violation by effluent predictions, in order to apply the appropriate

control strategy. Both benchmarks and these control approaches have been explained in

Chapter 2.

The thesis has been divided in two parts. In the first part, a hierarchical control has been

applied in order to improve effluent quality and to reduce operational costs. In Chapter

4 the lower level has been implemented, where the MPC+FF controllers track the SO in

the aerated tanks and SNO,2, improving the control performance with an ISE reduction

of more than 90% compared to the default PI controllers. The control performance of

the MPC+FF controllers has been also compared to the referenced papers, showing the

improvement of the proposed method and thus the successful tracking. In Chapter 5, the

higher level has been performed, which regulates the SO set-points of the aerated tanks

based on SNH,5. First, for the selection of the higher level controller, three different
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alternatives were proposed manipulating only SO,5 set-point: a MPC, an affine function

and a FC. They were tested and compared in the three weather conditions: dry, rain

and storm. As a result, EQI and OCI were reduced significantly. The results of OCI

and EQI with higher level affine function and higher level FC were similar and better

than those obtained with higher level MPC. This is due to the fact that the higher

level MPC tries to keep the value of SNH,5 at a reference level, but this is not possible.

For that reason, the alternatives of affine function and FC for the higher level were

tested with the idea of varying SO,5 based on the SNH,5 measured, taking into account

the variables behavior in the biological processes, but without trying to keep SNH,5

at a fixed reference. Thus, improving the nitrification process when SNH,5 increases,

to oxidize more SNH and worsening the nitrification process when SNH,5 decreases to

generate less SNO and to reduce costs. To ensure the right tuning of the controllers and

therefore the correct relationship between the applied control and the results, a trade-off

analysis between OCI and EQI has been performed by varying two tuning parameters

for each controller. Next, the higher level control has been extended, manipulating the

three aerobic tanks, achieving a greater reduction in EQI and OCI. Simulation results

show that manipulating the SO set-points of the three aerobic tanks, an EQI reduction

of 5% and an OCI reduction of 3.9% is achieved for dry weather compared to the default

control strategy. For the rain and storm influent cases, also a satisfactory reduction of

EQI and OCI is obtained, higher than 3%.

In the second part of the thesis, control strategies have been added with the objective

of effluent violations removal. In Chapter 5, BSM1 has been used as testing plant.

Functions and FCs are proposed for these control strategies basing their control on

the biological processes. The improvement of the denitrification process, by adding

qEC,1, achieves the complete elimination of SNtot,e violations. This control strategy has

been tested with an affine function with a sliding window and with an FC. Both are

implemented to dosage the minimum qEC,1 necessary for this aim. The improvement of

the nitrification process by manipulating Qa makes possible the SNH,e violations removal.

It has been tested first, with the combination of a linear function and an exponential

function, and next, with an FC which uses different tuning parameters depending on if

there are peaks of pollution in the tanks or not. Simulation results show that SNtot,e and

SNH,e violations are removed for dry, rain and storm influents. In the cases of SNtot,e

violations removal for the three weather conditions and SNH,e violations removal for dry
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weather, a simultaneous reduction of EQI and OCI is achieved in comparison with the

default control strategy. The SNH,e violations removal for rain and storm influents and

the simultaneous elimination of SNtot,e and SNH,e makes inevitable an increase of OCI.

In any case, it has to be said that, with the removal of effluent violations, a reduction

of costs is obtained for not paying fines, which is not considered in OCI.

In Chapter 6 and Chapter 7, BSM2 is used as working scenario. For the application of

the control strategies for effluent violations removal in BSM2, effluent predictions are

necessary in order to detect risks of violation and thus selecting the suitable control

strategy to be applied. In Chapter 6, the implementation of the ANNs for these effluent

predictions is described. Simulations have shown a satisfactory predictions of SNtot,e and

SNH,e, which are used for detection of risk violations and thus for selecting the suitable

control strategy.

In Chapter 7, the control strategies selected by an intelligent control system have been

implemented. For the lower level of the hierarchical structure, a satisfactory SO,4,

SO,5 and SNO,2 control performance, by applying MPC+FF controllers, have been also

achieved. Due to the similar results obtained with functions and FCs in BSM1, in this

case only FCs have been proposed for the higher level. Also, FCs are implemented to

manipulate qEC and Qa when a risk of SNtot,e or SNH,e violation is detected. The simu-

lation results have been presented for different fixed values of qEC,1. They have shown

the complete elimination of SNH,e violations. Regarding SNtot,e violations, they have

been avoided except one time in a simulation year, in which a large increase of flow rate

coincides with a peak of pollutants in the last reactor and with a situation of bypass.

In addition, an EQI and OCI reduction has been achieved in comparison with defCL,

CL1, CL2 and the referred articles. The percentage of reduction is compared to defCL,

obtaining a maximum EQI reduction of 13% and a maximum OCI reduction of 37%.

Future works

This work has been focused on improving the biological treatment of wastewater, with

BSM1 and BSM2 as working scenarios. Further interesting works in this area would be

the simultaneous removal of SNtot,e and SNH,e violations in BSM2 and the elimination

of TSS violations by manipulating Qr.
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Moreover, as explained, BSM2 includes, in addition to the biological wastewater treat-

ment, a thickener for the sludge wasted from the clarifier of biological treatment, a

digester for treatment of the solids wasted from the primary clarifier and the thickened

secondary sludge, as well as a dewatering. These areas should be studied in order to

achieve a possible improvement of the plant by applying control strategies.

Between these areas of a WWTP, anaerobic digestion must be highlighted in order to

reduce costs through energy production. Anaerobic digestion is a process in which the

material in the absence of oxygen, and by the action of a group of organic bacteria, de-

composes into biogas, which contains a high percentage of methane, which is susceptible

of energy use. Regarding the thickener and the dewatering, they can be studied in order

to reduce TSS and to avoid violations in the effluent.

In addition, an update version of BSM2 takes also into account greenhouse gases, phos-

phorus, sulphur and micropollutants. Next to methane and carbon dioxide that are

intrinsically part of the plant-wide benchmark simulation model, recent work has fo-

cused significantly on nitrogen oxides emissions. Phosphorus removal has been a focus

of WWTP design and operation, but its inclusion in whole plant models is lagging be-

hind that of Nitrogen removal. Efforts to control hydrogen sulfide emissions and induced

corrosion in sewer systems will benefit from such Sulphur-focused modelling efforts. Fi-

nally, recent interest in micropollutants has led to a diversity of model developments.

The diversity of micropollutants remains a challenge, but consensus can probably be

found regarding models of the overall fate-determining mechanisms.
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a  b  s  t  r  a  c  t

This paper  presents  a  two-level  hierarchical  control  structure  for biological  wastewater  treatment  plants,
with  the  goal  of improving  effluent  quality  and  reducing  operational  costs.  The  Benchmark  Simulation
Model  No.  1 is used  as working  scenario.  The  hierarchical  structure  allows  to adjust  the  dissolved  oxygen
in  the  fifth  tank  (SO,5) according  with  the  working  conditions,  instead  of keeping  it  in a  fixed  value.  Model
Predictive  Control  (MPC)  with  inlet  flow  rate  feedforward  control  (MPC  +  FF)  is  proposed  for  the  lower
level  to control  nitrate  nitrogen  concentration  of  the  second  tank  and  SO,5. MPC,  Affine  Function  and
fuzzy  controller  are  tested  for  the  higher  level  to adjust  the SO,5 set point  of  the  lower  level based  on  the
ammonium  and  ammonia  nitrogen  concentration  in  the  fifth  tank.  Modifying  the  tuning  parameters  of
the  higher  level,  a tuning  region  is determined,  in  which  the effluent  quality  and  operational  costs  are
simultaneously  improved.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Biological wastewater treatment plants (WWTPs) are complex,
nonlinear systems with very different time constants. The intricate
behaviour of the micro-organisms and the large disturbances in
concentrations and flow rates of the influent makes the control of
the WWTP  a complex task. In addition, there are effluent require-
ments defined by the European Union (European Directive 91/271
Urban wastewater) with economic penalties. The purpose of this
work is to operate WWTPs with the aim of improving the effluent
quality and reduce operational costs.

Many control strategies have been proposed in the literature
but their evaluation and comparison, either practical or based on
simulation is difficult. This is due to the variability of the influent,
the complexity of the biological and biochemical phenomena, the
large range of time constants (varying from a few minutes to sev-
eral days), and the lack of standard evaluation criteria (among other
things, due to region specific effluent requirements and cost levels).
In order to face this complexity, the evaluation and comparison of
the different strategies can be based on the Benchmark Simulation
Model No. 1 (BSM1), developed by the International Association
on Water Pollution Research and Control [1–3]. This benchmark

∗ Corresponding author. Tel.: +34 935814030.
E-mail addresses: Ignacio.Santin@uab.cat (I. Santín), Carles.Pedret@uab.cat

(C. Pedret), Ramon.Vilanova@uab.cat (R. Vilanova).

includes a plant layout, influent loads, test procedures and evalua-
tion criteria.

Advanced control research for theoretical progress and practi-
cal implementation is today very necessary to reduce operational
costs, to improve quality, to optimize the use of energy resources
and to reduce environmental contamination [4]. Authors in [5]
show that with a highly loaded plant and with stringent effluent
fines imposed by legislation, more advanced control algorithms
are advantageous. For the challenging task of controlling WWTPs,
model predictive control (MPC) has demonstrated to be effective:
Holenda et al. [6] tried an indirect control, with the dissolved oxy-
gen concentration in the fifth tank (SO,5) as controlled variable;
Shen et al. [5] tested a direct control, with the quality indices as
controlled variables, with feedforward control of the influent flow
rate (Q0) to reject disturbances; Shen et al. [7] applied also qual-
ity indices as controlled variables with feedforward control of the
influent ammonium and ammonia nitrogen concentration (SNH,in)
and Q0, and in addition experimented with hard constraints in the
manipulated variables and soft constraints in the controlled vari-
ables; Cristea et al. [8] employed a multivariable control strategy
with two  controlled variables, SO,5 and nitrite and nitrate nitro-
gen concentration of the second tank (SNO,2), with feedforward
control of nitrite and nitrate nitrogen (SNO) and dissolved oxy-
gen (SO) concentrations in the inlet flow of the first anoxic reactor,
improving the performance of SNO,2 control, but not of SO,5 control
in comparison with default PI controllers. PI and PID controllers
have attracted the research interest for process control looking
for good robustness/performance trade-off [9]. However WWTPs

http://dx.doi.org/10.1016/j.jprocont.2015.02.005
0959-1524/© 2015 Elsevier Ltd. All rights reserved.
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exhibit highly complex dynamics that need for more advanced
alternatives.

Other works have experimented in the SNH in the fifth tank
(SNH,5) control by manipulating SO,5 set point. Vrecko et al. [10]
tested with PI controllers, Stare et al. [11] and Ostace et al. [12]
experimented with PI controllers and a MPC, and Ostace et al. [13]
used MPC  for both lower and higher level controls. These references
worked with a variation of BSM1.

This paper proposes first an MPC  with Q0 feedforward com-
pensation (MPC + FF) to control SNO,2 and SO,5 by manipulating
the oxygen transfer coefficient (KLa) in the fifht tank (KLa5) and
the internal recirculation flow rate (Qa), based upon the work [8].
However, in the present work, a different feedforward control is
proposed and an improvement of SO,5 and SNO,2 performance con-
trol is achieved.

Next, a two-level hierarchical control strategy is investigated, in
which the lower level is MPC  + FF, and the higher level modifies SO,5
set point of the lower level according with the working conditions
of the plant. This paper is mainly focused in the higher level con-
trol. For the SNH,5 control, Vrecko et al. [10], Stare et al. [11], Ostace
et al. [12], and Ostace et al. [13] used MPC  and PI controllers but
with a modified BSM1: Vrecko et al. [10] and Stare et al. [11] with
four aerobic tanks and one anoxic tank, and Ostace et al. [12], and
Ostace et al. [13] with a variation of the activated sludge model of
the reactors. These referenced works try to maintain the level of
SNH,5 at a fixed reference by manipulating the SO,5 set point of the
lower level. In the proposed paper, three alternatives for the higher
level controller are proposed and compared: an MPC, a fuzzy con-
troller and a simple Affine Function. For the MPC, a set point of SNH,5
is applied and, in the cases of the Affine Function and the fuzzy con-
troller, SNH,5 is not forced to follow a set point reference. Different
improving options of OCI and EQI are shown by making a trade-off
analysis for the three controllers of the higher level based on the
tuning parameters. The extreme cases have been analyzed: the best
EQI without worsening OCI and the best OCI without worsening EQI.

2. Working scenario: BSM1

This section provides a description of the working scenario pro-
vided by the BSM1 as well as the cost/performance evaluation
criteria and indexes.

2.1. Models

The processes in the WWTPs are simulated by two internation-
ally accepted models. The Activated Sludge Model No. 1 (ASM1) [14]
for biological processes in the reactors and the double-exponential
settling velocity model [15] for the vertical transfers between lay-
ers in the settler. The two models include thirteen state variables.
Eight different biological processes are considered in the ASM1 and
none in the settler.

2.2. Plant layout

The schematic representation of the WWTPs is presented in
Fig. 1. The plant consists in five biological reactor tanks connected
in series, followed by a secondary settler. The first two tanks have
a volume of 1000 m3 each and are anoxic and perfectly mixed. The
other three tanks have a volume of 1333 m3 each and are aerated.
The settler has a total volume of 6000 m3 and is modeled in ten
layers, being the 6th layer, counting from bottom to top, the feed
layer. Two recycle flows complete the system, the first from the last
tank and the second from the underflow of the settler.

The plant is designed for an average influent dry-weather flow
rate of 18.446 m3/d and an average biodegradable chemical oxygen
demand (COD) in the influent of 300 g/m3. Its hydraulic retention

Table 1
Effluent quality limits.

Variable Value

Ntot <18 g N m−3

CODt <100 g COD m−3

SNH <4 g N m−3

TSS <30 g SS m−3

BOD5 <10 g BOD m−3

time, based on average dry weather flow rate and total tank and
settler volume (12,000 m3), is 14.4 h. The wastage flow rate (Qw)
equals 385 m3/d, which corresponds to a biomass sludge age of
about 9 days, based on the total amount of biomass present in the
system.

The nitrogen removal is achieved using a denitrification step
performed in the anoxic tanks and a nitrification step carried out
in the aerated tanks. The internal recycle is used to supply the
denitrification step with SNO.

2.3. Influent loads

Three influent disturbances, representative of different weather
conditions, have been defined in BSM1 [16,17]: dry weather, rain
weather (a combination of dry weather and a long rain period)
and storm weather (a combination of dry weather with two storm
events). Each scenario contains 14 days of influent data with samp-
ling intervals of 15 min.

The applied control strategies have been evaluated for the three
weather conditions.

2.4. Evaluation criteria

A simulation/experiment protocol is established to assure that
results and performance data are collected under the same condi-
tions and can be compared. First, a 150 days period of stabilization
in a closed-loop using constant influent data with no noise on the
measurements has to be completed to drive the system to a steady-
state, next running a dynamic simulation by using the dry weather
file (14 days) and finally testing the desired influent data (dry, rain
or storm).

The effluent concentrations of total Nitrogen (Ntot), Total Chem-
ical Oxygen Demand (CODt), SNH, Total Suspended Solids (TSS)
and Biological Oxygen Demand (BOD5) over the three evaluation
periods (dry, rain and storm weather: 7 days for each) should obey
the limits given in Table 1.

Ntot is calculated as the sum of SNO and SNKj, where SNKj is the
Kjeldahl Nitrogen concentration which is the sum of organic nitro-
gen and SNH.

The performance assessment is made at two levels. The first
level concerns the control. Basically, this serves as a proof that the
proposed control strategy has been applied properly. It is assessed
by ISE (Integral of the Squared Error) criterion.

ISE =
∫ t=14 days

t=7 days

e2
i · dt (1)

where ei is the error in each sample between the set point and the
measured value.

The second level provides measures for the effect of the control
strategy on plant performance. It includes the Effluent Quality Index
and the Operational Cost Index explained below.

2.4.1. Effluent quality index
An Effluent Quality Index (EQI) is defined to evaluate the quality

of the effluent. It is related with the fines to be paid due to the
discharge of pollution. EQI is averaged over a 7 days observation
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Fig. 1. Benchmark Simulation Model 1.

Table 2
Bi values.

Factor BTSS BCOD BNKj BNO BBOD5

Value (g pollution unit g−1) 2 1 30 10 2

period and it is calculated weighting the different compounds of
the effluent loads.

EQI = 1
1000 · T

∫ t=14 days

t=7  days

(BTSS · TSS(t) + BCOD · COD(t)

+ BNKj · SNKj(t) + BNO · SNO(t) + BBOD5 · BOD5(t)) · Q (t) · dt (2)

where Bi are weighting factors (Table 2) and T is the total time.

2.4.2. Overall cost index
The overall cost index (OCI) is defined as:

OCI = AE + PE + 5 · SP + 3 · EC + ME  (3)

where AE is the aeration energy, PE is the pumping energy, SP is the
sludge production to be disposed, EC is the consumption of external
carbon source and ME  is the mixing energy.

The aeration energy AE is calculated according to the following
relation:

AE = 8
T · 1.8 · 1000

∫ t=14 days

t=7 days

5∑

i=1

Vi · KLai(t) · dt (4)

The pumping energy PE is calculated as:

PE = 1
T

∫ 14 days

7  days

(0.004 · Q0(t) + 0.008 · Qa(t) + 0.05 · Qw(t)) · dt (5)

The sludge production to be disposed SP is calculated from the
total solid flow from wastage and the solids accumulated in the
system over the period of time considered:

SP = 1
T

· (TSSa(14 days) − TSSa(7 days) + TSSs(14 days)

− TSSs(7 days) +
∫ t=14 days

t=7 days

TSSw · Qw · dt)  (6)

where TSSa is the amount of solids in the reactors, TSSs is the
amount of solids in the settler and TSSw is the amount of solids
in the wastage.

EC refers to the carbon that could be added to improve denitri-
fication:

EC = CODEC

T · 1000

∫ t=14 days

t=7 days

(
i=n∑

i=1

qEC,i

)
· dt (7)

where qEC,i is the flow rate of external carbon added to com-
partment i, CODEC = 400 gCOD m−3 is the concentration of readily
biodegradable substrate in the external carbon source.

The mixing energy ME  is a function of the compartment vol-
ume  and is the energy employed to mix  the anoxic tanks to avoid
settling:

ME  = 24
T

∫ t=14 days

t=7 days

5∑

i=1

[
0.005 · Vi if KLai(t) < 20d−1 otherwise 0

]
· dt (8)

where V is the volume of the tank.

3. Control strategies

The original BSM1 definition includes the so called default con-
trol strategy that is commonly used as a reference [1–3]. This
strategy uses two PI control loops as shown in Fig. 1. The first one
involves the control of SO,5 by manipulating KLa5. The set point for
SO,5 is 2 mg/l. The second control loop has to maintain SNO,2 at a set
point of 1 mg/l by manipulation of Qa.

In this work, a two  levels hierarchical control structure is pro-
posed. In the lower level an MPC  + FF configuration is applied to
track the SNO,2 set point of 1 mg/l by manipulating Qa and to track
the SO,5 set point given by the higher level by manipulating KLa5.
This MPC  + FF solution is applied instead of the PI controllers of
the BSM1 default control strategy with the aim of improving the
tracking of the SO,5 and SNO,2 set points (see Fig. 2). The higher level
manipulates SO,5 set point of the lower level based on SNH,5, instead
of keeping it at a fixed value of 2 mg/l (see Fig. 3). Three controllers
are proposed for this higher level: MPC, Affine Function and fuzzy
control. The importance of the control performance of MPC  + FF for
SO,5 set point tracking should be noticed, to ensure that the value of
SO,5 is the closest possible to the set point calculated by the higher
level controller.

3.1. MPC  + FF configuration

The two  PI controllers of the default BSM1 control strategy are
replaced by an MPC  with two inputs (SO,5 and SNO,2) and two out-
puts (KLa5 and Qa), in order to improve the tracking of SO,5 and SNO,2
set points, whose results are evaluated by the ISE criterion.

The basis of MPC  is the use of an optimization algorithm to solve
the control problem and the use of a model of the plant to make
predictions of the output variables [18]. At each control interval,
�t, for a prediction horizon, p, and a control horizon, m,  (m < p), the
MPC  algorithm computes the sequences of control moves over the
horizon m:

�u(k), �u(k + 1),  . . .,  �u(k + m − 1) (9)

This sequence of control moves is based on predictions of the pro-
cess variables over a future horizon p:

ŷ(k + 1|k), ŷ(k + 2|k), . . ., ŷ(k + p|k) (10)
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Fig. 2. BSM1 with MPC  + FF instead of default PI controllers.

Fig. 3. BSM1 with MPC + FF and hierarchical control.

and is selected in such a way that minimizes a quadratic objective
of the form:

J =
p∑

l=1

||�y[y(k + l|k) − r(k + l)]||2 +
m∑

l=1

||��u[�u(k + l − 1)]||2

(11)

where the output prediction y(k + l|k) means a predicted controlled
output for the future sampling instant k + 1, performed at the cur-
rent instant k, and �y and ��u are the output weight and input
rate weight respectively, that penalize the residual between the
future reference and the output variable prediction, and the control
moves.

Due to the presence of strong disturbances on WWTPs, MPC  has
difficulties in keeping the controlled variables at their reference
level. To compensate the disturbances, a feedforward control action
is added, as in [5,7,8,19] (see Fig. 2). MPC  provides feedforward
compensation for the measured disturbances as they occur to min-
imize their impact on the output. The combination of feedforward
plus feedback control can significantly improve the performance
over simple feedback control whenever there is a major disturb-
ance that can be measured before it affects the process output.
The idea of the feedforward control is to act on the process when
the disturbances appear and before they cause deterioration in
the effluent quality. Different variables have been considered for
the feedforward action in the referred works, but in our case Q0
has been selected for its better results. Any change in Q0 affects
directly the flow rates of all the tanks, modifying their hydraulic
retention time. Therefore, it is necessary to adjust the manipu-
lated variables immediately to compensate the Q0 disturbances.
The MPC  algorithm requires a state-space linear model to fore-
see how the plant outputs, y(k), react to the possible variations of

the control variables, u(k), and to compute at each �t the control
moves. WWTPs are complex nonlinear systems. Nevertheless, pre-
vious works [6–8,19] among others, show that the operation can
be carried out in the vicinity of a working point by assuming the
following linear state-space model:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(12)

where x(k) is the state vector, and A, B, C and D are the state-space
matrices. In concrete terms, u1(k) is Qa, u2(k) is KLa5, u3(k) is Q0 and
y1(k) is SNO,2 and y2(k) is SO,5.

The tuning parameters are: �t, m,  p, ��u, �y and the overall
estimator gain.

• �t has a significant effect on the effectiveness of the controller.
High �t can give less controller performance, mainly when
there are important input disturbances, and low �t can produce
changes too quickly in the actuators and also high energy con-
sumption.

• Lower ��u or higher �y give better performance of the controlled
variable that could otherwise produce strong oscillations in the
actuators that must be avoided.

• m and p should be adjusted depending of system control in each
case. However values that are too high can increase the compu-
tational time in excess, and on the other hand, values that are too
small may  result in oscillatory responses or may  not work at all.

• At each �t the controller compares the real value of the outputs
with the expected values. The difference can be due to noise, to
measurements errors and to unmeasured disturbances. With the
overall estimator gain parameter it is determined the percentage
of this difference that is attributed to unmeasured disturbances
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and the calculation matrix is consequently adjusted. Higher over-
all estimator gains improve the results, but too high values can
make the controller unfeasible.

3.2. Two level hierarchical control configuration

In this section a two-level hierarchical control scheme is pro-
posed. The lower level controller is responsible of the SO,5 and SNO,2
tracking by manipulating KLa5 and Qa. The higher level controller
has to manipulate SO,5 set point of the lower level controller accord-
ing with SNH,5 (see Fig. 3). The biological treatment of SNH and SNO is
the result of various processes given by the Activated Sludge Model
No 1 (ASM1) [1,2,14], which describes the biological phenomena
that take place in the biological reactors:

rNH = −0.08�1 − 0.08�2 −
(

0.08 + 1
0.24

)
�3 + �6 (13)

rNO = −0.1722�2 + 4.1667�3 (14)

�1 = 4
(

SS

10 + SS

)  (
SO

0.2 + SO

)
XB,H (15)

�2 = 4
(

SS

10 + SS

)(
0.2

0.2 + SO

)(
SNO

0.5 + SNO

)
0.8 · XB,H (16)

�3 = 0.5
(

SNH

1 + SNH

)  (
SO

0.4 + SO

)
XB,A (17)

�6 = 0.05 · SND · XB,H (18)

where rNH is the reaction rate of SNH, rNO is the reaction rate of SNO,
SS is the readily biodegradable substrate, SND the soluble biodegrad-
able organic nitrogen, XB,H the active heterotrophic biomass and
XB,A the active autotrophic biomass. The biological parameters val-
ues used in the BSM1 correspond approximately to a temperature
of 15◦C.

When SNH increases, more SO is needed for nitrification (13, 17).
On the contrary, when SNH decreases, less SO is required, producing
less SNO (14, 17).

Other works have experimented in the SNH,5 control by manipu-
lating SO,5 set point [10,11]. Nevertheless, these investigations use
default PI controllers at the lower level. Vrecko et al. [10] tested a
higher level PI controller, and Stare et al. [11] experienced with PI
and MPC  controllers as higher level (working with a variation of
BSM1, with one anoxic tank and four aerobic tanks). The proposed
configuration of this paper uses the MPC  + FF as lower level control
explained before (Section 3.1). Three alternatives are tested for the
higher level: MPC, Affine Function and fuzzy control. For each of
these alternatives a range of tuning parameters are proposed.

3.2.1. Higher level MPC
First, a MPC  is proposed for the higher level control, with the

aim of keeping SNH,5 at a fixed set point by manipulating SO,5.
As it has been done with lower level MPC  (Section 3.1), a linear

model (12) of the plant is needed to compute predictions of the
output variables of the MPC. In this case, the plant model has one
input and one output. Concretely, u(t) is the set point value of SO,5
and y(t) is SNH,5.

3.2.2. Higher level Affine Function
The nitrification process is performed by the autotrophic bacte-

ria whose growth is obtained by �3 (17). As it can be observed,
higher SNH and SO produce a greater SNH removal. However,
increasing the SO value also increases SNO and operational costs,
as it can be observed in Eqs. (14) and (3). For this reason it is impor-
tant to increase SO when SNH increases to reduce SNH peaks, and
decrease SO when SNH decreases, producing less SNO and reducing
costs.

Fuzzifier

Fuzzy Rule

Base

Defuzzifier Plant
Interference

Engine xx yµ(x) µ(y)

Fig. 4. Architecture of a fuzzy controller.

Due to these reasons, an Affine Function has been tested as
higher level controller. The difference between this controller and
the MPC  is that the Affine Function regulates SO,5 set point based on
SNH,5, to obtain the SO,5 value, but without having the aim of keep-
ing SNH,5 at a reference level. Thus the following Affine Function is
proposed:

SO,5 set point(t)  = SNH,5(t) − k (19)

where k is a constant. SO,5 value obtained is directly proportional
to SNH,5, subtracting the k value. Also, a constraint of a maximum
value of SO,5 has been added to improve the EQI and OCI trade-off.
Values of k and SO,5 maximum are considered tuning parameters
and they are analyzed in Section 4.2.2 with OCI  and EQI trade-off
representations.

3.2.3. Higher level fuzzy controller
A higher level fuzzy controller is also implemented, with the

same idea of the higher level Affine Function. Thus, the higher
level fuzzy controller modifies SO,5 based on SNH,5, but does not
try to keep SNH,5 at a given set point. The SO,5 set point value is
increased when SNH,5 increases to enhance the nitrification process
and to reduce SNH,5 peaks. Conversely, the SO,5 set point is decreased
when SNH,5 is low to reduce SNO and operating costs. However, the
methodology to obtain the SO,5 set point is modified, using fuzzy
logic in this case.

Fuzzy logic can be described as an interpretative system in
which objects or elements are related with borders not clearly
defined, granting them a relative membership degree and not strict,
as it is customary in traditional logic.

The typical architecture of a fuzzy controller, shown in Fig. 4,
consists of: a fuzzifier, a fuzzy rule base, an inference engine and a
defuzzifier [20].

The fuzzy control can be defined as a control based on human
expertise, determined by words instead of numbers and sentences
instead of equations. However, process variables are measured in
numbers instead of words. For this reason, the fuzzifier adapts
the input variables into suitable linguistic values by membership
functions. There are different forms of membership functions, e.g.
triangular, trapezoidal or Gaussian, and are chosen according to the
user’s experience.

The fuzzy rule base is a set of if-then rules that store the empir-
ical knowledge of the experts about the operation of the process. A
series of relationships that interpret common sense are defined and
can generate a desired action that is applied to the plant. First the
fuzzy logic computes the grade of membership of each condition
of a rule, and then aggregates the partial results of each condition
using fuzzy set operator.

The inference engine combines the results of the different rules
to determine the actions to be carried out, and the defuzzifier con-
verts the control actions of the inference engine into numerical
variables of control that are applied to the plant. There are two
different methods to operate these modules: Mamdani [21] and
Sugeno [22]. Mamdani system aggregates the area determined by
each rule and the output is determined by the center of gravity of
that area. In a Sugeno system, the condition of a rule determines
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the weight of the output of the rule that is a linear combination of
the inputs.

The implementation of the proposed fuzzy controller was  based
on the observation of the simulations results obtained by operating
the plant with the default control of BSM1.

The input of the fuzzy controller is SNH,5. Three triangular mem-
bership functions are applied to the input to fuzzyfy. The following
fuzzy sets have been used: low, medium and high. The range of the
input values is defined as follows: The minimum value of the input
(minin) and the maximum value of the input (maxin).

The output is the SO,5 set point of the lower level control. Also
three triangular membership functions have been applied to the
output with the same fuzzy sets: low, medium and high. The range
of the output values is defined as follows: The minimum value of
the output (minout) and the maximum value of the output (maxout).
The values of maxin and maxout are considered tuning parameters
and are analyzed in Section 4.2.3.

The if-then fuzzy rules that relate the input and output are:

if (SNH,5 is low) then (SO,5 is low)
if (SNH,5 is medium) then (SO,5 is medium)
if (SNH,5 is high) then (SO,5 is high)

The Mamdani method has been chosen to defuzzify the results
of the above if-then fuzzy rules and thereby obtain a single value
of the SO,5 set point based on the value of SNH,5.

4. Simulation results

In this section the control configurations proposed in the above
section are tested and compared. Ideal sensors have been consid-
erated for the simulations.

4.1. MPC  + FF configuration

SO,5 and SNO,2 values to get the linear model (12) have been
obtained by varying KLa5 around ±10% of 131.6514 day−1 and Qa

around ±10% of 16,486 m3/day and applying a step change of +50%
to Q0.

By using Matlab System Identification Toolbox with prediction
error method [23], the following third order state-space model (12)
is obtained:

A =

⎡
⎣

0.8748 0.04463 0.1314

0.04091 0.7331 0.1796

0.2617 -0.1318 0.3007

⎤
⎦

B =

⎡
⎢⎣

7.641 · 10−6 0.004551 -2.749 · 10−5

-2.631 · 10−5 0.006562 -4.551 · 10−6

-9.63 · 10−6 -0.02161 2.447 · 10−5

⎤
⎥⎦

C =
[

0.8812 -0.5948 0.02114

1.187 0.9893 -0.3754

]

D =
[

0 0 0

0 0 0

]

(20)

The selected values to tune the MPC  are m = 20 and p = 5. It should
be noted that these values are not critical and they can slightly be
changed with similar results. �t is 0.00025 days (21.6 s). The fol-
lowing weights have been used for SO,5 control: �y = 1, ��u = 0.01,
and for SNO,2 control: �y = 1, ��u = 0.0001. The selected overall esti-
mator gain value is 0.8.

Fig. 5 shows SO,5 and SNO,2 for the dry weather case compared
with the default PI control. Table 3 shows that MPC  + FF reduces
ISE of SNO,2 control more than 99% and ISE of SO,5 control more
than 97% in comparison with the default PI controllers. This control

Table 3
ISE, EQI and OCI results using default PI controllers and MPC  + FF for dry, rain and
storm influents.

PI MPC  + FF %

Dry weather
ISE (SNO,2 control) 0.47 0.0013 −99.7
ISE  (SO,5 control) 0.022 0.00067 −96.9
EQI  (kg pollutants/d) 6115.63 6048.25 −1.1
OCI  16,381.93 16,382.97 +0.0063

Rain weather
ISE (SNO,2 control) 0.69 0.0028 −99.6
ISE  (SO,5 control) 0.016 0.0013 −92.02
EQI  (kg pollutants/d) 8174.98 8090.29 −1.03
OCI  15,984.85 15,990.85 +0.037

Storm weather
ISE (SNO,2 control) 0.69 0.0032 −99.5
ISE  (SO,5 control) 0.020 0.0018 −90.8
EQI  (kg pollutants/d) 7211.48 7132.60 −1.09
OCI  17,253.75 17,261.39 +0.044

performance improvement results in a 1.1% of EQI  reduction, keep-
ing a similar OCI (increase of 0.0063%).

This comparison is also done for the rain (see Fig. 6 and Table 3)
and storm influents (see Fig. 7 and Table 3), obtaining similar per-
centages of improvement: ISE 99.6% (rain) and 99.5% (storm) for
SNO,2 control and 92.02% (rain) and 90.8% (storm) for SO,5 control,
and reducing EQI with MPC  + FF 1.03% for rain and 1.09% for storm.
OCI is similar, increasing a 0.037% for rain and 0.044% for storm;
nevertheless this difference is not significant.

For a more comprehensive comparison, the results of the refer-
enced papers which provide indicators of the control performance
have been added and compared with the proposed MPC  + FF for
dry influent in Table 4. To ensure a fair comparison, it is done with
the referenced papers, which control SO,5 at the set point of 2 mg/l
and/or SNO,2 at the set point of 1 mg/l and use the original version of
BSM1. To allow the comparison with the greatest possible number
of papers, two control performance criteria have been added to the
usual ISE: integral of the absolute error (IAE) and average of the
absolute error (mean(|e|)).

IAE =
∫ t=14 days

t=7 days

|ei| · dt (21)

mean(|e|) = 1
T s

i=T s∑

i=1

|ei| (22)

where Ts is the total number of samples.
The improvement of SNO,2 and SO,5 tracking as a result of apply-

ing MPC  + FF compared to the rest of the referenced papers is shown.
The importance of the satisfactory SO,5 tracking achieved is remark-
able, especially for the implementation of the hierarchical control
structure, to ensure that the value of SO,5 is as close as possible to
the set point provided by the higher level.

4.2. Two level hierarchical control configuration

For the hierarchical control structure, OCI and EQI trade-off
representations have been implemented for the three proposed
controllers and for the three weather conditions. OCI and EQI results
are obtained assessing the extreme points where the best EQI with-
out increasing OCI and the best OCI without increasing EQI  are
achieved compared to MPC  + FF alone.

