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Abstract 
 

 

The exploration of the dynamics of bio-inspired neural networks has allowed neuroscientists to 

understand some clues and structures of the brain. Electronic neural network implementations are 

useful tools for this exploration. However, appropriate architectures are necessary due to the extremely 

high complexity of those networks. There has been an extraordinary development in reconfigurable 

computing devices within a short period of time especially in their resource availability, speed, and 

reconfigurability (FPGAs), which makes these devices suitable to emulate those networks. 

Reconfigurable parallel hardware architecture is proposed in this thesis in order to emulate in real time 

complex and biologically realistic spiking neural networks (SNNs). Some relevant SNN models and 

their hardware approaches have been studied, and analyzed in order to create an architecture that 

supports the implementation of these SNN models efficiently. The key factors, which involve 

flexibility in algorithm programmability, high performance processing, low area and power 

consumption, have been taken into account.  In order to boost the performance of the proposed 

architecture, several techniques have been developed: time to space mapping, neural virtualization, 

flexible synapse-neuron mapping, and specific learning and execution modes, among others. 

Besides this, an interface unit has been developed in order to build a bio-inspired system, which can 

process sensory information from the environment.  The spiking-neuron-based system combines analog 

and digital multi-processor implementations. Several applications have been developed as a proof-of-

concept in order to show the capabilities of the proposed architecture for processing this type of 

information. 
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Resumen 
 

 

 

El estudio de la dinámica de las redes neuronales bio-inspiradas ha permitido a los 

neurocientíficos entender algunos procesos y estructuras del cerebro. Las implementaciones 

electrónicas de estas redes neuronales son herramientas útiles para llevar a cabo este tipo de 

estudio. Sin embargo, ls alta complejidad de las redes neuronales requiere de una arquitectura 

apropiada que pueda simular este tipo de redes. Emular este tipo de redes en dispositivos 

configurables es adecuado debido a su extraordinario desarrollo en cuanto a recursos, 

velocidad y capacidad de reconfiguración (FPGAs). 

En esta tesis se propone una arquitectura hardware paralela y configurable para emular las 

complejas y realistas redes neuronales tipo spiking en tiempo real. Se han estudiado y 

analizado algunos modelos de neuronas tipo spiking relevantes y sus implementaciones en 

hardware, con el fin de crear una arquitectura que soporte la implementación de estos 

modelos de manera eficiente.  

Se han tenido en cuenta varios factores clave, incluyendo flexibilidad en la programación de 

algoritmos, procesamiento de alto rendimiento, bajo consumo de energía y área. Se han 

aplicado varias técnicas  en la arquitectura desarrollada con el propósito de aumentar su 

desempeño. Estas técnicas son: mapeado de tiempo a espacio, virtualización de las neuronas, 

mapeo flexible de neuronas y sinapsis, modos de ejecución, y aprendizaje específico, entre 

otras.  

Además, se ha desarrollado una unidad de interfaz de datos con el fin de construir un sistema 

bio-inspirado, que puede procesar información sensorial del medio ambiente. Este sistema 

basado en neuronas tipo spiking combina implementaciones analógicas y digitales. Varias 

aplicaciones se han desarrollado usando este sistema como prueba de concepto, con el fin de 

mostrar las capacidades de la arquitectura propuesta para el procesamiento de este tipo de 

información. 
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Introduction 

  

 

 

 

1.1 Problem Statement 

1.2 Work methodology 

1.3 Outline of the thesis 

1.1 Problem Statement 

For several decades the anatomy of the human brain has fascinated many neuroscientists and engineers 

due to its complex functions and structures. Some of the functions performed by the brain are associated 

with reasoning, speech recognition, movement, visual processing [1]. These biological processes are 

carried out through the cells known as ‘neurons’ which constitutes the fundamental part of the brain. The 

neuron has the ability to propagate signals rapidly over large distances. Basically, these signals are 

electrical pulses called action potentials or, more simply, spikes, which travel through nerve fibers. The 

information in the neurons is represented by firing sequences of spikes in various temporal patterns. 

These patterns provide information to perform functions such as detection of the light, detection of the 

sound intensity, or motor actions in the form of action potentials [1]. The structure of a neuron can be 

divided into three parts where each part is analogous to the input (dendrites), processing unit (soma) and 

output of the system (axon), as is shown in Fig. 1.1. Basically, the structure of a neuron can be divided 

into three parts where each part is analogous to the input (dendrites), processing unit (soma) and output of 

the system (axon), as is shown in Fig. 1.1. Basically, the soma or cell body can be considered as the 

Central Processing unit of the neuron where all the information processing is done. The transfer of 

information from one neuron to another takes place through the synapse connection typically by means of 

a discharge of a chemical neurotransmitter. The neurotransmitters received from the dendrites are 

received in the soma producing a potential. If the increased potential in the soma is large enough to cross 

a threshold level, then an electrical pulse is produced. The pulse travels through the axon, activating the 

synapses of the other neurons. Pre-Synaptic is a term that is used for the transmitter neuron whereas the 

receiver neurons are called as Post-synaptic. The ability to change the strength or weakness of the 

excitatory or inhibitory synapses is called plasticity. This is one of the important mechanisms which are 
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linked to the learning and memory processes in the human brain.  Neuroscientists assume that this process 

is due to the change of the strength or weakness of the synapses [2]. This strength or weakness changes 

according to the response to the activity of both pre and post synaptic neurons. Alterations in the synaptic 

transmission can be roughly subdivided into two classes of mechanisms: long-term potentiation (LTP), 

and long-term depression (LTD), LTP is measured as a persistent increase in the amplitude of the 

excitatory postsynaptic potentials (EPSP), whereas LTD is measured as the persistent decrease in the 

amplitude of the EPSPs. 

 

Figure 1.1: A single neuron in the schematic view. Dendrites, soma, and axon are the main components of 

the neuron and can be clearly distinguished. 

In this present era, there has been a lot of research on the modelling of the cortex which is one of the vital 

parts of the human brain. This part performs some important functions such as thinking, information 

processing, perception, etc. The cortical models, also known as Spiking Neural Network (SNN) models 

intend to mimic the biological neuron by making the neural simulation real time. This is because the 

concept of the time is inherent in these types of models. So that, the representation of the information is 

through spikes, which makes the SNN model more biologically plausible. Therefore, Spiking neurons 

differ from conventional Artificial Neural Networks (ANN) models as information is transmitted by 

means of spikes rather than firing rates. The ANNs are computational models inspired by the structure 

and functionality of biological neurons. The ANNs have been classified in three generations according to 

the level of realism in the neural simulation. The first generation of ANN models involves binary 
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networks (activation of 0 or 1). The second generation takes into account the networks where the 

activation is the representative of ‘mean firing rate’ of the neuron. These types of networks have been 

implemented in analogue devices where the firing rate values can be between 0 and 1. These values are 

normalized and hence it is also known as rate-coding scheme. It is called so because this implies a 

mechanism for averaging. The SNN models are classified as the third generation of these models, which 

includes the concept of time in their operating model. The neuron fires only when the membrane potential 

crosses a certain threshold producing a spike. This spike increases or decreases the potential of other 

neurons in accordance with this signal. For several years, conventional ANNs (second generation) have 

demonstrated their best performance as engineering tools and in many other domains like pattern 

recognition, control, bio-informatics, and robotics. Nevertheless, these models suffer from intrinsic 

limitations such as processing enormous amount of data or the ability to adapt to the changes in the 

environment. This is because of several characteristics, such as iterative learning algorithms or artificially 

designed neuron model and network architecture, that are strongly limited in comparison with the 

processes carried out in biological neural networks. 

The development of neural network models has been progressing according to two vital applications as 

shown in Fig. 1.2. The first one is mainly given to the development of engineering applications where the 

efficiency of the model is given the highest priority without focusing on the biological process taking 

place inside the human brain. The second type of application is mainly dedicated for the simulation and 

modelling of the behaviour of the brain. 

 

Figure 1.2: The development of Neural Networks models 

Neural Network 
models 

Engineering 
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Brain modeling 
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A wide variety of SNN models have been proposed for several years. Most of them model the ion 

channels that are responsible for generating the spikes at the axon hillock. The most relevant works 

presented here is due to its importance in the modelling of the neurons, and its widespread use in several 

applications. One such SNN model was proposed by Hodgkin-Huxley [3]. This model describes the 

conductance-based neuron by reproducing electrophysiological measurements to a very high degree of 

accuracy [4]. Unfortunately, this model is very complex, usually difficult to analyze and computationally 

expensive in numerical implementations. Other SNN models which were derived from Hodgkin-Huxley 

model are integrate-and-fire model and Leaky-Integrate and fire model. These two models are extensively 

used in many applications, mostly in applications pertaining to processing of time-varying signals 

[5].These models are simple to understand, easy to implement and commonly used in the networks 

designed using spiking neurons. Apart from these, there have been a lot of efforts being put to propose 

SNN models with different properties. One such neural model was proposed by Izhikevich [6]. This 

model combines the biologically plausibility of the Hodgkin–Huxley-type dynamics and the 

computational efficiency of integrate-and-fire neurons to reproduce the spiking behavior of many neurons 

dynamics. The Bifurcation methodologies enable the author to reduce many biophysically accurate 

Hodgkin–Huxley-type neuronal models into a two-dimensional (2-D) system of ordinary differential 

equations. These equations have the ability to handle about 20 fundamental neuro-computational 

properties of biological neurons [6]. Finally, the SNN model, which was proposed by Iglesias and Villa 

[7] during the development of the European PERPLEXUS project [8], has served as a benchmark for this 

thesis. In this SNN model the neuron is modelled as a simple leaky integrate-and-fire model which makes 

it computationally efficient and as an important functional aspect of the cortical circuits. In particular, the 

spike-timing-dependent synaptic plasticity (STDP) of the synapses is modeled according to the learning 

rule suggested by Donald Hebb [2]. 

The computer simulation of the human brain has been considered as an important tool to understand its 

structure and dynamics. After simulating several large-scale SNN models, neuroscientists have tried to 

test their computational model hypothesis of the brain structure, dynamics and function by interacting 

with the real or virtual environment. The extraordinary performance of the human brain has propelled 

many engineers to design architectures that imitate the functionality of the brain in order to create bio-

inspired machines or robots that can mimic these functions to solve complex perception problems as 
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learning visual features, character recognition, and autonomous navigation. Also, this performance in the 

human brain imposes big challenges in the development of cortical emulators regarding several factors 

like: the complexity of the neural behaviour, the scale of the network, interconnection, plasticity in the 

synapses, and power consumption. The brain exhibits high performance in terms of processing speed, so 

that it could be considered as an interesting computer, because it performs approximately 3.6x10
15 

synaptic operations per second. Moreover, it is highly efficient in terms of power consumption (12 

Watts). Even though the neurons work slowly, there is a tremendous amount of computation achieved in 

real time. Due to this, several questions are cropping up regarding the efficiency of the brain. The 

physical structure and composition of each neuron membrane in the design of the human brain, the wiring 

plans between the neurons and the astounding capability to learn are some of the reasons to justify the 

efficiency of the brain. 

The simulation of large scale Spiking Neural Network models has been performed with different 

approaches which mainly involve supercomputers, general purpose computers, analogue circuits, 

multiprocessors, graphics processing units and field-programmable gate arrays. These approaches have 

been proposed as suitable platforms to be used to simulate such SNN models in order to explore the 

neural dynamics involved in the SNN models. However there are several aspects to be discussed and 

analysed in order to create this platform which involves the model flexibility, architectural scalability, 

power consumption, and area consumption. 

- Supercomputers and general purpose computers 

During the last years, several projects have been proposed to create cortical simulators which try to 

emulate large-scale SNN models. They intend to emulate millions of neurons and billions of synapses. 

One of the most important emulator is implemented on a supercomputer. This project is the ‘Blue brain 

project’ which was started in 2005 at École Polytechnique Fédérale de Lausanne (EPFL) [9]. Several 

aspects of the brain were modelled and verified by EPFL. Now, attempts are being made to simulate the 

whole brain [10]. The simulation of thousands of neurons was done in the Blue brain project at ion-

channel level which was implemented with the help of the details given in [9]. And billions of synapses 

were modelled with the help of non-linear differential equations [11]. But, the implementation of the 

neurons and synapses as per the Blue Brain project requires a high amount of power consumption (around 

8.4 GW) [12]. The power consumption and size limitations are some of the ordeals this project faces right 
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now. But there were certain ways to overcome them. The project focussed only in the reproduction of the 

dynamics of the membrane potential, which in turn reduced the energy as well as the time required for 

performing the simulation. 

The software approach involves developing codes and algorithms for general purpose computers/High 

Performance Computing (HPC) modelling the neural behaviour. This is the approach adopted in the blue 

brain project in terms of HPCs and several others using general purpose computers. In case of 

conventional processors, the memory bandwidth and parallelism is minimal to be able to implement large 

scale real time simulation of complex spiking neural networks. 

- Digital implementations  

As mentioned before, in digital domain several works have been proposed to develop cortical emulators 

in compact digital devices such as multiprocessors, Graphic Processing Units (GPUs), and Field-

Programmable Gate Arrays (FPGAs). The important features of these digital implementations are 

flexibility, scalability and re-configurability. Although the digital implementation is less compact when 

compared to analog implementation, the cost of analog designs is much higher in comparison with digital 

or software implementations. Therefore, some research groups are aiming to make an SNN emulator 

which is flexible and scalable in order to offer a system which can be used as a platform for experimental 

research, which involves the study of the neural dynamics in certain part of the brain. 

. Multiprocessor units 

One the most representative work which has been developed a SNN emulator based on multiprocessor is 

proposed in [13]. This multiprocessor called SpiNNaker intends to simulate billion neurons and trillion-

synapses using a network of 50K SpiNNaker chips. Each SpiNNaker chip is composed of 18 identical 

ARM processors with custom interconnections. Its programmable feature allows SpiNNaker to support 

different SNN models. This customized architecture promises to be a powerful platform in the simulation 

of large-scale of SNN models. However, there are some aspects to discuss about this architecture. One of 

them is regarding the communication system. They assume that the network will not be saturated and 

there is no mechanism of congestion. This mechanism of congestion is vital when large networks become 

more active. Another aspect is regarding the memory system of SpiNNaker. A large amount of data is 
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transferred from the external memory to the processors. The high bandwidth memory data interfaces 

compensate the negative effect of transfer of data from the external memory to the processors. 

. Graphic Processing Units 

There have been efforts to create SNN emulators based on GPU implementations to simulate large-scale 

SNN models [14, 15]. Currently, the GPUs are becoming very popular because these types of digital 

devices offer excellent parallel computation, due to its inherent parallelization. However, despite having a 

parallel architecture it could be an excellent platform for the simulation of large-scale SNN models. This 

is because the calculation of the membrane potential of every spiking neuron exhibits significant parallel 

computation. There are many factors which reduce the performance of the simulation of these SNN 

models in GPUs architectures. However, many of these works have reported that the simulation of the 

SNN models on GPUs is around of 10 to 100 times faster when compared to the simulations on general 

purpose computers. The method used to measure the performance of the SNN model simulations on this 

type of digital device is not provided in [14, 15]. One of the factors which decrease the performance is 

related to the memory bandwidth [14]. This presents an important problem to the GPUs due to the 

enormous rate at which the processors read data from the memory or load data to the memory, which was 

reported in [14]. The other is related to the optimization of the parallel execution, which depends on the 

number of threads and the memory system in every GPU. These threads, which are in charge of 

transferring data from the memory to the processors or vice versa, are limited in number, so that, not all 

cores are used [14, 15]. The threads have been programmed with high level of complexity in order to 

exploit maximum number of processors that are available in the GPU. This solution limits the use of the 

algorithm for the simulation of the SNN model to a specific GPU architecture. The flexibility and 

scalability are the two vital factors to be noted in order to explore the neural dynamics in the SNN 

models. The work proposed by [15] intends to offer a programming method which can be applied in 

different GPUs, regardless of the structure of the memory of the GPUs and the number of threads. 

However, the number of neurons and synapses are decreased in number in comparison with [14]. The 

number of processors implemented in [15] is two times more than [14]. However, the number of neurons 

simulated in [15] is 1000 thousand times less than [14]. In these components the factor called scalability 

is limited. Almost all of the architectures presented here have simulated thousands of neurons by using a 

single GPU. Also, the absence of an efficient communication system in these devices generates an 
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overhead memory access. This is because also the threads are in charge of the distribution of the spikes. 

GPUs devices exhibit high performance on certain algorithms which involves a large amount of 

computation. However, simulations of large-scale SNN require large computation and large high 

communication bandwidth.  

. Field-Programmable Gate Arrays  

Several works have been proposed in order to develop an SNN emulator which support emulate large 

scale SNN models in a FPGA device [8, 16, 17, 18, 19, and 20]. Only few of these works have achieved 

to simulate very large scale SNN models [19, 20]. One of these works is proposed by [19], who has 

achieved the implementation of 1000000 leaky integrate-and-fire neurons. The implementation of the 

spiking neurons was carried out in very simple processors that are many in number but integrated into a 

single FPGA. In this work the number of neurons implemented is of a good number but the number of 

synapses was unreported. But in case of the human brain there a large number of neurons present at the 

same time the number of synapses are much higher. In other words, neurons require a high level of 

connectivity. The connectivity of the neurons imposes a big challenge to develop such levels of 

connectivity in the current FPGAs. An architecture called Bluehive [20] is proposed to support large 

number of neurons and synapses. This architecture is composed of 64-FPGAs interconnected by high 

speed serial links. Each FPGA can emulate up to 64k Izhikevich neurons and 64000000 synapses per 

neuron [6]. The proposal of this work is focused to build a system with high speed communication by 

using high speed serial links available in the FPGA. However, there is no mechanism that can manage 

congestion in the SNN network in the case of saturation. 

The mechanisms implemented in both architectures [19] and [20] process a huge amount of neurons 

based on fixed pipeline stages, which reduce the capacity of the system for supporting different SNN 

models. These architectures were designed for simulating a simple specific SNN model which does not 

implement the plasticity of the synapses which plays a major role to carry out the learning process. 

Despite the configurable features that the FPGA approaches offer when compared with the ASIC design, 

the design is fixed to a particular model. In case of any minor change to implement other SNN models or 

by adding the modelling of the plasticity of the synapses using the previously implemented model the 

whole architecture has to be defined. 
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- Mixed signal implementations 

The sub threshold levels of the transistor dynamics is being exploited in case of analogue domain 

approach so as to model the neuron in silicon. One the most relevant works done in this domain is the 

BrainScaleS project [21], which proposes analogue circuits to simulate the spiking neurons. The spike 

distribution is carried out by digital packet-switched routers. These circuits are manufactured on a single 

wafer. Every wafer can contain 180k I&F neurons and 4x10
7
 synapses. A great energy efficiency and low 

area consumption can be obtained in the simulation of large-scale networks in these types of analogue-

digital circuits. However, the programmability on these architectures is affected, which is very important 

when there is a need to explore the dynamics of the model, which is being studied and the final 

description is not yet defined. Therefore, the analogue implementations can be used for applications 

where the behaviour of the SNN is well characterized. Otherwise, the cost of fabrication will be costly 

and determining dynamics of the SNN models by using analogue approaches would be time consuming. 

