
Energy-Efficient

Mobile GPU Systems

Jose Maria Arnau

Doctor of Philosophy

Department of Computer Architecture

Universitat Politecnica de Catalunya

2014

2

Abstract

The design of mobile GPUs is all about saving energy. Smartphones and tablets
are battery-operated and thus any type of rendering needs to use as little energy as
possible. Furthermore, smartphones do not include sophisticated cooling systems
due to their small size, making heat dissipation a primary concern. Improving the
energy-efficiency of mobile GPUs will be absolutely necessary to achieve the per-
formance required to satisfy consumer expectations, while maintaining operating
time per battery charge and keeping the GPU in its thermal limits.

The first step in optimizing energy consumption is to identify the sources of
energy drain. Previous studies have demonstrated that the register file is one of
the main sources of energy consumption in a GPU. As graphics workloads are
highly data- and memory-parallel, GPUs rely on massive multithreading to hide
the memory latency and keep the functional units busy. However, aggressive
multithreading requires a huge register file to keep the registers of thousands of
simultaneous threads. Such a big register file exceeds the power budget typically
available for an embedded graphics processors and, hence, more energy-efficient
memory latency tolerance techniques are necessary.

On the other hand, prior research showed that the off-chip accesses to system
memory are one of the most expensive operations in terms of energy in a mobile
GPU. Therefore, optimizing memory bandwidth usage is a primary concern in
mobile GPU design. Many bandwidth saving techniques, such as texture com-
pression or ARM’s transaction elimination, have been proposed in both industry
and academia.

The purpose of this thesis is to study the characteristics of mobile graph-
ics processors and mobile workloads in order to propose different energy saving
techniques specifically tailored for the low-power segment. Firstly, we focus on
energy-efficient memory latency tolerance. We analyze several techniques such
as multithreading and prefetching and conclude that they are effective but not
energy-efficient. Next, we propose an architecture for the fragment processors
of a mobile GPU that is based on the decoupled access/execute paradigm. The
results obtained by using a cycle-accurate mobile GPU simulator and several
commercial Android games show that the decoupled architecture combined with
a small degree of multithreading provides the most energy efficient solution for
hiding memory latency. More specifically, the decoupled access/execute-like de-
sign with just 4 SIMD threads/processor is able to achieve 97% of the performance

3

of a larger GPU with 16 SIMD threads/processor, while providing 20.5% energy
savings on average.

Secondly, we focus on optimizing memory bandwidth in a mobile GPU. We
analyze the bandwidth usage in a set of commercial Android games and find that
most of the bandwidth is employed for fetching textures, and also that consecutive
frames share most of the texture dataset as they tend to be very similar. However,
the GPU cannot capture inter-frame texture re-use due to the big size of the
texture dataset for one frame. Based on this analysis, we propose Parallel Frame
Rendering (PFR), a technique that overlaps the processing of multiple frames in
order to exploit inter-frame texture re-use and save bandwidth. By processing
multiple frames in parallel textures are fetched once every two frames instead of
being fetched in a frame basis as in conventional GPUs. PFR provides 23.8%
memory bandwidth savings on average in our set of Android games, that result
in 12% speedup and 20.1% energy savings.

Finally, we improve PFR by introducing a hardware memoization system on
top. As consecutive frames tend to be very similar, not only most of the texture
fetches are the same from frame to frame but also a significant percentage of the
computations performed on the fragments. We analyze the redundancy in mobile
games and find that more than 38% of the Fragment Program executions are
redundant on average. We thus propose a task-level hardware-based memoization
system that, when architected on top of PFR, provides 15% speedup and 12%
energy savings on average.

4

Acknowledgements

First and foremost, I would like to thank my advisers Joan-Manuel Parcerisa
and Polychronis Xekalakis, for teaching me everything I know about Computer
Architecture. I feel very lucky to have had the opportunity to work with them
over the past years. I am very grateful for their invaluable guidance and support.

I would like to make a special mention to Antonio Gonzalez, who offered me
the opportunity to start a research career in the ARCO group. Thanks for your
wise advice and support.

I wish to thank all the members of ARCO. I was lucky enough to be part of a
large and enriching research group. I was fortunate to share an office with Marc
Lupon and Enric Herrero, thanks for teaching me what being a PhD student
means. Thanks to Aleksandar Brankovic for showing me what attending to a
conference is about. Thanks to Enrique De Lucas for his feedback, I am very
glad you decided to work in the exciting field of mobile graphics processors!

I would like to thank Christophe Dubach for having me as an intern in the
University of Edinburgh. It was a great experience and a pleasure to work with
him. Thanks to all the members of the CArD research group. Thanks to Chris
Fensch for his feedback and his valuable help in finding opportunities to develop
my career after my PhD.

On a more personal note, I would like to thank my family for their uncondi-
tional support, their fondness and their infinite patience. My parents Jose-Medin
and Gloria, my brother Ignacio and my sister Maria Lidon have always encour-
aged me to carry on with my research work. I am grateful for their love, care and
affection.

5

Declaration

I declare that this thesis was composed by myself, that the work contained therein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified. Some of the material used in this thesis has been published in the
following papers:

• “Boosting Mobile GPU Performance with a Decoupled Access/Execute
Fragment Processor”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Symposium on Computer Architecture, 2012.

• “TEAPOT: A Toolset for Evaluating Performance, Power and Image Qual-
ity on Mobile Graphics Systems”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Conference on Supercomputing, 2013.

• “Parallel Frame Rendering: Trading Responsiveness for Energy on a Mobile
GPU”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Conference on Parallel Architectures and Compilation Tech-
niques, 2013.

• “Eliminating Redundant Fragment Shader Executions on a Mobile GPU
via Hardware Memoization”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Symposium on Computer Architecture, 2014.

(Jose Maria Arnau)

6

Contents

Abstract 4

1 Introduction 11

1.1 Current Trends in Mobile Graphics 11

1.1.1 Mobile Graphics Hardware 12

1.1.2 Mobile Graphics Software 13

1.2 Problem Statement . 15

1.3 State-of-the-art in GPU Energy Efficiency 18

1.3.1 Memory Latency Tolerance Techniques 18

1.3.2 Bandwidth Saving Techniques 21

1.3.3 Other Related Works . 24

1.4 Thesis Overview and Contributions 25

1.4.1 Mobile GPU Simulation Infrastructure 25

1.4.2 The Decoupled Access/Execute Fragment Processor 26

1.4.3 Parallel Frame Rendering 29

1.4.4 Eliminating Redundant Fragment Shader Executions . . . 31

1.5 Thesis Structure . 32

2 Experimental Environment 35

2.1 Simulation Infrastructure . 35

2.1.1 Application Level . 36

2.1.2 Driver Level . 37

2.1.3 Hardware Level . 38

2.1.4 Automatic Image Quality Assessment 45

7

2.1.5 Assumed Graphics Pipeline 45

2.2 Workloads . 46

2.2.1 Workload Selection . 47

2.2.2 Workload Characterization 51

2.3 Summary of Methodology . 55

3 Decoupled Access/Execute Fragment Processor 57

3.1 Memory Latency Tolerance in a Mobile GPU 57

3.1.1 Aggressive Multithreading 59

3.1.2 Hardware Prefetching . 61

3.2 Decoupled Architecture for Fragment Processors 67

3.2.1 Base Architecture . 67

3.2.2 Remote Texture Cache Accesses 69

3.3 Multithreading, Prefetching and Decoupled Access/Execute . . . 72

3.4 Conclusions . 76

4 Parallel Frame Rendering 79

4.1 Memory Bandwidth Usage on a Mobile GPU 79

4.2 Trading Responsiveness for Energy 80

4.2.1 Parallel Frame Rendering 81

4.2.2 Reactive Parallel Frame Rendering 83

4.2.3 N-Frames Reactive Parallel Frame Rendering 86

4.2.4 Delay Randomly Parallel Frame Rendering 87

4.3 Experimental Results . 88

4.4 Conclusions . 93

5 Hardware Memoization in Mobile GPUs 95

5.1 Redundancy in Mobile GPUs . 95

5.2 Redundancy and Memoization . 97

5.2.1 Reuse Distance and Parallel Frame Rendering 98

5.2.2 Task-level Complexity . 99

5.2.3 Referential Transparency 100

8

5.3 Task Level Hardware-Based Memoization on a Mobile GPU . . . 101

5.3.1 Memoization System . 101

5.3.2 Screen Coordinates Independent Memoization 106

5.4 Experimental Results . 107

5.5 Conclusions . 114

6 Conclusions 115

6.1 Conclusions . 115

6.2 Contributions . 117

6.3 Open-Research Areas . 118

A Decoupled Fragment Processor on top of TBR 121

B Parallel Frame Rendering on top of IMR 125

C Hardware Memoization on top of IMR 129

9

10

Chapter 1

Introduction

This chapter presents the background and motivation behind this work, a brief
description of related work, and an overview of the main proposals and contribu-
tions of this thesis.

1.1 Current Trends in Mobile Graphics

Mobile phones have been adopted faster than any technology in history [137].
Smartphones and tablets are becoming primary devices of choice for a variety
of activities such as reading email, playing games, taking pictures, interacting
with social networks or browsing the web. In recent years, stationary desktop
computers have been replaced in many scenarios by mobile devices as they begin
to deliver a truly mobile computing experience. Powered by advances in mobile
technology and System-on-a-Chip (SoC) design, current smartphones support a
plethora of capabilities that cope with consumer expectations.

Undoubtedly, the capability to provide a real computing experience explains
to a large extent the success of these mobile devices. Mobile graphics hard-
ware/software improvements play an important role in this respect, as visually
compelling graphics and high responsiveness are key to deliver a satisfactory
user experience. Current mobile SoCs are able to decode 1080p videos at real
time [163], capture and process pictures at resolutions bigger than 12 MegaPixels
or render complex 3D graphics at high frame rates, achieving fill rates bigger than
4 GigaPixels/second [150, 161, 162]. On the other hand, smartphones support
a plethora of mobile applications, for instance, more than 1.2 million Android
applications are available in Google Play by May 2014 [24]. This combination of
mobile hardware able to deal with multimedia content at real time frame rates
and plentiful mobile software that exploits hardware capabilities makes smart-
phones/tablets very powerful and versatile devices.

In following sections we will discuss the mobile graphics hardware/software
improvements that contributed to the expansion of the smartphones and tablets
market. Later in this chapter we will discuss how supporting all these capabilities

CHAPTER 1. INTRODUCTION 11

affects the energy aspect of an embedded graphics processor, and we will introduce
the main problems that have to be dealt with when designing a mobile GPU.

1.1.1 Mobile Graphics Hardware

In this section we will briefly review the improvements in mobile graphics hard-
ware, focusing on the main components of the graphics system: the screen and
the Graphics Processing Unit (GPU). In first place, mobile screens have evolved
from small text-based displays to high resolution multi-touch displays. High-end
smartphones begin to support Full-HD (1080x1920) resolution in 5-inches dis-
plays, whereas HD resolution (720x1280) is common in the mid and low-end.
Hence, current screens deliver high quality visually compelling graphics, making
the smartphone amenable for a broad range of applications. Furthermore, the
touch screen is the main input device in a smartphone, being its response time
critical for user experience.

On the other hand, mobile GPUs have experienced a significant evolution
in recent years, becoming a key component of a SoC. Early mobile phones fea-
tured pure software rendering, performing all the graphics on the CPU since
no specific graphics hardware was included. Furthermore, fixed-point arithmetic
was employed in many cases due to the lack of floating-point units in embedded
processors [157]. However, due to the aforementioned evolution in screen resolu-
tion the graphics system was required to provide huge fill rates, and the use of
hardware acceleration became a hard requirement. The first mobile GPUs were
fixed-function pipelines (non-programmable) that implemented the OpenGL ES
1.1 API [53], offering fill rates in the order of 100 MegaPixels/second [161]. Based
on these primitive designs, mobile GPUs evolved towards more programmabil-
ity and parallelism, in a similar way than desktop GPUs did, improving both
flexibility and performance. Modern smartphones include programmable multi-
core GPUs that support the OpenGL ES 2.0/3.0 APIs [54], achieving fill rates
in the order of GigaPixels/second and supporting scenes with millions of trian-
gles [150, 161, 162].

It is worth mentioning at this point the main actors in the mobile GPU mar-
ket. NVIDIA develops the Tegra SoC [26] that includes the Ultra Low-Power
GeForce GPU [117], a version of the desktop GeForce optimized for low-power
consumption. The ULP GeForce implements a classical Immediate-Mode Ren-
dering architecture [113], and it is included in high-end smartphones and tablets
such as the NVIDIA SHIELD [25], the Sony XPeria Tablet S [34] or the HTC
One X [17].

Mali [9] is a series of GPUs produced by ARM. Unlike desktop GPUs, Mali im-
plements a Tile-Based Rendering architecture [165], i. e. the screen is divided into
small tiles and the scene is rendered tile by tile to maximize locality and minimize
bandwidth usage [51]. A more detailed comparison between Immediate-Mode and
Tile-Based architectures is provided in Chapter 2. Mali GPUs are employed in

CHAPTER 1. INTRODUCTION 12

popular SoCs such as the Samsung Exynos [164], included in smartphones like
the Samsung Galaxy S3 [31].

Imagination Technologies produces the PowerVR [161] family of mobile GPUs.
The PowerVR also implements a Tile-Based Rendering architecture, with special
emphasis on addressing the overdraw [56] problem, i. e. unnecessarily computing
and writing multiple colors for the same screen pixel due to multiple graphical
objects drawn over the top of one another. PowerVR GPUs are included in
popular mobile devices such as the Apple iPhone 5S [6], the iPad Air [5] or the
Playstation Vita [27].

Adreno [162] is the solution developed by Qualcomm for embedded devices,
included in the Snapdragon SoC [163]. Adreno GPUs implement a hybrid archi-
tecture able to switch at run-time between Immediate-Mode and Tile-Based by
leveraging the FlexRender technology [11]. Google Nexus 5 [22], Samsung Galaxy
S5 [32] or Sony XPeria Z2 [35] are examples of popular smartphones powered by
Adreno GPUs.

Beyond the products developed by big companies, there exist two other fam-
ilies of mobile GPUs that are not so widespread, but they achieve comparable
performance and power consumption. On one hand, Vivante Corporation intro-
duced the Vega 3D architecture [42], implemented in the Vivante GC Series of
mobile GPUs. Vivante also proposed the use of a dedicated accelerator for image
composition [127], the Composition Processing Cores [41], offloading all the GUI
related tasks from the GPU and achieving significant energy savings. Vivante
GPUs are included in mobile devices such as the Samsung Galaxy Tab 3 [33] or
the Huawei Ascend G615 [18]. On the other hand, Digital Media Professionals
created the PICA-200 [160] mobile GPU, the graphics processor of the Nintendo
3DS [156].

1.1.2 Mobile Graphics Software

In this section we will briefly review the graphics software stack of mobile devices
including the applications, Operating Systems and graphics APIs. Mobile phones
are no longer restricted to making phone calls and sending text messages, but
they support a plethora of applications such as web browsing, maps, gaming,
social networks or picture and video editing. Mobile SDKs [3, 19] deliver plenty
of functionality from networking to graphics including, for instance, libraries for
multimedia content processing. Furthermore, they provide access to a great di-
versity of hardware available in mobile devices like the GPS, the GPU, the camera
or the accelerometers. On the graphics side, developers have access to numerous
widgets that allow the creation of very rich user interfaces. Furthermore, graphics
hardware acceleration is available via OpenGL ES [94], allowing the creation of
immersive 3D environments.

OpenGL for Embedded Systems (OpenGL ES) is a subset of the OpenGL API
for rendering 2D and 3D computer graphics in low-power systems, developed and

CHAPTER 1. INTRODUCTION 13

maintained by the Khronos Group [20]. OpenGL ES is the dominant graphics
API for accessing the GPU in handheld and embedded devices, as it is widely
supported by all the manufacturers mentioned in section 1.1.1. Khronos has
released five OpenGL ES specifications so far. The OpenGL ES 1.0 and 1.1 spec-
ifications implement a fixed-function pipeline. The OpenGL ES 2.0 specification
implements a programmable pipeline, providing full support for vertex/fragment
shaders. The OpenGL ES 3.0 specification includes new features to enable ac-
celeration of advanced visual effects, such as occlusion queries [15], transform
feedback [36] or multiple render targets [155]. Furthermore, bandwidth saving
features like texture compression [140] and framebuffer invalidation [80] are in-
cluded in the API. Finally, the OpenGL ES 3.1 specification adds the compute
shaders [13] to support general purpose computation on the GPU (GPGPU).
OpenGL ES specifications are derived from desktop OpenGL revisions, removing
complex features and redundant function calls in order to keep the GPU drivers
and the graphics hardware as simple as possible.

Regarding the Operating Systems, Android and iOS clearly dominate the
smartphone market [92]. On the graphics department both systems provide ex-
tensive support for developing graphical user interfaces, in the form of a rich set
of widgets and support for 2D/3D rendering via OpenGL ES. Furthermore, the
GUI compositor is an essential component in both Operating Systems. Com-
position [127] is the process of combining multiple surfaces, usually generated
by multiple graphical applications running simultaneously, together into a single
surface that can be displayed on the screen. In order to achieve high respon-
siveness, composition is usually hardware accelerated in the GPU [127] or in a
dedicated accelerator [41]. Android’s GUI compositor, SurfaceFlinger [2], em-
ploys the OpenGL ES 1.1 API to boost composition. Therefore, the graphics
hardware is used in any mobile application that displays content in the screen,
since OpenGL ES is either explicitly called by the programmer or implicitly called
when using widgets that are later rendered by the OS GUI compositor.

Many popular applications take benefit of hardware accelerated graphics, such
as Google Maps, Google Street View or Facebook. The Web Browser also has
to deal with tons of multimedia content, and WebGL [99] provides access to the
GPU from JavaScript applications. Nevertheless, the applications that especially
benefit from hardware acceleration are undoubtedly the numerous games available
in Android and iOS. Casual 2D games like Angry Birds, with more than 1 billion
downloads and 200 million active monthly users [4], or Candy Crush, with more
than 500 million downloads and 124 million active daily users [16], are among the
most popular applications for smartphones. Their game style, based in simple
mechanics and short game levels, together with the effective use of the smartphone
hardware (touch screen, accelerometers...) are some of the sources of their great
acceptance.

On the other hand, smartphones and tables also support multiple desktop-
like 3D games that exploit the capabilities of the graphics hardware. Popular
franchises such as Minecraft, Call of Duty or Need for Speed are available for mo-
bile devices. This type of games exhibit dynamic shadows [166], reflections [67],

CHAPTER 1. INTRODUCTION 14

particle systems [130] and many other advanced graphical effects achieved by
leveraging programmable shaders.

1.2 Problem Statement

All the mobile hardware/software improvements described in the previous sec-
tions are key to satisfy consumer expectations and deliver compelling user experi-
ence. However, supporting all these capabilities comes at the cost of a significant
increase in energy consumption. Figure 1.1a shows the power breakdown in a
Samsung Galaxy S3 when running the Egypt benchmark of the GLBenchmark
suite. The GPU is the main battery consumer, requiring more than 1500 mW.
Despite technology improvements, achieving the fill rates required to support high
image resolutions in mobile devices with a tiny power budget is not an easy task.
Mobile GPU design is all about reducing energy consumption because architects
are concerned about battery life, but also because they are concerned about heat
dissipation.

As smartphones and tablets are powered by batteries, any type of graphics
rendering needs to use as little energy as possible. Operating time per battery
charge is an important parameter of any mobile device, since users do not want
to recharge their devices every few hours. The GPU energy demand increases sig-
nificantly on each generation of smartphones to achieve the performance require-
ments, and it increases at a much faster pace than battery improvements [126].
The trend observed in recent years shows an increasing disparity between the
energy required and the energy available in a smartphone [111], producing an
energy gap that widens on each new generation of mobile devices, resulting in
fairly short operating times per battery charge. As an example, Figure 1.1a
shows that the Samsung Galaxy S3 requires 3.17 Watts to power the screen, the
CPU and the GPU —we assume the radio is disabled while runnig graphical
benchmarks. The Galaxy S3 features a 2100 mAh battery [31] at 3.7 V, so the
energy available is: 2100mAh×3.7V

1000
= 7.77Wh. Converting the Wh to Joules we

have: 7.77Wh × 3600 s
h

= 27972J . As the battery is drained at a ratio of 3.17
Joules/sec, the total operating time is 2 hours and 27 minutes. Hence, operating
time per battery charge is a big concern since the energy available is consumed
in just a few hours when running graphical workloads. Nevertheless, even if some
breakthrough in battery technology would provide massive amounts of energy
—something that is not likely to happen in the near future— mobile GPU energy
consumption would still be a primary concern since architects would have to deal
with a huge issue: heat dissipation.

Current smartphones and tablets feature big screens, but they are extremely
thin since weight is an important parameter on mobile devices. Hence, smart-
phones cannot include sophisticated cooling systems such as fans or water cooling
radiators. Even if batteries would suddenly become much more powerful, energy
consumption could not be increased arbitrarily since the small size of the smart-
phone means it would need to dissipate large amounts of heat from a small area,

CHAPTER 1. INTRODUCTION 15

0

500

1000

1500

2000

2500

3000

3500

4000

Pe
ak

 S
us

ta
in

ed
 P

ow
er

 (m
W

)

Screen
Radio
CPU
GPU

(a) Smartphone power breakdown

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
ow

er
 (%

)

Other
FragProcsRest
FragProcsRegFile
VertexProcs
L2
SystemMemory

(b) GPU power breakdown

Figure 1.1: The left graph shows the power breakdown measured in a Samsung
Galaxy S3. The graph includes the four main battery consumers: screen, radio,
CPU and GPU. The peak power of the screen, a 4.8 inches AMOLED display at
HD resolution, and the peak power of the radio are provided in [129]. The peak
power of the CPU, an ARM-based dual-core Krait at 1.5 GHz, and the GPU,
a Qualcomm Adreno 225, are provided in [30]. The peak power was measured
while running the Egypt benchmark of the GLBenchmark suite. On the other
hand, the right graph shows the power breakdown in a mobile GPU with a Tile-
Based Rendering architecture similar to the ARM Mali 400MP4. The graph shows
the average power estimated by our power model based on McPAT, described in
section 2.1.3, when running the twelve Android games presented in section 2.2.1.
The power consumed by the Fragment Processors is split in two categories: the
power of the main Register File, “FragProcsRegFile”, and the power consumed by
the rest of the pipeline, “FragProcsRest”.

and thus become too hot to handle [44]. Mobile GPUs are thermally limited [120],
since they could easily overheat their packages if the appropriate mechanisms to
force them to slow down when they get too hot were not included. Therefore,
saving energy is also an effective way of increasing performance on a mobile GPU.
As an illustrative example of the importance of energy in mobile GPU design, the
ARM Mali GPU requires 35% additional energy efficiency improvements every
year to fit new performance requirements within SoC thermal limits [72].

Performance metrics employed for decades such as pixels per second (fill
rate [152]) or the controversial triangles per second [121] have been displaced
by other metrics that take into account energy. The most important metrics to
optimize now are performance per watt [159] and/or nanojoules per pixel [45].
Energy-efficiency is also usually measured as the ratio between the speedup and
the normalized energy [70].

The first step in optimizing the energy-efficiency is identifying the main sources
of energy consumption in a mobile GPU. Previous studies have found two major
sources: the big Register File (RF) required to sustain a huge number of simulta-
neous threads and the external accesses to off-chip system memory. The numbers

CHAPTER 1. INTRODUCTION 16

obtained in our mobile GPU simulation infrastructure, described in Chapter 2,
support the results of previous studies as illustrated in Figure 1.1b. The RF
of the Fragment Processors consumes 25% of GPU power and 11.2% of overall
power consumption. On the other hand, the external accesses to off-chip system
memory consume 56% of the power of the graphics subsystem.

Regarding the big size of the RF, GPUs are massively parallel programmable
processors designed to exploit the concurrency inherent in graphics workloads.
Unlike CPUs that generally target single-threaded performance, GPUs aim for
high throughput by employing extreme multithreading [73]. Memory latency is
hidden by maintaining a huge number of parallel threads, so in case of a cache
miss the scheduler switches to another hardware thread to avoid pipeline stalls.
Modern desktop GPUs can have thousands of hardware threads. For example,
the NVIDIA Fermi architecture supports over 20000 thread contexts [68]. Just
holding the registers of these threads requires substantial on-chip storage: a RF
of around 2 MBytes that consumes more than 9 Watts [79]. Such a big RF
is absolutely prohibitive for a mobile GPU, that usually has at its disposal a
small power budget of around 1 Watt [120]. Indeed, mobile GPUs reduce the
degree of parallelism to tenths or a few hundreds of threads [23]. The memory
latency cannot be completely tolerated as the number of parallel threads is scaled
down, introducing pipeline stalls that degrade performance. In short, although
multithreading is a very effective technique for hiding the memory latency, we
believe that more energy-efficient mechanisms are necessary to meet the energy
requirements of mobile GPUs.

Besides the aforementioned issues with the RF, the general agreement in both
industry and academia is that the main sources of energy drain in a mobile
GPU are the expensive off-chip accesses to system memory [44, 47, 119, 120].
External memory accesses are often the operation that uses the most energy
in a computer system [76]. An off-chip memory access consumes more than
an order of magnitude more energy than an access to on-chip SRAM in low-
power processes. This means that memory bandwidth have to be used with great
care in a mobile GPU. Furthermore, this also means that optimizing memory
bandwidth usage is an effective way of reducing energy consumption. Multiple
bandwidth saving techniques have been proposed in recent years such as texture
compression [119, 140] or framebuffer compression [8, 128], Section 1.3.2 provides
a review of the state-of-the-art in memory bandwidth usage optimization for low-
power GPUs. Most of these schemes are adaptations of techniques previously
proposed for desktop GPUs, we believe that bigger bandwidth savings can be
achieved by taking into account the specific characteristics of mobile graphics
workloads.

In short, the demand for high quality rendering and the requirement of low
energy consumption are contradictory. Developing more energy-efficient memory
latency tolerance schemes and optimizing memory bandwidth usage are among
the most promising ways to ameliorate this conflict. In following sections we will
review the solutions proposed in recent years, and later in this chapter we will
introduce our proposals to close the energy gap in embedded graphics processors.

CHAPTER 1. INTRODUCTION 17

1.3 State-of-the-art in GPU Energy Efficiency

Improving the energy-efficiency of mobile GPUs has attracted a lot of attention
from the architecture community in recent years. As stated in prior section,
reducing the energy consumption of the RF is one of the primary concerns re-
garding mobile GPU design, previous studies have focused on saving RF energy
as described in Section 1.3.1. On the other hand, saving memory bandwidth has
been proven to be an effective way of reducing energy consumption and, hence,
multiple techniques targeting memory bandwidth usage optimization have been
proposed as depicted in Section 1.3.2.

1.3.1 Memory Latency Tolerance Techniques

Graphics workloads have a large amount of inherent parallelism that can be easily
exploited by a parallel machine. Texture memory accesses are common operations
in graphics workloads and tend to be fine-grained and difficult to prefetch [79].
Graphics workloads have large, long-term (inter-frame) working sets that are not
amenable to caching. Therefore, texture cache units focus on conserving band-
width rather than reducing latency [73]. Because texture accesses are macro-
scopically unpredictable, and frequent, GPUs rely on massive multithreading to
keep arithmetic units utilized. As a result, a huge RF is required to maintain the
registers of all the simultaneous threads.

In this section we will first review previous work focused on optimizing the
energy consumption of the GPU RF. Second, we will discuss other research work
based on the use of prefetching to hide the memory latency, with the objective
of reducing the multithreading degree requirements and, hence, the size and the
energy consumption of the RF. Finally, we will review related work on Decoupled
Access/Execute architectures.

Register File Optimizations

Gebhart et al. [79] propose the use of a Register File Cache to replace accesses
to the large main RF with accesses to a smaller structure containing the immedi-
ate register working set of active threads. As extreme multithreading requires a
complicated thread scheduler, the authors also propose a two-level thread sched-
uler that maintains a small set of active threads to hide ALU and local memory
accesses, and a larger set of pending threads to hide main memory latency. Com-
bined with the RF Cache, this two-level thread scheduler provides a further re-
duction in energy by limiting the allocation of temporary register cache resources
to only the currently active subset of threads. The authors report significant
energy savings in both graphics and GPGPU workloads. Note that this approach
saves dynamic energy by replacing accesses to a bigger hardware structure by
accesses to a smaller structure, but it does not save static energy as the original
big RF is kept as in conventional GPUs.

CHAPTER 1. INTRODUCTION 18

Yu et al. [169] introduce a hybrid memory design that tightly integrates em-
bedded DRAM into SRAM cells to reduce area and energy consumption of a
multi-threaded RF. In this memory, each SRAM cell is augmented with multiple
DRAM cells so that multiple bits can be stored in each cell. This approach saves
both dynamic energy and leakage by keeping data for active threads in SRAM
while placing data for pending threads in DRAM. However, such a RF requires
explicit data movements between SRAM and DRAM in order to access the reg-
isters of pending threads. The thread scheduler has to be modified in order to
minimize context switching impact.

Regarding proposals that specifically target mobile GPUs, Sohn et al. [167]
propose a mechanism for clock gating an entire RF bank when it is not being
accessed. Chu et al. [63] introduce the possibility of further reducing dynamic
energy by dividing the register bank into multiple regions and controlling clock
gating individually. In a later study, Chu et al [89] extended their work proposing
an Adaptive Thread Scheduling mechanism combined with a low-power RF with
hybrid power gating [103]. Besides dynamic energy savings, this RF exploits both
gated-Vdd and drowsy techniques [75] to achieve long and short term leakage en-
ergy savings. Finally, a compiler-assisted demand-driven RF for mobile GPUs is
presented in [90]. In this scheme the RF is shared on demand between concurrent
threads, and multiple power gating modes are employed to avoid wasting static
energy for unused registers.

Prefetching

Besides multithreading, prefetching data into the caches can also help tolerate
memory latency. The largest concerns with any prefetching scheme are accuracy
and timeliness. Regarding accuracy, if an application’s memory stream is irregu-
lar or unpredictable cache pollution can occur and increase the number of cache
accesses and, hence, energy consumption. Regarding timeliness, prefetch requests
have to be issued at the appropriate time in order to be effective. Otherwise data
could be prefetched too early and evicted before accessed from the application,
or prefetched too late so the memory latency cannot be completely tolerated.
Note that prefetching can only provide memory latency tolerance, whereas mul-
tithreading can hide both memory and functional units latency.

Several hardware-based data prefetching schemes for CPUs have been pro-
posed in past decades. The next-line [58] and the stride [77] prefetchers are com-
monly implemented in desktop CPUs as they perform well for typical CPU work-
loads and they require simple hardware. More sophisticated prefetching schemes
try to correlate recent miss addresses, such as the Markov prefetcher [100], whereas
other prefetchers try to correlate recent strides, like the distance prefetcher [102].
On the other hand, Nesbit et al. [114] show that the history information employed
by the previous prefetchers, that is typically stored in a table, can be kept more
efficiently in a new hardware structure called the Global History Buffer.

Classical CPU prefetching results in higher performance, but worse energy in
some cases due to unnecessary data being fetched on chip. With the advent of

CHAPTER 1. INTRODUCTION 19

General Purpose computing on GPUs (GPGPU), several authors have proposed
to use prefetching in GPUs with the main objective of saving energy. Sethia et
al. [135] proposed APOGEE, a prefetching mechanism able to dynamically detect
and adapt to the memory access patterns found in scientific codes that are run
on modern GPUs. APOGEE employs multi-thread miss address stream analysis,
instead of considering threads in isolation, to improve accuracy and timeliness in
highly threaded processors. The net effect is that fewer threads are required to
tolerate memory latency and thus sustain performance. Hence, APOGEE saves
energy by removing part of the thread contexts in the big and complex RF of a
GPU, and including instead the smaller and simpler prefetch tables.

Lee et al. [106] also proposed the use of hardware prefetching for GPGPU
applications. They show that conventional CPU prefetchers cannot be straight-
forwardly applied to GPGPU systems. Instead, they propose a stride based
prefetcher tailored to many-core architectures. This prefetcher is based on inter-
thread prefetching mechanisms and an adaptive throttling scheme to disable
prefetching when it is useless, significantly improving accuracy and reducing en-
ergy waste.

The prefetchers previously mentioned target general purpose applications run-
ning on CPUs or GPGPU systems. That is why they do not take into account
the specific issues with graphics workloads and the ubiquitous and unpredictable
texture fetches. Igehy et al. [93] proposed a prefetching architecture for texture
caches that is designed to accelerate the process of applying textures on triangles.
This texture prefetcher is thoroughly discussed in Chapter 3.

Decoupled Access/Execute

A Decoupled Access/Execute architecture [138] divides the program into two
independent instruction streams, one doing memory accesses and the other per-
forming computations. By decoupling memory accesses from computations, ac-
cess/execute architectures effectively prefetch data from memory much in advance
from the time it is required, thus allowing cache miss latency to overlap with use-
ful computations without causing stalls. While this can be viewed as a form of
data prefetching, it has a substantial advantage over other prefetching schemes,
because it relies on computed rather than predicted addresses, which translates
into a higher accuracy and a lower energy waste.

Despite the high potential of access/execute architectures to tolerate a long
memory latency at a moderate hardware cost, they have not been widely adopted
by current commercial CPUs because their effectiveness is greatly degraded when
the computation of an address has a data or control dependence on the execution
stream (this occurs, for instance, in pointer chasing codes). In such circumstances,
termed loss of decoupling events (LOD), the access stream is forced to stall in
order to synchronize with the execution stream. LODs force the access stream to
lose its timeliness (i.e. the prefetch distance), so that subsequent cache misses will
cause the execution stream to stall as well. Unfortunately, for general purpose

CHAPTER 1. INTRODUCTION 20

CPUs the frequency of LODs is quite significant in many cases, resulting in fairly
restricted performance gains.

Crago et al. [71, 70] propose the use of Decoupled Access/Execute architec-
tures to hide the memory latency in highly threaded workloads. Their scheme
is different from classical access/execute architectures as they run the multiple
instruction streams in just one core by using multiple thread contexts, instead
of having two separate processors for memory accesses and computations. Fur-
thermore, they propose several strategies to mitigate the effect of LODs in mul-
tithreaded applications. Overall, they show that decoupled access/execute is an
effective energy saving technique in many-core architectures as it requires simple
hardware and, in addition, the number of thread contexts required to keep the
functional units busy can be significantly reduced. It is worth noting that simi-
lar conclusions about the synergy of decoupling and multithreading were already
suggested in [122].

Talla et al. [141, 142] describe the benefits of Decoupled Access/Execute for
multimedia applications. They introduce the MediaBreeze architecture, a sys-
tem that decouples the useful/true computations from the overhead/supporting
instructions that are necessary to feed the SIMD execution units. The Media-
Brezze architecture includes hardware for efficient address generation, looping
and data reorganization. The proposal was evaluated on top of an out-of-order
CPU with SIMD extensions and the authors reported significant performance
improvements in media applications.

1.3.2 Bandwidth Saving Techniques

The rendering of 3D computer graphics requires the GPU to fetch big datasets
from main memory on a frame basis. Retrieving these massive amounts of data
is one of the main sources of energy consumption on a mobile GPU and thus
optimizing memory bandwidth usage is a primary concern in embedded graphics
processors. In this section we will review previous techniques to reduce the num-
ber of external memory accesses to the texture datasets and to the framebuffers.

Tile-Based Rendering

Desktop GPUs implement an Immediate-Mode Rendering (IMR) architecture [113].
In IMR, the geometry that describes an object is transformed in the vertex proces-
sors and immediately sent down the graphics pipeline for further pixel processing,
updating the framebuffer before processing the next object. If a subsequent ob-
ject is rendered on top of a previous one, the colors of the pixels are computed
again and overwritten in the framebuffer. This issue is commonly known as the
overdraw problem [56]: the colors of some pixels are computed and written mul-
tiple times into main memory due to multiple graphical objects being drawn over
the top of one another, resulting in a waste of bandwidth. The average num-
ber of times a pixel is written in a single frame is often referred as the depth
complexity [69].

CHAPTER 1. INTRODUCTION 21

Tile-Based Rendering (TBR) architectures [44] are designed to address the
overdraw. In TBR the screen is split into rectangular blocks of pixels called
tiles, and the frames are generated tile by tile. Tiles are small enough so the
portion of the framebuffer corresponding to a tile can be stored in local on-chip
memory, avoiding off-chip accesses to a large extent. Unlike IMR architectures,
transformed 2D triangles are not immediately rendered in the framebuffer, instead
they are stored into main memory in the Scene buffer [51]. Furthermore, 2D
triangles are sorted into tiles, so for each tile a triangle overlaps a pointer to that
triangle is stored. Once all the geometry for a given frame has been transformed
and sorted, the rendering starts tile by tile. Note that pixels are written just
once in main memory, as the tiles are generated first in the local on-chip memory
and copied to the corresponding region of the framebuffer only when they are
ready, i. e. when all the triangles for the given tile have been rendered. TBR
provides significant bandwidth savings for generating the framebuffer, however, it
requires the 2D triangles to be stored in memory and fetched back for rendering,
so it trades geometry bandwidth for pixel bandwidth. Antochi et al [52] report
significant bandwidth savings in low-power systems by using TBR. Although
IMR dominates the desktop GPU segment, TBR is more popular in the mobile
segment [9, 161, 162] as the geometry datasets of mobile workloads are smaller
and, hence, the extra cost of storing/fetching 2D geometry is usually less than
the bandwidth savings in the framebuffers.