4.2.1. Higher level MPC
In order to identify the linear model, SNH,5 has been determined

by varying SO,5 set point around 2 mg/l, with maximum values of
±10%.
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Fig. 5. Dry influent: performance control of SO,5 and SNO,2 with default PI controllers and with MPC  + FF.
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Fig. 6. Rain influent: performance control of SO,5 and SNO,2 with default PI controllers and with MPC + FF.

Table 4
Comparison of the performance of SO,5 and SNO,2 control between MPC  + FF and the referenced works.

SO,5 control SNO,2 control SO,5 and SNO,2 control

ISE IAE mean(|e|) ISE IAE mean(|e|) mean(|e|)
Proposed MPC + FF 0.00067 0.047 0.0068 0.0013 0.067 0.0096 0.0082
[24] – – – – – – 0.024
[25] – – 0.9 – – – –
[6] 0.0026 0.0892 – – – – –
[26] 0.0012 0.0792 – – – – –
[27] 0.00092 0.049 – 0.408 1.21 – –
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Fig. 7. Storm influent: performance control of SO,5 and SNO,2 with default PI controllers and with MPC  + FF.

By using a prediction error method, a second order state-space
model (12) is obtained, as:

A =
[

0.2531 0.3691

0.2781 -0.2695

]
B =
[

-0.4507

-0.1712

]

C =
[

0.08655 -0.01681
]

D =
[

0
] (23)

The following tuning parameters have been selected: �t = 0.035
days (50.4 min), m = 2, p = 10. To determine ��u and SNH,5 set point
values, a trade-off representation for OCI and EQI is provided and
showed in Fig. 8. Every line corresponds to the results obtained for
different ��u (0.1, 0.05, 0.01 and 0.001), and the points marked with
crosses are the results for a range of SNH,5 set point values, from 0.5
to 6.5 with increments of 0.25.

The results with MPC  + FF alone and with default PI controllers
alone are also represented. Fig. 8 shows an area in which results
obtained with higher level MPC  controller improve simultaneously
OCI and EQI in comparison with MPC  + FF and with default PI con-
trollers alone. This is the proposed tuning region.

The OCI and EQI trade-off representation has also been done for
rain and storm influents (Figs. 9 and 10 respectively), obtaining also
the corresponding tuning regions. However, they are smaller than
the one obtained for the dry influent.

Taking into account the OCI and EQI trade-off representations for
dry, rain and storm influents (Figs. 8–10 respectively), ��u and SNH,5
set points have been selected for the cases of lowest EQI without
increasing OCI and the lowest OCI without worsening EQI for every
influent in comparison with MPC  + FF alone (Table 5).

In order to improve EQI, SNH and SNO concentrations have to
be reduced because they are the pollutants with largest influence
in the effluent quality. Fig. 17 shows SNH,5, SNO,5 and SO,5 for dry
influent with the tuning parameters where the best EQI without
increasing OCI is obtained. As it is shown in Fig. 17, by varying
SO,5 set point with two level hierarchical control, SNH,5 peaks and
SNO,5 are reduced. In the case of higher level MPC, when SNH,5 is
over the fixed set point, SO,5 reference of the lower level control
is increased, which produces more oxidation of SNH,5 and conse-
quently softens its peaks, while SNO,5 and the aeration costs grow.
In opposition, when the SNH,5 is under the fixed set point, SO,5 ref-
erence is decreased, SNH,5 goes up and SNO,5 and aeration costs go

down. The final balance from day 7 to day 14 is a reduction of 1.8%
of EQI in comparison with MPC  + FF alone (see Table 8).

The same concentrations (SNH,5, SNO,5 and SO,5) for rain and
storm influents are shown in Figs. 18 and 19 respectively. Within 7
days of simulation (day 7–14), two  days are shown coinciding with
a rainfall (Fig. 18) and a storm (Fig. 19) events. As it is observed,
during the rain and storm events, the differences of SNH,5 peaks and
SNO,5 for higher level MPC  and MPC  + FF are lower compared with
dry weather. This has a direct consequence on the EQI results shown
in Table 8. As it can be seen, there is also an improvement by work-
ing with higher level MPC  in comparison with MPC + FF alone, but
with a lower percentage compared with dry weather. For the rain
influent case, EQI is decreased by 0.4% and for the storm influent
case, working with higher level MPC, EQI is decreased by 0.5%.

In the opposite point of the trade-off representations
(Figs. 8, 11 and 14) (best OCI without worsening effluent qual-
ity), OCI results are compared for the different control structures.
Fig. 20 shows KLa5 for the higher level MPC. The aeration costs
depend directly on the KLa5 values. Fig. 20 shows that the values of
KLa5 with higher level MPC  are lower most of the time than those
obtained with MPC  + FF alone, proving that costs can be reduced
without increasing EQI with a better optimization of KLa5. This
reduction of KLa5 results in a reduction of 0.8% of OCI (Table 8).

The KLa5 evolution is also shown for rain and storm influents
(Figs. 21 and 22 respectively), obtaining also an OCI reduction when
working with the higher level MPC  in comparison with MPC  + FF
alone. In this case, with less percentage in comparison with dry
influent results (see Table 8): For rain influent, higher level MPC
reduces OCI by 0.3%, and for storm influent the reduction is 0.4%.
The optimization of the SO,5 set point value results in an AE reduc-
tion of 202.2, 96.42 and 137.92 KWh  d−1 for dry, rain and storm
influents respectively, compared with default BSM1 control, which
corresponds, in terms of percentage, to an AE reduction of 5.4, 2.6
and 3.7% respectively.

4.2.2. Higher level Affine Function
For the Affine Function, k values and maximum values of SO,5

have been selected with the OCI and EQI trade-off representation
showed in Fig. 11. In this case, each line corresponds to the results
obtained with different SO,5 maximum values (2.5-k; 3-k;  3.5-k;
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Fig. 8. Dry influent: OCI and EQI trade-off with higher level MPC  for a range of SNH,5 values (points marked with crosses) and ��u = 0.001 (dashed line), 0.01 (solid line), 0.05
(dash-doted line) and 0.1 (doted line).

Fig. 9. Rain influent: OCI and EQI trade-off with higher level MPC  for a range of SNH,5 values (points marked with crosses) and ��u = 0.001 (dashed line), 0.01 (solid line), 0.05
(dash-doted line) and 0.1 (doted line).

Table 5
Higher level MPC  tuning: ��u and SNH,5 set point.

Dry Rain Storm

Lowest EQI Lowest OCI Lowest EQI Lowest OCI Lowest EQI Lowest OCI

��u 0.001 0.05 0.05 0.05 0.05 0.05
SNH,5 set point 3.1 5.4 3.75 4.6 3.7 5

4-k  and 4.5-k), while each one of the points marked with crosses
are the results obtained for different values of k (from 0.3 to 1.6
with increments of 0.1). In the same way, the results obtained
with MPC  + FF alone and with PI default controllers alone are also
shown.

The same range of k and SO,5 maximum values have been tested
for rain and storms influents, obtaining also the trade-off represen-
tations (Figs. 12 and 13 respectively).

The areas of the tuning regions, which result in a simultaneous
improvement of OCI and EQI in comparison with MPC + FF alone
and with default PI controllers alone, are larger than those obtained
with higher level MPC.

Taking into account the trade-off representations (see
Figs. 11–13), Table 6 shows SO,5 maximum and k values for
the extreme cases of lowest EQI without increasing OCI and the
lowest OCI without worsening EQI in comparison with MPC  + FF
alone and default PI controllers alone.

With the tuning parameters where the best EQI without increas-
ing OCI are obtained, comparing SNH,5 peaks and SNO,5 for higher
level Affine Function and higher level MPC  for the three influents
(see Figs. 17–19), a remarkable difference is not observed. However
Table 8 show that Affine Function is able to reduce EQI in compar-
ison with higher level MPC  by 0.6% for dry influent, 0.7% for rain
influent and 1% for storm influent. In comparison with MPC  + FF
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Fig. 10. Storm influent: OCI and EQI trade-off with higher level MPC for a range of SNH,5 values (points marked with crosses) and ��u = 0.001 (dashed line), 0.01 (solid line),
0.05  (dash-doted line) and 0.1 (doted line).

Fig. 11. Dry influent: OCI and EQI trade-off with higher level Affine Function for a range of k values (points marked with crosses) and SO,5 maximum = 4 (dashed line), 3.5
(solid  line), 3 (dash-doted line), 2.5 (doted line).

Fig. 12. Rain influent: OCI and EQI trade-off with higher level Affine Function for a range of k values (points marked with crosses) and SO,5 maximum = 4 (dashed line), 3.5
(solid  line), 3 (dash-doted line), 2.5 (doted line).
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Fig. 13. Storm influent: OCI and EQI trade-off with higher level Affine Function for a range of k values (points marked with crosses) and SO,5 maximum = 4 (dashed line), 3.5
(solid  line), 3 (dash-doted line), 2.5 (doted line).

Table 6
Higher level Affine Function tuning: k and SO,5 maximum values.

Dry Rain Storm

Lowest EQI Lowest OCI Lowest EQI Lowest OCI Lowest EQI Lowest OCI

k 0.59 1.23 0.48 0.79 0.39 0.96
SO,5 maximum 3.41 1.27 2.52 1.71 2.61 1.54

alone the reduction is 2.4% for dry influent, 1.1% for rain influent
and 1.5% for storm influent.

Applying the tuning parameters to obtain the best OCI without
worsening effluent quality, KLa5 is compared with the other con-
trol structures (see Figs. 20–22), obtaining better KLa5 optimization
compared with MPC  + FF alone and higher level MPC  for the three
influents, that result in an OCI reduction in comparison with higher
level MPC  by 0.3% for dry influent, 0.3% for rain influent and 0.4% for
storm influent. In comparison with MPC  + FF the reduction is 1.1%
for dry influent, 0.6% for rain influent and 0.8% for storm influent
(see Table 8).

This cost reduction is due primarily to an AE reduction of
259.45, 170.87 and 209.85 KWh  d−1 for dry, rain and storm influ-
ents respectively, compared with default BSM1 control, which
corresponds, in terms of percentage, to an AE reduction of 7, 4.7
and 5.6% respectively.

4.2.3. Higher level fuzzy controller
Values of minin and minout are both fixed to 0.1. Several OCI

and EQI results have been obtained for different values of maxin
(3, 4, 5 and 7) and maxout (2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5). With
these results, trade-off representations of EQI and OCI for the three

Fig. 14. Dry influent: OCI and EQI trade-off with higher level fuzzy controller for a range of maxout values (points marked with crosses) and maxin = 3 (dashed line), 5 (solid
line),  7 (dash-doted line) and 9 (doted line).
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Fig. 15. Rain influent: OCI and EQI trade-off with higher level fuzzy controller for a range of maxout values (points marked with crosses) and maxin = 3 (dashed line), 5 (solid
line),  7 (dash-doted line) and 9 (doted line).

Fig. 16. Storm influent: OCI and EQI trade-off with higher level fuzzy controller for a range of maxout values (points marked with crosses) and maxin = 3 (dashed line), 5
(solid  line), 7 (dash-doted line) and 9 (doted line).

influents (dry, rain and storm) are made (Figs. 14–16), obtaining a
tuning area where both OCI and EQI are improved in comparison
with MPC  + FF alone and with the default PI controllers.

The areas of the tuning regions, which result in a simultaneous
improvement of OCI and EQI in comparison with MPC  + FF alone
and with default PI controllers alone, are similar to the ones corre-
sponding to the higher level with Affine Function.

Table 7 shows the maxin and maxout values for the extreme
cases of lowest EQI without increasing OCI and lowest OCI without
worsening EQI in comparison with MPC  + FF alone and default PI
controllers alone for the three influents.

For the case of best EQI obtained, Figs. 17–19 show that SNH,5
and SNO,5 for the three influents are similar compared to higher
level Affine Function. The EQI results are shown in Table 8 and they
are very similar to the ones obtained with the higher level Affine
Function.

Applying the tuning parameters for obtaining the lowest OCI,
Figs. 20–22 show KLa5 for the three weather conditions. Look-
ing at the OCI results in Table 8, there is no significant difference
compared with higher level Affine Function, getting also the same
percentages of improvement over MPC  + FF alone and higher level
MPC.

Table 7
Higher level fuzzy controller tuning: maxin and maxout values.

Dry Rain Storm

Lowest EQI Lowest OCI Lowest EQI Lowest OCI Lowest EQI Lowest OCI

Maxin 5 9 5 3 5 5
Maxout 4.78 2.76 4.1 2.41 4.14 2.5
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Fig. 17. Dry influent: comparison of SNH,5, SNO,5 and SO,5. MPC  + FF (dash-dotted line), higher level MPC (dotted line), higher level Affine Function (dashed line) and higher
level  fuzzy controller (solid line).
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Fig. 18. Rain influent: comparison of SNH,5, SNO,5 and SO,5. MPC  + FF (dash-dotted line), higher level MPC  (dotted line), higher level Affine Function (dashed line) and higher
level  fuzzy controller (solid line).

Table 8
EQI and OCI results with MPC  + FF, higher level MPC, higher level Affine Function and higher level fuzzy controller for dry, rain and storm influents.

MPC + FF Higher level Higher level Higher level
MPC  Affine Function Fuzzy controller

Lowest EQI Lowest OCI % Lowest EQI Lowest OCI % Lowest EQI Lowest OCI %

Dry weather
EQI (kg pollutans/d) 6048.31 5936.16 6045.44 −1.8% 5900.98 6047.52 −2.4% 5900.73 6047.95 −2.4%
OCI  16,382.97 16,382.64 16,248.79 −0.8% 16,381.54 16,196.68 −1.1% 16,382.67 16,197.86 −1.1%

Rain  weather
EQI (kg pollutans/d) 8090.29 8056.07 8089.98 −0.4% 7994.58 8090.38 −1.1% 7998.78 8090.27 −1.1%
OCI  15,990.85 15,982.47 15,939.32 −0.3% 15,984.16 15,887.47 −0.6% 15,984.23 15,884.21 −0.6%

Storm  weather
EQI (kg pollutans/d) 7132.60 7094.90 7131.57 −0.5% 7019.08 7132.21 −1.5% 7020.83 7132.25 −1.5%
OCI  17,261.39 17,252.84 17,186.58 −0.4% 17,252.51 17,126.55 −0.8% 17,252.6 17,123.01 −0.8%
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Fig. 19. Storm influent: comparison of SNH,5, SNO,5 and SO,5. MPC  + FF (dash-dotted line), higher level MPC  (dotted line), higher level Affine Function (dashed line) and higher
level  fuzzy controller (solid line).
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Fig. 20. Dry influent: comparison of KLa5 in the fifth tank. MPC  + FF (dash-dotted line), higher level MPC (dotted line), higher level Affine Function (dashed line) and higher
level  fuzzy controller (solid line).

The reduction of AE is also similar than using an Affine Function
as higher level controller: 255.67, 199.99 and 199.72 KWh  d−1 for
dry, rain and storm influents respectively, compared with default
BSM1 control, which corresponds, in terms of percentage, to an
AE reduction of 6.9, 5.4 and 5.3% respectively. As a result, for the
higher level control, with Affine Function and fuzzy controller, the
following improvements are obtained with respect to MPC: For dry
influent, AE reduction of 57.25 and 53.47 KWh  d−1 respectively. For
rain influent, 74.45 and 103.57 KWh  d−1 respectively. And for storm
influent, 71.93 and 61.8 KWh  d−1 respectively.

The reason of the improvement of the results of effluent quality
and operational costs by using the higher level fuzzy controller or
the higher level Affine Function compared to the higher level MPC
is that the higher level MPC  tries to maintain the value of SNH,5
at a fixed reference, but the error is too high. Specifically, the ISE
is 36.21 to achieve the best EQI and the ISE is 22.69 to achieve
the best OCI. Conversely, higher level Affine Function and higher
level fuzzy controller regulate SO,5 set point based on the biological
process dynamics that take place in the reactors (13, 14, 15, 16, 17,
18). On the one hand improving the nitrification process (17) when
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Fig. 21. Rain influent: comparison of KLa5 in the fifth tank. MPC  + FF (dash-dotted line), higher level MPC  (dotted line), higher level Affine Function (dashed line) and higher
level  fuzzy controller (solid line).
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Fig. 22. Storm influent: comparison of KLa5 in the fifth tank. MPC  + FF (dash-dotted line), higher level MPC (dotted line), higher level Affine Function (dashed line) and higher
level  fuzzy controller (solid line).

SNH,5 increases, and therefore reducing its peaks. On the other hand,
reducing the SO,5 set point level when SNH,5 decreases in order to
reduce the SNO generation (14) and the operational costs (3).

5. Conclusion

In this paper different control techniques for the BSM1 with the
aim of reducing EQI and OCI are evaluated and compared.

First, MPC  + FF was proposed to control SNO,2 and SO,5 by manip-
ulating Qa and KLa5. The performance control of SNO,2 and SO,5 was
improved by more than 90 % for the three weather conditions in
comparison with default PI controllers. This performance enhance-
ment resulted in a slight improvement in EQI with similar OCI.
The control performance of MPC  + FF has been also compared to
the referenced papers, showing the improvement of the proposed
method and thus the successful SO,5 and SNO,2 tracking.

Next, a two level hierarchical control strategy was proposed,
where the lower level controls SNO,2 and SO,5 by manipulating Qa

and KLa5 respectively, and the higher level controller regulates the
SO,5 set point of the lower level controller according to the SNH,5.
For the lower level, MPC  + FF was used. For the higher level, three
different controllers were proposed: a MPC, an Affine Function and
a fuzzy controller. They were tested and compared in the three
weather conditions: dry, rain and storm. As a result, EQI and OCI
were reduce significatively with respect to MPC  + FF alone. These
improvements have been greater in dry weather conditions.

The results of OCI and EQI with higher level Affine Function and
higher level fuzzy controller were similar and better than those
obtained with higher level MPC. This is due to the fact that the
higher level MPC  tries to keep the value of SNH,5 at a reference level,
but this is not possible. For that reason, the alternatives of Affine
Function and fuzzy Controller for the higher level were tested with
the idea of varying SO,5 based on the SNH,5 measured, but without
trying to keep it at a fixed reference. To ensure the right tuning of
the controllers and therefore the correct relationship between the
applied control and the results, a trade-off analysis between OCI
and EQI has been performed by varying two tuning parameters for
each controller. Thus, it can be concluded that, the performance
provided by fuzzy controller and Affine Function in the higher level
of the hierarchical control structure has been proven to be better
than that offered by the MPC.
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Fuzzy Control and Model Predictive Control Configurations for
Effluent Violations Removal in Wastewater Treatment Plants
I. Santín,* C. Pedret, and R. Vilanova
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ABSTRACT: In this paper the following new control objectives for biological wastewater treatment plants (WWTPs) have been
established: to eliminate violations of total nitrogen in the effluent (Ntot,e) or ammonium and ammonia nitrogen concentration
(NH) in the effluent (NHe) and at the same time handle the customary requirements of improving effluent quality and reducing
operational costs. The Benchmark Simulation Model No. 1 (BSM1) is used for evaluation, and the control is based on Model
Predicitive Control (MPC) and fuzzy logic. To improve effluent quality and to reduce operational costs, a hierarchical control
structure is implemented to regulate the dissolved oxygen (DO) on the three aerated tanks. The high level of this hierarchical
structure is developed with a fuzzy controller that adapts the DO set points of the low level based on the NH concentration in
the fifth tank (NH5). The low level is composed of three MPC controllers with feedforward control (MPC + FF). For avoiding
violations of Ntot,e, a second fuzzy controller is used to manipulate the external carbon flow rate in the first tank (qEC1) based on
nitrate nitrogen in the fifth tank (NO5) plus NH5. For avoiding violations of NHe, a third fuzzy controller is applied to
manipulate the internal recirculation flow rate (Qrin) based on NH5 and NH in the influent. Simulation results show the benefit
of the proposed approach.

■ INTRODUCTION
Biological wastewater treatment plants (WWTPs) are consid-
ered complex nonlinear systems, and their control is very chal-
lenging, due to the complexity of the biological and biochemical
processes that take place in the plant and the strong fluctuations
of the influent flow rate. In addition, there are effluent require-
ments defined by the European Union (European Directive
91/271 Urban wastewater) with economic penalties.
In the literature there are several papers working on modeling

of WWTPs.1−4 In this work the evaluation and comparison of
the different control strategies is based on Benchmark Simula-
tion Model No. 1 (BSM1), developed by the International
Association on Water Pollution Research and Control.5−7 This
benchmark defines a plant layout, influent loads, test procedures
and evaluation criteria. It provides also a default control strategy
that includes two Proportional-Integrative (PI) control loops:
control of the dissolved oxygen concentration (DO) in the fifth
tank (DO5) at a set point value of 2 g/m3 by manipulating
the oxygen transfer coefficient (KLa) in the fifth tank (KLa5),
and control of the nitrate nitrogen concentration (NO) in the
second anoxic reactor (NO2) at a set point value of 1 g/m3 by
manipulating the internal recycle flow rate (Qrin). A complete
review of results for PI control can be found in ref 8.
Many works can be found in the literature that propose

different methods for controllingWWTPs. Some of them apply a
direct control on the effluent variables, mainly ammonium and
ammonia nitrogen (NH) and total nitrogen (Ntot)

9−11. The
difficulty in this method is that the fixed values for the effluent
variables are constraints and not set points to be tracked. Other
studies deal with the basic control strategy (DO of the aerated
tanks and NO of the last anoxic tank), but testing with different
controllers such Model Predictive Controller (MPC) and fuzzy
controller.12−14 These methods provide an acceptable balance
between quality and costs. Finally, other investigations propose a
hierarchical control that regulates the DO set points, depending

on some states of the plant, usually NH and NO concentra-
tion values in any tank or in the influent15−20 or DO in other
tanks21.
The control objectives of previous works are usually based on

achieving an improvement in the effluent quality and/or cost
indices. However, it is of significant importance to avoid
violations of pollution in the effluent, regarding the quality of
the water from a legal point of view, and certainly in terms of cost,
as these violations involve fines to be paid.
This work proposes a control strategy with the goal of

eliminating violations of the effluent pollutants, while achieving
an improvement of effluent quality and a reduction of operational
costs compared to the default control of BSM1. The proposed
approach is implemented by making use of fuzzy and MPC
controllers. First, a hierarchical control structure is implemented.
The low level is composed by three MPCs with feedforward
compensation (MPC + FF) of the influent flow rate (Qin), to
control NO2, DO in the third tank (DO3), DO in the fourth tank
(DO4), and DO5. The high level is built with a fuzzy controller
that adjusts the DO set points according to NH in the fifth tank
(NH5). A trade-off analysis is made, which determines a tuning
region that simultaneously improves the results of effluent
quality and operational cost compared to the default control of
BSM1. Next, two fuzzy controllers are added in order to
eliminate effluent violations. NH in the effluent (NHe) andNtot in
the effluent (Ntot,e) are the pollutants that present more
difficulties for being kept under the established limits. For
reducing peaks of Ntot,e, external carbon flow rate in the first
tank (qEC1) is manipulated based on NO in the fifth tank (NO5)
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plus NH5. For reducing peaks of NHe, Qrin is manipulated based
on NH5, and the control of NO2 is removed.
Other works in the literature have presented proposals for

avoiding effluent violations9−11, with the quality indices as
controlled variables. However, ref 9 does not provide costs
results, and refs 10 and 11 present a cost increase. The novelty of
this work is to simultaneously deal with the elimination of
effluent violations, and the improvement of effluent quality and
operational costs. Another meaningful novelty of this work is the
regulation of Qrin based in NH5 andNH in the influent (NHin) in
order to eliminate Ntot,e.

■ THE TESTING PLANT: BSM1
To make the evaluation and comparison of the different control
strategies possible, BSM15−7 defines a plant layout, the influents
loads of the plant, the procedures for carrying out the tests, and
the criteria for evaluating the results. The more relevant aspects
are described next:
Figure 1 shows the schematic representation of the wastewater

treatment plant. It consists of five biological reactor tanks
connected in series, followed by a secondary settler. The first two
tanks have a volume of 1000m3 each and are anoxic and perfectly
mixed. The other three tanks have a volume of 1333 m3 each and
are aerated. The settler has a total volume of 6000 m3 and is
modeled in ten layers, and the sixth layer from the bottom is the
feed layer. Two recycle flows complete the system: the first from
the last tank and the second from the underflow of the settler.
The plant is designed for an average influent dry-weather flow
rate of 18446 m3/d and an average biodegradable chemical
oxygen demand (COD) in the influent of 300 g/m3. Its hydraulic
retention time is 14.4 h, based on the average dry weather flow
rate and the total tank and settler volume (12000 m3). The
default wastage flow rate (Qw) is fixed to 385 m3/d, which
determines a biomass sludge age of about 9 days, based on the
total amount of biomass present in the system. The nitrogen
removal is achieved using a denitrification step performed in the
anoxic tanks and a nitrification step carried out in the aerated
tanks. The internal recycle is used to supply the denitrification
step with NO.
The biological phenomena of the reactors are simulated by the

Activated Sludge Model No. 1 (ASM1)22 that considers eight
different biological processes. The vertical transfers between
layers in the settler are simulated by the double-exponential
settling velocity model.23 No biological reaction is considered in
the settler. The two models are internationally accepted and
include 13 state variables.
Despite the fact that BSM1 defines three different influent

data, this paper only works with dry weather, that is the most
common scenario, which contains 14 days of influent data with
sampling intervals of 15 min.

A simulation protocol is established to ensure that results are
obtained under the same conditions and can be compared. First,
a 150 days period of stabilization has to be completed in a closed-
loop using constant influent data to drive the system to a steady-
state. Once the steady state is achieved, a simulation with dry
weather is run and finally the desired influent data (dry, rain or
storm) is tested. Only the results of the last 7 days are considered.
The performance assessment is made at two levels. The first

level concerns the control. Basically, this serves as a proof that the
proposed control strategy has been properly applied. It is
assessed by the Integral of the Squared Error (ISE) criterion. The
second level provides measures for the effect of the control
strategy on plant performance. It includes the Effluent Quality
Index (EQI) and Overall Cost Index (OCI).
The evaluation must include the percentage of time that the

effluent limits are not met. The effluent concentrations of Ntot,
Total Chemical Oxygen Demand (CODt), NH, Total
Suspended Solids (TSS) and Biochemical Oxygen Demand
during 5 days (BOD5) should obey the limits given in Table 1.

Ntot is calculated as the sum of NO and Kjeldahl nitrogen
(NKj), with this being the sum of organic nitrogen and NH.

Effluent Quality Index. EQI is defined to evaluate the
quality of the effluent. It is related to the fines to be paid due to
the discharge of pollution. EQI is averaged over a 7 days
observation period, and it is calculated by weighting the different
compounds of the effluent loads.
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+ · + ·

+ · · ·
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B BOD t Q t dt

1
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where Bi are weighting factors (Table 2) and T is the total time.
Overall Cost Index. OCI is defined as

= + + · + · +OCI AE PE SP EC ME5 3 (2)

where AE is the aeration energy, PE is the pumping energy, SP is
the sludge production to be disposed, EC is the external carbon
source, and ME is the mixing energy.

Figure 1. Benchmark Simulation Model No. 1.

Table 1. Effluent Quality Limits

variable value

Ntot <18 g N·m−3

CODt <100 g COD·m−3

NH <4 g N·m−3

TSS <30 g SS·m−3

BOD5 <10 g BOD·m−3
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AE is calculated according to the following relation:

∫ ∑=
· ·

· ·
=

=

=

AE
S

T
V K a t dt

1.8 1000
( )o

sat

t days

t days

i
i L i

7

14

1

5

(3)

where Vi is the volume of the tank i.
PE is calculated as
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SP is calculated from the TSS in the flow wastage (TSSw) and
the solids accumulated in the system:
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where TSSa is the amount of solids in the reactors and TSSs is the
amount of solids in the settler.
EC refers to the carbon that could be added to improve

denitrification.
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where qEC,i is the flow rate of external carbon added to com-
partment i and CODEC = 400 g COD·m−3 is the concentration of
readily biodegradable substrate in the external carbon source.
ME is the energy employed to mix the anoxic tanks to avoid

settling, and it is a function of the compartment volume:
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■ CONTROL CONFIGURATION FOR THE PROPOSED
OBJECTIVES

The original BSM1 definition includes the so-called default
control strategy that is commonly used as a reference.5−7 This
strategy uses two PI control loops as shown in Figure 1. The first
one involves the control of DO5 by manipulating KLa5. The set
point for DO5 is 2 mg/L. The second control loop has to
maintain NO2 at a set point of 1 mg/L by manipulating Qrin.
The control techniques used in this work are based on MPC

and fuzzy control. MPC controllers have been used in order to
keep the NO2 and DO of the three aerobic reactors at the given
set point. Fuzzy control has been applied, on one side, as high
level controller in a hierarchical structure to vary the DO
references tracked by the MPC controllers, and, on the other
hand, to remove effluent violations by determining qEC1 and Qrin
values. The applied fuzzy controllers manipulate variables based
on if−then rules, but without the goal of keeping the controlled
variable at a set point given. In this case, the control objectives are
the improvement of OCI and EQI, and the violations removal of
Ntot, e and NHe.

Control Approaches. Model Predictive Control. The basis
of MPC is the use of an optimization algorithm to solve the
control problem and the use of a model of the plant to make
predictions of the output variables.24 At each control interval,Δt,
for a prediction horizon, p, and a control horizon,m, (m < p), the
MPC algorithm computes the sequences of control moves over
the horizon m:

Δ Δ + Δ + −u k u k u k m( ), ( 1), ..., ( 1) (8)

makes predictions of the outputs variables over a future horizon
p (see Figure 2):

̂ + | ̂ + | ̂ + |y k k y k k y k p k( 1 ), ( 2 ), ..., ( ) (9)

and selects the sequence of control moves that minimizes a
quadratic objective of the form

∑
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where the output prediction y(k + l|k) means a predicted
controlled output for the future sampling instant k + 1,
performed at the current instant k, and Γy and ΓΔu are the
output weight and input rate weight, respectively, which penalize
the residual between the future reference and the output variable
prediction, and the control moves.
The MPC algorithm requires a state-space linear model to

foresee how the plant outputs, y(k), and reacts to the possible
variations of the control variables, u(k), and to compute the
control moves at each Δt. WWTPs are nonlinear systems, but
their operation can be approximated in the vicinity of a working
point by a discrete-time state-space model as

+ = +x k Ax k Bu k( 1) ( ) ( )

= +y k Cx k Du k( ) ( ) ( ) (11)

where x(k) is the state vector, and A, B, C and D are the state-
space matrices.

Fuzzy Control. Fuzzy logic is described as an interpretative
system in which objects or elements are related with borders not
clearly defined, granting them a relative membership degree and
not strict, as is customary in traditional logic. The typical
architecture of a fuzzy controller, shown in Figure 3, consists of a
fuzzifier, a fuzzy rule base, an inference engine, and a
defuzzifier25,26.

Figure 2. Model Predictive Control performance.

Table 2. Bi Values

factor BTSS BCOD BNKj BNO BBOD5

Value (g pollution unit g−1) 2 1 30 10 2
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Fuzzy control is defined as a control based on human expertise,
determined by words instead of numbers and sentences instead
of equations.25,26 In fact, this does not mean at all that a
knowledge of the process dynamics is not needed. Good
knowledge of the dynamic behavior of the controlled plant is to
be available to the designer. However, process variables are
measured in numbers instead of words. For this reason, the
fuzzifier adapts the input variables into suitable linguistic values
by membership functions. There are different forms of
membership functions, e.g. triangular, trapezoidal or Gaussian,
and they are chosen according to the user′s experience. Range of
membership functions values are also set: minimum value of the
input variable (MinIn), maximum value of the input variable
(MaxIn), minimum value of the output variable (MinOut),
maximum value of the output variable (MaxOut). The fuzzy rule
base is a set of if-then rules that store the empirical knowledge of
the experts about the operation of the process. A series of
relationships that interprets common sense are also defined and
can generate a desired action that is applied to the plant. First the
fuzzy logic computes the grade of membership of each condition
of a rule, and then it aggregates the partial results of each
condition using a fuzzy set operator. The inference engine
combines the results of the different rules to determine the
actions to be carried out, and the defuzzifier converts the control
actions of the inference engine into numerical variables,
determining the final control action that is applied to the plant.
There are two different methods to operate these modules:
Mamdani27 and Sugeno28. The Mamdani system aggregates the
area determined by each rule, and the output is determined by
the center of gravity of that area. In a Sugeno system the results of
the if-then rules are already numbers determined by numerical
functions of the input variables, and therefore, no deffuzifier is
necessary. The output is determined weighting the results given
by each rule with the values given by the if conditions.

For example, Figure 4 shows three triangular membership
functions (mf1, mf 2 and mf 3) with MinIn = 0 and MaxIn = 5.
Thus, an input of 1.5 can be transformed into fuzzy expressions as
0.25 of mf1 and simultaneously 0.5 of mf 2. Figure 5 shows the
three membership functions (mf4, mf5, mf6) of the Mamdani
defuzzifier with MinOut = 0 and MaxOut = 5. The if-then rules
implemented are as follows:
if (Input is mf1) then (Output is mf4)
if (Input is mf 2) then (Output is mf5)
if (Input is mf 3) then (Output is mf6)
The output is the result of the aggregation of two rules, one

that gives 0.25 of mf4 and another that gives 0.5 of mf5.
EQI and OCI Improvement. To improve EQI and OCI, a

hierarchical control is implemented (Figure 6). For the low level
control, the two PI controllers of the default BSM1 control
strategy are replaced by aMPC+ FF configuration with DO5 and
NO2 as controlled variables and KLa5 and Qrin as manipulated
variables. Two MPC + FF controllers are also added for
controlling DO3 and DO4 by manipulating KLa in the third tank
(KLa3) and in the fourth tank (KLa4), respectively. A fuzzy
controller is proposed for the high level to regulate the DO set
points of the low level based on NH5.

Low Level Control. MPC controllers are applied on the low
level for the set points tracking of NO2 and DO of the three
aerated tanks. Due to the presence of strong disturbances in
WWTPs, MPC has difficulties in keeping the controlled variables
at their reference level. To compensate the disturbances, a
feedforward control is added, as in refs 9−12 and 20. MPC
provides options for the feedforward compensation of the
measured disturbances, in the same way as for the reference
signals. Different variables have been considered for the
feedforward action in those works, but in our case Qin has been
selected for its better results.
The variables of the state-space model (eq 11) for the three

MPC controllers are described as follows: u1(k) is Qrin, u2(k) is
KLa5, u3(k) is Qin, y1(k) is NO2, and y2(k) is DO5 in the
controller of DO5 andNO2; u1(k) is KLa4, u2(k) is Qin, and y1(k)
is DO4 in the controller of DO4; and u1(k) is KLa3, u2(k) is Qin,
and y1(k) is DO3 in the controller of DO3.
The tuning parameters are Δt, m, p, ΓΔu, Γy, and the overall

estimator gain.

• Δt has a significant effect on the effectiveness of the
controller. High Δt can give less controller performance,

Figure 3. Architecture of a fuzzy controller.

Figure 4. Example of membership functions of fuzzifier.
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mainly when there are important input disturbances, and
low Δt can produce changes too quickly in the actuators
and also high energy consumption. Therefore, the chosen
Δt has been the lowest one that allows achieving a
successful tracking of the controlled variables, without
abrupt changes in the actuators and without a significant
aeration cost increase.