Several other factors also decrease the performance of the spiking neural computation in analogue 

circuits. This is due to various non-idealities in circuit and reduced precision of the calculation. Also, the 

noise starts to accumulate in case of cascaded analog stages, thereby making it strenuous to build such 

complex systems using analog devices. A hybrid system could be another solution to create a 

configurable SNN emulator which exhibits high computational performance in the simulation of large-

scale SNN models, with low power consumption. It represents a big challenge to develop a system that 

benefits from the fruits of both approaches (analog and digital). There have been developing 

architectures, which combine the digital and analog implementations. One of them is proposed by [22]. 

This approach proposes a hybrid analog/digital circuit with very large-scale integration. The simulation of 

spiking neurons in this architecture is suitable for applications which require real-time large-scale neural 

simulations. Nevertheless, the simulation of the spiking neurons gives some qualitative approximations in 

the behaviour when compared with the simulation on digital devices. This work offers an option for 

simulating SNN models on a “general purpose” silicon emulator.  

As it has been mentioned, several projects have been developed in order to create SNN emulators, which 

can support the simulation of large scale SNN models, using different development platforms as High 
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performance computing, general purpose computers, digital multiprocessors, FPGAs, GPUs, Mixed-

signal aVLSI architecture, and VLSI architectures. There are some important aspects to be discussed, 

which are related to the portability and the maximum structural parallelism of these emulators. The first 

feature opens the possibilities to use such devices in applications as mobile robotics [23], because the 

SNN emulations on these compact devices require less power and area consumption when compared with 

HPC or general purpose computer simulations. The second aspect is related to the maximum structural 

parallelism in these architectures because the computation of the SNN models demands large parallel 

computation in order to achieve real time emulations [24]. Although, modern parallel architectures such 

as supercomputers are considered as powerful alternatives, for speeding large-scale SNN model 

simulations. They are facing several problems all of them are related to the energy consumption, area 

consumption. 

Table 1.1: Feature summary of SNN implementations on compact devices and using a single chip 

Implementatio

n 

SNN 

model 

used 

# of 

neuron

s 

# of 

synapses  

Device 

used 

Migratio

n 

Program 

Flexibilit

y 

Scalabilit

y 

SpiNNaker 

[13] 

Izhikevic

h 

Leaky 

Integrate-

and-Fire  

20000 2000000 ARM9 

processing 

NO YES YES 

Nageswaran 

[14] 

Izhikevic

h 

Range: 

50000 

to 

225000 

Range: 

100000 

to 

1000000 

NVIDIA 

GTX280 

GPU card 

NO YES NO 

Arista [15] Izhikevic

h 

7000 7000000 NVIDIA 

TESLA 

C2050 

YES YES NO 

Bluehive [20] Izhikevic

h 

64000 6400000

0 

Altera 

Startix IV 

YES NO YES 

Cassidy [19] Leaky-

integrate-

and-fire 

100000

0 

1000000 Virtex 5 

SX240T 

YES NO YES 

Vogelstein [22] Leaky-

integrate-

and-fire 

2400 1048576 3 mm x 3 

mm chip 

in -0.5 µm 

CMOS 

technolog

y 

NO YES NO 
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As it can be observed from Table 1.1, the current architectures provide a SNN emulator to be used as tool 

for understanding the biological functions carried out in the brain through the simulation of large-scale 

spiking neurons. However, these works are facing problems which are related to the performance, 

processing speed, high level of interconnectivity, support of complex neural modelling, etc. Therefore, 

the development of an efficient and configurable emulator imposes big challenges in terms of program 

flexibility, computational performance, communication structure and low power and low area 

consumption. 

The construction of an emulator that supports a large number of neurons in any device in either analog or 

digital or mixed signal, shall take into account some of the essential aspects as mentioned above. Even 

though analog circuits provide a large-scale support to emulate SNN in compact designs, while doing 

experiments to get results in a short period of time, flexibility becomes an important factor. Upgrading 

and expanding the network becomes a part of flexibility. The modern FPGAs offer exceptional 

performance and flexibility which supports large scale SNNs. Evidently, the FPGAs consumes a 

significant amount of area and there is a performance penalty in re-configurability when compared with 

the ASIC design. Thus, the idea of implementing the biological neuron’s basic features from nature in 

modern programmable digital systems becomes a very exciting and high impact research topic. 

The main focus of this work is to build a real time configurable emulator that can support large-scale 

spiking neural networks with vital features such as low-area consumption, minimum-power consumption, 

and good performance. 

1.2 Work methodology  

This work focuses on the development of a digital emulator, in particular using FPGAs, to support large 

scale SNN models. The proposed system maximizes its properties offering the following characteristics to 

emulate large SNN: 

1. Integrated large scale SNN models 

2. Multi-model support 

3. High processing speed (parameter calculation and spike distribution) 
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4. Easy upgradability 

5. Low power and area consumption     
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Figure 1.3: Flowchart of development of this PhD thesis, a) Ubichip architecture [8], b) SNAVA 

architecture. 
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The proposed methodology used to achieve an architecture that meets the criteria specified above, is 

composed of two design phases. The starting point of this thesis is the analysis of an existing 

multiprocessor called Ubichip which was developed during PERPLEXUS project [8]. The performance of 

the Izhikevich model [6], the Iglesias and Villa model [7] were measured in Ubichip and new ideas 

emerged to generate the next architecture with better benefits and features. The new architecture was 

designed and evaluated in the second phase. Apart from this, advanced bio-inspired applications were 

also implemented on it. The Figure 1.4 shows the general flowchart, which resumes the process 

development of this thesis. 

1.3 Outline of the thesis 

The thesis is divided into two parts according to the development of this project. The first part, which 

comprises of Chapter 2, Chapter 3 and Chapter 4, is dedicated to analyze the Ubichip architecture and to 

develop applications on it in order to determine the extent to which the Ubichip architecture supports in 

different SNN models. The second part consists of Chapter 5 and Chapter 6, which explains the new 

architecture called SNAVA and the advanced applications which can be developed on it. A detailed 

description of the chapters is presented in the following paragraphs: 

Chapter 2: This chapter introduces the operation of the multiprocessor called Ubichip which was 

developed in PERPLEXUS Project, and presents a detailed analysis of the performance of the Ubichip. 

As a result of this analysis, several bottlenecks were detected. Possible modifications and new ideas to 

generate advanced architecture are discussed in this chapter. 

Chapter 3: A spiking-neuron-based system that combines analog and digital multiprocessor is reported. 

A data interface to establish the communication between analog-digital neuromorphic systems is 

developed and the key factors related to the synchronization of the communication are discussed in this 

chapter. This work was a collaboration project between the University of Edinburgh and the Universitat 

Politècnica de Catalunya. 

Chapter 4: Perception environment applications using sensory information as proof of concept are 

presented in this Chapter. These applications are detection of frequency and amplitude of a signal and 

LEGION image segmentation. Experimental results are provided in this Chapter. 

Chapter 5: The new improved architecture called SNAVA is described in this chapter. Results of 

implementation of SNAVA architecture were compared with other implementation using multiprocessors, 

GPU and FPGA. The motivation is to put light on the contribution of SNAVA architecture to realistic 

SNN models support by analysis of its efficiency. 
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Chapter 6: The frequency and amplitude detection application of chapter 4 was extended and 

implemented in SNAVA. This chapter proposes SNN topology to work with a wider bandwidth. The 

experimental results are presented in this Chapter. 

Chapter 7: The conclusion of this research work and the future work are presented in this Chapter. 
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2.1 Introduction 

According to the objective of this thesis, the development of the SNN emulator which guarantees high 

performance, low power and area consumption, and flexibility for supporting different large-scale SNN 

models is required. Several aspects were discussed in Chapter 1 in order to select the appropriate digital 

compact device (Graphical Processing Units, Multiprocessor, or Field Programmable Gate Array) to be 

the development platform to create such SNN emulator which fulfils the needs mentioned above. As a 

result of the study of these digital compact devices, the FPGA was selected to be the development 

platform for the new architecture in this work. This is because the modern programmable FPGAs offer 

attractive hardware interfaces, which involves high-bandwidth memory interfaces and high speed serial 

links. These interfaces allow to build a system where the high processing and high distribution system is 

required to simulate large-scale SNN models. Also, the new architecture can take advantage of the main 

characteristic of the FPGAs, which is called configurability. This will allows the easy implementation of 

different SNN models in a short time when compared to the ASIC design. 

The Advanced Hardware Architectures (AHA) group at the Universitat Politècnica de Catalunya has been 

involved actively in Research projects in order to develop digital architectures for the emulation of bio-

inspired systems. One of the most recent projects in this area was the PERPLEXUS project [1]. This 
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project was funded by the European Commission through the 6
th

 framework programme and established 

the collaboration eight research institutions from four different countries. One of the objectives of this 

project was to develop hardware capable of implementing biologically-inspired spiking neurons. The 

AHA group was responsible for developing the neural emulation architecture called Ubichip. Besides the 

emulation of SNN the Ubichip was developed also to support dynamic routing, mechanisms of self- 

replication. These features permit to carry out numerous bio-inspired mechanisms such as learning, 

growth, and evolution by simulating complex systems. A significant increase in the area consumption is 

the price for the implementation of all the above mechanisms. Therefore, the neural emulator was 

implemented with large area overhead. The Ubichip architecture was prototyped on FPGA for testing and 

verification for later to be transferred to an ASIC chip. 

The idea of implementing the neural mechanism processing, using a parallel architecture based on Single 

Instruction, Multiple Data (SIMD) was introduced in Ubichip. It is an interesting approach which could 

be explored in order to take full advantage of all its capabilities, in order to emulate large-scale SNN 

models, which demands high parallel computation. As mentioned above, the current version of the 

Ubichip was designed under some limitations, so that it has generated architecture with poor processing 

efficiency. A great improvement of this architecture imposes a big challenge in order to create an 

emulator of spiking neurons efficiently, in addition maintaining low area and power consumption. This 

chapter is devoted to analyze how the bottlenecks of Ubichip affect its performance, from here possible 

improvements will be proposed to generate a new architecture 

A performance evaluation of the Ubichip, in terms of processing and communication, has been carried out 

through the simulation of two Spiking Neural Networks (SNN) models. The result of the evaluation 

provides insight on further improvements. The first SNN model evaluated was proposed by Iglesias and 

Villa [2], which was used as a reference model for the development of the PERPLEXUS project.  The 

second SNN model analyzed here is one of the most commonly used in the simulation of spiking neurons 

which was proposed by Izhikevich [3]. 

This Chapter gives a brief explanation of Ubichip architecture and its phases of operation in the emulation 

of an SNN model. And finally, the results of the performance evaluation of the two models are provided 

in detail along with the prominent architectural limitations affecting performance. 

2.2 Ubichip architecture description 

The configurable architecture called Ubichip was designed for supporting complex bio-inspired systems, 

the emulation of large-scale spiking neural network (SNN) being one of them. The Ubichip architecture is 

composed of array of Single Instruction, Multiple Data (SIMD) units. This type of architecture is 

classified as a parallel architecture according to the Flynn´s taxonomy [4]. There are two aspects which 
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were considered in the development of Ubichip in order to simulate Spiking Neural Networks models on 

SIMD architecture. Firstly the nature of SNN models is completely parallel which represents the best 

challenge for parallel architectures to be used as the base of SNN emulators [5], and secondly the selected 

SIMD machine presents a simple architecture which makes the machine potentially inexpensive in terms 

of area and energy consumption. Therefore, the proposed architecture intends to simulate large scale SNN 

models by expending the minimum area resources. Several modes were implemented in Ubichip for 

supporting different applications. The concerning mode to develop this work is the multiprocessor mode. 

This mode was specially developed to emulate such bio-inspired SNN models [1, 6].  

The Ubichip has three main modules, which are: Configurable array, System Manager, and the Address 

Event Representation (AER) module, as shown in Fig. 2.1. The configurable array consists of Processing 

Elements (PE), which are the basic building blocks of the system. The AER controller takes care of the 

communication between the processing elements within the chip and also between different chips. It 

consists of an encoder or control unit and a decoder or Content Address Memory (CAM) unit. The system 

manager comprises of the configuration unit, sequencer, memory controller and the CPU interface or 

Variable Latency Input Output unit (VLIO). Outside the FPGA there is an External SRAM that stores the 

synapse and neural parameters and the CPU that is used for initial configuration and access to the chip for 

response analysis. 

 

Figure 2.1: The Ubichip architecture for the multiprocessor mode, figure extracted from [1] 

The functional operation of Ubichip was designed to work in two operational phases, which are the data 

processing (phase 1) and the spike distribution (phase 2). Therefore, the emulation of SNN models could 

be executed by these two periodic phases. During the processing phase, the synapse and neural 

parameters are calculated. The spikes generated by the neurons in phase 1 are distributed by the AER 

module through the SNN network. The spike distribution is carried out by the synchronous AER protocol 

defined in [5] in order to avoid overhead connection when a large-scale SNN models are implemented. 
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2.2.1 Architecture functional details 

- Configurable array 

The configurable array is based on parallel SIMD units, which were defined in this architecture as 

Processing Elements (PEs). Each PE is a 16 bit processor. It is built with two 16-bit register banks and a 

16 bit ALU. The ALU is capable of performing arithmetic and logical operations like 2’complement 

addition and subtraction, shifting, and, or, xor, 2’complement and Negation. Multiplication is also 

possible but by software through repeated addition. The two sets of 8-register banks containing 16-bit 

registers are called the active and the shadow registers. The active register is the one the ALU operates on 

where one operand is always the register 0 also known as accumulator. The shadow register as the name 

implies serves as a temporary storage for the active registers providing space for complex algorithms. 

Data move operations are possible between the active and the shadow registers either as bulk or single. 

The structure of the PE is shown in Fig. 2.2.  

This SIMD approach allows the removal of the local program memory from PEs at the cost of forcing the 

same program to be executed by all PEs. The program is thus stored in a common single memory, while 

the data which is being processed is locally stored in the PE register bank. The data is transferred to/from 

the common external SRAM (Static Random Access Memory) when necessary. The flexibility to change 

the values of synaptic parameters, neural parameters, as well as the structure of the connectivity pattern 

can be made only by changing the program and configuration parameters stored in an SRAM. 

The selected parallelization approach consists of assigning a PE to each neuron and its associated input 

synapses. Thus, neurons are emulated in parallel, and the synapses of each neuron, serially. This approach 

exhibits a good trade-off between today´s utopia fully-parallel emulation and the serial approach. 

 

Figure 2.2: Processing Element path, figure extracted from [6] 
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- System Manager 

The system manager is composed by the sequencer, configuration unit, memory controller and 

microprocessor interface. An explanation is of function of each module is provided as follows: 

 A single sequencer, which is external to all PEs [7], is in charge of controlling the program flow. 

It performs the following tasks: 

- Fetching and decoding the instructions stored in a common memory. 

- Broadcasting the instructions to be executed by the SIMD PE array. 

- Executing the instructions which are specific for the sequencer itself.  

- Transferring the data between the external SRAM and PE array. 

- Interfacing with an AER/CAM controller [7]. 

 The configuration unit takes care of managing the configuration of the different building blocks 

of the Ubichip. It also permits to set the registers that drive the integrated debugging capabilities 

present in the device like setting the clock mode, debugging step by step, enabling and disabling 

the AER, Sequencer, resetting the array etc. Two modes of configuration are supported by the 

configuration unit: serial and parallel configuration. In serial configuration mode the Ubichip is 

configured through a serial interface driven by an external unit (CPU or CPLD). In parallel 

configuration mode the Ubichip is configured from an external CPU unit though its memory bus. 

 A memory controller is in charge for generating the signals to access to the SRAM (Static RAM) 

from the sequencer. 

 The microprocessor interface as well-known as the VLIO (Variable Latency Input-Output) 

interface is just a control state machine that synchronizes with a set of signals the external CPU 

access. The Ubichip is thus configured through the memory bus in VLIO mode consisting in a 

26-bit address bus (CPU_addr), a 32-bit data bus (CPU_data). This interface controller is 

connected to a Colibri board (external CPU), which contains an XScale processor that is 

responsible for configuring, controlling and providing input-output functions to the Ubichip. 

 

- The Address Event Representation (AER) module 

The function of the AER module is dedicated to broadcast post-synaptic spikes from any Ubichip to all 

Ubichips connected to the AER bus (see Fig. 2.1). This module works under the synchronous AER 

protocol which was defined in [7] during the development of PERPLEXUS project. Also, the AER 

module works 10 times less than the frequency operation of the multiprocessor in order to achieve the 

communication between 100 Ubichips. The AER module consists basically of three components which 

are:  

- An AER controller that reads the spikes produced by the multiprocessor array and sends them to 

the AER bus.  
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- An AER decoder, that detects the synapses connected to the AER spike and writes the 

corresponding pre-synaptic spikes into the suitable SRAM positions.  

- A CAM (Content-Addressable Memory) models the synaptic connections between neurons. 

Each CAM has tags that have the ID’s of the PE’s connected to that particular PE. Thus the 

number of associated tags is the number of synaptic connections to the neuron. 

 

2.2.1.1 AER system 

  

This section describes briefly the AER protocol implemented in AER module of Ubichip. The AER 

protocol was developed during PERPLEXUS project [1]. This AER protocol theoretically allows 100 

Ubichips to communicate through the common bus and avoids the interconnectivity overhead. Also, this 

protocol allows the synchronization in communication between the Ubichips. Fig. 2.3 shows the 

simplified view of the proposed network in PERPLEXUS project. 

 

 

Figure 2.3: Simplified view of the PERPLEXUS framework, figure extracted from [7] 

 

 

Figure 2.4: Conceptual view of the transmission through the common bus, figure extracted from [7] 

The transmission of the spikes through the common bus is carried out sequencially. The operation can be 

briefly explained as follows. Every Ubichip has an ID in order to identify the current Ubichip that is given 

access to the bus. The transmission begins when the master Ubichip (with the highest ID) sends the 

START_TX signal and its chip ID. This Ubichip sends its spikes to other Ubichips. Once, the master 



Chapter 2 Performance study of SNN model implementations on Ubichip 

 

25 

 

Ubichip has finished its transmission, the chip ID value is decremented by 1, thereby giving access to the 

next higher priority Ubichip. Similar pattern is followed for giving the access to subsequent Ubichips in 

the network. Fig. 2.4 shows the general idea in the synchronization between Ubichips (see [7], for further 

information).   

 

2.3 Performance evaluation – Iglesias and Villa model 

This section presents the performance analysis of the algorithm implementation of the complex bio-

inspired SNN algorithm proposed by Iglesias and Villa [2] in assembly code of the Ubichip in 

multiprocessor mode. The implementation has been done following a structured manner [9], using certain 

procedures so as to simplify the maintenance and updating. The low-level programming allows 

optimizing the algorithm´s execution time. The algorithm, which has been written in assembler code for 

Ubichip, is provided in Annexure C. 