Compression

Compression techniques can reduce both the memory footprint and the band-
width requirements of graphical workloads. In first place, hardware texture com-
pression was introduced by Knittel et al. [105] and Beers et al. [60]. The core idea
is to use lossy compression on the textures, and store the compressed version in
system memory. When accessing the texture during rendering, the compressed
texture is transferred over the bus, and decompressed on-the-fly as needed, thus
saving bandwidth.

Ström et al [140] propose iPackman, a texture compression scheme that tar-
gets mobile devices. iPackman has low-complexity, being amenable for hardware
implementation on embedded graphics processors. Furthermore, it achieves high
image fidelity and compression ratios of 4 bits per pixel (bpp). The OpenGL ES
3.0 API introduces support for texture compression by using the Ericsson Texture
Compression [151] (ETC2/EAC version) algorithm, which is based on iPackman.

On the other hand, the major mobile GPU manufacturers provide their vendor-
specific texture compression methods. ARM Mali supports the Adaptive Scalable
Texture Compression (ASTC) [119], a lossy compression algorithm that provides
a high degree of flexibility to trade image quality for bandwidth savings. ASTC
achieves bit rates ranging from 8 bpp to less than 1 bpp in very fine steps. Qual-
comm Adreno also supports texture compression by using the ATC [1] algorithm,
whereas Imagination PowerVR leverages PVRTC [74] and NVIDIA Tegra pro-
vides support for DXT compression [109, 123].

CHAPTER 1. INTRODUCTION 22

Besides texture compression, framebuffer compression can also provide signif-
icant bandwidth savings. The framebuffer consists of a set of 2D buffers required
for rendering such as the color buffer, that stores a RGBA color for each pixel in
the screen, or the depth buffer, that keeps a depth value for each pixel in order to
solve visibility. Framebuffer compression works in a similar way than texture com-
pression does, storing the buffers compressed in main memory, transferring the
data compressed over the bus, decompressing on-the-fly when reading and com-
pressing on-the-fly when writing to the framebuffer. Note that the color buffer
has to be uncompressed in order to be displayed on the screen, in case of using
framebuffer compression the display controller has to include the corresponding
color buffer decompression hardware.

Regarding IMR GPU architectures, Rasmusson et al. [128] propose both loss-
less and lossy compression algorithms for the color buffer. Hasselgren et al. [86]
introduce a depth buffer compression algorithm to save bandwidth in the depth
test. Regarding TBR architectures, ARM Frame Buffer Compression (AFBC) in-
troduces the compression of the tiles before being transferred from local on-chip
memory to system memory, achieving compression ratios of 50% with a lossless
algorithm. As for the depth buffer, Tile-Based architectures do not usually re-
quire to save and restore the depth values of the tiles. In OpenGL ES 2.0 the
driver can infer in some cases that the contents of the depth buffer does not need
to be preserved from frame to frame, whereas OpenGL ES 3.0 introduces the glIn-
validateFramebuffer [80] function call to explicitly indicate to the driver that the
depth buffer is not required to be saved/restored. Hence, TBR architectures can
completely avoid all the transfers to the external depth buffer in main memory.

Transaction Elimination

Transaction Elimination [57, 120] (TE) is a bandwidth saving technique for Tile-
Based GPU architectures introduced by ARM and implemented in the Mali
GPUs. With TE, the graphics hardware compares the current framebuffer with
the previously rendered frame and performs a partial update only to the particu-
lar parts of it that have been modified, thus significantly reducing the amount of
data transferred per frame to external memory. The comparison is done on a per
tile basis, using a Cyclic Redundancy Check signature to determine if the tile has
been modified. Tiles with the same signature are identical and eliminating them
has no impact in the resulting image quality. TE is highly effective for popular
graphical applications such as User Interfaces or casual games, since they usually
feature static 2D backgrounds and there are not many changes from frame to
frame. However, it is also effective for other graphical applications like 3D games
or video.

Multi-View and Multi-Frame Rendering

Stereoscopic and 3D displays require the generation of multiple views or images for
every single frame. Hasselgren et al. [87] propose a novel rasterization architecture

CHAPTER 1. INTRODUCTION 23

that renders each triangle to multiple views simultaneously, with the objective of
maximizing the hit rate in the texture caches and thus saving memory bandwidth.
When determining which view to rasterize next, the architecture employs an
efficiency metric that estimates which view is expected to get the most hits in the
texture cache. As the different views of the same frame are very similar, a better
utilization of the texture caches is achieved by generating the multiple images
in parallel instead of rendering the views sequentially. Instead of processing all
the triangles for a given view and then proceed to the next one, the proposed
architecture iterates all the views for each triangle to maximize texture locality.

NVIDIA Scalable Link Interface (SLI) [118] is a multi-GPU configuration that
offers increased rendering performance by dividing the workload across multiple
GPUs. The most common SLI configuration is known as Alternate Frame Ren-
dering (AFR). Under AFR the driver divides the workload by alternating GPUs
every frame. For example, on a system with two SLI-enabled GPUs, odd frames
would be rendered by GPU 1 whereas even frames would be rendered by GPU
2. The main target of AFR is to increase graphics performance by duplicating
hardware resources and increasing memory bandwidth, so power consumption is
also significantly increased. However, it is possible to save bandwidth and energy
in a multi-GPU system if the multiple graphics processors share a single memory
address space as suggested in [112], in that case part of the dataset employed for
rendering can be shared by the different GPUs.

1.3.3 Other Related Works

Mochocki et al [111] propose the use of Dynamic Voltage and Frequency Scaling
(DVFS) in mobile 3D graphics pipelines. Want et al. [147, 148] describe different
power gating strategies for graphics processors. Chu et al [61, 62, 88] propose
dynamic precision selection in the GPU shader cores, switching at runtime be-
tween fixed-point arithmetic —faster and more energy-efficient— and floating-
point arithmetic —better graphics quality.

As described in previous sections, the overdraw [56] is one of the main issues
in graphics processors as it results in a waste of bandwidth and energy. Hence,
different hardware-based techniques that try to address the overdraw in mobile
GPUs have been proposed. The ULP GeForce GPU in the NVIDIA Tegra SoC
features Early-Z rejection [115] to preemptly discard fragments that are known
to be occluded. When using Early-Z rejection, the depth test is performed before
the execution of the fragment shader to avoid computing the colors of non-visible
fragments. This scheme achieves maximum efficiency when the triangles are sent
to the GPU ordered from front to back. On the contrary, worst case happens
when triangles are sent ordered from back to front, as younger fragments always
overlap older fragments and, hence, they always pass the depth test and proceed
to the fragment shader.

Tile-Based architectures are designed to minimize the impact of the overdraw
since pixels are written just once into off-chip system memory due to the use of

CHAPTER 1. INTRODUCTION 24

local on-chip color buffers. However, the colors of some pixels are still computed
and written multiple times in the local on-chip memory. Ideally, the fragment
shader should be executed just once for each screen pixel on every frame to com-
pletely remove the overdraw 1. Some mobile GPUs include techniques to remove
re-executions of the fragment shader for the same screen pixel, in order to avoid
spending time and energy in shading fragments that are not going to contribute
to the final image. For example, ARM Mali GPUs implement Forward Pixel Kill
(FPK) [21]. In an FPK-enabled GPU, the threads that shade fragments are not
irrevocably committed to complete once they are launched. On the contrary, in-
flight threads can be terminated at any time if the hardware detects that a later
thread will write opaque data to the same pixel location. On the other hand,
Imagination Technologies PowerVR GPUs include hardware for Hidden Surface
Removal (HSR) [28]. With HSR all the geometry for a tile is processed and the
visibility is completely solved before shading any fragment. Once the closest-
to-the-observer fragment for each pixel in the tile has been found the fragment
shader computations take place and, hence, each pixel is shaded just once.

1.4 Thesis Overview and Contributions

The goal of this thesis is to propose novel and effective techniques that address
the issues in mobile GPU design, with the objective of improving the energy-
efficiency of embedded graphics processors while keeping complexity low. Our
main contributions are a decoupled access/execute-like architecture for the Frag-
ment Processors, a bandwidth saving technique called Parallel Frame Rendering
and a hardware-based memoization scheme that avoids redundant computations
and memory accesses. All these proposals apply to a conventional mobile GPU
architecture, and can be implemented on top of both Immediate-Mode and Tile-
Based GPUs. The following sections outline the problems we are trying to solve,
describe the approach we take to solve the problem and provide a comparison
with related work, highlighting the novel contributions of this thesis.

1.4.1 Mobile GPU Simulation Infrastructure

We have developed our custom mobile GPU simulation infrastructure, that we call
TEAPOT. To the best of our knowledge, TEAPOT is the first simulator tailored
towards the mobile segment, as none of the previous GPU simulators provide
support for running Android graphical applications that employ the OpenGL ES
API. TEAPOT consists on a set of tools for evaluating the performance, energy
consumption and image quality of mobile graphics processors. Its main target is
to drive the evaluation of energy saving techniques for mobile GPUs.

Regarding its features, TEAPOT provides full-system simulation of Android
applications. Furthermore, it includes a GPU timing simulator able to model

1In case transparent or translucent objects are included in the scene the optimum number
of executions of the fragment shader can be greater than one per pixel

CHAPTER 1. INTRODUCTION 25

both Tile-Based and Immediate-Mode rendering architectures, a power model for
mobile GPUs, and automatic image quality assessment by using several metrics.
TEAPOT is extensively described in Chapter 2. This infrastructure was presented
in a paper published in the proceedings of the 27th International Conference on
Supercomputing:

• “TEAPOT: A Toolset for Evaluating Performance, Power and Image Qual-
ity on Mobile Graphics Systems”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Conference on Supercomputing, 2013.

The development of tools for evaluating the GPU has attracted the attention
of the architectural community the last few years. Recent simulators, such as
GPGPUSim [59] or Barra [65], model General Purpose GPU (GPGPU) architec-
tures. These tools support CUDA [116] or OpenCL [172], but they do not sup-
port graphics APIs such as OpenGL [97]. GPGPUSim includes a power model,
GPUWattch [170], which is also based on McPAT as in TEAPOT. Both power
models are similar, but GPUWattch focuses on GPGPU specific features whereas
TEAPOT models more specialized graphics hardware. For instance, GPGPUSim
models FP units that can be combined to execute 1 double-precision (DP) or 2
single-precision (SP) operations, but TEAPOT relies on SP units since DP is
common in scientific workloads but not in games. On the contrary, TEAPOT
models specialized Texture Sampling units since texture fetching instructions are
frequent in graphical workloads.

ATTILA [113] provides an OpenGL framework for collecting traces of desk-
top games and a cycle-accurate GPU simulator. A Direct3D [171] driver is also
included in the last versions. Although ATTILA provides full support for desk-
top games, it cannot run applications for smartphones. Furthermore, its GPU
simulator models a desktop-like Immediate-Mode Renderer, whereas Tile-Based
Rendering is much more popular in smartphones. Finally, ATTILA does not in-
clude a power model. Qsilver [136] can also collect traces from desktop OpenGL
games and it models a desktop-like NVIDIA GPU, including a power model.
GRAAL [101] also provides OpenGL support and a power model for GPUs. Fur-
thermore, it models a low-power Tile-Based Rendering architecture. However,
OpenGL ES support is not available in any of these simulators so they cannot
run mobile applications for smartphones and tablets. Unlike the aforementioned
tools, TEAPOT provides image quality metrics for automatic image quality as-
sessment. In addition, TEAPOT supports full-system GPU simulation, being
able to profile multiple applications accessing the GPU concurrently.

1.4.2 The Decoupled Access/Execute Fragment Processor

Extreme multithreading is the solution employed by desktop GPUs to hide the
memory latency, as both graphical and GPGPU workloads exhibit a high de-
gree of parallelism. However, aggressive multithreading requires a huge Register

CHAPTER 1. INTRODUCTION 26

File (RF) to keep the registers of all the parallel threads. Bound by severe en-
ergy constraints, mobile GPUs cannot accommodate such a big RF in their tiny
power budgets. Hence, memory latency cannot be completely tolerated just by
using multithreading due to the smaller number of parallel threads employed in
embedded graphics processors.

In first place we evaluate the effects of aggressive multithreading in a mo-
bile GPU, analyzing its impact on performance and energy consumption. As
the results show that multithreading is effective but not energy-efficient, due to
the big size of the RF, we try to reduce the number of hardware threads by
combining multithreading with other memory latency tolerance techniques such
as prefetching. We evaluate several state-of-the-art CPU, GPU and GPGPU
hardware prefetchers on a mobile GPU running graphics workloads. The results
obtained in our cycle-accurate timing simulator indicate that these prefetchers ob-
tain non-negligible performance improvements, but they perform far from ideal
as texture accesses are highly unpredictable.

In second place, we propose a decoupled access/execute-like architecture for
the fragment processors of a mobile GPU. For GPU fragment programs the mem-
ory access patterns are typically free of the dependences that cause Loss of De-
coupling (LOD) events. This makes the access/execute paradigm a perfect fit for
the requirements of a low-power high-performance GPU: with few extra hard-
ware requirements it can reduce drastically the number of cache miss stalls. In
our scheme, all the necessary data for processing the fragments is prefetched into
the caches while the fragments are waiting to be dispatched to the GPU cores.
By the time a fragment is issued all the data required to process the fragment
is hopefully available in the caches, significantly improving the hit rates in the
shader cores.

In third place, we improve our base system by introducing remote L1 cache
accesses to exploit the high degree of data sharing among fragment processors.
When the system detects that a cache line that is going to be prefetched in the L1
cache of a fragment processor has been recently prefetched in another L1 cache,
the memory request is redirected to this cache instead of accessing the bigger L2
cache. This optimization saves bandwidth to the L2 cache and saves additional
energy by replacing accesses to the bigger L2 cache by accesses to the smaller
L1 caches. The end design is able to achieve similar performance to a heavily-
threaded GPU by consuming only a fraction of its energy. More specifically, we
evaluate our scheme on top of a state-of-the-art mobile GPU by using several
commercial Android games, and show that the end design is able to achieve 97%
of the performance of a massively multithreaded GPU, while providing 20.5%
energy savings. This work has been published in the proceedings of the 39th
International Symposium on Computer Architecture (ISCA):

• “Boosting Mobile GPU Performance with a Decoupled Access/Execute
Fragment Processor”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Symposium on Computer Architecture, 2012.

CHAPTER 1. INTRODUCTION 27

Unlike most of the prefetching schemes described in section 1.3.1, our work is
focused on graphics workloads instead of general purpose applications. Further-
more, our scheme employs computed addresses rather than predicted addresses
to significantly improve accuracy, as in graphics workloads the memory access
patterns are typically free of dependences. The work that is closest to ours is the
prefetching architecture for texture caches proposed by Igehy et al. [93]. How-
ever, our work is different in several ways. First, our system is built on top of a
modern mobile GPU pipeline instead of a fixed-function pipeline, so our scheme
supports multicore GPUs, programmable shaders and multiple texture fetches
per fragment. Second, we take advantage of the Early-Z Test to only prefetch
data for visible fragments, increasing the energy efficiency. Third, our proposal
allows for remote L1 requests to exploit the high degree of data sharing among
fragment processors, providing significant energy benefits.

The efforts to reduce register file power on a GPU include the register file
cache and the two-level warp scheduler proposed by Gebhart et al. [79], and the
hybrid SRAM-DRAM memory design presented by Yu et al. [169]. We show
that there is no real necessity for high degree of multithreading and as such
for large register files, as multithreading can be combined with other techniques
to hide the memory latency in a more energy-efficient way. On the other hand,
the abovementioned research is focused on GPGPU workloads, whereas our study
targets graphical applications. General purpose codes employ complex addressing
modes that can cause loss of decoupling events, reducing the effectiveness of
decoupled access/execute architectures. However we believe that mobile phones
are not the ideal platform for scientific applications, so our research is focused on
more typical workloads for smartphones, such as games.

Recently, research in the field of mobile GPUs has emerged. Akenine-Moller
and Strom [47] propose a rasterization architecture for mobile devices that em-
ploys a novel texture compression system to reduce memory bandwidth usage by
53%. Our work is also focused on reducing bandwidth, but we achieve bandwidth
savings by exploiting inter-core data sharing.

Tarjan et al. [143] propose the sharing tracker, a simplified directory employed
to capture inter-core reusage among the private non-coherent caches of a GPU.
Our decoupled system is also able to exploit data sharing, but at a smaller energy
cost by using a much smaller hardware structure, the prefetch queue. On the other
hand, several tiled-cache approaches have been proposed. Reactive NUCA [85] in-
troduces fixed-center clusters and rotational interleaving on a distributed shared
L2 cache, these novel mechanisms provide high aggregate capacity while exploit-
ing fast nearest-neighbour communication. NoC-aware cache design [43] intro-
duces a first-touch data placement policy, a migration policy that moves each
block to its most frequent sharer and a replacement policy that is biased towards
retaining shared blocks and replacing private ones. DAPSCO [78] consists on a
distance-aware cache organization that minimizes the average distance travelled
by cache requests. In our system the L2 cache is centralized instead of distributed,
since the number of cores in a mobile GPU is much smaller than what is assumed
in a many-core system due to power constraints. Furthermore, the tiled-cached

CHAPTER 1. INTRODUCTION 28

systems use the hardware coherence mechanisms (directory) to detect data shar-
ing among the first level caches, whereas we employ the prefetch queue to detect
data reusage among non-coherent L1 caches at a much smaller energy budget
(hardware coherent caches are considered too expensive for GPUs [143]).

Crago et al. [71] present OUTRIDER, a decoupled system for throughput-
oriented processors. OUTRIDER is similar to our proposal since it also employs
a decoupled access/execute architecture to hide the memory latency with fewer
threads. However, our system reduces hardware complexity, does not require
compiler assistance to generate the instruction streams and it is able to detect
inter-core data sharing. On the other hand, OUTRIDER offers better tolerance to
LODs by using multiple memory access streams, so it is best suited for scientific
applications whereas our system is best suited for graphical workloads.

1.4.3 Parallel Frame Rendering

A large fraction of a mobile GPU energy consumption can be attributed to the
external off-chip memory accesses to system RAM. As noted by [87, 119], most of
these accesses fetch textures. Our numbers support this claim, as we found that
62% of the memory accesses can be directly attributed to texture data on average
in our set of commercial Android workloads. Focusing on the texture dataset of
consecutive frames, we realized that there exists a large degree of reuse across
frames. Hence, the same textures are fetched frame after frame, but the GPU
cannot exploit these frame-to-frame reuses due to the huge size of the texture
dataset.

Firstly, we present Parallel Frame Rendering (PFR), a technique to improve
texture locality on a mobile GPU. Under PFR, two consecutive frames are pro-
cessed in parallel by devoting half of the graphics hardware resources to render
each frame. By using this organization, each texture is read from memory once
and used for rendering two successive frames. Therefore, textures are fetched
from memory just once every two frames instead of being fetched on a frame
basis as in conventional GPUs. The results show that PFR achieves 23.8% band-
width savings on average for a set of Android games, providing 14% speedup and
20.5% energy savings.

Secondly, we evaluate the effects of PFR in responsiveness. A valid concern
for PFR is that since it devotes half of the resources to render each frame, the
time required to render a frame is longer. This is an unfortunate side-effect as
it ultimately leads to a less responsive system from the end-user’s perspective.
Nevertheless, we show that the increase in input lag is acceptable for many mobile
applications. Furthermore, we propose a new version of PFR reactive to user
inputs that is able to maintain the same levels of responsiveness than conventional
mobile GPUs. The reactive versions of PFR monitor user inputs so two frames
are processed in parallel just when the user is not interacting with the device,
which accounts for most of the time, according to our user interaction analysis.
As soon as the user provides inputs the system reverts to conventional rendering,

CHAPTER 1. INTRODUCTION 29

employing all the GPU resources to render just one frame in order to achieve high
responsiveness. In addition, we also explore the possibility of rendering more than
2 frames in parallel. The reactive version of PFR achieves high responsiveness
while it provides 23.8% bandwidth savings, achieving 12% speedup and 20.1%
energy savings on average. This work has been published in the proceedings
of the 22nd international conference on Parallel Architectures and Compilation
Techniques (PACT):

• “Parallel Frame Rendering: Trading Responsiveness for Energy on a Mobile
GPU”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Conference on Parallel Architectures and Compilation Tech-
niques, 2013.

Although it might appear that PFR is similar in concept to the NVIDIA AFR
paradigm [118] mentioned in Section 1.3.2, our approach clearly differs from the
AFR, both in its goals and its methods: while AFR aims at increasing perfor-
mance and frame rate by coordinating multiple independent GPUs with separate
address spaces to maximize bandwidth, PFR pursues reducing energy by exploit-
ing inter-frame temporal locality through splitting the computation resources of
a single GPU with a shared last level cache and synchronizing memory accesses
of consecutive frames. To the best of our knowledge, PFR is the first multi-frame
rendering technique that targets energy savings instead of performance improve-
ments.

On the other hand, Hasselgren et al. [87] propose a bandwidth saving tech-
nique for systems with stereoscopic displays. Since multiple views of the same
frame have to be generated for a 3D display, the authors propose to compute
the different views concurrently to improve texture cache hit ratio by using a
novel rasterization architecture. Although the objective is the same than in our
technique, i. e. saving memory bandwidth, the implementation is significantly
different since PFR splits the graphics hardware in multiple clusters, but each
cluster is still a conventional mobile GPU that implements a Tile-Based Render-
ing architecture. Furthermore, PFR is not limited to 3D displays and it achieves
bandwidth savings on smartphones with 2D screens. Note that both techniques
can be combined in stereoscopic systems: PFR can exploit inter-frame texture
similarity by processing consecutive frames in parallel, whereas each GPU clus-
ter can employ the technique described in [87] to maximize intra-frame texture
locality.

Our approach is orthogonal to a wide range of memory bandwidth saving tech-
niques for mobile GPUs, such as texture compression [140], texture caching [83],
color buffer compression [128], Tile-Based Rendering [52] or depth buffer com-
pression [86].

CHAPTER 1. INTRODUCTION 30

1.4.4 Eliminating Redundant Fragment Shader Executions

Graphical applications for mobile devices tend to exhibit a large degree of scene
replication across frames. Our numbers show that, on average, more than 40%
of the fragments computed in a given frame were previously computed in the
frame before it. Recent work attempts to exploit this inter-frame locality in or-
der to save memory bandwidth and improve overall energy efficiency, such as
the ARM’s Transaction Elimination [57]. Removing all these redundant compu-
tations and memory accesses would provide significant performance and energy
improvements.

In first place, we provide a detailed analysis on the fragment redundancy that
exists across frames. We analyze the locality and the complexity of redundant
fragments, and conclude that a significant percentage of the redundant fragment
shader executions could be avoided by using a simple memoization scheme.

In second place, we propose a task-level hardware-based memoization scheme
that, when architected on top of Parallel Frame Rendering, is able to improve
energy-efficiency by 12%, while providing 15% speedup on average. Our mem-
oization scheme keeps a hardware structure that computes the signature of all
the inputs to a task and caches the value of the corresponding fragments. Sub-
sequent computations form the signature and check against the signatures of the
memoized fragments. Hits in the hardware structure result in the removal of all
the relevant fragment computations and the corresponding memory accesses.

In third place, we analyze the effects on image quality of using imperfect hash
functions to compute the signatures of the fragments, which inevitably leads to
collisions in the hardware structure, i. e. fragments that are incorrectly identi-
fied as redundant and get a wrong color. We compare the images generated by a
conventional GPU with the images generated by a GPU that includes our mem-
oization system, employing image quality metrics that are based on the human
visual system and manually confirming the results. The numbers show that even
small signatures of just 32 bits are able to achieve high image fidelity. This work
has been published in the proceedings of the 41st International Symposium on
Computer Architecture (ISCA):

• “Eliminating Redundant Fragment Shader Executions on a Mobile GPU
via Hardware Memoization”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Symposium on Computer Architecture, 2014.

Memoization has been subject of research for several decades. A typical prob-
lem faced by conventional memoization is to guarantee referential transparency,
i. e. that the same set of input values is always going to produce the same output
result. The main difficulty here arises from the fact that the memoized instruction
blocks must not depend on global memory data that is subject to changes between
executions, and they do not produce side-effects. Since it is difficult to track these
global changes at runtime, existing hardware memoization approaches apply to

CHAPTER 1. INTRODUCTION 31

single instructions or blocks of instructions [139, 64, 66, 82, 49, 50, 91, 145],
whereas function level memoization has only been exploited in software based
solutions [132, 84, 110, 168]. Our memoization scheme is different as it is func-
tion level and hardware based, since our work is focused on GPUs and graphical
applications where it is easier to track changes to global data and no mutable
state or side-effects exist.

Exploiting the high degree of redundancy in graphical applications has at-
tracted the attention of the architectural community in recent years. ARMs
Transaction Elimination [57] performs a per-tile comparison of consecutive frames
to avoid transferring redundant tiles to main memory. Our work is also focused on
exploiting redundacy in GPUs, but besides removing redundant memory accesses
our system also avoids redundant computations.

Liktor et al. [108] propose the use of a software managed cache, implemented in
GPU local memory, to memoize redundant colors for stochastic rasterization [46].
Our system is different since it is hardware managed and, hence, completely trans-
parent to the programmer. Furthermore, our scheme does not require stochastic
rasterization, being able to exploit inter-frame redundacy on top of the conven-
tional rasterization algorithm implemented on current mobile GPUs.

Tseng et al. [144] propose the data-triggered thread programming model to
remove redundant computations in general purspose environments. Our work
is focused on graphical applications and our hardware memoization system is
automatically able to remove a significant percentage of the redundancy without
programmer intervention.

Alvarez et al. [173] propose the use of fuzzy memoization at the instruction
level for multimedia applications to improve performance and power consumption
at the cost of small precision losses in computation. In [50] they further extended
tolerant reuse to regions of instructions. Their technique requires compiler sup-
port and ISA extensions to identify region boundaries and to statically select
regions with redundancy potential. Our approach differs from theirs because we
focus on mobile GPUs instead of CPUs, we add PFR to improve reuse distance,
and we do not require ISA extensions or compiler support because we consider
all fragment shaders without exception, and do not require boundaries since the
whole shader is skipped or reexecuted.

1.5 Thesis Structure

The rest of this document is organized as follows:

Chapter 2 describes the evaluation methodology. First, we present our mo-
bile GPU simulation infrastructure and the assumed baseline GPU architecture.
Second, we describe the set of Android workloads employed to evaluate our pro-
posals. Finally, we provide the main architectural parameters that were used for
the experiments.

CHAPTER 1. INTRODUCTION 32

Chapter 3 provides an evaluation of several memory latency tolerance tech-
niques, such as multithreading and prefetching, in the context of a mobile graphics
processor. Furthermore, it introduces our decoupled access/execute-like architec-
ture for the fragment processors of an embedded GPU.

Chapter 4 describes our bandwidth saving technique called Parallel Frame
Rendering (PFR). We first provide an analysis of the memory bandwidth usage
on several commercial Android games. Next we introduce PFR, a technique that
renders multiple frames in parallel to maximize texture locality and minimize
memory bandwidth usage. We also provide a discussion of the impact of PFR
in input lag and responsiveness. A study of user interaction in mobile graphics
workloads is included in this chapter, the result of this study is the reactive
version of PFR that is able to adapt to the amount of input provided by the user.

Chapter 5 proposes the use of hardware memoization to remove redundant
computations and memory accesses on a mobile GPU. Firstly, we provide an
analysis of the fragment redundancy in commercial Android games. Secondly,
we describe our task-level hardware-based memoization system for mobile GPUs.
This chapter includes a complete evaluation of our memoization system, including
performance and energy estimations, but also a complete analysis of the effects
on image quality.

Chapter 6 outlines some of the future steps and open research areas and finally
summarizes the main conclusions of this thesis.

CHAPTER 1. INTRODUCTION 33

CHAPTER 1. INTRODUCTION 34

Chapter 2

Experimental Environment

This chapter presents the simulation infrastructure developed for estimating per-
formance and energy consumption of an embedded graphics processor, a brief
description of the Android applications selected as our set of workloads, and an
overview of the main architectural parameters used for the experiments.

2.1 Simulation Infrastructure

GPU simulators typically employed in the architecture community [59, 65, 113,
136, 146] are mainly focused on accurately modeling desktop-like GPUs. Unfor-
tunately, these simulators are not tailored towards the mobile segment. In fact,
to the best of our knowledge, none of them support the OpenGL ES API [94],
which means that they cannot run smartphone graphical applications. Further-
more, most of them do not provide a power model. This is an important impedi-
ment, as all of the mobile segment devices are battery operated and thus energy
consumption is a key design aspect as described in section 1.2.

As none of the prior GPU simulators are able to either run mobile software
or model low-power graphics hardware, we have developed our own mobile GPU
simulation infrastructure that we call TEAPOT. TEAPOT is a toolset for evalu-
ating the performance, energy consumption and image quality of mobile graphics
processors. TEAPOT provides full-system GPU simulation of Android appli-
cations. It includes a cycle-accurate GPU simulator, a power model for mobile
GPUs, based on McPAT [107], and automatic image quality assessment using the
models presented in [149].

In terms of the GPU microarchitecture, TEAPOT models both Tile-Based
Rendering (TBR) [165] and Immediate-Mode Rendering (IMR) [113]. While IMR
is more popular for desktop GPUs, for GPUs targeting energy efficiency TBR
seems to be the design of choice [9, 161, 162]. Prior GPU simulators only focused
on the IMR approach, which is significantly different from TBR both in terms of
performance and power as it will be shown in section 2.1.3.

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 35

FramesFrames

FramesFrames
Mobile Applications

Android 4.3

Android Emulator
Virtual GPU

GPU Driver

OpenGL ES Trace
Generator

OpenGL ES Trace
(GLSL shaders, geometry,

textures...)

GPU Functional Simulator
Gallium3D softpipe driver

GPU Instruction and
Memory Trace

Frames

Frames

Check!

Cycle Accurate
Timing GPU Simulator

FramesFramesFrames

Check!

GPU Power Model
McPAT

Image Quality
AssessmentEnergy Statistics Timing Statistics Image Quality Statistics

Tools unmodified

Tools adapted

New tools

Generated files

Application level

Driver level

Hardware level

Figure 2.1: Overview of the mobile GPU simulation infrastructure.

Figure 2.1 illustrates the overall infrastructure. TEAPOT leverages existing
tools (e.g, McPAT [107] or Gallium3D [12]) that have been coupled with our GPU
models and adapted for the low-power segment. The goal of TEAPOT is to drive
the evaluation of new energy saving techniques for low-power graphics.

TEAPOT is able to run and profile unmodified commercial Android appli-
cations. We have adapted the Gallium3D driver in order to profile OpenGL ES
commands and collect a complete GPU instruction and memory trace. This trace
is then fed to our cycle-accurate GPU simulator with which we estimate the power
and performance for the given application.

Finally, TEAPOT provides several image quality metrics, based on per-pixel
errors or based on the human visual perception system. These metrics are useful
when evaluating aggressive energy saving techniques that trade image quality
for energy such as, for instance, lossy texture compression. The next sections
illustrate the workflow of the simulation infrastructure and provide more insights
into the components of TEAPOT.

2.1.1 Application Level

TEAPOT uses the Android Emulator available in the Android SDK [3] for run-
ning mobile applications on a desktop computer. The Android Emulator is based
on QEMU [29] and supports GPU virtualization [40]. Hardware acceleration
is thus available for the guest Operating System running inside the emulator,
Android in that case. When enabling GPU virtualization, the OpenGL ES com-
mands issued by the applications are redirected to the GPU driver of the desktop
machine. Since OpenGL ES is hardware accelerated, state-of-the-art 3D games
run at real-time frame rates on the emulator. This also simplifies the GPU pro-
filing since the OpenGL ES commands are not processed inside the emulator but

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 36

they are redirected to the desktop GPU driver and, hence, they are completely
visible to the host system.

The OpenGL ES trace generator component captures the OpenGL ES com-
mand stream generated by the Android applications. It saves the GPU commands
in a trace file, and redirects them to the appropriate GPU driver. It consists on
a library interposed between the Android Emulator and the desktop GPU driver
that contains replacements for all the functions in the OpenGL ES 1.1/2.0 APIs,
so when a graphical application calls some OpenGL ES function, the one in the
trace generator is selected instead of the one in the GPU driver. Hence the
OpenGL ES trace generator is completely transparent for the emulator and it
just causes a small frame rate decrease due to the time necessary for logging and
redirecting the GPU commands. Note that the frames generated by the GPU
of the desktop system are saved in order to verify that the GPU functional and
timing simulators generate the same output than the real hardware.

The OpenGL ES trace file contains the GLSL vertex and fragment shaders,
i. e. the high level code executed by the GPU, and all the data employed
for rendering including textures, geometry and state information. Therefore,
it contains all the necessary data for reproducing the OpenGL ES command
stream. Furthermore, the thread identifier is stored in the trace together with
each OpenGL ES command, so the cycle-accurate simulator can report per-thread
statistics. Note that the OpenGL ES trace generator captures commands not from
just one application but from all the Android graphical applications concurrently
using the GPU, including the SurfaceFlinger component of the Android OS that
performs image composition (see section 1.1.2), so TEAPOT provides full-system
GPU simulation.

2.1.2 Driver Level

The Gallium3D [12] driver provides GPU functional emulation in TEAPOT. Gal-
lium3D is an infrastructure for developing GPU drivers. It includes several front-
ends for different graphics APIs, including OpenGL ES, and multiple back-ends
for distinct GPU architectures. A modified version of Gallium3D is employed for
executing the commands stored in the OpenGL ES trace file. A software-based
back-end is selected for rendering since it can be easily instrumented in order to
get a complete GPU instruction and memory trace.

Gallium3D translates the high level GLSL shaders into an intermediate as-
sembly code, TGSI [37]. The software back-end of Gallium3D, named softpipe,
consists of an emulator for this TGSI assembly language. By instrumenting the
TGSI emulator all the instructions executed by the GPU and all the memory
addresses referenced are collected and stored in a GPU trace file. Note that a
software renderer is different from real hardware, so special care is taken in order
to trace just the instructions that would be executed in the real GPU, i. e. the
instructions in the vertex and fragment programs, and the memory requests that
would be issued in a real GPU, i. e. memory accesses to read/write geometry,

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 37

Raster Unit

Fragment
Processor

Geometry Unit

GPU
command

Command
Processor

Memory
Controller

Vertex
Fetcher

L2
Cache

Vertex
Cache

 Vertex
Processor

Primitive
Assembly

Memory

Programmable Stage

Fixed-Function Stage

RasterizerEarly
Depth Test

Z-CachePixel
Cache

Texture
Cache

ALU
Load/
Store

Blending

Figure 2.2: Immediate Mode Rendering architecture modeled by the GPU timing
simulator.

textures and the framebuffers. On the other hand, off-screen rendering is em-
ployed so the frames are written into an image file instead of being displayed on
the screen. These frames are compared with the ones generated by the graphics
hardware to verify the correctness of the functional emulator.

2.1.3 Hardware Level

TEAPOT includes a cycle-accurate simulator for estimating the GPU execution
time taking as input the instruction and memory traces generated by Gallium3D.
GPU energy estimations are also provided by using a modified version of McPAT.
Finally, the image quality assessment module estimates the visual quality of the
output frames.

Baseline Architecture

Our GPU simulator is able to model low-power GPUs based on both IMR and
TBR. The IMR architecture implemented in TEAPOT is illustrated in Figure 2.2.
This pipeline is based on the architecture of the ULP GeForce GPU included
in the NVIDIA Tegra SoC [115] and it works as follows. First, the Command
Processor receives a command from the CPU and it sets the appropriate control
signals so the input vertex stream is processed through the pipeline. Next, the
Geometry Unit converts the input world-space vertices into a set of transformed
and shaded 2D screen-space triangles. Finally, the Raster Unit computes the color
of the pixels overlapped by the triangles. This architecture is called “Immediate
Mode” because once a triangle has been transformed it is immediately sent down
the graphics pipeline for further pixel processing. The main problem of this
architecture is overdraw : the colors of some pixels are written multiple times into
memory, wasting bandwidth, because of pixels from younger triangles replacing
pixels from previously processed triangles.