• Lower ΓΔu or higher Γy gives better performance of the
controlled variable; otherwise, they could produce strong
oscillations in the actuators that must be avoided.

• m and p should be adjusted in each case depending on the
control system. However, values that are too high can
increase the computational time in excess, and on the
other hand, values that are too small may result in
oscillatory responses or may not work at all.

• At eachΔt the controller compares the measured values of
the outputs with the expected values. The difference can
be due to noise, to measurements errors, and to
unmeasured disturbances. With the overall estimator
gain parameter the percentage of this difference that is
attributed to unmeasured disturbances is determined, and
the calculation matrix is consequently adjusted. Higher
overall estimator gains improve the results, but too high
values can make the controller unfeasible.

High Level Control.The controller proposed for the high level
is a fuzzy controller, that varies DO3, DO4 and DO5 set points
based on NH5.

The values of NH and NO depend largely on their reaction
rate, which is the result of several processes given by ASM1,
which describes the biological phenomena that take place in the
reactors. When NH increases, more DO is needed for
nitrification. On the contrary, when NH decreases, less DO is
required, producing less NO. NH5 is not forced to keep a fixed
value since it has been observed that it is not possible by
manipulating the DO set point due to the large disturb-
ance15−18,20.

Effluent Violations Removal. Two fuzzy controllers are
applied for avoiding Ntot,e or NHe violations. These control
strategies are implemented simultaneously with the hierarchical
control structure, in order to achieve a reduction of EQI andOCI
at the same time.

Ntot,e Violation Removal. The variables with the highest
influence in Ntot are NO and NH. Further efforts to reduce more
NH increasing nitrification, result also in an increment of NO,
and consequently Ntot,e is not decreased. According to the
biological processes of ASM1, an increase of substrate produces a
growth of XB,H and therefore the denitrification process and the
consequent reduction of NO are improved. Therefore, Ntot,e is
reduced with the dosage of EC in the first tank (EC1). However,
dosing EC1 results in an increase of operational costs (eq 2), so it
is important to dose EC1 only when a violation of Ntot,e could
take place. Consequently, the control strategy is based on the
manipulation of qEC1 according to NH5 plus NO5. A fuzzy
controller is proposed to regulate qEC1 as can be seen in Figure 7.
The maximum qEC1 value was limited to 5m

3/d. For this control
objective, the tuning parameters of the high level fuzzy controller
of the hierarchical structure are chosen with the aim to reduce
as much as possible the percentage of time of NHe violations
and not to exceed the OCI value of the default PI controller
when EC1 is added. A trade-off analysis is made for this tuning
parameters selection.

NHe Violations Removal. With the goal of removing NHe
violations, Qrin is manipulated based on NH5 and NHin.
Therefore, the MPC of the low level that controls DO5 and
NO2 by manipulating KLa5 and Qrin is replaced by a MPC with
one input (DO5) and one output (KLa5) (see Figure 8).
To facilitate the understanding of the proposed solution

some considerations about the propagation of the peaks in the
reactor are provided: When a peak of pollution enters in the
reactors, it is propagated through them with a delay determined
by the retention time. So any change in the influent flow rate or
in the Qrin directly affects the propagation of the peaks of

Figure 5. Example of membership functions of defuzzifier.

Figure 6. BSM1 with two-level hierarchical control for EQI and OCI
improvement.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/ie504079q
Ind. Eng. Chem. Res. 2015, 54, 2763−2775

2767



pollution inside the tanks. On the contrary, the peaks of flow
rate are transmitted to all the plant immediately, because the
system is always full and any variation in the influent causes
an identical variation in the effluent and inside the system.
Thus, according to the mass balance equation in the first reactor
(eq 12), when NHin increases, Qrin is incremented to reduce the
rise of NH in the first tank (NH1), and when the increase
of NH arrives to the fifth tank, and Qrin is reduced to increase
the retention time and so to improve the de-nitrification
process.

= · + · + ·

+ · − ·

dNH
dt V

Q NH Q NH Q NH

r V Q NH

1 1
1

(

1 1 1)

rin rin rex rex in in

NH1 (12)

= + +Q Q Q Q1 rin rex in

where NHrin is NH in the internal recirculation, NHrex is NH in
the external recirculation, rNH1 is rNH in the first tank, and Q1 is
the flow rate in the first tank.
A fuzzy controller is proposed for this control strategy. And

the tuning parameters are different when there are peaks of
NHin or NH5 and the rest of the time. They are determined by a
trade-off analysis of OCI and the percentage of operating time of
Ntot,e violation, reflecting only the results that avoid the NHe
violations.

■ SIMULATION RESULTS

In this section the control configurations proposed in the above
section are tested and compared. Ideal sensors have been
considered for the simulations. For the three fuzzy controllers
applied, Mamdani27 is the method selected to defuzzify. The
design of the fuzzy controllers was based on the observation of
the simulations results obtained by operating the plant with the
default control of BSM1. MPC and fuzzy controllers are
implemented using Matlab for the simulation and online
control. Specifically, MPC controllers have been designed with
a MPC tool, the identification of its prediction model with a
System Identification Tool, and the fuzzy controllers with an
FIS editor. To solve the quadratic objective of MPC in eq 10,
the Quadratic Dynamic Matrix Control solver29 with hard
linear constraints in the inputs provided by Matlab MPC Tool
has been used.

EQI and OCI Improvement. Here, the implementation of
the hierarchical control with MPC + FF in the low level and the
fuzzy controller in the high level stated in the previous sections is
described.
The identification of the linear predictive models of the MPC

controllers was performed using Matlab System Identification
Tool. The data of the output variables (DO3, DO4, DO5 and
NO2) are obtained by making changes to the input variables
(KLa3, KLa4, KLa5 and Qrin) with a maximum variation of 10%
regarding its operating point, which is the value of KLa necessary
to obtain 2 mg/L of DO and the value of Qrin necessary to obtain
1 mg/L of NO2. Specifically, the working point is 264.09 day −1,
209.23 day −1, 131.65 day −1 and 16486 m3/day for KLa3, KLa4,
KLa5 and Qrin respectively. Different sources were tested to
modify the input variables as random, sinusoidal or step, and
finally the best fit was obtained with random source. These input
variations are performed every 2.4 h, sufficient time to ensure the
effect of these variations on the output signals. Furthermore, for
the feedforward compensation, a step to Qin of +10% is added
over 18446 m3/day, which is the average value during the
stabilization period. Two methods were tested for determining
the model with the obtained data, prediction error method
(PEM)30 and subspace state spacesystem identification
(N4SID)31. Finally PEM were selected because it fits better
with the real response of the plant. The order of the models was
chosen from a trade-off between the best fit and the lowest order.
Therefore, the following third order state-space models are
obtained:

DO5 and NO2 control
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Figure 8. BSM1 with a control strategy for NH removal.

Figure 7. BSM1 with a control strategy for Ntot,e removal.
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DO3 control
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DO4 control
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The selected values to tune the MPC are m = 5, p = 20, Δt =
0.00025 days (21.6 s), Γy = 1 and ΓΔu = 0.01 for DO3, DO4 and
DO5 control and Γy = 1 and ΓΔu = 0.0001 for NO2 control and
overall estimator gain = 0.8. It should be noted that the values of
m and p are not critical and they can be slightly changed with
similar results.
Data acquisition for the model identification is based on

simulations, as this work is a first step to be subsequently tested in

a pilot plant and finally in a real plant. In order to predict the
possible application in a real plant, the data acquisition for the
identification is performed while the plant is kept at a certain
desired operating point, whose values are considered suitable for
the biological wastewater treatment of this plant, as the same way
of KLa3 and KLa4. Therefore, what the identification needs is
only the possibility of adding some incremental changes to those
operating conditions. As mentioned before, the inputs used for
identification purposes represent a maximum variation of 10%.
Therefore, they will not disturb the actual plant operation. The
generated outputs will reflect the effect of such input variables
manipulation. Data for identification have been generated
simulating 1 week. However, in the case of the real plant, the
identification could be carried out in different periods and not
necessarily in consecutive days. Plants operator knowledge can in
addition be used to know the more appropriate days to perform
the experiment.
For the high level fuzzy controller, three triangular member-

ship functions for input and for output are used (low, medium
and high). The rules implemented are as follows:
if (NH5 is low) then (DO is low)
if (NH5 is medium) then (DO is medium)
if (NH5 is high) then (DO is high)
MinIn and MinOut are 0.1 and 0.8, respectively. MaxIn and

MaxOut have been determined with OCI and EQI trade-off

Figure 9. OCI and EQI trade-off with higher level fuzzy controller for a range of MaxOut from 2.5 to 8 with increments of 0.5 (points marked with
crosses) and MaxIn = 3 (solid line), 5 (dashed line), and 7 (dash-dotted line).

Table 3. EQI andOCI Results with Default PI Controllers and
the Proposed Hierarchical Control

Hierarchical Control

default PI
controllers lowest EQI

lowest
OCI

% of
improvement

EQI (kg
pollutants/d)

6115.63 5804.38 6037.07 −5%

OCI 16381.93 16377.51 15743.27 −3.9%
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representations shown in Figure 9. Each one of the lines
corresponds to the results obtained with differentMaxIn, i.e. 3,
5, 7, and each one of the points marked with crosses is the result

of a differentMaxOut that varies from 2.5 to 8 with increments
of 0.5. The results obtained with default PI controllers are
also shown.

Figure 10. KLa and DO evolution of the three aerated tanks from day 7 to day 14 with hierarchical control structure.

Figure 11. Qrin and NO2 evolution from day 7 to day 14 with hierarchical control structure.
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TheMaxIn andMaxOut values of the extreme cases of lowest
EQI without increasing OCI and lowest OCI without worsening
EQI in comparison with default PI controllers areMaxIn = 3 and
MaxOut = 6.5 for the best EQI and MaxIn = 3 and MaxOut =
2.75 for the best OCI. Table 3 presents the results of best EQI
without increasing OCI and best OCI without worsening EQI of
high level fuzzy controller in comparison with default control
strategy. The improvement of EQI is 5% and the reduction of
OCI is 3.9%. Figures 10 and 11 show the evolution of the control
and manipulated variables from day 7 to 14.
Ntot,e Violations Removal. The objectives of this control

strategy besides Ntot,e violations removal are to improve EQI, not
to increase OCI and to reduce the percentage of time of NHe

violations in comparison with the default control strategy. For
this purpose, a trade-off analysis of the percentage of time over
the limits of NHe and Ntot,e is made (see Figure 12). For this
analysis, the hierarchical control strategy is included but not the
addition of EC1. The tuning parameters of the high level fuzzy
controller are selected at the point whose percentage of operating
time of NHe over the limits is the same as with the default control
strategy (17.26%). These tuning parameters are MaxIn = 3 and
MaxOut = 4.1, and the percentage of operating time of the Ntot,e

violation with these parameters is 6.39%.
In the OCI and EQI trade-off representation shown in Figure 9,

in the points of the tuning parameters mentioned, a difference in
OCI of 2.6% is observed regarding the default control strategy,

Figure 12.High level fuzzy controller: trade-off of the time percentage of NHe andNtot,e violations forMaxIn = 3 and a range ofMaxOut values from 3 to 7
with increments of 0.5 (points marked with crosses).

Figure 13. qEC1, NHe and Ntot,e evolution from day 7 to day 14 with default PI controllers (dash-dotted line), with hierarchical control without adding
EC1 (dashed line) and with hierarchical control adding EC1 (solid line).
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which may be used for the EC1 dosage. The dashed line in
Figure 13 shows the evolution of Ntot,e from day 7 to 14 with the
parameters selected for high level fuzzy controller and without
adding EC1. The constant line is the Ntot,e limit.
With these parameters selected for the high level, a fuzzy

controller is added to manipulate qEC1. For this controller, three
triangular membership functions for input and for output are
used (low, medium and high). The rules implemented are as
follows:
if (NH5+NO5 is low) then (qEC1 is low)
if (NH5+NO5 is medium) then (qEC1 is medium)
if (NH5+NO5 is high) then (qEC1 is high)
The ranges of membership functions values are MinIn = 10,

MaxIn = 17.5, MinOut = −8, MaxOut = 6.75. The solid lines of
Figure 13 correspond to the evolution of qEC1, Ntot,e and NHe
from day 7 to 14. It is observed that Ntot,e violations are removed.
Table 4 presents the results of EQI, OCI and the percentage of

operating time out of the limits of NH and Ntot,e obtained with

hierarchical control adding EC1 and compared with the default
control strategy of BSM1. It is shown that by adding EC1 and a
hierarchical control of DO in the three aerated tanks, the
violations of Ntot,e can be avoided, also improving the results of
EQI and OCI and the percentage of operating time of NHe
violations with respect to default PI controllers.

NHe Violations Removal. As mentioned in the previous
section, to perform the control for removing violations of NHe,
the MIMO MPC + FF, that controls DO5 and NO2 by
manipulating KLa5 and Qrin, has been replaced by a SISOMPC +
FF that controls DO5 by manipulating KLa5, because Qrin is
manipulated based on NH5 and NHin.
The model identification of the newMPC + FFwas performed

with the same methodology as with the previous controller, but
with one input and one output. However, in this case it is a
second order state-space model:
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The MaxIn and MaxOut values of the high level fuzzy
controller have been selected by a trade-off analysis of OCI and
percentage of operating time of NHe violation (see Figure 14),
choosing the less percentage of NHe violation in order to
facilitate its later total elimination, but considering the increased
costs that will be generated by the new control strategy. In this
case the chosen parameters areMaxIn = 3 andMaxOut = 5.5. In
the case of the fuzzy controller for the NHe violations removal,
two tunings are determined, one when there are peaks of NHin or
NH5, and the other the rest of the time. For both cases three
triangular membership functions for input and for output are
used (low, medium and high). The rules implemented are as
follows:
if (NH5 is low) then (Qrin is high)
if (NH5 is medium) then (Qrin is medium)
if (NH5 is high) then (Qrin is low)

Table 4. Results with Default PI Controllers and with Control
for Ntot,e Violations Removal

default PI
controllers

control for Ntot,e
violations removal

% of
improvement

EQI (kg pollutants/d) 6115.63 5862.03 −4.1%
OCI 16381.93 16336.36 −0.3%
Ntot,e violations (% of
operating time)

17.56 0 −100%

NHe violations
(% of operating time)

17.26 16.66 −3.4%

Figure 14. Trade-off representation of OCI and the percentage of operating time of NHe violations forMaxIn = 3 and a range ofMaxOut from 3 to 7
with increments of 0.5 (points marked with crosses).
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When there are peaks of NHin or NH5, the tuning parameters
are set looking for a great variation in Qrin when NHe is
increasing. Therefore, MinIn, MaxIn, MinOut and MaxOut are
3.5, 4.1, −2 × 104, and 14 × 104, respectively. For the rest of the
time,MinOut andMaxOut are set by a trade-off analysis of OCI
and percentage of operating time of Ntot,e violation, reflecting
only the results that avoid the NHe violations. An area is obtained
where OCI and the operating time of the Ntot,e violation are
decreased compared to default PI controllers (see Figure 15).

Each one of the lines corresponds to the results obtained with
MaxIn = 2, 2.2, 2.4, and 2.6, and each one of the points marked
with crosses is the result of a different MaxOut that varies from
90000 to 180000 with increments of 10000. The results obtained
with default PI controllers alone are also shown. The parameters
have been selected according to the Nash Solution32: MaxIn =
2.4 and MaxOut = 100000.
Qrin, Ntot,e and NHe evolutions from day 7 to 14 are shown in

Figure 16. The results with default PI controllers are also shown.

Figure 15. Trade-off representation of OCI and the percentage of operating time of Ntot,e violations for a range ofMaxOut from 90000 to 180000 with
increments of 10000 (points marked with crosses) and MaxIn = 2 (dotted line), 2.2 (dashed line), 2.4 (solid line), 2.6 (dash-dotted line).

Figure 16. Qrin, NHe and Ntot,e evolution from day 7 to day 14 with default PI controllers (dash-dotted line) and with the control for NHe violations
removal (solid line).
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It can be observed that, with this control strategy, NHe peaks are
reduced under the limits established.
Table 5 shows the results of EQI, OCI and percentage of time

over the limits of NHe and Ntot,e. It can be seen that it is possible
to avoid NHe violations with the regulation of Qrin based on NH5
and NHin applying a fuzzy controller with two different
alternative settings of the tuning parameters and also with the
hierarchical control of DO in the three aerated tanks. In addition,
a reduction of 4.26% of EQI and 0.45% of OCI, with respect to
the default control strategy of BSM1, is achieved.

■ CONCLUSION
In this paper, different control configurations based onMPC and
fuzzy logic have been used in WWTPs to eliminate Ntot,e
violations or NHe violations and at the same time improve the
results of OCI and EQI in comparison with the default control
strategy of BSM1.
The elimination of Ntot,e violations is achieved by manipulating

qEC1 based on NO5 plus NH5. The removal of NHe violations is
carried out by manipulating Qrin based on NH5 and NHin, which
uses different tuning parameters depending on if there are peaks
of pollution in the tanks or not.
In both cases, a two-level hierarchical control structure is

simultaneously implemented to perform an EQI and OCI
improvement. The low level of this structure is composed
by three MPC + FF that manipulate KLa3, KLa4, KLa5 and
Qrin to control DO3, DO4, DO5 and NO2 in the first case and
KLa3, KLa4 and KLa5 to control DO3, DO4 and DO5 in
the second case. For the high level, a fuzzy controller is
implemented to manipulate DO set points of the low level
according to NH5.
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� Performance improvement of wastewater treatment plants applying control strategies.
� Effluent quality improvement and costs reduction with a hierarchical control.
� Effluent violations removal for dry, rain and storm weather conditions.
� Simultaneously removal of total nitrogen and ammonia violations.
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a b s t r a c t

This paper presents different control strategies for biological wastewater treatment plants, with the goal
of avoiding violations of effluent pollution limits while, at the same time, improving effluent quality and
decreasing operational costs. The control strategies are based on Model Predictive Control (MPC) and
functions that relate the input and manipulated variables. The Benchmark Simulation Model No.1
(BSM1) is used for evaluation. A hierarchical structure regulates the dissolved oxygen (DO) of the three
aerated tanks based on the ammonium and ammonia nitrogen concentration (NH) in the fifth tank (NH5).
An MPC with feedforward compensation is proposed for the lower level and an affine function is selected
for the higher level. A tuning region is determined modifying the tuning parameters of the higher level, in
which the effluent quality and operational costs are simultaneously improved in comparison with the
default control strategy of BSM1. To eliminate violations of total nitrogen in the effluent (Ntot;e), an affine
function, implemented with a sliding window, adds external carbon flow rate in the first tank based on
nitrate nitrogen in the fifth tank (NO5) plus NH5. To avoid violations of NH in the effluent (NHe), a com-
bination of a linear function and an exponential function that manipulates the internal recirculation flow
rate based on NH5 and NH in the influent is proposed. As a result, Ntot;e violations and NHe violations are
avoided for dry, rain and storm weather conditions. In addition, an improvement of effluent quality and a
reduction of operational costs are achieved at the same time, except in the cases of rain and storm weath-
ers for NHe violations removal, in which the costs increase.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The control of biological wastewater treatment plants (WWTPs)
is not an easy task due to the complexity of the biological and bio-
chemical processes that take place inside them, the diversity of
time constants involved, the large disturbances in concentration
and flow rate of the influent and the legal requirements for the

effluent (see for instance the European Directive 91/271 ‘‘Urban
wastewater’’ established by European Union).

In this work the evaluation and comparison of the different con-
trol strategies is based on Benchmark Simulation Model No.1
(BSM1), developed by the International Association on Water
Pollution Research and Control [1–3]. This benchmark includes a
plant layout, influent loads, test procedures and evaluation criteria.

The BSM1 provides a default control strategy that includes two
Proportional-Integral (PI) control loops: control of the dissolved
oxygen concentration (DO) in the fifth tank (DO5) at a set point value
of 2 g/m3 by manipulating the oxygen transfer coefficient (KLa) in
the fifth tank (KLa5), and control of the nitrate nitrogen concentra-
tion (NO) in the second anoxic reactor (NO2) at a set point value of

http://dx.doi.org/10.1016/j.cej.2015.05.008
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1 g/m3 by manipulating the internal recycle flow rate (Q rin). A com-
plete review of results for PI control can be found in [4].

There are previous works that propose different methods for
controlling WWTPs. Some of them apply a direct control of the
effluent variables, mainly ammonium and ammonia nitrogen
(NH) and total nitrogen (Ntot) [5–7]. The difficulty in this method
is that the fixed values for the effluent variables are constraints
and not set points. Other studies deal with the basic control strat-
egy (DO of the aerated tanks and NO of the last anoxic tank), but
testing with different controllers such as Model Predictive
Controller (MPC) and fuzzy controller [8–11]. These methods pro-
vide an acceptable balance between quality and costs. Finally other
investigations propose a hierarchical control that regulates the DO
set points, depending on some states of the plant, usually NH and
NO values in any tank or in the influent [12–17] or DO in other
tanks [18].

Unlike the referred articles, the present work deals with the
avoidance of Ntot in the effluent ðNtot;eÞ and NH in the effluent
ðNHeÞ violations for dry, rain and storm weather conditions, taking
also into account the effluent quality and operational costs. The pro-
posed control strategies are based on improving the nitrification
process by oxidizing the aerated tanks [19] and by manipulating
Q rin [20], and on improving the denitrification process by adding
external carbon flow rate (qEC) [21]. Other important innovation is
the introduction of a sliding window to dosage the minimum qEC1

necessary for the Ntot;e violations removal in order to minimize oper-
ational costs.

First, a hierarchical control structure is implemented to improve
simultaneously OCI and EQI. The lower level is composed by three
MPC with feedforward compensation of the influent flow rate
(MPC + FF) [22], to control NO2, DO in the third tank (DO3), DO
in the fourth tank (DO4) and DO5. The higher level adjusts the
DO set points according with NH in the fifth tank (NH5), and an
affine function is proposed for this level. A trade-off analysis is
made, which determines a tuning region that improves simultane-
ously the results of effluent quality and operational cost in compar-
ison with default control strategy of BSM1. Next, two controls are
added in order to eliminate effluent violations. NHe and Ntot;e are
the pollutants that present more difficulties for being kept under
the established limits. For reducing peaks of Ntot;e, qEC in the first
tank (qEC1) is added based on NO in the fifth tank (NO5) plus
NH5. An affine function is proposed for this control, with a sliding
window for its implementation. And for reducing peaks of NHe, Q rin

is manipulated based on NH5, and the control of NO2 is removed. A
combination of linear function and exponential function is pro-
posed for this control.

2. Working scenario: BSM1

This section provides a description of the working scenario pro-
vided by the BSM1. This is a simulation environment defining a
plant layout, a simulation model, influent loads, test procedures
and evaluation criteria.

2.1. Plant layout

The schematic representation of the WWTP is presented in
Fig. 1. The plant consists in five biological reactor tanks connected
in series, followed by a secondary settler. The first two tanks have a
volume of 1000 m3 each and are anoxic and perfectly mixed. The
rest three tanks have a volume of 1333 m3 each and are aerated.
The settler has a total volume of 6000 m3 and is modeled in ten
layers, being the 6th layer, counting from bottom to top, the feed
layer. Two recycle flows, the first from the last tank and the second
from the underflow of the settler, complete the system. The plant is

designed for an average influent dry-weather flow rate of
18,446 m3/d and an average biodegradable chemical oxygen
demand (COD) in the influent of 300 g/m3. Its hydraulic retention
time, based on the average dry weather flow rate and the total tank
and settler volume (12,000 m3), is 14.4 h. The default wastage flow
rate (Qw) is fixed to 385 m3/d that determines, based on the total
amount of biomass present in the system, a biomass sludge age
of about 9 days. The nitrogen removal is achieved using a denitri-
fication step performed in the anoxic tanks and a nitrification step
carried out in the aerated tanks. The internal recycle is used to sup-
ply the denitrification step with NO.

2.2. Models

The biological phenomena of the reactors are simulated by the

Activated Sludge Model No 1 (ASM1) [23] that considers eight dif-
ferent biological processes. The vertical transfers between layers in
the settler are simulated by the double-exponential settling veloc-
ity model [24]. None biological reaction is considered in the settler.
The two models are internationally accepted and include thirteen
state variables. The proposed control strategies in this work are
based on the conversion rates of NH (rNH) and NO (rNO). They are
shown following:

rNH ¼ �0:08q1 � 0:08q2 � 0:08þ 1
0:24

� �
q3 þ q6 ð1Þ

rNO ¼ �0:1722q2 þ 4:1667q3 ð2Þ

where q1;q2;q3;q6 are four of the eight biological processes defined
in ASM1. Specifically, q1 is the aerobic growth of heterotrophs, q2 is
the anoxic growth of heterotrophs, q3 is the aerobic growth of auto-
trophs and q6 is the ammonification of soluble organic nitrogen.
They are defined below:

q1 ¼ 4
S

10þ S

� �
DO

0:2þ DO

� �
XB;H ð3Þ

q2 ¼ 4
S

10þ S

� �
0:2

0:2þ DO

� �
NO

0:5þ NO

� �
0:8 � XB;H ð4Þ

q3 ¼ 0:5
NH

1þ NH

� �
DO

0:4þ DO

� �
XB;A ð5Þ

q6 ¼ 0:05 � ND � XB;H ð6Þ

where S is the readily biodegradable substrate, ND the soluble
biodegradable organic nitrogen, XB;H the active heterotrophic bio-
mass and XB;A the active autotrophic biomass. The biological param-
eter values used in the BSM1 correspond approximately to a
temperature of 15 oC.

2.3. Influent loads

BSM1 defines three different influent data [25,26]: dry weather,
rain weather and storm weather. Each scenario contains 14 days of
influent data with sampling intervals of 15 mins.

2.4. Test procedures

A simulation protocol is established to assure that results are
got under the same conditions and can be compared. So first a
150 days period of stabilization in closed-loop using constant influ-
ent data has to be completed to drive the system to a steady-state,
next a simulation with dry weather is run and finally the desired
influent data (dry, rain or storm) is tested. Only the results of the
last seven days are considered.
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2.5. Evaluation criteria

In order to compare the different control strategies, different
criteria are defined.

The performance assessment is made at two levels. The first
level concerns the control. Basically, this serves as a proof that
the proposed control strategy has been applied properly. It is
assessed by Integral of the Squared Error (ISE) criterion. The second
level provides measures for the effect of the control strategy on
plant performance. It includes Effluent Quality Index (EQI) and
Overall Cost Index (OCI).

The evaluation must include the percentage of time that the
effluent limits are not met and the number of violations. This last
term is defined as the number of crossings of the limit, from below
to above the limit.

2.5.1. Effluent limits
The effluent concentrations of Ntot , Total COD (CODt), NH, Total

Suspended Solids (TSS) and Biological Oxygen Demand (BOD5)
should obey the limits given in Table 1.

Ntot is calculated as the sum of NO and Kjeldahl nitrogen (NKj),
being this the sum of organic nitrogen and NH.

2.5.2. Effluent Quality Index
EQI is defined to evaluate the quality of the effluent. It is related

with the fines to be paid due to the discharge of pollution. EQI is
averaged over a 7 days observation period and it is calculated
weighting the different compounds of the effluent loads.

EQI ¼ 1
1000 � T

Z t¼14days

t¼7days
ðBTSS � TSSðtÞ þ BCOD � CODðtÞ þ BNKj

� NKjðtÞ þ BNO �NOðtÞ þ BBOD5 � BOD5ðtÞÞ � QðtÞ � dt ð7Þ

where Bi are weighting factors (Table 2) and T is the total time.

2.5.3. Overall Cost Index
OCI is defined as:

OCI ¼ AEþ PEþ 5 � SPþ 3 � ECþME ð8Þ

where AE is the aeration energy, PE is the pumping energy, SP is the
sludge production to be disposed, EC is the consumption of external
carbon source and ME is the mixing energy.

AE is calculated according to the following relation:

AE ¼ Ssat
o

T � 1:8 � 1000

Z t¼14days

t¼7days

X5

i¼1

Vi � KLaiðtÞ � dt ð9Þ

where Vi is the volume of the tank i.
PE is calculated as:

PE ¼ 1
T

Z 14days

7days
ð0:004 � Q inðtÞ þ 0:008 � Q rinðtÞ þ 0:05 � Q wðtÞÞ � dt

ð10Þ

SP is calculated from the TSS in the flow wastage (TSSw) and the
solids accumulated in the system:

SP ¼ 1
T
� ðTSSað14daysÞ � TSSað7daysÞ þ TSSsð14daysÞ

� TSSsð7daysÞ þ
Z t¼14days

t¼7days
TSSw � Q w � dtÞ ð11Þ

where TSSa is the amount of solids in the reactors and TSSs is the
amount of solids in the settler.

EC refers to the carbon that could be added to improve
denitrification.

EC ¼ CODEC

T � 1000

Z t¼14days

t¼7days

Xi¼n

i¼1

qEC;i

 !
� dt ð12Þ

where qEC;i is qEC added to compartment i;CODEC = 400 gCOD m�3 is
the concentration of readily biodegradable substrate in the external
carbon source.

ME is the energy employed to mix the anoxic tanks to avoid set-
tling and it is a function of the compartment volume:

ME ¼ 24
T

Z t¼14days

t¼7days

X5

i¼1

0:005 � Vi if KLaiðtÞ < 20d�1 otherwise 0
h i

� dt

ð13Þ

3. Control objectives

With the aim to simultaneously improve EQI and OCI, first a
hierarchical control structure is presented. For the lower level,
the PI controllers of the default control strategy are replaced by
MPC + FF to control the DO of the three aerated tanks and the

Fig. 1. Benchmark Simulation Model 1.

Table 1
Effluent quality limits.

Variable Value

Ntot <18 g N m�3

CODt <100 g COD m�3

NH <4 g N m�3

TSS <30 g SS m�3

BOD5 <10 g BOD m�3

Table 2
Bi values.

Factor BTSS BCOD BNKj BNO BBOD5

Value(g pollution unit g�1) 2 1 30 10 2

I. Santín et al. / Chemical Engineering Journal 279 (2015) 207–219 209



NO2. The higher level adjusts the DO set points of the lower level
according with NH5. An affine function is proposed for the higher
level. The objective of the hierarchical structure is to increase DO
in the aerated tanks when NH5 is high, in order to facilitate the
nitrification process increasing NH removal and therefore improv-
ing the effluent quality, and to reduce DO when NH5 is low, with
the purpose of reducing operational costs and NO production.

With the goal of avoiding Ntot;e violations, an affine function that
manipulates qEC1 based on NO5 plus NH5 is added. In order to
avoid the limit violations of NHe, a controller that regulates Q rin

based on NH5 and NHin is proposed, and NO2 control is eliminated.
For this control, a combination of an affine function and a exponen-
tial function is used. These control strategies for removing viola-
tions of the effluent pollution are implemented keeping the
hierarchical control structure, because the goal includes also the
reduction of EQI and OCI.

3.1. EQI and OCI improvement

In the proposed hierarchical control structure, the lower level is
the responsible for controlling DO3, DO4, DO5 and NO2, and the
higher level adjusts the DO set points of the three aerobic tanks
according with NH5 (see Fig. 2).

For the lower level control, the two PI controllers of the default
BSM1 control strategy are replaced by a MPC + FF configuration
with DO5 and NO2 as controlled variables and KLa5 and Q rin as
manipulated variables. Two MPC + FF controllers are also added
for controlling DO3 and DO4 by manipulating KLa in the third tank
(KLa3) and in the fourth tank (KLa4) respectively. An affine func-
tion is a satisfactory alternative for manipulating the DO set
points, as it is shown in [16], and it is proposed for the higher
level. OCI and EQI trade-off representations have been imple-
mented for the tuning of the affine function, assessing the
extreme points where the best EQI without increasing OCI and
the best OCI without increasing EQI are achieved compared to
default PI controllers.

Other works have experimented in the hierarchical control of
DO based on NH5, but with other controllers: Vrecko et al. [12]
with PIs in both levels and Stare et al. [27] with PI in the lower level
and PI and MPC in the higher level.

3.1.1. Lower level control
The basis of MPC is the use of an optimization algorithm to

solve the control problem and the use of a model of the plant to
make predictions of the output variables [28]. At each control
interval, Mt, for a prediction horizon, p, and a control horizon, m,
(m < p), the MPC algorithm computes the sequences of control
moves over the horizon m:

MuðkÞ;Muðkþ 1Þ; . . . ;Muðkþm� 1Þ ð14Þ
makes predictions of the outputs variables over a future horizon p
(see Fig. 3):

ŷðkþ 1jkÞ; ŷðkþ 2jkÞ; . . . ; ŷðkþ pjkÞ ð15Þ

and selects the sequence of control moves that minimizes a quadra-
tic objective of the form:

J ¼
Xp

l¼1

jjCy½yðkþ ljkÞ � rðkþ lÞ�jj2 þ
Xm

l¼1

jjCMu½Muðkþ l� 1Þ�jj2 ð16Þ

where the output prediction yðkþ ljkÞmeans a predicted controlled
output for the future sampling instant kþ 1, performed at the cur-
rent instant k, and Cy and CMu are the output weight and input rate
weight respectively, which penalize the residual between the future
reference and the output variable prediction, and the control moves.
Due to the presence of strong disturbances in WWTPs, MPC has dif-
ficulties in keeping the controlled variables at their reference level.
MPC provides options for the feedforward compensation of the
measured disturbances, in the same way as for the reference sig-
nals. To compensate the disturbances, a feedforward control is
added, as in [5,6,8,7,15]. Different variables have been considered
for the feedforward action in those works, but in our case the influ-
ent flow rate has been selected for its better results.

The MPC algorithm requires a state-space linear model to fore-
see how the plant outputs, yðkÞ, reacts to the possible variations of
the control variables, uðkÞ, and to compute at each Mt the control
moves. WWTPs are nonlinear systems, but their operation can be
approximated in the vicinity of a working point by a
continuous-time state-space model as:

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ

yðkÞ ¼ CxðkÞ þ DuðkÞ ð17Þ

Fig. 2. BSM1 with two-level hierarchical control for EQI and OCI improvement.
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where xðkÞ is the state vector, and A;B;C and D are the state-space
matrices. In concrete terms, the inputs uðkÞ are Q rin, KLa5 and Q in in
the first controller, KLa4, and Q in in the second controller and KLa3
and Q in in the third controller, and the outputs y(k) are NO2 and
DO5 in the first controller, DO4 in the second controller and DO3
in the third controller.

The tuning parameters are: Mt;m; p;CMu;Cy and the overall esti-
mator gain.

� Mt has a significant effect on the effectiveness of the controller.
High Mt can give less controller performance, mainly when
there are important input disturbances, and low Mt can produce
too rapid changes in the actuators and high energy
consumption.
� Lower CMu or higher Cy give better performance of the con-

trolled variable, otherwise they could produce strong oscilla-
tions in the actuators that must be avoided.
� m and p should be adjusted in each case depending on the con-

trol system. However too high values can increase the computa-
tional time too much, and on the other hand, too small values
may results in oscillatory responses or may not work at all.