2.3.1 Iglesias and Villa model description 

The SNN model proposed by Iglesias and Villa includes the modelling of the neuron as leaky integrate 

and fire neuron but they include in the modelling the synapses important mechanisms like learning based 

on the Spike-Timing-Dependent-synaptic Plasticity (STDP). They also included the noise in the 

simulation of their model and the refractoriness in the neuron. The equation 2.1 that describes the 

membrane potential Vi(t) in their model is calculated as follows: 

                  1 1i i i i jirest q rest q mem q
j

V t V B t S t V t V k t        
(2.1) 

where  1iV t   refers to the membrane potential of neuron type either excitatory or inhibitory,  rest q
V  

corresponds to the value of the resting potential for the units of class type (excitatory or inhibitory), Bi(t) 

is the background activity noise,  Si(t) is the postsynaptic unit state, 
 

 

1

e
mem q

mem q
k



 
 
 
   is the time 

constant associated to the current of leakage for the units of class type q (excitatory or inhibitory), and 

finally,  ji t  is the postsynaptic potentials. Therefore, the postsynaptic potential  ji t is a function of 

the state of the presynaptic unit Sj, of the type of the synapse (excitatory or inhibitory) P[qj,qi], and of the 

activation level of the synapse  jiA t . This is expressed by the following equation: 

   (   )    ( )     ( )          
 (2.2) 
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The real-valued variable 
jiL (t) was introduced in order to determine the activation level  jiA t  of a 

synapse. The variable 
jiL (t) is used to implement the STDP rule for  jiA t . It is important to be noted 

that the STDP rule depends on the occurrence of presynaptic spikes, the generation of postsynaptic spikes 

and the correlation between both. It integrates the timing of the pre- and postsynaptic activities and 

decays itself overtime. STDP defines how the value of 
jiL (t) at the time t is changed by the arrival of the 

presynaptic spikes, by the generation of postsynaptic spikes and the correlation existing between these 

events. That means if a neuron generates a postsynaptic spike (Si(t)), the real valued variable is going to 

be incremented. Similarly, when a presynaptic spikes arrives at the synapse (Sj(t)), the variable 
jiL (t)  

receives a decrement. The increments or decrements are reflected directly in the value of  jiA t . This 

was proposed to implement the plasticity in the synapses. The calculation of the real-valued variable 
jiL

is given by the following equation: 

   (   )      ( )                ( )    ( )    ( )    ( ) (2.3) 

As one can see, there is another dependency to the variables    ,j iM t M t  and
,qj qiact

k
 
 

.  jM t and 

 iM t  describe the “memory” of latest inter-spike, they are explained later on. 
,qj qiact

k
 
 

 is responsible 

for decaying jiL  exponentially, this is due to the decreasing of the elapsed time from the previous 

postsynaptic spike.  

 

1

e
act q

qact
k



 
 
 
 

 
 

  

 (2.4) 

The variables 
jiL are user-defined boundaries of attraction L0 < L1 < L2 < ∙∙∙ Lk-1 < Lk. The distance 

between two neighbored boundaries is always a constant i.e. 
1k kL L const   . Overstepping one of 

these boundaries induces 
jiL  to reset to the middle of its upper or lower domain, where the Lmax is 

defined as the maximum value of
jiL . The reset value of 

jiL  is calculated by the equation 2.5 

  max1
2ji

L
L t    

(2.5) 
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iM  and 
jM can be viewed as the memory of the latest inter-spike interval. iM  stays for the memory of 

the latest presynaptic spike  

          max
1 ( ) 1i i iqi syn qii

M t s t M s t M t k        
(2.6) 

iM  however, is the memory of the latest postsynaptic spike and refers to the projected neuron (2.9) in 

other words it describes the neuron that has been fired, hierarchically it is not part of the synapse. The 

following formula represents the memory of the latest presynaptic spike: when spike is generated 

(presynaptic or postsynaptic) the according memory is reset to its maximum value. On the other side, 

when no spike was emitted the memory variable just will be decayed by the synaptic plasticity time 

constant 
synk .The formula for the latest postsynaptic spike looks similar, but must be assigned to the 

characteristics of the projected neuron. 

If a neurons membrane potential crosses a certain threshold value 
 q

  from below, it generates spike, also 

called action potential, and sends it out down the axon. Shortly after the membrane value resets to its 

resting potential. 

    ( )
i i q i

s t H V t    (2.8) 

Where, H is the Heaviside function and indicates, whether a spike is generated or not. This condition is 

also conditioned to the refractoriness of the neuron. After firing a spike, the neuron enters a short moment 

of rest, the absolute refractory period prevents that the neuron fires again. Even with very strong input, it 

is impossible to excite a second spike during or immediately after a first one. The minimal distance 

between two spikes defines the absolute refractory period of the neuron. 

 

 ji jiA L   
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ji ji
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ji ji ji ji
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    2,                 max min
1 4
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if A L L A L L        (2.10) 
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The activation variable  jiA t  reflects the activity of a synapse. In the model it is distinguished between 

four different activation states for a synapse: 0,1,2,4 (N=4). In this case 0 means that there is no activity 

anymore, the synapse is dead – this characteristic is known as synaptic pruning. On the other side an 

activation level of 4 indicates the highest level of synapse activity. This has a significant impact for the 

postsynaptic neuron, because its membrane value will grow and spiking is provoked quicker. 

The activation variable  jiA t  is directly dependent on the variable
jiL . Whenever 

jiL exceeds the 

border from one of its domains to another  jiA t  is directly affected by it and jumps to one of its 

neighboured states,  kA  to  1kA   for increasing and  kA  to  1kA  for decreasing  jiA t . 

 

2.3.2 Iglesias and Villa model implementation 

The execution loop to emulate the Iglesias and Villa model is shown in Fig. 2.5. As it can be noted, after a 

short parameter initialization, the SNN algorithm is cyclically emulated by means of an infinite loop that 

executes phase 1 to emulate the neural network and stops for the AER decoder to execute the spike 

broadcasting of phase 2. In this phase, no instructions are executed, but the AER controller and AER 

decoder control units perform the required operations by means of finite state machines. When phase 2 is 

done, the sequencer resumes execution of phase 1 and this loop is made to run continuously. 

 

Figure 2.5: Execution loop for SNN emulation. Phase 1 main operations are detailed 

In phase 1, when the neuron and synapse algorithms are executed, the neuron parameters are first loaded 

and then the membrane value is calculated. Then, the input synapses of the associated neuron are 
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calculated. Finally, the neuron is updated taking into account the input synapses, background noise and 

refractory period, thereby determining whether it spikes or not. 

As mentioned earlier in the beginning of this section, the algorithm to perform the Iglesias and Villa 

model in Ubichip was programmed in assembler language. The main loop of this assembler program is 

shown in Figure 2.6. This loop consists of 8 subroutine calls which are dedicated to calculate the neural 

parameters, and a synapse loop which is dedicated to compute the synaptic parameters. The number of 

times the synaptic loop is executed is equal to the defined number of synapses. This synaptic loop also 

includes 6 additional subroutines. Every subroutine requires a certain number of clock cycles to perform a 

specific part of the algorithm. The number of clock cycles per subroutine were measured and translated 

into a mathematical equation as a function of the constants K and the variables S or N. Where variables N 

and S are defined based on the number of neurons and the number of synapses to be emulated by the 

Ubichip multiprocessor. Also, the variable N is related to the number of times the sequencer can access to 

the external SRAM for loading and storing data from the PE and vice versa. Whereas, in case of spike 

distribution the sequencer gets access to the SRAM to save the data received from the AER module. This 

can be seen clearly in Fig 2.6, the subroutines which are dedicated to load and save parameters takes into 

account the variable N. Therefore, The constants K1··K13 and variables N and S allow the calculation of 

the number of clock cycles required for the execution of each subroutine as shown in Fig. 2.6. 

 

Figure 2.6: Main program of the SNN emulation assembly code and number of cycles of each subroutine. 

 

K1 + K2xN
.MAIN

GOTO 00NEURONLOAD

GOTO 01MEMBRANEVALUE

LOOP synapses

GOTO 00SYNAPSELOAD

GOTO 02SYNAPTICWEIGHT

GOTO 03REALVALUEDVARIABLE

GOTO 04ACTIVATIONVARIABLE

GOTO 05MEMORYOFLASTPRESYNAPTICSPIKE

GOTO 99SYNAPSESAVE

ENDL

GOTO 06MEMORYOFLASTPOSTSYNAPTICSPIKE

GOTO 07SPIKEUPDATE

GOTO 08BACKGROUNDACTIVITY

GOTO 09REFRACTORYP

GOTO 99NEURONSAVE

GOTO SPIKESENABLE

STOP  ; AER/CAM UPDATE OF SPIKES

GOTO MAIN

N: Number of PEs

S: Number of synapses

K4 + K5xS + K6xNxS

K3

K7

K8 + K9xN
K10

K11 + K12xN + K13xN2
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2.3.3 Performance figures  

The encoding for each subroutine in phase 1, which is indicated in Table 2.1, takes into account the 

expressions defined in Fig. 2.6. The initial conditions (IC) (initialization of Fig. 2.5) are also considered, 

although they do not have any relevance in the calculation. The encoding of subroutines contained in the 

synapse loop is shown in Table 2.2. Adding the number of cycles of these subroutines, the Cycle per 

Synapse (CS) figure of Table 2.1 is obtained. 

Table 2.1:  Main loop subroutine encoding and execution number of clock cycles 

Symbol Subroutine Clock cycles * 

I C Initial conditions 24 + N 

N L Neuron Load 148 + 4N  

M V Membrane value 538 

C S Cycle per each synapse (1392+4N)S 

M O L P Memory of last post-

synaptic 

496 

S U  Spike Update 70 

B A Background activity 527+ N 

R P Refractory period 6 

N S Neuron save 92+4N 

S E Spike enable 8 

* The number of clock cycles depends on the number of synapses (S) and number of neurons (N). 

Table 2.2: Synapse loop routine encoding 

Symbol Subroutine Clock cycles * 

S L Synapse Load 150 + 2N 

S W Synaptic weight 70 

R V V Real value variable 472 

A V  Activation variable 100 

M O L P  Memory of last pre-synaptic spike 450 

S S Synapse Save 150 + 2N 

* The number of clock cycles depends on the number of neurons (N). 

Adding all the contributions of Table 2.1, the number of clock cycles NT that is required for the 

initialization and the phase 1 execution in one simulation cycle is obtained which is shown in equation 

(2.11). 
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SNSNNT  41392101909
 

(2.11) 

 

As it can be observed from equation 2.11, the number of clock cycles varies with respect to the number of 

neurons (N) and synapses (S). It is important to consider both synapses and neurons when evaluating 

scalability. From inspection of eq. (2.11), clearly the major contribution to the delay is given by the 

number of synapses, while the number of neurons is contributing less to the delay when compared to the 

number of synapses. As indicated before, the maximum number of neurons to be emulated in Ubichip is 

limited by the number of PEs. This is because every neuron is associated to each processor. The 

maximum number of synapses is defined in function of the size of the Content Address Memory (CAMs), 

which contains the logic mapping of the connection of the SNN network. 

In Table 2.3, the previous expression (2.11) is used to calculate execution times for different SNN 

emulation array sizes to infer scalability. The execution time depends on the system clock. Here, the 

conservative Ubichip prototype 50 MHz clock, or 20 ns period, is assumed, although the delays would be 

proportionally reduced as the clock period decreases. The distribution time (spike propagation) is also 

considered for the calculation, taking into account that in the PERPLEXUS implementation the AER bus 

is working at around 5 MHz [1]. The AER bus is working 10 times slower than the multiprocessor in 

order to ensure a successful communication between several Ubichips. 

As shown in the Table 2.3, even working with the current prototype clock, the system performance is 

very close to the real-time emulation. For the 300-synapse 10000-neuron network proposed case, using 

100 Ubichips, 78 spike/s rate is obtained for individual neurons, which is very close to the proposed target 

in the PERPLEXUS project [1]. Furthermore, the spiking phase is calculated on a worst-case, all-neuron 

spike basis, because not all neurons will be spiking at every simulation step. 

Table 2.3: Execution time of one simulation cycle for different SNN size 

 

In the following figures, the number of clock cycles required for one-step emulation of the SNN 

algorithm is analyzed. The purpose is to show the influence of every subroutine as a function of the 

number of neurons and synapses being emulated. The figures have been obtained from simulations and 

they have been verified for consistency with eq. (2.11).  

Array  #PE #Syn #Chip Processing phase (clock cycles) fCK Total phase1 Spiking phase Total phase2 TOTAL SPIKE RATE

N N S C K1 K2*N K3*S K4*N*S TOTAL (MHz) (ms)  AER (MHz) (ms) (ms) (s-1)

2x2 4 2 1 1909 40 2784 32 4765 50 0,095 8 5 0,0016 0,10 10320

2x2 4 3 1 1909 40 4176 48 6173 50 0,123 8 5 0,0016 0,13 7996

6x6 36 8 1 1909 360 11136 1152 14557 50 0,291 40 5 0,008 0,30 3343

6x6 36 12 1 1909 360 16704 1728 20701 50 0,414 40 5 0,008 0,42 2370

10x10 100 300 1 1909 1000 417600 120000 540509 50 10,810 104 5 0,0208 10,83 92

100x100 100 300 100 1909 1000 417600 120000 540509 50 10,810 10202 5 2,0404 12,85 78
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To infer scalability, the Ubichip arrays that emulate 2x2, 4x4, 6x6 and 10x10 neuron networks are 

considered in the analysis. In fact, a 6x6 array has been mapped into the FPGA of the first Ubichip 

prototype and 10x10 was the array implemented in a standard-cell ASIC in the PERPLEXUS project [1].  

In Fig. 2.7, the required number of cycles per emulation step for the four configurations is shown. In this 

case, a single synapse is considered, to show scaling with the number of neurons. As predicted by eq. 

(2.1), the total execution time increases linearly with the number of neurons. The figure displays both the 

total number of cycles (in the last column) and its distribution among the main loop subroutines. 

As it can be observed, the delay mostly depends on the synapse cycle, even for a single synapse. In Fig. 

2.8, the number of cycles for the synapse loop (CS in Fig. 2.7) distributed among the internal subroutines 

is shown, also for the neural network arrays previously indicated. It can be observed that the only 

subroutines that increase their number of cycles with the number of neurons N are SL (synapse load) and 

SS (synapse save), i.e., when the SRAM is accessed. Since they are inside the synapse loop, they will 

linearly increase with the synapse number, so they provide a major contribution to the total delay. 

 

Figure 2.7: Required number of cycles for the execution of Iglesias-Villa implementation for 4, 16, 36 

and 100 neurons with 1 synapse per neuron [10]. 

 

Figure 2.8: Required number of cycles for the execution of the synapse loop for 4, 16, 36 and 100 neurons 

with 1 synapse per neuron [10]. 
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In Fig. 2.9, the required number of cycles per emulation step is presented from the synapse number point 

of view. For the target 100 (10x10) neuron array per Ubichip, a varying of number of synapses 3, 30 and 

300 are analyzed. 

The serial emulation of synapses implies that each synapse requires a synapse emulation loop. This is 

why CS (Synapse Cycle) is dominant even for a small number of synapses and the remaining subroutines 

become irrelevant, as Fig. 2.9 indicates. In fact, for the 100-neuron 300-synapse neuron array, 99.5% of 

the cycles are dedicated to synapse cycle. 

 

Figure 2.9: Required number of cycles for the execution of Iglesias-Villa SNN for 3, 30 and 300 synapses 

on a 100 neuron array [10]. 

 

Figure 2.10: Required number of cycles for the execution of the synapse loop for 3, 30 and 300 synapses 

on a 100 neuron array [10] 
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The contribution to CS of Fig. 2.9 for each subroutine inside the synapse loop is shown in Fig. 2.10. 

Taking into account that the selected number of synapses varies exponentially, the exponential increase in 

the figure corresponds to a linear growth with the number of synapses, as expected. 

2.3.4 Architecture limitations 

The target of real-time emulation has been almost achieved with the current implementation. Simply by 

slightly increasing the current operating frequency (50 MHz) it would be totally fulfilled. Nevertheless, 

from the previous performance analyses, there are some possible modifications that would significantly 

boost the processing power of SNN algorithms based on the PERPLEXUS multiprocessor.  

This section explains the limitations that were identified after the previous analysis. The current 

architecture´s bottlenecks will be clearly shown when a large SNN is considered, as in the case of 100 

neurons and 300 synapses per neuron. Analyzing the synapse cycle operations, the main time-consuming 

tasks are memory access (LOAD and STORE instructions). This is because either neural or synaptic 

parameters are loaded and stored from the array of PEs to the external SRAM memory. Another 

bottleneck is the implementation of the exponential decays which are based on a software multiplication 

algorithm. 

Table 2.4: Clock cycles devoted to LOAD, STORE, multiplication and all other instructions for the 

execution of Iglesias and Villa algorithm (100 neurons and 300 synapses per neuron) 

 

 

Figure 2.11: Clock cycle number distribution of instructions as classified in Table 2.3 [10] 

Instructions and subroutine # # cycles/instruction  Total number of cycles 

LOAD NEURONS 6 100 600

LOAD SYNAPSES 600 100 60000

STNC NEURONS 4 100 400

STNC SYNAPSES 600 100 60000

MULT.  NEURONS 3 432 1296

MULT. SYNAPSES 600 432 259200

REMAINING INSTRUCTIONS  159013

TOTAL 540509
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The number of clock cycles required to execute the algorithm, LOAD, STORE (where STNC is a 

particular case of STORE) [6], and multiplication instructions are shown in Table 2.4. In the Remaining 

instructions row, all the other instructions that complete the algorithm are accounted. 

As it can be observed in the pie chart of Fig. 2.11, the relative execution time of these instructions is 

displayed. Approximately, one-fourth of the processing time is devoted to LOAD and STORE, i.e., to 

SRAM access, one-half of the time to product instructions and the other one fourth, to the remaining 

instructions. 

In order to speed up processing the following improvements can be considered: 

 Parallelization of LOAD and STNC instructions. 

 Hardware multiplier: Full parallel multiplier, radix-4 multiplier or parallel-serial multiplier. 

 

- Parallelization of LOAD and STORE instructions feasibility 

 

It would be feasible to parallelize the LOAD and STNC instructions only by amending the memory 

system architecture. Currently, modern FPGAs integrates thousands of block memory that are optimized 

for resource and power, so that, the possible modification could be based on the implementation of a 

distributed memory system. Every processor element could have a memory block. The data values could 

be sent from block memory to PE when the LOAD or STORE parallel instructions are executed in a 

single clock.  

- Hardware multiplier feasibility 

Regarding hardware multipliers, taking into account that the current architecture has 16-bit precision of 

the PE registers, the 16-bit multipliers mentioned above would require 1, 8, and 16 clock cycles, 

respectively. The PE area overhead is almost insignificant with respect to the implementation of the 

radix-4 and parallel-serial multiplier. But, for the full-parallel implementation, it would require further 

analysis. However, new FPGAs provide cores that generate parallel multipliers, and constant coefficient 

multipliers giving rise to a system with maximum performance and resource efficiency. 