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 38

Raster Unit

Fragment
Processor

Geometry Unit

GPU
command

Command
Processor

Memory
Controller

Vertex
Fetcher

L2
Cache

Vertex
Cache

 Vertex
Processor

Primitive
Assembly

Tile
Cache

Polygon
List

Builder

Tile
Scheduler

Tiling
Engine

Memory

Programmable Stage

Fixed-Function Stage

RasterizerEarly
Depth Test

Z-BufferColor
Buffer

Texture
Cache

ALU
Load/
Store

Blending

Figure 2.3: Tile-Based Rendering architecture modeled by the GPU timing simula-
tor.

On the other hand, the timing simulator can be configured to model a TBR
architecture as the one illustrated in Figure 2.3, that is based on the pipeline of
the ARM Mali 400MP [55]. In TBR the screen space is divided into tiles, where
a tile is a rectangular block of pixels. Transformed triangles are not immediately
sent to the Raster Unit. Instead, the Tiling Engine stores the triangles in memory
and sorts them into tiles, so that for each tile that a triangle overlaps a pointer
to that triangle is stored. Once all the geometry for the frame has been fetched,
transformed and sorted, the rendering starts. Just one tile is processed at a time
in each Raster Unit, so all the pixels for the tile can be stored in local on-chip
memory and they are transferred just once to the off-chip Color Buffer in system
memory when the tile is ready, avoiding the overdraw. However, transformed
triangles have to be stored in memory and fetched back for rendering, so there
is a trade-off between memory traffic for geometry and memory traffic for pixels.
TBR rendering is becoming increasingly popular in the mobile segment. The
ARM Mali [9], the Qualcomm Adreno [162] or the Imagination Technologies
PowerVR [161] are examples of mobile GPUs that employ some form of TBR.

The IMR pipeline consists of two main components: the Geometry Unit and
the Raster Unit. The TBR pipeline also includes these two units but it adds
another component in between: the Tiling Engine. These pipelines work as fol-
lows. The Geometry Unit is the front-end of the GPU in both architectures, IMR
and TBR, and it is the first component that is triggered when a new rendering
command is received. In the Geometry Unit the Vertex Fetcher reads first the
input vertices from memory. Next, the vertices are transformed and shaded in
the Vertex Processors by applying the programmed by the user Vertex Program.
Finally, the transformed vertices are assembled into triangles in the Primitive As-
sembly stage, where non-visible triangles are culled and partially visible triangles
are clipped. In case of an IMR architecture, triangles are immediately sent to
the Raster Unit for further pixel processing. On the contrary, in case of a TBR
architecture triangles are sorted into tiles in the Tiling Engine.

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 39

The Tiling Engine provides support to TBR. First, the Polygon List Builder
saves the 2D transformed triangles to the Scene Buffer [52] in system memory.
Furthermore, triangles are sorted into tiles so for each tile a triangle overlaps,
a pointer to that triangle is stored in memory. After all the geometry for the
frame has been sorted, each tile contains a list of 2D triangles that overlap that
particular tile. Tiles are then processed in sequence by the Tile Scheduler : all the
triangles overlapping a tile are fetched from memory and dispatched to a Raster
Unit.

The Raster Unit is the back-end of the GPU in both architectures, IMR and
TBR, and its main task is to compute the colors of the pixels overlapped by
the input 2D triangles. Initially, the Rasterizer converts the 2D triangles into
fragments, where a fragment is all the state that is necessary to compute the
color of a pixel, such as the screen coordinates, texture coordinates or even user
defined application specific attributes. The per-fragment attributes are computed
by interpolation of the per-vertex attributes of the three vertices of the triangle.
Next, fragments are tested for visibility in the Early Depth Test stage. Fragments
that are occluded by other fragments previously processed are discarded in this
stage, since they are not going to contribute to the final image. On the contrary,
visible fragments proceed to the Fragment Processors, where they are shaded
based on the programmed by the user Fragment Program. Finally, the Blending
unit merges the colors of the fragments with the colors already computed in the
Color Buffer by applying the corresponding blending equation [10].

Regarding the memory hierarchy, the IMR architecture employs several first
level caches for storing vertices (Vertex cache), depth values (Z-cache), colors
(Pixel cache) and textures (Texture cache). These caches are connected through
a bus to a second level shared cache. On the other hand, the TBR architecture
includes caches for storing vertices (Vertex cache), triangles (Tile cache) and
textures (Texture cache), whereas it employs local on-chip memories for storing
part of the Color Buffer and the Z-Buffer. The Color Buffer is the region of main
memory that stores the colors of the screen pixels, whereas the Z-Buffer stores a
depth value for each pixel, which is used for resolving visibility. In TBR, local
on-chip memories are employed for storing the portion of the Color Buffer and the
Z-Buffer corresponding to a tile. The local on-chip buffers are directly transferred
to system memory when all the triangles for the tile have been rendered, they are
not cached in the L2.

Fragment Processor Microarchitecture

Two of the GPU pipeline stages, the Vertex Processors and the Fragment Pro-
cessors, are fully-programmable in-order vector processors whereas the rest are
fixed-function stages. Figure 2.4 shows the microarchitecture of the Fragment
Processor. It consists of a fairly simple 4-stage in-order pipeline. The ISA im-
plemented by the Fragment Processor is the TGSI (Tungsten Graphics Shader
Infrastructure) [37], the intermediate language employed for describing shaders
in the Gallium3D driver. Despite being an intermediate assembly, there is very

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 40

Fragment
Processor

SIMD Thread
Scheduler

Instruction
Cache

Input
Reg. File

Constant
Reg. File

Output
Reg. File

Temporal
Reg. File

Operand buffering
& routing

SIMD
ALU

SFU

TEX
UNIT

Texture
Cache

Instruction Fetch Instruction Decode Execution WriteBack

Early
Depth
Test Blending

Visible Fragments

Fragment Colors

Figure 2.4: Fragment Processor microarchitecture. Vertex processors are similar
but they do not include texture units and they take vertices as input instead of
fragments.

strong (generally one-to-one) correspondence with the native GPU assembly in-
structions. Most of the TGSI instructions are vectorial and they operate on
vectors of 4 floating point components, as 4-wide vectors are typically employed
in graphics. For example, RGBA colors are encoded in 4-wide vectors by using a
floating point component to store each channel: reg, green, blue and alpha.

A form of SMT is employed to hide the memory latency by interleaving the
execution of several SIMD threads (or warps in NVIDIA terminology [68]). A
SIMD thread is a group of threads executed in lockstep mode, that is the same
instruction is executed by all the threads but each thread operates on a different
fragment. The SIMD width of the pipeline is four, so each SIMD thread consists
of four threads that operate on a different fragment, and the input fragments are
packed in quad fragments before being dispatched to the processors. Note that
individual threads can execute vectorial instructions, for example to multiply two
colors that are represented as floating point vectors of four components. Hence,
the pipeline requires fetching and decoding just one instruction to issue up to 16
scalar operations in parallel: each SIMD thread consists of four threads and each
individual thread executes four scalar operations.

Fragments that pass the Depth Test are packed in groups of 4 fragments or
quads. A quad fragment is processed by a SIMD thread, so each thread in the
SIMD thread processes one of the fragments in the quad. A quad fragment waits
at the input of the Fragment Processor until a SIMD thread context is available.
Once a SIMD thread is free, the per-fragment attributes of the 4 fragments in
the quad are copied in the Input Register File and the fragment program starts
execution: the PC of the SIMD thread context is updated to point to the first
instruction of the corresponding fragment program.

In the first pipeline stage, Instruction Fetch, the instructions of the fragment
program are read from memory by using an Instruction Cache to boost the pro-
cess. In first place, the SIMD thread scheduler determines from which SIMD

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 41

thread to fetch an instruction by using a Round Robin policy. Next, the PC of
the selected SIMD thread is employed to send a request to the Instruction Cache.
Once the instruction is fetched the PC is updated to point to the next instruction.
Note that each SIMD thread has its own PC, but the 4 threads in the same SIMD
thread share the PC so all of them execute the same instruction on a different
fragment.

In the next pipeline stage, Instruction Decode, the source operands are fetched
from the main register file. Each thread has available a set of 16 input registers
for storing per-fragment attributes such as the screen coordinates or the texture
coordinates, a set of 12 temporal registers for intermediate computations, and a
set of 8 output registers for storing the result of the fragment program. Further-
more, a set of 96 constant registers is shared by all the threads, constant registers
contain global state information such as the number of lights enabled. All these
registers are vectorial and consist of 16 bytes split in 4 floating point components.
One thread has 36 registers (16 input, 12 temporal, 8 output), so it requires 576
bytes of storage and, hence, a SIMD thread context requires 2304 bytes in the
main register file. The register file is organized in 4 banks, each one having the
registers of one of the threads in a SIMD thread. Furthermore, each bank has 3
read ports and 1 write port. By using this organization, all the source operands
for the four threads in a SIMD thread can be fetched in just one cycle, even for
the MAD (multiply-add) instruction that requires 3 source operands. The de-
code logic reads the source operands of the given instruction and dispatches the
operands to the functional units.

In the next pipeline stage, Execution, the instruction is executed in the cor-
responding functional unit. Three types of functional units are included in each
Fragment Processor. The SIMD ALU executes vectorial operations such as addi-
tions or multiplications. The SFU (Special Functions Unit) executes more com-
plex operations such as reciprocal or square root. Finally, the Texture Unit
computes the color of a texture at a given coordinates. The functional units are
pipelined so a new instruction can be issued every cycle. Furthermore, a Frag-
ment Processor includes 4 SIMD units, 4 SFU units and 4 Texture Units, so the
operations for the 4 threads in one SIMD thread can be issued in parallel in the
same cycle. This means that 16 scalar operations can be executed in parallel.

The Texture Unit consists of 3 stages. First, the addresses of the texels
(texture elements) are generated by using the texture coordinates of the fragment
and the base address of the target texture. In the second stage, the memory
requests to fetch the texels are issued to the texture cache. In the final stage, the
colors of the texels are combined by applying the corresponding texture filter, this
requires linear or trilinear interpolation to obtain the final color. The Fragment
Processor includes a texture cache to boost the process of fetching the texels from
memory. In case of a cache miss in the texture cache, the SIMD thread is marked
as blocked and it is not selected for execution by the SIMD Thread Scheduler.
By doing this, the Fragment Processor does not fetch instructions from SIMD
threads that are waiting for long latency operations. Once the texture instruction
is resolved, the SIMD thread is marked again as ready for execution.

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 42

In the last pipeline stage, Writeback, the result of the instruction is written
in the temporal or in the output register file. Scoreboarding is employed to track
dependencies. The destination register is marked as “not available” in the decode
stage and it is marked as “available” when its value is written in the writeback
stage. On the other hand, no forwarding mechanism is present in the pipeline.
However, consecutive instructions usually belong to different SIMD threads since
Round Robin is employed and, hence, instructions executed back-to-back are
independent.

The end of the fragment program is signaled by a special instruction in the
ISA. This “end of program” instruction reads the results of the fragment program,
i. e. the colors of the fragments, from the output register file and it dispatches
the colors to the next GPU stage, the Blending. Furthermore, the SIMD thread
context is marked as free so a new quad fragment can be assigned to the context.

Vertex Processors are similar to Fragment Processors, but the SIMD threads
operate on four different vertices instead of fragments. Furthermore, they do
not have to handle texture instructions so they do not include Texture units or
Texture caches. We assume a non-unified architecture as opposed to a unified
architecture where all the processors can handle both vertices and fragments.
Usually, unified architectures offer better workload balance, whereas non-unified
architectures can exploit the difference between vertex and fragment processing
to build more specialized and optimized processors. For instance, the results
obtained by using McPAT indicate that a Vertex Processor has just 64% of the
area of a Fragment Processor.

TEAPOT reports statistics per-frame and per-thread. Since GPU commands
are tagged with the thread identifier, TEAPOT is able to assign fractions of GPU
execution time and energy to each application.

System Memory Simulation

The GPU timing simulator of TEAPOT employs DRAMSim2 [133] to accurately
model system memory. DRAMSim2 simulates a DDR2/3 memory system, includ-
ing a detailed cycle accurate model of the memory controller, memory channels,
DRAM ranks and banks.

Cycle accurate simulators typically employ fixed memory latencies for the
off-chip accesses to main memory. Such a simplistic approach fails to provide a
realistic estimation of the cost of accessing main memory, as real memory systems
exhibit highly complex behavior that produces significantly different latencies for
different memory accesses. For example, the DRAM refresh is a major source
of variance in the latency of the memory requests, as read requests that are
issued while a refresh is in progress have to wait much longer than other requests.
DRAMSim2 is employed in TEAPOT to accurately model the behavior of system
memory and, hence, off-chip memory accesses exhibit variable latency.

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 43

On-Chip Hardware

Raster Unit

Fragment
Processor

Geometry Unit

Command
Processor

Memory
Controller

Vertex
Fetcher

L2
Cache

Vertex
Cache

 Vertex
Processor

Primitive
Assembly

Tile
Cache

Polygon
List

Builder

Tile
Scheduler

Tiling
Engine

Unit not included in power model

Unit included in power model

RasterizerEarly
Depth Test

Z-BufferColor
Buffer

Texture
Cache

ALU
Load/
Store

Blending

Off-Chip
Hardware

System
Memory

Figure 2.5: The figure shows the GPU units that are included in the power model
and the units that are not modeled, for a TBR architecture. Similar models have
been included for the IMR architecture.

Power Model

A modified version of McPAT [107] is used for estimating GPU energy consump-
tion. During start-up, the GPU simulator calls to McPAT passing all the mi-
croarchitectural parameters, such as the number of processors or the cache sizes,
so it can build the internal chip representation. McPAT estimates the dynamic
energy required to access each one of the hardware structures and the leakage
power. During simulation, the cycle-accurate GPU simulator collects statistics
for each unit and, at the end of every frame, it submits all the activity factors to
McPAT. The dynamic energy is computed by accounting for events in the GPU
simulator and then multiplying these events by a given energy cost estimated by
McPAT. The static energy is obtained by multiplying the total GPU leakage by
the execution time. McPAT has been slightly modified so it can better model a
low-power GPU. For instance, we have included support for read-only L1 data
caches to better model the Texture caches of a mobile GPU. Furthermore, we have
extended McPAT in order to model Texture sampling units. The texture sam-
pler is implemented by using a combination of Load units, for fetching the texels
(texture pixels) from memory, and FP units, for applying the texture filtering.

Figure 2.5 shows the GPU units that are accounted in the power model of
TEAPOT. As we can see, the simulator provides energy estimations for the pro-
grammable units —Vertex and Fragment processors— and the entire GPU mem-
ory hierarchy, including the off-chip system memory. On the contrary, the energy
consumed by the fixed-function units is not accounted in our power model. Mc-
PAT was designed as a power model for multicore and manycore architectures
and, hence, it is easy to model the programmable processors and the caches, reg-
ister files and the rest of memories included in the GPU. However, McPAT does
not provide support for modeling any specialized fixed-function graphics hard-
ware. Nevertheless, the GPU cores and the memory hierarchy are typically the
main sources of energy consumption in a mobile graphics processor, representing

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 44

more than 90% of the total GPU energy [124, 125].

2.1.4 Automatic Image Quality Assessment

Generating high quality images comes at the cost of significant energy consump-
tion which sometimes is not desirable in the mobile segment, specially for low-
battery conditions. Significant energy savings can be achieved by allowing small
distortions on image quality, several techniques take this approach such as texture
compression or the memoization scheme described in Chapter 5. When trading
quality for energy we need some way of evaluating the magnitude of the visual
quality decrease. To this extent, TEAPOT provides several metrics for automatic
image quality assessment. Image quality is evaluated by comparison with a ref-
erence image, usually the result of a high quality rendering. The error is then
estimated by comparing the high quality image with the distorted image.

In TEAPOT, the original high-quality frames generated by the real hardware
provide the reference images. These images are employed for two purposes. First,
they are compared with the frames generated by our GPU architecture models
to verify the correctness of the timing simulator. Second, they are employed
to assess image quality in case some technique that trades quality for energy is
enabled in the simulator, in order to evaluate the magnitude of the distortions.

Two types of metrics are typically employed for image quality assessment, one
based on per-pixel errors and the other based on the human visual perception
system. Regarding the metrics based on per-pixel errors, TEAPOT implements
the MSE (Mean Squared Error) [153] and the PSNR (Peak Signal-to-Noise Ra-
tio) [158]. TEAPOT also includes the MSSIM (Mean Structural SIMilarity Index)
presented in [149], a metric based on the human visual perception system. This
metric is more desirable since the images generated by the GPU are interpreted
by users. Hence, an error in a pixel is a problem just if it can be perceived by
the human visual system, i. e. if it causes a degradation of structural informa-
tion, since the human visual perception system is highly adapted for extracting
structural information from a scene. An MSSIM value of 100% means perfect
image fidelity, whereas a value of, for example, 90% indicates 10% of perceivable
differences between the reference image and the distorted image. The original
MSSIM metric only works on gray-scale images, but it can be adapted for RGB
format [128].

2.1.5 Assumed Graphics Pipeline

A graphics pipeline consists of three stages: application, geometry and fragment.
The application stage performs tasks such as animation of the objects in the
scene, physical simulation or collision detection, and it is usually executed on the
CPU. Furthermore, the application stage takes care of issuing all the rendering
commands to the graphics processor. The geometry and fragment stages are

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 45

CPU

GPU

vs
yn

c

vs
yn

c

vs
yn

c

vs
yn

c

Simulated in cycle-accurated
timing simulator

GPU power gated rest
of the time

Figure 2.6: The figure illustrates the graphics pipeline assumed in our simulation
infrastructure. The timing simulator estimates the cycles where the GPU is busy,
the graphics processor is assumed to be power gated the rest of the time.

usually executed on the GPU and perform the rendering of the graphical objects.
This pipeline is illustrated in figure 2.6.

Our cycle-accurate GPU simulator estimates the time required to process all
the rendering commands issued by the CPU. We assume a constant frame rate
that is synchronized with the screen refresh, i. e. we employ vertical synchro-
nization. Hence, the GPU is prevented from generating images at a faster rate
than the screen refresh. Note that we do not assign any static energy consump-
tion during long idle periods because we assume that the GPU could drastically
reduce it by entering a deep low power state.

As the frame rate is constant and the GPU is synchronized with the screen
refresh, the total execution time of the graphics pipeline is the same in all the con-
figurations. Hence, when we report GPU execution times and speedups we focus
on active GPU time, that is different depending on the GPU microarchitecture,
and we do not account idle periods where the GPU is power gated. The current
version of our simulation infrastructure does not implement cycle-accurate sim-
ulation of the CPU part of the graphics pipeline, just estimations of the GPU
execution time and energy consumption are provided.

In short, a graphical application like a game is composed of a CPU portion
and a GPU portion. The timing model in our simulation infrastructure only
reports the cycles where the GPU is busy.

2.2 Workloads

In order to evaluate our proposals we have selected twelve commercial Android
games that span a wide range of graphics characteristics. We employ real games
instead of OpenGL ES benchmark suites such as GFXBench [14] for several rea-
sons. In first place, GFXBench benchmarks are complex 3D kernels that visualize
a plethora of advanced 3D effects by exploiting the most recent features of mobile
graphics hardware. We believe these kernels are not necessarily representative of

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 46

the mobile games that users typically play, as popular games for smartphones
tend to be much simpler. Although we include complex 3D games in our set of
workloads, we think it is important to also consider 2D games and simpler 3D
games as they are very common in the mobile segment. In second place, some en-
ergy saving techniques require the evaluation of their impact on user interaction
and responsiveness, such as the technique described in Chapter 4. Benchmarks
are not well-suited for evaluating user interaction as they are just kernels that
run from start to finish without user intervention. Hence, we preferred to rely on
real games for this type of user interaction analysis. Next sections introduce our
set of games and provide a brief workload characterization.

2.2.1 Workload Selection

We have selected five casual 2D games due to the popularity of this type of
applications in smartphones and tablets. Figure 2.7 shows several screenshots of
our 2D workloads. A brief description of the 2D games follows:

• Angry Birds : Undoubtedly one of the most popular games of all time. In
this game players use a slingshot to launch birds at pigs stationed on or
within various structures, with the intent of destroying all the pigs on the
playing field. On the technical side, it features relatively elaborated physical
simulation and simple 2D graphics with effects such as alpha blending. The
game alternates between scenes with static backgrounds and side-scrolling.

• Bad Piggies : Spin-off of Angry Birds, in this puzzle game the objective of
the player is to build a contraption that transports the pig from a starting
point to the finish line, usually indicated by a map. It features physical
simulation of rigid bodies in 2D and it also alternates static scenes with
side-scrolling.

• Cut the Rope: Physics-based puzzle game. The objective of the game is to
feed candy to a little green creature. In each level, the candy hangs by one
or several of the titular ropes which the player must cut with a swipe of his
finger using the device’s touchscreen. The game displays simple 2D sprites
on top of static backgrounds.

• Gravity Guy : Arcade and side-scrolling game in which the player controls
a character by tapping the screen to switch gravity. The objective in this
game is to run as far as possible while avoiding obstacles that can trap the
player, and avoid falling or flying off the screen. This game belongs to the
“endless runner” genre, a type of game that is very popular in smartphones
and tablets.

• Jetpack Joyride: Side-scrolling endless runner game that employs a simple,
one-touch system to control a jetpack. When the player presses anywhere
on the touchscreen, the jetpack fires and the character rises. When the
player lets go, the jetpack turns off and the character falls. The objective of

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 47

(a) Angry Birds (b) Bad Piggies

(c) Cut the Rope

(d) Gravity Guy

(e) Jetpack Joyride

Figure 2.7: The figure shows a screenshot for each of the 2D Android games
selected as benchmarks.

the game is to travel as far as possible, while collecting coins and avoiding
obstacles.

On the other hand, we have also selected seven 3D Android games. Despite not
being so popular as the aforementioned 2D applications, 3D games still represent
a big market in the mobile segment. Furthermore, they exploit the most advanced
features of embedded graphics hardware. Figure 2.8 shows several screenshots of
our 3D workloads. A brief description of the 3D games follows:

• Air Attack : Top-down air combat shooter in which the player controls the
plane by touching the screen and dragging. The game displays high defini-
tion 3D graphics and advanced effects such as particle systems, powered by
the Unity3D engine [38].

• Captain America: Side-scrolling action game. The player controls Captain
America as he runs, slides, vaults and combats multiple enemies. The

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 48

(a) Air Attack (b) Plants War (c) Temple Run

(d) Captain America (e) Crazy Snowboard

(f) Dungeon Defenders (g) Playmobil Pirates

Figure 2.8: Screenshots of the different 3D workloads.

different actions are triggered by touching the screen and dragging. It is
powered by the Unity3D engine and it exploits programmable shaders to
implement different visual effects.

• Crazy Snowboard : Racing game in which the user controls a snowboarder
while descending a mountain, performing acrobatics that are triggered via
the touch screen. The game features fairly simple 3D graphics and it in-
cludes basic lighting and terrain models.

• Dungeon Defenders : Mix of Tower Defense and RPG (Role-Playing Game)
where between one to four players work together to protect one or more
crystals from being destroyed by waves of enemies. Its graphics and game-
play are desktop-like, as it has also been released on PC, Xbox and PS3.

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 49

The game features advanced 3D graphics powered by the Unreal Engine [39]
and supports a plethora of 3D effects.

• Plants War : Real-time strategy game in which the player has to manage
resources and build his own army to defeat the enemy troops. Plants War
displays simple 3D graphics, as it employs basic lighting models and 3D
objects with low polygon counts.

• Playmobil Pirates : Combination of strategy and action game. The player
has to build and control his own pirate fortress and fleet to protect the trea-
sure of his island. The game displays high definition 3D graphics, including
advanced effects such as water rendering, projected shadows or particle
systems.

• Temple Run: One of the most popular endless runner games. The player
takes on the role of an explorer who, having stolen an idol from a temple,
is chased by evil monkeys. The player has to swipe to turn, jump and slide
to avoid obstacles and collect coins. The game displays relatively complex
3D graphics powered by the Unity3D engine, and it includes some effects
such as water rendering.

Our workloads are representative of the mobile graphical applications as we
have included some of the most popular games available for smartphones. Fur-
thermore, our set of workloads cover most of the features available in the OpenGL
ES 1.1/2.0 APIs [96, 95]. We provide more detailed explanations of why we have
selected these concrete games in section 2.2.2. Note that despite Khronos has
already released OpenGL ES 3.0/3.1 [97, 98], the new specifications of the API
are very recent —December 2013 and March 2014 for 3.0 and 3.1 respectively—
and thus all the games available for Android still employ OpenGL ES 1.1/2.0 at
the time of writing.

On the other hand, we have focused on the game genres that are more popular
in smartphones and tablets. For example, First-Person Shooters (FPS) are very
popular in PC and desktop platforms, but they represent a small market in the
mobile segment as it is difficult to play these games by using a touch screen.
Casual games, physics-based puzzle games or endless runner games are much
more common in mobile devices as they better exploit the smartphone’s user
interfaces.

Note that we have not included any OpenCL/CUDA workload despite the
growing interest in General Purpose Computing on the GPU (GPGPU). The
support for OpenCL and CUDA in the mobile segment has been non-existent
or very poor in the best case during past years, and only the most recent mo-
bile GPUs and Android versions begin to truly support GPGPU. On the other
hand, CUDA/OpenCL are typically employed to boost scientific applications.
We believe that mobile phones are not the ideal platform for scientific codes,
so our research is focused on more typical workloads for smartphones. Other
computationally intensive tasks that are common in smartphones and could be

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 50

offloaded to the GPU, such as image processing or video decoding, are usually
handled by ASICs included in the SoC that are extremely energy-efficient exe-
cuting these specific tasks. We are not claiming that GPGPU is useless in the
mobile segment, since the GPU offers much more flexibility than the ASICs and
it is much more energy-efficiency than the CPU for data-parallel workloads. We
are only highlighting the fact that it currently has a smaller presence in smart-
phones. Nevertheless, the current trends in mobile graphics hardware indicate
that GPGPU support will be much more widespread and of much higher quality
in next years. We believe that, for example, analyzing the use of OpenGL ES
3.1 compute shaders to boost physics simulation or collision detection is an in-
triguing direction. We leave this type of study for future work, and we propose
simple ways of improving our simulation infrastructure to support GPGPU in
Chapter 6.

2.2.2 Workload Characterization

In this section we provide a brief workload characterization of our set of games.
As these applications are not the conventional benchmarks employed in computer
architecture, we think it is worth including a short analysis of their characteristics.
We have employed our OpenGL ES Trace Generator, described in section 2.1.1, to
collect traces of the OpenGL ES calls as seen in our Android games. The results
reported in this section have been obtained by analyzing traces of 400 frames for
each game, the scenes have been rendered at WVGA (800 × 480) resolution.

Table 2.1 provides a general description of the workloads. It includes the
type of game —2D or 3D—, the date were the last update of the game was
released, the approximate number of downloads as reported by Google Play, the
game engine and the version of the OpenGL ES API. As we can see, the games
have been developed in recent years. Most of them have been updated recently,
whereas the oldest game, captainamerica, received its last update by 2011. In
addition, these games have been downloaded and installed at least more than
one million times, and we have included some of the most popular games such as
angrybirds, cuttherope or templerun that have been downloaded more than one
hundred million times in Google Play.

Regarding the game engine, five of the games employ Unity3D. Unity3D is a
state-of-the-art cross-platform game engine developed by Unity Technologies that
is commonly employed to create games for mobile devices. Unity3D supports
advanced 3D effects such as normal mapping or dynamic shadows. On the other
hand three of the games, cuttherope, gravityguy and jetpackjoyride, employ their
own custom developed game engine. As mobile games tend to be simpler, some
small companies opt by developing their own rendering solutions. This is different
from the desktop platform where developing the engines that support modern 3D
games would take years and, hence, developers usually rely on mature game
development kits. Finally, we have included a game that employs the Unreal
Engine 3, dungeondefenders. Unreal Engine is one of the best engines available

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 51

Table 2.1: General overview of our set of workloads.

Game Type Last Update Downloads Engine OpenGL ES

angrybirds 2D March, 2014 500M Box2D 1.1

badpiggies 2D Nov, 2013 50M Unity3D 2.0

cuttherope 2D Apr, 2014 100M Own 1.1

gravityguy 2D Oct, 2013 10M Own 1.1

jetpackjoyride 2D Feb, 2014 50M Own 1.1

airattack 3D Jan, 2014 50M Unity3D 1.1

captainamerica 3D Jul, 2011 - Unity3D 2.0

crazysnowboard 3D March, 2014 10M Unity3D 1.1

dungeondefenders 3D Dec, 2012 1M Unreal Engine 2.0

plantswar 3D Nov, 2013 5M - 1.1

playmobilpirates 3D Aug, 2013 5M - 2.0

templerun 3D Jan, 2014 100M Unity3D 2.0

and it is commonly employed to develop desktop games. We think it is interesting
to see how a top-notch engine behaves in this new environment of mobile devices.

Current smartphone’s games employ the version 1.1 or the version 2.0 of
the OpenGL ES API and, hence, we have covered both versions in our set of
workloads as it can be seen in the last column of Table 2.1. OpenGL ES 1.1
implements a fixed-function pipeline, whereas version 2.0 supports programmable
vertex and fragment shaders. Note that most of the modern graphics hardware
implements a fully-programmable pipeline. Our timing simulator also implements
a programmable GPU as described in section 2.1.3. In case an OpenGL ES 1.1
application runs on top of programmable hardware, the GPU driver generates the
corresponding shaders that mimic the functionality of the fixed-function pipeline.
Despite OpenGL ES 3.0 and 3.1 have already been released, at the time of writing
this thesis we could not find any game that employs these recent versions of the
API.

Table 2.2 reports information about the complexity of the geometry employed
by our set of games. The second column shows the average number of batches
sent to the GPU per frame. A batch is a group of vertices that are rendered in a
single function call to the API, in case of OpenGL ES by calling glDrawElements
or glDrawArrays. The third column shows the average number of vertices in each
of these batches. The fourth column contains the average number of vertices
sent to the GPU per frame. The last column shows the average number of static
instructions in the Vertex Shader, considering the assembly instructions in the
TGSI [37] ISA. TGSI is the intermediate assembly employed by the Gallium3D
driver. It is based on one of the first standardized assembly languages for GPUs,
the ARB assembly code [7]. Despite being an intermediate assembly, there is
very strong (generally one-to-one) correspondence with the native GPU assembly
instructions.

In an OpenGL application the objects in the scene are usually described by
a set of triangles, and each triangle is defined by three vertices. An instance

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 52

Table 2.2: Analysis of the geometry employed by our set of workloads. The last
column shows the average number of static assembly instructions in the vertex
shader.

Game Average Average Average Average

batches/frame vertices/batch vertices/frame VS insns

angrybirds 11.00 25.07 275.80 6.00

badpiggies 20.00 43.03 860.60 20.70

cuttherope 120.00 7.37 884.00 6.00

gravityguy 12.00 49.33 592.00 7.00

jetpackjoyride 47.40 9.50 450.20 6.46

airattack 26.70 136.16 3635.40 7.57

captainamerica 30.00 156.20 4686.00 13.53

crazysnowboard 19.50 95.10 1854.40 11.15

dungeondefenders 282.50 348.06 98328.20 22.91

plantswar 45.00 191.33 8610.00 9.20

playmobilpirates 28.00 271.86 7612.20 14.25

templerun 15.40 522.21 8042.10 29.91

of the corresponding Vertex Shader has to be executed for each vertex sent to
the GPU. The information reported in Table 2.2 provides some hints on the
complexity of the scenes and the workload of the vertex processors. As it can
be seen, we cover a wide range of geometric complexity, from games with low
vertex counts such as angrybirds to games that render complex scenes such as
dungeondefenders. angrybirds sends 11 batches to the GPU per frame on average,
whereas the scenes in dungeondefenders require more than 282 batches, the rest
of games lie in between. Furthermore, batches are much bigger in 3D games such
as dungeondefenders —348 vertices on average— or templerun —522 vertices—
than in 2D games like cuttherope or jetpackjoyride —7.37 and 9.5 vertices on
average respectively. Regarding the total number of vertices per frame, reported
in the fourth column, we find significant differences between the 2D games, shown
in the first five rows, and the 3D games. All the 2D games employ less than one
thousand vertices per frame, whereas the 3D workloads render scenes with more
than one thousand vertices. dungeondefenders is the game with the biggest vertex
count by far, as it exploits the power of the Unreal Engine to render scenes with
close to one hundred thousand vertices per frame in real time. We also observe
great diversity in the complexity of the Vertex Shader, from games with just a
few instructions per vertex program on average to games with close to 30 static
instructions. Hence, our set of games stress the geometry pipeline of the GPU in
very different ways.

Once the vertices sent to the GPU have been processed, the next step in
the graphics pipeline is to determine the screen pixels covered by the triangles,
generate the corresponding fragments by interpolation of the per-vertex attributes
and, finally, execute the corresponding fragment shader to compute the color of
each pixel. Table 2.3 provides some hints on the workload and the complexity of
the fragment stage in the GPU pipeline. The second column of the table shows

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 53

Table 2.3: Analysis of the fragment shaders and depth complexity in our set of
workloads. The second column shows the average number of static assembly in-
structions in the fragment shader.

Game Average ALU to Average Fragment to Depth

FS insns TEX ratio texels/frag Vertex ratio Complexity

angrybirds 3.00 2.67 4.07 3106.33 3.23

badpiggies 4.15 2.46 2.34 1023.22 2.29

cuttherope 1.85 3.35 4.08 734.72 1.69

gravityguy 3.00 2.00 4.14 1304.94 2.01

jetpackjoyride 3.76 2.76 4.14 1215.00 1.42

airattack 4.26 2.59 8.05 234.20 1.64

captainamerica 5.57 2.98 5.11 244.00 2.55

crazysnowboard 5.38 3.88 3.32 383.65 1.41

dungeondefenders 5.35 3.87 7.81 9.88 1.69

plantswar 3.49 2.74 4.05 119.46 2.60

playmobilpirates 12.89 5.81 12.25 196.42 3.89

templerun 8.64 4.32 10.32 92.12 1.54

the average number of static instructions in the fragment shader, considering
the TGSI assembly code. The third column contains the ALU to TEX ratio,
i. e. the number of ALU instructions divided by the number of texture fetching
instructions in the fragment shader. The fourth column shows the average number
of texels (texture elements) fetched for each fragment. The number of texels
fetched depends on the type of texture filtering selected by using the OpenGL ES
API, and it can be different for each batch. Nearest-neighbor filtering requires
one texel to be fetched, whereas linear, trilinear and anisotropic filtering require
4, 8 and 16 texels respectively. Furthermore, multitexturing can be employed to
access multiple textures from the same fragment shader, so the number of texels
per fragment can be bigger than 16. The fifth column shows the Fragment to
Vertex ratio, i. e. the total number of fragments processed divided by the total
number of vertices. The last column shows the depth complexity, this parameter
is computed as the average number of fragments generated for each pixel per
frame and it provides a measure of the overdraw.

The numbers reported in Table 2.3 indicate that the fragment programs em-
ployed by our set of workloads are significantly different. For instance, cuttherope
uses fragment shaders with just 1.85 instructions on average, whereas a more com-
plex game like playmobilpirates employs shaders with 12.89 assembly instructions
on average, the rest of games lie in between. The ALU to TEX ratio is also dif-
ferent for the several games. This ratio provides an idea of how memory-intensive
the fragment shaders are, as using texture instructions is the only way of access-
ing memory in a fragment shader in OpenGL ES 2.0. The bigger the ALU to
TEX ratio the better as it will be easier to keep the functional units busy and
avoid pipeline stalls due to memory latency. Our games show different values for
this ratio ranging from 2 (gravityguy) to 5.81 (playmobilpirates).

On the other hand, the games employ different texture filters. 2D games

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 54

prefer a combination of nearest-neighbor and linear filtering, requiring around
4 texture fetches per fragment. Some 3D games extensively employ trilinear
filtering, fetching around 8 texels per fragment such as airattack and dungeonde-
fenders. Finally, 3D games like playmobilpirates and templerun make extensive
use of multitexturing and trilinear filtering, demanding more than 10 texels per
fragment on average.

The fifth column of Table 2.3 contains the Fragment to Vertex ratio. This
ratio indicates whether a game is geometry bound or fragment bound, i. e. if
the main bottleneck in the pipeline will be the vertex processors or the fragment
processors. Games are typically fragment bound since the GPU has to process
many more fragments than vertices, this is also the case in our workloads. 2D
games are especially fragment bound as the number of fragments to be shaded is
three orders of magnitude bigger than the number of vertices. 3D games are also
fragment bound, although the number of vertices is much closer to the number of
fragments than in 2D games, being just between one and two orders of magnitude
smaller. dungeondefenders is the most geometry intensive game, as the number
of fragments is just 9.88 times bigger than the number of vertices.

The last column of Table 2.3 contains the overdraw. As we mentioned in
section 1.3.3, overdraw is an important issue as it can cause multiple writes to
each pixel in the Color Buffer and multiple executions of the fragment shader
per pixel, wasting bandwidth, time and energy. Our workloads exhibit different
depth complexities, ranging from 1.41 fragments per pixel in crazysnowboard to
3.89 fragments in playmobilpirates.