� At each Mt the controller compares the measured values of the
outputs with the expected values. The difference can be due to
noise, to measurements errors and to unmeasured disturbances.
With the overall estimator gain parameter it is determined the
percentage of this difference that is attributed to unmeasured
disturbances and the calculation matrix is consequently
adjusted. Higher overall estimator gains improve the results,
but too high values can make the controller unfeasible.

3.1.2. Higher level control
Due to the large disturbances, it is not possible to maintain NH5

at a fixed reference value by manipulating DO set points of the
lower level controllers. For this reason, the controller proposed
for the higher level is a simple affine function, that varies DO3,
DO4 and DO5 set points based on NH5, but without keeping NH5
at a reference level. The following affine function is proposed:

DOsetpointðtÞ ¼ NH5ðtÞ � k ð18Þ

where k is a constant that is used as a tuning parameter. Also a con-
straint for the maximum DO3, DO4 and DO5 values has been con-
sidered. The values of k and DO3, DO4 and DO5 maximum values
are determined by an OCI and EQI trade-off analysis.

3.2. Ntot;e violations removal

NH and NO are the pollutants present in Ntot that contribute
with more weight. For this reason, in order to eliminate violations
of Ntot;e, qEC1 is added based on NO5 plus NH5 (see Fig. 4). The fol-
lowing affine function is proposed for this control:

qEC1 ¼ ððNH5þ NO5Þ � aÞ � b ð19Þ

where a and b are used as tuning parameters whose values are set
depending on the maximum value of Ntot;e given by a sliding win-
dow, which is shift at each sample time and presents only the val-
ues measured the day one week before. Specifically, following are
shown the chosen equations for a and b values:

b ¼ Md � 2� 35:5 ð20Þ

Fig. 3. Model Predictive Control performance.

Fig. 4. BSM1 with a control strategy for Ntot;e removal.
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a ¼ 34:25�Md ð21Þ

where Md is the maximum value of the day, one week before. This
approach tries to dosage the minimum of qEC1 to remove Ntot;e vio-
lations. The maximum qEC1 value was limited to 5 m3=d.

3.3. NHe violations removal

With the goal of removing NHe violations, Q rin is manipulated
based on NH5 and NHin. Therefore, the MPC of the lower level that
controls DO5 and NO2 by manipulating KLa5 and Q rin is replaced by
a MPC with one input (DO5) and one output (KLa5) (see Fig. 5).

To facilitate the understanding of the proposed solution some
considerations about the propagation of the peaks in the reactor
are provided: When a peak of pollution enters into the reactors,
it is propagated through them with a delay determined by the
retention time. So any change in the influent flow rate or in the
Q rin affects directly the propagation of the peaks of pollution inside
the tanks. On the contrary, the peaks of flow rate are transmitted to
all the plant immediately, because the system is always full and
any variation in the influent causes an identical variation in the
effluent and inside the system.

The NH5 controller is designed to act in two different ways,
depending on NH peaks. When the peaks are present in the influ-
ent, it is convenient to increase Q rin for diluting them, and when
the peaks are already in the aerated tanks, it is convenient to
reduce Q rin for increasing the retention time.

A combination of exponential function and linear function is
proposed for this control strategy. When there are peaks of NHin

or NH5, the following exponential function is applied:

Q rin ¼
c

expðNH5 � dÞ ð22Þ

Otherwise the following linear function is applied:

Q rin ¼
NHin

NH5
� e ð23Þ

where c; d and e are used as tuning parameters, whose values are
determined by a trade-off analysis of OCI and percentage of

operating time of Ntot;e violation, reflecting only the results that
avoid NHe violations.

4. Simulation results

In this section the control configurations proposed in the above
section are tested and compared. Ideal sensors have been consid-
ered for the simulations. The proposed control strategies are eval-
uated for the three influents provided by BSM1 (dry, rain and
storm).

4.1. EQI and OCI improvement

Here, it is described the implementation of the hierarchical con-
trol with a MPC + FF in the lower level and an affine function in the
higher level stated in Sections 3.1.1 and 3.1.2.

DO3, DO4, DO5 and NO2 values to get the linear models of the
MPC + FF controllers have been obtained by varying KLa3, KLa4 and
KLa5 in a range of �10% around 264.09 day�1, 209.23 day�1 and
131.65 day�1 respectively and Q rin in a range of �10% around
16,486 m3/d and applying a step of þ50% to Q in (measured vari-
able for the feedforward compensation).

By using Matlab System Identification Toolbox with prediction
error method [29], the following third order state-space models
(24)–(26) are obtained:

� DO5 and NO2 control

A ¼
0:8748 0:04463 0:1314

0:04091 0:7331 0:1796
0:2617 �0:1318 0:3007

2
64

3
75

B ¼
7:641 � 10�6 0:004551 �2:749 � 10�5

�2:631 � 10�5 0:006562 �4:551 � 10�6

�9:63 � 10�6 �0:02161 2:447 � 10�5

2
64

3
75

C ¼
0:8812 �0:5948 0:02114
1:187 0:9893 �0:3754

� �

D ¼
0 0 0
0 0 0

� �

ð24Þ

Fig. 5. BSM1 with a control strategy for NHe removal.
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� DO3 control

A ¼
0:7859 0:4576 �0:131
0:3334 0:2599 0:2718
�0:003132 0:03235 �1:003

2
64

3
75

B ¼
0:009308 �2:285 � 10�5

�0:01546 3:503 � 10�6

0:003654 �1:987 � 10�5

2
64

3
75

C ¼ 0:6376 �0:4621 0:03698½ �
D ¼ 0 0½ �

ð25Þ

� DO4 control

A ¼
0:8201 0:371 �0:1016
0:3054 0:307 0:2544
�0:003381 0:03144 �0:9993

2
64

3
75

B ¼
0:007712 �4:65 � 10�5

�0:0148 8:164 � 10�6

0:004523 �2:526 � 10�5

2
64

3
75

C ¼ 0:947 �0:496 0:02472½ �
D ¼ 0 0½ �

ð26Þ

The selected values to tune the MPC are m = 5, p = 20,
Mt = 0.00025 days (21.6 s), Cy ¼ 1 and CMu ¼ 0:01 for DO3, DO4
and DO5 control and Cy ¼ 1 and CMu ¼ 0:0001 for NO2 control
and overall estimator gain = 0.8. It should be noted that the val-
ues of m and p are not critical and they can slightly be changed
with similar results.

The OCI and EQI trade-off representations of the higher level
affine function (18) are made based on k and DO maximum values.
Results are shown in Fig. 6. Each line corresponds to one of the DO
maximum values considered: 2, 3, 4, and 4.5. And each point of one
line, marked with crosses, is obtained with a different value of k
that varies from �0.6 to 1.4 with increments of 0.1. The results
obtained with default PI controllers are also shown.

DO maximum and k values have been selected for the extreme
cases of lowest EQI without increasing OCI and the lowest OCI
without worsening EQI in comparison with the default PI con-
trollers alone. For the best EQI, k = �0.08 and DO maxi-
mum = 4.5 mg/l, and for the best OCI, k = 1.37 and DO
maximum = 2 mg/l.

Table 3 presents the results of best EQI without increasing OCI
and best OCI without worsening EQI of hierarchical control in com-
parison with the default control strategy. The improvement of EQI
is 5% and the reduction of costs is 3.7%.

In order to explain the EQI improvement, Fig. 7 shows the beha-
viour of DO of the aerated tanks, NH5 and NO5 from day 7 to day
14. This is performed with the default control strategy and the pro-
posed hierarchical control with the tuning parameters that give the
lowest EQI. As it is shown, with hierarchical control, when NH
increases more DO is added for nitrification, reducing NH peaks
(1 and 5). On the contrary, when NH decreases, less DO is required,
producing less NO in comparison with the default control strategy
(2 and 5).

In order to clarify the reason of the cost reduction, Table 4
shows the average values of the parameters that compose the
OCI equation for the case of lowest OCI. As it is seen, the cost reduc-
tion is the result of an AE reduction of 651.75 KWh/d. This fact is
due to the reduction of DO (and hence a reduction of KLa) of the
aerated tanks when NH5 is low. Although there is a PE increase
of 56.62 kWh/d, the saving energy, considering both parameters,
is 595.13 kWh/d.

4.2. Ntot;e violations removal

The control strategy to remove Ntot;e violations also takes into
account not to worsen the percentage of NHe above the limits,
not to increase operational costs and to improve EQI in comparison
with the default control strategy of BSM1. To get this, a trade-off
analysis is made considering the percentage of operating time that
NHe and Ntot;e is over the limits. This is done with hierarchical con-
trol strategy and without adding qEC1 (see Fig. 8). Tuning parame-
ters are chosen for the point where the percentage of operating
time of NHe over the limits is the same as with the default control
strategy (17.26%). The tuning parameters of the higher level affine
function are k = 1.07 and DO maximum = 3, and the percentage of
operating time of Ntot;e violation with these parameters is 6.35%.

Fig. 6. OCI and EQI trade-off representation with higher level affine function for a range of k values from �0.6 to 1.4 with increments of 0.1 (points marked with crosses) and
DO maximum = 4.5 (solid line), 4 (dashed line), 3 (doted line), 2 (dash-doted line).
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The OCI and EQI trade-off representation shown in Fig. 6, in the
points of the tuning parameters mentioned, a difference in OCI of
2.5% is observed regarding the default control strategy, which
may be used for the qEC1 dosage. Dashed line in Fig. 9 shows the
evolution of Ntot;e from day 7 to 14 with the parameters selected
for higher level affine function and without adding qEC1. The con-
stant line is the Ntot;e limit.

With these parameters selected for the higher level, the affine
function (19) is added to manipulate qEC1. The solid lines of Fig. 9
correspond to the evolution of qEC1, Ntot;e and NHe from day 7 to

Table 3
EQI and OCI results with default PI controllers and hierarchical control.

Default PI controllers Hierarchical control
Lowest EQI Lowest OCI % of improvement

EQI (kg pollutans/d) 6115.63 5807.77 6046.51 �5%

OCI 16381.93 16381.51 15779.58 �3.7%
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Fig. 7. DO in the aerated tanks, NO5 and NH5 evolution form day 7 to day 14 with the default PI controllers and with the proposed hierarchical control for the case of lowest
EQI.

Table 4
Average values of the parameters that compose the OCI equation for PI controllers of
the default control strategy and the proposed hierarchical control for the case of
lowest OCI.

Average values of the OCI
parameters

Default PI
controllers

Hierarchical
control

Reduction

AE (KWh/d) 3696.67 3044.92 651.75
PE (KWh/d) 241.72 298.34 �56.62
ME (KWh/d) 240 240 0
EC (Kg/d) 0 0 0
SP (Kg/d) 2440.71 2439.26 1.75
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14. It is observed that Ntot;e violations are removed. As it is shown,
qEC1 dosage varies every day, while Ntot;e peaks are very similar. It
proves that the minimum necessary qEC1 is added. It is due to the
fact that the affine function for Ntot;e violations removal is based
on the Md given by the sliding window. For this reason and with
the correct selection of the tuning parameters of the higher level
affine function by the trade-off analysis shown in Fig. 6, the
removal of Ntot;e violations without increasing OCI is possible. The
choice of the right tuning parameters of the higher level affine
function also makes possible to reduce the time of NHe violation.

Table 5 presents the results for EQI and OCI as well as the per-
centage of operating time out of the limits of Ntot;e and NHe

obtained with the hierarchical control adding qEC1 and compared
to the default control strategy of BSM1. It is shown that by adding
qEC1 and applying a hierarchical control of DO in the three aerated
tanks, the violations of Ntot;e can be avoided. Moreover, the results
of EQI and OCI as well as the operating time percentage of NHe vio-
lations are also improved in comparison with the default PI con-
trollers. This is achieved for the three influents provided by the
BSM1 scenario. During a rain or storm event, Q in increases and

NHin decreases. The Q in increment has the effect of reducing the
hydraulic retention time and the NHin reduction decreases the
growth of XB;A and therefore the nitrification process (5) is wors-
ened. Due to this reason, there is an increase of NH without incre-
menting the generation of NO (2 and 5). Therefore, the resulting
Ntot;e is lower than for dry weather. In the periods after the rain
or storm events, the Q in reduction has an immediate effect on
the hydraulic retention time, but XB;H and XB;A need more time to
recover their normal levels and it causes a small Ntot;e increase.
To compensate this, qEC1 is incremented. Even so, OCI is reduced
for the three influents with the proposed control strategy.
Nonetheless, it has to be said that the reduction of costs would
be greater if the savings obtained by avoiding effluent violations
were considered.

4.3. NHe violations removal

For the higher level affine function (18), any parameters value
inside the tuning region given by the OCI and EQI trade-off
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Fig. 9. qEC1, NHe and Ntot;e evolution form day 7 to day 14 with default PI controllers (dash-doted line), with hierarchical control without adding qEC1 (dashed line) and with
hierarchical control adding qEC1 (solid line).

Table 5
Results with default PI controllers and with control for Ntot;e violations removal for dry, rain and storm influents.

Default PI controllers Control for Ntot;e violations removal % of reduction

Dry influent
EQI (kg pollutants/d) 6115.63 5910.83 3.3
OCI 16381.93 16242.97 0.8
Ntot;e violations (% of operating time) 17.56 0 100
NHe violations (% of operating time) 17.26 16.81 2.6

Rain influent
EQI (kg pollutants/d) 8174.98 8072.5 1.2
OCI 15984.85 15780.83 1.3
Ntot;e violations (% of operating time) 10.86 0 100
NHe violations (% of operating time) 27.08 26.04 3.8

Storm influent
EQI (kg pollutants/d) 7211.48 7022.25 2.6
OCI 17253.75 17243.73 0.06
Ntot;e violations (% of operating time) 15.03 0 100
NHe violations (% of operating time) 26.79 25 6.6
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representation (see Fig. 6) can be selected. In this case the chosen
parameters are: k = 0.1 and DO maximum = 4.5.

For the control of NHe violations removal, when there are peaks
of NHin or NH5, the exponential function (22) is applied. The rest of
the time the linear function (23) is used. A trade-off analysis of OCI
and percentage of operating time of Ntot;e violation is made by vary-
ing the tuning parameters c and e of the Exponential and Linear
Functions, reflecting only the results that avoid the NHe violations.
It is obtained an area where OCI and the operating time of Ntot;e vio-
lation are decreased compared to default PI controllers (see
Fig. 10). The value of d is fixed at 6, and c and e values are chosen
according with the Nash Solution [30]: c = 2.5 � 1014 and
e = 7 � 10�4.

Q rin, Ntot;e and NHe evolutions from day 7 to 14 are shown in
Fig. 11. The results with default PI controllers are also shown. It
can be observed that, with this control strategy, NHe peaks are
reduced under the limits established. This fact is due to the incre-
ment of DO by the hierarchical control (explained in the previous
section) and mainly to the Q rin manipulation. As shown in
Fig. 11, Q rin evolution is very different from the one obtained with
the default control strategy. When a NHin peak is detected, Q rin is
increased to its maximum allowed value (92,280 m3/d) in order
to dilute NH, and when this increase of NH arrives to the fifth tank,
the exponential function rapidly reduces Q rin in order to decrease
also the hydraulic retention time and so to improve the nitrifica-
tion process. As a result, a large decrease of NHe peaks is achieved

Fig. 10. Trade-off representation of OCI and the percentage of operating time of Ntot;e violations for a range of c values from 0.5 to 4 with increments of 0.5 (points marked
with crosses) and e values = 7 (solid line), 6 (dash-doted line), 5.5 (doted line), 5 (dashed line).
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and limits violations are avoided. The correct choice of the tuning
parameters of the higher level affine function results also in
obtaining a decrease in OCI and time of Ntot;e violation.

Table 6 shows the results of EQI, OCI and percentage of time
over the limits of NHe and Ntot;e for the three weather conditions.
It can be seen that with the regulation of Q rin based on NH5 and
NHin applying alternatively an exponential function and a linear
function, and also with the hierarchical control of DO in the three
aerated tanks, it is possible to avoid NHe violations. In addition, an
improvement of 5.5% of EQI and 0.6% of OCI in comparison with
the default control strategy of BSM1 is achieved for dry influent.
However, for rain and storm events an increase of costs is required.
This is due to the fact that, during rain and storm periods, the nitri-
fication process (5) is worsened as explained in the previous sec-
tion. For this reason, extra addition of qEC is needed when there
is a rain or storm event, generating an increase of costs.
Normally, qEC is added to reduce NO. Nevertheless, in rNH Eq. (1)
it is observed that although the elimination of NH largely depends
on nitrification (5), NH is also reduced with the growth of XB;H (3
and 4). Thus adding qEC , besides applying the exponential function,
NHe violation removal is achieved for rain and storm scenarios. It
should be noted that costs saved due to avoid violations are not
reflected in the OCI equation and therefore the cost comparison
is not completely fair.

4.4. Ntot;e and NHe violations removal

Finally, both control strategies for Ntot;e and NHe violations
removal have been tested together. As NHe violations present more

difficulties to be removed than the ones of Ntot;e, especially during
rain and storm events, the tuning for the higher level affine func-
tion determined to avoid NHe violations, explained in Section 4.3,
is also applied in this case. Table 7 shows the results obtained by
applying the control strategies to eliminate both Ntot;e and NHe vio-
lations for the three weather conditions. As it can be observed, the
Ntot;e and NHe violations removal is possible for dry, rain and storm
weather conditions. However, removing the two pollutants simul-
taneously gives rise to an increase of OCI. It is due to the fact that
the reduction of NH peaks by the exponential function is based on
an improvement in the nitrification process, what causes a great
generation of NO (2 and 5) and also a Ntot;e increase. To counteract
it, the dosage of qEC is increased, and qEC in the second tank (qEC;2) is
also added, as shown in Fig. 12. This qEC increase results in the total
elimination of Ntot;e and NHe violations and an EQI reduction, but
also in an OCI increase. However, as explained in the previous sec-
tion, the OCI equation does not take into account the reduction of
costs of avoiding violations and thus, the cost comparison is not
completely fair.

5. Conclusion

In this work different control strategies based on MPC + FF and
affine, linear and exponential functions have been tested in a bio-
logical wastewater treatment process with the aim of avoiding
effluent violations and decreasing EQI and OCI.

The correct variation of the DO set points of the aerated tanks
given by the higher level affine function tuned by a trade-off

Table 6
Results with default PI controllers and with control for NHe violations removal for dry, rain and storm influents.

Default PI controllers Control for NHe violations removal % of reduction

Dry influent
EQI (kg pollutants/d) 6115.63 5760.95 5.8
OCI 16381.93 16323.48 0.4
Ntot;e violations (% of operating time) 17.56 15.62 11.04
NHe violations (% of operating time) 17.26 0 100

Rain influent
EQI (kg pollutants/d) 8174.98 7814.98 4.4
OCI 15984.85 17463.78 �9.2
Ntot;e violations (% of operating time) 10.86 13.84 �27.4
NHe violations (% of operating time) 27.08 0 100

Storm influent
EQI (kg pollutants/d) 7211.48 6903.02 4.3
OCI 17253.75 17582.3 �1.9
Ntot;e violations (% of operating time) 15.03 22.32 �48.5
NHe violations (% of operating time) 26.79 0 100

Table 7
Results with default PI controllers and with control strategies for Ntot;e and NHe violations removal for dry, rain and storm influents.

Default PI controllers Control for NHe violations removal % of reduction

Dry influent
EQI (kg pollutants/d) 6115.63 5624.41 8.03
OCI 16381.93 17494.44 �6.8
Ntot;e violations (% of operating time) 17.56 0 100
NHe violations (% of operating time) 17.26 0 100

Rain influent
EQI (kg pollutants/d) 8174.98 7695.03 5.9
OCI 15984.85 18524.71 �15.9
Ntot;e violations (% of operating time) 10.86 0 100
NHe violations (% of operating time) 27.08 0 100

Storm influent
EQI (kg pollutants/d) 7211.48 6685.15 7.3
OCI 17253.75 19524.67 �13.2
Ntot;e violations (% of operating time) 15.03 0 100
NHe violations (% of operating time) 26.79 0 100
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analysis and the tracking of the DO set points by MPC + FF con-
trollers result in a satisfactory EQI and OCI reduction in comparison
with the default control strategy. The improvement of the denitri-
fication process, by adding qEC1, achieves the complete elimination
of Ntot;e violations. The implemented affine function with a sliding
window allows to dosage the minimum qEC1 necessary for this aim.
Finally, the improvement of the nitrification process by manipulat-
ing Q rin with the combination of a linear function and an exponen-
tial function makes possible the NHe violations removal.

Simulation results show that Ntot;e and NHe violations are
removal for dry, rain and storm influents. In the cases of Ntot;e vio-
lations removal for the three weather conditions and NHe viola-
tions removal for dry weather, a simultaneous reduction of EQI
and OCI is achieved in comparison with the default control strat-
egy. The NHe violations removal for rain and storm influents and
the simultaneous elimination of Ntot;e and NHe makes inevitable
an increase of OCI. In any case, it has to be said that, with the
removal of effluent violations, a reduction of costs is obtained for
not paying fines, which is not considered in OCI.
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Abstract

This paper presents the application of control strategies for wastewater treatment
plants with the goal of effluent limits violations removal as well as achieving a
simultaneous improvement of effluent quality and reduction of operational costs.
The evaluation is carried out with the Benchmark Simulation Model No. 2. The
automatic selection of the suitable control strategy is based on effluent predictions
by Artificial Neural Networks to detect risk of violations. Fuzzy Controllers are
implemented to improve the denitrification or nitrification process based on the
proposed objectives. Model Predictive Control is applied for the improvement of
dissolved oxygen tracking.

Keywords: Wastewater Treatment Process, BSM2 Benchmark, Model Predictive
Control, Fuzzy Control, Artificial Neural Networks, effluent predictions

1. Introduction

The control of biological wastewater treatment plants (WWTPs) is very com-
plex due to the following facts. The biological and biochemical processes that
take place inside the plants are strongly interrelated and involve a great number
of states variables and very different constant values. The flow rate and compo-
sition of the influent is very variable. There are legal requirements that penalize
the violation of the pollution effluent limits (among others, the European Direc-
tive 91/271 Urban wastewater established by the European Union). In addition,
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the improvement of water quality and the reduction of operational costs must be
considered.

For the evaluation of control strategies in WWTPs, Benchmark Simulation
Model No.1 (BSM1) was developed in Alex et al. (2008). This benchmark was ex-
tended in a new version, Benchmark Simulation Model No.2 (BSM2), in (Jepps-
son et al. (2007)) which was updated in Nopens et al. (2010). BSM2 includes the
entire cycle of a WWTP, adding the sludge treatment. In addition, the simula-
tion period is extended to one year assessment, rather than a week, as in BSM1.
In this work, the simulations and evaluations of the control strategies have been
carried out with the BSM2. It provides a default control strategy that applies a
Proportional-Integral (PI) controller. PI and Proportional-Integrative-Derivative
(PID) controllers have attracted the research interest for process control looking
for good robustness/performance trade-off (Vilanova & Visioli (2012)). However
WWTPs exhibit high complex dynamics that demand for more advanced alterna-
tives.

In the literature there are many works that present different methods for con-
trolling WWTPs. Most of the works use the Benchmark Simulation Model No.
1 (BSM1) as working scenario. In some cases they put their focus on avoiding
violations of the effluent limits by applying a direct control of the effluent vari-
ables, mainly ammonium and ammonia nitrogen (SNH) and total nitrogen (SNtot )
(Corriou & Pons (2004); Shen et al. (2008, 2009)). Nevertheless, they need to
fix the set-points of the controllers at lower levels to guarantee their objective,
which implies a great increase of costs. Other works give a trade-off between
operational costs and effluent quality, but they do not tackle with the effluent vi-
olations. They usually deal with the basic control strategy (control of dissolved
oxygen (SO) of the aerated tanks and nitrate nitrogen concentration (SNO) of the
second tank (SNO,2)) (Cristea et al. (2008); Holenda et al. (2008); Belchior et al.
(2011)), or propose hierarchical control structures that regulate the SO set-points
according with some states of the plant, usually SNH and SNO values in any tank
or in the influent (Vrecko et al. (2006); Stare et al. (2007); Ostace et al. (2010,
2011); Vilanova et al. (2011); Santı́n et al. (2014)) or SO in other tanks (Ekman
et al. (2006)).

Other works in the literature use BSM2 as testing plant. Some of them are
focused on the implementation of control strategies in the biological treatment,
as the present work. Specifically, they propose a multi-objective control strat-
egy based on SO control by manipulating oxygen transfer coefficient (KLa) of the
aerated tanks, SNH hierarchical control by manipulating the SO set-points, SNO,2
control by manipulating the internal recycle flow rate (Qa) or total suspended
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solids (TSS) control by manipulating the wastage flow rate (Qw) (Flores-Alsina
et al. (2010); Benedetti et al. (2009); Flores-Alsina et al. (2011); Kim & Yoo
(2014)).These referred works have different goals, but all of them obtain an im-
provement in effluent quality and/or a reduction of costs. However, none of them
aim to avoid the limits violations of the effluent pollutants. It is of significant im-
portance because high concentrations of pollutants in the effluent can damage the
environment and the health of the population. In addition, there are legal require-
ments penalized with fines, which result in an increment of costs.

The goal of the presented work is to avoid SNH in the effluent (SNH,e) or SNtot

in the effluent (SNtot,e) limits violations and, at the same time, to improve effluent
quality and to reduce operational costs. The paper uses BSM2 as working scenario
and some of the control strategies are based on Santı́n et al. (2015b).In addition,
it introduces a novelty method to deal with the effluent violations. On one hand,
the situations of risk of effluent violations are predicted by forecasting the future
output concentrations of pollutants based on the input variables. On the other
hand, specific control strategies are applied in those situations. The proposed
advanced control techniques are based on Model Predictive Control (MPC), Fuzzy
Controller (FC) and Artificial Neural Networks (ANN). The MPC controllers aim
to track the references of SO in the fourth tank (SO,4) and in the fifth tank (SO,5)
and SNO,2. Three FCs are used based on the biological processes. The first one
manipulates the SO references of the MPC controllers based on SNH in the fifth
tank (SNH,5), to improve effluent quality and to reduce operational costs. The
second one manipulates the external carbon flow rate (qEC) to eliminate SNtot,e

violations. Finally, the third one manipulates Qa to eliminate violations of SNH,e.
The proposed control strategies to avoid violations of SNH,e and SNtot,e are applied
only when a risk of violation is predicted. To detect them, ANNs are applied
to predict the SNH,e and SNtot,e concentrations by evaluating the influent at each
sample time.

The paper is organized as follows: In the following section the BSM2 working
scenario is presented. Next, the applied control approaches are described. Then,
the proposed control strategies and the tuning of the controllers are explained.
After, results in terms of effluent quality, costs and percentage of time of effluent
violations are shown and compared to the default control strategy of BSM2 and
with the literature. Finally, the most important conclusions are drawn.
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2. Benchmark Simulation Model No. 2

The simulation and evaluation of the proposed control strategy is carried out
with BSM2 (Jeppsson et al. (2007)) which was updated by Nopens et al. (2010).

The finalized BSM2 layout (Fig. 1) includes BSM1 for the biological treat-
ment of the wastewater and the sludge treatment. A primary clarifier, a thickener
for the sludge wasted from the clarifier of biological treatment, a digester for treat-
ment of the solids wasted from the primary clarifier and the thickened secondary
sludge, as well as a dewatering unit have been also added. The liquids collected
in the thickening and dewatering steps are recycled ahead of the primary settler.

Qin
Qbypass

Qpo QeQpo

Qw

Qa

Primary
clarifier

Activated sludge 
reactors

Secondary
clarifier

Thickener

Anaerobic
digester

Storage
tank Dewatering

Qr

Sludge
Removal

Figure 1: BSM2 plant with notation used for flow rates

The influent dynamics are defined for 609 days by means of a single file,
which takes into account rainfall effect and temperature variations along the year.
Following the simulation protocol, a 200-day period of stabilization in closed-
loop using constant inputs with no noise on the measurements has to be completed
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before using the influent file (609 days). Only data from day 245 to day 609 are
evaluated.

2.1. Activated sludge reactors
The activated sludge reactors consist in five biological reactor tanks connected

in series. Qa from the last tank complete the system. The plant is designed for an
average influent dry weather flow rate of 20648.36 m3/d and an average biodegrad-
able chemical oxygen demand (COD) in the influent of 592.53 mg/l. The total
volume of the bioreactor is 12000 m3, 1500 m3 each anoxic tank and 3000 m3

each aerobic tank. Its hydraulic retention time, based on the average dry weather
flow rate and the total tank volume, is 14 hours. The internal recycle is used to
supply the denitrification step with SNO.

The Activated Sludge Model No. 1 (ASM1) Henze et al. (1987) describes
the biological phenomena that take place in the biological reactors. They define
the conversion rates of the different variables of the biological treatment. The
proposed control strategies in this work are based on the conversion rates of SNH
(rNH) and SNO (rNO). They are shown following:

rNH =−0.08ρ1−0.08ρ2−
(

0.08+
1

0.24

)
ρ3 +ρ6 (1)

rNO =−0.1722ρ2 +4.1667ρ3 (2)

where ρ1, ρ2, ρ3, ρ6 are four of the eight biological processes defined in ASM1.
Specifically, ρ1 is the aerobic growth of heterotrophs, ρ2 is the anoxic growth of
heterotrophs, ρ3 is the aerobic growth of autotrophs and ρ6 is the ammonification
of soluble organic nitrogen. They are defined below:

ρ1 = µHT

(
SS

10+SS

)(
SO

0.2+SO

)
XB,H (3)

where SS is the readily biodegradable substrate, XB,H the active heterotrophic
biomass and µHT is:

µHT = 4 · exp

((
Ln
(4

3

)

5

)
· (Tas−15)

)
(4)

ρ2 = µHT

(
SS

10+SS

)(
0.2

0.2+SO

)(
SNO

0.5+SNO

)
0.8 ·XB,H (5)
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ρ3 = µAT

(
SNH

1+SNH

)(
SO

0.4+SO

)
XB,A (6)

where Tas is the temperature, XB,A is the active autotrophic biomass and µAT is:

µAT = 0.5 · exp

((
Ln
(0.5

0.3

)

5

)
· (Tas−15)

)
(7)

ρ6 = kaT ·SND ·XB,H (8)

where SND is the soluble biodegradable organic nitrogen and kaT is:

kaT = 0.05 · exp

((
Ln
(0.05

0.04

)

5

)
· (Tas−15)

)
(9)

The general equations for mass balancing are as follows:

• For reactor 1:

dZ1

dt
=

1
V1

(Qa ·Za +Qr ·Zr +Qpo ·Zpo + rz,1 ·V1−Q1 ·Z1) (10)

where Z is any concentration of the process, Z1 is Z in the first reactor, Za
is Z in the internal recirculation, Zr is Z in the external recirculation, Zpo
is Z from the primary clarifier, V is the volume, V1 is V in the first reactor,
Qpo is the overflow of the primary clarifier and Q1 is the flow rate in the first
tank and it is equal to the sum of Qa, Qr and Qpo.

• For reactor 2 to 5:

dZk

dt
=

1
Vk

(Qk−1 ·Zk−1 + rz,k ·Vk−Qk ·Zk) (11)

where k is the number of reactor and Qk is equal to Qk−1

2.2. Default control strategies
The original BSM2 definition (Jeppsson et al. (2007)) proposes a PI control

strategy (defCL). The closed-loop control configuration consists of a PI (Vilanova
& Visioli (2012)) that controls the SO,4 at a set-point of 2 mg/l by manipulating
KLa in the third tank (KLa3), KLa in the fourth tank (KLa4) and KLa in the fifth
tank (KLa5) with KLa5 set to the half value of KLa3 and KLa4. qEC in the first
reactor (qEC,1) is added at a constant flow rate of 2 m3/d. Two different Qw values
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are imposed dependent on time of the year: from 0 to 180 days and from 364 to
454 days Qw is set to 300 m3/d; and for the remaining time periods Qw is set to
450 m3/d.

The finalisation of BSM2 plant layout is reported by Nopens et al. (2010), in
which two new control strategies are proposed. The first control strategy (CL1) is
based on modifying the defCL, controlling the SO,4 set-point at 2 mg/l, by manip-
ulating KLa3 and KLa4, and adding another loop to control SO,5 by manipulating
KLa5. PI controllers are applied for both control loops. The second control strat-
egy (CL2) adds a hierarchical control to CL1. Therefore, a PI controller is applied
to control SNH,5 at a set-point of 1.5 mg/l by manipulating SO,5 set-point. In the
case of CL2, qEC,1 is added at a constant value of 1 m3/d.

Fig. 2 shows the three explained control strategies.

Qpo

Qa

 PI

SO,4

Activated sludge reactors

KLa5KLa4KLa3

SO,4
set-point
(2 mg/l)

(a) defCL control strategy

Qpo

Qa

 PI

SO,4

Activated sludge reactors

KLa5KLa4KLa3

SO,4
set-point
(2 mg/l)

 PI SO,5
set-point

SO,5

 PI
SNH,5
set-point
(1.5 mg/l)

SNH,5

CL1

CL2

(b) CL1 and CL2 control strategies

Figure 2: Default control strategies of BSM2
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2.3. Evaluation criteria
The performance assessment is made at two levels. The first level concerns

the control. Basically, this serves as a proof that the proposed control strategy has
been applied properly. It is assessed by Integral of the Squared Error (ISE) and
Integral of the Absolute Error (IAE) criteria.

ISE =

t=609days∫

t=245days

e2
i ·dt (12)

IAE =

t=14days∫

t=7days

|ei| ·dt (13)

where ei is the error in each sample between the set-point and the measured value.
The second level measures the effect of the control strategy on plant perfor-

mance. It includes the percentage of time that the effluent limits are not met, the
Effluent Quality Index (EQI) and the Overall Cost Index (OCI) explained below.
The effluent concentrations of Ntot , total COD (CODt), SNH , TSS and Biological
Oxygen Demand (BOD5) should obey the limits given in Table 1.
SNtot is calculated as the sum of SNO and Kjeldahl nitrogen (SNK j), being this the

Variable Value
SNtot < 18 g N.m−3

CODt < 100 g COD.m−3

SNH < 4 g N.m−3

TSS < 30 g SS.m−3

BOD5 < 10 g BOD.m−3

Table 1: Effluent quality limits

sum of organic nitrogen and SNH . EQI is defined to evaluate the quality of the
effluent. EQI is averaged over a 364 days observation period and it is calculated
weighting the different compounds of the effluent loads.

EQI =
1

1000 ·T

t=609days∫

t=245days

(BT SS ·T SS(t)+BCOD ·COD(t)+BNK j ·SNK j(t)+
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+BNO ·SNO(t)+BBOD5 ·BOD5(t)) ·Q(t) ·dt (14)

where Bi are weighting factors (Table 2) and T is the total time.

Factor BT SS BCOD BNK j BNO BBOD5

Value(g pollution unit g−1) 2 1 30 10 2

Table 2: Bi values

OCI is defined to evaluate the operational cost as:

OCI = AE +PE +3 ·SP+3 ·EC+ME−6 ·METprod +HEnet (15)

where AE is the aeration energy, PE is the pumping energy, SP is the sludge
production to be disposed, EC is the consumption of external carbon source, ME
is the mixing energy, METprod is the methane production in the anaerobic digester
and HEnet is the net heating energy.