In Table 2.5, the calculated clock cycle number for several architectural modifications is shown. The first 

column indicates the best case, with fully parallel LOAD and STNC instructions and fully-parallel 

hardware multipliers. Second column replaces the full-parallel multiplier by a radix-4 multiplier, and a 

parallel-serial multiplier in the third column. The fourth column keeps the P.S. multiplier, but assumes 

that the LOAD and STNC instructions are row-serial and column-parallel (using row cache). Finally, the 

last column shows the current implementation figures.  
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Table 2.5:  Clock cycle number calculation for modified architectures 

 

 (a)  (b) 

 (c)  (d) 

 

Figure 2.12: a) Clock cycle number distribution of instructions taking into account the proposed 

architecture improvements. a) Full parallel LOAD and STNC instructions and full-parallel multipliers; b) 

Full parallel LOAD and STNC instructions and radix-4 multiplier. c) Full parallel LOAD and STNC 

instructions and parallel-serial multiplier. d) Column-parallel row-serial LOAD and STNC instructions 

and parallel-serial multiplier [10]. 
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In Fig. 2.12, the pie charts for the proposed improvements show how the execution time could be 

redistributed from the current implementation that was depicted in Fig. 2.11. As it can be seen, great 

improvements may be achieved. In the best case (Fig. 12a), the LOAD, STNC and product instructions 

become almost neglectable, but the hardware overhead will increase by the fully-parallel array of 

multipliers. In Fig. 12b, 12c and 12d, the percent of those instructions still remain significantly reduced. 

Table 2.6 points out the number of clock cycles required for each subroutine to compute the algorithm of 

Iglesias and Villa taking into account the four cases showed in Table. 2.5. 

Table 2.6: Calculation of the clock cycle number in each subroutine for each proposed architecture 

change 

 

Symbol 

 

Subroutine 

Clock cycles 

Parallel-

parallel  

multiplier 

Clock 

cycles 

Radix-4 

multiplier 

Clock cycles 

Parallel –

serial 

multiplier 

Clock cycles 

P.S. mult.  & 

Row cache 

I C Initial 

conditions 

22 22  22  21 + n  

N L Neuron Load 158  158  158 154 + 4 n  

M V Membrane 

value 

102 109 117 117 

C S Cycle per 

each synapse 

(534  s) (548  s) (564  s)   560  4 n s   

M O L P Memory of 

last post-

synaptic 

61 68 76 76 

S U  Spike Update 70 70 70 70 

B A Background 

activity 

94 101 109 108 + n  

R P Refractory 

period 

10 10 10 10 

N S Neuron save 101 101 101 97 + 4 n  

S E Spike enable 8 8 8 8 
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Table 2.7: Performance improvement ratio for the proposed architecture changes (100 neurons and 300 

synapses) 

Type of improvement Estimated execution time of the proposed 

architecture 

Improvement 

ratio 

Full parallel LOAD and STNC instructions & Full 

parallel multiplier 

   160826 3.3 

Full parallel LOAD and STNC instructions & 

Radix-4 multiplier 

   165047 3.2 

Full parallel LOAD and STNC instructions & 

Parallel-serial 

   169871 3.1 

Parallel-serial & row cache   180761 2.9 

Current implementation    540509 1 

 

Considering LOAD and STNC parallel instructions, for any multiplier, the number of cycles follows the 

eq. (2.12) form:  

SKKNT 21   (2.12) 

 

Notice that NT does not grow anymore with the number of neurons. Of course, the expression is limited 

by the feasibility of block storage memory of all the synapse parameters in the synapse loop time. The 

values of the constants K2 and K2 are shown in the Table 2.8.  

Table 2.8: Values of the constants K1 and K2 of equation 2.12 for the full parallel LOAD and STNC 

instructions and the three types of multipliers 

Type of improvement K1 K2 

Full parallel multiplier 626 534 

Radix-4 multiplier 647 548 

Parallel-serial 671 564 

 

In case of column-parallel row-serial LOAD and STNC instructions (row cache) and parallel-serial 

multiplier, NT takes the form of eq. (2.13), where the growth depends also on the square root of the 

number of neurons. 

NSSNNT 456010661   
(2.13) 

Figure 2.11 shows the execution time for a single simulation step by considering the four improvements 

mentioned above. The maximum number of neurons and synapses per neuron is assumed to be 100 and 

300 respectively. These values were the target values of the PERPLEXUS project [1]. The number of 
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clock cycles for the emulation of Iglesias and Villa model is calculated by using the equation 2.12, from 

which the values of K1 and K2 are determined and these are tabulated in Table 2.8. Equation 2.13 

computes the number of clock cycles taken by the neural model of case (d). 

 
 

a) b) 

 
 

c) d) 

Figure 2.13: a) The execution time required to perform the Iglesias and Villa algorithm in a single step 

simulation, by taking into account the proposed architecture improvements. a) Full parallel LOAD and 

STNC instructions and full-parallel multipliers; b) Full parallel LOAD and STNC instructions and radix-4 

multiplier. c) Full parallel LOAD and STNC instructions and parallel-serial multiplier. d) Column-

parallel row-serial LOAD and STNC instructions and parallel-serial multiplier. 

From the graphs shown in Figure 2.13, the value of the single emulation cycle was found to be in the 

range of 3.2 to 3.5 ms. From the results obtained, it has to be understood that the amendments proposed 

are not adequate enough to achieve an emulation cycle value of 1ms in case of Iglesias and Villa model 

which was one of the goals of PERPLEXUS project [1]. Hence further changes are to be thought and 

implemented in Ubichip in order to support the design of this neural model.  
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2.4 Performance evaluation – Izhikevich model 

This section presents the evaluation of the Izhikevich model which has become quite popular for the 

simulation of Spiking Neural Networks [3]. This is because the SNN model exhibits various spiking 

bursting behaviours of cortical neuron. The Izhikevich model is claimed to be computationally as efficient 

as the integrate-and-fire model, and also this model require minimum hardware to emulate a large number 

of neurons [11, 12]. The algorithm, which has been written in assembler code for Ubichip, is provided in 

Annexure C. 

 

2.4.1 Izhikevich model description 

Izhikevich presented a simple spiking model (2.14), (2.15). The author has reduced many biophysically 

accurate Hodgkin–Huxley-type neuronal models to a two dimensional (2-D) system of ordinary 

differential equations of the form: 

2´ 0.04 5 140v v v u I      (2.14) 

  

 ´u a bv u 

 

(2.15) 

if 

30 ,
v c

v mV then
u u d


 

 
 

 (2.16) 

Here, v  and u  are dimensionless variables, and a, b, c, and d are dimensionless parameters, and´
d

dt
 , 

where t is the time. The variable v  represents the membrane potential of the neuron and u  represents a 

membrane recovery variable, which accounts for the activation of K
+
 ionic currents and inactivation of 

Na
+
 ionic currents, and it provides negative feedback to v . After the spike reaches its apex (+30 mV), the 

membrane voltage and the recovery variable are reset according to the (2.16). Synaptic currents or 

injected dc-currents are delivered via the variable I. 

 Parameter a describes the time scale of the recovery variable u. Smaller values result in slower 

recovery.  

 Parameter b describes the sensitivity of the recovery variable u to the sub-threshold fluctuations 

of the membrane potential v. Greater values couple v and u more strongly resulting in possible 

sub-threshold oscillations and low-threshold spiking dynamics. A typical value is b=0.2.  

 Parameter c describes the after-spike reset value of the membrane potential v caused by the fast 

high-threshold K
+
 conductances. A typical value is c = -65mV. 
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 Parameter d describes after-spike reset of the recovery variable u caused by slow high-threshold 

Na
+
 and K

+
 conductances. A typical value is d = 2. 

Depending on the values of the parameters (a, b, c, d), the model can exhibit firing patterns of all known 

types of cortical neurons [3]. 

2.4.2 Izhikevich model implementation 

The Izhikevich model implemented in this work does not include the STDP, dendrites and axon delays 

[3]. This is because the mechanism to implement the STPD and axon delay, and dendrites delay proposed 

by Izhikevich requires excessive hardware resources which makes the implementation very expensive in 

terms of communication and memory system [11, 12]. The Izhikevich model which includes the 

modelling of the STDP in the synapses is described in [13]. This model takes into account the delay in the 

axon and in the dendrites. The STDP rule is based on the Hebbian learning, which is a temporal 

correlation between the spikes of the pre and post synaptic neurons. In the case that repeated presynaptic 

spikes arrive before the neuron fires, its synapses stay in long-term potentiation (LTP), in the contrary 

case, after the neuron fires its synapses leads in long-term depression (LTD).  

The implementation of the LTP and LTD in the Izhikevich model [13] is described by the following 

equations: 

- LTP 

  ( )  (      )  (  ( )       ( ))  (2.17) 

 

- LTD 

  ( )    (      )  (  ( )          ( ))  (2.18) 

- Variable STDP 

  (2.19) 

The variable sd is in charge of doing the correlation between spikes of the pre and post synaptic neurons 

in this model [13]. The LTP and LTD mechanisms use a common parameter called STDP (equations 2.17 

and 2.18). The STDP variable is an exponential decay variable which is set to the value 0.1 when the 

postsynaptic neuron fires. The STDP variable takes into account the axon delay which correspond to the 

value of 20 ms. As can been seen in equation 2.19, the STDP (t) value takes the value of the same 

variable after 20 ms. The LTP and LTD takes into account the delay in the dendrites, which is indicated 

by     . The values of      are generated by a random function and the range of these values is defined 

between 0 ms and 5 ms. Obviously, the future spike timing information is not available when the pre-

synaptic spike Sj arrives because this process has not occurred yet. Therefore, the STDP mechanism 

STDP (t) = STDP (t + 20) 
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proposed by Izhikevich requires high bandwidth memory to store the value of synaptic variables at 

different instants of time and a high bandwidth communication to exchange the parameter STDP between 

synapses. The implementation of this complex STDP mechanism demands a lot of hardware resources, so 

that many hardware emulators do not implement it in their platforms [12, 14]. It is important to be noted 

that the role of the synaptic plasticity is linked to the biological process of learning. 

The proposed emulation of Izhikevich model is carried out by means of these seven subroutine calls and a 

synaptic loop as shown in Fig. 2.14. The synaptic loop is composed of 3 additional calls. The number of 

times the loop is executed is equal to the number of synapses. The constants K1 to K15 allow the 

calculation of the number of clock cycles required to execute each procedure. In some cases the number 

of clock cycles is calculated as a function of the number of neurons and the number of synapses. 

 

Figure 2.14: Main program of the SNN emulation assembly code 

2.4.3 Performance figures 

The value of the constants K for each subroutine is shown in Table 2.9. Table 2.10 shows the encoding of 

subroutines contained inside of the synapse loop. 

Table 2.9: Main loop subroutine encoding and execution number of clock cycles 

Symbol Subroutine Clock cycles* 

T I Thalamic Input 36 + N 

S U Spike Update 36  

M P Membrane Potential 52 + N 

S E Spike Enable  6 + N 

C S Cycle per each synapse (128 + 8N)S 

M V  Membrane Value 9840 

R V Recovery Value 1516 

N S Neuron save 6 + N 

* The number of clock cycles depends on the number of synapses (S) and number of neurons (N). 
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Table 2.10: Synapse loop routine encoding 

Symbol Subroutine Clock cycles * 

S L Synapse Load 1 + 4N 

S W Synaptic weight 111 

S S Synapse Save 16 + 4N 

* The number of clock cycles depends on the number of neurons (N). 

The equation 2.20 allows the calculation of the number of clock cycles required for the execution of 

phase 1 in one simulation step. This equation is obtained from the addition of all contributions of the 

Table 2.9: 

xNxSxSxNNT 81281011492   (2.20) 

 

Table 2.11: Execution time of one simulation cycle for different SNN size 

 

Table 2.11 shows the calculated execution times for different SNN emulation array sizes using the 

expression (2.20). The calculation considers the spike distribution time and the processing time. The 

execution time dedicated to processing phase is about 7 times longer than the phase of distribution. This 

is taking into account the proposed target in PERPLEXUS project [1] (300-synapse 10000-neuron, 100-

ubichip). The spike distribution phase was calculated assuming that all neurons will be spiking at every 

simulation step. As it was indicated in previous analysis the spike rate was very close to the proposed 

target in PERPLEXUS project [1] (average spiking rate: 100-200 spikes/second) by obtaining 65 spike/s 

rate. Therefore, the following study will be dedicated to analyze the performance of the processing phase. 

The method used to analyze the performance of the Izhikevich model has also been used for the Iglesias 

and Villa model. This method consists of two approaches to measure the number of clock cycle. First, by 

varying the size of the array (2x2, 4x4, 6x6 and 10x10) with one synapse per neuron, and second by 

varying the number of synapses (3, 30 and 300 per neuron), but keeping the number of neurons as a 

constant (100). The results show the measurement of the SNN algorithm in one-step emulation and they 

have been verified for consistency with eq. (2.20). The proposed strategy has helped us to understand how 

every subroutine call is affected either by increasing the number of neurons or synapses. 

Array  # PE # Synapse  # Chip FCK Total phase 1 Spiking phase Total phase 2 TOTAL SPIKE RATE

N N S C K1 K2*N K3*S K4*N*S (MHz) (ms)  AER (MHz) (ms) (ms) (s-1)

2x2 4 2 1 11492 40 2784 64 50 0.2876 8 5 0.0016 0.29 3458

2x2 4 3 1 11492 40 4176 96 50 0.31608 8 5 0.0016 0.32 3148

6x6 36 8 1 11492 360 11136 2304 50 0.50584 40 5 0.008 0.51 1946

6x6 36 12 1 11492 360 16704 3456 50 0.64024 40 5 0.008 0.65 1543

10x10 100 300 1 11492 1000 417600 240000 50 13.40184 104 5 0.0208 13.42 75

100x100 100 300 100 11492 1000 417600 240000 50 13.40184 10202 5 2.0404 15.44 65

              Processing phase (clock cycles)
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Figure 2.15: Required number of cycles for the execution of Izhikevich implementation for 4, 16, 36 and 

100 neurons with 1 synapse per neuron. 

 

Figure 2.16: Required number of cycles for the execution of the synapse loop for 4, 16, 36 and 100 

neurons with 1 synapse per neuron. 

Figure 2.15 shows the required number of clock cycles per emulation step for the four configurations. It is 

clear that the major number of cycles is dedicated to execute the membrane voltage. This is due to the 

number of multiplications required to calculate it. The initial proposal for the implementation of the 

multiplication was to carry out by software in order to save area in the FPGA. The cost of this 
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implementation is high in terms of processing speed because the saturated multiplication executed by 

software requires a lot of clock cycles as it can be observed in Figure 2.15 in the calculation of the 

membrane voltage (eq. 2.16). Another delay, which becomes important when the number of synapses is 

increasing, is the synapse cycle (SC). SL (synapse load) and SS (synapse save) provide the major 

contribution of the total delay as it is shown in Fig. 2.18. A better case to observe the impact produced by 

increasing the number of synapses per neurons is shown in Fig. 2.17, where the number of clock cycles 

increases linearly. In the case of 100-neurons 300-synapse neuron array it can be clearly observed that 

99.5% of the clock cycles are dedicated to synapse cycle. Fig. 2.18 shows the contribution to CS for each 

subroutine inside the synapse loop in order to detect the subroutines that are making the major 

contribution to the delay. The identified subroutines are dedicated to storing and loading synaptic 

parameters.   

 

Figure 2.17: Required number of cycles for the execution of Iglesias-Villa SNN for 3, 30 and 300 

synapses on a 100 neuron array. 
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Figure 2.18: Required number of cycles for the execution of the synapse loop for 3, 30 and 300 synapses 

on a 100 neuron array.  

2.4.4 Architecture limitations 

The previous performance analysis indicates that the memory access system and the execution of 

arithmetic operations abate the effectiveness of the SIMD architecture for the computation of the 

Izhikevich model when the number of neurons and synapses to be emulated is increased. The 

improvements that were proposed in Section 2.3.4 are also considered in order to boost the processing 

power of this model.  

Table 2.12: Clock cycles devoted to LOAD, STORE, multiplication with saturation, addition with 

saturation and all other instructions for the execution of Izhikevich algorithm (100 neurons and 300 

synapses per neuron) 
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Table 2.12 shows the number of clock cycles required to execute the LOAD, STORE (conditional store 

family), and multiplication and adder instructions. Also the remaining instructions are considered in order 

to complete the Izhikevich algorithm.  

 

Figure 2.19: Clock cycle number distribution of instructions as classified in Table 2.12 

The pie chart of the Fig. 2.19 displays the distribution of clock cycles required for the instructions and 

subroutines indicated in Table 2.12. Almost the half of the total of the clock cycles are dedicated to 

executing the memory access and arithmetic operations. These figures indicate the need for implementing 

strategies to improve the performance of the system by keeping low-area consumption, in order to 

allocate a large number of neurons in a single FPGA. 

The possible changes are shown in Table 2.13. These modifications are based on the implementation of 

three types of multipliers, saturation adders and distributed memory architecture. Therefore, fully-parallel 

hardware multiplier and fully parallel LOAD and STORE instructions would be able to carry out in a 

single clock cycle. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2.20: a) Clock cycle number distribution of instructions taking into account the proposed 

architecture improvements. a) Full parallel LOAD and STNC instructions and full-parallel multipliers; b) 

Full parallel LOAD and STNC instructions and radix-4 multiplier; c) Full parallel LOAD and STNC 

instructions and parallel-serial multiplier; d) Column-parallel row-serial LOAD and STNC instructions 

and parallel-serial multiplier. 

Figure 2.20 shows the distribution of the clock cycles for each instruction or subroutine which were 

indicated in Table 2.10  taking account the four proposed configurations. The best case (see Fig. 2.20 a)) 

represents an important improvement because LOAD, STNC, addition and product instructions are 

reduced significantly. For the remaining cases, a negligible increment in the percentage of these 

instructions is gained as it can be observed in Fig. 2.20 b), 2.20 c) and 2.20 d) respectively.    

Table 2.13: Clock cycle number calculation for modified architectures 

 

Table 2.14 shows the calculation of clock cycle number for each subroutine by considering the proposed 

improvements. Table 2.15 indicates the estimated performance improvement ratio taking into account 

these possible modifications. 
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Table 2.14: Calculation of the clock cycle number in each subroutine for each proposed architecture 

change 

 

Symbol 

 

Subroutine 

Clock cycles 

Parallel-parallel  

multiplier 

Clock 

cycles 

Radix-4 

multiplier 

Clock 

cycles 

Parallel –

serial 

multiplier 

Clock cycles 

P.S. mult.  & 

Row cache 

T I Thalamic Input 37 37  37 36 + √  

S U Spike Update 36  36  36 36 

M P Membrane Potential 53 53 53 52 + √  

S E Spike Enable  7 7 7 6 + 2 √  

C S Cycle per each synapse (136 S) (136 S) (136 S) (128 + 4 √ ) S 

M V  Membrane Value 67 88 112 112 

R V Recovery Value 46 60 76 76 

N S Neuron save 101 101 101 6 + √  

   

Table 2.15: Performance improvement ratio for the proposed architecture changes (100 neurons and 300 

synapses) 

Type of improvement Estimated execution time of the 

proposed architecture 

Improvement ratio 

Full parallel multiplier    41147 7.6 

Radix-4 multiplier    41182 7.5 

Parallel-serial    41222 7.5 

Parallel-serial & row cache   50774 6.1 

Current implementation    312972 1 

 

Considering LOAD and STNC parallel instructions, for any multiplier, and the saturated adder in 

hardware, the number of cycles follows the eq. (2.21) form:  

SKKNT 21   (2.21) 

 

Notice that NT does not grow anymore with the number of neurons. Of course, the expression is limited 

by the feasibility of block storage memory of all the synapse parameters in the synapse loop time. The 

values of the constants K2 and K2 are shown in the Table 2.16.  
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Table 2.16: Values of the constants K1 and K2 of equation 2.13 for the full parallel LOAD and STNC 

instructions and the three types of multipliers 

Type of improvement K1 K2 

Full parallel multiplier 347 136 

Radix-4 multiplier 382 136 

Parallel-serial 422 136 

 

In case of column-parallel row-serial LOAD and STNC instructions (row cache) and parallel-serial 

multiplier, NT takes the form of eq. (2.22), where the growth depends on the square root of the number of 

neurons. 