In short, we have selected a set of workloads that extensively cover the full
spectrum of mobile graphical applications. Our workloads include some of the
most popular applications for smartphones and, furthermore, they exhibit dif-
ferent degrees of graphics complexity and make completely different use of the
geometry and fragment pipelines.

2.3 Summary of Methodology

Regarding our evaluation methodology, we employ TEAPOT to run the An-
droid games described in section 2.2.1. We have collected OpenGL ES traces of
400 frames for each game by using the OpenGL ES trace generator available in
TEAPOT. Furthermore, we have executed the traces in the GPU functional em-
ulator to generate a complete GPU instruction and memory trace for each game.
Finally, the GPU instruction and memory traces are used to drive the cycle-
accurate timing simulator. The simulator models both IMR and TBR. The IMR
architecture implemented in the simulator is illustrated in Figure 2.2 whereas
the TBR architecture is shown in Figure 2.3. Both pipelines are described in
section 2.1.3.

Table 2.4 provides the architectural parameters that are common to all the
experiments. Parameters such as the technology, the frequency or the charac-
teristics of the system memory are fixed for all the configurations. The values

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 55

Table 2.4: Microarchitecture parameters for the experiments.

Global Parameters
Screen resolution 800 × 480 (WVGA) Technology 28 nm

Fragment Procs 4 Frequency 600 Mhz

Vertex Procs 4 Tile size 32 × 32

Memory Hierarchy
Main memory 1 GByte, 16 bytes/cycle, 50-100 cycles (variable latency)

Line size 64 bytes

L2 Cache 128 KB, 8-way, 1 R and 1 W port, 8 banks, 12 cycles

Tile Cache 16 KB, 2-way, 1 R and 1 W port, 1 bank, 2 cycles

Pixel Cache 8 KB, 2-way, 1 R and 1 W port, 1 bank, 1 cycle

Z-Cache 32 KB, 2-way, 1 R and 1 W port, 1 bank, 2 cycles

Texture Cache 16 KB, 4-way, 1 R and 1 W port, 1 bank, 2 cycles

Local Color Buffer 4 KB, 1 R and 1 W port, 1 bank, 1 cycle

Local Z-Buffer 4 KB, 1 R and 1 W port, 1 bank, 1 cycle

Vertex Cache 8 KB, 2-way, 1 R and 1 W port, 1 bank, 1 cycle

Fragment Processor
Instruction Cache 8 KB, 2-way, 1 R port, 1 bank, 1 cycle

SIMD Threads 1-16 SIMD thread contexts

Register File 2.25 KB/SIMD thread, 3 R and 1 W ports, 4 banks

SIMD ALUs 4 units, ADD/SUB 1 cycle, MUL 6 cycles, DIV 20 cycles

SFUs 4 units, 6-30 cycles

Texture Units 4 units, addr gen 1 cycle, texture filter 1 cycle

Inter-Stage Queues
Input Output Num Entries Size (bytes)

Vertex Fetcher Vertex Procs 16 4096

Vertex Procs Prim Assembly 16 4096

Prim Assembly Rasterizer 8 6144

Prim Assembly PolyListBuild 8 6144

Tile Scheduler Rasterizer 8 6144

Rasterizer Early Z 8 8192

Early Z Frag Procs 8 8192

Frag Procs Blending 16 384

set for these parameters are inspired by the specifications found in current mo-
bile GPUs. More specifically, our IMR model is based on the microarchitecture
of the Ultra-Low Power GeForce in the NVIDA Tegra SoC [115], whereas our
TBR model is based on the specifications of the ARM Mali 400MP [55]. The
experimental results reported in next chapters are always accompanied with the
relevant microarchitectural parameters that were employed to run those specific
experiments.

CHAPTER 2. EXPERIMENTAL ENVIRONMENT 56

Chapter 3

Decoupled Access/Execute
Fragment Processor

In this chapter we address the problem of hiding the memory latency in a mobile
GPU. Firstly, we argue that conventional techniques such as aggressive multi-
threading or prefetching are effective but not energy efficient. Secondly, we pro-
pose a decoupled access/execute-like design for the fragment processors. Finally,
we apply our proposal on top of a state-of-the-art mobile GPU and show that
the end design with just 4 SIMD threads/processor is able to achieve 97% of the
performance of a larger GPU with 16 SIMD threads/processor, while providing
20.5% energy savings.

3.1 Memory Latency Tolerance in a Mobile GPU

The fragment processors fetch data from texture memory. Each one of these
processors includes a texture cache to speed-up these memory accesses. Texture
memory accesses are common operations in graphics workloads and tend to be
fine-grained and difficult to prefetch [79]. Graphics workloads have large, long-
term (inter-frame) texture datasets that are not amenable to caching. Hence,
texture caches focus on conserving bandwidth rather than reducing latency [73].

The fragment processing stage is typically one of the main bottlenecks in
the graphics pipeline. As described in the workload characterization provided in
section 2.2.2, the GPU has to process millions of fragments per second and shading
each fragment usually requires multiple texture fetches. A mobile GPU working at
WVGA resolution (800×480) and at a modest 30 frames per second has to process
at least more than eleven million fragments per second. Since some games demand
more than ten texture fetches per fragment on average (see Table 2.3), this means
that the texture sampling subsystem has to sustain hundreds of millions of texture
accesses per second. Therefore, the texture sampling is one of the key stages in
the graphics pipeline, as the GPU spends significant amounts of time and energy
mapping textures on top of the objects.

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 57

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

1 SIMD Thread 1 SIMD Thread, Perfect Tex Caches 4 SIMD Threads 4 SIMD Threads, Perfect Tex Caches

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure 3.1: Potential performance benefits of removing all the cache misses in
the texture caches of the fragment processors. The baseline is an Immediate-
Mode Renderer with just one SIMD thread per fragment processor. The top graph
shows the speedups for the 3D workloads, whereas the bottom graph provides
the results for the 2D games. GEOMEAN3D means average results for the 3D
games, GEOMEAN2D is the average for the 2D games and GEOMEAN is the
global average considering all the workloads.

Figure 3.1 illustrates the potential benefits of removing all the texture cache
misses. The baseline configuration is a mobile GPU that implements an Immediate-
Mode Rendering architecture like the one shown in Figure 2.2. The different pa-
rameters of the pipeline, such as the number of fragment processors or the size of
the texture caches, are provided in Table 3.1. Note that the baseline configura-
tion features single-threaded in-order fragment processors. The baseline does not
employ multithreading, prefetching nor out-of-order execution, so no other mech-
anism than the texture caches is employed to hide the memory latency. Removing
all the texture cache misses provides significant performance improvements, as
the single-threaded GPU with perfect texture caches achieves 1.59x speedup on
average, a maximum speedup of 2.38x —gravityguy— and a minimum speedup
of 1.15x —templerun. On the other hand, Figure 3.1 also includes the speedups
achieved by a GPU with a small degree of multithreading, 4 SIMD threads per
fragment processor, and the same multithreaded GPU with perfect caches. As we
can see, removing all the texture cache misses also provides significant speedups
on top of the multithreaded GPU, especially in some 2D games.

Note that Figure 3.1 reports overall GPU speedups considering the entire
graphics pipeline. However, including perfect texture caches only improves the
fragment stage of the pipeline. Hence, the overall benefit of removing texture
cache misses depends on the importance of the fragment stage in the total GPU
execution time. As mentioned in section 2.2.2, 2D games are typically more
fragment bound than 3D games. As the workload in the geometry pipeline tend
to be smaller in 2D, GPU execution time mainly depends on the fragment stage

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 58

for 2D games. As a result, including perfect texture caches provides 1.88x speedup
for the 2D workloads in the single-threaded GPU. Although the perfect texture
caches do not provide such a big speedup for the 3D workloads, they are still able
to achieve 1.41x speedup on average and up to 1.81x speedup in airattack.

In short, hiding the memory latency of the texture fetches provides significant
performance improvements. However, texture accesses are extremely frequent and
macroscopically unpredictable, so they are not amenable to caching or prefetch-
ing. Texture caches alleviate the problem but their main task is saving band-
width, as they are able to filter a non-negligible percentage of memory accesses,
but they are not as effective as in conventional CPUs. Hardware prefetching is
also challenging as we will show in section 3.1.2. Out-of-order execution is con-
sidered too complex for embedded graphics processors and not as energy efficient
as multithreading for data-parallel applications. As graphics workloads exhibit a
high degree of data-level parallelism and memory-level parallelism, desktop GPUs
have embraced massively multithreaded architectures.

3.1.1 Aggressive Multithreading

Most desktop GPUs rely on massive multithreading as an effective way to hide
memory latency and keep functional units busy during cache misses. Fragment
processors interleave the execution of multiple SIMD threads (warps in NVIDIA
terminology). In case a SIMD thread is stalled waiting for texture data, the
scheduler selects another ready SIMD thread for execution. By leveraging simul-
taneous multithreading, huge amounts of memory latency can be tolerated just
by including the appropriate number of SIMD threads. However, the simulta-
neous executions of multiple SIMD threads requires an equal number of thread
contexts, which greatly increases the number of registers that must be kept in
the register file.

The Register File (RF) of a fragment processor stores the registers of all the
SIMD threads that are executed in parallel. Each SIMD thread consists of 4
threads that execute the same fragment program on 4 different fragments. Ac-
cording to the minimum resources required for an OpenGL-compliant implemen-
tation [7], the RF must provide storage for at least 10 input registers, 10 output
registers and 16 temporal registers per thread. Furthermore, each of these reg-
isters is a 4-wide vectorial register of 16 bytes (4 floating-point components).
Hence, each thread requires 36 4-wide registers, i. e. 576 bytes of storage in the
RF. As a SIMD thread contains 4 threads, the RF must provide 2304 bytes of
storage for each SIMD thread in the fragment processor. For example, a fragment
processor that supports 16 SIMD threads must include a RF of 36 KBytes, much
bigger than a typical texture cache size of 16 KBytes (see Table 3.1). On the
other hand, GPUs usually include multiple fragment processors. A mobile GPU
with 4 fragment processors that supports 16 SIMD threads per processor must
provide 144 KBytes of total storage in the RF in order to maintain a total of 256
parallel threads. Therefore, the graphics processor requires a significant amount
of storage in the RF in order to sustain massive multithreading.

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 59

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

2 4 6 8 10 12 14 16

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure 3.2: Speedups achieved by increasing the number of SIMD threads in the
fragment processors of a mobile GPU. The baseline is a mobile GPU with just one
SIMD thread per processor.

0.80
0.85
0.90
0.95
1.00
1.05
1.10

No
rm

. E
ne

rg
y

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

0.80
0.85
0.90
0.95
1.00
1.05
1.10

No
rm

. E
ne

rg
y

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

2 4 6 8 10 12 14 16

Figure 3.3: Normalized energy obtained when increasing the number of SIMD
threads in the fragment processors of a mobile GPU. The baseline is a mobile GPU
with just one SIMD thread per processor.

The numbers of a multithreaded mobile GPU may look modest compared
to a high-end desktop GPU. As aforementioned, a conventional mobile GPU
is able to maintain hundreds of parallel threads with a RF of several KBytes,
whereas desktop GPUs support thousands of in-flight threads and feature RFs of
several MBytes [68]. Note that the power budget is also completely different in
both cases, desktop GPUs typically consume hundreds of Watts [79] while mobile
GPUs have at their disposal about 1 Watt [120].

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 60

Figure 3.2 shows the speedups achieved when increasing the number of SIMD
threads from 1 to 16 in a mobile GPU. The baseline configuration is an Immediate-
Mode Renderer pipeline such as the one illustrated in Figure 2.2, with the param-
eters provided in Table 3.1 and just one SIMD thread per processor. As expected,
multithreading provides significant performance improvements, with an average
speedup of 1.92x for 16 SIMD threads. However, Figure 3.3 shows that GPU
energy consumption also increases as we increase the number of parallel threads.
For a small degree of multithreading (2-8 SIMD threads), the savings in static
energy due to the speedups achieved are usually greater than the increase in dy-
namic energy due to the bigger RF. However, more aggressively multithreaded
GPUs (10-16 SIMD threads) exhibit bigger energy consumption in most of the
applications due to the big RF required to sustain all the parallel threads.

In short, multithreading is a very effective technique to hide the memory
latency as it provides significant performance improvements. However, part of
the energy savings achieved by the reduction in execution time are compensated
by the increase in RF’s dynamic energy consumption. We believe that more
energy efficient approaches can be employed to tolerate memory latency in a
mobile GPU. More specifically, we explore in the next sections the idea of com-
bining multithreading with other techniques such as prefetching or decoupled
access/execute, with the aim of achieving similar latency tolerance than massive
multithreading but with a smaller number of thread contexts.

3.1.2 Hardware Prefetching

Prefetching data into the caches can help tolerate memory latency. Under prefetch-
ing, the hardware prefetcher is triggered in case of a cache miss in order to predict
the next addresses that will be requested by the processor, usually by analyzing
the miss address stream. The memory latency is then hidden by issuing prefetch
requests to those addresses predicted by the prefetcher before they are actually
needed. Hardware prefetchers require a relatively low amount of additional hard-
ware.

The two largest concerns with prefetching are accuracy and timeliness. In-
accurately predicting the memory access stream can produce cache pollution and,
furthermore, it increases the number of cache accesses and energy consumption.
On the other hand, the prefetcher must be careful to not prefetch the data too
early, so it is evicted before requested by the processor, or too late, so memory
latency cannot be hidden.

The “aggressiveness” of a prefetcher can be characterized by the prefetch
degree. The degree of prefetching determines how many requests can be initiated
by one prefetch trigger. Increasing the degree can be beneficial, if the prefetched
lines are used by the application, or harmful, if the prefetched lines are evicted
before being accessed by the application or they are never accessed.

In next sections we review several state-of-the-art CPU prefetchers and we
evaluate their performance when they are applied on top of a mobile GPU. Next

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 61

Tag Last Address Stride State
PC

Target
Address

+

Stride Prefetching Table

Figure 3.4: Hardware table employed by the Stride prefetcher.

we review a prefetcher specifically tailored to the texture caches of a graphics
pipeline.

Conventional Prefetchers

The Stride Prefetcher [77] is one of the most commonly employed prefetchers.
Conventional Stride Prefetching uses a table to store stride-related local history
information, as illustrated in Figure 3.4. The program counter (PC) of a load
instruction is employed to index the table. Each table entry stores the load’s
most recent stride (the difference between the two most recently pending load
addresses), last address (to allow computation of the next local stride), and state
information describing the stability of the load’s recent stride behavior. When a
prefetch is triggered, addresses a + s, a + 2s,..., a + ds are prefetched (a is the
load’s current target address, s is the detected stride and d is the prefetch degree,
an implementation dependent prefetch look-ahead distance).

Although prefetch tables require relatively simple hardware, they store prefetch
history inefficiently. In first place, table data can become stale, and consequently
reduce prefetch accuracy. In second place, tables suffer from conflicts that occur
when multiple access keys map to the same table entry. The more obvious so-
lution for reducing conflicts is to increase the number of table entries. However,
this approach increases the table’s memory requirements. In third place, tables
have a fixed amount of history per entry. Adding more prefetch history per entry
creates new opportunities for effective prefetching, but the additional history also
increases the table’s memory requirements.

A new prefetching structure, the Global History Buffer, is proposed in [114].
This prefetching structure decouples table key matching from the storage of
prefetch-related history information. The overall prefetching structure has two
levels, as shown in Figure 3.5:

• An Index Table that is accessed with a key as in conventional prefetch
tables. The key may be a load instruction’s PC, a cache miss address, or

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 62

Index
Table

Delta

Global
History
Buffer

Prefetch
Address 1

Head
Pointer

F
IF
O

-2
-1
 1
 2

A
B
C
D
C
A
C
D
B
C
A +

Miss
Address +

Prefetch
Address 2

Delta = 1

C - B

Delta = 2 (C - A)

Miss
Address

Figure 3.5: Distance prefetcher implemented by using a Global History Buffer. The
Head Pointer points to the last inserted address in the GHB. Current delta is -2
(A-C), the last two times that delta -2 was observed by the prefetcher the next
deltas were 1 (C - B) and 2 (C-A).

some combination. The entries in the Index Table contain pointers into the
Global History Buffer.

• The Global History Buffer (GHB) is an n-entry FIFO table (implemented
as a circular buffer) that holds the n most recent miss addresses. Each
GHB entry stores a global miss address and a link pointer. Each pointer
points to the previous miss address with the same Index Table Key. The
link pointers are used to chain the GHB entries into address lists. Hence,
each address list is a time-ordered sequence of addresses that have the same
Index Table key.

Figure 3.5 illustrates how the GHB can prefetch by using a distance prefetch-
ing scheme [102]. This prefetching scheme uses the distance between two con-
secutive global miss addresses, an address delta, to access the Index Table. The
pointer stored in the corresponding entry of the Index Table points to the list of
recent miss addresses that have the same delta.

We have implemented in our GPU timing simulator the two previously de-
scribed prefetchers, the table-based Stride prefetcher illustrated in Figure 3.4 and
the GHB-based Distance prefetcher shown in Figure 3.5. We have evaluated the
hardware prefetchers on top of the texture caches of an Immediate-Mode Render-
ing architecture like the one illustrated in Figure 2.2. The parameters employed
for the evaluation, including the sizes of the prefetch hardware structures, are
provided in Table 3.1.

Figure 3.6 shows the speedups achieved by the hardware prefetchers with
different prefetch degrees from 1 to 8. As we can see, the prefetchers provide

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 63

1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

stride1 stride2 stride4 stride8 ghb1 ghb2 ghb4 ghb8

1.00
1.05
1.10
1.15
1.20
1.25
1.30

Sp
ee

du
p

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure 3.6: Speedups achieved by using Stride and GHB prefetchers with different
prefetch degrees from 1 to 8. The baseline is a mobile GPU with just one SIMD
thread per processor and no prefetching.

1.0

1.2

1.4

1.6

1.8

No
rm

. E
ne

rg
y

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

stride1 stride2 stride4 stride8 ghb1 ghb2 ghb4 ghb8

1.0

1.2

1.4

1.6

1.8

No
rm

. E
ne

rg
y

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure 3.7: Normalized energy obtained by using Stride and GHB prefetchers with
different prefetch degrees from 1 to 8. The baseline is a mobile GPU with just one
SIMD thread per processor and no prefetching.

performance improvements in all the workloads, no slowdown was observed in
any of the games. The GHB prefetcher obtains better results in most of the
games and on average. Regarding the effect of the prefetch degree, for the stride
prefetcher the bigger the degree the better, whereas the GHB obtains better
results with a degree of 4 than with 8 for some workloads such as airattack or
gravityguy. On average, the GHB achieves the best results with a degree of 4,
1.11x speedup, whereas the stride prefetcher achieves best average speedup with

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 64

a degree of 8: 1.07x. Despite the performance improvements provided by the
hardware prefetchers, the results obtained are far away from the 1.59x speedup
achieved by using perfect texture caches (see Figure 3.1), so there is still ample
room for improvement.

The most important downside for hardware prefetching in a mobile GPU is
its impact on energy consumption, illustrated in Figure 3.7. As we can see, the
hardware prefetchers increase energy consumption in all the workloads. The in-
crease in energy consumption is bigger as we increase the prefetch degree, as more
memory requests are triggered on every cache miss. The stride prefetcher with a
degree of 8 increases energy by 8.4% on average, whereas the GHB with a degree
of 4 increases energy by 28.1%. As we have mentioned at the beginning of this
chapter, texture accesses tend to be unpredictable and, hence, the accuracy of the
hardware prefetchers is not as high as in CPU workloads with more regular mem-
ory access patterns. Serving the prefetch requests increases energy consumption,
but not all of these requests contribute to hide the memory latency and improve
performance due to the reduced accuracy.

In summary, conventional CPU prefetchers can be included in the texture
caches of a mobile GPU to obtain moderate performance improvements. How-
ever, hardware prefetchers are not energy efficient since their accuracy is fairly
constrained due to the unpredictable memory access patterns exhibited by graph-
ics workloads.

Prefetching Architecture for Texture Caches

Igehy et al. [93] propose a custom prefetching architecture that takes advantage
of the special access characteristics of texture mapping. This architecture is il-
lustrated in Figure 3.8 and it works as follows. The rasterizer generates first the
fragments by interpolation of the per-vertex attributes of the triangles. Next, the
texel addresses that are required by each fragment are computed. Note that this
is an important difference with respect to the hardware prefetchers previously
described, as this architecture is based on computed addresses rather than pre-
dicted addresses to improve accuracy. The texel addresses are next looked up in
the cache tags. If a tag check reveals a miss, the cache tags are updated with
the fragment’s texel address and the address is forwarded to the memory request
FIFO. The cache addresses associated with the fragment are sent to the fragment
FIFO and are stored together with the rest of the data required to process the
fragment, such as screen coordinates or filtering information.

As the request FIFO issues memory requests for the missing cache blocks to
the memory system, space is reserved in the reorder buffer to store the returning
texture memory blocks. This guarantee of space avoids deadlocks in the presence
of an out-of-order memory system.

When a fragment reaches the head of the fragment FIFO, it can only proceed
if all its texels are available in the cache. Fragments that generated no misses
can proceed immediately, whereas fragments that generated one or more misses

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 65

Rasterizer Texture
Applicator

Tags
Texel

Addresses

Other
Fragment

Data
Cache
Addresses

Request
FIFOMiss

Addresses

Texture
Memory
System

Reorder
Buffer

Cache
Blocks

Cache

Cache
Addresses

Texture
Filter

Other
Fragment

Data

Texels

Fragment FIFO

Filtered
Samples

Figure 3.8: Prefetch architecture for texture caches proposed by Igehy et al. [93].

must first wait for their corresponding cache blocks to return from memory into
the reorder buffer. In order to avoid new cache blocks overwriting yet-to-be-used
older prefetched cache blocks, new cache blocks are committed to the cache only
when their corresponding fragment reaches the head of the FIFO. Fragments that
are removed from the head of the FIFO have their corresponding texels read from
the cache and are further processed through the rest of the texture pipeline.

This prefetching architecture can tolerate increasing amounts of memory la-
tency by increasing the size of the fragment FIFO and the storage capacity of
the reorder buffer. Furthermore, it deals with one of the main issues of conven-
tional hardware prefetchers: poor prefetching accuracy due to the unpredictable
memory access patterns of graphics workloads. As predicting the texture miss
address stream is a complex task, this prefetching architecture is based on com-
puted memory addresses, instead of analyzing recent cache misses to predict the
next addresses that will be requested. On the downside, fragments are forced to
be processed in order. This means that the pipeline stalls whenever the fragment
at the head of the FIFO has not its texture data available in the cache, even if
younger fragments in the FIFO have their data ready.

The prefetching architecture for texture caches was proposed in 1998, be-
fore programmable GPUs came out, so it is implemented on top of a fixed-
function graphics pipeline. Applying this architecture to a modern multicore
programmable GPU is not straightforward for several reasons. First, the texture
sampling units are usually integrated in the programmable fragment processors,
as illustrated in Figure 2.4, and the texture fetches are triggered based on the
programmed-by-the-user fragment program. Second, modern GPUs take advan-
tage of the Early Depth Test to try to avoid the overdraw (see Figure 2.2) and,
hence, fragments generated by the Rasterizer do not directly proceed to the tex-
ture pipeline as it is assumed in Figure 3.8. Third, mobile GPUs include multiple
fragment processors with their corresponding texture caches, whereas the original
proposal considers just one texture cache as it was the common baseline in 1998.
A modern graphics pipeline has to be able to orchestrate texture prefetches to
multiple texture caches in parallel, and dispatch the fragments to the appropriate
fragment processors where their texels have been prefetched.

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 66

3.2 Decoupled Architecture for Fragment Pro-

cessors

Conventional hardware prefetchers are not energy efficient as we have seen in
section 3.1.2, since texture memory accesses tend to be difficult to prefetch [79].
Prefetching schemes designed for graphics pipelines [93] are based on computed
addresses rather than predicted addresses to improve accuracy. This approach
of computing the memory addresses in advance is similar to Decoupled Ac-
cess/Execute architectures [138].

Traditionally, an access/execute architecture divides the program into two
independent instruction streams, one doing memory accesses and the other per-
forming actual computations. By decoupling memory accesses from computa-
tions, access/execute architectures effectively prefetch data from memory much
in advance from the time it is required, thus allowing cache miss latency to over-
lap with useful computations without causing stalls. While this can be viewed as
a form of data prefetching, it has a substantial advantage over other prefetching
schemes, because it relies on computed rather than predicted addresses, which
translates into a higher accuracy and a lower energy waste.

Despite the high potential of access/execute architectures to tolerate a long
memory latency at a moderate hardware cost, they have not been widely adopted
by current commercial CPUs because their effectiveness is greatly degraded when
the computation of an address has a data or control dependence on the execution
stream (this occurs, for instance, in pointer chasing codes). In such circumstances,
termed loss of decoupling events (LOD), the access stream is forced to stall in
order to synchronize with the execution stream. LODs force the access stream to
lose its timeliness (i. e. the prefetch distance), so that subsequent cache misses
will cause the execution stream to stall as well. Unfortunately, for general purpose
CPUs the frequency of LODs is quite significant in many cases, resulting in fairly
restricted performance gains. However, for GPU fragment programs, the access
patterns are typically free of the dependences that cause LODs. This makes
the access/execute paradigm a perfect fit for the requirements of a low-power
high-performance GPU: with few extra hardware requirements, it can reduce
drastically the number of cache miss stalls.

3.2.1 Base Architecture

We propose to employ a decoupled access/execute-like design for the fragment
processors of a mobile GPU, as shown in Figure 3.9. After the visibility deter-
mination in the Early Depth Test stage (see Figure 2.2), visible fragments are
packed into quad fragments, or quads for short. A fragment processor is assigned
to each quad by the scheduler, and both the quad and the processor number are
inserted into the quad fragment queue to wait its turn until it is dispatched to
the processor. Part of the information stored in this quad fragment queue, the

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 67

L2 Cache

Fragment
Processor 0

Fragment
Processor 1

Frag. 0 Frag. 1 Frag. 2 Processor

Address Computation & scheduling

Quad
fragment
queue

Prefetch
queue

Frag. 3

Texture
Cache 2

Fragment
Processor 2

Texture
Cache 3

Fragment
Processor 3

Texture
Cache 0

Texture
Cache 1

Early Depth Test

A Tex. $ 0

B Tex. $ 1 L2
C Tex. $ 1 L2
A Tex. $ 2 Tex. $ 0

Quad fragments

Quad fragments + processor Ids
Memory addresses + cache ids

Quad fragments

Prefetch requests

Address Cache
L2

Source

Figure 3.9: Decoupled architecture for the fragment processors.

texture coordinates, will be later used by the fragment processor to compute the
addresses that will be issued to the texture cache.

The proposed scheme decouples the memory addresses from the quad fragment
queue, so that memory requests for a specific quad can be issued while the quad
is still waiting in the queue. This behavior is achieved by inserting all computed
addresses of a quad along with their target cache number, into a new queue,
the prefetch queue. Notice that the scheduling is performed before queuing the
quad, so that the prefetcher knows to which caches it must send the requests. We
assume that a new request from the prefetch queue is sent to the corresponding
cache every cycle until the queue is drained. For each request, the corresponding
cache controller will check the tags (by using a dedicated snoop port), and the
request will be either ignored in case of a hit, or trigger a preemptive block fetch to
L2, and a subsequent texture cache update. Note also that the proposed scheme
performs in-cache prefetching, instead of prefetching into specialized buffers.

By the time a quad is dispatched to the fragment processor, the data required
to process the fragments are usually available in the texture cache, so that almost
all processor cache accesses hit. Should the prefetch requests not be issued enough
in advance, the fragment processor would experience a cache miss stall. This
would cause the quad fragment queue to fill up, but it would also allow the
prefetcher to increase the prefetch distance again, thus avoiding further stalls.
The quad fragment queue must be sized long enough -this mostly depends on
miss latency- to allow the prefetcher to gain sufficient prefetch distance to achieve
timeliness. But it must also avoid excessive length that could lead to late requests
evicting yet-to-be-used prior prefetched data, due to cache conflicts. We have
found that lengths between 4 and 32 are appropriate for our workloads. It is also
important to design the prefetcher with sufficient throughput to avoid losing the
prefetch distance, so we assume it is non-blocking, i. e. multiple pending blocks
may be in-flight at any time. The necessary control information for each pending

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 68

0
20
40
60
80

100
120
140

%
 te

x
ca

ch
e

m
is

se
s

air
att

ac
k

ca
pta

ina
meri

ca

cra
zys

no
wbo

ard

du
ng

eo
nd

efe
nd

ers

pla
nts

war

pla
ym

ob
ilp

ira
tes

tem
ple

run

MEA
N3D

an
gry

bir
ds

ba
dp

igg
ies

cu
tth

ero
pe

gra
vit

yg
uy

jet
pa

ck
joy

rid
e

MEA
N2D

MEA
N

Data not in any tex cache In flight request in other tex cache Data in other tex cache

Figure 3.10: The figure illustrates the high degree of data replication among the
texture caches of the different fragment processors. The black bars represent
texture cache misses to data that is not available in any of the texture caches.
The gray bars are misses to data not available in any cache, but with an already
triggered in-flight request in some of the texture caches. The white bars are misses
to data that is available in another texture cache.

block is held in the prefetch queue.

3.2.2 Remote Texture Cache Accesses

Partitioning the texture cache among the various fragment processors reduces
the size of each individual cache and the power required per access, but also pro-
duces some degree of replication. The results obtained by using our GPU timing
simulator and a commercial set of Android games show a significant degree of
texture data sharing among fragment processors, as illustrated in Figure 3.10.
On average, 57.7% of the texture cache misses are requests to data that is al-
ready available in the texture cache of some other fragment processor. Hence,
the decoupled access/execute-like architecture previously described can be fur-
ther improved because up to 57.7% of the prefetch misses can be satisfied by
the texture cache of another fragment processor instead of accessing the bigger
L2 cache. This improvement saves bandwidth to the shared L2 cache and re-
duces energy consumption since accessing to the L2 cache is more expensive than
accessing a texture cache.

A naive approach could check the tags of all the caches at the time a prefetch
request is dispatched to know which caches could satisfy the request in case
of a miss. While this would provide precise information, it would also have a
significant energy cost. Instead, we propose to take advantage of the temporal
locality that exists in the memory requests in order to achieve similar performance
with only a small fraction of the energy. More specifically, we propose to augment
each entry in the prefetch queue with a new field, called Source, that will hold
the predicted alternate location of the block. Each time a new prefetch request
is inserted in the queue, the addresses of all the queued requests are associatively
compared with the new address. If there is a match with a prefetch request for
a different cache, the identifier of this cache is recorded in the Source field of the

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 69

new entry. If there is no match, the identifier of the L2 cache is recorded instead.
When the prefetch request is dispatched to its target cache the Source field is
included in the request. This information is then used by the cache controller to
redirect the request in case of a cache miss. Figure 3.9 shows an example of this
behavior, in this case the system has detected a match with an older request for
address A and the Source field of the last entry in the prefetch queue points to
texture cache 0.

Compared with the full tag check approach mentioned earlier, this technique
only looks in a small window of recent requests (equal to the number of pending
requests held in the queue). Alternatively, we could implement the queue as a
circular buffer, where the entries between the head and the tail are considered
active and the rest are not. In this case, provided that the inactive entries are
not cleared, they still hold the addresses and target cache identifiers. Each new
request can then be compared against “all” the queue entries, either active or
not, thus widening the window of recent requests to the total length of the queue.

We have implemented the decoupled architecture for the fragment processors
in our GPU simulator. We have evaluated our proposal on top of an Immediate-
Mode Rendering architecture as the one illustrated in Figure 2.2. The parameters
for the experiments, including the size of the prefetch queue and the number of
fragment processors, are provided in Table 3.1.

Figure 3.11 shows the speedups achieved in a mobile GPU with single-threaded
fragment processors. The decoupled configuration shows the results for our base
decoupled architecture, whereas the decoupled remote includes the remote texture
cache accesses previously described. Multithreading was not employed in any of
the experiments, just prefetching or decoupled access/execute. As we can see, the
decoupled versions achieve bigger performance improvements than the hardware
prefetchers in all the workloads. On average, the GHB prefetcher achieves 1.11x
speedup, whereas the decoupled architecture with remote texture cache accesses
obtains 1.41x speedup. The performance benefits are due to the improved ac-
curacy, as the decoupled systems are based on computed rather than predicted
addresses.

On the other hand, the proposed optimization of allowing for remote texture
cache accesses does not provide any significant performance improvement. Nev-
ertheless, its main target is to save energy by replacing accesses to the bigger L2
cache with accesses to the smaller texture caches. Figure 3.12 provides the en-
ergy results. The decoupled systems provide consistent energy savings in all the
workloads, being much more energy efficient than the hardware prefetchers. In
addition, the remote texture cache accesses provide further energy savings in all
the games. On average, the decoupled fragment processor achieves 9.6% energy
savings, whereas the decoupled system with remote accesses improves energy by
20%.

Our decoupled access/execute-like architecture is based on the ideas of the
prefetching architecture for texture caches proposed by Igehy et al. [93] (see
section 3.1.2), as our system is also based on computed addresses rather than

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 70

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

stride4 ghb4 decoupled decoupled_remote

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure 3.11: Speedups achieved by different hardware prefetchers and our decou-
pled access/execute-like architecture. The baseline is a GPU with single-threaded
fragment processors and no prefetching. The decoupled remote configuration al-
lows for remote texture cache accesses.

0.6
0.8
1.0
1.2
1.4
1.6

No
rm

. E
ne

rg
y

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

stride4 ghb4 decoupled decoupled_remote

0.6
0.8
1.0
1.2
1.4
1.6

No
rm

. E
ne

rg
y

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure 3.12: Normalized energy for different hardware prefetchers and our decou-
pled access/execute-like architecture. The baseline is a GPU with single-threaded
fragment processors and no prefetching.

predicted. However, our work is different in several ways. First, our proposal is
built on top of a modern programmable GPU, and it is able to coordinate texture
fetches in an environment with multiple fragment processors. Second, our system
prefetches texture data after the visibility test, so we only issue prefetch requests
for visible fragments instead of prefetching for all the fragments generated by the
Rasterizer, increasing energy efficiency. Third, we do not require the fragments to

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 71

Table 3.1: Parameters employed for the experiments.

Main memory 1 GByte, 16 bytes/cycle, 50-100 cycles

Texture caches 16 KB, 4-way L2 cache 256 KB, 8-way

Fragment Processors 4 Multithreading 1-16 SIMD threads
Prefetch degree 4 SIMD width 4 threads

Decoupled access/execute Register File
Prefetch queue size 16 entries Register size 16 bytes (4-FP)

Entry size 40 bits Registers/thread 36

Total size 80 bytes Storage/thread 576 bytes

Stride prefetcher GHB prefetcher
Stride table size 16 entries Index table 16 40-bit entries

Entry size 98 bits GHB 64 40-bit entries

Total size 196 bytes Total size 400 bytes

be processed in-order, avoiding stalls in case younger fragments have their texels
available while older fragments are still waiting for the data. Finally, our proposal
allows for remote texture cache requests, which is shown to provide significant
energy benefits.

3.3 Multithreading, Prefetching and Decoupled

Access/Execute

In prior sections we have shown that massive multithreading is an effective tech-
nique to hide the memory latency, but not energy efficient due to the big size
of the RF. Furthermore, we have seen that conventional hardware prefetchers
provide modest performance improvements due to the poor accuracy. Finally, we
have demonstrated that a decoupled access/execute design achieves much big-
ger energy efficiency than the hardware prefetchers in a single-threaded mobile
GPU. In this section we analyze the performance and energy consumption of both
hardware prefetching and decoupled access/execute when using different degrees
of multithreading, from 1 to 16 SIMD threads per fragment processor.

The baseline configuration is a mobile GPU with an Immediate-Mode Render-
ing architecture (see Figure 2.2) and the parameters shown in Table 3.1. The base-
line GPU supports just one SIMD thread per fragment processor, multithreading
or prefetching are not employed to hide the memory latency. We analyze five
different schemes implemented on top of this baseline. The first configuration,
“Multithreading only”, relies on multithreading to hide the memory latency. The
second configuration, “Stride”, includes a stride prefetcher, illustrated in Fig-
ure 3.4, in each one of the texture caches. The third configuration, “GHB”,
employs a distance prefetcher implemented with a Global History Buffer, shown
in Figure 3.5. Both hardware prefetchers employ a prefetch degree of 4. The
fourth configuration, “Decoupled”, implements our decoupled access/execute de-
sign for the fragment processors of a mobile GPU, as described in Section 3.2.1.

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 72

1 2 4 6 8 10 12 14 16
Number of SIMD threads

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

Multithreading only
Stride
GHB
Decoupled
Decoupled Remote

Figure 3.13: Speedups achieved when combining multithreading with different
prefetching schemes. The baseline is a mobile GPU with just one SIMD thread per
fragment processor and no prefetching.