AE is calculated according to the following relation:

AE =
8

T ·1.8 ·1000

t=609days∫

t=245days

5

∑
i=1

Vi ·KLai(t) ·dt (16)

where KLai is KLa in tank i.
The pumping energy PE is calculated as:

PE =
1
T

609days∫

245days

(0.004·Q0(t)+0.008·Qa(t)+0.06 ·Qw(t))+0.06·Qto(t))+0.004·Qdu(t))·dt

(17)
where Qto is the overflow rate from the thickener and Qdu is the underflow rate.

SP is calculated from the total solid flow from wastage and the solids accumu-
lated in the system over the period of time considered:

SP=
1
T
·(T SSa(609days)−T SSa(245days)+T SSs(609days)−T SSs(245days)+

+0.75 ·
t=609days∫

t=245days

T SSw ·Qw ·dt) (18)
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where TSSa is the amount of solids in the reactors, TSSs is the amount of solids
in the settler and TSSw is the amount of solids in the wastage.

EC refers to the carbon that could be added to improve denitrification:

EC =
CODEC

T ·1000

t=609days∫

t=245days

(
i=n

∑
i=1

qEC,i

)
·dt (19)

where qEC,i is qEC added to compartment i, CODEC = 400 gCOD.m−3 is the con-
centration of readily biodegradable substrate in the external carbon source.

ME is a function of the compartment volume and is the energy employed to
mix the anoxic tanks to avoid settling (KWh/d):

ME =
24
T

t=609days∫

t=245days

5

∑
i=1

[
0.005 ·Vi i f KLai(t)< 20d−1 otherwise 0

]
·dt (20)

3. Control approaches

3.1. Model Predictive Control
The main characteristics of MPC are the use of an algorithm to find the op-

timal solution and the use of a model of the plant to forecast the future values
of the outputs variables (Maciejowski (2002)). At each control interval, 4t, for
a prediction horizon, p, and a control horizon, m, (m < p), the MPC algorithm
computes the sequences of of future control moves (4u) over the horizon m:

4u(k),4u(k+1), ...,4u(k+m−1) (21)

makes predictions of the outputs variables (ŷ) over a future horizon p (see Fig. 3):

ŷ(k+1|k), ŷ(k+2|k), ..., ŷ(k+ p|k) (22)

and selects the sequence of4u that minimizes a quadratic objective of the form:

J =
p

∑
l=1
||Γy[y(k+ l|k)− r(k+ l)]||2 +

m

∑
l=1
||Γ4u[4u(k+ l−1)]||2 (23)

where the output prediction ŷ(k + l|k) means a predicted controlled output for
the future sampling instant k+ 1, performed at the current instant k, and Γy and

10



Intelligent decision control system for effluent violations removal in wastewater treatment plants

reference

projected outputs

manipulated variable

K-1 K K+1 K+2 K+p

Figure 3: Model Predictive Control performance

Γ4u are the output weight and input rate weight respectively, which penalize the
residual between the future reference and the output variable prediction, and the
control moves.

WWTPs are nonlinear systems, but their operation can be approximated in the
vicinity of a working point by a discrete-time state-space model as:

x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k) (24)

where x(k) is the state vector, and A, B, C and D are the state-space matrices.
Due to the presence of strong disturbances on WWTPs, MPC has difficulties

in keeping the controlled variables at their reference level. To compensate the
disturbances, a feedforward control action is added (MPC+FF), as in Corriou &
Pons (2004), Shen et al. (2008), Shen et al. (2009) and Cristea et al. (2008). MPC
provides feedforward compensation for the measured disturbances as they occur
to minimize their impact on the output. The combination of feedforward plus
feedback control can significantly improve the performance over simple feedback
control whenever there is a major disturbance that can be measured before it af-
fects the process output. The idea of the feedforward control is to act on the
process when the disturbances appear and before they cause deterioration in the
effluent quality.

11



Intelligent decision control system for effluent violations removal in wastewater treatment plants

3.2. Artificial Neural Network
ANNs are inspired by the structure and function of nervous systems, where the

neuron is the fundamental element (Yegnanarayana (2009)). ANNs are composed
of simple elements, called neurons, operating in parallel. ANNs have proved to
be effective for many complex functions, as pattern recognition, system identifi-
cation, classification, speech vision, and control systems (Wang & Adeli (2015);
Przystalka & Moczulski (2015)). ANNs are frequently used for nonlinear system
identification, to model complex relationships between the inputs and the outputs
of a system, as it is the case of WWTPs.

An artificial neuron is a device that generates a single output y from a set of
inputs xi (i = 1 ... n). This artificial neuron consists of the following elements:

• Set of xi inputs with n components

• Set of weights wi j that represent the interaction between the neuron j and
neuron i.

• Propagation rule, a weighted sum of the scalar product of the input vector
and the weight vector: hi(t) = ∑wi j · x j.

• Activation function provides the state of the neuron based on of the previous
state and the propagation rule (i.e. threshold, piecewise linear, sigmoid,
Gaussian): ai(t) = f (ai(t−1),hi(t)) :.

• The output y(t) that depends on the activation state.

The architecture of an ANN is the structure of network connections. The
connections between neurons are directional and the information is transmitted
only in one direction. In general, neurons are usually grouped into structural units
called layers. Within a layer, the neurons are usually of the same type. Figure 4
shows the typical network architecture with three layers: input layer, hidden layer
(processing neurons between the input and the output) and output layer.

ANNs are subjected to a learning process also called training. Typically, a
large data set of inputs and outputs sets is needed to design an ANN, and the
input and output data are divided into a set used for training the ANN and the
rest for testing the results of the ANN. The network learns the connection weights
from available training patterns. Performance is improved by updating iteratively
the weights in the network. When the training is over, the ANN performance is
validated, and depending on the difference between the outcome and the actual
outputs, the ANN has to be trained again or can be implemented.
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Input
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Output
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Figure 4: Structure of Artificial Neural Network layers

The number of input nodes, output nodes and the nodes in the hidden layer
depends upon the problem being studied. If the number of nodes in the hidden
layer is small, the network may not have sufficient degrees of freedom to learn the
process correctly, and if the number is too high, the training will take a long time
and the network may sometimes over-fit the data (Karunanithi et al. (1994)).

3.3. Fuzzy control
The fuzzy control is based on the practical knowledge acquired with the oper-

ation of the systems. This knowledge is determined by words and expressions and
not, as in traditional logic, by numbers and equations. In fact this does not mean
at all that knowledge of the process dynamics is not needed. Good knowledge of
the dynamic behavior of the controlled plant is to be available to the designer. The
architecture of a FC shown in Fig. 5 consists of: a fuzzifier, a fuzzy rule base, an
inference engine and a defuzzifier (Bai et al. (2006); Chen & Pham (2000)).

The typical architecture of a FC, shown in Fig. 5, consists of: a fuzzifier, a
fuzzy rule base, an inference engine and a defuzzifier (Bai et al. (2006); Chen &
Pham (2000)).

As the variables are measured in numbers, a fuzzifier is used to convert the
inputs into suitable linguistic values, granting them a relative membership degree
and not strict. Conversely, a defuzzifier is used to transform de outputs from
linguistic values into measured variables. The configuration of a fuzzifier and a
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Fuzzifier

Fuzzy Rule

Base

Defuzzifier Plant
Interference

Engine xx yµ(x) µ(y)

Figure 5: Architecture of a FC

defuzzifier implies the selection of the type of membership function: triangular,
trapezoidal or Gaussian, the number of membership functions and the definition
of the range of input and output values. The fuzzy rule base is a set of if-then
rules that store the empirical knowledge of the experts about the operation of the
process. The fuzzy logic computes the grade of membership of each i f condition
of a rule and aggregates the partial results of each condition using fuzzy set oper-
ator. The inference engine combines the results of the different rules to determine
the actions to be carried out, and the defuzzifier converts the control actions of
the inference engine into numerical variables, determining the final control ac-
tion that is applied to the plant. There are two different methods to operate these
modules: Mamdani (Mamdani (1976)) and Sugeno (Takagi & Sugeno (1985)).
Mamdani system aggregates the area determined by each rule and the output is
determined by the center of gravity of that area. In a Sugeno system the results of
the i f − then rules are already numbers determined by numerical functions of the
input variables and therefore no deffuzifier is necessary. The output is determined
weighting the results given by each rule with the values given by the i f conditions.

For example, Fig. 6 shows three triangular membership functions (m f 1, m f 2
and m f 3) with a range of input values from 0 to 5. Thus, an input of 1.5 can be
transformed into fuzzy expressions as 0.25 of m f 1 and simultaneously 0.5 of m f 2.
Fig. 7 shows the three membership functions (m f 4, m f 5, m f 6) of the Mamdani
defuzzifier with a range of outpu values from 0 to 5. The i f − then rules imple-
mented are:

if (Input is m f 1) then (Out put is m f 4)
if (Input is m f 2) then (Out put is m f 5)
if (Input is m f 3) then (Out put is m f 6)
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The output is the result of the aggregation of two rules, one that gives 0.25 of
m f 4 and other that gives 0.5 of m f 5.

0.25

0.5

0.5

1

1 1.5 2 2.5 3 3.5 4 4.5

mf1 mf2 mf3

Input variable “Input"

0 5

MinIn MaxIn

Figure 6: Example of membership functions of fuzzifier

0.25

0.5

0.5

1

1 1.5 2 2.5 3 3.5 4 4.5

mf4 mf5 mf6

Output variable “Output"

0 5

MinOut MaxOut

Figure 7: Example of membership functions of defuzzifier

4. Control configurations for the proposed objectives

The control configurations proposed in this work are based on MPC+FF, fuzzy
control and ANN. MPC+FF controllers are used in order to keep the SO,4, SO,5 and
SNO,2 at the given set-point. Fuzzy control is applied, on one side, as higher level
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controller in a hierarchical structure to vary the SO references to be tracked by the
MPC controllers, and, on the other hand, to remove SNtot,e and SNH,e violations
by determining qEC,1 and Qa values. The application of FCs are based on the
biological processes, but without the goal of keeping the controlled variable at
a set-point, either fixed or variable. In this case, the control objectives are: the
improvement of OCI and EQI, and the violations removal of SNtot,e and SNH,e.
ANNs are proposed to generate models to predict the SNtot,e and SNH,e values
based on some inputs variables, in order to detect a risk of violation and thus to
choose the control strategy to be applied (see Fig. 8).

MPC, FCs and ANNs are implemented using Matlab R© for the simulation and
on-line control. Specifically, MPC controllers have been designed with MPC tool-
box, FCs with FIS editor and ANNs with Neural Network Fitting toolbox. The
prediciton models of MPC controllers have been identified with System Identi-
fication toolbox. To solve the quadratic objective of MPC in equation (23), the
Quadratic Dynamic Matrix Control solver (Garcia & Morshedi (1986)) with hard
linear constraints in the inputs provided by Matlab R©MPC toolbox has been used.

4.1. SO,4, SO,5 and SNO,2 tracking
Two MPC+FF controllers are proposed for the aerated zone, to control SO,5

by manipulating KLa5 and to control SO,4 by manipulating KLa3 and KLa4 based
on Nopens et al. (2010). The aim of these MPC+FF controllers is to improve the
set-points tracking regarding the PI controllers of defCL. Also, an MPC+FF is
applied to control SNO,2 at a reference value of 1mg/l by manipulating Qa, based
on the default strategy of BSM1.

Different variables have been considered for the feedforward action in the re-
ferred works, but in our case Qpo has been selected for its better results. Any
change in Qpo affects directly the flow rates of all the tanks, modifying their hy-
draulic retention time. Therefore, it is necessary to adjust the manipulated vari-
ables immediately to compensate the Qpo disturbances.

In this work, unlike the defCL, SO,4 and SO,5 references are not maintained at
a fixed value. Instead of this, a FC varies the set-point, adapting it based on the
conditions of the nitrification process. Due to this reason, it should be noted the
importance of the MPC+FF controllers performance to ensure that the SO,4 and
SO,5 values are as close as possible to the set-point given by the FC.

The variables of the state-space model (24) for the three MPC+FF controllers
are described following: u1(k) is KLa4 and KLa3, u2(k) is Qpo and y1(k) is SO,4
in the MPC+FF for SO,4 control; u1(k) is KLa5, u2(k) is Qpo and y1(k) is SO,5 in
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Figure 8: Proposed control strategies for SNtot,e or SNH,e violations removal with a simultaneously
EQI and OCI reduction

the MPC+FF for SO,5 control; u1(k) is Qa, u2(k) is Qpo and y1(k) is SNO,2 in the
MPC+FF for SNO,2 control.

The tuning parameters are: 4t, m, p, Γ4u, Γy and the overall estimator gain.

17



Intelligent decision control system for effluent violations removal in wastewater treatment plants

• 4t has a significant effect on the effectiveness of the controller. High values
of4t can give less controller performance, mainly when there are important
input disturbances, and low values of 4t can produce changes too quickly
in the actuators and also high energy consumption. Therefore, it is recom-
mended to chose 4t as the lowest one that allows achieving a successful
tracking of the controlled variables, without abrupt changes in the actuators
and without a significant aeration cost increase.

• To decrease Γ4u or to increase Γy give better performance of the controlled
variable, otherwise they could produce strong oscillations in the actuators
that must be avoided.

• m and p should be adjusted in each case depending on the control system.
However, values that are too high can increase the computational time in
excess, and on the other hand, values that are too small may result in oscil-
latory responses or may not work at all.

• At each4t the controller compares the measured values of the outputs with
the expected values. The difference can be due to noise, to measurements
errors and to unmeasured disturbances. With the overall estimator gain pa-
rameter it is determined the percentage of this difference that is attributed
to unmeasured disturbances and the calculation matrix is consequently ad-
justed. Higher overall estimator gains improve the results, but too high
values can make the controller unfeasible.

The identification of the linear predictive models of the MPC+FF controllers was
performed using Matlab R© System Identification toolbox. The data of the output
variables (SO,4, SO,5 and SNO,2) are obtained by making changes to the input vari-
ables (KLa3, KLa4, KLa5 and Qa) with a maximum variation of 10% regarding
its operating point, which is the value of KLa necessary to obtain 2 mg/l of SO,4,
1 mg/l of SO,5 and the value of Qa necessary to obtain 1 mg/l of SNO,2. Specifi-
cally, the working points are 120 day −1, 60 day −1 and 61944 m3/day for KLa3 /
KLa4, KLa5 and Qa respectively. Prediction error method (PEM) was selected to
determine the model with the obtained data. Therefore the following second order
state-space models are obtained:
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• SO,4 control

A =

[
0.9768 0.1215
0.09664 0.2635

]

B =

[
0.002984 −3.673 ·10−6

−0.01796 8.318 ·10−6

]

C =
[

3.682 −0.4793
]

D =
[

0 0
]

(25)

• SO,5 control

A =

[
0.9794 0.1109
0.0976 0.3544

]

B =

[
0.001836 −1.259 ·10−5

−0.01153 7.04e−005

]

C =
[

8.412 −0.1429
]

D =
[

0 0
]

(26)

• SNO,2 control

A =

[
0.8301 0.2828
0.0578 0.8674

]

B =

[
3.264 ·10−6 −1.358 ·10−5

−1.767 ·10−6 −2.87 ·10−6

]

C =
[

5.035 0.2777
]

D =
[

0 0
]

(27)

The selected values to tune the MPC+FF controllers are m = 5, p = 20, 4t =
0.00025 days (21.6 seconds), Γy = 1 and Γ4u = 1·10−5 and overall estimator gain
= 0.8 for SO,4 control; m = 5, p = 20, 4t = 0.00025 days (21.6 seconds), Γy = 1
and Γ4u = 5·10−4 and overall estimator gain = 0.8 for SO,5 control; m = 5, p = 50,
4t = 0.00025 days (21.6 seconds), Γy = 1 and Γ4u = 1·10−5 and overall estimator
gain = 0.9 for SNO,2 control.

4.2. Effluent violations risk detection
For an efficient elimination of effluent violations, a prognostication of the sit-

uations of risk is essential to react as soon as possible and to apply immediately
the necessary preventive actions to the plant; otherwise most violations cannot be
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avoided. This prediction is carried out by ANNs that estimate the future effluent
values, based on information of the entrance of the biological treatment.

Specifically, two ANNs are proposed in this paper. One ANN predicts the
value of SNH,e (SNH,ep) and the other ANN predicts the value of SNtot,e (SNtot,ep).
When a risk of violation of SNtot,e or SNH,e is foreseen, special control strategies
using FCs (explained in the next subsection) are applied to avoid them. When a
risk of SNH;e violation is detected, Qa is manipulated based on SNH,5 to reduce
SNH,e peak, instead of being manipulated to control SNO,2, as it occurs the rest of
the time. Regarding SNtot,e , when a risk of violation is detected (the value of SNtot,ep

exceeds the limit), qEC is manipulated based on this prediction, instead of being
kept at a fixed value as usual.

An accurate prediction of SNH,e and SNtot,e is not possible due to the fact that
ANNs use only influent variables as inputs, while the effluent concentrations also
depend on other variables of the process. Those variables can not be taken into ac-
count because it is necessary to predict the risk of effluent violations with enough
time in advance. Moreover, all data used to predict the risk has to be easily mea-
surable. However, with an adequate choice of the input variables of ANNs, it is
possible to achieve an adequate approximation in order to detect a risk of violation
for applying the suitable control strategy.

Therefore, the inputs of ANNs have been determined according to the mass
balance equations (10 and 11) explained in Section 2.1. The variables used to
perform the prediction for both ANNs are Qpo, Zpo and Tas. The variable Qa has
also been used as an input for the ANN that predicts SNtot,e , but it is not used to
predict SNH,e because it is a manipulated variable in the control strategy applied
to remove SNH,e violations. Specifically, SNH from the primary clarifier (SNH,po)
is the pollutant concentration chosen as a predictor for both ANNs. On one hand,
SNH and SNO are the pollutants with higher influence in SNtot,e , but SNO,po is very
low and it is not taken in account. On the other hand, SNH,po not only affects
largely SNH,e, but also affects the nitrification process, the consequent SNO pro-
duction and therefore the resulting SNtot,e .

Tas is also added as a predictor variable due to its influence in the nitrifica-
tion and denitrification processes (5 and 6). SNH,e and SNtot,e values are inversely
proportional to the Tas values.

Finally, due to the mentioned reasons, the inputs for the ANNs are:

• Inputs of ANN for SNH,e model prediction: Qpo, SNH,po, Qpo · SNH,po, Tas.

• Inputs of ANN for SNtot,e model prediction: Qpo, SNH,po, Qpo · SNH,po, Tas,
Qa.

20



Intelligent decision control system for effluent violations removal in wastewater treatment plants

To train and validate ANNs, a collection of input and output data is necessary.
The variations in the inputs affect the outputs with a variable delay that depends
on the hydraulic retention time. Due to this fact and, in order to simplify the
data collection process, for the ANNs inputs and outputs only the maximum and
minimum values of each day have been selected. Except for Tas, where the daily
average value has been considered. As it is necessary a large number of data to
generate a satisfactory model for an ANN, the data are obtained in a one year sim-
ulation period with the plant working without the control strategies for avoiding
SNtot,e and SNH,e violations. In a real plant, the stored historical data could be used
for this purpose. The number of hidden layers for both ANNs is 10. The structures
are shown in Fig.9.

SNHpo

Qpo

S QNHpo po 

Tas

SNHe

10

Hidden Layer

(a) ANN for SNH,e prediction

SNHpo

Qpo

S QNHpo po 

Tas

SNtot,e

10

Hidden Layer

Qa

(b) ANN for SNtot,e prediction

Figure 9: Structures of the proposed ANNs
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4.3. Manipulation of SO set-points, qEC and Qa

Four FCs have been implemented in the proposed control strategies with three
objectives: to reduce EQI and OCI, to remove SNtot,e violations and to eliminate
SNH,e violations. They are based on the biological processes given by ASM1
explained in Section 2.1.

For the four FCs applied, Mamdani (Mamdani (1976)) is the method selected
to defuzzify. The design of the FCs was based on the observation of the simula-
tions results obtained by operating the plant with the default control of BSM2.

Fuzzy Controller for EQI and OCI reduction
A FC is applied as higher level controller to manipulate SO,4 and SO,5 set-

points based on the SNH,5 with the aim to reduce EQI and OCI. Specifically, it
is based on the nitrification process, improving it or making it worse based on a
trade-off between the values of SNH and SNO. The idea of this control is to im-
prove the nitrification process by increasing SO,4 and SO,5 references (6) when
there is an SNH,5 increase caused by the influent, reducing thus SNH,e peaks. Con-
versely, to reduce the XB,H growth when the SNH,5 level is low, in order to pro-
duce less SNO (6) and (2) and at the same time to reduce operational costs (15).

For the high level FC, three triangular membership functions for input and for
output are used (low, medium and high). The implemented i f − then rules are:

if (SNH,5 is low) then (SO,4 set is low)
if (SNH,5 is medium) then (SO,4 is medium)
if (SNH,5 is high) then (SO,4 is high)

The range of the input values is from 0.2 to 4, and the range for the output
values is from -0.75 to 4.5. SO,5 set-point is equal to the half value of SO,4.

Fuzzy Controllers for SNtot,e violations removal
The idea of this control strategy is to add qEC only when there is a risk of

violation in order to reduce operational costs, unlike the default control strategy,
which keeps qEC,1 at 2 m3/d continuously. Three FCs are proposed. One FC is
used as predictive control, adding qEC,1−2 when a violation is predicted, based
on SNtot,ep value given by the ANN (explained above). This control strategy is
necessary, because acting only when a high SNtot value in the reactors is detected
could not be enough if SNtot is quite high. The second FC adds qEC in the fifth
tank (qEC,5) based on SNH,5 plus SNO in the fifth tank (SNO,5), which are the
contaminants with more influence on SNtot . This control acts when, in spite of the
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predictive control, SNH,5+SNO,5 increases excessively. As the biological process is
designed to treat a maximum flow rate of 60420 m3/d, when the flow rate coming
from the primary treatment surpasses this value, the excess is bypassed directly
to the effluent without being treated. In state of bypass, the third fuzzy control
manipulates qEC,5 based on the bypass flow rate (Qbypass) multiplied by SNH in
the bypass (SNH,bypass), in order to compensate the increase of SNH,e due to the
flow rate that cannot be treated.

The first FC, which is based on the SNtot,ep , has one input and one output, with
three membership functions for each (low, medium and high). The implemented
i f − then rules are:

if (SNtot,ep is low) then (qEC,1−2 is low)
if (SNtot,ep is medium) then (qEC,1−2 is medium)
if (SNtot,ep is high) then (qEC,1−2 is high)

If qEC,1−2 value is less than the maximum value of qEC set in each reactor (5
m3/d), it is only added to the first reactor. If qEC is greater than 5 m3/d, qEC,1 is
equal to 5 m3/d and qEC,2 is equal to the value of qEC,1−2 minus 5. The range of
the input values of the fuzzifier is from 17 to 19.5, and the range for the output
values is from 4 to 15. Therefore, qEC,1−2 is added when SNtot,ep is over 17 mg/l
instead of 18 mg/l which is the limit value, thus a margin of error of 5.5% in the
prediction is established.

Since a situation of risk is detected (SNtot,ep > 17 mg/l), the predict control is
kept running until the three following conditions are met to ensure that the risk
has disappeared: SNtot,ep is lower than 16 mg/l, SNH,5 plus SNO,5 is lower than
13.5 mg/l and the controller has been operating 6 hours at least. The controller
calculates a qEC,1−2 value at each sample time, but the true value applied to the
plant is the maximum of all the previous samples, in order to ensure that the
effluent violation is avoided.

The second FC, which manipulates qEC,5 based on SNH,5+SNO,5, has one in-
put and one output, with three membership functions for each input and output
(low, medium and high). The range of the input values is from 15.3 to 15.9, and
the range of the output values is from -1 to 6. The implemented i f −then rules are:

if (SNH,5+SNO,5 is low) then (qEC,5 is low)
if (SNH,5+SNO,5 is medium) then (qEC,5 is medium)
if (SNH,5+SNO,5 is high) then (qEC,5 is high)
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The third FC, which manipulates qEC,5 based on SNH,5+SNO,5 and Qbypass · SNH,bypass,
has two inputs and one output, with three membership functions for each input
and output (low, medium and high). The range of the SNH,5+SNO,5 input values
is from 12 to 12.5, the range of the Qbypass · SNH,bypass input values is from 0 to
1.4·105 and the range for the output values is from -1·104 to 6·105. The imple-
mented i f − then rules are:

if (SNH,5+SNO,5 is low and Qbypass · SNH,bypass is low) then (qEC,5 is low)
if (SNH,5+SNO,5 is medium and Qbypass · SNH,bypass is medium) then (qEC,5 is
medium)
if (SNH,5+SNO,5 is high and Qbypass · SNH,bypass is high) then (qEC,5 is high)

This controller works while there is bypass. As in the first FC, the qEC,5 value
applied to the plant by the second and third FCs is the maximum of all the previous
calculated values during the situation of risk.

Fuzzy Controller for SNHe violations removal
A FC is proposed to eliminate SNH,e violations by manipulating Qa based on

SNH,5. This control strategy is applied only when a SNH,e violation is predicted
by the ANN, explained in Section 4.2. The rest of the time Qa is manipulated to
control SNO,2.

When a risk of violation is detected (SNH,ep > 4 mg/l), the proposed FC is ap-
plied, first to dilute SNH,po and subsequently to reduce the hydraulic retention time
when the increase of SNH reaches the reactors. Thus, according to the mass bal-
ance equation in the first reactor (10), when SNH,po increases, Qa is incremented
to reduce the rise of SNH,1, and when the increase of SNH arrives to the fifth tank,
Qa is reduced to increase the retention time and so to improve de nitrification
process. When, in spite of this control, SNH,5 reaches the value of 3.5 mg/l, a
complementary action is applied and the SO,4 ans SO,5 set-points are increased by
multiplying its value by 1.5.

The FC has one input and one output, with three membership functions for
each (low, medium and high). The implemented i f − then rules are:

if (SNH,5 is low) then (Qa is high)
if (SNH,5 is medium) then (Qa is medium)
if (SNH,5 is high) then (Qa is low)

The tuning parameters are set looking for a great variation in Qa. Thus, the
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range of the input values is from 3 to 4.1, and the range for the output values is
from -3·104 to 2·105.

This control is interrupted when the risk of violation disappears (SNH,ep <
4 mg/l and SNH,5 < 3.5 mg/l). When it happens, the MPC+FF controller needs
time to recover a successfully SNO,2 control. In order to avoid abrupt changes in
the manipulated variable, variations of Qa are limited during one day after of the
control strategy application.

5. Simulation Results

In this section the control configurations proposed in the previous section are
tested and compared. Ideal sensors have been considered. The simulation protocol
is established in Jeppsson et al. (2007): First, a steady state simulation of 200
days, and next a dynamic simulations of 609 days. Nevertheless, only the data
generated during the final 364 days of the dynamic simulation are used for plant
performance evaluation.

In Table 3 the results obtained with the proposed control strategies are shown.
The chosen indicators to show the results obtained are based on the proposed
objectives: EQI to evaluate the quality of effluent, OCI to evaluate costs, and the
percentages of time of SNH,e and SNtot,e violations.

The results have been compared with the default control strategy provided in
Jeppsson et al. (2007), and with the two control strategies presented in the finaliza-
tion of the plant layout in Nopens et al. (2010). In addition, the results of Kim &
Yoo (2014) and Flores-Alsina et al. (2011) are also shown for illustrative purposes.
However, it should be noted that the comparison in these cases is not completely
fair. In the case of Flores-Alsina et al. (2011), the applied EQI equation increase
the EQI result because it includes the different oxidized nitrogen forms, and the
simulation in Kim & Yoo (2014) is carried out using only 275 days of influent
data, what results in lower EQI and OCI. On the other hand, the comparison with
the referenced works Flores-Alsina et al. (2010); Benedetti et al. (2009); Flores-
Alsina et al. (2013) is not possible. The reason is that Flores-Alsina et al. (2010)
and Benedetti et al. (2009) use an earlier version of BSM2 (instead of the modified
version in Nopens et al. (2010)), and Flores-Alsina et al. (2013) presents EQI and
OCI graphs, but they do not provide numeric values.

As shown in Table 3, the results of the proposed strategies are obtained for
various fixed qEC,1 values. Obviously, when the control strategy for SNtot,e vi-
olations removal is applied, the qEC,1 value is modified. Logically, as qEC,1 is
increased, EQI is reduced but OCI is increased. In comparison with defCL, Kim
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EQI OCI SNtot,e violation SNH,e violation
(% of time) (% of time)

Jeppsson et al. (2007) defCL 5577.97 9447.24 1.18 0.41

Nopens et al. (2010) CL1 5447 9348 N/A 0.29
% 2.35 1.05 N/A 29.27

CL2 5274 8052 N/A 0.23
% 5.45 14.77 N/A 43.9

Kim & Yoo (2014) S1 5249 7154 N/A N/A
(different simulation time) % 5.9 24.27 N/A N/A

S2 5927 8773 N/A N/A
% -62.6 7.14 N/A N/A
S3 5530 8072 N/A N/A
% 0.86 14.56 N/A N/A
S4 5593 7442 N/A N/A
% 0.27 21.22 N/A N/A

Flores-Alsina et al. (2011) A1 6239 13324 2.17 19.44
(different EQI equation) % -11.85 -41.04 -83.9 -4641.46

A2 6172 13323 1.09 20.83
% -10.65 -41.02 7.63 -4980.49
A3 5995 13580 1.35 5.4
% -7.48 -43.74 -14.4 -1217.07

Proposed control strategy for qEC,1=0 5318.95 6289.59 0.046 0.15
SNtot,e violations removal % 4.64 33.42 96.1 63.41

qEC,1=0.5 5197.49 6873.65 0.037 0.14
% 6.82 27.24 96.86 65.85

qEC,1=1 5069.51 7573.34 0.037 0.14
% 9.11 19.83 96.86 65.85

qEC,1=2 4852.49 9196.59 0.028 0.13
% 13 2.65 97.63 68.29

Proposed control strategy for qEC,1=0 5387.81 5942.77 2.39 0
SNH,e violations removal % 3.41 37.09 -102.54 100

qEC,1=0.5 5217.9 6680.66 1.027 0
% 6.45 29.28 12.97 100

qEC,1=1 5112.01 7399.13 0.69 0
% 8.17 21.68 41.52 100

qEC,1=2 4875.14 9066.01 0.25 0
% 12.6 4.03 78.81 100

Table 3: Comparative results of the proposed control strategy for SNHe violations removal and the
proposed control strategy for SNtot,e violations removal

26



Intelligent decision control system for effluent violations removal in wastewater treatment plants

& Yoo (2014) and Flores-Alsina et al. (2011), applying qEC,1 = 0.5, both OCI and
EQI are reduced, while the percentage of time of SNtot,e and SNH,e violations is
lower and sometimes zero. EQI and OCI reduction is mainly achieved with the
hierarchical control structure. Important aspects to be considered in this hierar-
chical control are: first to get a good tracking through the lower level MPC+FF
controllers and, on the other hand, to give a suitable SO set-points by the higher
level FC.

Regarding the tracking of the lower level control, Fig. 10 shows one week evo-
lution of SO,4 control, where the improvement of MPC+FF controller compared to
the PI controllers of defCL can be observed. Table 4 shows the numerical results
of the performance of both controllers, including the percentage of improvement
of MPC+FF for the SO,4 control. The results of SO,5 and SNO,2 control obtained in
this work are also shown. To the best knowledge of the authors, the performance
results of the lower level control in other works of the literature based on BSM2
are not shown. Therefore they can not be compared.

Fixed SO set-points and fixed Qa Hierarchical control and SNO,2 control

SO,4 control SO,5 control SO,4 control SO,5 control SNO,2 control

PI of defCL MPC+FF % MPC+FF MPC+FF MPC+FF MPC+FF

IAE 9.079 0.33 96.36 0.44 0.44 0.37 3.91

ISE 0.4 0.0005 99.87 0.001 0.0049 0.0011 2.76

Table 4: Control performance results with fixed SO,4 and SO,5 set-points (2 mg/l and 1 mg/l
respectively) and fixed Qa (61944 m3/d) and with SNO,2 control at a set-point of 1 mg/l and
varying SO,4 and SO,5 set-points with hierarchical control

One reason of the EQI and OCI reduction obtained with the proposed control
strategies, in comparison with the referred works of Table 3, is the way how the
controllers of the higher level work. The referred papers try always to control
SNH at a fixed reference, but always with a very large error. This is not the case
of the FC of the present work, which modifies the SO set-points based on the
biological processes, but without trying to maintain SNH,5 at a fixed reference as
in Santı́n et al. (2015a). It is also important to note that the referred works only
vary the SO set-point of one aerobic reactor, whereas in the present work SO,4
and SO,5 set-points are modified. Fig. 11 shows one week evolution of the most
important variables when there are SNH,5 peaks. It shows the comparison between
hierarchical control and the control strategy with fixed SO set-points. In the case
of hierarchical control, when SNH,5 increases, SO,4 and SO,5 set-points are also

27



Intelligent decision control system for effluent violations removal in wastewater treatment plants

245 246 247 248 249 250 251 252

1.9

2

2.1

S
O

,4
 (

m
g

/l
)

 

 

245 246 247 248 249 250 251 252

0.9

1

1.1

S
O

,5
 (

m
g

/l
)

 

 

245 246 247 248 249 250 251 252
0

50

100

150

200

250

time (days)

K
L
a

 (
d

a
y−

1
)

 

 

PIs of defCL

Proposed MPC+FF
Set point

Proposed MPC+FF
Set point

K
L
a

3
 and K

L
a

4
 with MPC+FF

K
L
a

5
 with MPC+FF

(a) Control performance with fixed SO set-points and fixed Qa

245 246 247 248 249 250 251 252
0

1

2

S
O

 (
m

g/
l)

 

 

245 246 247 248 249 250 251 252
0.5

1

1.5

2

S
N

O
,2

 (
m

g/
l)

 

 

245 246 247 248 249 250 251 252
0

100

200

K
La 

(d
ay

−1
)

 

 

245 246 247 248 249 250 251 252
0

2

x 10
5

time (days)

Q
a

 

 

S
NO,2

Set point

K
L
a

4
 and K

L
a

3

K
L
a

5

S
O,4

S
O,5

Set points

(b) Control performance with SNO,2 control and varying SO set-points with hierarchical control

Figure 10: Simulation of the first evaluated week of the control performance of the MPC+FF
controllers with fixed SO,4 and SO,5 set-points (2 mg/l and 1 mg/l respectively) and fixed Qa
(61944 m3/d) (a); and with SNO,2 control at a set-point of 1 mg/l and varying SO,4 and SO,5
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increased and SNH,e peaks are reduced, and when SNH,5 decreases, SO,4 and SO,5
are also decremented generating less SNO and reducing operational costs.
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Figure 11: One week simulation comparison between control strategy with fixed SO set-points and
varying SO set-points with hierarchical control

Regarding the effluent violations, Table 4 shows that all SNH,e violations are
removal, while the vast majority of SNtot,e violations are also eliminated. There
are a few special cases where the SNtot,e violation is not possible to be avoided.
Specifically, it happens three times in the simulation year in the cases of qEC,1 is
equal to 0, 0.5 and 1; and one time in the simulation year in the case of qEC,1 is
equal to 2. These violations are due to an increased flow rate just when peaks of
pollutants are in the last reactors, possibly due to a heavy rain. Furthermore, in
two of these three times, the influent flow rate exceeds the capacity of the plant and
is partially led directly to the effluent through the bypass, without being treated.
Therefore, although the FC acts adding qEC,5, there is not enough time in advance
to avoid the violation. Fig. 13 and Fig. 12 show some cases where SNtot,e and SNH,e
violations are eliminated, unlike what happens only with hierarchical control. Fig.
13 (c) shows one case where SNtot,e violation removal is not possible.