NSSNNT 41285324   
(2.22) 

 

Figure 2.21 shows the execution time for a single simulation step by considering the four improvements 

mentioned above. The maximum number of neurons and synapses per neuron is assumed to be 100 and 

300 respectively. These values were the target values of the PERPLEXUS project [1]. The number of 

clock cycles for the emulation of Izhikevich model is calculated by using the equation 2.21, from which 

the values of K1 and K2 are determined and these are tabulated in Table 2.16. Equation 2.22 computes the 

number of clock cycles taken by the neural model of case (d). The product of the number of emulation 

cycles with that of the clock cycles will provide the execution time. Hence this execution time is being 

calculated and found to be 50MHz.  

  

a) b) 
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c) d) 

Figure 2.21: a) The execution time required to perform the Izhikevich algorithm in a single step 

simulation, by taking into account the proposed architecture improvements. a) Full parallel LOAD and 

STNC instructions and full-parallel multipliers; b) Full parallel LOAD and STNC instructions and radix-4 

multiplier. c) Full parallel LOAD and STNC instructions and parallel-serial multiplier. d) Column-

parallel row-serial LOAD and STNC instructions and parallel-serial multiplier. 

From the graphs shown in Fig. 2.21 the value of the single emulation cycle was found to be in the range 

of 0.82 to 0.85 ms. According to Izhikevich, the model has to be executed for every 1ms. But this can be 

implemented only by taking into account the four changes proposed in the Ubichip architecture. 

2.5 Conclusions 

A detailed performance analysis of two SNN models with different levels of computational complexity 

has been carried out in the previous PERPLEXUS SNN multi-model architecture called Ubichip. The 

study of the performance has been evaluated in clock cycles only to give some real figures at the end it 

has been particularized for the nominal 50 MHz operation. Results show that the target objective in both 

cases (Iglesias-Villa model and Izhikevich model) has not been reached (12.85 milliseconds and 15.44 

milliseconds respectively), where the target of the project is to simulate SNN models under 1 millisecond 

step time resolution. Some improvements were analysed to increase the performance of the Ubichip. 

These improvements involve different topologies of the memory, different type of multipliers. These 

improvements try to abate the main bottlenecks in Ubichip architecture.  

Beyond the performance increase by means of frequency clock boosting, the inclusion of hardware 

multipliers in the current architecture and reduction in the RAM access bottleneck by introducing block 

RAMs and dedicated instruction memory improves the performance of Iglesias and Villa model and 

Izhikevich by a factor of 3 and 7 respectively, by considering the simulation of 100 neurons and 300 

synapses per neuron in a single Ubichip. The improvement in the processing speed of the current 
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architecture could guarantee a step time resolution of 1 ms in the emulation of Izhikevich model [3], 

taking into account the target (10000 neurons 300 synapses per neuron) which was proposed in the 

PERPLEXUS project [1]. 

In fact, given the simple architecture of the PE in the multiprocessor mode, larger PE arrays could be 

easily implemented with currently available CMOS technologies, and higher operation frequency could 

be easily achieved. Therefore, the performance would increase to 4 fold (50 MHz – 200 MHz) as the 

clock used in the modern FPGAs works at 200MHz. 
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3.1 Introduction 

This chapter presents the development of data interface in order to achieve the communication between 

analog and digital multi-processor implementations for bio-inspired processing of sensors. This 

combination allows us to create a bio-inspired multiple-input sensor processing system for applications 

that mimic the perception of the environment such as vision, hearing or other modalities. This work has 

been a part of the Neural and Self-adaptive Sensory Integration for Environment-Perception Embedded 

Systems (NESSIE2) project [1]. The main motivation behind this project is to develop a pre-processing 

integrated system of physical information in order to be connected to the Digital Multi-Processor (DMP) 

system or as well known as Ubichip, which was developed as part of the PERPLEXUS project [2]. So 

that the DMP may be able of acquiring information from the environment and perception applications 

could be implemented by using this bio-inspired system (analogue – digital systems). Figure 3.1 shows 

the bio-inspired system proposed in the NESSIE2 project. The pre-processing system consists of three 

main components which are: the sensors (internal sensors or external sensors), sensor conditioning, and 

the pre-processing system circuits. 

The information-preprocessing circuits are in charge of performing two important tasks, first task is the 

sensor conditioning and second one is the digitization of the data into a format that is compatible with the 

DMP (Digital Multi-Processor) by using the Address Event Representation (AER). Therefore, the 

challenge is to develop a parallel acquisition system i.e. a sensory unit to acquire analog data from 

multiple sensors and pre-process the raw data with an analog implementation/Analog pre-processor that 

translates the data from the sensory unit into a data which is compatible with the DMPs (Digital Multi-

Processors) for processing. 
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Figure 3.1: NESSIE2 system, drawing partially reproduced from [1] 

During the last 5 years, the University of Edinburgh was taking efforts to develop an analog spike coder-

decoder prototype [3]. This prototype is suitable to be used as an analog pre-processor in bio-inspired 

systems. This is because of two reasons. Firstly, the Analog spike coder-decoder is also a bio inspired 

design which works on the principles of SNN as the DMP. Secondly, it uses the AER communication 

protocol for spike communication and can be easily interfaced with the DMP. The AER protocol is one of 

the predominant solutions used in the latest neuromorphic systems in order to prevent interconnection 

overhead which occurs due to the reduction in the number of physical lines that are required for the 

interconnection of large neural networks [4]. The collaboration between the Institute of Micro and nano-

systems, University of Edinburgh and the Advanced Hardware Architecture Research Group, Universitat 

Politècnica de Catalunya has shortened the development time. 

The analog front-end, which was developed in the University of Edinburgh, encodes the input signal in a 

signed spike representation, which is further processed by means of a digital Spiking Neural Network 

(SNN) on a Single-Instruction Multiple-Data (SIMD) multiprocessor. The APP generates positive and 

negative spikes, but the sign is not used in this work because Ubichip was not designed to process 

negative spikes, however this information is not discarded and negative spikes are converted to positive 

spikes. The spike distribution for both the systems is based on Address-Event Representation (AER) 

scheme. AER is asynchronous for the Analog Pre-Processor (APP) [3] and synchronous for the Digital 

Multi-Processor (DMP) [5]. Therefore, the analogue pre-processor have been connected to the DMP 

through data interface which is responsible for the synchronization between two systems.  

This chapter gives an outline of this analog-digital neuromorphic system, a brief explanation about the 

APP, designed by the University of Edinburgh, and a detailed explanation about the functionality of the 

transceiver interface between the APP and the DMP designed by the Universitat Politècnica de Catalunya 
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and the metrics considered for the design. Finally, real-time results of the communication through the 

interface are provided. 

3.2 The Analogue-Digital neuromorphic system 

The system consists of 3 functional units which are the sensory unit, the transceiver unit and the Digital 

Multi Processors as shown in Fig. 3.2. As specified earlier, the sensory unit consists of the sensors and 

the Analog Pre-processor. The general idea of the proposed system is to acquire external environment 

information and process them in two steps. The signals are detected by the sensors (acoustic, infrared, or 

pressure, etc. which have analogue output). In the first step, the acquired signals are converted to spike-

timing representation by the Analog Pre-processor. This module conveys the spikes to DMPs using the 

AER bus through a transceiver that converts the spikes into a format which the DMPs can comprehend.  

 

Figure 3.2: Functional block diagram of the proposed analog-digital bio-inspired system 

The advantage of using the transceiver as an interface is that the input sensory unit can be changed and 

any other sensory unit can be replaced in the same system within a short duration of time. It is important 

to note that these replacements must work under AER protocol [4]. This allows faster prototyping. The 

transceiver plays a vital role in providing data in appropriate formats and the synchronization of data 

transactions on both sides. It is important to note that the APP and DMP were designed to support 

different applications based on Spiking Neural Networks. The APP was developed in order to process 

the input analog signal and the minimum inter-spike time/ spike transmission rate supported by the APP 

is in the order of microseconds. While the DMP was developed to emulate complex SNN models that 

resemble biological neurons and supports an inter-spike time/ spike transmission rate of several 

milliseconds. Another challenge to synchronization is that the APP works on Asynchronous AER and 
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the DMP on Synchronous AER. These are the most important factors to be focused in order to achieve 

the synchronization between the APP and the DMP. In the second step, the data translated by the 

transceiver is analyzed and processed by the DMPs. 

3.3 The Analogue Pre-Processor (APP) 

The purpose of this section is to give a general description of the APP in order to give a better 

understanding of the system. This work has been developed by Dr. Luiz Gouveia as part of his PhD thesis 

in University of Edinburgh [3]. The APP consists of Configurable Analog Blocks (CABs). These CABs 

are programmed to perform analog computation and signal processing functions as is shown in Fig. 3.3. 

 

Figure 3.3: Architecture diagram. The array of Configurable Analogue Blocks (CABs) is connected using 

an asynchronous digital channel, this figure was extracted from [3] 

The analog signals are encoded as spikes timed events and are transmitted between CABs via 

asynchronous AER bus. The coding and decoding process is implemented by spiking coders and decoders 

respectively, as shown in Fig. 3.4. In the coder, the error signal e(t) is the difference between the analog 

input x(t) and the reconstructed feedback signal z(t). The comparators in the feed-forward loop compare 

the error signal e(t) against their respective threshold values and their outputs form the input to a spike 

generator block. The spike generator block generates a positive spike if the comparator output state C1(t) 

goes high and a negative spike if the comparator output C2(t) is high. The spike events generated by the 

spike event block are outputted using an asynchronous AER interface. In the feedback loop, which is 

implemented inside of the coder, the spikes are integrated by the integrator block to form the 

reconstructed signal z(t). The spike to analog decoder is essentially the feedback path of the spike 

encoder. At the decoder, a low pass filter is added to the integrator output to improve the resolution of the 

reconstructed signal. 



Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems 

 

59 

   

 

Figure 3.4:  Event coding block diagram, this figure was extracted from [3] 

3.3.1 AER channel 

In the analog pre-processor architecture, an array of spike encoders shares a common digital AER bus 

through an AER interface. When a spike event is generated by one of the encoder blocks, the AER 

interface broadcasts asynchronously the digital address of that encoder. Each spike event is therefore 

identified by the digital address representing the address of the encoder. Usually, in neuromorphic 

systems, events are represented by two states, i.e. the presence or absence of a spike. In the encoder 

implementation, the analog signal is represented in the spike domain by three states: a positive spike, a 

negative spike and an absence of a spike. This extra information on the sign of the spike event is provided 

by appending an additional MSB bit in the digital address code, where a positive spike is represented by a 

1 at the MSB location and a negative spike is represented by 0. For example, when an encoder with a 

digital address 00 generates a positive spike, the output at the AER bus will be represented by the digital 

code 100. 

3.4 Transceiver functional description 

In Subsections 2.2 and 3.3 the basic features of the DMP (Ubichip) and the APP were presented 

respectively. Thus, this section describes the transceiver design to synchronize the communication 

between DMP and APP using the AER protocol in two different operation modes, synchronous and 

asynchronous respectively. Synchronous AER is used to distribute spikes but not only inside of each 

DMP, but also the spikes are broadcasted to external chips through the synchronous AER bus; this feature 

allows processing external inputs that support the synchronous AER protocol. In order to develop an 

autonomous system (DMP) capable to interact with outer world, the analogue preprocessing circuit is 

used to provide such inputs in appropriate data form to DMP through the asynchronous AER.  The AER 
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transceiver is the key element that synchronizes the communication between both processors (see Fig. 

3.5). 

 

Figure 3.5: Functional block diagram of the analog-digital bio-inspired system 

The analog-digital bio-inspired system processes the sensor information through four domains, providing 

the analysis of characteristics of the signal. The sensor information in the analog domain is acquired by 

the Analog-Preprocessor, which processes the information in the analog spike domain and converts it into 

Asynchronous-digital spikes. These spikes are read by the transceiver that converts it into the 

Synchronous digital spikes. Then these spikes are forwarded to the DMP. But this depends on, if the 

DMP is in its processing phase or execution phase. If it’s in the processing phase then the spikes are 

stored in the transceiver, if not then the spikes are forwarded to the DMP (see section 2.2.1). The 

transceiver acts as a master that controls spikes to be transmitted to the DMP by using the synchronous 

AER protocol. According to the AER protocol defined and implemented in the DMP [5], the connection 

between several DMPs through a common AER bus forms the DMP network. In an only-DMP network, 

the distribution of the spikes is started by the master DMP. For this particular case, it has been decided 

that the configuration of the AER transceiver module performs as the AER Master; therefore, other DMPs 

that are connected to the synchronous AER perform as slaves (for further details see Section 2.2.1.1 in 

Chapter 2). 

From the interfacing point of view, the transceiver does two functions. Firstly, it adapts to the AER 

protocols in each side. In the current implementation, the APP has a 3-bit asynchronous AER protocol 
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and the DMP an 8-bit synchronous one. Secondly, it buffers the data to be sent to the DMP, when it is not 

ready to accept spikes (in phase 1) by means of FIFO (First-In First-Out) stacks.  

 

Figure 3.6: Functional blocks of the AER transceiver 

 

In Fig. 3.6, the AER transceiver is shown. It consists of the following elements: 

- Control Unit that is responsible for generating internal and external signals to control the DMP 

and the APP.  

 

- Input logic was designed to detect the asynchronous events generated by the APP coder. A 

simple method to avoid meta-stability on the bus has been implemented to guarantee fidelity of 

the information. This method consists on registering the data during at least two clock cycles and 

validates the same when stable. 

 

- Output logic generates the acknowledge signal to indicate to APP that the current sample has 

been successfully stored, and the next sample is ready to be received. 

  

- Addr2DMP converts the AER bus width from 3 bits (FIFO) to 8 bits (DMP) to make it 

compatible.  

 

- Addr2APP converts the AER bus width from 8 bits (DMP) to 3 bits (APP) to make it 

compatible. 

 

- FIFO buffers the AER input address_in in order to sample each spike generated by APP, due to 

the DMP is capable of reading spikes only when it is in its distribution phase. For this reason the 

spikes must be stored during the processing phase.  
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3.5 Metrics considerations in the design of the data 

interface 

One of the most important parameter to be analyzed in this work is the spike transmission rate. It is the 

key to allow synchronizing between the APP and the DMP, so that the spikes are properly processed by 

the whole bio-inspired system. Since spikes generated by analog coders are read by the DMP only during 

phase 2 (see Section 2.2.1), spikes cannot be accepted by the DMP when it is in phase 1. During the 

processing time neural parameters and synaptic parameters are calculated. Considering the Iglesias & Villa 

model [6] the processing time PT required by the DMP to execute phase 1 is 

where: NTP is the number of clock cycles needed to execute the algorithm, which depends on the number 

of neurons and number of synapses per neuron (see section 2.3.2), and TCLK is the DMP clock period (20ns 

in the DMP prototype). NTP is formulated by: 

1909 10 1392 4TPN N S N S           (3.2) 

where: N is the number of neurons and S represents the number of synapses per neuron emulated by the 

DMP. 

Since the main delay is produced by the DMP in phase 1, it is necessary to calculate the minimum time 

between two successive output spikes, or thus, maximum inter-spike frequency fspike(max) produced by the 

APP spike generator [3] for a sinusoidal input signal:  
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where: fin(max) is the maximum input frequency, the amplitude is represented by A and   defines the 

tracking step of the input magnitude for maximum input signal in range:  

where:
 
NB is the desired resolution in bits.  

As observed in (3.3), the maximum inter-spike frequency, or thus, the minimum inter spike time is a 

function of the input signal frequency. Therefore, the maximum input frequency fin(max) is obtained by 

assuming that the minimum inter-spike period is limited by the data processing delay (phase 1). In order 
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to calculate the fin(max), the following values were taken: N = 30, S = 30, A = 1 V, and 8-bit resolution. 

The maximum spike frequency is 

by replacing fspike(max) in (3.3), the corresponding input signal frequency becomes fin(max) ≈ 1.3 Hz.  

In order to cope with higher input frequency, a bio-inspired spatial encoding is proposed. This mechanism 

consists in performing an input spike time-to-space translation. i.e., for a given time slot, each one of the 

spikes that would otherwise be lost, is mapped to a different input neuron of the DMP. Thus many input 

neurons in a specific time will be devoted to process the output spikes of an individual APP coder as is 

shown in Fig. 3.7.  

 

Figure 3.7: Time-to-space translation diagram 

Taking into account the new conditions, the maximum spike frequency is determined by: 
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where: Ni is the number of neurons in charge of detecting the input spikes of a single analog coder. In the 

current implementation of the application example, Ni = 24, so the maximum input frequency is increased 

by this number: fin(max) ≈ 32 Hz. Larger number of neurons and higher clock frequency will allow higher 

frequency processing in the next implementations. 
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3.6 Results 

This section presents a simple communication sequence between the transceiver and a single DMP. Both 

are using the AER protocol [5] as shown in Fig. 3.8. The beginning of the transmission process is carried 

out by the Transceiver (master) by detecting the STOP signal, which is controlled by the DMP. This 

signal indicates the end of the DMP processing phase and thus the beginning of the spike distribution 

phase. The process starts with the transmission of the spikes from the analogue circuit to the DMP. This is 

indicated by the word FE in hexadecimal. After that, the master sends its Chip ID, in this case it is 2. 

Then, the spike transmission starts. The spikes are encoded by the transceiver to be properly addressed to 

the desired DMP neuron. As it can be observed from Fig. 3.8, four spikes were encoded by the analogue 

circuit. Every CAB consists of 4 coders which generates four different addresses. These four spikes 

correspond to the address of the analog coders of the Configurable Analog Block (CAB). After that, the 

FB code indicates that all spikes of chip ID 2 were sent to the DMP. The FF code indicates the beginning 

of the following frame, therefore, the DMP send its Chip ID. In this case it is 1. It is important to note that 

the network can be configured to connect several DMPs through the AER common bus. As it can be 

observed from Fig. 3.8, three spikes were generated by the DMP and they are sent to the transceiver, 

which, in turn, processes and propagates them to the analogue board, where they are decoded. Once all 

the spikes have been sent, the FB word is sent by the DMP to indicate the end of frame. Finally, the FF 

word indicates the last frame. When the master sends FD, it indicates START_PROCESSING which 

means that the spike transmission phase is over and the DMP will resume the data processing phase. After 

that, the FC code sent by the master indicates that all DMPs operate in the data processing phase. 

The following list describes the function of each signal shown in Figure 3.8. 

- Stop:  this signal is generated by the DMP internal sequencer and it indicates that the DMP is in 

phase 2 (spike broadcast mode) and thus the AER communication is ready to be executed. 