Finally, “Decoupled Remote” includes our decoupled architecture and it also im-
plements the optimization that allows for remote texture cache accesses described
in Section 3.2.2.

Figure 3.13 shows the speedups achieved by the different configurations, when
using multiple degrees of multithreading from 1 to 16 SIMD threads. As we
can see, the decoupled schemes achieve bigger performance than the hardware
prefetchers when using a small degree of multithreading, from 1 to 8 SIMD
threads, whereas the performance converges in most of the configurations when
using aggressive multithreading (10-16 SIMD threads). The decoupled design
achieves 97.6% of its maximum performance with just 4 SIMD threads, whereas
the “Multithreading only” configurations requires 8 SIMD threads to be close
to its maximum speedup. The stride prefetcher exhibits similar behavior to the
“Multithreading only” configuration. The GHB prefetcher shows worse scalabil-
ity as it makes more intensive use of memory bandwidth. The graph also shows
that the single threaded decoupled architecture can still improve performance
by taking advantage of a small degree of multithreading (1-4 SIMD threads).
This small amount of threads allows the architecture to hide the latency of the
functional units and keep them busy, which is an issue that the access/execute
decoupling mechanism does not address. It is worth noting that similar conclu-
sions about the synergy of decoupling and multithreading were already suggested
in [122].

Figure 3.14 shows the normalized energy obtained by the different memory la-
tency tolerance schemes. The configurations exhibit significantly different energy
consumption, but all the configurations evolve in a similar way when increasing
the number of SIMD threads. The first steps (1-6 SIMD threads) provide en-
ergy savings, as the reduction in static energy due to the speedups achieved is

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 73

1 2 4 6 8 10 12 14 16
Number of SIMD threads

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

No
rm

al
iz

ed
 E

ne
rg

y

Multithreading only Stride GHB Decoupled Decoupled Remote

Figure 3.14: Normalized energy obtained when combining multithreading with dif-
ferent prefetching schemes. The baseline is a mobile GPU with just one SIMD
thread per fragment processor and no prefetching.

usually bigger than the increase in RF’s dynamic energy. However, the energy
consumption increases for bigger degrees of multithreading (8-16 SIMD threads)
due to the huge RF required to store the registers of all the parallel threads.
The GHB prefetcher exhibits the biggest energy consumption, mainly because
the intensive use of the memory bandwidth produced by the huge number of ad-
ditional memory requests triggered by the prefetcher. The “Multithreading only”
and the stride prefetcher exhibit similar behavior, being the energy consumed by
the prefetcher bigger due to the additional prefetch requests. The “Decoupled”
configuration consumes less energy than the “Multithreading only” GPU for a
small degree of multithreading, but the energy consumption converges beyond
2 SIMD threads. Finally, the “Decoupled Remote” configuration exhibits the
smallest energy consumption for any number of threads, being able to save more
than 20% energy when using between 1 and 8 SIMD threads. The remote texture
fetches are an effective way of saving energy, as in case of a texture cache miss
the fragment processor can read the texels directly from the 16 KBytes texture
cache of another fragment processor, instead of accessing the bigger 256 KBytes
L2 cache.

Figure 3.15 shows the GPU energy breakdown for configurations with different
numbers of SIMD threads, from 1 to 16 SIMD threads/processor. The energy
consumed by the Register File increases significantly as we increase the degree
of multithreading. The Register File represents just 3.6% of GPU energy for
the “Multithreading only” configuration with 1 SIMD thread/processor, whereas
it accounts for 17.4% of GPU energy when using 16 SIMD threads/processor.
On the other hand, the “Decoupled Remote” configuration is able to reduce the
energy consumed by the L2 cache. On average, L2 cache energy is reduced by
20.6% when using the optimization that allows for remote texture cache accesses.

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 74

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 E

ne
rg

y

M
ul

tit
hr

ea
di

ng
 o

nl
y

De
co

up
le

d
Re

m
ot

e

1

M
ul

tit
hr

ea
di

ng
 o

nl
y

De
co

up
le

d
Re

m
ot

e

2

M
ul

tit
hr

ea
di

ng
 o

nl
y

De
co

up
le

d
Re

m
ot

e

4
M

ul
tit

hr
ea

di
ng

 o
nl

y

De
co

up
le

d
Re

m
ot

e

6

M
ul

tit
hr

ea
di

ng
 o

nl
y

De
co

up
le

d
Re

m
ot

e

8

M
ul

tit
hr

ea
di

ng
 o

nl
y

De
co

up
le

d
Re

m
ot

e

10

M
ul

tit
hr

ea
di

ng
 o

nl
y

De
co

up
le

d
Re

m
ot

e

12

M
ul

tit
hr

ea
di

ng
 o

nl
y

De
co

up
le

d
Re

m
ot

e

14

M
ul

tit
hr

ea
di

ng
 o

nl
y

De
co

up
le

d
Re

m
ot

e

16
SIMD

Threads

L2 VertexProcs FragProcsRegFile FragProcsRest Other

Figure 3.15: Mobile GPU energy breakdown.

Figure 3.16 shows the normalized energy-efficiency. Energy-efficiency of a
configuration is defined as the ratio of speedup divided by the normalized en-
ergy consumption [70]. This metric reflects both performance improvements and
energy savings in a single number, the bigger the speedup and the smaller the nor-
malized energy the better the energy-efficiency. The “Decoupled” configuration
obtains better energy-efficiency than the “Multithreading only” and the hardware
prefetchers between 1 and 6 SIMD threads. The “Decoupled Remote” configu-
ration achieves bigger energy-efficiency than the rest for any number of threads.
This schemes requires a smaller number of thread contexts to achieve high levels
of energy-efficiency. For example, the “Decoupled Remote” with just 4 SIMD
threads per fragment processor obtains 14% and 22% bigger energy-efficiency
than the “Multithreading only” using 8 and 16 SIMD threads respectively.

Previous graphs show average results obtained for our 12 Android commer-
cial games. We believe it is also interesting to analyze the individual results,
Figure 3.17 shows the normalized energy-efficiency for each one of the work-
loads. The “Decoupled Remote” configuration achieves consistent improvements
in energy-efficient in all the workloads. It achieves its highest energy-efficiency
by using between 4 and 6 SIMD threads in all the games except in playmobilpi-
rates, where it achieves optimum energy-efficiency with 10 SIMD threads. The
energy-efficiency results are different depending on the workload, as the “De-
coupled Remote” with 4 SIMD threads obtains 1.43x and 3.72x improvements
in energy-efficiency in dungeondefenders and cuttherope respectively, the rest of
the games lie in between. Note that the results of the “Decoupled Remote” are
significantly better than the “Multithreaded only”. For example, a larger GPU
with 16 SIMD threads is only able to achieve 1.24x and 3.08x improvements in
energy-efficiency in dungeondefenders and cuttherope respectively.

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 75

1 2 4 6 8 10 12 14 16
Number of SIMD threads

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

No
rm

. E
ne

rg
y-

Ef
fic

ie
nc

y

Multithreading only
Stride

GHB
Decoupled

Decoupled Remote

Figure 3.16: Normalized energy efficiency obtained when combining multithreading
with different prefetching schemes. The baseline is a mobile GPU with just one
SIMD thread per fragment processor and no prefetching. The energy-efficiency is
computed as the speedup divided by the normalized energy.

3.4 Conclusions

The main ambition of this chapter is to demonstrate that high-performing, energy-
efficient GPUs can be architected based on the decoupled access-execute paradigm.
The proposed scheme does not rely on heavy multithreading so as to hide the
memory latency. Although multithreading is still useful, we believe that a signif-
icant part of its benefits can be achieved in a more energy efficient fashion. In
fact, as it was shown in Section 3.3, a combination of access/execute with multi-
threading provides the most energy efficient solution. More specifically, we claim
that it is better to hide the memory latency using the decoupled access/execute
paradigm and hide the functional unit latency using a low degree of threading.

We evaluate the proposed scheme using a set of commercial Android appli-
cations and we show that the end decoupled access/execute design with 4 SIMD
threads/processor is able to achieve 97% of the performance of a larger GPU with
16 SIMD threads/processor, while providing 20.5% energy savings.

In this chapter we assume an Immediate-Mode Rendering pipeline as our base-
line GPU. Nevertheless, our proposal is orthogonal to the type of rendering archi-
tecture and it can also be implemented on top of Tile-Based Rendering (TBR).
Similar conclusions are obtained when using our decoupled access/execute-like
architecture on top of TBR. The experimental results assuming a TBR baseline
are provided in Appendix A. The numbers show that the decoupled architecture
with just 2 SIMD threads/processor achieves 93% of the performance of a larger
GPU with 16 SIMD threads/processor, while providing 28.2% energy savings.

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 76

1 2 4 6 8 10 12 14 16
1.0

1.5

2.0

2.5

3.0
angrybirds

Multithreading only Stride GHB Decoupled Decoupled Remote

1 2 4 6 8 10 12 14 16
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

badpiggies

1 2 4 6 8 10 12 14 16
1.0
1.5
2.0
2.5
3.0
3.5
4.0

cuttherope

1 2 4 6 8 10 12 14 16
1.0
1.5
2.0
2.5
3.0
3.5

No
rm

al
iz

ed
 E

ne
rg

y-
Ef

fic
ie

nc
y

gravityguy

1 2 4 6 8 10 12 14 16
1.0

1.5

2.0

2.5

3.0

3.5
jetpackjoyride

1 2 4 6 8 10 12 14 16
1.0
1.2
1.4
1.6
1.8
2.0
2.2

airattack

1 2 4 6 8 10 12 14 16

1.0

1.2

1.4

1.6

1.8

2.0
captainamerica

1 2 4 6 8 10 12 14 16

1.0

1.2

1.4

1.6

1.8

crazysnowboard

1 2 4 6 8 10 12 14 16
0.9
1.0
1.1
1.2
1.3
1.4
1.5

dungeondefenders

1 2 4 6 8 10 12 14 16
1.0
1.2
1.4
1.6
1.8
2.0
2.2

plantswar

1 2 4 6 8 10 12 14 16

Number of SIMD threads
1.0
1.5
2.0
2.5
3.0
3.5
4.0

playmobilpirates

1 2 4 6 8 10 12 14 16

1.0

1.2

1.4

1.6

1.8

2.0
templerun

Figure 3.17: Normalized energy efficiency obtained for each one of the workloads.
The energy-efficiency is computed as the speedup divided by the normalized energy.

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 77

CHAPTER 3. DECOUPLED ACCESS/EXECUTE FRAGMENT PROCESSOR 78

Chapter 4

Parallel Frame Rendering

In this chapter we address the problem of optimizing the memory bandwidth
usage in a mobile GPU, as saving bandwidth has been proven to be an effec-
tive way of reducing energy consumption. In first place, we analyze the memory
bandwidth usage for a set of commercial Android games. In second place, we pro-
pose Parallel Frame Rendering, a bandwidth saving technique for mobile graphics
processors. Finally, we show that this new technique achieves 23.8% bandwidth
savings on average when architected on top of a state-of-the-art mobile GPU,
providing 20.1% energy savings.

4.1 Memory Bandwidth Usage on a Mobile GPU

Recent work in [44] revealed that a large fraction of mobile GPU energy consump-
tion can be attributed to external off-chip memory accesses to system RAM. As
noted by [87, 119], most of these accesses fetch textures. Figure 4.1 depicts the
memory bandwidth usage on a mobile GPU, similar to ARM Mali (see Figure 2.2),
for a set of commercial Android games. Our numbers clearly support the prior
claims and show that 52.7% of these memory accesses can be directly attributed
to texture data. Ideally removing these accesses would result in significant energy
savings, while also improving performance substantially.

Focusing on the texture data used by successive frames, we realized that there
exists a large degree of reuse across frames. As shown in Figure 4.2 consecutive
frames share 94% of the texture addresses requested on average when considering
a window of 2 frames. Hence, the same textures are fetched frame after frame,
but the GPU cannot exploit these frame-to-frame re-usages due to the huge size
of the texture dataset. This is confirmed by inspecting the average re-use distance
of the memory accesses (Figure 4.3). Contrary to common belief that GPUs need
to deal with the streaming memory behavior of graphical applications, we argue
it is perhaps more efficient to change the rendering model leading to this memory
behavior.

CHAPTER 4. PARALLEL FRAME RENDERING 79

0
20
40
60
80

100
120
140

M
em

or
y

Tr
af

fic
 (%

)

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
AVERAGE

Textures Color Buffer Geometry

Figure 4.1: Memory bandwidth usage on a mobile GPU for a set of commercial
Android games. On average 52.7% of the bandwidth to system memory is employed
for fetching textures.

0
20
40
60
80

100
120

%
 s

ha
re

d
te

x
ad

dr
es

se
s

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

2 consecutive frames 4 consecutive frames

Figure 4.2: Average percentage of shared texture addresses between consecutive
frames. Mostly the same texture dataset, 94% on average, is employed from
frame to frame since consecutive frames tend to be very similar. Even considering
a window of 4 consecutive frames we observe a high degree of texture sharing,
86.2% on average.

In this chapter we propose Parallel Frame Rendering (PFR), a novel technique
for improving texture locality on a mobile GPU. In PFR the GPU is split in two
clusters where two consecutive frames are rendered in parallel. By using this
organization each texture is read from memory once and employed for rendering
two successive frames. Therefore, textures are fetched from main memory just
once every two frames instead of being fetched on a frame basis as in conventional
GPUs. If perfect texture overlapping between both GPU clusters is achieved,
then the amount of memory bandwidth required for fetching textures is reduced
by 50%. Since textures represent 52.7% of memory bandwidth for our set of
commercial Android games as illustrated in Figure 4.1, PFR can achieve up to
26.35% bandwidth savings.

4.2 Trading Responsiveness for Energy

Traditionally GPUs have high memory bandwidth requirements as they need to
fetch from memory a very large dataset (textures), which typically thrashes the
cache. As shown earlier, texture data locality exists, however most of it can only
be exploited across frames. In fact, we have observed that 94% of the texture
data is shared between consecutive frames. Most of these accesses miss in cache

CHAPTER 4. PARALLEL FRAME RENDERING 80

0
10000
20000
30000
40000
50000
60000
70000

Av
g.

 L
2

re
us

e
di

st
an

ce

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

140115

Figure 4.3: Average block reuse distances in the L2 cache for several Android
commercial games, computed as number of distinct block addresses referenced
between two accesses to the same block.

due to the huge working set involved in rendering every single frame, i. e. they
are capacity misses.

Fetching from memory is one of the main sources of energy inefficiency for
mobile devices [44, 87, 119], and as such improving the inter-frame locality will
likely lead to significant improvements in energy efficiency.

4.2.1 Parallel Frame Rendering

The idea of Parallel Frame Rendering (PFR) consists on rendering two consecu-
tive frames in parallel. If the two rendering tasks are well synchronized then they
will hopefully perform similar operations in a similar order, so they will access
the same textures within a small reuse distance. If that distance is small enough,
the texture access of the first frame will perhaps miss in cache but will result in a
cache hit when accessed by the second frame. Ideally, if both frames perform all
the same accesses, and data is effectively kept in cache until reused by the second
frame, we may expect a texture miss ratio reduction by one half that translates
to a large reduction in memory traffic and energy waste.

The assumed baseline GPU implements a Tile-Based Rendering (TBR) ar-
chitecture, as illustrated in Figure 4.4. To render two frames in parallel, we split
the baseline GPU into two separate clusters, cluster 0 and cluster 1, each includ-
ing one half of the resources, as illustrated in Figure 4.5. Even frames are then
rendered by cluster 0, odd frames by cluster 1. Fragment Processors have private
first level caches, but the second level cache is shared among all processors of both
clusters, so we expect that one cluster prefetches data for the other cluster as dis-
cussed above. To further reduce the re-use distance between texture accesses of
parallel rendered frames, the two clusters are synchronized by processing tiles in
lockstep, since the same screen tile usually employs a very similar texture dataset
in consecutive frames.

Figure 4.6 illustrates the difference between conventional rendering and PFR.
To simplify the discussion, let us assume that conventional rendering fits in one
screen refresh interval, then PFR spans two refresh intervals since each frame is
rendered with half the number of processors. Notice that two frames are rendered

CHAPTER 4. PARALLEL FRAME RENDERING 81

Raster Unit 3
Raster Unit 2

Raster Unit 1
Raster Unit 0

Fragment
Processor

Geometry Unit

GPU
command

Command
Processor

Memory
Controller

Vertex
Fetcher

Vertex
Cache

Primitive
Assembly

Tile
Cache

Polygon
List

Builder

Tile
Scheduler

Tiling
Engine 0

Memory

Programmable Stage
Fixed-Function Stage

RasterizerEarly
Depth Test

Z-BufferColor
Buffer

Texture
Cache

ALU
Load/
Store

Blending

L2
Cache

 Vertex
Processor

Figure 4.4: Assumed baseline GPU architecture. The baseline GPU employs Tile-
Based Rendering and it features four Raster Units to process four screen tiles in
parallel.

Cluster 1
Cluster 0

Raster Unit 1
Raster Unit 0

Fragment
Processor

Geometry Unit 0 (half size)

GPU
command

Command
Processor

Memory
Controller

Vertex
Fetcher

Vertex
Cache

Primitive
Assembly

Tile
Cache

Polygon
List

Builder

Tile
Scheduler

Tiling
Engine 0
(half size)

Memory

Programmable Stage
Fixed-Function Stage

RasterizerEarly
Depth Test

Z-BufferColor
Buffer

Texture
Cache

ALU
Load/
Store

Blending

L2
Cache

 Vertex
Processor

Fixed-Function Stage
reduced to half size

Memory reduced
to half size

Figure 4.5: GPU architecture employed for implementing Parallel Frame Rendering.
The Geometry Unit and the Tiling Engine are reduced to half of their original size.

in parallel, so the frame rate is still the same. With PFR, two consecutive frames
are processed simultaneously, so two framebuffers are required instead of one.
To avoid flicker or tearing, double buffering is usually employed in conventional
rendering, which requires a separate frontbuffer for displaying the rendered im-
age to the screen while the next frame is being drawn to the backbuffer. With
PFR, double buffering requires two frontbuffers and two backbuffers. Hence, PFR
increases the memory footprint. For a typical smartphone screen resolution of
800 × 480 (WVGA) and 32 bits per pixel (RGBA), conventional rendering re-
quires 2.92 MBytes of main memory for storing the front and back Color Buffers,
then PFR requires 5.84 MBytes. Since current smartphones usually feature 1GB
of main memory, the memory footprint increment can be easily assumed. No-
tice that the bandwidth employed for transferring the Color Buffer to system
memory is not increased despite two images are generated in parallel. In PFR

CHAPTER 4. PARALLEL FRAME RENDERING 82

CPU0

GPU
Frame 0

CPU1

GPU
Frame 1

CPU2

GPU
Frame 2

CPU0 CPU1 CPU2

GPU Cluster 0 – Frame 0

GPU Cluster 1 – Frame 1

CPU3

GPU
Frame 3

CPU4

GPU
Frame 4

CPU3 CPU4

GPU Cluster 0 – Frame 2

GPU Cluster 1 – Frame 3

0 1 2 3 4

0 1 2

Input lag

Input lag

Screen refresh CPU stage (inputs, physics, AI...)GPU stageFrame displayed

Figure 4.6: Conventional rendering (top) vs Parallel Frame Rendering (bottom).
Rendering a frame in a GPU cluster requires twice of the time since each cluster
has half of the resources of the conventional GPU.

two different Color Buffers are written into memory during two screen refreshes,
whereas in conventional rendering the same Color Buffer is written twice during
two refresh intervals. Therefore, the same amount of pixels are transferred in the
same amount of time in both cases.

In conventional Tile-Based Rendering (TBR), described in Section 2.1.3, an
entire frame has to be captured and the rendering is deferred until all the drawing
commands for one frame have been issued by the application. In PFR the GPU
driver has to be slightly modified, since two frames have to be buffered instead of
one and the rendering is triggered when all the drawing commands for the second
frame have been issued by the application and buffered by the GPU driver. Once
the rendering of the two frames starts, the graphics hardware reads commands
from both frames in parallel. The GPU Command Processor dispatches com-
mands from the first frame to cluster 0 and commands from the second frame
to cluster 1. Each GPU cluster behaves as an independent GPU, rendering the
frame by using conventional TBR as described in Section 2.1.3.

Moreover, the GPU driver has to allocate two front buffers, two back buffers if
double buffering is employed, and two scene buffers for sorting triangles into tiles
(see Section 2.1.3). As previously mentioned, the memory footprint is augmented,
but the memory bandwidth requirements are not increased, because rendering
each frame takes twice of the time.

4.2.2 Reactive Parallel Frame Rendering

A valid concern for the PFR approach is that since it devotes half the amount of
resources to render each frame, the time required to render a frame is longer. It
is important to point out at this point that the frame rate is not reduced, since
only the time between input and display, also known as input lag, increases (see

CHAPTER 4. PARALLEL FRAME RENDERING 83

0 50 100 150 200 250 300 350 400
Frame

0

5

10

15

20

Nu
m

be
r o

f i
np

ut
s

Figure 4.7: Number of inputs provided by the user for 400 frames of Angry Birds.
User inputs are heavily clustered, the game exhibits phases that require high re-
sponsiveness and phases where no user input is provided.

0

20

40

60

80

100

%
 fr

am
es

 w
ith

 0
 in

pu
ts

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

Figure 4.8: Percent of frames where no user inputs are provided for several Android
games. The user does not provide any input most of the time.

Figure 4.6). However, this is an unfortunate side-effect as it ultimately leads to
a less responsive system from the end-users perspective.

Assuming a typical frame rate of 60 FPS, conventional rendering exhibits an
input lag of 16 ms (1 screen refresh) whereas in PFR it is increased to 48 ms (3
refresh intervals). Overall, due to the nature of the user interface in mobile devices
(touch screens are quite slow), we argue that this will mostly not be noticed by
the end-user. In fact most applications tend to require very little input from the
user for this exact reason (i.e., Angry Birds is a prime example of this behavior).
In fact, this behavior is very common in mobile graphical applications, since they
are designed in such a way that the user provides some inputs and then it just
observes how the simulation evolves during the following frames in response to
the user interaction (Figure 4.7). For these kind of applications PFR can be
widely employed without hurting responsiveness during phases of the application
where no user input is provided.

Nevertheless, there exist applications for which high responsiveness is re-
quired. As pointed out in [131], lags bigger than 15 ms can be noticeable and
produce errors in interaction for applications demanding high responsiveness. In
order to maintain the same levels of responsiveness with conventional rendering,
we propose to build a system reactive to user inputs. Our basic premise is that
for phases of the application in which the user provides inputs, we can disable
PFR and the system reverts to conventional rendering, i. e. the two GPU clus-
ters are employed to render just one frame. On the contrary, during phases in

CHAPTER 4. PARALLEL FRAME RENDERING 84

CPU0

GPU 0 - F0
GPU 1 - F0

CPU1

GPU 0 - F1
GPU 1 - F1

CPU2 CPU3 CPU4

0 1 1 1 2

Number of frames with 0
inputs > Threshold

Swtich to PFR

GPU Cluster 0 – Frame 2

GPU Cluster 1 – Frame 3

Screen stalled for
2 refresh intervals

(a) Switch between conventional rendering and PFR.

CPU0 CPU1 CPU2 CPU3 CPU4

0 1 4

Input!
Switch to
Conv.
renering

GPU Cluster 0 – Frame 0

GPU Cluster 1 – Frame 1

Animation jumps 2
frames forward

GPU 0 - F4
GPU 1 - F4

GPU 0 – F2

GPU 1 – F3

Aborted!

(b) Switch from PFR to conventional rendering in even frame.

CPU0 CPU1 CPU2 CPU3 CPU4

0 3 4

Input!
Switch to
Conv.
renering

GPU Cluster 0 – Frame 0

GPU Cluster 1 – Frame 1

Animation jumps 2
frames forward

GPU 0 - F4
GPU 1 - F4

Discarded!

GPU 0 - F3
GPU 1 - F3

(c) Switch from PFR to conventional rendering in odd frame.

Figure 4.9: The figure illustrates how the system switches between PFR and con-
ventional rendering and the different issues that arise in doing so.

which no user input is provided PFR is enabled and two frames are rendered in
parallel to save memory bandwidth. We refer to this system as Reactive-PFR
(R-PFR). Figure 4.8 shows that R-PFR can be very effective since no input is
provided most of the time for the majority of the mobile graphical applications
we examined, so we can employ PFR extensively.

Switching from conventional rendering to PFR produces a very short screen
stall. This is illustrated in Figure 4.9a, where two frames have to be buffered and
rendered in parallel before the screen is updated again. When switching from PFR
to conventional rendering, illustrated in Figures 4.9b and 4.9c, the two frames
processed in parallel are discarded and a new frame is generated using both GPU
clusters, so the same responsiveness than in conventional rendering is achieved.
Hence, two frames are skipped when the system reverts to normal rendering,
reducing the smoothness of the animation. Nevertheless, these perturbations
happen in a very short time span of two refresh intervals, so an isolated switch is
hardly noticeable by the user. Of course, excessive switching between rendering
modes can still produce micro stuttering effects [154].

In R-PFR, the number of inputs received from the user are exposed to the
GPU driver on a frame basis. The driver decides which rendering mode to employ
every frame by monitoring user activity. The GPU maintains a counter with
the number of frames without inputs since the last user interaction. Initially,
conventional rendering is employed. When the counter of frames without inputs

CHAPTER 4. PARALLEL FRAME RENDERING 85

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Threshold

0
10
20
30
40
50
60
70
80
90

Pe
rc

en
ta

ge
 o

f f
ra

m
es

% of frames PFR is enabled
% of frames switching rendering mode

Figure 4.10: Percentage of frames where PFR is applied and percentage of frames
where a switch from PFR to normal rendering or vice versa takes place, vs the
threshold for R-PFR. Increasing the threshold reduces the frequency of switches
but it also reduces the percent of time for PFR.

becomes bigger than a given threshold, the system switches to PFR. Finally,
if the user provides some input the system immediately reverts to conventional
rendering and resets the counter.

The threshold plays an important role in reducing the excessive number of
switches between rendering modes and avoiding micro stuttering, as illustrated
in Figure 4.10. If a big value for the threshold is employed, the number of switches
is significantly reduced but the opportunities for applying PFR are severely con-
strained. A big threshold means that an important number of frames without
user inputs have to be detected in order to switch to PFR, and all these frames
are processed sequentially using conventional rendering. On the contrary, us-
ing a small value for the threshold increases the percentage of time PFR can
be enabled, providing bigger energy savings, but it also increases the frequency
of switches between rendering modes. We have selected 5 as the value for the
threshold, since it provides a good trade-off for our set of commercial Android
games (see Figure 4.10). By using a value of 5, the switches between rendering
modes represent just 5% of the frames, so the small perturbations illustrated in
Figure 4.9 are avoided 95% of the time. Even so, PFR can still be applied 62%
of the time on average.

4.2.3 N-Frames Reactive Parallel Frame Rendering

R-PFR achieves the same responsiveness as conventional rendering, but at the
cost of smaller potential energy savings since PFR is applied just to a fraction of
the total execution time. In an effort to recuperate the energy saving opportuni-
ties lost during phases of the application with user inputs, the system can apply
parallel rendering more aggressively during phases without user inputs. Since
input lag is not a problem during these phases the GPU can render 4 frames at
a time instead of 2 to achieve bigger memory bandwidth savings. In that case,
the GPU is split in 4 clusters that can render 1, 2 or 4 frames in parallel, each

CHAPTER 4. PARALLEL FRAME RENDERING 86

cluster having 25% of the resources of the baseline GPU. Initially, conventional
rendering is employed so the 4 GPU clusters are used to render one frame. When
the number of frames without inputs is bigger than a given threshold, T1, the
GPU driver switches to PFR so 2 GPU clusters are used to render odd frames
and the other 2 clusters process even frames. If the number of frames without
inputs becomes bigger than another threshold, T2, then each GPU cluster renders
a different frame so a total of 4 frames are processed in parallel. Finally, as in
R-PFR, if the user provides some input the system immediately reverts to con-
ventional rendering, so responsiveness is not reduced. We refer to this technique
as N-Frames Reactive PFR (NR-PFR).

The thresholds T1 and T2 are set to 5 and 10 respectively, since we found
these values provide a good trade-off between the number of switches and the
percentage of time PFR is applied for our set of Android applications.

Note that 4 consecutive frames still exhibit a high degree of texture similarity,
as shown in Figure 4.2. Ideally, if the 4 frames processed in parallel perform all
the same texture accesses within a short time span, up to 75% memory bandwidth
savings for texture fetching can be achieved.

4.2.4 Delay Randomly Parallel Frame Rendering

PFR delays user inputs in all the frames to achieve big memory bandwidth sav-
ings. R-PFR and NR-PFR do not delay any of the user inputs to achieve high
responsiveness, at the cost of smaller bandwidth savings. Between these two ex-
tremes, a system can delay just a given percentage of the user inputs in order to
trade responsiveness for memory bandwidth savings. We refer to this system as
Delay Randomly PFR (DRPFR).

The behavior of DR-PFR is very similar to R-PFR, but when the GPU driver
detects user inputs the system does not always revert immediately to conventional
rendering. Instead, a random number between 0 and 100 is generated and the
system only switches to normal rendering if the random number is bigger than P ,
where P is the maximum percentage of frames where user inputs are allowed to
be delayed. The bigger the value of P , the bigger the memory bandwidth savings
but the smaller the responsiveness. The value of P can be set, for instance,
depending on user preferences. It can also be set depending on the battery
level, so it is dynamically increased as the battery level decreases in order to
extend the use-time per battery charge. The frames where the inputs are delayed
are randomly distributed to try to reduce the impact on user interaction, since
random distortions are usually harder to perceive by the user than distortions
that are very localized.

CHAPTER 4. PARALLEL FRAME RENDERING 87

Table 4.1: GPU simulator parameters. All the configurations include the same
amount of resources: 1 big GPU cluster, 2 clusters with half the resources for each
cluster or 4 clusters with 25% of the resources per-cluster.

L2 Cache 128 KB, 8-way associative, 12 cycles latency

Texture Caches 16 KB, 4-way associative, 2 cycles latency

Local Color Buffer 4 KB, 1 cycle latency (32 × 32 RGBA pixels/tile)

Main Memory 1 GB, 16 bytes/cycle (dual-channel)

Conventional PFR, R-PFR NR-PFR

rendering DR-PFR

Number of clusters 1 2 4

Raster units 4 2 1

per cluster

Vertex Processors 4 2 1

per cluster

Vertex Cache 8 KB, 2-way 4 KB, 2-way 2 KB, 2-way

Vertex Fetcher 16 in-flight vertices 8 in-flight vertices 4 in-flight vertices

Primitive Assembly 4 triangles/cycle 2 triangles/cycle 1 triangle/cycle

Polygon List Builder 4 in-flight triangles 2 in-flight triangles 1 in-flight triangle

Tile Fetcher 4 in-flight tiles 2 in-flight tiles 1 in-flight tile

4.3 Experimental Results

In this section we evaluate normalized off-chip memory traffic, speedups and
normalized energy of the PFR variants described in Section 4.2. The baseline
does conventional Tile-Based Rendering (TBR) with a single big cluster. The
parameters employed for the experiments are summarized in Table 4.1.

In first place, memory traffic is shown in Figure 4.11. The basic version of
PFR consistently provides important memory traffic reductions in most of the
applications, achieving 23.8% bandwidth savings on average. The reason is that
PFR exploits the high degree of texture overlapping between two consecutive
frames by processing them in parallel, so that most texture data fetched by one
cluster is shortly reused by the other cluster before it is evicted from the shared
cache, which converts almost half of the capacity misses produced in conven-
tional rendering into hits. Note that PFR targets bandwidth savings for texture
fetching, so the reduction in memory traffic depends on the importance of the
texture traffic in the overall bandwidth usage, illustrated in Figure 4.1. Games
that devote most of the bandwidth for reading textures, such as gravityguy or
cuttherope, are the ones that obtain the biggest bandwidth savings, 39.3% and
33.3% respectively. On the contrary games such as dungeondefenders or tem-
plerun, that employ most of the bandwidth for fetching geometry, obtain smaller
bandwidth savings, 5.3% and 5.7% respectively.

Regarding R-PFR, we have set the threshold to 5, so the GPU driver switches
from conventional rendering to PFR after 5 consecutive frames without user in-
puts. R-PFR achieves more modest memory bandwidth savings, 17.7% on av-
erage, because PFR is only enabled during phases of the application without

CHAPTER 4. PARALLEL FRAME RENDERING 88

0.5

0.6

0.7

0.8

0.9

1.0

airattack
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

captainamerica
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

crazysnowboard
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

dungeondefenders
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

plantswar
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

playmobilpirates
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

templerun
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

GEOMEAN3D
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

No
rm

al
iz

ed
 M

em
or

y
Tr

af
fic

Reactive PFR (rpfr)
Delay Randomly PFR P=10 (dr10)

Delay Randomly PFR P=30 (dr30)
Delay Randomly PFR P=50 (dr50)

Delay Randomly PFR P=70 (dr70)
Delay Randomly PFR P=90 (dr90)

Parallel Frame Rendering (pfr)
N-Frames Reactive PFR (nrpfr)

0.5

0.6

0.7

0.8

0.9

1.0

angrybirds
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

badpiggies
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

cuttherope
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

gravityguy
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

jetpackjoyride
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

GEOMEAN2D
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

GEOMEAN
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

Figure 4.11: Normalized memory traffic. The top graph shows the results for the
3D games, whereas the bottom graph provides the numbers for the 2D workloads.
The baseline is a mobile GPU that employs Tile-Based Rendering and processes
just 1 frame at a time.

user inputs, which limits the opportunities for processing frames in parallel but
completely avoids any loss of responsiveness. R-PFR achieves its best results for
games with a small number of user inputs, such as cuttherope or gravityguy (see
Figure 4.8), where parallel processing is enabled most of the time. Conversely, it
achieves its worst results for games with more intensive user interaction, such as
dungeondefenders, that employ sequential frame processing for a bigger percent-
age of the execution time.

Regarding NR-PFR, we have set thresholds T1 and T2 to 5 and 10 respec-
tively, so after 5 consecutive frames without user inputs the GPU driver starts
processing 2 frames in parallel and after 10 it switches to 4 frames in parallel.
For 6 games (angrybirds, cuttherope, gravityguy, captainamerica, plantswar and
playmobilpirates), NR-PFR achieves even bigger memory bandwidth savings than
PFR, while maintaining the same responsiveness than conventional rendering. As
in R-PFR, the savings are more modest for games with intensive user interac-
tion (dungeondefenders). On average, NR-PFR achieves 23.8% off-chip memory
traffic savings.

Regarding DR-PFR, we evaluated configurations with the parameter P set
at 10, 30, 50, 70 and 90. P specifies the maximum percentage of frames where
input lag is tolerated, providing fine-grained control to trade responsiveness for
memory bandwidth savings. The results show that the biggest the value of P the
biggest the bandwidth savings, but the smallest the responsiveness since more
user inputs are delayed.

In second place, speedups are shown in Figure 4.12. It is worth noting that
none of the configurations produce slowdowns in any of the games. On the

CHAPTER 4. PARALLEL FRAME RENDERING 89

1.00
1.05
1.10
1.15
1.20
1.25
1.30

airattack
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

captainamerica
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

crazysnowboard
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

dungeondefenders
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

plantswar
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

playmobilpirates
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

templerun
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

GEOMEAN3D
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

Sp
ee

du
p

Sp
ee

du
p

Reactive PFR (rpfr)
Delay Randomly PFR P=10 (dr10)

Delay Randomly PFR P=30 (dr30)
Delay Randomly PFR P=50 (dr50)

Delay Randomly PFR P=70 (dr70)
Delay Randomly PFR P=90 (dr90)

Parallel Frame Rendering (pfr)
N-Frames Reactive PFR (nrpfr)

1.00
1.05
1.10
1.15
1.20
1.25
1.30

angrybirds
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

badpiggies
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

cuttherope
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

gravityguy
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

jetpackjoyride
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

GEOMEAN2D
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

GEOMEAN
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

Figure 4.12: Speedups. The baseline is a mobile GPU that employs Tile-Based
Rendering and processes just 1 frame at a time.

0.5

0.6

0.7

0.8

0.9

1.0

airattack
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

captainamerica
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

crazysnowboard
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

dungeondefenders
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

plantswar
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

playmobilpirates
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

templerun
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

MEAN3D
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

No
rm

al
iz

ed
 E

ne
rg

y

Reactive PFR (rpfr)
Delay Randomly PFR P=10 (dr10)

Delay Randomly PFR P=30 (dr30)
Delay Randomly PFR P=50 (dr50)

Delay Randomly PFR P=70 (dr70)
Delay Randomly PFR P=90 (dr90)

Parallel Frame Rendering (pfr)
N-Frames Reactive PFR (nrpfr)

0.5

0.6

0.7

0.8

0.9

1.0

angrybirds
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

badpiggies
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

cuttherope
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

gravityguy
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

jetpackjoyride
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

MEAN2D
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

MEAN
rpf

r
dr1

0
dr3

0
dr5

0
dr7

0
dr9

0 pfrnrp
fr

Figure 4.13: Normalized Energy. The baseline is a mobile GPU that employs Tile-
Based Rendering and processes just 1 frame at a time.

contrary, PFR provides 14% speedup on average. Although the main objective of
PFR is to save energy, performance is also increased as a side effect of reducing
the memory traffic in a bandwidth bound system.