As explained in previous sections, the most important novelty of this work is
the application of ANNs to predict the values of SNtot,e and SNH,e. As seen in Fig.
12 and Fig. 13, the prediction made by the ANNs allows to apply the appropriate
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Figure 12: Simulation of two cases of the proposed control strategy for SNH,e violations removal
aplication and its comparison with hierarchical control alone

control strategy enough in advance to prevent violations. In case that a violation of
SNH,e is predicted, Qa is increased by a FC to dilute SNH , and when the increasing
of SNH reaches the fifth reactor, Qa is decreased to reduce the hydraulic retention
time and thus to improve the nitrification process. In the case that a violation of
SNtot,e is predicted, qEC,1−2 is added according to the calculated value by a FC.
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6. Conclusion

In this paper, the application of advanced control techniques in BSM2 has been
presented with the goals of avoiding SNH,e and SNtot,e violations while improving
water quality and reducing operational costs.

Satisfactory SO,4, SO,5 and SNO,2 control performance by the MPC+FF con-
trollers have been achieved. Due to this tracking and the regulation of SO,4 and
SO,5 set-points by a FC, based on biological processes, it has been shown that the
OCI and EQI indexes can be improved compared to defCL and the literature.

In order to apply the appropriate control strategy with sufficient time, ANNs
have been used to obtain effluent predictions. Several FCs are responsible for im-
plementing the control strategy when a risk of SNtot,e or SNH,e violation is detected.
The simulation results have shown the complete elimination of SNH,e violations.
Regarding SNtot,e violations, they have been avoided except one time in a simula-
tion year, in which a large increase of flow rate coincides with a peak of pollutants
in the last reactor and with a situation of bypass.

Acknowledgment

The first author acknowledges the financial support received from Autonomous
University of Barcelona through the PIF Grant.

References

Alex, J., Benedetti, L., Copp, J., Gernaey, K. V., Jeppsson, U., Nopens, I., Pons,
N., Rieger, L., Rosen, C., Steyer, J. P., Vanrolleghem, P., & Winkler, S. (2008).
Benchmark Simulation Model no. 1 (BSM1). Technical Report Department of
Industrial Electrical Engineering and Automation, Lund University.

Bai, Y., Zhuang, H., & Wang, D. (2006). Advanced fuzzy logic technologies in
industrial applications (advances in industrial control). Springer.

Belchior, C. A. C., Araujo, R. A. M., & Landeckb, J. A. C. (2011). Dissolved
oxygen control of the activated sludge wastewater treatment process using sta-
ble adaptive fuzzy control. Computer and Chemical Engineering, 37, 152–162.

Benedetti, L., Baets, B. D., Nopens, I., & Vanrolleghem, P. (2009). Multi-criteria
analysis of wastewater treatment plant design and control scenarios under un-
certainty. Environmental Modelling and Software, 25, 616–621.

31



Intelligent decision control system for effluent violations removal in wastewater treatment plants

Chen, G., & Pham, T. T. (2000). Introduction to fuzzy sets, fuzzy logic, and fuzzy
control systems. CRC Press.

Corriou, J. P., & Pons, M. N. (2004). Model predictive control of wastewater
treatment plants: application to the BSM1 benchmark. Computers and Chemi-
cal Engineering, 32, 2849–2856.

Cristea, V., Pop, C., & Serban, P. (2008). Model Predictive Control of the Wastew-
ater Treatment Plant based on the Benchmark Simulation Model 1 - BSM1.
In Proceedings of the 18th European Symposium on Computer Aided Process
Engineering- ESCAPE.

Ekman, M., Bjrlenius, B., & Andersson, M. (2006). Control of the aeration vol-
ume in an activated sludge process using supervisory control strategies. Water
Research, 40, 1668–1676.

Flores-Alsina, X., Corominas, L., Snip, L., & Vanrolleghem, P. A. (2011). Includ-
ing greenhouse gas emissions during benchmarking of wastewater treatment
plant control strategies. Water Research, 45, 4700–4710.

Flores-Alsina, X., Gallego, A., Feijoo, G., & Rodriguez-Roda, I. (2010).
Multiple-objective evaluation of wastewater treatment plant control alterna-
tives. Journal of Environmental Management, 91, 1193–1201.

Flores-Alsina, X., Saagi, R., Lindblom, E., Thirsing, C., Thornberg, D., Gernaey,
K. V., & Jeppsson, U. (2013). Calibration and validation of a phenomenological
influent pollutant disturbance scenario generator using full-scale data. Water
Research, 51, 172–185.

Garcia, C. E., & Morshedi, A. (1986). Quadratic Programming Solution Of Dy-
namic Matrix Control (QDMC). Chemical Engineering Communications, 46,
73–87.

Henze, M., Grady, C., Gujer, W., Marais, G., & Matsuo, T. (1987). Activated
Sludge Model 1. IAWQ Scientific and Technical Report 1 IAWQ London,UK.

Holenda, B., Domokos, E., Redey, A., & Fazakas, J. (2008). Dissolved oxygen
control of the activated sludge wastewater treatment process using model pre-
dictive control. Computers and Chemicals Engineering, 32, 1270–1278.

32



Intelligent decision control system for effluent violations removal in wastewater treatment plants

Jeppsson, U., Pons, M.-N., Nopens, I., Alex, J., Copp, J., Gernaey, K., Rosen, C.,
Steyer, J.-P., & Vanrolleghem, P. (2007). Benchmark Simulation Model No 2:
general protocol and exploratory case studies. Water Science and Technology,
56, 67–78.

Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1994). Neural net-
works for river flow prediction. Journal of Computing in Civil Engineering, 8,
201–220.

Kim, M., & Yoo, C. (2014). Multi-objective controller for enhancing nutrient
removal and biogas production in wastewater treatment plants. Journal of the
Taiwan Institute of Chemical Engineers, 45, 2537–2548.

Maciejowski, J. (2002). Predictive Control with Constraints. (1st ed.). Harlow,
England: Pearson Education.

Mamdani, E. (1976). Application of fuzzy algorithms for control of simple dy-
namic plant. Proc. IEEE, 121, 1585–1588.

Nopens, I., Benedetti, L., Jeppsson, U., Pons, M.-N., Alex, J., Copp, J. B., Ger-
naey, K. V., Rosen, C., Steyer, J.-P., & Vanrolleghem, P. A. (2010). Benchmark
Simulation Model No 2: finalisation of plant layout and default control strategy.
Water Science and Technology, 62, 1967–1974.

Ostace, G. S., Cristea, V. M., & Agachi, P. S. (2010). Investigation of different
control strategies for the BSM1 waste water treatment plant with reactive sec-
ondary settler model. In 20th European Symposium on Computer Aided Process
Engineering. Ischia, Naples, Italy.

Ostace, G. S., Gal, A., Cristea, V. M., & Agachi, P. S. (2011). Operational costs
reduction for the WWTP by means of substrate to dissolved oxygen correlation,
a simulation study. In Proceedings of the World Congress on Engineering and
Computer Science. San Francisco, USA.

Przystalka, P., & Moczulski, W. (2015). Methodology of neural modelling in
fault detection with the use of chaos engineering. Engineering Applications of
Artificial Intelligence, 41, 25–40.

Santı́n, I., Pedret, C., & Vilanova, R. (2014). Model predictive control and fuzzy
control in a hierarchical structure for wastewater treatment plants. In 18th In-
ternational Conference on System Theory, Control and Computing. Sinaia, Ro-
mania.

33



Intelligent decision control system for effluent violations removal in wastewater treatment plants

Santı́n, I., Pedret, C., & Vilanova, R. (2015a). Applying variable dissolved oxygen
set point in a two level hierarchical control structure to a wastewater treatment
process. Journal of Process Control, 28, 40–55.

Santı́n, I., Pedret, C., & Vilanova, R. (2015b). Fuzzy control and Model Pre-
dictive Control Configurations for Effluent Violations Removal in Wastewater
Treatment Plants. Industrial and Engineering Chemistry Research, 51, 2763–
2775.

Shen, W., Chen, X., & Corriou, J. P. (2008). Application of model predictive
control to the BSM1 benchmark of wastewater treatment process. Computers
and Chemical Engineering, 32, 2849–2856.

Shen, W., Chen, X., Pons, M., & Corriou, J. (2009). Model predictive control
for wastewater treatment process with feedforward compensation. Chemical
Engineering Journal, 155, 161–174.

Stare, A., Vrecko, D., Hvala, N., & Strmcnick, S. (2007). Comparison of con-
trol strategies for nitrogen removal in an activated sludge process in terms of
operating costs: A simulation study. Water Research, 41, 2004–2014.

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of system and its applica-
tions to modeling and control. IEEE Transactions on System, Man, and Cyber-
netics, 15, 116–132.

Vilanova, R., Katebi, R., & Wahab, N. (2011). N-removal on wastewater treatment
plants: A process control approach. Journal of Water Resource and Protection,
3, 1–11.

Vilanova, R., & Visioli, A. (2012). Pid Control in the Third Millennium: Lessons
Learned and New Approaches (Advances in Industrial Control). (1st ed.).
Springer.

Vrecko, D., Hvala, N., Stare, A., Burica, O., Strazar, M., M.Levstek, P.Cerar, &
S.Podbevsek (2006). Improvement of ammonia removal in activated sludge
process with feedforward-feedback aeration controllers. Water Science Tech-
nology, 53, 125–32.

Wang, N., & Adeli, H. (2015). Self-constructing wavelet neural network algo-
rithm for nonlinear control of large structures. Engineering Applications of
Artificial Intelligence, 41, 249–258.

34



Intelligent decision control system for effluent violations removal in wastewater treatment plants

Yegnanarayana, B. (2009). Artificial Neural Networks. PHI Learning.

35



Intelligent decision control system for effluent violations removal in wastewater treatment plants

449 449.5 450 450.5 451 451.5 452 452.5 453 453.5 454
5

10

15

20

S
N

to
t (m

g/
l)

 

 S
N

tot,ep

S
N

tot,e

 with hierarchical control

S
N

tot,e

 adding control for S
N

tot,e

 violations removal

S
N

tot,e

 limit

449 449.5 450 450.5 451 451.5 452 452.5 453 453.5 454
0

2

4

6

q E
C
 (m

3 /d
)

 

 
q

EC,1

q
EC,2

q
EC,5

449 449.5 450 450.5 451 451.5 452 452.5 453 453.5 454

0

5

10

15
x 10

4

Q
by

pa
ss

 (m
3 /d

) ⋅
 

⋅  
S

N
H

by
pa

ss

 (m
g/

l

449 449.5 450 450.5 451 451.5 452 452.5 453 453.5 454

0

0.5

1

time (days)

R
is

k 
de

te
ct

io
n

466 466.5 467 467.5 468 468.5 469

0

0.5

1

time (days)

R
is

k 
de

te
ct

io
n

466 466.5 467 467.5 468 468.5 469
5

10

15

20

S
N

to
t (m

g/
l)

 

 S
N

tot,ep

S
N

tot,e

 with hierarchical control

S
N

tot,e

 adding control for S
N

tot,e

 violations removal

S
N

tot,e

 limit

466 466.5 467 467.5 468 468.5 469
0

2

4

q E
C
 (m

3 /d
)

 

 
q

EC,1

q
EC,2

q
EC,5

466 466.5 467 467.5 468 468.5 469

0

5

10

15
x 10

4

Q
by

pa
ss

 (m
3 /d

) ⋅
 

⋅  
S

N
H

by
pa

ss

 (m
g/

l

558 558.5 559 559.5 560 560.5 561 561.5 562 562.5 563

0

0.5

1

time (days)

R
is

k 
de

te
ct

io
n

558 558.5 559 559.5 560 560.5 561 561.5 562 562.5 563

0

5

10

15
x 10

4

Q
by

pa
ss

 (m
3 /d

) ⋅
 

⋅  
S

N
H

by
pa

ss

 (m
g/

l

558 558.5 559 559.5 560 560.5 561 561.5 562 562.5 563
5

10

15

20

25

S
N

to
t (m

g/
l)

 

 S
N

tot,ep

S
N

tot,e

 with hierarchical control

S
N

tot,e

 adding control for S
N

tot,e

 violations removal

S
N

tot,e

 limit

558 558.5 559 559.5 560 560.5 561 561.5 562 562.5 563
0

2

4

6

q E
C
 (m

3 /d
)

 

 
q

EC,1

q
EC,2

q
EC,3

Figure 13: Simulation of some cases of the proposed control strategy for SNtot,e violations removal
aplication and its comparison with hierarchical control alone
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Abstract—This paper presents a hierarchical two-level control
structure for a biological wastewater treatment plant (WWTP),
with the goal of simultaneously improving the effluent quality and
reducing operational costs. The Benchmark Simulation Model
No.1 is used as working scenario.

The idea is to adjust the dissolved oxygen in the fifth tank
(DO5) according with the present working conditions, instead of
keeping it in a fixed value. Thus is concreted by a hierarchical
structure. MPC with inlet flow rate feedforward control (MPC +
FF) is proposed for the lower level to control nitrate nitrogen
concentration of the second tank (NO2) and DO5. The high
level is the responsible for adjusting the DO setpoint in the fifth
tank (DO5 setpoint) of the controller of the low level, according
with the ammonium and ammonia nitrogen concentration in the
fifth tank (NH5). The controller for the high level is based on
a Fuzzy control. A tuning region has been determined for the
high level controller, in which the results show a simultaneously
improvement of the effluent quality and operational cost.

I. INTRODUCTION

Biological wastewater treatment plants (WWTPs) are com-
plex, nonlinear systems with very different time constants.
The intricate behaviour of the micro-organisms and the large
disturbances in concentrations and flow rates of the influent
makes the control of the WWTP a complex task. In addition,
there are effluent requirements defined by the European Union
(European Directive 91/271 Urban wastewater) with economic
penalties. The purpose of this work is to operate WWTPs
with the aim of improving the effluent quality and reduce
operational costs.

Many control strategies have been proposed in the literature
but their evaluation and comparison, either practical or based
on simulation is difficult. This is due to the variability of
the influent, the complexity of the biological and biochemical
phenomena, the large range of time constants (varying from
a few minutes to several days), and the lack of standard
evaluation criteria (among other things, due to region specific
effluent requirements and cost levels). In order to face this
complexity, the evaluation and comparison of the different
strategies can be based on the Benchmark Simulation Model 1
(BSM1), developed by the International Association on Water
Pollution Research and Control ([1]; [2]). This benchmark
includes a plant layout, influent loads, test procedures and
evaluation criteria.

For the challenging task of controlling WWTPs, Model
Predictive Control (MPC) has demonstrated to be efective:
[3] tried an indirect control, with the dissolved oxygen con-
centration in the fifth tank (DO5) as controlled variable; [4]

tested a direct control, with the quality indices as controlled
variables, with feedforward control of the influent flow rate
to reject disturbances; [5] applied also quality indices as
controlled variables with feedforward control of the influent
ammonium and ammonia nitrogen concentration (NH) and
flow rate, and in addition experimented with hard constraints in
the manipulated variables and soft constraints in the controlled
variables; [6] employed a multivariable control strategy with
two controlled variables, DO5 and nitrite and nitrate nitrogen
concentration of the second tank (NO2), with feedforward
control of nitrite and nitrate nitrogen (NO) and dissolved
oxygen (DO) concentrations in the inlet flow of the first anoxic
reactor, improving the performance of NO2 control, but not of
DO5 control in comparison with default PI controllers.

Other works have experimented in the NH5 control by
manipulating DO5 set point. [7] tested with PI controllers and
[8] with PI controllers and a MPC. Both references worked
with a variation of BSM1.

This paper proposes first an MPC with inlet flow rate feed-
forward (MPC + FF) to control NO2 and DO5 by manipulating
the oxygen transfer coefficient (KLa) in the fifht tank and the
internal recirculation flow rate (Qrin), based upon the work
[6]. However, in this work, a different feedforward control is
proposed and an improvement of DO5 and NO2 performance
control is achieved in comparison with default PI controllers.

Next, a two-level hierarchical control strategy is investi-
gated, in which the lower level is MPC + FF, and the higher
level modifies DO5 set point of the lower level according with
the working conditions of the plant. For the higher level is
tested a Fuzzy controller, obtaining a tuning region by trade-
off representations, in which the results show a simultaneously
improvement of the effluent quality and operational costs for
the three weather conditions: dry, rain and storm.

II. CONTROL STRATEGIES

The original BSM1 definition includes the so called default
control strategy that is commonly used as a reference ([1];
[2]). This strategy uses two PI control loops as it can be
seen in Fig. 1. The first one involves the control of DO5 by
manipulating KLa. The set point for DO5 is 2 mg/l. The second
control loop has to maintain NO2 to a set point of 1 mg/l by
manipulation of Qrin. In this work, the following alternatives
are proposed. First, the two PI controllers are replaced by MPC
+ FF with the objective to get a better DO5 and NO2 set
points tracking. Subsequently, a higher level control is added
to manipulate DO5 set point based on NH concentration in



Fig. 1. Benchmark Simulation Model 1

the fifth tank (NH5). A Fuzzy controller is proposed for this
higher level.

A. MPC + FF configuration

The two PI controllers of the default BSM1 control
strategy are replaced by an MPC with two inputs (DO5 and
NO2) and two outputs (KLa and Qrin). Due to the presence
of strong disturbances on WWTPs, MPC has difficulties in
keeping the controlled variables at their reference level. To
compensate the disturbances, a feedforward control is added,
as in [9], [4], [5] and [6] (see Fig. 2). Different variables have
been considered for the feedforward action in those works,
but in our case the influent flow rate has been selected for
its better results. The MPC algorithm requires a state-space

Fig. 2. BSM1 with MPC + FF instead of default PI controllers

linear model to foresee how the plant outputs, y(k), react to
the possible variations of the control variables, u(k), and to
compute at each �t the control moves. WWTPs are nonlinear
systems, but his operation can be approximated in the vicinity
of a working point by a continuous-time state-space model
as:

x(k+1) = Ax(k)+Bu(k)

y(k) =Cx(k)+Du(k) (1)

where x(k) is the state vector, and A, B, C and D are the state-
space matrices. In concrete terms, u1(k) is Qrin, u2(k) is KLa,
u3(k) is Qin and y1(k) is NO2 and y2(k) is DO5.

The tuning parameters are: �t, m, p, Γ�u, Γy and the
overall estimator gain.

• �t has a significant effect on the effectiveness of the
controller. High �t can give less controller perfor-
mance, mainly when there are important input distur-
bances, and low �t can produce too rapid changes in
the actuators and high energy consumption.

• Lower Γ�u or higher Γy give better performance of the
controlled variable, otherwise could produce strong
oscillations in the actuators that must be avoided.

• m and p should be adjusted depending of system
control in each case. However too high values can
increase the computational time too much, and on the
other hand, too small values may results in oscillatory
responses or may not work at all.

• At each �t the controller compares the real value of
the outputs with the expected values. The difference
can be due to noise, to measurements errors and to
unmeasured disturbances. Regarding the overall esti-
mator gain parameter it is determined the percentage
of this difference that is attributed to unmeasured dis-
turbances and the calculation matrix is consequently
adjusted. Higher overall estimator gains improve the
results, but too high values can make the controller
unfeasible.

B. Two Level Hierarchical Control configuration

In this section a two-level hierarchical control scheme
is proposed. The lower level controller is responsible of
following the set points by manipulating KLa and Qrin. The
higher level controller has to manipulate DO5 set point of the
lower level controller according with NH5 (see Fig. 3). When
NH is higher, more DO is needed for nitrification. On the
contrary, when NH is lower, less DO is required, producing
less NO. Other works have experimented in the NH5 control
by manipulating DO5 set point ([7], [8]). Nevertheless, these
investigations use default PI controllers at the lower level. [7]
tested a higher level PI controller, and [8] experienced with PI
and MPC controllers as higher level (working with a variation
of BSM1, with one anoxic tank and four aerobic tanks). The
proposed configuration of this paper uses the MPC + FF as
lower level control explained before (section II-A). As the
purpose of the high level is to adjust the DO set point of the
low level control depending on NH5 values, and not to keep
NH5 to a set point value, a Fuzzy controller is tested for the
high level, and a range of tuning parameters is proposed.

Fig. 3. BSM1 with MPC + FF and Hierarchical control

III. SIMULATION RESULTS

In this section the control configurations proposed in the
above section are tested and compared. Ideal sensors have been



considerated for the simulations. Results of effluent quality and
operational costs are measured with the Effluent Quality Index
(EQI) and the Overall Cost Index (OCI) ([1]; [2]):

EQI =
1

1000 ·T

t=14days∫

t=7days

(2 ·T SS(t)+COD(t)

+30 ·NKj(t)+10 ·NO(t)+2 ·BOD5(t)) ·Qe(t) ·dt (2)

where T is the total time, T SS is the Total Suspended Solids,
CODt is the Total Chemichal Oxygen Demand, NK j is the
Kjeldahl Nitrogen, BOD5 is the Biological Oxygen Demand,
and Qe(t) is the effluent flow rate.

OCI = AE +PE +5 ·SP+3 ·EC+ME (3)

where AE is the aeration energy, PE is the pumping energy, SP
is the sludge production to be disposed, EC is the consumption
of external carbon source and ME is the mixing energy.

A. MPC + FF configuration

DO5 and NO2 values to get the linear model have been
obtained by varying KLa around ±10% of 131.6514 day−1

and Qrin around ±10% of 16486 m3/day and applying a step
of +50% to Qin.

By using Matlab System Identification Toolbox with
prediction error method, the following third order state-space
model (1) is obtained:

A =

[ 0.8748 0.04463 0.1314
0.04091 0.7331 0.1796
0.2617 −0.1318 0.3007

]

B =

⎡
⎣

7.641 ·10−6 0.004551 −2.749 ·10−5

−2.631 ·10−5 0.006562 −4.551 ·10−6

−9.63 ·10−6 −0.02161 2.447 ·10−5

⎤
⎦

C =

[
0.8812 −0.5948 0.02114
1.187 0.9893 −0.3754

]

D =

[
0 0 0
0 0 0

]

(4)

The selected values to tune the MPC are m=5 and p=20. It
should be noted that these values are not critical and they can
slightly be changed with similar results. �t is 0.00025 days
(21.6 seconds). The followings weights have been used for
DO5 control: Γy = 1, Γ�u = 0.01, and for NO2 control: Γy = 1,
Γ�u = 0.0001. The selected overall estimator gain value is 0.8.
Trial-and-error method was used for the identification of these
parameters.

Fig. 4 shows DO5 and NO2 for the dry weather case
compared with the default PI control. Table I shows that MPC
+ FF reduces ISE of NO2 control more than 99% and ISE of
DO5 control more than 97% in comparison with the default
PI controllers. This control performance improvement results
in a 1.1% of EQI reduction, keeping a similar OCI (increase
of 0.0063%).

This comparison is also done for the rain (see Fig. 5)
and storm influents (see Fig. 6), obtaining similar percentages
of improvement (see Table I): ISE 99.6% (rain) and 99.5%
(storm) for NO2 control and 92.02% (rain) and 90.8% (storm)

for DO5 control, and reducing EQI with MPC + FF 1.03% for
rain and 1.09% for storm. OCI is similar, increasing a 0.037%
for rain and 0.044% for storm; nevertheless this difference is
not significant.
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Fig. 4. Dry influent: Performance control of DO5 and NO2 with default PI
controllers and with MPC + FF

Dry weather
PI MPC + FF %

ISE (NO2 control) 0.47 0.0013 -99.7%
ISE (DO5 control) 0.022 0.00067 -96.9%

EQI (kg pollutants/d) 6115.63 6048.25 -1.1%
OCI 16381.93 16382.97 +0.0063%

Rain weather
PI MPC + FF %

ISE (NO2 control) 0.69392 0.002819 -99.6%
ISE (DO5 control) 0.016362 0.0013026 -92.02%

EQI (kg pollutants/d) 8174.98 8090.29 -1.03%
OCI 15984.85 15990.85 +0.037%

Storm weather
PI MPC + FF %

ISE (NO2 control) 0.69392 0.002819 -99.6%
ISE (DO5 control) 0.016362 0.0013026 -92.02%

EQI (kg pollutants/d) 8174.98 8090.29 -1.03%
OCI 15984.85 15990.85 +0.037%

TABLE I. ISE, EQI AND OCI RESULTS USING DEFAULT PI
CONTROLLERS AND MPC + FF FOR DRY, RAIN AND STORM INFLUENTS

B. Two Level Hierarchical Control configuration

For the hierarchical control structure, OCI and EQI trade-
off representations have been implemented for the three
weather conditions. OCI and EQI results are obtained assessing
the extreme points where the best EQI without increasing
OCI and the best OCI without increasing EQI are achieved
compared to MPC + FF alone.

For the implementation of high level Fuzzy controller
three triangular membership functions for input and for output
are used (low, medium and high). The rules implemented are:

if (NH5 is low) then (DO5 is low)
if (NH5 is medium) then (DO5 is medium)
if (NH5 is high) then (DO5 is high)
Mamdani ([10]) has been the method to defuzzify. The
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Fig. 5. Rain influent: Performance control of DO5 and NO2 with default PI
controllers and with MPC + FF
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Fig. 6. Storm influent: Performance control of DO5 and NO2 with default
PI controllers and with MPC + FF

minimum value for the range of input and output membership
function is 0.1. Maximum values of the input in the
membership functions (maxin) and maximum values of the
output in the membership functions (maxout) have been
determined with OCI and EQI trade-off representations
(Fig. 7, Fig. 8, and Fig. 9). Each one of the lines corresponds
to the results obtained with different maxin (3, 5, 7, 9),
and each of the points marked with crosses are the results
for different maxout (2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5). The
results obtained with MPC + FF alone and with default PI
controllers alone are also shown. Taking into account the
trade-off representations (see Fig. 7, Fig. 8, and Fig. 9),
Table II shows the maxin and maxout values for the extreme
cases of lowest EQI without increasing OCI and lowest OCI
without worsening EQI in comparison with MPC + FF alone
and default PI controllers alone for the three influents. In
order to improve EQI, NH and NO concentrations have to be
reduced because they are the pollutants with largest influence
in the effluent quality. Fig. 10 shows NH5, NO5 and DO5
for dry influent with the tunning parameters where the best
EQI without increasing OCI is obtained. As it is shown in
Fig. 10, by varying DO5 set point with two level hierarchical
control, NH5 peaks and NO5 are reduced. In the case of

Fig. 7. Dry influent: OCI and EQI trade-off with higher level Fuzzy controller
for a range of maxout values (points marked with crosses) and maxin = 3
(dashed line), 5 (solid line), 7 (dash-doted line) and 9 (doted line)

Fig. 8. Rain influent: OCI and EQI trade-off with higher level Fuzzy
controller for a range of maxout values (points marked with crosses) and
maxin = 3 (dashed line), 5 (solid line), 7 (dash-doted line) and 9 (doted line)

Fig. 9. Storm influent: OCI and EQI trade-off with higher level Fuzzy
controller for a range of maxout values (points marked with crosses) and
maxin = 3 (dashed line), 5 (solid line), 7 (dash-doted line) and 9 (doted line)

higher level Fuzzy controller, when NH5 is over the fixed set
point, DO5 reference of the lower level control is increased,
which produces more oxidation of NH5 and consequently
softens his peaks, while NO5 and the aeration costs grow. In
opposition, when the NH5 is under the fixed set point, DO5



dry rain storm
lowest lowest lowest lowest lowest lowest
EQI OCI EQI OCI EQI OCI

maxin 5 9 5 3 5 5
maxout 4.78 2.76 4.1 2.41 4.14 2.5

TABLE II. HIGHER LEVEL FUZZY CONTROLLER TUNING: MAXIN AND
MAXOUT VALUES

reference is decreased, NH5 goes up and NO5 and aeration
costs go down. The final balance from day 7 to day 14 is
a reduction of 2.4% of EQI in comparison with MPC + FF
alone, (Table III).

The same concentrations (NH5, NO5 and DO5) for rain
and storm influents are shown in Fig. 11 and Fig. 12 respec-
tively. Within 7 days of simulation (day 7 to 14), two days
are shown coinciding with a rainfall (Fig. 11) and a storm
(Fig. 12) events. As it is observed, during the rain and storm
events, the differences of NH5 peaks and NO5 for higher
level Fuzzy controller and MPC + FF are lower compared
with dry weather. This has a direct consequence on the EQI
results shown in Table III. As it can be seen, there is also an
improvement by working with higher level Fuzzy controller in
comparison with MPC + FF alone, but with a lower percentage
compared with dry weather. For the rain influent case, EQI is
decreased by 1.1% and for the storm influent case, EQI is
decreased by 1.5%.

In the opposite point of the trade-off representations (see
Fig. 7, Fig. 8, and Fig. 9) (best OCI without worsening effluent
quality), OCI results are compared for the different control
structures. Fig. 13 shows KLa in the fifth tank for the higher
level Fuzzy controller and MPC + FF. The aeration costs
depend directly on the KLa values. Fig. 13 shows that the
values of KLa with higher level Fuzzy controller are most of
the time lower than those obtained with MPC + FF alone,
proving that costs can be reduced without increasing EQI with
a better optimization of KLa. This reduction of KLa results in
a reduction of 1.1% of OCI (Table III).

The results value evolution of KLa is also shown for rain
and storm influents (Fig. 14 and 15 respectively), obtaining
also an OCI reduction when working with the higher level
Fuzzy controller in comparison with MPC + FF alone. In this
case, with less percentage in comparison with dry influent
results (see Table III): For rain influent, higher level Fuzzy
controller reduces OCI by 0.6%, and for storm influent the
reduction is 0.8%.

IV. CONCLUSION

In this paper different control techniques for the BSM1
with the aim of reducing EQI and OCI are evaluated and
compared, with the aim of reducing EQI and OCI.

First, MPC + FF was proposed to control NO2 and DO5
by manipulating Qrin and KLa. The performance control of
NO2 and DO5 was improved by more than 90 % for the
three weather conditions (dry, rain and storm) in comparison
with default PI controllers. This performance enhancement
resulted in a slight improvement in EQI with similar OCI.
MPC + FF was based on [6]. However, in the referred work a
feedforward control of NO and DO concentrations in the inlet
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Fig. 10. Dry influent: Comparison of NH5, NO5 and DO5. MPC + FF
(dashed line) and hierarchical control (solid line).

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
0

2

4

6

8

10

time (days)

N
H

5
 (

m
g
/l
)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

5

10

15

time (days)

N
O

5
 (

m
g
/l
)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
0

1

2

3

4

5

time (days)

D
O

5
 (

m
g
/l
)

Fig. 11. Rain influent: Comparison of NH5, NO5 and DO5. MPC + FF
(dashed line) and hierarchical control (solid line).
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Fig. 12. Storm influent: Comparison of NH5, NO5 and DO5. MPC + FF
(dashed line) and hierarchical control (solid line).

flow of the first anoxic reactor was implemented, improving
the performance of NO2 control, but not of DO5 control in
comparison with default PI controllers.
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Fig. 13. Dry influent: Comparison of KLa in the fifth tank. MPC + FF
(dashed line) and hierarchical control (solid line).
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Fig. 14. Rain influent: Comparison of KLa in the fifth tank. MPC + FF
(dashed line) and hierarchical control (solid line).

Next, a two level hierarchical control strategy was
proposed, where the lower level controls NO2 and DO5 by
manipulating Qrin and KLa respectively, and the higher level
controller regulates the DO5 set point of the lower level
controller according to the NH5. For the lower level, MPC
+ FF was used. For the higher level, a Fuzzy controller
was proposed. It was tested in the three weather conditions:
dry, rain and storm. In each case, a set of different tuning
parameters was determined. As a result, EQI and OCI were
reduce significatively with respect to MPC + FF alone. These
improvements have been greater in dry weather conditions.
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Control strategies for ammonia violations removal in BSM1 for dry,
rain and storm weather conditions

Ignacio Santı́n1, Carles Pedret1 and Ramon Vilanova1

Abstract— This paper presents a proposal with the objective
of eliminating violations of ammonia nitrogen in the efflu-
ent (NHe) of a wastewater treatment process. Furthermore,
improving effluent quality and reducing operating costs and
the percentage of violations of total nitrogen in the effluent
(Ntot,e) are also considered. The evaluation of control strategies
are conducted with the Benchmark Simulation Model No

1 (BSM1). Several controllers have been proposed: Model
Predictive Control (MPC) with inlet flow rate feedforward
compensation (MPCFF), Fuzzy controller and Exponential,
Linear and Affine Functions. MPCFF and Fuzzy controller
are applied in a hierarchical structure to improve effluent
quality, to reduce operational costs and to decrease NHe peaks.
Exponential, Linear and Affine Functions are implemented,
along with the hierarchical control structure, to avoid NHe
violations. The results are presented and compared with the
default control strategy of BSM1 for dry, rain and storm
weahter conditions. They show that the NHe violation removal
is achieved for the three weather conditions. For dry influent
also an improvement of effluent quality and a reduction of
operational cost are acquired. For the rain and storm cases, an
increment of operational cost is required.

I. INTRODUCTION

The control of biological wastewater treatment plants
(WWTPs) is not an easy task due to the complexity of its
biological and chemical processes, the disturbances of the
influent and the legal requirements established for the effluent
(European Directive 91/271 Urban wastewater).

The Benchmark Simulation Model No 1 (BSM1), devel-
oped by the International Association on Water Pollution
Research and Control ([1], [2], [3]) is the selected benchmark
for the evaluation and comparison of the different control
strategies in a wastewater treatment process. This benchmark
defines a plant layout (see Fig. 1), influent loads, test
procedures and evaluation criteria.

Many works can be found in the literature that propose
different methods for controlling WWTPs using BSM1.
Some of them apply a direct control on the effluent variables,
mainly ammonium and ammonia nitrogen (NH) and total
nitrogen (Ntot ) ([4], [5], [6]). The difficulty in this method is
that the fixed values for the effluent variables are constraints
and not set points to be tracked. Other studies deal with
the basic control strategy (control of dissolved oxygen con-
centration (DO) in the fifth tank (DO5) and nitrate nitrogen
concentration (NO) of the second tank (NO2)), but testing
with different controllers such Model Predictive Controller

1Ignacio Santı́n, Carles Pedret and Ramon Vilanova
are with Escola d’Enginyeria, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Barcelona, España
(Ignacio.Santin,Carles.Pedret,Ramon.Vilanova)@uab.cat

(MPC) and Fuzzy controller ([7], [8], [9]). These methods
provide an acceptable balance between quality and costs.
Finally other investigations propose a hierarchical control
that regulates the DO set points, depending on some states
of the plant, usually NH and NO concentration values in any
tank or in the influent ([10], [11], [12], [13]) or DO in other
tanks ([14]). Other works in the literature have presented
proposals for avoiding effluent violations ([4], [5], [6]), with
the quality indices as controlled variables. However, [4] do
not provide costs results, and [5], [6] present a high cost
increase.