 

- Syn_address: It is a common bus that transmits the spike address between several DMPs based 

on the synchronous AER protocol. In this work, the transceiver first sends the spikes generated 

by the analog encoders to the DMP and later, the DMP transmits its spikes to the transceiver.  

 

- Asy_address_out: The spikes generated by the DMP are received by the transceiver, which sends 

them by means of these lines to the analog decoders. 
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- ChipReqin: This signal is generated by the transceiver to indicate that the Asy_address_out is 

ready to be read by the decoders inside the analogue circuit. According to Fig. 3.8, three spikes 

generated by the DMP and processed by the transceiver are ready to be decoded by the analogue 

board.  

 

Figure 3.8: Spike transmission process between the Analog chip, the transceiver and the DMP. 

3.7 Conclusions 

The architecture and proof-of-concept implementation of an analog-digital spiking-neuron-based system 

capable of processing multiple-input sensor information is presented in this work. For successful 

communication between analog and digital processors, a transceiver has been developed and the 

maximum input frequency has been calculated. A spatial encoding has been proposed to increase this 

frequency limit, with a direct trade-off between frequency and DMP input layer neurons. The maximum 

frequency of the input signal that can be processed by the current Ubichip was increased from 1.2Hz to 

~32Hz by applying the proposed encoding. The challenge in synchronization such as the different modes 

of AER operation (Asynchronous in APP and Synchronous in DMP) has been discussed. A successful 

communication through the interface between the APP and DMP has been verified experimentally. 
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The synergy between UPC and UoE has been very successful with fruitful research collaboration.  A 

simple prototype of Analog-Digital neuromorphic system has been implemented and experimental results 

have been obtained. 
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4.1 Introduction 

The upcoming engineering systems are inspired by the neural processing performed in the brain. This 

processing enables faster perceptual decisions based on the evolution of incoming sensory information 

from the environment.  The term “perception” defines a characteristic of the biological organisms, which 

interacts with the environment. This term involves cognitive, sensorial and controllable processes, which 

are related to vision, hearing or other modalities [1]. The continued development in the field of embedded 

systems (for supporting information processing of the environment) which is inspired by the biological 

process carried out in the brain through its neurons, has allowed carrying out these types of applications 

related to perception such as speech recognition [2], vision [3], olfactory pathway [4], textual and image 

content recognition [5], and robotic control [6] in compact devices either in analogue or in digital domain. 

These systems involve the implementation of large interconnected neurons, and mechanisms of learning 

and evolution. One way to support such enormous amount of neurons and these types of mechanisms was 

proposed in the PERPLEXUS project [7]. In order to demonstrate the capabilities of Ubichip to process 

the sensory information, a bio-inspired engineering application was proposed in this work. This 

application was developed in order to detect the frequency of an input signal from low-frequency sensors 

such as olfactive or auditory. A point to be noted here is that the application mentioned above was carried 

out using the bio-inspired sensory system (see Chapter 3). As indicated before, the system has been 

developed in collaboration with the University of Edinburgh. Some modifications were done in the mixed 

signal bio-inspired system according to our needs. The original system is composed of three elements, 

which are: the Analogue Pre-Processor (APP), the transceiver and the Digital Multi-Processor (DMP). 

The analogue coders of the APP [8] were replaced by digital spike coders (for further details see 

Annexure E), which generate spikes under the same principle of operation as the analogue coders (see 

Chapter 3), except that the sign is not detected. This digital implementation was done because the 

analogue coder prototype is located at University of Edinburgh and the majority of our experiments were 



Chapter 4 Application on Ubichip 

 

68 

 

done at Universitat Politècnica de Catalunya. The system that is used to carry out this application has 

been developed in digital domain. The details of the digital bio-inspired system are provided in the next 

section. 

 

4.2 Frequency level detection system 

This section presents an engineering application which is based on the detection of frequency of a 

sinusoidal signal by using a digital bio-inspired system. The digital bio-inspired system, which is 

proposed in this work, is composed of two modules which are: the digital spike coder module and the 

Digital Multi-Processor, as shown in Fig. 4.1. In this application, a sinusoidal input signal was created 

artificially, by recording the values of a sinusoidal waveform in a ROM memory. The sinusoid module 

can be replaced by an external signal by adding a sensor at the input. The analogue output of the sensor 

can be converted to digital in order to be processed by the spike coder using an Analogue Digital 

Converter (ADC) module. Therefore, the Sinusoid module replaces the real input sensory information 

provided by the ADC module in this application. The digital spike coder module integrates modules like 

the sinusoid, the spike coder, and the time to space converter. The communication between the digital 

spike coder module and the Digital Multiprocessor is carried out by the synchronous Address Event 

Representation (AER) bus. 

 

Figure 4.1: Functional block diagram of the digital bio-inspired prototyping and debugging system 

for the frequency detection application 
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The functionality of the new bio-inspired system is as follows: the sinusoidal module (see Fig. 4.1) 

generates the sinusoidal wave (see Fig. 4.2a), which is the sampled version of unit amplitude, unit 

frequency sine wave and it has been stored as look up tables. The data is fetched and manipulated from 

this lookup table with respect to the amplitude and frequency and it is the input to the spike coder. The 

spike coder is responsible of producing spikes using the time step differentiation. The principle of 

operation of the digital coders is the same as that of the analogue coders. A spike is generated if the 

present sample value is greater than the previous sample value by a predetermined threshold value. It is 

important to be noted that the analogue coder generates positive and negative spikes. The negative spikes 

are converted to positive spikes in this application. This is because the DMP was designed to process only 

positive spikes. The spikes generated by the spike coder are sent to the time to space converter module 

which is responsible for assigning every spike (which is produced by the spike coder) to a specific neuron 

(see Fig. 3.7 in Chapter 3). The First Input First Output (FIFO) stores the address of the neuron which has 

been assigned with a spike by the time to space converter module. The values stored in the FIFO are sent 

to the Digital Multiprocessor, only when the Multiprocessor is in the spike distribution phase. The DMP 

executes the spiking neural network algorithm, which performs a frequency classification. The details of 

the frequency classifier will be provided in the section 4.2.2. 

 

Figure 4.2: a) sinusoidal input signal; b) corresponding spike train calculated by the digital encoder 

4.2.1 SNN model 

The spiking neural model used in this application is proposed by Iglesias and Villa [9], which was already 

described in Chapter 2. The assembler code of this algorithm is provided in Annexure C. 
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4.2.1.1 Parameter values 

The spiking neural network is initialized with the values presented in Table 4.1. Some of these values 

were modified from the original bio-inspired model [9]. Two of them are the threshold voltage and the 

post-synaptic potential (excitatory or inhibitory) of the synapses. The reason behind the modification of 

these two values in this application is due to the proposed topology and network size to detect the 

frequency level. As it can be seen from Fig. 4.3, the proposed topology consists of two layers. The input 

layer is in charge of processing the spikes, which are generated by the digital coders and the second layer 

is responsible of indicating the level of the input signal. The details of this SNN topology are provided in 

the next section. In this application, the neurons of the first layer must fire after receiving the pre-synaptic 

spikes in order to produce the excitation or inhibition in the second layer (output layer). This way allows 

detecting the frequency level by sending these spikes to the second layer in few milliseconds. One way to 

achieve this was to reduce the threshold Ɵi so that the membrane potentials of the input layer cross the 

threshold with few excitations of its excitatory synapses P1. The threshold Ɵo of the second layer was 

modified in order to have a dynamic range of 50mV between the membrane resting potential and the 

threshold Ɵo. It is worth to mention that the Ubichip architecture support of individual neuron parameters 

allows for these settings. 

Table 4.1: Parameter list of the main variables used for leaky integrate-and-fire neurons 

Variable 
Original 

values 

Modified 

values 

Hexadecimal 

representation 

for the modified 

values 

Short description 

P1 0.84 mV 2 mV 00C8 Excitatory Post synaptic potential   

P2 -1.40 mV -8 mV FCE0 Inhibitory Post synaptic potential   

Vrest -78 mV -300 mV E188 Membrane resting potential  

 Ɵi  -40 mV -299 mV E1BA Membrane threshold potential of input 

layer neurons 

 Ɵo  -40 mV -250 mV 9E58 Membrane threshold potential of the 

output layer neurons  

trefract 3 ms 3 ms 0003 Absolute refractory period 
 

mem   15 ms 500 ms FFAE Membrane time constant  

 

The membrane resting potential was also changed with respect to the original SNN model. The 

architecture of Ubichip suffers from some deficiencies. One of the deficiencies is linked to the absence of 

native saturated operations such as multiplication, addition and subtraction. In order to avoid the overflow 

in the arithmetic operations, the dynamic range of the membrane voltage was increased. Also, the 

multiplier affects the calculation of the membrane decay due to reduced precision in the calculation of 

this variable. Therefore, the membrane time constant was increased in order to ensure that there is a 

proper decay in the membrane value. It is important to indicate that the problem of saturation and 

precision can be solved by software, however the number of clock cycles required to implement these 
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mechanisms are: 6420 clock cycles for every saturated multiplication and 950 clock cycles per each 

saturated addition (see Table 2.3 in Chapter 2). If these mechanisms are implemented it will generate an 

important delay. 

4.2.2 Frequency classifier 

This section presents a general network topology for the frequency classifier. The spiking neural network 

is divided into several blocks; each one represents a frequency level estimator. One block is composed of 

four input neurons and one output neuron. In the case of reducing the number of input neurons the 

resolution of the frequency levels by the output layer increase, as it will be demonstrated in the next 

section. In other words, a range of frequencies can be detected by means of the SNN network by the firing 

of a particular output neuron. The range of frequencies a particular output neuron indicates depends on 

the number of neurons that can be supported in the FPGA and the distribution of the input layer per each 

block. In the initial experiments, it has been decided arbitrarily that the output neuron is connected to the 

four input neurons through the excitatory synapses and to four input neurons of the upper block through 

inhibitory synapses, as shown in Fig. 4.3. The reason to select four input neurons is to provide better 

stability to the output level. 

 

Figure 4.3: Proposed network topology 

Frequency level is determined by the excitatory potential of the output neurons. And the firing of several 

output neurons at once is prevented by the inhibitory connection from the input neurons of a higher block. 

Consider the case that 5 spikes were generated by the spike coder in such a way that the first 5 neurons 

receive one spike each. In other words, if there is an input up to the 5
th

 neuron (see Fig. 4.3), then 

according to the spatial distribution, the spikes would be distributed from N1 to N5. In the absence of 

inhibitory connection of the synapses it leads to the generation spikes in both O1 and O2. But when there 

is an inhibitory connection from the input neuron of the block 2 to the output neuron of block 1, as shown 

in Fig. 4.3, only O2 would fire indicating that the amplitude of the input has reached level 2. This is 
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mainly due to the presence of these inhibitory connections which will prevent the output neurons from 

crossing the threshold voltage immediately. In other words, the potential provided by inhibitory 

connections will be more negative than the excitatory connections. From Table 4.1 it is evident that the 

potential provided by the inhibitory connections is 4 times more than the potential provided by the 

excitatory connections. 

4.2.3 Experimental results 

This section shows the experimental results in the implementation of the frequency detection of a 

sinusoidal input signal in Ubichip. The Ubichip prototype implemented in a FPGA can support 36 

neurons and 30 synapses per neuron. In our first experiments, the number of neurons and synapses were 

distributed according to the requirements of this experiment. The maximum number of neurons used in 

this experiment is 30 and 30 synapses per neuron. In other words a full connected network was created. 

All calculations carried out in this experiment were done by considering these values. Once achieving the 

detection of the frequency by the SNN, the numbers of synapses were fixed to 8 and the remaining 

synapses were disabled by software. 

The amplitude of the signal is fixed to 1 V. It is important to notice that the amplitude needs to be fixed to 

properly detect frequency. The range of frequencies that are used to test the bio-inspired system is 

selected from 1 Hz to 32 Hz. This is because the maximum frequency of the input signal in the available 

Ubichip FPGA implementation is 32 Hz. Several aspects were discussed in Chapter 3 in order to increase 

the frequency of the input signal which can be processed by the Ubichip (see Section 3.5 for further 

details). The experiments carried out in this work consist of generating artificially a sinusoidal waveform. 

The values of this sinusoidal waveform are stored in the FPGA LUTs (lookup tables), by means of Direct 

Digital Synthesis (DDS) while the  frequency value of the signal is set by the user through the circuit 

input, as shown in Fig. 4.4.  

 

Figure.4.4: Phases of operation of Ubichip and generation of spikes by the digital 
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The frequency classifier requires 30 neurons to perform the detection of 6 levels of frequency. These 30 

neurons are distributed into two feed-forward layers in order implement the frequency classifier according 

to the mapping proposed in the Fig. 4.3. The 24-neuron input layer maps in space the input spike 

frequency and the second layer consists of 6 neurons that indicate the frequency level by means of 

excitation and inhibition from the previous layer. The number of neurons in the input layer is calculated 

taking the equation 4.3, since the main delay is produced by the DMP in processing phase. This is 

because the DMP cannot process spikes during this phase, only in the distribution phase, and the 

generated spikes need to be mapped in space (see Fig. 3.7 in Chapter 3). The expression 4.3, allows 

calculating the number of input neurons Ni based on the number of spikes which are generated by the 

spike coder during the processing time of the Ubichip. Let us assume that every spike is produced every 

Tspike(max), in the worst case. 

It is necessary to calculate the minimum time between two successive output spikes, or thus, maximum 

inter-spike frequency fspike(max) produced by the APP spike generator [8] for a sinusoidal input signal, in 

order to ensure that the allocation of the spikes reaches up to 24 neurons in the input layer 

 
     (   ) 

       (   )
 

 
(4.4) 

Where, fin(max) is the maximum input frequency,  and   defines the tracking step of the input magnitude 

for maximum input signal in range, and the calculation of  is given by expression (4.4):  

. 

Where: 
 
A is the amplitude is represented, and NB is the desired resolution in bits.  

The maximum input frequency fin(max) to be processed by the SNN network classifier is 32Hz according to 

the maximum frequency fin(max) calculated in Chapter 3. The fspike(max) is calculated taking into account the 

following values: N = 30, S = 30, A = 1 V, and 8-bit resolution. By replacing these values in equation 4.5 

and 4.4, the fspike(max) is 25635.51 Hz or Tspike(max) = 39 µs.  
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As indicated before, the digital spike coder works under the same principle of operation of the analogue 

coders. Thus, the time between the spikes, which are generated by the digital spike coder, for the worst 

case is 39 µs, and the processing phase in the Ubichip lasts for 930 µs. This is graphically shown in Fig. 

4.5. The calculation of the processing phase PT was done in Chapter 3 (for further information see Section 

3.5). The calculation of the maximum number of neurons of the input layer is calculated by equation 

(4.3). As it can be observed from Fig. 4.5, the time of the distribution phase is shown. This spike 

distribution time TD is obtained by considering the worst case where all neurons fire every emulation 

cycle, in this case ND = 30. This value is calculated by using the expression (4.6) 

Where: ND is the number of neurons that fire every simulation cycle and it is assumed that the AER 

module works at 5 MHz. The worst case is TD = 6 μs, much lower than the processing phase time. 

 

Figure.4.5: Phases of operation of Ubichip and generation of spikes by the digital coder. 
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The number of neurons of the input layer for different frequencies was calculated following the same 

procedure as discussed above. Table 4.2 summarizes the calculation of the number of neurons in the input 

layer for the frequencies in the range of 1 Hz to 32 Hz. 

 Table 4.2: Number of excited neurons of input layer for several frequencies (1-32 Hz)  

Frequency (Hz) Ni Frequency (Hz) Ni Frequency (Hz) Ni Frequency (Hz) Ni 

32 24 24 17 16 11 8 5 

31 23 23 16 15 10 7 4 

30 22 22 15 14 9 6 4 

29 21 21 14 13 8 5 3 

28 20 20 14 12 8 4  2 

27 19 19 13 11 7 3  2 

26 18 18 12 10 6 2  1 

25 17 17 11 9 5 1  1 

The frequency level is indicated by the corresponding output neuron (O1 to O6) which fires as it can be 

observed in Fig. 4.6. Hence six levels of frequencies can be distinguished because the numbers of block 

(n) is set to 6 (see Fig. 4.3). Taking the data from Table 4.2, in specific, the number of neurons of layer 1 

required for each the selected frequency. The calculation of the level will be indicated by the neurons (O1 

to O6). Every level is composed of 4 input neurons and one output neuron. Therefore, the N i obtained in 

Table 4.2 is divided into 4, the criteria to define the number of output level, based on the result of the 

division, was to rounded values greater that 0.5 to the top value. The Table 4.3 shows the neurons (O1 to 

O6) which indicate the level of the frequency of the input signal.  

Table 4.3: Output neural layer for several frequencies (1-32Hz)  

Frequency (Hz) On Frequency (Hz) On Frequency (Hz) On Frequency (Hz) On 

32 6 24 4 16 3 8 1 

31 6 23 4 15 3 7 1 

30 6 22 4 14 3 6 1 

29 5 21 4 13 2 5 1 

28 5 20 4 12 2 4 1 

27 5 19 4 11 2 3 1 

26 5 18 3 10 2 2 0 

25 5 17 3 9 2 1 0 

In this experiment, the frequency of the input signal was modified by the user while the Ubichip was 

executing its two phases of operation. The main objective of the following experiment is to see how 

Ubichip can process the signals varying on the time. The test lasted for 800 ms, and the value of the 

frequency was changed by four times. Table 4.4 shows the values of each selected frequency to test the 

system.  

An experimental spike raster plot can be observed in Fig. 4.6. The input signal was maintained at the 

same value for four different changes. These times are indicated by the labels T1, T2, T3, and T4 on Figure 
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4.6 in order to validate the level of the frequency for each input frequency indicated by their 

corresponding output neuron (O1 to O6). The input frequency is at its maximum (32 Hz) at the beginning 

of the emulation during the time defined by T1, which is around 280 ms. The output neuron O6 level 

indicates 6 for this first frequency. The first change was done to set the frequency of the input signal at 24 

Hz. During the time T2, which lasts for 100 ms, the frequency classifier indicated that the level of this 

frequency is 5 by firing the output neuron O5.  The frequency of the input decreases to 11 Hz. Hence, the 

corresponding level of output neuron was 2 since the output neuron O2 fired during the time T3, which 

lasted for 180ms. Finally, the frequency of the input signal was decreased to 5 Hz. The sinusoidal input 

signal was fed to the amplitude classifier during the time T4, which lasted for 180 ms. Neuron which fired 

to indicate this level of the frequency was O1.   

Table 4.4: Frequencies to test the system 

 

 

 

 

 

 

Figure.4.6: Raster plot of neuron spikes [10]. 

Frequency Value 

F1 32 Hz 

F2 24 Hz 

F3 11 Hz 

F4 5 Hz 
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In Fig. 4.7, it can be observed how the membrane voltage of the output neurons was inhibited by their 

upper blocks. As the frequency was decremented over the time, the membrane voltage of the lower blocks 

started to increase their membrane potential.  

 

Figure 4.7: Membrane potential of the output layer; the dashed line represents the potential threshold (-

290 mV) [10]. 