In third place, energy consumption is shown in Figure 4.13. Energy results
include the static and dynamic energy consumed by both the GPU and sys-
tem memory. PFR achieves 20.5% energy savings on average that come from two
sources. First, the dynamic energy is reduced because 23.8% of the off-chip mem-
ory accesses are avoided. Second, the 14% speedup achieved produces a reduction
in static energy. Note that we do not assign any static energy consumption during

CHAPTER 4. PARALLEL FRAME RENDERING 90

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 M

em
or

y
Tr

af
fic

co
nv

en
tio

na
l

rpf
r

drp
fr1

0

drp
fr3

0

drp
fr5

0

drp
fr7

0

drp
fr9

0 pfr nrp
fr

Textures ColorBuffer WriteSceneBuffer ReadSceneBuffer Vertices

Figure 4.14: Memory bandwidth breakdown for the baseline configuration and the
different versions of Parallel Frame Rendering. “WriteSceneBuffer” represents the
bandwidth employed for sorting the triangles into tiles in main memory, whereas
“ReadSceneBuffer” is the bandwidth required to fetch back the triangles.

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 E

ne
rg

y

co
nv

en
tio

na
l

rpf
r

drp
fr1

0

drp
fr3

0

drp
fr5

0

drp
fr7

0

drp
fr9

0 pfr nrp
fr

SystemMemory VertexProcs FragProcsRegFile FragProcsRest Other

Figure 4.15: Energy breakdown for the baseline configuration and the different
versions of Parallel Frame Rendering.

long idle periods because we assume that the GPU could drastically reduce it by
entering a deep low power state. Regarding R-PFR and NR-PFR, they achieve
more modest energy savings since parallel rendering is enabled just a fraction of
the total execution time in order to maintain responsiveness. Finally, DR-PFR
provides bigger energy saving as the value of P is increased, at the cost of reducing
responsiveness.

Figure 4.14 shows the memory bandwidth breakdown for the different varia-
tions of PFR and the baseline GPU. As expected, the bandwidth savings come
from the texture fetching, since PFR overlaps the texture accesses of two con-

CHAPTER 4. PARALLEL FRAME RENDERING 91

0 10 20 30 40 50 60 70 80 90 100
Loss of Reponsiveness (% of frames where inputs are delayed)

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

No
rm

al
iz

ed
 E

ne
rg

y

PFR
Reactive-PFR

N-Frames Reactive PFR
Delay Randomly PFR

Figure 4.16: Normalized energy vs. loss of responsiveness (percentage of frames
where user inputs are delayed).

secutive frames to exploit inter-frame texture similarity. Furthermore, PFR does
not increase the bandwidth requirements for the rest of the components despite
two frames are generated in parallel. On the other hand, Figure 4.15 shows the
energy breakdown for the same configurations. PFR saves system memory en-
ergy by reusing textures between consecutive frames to avoid off-chip memory
accesses.

Figure 4.16 plots, for all configurations, the average normalized energy con-
sumption versus loss of responsiveness, measured as a percentage of frames where
user inputs are delayed. At one end, PFR provides the biggest energy reduction,
20.5% on average, but at the cost of delaying all the user inputs. At the other end,
R-PFR does not lose responsiveness at all, since user inputs are never delayed,
but achieves smaller energy savings, 15.1% on average. NR-PFR also maintains
full responsiveness, but achieves energy savings much closer to PFR, 20.1% on
average, as it renders up to four frames in parallel to maximize bandwidth sav-
ings. Finally, DR-PFR allows fine-grained control over the energy savings and
the responsiveness. The GPU driver can augment the energy savings by increas-
ing the value of P , but then more user inputs are delayed. Conversely, the GPU
driver can increase responsiveness by reducing the value of P , but losing part of
the energy savings. By varying P , DR-PFR may achieve any intermediate energy
versus responsiveness trade-off between PFR and R-PFR.

In this chapter we assume a Tile-Based Rendering architecture as our baseline
GPU. However, PFR can also be applied on top of an Immediate-Mode Render-
ing (IMR) architecture. Appendix B includes the experimental results for PFR
assuming an IMR baseline. The numbers show that PFR is able to reduce mem-
ory bandwidth usage by 13%, providing 10% energy savings on average when
architected on top of IMR.

CHAPTER 4. PARALLEL FRAME RENDERING 92

4.4 Conclusions

In this chapter we argue that the memory bandwidth required for mobile GPUs
can be significantly reduced by processing multiple frames in parallel. By exploit-
ing the similarity of the textures across frames, we can overlap the execution of
consecutive frames in an effort to reduce the number of times we bring the same
texture data from memory. We term this technique Parallel Frame Rendering
(PFR).

This, however, comes at a cost in the responsiveness of the system, as the
input lag is increased. We argue that in practice this is not really important for
most of the applications, as for mobile systems touch screens tend to be slow and
thus applications tend to require small interaction with the user. Nevertheless,
we show that adaptive forms of PFR can be employed, that trade responsiveness
for energy efficiency. We present three variants of these adaptive schemes and
show that we can achieve 23.8% reduction in memory bandwidth on average
without any noticeable responsiveness hit, achieving 12% speedup and 20.1%
energy savings.

CHAPTER 4. PARALLEL FRAME RENDERING 93

CHAPTER 4. PARALLEL FRAME RENDERING 94

Chapter 5

Hardware Memoization in Mobile
GPUs

In this chapter we address the problem of removing redundant executions of the
Fragment Program. In first place we argue that graphical applications exhibit a
high degree of redundancy, since generating an animation typically involves the
succession of extremely similar images. In terms of rendering these images, this
behavior translates into the creation of many fragment programs with the exact
same input data. We measure this fragment redundancy for a set of commercial
Android applications and show that, on average, more than 38% of the fragments
used in a frame have been already computed in a prior frame.

In second place, we try to exploit this redundancy using fragment memoiza-
tion. Unfortunately, this is not an easy task as most of the redundancy exists
across frames, rendering most hardware based schemes unfeasible. We thus first
take a step back and try to analyze the temporal locality of the redundant frag-
ments, their complexity, and the number of inputs typically seen in fragment
programs. The result of our analysis is a task level memoization scheme, that
outperforms the current state-of-the-art in low power GPUs.

Finally, we evaluate our memoization scheme by using several Android com-
mercial games, and show that our system is able to remove 42.2% of the redundant
fragment computations on average. This materializes to a significant speedup of
15% on average, while also improving the overall energy consumption by 12%.

5.1 Redundancy in Mobile GPUs

Graphical applications for mobile devices tend to exhibit a large degree of scene
replication across frames. Figure 5.1 shows two consecutive frames of a popular
Android game, Bad Piggies. As it can be seen, the input from the user resulted
in the main character being shifted, however a significant fraction of the frame
remained untouched. Despite being admittedly a well selected example, this

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 95

Figure 5.1: Two consecutive frames of the game Bad Piggies. A huge portion of
the screen remains unmodified.

0

20

40

60

80

100

%
 o

f R
ed

un
da

nt
Fr

ag
m

en
ts

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

Figure 5.2: Percentage of redundant Fragment Program executions for twelve An-
droid games. On average, 38.1% of the executions are redundant.

behavior is actually quite prevalent for mobile applications. Figure 5.2 depicts the
percentage of fragment computation that is common between consecutive frames
for twelve popular Android games. Overall, more than 38% of the fragments
computed in a given frame were previously computed in the frame before it.

Motivated by this observation, recent work attempts to exploit this inter-frame
locality in order to save memory bandwidth and improve the overall energy effi-
ciency. ARMs Transaction Elimination compares consecutive frame buffers and
performs partial updates of entire tiles [57]. Parallel Frame Rendering (PFR),
presented in Chapter 4, tries to overlap the execution of consecutive frames in
an effort to improve the cache locality. Although both schemes are able to sig-
nificantly improve the overall energy efficiency, they still need to perform all the
fragment computations (even if they are not going to store them to the frame
buffers) and some of the memory accesses.

In Figure 5.3 we depict the performance benefits that could be attained over
PFR if we could avoid all computation of fragments that are exactly the same be-
tween two consecutive frames. Removing all redundant computation and memory
accesses results in a 28.2% speedup on average over the current state-of-the-art.
Moreover, as shown in Figure 5.4, energy is also improved by 32.9%.

In this chapter we remove a significant fraction of this redundant work by
adding a task-level memoization scheme on top of PFR. We keep a hardware
structure that computes a signature of all the inputs to a task and caches the
value of the corresponding fragments. Subsequent computations form the signa-
ture and check against the signatures of the memoized fragments. Hits in the

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 96

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

Oracle Memoization

Figure 5.3: Performance increase achieved with an Oracle memoization system. On
average, 28.2% speedup can be achieved by removing all the redundant Fragment
Program executions. The baseline is a state-of-the-art mobile GPU.

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 E

ne
rg

y

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

Oracle Memoization

Figure 5.4: Potential energy savings of removing all the redundant Fragment Pro-
gram executions. On average, 32.9% energy can be saved with respect to a state-
of-the-art mobile GPU.

hardware structure result in the removal of all relevant fragment computation.
Next sections analyze the fragment redundancy as seen in commercial Android
games and describe our memoization scheme.

5.2 Redundancy and Memoization

Memoization is an optimization technique that avoids repeating the execution of
redundant computations by reusing the results of previous executions with the
same input values, which results in execution speedups and energy savings. The
first time a computation is executed, its result is dynamically cached in a Look
Up Table (LUT), along with its inputs. Subsequent executions of the same code
will probe the inputs in the LUT and in case of hit, the cached result is written to
the output rather then recalculating it. Memoization has been employed both at
the function level in software [132] and at the instruction (or set of instructions)
level in hardware [139]. In both cases, the computed result along with its inputs
are cached in a LUT, so that subsequent executions with the same inputs can
directly read the memoized result, instead of repeating all the computations.
Although the general concept is fairly straightforward, in order for memoization
to be efficient a set of requirements have to be met. In the next few sections we
try to analyze these restrictions.

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 97

0 250 500 750 1000 1250 1500 1750 2000
Reuse Distance

0

10

20

30

40

50

60

70

80

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y
(%

)

Conventional Rendering
Parallel Frame Rendering

Figure 5.5: Cumulative frequency of distances between redundant fragments for
Conventional Rendering and PFR.

5.2.1 Reuse Distance and Parallel Frame Rendering

A prime requirement for any memoization scheme is that the data on which the
scheme is applied exhibits a high degree of re-use. Figure 5.2 shows that for
the graphical applications that we use as our focus in this paper, 38.1% of the
fragments are redundant. However, re-use alone is not enough for hardware based
memoization solutions. Bound by power/area limitations, the hardware-based
memoization schemes also require that the re-use distance between redundant
computations is relatively small.

Throughout the paper we will use the term re-use distance to mean the number
of unique fragments processed between two consecutive occurrences of the same
fragment, a slightly modified usage of the term from its typical use [104]. We will
also say that two fragments are the same if they have identical input attributes
and they have to perform the same fragment shader. In case two fragments are
the same, we will call the latter redundant.

Figure 5.5 illustrates the distribution of the re-use distances between redun-
dant fragments for the set of Android games we analyzed (see Section 2.2.1) for
re-use distances up to 2048 fragments. The “Conventional Rendering” configu-
ration consists on a mobile GPU such as the one illustrated in Figure 4.4, that
features four Raster Units to render four screen tiles in parallel, but all these
screen tiles belong to the same frame, i. e. it renders just one frame at a time
as in conventional mobile GPUs. As we can see, 36.6% of the redundant frag-
ments are re-used at distances that can be captured with some realistic hardware
constraints. Although it represents a non-negligible percentage of fragments, this
means that 63.4% of the redundancy happens at distances that are not amenable
for a hardware-based memoization system. This is somewhat expected, as a
significant percentage of the redundancy tend to be inter-frame and frames are
relatively big. As such, a fragment memoization scheme can potentially reduce
the distances by overlapping the fragment computations from sub-sequent frames.

This observation motivates the adoption of Parallel Frame Rendering (PFR),
presented in Chapter 4, as our starting point. PFR tries to render two consecutive

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 98

2048 10000 20000 30000 40000 50000 60000 65536
Reuse Distance

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y
(%

)

% fragments in histogram bin
Average cycles for fragments in histogram bin

35

40

45

50

55

60

65

Av
er

ag
e

Cy
cl

es

Figure 5.6: Reuse distance histogram with PFR, including percentage of fragments
and average complexity for each histogram bin. The last histogram bin includes
all the distances that are bigger than 65536. The complexity is measured as the
number of GPU cycles required to process the fragment.

frames in parallel. As shown in Figure 4.5, under PFR the baseline GPU needs
to be split into two separate clusters, each including half of the resources of
the original GPU. The GPU Command Processor dispatches commands from
even frames to cluster 0 and commands from odd frames to cluster 1. Each
GPU cluster behaves as an independent GPU, rendering the frame by using Tile-
Based Rendering as described in Section 2.1.3. To further reduce the distance
between redundant computations of parallel rendered frames, the two clusters
are synchronized by processing tiles in lockstep. As such they process the same
screen tile in two consecutive frames in parallel. Although PFR was originally
proposed in order to improve the locality of texture cache accesses, it is a perfect
match for our memoization scheme.

Looking again at the re-use distances for a PFR based GPU in Figure 5.5,
59.9% of the redundant fragments have re-use distances smaller than 64 frag-
ments, and 68.8% smaller than 2048. This is a significant improvement over
re-use distances of the conventional GPU. Figure 5.6 shows a histogram of frag-
ment re-use distances for PFR (read on the left vertical axis). Distances are
discretized in bins of 2048 fragments and, unlike Figure 5.5, all redundant frag-
ment are represented in this graph. As pointed-out before, 68.8% of the re-uses
take place at distances smaller than 2048 (first bin), whereas the rest are sparsely
distributed across the whole distance spectrum (note that the bipolar appearance
of the histogram is just an artifact of grouping all distances greater than 64K into
a single “fat” last bin).

5.2.2 Task-level Complexity

In this work, we term complexity the amount of work involved by a fragment,
and we measure it as the GPU cycles it takes to compute fragment operations.
As pointed out in [134], this concept is important because computation re-use
is lucrative only when the cost of accessing the structures used for memoization

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 99

0 20 40 60 80 100
GPU cycles

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y
(%

)

Fragments reused at small distances
Fragments reused at big distances
Average Fragment Program cycles

Figure 5.7: Cumulative histogram of fragment complexity for fragments reused
at small and at big distances. Complexity is measured as number of GPU cycles
required to process the fragment.

is smaller than the benefit of skipping the actual computation. For this rea-
son prior work on memoization either tries to perform memoization for multiple
instructions [66, 82, 49, 50, 91, 145] or for long latency operations [64].

Figure 5.6 shows the per-bin average fragment complexity (read on the right
vertical axis), so we can see it as a function of the re-use distances. Unfortunately,
fragments that are re-used at bigger distances, i. e. the ones that exhibit worse
temporal locality, tend to be more complex (54.4 cycles on average). However,
fragments at smaller re-use distances, which are the target of our scheme, are also
relatively complex (44.4 cycles on average). Figure 5.7 provides a more detailed
view of the fragment complexity distribution. 52.6% of the fragments that could
be re-used and exist in large re-use distances are more complex than the total
average execution time. On the other hand, only 42.1% of the fragments re-used
at small distances are more complex than the average. Nevertheless, 100% of
the redundant fragments reused at small distances spend more than 6 cycles,
which is greater than the amount of time required to perform the lookup to the
memoization scheme. As we will show in Section 5.4, this is still enough to provide
substantial performance and energy gains.

5.2.3 Referential Transparency

Another problem typically faced by conventional memoization when identifying
redundancy between instructions is to guarantee that they are referentially trans-
parent, i.e. that the same set of input values is always going to produce the same
output result. The main difficulty here arises from the fact that these instruc-
tion blocks must not depend on global memory data that is subject to changes
between executions, and they do not produce side-effects. Since it is difficult
to track these global changes at runtime, task-level hardware-based memoization
usually requires compiler support to carefully select code regions that do not
depend on global data or have side-effects, which further reduces the choice of
candidate code regions.

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 100

Fortunately, our approach does not suffer from this additional complexity for
two reasons. The first is that fragment shaders compute a single output color,
without side-effects. The second, and perhaps more important, is that changes
to global data accessed by the Fragment Program, such as textures or shader
instructions, are relatively easy to track by the driver as the programmer does
not have direct access to the graphics memory. In fact, API function calls, such
as glTexImage2D or glShaderSource, must be used in order to update textures
and shaders.

As such, for a fragment memoization scheme, referential transparency can be
guaranteed by simply monitoring the API calls, and discarding the content of
the memoization hardware. Although this is a very crude solution, in practice
it works quite well as updates to global data are rather infrequent. They also
tend to be clustered at the beginning of new levels (for games) when all the
textures and shaders required to render the level are loaded, and as such part
of the opportunity cost is amortized. We found that the time between updates
to global memory in our set of Android games is in the order of hundreds or
thousands of frames.

5.3 Task Level Hardware-Based Memoization on

a Mobile GPU

5.3.1 Memoization System

Conceptually the proposed memoization scheme is comprised of three principal
components: the detection of candidate fragments, the lookup of prior fragment
information and the replacement of the fragment computation with the memoized
information. Figure 5.8 depicts a block level diagram of the various components
and how they operate.

Input fragments are first checked whether they satisfy the input restrictions,
in order to be considered as memoization candidates. Fragment Programs with
more than 4 input registers or more than 4 texture samplers, are assumed to be
bad candidates for memoization. The rationale is that since these inputs will have
to be hashed, having more inputs both complicates the hashing logic and degrades
the quality of the hash function (dispersion may become worse). Fragments that
do not meet the memoization criteria proceed as they would in a normal GPU.
The ones that do, pass through a stage where we form a signature out of their
inputs. As illustrated in Figure 5.9, 99.9% of the fragments pass the memoization
criteria in our set of Android games, so that the overall coverage of our technique
is not hindered by the hashing restriction.

Not all input bits are selected for generating the signature, as illustrated in
Figure 5.10. Input Registers are vector registers that consist of four 32-bit single
precision FP components. Based on the fuzzy memoization paradigm [173], we
take off the 8 least significant bits of the mantissa for every component. Hence,

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 101

Fragment
Processor

Input fragments

Is
hashable?

xor-based
Hash Function

num inputs ≤ 4
num samplers ≤ 4
Fragment = 568 bits

Fragment
Processor

Too many
inputs,

execute
Fragment
Program

N bits signature

Valid LRU Tag Color

Probe LUT

Miss!
Reserve

entry in LUT
and execute

Fragment
Program

Output colors

Set 0

Set 1

Set 2

Set 3

Update LUT Hit! Read color
from LUT & skip

Fragment Program

Scheduler
Set bitsTag bits

Figure 5.8: Proposed hardware-based task level memoization system.

fragments that are extremely similar are also considered redundant, improving
the efficiency of the memoization system. Furthermore, we reduce the input bits
that are considered, simplifying the computation of the signature. Note that
small precision losses in graphics and multimedia can be tolerated as the end
difference is hard to distinguish [81].

Figure 5.10 shows how the hash function generator is implemented. The
total number of input bits that we can have based on the input restrictions and
the fuzzy memoization feature is 568, including information from the Fragment
Program (base PC), the Texture Samplers and the Input Registers. Being F the
568-bit description of a fragment and S the resulting signature of N bits, we
have experimentally found that the bitwise XOR operations that follow the next
form provide high dispersion even with small signature sizes and require simple
hardware:

Si = Fi ⊕ Fi+N ⊕ Fi+2×N ⊕ Fi+3×N ⊕ ...

We hash the input fragment into N bits, being N smaller than 568. For
example, for N = 32 each of the final bits is a product of an 18-bit XOR. Assuming
that we have only 2-input XOR gates, this means that we need a tree of 6 levels
of XOR gates. As the number of signature bits grow, the complexity of the hash
function lessens, however more storage will be required for signatures (functioning
as tags) in the LUT. Moreover, the LUT set index is typically built by bit selection
of the signature LSBs, so having a larger signature with a less complex hash

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 102

0 1 2 3 4 5 6
Number of Inputs

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
of

 F
ra

gm
en

ts

Input Registers
Texture Samplers

Figure 5.9: Two cumulative histograms for the number of input registers and num-
ber of texture samplers. With just 4 of each we cover 99.9% of the fragments,
although in OpenGL ES the programmer can use up to 16 input registers and 8
texture samplers.

function makes each index bit to be generated from a smaller number of fragment
bits. As we will show in Section 5.4, this puts more pressure to specific sets of the
LUT, as the dispersion is much worse. This results in requirements of a bigger
LUT, which is obviously not a good trade-off.

Since we perform a hash of many bits into few, we inevitably lose some in-
formation. This results in what we call a false hit, which ultimately results in a
distortion of the frame with respect to the one that would have been computed
by a normal GPU. More bits in the hash result in a smaller probability for such
collisions, but as we will see in Section 5.4, in practice there is little difference for
signatures bigger than 32 bits.

Once the hashing of the inputs is ready, we then perform a lookup to the
Look Up Table (LUT). The LUT acts as a cache, in that it uses part of the
signature as an index, and the rest as the tag. The LUT is set-associative, and
we employ pseudo LRU [48] as its replacement policy. Each entry of the LUT
contains control information and data. Regarding the control information, each
entry has a Valid bit, an LRU bit for the replacement policy and N − M bits
to store the most significant part of the signature that serves as the tag for the
entry, being M the number of bits employed to select the set. Regarding the
data, each entry stores the 32-bit color, in RGBA format, that corresponds to
the given fragment.

A hit in the LUT indicates that we have a memoized value of the prior color of
the fragment, and as such we can skip the fragment computation. Fragments that
hit in the LUT read out the color and take the bypass to the next GPU stage.
On the contrary, a miss in the LUT indicates that the output of the fragment is
not available. Missing fragments are redirected to the Fragment Processors where
the Fragment Program is applied to compute the color. An entry in the given set
is reserved for the fragment and the tags are updated, replacing a previous entry
by using pseudo-LRU if there is no free entry available, and the fragment carries
the index of the corresponding line.

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 103

TEX3PC TEX2 TEX1 TEX0 IN REG3 IN REG2 IN REG1

32 bits

6 bits 32 bits

Texture
sampling

mode

Texture
Base

Address
24 MS
bits w

24 MS
bits z

24 MS
bits y

24 MS
Bits x

Input Register = (x, y, z, w)
Take 24 Most Significant bits of each component

38 bits 96 bits

XOR

IN REG0

XORXORXOR …....
S0S1S2SN-1

......

Figure 5.10: Computation of the hash function. The input fragment description
contains information from the Fragment Program (base PC), the Texture Samplers
and the Input Registers.

Note that in case that two fragments are redundant, the second —younger—
fragment can potentially arrive to the fragment stage while the Fragment Pro-
gram is still in-flight for the first —older— fragment. In that case, the tags of the
LUT have already been updated, so the second fragment will hit in the LUT, but
the color is not yet available. Our system revolves this situation by blocking the
second fragment until the Fragment Program for the first fragment finishes exe-
cution. Once the redundant color is ready, we wake-up and bypass the redundant
fragment, avoiding the execution of the Fragment Program even for fragments
re-used at very small distances.

The Scheduler coordinates the dispatch of fragments to the Fragment Proces-
sors. It receives fragments from two sources: fragments that cannot be hashed
and fragments that miss in the LUT. It applies a Round Robin policy to dispatch
the input fragments to the processors. In the case that all the Fragment Pro-
cessors are busy, the Scheduler stalls the pipeline. Once the color of a fragment
has been computed, it is forwarded to the next GPU stage. Furthermore, the
missing fragments update the LUT by using the new color and the index of the
line previously reserved.

As the frequency of mobile GPUs is small, it takes only two cycles in order to
perform the hash function and access the LUT. As such, there is no significant
pressure to this task. Furthermore, the Fragment Processors are usually the main
bottleneck in the GPU pipeline [147] due to the complexity of the Fragment Pro-
gram, that typically includes several complex operations such as texture fetches.
Hence, there is significant slack for computing the signature and accessing the
LUT while the fragment processors are still computing previous fragments.

The proposed hardware changes are relatively small as a percentage of the
total GPU area. For the 32-bit signature, 4-way LUT configuration with 512 sets,
we measured it to be 18KBytes in total. Based on estimations using McPAT, the
whole memoization scheme including the hash computation logic and the LUT
accounts for only 0.47% of the overall GPU area.

The baseline GPU has two clusters to render two frames in parallel in order to

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 104

improve the temporal locality of redundant fragments. The hardware LUT (which
is the most costly component in terms of area) is centralized and shared by both
clusters since most of the redundancy is inter-frame, so the results computed by
one cluster must be visible by the other in order to detect and remove redundant
computations.

As previously mentioned in Section 5.2.3, we propose the use of task level
memoization. The execution of a Fragment Program has no side-effects and no
mutable state is allowed. Furthermore, it is easy to track changes to global
data. Note that some inputs of the fragments are pointers to global graphics
memory, such as the base PC of the Fragment Program or the base address of
the textures. Even if two fragments have the same base addresses, the output
is not going to be the same if the global data has been updated between two
executions of the Fragment Program. Nevertheless, all the updates to graphics
memory pass through the GPU driver. We thus extended the driver to detect
those updates and send a command to the GPU to clear the LUT, since the
memoized values can no longer be trusted. Clearing the LUT consists on setting
all the valid bits to 0. We found that this clear operation is very infrequent
since textures and Fragment Programs are updated on a game level basis, so
they remain unmodified during hundreds or thousands of frames. Moreover, the
LUT is warmed-up very fast due to its small size and the small reuse distances
exhibited by redundant fragments. As our memoization system is task-level the
entire execution of the Fragment Program is avoided for redundant fragments
that hit in the LUT. Hence, not only the fragment computations performed in
the functional units are avoided, but also the memory accesses required to fetch
instructions and textures are removed.

Regarding the granularity of our memoization system, we decided to stay at
the fragment level instead of targeting primitive or even object level memoization.
We found the fragments to be more amenable to our technique as for primitive
memoization more inputs have to be hashed, all the input attributes of three
vertices, and more outputs have to be memoized. Triangles can potentially cover
big regions of the screen, whereas for fragments only one output color has to be
stored in the LUT.

Scalability of our technique to larger GPUs is a valid concern, since a cen-
tralized LUT design does not scale to GPUs with tenths or hundreds of cores.
Nevertheless, we think there exist viable solutions thanks to the available flex-
ibility in distributing the workload and the highly parallel nature of graphical
applications. Scalability can be achieved by distributing among different cores
the processing of multiple tiles of the same frame. The LUT could then be dis-
tributed into multiple tables, each shared by cores processing the same screen tile
in consecutive frames. Other approaches that follow distributed memories ideas
are also possible, we leave the implementation of such a distributed memoization
system as future work.

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 105

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

20
40
60
80

100
%

 re
du

nd
an

cy

Screen coord independent
Screen coord dependent

Time (s)

St
at

ic
 s

ce
ne

Scrolling / Camera movement Static camera,
objects moving Static

scene

Figure 5.11: The graph shows the percentage of redundant fragments vs time
for the game Angry Birds. For the “Screen coord dependent” configuration the
screen coordinates are always used to form the signature, whereas for the “Screen
coord independent” they are excluded from the signature provided that they are
not accessed in the Fragment Program. The graph covers four phases of the
application, an image crop of a frame for each phase is included in the figure. For
phases with static frames (first and last phases) both configurations achieve levels
of redundancy close to 100%. However, the “Screen coord independent” performs
better in the presence of camera movements (second phase) or moving objects
(third phase), since redundant fragments are not required to be located at the
same screen pixel from frame to frame.

5.3.2 Screen Coordinates Independent Memoization

Screen coordinates are 2D coordinates that describe the location of a fragment
in the screen, i. e. which pixel overlaps the fragment. The last GPU stage,
the Blending stage, employs these coordinates to blend the color of the fragment
with the color of the corresponding pixel. However, the screen coordinates are
not used in most of the Fragment Programs since the color of the objects does
not usually depend on the exact screen pixels where they are located.

Using the screen coordinates to form the signature imposes significant con-
straints to the memoization system, as only fragments located at the same screen
pixels can be identified as redundant. Nevertheless, the screen coordinates can be
excluded from the signature to expose more redundancy as long as the outcome
of the computation does not depend on the location of the fragment in the screen.
In order to implement this optimization our GPU driver generates information
about the usage of the input registers. We expose this information to the GPU,
so that the screen coordinates are only employed to form the signature in case
the compiler indicates they are accessed in the Fragment Program.

The benefits of excluding the screen coordinates from the signature are illus-
trated in Figure 5.11. By using this optimization the memoization system is able
to capture more redundancy if there are camera movements and objects moving
on the screen. All the numbers reported in section 5.4 include this optimization,
since we found it to be beneficial for all the workloads.

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 106

Table 5.1: Parameters employed for the experiments.

GPU clusters 2 Raster Units/cluster 2

L2 cache 128 KB, 8-way Texture caches 16 KB, 4-way
Tile Cache 16 KB, 2-way Vertex Cache 4 KB, 2-way

Lookup Table
Number of sets: 8, 16, 32, 64, 128, 256, 512, 1024, 2048

Number of ways: 2, 4, 8

Signature size: 24, 26, 28, 30, 32, 64, 128

5.4 Experimental Results

We have implemented the hardware memoization system described in Section 5.3
on top our GPU timing simulator (see Section 2.1.3). We have generated GPU
instruction and memory traces for the twelve Android games presented in Sec-
tion 2.2.1. During trace generation we tried to avoid unrealistic situations that
favor our technique by artificially increasing the degree of redundancy. For ex-
ample, in some games if the user does not provide any input the screen does not
move and then nothing changes from frame to frame, reaching levels of redun-
dancy close to 100%. On the contrary, we tried to capture normal gameplay, by
providing inputs that guarantee forward progress and allow the user to complete
the targets of the stage. As we depicted in Figure 5.2, the average redundancy
in our traces is 38.1%, and most of the games exhibit redundancy levels that are
far from the 100% that would provide artificially biased situations.

2D games with static backgrounds are the perfect fit for our memoization
technique, but scrolling 2D games and complex 3D games are also amenable
to memoization and we have included both types of games in our set of work-
loads. More specifically, some of our 2D games like angrybirds and badpiggies
include phases with static background and phases with scrolling as illustrated
in Figure 5.11. On the other hand, 3D games also exhibit significant degrees of
redundancy that come from static background objects, for example the sky, or
from 2D content such as GUI components (scores, life bar, dialogues...) or bill-
boards/impostors. Finally, 3D games also include periods with intensive camera
movements and periods where the camera is not moving around. Despite the
redundancy levels are higher for the periods with static camera, the optimization
described in Section 5.3.2 is still able to expose significant redundancy when the
camera is moving.

The baseline for all our experiments is a PFR capable GPU similar to that
shown in Figure 4.5. This GPU is able to render two frames in parallel, and
as such it is already able to benefit from the improved locality in the memory
sub-system. The parameters employed during the simulations are summarized in
Table 5.1.

We first evaluate the effect of the signature size on performance, energy and
image quality. The Lookup Table employed for this sensitivity analysis is 4-way
associative and has 1024 sets.

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 107

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

du
p

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

24 bits 32 bits 64 bits 128 bits

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

du
p

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure 5.12: Speedups achieved by hardware memoization for different sizes of the
signature. The baseline configuration is PFR.

0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

. E
ne

rg
y

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

24 bits 32 bits 64 bits 128 bits

0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

. E
ne

rg
y

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Energy for Hash Function Logic and Lookup Table

Figure 5.13: Normalized energy for different sizes of the signature. The baseline
configuration is PFR.

Figure 5.12 shows the speedups attained for different signature sizes. On av-
erage, 9.9% speedup is achieved with a 128-bit signature, whereas 14.6% and
19.5% speedups are obtained by using 32-bit and 24-bit signatures respectively.
Reducing the signature increases performance. The smaller the signature the
bigger the probability of having a conflict in the LUT (up to some reasonable
limit) and, hence, the bigger the hit rate in the LUT. We have a conflict, or false
hit, when two different fragments get the same signature and are thus incorrectly
identified as redundant, which in turn results in the conflicting fragment getting a
wrong color from the LUT. We have measured the number of conflicts and found

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 108

24 26 28 30 32
Signature Size (bits)

0

5

10

15

20

25

Pe
rc

en
ta

ge
 (%

) Performance Increase Energy Savings Image Quality Loss

Figure 5.14: Impact of signature size on performance, energy savings and image
quality. The baseline configuration is PFR.

(a) 24 bits (b) 28 bits (c) 32 bits

Figure 5.15: The figure shows a cropped image for a frame of the game Angry Birds
for different sizes of the signature: 24, 28 and 32 bits. It illustrates the impact of
conflicts in the Lookup Table on image quality.

that for 24-bit signatures we have more than 30k conflicts per frame on average,
whereas for 32-bit signatures we only have one conflict every 10 frames. There
is no conflict at all for 64-bit and 128-bit signatures. Hence, the 24-bit signature
incorrectly removes the execution of more than 30k fragments per frame, achiev-
ing significant speedups. Note that the 32-bit signature has a extremely small
number of conflicts but it still gets speedups with respect to 128-bit signatures.
As we decrease the signature size we also improve the dispersion of the accesses
to the LUT, as described in Section 5.3. The bits that are used to select the set in
the LUT are computed by using more bits from different sources as the signature
size is decreased. This spreads the accesses even when consecutive fragments are
just slightly different. Not surprisingly, the 32-bit signature achieves a hit rate of
15.5% on average in the LUT, whereas the 128-bit signature only obtains 9.5%
hit rate.

Reducing the signature size improves energy consumption as illustrated in
Figure 5.13. The energy savings come from two sources. The obvious source is
that the size of the LUT is reduced, since signatures have to be stored in each
LUT entry, so both the leakage and dynamic energy required to access the LUT
are smaller. Secondly, we avoid more executions of the Fragment Program due to
the conflicting fragments that are incorrectly identified as redundant, and also due
to the better dispersion of the accesses across the sets of the LUT. On average,
switching from 128-bit to 32-bit reduces the energy consumed by the LUT by
68.1% and overall GPU energy by 5.1%.

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 109

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Sp
ee

du
ps

128entries 256entries 512entries 1024entries 2048entries 4096entries 8192entries or
ac

le2 2 2 2 2 2 24 4 4 4 4 4 48 8 8 8 8 8 8

Figure 5.16: Average speedups achieved for LUTs with different sizes and associa-
tivity. The baseline configuration is PFR.

Figure 5.14 shows the effect of the signature size on performance, energy and
image quality. The 24-bit signature achieves the biggest performance increase
and energy savings, but at the cost of a significant percentage of conflicts that in-
troduce noticeable distortions on image quality. More specifically, image quality
drops by 15.1%, this is an important percentage that introduces visible artifacts
in the images as illustrate in Figure 5.15. For the rest of the experiments we em-
ploy 32-bit signatures, since 32-bit still provides significant speedups and energy
savings with respect to bigger signatures while achieving high image fidelity.

Figure 5.16 shows the average speedups for 2-way, 4-way and 8-way associa-
tive LUTs with a number of entries from 128 to 8192. As expected, increasing
the associativity improves performance in all the configurations, especially in the
LUTs with a smaller number of entries. For example, for 256 entries the version
with 2-ways obtains 10.2% speedup, whereas the version with 8-ways achieves
13.4% performance increase. For a given number of ways, increasing the capacity
of the LUT provides noticeable improvements. For instance, for 2-way associativ-
ity the version with 128 entries obtains 9.4% speedup, whereas the version with
4096 entries achieves 14.1% speedup. Although the results are far from the Ora-
cle memoization system, all the configurations provide consistent and substantial
speedups over the baseline GPU.

Figure 5.17 shows the normalized energy for the same configurations of the
LUT. The memoization system provides significant energy savings in all the con-
figurations. The energy savings come from the redundant Fragment Program
executions removed, as fragments that hit in the LUT skip all the fragment com-
putations and memory accesses. The savings are in the range from 8.2% —128
entries, 2-way— to 12.08% —4096 entries, 8-way. The figure also shows the per-
centage of energy consumed by the LUT. LUT energy increases as we increase its
capacity and thus part of the savings from removing redundant executions of the
fragment shader are lost. Hence, increasing the size of the LUT is only lucrative
if the energy savings due to the additional fragments removed are bigger than
the extra energy consumed by LUT. As an example, the configuration with 128
entries and 4-way achieves 8.21% energy savings, whereas increasing the number
of entries to 4096 provides 11.82% savings. However, switching to 8192 entries

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 110

0.6

0.7

0.8

0.9

1.0

No
rm

al
iz

ed
 E

ne
rg

y

128entries 256entries 512entries 1024entries 2048entries 4096entries 8192entries

or
ac

le2 2 2 2 2 2 24 4 4 4 4 4 48 8 8 8 8 8 8

Energy for Hash Computation and Lookup Table

Figure 5.17: Normalized energy for different configurations of the Lookup Table,
including both static and dynamic energy. Baseline is PFR.