This work proposes a control strategy with the goal of
eliminating violations of NH in the effluent (NHe) for dry,
rain and storm weather conditions, while taking into account
effluent quality and operational costs compared to the default
control of BSM1. The control objectives of previous works
are usually based on achieving an improvement in the
effluent quality and / or costs indices. However, it is of
significant importance to avoid violations of pollution in the
effluent, regarding the quality of the water from a legal point
of view, and certainly in terms of cost, as these violations
involve fines to be paid.

The proposed approach is implemented by making use of
Fuzzy logic, MPC controllers and Exponential, Linear and
Affine Functions. MPC and Fuzzy controllers are used to
improve effluent quality and operational costs in a two-level
hierarchical control structure. The lower level is composed
by three MPC with feedforward compensation (MPCFF)
([15]) of the influent flow rate (Qin), to control DO in the
third tank (DO3), DO in the fourth tank (DO4) and DO5.
The higher level is built with a Fuzzy controller that adjusts
the DO set points according to NH in the fifth tank (NH5).
A combination of Exponential and Linear Functions are
proposed, along with the hierarchical structure, for avoiding
NHe violation, by manipulating the internal recirculation
flow rate (Qrin) based on NH5, NH in the influent (NHin)
and Qin. It is worth to say, that the days after the rain and
storm events the plant presents also specific problems due
to the fact that during those events the bacteria population
is strongly reduced. For these cases, an Affine Function is
added to manipulate external carbon flow rate (qEC) in the
fourth and fifth tank (qEC4−5 ).

II. CONTROL STRATEGIES

The BSM1 provides a default control strategy that includes
two Proportional-Integral (PI) control loops: control of the
DO5 at a set point value of 2 g/m3 by manipulating the
oxygen transfer coefficient (KLa) in the fifth tank (KLa5),



and control of the NO2 at a set point value of 1g/m3 by
manipulating Qrin (see Fig. 1).

The main control objective of this work is to eliminate
violations of NHe. However, this objective should not be
fulfilled at any price. For this reason, this work also takes
into account the operational costs and the effluent quality,
comparing them with those obtained applying the default
control strategy of BSM1.

Thus, two control strategies based on two objectives are
applied: on the one hand, to improve effluent quality and to
reduce operational costs and, moreover, the NHe violations
removal. To improve effluent quality and to reduce opera-
tional costs, a two-level hierarchical control structure based
on MPCFF controllers and a Fuzzy controller is proposed.
To eliminate violations of NHe a control strategy based on
Exponential and Linear functions is applied to manipulate
Qrin based on NH5 and NHin, and it is proposed along
with the hierarchical structure. Dry, rain and storm weather
conditions have been taken into account. In the cases of
rain and storm influents, an Affine Function is added to
manipulate qEC4−5 based on NHin mean of two days before
(NHinmean,2). These control strategies are shown in Fig. 2,
and they are described below.

A. Two-level hierarchical control structure

The aim of the two-level hierarchical control structure is
to improve effluent quality and to reduce operational costs
by improving the nitrification process in the aerated zone.
The biological treatment of NH and NO, that takes place
in the reactors, is the result of several processes given by
Activated Sludge Model No 1 (ASM1) ([16]).
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where rNH is the reaction rate of NH, rNO is the reaction
rate of NO, S is the readily biodegradable substrate, ND
the soluble biodegradable organic nitrogen, XB,H the ac-
tive heterotrophic biomass and XB,A the active autotrophic
biomass. The biological parameter values used in the BSM1
correspond approximately to a temperature of 15 oC.

The nitrification process is performed by XB,A whose
growth is obtained by ρ3 (5). As it can be observed, higher
NH and DO produce a greater NH removal. However, in-
creasing the DO value also increases NO (2) and operational
costs (13). For this reason it is important to increase DO
when NH increases to reduce NH peaks, and decrease DO
when NH decreases, producing less NO and reducing costs.

The lower level of this hierarchical control structure is
composed of three MPC controllers to track the DO set
points values of the three aerated tanks, given by the higher
level controller, by manipulating KLa of each of these three
tanks. Thus, each of MPC is composed of one input (DO3 set
point, DO4 set point and DO5 set point respectively) and one
output (KLa in the third tank (KLa3), KLa in the fourth tank
(KLa4) and KLa5 respectively). The higher level controller
regulates the DO set points of the lower level based on NH5.
A Fuzzy controller is proposed for this higher level control.
It must be said that similar results could be obtained with
an Affine Function in the higher level control as it is shown
in [12].

The importance of the controllers performance of lower
level should be noted in order to track the optimal DO value
of the three aerated tanks, given for the higher level Fuzzy
controller. To improve this DO set points tracking is the
reason why MPCFF controllers are used instead of default
PI controllers as it is shown in [12]. Due to the presence
of strong disturbances in WWTPs, MPC has difficulties
in keeping the controlled variables at their reference level.
To compensate the disturbances, a feedforward control is
added, as in [4], [5], [7], [6]. MPC provides options for the
feedforward compensation of the measured disturbances, in
the same way as for the reference signals. Different variables
have been considered for the feedforward action in those
works, but in our case the influent flow rate has been selected



for its better results.

B. Control for NHe violations removal

An Exponential Function and a Linear Function are
proposed with the aim of eliminating NHe violations by
manipulating Qrin based on NH5, Qin and NHin. Also qEC4−5
is added based on NH5, Qin and NHin during the rainfall or
storm event, and based on NHinmean,2 using an Affine Func-
tion for the days after rain or storm. NHe violations removal
is achieved for dry, rain and storm weather conditions.

The behavior of NH can be explained by the mass balance
equation in the first reactor:

dNH1
dt

=
1

V 1
(Qrin ·NHrin +Qrex ·NHrex +Qin ·NHin+

+rNH1 ·V 1−Q1 ·NH1) (7)

Q1 = Qrin +Qrex +Qin

where NHrin is NH in the internal recirculation, NHrex is NH
in the external recirculation, rNH1 is rNH in the first tank and
Q1 is the flow rate in the first tank.

When NHin increases, Qrin is incremented to reduce the
rise of NH in the first tank (NH1), and when the increase of
NH arrives to the fifth tank, Qrin is reduced to increase the
retention time and so to improve the nitrification process.

According to this Qrin regulation, a combination of Expo-
nential Function and Linear Function is applied for this con-
trol strategy. When there are peaks of NHin·Qin (NHin·Qin >
106), the following Exponential Function is applied until
NH5 is decreased (NH5<3.75 mg/l):

Qrin =
a

exp(NH5 ·b) (8)

The rest of the time the following Linear Function is applied:

Qrin =
NHin

NH5
· c (9)

where a, b and c are constants used as tuning parameters.
However, for rain and storm events the reduction of

NHe using this control strategy is not enough to eliminate
violations. This is due to that, during rain and storm periods,
the Qin · NHin relationship is similar to that of dry weather,
but Qin increases and NHin decreases. This NHin reduction
decreases the growth of XB,A and therefore the nitrification
process (5) is worsened. For this reason qEC4−5 is added when
there is a peak of NHin · Qin until NH5 is decreased and
also when there is a rain or storm event. Normally, qEC4−5
is added to reduce NO, nevertheless in rNH equation (1)
it is observed that although the elimination of NH largely
depends on nitrification (5), NH is also reduced with the
growth of XB,H (3, 4). Thus adding qEC4−5 , besides applying
the Exponential Function, NHe violation removal is achieved
for rain and storm weathers.

The days after the rain and storm events present also
problems with NHe limits violations due to the fact that the
XB,A population decreases during those periods and does not
recover its normal level until some days later. During those

days qEC4−5 is added. As XB,A reduction is due to a NHin
decrease, the addition of qEC4−5 is based on NHinmean,2, using
the following Affine Function:

qEC4−5 = NHinmean,2 ·d + e; (10)

where d and e are constants used as tuning parameters.

III. CONTROLLERS TUNING

In this section, the tuning parameters of the controllers ap-
plied for the proposed strategy are indicated. The controllers
are: MPCFF of the low level control of the hierarchical struc-
ture, Fuzzy controller of the higher level of the hierarchical
structure and Exponential, Linear and Affine Functions of
the control for NHe violations removal.

A. MPCFF: Lower level control of the hierarchical struc-
ture.

The MPC algorithm requires a state-space linear model
to foresee how the plant outputs, y(k), react to the possible
variations of the control variables, u(k), and to compute the
control moves at each 4t. WWTPs are nonlinear systems,
but their operation can be approximated in the vicinity of a
working point by a discrete-time state-space model.

DO3, DO4 and DO5 values to get the linear models of
the MPCFF controllers have been obtained by varying KLa3,
KLa4 and KLa5 in a range of ±10% around 264.09 day−1,
209.23 day−1 and 131.65 day−1 respectively and applying a
step of +10% to Qin (measured variable for the feedforward
compensation).

The tuning parameters are: sampling time (4t), control
horizon (m), prediction horizon (p), the output weight (Γy),
the input rate weight (Γ4u), and the overall estimator gain.

By trial error method, the following values have been
selected to tune the MPCFF: m = 5, p = 20, 4t = 0.00025
days (21.6 seconds), Γy = 1 and Γ4u = 0.01 for DO3, DO4
and DO5 control and Γy = 1 and Γ4u = 0.0001 for NO2
control and overall estimator gain = 0.8.

B. Fuzzy Controller: Higher level control of the hierarchical
structure.

The typical architecture of a Fuzzy controller, consists
of: a fuzzifier, a fuzzy rule base, an inference engine and
a defuzzifier ([17]).

The implementation of the Fuzzy controller is based on the
observation of the simulations results obtained by operating
the plant with the default control of BSM1.

The input of the Fuzzy controller is NH5. Three triangular
membership functions are applied to the input to fuzzify. The
following Fuzzy sets have been used: low, medium and high.
The minimum value of the input is 0.8 and the maximum
value of the input is 3.

The output is the DO5 setpoint of the lower level control.
Also three triangular membership functions have been ap-
plied to the output with the same Fuzzy sets: low, medium
and high. The minimum value of the output is 0.1 and the
maximum value of the output is 5.5.



The if-then Fuzzy rules that relate the input and output are:

if (NH5 is low) then (DO set point is low)
if (NH5 is medium) then (DO set point is medium)
if (NH5 is high) then (DO set point is high)

The DO set point of the output is the same for the
three aerated tanks.

The Mamdani method ([18]) has been chosen to defuzzify
the results of the if-then Fuzzy rules and thereby obtain a
single value of the DO5 set point based on the value of NH5.

C. Exponential, Linear and Affine Functions: Control for
NHe violations removal.

For the control of NHe violations removal, when there are
peaks of NHin · Qin until NH5 is decreased, the Exponential
Function (8) is applied. The rest of the time the Linear
Function (9) is used. A trade-off analysis of OCI and
percentage of operating time of Ntot in the effluent (Ntot,e)
violation is made by varying the tuning parameters a and c
of the Exponential and Linear Functions, reflecting only the
results that avoid the NHe violations. It is obtained an area
where OCI and the operating time of Ntot,e violation are
decreased compared to default PI controllers (see Fig. 3).
The value of b is fixed at 6, and a and c values are chosen
according to the Nash Solution ([19]): a = 2.5 · 1014 and c
= 7 · 10−4.

During a rain or storm event, when there is a peak of
NHin · Qin until NH5 is decreased, a dosage of 5 m3/d of
qEC4−5 is added, which is the maximum limit value. For the
days after a rain or storm event, the Affine Function (10) is
applied. The tuning parameters d and e are defined by two
experimental cases, which correspond to the extreme cases
of highest and lowest dosage of qEC4−5 that is needed to
eliminate violations of NHe:

0.25 = 25.3 ·d + e

3 = 15 ·d + e
(11)

Therefore, solving this system of equations, the d and e
tuning parameters are -0.2667 and 7 respectively.

Fig. 3. Trade-off representation of OCI and the percentage of operating
time of Ntot,e violations for a range of a values from 0.5 to 4 with increments
of 0.5 (points marked with crosses) and c values = 7 (solid line), 6 (dash-
dotted line), 5.5 (dotted line), 5 (dashed line)

IV. SIMULATION RESULTS
In this section the control strategy proposed is tested and

compared with the default control strategy of BSM1. Ideal
sensors have been considered for the simulations. Three
influent disturbances, representative of different weather con-
ditions, have been defined in BSM1, [20], [21], and evaluated
in this paper: dry weather, rain weather and storm weather.
Each scenario contains 14 days of influent data with sampling
intervals of 15 minutes. A simulation/experiment protocol is
established to assure that results and performance data are
collected under the same conditions and can be compared.
First, a 150 days period of stabilization in a closed-loop using
constant influent data with no noise on the measurements has
to be completed to drive the system to a steady-state, next
running a dynamic simulation by using the dry weather file
(14 days) and finally testing the desired influent data (dry,
rain or storm). A week is evaluated from day 7 to day 14.
Analyses of time response of the controlled and manipulated
variables are shown. The percentages of operating time of
NHe and Ntot,e limits violations are indicated. Results of
effluent quality and operational costs are measured with the
Effluent Quality Index (EQI) and the Overall Cost Index
(OCI) ([1], [2], [3]):

EQI =
1

1000 ·T

t=14days∫

t=7days

(2 ·T SS(t)+COD(t)

+30 ·NK j(t)+10 ·NO(t)+2 ·BOD5(t)) ·Qe(t) ·dt (12)

where T is the total time, T SS is the Total Suspended Solids,
CODt is the Total Chemichal Oxygen Demand, NK j is the
Kjeldahl Nitrogen, BOD5 is the Biological Oxygen Demand,
and Qe(t) is the effluent flow rate.

OCI = AE +PE +5 ·SP+3 ·EC+ME (13)

where AE is the aeration energy, PE is the pumping energy,
SP is the sludge production to be disposed, EC is the
consumption of external carbon source and ME is the mixing
energy.

Fig. 4, Fig. 5 and Fig. 6 show the time evolution of the
controlled and manipulated variables of the proposed control
strategy and its comparison with the default control strategy
of BSM1.

As it can be observed, for the dry influent (see Fig. 4),
two major changes have been introduced in comparison with
the default control strategy of BSM1. First, DO5 setpoint
is regulated by a Fuzzy controller based on NH5 instead
of being kept at a fixed value of 2 mg/l. This regulation
of the DO setpoint is also applied to the third and fourth
tanks. After, Qrin is manipulated based on NH5, NHin and
Qin to improve the nitrification process, instead of aiming to
control NO2. These changes result in a large reduction of
NHe peaks and the elimination of NHe limits violations. It
is also worth to note the successful DO tracking achieved by
MPCFF controllers.

In Fig. 5 and Fig. 6 the rain and storm events can be
observed, in which there is a Qin increase and a NHin
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Fig. 4. Dry influent: time evolution of the most important variables with
the proposed control strategy and with the default control strategy of BSM1.
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Fig. 5. Rain influent: time evolution of the most important variables with
the proposed control strategy and with the default control strategy of BSM1.

reduction. The time evolution of the product of Qin and NHin
remains the same as with dry influent, but the NHin reduction
does decrease the population of XB,A. Due to this cause,
qEC4−5 is added at its maximum value of 5m3/d when a rain
or storm event and an NH peak are matched. For the days
after rain or storm events, the qEC4−5 value is regulated by
the Affine Function based on NHinmean,2, which determines
the recovery of the XB,A population.

Table I shows the results of EQI, OCI and percentage of
time over the limits of NHe and Ntot,e, with dry, rain and
storm influents.

The results for dry influent show an improvement in all
the specified data compared to the default control strategy
of BSM1. The elimination of NHe violations is completely
achieved with the proposed control strategy and, in addition,
a reduction of EQI and the percentage of time of Ntot,e
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Fig. 6. Storm influent: time evolution of the most important variables with
the proposed control strategy and with the default control strategy of BSM1.

violation is achieved by varying DO based on NH5 with
the hierarchical control structure.

For cases of rain and storm influents, there is an increase
of costs due to the necessary addition of qEC4−5 . OCI and per-
centage of operating time of Ntot,e violation are influenced by
qEC4−5 value and therefore by the intensity and the duration
of the rainfall. For storm influent, the percentage of the cost
increase is lower than in the case of rain influent because
less qEC4−5 is needed for the NHe removal. Furthermore,
when there is rain or storm event, greater nitrification is
performed by Qrin manipulation, therefore increases NO and
also Ntot,e. However, adding qEC4−5 also decreases the value
of NO and thus Ntot,e. Therefore, as in the case of rain
influent the dosage of qEC4−5 is greater, there is a reduction
in the percentage of operating time of Ntot,e violation, unlike
what happens with the storm influent where a lower qEC4−5
addition is necessary.

V. CONCLUSIONS

In this paper, different control strategies based on MPC,
Fuzzy controller and Exponential, Linear and Affine Func-
tions have been used in a WWTP with the aim to eliminate
NHe violations, improving, at the same time, the results of
OCI and EQI in comparison with the default control strategy
of BSM1. They have been tested with dry, rain and storm
weather conditions.

A two-level hierarchical control structure is implemented
to perform an EQI and OCI improvement. The lower level
of this hierarchical structure is composed by three MPCFF
controllers that control DO3, DO4, DO5 by manipulating
KLa3, KLa4, KLa5. In the higher level, a Fuzzy controller is
implemented to manipulate DO set points of the lower level
based on NH5 and NHin.

The removal of NHe violations is carried out by manipulat-
ing Qrin according to NH5, NHin and Qin, by an Exponential
Function when there are peaks of NH and a Linear Function



TABLE I
RESULTS WITH THE PROPOSED CONTROL STRATEGY AND WITH THE

DEFAULT CONTROL STRATEGY OF BSM1

Dry influent
Default PI Control for NHe % of

controllers violations removal improvement

EQI 6115.63 5823.76 -4.77%

(kg pollutants/d)

OCI 16381.93 16374.01 -0.048%

Ntot,e violations 17.56 15.48 -11.85%

(% of operating time)

NHe violations 17.26 0 -100%

(% of operating time)

Rain influent
Default PI Control for NHe % of

controllers violations removal improvement

EQI 8174.98 7799.91 -4.59%

(kg pollutants/d)

OCI 15984.85 17643.79 +10.38%

Ntot,e violations 10.86 8.93 -17.77%

(% of operating time)

NHe violations 27.083 0 -100%

(% of operating time)

Storm influent
Default PI Control for NHe % of

controllers violations removal improvement

EQI 7211.48 6924.15 -3.98%

(kg pollutants/d)

OCI 17253.75 17636.44 +2.2%

Ntot,e violations 15.03 20.23 +34.66%

(% of operating time)

NHe violations 26.79 0 -100%

(% of operating time)

the rest of the time. This control strategy is applied along
with the hierarchical structure. During rain and storm events,
the combination of the Exponential and Linear Functions
is not sufficient to eliminate limit violations of NHe, for
this reason the addition of qEC4−5 to its maximum allowed
value is required to reduce more the NHe peaks and avoid
violations of the effluent limits. The days after rain or storm
periods, the addition of qEC4−5 is also necessary, due to the
fact that the population of XB,A decreases during those events
and some time is needed to its recovery. In this case, an
Affine Function manipulates qEC4−5 based on NHinmean,2.

The results show that with dry weather, it is possible to
eliminate NHe violations without increasing costs, to reduce
simultaneously EQI and the percentage of time of Ntot,e
violation. However, with rain and storm influents, a costs
increase is required in order to remove NHe violations due
to the necessary addition of qEC4−5 .
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Abstract—This paper presents a hierarchical control archi-
tecture for operation of biological wastewater treatment plants.
The main goal of this control architecture is conceived being
that of avoiding violations of effluent pollution limits while, at
the same time, keeping reasonable values for effluent quality
and operational costs. The Benchmark Simulation Model No.1
(BSM1) is used for evaluation. A hierarchical structure regulates
the dissolved oxygen (DO) of the three aerated tanks based on the
ammonium and ammonia nitrogen concentration (NH) in the fifth
tank (NH5). The proposed architecture is a two layer cascaded
control where the lower level deals with the goal of keeping the
process variables to the desired set-points that are determined by
the upper layer. The main contribution of the paper is to operate
the upper layer under the idea of not keeping a fixed set-point but
following simple rules dictated by the process reaction equations.
While an MPC with feedforward compensation is used for the
lower level, an affine function is selected for the higher level. To
eliminate violations of total nitrogen in the effluent (Ntot,e), an
affine function, implemented with a sliding window, adds external
carbon flow rate in the first tank based on nitrate nitrogen in
the fifth tank (NO5) plus NH5. To avoid violations of NH in
the effluent (NHe), a combination of a linear function and an
exponential function that manipulates the internal recirculation
flow rate based on NH5 and NH in the influent is proposed. As
a result, Ntot,e violations and NHe violations are avoided.

I. INTRODUCTION

The growth of cities and industry during the last centuries
brought in parallel an increase in water use for different
human needs such as drinking, cleaning, washing and for the
production of goods, therefore increasing the production of
waterborne wastes. During several years those wastes have
been discharged to the rivers and oceans without any further
consideration, producing large damages in the ecosystems,
affected still today. Also, overexploitation and contamination
of underground water by human activities has resulted in the
scarcity of this resource, with its functionality limited by the
amount of contaminants present in it, with the increase of
the diseases caused by consumption of contaminated water,
affecting the life quality of the human beings themselves.

In Europe, the implementation of the Council Directive
91/271/EEC of 21 May 1991 concerning urban wastewa-
ter treatment, mandates new concepts in management and
operation from the adaptation of existing plants, that lack
robustness and flexibility, to adapt to the new requirements. In
order to solve the main problems of wastewater management,

researchers’ efforts have been focused, during last years,
in objectives such as to improve the water quality by also
minimizing the operational costs in order to achieve sustainable
treatments.

Automatic control has been used as a support to achieve
the proposed objectives. In the literature there are several
papers working on modelling of wastewater treatment plants
(WWTPs) as (Rojas et al., 2011, 2012; Vrecko et al., 2003,
2006). In these works the evaluation and comparison of the
different control strategies is based on Benchmark Simulation
Model No.1 (BSM1), developed by the International Associ-
ation on Water Pollution Research and Control (Alex et al.
(1999, 2008); Copp (2002)). This benchmark defines a plant
layout, influent loads, test procedures and evaluation criteria.
On this respect, WWTP operation is usually conducted on
the basis of the usual cost/performance tradeoff, measured in
terms of the usual Operation Costs Index (OCI) and Effluent
Quality Index (EQI). In fact this is the orientation of the usual
WWTP control and operation studies, where effluent quality
is one of the major concerns (Guerrero et al., 2011; Santin
et al., 2015). Due to implementation of control the general
performance of WWTPs has been improved, but the analysis
from the environmental point of view will not be complete if
the imposed pollutant limits are not taken into account.

There are several works in the literature that propose
different methods for controlling WWTPs. Some of them apply
a direct control of the effluent variables, mainly ammonium
and ammonia nitrogen (NH) and total nitrogen (Ntot ) Corriou
and Pons (2004); Shen et al. (2008, 2009). The difficulty in
this method is that the fixed values for the effluent variables are
constraints and not set points. Other studies deal with the basic
control strategy (Dissolved Oxygen (DO) of the aerated tanks
and Nitrate Nitrogen (NO) of the last anoxic tank), but testing
with different controllers such as Model Predictive Controller
(MPC) and fuzzy controller Cristea et al. (2008); Holenda
et al. (2008); Belchior et al. (2012); Han et al. (2014). These
methods provide an acceptable balance between quality and
costs.

Unlike the referred articles, the present work deals with the
avoidance of Ntot in the effluent (Ntot,e) and NH in the effluent
(NHe) violations but without forgetting about the effluent
quality and operational costs. The proposed control strategies
are based on improving the nitrification process by oxidizing
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the aerated tanks (Liu et al. (2013)) and by manipulating the
internal recirculating flow rate (Qrin) (Zhou et al. (2013)), and
on improving the denitrification process by adding external
carbon flow rate (qEC) (Ruhl et al. (2014)). Other important
innovation is the introduction of a sliding window to dosage
the minimum qEC in the first tank (qEC1) necessary for the Ntot
violations removal in order to minimize operational costs. A
hierarchical control structure is implemented for this purpose.
The lower level is composed by three MPC controllers with
feedforward compensation of the influent flow rate (MPC +
FF) (Ferramosca et al. (2013)), to control NO2, DO in the
third tank (DO3), DO in the fourth tank (DO4) and DO in
the fifth tank (DO5). Afterwards higher level is described
next. One contribution of this work is not just to propose
the controller upper-layer to monitor pollutants limit violation
in the effluent but to determine the rationale of such upper-
layer on the basis of the process reactions, which describe the
biological phenomena that takes place into the reactors.

The higher level adjusts the DO set-points according to NH
in the fifth tank (NH5), and an affine function is proposed for
this level. Next, two controls are added in order to eliminate ef-
fluent violations. NHe and Ntot,e are the pollutants that present
more difficulties for being kept under the established limits.
For reducing peaks of Ntot,e, qEC1 is added based on NO in
the fifth tank (NO5) plus NH5. An Affine function is proposed
for this control, with a sliding window for its implementation.
And for reducing peaks of NHe, Qrin is manipulated based on
NH5, and the control of NO2 is removed. A combination of
linear function and exponential function is proposed for this
control.

II. BENCHMARK SIMULATION MODEL #1

This section provides a brief description of the working
scenario provided by the BSM1. This is a simulation envi-
ronment defining a plant layout, a simulation model, influent
loads, test procedures and evaluation criteria.

A. Plant layout and Influent loads

The schematic representation of the WWTP is presented
in Fig.1. The plant consists in five biological reactor tanks
connected in series, followed by a secondary settler. The first
two tanks have a volume of 1000 m3 each and are anoxic
and perfectly mixed. The rest three tanks have a volume of
1333 m3 each and are aerated. The settler has a total volume
of 6000 m3 and is modeled in ten layers, being the 6th layer,
counting from bottom to top, the feed layer. Two recycle flows,
the first from the last tank and the second from the underflow
of the settler, complete the system. The plant is designed for
an average influent dry-weather flow rate of 18446 m3/d and
an average biodegradable chemical oxygen demand (COD) in
the influent of 300 g/m3. Its hydraulic retention time, based
on the average dry weather flow rate and the total tank and
settler volume (12000 m3), is 14.4 h. The default wastage
flow rate (Qw) is fixed to 385 m3/d that determines, based on
the total amount of biomass present in the system, a biomass
sludge age of about 9 days. The nitrogen removal is achieved
using a denitrification step performed in the anoxic tanks and
a nitrification step carried out in the aerated tanks. The internal
recycle is used to supply the denitrification step with NO.
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Fig. 1. Benchmark Simulation Model 1

BSM1 defines three different influent data Copp (1999);
Vanhooren and Nguyen (1996): dry weather, rain weather and
storm weather. Each scenario contains 14 days of influent data
with sampling intervals of 15 minutes.

B. Test procedures

A simulation protocol is established to assure that results
are got under the same conditions and can be compared. So
first a 150 days period of stabilization in closed-loop using
constant influent data has to be completed to drive the system
to a steady-state, next a simulation with dry weather is run and
finally the desired influent data (dry, rain or storm) is tested.
Only the results of the last seven days are considered.

C. Evaluation criteria

In order to compare the different control strategies, differ-
ent criteria are defined.

The performance assessment is made at two levels. The first
level concerns the control. Basically, this serves as a proof that
the proposed control strategy has been applied properly. It is
assessed by Integral of the Squared Error (ISE) criterion. The
second level provides measures for the effect of the control
strategy on plant performance. It includes Effluent Quality
Index (EQI) and Overall Cost Index (OCI).

The evaluation must include the percentage of time that the
effluent limits are not met and the number of violations. This
last term is defined as the number of crossings of the limit,
from below to above the limit.

1) Effluent limits: The effluent concentrations of Ntot ,
Total COD (CODt ), NH, Total Suspended Solids (TSS) and
Biological Oxygen Demand (BOD5) should obey the limits
given in Table I.

Variable Value
Ntot < 18 g N.m−3

CODt < 100 g COD.m−3

NH < 4 g N.m−3

TSS < 30 g SS.m−3

BOD5 < 10 g BOD.m−3

TABLE I. EFFLUENT QUALITY LIMITS

Ntot is calculated as the sum of NO and Kjeldahl nitrogen
(NKj), being this the sum of organic nitrogen and NH.
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2) Effluent Quality Index: EQI is defined to evaluate the
quality of the effluent. It is related with the fines to be paid
due to the discharge of pollution. EQI is averaged over a 7
days observation period and it is calculated weighting the
different compounds of the effluent loads.

EQI =
1

1000 ·T

t=14days∫
t=7days

(BT SS ·T SS(t)+BCOD ·COD(t)+

BNK j ·NK j(t)+BNO ·NO(t)+BBOD5 ·BOD5(t)) ·Q(t) ·dt (1)

where Bi are weighting factors (Table II) and T is the total
time.

Factor BT SS BCOD BNK j BNO BBOD5
Value (g pollution unit g−1) 2 1 30 10 2

TABLE II. Bi VALUES

3) Overall Cost Index: OCI is defined as:

OCI = AE +PE +5 ·SP+3 ·EC+ME (2)

where AE is the aeration energy, PE is the pumping energy, SP
is the sludge production to be disposed, EC is the consumption
of external carbon source and ME is the mixing energy.

AE is calculated according to the following relation:

AE =
Ssat

o

T ·1.8 ·1000

t=14days∫
t=7days

5

∑
i=1

Vi ·KLai(t) ·dt (3)

where Vi is the volume of the tank i and KLai is the oxygen
transfer coefficient in tank i.

PE is calculated as:

PE =
1
T

14days∫
7days

(0.004 ·Qin(t)+0.008 ·Qrin(t)+0.05 ·Qw(t)) ·dt

(4)

where Qin is the influent flow rate. SP is calculated
from the TSS in the flow wastage (TSSw) and the solids
accumulated in the system:

SP =
1
T
· (T SSa(14days)+T SSs(14days)−T SSa(7days)

−T SSs(7days)+

t=14days∫
t=7days

T SSw ·Qw ·dt) (5)

where TSSa is the amount of solids in the reactors and TSSs
is the amount of solids in the settler.

EC refers to the carbon that could be added to improve
denitrification.

EC =
CODEC

T ·1000

t=14days∫
t=7days

(
i=n

∑
i=1

qEC,i

)
·dt (6)

where qEC,i is qEC added to compartment i, CODEC = 400
gCOD.m−3 is the concentration of readily biodegradable sub-
strate in the external carbon source.

ME is the energy employed to mix the anoxic tanks to
avoid settling and it is a function of the compartment volume:

ME =
24
T

t=14days∫
t=7days

5

∑
i=1

[
0.005 ·Vi i f KLai(t)< 20d−1 otherwise 0

]
·dt

(7)

III. PROCESS MODEL BASED CONTROL ARCHITECTURE

As mentioned in the introduction, one of the main concerns
of wastewater plant operation is that of dealing with effluent
limit violations. This is the goal kept in mind when conceiving
the control architecture that will be used. One of the constants
that are observed in the WWTP control literature is that
of presenting alternative control loops (being operated by,
probably, different control techniques such as PI/PID, MPC,
Fuzzy, etc) with the main goal of keeping some effluent
concentrations of interest at some prescribed values. Also with
some concentrations in, for example, the second (anoxic) or
fifth (aerated) reactor tanks. It should be noted here that the
constraint imposed by the effluent limits is a kind of inequality
constraint. What it matters is not to croose over the specified
value and not to keep the effluent concentrations at fixed
values. On the other hand, by attempting to keep the concentra-
tions at some prescribed levels there is the chance to make the
system operate in order to produce higher effluent levels than
it will do because of the influent concentration levels. This is
one of the more severe drawbacks of maintaining, for example,
ammonia in the last aerated tank at a concentration of 4 g
N.m−3. If the actual levels are, for example, around 3 g N.m−3,
the plant operation will try to push the ammonia to higher
levels. Therefore generating higher effluent contamination.

In this work, we propose to use a predictive control for the
control at the lower level: to control the DO at the three aerated
tanks and the NO2. A higher level is now defined in order
to determine the appropriate set-points for these base-layer
loops with the purpose of avoiding effluent limits violation.
The predictive control layer will not be described here as it is
along the lines of Santı́n et al. (2015) and Santı́n et al. (2014).
Whereas in Santı́n et al. (2015) a Fuzzy control approach is
proposed for dealing with effluent limit violations, here we
analyze the main process reactions described by the process
model and it is on that basis that we define and configure the
upper control layer. With the goal of avoiding Ntot,e violations,
an affine function that manipulates qEC1 based on NO5 plus
NH5 is added. A sliding window is also implemented with the
goal of adding the minimum qEC necessary to avoid Ntot,e
violations. In order to avoid the limit violations of NHe,
a controller that regulates Qrin based on NH5 and NHin is
proposed, and NO2 control is eliminated. For this control, a
combination of an affine function and a exponential function
is used. These control strategies for removing violations of
the effluent pollution are implemented keeping the hierarchical
control structure, because the goal includes also the reduction
of EQI and OCI.
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A. Process model motivation

The biological phenomena of the reactors are simulated
by the Activated Sludge Model no. 1 (ASM1) Henze et al.
(1987) that considers eight different biological processes. The
vertical transfers between layers in the settler are simulated by
the double-exponential settling velocity model Tackacs et al.
(1991). None biological reaction is considered in the settler.
The two models are internationally accepted and include
thirteen state variables. The proposed control strategies in this
work are based on the conversion rates of NH (rNH ) and NO
(rNO). The referred processes are as follows:

rNH =−0.08ρ1−0.08ρ2−
(

0.08+
1

0.24

)
ρ3 +ρ6 (8)

rNO =−0.1722ρ2 +4.1667ρ3 (9)

where ρ1, ρ2, ρ3, ρ6 are four of the eight biological processes
defined in ASM1. Specifically, ρ1 is the aerobic growth of
heterotrophs, ρ2 is the anoxic growth of heterotrophs, ρ3 is
the aerobic growth of autotrophs and ρ6 is the ammonification
of soluble organic nitrogen. They are defined below:

ρ1 = 4
(

S
10+S

)(
DO

0.2+DO

)
XB,H (10)

ρ2 = 4
(

S
10+S

)(
0.2

0.2+DO

)(
NO

0.5+NO

)
0.8 ·XB,H (11)

ρ3 = 0.5
(

NH
1+NH

)(
DO

0.4+DO

)
XB,A (12)

ρ6 = 0.05 ·ND ·XB,H (13)

where S is the readily biodegradable substrate, ND the soluble
biodegradable organic nitrogen, XB,H the active heterotrophic
biomass and XB,A the active autotrophic biomass. The biolog-
ical parameter values used in the BSM1 correspond approxi-
mately to a temperature of 15 oC.

The values of NH and NO depend largely on their
reaction rate, which is the result of several processes
(8),(9),(10),(11),(12),(13) given by ASM1, which describes the
biological phenomena that take place in the reactors. When NH
increases, more DO is needed for nitrification.