Table 4.5: Output levels theoretically estimated and experimentally obtained by applying four different 

frequencies 

 

As it can be observed from Table 4.5, there is one value which deviates from the estimated value. This 

input frequency signal corresponds to the frequency of 24 Hz. As, it can see from the Table 4.3, the value 

of 24 Hz is in the border between the level 4 or 5. The ambiguity in determining the several frequencies 

by one output neuron per each block could be reduced by decreasing the number of input neurons per 

each block. This depends mainly in the number of neurons which can be allocated in a single FPGA and 

its distribution per each layer. As it can be observed from Table 4.3, a single neuron output can detect up 

to 6 Hz bandwidth. 

Frequency Value Theoretical Value 

Noutput(1-6) 

Experimental Value 

Noutput(1-6) 

F1 32 Hz 6 6 

F2 24 Hz 4 5 

F3 11 Hz 2 2 

F4 5 Hz 1 1 
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4.3 Conclusions 

In this work an application based on the sensory information process performed by Ubichip is presented. 

As a proof-of-concept, the frequency detection application has been experimentally demonstrated. 

The maximum input frequency is limited by the processing time of the Ubichip. This was studied in 

Chapter 3. A spatial encoding has been proposed to increase this frequency limit, with a direct trade-off 

between the frequency and DMP of input layer neurons. In its present form, the system could be applied 

to embedded neuromorphic systems using olfactory sensors that have typical operating frequencies under 

10Hz [4]. In the ongoing work, the system is being adapted to support audio signal processing. 
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Etymology 

The word ‘snava’ is derived from the Sanskrit root which refers to a“neuron”. This word has equivalent 

translations, for instance: ‘nervus’ is in Latin, ‘neuron’ in Greek. From these roots the word “Neuron”has 

been created in English. As per the Sanskrit-English Dictionary by Monier-Williams, Ernst Leumann and 

Carl Cappeller “snava” refers to a tendon/sinew/muscle/nerve. 
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5.1 Introduction 

The goal of SNAVA is to implement a reconfigurable and scalable digital architecture which can be a 

platform to emulate Spiking Neural Network (SNN) models that involve bio-inspired mechanisms. This 

provides an opportunity to explore the neural dynamics involved in the SNN modelling through the 

experimental investigation. 

As mentioned in Chapter 1, the predecessor of SNAVA is Ubichip, which offers interesting features for 

the emulation of SNN models like SIMD processing, multi-model support and scalability. This 

architecture was proposed in the PERPLEXUS project [1]. As the starting point in the development of 

this thesis, Ubichip was studied in order to measure the performance in terms of processing speed and 

spike distribution time. The result of this study indicates clearly that the Ubichip´s performance is 

affected drastically due to multiple bottlenecks in its Memory System, Processing System and 

Communication System. Every Ubichip can support 36 number of neurons and 30 number of synapses at 

the maximum. This limitation is mainly given by the area occupancy of the FPGA that was used to 

implement it. The Ubichip architecture was implemented in an FPGA Spartan 3 (XC3S5000). Better 

results can be obtained with the use of bigger FPGA, because the architecture was designed to be scalable 

in terms of number of processing elements to be implemented in FPGAs with better area resources. Also, 

migration is an important feature, which makes it feasible to translate this architecture into bigger FPGAs. 

Therefore, a new architecture named SNAVA is proposed to guarantee high performance execution and 

flexibility in order to support large-scale SNN models. The term flexibility is defined in terms of 

programmability which allows easy implementation of the synapses as well as neuron modelling on 

SNAVA. This has been achieved by analyzing and customizing the instructions according to the need for 

processing different SNN models to achieve maximum performance with minimum computation. 

This chapter gives a brief explanation of the SNAVA architecture and its modules, the results of detailed 

evaluation of the performance of SNAVA in terms of speed, area and power, and finally the contribution 

of our system to the state-of-the art when compared with another approaches.   

5.2 SNAVA description 

The SNAVA architecture is composed of an array of Single Instruction Multiple Data (SIMD) units. 

Several aspects regarding the use of the SIMD architecture for simulating SNN models were presented in 

Chapter 2. Basically, three ideas have contributed to achieve high performance regarding processing and 

communication speed. These ideas are linked to the processing system, memory system and 

communication system. 
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 Processing system/Virtualized topology 

The virtualization concept also known as time-multiplexing of neural computations increases the capacity 

of the architecture in order to support various neurons by using the same core. This technique tries to 

minimize the consumption of hardware in exchange for the increase in the execution time. The 

implementation of the virtualization concept is feasible in SNAVA architecture. This is because SNAVA 

was designed to execute SNN models at high processing speed achieving less than 1 millisecond for 

every time step simulation. Here the time resolution in the biological neurons is considered to be around 1 

millisecond. Therefore, several neurons could be emulated in 1 millisecond by using the same core. 

 Memory system 

A distributed memory system has been implemented in the current architecture. The memory system 

allows accessing the memory in each processor by spending a single clock cycle. Putting into practice of 

such a system was possible since modern FPGAs have thousands of Blocks of RAM integrated in them 

which could be used for this purpose. Besides, the BRAMs have been manufactured in such a way that 

they optimize the area and power consumption. 

 Communication System 

The technological advancements in terms of communication have enabled the development of new 

protocols of communication at very high speeds. This important aspect has been considered in design of 

SNAVA in order to be upgradeable with the newest technology without having to make radical changes 

in the architecture. 

 

Figure 5.1: Architectural Overview of SNAVA 
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SNAVA architecture is composed of four modules (Fig. 5.1): 

1. The Configurable Processing Element array 

2. Execution module 

3.  Access control module 

4. Spike generation 

The flow of the input and output data on SNAVA is carried out by two communication protocols 

(Address Event Representation and Ethernet). These two communication protocols manage the spike 

communication between the neurons and the communication between the user and SNAVA, respectively. 

The overall organization of the SNAVA is shown in Figure 5.1. The function of each module is provided 

in the next sections. And the technical details of the SNAVA architecture are provided in [2]. 

5.2.1 The Configurable Processing Element array 

Each Configurable Processing Element (CPE) is equipped with all the necessary elements to carry out the 

processing information in a neuron similar to what happens in the biological process. This module 

consists of a processing element, synaptic BRAM, Content Address Memory (CAM), and spike register, 

as shown in Fig. 5.2.  

 

Figure 5.2: Functional Block diagram: Configurable Processor Element (CPE) 

Each component of the CPE was designed for specific uses according to the needs to emulate the neuron 

efficiently. It is explained as follows:  
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1. Processing Element  

Figure 5.3 illustrates the data path of the PE. Each PE contains n register banks where each bank contains 

eight 16-bit registers. The number of neurons that each PE can emulate is a function of the number of 

banks of registers. The neural time multiplexing is applied in SNAVA by storing the neural parameters 

for each neuron using its bank of registers. Hence several neurons can be implemented without a 

significant increase in the PE area consumption at the cost of time. Now, since each neuron is 

implemented in a single register bank instead of being implemented in an entire PE, the total area 

consumed will be reduced to a significant amount. 

 

Figure 5.3: PE data paths for simplicity of the drawing only three bank of registers are shown, one active 

register and two shadow register banks 

The key role of the processing element is to perform several mathematical computations involved in an 

algorithm. These computations involve Arithmetic, Boolean, logical and SNN-customized operations. 

Several changes were applied to the structure of the PE in Ubichip to optimize the computation of SNN 

algorithms. The description of every change is listed as follows: 

   

- The structure of the PE in SNAVA was modified with respect to the PE 

implemented in Ubichip so that each PE can support more number of neurons. One 

of the goals in the proposal of SNAVA was to implement seven virtual layers 

containing the array of processing elements. Hence, each processing element in a 

virtual layer would emulate one neuron. While in Ubichip there is no concept of 
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virtualization being implemented. The mechanism to process every virtual layer, 

specifically the neural parameters, is explained in Annexure A (see Section A.4). 

 

- The multiplier implemented in Ubichip was based on software multiplier. The 

execution of this multiplier takes several clock cycles to perform the saturated 

multiplication operation. This affects the performance of the SNN models as it has 

been demonstrated in Chapter 2. A 16x16 bit hardware multiplier is implemented 

in the ALU of the PE. Several protection mechanisms were implemented in order 

to prevent overflow in the operations. These mechanisms involve saturated 

multiplication for positive values and negative values. Also, these protection 

mechanisms were implemented in the addition and subtraction operations. The 

saturated multiplier, saturated addition and saturated subtraction perform the 

multiplication, addition, and subtraction operation in two clock cycles respectively.  

- The Pseudo random number generator implemented in Ubichip is a 64-bit LFSR in 

Galois configuration. This LFSR register is shared by all PEs. Therefore, the 

distribution of every pseudorandom value in each PE is carried out serially by the 

sequencer. An LFSR register is implemented in each PE of SNAVA, so that the 

pseudorandom value is loaded in parallel to the entire array of PEs. This feature is 

relevant since most neural algorithms require the presence of noise for a correct 

behaviour. The local noise support greatly enhances the multiprocessor 

performance, clearly compensating the cost of a larger area overhead. 

- The number of synapses per neuron is constant in Ubichip but can be variable in 

SNAVA. This feature in SNAVA permits to create SNN networks using the 

maximum number of synapses available at each PE. Because not all applications 

require the same number of synapses per neuron, so that some synapses are not 

used. By applying the virtualization concept in SNAVA, the total number of 

synapses can be distributed to every layer such that each layer can have different 

number of synapses. This distribution of the synapses for each layer is to be done 

by the user. It is important to be noted that the maximum number of synapses 

available in the whole array of PEs is a constant. So, the number of synapses per 

PE is distributed into number of layers according to the requirements of the 

application. 

- The monitor buffer has been implemented in every PE in order to send the 

calculated parameters to the CPU for visualization, as shown in Fig. 5.3. This was 

done to make the system transparent. This would reduce the bottleneck in the flow 

of the data to be sent for visualization. In Ubichip the data are sent to the CPU, 
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only after the all parameters has been processed. In SNAVA, every parameter is 

sent to the monitor after it has been processed.  

2. Synaptic BRAM  

This memory block is dedicated to store the synaptic parameters. Every 32-bit memory word is allocated 

for each synapse in order to store its synaptic parameters. These synaptic parameters are hardwired into 

the internal registers of the corresponding PEs, as shown in Fig. 5.4, in order to ensure that a single cycle 

instruction fetches all the parameters for every synapse at a time, by executing the LOADSP instruction. 

Similarly, the STORESP instruction is made to be used for storing the newly computed parameters back 

to the memory. The LOAD and STORESP are the customized instructions that are dedicated to store or 

save the data from the PE to the synaptic BRAM or vice versa. 

3. Content Addressable Memory – Spike register 

The Content Addressable Memory (CAM) represents the detailed synapse formation and functionality 

due to interconnection of several neurons to form a certain topology. The role of the CAM is to create 

matches during phase 2 by reading the addresses that are broadcasted on the AER bus. The encoded 

spikes are stored in the spike register. The functionality of the CAM implemented in SNAVA is the same 

as in Ubichip but there were two amendments made in the structure of the CAM. Firstly, every PE was 

allotted with its own CAM. In other words, the implementation of the CAM has been distributed. 

Secondly, due to this distributed CAM, multiple spikes are processed at every clock cycle. In case of 

Ubichip there is only one CAM which is shared by all PEs. Hence only one spike can be processed in 

every 2 clock cycles. 

 

Figure 5.4: Synaptic BRAM wired to active registers 
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5.2.2 The execution module 

The sequencer and the instruction Block RAM constitute the execution unit. The structure of the SNAVA 

has been defined as Harvard architecture while the structure in Ubichip was defined to operate as Von 

Neumann architecture. The pipeline strategy was implemented in the sequencer of SNAVA. This 

technique includes 3 stages, which are: fetch, decode and execute. These two changes have decreased the 

processing time of SNAVA in the computation of SNN algorithms in comparison with Ubichip. The 

sequencer is responsible for the entire control flow of the system. The emulation of the SNN models is 

carried out through two phases (processing phase and distribution phase) as it was defined in Ubichip 

operation. Firstly, the synapse and neural parameters are calculated and the possible spikes are generated 

which is marked by the termination of the sequencer during the first phase. Secondly, a signal is being 

generated by the sequencer along with the AER address generator which indicates the beginning of the 

distribution phase also known as phase 2. The sequencer begins its operation during phase 1 upon 

receiving a notification from the AER controller. The instruction set of SNAVA is provided in Annexure 

A. 

5.2.3 Access Control Module 

The Access control module controls external access to entities in SNAVA. All the access from the host 

CPU is only through the User-side Ethernet. Access to any entity is allowed only when SNAVA is not 

processing neural and synaptic parameters or distributing spikes. The access from the CPU is allowed 

when the sequencer is in halt state. The access control consists of the following components: 

 

 

 

 

 

 

 

 

 

Figure 5.5: Switch BRAM Access 

- BRAM Access switch allows accessing the synaptic BRAM from the CPU in order 

to load the initial values for the synaptic parameters. It also delivers the data from 

the synaptic BRAM to the CPU when requested. The structure of the switch is 

shown in Fig. 5.5.  
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- CPU access control is basically a multiplexer and de-multiplexer that allows the CPU to 

access to each PE in order to initialize the neural parameters and the LFSR register. 

Also, the sequencer can have access to PE in order to give the data to be processed. This 

is done when the operation is being performed by the ALU of the PE, as shown in Fig. 

5.6. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: mux-demux CPE access 

 

- Config Unit consists of a register bank for global SNAVA control. The register bank 

consists of seven 16 bits registers. The description of each register is summarized in the 

Table 5.1.  

Table 5.1: Details of Configuration Registers 

Register 

number 

Description Function 

0 config_done_int 

register (0) 

1= it indicates that the configuration has been 

completed, and the SNAVA can start its regular 

operation 

1 clk_mode 

register(0) 

0 = the system clock runs in free-run mode 

1= the system clock runs in step-by-step mode. 

2 dec_clk_counter 

register  

In step-by-step mode, it stores the number of clock 

steps to execute, decreasing at each clock cycle. It is a 

16 bit register. 

4, 5, 6 inc_clk_counter They form a 48-bits clock counter allowing having a 

time foot print for recovered states of the chip. It 

increases at each clock cycle. 

7 contr_reset 

register (0) 

This register can be set from the CPU in order to reset 

every reconfigurable unit. This signal resets the CPE 

array, and sequencer. 
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5.2.4 AER address generator 

This module is responsible for sending spikes that are produced during the processing phase to the AER 

module. These spikes are stored in a FIFO, which is included in the AER module. The instruction 

SPIKEDIS has been implemented in the sequencer to indicate the AER that it can start to perform the 

distribution of the spikes through network once the sequencer has finished the processing phase. One of 

the features of this module is to inform the AER control unit the details of the neurons that have fired by 

sending the address of the neuron to it. The AER address generator reads the LSB of the accumulator 

from every PE, which contains the spike generated by the neuron. This address is composed by three 

fields, which are: the row, the col, and the position of the virtual layer where the neuron fired. The length 

of the address is the 11 bits, which is composed by 4 bits for column, 4 bits for the row and 3 bits for the 

virtual layer. The spike generator sends to the AER module the address of the fired neuron every time that 

a virtual layer has been processed. It is important to note that the execution of every layer is carried out 

serially. Detailed information regarding the process of sending the spikes from the array of CPEs to the 

AER modules is provided in the Annexure A (see section A.4). 

5.2.5 Ethernet user side 

Ethernet user side provides the control to the user to send Neural and Synaptic information to the Host 

CPU for monitoring the network at any point in the algorithm. There are two modes in which the Ethernet 

user side operates which are online scan and offline scan:  

1. Online scan: In this mode the sequencer is not halted and the Ethernet User side scans the 

whole array for data in the monitor buffers and sends it to the Ethernet core which in turn 

sends the data to the external CPU. The instruction STOREB is one of the instructions of the 

sequencer which was implemented in order to indicate to the Ethernet user side that this 

module can read the values of each PE. These values are allocated in the buffer of each PE. 

The buffer contains the neural and synaptic parameters which have been processed by the 

PE when SNAVA is in the processing phase. The advantage of using this mode is that 

visualization of the parameters is possible and the parameters can be sent to the monitor 

once they have been processed. The sequencer does not interrupt its operation except if the 

Ethernet transmitter is busy.   

2. Offline Scan: In this mode the processor is halted and the Ethernet User side scans the 

whole array for data in the monitor buffers and sends it to the Ethernet core which in turn 

sends the data to the external CPU. The offline was mainly developed to carry out the 

process of debugging of SNAVA. In this mode the user can access to the components to 

SNAVA to verify the value in the registers of a component. These components are: the 
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sequencer, the processing element, the synaptic BRAM, and the BRAM instructions. The 

SNAVA memory map to access to these components from the CPU is provided in Annexure 

B. 

5.2.6 Phases of operation  

The process for the simulation of any SNN model is carried out in SNAVA by means of two periodic 

phases, which were introduced in Section 5.2.2. The events happening in SNAVA is similar to that in a 

biological neuron. Figure 5.7 shows how the biological process in the neuron is being mimicked by the 

SNAVA architecture. In case of the biological process, the neuron receives chemical and electrical 

signals via the synapses which are the interconnections made between neurons. These signals travel 

through the dendrites to be processed by the soma. The soma fires a spike when its membrane potential 

reaches the threshold voltage. The spike flows through the axon and is propagated to the dendrites of 

other neurons. SNAVA tries to mimic the biological process described above through its processing 

phases, the function of dendrites are carried out by the synaptic register (see Fig. 5.2) which store the 

spikes from the previous distribution phase. Spikes are processed by the PE only in the processing phase 

according to the SNN algorithm. The soma is the important region of the neuron which consists of the 

Processing Element, the synaptic parameter BRAM, Instruction BRAM and the Sequencer. Since the 

concept of virtualization has been implemented in SNAVA, when a layer of neurons complete the 

processing phase, a corresponding series of spikes are generated by the AER address Generator module. 

When the execution of the algorithm is completed i.e. when all layers of neurons have been processed, it 

marks the end of the processing phase. Once the processing phase is completed, the spike distribution 

begins. This phase is indicated by the flow of spikes to the dendrites of the destination neurons. The 

transmission of the spikes is emulated by means of broadcasting these spikes in the AER bus and then 

creating the synaptic contact in the CAM that is located in the PE of each neuron. The spikes that enter 

the neuron are stored in the Synaptic register (Dendrites) that corresponds to that particular neuron.  

 

 

 

 

Figure 5.7: Biology and SNAVA based on [2] 
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5.3 Implementation and performance 

The SNAVA prototype is implemented on the KC705 board kit which includes a Xilinx Kintex7 FPGA 

embedded on it. This board offers advanced modules of hardware which involve high speed serial links 

and advanced memory interfaces. Therefore, the use of these has facilitated the development of the 

present architecture with high performance in terms of communication and processing. In regards to 

communication, two protocols have been implemented on SNAVA in order to manage the flow of the 

data, as shown in Fig. 5.8. 

 

Figure 5.8: SNAVA Communication Network. Figure extracted from [2] 

1. Aurora is a communication protocol which is used to transmit data point to point through 

fast serial links. This protocol offers several benefits like high bandwidth transmission, 

support Full Duplex & Simplex channels and minimum area consumption. Therefore, it has 

been decided to use this protocol, to carrying out the communication between neurons due 

to its interesting features, in order to achieve the maximum performance in communication 

on SNAVA by maintaining the low latency and low power consumption. It is important to 

note that this work has been developed by Mr.Taho Dorta Pérez collaborating with the 

SNAVA project [3]. 