0
5

10
15
20
25
30
35
40
45

Hi
t R

at
e

(%
)

128entries 256entries 512entries 1024entries 2048entries 4096entries 8192entries

or
ac

le2 2 2 2 2 2 24 4 4 4 4 4 48 8 8 8 8 8 8

Figure 5.18: Hit Rates for different configurations of the Lookup Table. The
baseline configuration is PFR.

results in 11.80% savings. Figure 5.19 shows the normalized energy breakdown
for the same configurations of the LUT.

Figure 5.18 depicts the hit rates in the LUT. Again, increasing the associativ-
ity produces significant improvements, especially for configurations with a small
number of entries. For example, a LUT with 128 entries and 2-way achieves
9.5% hit rate, whereas increasing associativity to 8-way provides 12.7% hit rate.
On the other hand, increasing capacity has also a noticeable impact on the hit
rate. A 4-way associative LUT achieves 11.1% and 15.5% hit rates with 128 and
4096 respectively. In the best case, we have a 16.8% hit rate, whereas the Oracle
achieves 38.1% as it is able to capture redundancy at any re-use distance.

Figure 5.20 depicts the per-game speedups for a hardware memoization system
with 32-bit signatures and two configurations for the LUT: 512 sets 8-way and
1024 sets 4-way. As it is shown, the system does not produce slowdowns in any
of the games. On the contrary, it is able to achieve 40.1% and 39.1% speedups
in cuttherope and captainamerica respectively. The benefits are small for games
such as dungeondefenders, 1.3% speedup for an 8-way associative LUT with 512
sets. Hence, the effectiveness of the system is significantly different for different
games and it depends on two main factors: the degree of redundancy and the

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 111

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 E

ne
rg

y

ba
se

lin
e

128entries
2 4 8

256entries
2 4 8

512entries
2 4 8

1024entries
2 4 8

2048entries
2 4 8

4096entries
2 4 8

8192entries
2 4 8

VertexProcs FragProcsRegFile FragProcsRest LUT Other

Figure 5.19: Energy breakdown for different configurations of the Lookup Table
and the baseline GPU.

importance of the fragment stage in the overall GPU execution time and energy.
Figure 5.2 shows that the percentage of redundant Fragment Program executions
exhibited by our games is significantly different, as some of the games render
scenes with static cameras and backgrounds most of the time, so consecutive
frames tend to be extremely similar, whereas other games feature fast scrolling
and camera movements that increase frame-to-frame differences. The bigger the
degree of redundancy the better for our memoization scheme. Not surprisingly
the three games that exhibit bigger degree of redundancy, cuttherope (87.5%),
plantswar (91.2%) and captainamerica (79.9%), are the ones that achieve the
highest performance improvements. On the contrary, the game with the smallest
degree of redundancy, dungeondefenders (12.9% redundant fragments), is the one
that shows the smallest speedup.

On the other hand, our memoization scheme is an optimization that targets
the fragment processing stage of the GPU pipeline and, hence, the overall benefits
depend on the importance of the fragment stage in the total GPU execution time
and energy. As described in Section 2.2.2, 2D games are fragment bound as the
geometry datasets tend to be very simple. 3D games are also fragment bound, but
they exhibit much bigger workload in the geometry pipeline and thus the fragment
stage represents a smaller percentage. As we can see in Figure 5.20, 2D games
achieve better average speedups, 18% and 17.3% for configurations with 512 sets
8-way and 1024 sets 4-way respectively, whereas the 3D games obtain smaller
performance improvements of 13.1% and 12.7% for the same configurations.

Finally, Figure 5.21 shows the per-game energy savings. Again, the energy
improvements are significantly different for different games, although we do not
increase energy consumption in any case. The memoization system provides sub-
stantial energy savings for games such as plantswar and cuttherope, that achieve
31% and 24% savings respectively for a LUT with 1024 sets and 4-way associa-
tive. On the contrary, it does not provide any savings for games that exhibit

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 112

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

LUT (512 sets, 8-way) LUT (1024 sets, 4-way) Oracle

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure 5.20: Speedups for the twelve Android games and on average. We include
two of the best configurations for the LUT and the Oracle memoization. The
baseline configuration is PFR.

0.4

0.6

0.8

1.0

1.2

No
rm

. E
ne

rg
y

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

LUT (512 sets, 8-way) LUT (1024 sets, 4-way) Oracle

0.4

0.6

0.8

1.0

1.2

No
rm

. E
ne

rg
y

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Energy for Hash Function Logic and Lookup Table

Figure 5.21: Normalized energy for the twelve Android games and on average,
including both static and dynamic energy. We include two of the best configurations
for the LUT and the Oracle memoization. Baseline is PFR.

small degrees of redundancy, such as dungeondefenders or airattack.

In this chapter we assume a Tile-Based Rendering architecture as our baseline
GPU. Nevertheless, our proposal is orthogonal to the type of rendering architec-
ture and it can also be implemented on top of Immediate-Mode Rendering (IMR).
Similar conclusions are obtained when using our memoization system on top of
IMR. The experimental results assuming an IMR baseline are provided in Ap-
pendix C. The numbers show that the LUT with 512 sets and 8-way associative

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 113

achieves 16.4% speedup and 13% energy savings.

5.5 Conclusions

In this Chapter we have shown that more than 38% of the fragment program
executions are redundant on average for a set of Android games, suggesting that
memoization can be useful to reuse computations in order to save time and energy.
However, fragment memoization is no simple task. As we have shown most of the
redundancy that could be exploited exists across frames.

We thus proposed to employ fragment memoization on top of techniques that
aim to reduce the inter-frame re-use distances of fragments, such as Parallel
Frame Rendering (PFR). When we employ PFR, 68.8% of the redundant frag-
ments are brought into re-use distances that make them amenable to hardware
memoization. Our memoization scheme is able to achieve significant benefits in
both performance and power, with minimal distortion of the frames that are cap-
tured. More specifically, when compared with a state-of-art PFR-enabled GPU,
our scheme is able to remove enough computation to achieve 15% speedup for a
set of commercial Android games. This improves the energy consumption of the
system by 12% on average. All this, comes at a negligible cost in terms of image
distortion, which as shown in Section 5.4 is not perceivable.

CHAPTER 5. HARDWARE MEMOIZATION IN MOBILE GPUS 114

Chapter 6

Conclusions

In this chapter the main conclusions and contributions of this thesis are presented,
as well as some open-research areas for future work.

6.1 Conclusions

A complete and comprehensive analysis of mobile graphics processors has been
made, together with an evaluation of multiple energy saving techniques for low-
power GPUs, yielding the following main conclusions.

In first place, the results obtained by using a cycle-accurate GPU simula-
tor and several commercial Android applications indicate that multithreading
and prefetching are effective techniques for tolerating memory latency, but not
energy-efficient. Massive multithreading requires huge register files that increase
energy consumption, whereas prefetching accuracy is relatively low due to the
unpredictable texture fetches. The access-execute paradigm provides a more ef-
ficient solution to bridge the memory gap, as it requires simple hardware and
it is based on computed addresses rather than predicted addresses to maximize
prefetch accuracy. The experimental results presented in this thesis show that
a small degree of multithreading combined with a decoupled access/execute-like
architecture provides the most energy efficient solution to hide the memory la-
tency. More specifically, the decoupled access/execute-like design with 4 SIMD
threads/processor is able to achieve 97% of the performance of a larger GPU with
16 SIMD threads/processor, while providing 20.5% energy savings.

In second place, the energy numbers obtained by using our GPU power model
show that the off-chip memory accesses to system memory are one of the main
sources of energy consumption in a mobile GPU, thereby supporting the results
presented in previous research work. The analysis of bandwidth usage in several
Android games reveals that most of the memory bandwidth is typically employed
for fetching textures. Furthermore, consecutive frames tend to be extremely
similar, sharing most of the texture dataset. However, the GPU cannot exploit

CHAPTER 6. CONCLUSIONS 115

this inter-frame texture re-use due to the big size of the texture dataset for one
frame.

Parallel Frame Rendering (PFR) is a bandwidth saving technique designed
with the aim of capturing the inter-frame texture re-use by overlapping the ex-
ecution of consecutive frames. PFR splits the GPU in two clusters that process
two consecutive frames in parallel. Both clusters share texture data via the L2
cache, so textures are fetched from system memory just once every two frames
instead of being fetched on a frame basis, saving memory bandwidth. This, how-
ever, comes at a cost in the responsiveness of the system, since rendering each
frame takes twice the time as it is generated with half of the resources, increasing
input lag.

Adaptive forms of PFR can be employed to trade responsiveness for energy
efficiency. The analysis of user interaction in mobile games shows that the user
does not provide any input most of the time. In addition, user inputs tend to
be heavily clustered: mobile games exhibit short phases with user inputs and
long phases where the user does not provide any input. PFR can be extensively
employed during phases without user inputs, where input lag is not a problem.
The reactive versions of PFR achieve high responsiveness while providing 23.8%
reduction in off-chip memory traffic, that results in 12% speedup and 20.1%
energy savings on average.

In third place, an analysis of redundancy in mobile games reveals that more
than 38% of the Fragment Program executions are redundant on average, sug-
gesting that memoization can be effective to reuse computations in order to save
time and energy. However, capturing this redundancy is not an easy task as most
of the redundancy that could be exploited exists across frames at huge re-use
distances, rendering most of hardware-based approaches unfeasible.

A fragment memoization system can be architected on top of techniques that
aim to reduce the inter-frame re-use distances of fragments, such as the afore-
mentioned PFR. Under PFR, 68.8% of the redundant fragments are brought into
re-use distances that make them amenable for hardware memoization. A memo-
ization system based on a small hardware Look Up Table achieves 15% speedup
over a state-of-the-art PFR-enabled GPU, reducing energy consumption by 12%
on average.

In summary, the experimental results presented in this thesis show that decou-
pled access/execute architectures, combined with a small degree of multithread-
ing, provide the most energy-efficient solution for hiding the memory latency in a
mobile GPU. Furthermore, using PFR to execute multiple frames in parallel pro-
vides noticeable energy savings that come from a significant reduction in memory
bandwidth usage, as consecutive frames tend to be extremely similar and thus
they share most of the texture dataset. GPU energy consumption can be fur-
ther improved by using a memoization scheme on top of PFR to avoid redundant
executions of the Fragment Program.

CHAPTER 6. CONCLUSIONS 116

6.2 Contributions

In this dissertation different energy saving techniques for mobile graphics proces-
sors have been proposed, from the development of energy efficient memory latency
tolerance techniques to the design of strategies for optimizing memory bandwidth
usage. Furthermore, a mobile GPU simulation infrastructure has been developed
as part of this thesis. The contributions obtained through this dissertation are
summarized as follows.

In first place, we propose the migration of GPU designs towards the access-
execute paradigm. This thesis introduces a decoupled access/execute-like archi-
tecture for the fragment processors of a mobile GPU. In this scheme, all the
necessary data for processing the fragments is prefetched into the texture caches
while the fragments are waiting to be dispatched to the fragment processors. By
the time a fragment is issued all the data required for its processing is hopefully
available in the caches, avoiding cache miss stalls to a large extent. The base
decoupled access/execute-like design is further improved by allowing for remote
texture cache requests to exploit the high degree of data sharing among fragment
processors. The end-design easily outperforms conventional hardware prefetching
schemes and achieves similar performance to a heavily multithreaded GPU, but
consuming just a fraction of its energy as described in Chapter 3. This work
has been published in the proceedings of the 39th International Symposium on
Computer Architecture (ISCA):

• “Boosting Mobile GPU Performance with a Decoupled Access/Execute
Fragment Processor”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Symposium on Computer Architecture, 2012.

In second place, we propose Parallel Frame Rendering (PFR), a bandwidth
saving technique that overlaps the rendering of consecutive frames. Under PFR
the GPU is split in two clusters that share texture data via the second level shared
cache. The first cluster renders odd frames and the second cluster renders even
frames. By processing two frames in parallel, textures are fetched once every two
frames instead of being fetched on a frame basis as in conventional GPUs, pro-
viding significant bandwidth savings. To minimize the impact on responsiveness,
different variations of PFR that are reactive to user interaction are proposed in
this thesis. The reactive versions of PFR achieve high responsiveness, while pro-
viding significant bandwidth savings that result in improvements in performance
and energy consumption as reported in Chapter 4. This work has been published
in the proceedings of the 22nd international conference on Parallel Architectures
and Compilation Techniques (PACT):

• “Parallel Frame Rendering: Trading Responsiveness for Energy on a Mobile
GPU”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.

CHAPTER 6. CONCLUSIONS 117

International Conference on Parallel Architectures and Compilation Tech-
niques, 2013.

In third place, we provide an analysis of the per-fragment redundancy as
seen in commercial Android applications, showing that more than 38% of the
Fragment Program executions are redundant on average. We propose to exploit
this high degree of redundancy by using a task-level, hardware based memoization
system able to identify and skip redundant executions of the Fragment Program.
The proposed memoization scheme keeps a hardware structure that computes a
signature of all the inputs to a task and caches the values of the corresponding
fragments. Subsequent computations form the signature and check against the
stored signatures of the memoized fragments. In case of a hit in the hardware
structure the system skips the execution of the Fragment Program, avoiding all
the corresponding computations and memory accesses. When architected on
top of PFR, a memoization system based on a small hardware Look Up Table
achieves significant performance improvements and energy savings as reported
in Chapter 5. This work has been published in the proceedings of the 41st
International Symposium on Computer Architecture (ISCA):

• “Eliminating Redundant Fragment Shader Executions on a Mobile GPU
via Hardware Memoization”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Symposium on Computer Architecture, 2014.

Finally, a mobile GPU simulation infrastructure has been developed as part
of this thesis. The simulator is extensively described in Chapter 2. To the best
of our knowledge, this is the first GPU simulator able to run and profile Android
graphical applications that employ the OpenGL ES API. The simulator consists
on a set of tools for evaluating the performance, energy consumption and im-
age quality of mobile graphics processors. This infrastructure was presented in
a paper published in the proceedings of the 27th International Conference on
Supercomputing:

• “TEAPOT: A Toolset for Evaluating Performance, Power and Image Qual-
ity on Mobile Graphics Systems”.
Jose-Maria Arnau, Joan-Manuel Parcerisa and Polychronis Xekalakis.
International Conference on Supercomputing, 2013.

6.3 Open-Research Areas

Mobile graphics processors are a very recent research field that appeared with
the huge expansion of the smartphones and tablets market. The bibliography on
mobile GPU energy is not extensive, on the contrary, there is just a relatively
small number of papers that target smartphones and mobile workloads. Further

CHAPTER 6. CONCLUSIONS 118

research efforts will be necessary to bridge the energy gap in next generations
of smartphones and tablets. It seems that most of the energy savings will come
from an efficient use of memory bandwidth, as it is stated by previous research
work and corroborated in this thesis.

An interesting extension of the work proposed in this thesis would be to try
to apply Parallel Frame Rendering (PFR) more aggressively to achieve bigger
bandwidth savings. For example, a system could attempt to overlap 8 frames in-
stead of just 2 or 4. The main issue in doing so is responsiveness, as the increase
in input lag is proportional to the number of frames rendered in parallel if the
hardware resources are not increased. The reactive versions of PFR can be em-
ployed to achieve high responsiveness, but they suffer from microstuttering since
switching between rendering modes requires buffering or dropping several frames.
PFR tries to minimize the number of switches to avoid microstuttering, setting
restrictive values for the thresholds that are employed to decide when to switch
between rendering modes. However, this severely constrains the percentage of
time that frames are overlapped, losing part of the bandwidth savings. Further-
more, the stuttering effects are exacerbated as the number of frames rendered in
parallel is increased, since more frames have to be buffered or dropped. More
efficient ways of switching between rendering modes are necessary to increase the
number of frames rendered in parallel, in order to maximize bandwidth savings
while maintaining the same levels of user experience.

On the other hand, an interesting extension of the memoization system pre-
sented in Chapter 5 would be to try to bridge the gap with the oracle memoization
by capturing redundant fragments at big re-use distances. This would probably
require extending the capacity of the Look Up Table (LUT) in some way. For
example, the system could employ a virtual LUT stored in main memory and
cached on-chip. On the other hand, a software based approach could be used
instead. The LUT could be stored in a texture that would be accessed from the
fragment shader to identify redundant computations.

The memoization system could be further improved by allowing the software
to provide hints to the GPU about the expected degree of redundancy. The
memoization system is very effective for phases of the application where the
camera is not moving, as consecutive frames tend to be very similar and more
redundant computations are captured and avoided. On the contrary, it performs
worse in the presence of fast camera movements. As the information about the
behavior of the camera is available in the software, the game engine could expose
this information to the hardware in order to disable memoization when it is know
to be useless, saving energy for accessing the LUT.

In this thesis we focus on optimizing the bandwidth for texture fetching, as
textures represent a huge percentage of bandwidth in typical mobile workloads.
However, desktop-like games feature more complex scenes with hundreds of thou-
sands or even millions of vertices per frame. In case desktop-like games become
popular in smartphones and tables —something that would require significant im-
provements in mobile user interfaces to provide compelling gaming experience—
it could be interesting to consider bandwidth optimizations for geometry fetching.

CHAPTER 6. CONCLUSIONS 119

For example, desktop GPUs employ a technique called geometry instancing to
efficiently render objects that are repeated in a crowded scene. By using instanc-
ing the geometry is sent to the GPU once and employed to render the multiple
copies of the object, saving bandwidth. Geometry instancing could be combined
with PFR to perform multi-frame instancing: geometry could be fetched once
and employed to render all the instances of the same object in two consecutive
frames to further improve bandwidth savings.

GPGPU research is also an intriguing direction, as it seems it will be widely
supported in the mobile segment. This thesis is focused in graphics workloads
and OpenGL ES since it is the main API for accessing the GPU in smartphones
and tablets. Nevertheless, it could also be interesting to consider energy saving
techniques for OpenCL/CUDA applications in embedded graphics processors.
The mobile GPU simulation infrastructure presented in Chapter 2 can be eas-
ily extended to support GPGPU applications. The Gallium3D driver, employed
for GPU trace generation in the infrastructure, offers a front-end for OpenCL,
GalliumCompute. Although still immature, this front-end could be used to trace
OpenCL commands and OpenCL kernels instead of OpenGL ES rendering com-
mands and GLSL shaders. On the other hand, the simulator could be updated to
support the version 3.1 of OpenGL ES. This version provides “compute shaders”,
offering a powerful and flexible form of general purpose computation in a mobile
GPU, by using the same graphics API and the same GPU driver that is employed
for rendering.

CHAPTER 6. CONCLUSIONS 120

Appendix A

Decoupled Fragment Processor
on top of TBR

In chapter 3 we present our decoupled access/execute-like architecture for the
fragment processors of a mobile GPU, and we evaluate our proposal on top of
an Immediate-Mode Rendering (IMR) architecture. Nevertheless, our scheme is
completely orthogonal to the type of rendering architecture and, hence, it can
also be implemented on top of a Tile-Based Rendering (TBR) pipeline like the
one illustrated in Figure 2.2.

In this chapter we include the evaluation of our proposal using TBR as our
baseline GPU instead of IMR. We use the same parameters that we employed
for IMR (Table 3.1), but we configure our GPU timing simulator to model a
TBR pipeline. Figures A.1, A.2 and A.3 show the average speedup, normal-
ized energy and energy-efficiency respectively. Figure A.4 shows the per-game
energy-efficiency. As we can see, the decoupled architectures combined with a
small degree of multithreading are the configurations that achieve the highest
energy-efficiency. More specifically, the decoupled architecture with just 2 SIMD
threads/processor achieves 93% of the performance of a larger GPU with 16 SIMD
threads/processor, while providing 28.2% energy savings. This means 29.5% im-
provement in energy-efficiency (speedup divided by normalized energy).

APPENDIX A. DECOUPLED FRAGMENT PROCESSOR ON TOP OF TBR 121

1 2 4 6 8 10 12 14 16
Number of SIMD threads

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

du
p

Multithreading only
Stride
GHB
Decoupled
Decoupled Remote

Figure A.1: Speedups achieved when combining multithreading with different
prefetching schemes. The baseline is a mobile GPU with just one SIMD thread per
fragment processor and no prefetching.

1 2 4 6 8 10 12 14 16
Number of SIMD threads

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

No
rm

al
iz

ed
 E

ne
rg

y

Multithreading only Stride GHB Decoupled Decoupled Remote

Figure A.2: Normalized energy obtained when combining multithreading with dif-
ferent prefetching schemes. The baseline is a mobile GPU with just one SIMD
thread per fragment processor and no prefetching.

1 2 4 6 8 10 12 14 16
Number of SIMD threads

0.7

0.9

1.1

1.3

1.5

1.7

1.9

No
rm

. E
ne

rg
y-

Ef
fic

ie
nc

y

Multithreading only
Stride

GHB
Decoupled

Decoupled Remote

Figure A.3: Normalized energy efficiency obtained when combining multithreading
with different prefetching schemes. The baseline is a mobile GPU with just one
SIMD thread per fragment processor and no prefetching. The energy-efficiency is
computed as the speedup divided by the normalized energy.

APPENDIX A. DECOUPLED FRAGMENT PROCESSOR ON TOP OF TBR 122

1 2 4 6 8 10 12 14 16
0.6
0.8
1.0
1.2
1.4
1.6

angrybirds
Multithreading only Stride GHB Decoupled Decoupled Remote

1 2 4 6 8 10 12 14 16

0.6

0.8

1.0

1.2

1.4

badpiggies

1 2 4 6 8 10 12 14 16
0.5

1.0

1.5

2.0

2.5
cuttherope

1 2 4 6 8 10 12 14 16
0.5

1.0

1.5

2.0

No
rm

al
iz

ed
 E

ne
rg

y-
Ef

fic
ie

nc
y

gravityguy

1 2 4 6 8 10 12 14 16
0.5

1.0

1.5

2.0

jetpackjoyride

1 2 4 6 8 10 12 14 16
0.5

1.0

1.5

2.0

2.5
airattack

1 2 4 6 8 10 12 14 16
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

captainamerica

1 2 4 6 8 10 12 14 16
0.6
0.8
1.0
1.2
1.4
1.6
1.8

crazysnowboard

1 2 4 6 8 10 12 14 16
0.7

0.8

0.9

1.0

1.1

dungeondefenders

1 2 4 6 8 10 12 14 16
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

plantswar

1 2 4 6 8 10 12 14 16

Number of SIMD threads

1.0

1.5

2.0

2.5

playmobilpirates

1 2 4 6 8 10 12 14 16
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

templerun

Figure A.4: Normalized energy efficiency obtained for each one of the workloads.
The energy-efficiency is computed as the speedup divided by the normalized energy.

APPENDIX A. DECOUPLED FRAGMENT PROCESSOR ON TOP OF TBR 123

APPENDIX A. DECOUPLED FRAGMENT PROCESSOR ON TOP OF TBR 124

Appendix B

Parallel Frame Rendering on top
of IMR

In chapter 4 we present Parallel Frame Rendering (PFR), a memory bandwidth
saving technique that overlaps the processing of multiple frames. We evaluate
our proposal assuming a Tile-Based Rendering (TBR) architecture as the base-
line GPU. Nevertheless, PFR is completely orthogonal to the type of rendering
architecture and, hence, it can also be implemented on top of an Immediate-Mode
Rendering (IMR) pipeline like the one illustrated in Figure 2.2. In this chapter we
first describe how PFR can be adapted for IMR architectures. Next, we provide
the experimental results when assuming an IMR baseline.

PFR processes multiple frames in parallel to optimize memory bandwidth
usage for texture fetching, as the texture datasets for consecutive frames tend to
be extremely similar. The GPU is split in two clusters, both clusters sharing the
second level cache to exploit texture reuse. Therefore, textures are fetched just
once and employed to render the objects in two consecutive frames, instead of
being fetched on a frame basis and thus saving bandwidth. The technique is only
effective if both clusters access the same textures within a short timespan. In an
effort to maximize texture overlapping, we synchronize both GPU clusters at the
tile level —we assume a TBR architecture in chapter 4— so both GPU clusters
work in the same screen tile in two consecutive frames. As the same screen tile
usually contains the same objects from frame to frame, tile-level synchronization
provides a good degree of texture overlapping.

IMR architectures do not split the screen in tiles, they consider the entire
screen at once. Hence, a different strategy to guarantee texture overlapping is
necessary when using an IMR architecture, as we cannot implement tile-level syn-
chronization. Since IMR architectures render the scene object by object instead
of tile by tile, we propose to use object-level synchronization and try to render
in parallel objects that use the same textures. Hence, our GPU driver for IMR
reschedules the drawing commands issued by the application in order to overlap
the rendering of objects that access the same textures. For every drawing com-
mand in the first frame, the GPU driver tries to find a GPU command in the

APPENDIX B. PARALLEL FRAME RENDERING ON TOP OF IMR 125

0
20
40
60
80

100
120
140

M
em

or
y

Tr
af

fic
 (%

)

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
AVERAGE

Textures Color Buffer Z-Buffer Geometry

Figure B.1: Memory bandwidth usage on a mobile GPU for a set of commercial
Android games. On average 28.4% of the bandwidth to system memory is employed
for fetching textures. The mobile GPU implements an IMR architecture.

Table B.1: GPU simulator parameters. All the configurations include the same
amount of resources: 1 big GPU cluster or 2 clusters with half the resources for
each cluster.

GPU Architecture Immediate-Mode Rendering

L2 Cache 128 KB, 8-way associative, 12 cycles latency

Texture Caches 16 KB, 4-way associative, 2 cycles latency

Pixel Caches 16 KB, 4-way associative, 2 cycles latency

Main Memory 1 GB, 16 bytes/cycle (dual-channel)

Conventional PFR

rendering

Number of clusters 1 2

Raster units 2 1

per cluster

Vertex Processors 2 1

per cluster

Vertex Cache 8 KB, 2-way 4 KB, 2-way

Vertex Fetcher 16 in-flight vertices 8 in-flight vertices

Primitive Assembly 4 triangles/cycle 2 triangles/cycle

second frame that accesses the same textures. Next, the driver sends the first pair
of objects to the GPU, each one to a different cluster. Once both clusters are done
with the rendering, the driver dispatches the next pair of objects. By processing
objects with the same textures in parallel and synchronizing the GPU clusters at
the object level we attempt to maximize the degree of texture overlapping.

On the other hand, the memory bandwidth usage is significantly different in
IMR, as illustrated in Figure B.1. Only 28.4% of the memory bandwidth is em-
ployed for fetching textures, which is the target of PFR, whereas textures account
for 52.7% of the bandwidth when using a TBR architecture (see Figure 4.1). This
difference is due to the overdraw. TBR architectures are very efficient in access-
ing the Color Buffer and the Z-Buffer, as they divide the screen in tiles and use
local on-chip memories instead of regular caches. In TBR each pixel in the Color
Buffer is written just once per frame in system memory, whereas it can potentially
be written multiple times in IMR. Hence, the Color Buffer and Z-Buffer accesses

APPENDIX B. PARALLEL FRAME RENDERING ON TOP OF IMR 126

0.6

0.7

0.8

0.9

1.0

No
rm

. M
em

or
y

Tr
af

fic

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

Parallel Frame Rendering

Figure B.2: Normalized memory traffic. The baseline is a mobile GPU that employs
Immediate-Mode Rendering and processes just one frame at a time.

0.80
0.85
0.90
0.95
1.00
1.05
1.10

Sp
ee

du
p

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

Parallel Frame Rendering

Figure B.3: Speedups. The baseline is a mobile GPU that employs Immediate-
Mode Rendering and processes just one frame at a time.

0.6

0.7

0.8

0.9

1.0

No
rm

. E
ne

rg
y

airattack

captainamerica

crazysnowboard

dungeondefenders
plantswar

playmobilpirates
templerun

angrybirds
badpiggies

cuttherope
gravityguy

jetpackjoyride
GEOMEAN

Parallel Frame Rendering

Figure B.4: Normalized energy. The baseline is a mobile GPU that employs
Immediate-Mode Rendering and processes just one frame at a time.

represent a bigger percentage of bandwidth in IMR. Nevertheless, textures still
represent a significant amount of bandwidth in IMR, 28.4% on average. If perfect
texture overlapping can be achieved, then PFR can save up to 14.2% overall GPU
bandwidth —half of the texture accesses.

We have evaluated PFR using an IMR architecture as the baseline. We em-
ploy the parameters described in Table B.1. The baseline is an IMR architecture
with one big GPU cluster that renders just one frame at a time, whereas the PFR
configuration includes two half-sized GPU clusters to render two frames in paral-
lel. Figure B.2 shows the normalized memory traffic. PFR saves 13% of memory
bandwidth on average, close to the 14.2% theoretical limit. Figure B.3 shows
the speedups. The performance is nearly the same on average (2% speedup) and
in all the games except templerun. The slowdown in templerun is due to the
object-level synchronizations aforementioned. By synchronizing both clusters at

APPENDIX B. PARALLEL FRAME RENDERING ON TOP OF IMR 127

the object level we maximize texture overlapping. However, if the two objects
rendered in parallel exhibit significantly different workload, then the synchro-
nizations introduce workload imbalances that affect performance. This issue can
be solved by avoiding the synchronization in case of workload imbalance, or by
improving the scheduling of the commands in order to process in parallel objects
with similar workload. We leave this improvement as future work. Finally, Fig-
ure B.4 shows the normalized energy. PFR saves 10% of overall GPU energy on
average.

APPENDIX B. PARALLEL FRAME RENDERING ON TOP OF IMR 128

Appendix C

Hardware Memoization on top of
IMR

In chapter 5 we present our hardware memoization system for mobile GPUs, and
we evaluate our proposal on top of a Tile-Based Rendering architecture (TBR).
Nevertheless, our scheme is completely orthogonal to the type of rendering ar-
chitecture and, hence, it can also be implemented on top of an Immediate-Mode
Rendering (IMR) pipeline like the one illustrated in Figure 2.2.

In this chapter we include the evaluation of our proposal using IMR as our
baseline GPU instead of TBR. We use the same parameters that we employed for
TBR (Table 5.1), but we configure our GPU timing simulator to model an IMR
pipeline. Our baseline is a Parallel Frame Rendering (PFR) capable GPU. PFR
is implemented on top of IMR as described in Appendix B.

Figures C.1, C.2 and C.3 show the average hit rates, speedups and normalized
energy respectively for different Look Up Table (LUT) sizes. Figures C.4 and C.5
show the per-game speedups and normalized energy respectively. As we can see,
the hardware memoization system is able to provide significant speedups and
energy savings. More specifically, the LUT with 512 sets and 8-way associative
achieves 16.4% speedup and 13% energy savings.

APPENDIX C. HARDWARE MEMOIZATION ON TOP OF IMR 129

0
5

10
15
20
25
30
35
40
45

Hi
t R

at
e

(%
)

128entries 256entries 512entries 1024entries 2048entries 4096entries 8192entries

or
ac

le2 2 2 2 2 2 24 4 4 4 4 4 48 8 8 8 8 8 8

Figure C.1: Hit Rates for different configurations of the Lookup Table. The baseline
configuration is PFR.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
ee

du
ps

128entries 256entries 512entries 1024entries 2048entries 4096entries 8192entries

or
ac

le2 2 2 2 2 2 24 4 4 4 4 4 48 8 8 8 8 8 8

Figure C.2: Average speedups achieved for LUTs with different sizes and associa-
tivity. The baseline configuration is PFR.

0.6

0.7

0.8

0.9

1.0

No
rm

al
iz

ed
 E

ne
rg

y

128entries 256entries 512entries 1024entries 2048entries 4096entries 8192entries

or
ac

le2 2 2 2 2 2 24 4 4 4 4 4 48 8 8 8 8 8 8

Energy for Hash Computation and Lookup Table

Figure C.3: Normalized energy for different configurations of the Lookup Table,
including both static and dynamic energy. Baseline is PFR.

APPENDIX C. HARDWARE MEMOIZATION ON TOP OF IMR 130

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

LUT (512 sets, 8-way) LUT (1024 sets, 4-way) Oracle

1.0
1.2
1.4
1.6
1.8
2.0
2.2

Sp
ee

du
p

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Figure C.4: Speedups for the twelve Android games and on average. We include
two of the best configurations for the LUT and the Oracle memoization. The
baseline configuration is PFR.

0.4

0.6

0.8

1.0

1.2

No
rm

. E
ne

rg
y

airattack
captainamerica

crazysnowboard
dungeondefenders plantswar

playmobilpirates templerun
GEOMEAN3D

LUT (512 sets, 8-way) LUT (1024 sets, 4-way) Oracle

0.4

0.6

0.8

1.0

1.2

No
rm

. E
ne

rg
y

angrybirds badpiggies cuttherope gravityguy
jetpackjoyride

GEOMEAN2D GEOMEAN

Energy for Hash Function Logic and Lookup Table

Figure C.5: Normalized energy for the twelve Android games and on average,
including both static and dynamic energy. We include two of the best configurations
for the LUT and the Oracle memoization. Baseline is PFR.

APPENDIX C. HARDWARE MEMOIZATION ON TOP OF IMR 131

Bibliography

[1] AMD Compressed ATC Texture. http://www.khronos.org/registry/

gles/extensions/AMD/AMD_compressed_ATC_texture.txt.

[2] Android Graphics. https://source.android.com/devices/graphics.

html.

[3] Android SDK. http://developer.android.com/sdk/index.html.

[4] Angry Birds has been downloaded more than a billion times. http://bgr.
com/2012/05/09/angry-birds-iphone-android-billion-downloads/.

[5] Apple iPad Air. http://www.gsmarena.com/apple_ipad_air-5797.php.

[6] Apple iPhone 5S. http://www.gsmarena.com/apple_iphone_5s-5685.

php.

[7] ARB Fragment Program. http://oss.sgi.com/projects/ogl-sample/

registry/ARB/fragment_program.txt.

[8] ARM Frame Buffer Compression. http://www.arm.com/products/

multimedia/mali-technologies/arm-frame-buffer-compression.php.

[9] ARM Mali. http://www.arm.com/products/multimedia/

mali-graphics-hardware/.

[10] Blending in OpenGL. http://www.opengl.org/wiki/Blending.

[11] FlexRender. http://www.qualcomm.com/media/videos/

flexrender-rendered-useful.

[12] Gallium3D Technical Overview. http://www.freedesktop.org/wiki/

Software/gallium/.

[13] Get started with compute shaders. http://community.

arm.com/groups/arm-mali-graphics/blog/2014/04/17/

get-started-with-compute-shaders?sf25287757=1.

[14] GFXBench - Unified Graphics Benchmark based on DXBenchmark (Di-
rectX) and GLBenchmark (OpenGL ES). http://gfxbench.com/result.
jsp.

BIBLIOGRAPHY 132

http://www.khronos.org/registry/gles/extensions/AMD/AMD_compressed_ATC_texture.txt
http://www.khronos.org/registry/gles/extensions/AMD/AMD_compressed_ATC_texture.txt
https://source.android.com/devices/graphics.html
https://source.android.com/devices/graphics.html
http://developer.android.com/sdk/index.html
http://bgr.com/2012/05/09/angry-birds-iphone-android-billion-downloads/
http://bgr.com/2012/05/09/angry-birds-iphone-android-billion-downloads/
http://www.gsmarena.com/apple_ipad_air-5797.php
http://www.gsmarena.com/apple_iphone_5s-5685.php
http://www.gsmarena.com/apple_iphone_5s-5685.php
http://oss.sgi.com/projects/ogl-sample/registry/ARB/fragment_program.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/fragment_program.txt
http://www.arm.com/products/multimedia/mali-technologies/arm-frame-buffer-compression.php
http://www.arm.com/products/multimedia/mali-technologies/arm-frame-buffer-compression.php
http://www.arm.com/products/multimedia/mali-graphics-hardware/
http://www.arm.com/products/multimedia/mali-graphics-hardware/
http://www.opengl.org/wiki/Blending
http://www.qualcomm.com/media/videos/flexrender-rendered-useful
http://www.qualcomm.com/media/videos/flexrender-rendered-useful
http://www.freedesktop.org/wiki/Software/gallium/
http://www.freedesktop.org/wiki/Software/gallium/
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/17/get-started-with-compute-shaders?sf25287757=1
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/17/get-started-with-compute-shaders?sf25287757=1
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/17/get-started-with-compute-shaders?sf25287757=1
http://gfxbench.com/result.jsp
http://gfxbench.com/result.jsp

[15] Hardware Occlusion Queries Made Useful. http://http.developer.

nvidia.com/GPUGems2/gpugems2_chapter06.html.

[16] Highlights from the Candy Crush IPO filing: 500 Million Downloads
and Counting. http://www.businessweek.com/articles/2014-02-18/

king-digitals-ipo-filing-shows-500-million-candy-crush-downloads.