B. Ntot,e violations removal

For removing Ntot,e violations, qEC1 is manipulated based
on NH5 plus NO5. The variables with the highest influence
in Ntot are NO and NH. Further efforts to reduce more NH
increasing nitrification results also in an increment of NO
and consequently Ntot,e is not decreased. According to the
biological processes of ASM1 (13, 15), an increase of substrate
produces a growth of XB,H and therefore the denitrification
process and the consequently reduction of NO are improved.
Therefore, Ntot,e is reduced with the dosage of EC in the first
tank (EC1). However dosing EC1 results in an increase of
operational costs (2), so it is important to dosage EC1 only
when a violation of Ntot,e could take place. Consequently, the
control strategy is based on the manipulation of qEC1 according
to NH5 plus NO5.

Due the large disturbances, it is not possible to maintain
NH5 at a fixed reference value by manipulating DO set points
of the lower level controllers. For this reason, the controller
proposed for the higher level is a simple affine function,
that varies DO3, DO4 and DO5 set points based on NH5,
but without keeping NH5 at a reference level. The following
affine function is proposed:

DO5set point(t) = NH5(t)− k (14)

where k is a constant that is used as a tuning parameter. Also
a constraint for the maximum DO3, DO4 and DO5 values has
been considered. The values of k and DO3, DO4 and DO5
maximum values are determined by an OCI and EQI trade-off
analysis.

On the other hand, NH and NO are the pollutants present
in Ntot that contribute with more weight. For this reason, in
order to eliminate violations of Ntot,e, qEC1 is added based on
NO5 plus NH5 (see Fig. 2). The following affine function is
proposed for this control:
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Fig. 2. BSM1 with a control strategy for Ntot,e removal

qEC1 = ((NH5+NO5)−a) ·b (15)

where a and b are used as tuning parameters whose values
are set depending on the maximum value of Ntot,e given by
a sliding window, which is shift at each sample time and
presents only the values measured the day one week before.
Specifically, following are shown the chosen equations for a
and b values:

b = Md ·2−35.5 (16)

a = 34.25−Md (17)

where Md is the maximum value of the day, one week before.
This approach tries to dosage the minimum of qEC1 to remove
Ntot,e violations. The maximum qEC1 value was limited to
5m3/d.

C. NHe violations removal

For removing NHe violations, Qrin is manipulated based
on NH5 and NH in the influent (NHin). The mass balance that
matters in this case reads as:
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dNH1
dt

=
1

V 1
(Qrin ·NHrin +Qrex ·NHrex +Qin ·NHin +

+ rNH1 ·V 1−Q1 ·NH1) (18)
Q1 = Qrin +Qrex +Qin

where NHrin is NH in the internal recirculation, NHrex is NH in
the external recirculation, rNH1 is rNH in the first tank and Q1
is the flow rate in the first tank. According to the mass balance
equation in the first reactor (18), when NHin increases, Qrin is
incremented to reduce the rise of NH in the first tank (NH1),
and when the increase of NH arrives to the fifth tank, Qrin is
reduced to increase the retention time and so to improve de
nitrification process.

With the goal of removing NH violations, Qrin is manip-
ulated based on NH5 and NHin. Therefore, the MPC of the
lower level that controls DO5 and NO2 by manipulating KLa
in the fifth tank (KLa5) and Qrin is replaced by a MPC with
one input (DO5) and one output (KLa5) (see Fig. 3).
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Fig. 3. BSM1 with a control strategy for NHe removal

The NH5 controller is designed to act in two different ways,
depending on NH peaks. When the peaks are present in the
influent, it is convenient to increase Qrin for diluting them, and
when the peaks are already in the aerated tanks, it is convenient
to reduce Qrin for increasing the retention time.

A combination of exponential function and linear function
is proposed for this control strategy. When there are peaks of
NHin or NH5, the following exponential function is applied:

Qrin =
c

exp(NH5 ·d)
(19)

Otherwise the following linear function is applied:

Qrin =
NHin

NH5
· e (20)

where c, d and e are used as tuning parameters, whose values
are determined by a trade-off analysis of OCI and percentage
of operating time of Ntot,e violation, reflecting only the results
that avoid NHe violations.

IV. SIMULATION RESULTS

In this section the control configurations proposed in the
above section are tested and compared. Ideal sensors have been
considered for the simulations. Dry influent has been applied
to evaluate the proposed control strategies.

A. Ntot,e violations removal

The control strategy to remove Ntot,e violations also takes
into account not to worsen the percentage of NHe above the
limits, not to increase operational costs and to improve EQI in
comparison with the default control strategy of BSM1. To get
this, a trade-off analysis has also been conducted considering
the percentage of operating time that NHe and Ntot,e is over
the limits. This is done with hierarchical control strategy and
without adding qEC1. Tuning parameters are chosen for the
point where the percentage of operating time of NHe over the
limits is the same as with the default control strategy (17.26%).
The tuning parameters of the higher level affine function are
k = 1.07 and DO maximum = 3, and the percentage of
operating time of Ntot,e violation with these parameters is
6.35%. With these parameters selected for the higher level,
the affine function (15) is added to manipulate qEC1. The
solid lines of Fig. 4 correspond to the evolution of qEC1,
Ntot,e and NHe from day 7 to 14. It is observed that Ntot,e
violations are removed. As it is shown, qEC1 dosage varies
every day, while Ntot,e peaks are very similar. It proves that
the minimum necessary qEC1 is added. It is due to the fact that
the affine function for Ntot,e violations removal is based on the
Md given by the sliding window. For this reason and with the
correct selection of the tuning parameters of the higher level
affine function by the trade-off analysis shown in Fig. 7, the
removal of Ntot,e violations without increasing OCI is possible.
The choice of the right tuning parameters of the higher level
affine function also makes possible to reduce the time of NHe
violation.
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Fig. 4. qEC1, NHe and Ntot,e evolution form day 7 to day 14 with default
PI controllers (dash-doted line), with hierarchical control without adding qEC1
(dashed line) and with hierarchical control adding qEC1 (solid line)

Table III presents the results for EQI and OCI as well as
the percentage of operating time out of the limits of Ntot,e
and NHe obtained with the hierarchical control adding qEC1
and compared to the default control strategy of BSM1. It is
shown that by adding qEC1 and applying a hierarchical control
of DO in the three aerated tanks, the violations of Ntot,e can be
avoided. Moreover, the results of EQI and OCI as well as the
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operating time percentage of NHe violations are also improved
in comparison with the default PI controllers. This is achieved
for the three influents provided by the BSM1 scenario. During
a rain or storm event, Qin increases and NHin decreases. The
Qin increment has the effect of reducing the hydraulic retention
time and the NHin reduction decreases the growth of XB,A and
therefore the nitrification process (12) is worsened. Due to this
this reason, there is an increase of NH without incrementing
the generation of NO (9 and 12). Therefore, the resulting Ntot,e
is lower than for dry weather. In the periods after the rain or
storm events, the Qin reduction has an immediate effect on
the hydraulic retention time, but XB,H and XB,A need more
time to recover their normal levels and it causes a small Ntot,e
increase. To compensate this, qEC1 is incremented. Even so,
OCI is reduced for the three influents with the proposed control
strategy. Nonetheless, it has to be said that that the reduction
of costs would be greater if the savings obtained by avoiding
effluent violations were considered.

Dry influent
Default PI Control for NHe % of

controllers violations removal reduction

EQI 6115.63 5910.83 3.3%

(kg pollutants/d)

OCI 16381.93 16242.97 0.8%

Ntot,e violations 17.56 0 100%

(% of operating time)

NHe violations 17.26 16.81 2.6%

(% of operating time)

TABLE III. RESULTS WITH DEFAULT PI CONTROLLERS AND WITH
CONTROL FOR Ntot,e VIOLATIONS REMOVAL FOR DRY INFLUENT

B. NHe violations removal

For the higher level affine function (14), in this case the
chosen parameters are: k = 0.1 and DO maximum = 4.5. For
the control of NHe violations removal, when there are peaks of
NHin or NH5, the exponential function (19) is applied. The rest
of the time the linear function (20) is used. A trade-off analysis
of OCI and percentage of operating time of Ntot,e violation is
also conducted here by varying the tuning parameters c and
e of the Exponential and Linear Functions, reflecting only
the results that avoid the NHe violations. The value of d
is fixed at 6, and c and e values are chosen as: c = 2.5 ·
1014 and e = 7 · 10−4. Qrin, Ntot,e and NHe evolutions from
day 7 to 14 are shown in Fig. 5. The results with default
PI controllers are also shown. It can be observed that, with
this control strategy, NHe peaks are reduced under the limits
established. This fact is due to the increment of DO by the
hierarchical control (explained in the previous section) and
mainly to the Qrin manipulation. As shown in Fig. 10, Qrin
evolution is very different from the one obtained with the
default control strategy. When a NHin peak is detected, Qrin
is increased to its maximum allowed value (92280 m3/d) in
order to dilute NH, and when this increase of NH arrives to
the fifth tank, the exponential function rapidly reduces Qrin in
order to decrease also the hydraulic retention time and so to
improve the nitrification process. As a result, a large decrease
of NHe peaks is achieved and limits violations are avoided.
The correct choice of the tuning parameters of the higher level

affine function results also in obtaining a decrease in OCI and
time of Ntot,e violation.
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Fig. 5. Qrin, NHe and Ntot,e evolution from day 7 to day 14 with default PI
controllers (dash-doted line) and with the control for NHe violations removal
(solid line)

Table IV shows the results of EQI, OCI and percentage of
time over the limits of NHe and Ntot,e for the three weather
conditions. It can be seen that with the regulation of Qrin
based on NH5 and NHin applying alternatively an exponential
function and a linear function, and also with the hierarchical
control of DO in the three aerated tanks, it is possible to
avoid NHe violations. In addition, an improvement of 5.5%
of EQI and 0.6% of OCI in comparison with the default
control strategy of BSM1 is achieved for dry influent. However,
for rain and storm events an increase of costs is required.
This is due to the fact that, during rain and storm periods,
the nitrification process (12) is worsened as explained in the
previous section. For this reason, extra addition of qEC is
needed when there is a rain or storm event, generating an
increase of costs. Normally, qEC is added to reduce NO.
Nevertheless, in rNH equation (8) it is observed that although
the elimination of NH largely depends on nitrification (12), NH
is also reduced with the growth of XB,H (10 and 11). Thus
adding qEC, besides applying the exponential function, NHe
violation removal is achieved for rain and storm scenarios. It
should be noted that costs saved due to avoid violations are not
reflected in the OCI equation and therefore the cost comparison
is not completely fair.

Dry influent
Default PI Control for NHe % of

controllers violations removal reduction

EQI 6115.63 5760.95 5.8%

(kg pollutants/d)

OCI 16381.93 16323.48 0.4%

Ntot,e violations 17.56 15.62 11.04%

(% of operating time)

NHe violations 17.26 0 100%

(% of operating time)

TABLE IV. RESULTS WITH DEFAULT PI CONTROLLERS AND WITH
CONTROL FOR NHe VIOLATIONS REMOVAL FOR DRY, RAIN AND STORM

INFLUENTS

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 19th International Conference on System
Theory, Control and Computing. Received May 26, 2015.



C. Ntot,e and NHe violations removal

Finally, both control strategies for Ntot,e and NHe violations
removal have been tested together. Table V shows the results
obtained by applying the control strategies to eliminate both
Ntot,e and NH violations for the three weather conditions. As
it can be observed, the Ntot,e and NH violations removal is
possible for dry, rain and storm weather conditions. However,
removing the two pollutants simultaneously gives rise to an
increase of OCI. It is due to the fact that the reduction of NH
peaks by the exponential function is based on an improvement
in the nitrification process, what causes a great generation of
NO (9 and 12) and also a Ntot,e increase. To counteract it, the
dosage of qEC is increased, and qEC in the second tank (qEC,2)
is also added, as shown in Fig. 6. This qEC increase results in
the total elimination of Ntot,e and NH violations and an EQI
reduction, but also in an OCI increase. However, as explained
in the previous section, the OCI equation does not take into
account the reduction of costs of avoiding violations and thus,
the cost comparison is not completely fair.
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Dry influent
Default PI Control for NHe % of

controllers violations removal reduction

EQI 6115.63 5624.41 8.03%

(kg pollutants/d)

OCI 16381.93 17494.44 -6.8%

Ntot,e violations 17.56 0 100%

(% of operating time)

NHe violations 17.26 0 100%

(% of operating time)

TABLE V. RESULTS WITH DEFAULT PI CONTROLLERS AND WITH
CONTROL STRATEGIES FOR Ntot,e AND NHe VIOLATIONS REMOVAL FOR

DRY INFLUENT.

V. CONCLUSIONS

In this paper different control strategies have been tested
in a biological wastewater treatment process with the aim
of avoiding effluent violations. The improvement of the den-
itrification process, by adding qEC1, achieves the complete
elimination of Ntot,e violations. The implemented affine func-
tion with a sliding window allows to dosage the minimum
qEC1 necessary for this aim. Finally, the improvement of the

nitrification process by manipulating Qrin with the combination
of a linear function and an exponential function makes possible
the NHe violations removal.

Simulation results show that Ntot,e and NHe violations
are removed for the dry influent case. In the cases of Ntot,e
violations removal for the three weather conditions and NHe
violations removal for dry weather, a simultaneous reduction
of EQI and OCI is achieved in comparison with the default
control strategy. The NHe violations removal for rain and storm
influents is considered as a natural extension of the results
presented here.
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Abstract—One of the major concerns in Wastewater Treat-
ment Plant (WWTP) operation is that of satisfying the legal
requirements that impose maximum allowable concentration
levels for effluent pollutants. Not meeting these requirements
may generate economic punishment in terms of fines in addition,
of course, to the environmental consequences. The effluent limit
violations is usually measured as a side performance measure
to existing WWTP control and operation approaches. However
no explicit way of tackling this issue is found. In this paper
a first step towards this direction is proposed in terms of a
prognostication of the situations of risk. This is to say when
the effluent is close to generate a limit violation for some of the
limiting components. This is accomplished by means of effluent
pollutants concentration prediction by using Artificial Neural
Networks (ANN). The prediction is applied to a controlled plant
and it is shown how a logical signal (therefore amenable for
monitoring and decision) can be generated at the instants where
such a risk is detected.

I. INTRODUCTION

The control of biological wastewater treatment plants
(WWTPs) is very complex due to the following facts. The
biological and biochemical processes that take place inside
the plants are strongly interrelated and involve a great number
of states variables and very different constant values. The flow
rate and composition of the influent is very variable. There are
legal requirements that penalize the violation of the pollution
effluent limits (among others, the European Directive 91/271
Urban wastewater established by the European Union). In
addition, the improvement of water quality and the reduction
of operational costs must be considered.

For the evaluation of control strategies in WWTPs, Bench-
mark Simulation Model No.1 (BSM1) was developed in Alex
et al. (2008). This benchmark was extended in a new version,
Benchmark Simulation Model No.2 (BSM2), in (Jeppsson
et al. (2007)) which was updated in Nopens et al. (2010).
BSM2 includes the entire cycle of a WWTP, adding the sludge
treatment. In addition, the simulation period is extended to one
year assessment, rather than a week, as in BSM1. In this work,
the simulations and evaluations of the control strategies have
been carried out with the BSM2. It provides a default control
strategy that applies a Proportional-Integral (PI) controller. PI
and Proportional-Integrative-Derivative (PID) controllers have
attracted the research interest for process control looking for
good robustness/performance trade-off (Vilanova and Visioli

(2012)). However WWTPs exhibit high complex dynamics that
demand for more advanced alternatives.

In the literature there are many works that present different
methods for controlling WWTPs. Most of the works use the
Benchmark Simulation Model No. 1 (BSM1) as working sce-
nario. In some cases they put their focus on avoiding violations
of the effluent limits by applying a direct control of the effluent
variables, mainly ammonium and ammonia nitrogen (SNH ) and
total nitrogen (SNtot ) (Corriou and Pons (2004); Shen et al.
(2008, 2009)). Nevertheless, they need to fix the set-points
of the controllers at lower levels to guarantee their objective,
which implies a great increase of costs. Other works give a
trade-off between operational costs and effluent quality, but
they do not tackle effluent violations. They usually deal with
the basic control strategy (control of dissolved oxygen (SO) of
the aerated tanks and nitrate nitrogen concentration (SNO) of
the second tank (SNO,2)) (Cristea et al. (2008); Holenda et al.
(2008); Belchior et al. (2011)), or propose hierarchical control
structures that regulate the SO set-points according to some
states of the plant, usually SNH and SNO values in any tank
or in the influent (Vrecko et al. (2006); Stare et al. (2007);
Ostace et al. (2010, 2011); Vilanova et al. (2011); Santı́n et al.
(2014)) or SO in other tanks (Ekman et al. (2006)).

Other works in the literature use BSM2 as testing plant.
Some of them are focused on the implementation of control
strategies in the biological treatment. Specifically, they propose
a multi-objective control strategy based on SO control by
manipulating oxygen transfer coefficient (KLa) of the aerated
tanks, SNH hierarchical control by manipulating the SO set-
points, SNO,2 control by manipulating the internal recycle flow
rate (Qa) or total suspended solids (TSS) control by manipu-
lating the wastage flow rate (Qw) (Flores-Alsina et al. (2010);
Benedetti et al. (2009); Flores-Alsina et al. (2011); Kim and
Yoo (2014)). These referred works have different goals, but
all of them obtain an improvement in effluent quality and/or a
reduction of costs. However, none of them aims to avoid the
limits violations of the effluent pollutants. It is of significant
importance because high concentrations of pollutants in the
effluent can damage the environment and the health of the
population. In addition, there are legal requirements penalized
with fines, which result in an increment of costs.

The goal of the presented work is to gain a step forward
in avoiding SNH in the effluent (SNH,e) or SNtot in the effluent



(SNtot,e ) limits violations. The paper uses BSM2 as working
scenario and some of the control strategies are based on Santı́n
et al. (2015).In addition, it introduces a novel method to deal
with the effluent violations: the situations of risk of effluent
violations are predicted by forecasting the future output con-
centrations of pollutants based on the input variables. To detect
such risky sittuations, ANNs are applied to predict the SNH,e
and SNtot,e concentrations by evaluating the influent at each
sample time.

The paper is organized as follows: In the following section
the BSM2 working scenario is presented. Next, Artificial Neu-
ral Networks (ANN) as used tool for prediction are presented
followed, in the fourth section, by the control plant scenario
that will be used to train the ANN. Fifth section present
the effluent violation risk detection showing the prediction
ANN are capable of doing. Next section show simulation
results where limit violations are detected therefore showing
the usefulness of the method. Finally, the most important
conclusions are drawn.

II. BENCHMARK SIMULATION MODEL NO. 2

The simulation and evaluation of the proposed control
strategy is carried out with BSM2 (Jeppsson et al. (2007))
which was updated by Nopens et al. (2010).

The finalized BSM2 layout (Fig. 1) includes BSM1 for
the biological treatment of the wastewater and the sludge
treatment. A primary clarifier, a thickener for the sludge
wasted from the clarifier of biological treatment, a digester for
treatment of the solids wasted from the primary clarifier and
the thickened secondary sludge, as well as a dewatering unit
have been also added. The liquids collected in the thickening
and dewatering steps are recycled ahead of the primary settler.

Qin
Qbypass

Qpo QeQpo

Qw

Qa

Primary
clarifier

Activated sludge 
reactors

Secondary
clarifier

Thickener

Anaerobic
digester

Storage
tank Dewatering

Qr

Sludge
Removal

Fig. 1. BSM2 plant with notation used for flow rates

The influent dynamics are defined for 609 days by means
of a single file, which takes into account rainfall effect and
temperature variations along the year. Following the simulation
protocol, a 200-day period of stabilization in closed-loop using
constant inputs with no noise on the measurements has to be

completed before using the influent file (609 days). Only data
from day 245 to day 609 are evaluated.

A. Activated sludge reactors

The activated sludge reactors consist in five biological
reactor tanks connected in series. Qa from the last tank
complete the system. The plant is designed for an average
influent dry weather flow rate of 20648.36 m3/d and an average
biodegradable chemical oxygen demand (COD) in the influent
of 592.53 mg/l. The total volume of the bioreactor is 12000
m3, 1500 m3 each anoxic tank and 3000 m3 each aerobic tank.
Its hydraulic retention time, based on the average dry weather
flow rate and the total tank volume, is 14 hours. The internal
recycle is used to supply the denitrification step with SNO.

The Activated Sludge Model No. 1 (ASM1) Henze et al.
(1987) describes the biological phenomena that take place in
the biological reactors. They define the conversion rates of the
different variables of the biological treatment. The proposed
control strategies in this work are based on the conversion
rates of SNH (rNH ) and SNO (rNO). They are shown following:

rNH =−0.08ρ1−0.08ρ2−
(

0.08+
1

0.24

)
ρ3 +ρ6 (1)

rNO =−0.1722ρ2 +4.1667ρ3 (2)

where ρ1, ρ2, ρ3, ρ6 are four of the eight biological processes
defined in ASM1. Specifically, ρ1 is the aerobic growth of
heterotrophs, ρ2 is the anoxic growth of heterotrophs, ρ3 is
the aerobic growth of autotrophs and ρ6 is the ammonification
of soluble organic nitrogen. They are defined below:

ρ1 = µHT

(
SS

10+SS

)(
SO

0.2+SO

)
XB,H (3)

where SS is the readily biodegradable substrate, XB,H the active
heterotrophic biomass and µHT is:

µHT = 4 · exp

((
Ln
( 4

3

)

5

)
· (Tas−15)

)
(4)

ρ2 = µHT

(
SS

10+SS

)(
0.2

0.2+SO

)(
SNO

0.5+SNO

)
0.8 ·XB,H

(5)

ρ3 = µAT

(
SNH

1+SNH

)(
SO

0.4+SO

)
XB,A (6)

where Tas is the temperature, XB,A is the active autotrophic
biomass and µAT is:

µAT = 0.5 · exp

((
Ln
( 0.5

0.3

)

5

)
· (Tas−15)

)
(7)

ρ6 = kaT ·SND ·XB,H (8)

where SND is the soluble biodegradable organic nitrogen and
kaT is:

kaT = 0.05 · exp

((
Ln
( 0.05

0.04

)

5

)
· (Tas−15)

)
(9)

The general equations for mass balancing are as follows:



• For reactor 1:

dZ1

dt
=

1
V1

(Qa ·Za+Qr ·Zr+Qpo ·Zpo+rz,1 ·V1−Q1 ·Z1)

(10)
where Z is any concentration of the process, Z1 is Z
in the first reactor, Za is Z in the internal recirculation,
Zr is Z in the external recirculation, Zpo is Z from the
primary clarifier, V is the volume, V1 is V in the first
reactor, Qpo is the overflow of the primary clarifier
and Q1 is the flow rate in the first tank and it is equal
to the sum of Qa, Qr and Qpo.

• For reactor 2 to 5:

dZk

dt
=

1
Vk

(Qk−1 ·Zk−1 + rz,k ·Vk−Qk ·Zk) (11)

where k is the number of reactor and Qk is equal to
Qk−1

B. Evaluation criteria

The performance assessment is made at two levels. The
first level concerns the control. Basically, this serves as a
proof that the proposed control strategy has been applied
properly. The second level measures the effect of the control
strategy on plant performance. It includes the percentage of
time that the effluent limits are not met, the Effluent Quality
Index (EQI) and the Overall Cost Index (OCI) explained
below. The effluent concentrations of Ntot , total COD (CODt ),
SNH , TSS and Biological Oxygen Demand (BOD5) should
obey the limits given in Table I. SNtot is calculated as the sum
of SNO and Kjeldahl nitrogen (SNK j), being this the sum of
organic nitrogen and SNH .

Variable Value
SNtot < 18 g N.m−3

CODt < 100 g COD.m−3

SNH < 4 g N.m−3

TSS < 30 g SS.m−3

BOD5 < 10 g BOD.m−3

TABLE I. EFFLUENT QUALITY LIMITS

EQI is defined to evaluate the quality of the effluent.
EQI is averaged over a 364 days observation period and it is
calculated weighting the different compounds of the effluent
loads.

EQI =
1

1000 ·T

t=609days∫

t=245days

(BT SS ·T SS(t)+BCOD ·COD(t)+

+BNK j ·SNK j(t)+BNO ·SNO(t)+BBOD5 ·BOD5(t)) ·Q(t) ·dt
(12)

where Bi are weighting factors (Table II) and T is the total
time.

Factor BT SS BCOD BNK j BNO BBOD5
Value(g pollution unit g−1) 2 1 30 10 2

TABLE II. Bi VALUES

OCI is defined to evaluate the operational cost as:

OCI = AE +PE +3 ·SP+3 ·EC+ME−6 ·METprod +HEnet
(13)

where AE is the aeration energy, PE is the pumping energy, SP
is the sludge production to be disposed, EC is the consumption
of external carbon source, ME is the mixing energy, METprod
is the methane production in the anaerobic digester and HEnet
is the net heating energy.

III. CONTROLLED PLANT SCENARIO

The setup for the training and effluent limit violation risk
detection by using ANN consists of a controlled WWTP. The
scenario is that of a WWTP, represented here by the BSM2
where a series of local and higher level controllers are in place,
therefore defining an hierarchical control structure. The control
configuration is the one proposed in Santı́n et al. (2015) and
is based on MPC+FF and fuzzy control. MPC+FF controllers
are used in order to keep the SO,4, SO,5 and SNO,2 at the given
set-point. Fuzzy control is applied as higher level controller in
a hierarchical structure to vary the SO references to be tracked
by the MPC controllers. The application of FCs are based on
the biological processes, but without the goal of keeping the
controlled variable at a set-point, either fixed or variable. In
this case, the control objectives are: the improvement of OCI
and EQI. The resulting controlled plant is shown in figure

Qpo

 MPC+FF

SO,4

KLa,5KLa,4KLa,3

SO,4
set-point

SO,5
set-point

SO,5

 Fuzzy

SNH,5

 MPC+FF

 MPC+FF
SNO,2
set-point
(1 mg/l)

SNO,2

Fig. 2. BSM2 Hierarchical control for ANN training and risk prediction

ANNs are proposed to generate models to predict the SNtot,e
and SNH,e values based on some inputs variables, in order to
detect a risk of violation. On a future step, this detection could
be used as a flag to choose the best control strategy to be
applied .

IV. ARTIFICIAL NEURAL NETWORK

ANNs are inspired by the structure and function of nervous
systems, where the neuron is the fundamental element (Yeg-
nanarayana (2009)). ANNs are composed of simple elements,
called neurons, operating in parallel. ANNs have proved to be
effective for many complex functions, as pattern recognition,
system identification, classification, speech vision, and control
systems (Wang and Adeli (2015); Przystalka and Moczulski
(2015)). ANNs are frequently used for nonlinear system iden-
tification, to model complex relationships between the inputs
and the outputs of a system, as it is the case of WWTPs.

An artificial neuron is a device that generates a single
output y from a set of inputs xi (i = 1 ... n). This artificial
neuron consists of the following elements:



• Set of xi inputs with n components

• Set of weights wi j that represent the interaction be-
tween the neuron j and neuron i.

• Propagation rule, a weighted sum of the scalar product
of the input vector and the weight vector: hi(t) =
∑wi j · x j.

• Activation function provides the state of the neuron
based on of the previous state and the propagation rule
(i.e. threshold, piecewise linear, sigmoid, Gaussian):
ai(t) = f (ai(t−1),hi(t)) :.

• The output y(t) that depends on the activation state.

The architecture of an ANN is the structure of network
connections. The connections between neurons are directional
and the information is transmitted only in one direction. In
general, neurons are usually grouped into structural units called
layers. Within a layer, the neurons are usually of the same type.
Figure 3 shows the typical network architecture with three
layers: input layer, hidden layer (processing neurons between
the input and the output) and output layer.

Inputs OutputInputs

Input
layer

Output
layer

Hidden
layer

Fig. 3. Structure of Artificial Neural Network layers

ANNs are subjected to a learning process also called
training. Typically, a large data set of inputs and outputs
sets is needed to design an ANN, and the input and output
data are divided into a set used for training the ANN and
the rest for testing the results of the ANN. The network
learns the connection weights from available training patterns.
Performance is improved by updating iteratively the weights in
the network. When the training is over, the ANN performance
is validated, and depending on the difference between the
outcome and the actual outputs, the ANN has to be trained
again or can be implemented.

The number of input nodes, output nodes and the nodes in
the hidden layer depends upon the problem being studied. If
the number of nodes in the hidden layer is small, the network
may not have sufficient degrees of freedom to learn the process
correctly, and if the number is too high, the training will take
a long time and the network may sometimes over-fit the data
(Karunanithi et al. (1994)).

V. EFFLUENT VIOLATIONS RISK DETECTION

For an efficient elimination of effluent violations, a prog-
nostication of the situations of risk is essential to react as soon
as possible and to apply immediately the necessary preventive
actions to the plant; otherwise most violations cannot be
avoided. This prediction is carried out by ANNs that estimate
the future effluent values, based on information of the entrance
of the biological treatment.

Specifically, two ANNs are proposed in this paper. One
ANN predicts the value of SNH,e (SNH,ep) and the other ANN
predicts the value of SNtot,e (SNtot,ep ). When a risk of violation
of SNtot,e or SNH,e is foreseen, special control strategies could
be applied to avoid them. However this is not conducted here.

An accurate prediction of SNH,e and SNtot,e is not possible
due to the fact that ANNs use only influent variables as inputs,
while the effluent concentrations also depend on other variables
of the process. Those variables can not be taken into account
because it is necessary to predict the risk of effluent violations
with enough time in advance. Moreover, all data used to predict
the risk has to be easily measurable. However, as we will
see, with an adequate choice of the input variables of ANNs,
it is possible to achieve an adequate approximation in order
to detect a risk of violation for applying the suitable control
strategy.

Therefore, the inputs of ANNs have been determined
according to the mass balance equations (10 and 11) explained
in Section II-A. The variables used to perform the prediction
for both ANNs are Qpo, Zpo and Tas. The variable Qa has also
been used as an input for the ANN that predicts SNtot,e , but it is
not used to predict SNH,e because it is a manipulated variable
in the control strategy applied to remove SNH,e violations.
Specifically, SNH from the primary clarifier (SNH,po) is the
pollutant concentration chosen as a predictor for both ANNs.
On one hand, SNH and SNO are the pollutants with higher
influence in SNtot,e , but SNO,po is very low and it is not taken
in account. On the other hand, SNH,po not only affects largely
SNH,e, but also affects the nitrification process, the consequent
SNO production and therefore the resulting SNtot,e .

Tas is also added as a predictor variable due to its influence
in the nitrification and denitrification processes (5 and 6). SNH,e
and SNtot,e values are inversely proportional to the Tas values.

Finally, due to the mentioned reasons, the inputs for the
ANNs are:

• Inputs of ANN for SNH,e model prediction: Qpo,
SNH,po, Qpo · SNH,po, Tas.

• Inputs of ANN for SNtot,e model prediction: Qpo,
SNH,po, Qpo · SNH,po, Tas, Qa.

To train and validate ANNs, a collection of input and
output data is necessary. The variations in the inputs affect the
outputs with a variable delay that depends on the hydraulic
retention time. Due to this fact and, in order to simplify the
data collection process, for the ANNs inputs and outputs only
the maximum and minimum values of each day have been
selected. Except for Tas, where the daily average value has
been considered. As it is necessary a large number of data
to generate a satisfactory model for an ANN, the data are
obtained in a one year simulation period with the plant working
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Fig. 4. Structures of the proposed ANNs

with the presented hierarchical control in place. Therefore, as
no special experiments are needed, in a real plant, the stored
historical data could be used for this purpose. The number of
hidden layers for both ANNs is 10. The structures are shown
in Fig.4.

For the training of the ANN the MATLAB c© NNToolbox
has been used. As already mentioned, recorded data corre-
sponding to one year of running the plant with the hierarchical
control in place has been used. The data is partitioned in
different sets that are used for training (70% of data), another
one to validate the network is generalizing and to stop training
before overfitting (15% of data). The rest of the data (the
remaining 15%) is used as a completely independent test of
network generalization. The training results are evaluated by
means of error histogram. Figure (5) shows the error his-
tograms corresponding to both ANN. The blue bars represent
training data, the green bars represent validation data, and the
red bars represent testing data. As it can be seen, the ANN for
SNtot,e prediction is more difficult to train. Even this, there are
practically no significant outliers and, if any, their magnitude
is really small. It remains a subject of further exploration about
the suitability of more complex network structures if precise
effluent following is needed.

As a result, figure 6 show the effluent concentrations of
SNH,e and SNtot,e predicted by the trained ANN. As it can be
seen, the prediction does not follow with high precision the
real effluent profile. Instead, the ANN have been trained to

Fig. 5. ANN training error histograms.

generate the peaks that are of interest, those that are significant
for Ntot,e and NHe limit violation. The idea is not to predict
the whole effluent profile with precision but to detect where
possibly high values will occur.

Fig. 6. ANN Effluent prediction for SNH,e and SNtot,e

VI. SIMULATION RESULTS

In this section the BSM2 benchmark scenario under the
hierarchical control presented above is shown. As it can be
seen, the control scheme is quite efficient as it is able to
minimize the effluent violations substantially. However there
are still moments where the high disturbances coming from
the influent make plant operation very difficult. Therefore, the
ANN prediction will show the potential risk of effluent limit
violation.

The BSM2 is now simulated by applying the same hierar-
chical control scheme. In parallel, the influent data feeds both



ANN and output pollutant concentrations are predicted. As
mentioned when describing the BSM2 scenario, the assessment
period is extended to one year instead of one week. In figure
7 show, as an example, the simulation results for SNH,e risk
detection for a time window of 150 days. It can be seen that
the hierarchical, two-level control system, operates the plant
quite well, so there are practically no limit violations. Two risk
stintuitions are detected. Therefore it is on such time instants
where supplementary control actions will be needed.

In order to better show how risk detection works, figures
8 and 9 show the risk detection for both output concentrations
SNH,e and SNtot,e in an enlarged time window. As it can be
observed, the way ANN have been trained allows for a real
effluent pollutants prediction. This allows for an early detection
of the possible limit violation. A flag signal is activated during
6h. For future use, this boolean signal could be used to activate
a decision system that signals for appropriate corrective actions
regarding these violations.

On the other hand, in figure 9, we can see there is a
mismatch between the number of real limit violations and the
times the risk signal is activated. This is because of the three
maximums the effluent do has during the violation period. In
any case, the fact that during one day the signal is activated
three times, corresponds to a really dangerous sittuation.

Fig. 7. SNH,e limit violation risk detection. Long time window.

Fig. 8. SNH,e limit violation risk detection

VII. CONCLUSIONS

This paper ha presented an effluent pollutants prediction
on the basis of Artificial Neural Networks. Predictions are
performed with the purpose of detection of the Ntot,e and NHe
limit violations risk. Based on the BSM2 scenario, a two-layer
hierarchical control architecture has been used as the controlled
plant for generating the training data. This way, the data is
according to data that is usually recorded on WWTPs. No
need for specific experiments.

Fig. 9. SNtot,e limit violation risk detection

The trained ANN show the ability to predict the peak
values of Ntot,e and NHe. The idea is not to predict the whole
effluent profile with precision but to detect where possibly high
values will occur. Simulation results show this is accomplished.
Also when running the ANN over the controlled plant, effluent
limit violations are detected and appropriately signaled. From
this point, next step will be to build up appropriate control
strategies that can react to these signals.
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