[17] HTC One X. http://www.gsmarena.com/htc_one_x-4320.php.

[18] Huawei Ascend G615. http://www.gsmarena.com/huawei_ascend_

g615-5257.php.

[19] iOS Dev Center. https://developer.apple.com/devcenter/ios/index.
action.

[20] The Khronos Group Inc. http://www.khronos.org/.

[21] Killing Pixels - A New Optimization for Shading on ARM Mali Gpus. http:
//community.arm.com/groups/arm-mali-graphics/blog/2013/08/08/

killing-pixels--a-new-optimization-for-shading-on-arm-mali-gpus.

[22] LG Nexus 5. http://www.gsmarena.com/lg_nexus_5-5705.php.

[23] The Mali GPU: An Abstract Machine, Part 3 - The Shader Core. http:

//community.arm.com/groups/arm-mali-graphics/blog/2014/03/12/

the-mali-gpu-an-abstract-machine-part-3--the-shader-core.

[24] Number of Android applications. http://www.appbrain.com/stats/

number-of-android-apps.

[25] NVIDIA SHIELD. http://shield.nvidia.com/.

[26] NVIDIA Tegra. http://www.nvidia.com/object/tegra.html.

[27] Playstation Vita. http://us.playstation.com/psvita/tech-specs/.

[28] PowerVR Series6 GPU. http://www.imgtec.com/powervr/series6.asp.

[29] QEMU. http://wiki.qemu.org/Main_Page.

[30] Qualcomm Snapdragon S4 (Krait) Performance Pre-
view - 1.5 Ghz MSM8960 MDP and Adreno 225
Benchmarks. http://www.anandtech.com/show/5559/

qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks.

[31] Samsung Galaxy S3. http://www.gsmarena.com/samsung_galaxy_s_

iii_i747-4803.php.

[32] Samsung Galaxy S5. http://www.gsmarena.com/samsung_galaxy_

s5-6033.php.

[33] Samsung Galaxy Tab 3. http://www.gsmarena.com/samsung_galaxy_

tab_3_lite_7_0_3g-5975.php.

BIBLIOGRAPHY 133

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter06.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter06.html
http://www.businessweek.com/articles/2014-02-18/king-digitals-ipo-filing-shows-500-million-candy-crush-downloads
http://www.businessweek.com/articles/2014-02-18/king-digitals-ipo-filing-shows-500-million-candy-crush-downloads
http://www.gsmarena.com/htc_one_x-4320.php
http://www.gsmarena.com/huawei_ascend_g615-5257.php
http://www.gsmarena.com/huawei_ascend_g615-5257.php
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
http://www.khronos.org/
http://community.arm.com/groups/arm-mali-graphics/blog/2013/08/08/killing-pixels--a-new-optimization-for-shading-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2013/08/08/killing-pixels--a-new-optimization-for-shading-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2013/08/08/killing-pixels--a-new-optimization-for-shading-on-arm-mali-gpus
http://www.gsmarena.com/lg_nexus_5-5705.php
http://community.arm.com/groups/arm-mali-graphics/blog/2014/03/12/the-mali-gpu-an-abstract-machine-part-3--the-shader-core
http://community.arm.com/groups/arm-mali-graphics/blog/2014/03/12/the-mali-gpu-an-abstract-machine-part-3--the-shader-core
http://community.arm.com/groups/arm-mali-graphics/blog/2014/03/12/the-mali-gpu-an-abstract-machine-part-3--the-shader-core
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://shield.nvidia.com/
http://www.nvidia.com/object/tegra.html
http://us.playstation.com/psvita/tech-specs/
http://www.imgtec.com/powervr/series6.asp
http://wiki.qemu.org/Main_Page
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks
http://www.gsmarena.com/samsung_galaxy_s_iii_i747-4803.php
http://www.gsmarena.com/samsung_galaxy_s_iii_i747-4803.php
http://www.gsmarena.com/samsung_galaxy_s5-6033.php
http://www.gsmarena.com/samsung_galaxy_s5-6033.php
http://www.gsmarena.com/samsung_galaxy_tab_3_lite_7_0_3g-5975.php
http://www.gsmarena.com/samsung_galaxy_tab_3_lite_7_0_3g-5975.php

[34] Sony Xperia Tablet S. http://www.gsmarena.com/sony_xperia_tablet_
s-4913.php.

[35] Sony Xperia Z2. http://www.gsmarena.com/sony_xperia_z2-6144.php.

[36] Transform Feedback. https://www.opengl.org/wiki/Transform_

Feedback.

[37] Tungsten Graphics Shader Infrastructure. http://people.freedesktop.

org/~csimpson/gallium-docs/tgsi.html.

[38] Unity Game Engine. http://unity3d.com/.

[39] Unreal Engine Technology. https://www.unrealengine.com/.

[40] Using Hardware Acceleration in the Android Emulator. http:

//developer.android.com/tools/devices/emulator.html#

acceleration.

[41] Vivante Composition Processing Cores. http://www.vivantecorp.com/

index.php/en/technology/composition.html.

[42] Vivante Vega 3D Technology. http://www.vivantecorp.com/index.php/
en/technology/3d.html.

[43] Ahmed K. Abousamra, Rami G. Melhem, and Alex K. Jones. Noc-aware
cache design for chip multiprocessors. In Proceedings of the 19th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
PACT ’10, pages 565–566, New York, NY, USA, 2010. ACM.

[44] T. Akenine-Moller and J. Strom. Graphics Processing Units for Handhelds.
Proc. of the IEEE, 96(5):779–789, 2008.

[45] Tomas Akenine-Möller and Björn Johnsson. Performance per what? Jour-
nal of Computer Graphics Techniques (JCGT), 1(1):37–41, Oct 2012.

[46] Tomas Akenine-Möller, Jacob Munkberg, and Jon Hasselgren. Stochastic
rasterization using time-continuous triangles. In Proceedings of the 22Nd
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware,
GH’07, pages 7–16, 2007.

[47] Tomas Akenine-Moller and Jacob Strom. Graphics for the Masses: A Hard-
ware Rasterization Architecture for Mobile Phones. ACM Transactions on
Graphics, 22:801–808, 2003.

[48] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. Per-
formance evaluation of cache replacement policies for the spec cpu2000
benchmark suite. In Proceedings of the 42Nd Annual Southeast Regional
Conference, ACM-SE 42, pages 267–272, 2004.

BIBLIOGRAPHY 134

http://www.gsmarena.com/sony_xperia_tablet_s-4913.php
http://www.gsmarena.com/sony_xperia_tablet_s-4913.php
http://www.gsmarena.com/sony_xperia_z2-6144.php
https://www.opengl.org/wiki/Transform_Feedback
https://www.opengl.org/wiki/Transform_Feedback
http://people.freedesktop.org/~csimpson/gallium-docs/tgsi.html
http://people.freedesktop.org/~csimpson/gallium-docs/tgsi.html
http://unity3d.com/
https://www.unrealengine.com/
http://developer.android.com/tools/devices/emulator.html#acceleration
http://developer.android.com/tools/devices/emulator.html#acceleration
http://developer.android.com/tools/devices/emulator.html#acceleration
http://www.vivantecorp.com/index.php/en/technology/composition.html
http://www.vivantecorp.com/index.php/en/technology/composition.html
http://www.vivantecorp.com/index.php/en/technology/3d.html
http://www.vivantecorp.com/index.php/en/technology/3d.html

[49] Carlos Álvarez, Jesús Corbal, Esther Salamı́, and Mateo Valero. On the po-
tential of tolerant region reuse for multimedia applications. In Proceedings
of the 15th International Conference on Supercomputing, ICS ’01, pages
218–228, 2001.

[50] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Dynamic tolerance re-
gion computing for multimedia. IEEE Trans. Comput., 61(5):650–665, May
2012.

[51] I. Antochi. Suitability of Tile-Based Rendering for Low-Power 3D Graphics
Accelerators. PhD thesis, 2007.

[52] Iosif Antochi, Ben H. H. Juurlink, Stamatis Vassiliadis, and Petri Liuha.
Memory Bandwidth Requirements of Tile-Based Rendering. In SAMOS,
pages 323–332, 2004.

[53] ARM. ARM Mali-55. http://mobile.arm.com/products/multimedia/

mali-graphics-hardware/mali-55.php.

[54] ARM. ARM Mali-T678. http://www.arm.com/products/multimedia/

mali-graphics-plus-gpu-compute/mali-t678.php.

[55] ARM. Mali-400 MP: A Scalable GPU for Mobile Devices.
http://www.highperformancegraphics.org/previous/www_2010/

media/Hot3D/HPG2010_Hot3D_ARM.pdf.

[56] ARM. Mali GPU Application Optimization Guide. http:

//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.

dui0555a/CHDIAHCC.html.

[57] ARM. Transaction elimination. http://www.arm.com/products/

multimedia/mali-technologies/transaction-elimination.php.

[58] Jean-Loup Baer and Tien-Fu Chen. Effective hardware-based data prefetch-
ing for high-performance processors. IEEE Trans. Comput., 44(5):609–623,
May 1995.

[59] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. An-
alyzing CUDA Workloads Using a Detailed GPU Simulator. In Proc. of
ISPASS, pages 163–174, 2009.

[60] Andrew C. Beers, Maneesh Agrawala, and Navin Chaddha. Rendering
from compressed textures. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pages
373–378, New York, NY, USA, 1996. ACM.

[61] Slo-Li Chu, Chih-Chieh Hsiao, and Chen-Yu Chen. A Dual-Mode Unified
Shader with Frame-Based Dynamic Precision Adjustment for Mobile GPUs.
In IEEE/IFIP 9th International Conference on Embedded and Ubiquitous
Computing, EUC 2011, Melbourne, Australia, October 24-26, 2011, EUC.
IEEE, 2011.

BIBLIOGRAPHY 135

http://mobile.arm.com/products/multimedia/mali-graphics-hardware/mali-55.php
http://mobile.arm.com/products/multimedia/mali-graphics-hardware/mali-55.php
http://www.arm.com/products/multimedia/mali-graphics-plus-gpu-compute/mali-t678.php
http://www.arm.com/products/multimedia/mali-graphics-plus-gpu-compute/mali-t678.php
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0555a/CHDIAHCC.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0555a/CHDIAHCC.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0555a/CHDIAHCC.html
http://www.arm.com/products/multimedia/mali-technologies/transaction-elimination.php
http://www.arm.com/products/multimedia/mali-technologies/transaction-elimination.php

[62] Slo-Li Chu, Chih-Chieh Hsiao, and Chen-Yu Chen. Program-based Dy-
namic Precision Selection Framework with a Dual-mode Unified Shader for
Mobile GPUs. Comput. Electr. Eng., 39(7):2183–2196, October 2013.

[63] Slo-Li Chu, Chih-Chieh Hsiao, and Chiu-Cheng Hsieh. An Energy-Efficient
Unified Register File for Mobile GPUs. In Embedded and Ubiquitous Com-
puting (EUC), 2011 IFIP 9th International Conference on, pages 166–173,
2011.

[64] Daniel Citron, Dror G. Feitelson, and Larry Rudolph. Accelerating multi-
media processing by implementing memoing in multiplication and division
units. In ASPLOS, pages 252–261, 1998.

[65] S. Collange, M. Daumas, D. Defour, and D. Parello. Barra: A Parallel
Functional Simulator for GPGPU. In Proc. of MASCOTS, pages 351–360,
2010.

[66] Daniel A. Connors, Hillery C. Hunter, Ben-Chung Cheng, and Wen-mei W.
Hwu. Hardware support for dynamic activation of compiler-directed com-
putation reuse. In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS IX, pages 222–233, 2000.

[67] R. L. Cook and K. E. Torrance. A Reflectance Model for Computer Graph-
ics. ACM Trans. Graph., 1(1):7–24, January 1982.

[68] NVIDIA Corporation. NVIDIAs Next Generation CUDA Compute Ar-
chitecture: Fermi. http://www.nvidia.com/content/PDF/fermi_white_

papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

[69] Michael Cox and Pat Hanrahan. Pixel merging for object-parallel rendering:
A distributed snooping algorithm. In Proceedings of the 1993 Symposium
on Parallel Rendering, PRS ’93, pages 49–56, New York, NY, USA, 1993.
ACM.

[70] Neal C. Crago, Omid Azizi, Steven S. Lumetta, and Sanjay J. Patel. Hybrid
latency tolerance for robust energy-efficiency on 1000-core data parallel
processors. 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), 0:294–305, 2013.

[71] Neal Clayton Crago and Sanjay Jeram Patel. Outrider: Efficient memory
latency tolerance with decoupled strands. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11, pages 117–
128, New York, NY, USA, 2011. ACM.

[72] Jem Davies. Keynote I: Energy-efficient GPUs from mobile to supercomput-
ers. In 1st annual Workshop on Parallelism in Mobile Platforms, PRISM-1,
2013.

[73] Kayvon Fatahalian and Mike Houston. A Closer Look at GPUs. Commun.
ACM, 51(10):50–57, October 2008.

BIBLIOGRAPHY 136

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

[74] Simon Fenney. Texture compression using low-frequency signal modulation.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, HWWS ’03, pages 84–91, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[75] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and
Trevor Mudge. Drowsy caches: Simple techniques for reducing leakage
power. In Proceedings of the 29th Annual International Symposium on
Computer Architecture, ISCA ’02, pages 148–157, Washington, DC, USA,
2002. IEEE Computer Society.

[76] Richard Fromm, Stylianos Perissakis, Neal Cardwell, Christoforos
Kozyrakis, Bruce McGaughy, David Patterson, Tom Anderson, and Kather-
ine Yelick. The Energy Efficiency of IRAM Architectures. In Proceedings of
the 24th Annual International Symposium on Computer Architecture, ISCA
’97, pages 327–337, New York, NY, USA, 1997. ACM.

[77] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride directed
prefetching in scalar processors. SIGMICRO Newsl., 23:102–110, December
1992.

[78] Antonio Garćıa-Guirado, Ricardo Fernández-Pascual, Alberto Ros, and
José M. Garćıa. Dapsco: Distance-aware partially shared cache organi-
zation. ACM Trans. Archit. Code Optim., 8(4):25:1–25:19, January 2012.

[79] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler,
William J. Dally, Erik Lindholm, and Kevin Skadron. Energy-efficient
Mechanisms for Managing Thread Context in Throughput Processors. In
Proceedings of the 38th Annual International Symposium on Computer Ar-
chitecture, ISCA ’11, pages 235–246, New York, NY, USA, 2011. ACM.

[80] Dan Ginsburg, Budirijanto Purnomo, Dave Shreiner, and Aaftab Munshi.
OpenGL ES 3.0 Programming Guide. Addison-Wesley Professional, 2014.

[81] E. Bruce Goldstein. Sensation and Perception. Univ. of Pittsburgh, 6
edition, 2002.

[82] Antonio Gonzlez, Jordi Tubella, and Carlos Molina. Trace-level reuse. In
In Proceedings of the the International Conference on Parallel Processing,
1999.

[83] Ziyad S. Hakura and Anoop Gupta. The Design and Analysis of a Cache
Architecture for Texture Mapping. In Proceedings of the 24th annual inter-
national symposium on Computer architecture, ISCA ’97, pages 108–120,
New York, NY, USA, 1997. ACM.

[84] Marty Hall and James Mayfield. Improving the performance of ai software:
Payoffs and pitfalls in using automatic memoization. In In Proceedings of
the Sixth International Symposium on Artificial Intelligence, pages 178–184,
1993.

BIBLIOGRAPHY 137

[85] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ail-
amaki. Reactive nuca: Near-optimal block placement and replication in
distributed caches. In Proceedings of the 36th Annual International Sympo-
sium on Computer Architecture, ISCA ’09, pages 184–195, New York, NY,
USA, 2009. ACM.

[86] Jon Hasselgren and Tomas Akenine-Möller. Efficient Depth Buffer Com-
pression. In Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, GH ’06, pages 103–110, New York, NY,
USA, 2006. ACM.

[87] Jon Hasselgren and Tomas Akenine-Möller. An Efficient Multi-View Raster-
ization Architecture. In Proceedings of the 17th Eurographics conference on
Rendering Techniques, EGSR’06, pages 61–72, Aire-la-Ville, Switzerland,
Switzerland, 2006. Eurographics Association.

[88] Chih-Chieh Hsiao, Slo-Li Chu, and Chen-Yu Chen. Energy-aware Hybrid
Precision Selection Framework for Mobile GPUs. Computers & Graphics,
37(5):431–444, 2013.

[89] Chih-Chieh Hsiao, Slo-Li Chu, and Chiu-Cheng Hsieh. An Adaptive Thread
Scheduling Mechanism With Low-Power Register File for Mobile GPUs.
IEEE Transactions on Multimedia, 16(1):60–67, 2014.

[90] Chih-Chieh Hsiao, Chiu-Cheng Hsieh, and Slo-Li Chu. An energy-efficient
demand-driven register file for mobile gpus. Journal of Circuits, Systems,
and Computers, 23(2), 2014.

[91] Jian Huang and David J. Lilja. Exploiting basic block value locality with
block reuse. In HPCA, pages 106–114, 1999.

[92] IDC. Android and iOS Continue to Dominate the Worldwide Smartphone
Market. http://www.idc.com/getdoc.jsp?containerId=prUS24676414.

[93] Homan Igehy, Matthew Eldridge, and Kekoa Proudfoot. Prefetching in a
texture cache architecture. In SIGGRAPH / Eurographics Workshop on
Graphics Hardware, pages 133–142, 1998.

[94] The Khronos Group Inc. OpenGL ES. http://www.khronos.org/

opengles/.

[95] The Khronos Group Inc. OpenGL ES Common Profile Specification Version
2.0.25. http://www.khronos.org/registry/gles/specs/2.0/es_full_

spec_2.0.25.pdf.

[96] The Khronos Group Inc. OpenGL ES Common/Common-Lite Profile
Specification Version 1.1.12. http://www.khronos.org/registry/gles/

specs/1.1/es_full_spec_1.1.12.pdf.

[97] The Khronos Group Inc. OpenGL ES Version 3.0.3. http://www.khronos.
org/registry/gles/specs/3.0/es_spec_3.0.3.pdf.

BIBLIOGRAPHY 138

http://www.idc.com/getdoc.jsp?containerId=prUS24676414
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/1.1/es_full_spec_1.1.12.pdf
http://www.khronos.org/registry/gles/specs/1.1/es_full_spec_1.1.12.pdf
http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf
http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.3.pdf

[98] The Khronos Group Inc. OpenGL ES Version 3.1. http://www.khronos.
org/registry/gles/specs/3.1/es_spec_3.1.pdf.

[99] The Khronos Group Inc. WebGL Specification 1.0. https://www.khronos.
org/registry/webgl/specs/1.0/.

[100] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In
In Proceedings of the 24th Annual International Symposium on Computer
Architecture, pages 252–263, 1997.

[101] B. Juurlink, I. Antochi, D. Crisu, S. Cotofana, and S. Vassiliadis. GRAAL:
A Framework for Low-Power 3D Graphics Accelerators. IEEE Computer
Graphics and Applications, 28(4):63–73, 2008.

[102] Gokul B. Kandiraju and Anand Sivasubramaniam. Going the distance
for tlb prefetching: an application-driven study. In Proceedings of the 29th
annual international symposium on Computer architecture, ISCA ’02, pages
195–206, Washington, DC, USA, 2002. IEEE Computer Society.

[103] Stefanos Kaxiras, Polychronis Xekalakis, and Georgios Keramidas. In
Kaushik Roy and Vivek Tiwari, editors, ISLPED, pages 54–59. ACM.

[104] Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. Cache
replacement based on reuse-distance prediction. In Proceedings of the 25th
International Conference on Computer Design, ICCD, pages 245–250, 2007.

[105] G. Knittel, A. Schilling, A. Kugler, and W. Strasser. Hardware for superior
texture performance. In Proceedings of the Tenth Eurographics Conference
on Graphics Hardware, EGGH’95, pages 33–40, Aire-la-Ville, Switzerland,
Switzerland, 1995. Eurographics Association.

[106] Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, and Richard
Vuduc. Many-thread aware prefetching mechanisms for gpgpu applica-
tions. IEEE/ACM International Symposium on Microarchitecture, 0:213–
224, 2010.

[107] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore Architectures.
In Proc. of MICRO, pages 469–480, 2009.

[108] Gábor Liktor and Carsten Dachsbacher. Decoupled deferred shading for
hardware rasterization. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, I3D’12, pages 143–150, 2012.

[109] D Mccabe and J Brothers. DirectX 6 Texture Map Compression. Game
Developer Magazine 5, pages 42–46, August 1998.

[110] Paul McNamee and Marty Hall. Developing a tool for memoizing functions
in c++. SIGPLAN Not., 33(8):17–22, August 1998.

BIBLIOGRAPHY 139

http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
http://www.khronos.org/registry/gles/specs/3.1/es_spec_3.1.pdf
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/

[111] Bren Mochocki, Kanishka Lahiri, and Srihari Cadambi. Power Analysis
of Mobile 3D Graphics. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe: Proceedings, DATE ’06, pages 502–507, 3001
Leuven, Belgium, Belgium, 2006. European Design and Automation Asso-
ciation.

[112] Jordi Roca Monfort and Mark Grossman. Scaling of 3D Game Engine Work-
loads on Modern multi-GPU Systems. In Proceedings of the Conference on
High Performance Graphics 2009, HPG ’09, pages 37–46, New York, NY,
USA, 2009. ACM.

[113] Victor Moya, Carlos Gonzalez, Jordi Roca, Agustin Fernandez, and Roger
Espasa. ATTILA: A Cycle-level Execution-Driven Simulator for Modern
GPU Architectures. In Proc. of ISPASS, pages 231–241, 2006.

[114] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global
history buffer. IEEE Micro, 25(1):90–97, 2005.

[115] NVIDIA. Bringing High-End Graphics to Handheld Devices.
http://www.nvidia.com/content/PDF/tegra_white_papers/

Bringing_High-End_Graphics_to_Handheld_Devices.pdf.

[116] NVIDIA. CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/.

[117] NVIDIA. NVIDIA Tegra 4 Family GPU Architecture. http://www.

nvidia.com/docs/IO//116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf.

[118] NVIDIA. SLI Best Practices. http://developer.download.nvidia.com/
whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf.

[119] J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. Adaptive
Scalable Texture Compression. In Proceedings of the Fourth ACM SIG-
GRAPH / Eurographics conference on High-Performance Graphics, EGGH-
HPG’12, pages 105–114. Eurographics Association, 2012.

[120] Tom Olson. How low can you go? Building low-power,
low-bandwidth ARM Mali GPUs. http://community.

arm.com/groups/arm-mali-graphics/blog/2012/08/17/

how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus.

[121] Tom Olson. Triangles Per Second: Performance Met-
ric or Chocolate Teapot? http://community.

arm.com/groups/arm-mali-graphics/blog/2011/02/22/

triangles-per-second-performance-metric-or-chocolate-teapot.

[122] Joan-Manuel Parcerisa and Antonio Gonzalez. Improving latency tolerance
of multithreading through decoupling. IEEE Trans. Comput., 50(10):1084–
1094, October 2001.

BIBLIOGRAPHY 140

http://www.nvidia.com/content/PDF/tegra_white_papers/Bringing_High-End_Graphics_to_Handheld_Devices.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Bringing_High-End_Graphics_to_Handheld_Devices.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/docs/IO//116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO//116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2011/02/22/triangles-per-second-performance-metric-or-chocolate-teapot
http://community.arm.com/groups/arm-mali-graphics/blog/2011/02/22/triangles-per-second-performance-metric-or-chocolate-teapot
http://community.arm.com/groups/arm-mali-graphics/blog/2011/02/22/triangles-per-second-performance-metric-or-chocolate-teapot

[123] Anton Pereberin. Hierarchical Approach for Texture Compression. In Pro-
ceedings of GraphiCon ’99, pages 195–199, 1999.

[124] Jeff Pool, Anselmo Lastra, and Montek Singh. A Per-Unit Breakdown of
the Energy Consumption in a Graphics Processing Unit. http://www.cs.
unc.edu/~jpool/research/ICCD2010Extension/index.html.

[125] Jeff Pool, Anselmo Lastra, and Montek Singh. An Energy Model for Graph-
ics Processing Units. In ICCD, pages 409–416. IEEE, 2010.

[126] Kari Pulli, Tomi Aarnio, Kimmo Roimela, and Jani Vaarala. Design-
ing Graphics Programming Interfaces for Mobile Devices. IEEE Comput.
Graph. Appl., 25(6):66–75, November 2005.

[127] Qualcomm. Composition with Snapdragon. https://developer.

qualcomm.com/sites/default/files/composition-with-snapdragon.

pdf.

[128] Jim Rasmusson, Jon Hasselgren, and Tomas Akenine-Möller. Exact and
Error-Bounded Approximate Color Buffer Compression and Decompres-
sion. In Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, GH ’07, pages 41–48, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[129] Vijay Janapa Reddi. Architecting for the Mobile Web: Where We’ve Been,
Where We’re Heading, and What We Need to Address. In Keynote of the
2nd annual workshop on parallelism in mobile platforms, PRISM-2, 2014.

[130] W. T. Reeves. Particle Systems: A Technique for Modeling a Class of
Fuzzy Objects. ACM Trans. Graph., 2(2):91–108, April 1983.

[131] Matthew J. P. Regan, Gavin S. P. Miller, Steven M. Rubin, and Chris
Kogelnik. A Real-Time Low-Latency Hardware Light-Field Renderer. In
Proceedings of the 26th annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’99, pages 287–290, New York, NY, USA,
1999. ACM Press/Addison-Wesley Publishing Co.

[132] Hugo Rito and João Cachopo. Memoization of methods using software
transactional memory to track internal state dependencies. In Proceedings
of the 8th International Conference on the Principles and Practice of Pro-
gramming in Java, PPPJ’10, pages 89–98, 2010.

[133] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle
accurate memory system simulator. IEEE Comput. Archit. Lett., 10(1):16–
19, January 2011.

[134] S. Subramanya Sastry, Rastislav Bodik, and James E. Smith. Charac-
terizing coarse-grained reuse of computation. In 3rd ACM Workshop on
Feedback Directed and Dynamic Optimization, pages 16–18, 2000.

BIBLIOGRAPHY 141

http://www.cs.unc.edu/~jpool/research/ICCD2010Extension/index.html
http://www.cs.unc.edu/~jpool/research/ICCD2010Extension/index.html
https://developer.qualcomm.com/sites/default/files/composition-with-snapdragon.pdf
https://developer.qualcomm.com/sites/default/files/composition-with-snapdragon.pdf
https://developer.qualcomm.com/sites/default/files/composition-with-snapdragon.pdf

[135] Ankit Sethia, Ganesh Dasika, Mehrzad Samadi, and Scott Mahlke. Apogee:
Adaptive prefetching on gpus for energy efficiency. In Proceedings of the
22Nd International Conference on Parallel Architectures and Compilation
Techniques, PACT ’13, pages 73–82, Piscataway, NJ, USA, 2013. IEEE
Press.

[136] J. W. Sheaffer, D. Luebke, and K. Skadron. A Flexible Simulation Frame-
work for Graphics Architectures. In Proc. of the EUROGRAPHICS Conf.
on Graphics Hardware, pages 85–94, 2004.

[137] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the Wild:
Studying Real User Activity Patterns to Guide Power Optimizations for
Mobile Architectures. In Proceedings of the 42Nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO 42, pages 168–178,
New York, NY, USA, 2009. ACM.

[138] James E. Smith. Decoupled Access/Execute Computer Architectures. In
Proceedings of the 9th Annual Symposium on Computer Architecture, ISCA
’82, pages 112–119, Los Alamitos, CA, USA, 1982. IEEE Computer Society
Press.

[139] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In
Proceedings of the 24th Annual International Symposium on Computer Ar-
chitecture, ISCA ’97, pages 194–205, 1997.

[140] Jacob Ström and Tomas Akenine-Möller. iPACKMAN: High-Quality, Low-
Complexity Texture Compression for Mobile Phones. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
HWWS ’05, pages 63–70, New York, NY, USA, 2005. ACM.

[141] Deependra Talla and Lizy K. John. Mediabreeze: A decoupled architecture
for accelerating multimedia applications. SIGARCH Comput. Archit. News,
29(5):62–67, December 2001.

[142] Deependra Talla, Lizy Kurian John, and Doug Burger. Bottlenecks in mul-
timedia processing with simd style extensions and architectural enhance-
ments. IEEE Trans. Computers, 52(8):1015–1031, 2003.

[143] David Tarjan and Kevin Skadron. The sharing tracker: Using ideas from
cache coherence hardware to reduce off-chip memory traffic with non-
coherent caches. In Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Anal-
ysis, SC ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

[144] Hung-Wei Tseng and Dean M. Tullsen. Data-triggered threads: Eliminating
redundant computation. In Proceedings of the 17th International Sympo-
sium on High Performance Computer Architecture, HPCA, pages 181–192,
2011.

BIBLIOGRAPHY 142

[145] Tomoaki Tsumura, Ikuma Suzuki, Yasuki Ikeuchi, Hiroshi Matsuo, Hiroshi
Nakashima, and Yasuhiko Nakashima. Design and evaluation of an auto-
memoization processor. In Parallel and Distributed Computing and Net-
works, pages 230–235, 2007.

[146] Rafael Ubal, Julio Sahuquillo, Salvador Petit, and Pedro López. Multi2Sim:
A Simulation Framework for CPU-GPU Computing . In Proc. of the 19th
International Symposium on Computer Architecture and High Performance
Computing, Oct. 2007.

[147] Po-Han Wang, Yen-Ming Chen, Chia-Lin Yang, and Yu-Jung Cheng. A
predictive shutdown technique for gpu shader processors. Computer Archi-
tecture Letters, pages 9–12, 2009.

[148] Po-Han Wang, Chia-Lin Yang, Yen-Ming Chen, and Yu-Jung Cheng. Power
gating strategies on gpus. ACM Trans. Archit. Code Optim., 8(3):13:1–
13:25, October 2011.

[149] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image Quality
Assessment: from Error Visibility to Structural Similarity. IEEE Transac-
tions on Image Processing, 13(4):600–612, 2004.

[150] Wikipedia. ARM Mali. http://en.wikipedia.org/wiki/Mali_%28GPU%

29.

[151] Wikipedia. Ericsson Texture Compression. http://en.wikipedia.org/

wiki/Ericsson_Texture_Compression.

[152] Wikipedia. Fillrate. http://en.wikipedia.org/wiki/Fillrate.

[153] Wikipedia. Mean Squared Error. http://en.wikipedia.org/wiki/Mean_
squared_error.

[154] Wikipedia. Micro Stuttering. http://en.wikipedia.org/wiki/Micro_

stuttering.

[155] Wikipedia. Multiple Render Targets. http://en.wikipedia.org/wiki/

Multiple_Render_Targets.

[156] Wikipedia. Nintendo 3DS. http://en.wikipedia.org/wiki/Nintendo_

3DS.

[157] Wikipedia. OpenGL ES. http://en.wikipedia.org/wiki/OpenGL_ES.

[158] Wikipedia. Peak Signal-to-Noise Ratio. http://en.wikipedia.org/wiki/
Peak_signal-to-noise_ratio.

[159] Wikipedia. Performance per watt. http://en.wikipedia.org/wiki/

Performance_per_watt.

[160] Wikipedia. PICA-200. http://en.wikipedia.org/wiki/PICA200.

BIBLIOGRAPHY 143

http://en.wikipedia.org/wiki/Mali_%28GPU%29
http://en.wikipedia.org/wiki/Mali_%28GPU%29
http://en.wikipedia.org/wiki/Ericsson_Texture_Compression
http://en.wikipedia.org/wiki/Ericsson_Texture_Compression
http://en.wikipedia.org/wiki/Fillrate
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Micro_stuttering
http://en.wikipedia.org/wiki/Micro_stuttering
http://en.wikipedia.org/wiki/Multiple_Render_Targets
http://en.wikipedia.org/wiki/Multiple_Render_Targets
http://en.wikipedia.org/wiki/Nintendo_3DS
http://en.wikipedia.org/wiki/Nintendo_3DS
http://en.wikipedia.org/wiki/OpenGL_ES
http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
http://en.wikipedia.org/wiki/Performance_per_watt
http://en.wikipedia.org/wiki/Performance_per_watt
http://en.wikipedia.org/wiki/PICA200

[161] Wikipedia. PowerVR. http://en.wikipedia.org/wiki/PowerVR.

[162] Wikipedia. Qualcomm Adreno. http://en.wikipedia.org/wiki/Adreno.

[163] Wikipedia. Qualcomm snapdragon. http://en.wikipedia.org/wiki/

Snapdragon_%28system_on_chip%29.

[164] Wikipedia. Samsung Exynos. http://en.wikipedia.org/wiki/Exynos.

[165] Wikipedia. Tiled rendering. http://en.wikipedia.org/wiki/Tiled_

rendering.

[166] Lance Williams. Casting Curved Shadows on Curved Surfaces. In Proceed-
ings of the 5th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’78, pages 270–274, New York, NY, USA, 1978.
ACM.

[167] Jeong-Ho Woo, Min-Wuk Lee, Hye-Jung Kim, R. Woo, and Hoi-Jun Yoo. A
155-mw 50-m vertices/s graphics processor with fixed-point programmable
vertex shader for mobile applications. IEEE Journal of Solid-State Circuits,
41(5):1081–1091, May 2006.

[168] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic pu-
rity analysis for java programs. In Proceedings of the 7th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, PASTE ’07, pages 75–82, 2007.

[169] Wing-kei S. Yu, Ruirui Huang, Sarah Q. Xu, Sung-En Wang, Edwin Kan,
and G. Edward Suh. Sram-dram hybrid memory with applications to ef-
ficient register files in fine-grained multi-threading. In Proceedings of the
38th Annual International Symposium on Computer Architecture, ISCA ’11,
pages 247–258, New York, NY, USA, 2011. ACM.

[170] GPUWattch. http://www.gpgpu-sim.org/gpuwattch/.

[171] Microsoft Direct3D. http://en.wikipedia.org/wiki/Microsoft_

Direct3D.

[172] OpenCL. http://www.khronos.org/opencl/.

[173] Carlos lvarez, Jess Corbal, and Mateo Valero. Fuzzy memoization for
floating-point multimedia applications. IEEE Transactions on Computers,
54(7):922–927, 2005.

BIBLIOGRAPHY 144

http://en.wikipedia.org/wiki/PowerVR
http://en.wikipedia.org/wiki/Adreno
http://en.wikipedia.org/wiki/Snapdragon_%28system_on_chip%29
http://en.wikipedia.org/wiki/Snapdragon_%28system_on_chip%29
http://en.wikipedia.org/wiki/Exynos
http://en.wikipedia.org/wiki/Tiled_rendering
http://en.wikipedia.org/wiki/Tiled_rendering
http://www.gpgpu-sim.org/gpuwattch/
http://en.wikipedia.org/wiki/Microsoft_Direct3D
http://en.wikipedia.org/wiki/Microsoft_Direct3D
http://www.khronos.org/opencl/

	Abstract
	Introduction
	Current Trends in Mobile Graphics
	Mobile Graphics Hardware
	Mobile Graphics Software

	Problem Statement
	State-of-the-art in GPU Energy Efficiency
	Memory Latency Tolerance Techniques
	Bandwidth Saving Techniques
	Other Related Works

	Thesis Overview and Contributions
	Mobile GPU Simulation Infrastructure
	The Decoupled Access/Execute Fragment Processor
	Parallel Frame Rendering
	Eliminating Redundant Fragment Shader Executions

	Thesis Structure

	Experimental Environment
	Simulation Infrastructure
	Application Level
	Driver Level
	Hardware Level
	Automatic Image Quality Assessment
	Assumed Graphics Pipeline

	Workloads
	Workload Selection
	Workload Characterization

	Summary of Methodology

	Decoupled Access/Execute Fragment Processor
	Memory Latency Tolerance in a Mobile GPU
	Aggressive Multithreading
	Hardware Prefetching

	Decoupled Architecture for Fragment Processors
	Base Architecture
	Remote Texture Cache Accesses

	Multithreading, Prefetching and Decoupled Access/Execute
	Conclusions

	Parallel Frame Rendering
	Memory Bandwidth Usage on a Mobile GPU
	Trading Responsiveness for Energy
	Parallel Frame Rendering
	Reactive Parallel Frame Rendering
	N-Frames Reactive Parallel Frame Rendering
	Delay Randomly Parallel Frame Rendering

	Experimental Results
	Conclusions

	Hardware Memoization in Mobile GPUs
	Redundancy in Mobile GPUs
	Redundancy and Memoization
	Reuse Distance and Parallel Frame Rendering
	Task-level Complexity
	Referential Transparency

	Task Level Hardware-Based Memoization on a Mobile GPU
	Memoization System
	Screen Coordinates Independent Memoization

	Experimental Results
	Conclusions

	Conclusions
	Conclusions
	Contributions
	Open-Research Areas

	Decoupled Fragment Processor on top of TBR
	Parallel Frame Rendering on top of IMR
	Hardware Memoization on top of IMR