 

2. Ethernet MAC protocol is one the most popular networking protocol adopted in FPGAs due 

to its features like: flexibility, performance and reliability. These features has been taken 

into account in development of SNAVA in order to create an efficient interface that allows 

to the user take the control of the flow of data between SNAVA and the external CPU. 
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The scalability is one of the main features offers by SNAVA which allow the emulation of large scale 

SNN by connecting multiple FPGAs boards. The proposed network topology is based in a ring 

configuration which enables the efficient use of the resources available, namely the construction of the 

network does not require extra hardware to connect a large number of FPGA boards. This reduces the 

effort for making expensive dedicated interfaces to connect large number of boards like [7]. Besides, the 

pipeline operation carry in every board increases the performance of the communication through the 

network. But SNAVA is not only scalable respect to the number of boards is also scalable in the number 

of processing elements. Therefore, the user can define the number of processing elements that are 

required for a specific application enabling the creation of an optimized architecture.     

The following sections present the study of the area and power consumption of SNAVA architecture by 

testing 2x2, 4x4, 6x6, 8x8, and 10x10 configurable processing array sizes where all processing elements 

have enabled 2 level of virtualization. The experiments were done by considering two cases, the first 

consist of a network which one layer is full connected, and the second case considers that a virtual layer 

has a single synapse in order to clarify the logic utilization for the implementation of the two modules: 

CAMs and the processing elements. The results presented in these evaluations were taken from report 

utilization and report power, which are provided by the utilization of VIVADO software tool. This 

software is released by Xilinx Company in order to implement the designs efficiently on the FPGAs. 

5.3.1 Area consumption 

It can be seen clearly that the biggest consumption hardware resources is due to the use of LUTs, which 

increases when a large number of processors are implementing on SNAVA, when the Table 5.2 and 5.3 

compares. In the case of 100 processors and the communication controllers the area consumption is 

around 80% of the total for both cases. Then the number of synapses has a small impact on the 

consumption by considering an increment around 4%. Therefore, it is important to analyze the area 

consumption of each component in order to optimize the current implementation in order to achieve better 

performance and a large number of synapses per neuron.  

The following figures points out the area consumption for each module in the design hierarchically, 

namely from the top level until the processing elements. As it can be observed from Fig. 5.9, the 

consumption of the Ethernet controller and the AER controller are negligible when is compared with the 

area consumption of the SNAVA. Fig. 5.10 shows the SNAVA consumption, this architecture is 

composed by the sequencer, the array of Processing Elements, and the configuration module. It is clear 

that main area consumption is due the implementation of configurable processing units which consumes 

around the 93% of the total. Figure 5.11 shows clearly that the main area consumption is due to the 

implementation of the Processing Element. The major consumption of LUTS is attributed to the 

implementation of the multiplexors inside of the PE to carry out the customized instructions. 
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Table 5.2: Utilization Summary of Fully Connected SNAVA 

Resource 2x2 

(3 synapses) 

4x4 

(15 synapses) 

6x6 

(35 synapses) 

8x8 

(63 synapses) 

10x10 

(99 synapses) 

Available 

Flip-Flops 6623 – 2% 15282 – 6% 31532 – 8% 58257 – 14% 99487 – 24% 407600 

LUTs 9805 – 5 %  29595 – 15% 67727 – 33 % 109801 – 

54% 

171291 – 

84% 

203800 

BRAMs 39 – 4% 51 – 6% 71 – 8% 99 – 11% 135 – 15% 890 

 

Table 5.3: Utilization Summary of Single Synapses SNAVA 

Resource 2x2 

(1 synapses) 

4x4 

(1 synapses) 

6x6 

(1 synapses) 

8x8 

(1 synapses) 

10x10 

(1 synapses) 

Available 

Flip-Flops 6606 – 2% 14609 – 4% 27861 – 7% 46351 – 11% 69996 – 17% 407600 

LUTs 10421 – 5 %  29317 – 14% 60212 – 30 % 104533 – 

51% 

161158 – 

79% 

203800 

BRAMs 39 – 4% 51 – 6% 71 – 8% 99 – 11% 135 – 15% 890 

 

 

Figure 5.9: Utilization Representation of fully connected SNAVA project 10x10 
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Figure 5.10: Utilization Representation of fully connected 10x10 SNAVA  

 

Figure 5.11: Utilization Representation of a Single Processor Element in fully connected SNAVA 10x10 
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5.3.2 Power consumption 

The total power consumption of SNAVA project has been estimated around 0.891 Watts, which can be 

calculated by adding the static power and dynamic power. It is important to be noted that the confidence 

level of this estimation is low. This is because the software calculates the power consumption by testing 

the architecture with test vectors. This vector of test enables all the nodes of the architecture, so that the 

architecture is evaluated by considering the worst case. Namely, the architecture is working with all the 

components all time.   

As it can be observed from Fig. 5.12, the static power is around 0.169 W while the dynamic power is 

around 0.931 W. Regarding the static power would be constant for all the array sizes and dynamic power, 

which varies based on the design. Therefore, the dynamic power of a fully connected SNAVA is analysed 

in order to make clear the power consumption for each its modules. The results of power consumption 

reported in this section were obtained by enabling the settings on VIVADO to optimize the power on the 

design. These options are: 

1. power opt design 

2. post placed power opt design 

 

Dynamic Power Static power 

 

0.931 W (79 %) 

 

0.169 W (21 %) 

 

Figure 5.12: Power consumption of fully connected SNAVA 10 x 10 

Figure 5.13 shows the power consumption for the SNAVA implementation which is composed by 

SNAVA, and AER controller and Ethernet controller. As can be seen from this table, the power 

consumption of Ethernet controller is negligible when compared to SNAVA and AER controller. Almost 

the half of the power consumption is spend by SNAVA architecture while the AER controller takes 

around of one quarter of the total as shown in the figure. As it has been expected, the large power 

consumption is spent by the processing elements as shown in Fig. 5.14 and Fig. 5.15. The processing 

element contributes to the major consumption of area and power of the Configurable Processing element 

module, as shown in Fig. 5.11 and 5.15, respectively. Only two 2 layers/2 bank of registers on the current 

SNAVA architecture have been implemented, so that the implementation of more bank of registers will 

increase the area and power consumption in order to support large-scale SNN models. Therefore, some 

modifications have been proposed in this work to increase the capability of SNAVA to support large-



Chapter 5   SNAVA: Spiking Neural-networks Architecture for Versatile Applications  

 

97 

 

scale spiking neurons by decreasing the area consumption at the cost of processing speed. These new 

ideas have led to develop the new version with better performance will be presented in Section 5.6. 

 

Figure 5.13: Dynamic Power distribution of fully connected SNAVA 10 x 10 – SNAVA project 

 

Figure 5.14: Dynamic Power distribution of fully connected SNAVA 10 x 10 – SNAVA  
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Figure 5.15: Dynamic Power distribution of fully connected SNAVA 10 x 10 – Single CPE  

5.4 Performance evaluation 

SNAVA exhibits many advances with respect to Ubichip in terms of processing speed and spike 

distribution. Many of these are due to the improvements performed on it. SNAVA tries to exploit the 

benefits of the parallel SIMD architecture, so a majority of its instructions are carried out in a single clock 

cycle in all Processing Elements. The important changes made on SNAVA with respect to Ubichip 

architecture are listed below: 

1. Two strategies related to the structure of memory system have been implemented in SNAVA in 

order to exploit the available Block RAMs on the FPGA. The first strategy consisted on 

separating BRAM for storing the instructions and global constants was implemented as these are 

common for all the PEs. And second, One BRAM per each Processing Element for storing the 

synapse parameters was implemented and the output of the BRAM was hardwired to the internal 

registers of the PEs, as shown in Fig. 5.4. Then a single cycle instruction is used to fetch all the 

parameters for individual synapse at a time. In the same way an instruction can be made use of to 

store the computed new parameters back to the memory. These strategies allow the best use of 

the available on-FPGA resources. 
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2. The neural parameters are specific to each PE. Hence these parameters can be stored locally in 

the register bank instead of storing them in a common memory. This will save the time and 

complexity in fetching them each time. Instructions capable of swapping bulk data between the 

active and shadow registers have been implemented. 

3.        The CAM was modified to detect multiple matches in a single clock cycle. This change has 

accelerated the spike distribution. Therefore, the encoding of the spikes is in parallel, which 

represents the best improvement with respect to Ubichip. The Ubichip can detect only one spike 

by using two clock cycles. Also, a spike register array corresponding to the neurons, that stores 

the matches in the specific synapse numbers, was implemented. 

4. There are several hardware multipliers available in the FPGA. These multipliers have been used 

in SNAVA to accelerate this operation used in most SNN algorithms.   

All these changes have helped to boost both processing speed and spike distribution in order to achieve 

real-time simulation of large number of neurons below 1ms resolution. The following evaluations were 

carried out in order to obtain the figures of performance of the SNAVA, in terms of processing speed and 

spike distribution time, by considering the emulation of Iglesias and Villa model [4], Izhikevich model [5] 

and Leaky integrate and fire model in 16-bit fixed point arithmetic operations. The following evaluation 

in the performance of SNAVA considers this amount of neurons and synapses. The algorithms for the 

emulation of the mentioned models have been programmed in assembler code in order to achieve the 

maximum efficiency in terms of the execution time. Also, the program was defined in a structured 

manner in order to simplify the process of update. Taking into account the results of the previous analysis 

regarding the area consumption, the maximum number of neurons and synapses per processor that can be 

supported in the current FPGA are: 200 and 100 respectively (with 100 processors and 2 levels of 

virtualization). 

5.4.1 Iglesias and Villa model execution analysis 

The description of the Iglesias and Villa model is provided in Chapter 2, and the algorithm, which has 

been written in assembler code for SNAVA, is provided in Annexure C. The performance of SNAVA has 

been evaluated in clock cycles in order to obtain real figures. The required number of cycles to execute 

each subroutine in phase 1 is indicated in Table 5.4. The encoding of subroutines contained in the synapse 

loop is shown in Table 5.5. 
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Table 5.4:  Main loop subroutine encoding and execution number of clock cycles 

Symbol Subroutine Clock cycles * 

M V Membrane value 37 

C S Cycle per each synapse (122)∙S 

M O L P Memory of last post-synaptic 28 

S U  Spike Update 24 

B A Background activity 34 

R P Refractory period 5 

N S Neuron save 19 

S E Spike enable 5 

* The number of clock cycles for the subroutine CS depends on the number of synapses (S). 

Table 5.5: Synapse loop routine encoding 

Symbol Subroutine Clock cycles  

S L Synapse Load 1 

S W Synaptic weight 19 

R V V Real value variable 30 

A V  Activation variable 43 

M O L P  Memory of last pre-synaptic 

spike 

24 

S S Synapse Save 5 

 

Adding all the contributions of Table 5.4, except the initialization process, the number of clock cycles NT   

that is required to carry out the phase 1 in one simulation cycle is obtained in equation (5.1), where the 

growth depends on virtual layers and number of synapses per each processor.  

SNN vT  122152  
(5.1) 

 

Where: NT is the number of clock cycles, Nv is the number of virtual layers and, S is the number of 

synapses per processor 

Monitoring the synaptic parameters and neural parameters on real time is essential to observe the SNN 

dynamics. Thus, SNAVA allows the user to define the number of synaptic parameters or neural 

parameters to be displayed on the monitor. Neural and synaptic parameters in phase 1 could be shown on 

the monitor once it has been processed, this implies that the sequencer stops its operation and the Ethernet 

user side module reads the data stored in every buffer serially and these data are sent to the computer 

through its Ethernet bus. Sequencer resumes its operation only when the user side module finishes 

reading all the buffers. Equation 5.2 takes into account the number of clock cycles required by the user 



Chapter 5   SNAVA: Spiking Neural-networks Architecture for Versatile Applications  

 

101 

 

side module to read all buffers. The size of Ethernet bus and the size of the buffer in the current 

implementation are 8 bits and 32 bits respectively.  

 NDNSDS
B

BS
PSNN vvTD 








 122152  

(5.2) 

 

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses 

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the 

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is 

the Buffer size. 

The Iglesias and Villa model was proposed during the development of PERPLEXUS project. The 

proposed target in case of this project includes the implementation of 300-synapses and 100-neurons in a 

single Ubichip, and 1 ms time step resolution by simulating this SNN model. The time required to 

execute these many number of synapses and neurons is 13 ms approximately for every simulation cycle 

(see Table 2.3 in Chapter 2). Therefore, the simulation of the Iglesias and Villa in real time is not 

achieved (1 ms step time resolution).  

The required execution time for a single simulation step, by considering 100 neurons with 100 synapses 

per neuron, is about 3.64 ms. In this case the number of synapses has reduced (from 300 to 100) the step 

resolution is not achieved. The execution time ETU was calculated by using the expression (5.4). The 

expression (5.3) allows the calculation the number of clock cycles NTU required to simulate the Iglesias 

and Villa model in a single step simulation in Ubichip. 

SNSNNTU  41392101909   (5.3) 

Where: the N is the number of neurons and S is the number of synapses. The time execution ETU is 

obtained as follows: 

              (5.4) 

Where: the NTU is the number of clock cycles to simulate the algorithm in a single step simulation and Tclk 

is the time of the clock of the system. In the case of Ubichip, the clock system works at 50 MHz.  

In SNAVA, the maximum number of neurons, which can be implemented in a single FPGA, is 100 

neurons (1 layer of virtualization) and the maximum number of synapses is 100 synapses per neuron (100 

synapses per processor). The required execution time ETS for a single step simulation is 102.86 µs. The 

Execution time ETS is calculated by the expression 5.5. 
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              (5.5) 

 

Where NTD is the number of clock cycles, and      is the time clock of the system. The calculation of the 

execution time ETS of current prototype is particularized at 125 MHz clock or 8 ns period. This is because 

the modules of SNAVA, which involve the Configurable Processing Elements, the Ethernet module and 

the AER system, work at 125 MHz. It is important to be note that the calculation of the processing time in 

SNAVA considers the display time assuming the post-synaptic spike and the membrane voltage are send 

to the monitor for its visualization. To calculate the number of clock cycles NTD (5.2) the following values 

were taken: P = 100 PEs, BS = 32, B = 8, Nv = 1 and ND = 1.  

The step time simulation required in Ubichip to perform the Iglesias and Villa model is 35 times lower 

than SNAVA. An important improvement in the processing time was achieved by implementing the 

distributed memory system, the multipliers, and increasing the frequency clock of the system in SNAVA. 

These improvements were already mentioned above. In order to clarify the real improvement achieved in 

SNAVA when compared with Ubichip by neglecting the increment in the value of the clock system, the 

following comparison was carried out by calculating the improvement ratio in term of clock cycles 

instead of doing with execution time cycle.  

 

Figure 5.16: Improvement ratio for SNAVA against Ubichip simulating Iglesias and Villa model. 

Figure 5.16 shows the improvement factor IF which was obtained by dividing the number of clock cycles 

required to perform the Iglesias and Villa model in Ubichip and the number of clock cycles required to 

simulate the same model in SNAVA. The equation 5.6 allows the calculation of this improvement factor: 
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    (5.6) 

where:  NTU is the number of clock cycles required to perform the Iglesias and Villa model in Ubichip and 

NTD is the number of clock cycles to perform the same model in SNAVA. The following values were 

taking into account to calculate the NTD: P = 100 PEs, BS = 32, B = 8, Nv = 1 and ND = 1. ND implies the 

visualization of the post-synaptic spike and the membrane voltage on the monitor. NTD was calculated by 

using the expression (5.2). 

The improvement ratio between Ubichip and SNAVA was calculated in terms of clock cycles, 

considering up to 100 neurons and up to 300 synapses per neuron. For SNAVA only one level of virtual 

layer was taken into account for consistency in the comparison. As it can be observed in Fig. 5.16, the 

improvement factor is significant, but it is important to note that Ubichip was designed under restrictions 

in the area consumption, resulting in a low-performance implementation. The purpose of the Fig. 5.16 is 

only to show that enhancement factor increases with increase in the number of neurons and synapses 

taken into consideration. As it can be observed from Fig. 5.16, the improvement factor gradually 

increases linearly from 100 neurons – 100 synapses to 100 neurons – 300 synapses. In the current version 

of SNAVA is possible to support 100 neurons with 100 synapses. In the case of using a bigger FPGA the 

number of synapses can be incremented in SNAVA in order to allocate 300 synapses per neuron. As it 

was mentioned above the synapses were implemented in LUTs. The implementation of the 300 synapses 

is feasible for instance in the Virtex 7 FPGA (series XC7VX980T), which contains three times more 

number of LUTs when compared with the Kintex 7 FPGA (series XC7K325T), the available device for 

the developed prototypes. 

5.4.2 Izhikevich model execution analysis 

This section shows the performance evaluation by emulating the selected Izhikevich model [5] by 

simulating 100 neurons and 100 synapses per neuron. The description of the Izhikevich model is provided 

in Chapter 2. The algorithm, which has been written in assembler code for SNAVA, is provided in 

Annexure C. The number of clock cycles for each subroutine and also the whole algorithm in terms of the 

number of neurons and number of synapses per neuron has been reported below. 

The required number of cycles to execute each subroutine in phase 1 is indicated in Table 5.6. The 

encoding of subroutines contained in the synapse loop is shown in Table 5.7. 
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Table 5.6: Main loop subroutine encoding and execution number of clock cycles 

Symbol Subroutine Clock cycles
* 

T I Thalamic Input 28 

S U Spike Update 23 

M P Membrane Potential 19 

S E Spike Enable  5 

C S Cycle per each synapse (15) ∙S 

M V  Membrane Value 70 

R V Recovery Value 14 

* The number of clock cycles depends on the number of synapses (S) and number of virtual layers (Nv) 

Table 5.7: Synapse loop routine encoding 

Symbol Subroutine Clock cycles * 

S L Synapse Load 1 

S W Synaptic weight 9 

S S Synapse Save 5 

 

Equation 5.7 calculates the number of clock cycles. This was obtained by adding all contributions of 

Table 5.6.The growth in the number of clock cycles depends on two variables, the number of virtual 

layers and the number of synapses. 

SNN vT  15159  (5.7) 

 

Where: NT is the number of clock cycles, Nv is the number of virtual layers and, S is the number of 

synapses per processor 

The scanning time to monitor the parameters of the model is not considered in previous equation (5.7). 

The number of clock cycles to compute the algorithm in phase one is calculated as follows:  

 NDNSDS
B

BS
PSNN vvTD 








 15159  

(5.8) 

 

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses 

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the 

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is 

the Buffer size. 
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1000 neurons with 100 synapses per neuron is the target network size proposed by Izhikevich [5], with a 

time step resolution of 1 ms. The execution time obtained is around of 2.1 ms to simulate one step of the 

Izhikevich model in Ubichip by simulating 100 neurons – 100 synapses per neuron, while the execution 

time to execute the same model with the same number of neurons and synapses in SNAVA is around of 

1.72 µs. In both the cases, the spike distribution was calculated under worst-case assumption that all 

neurons would fire at every simulation cycle. This improvement guarantees the time step resolution for 

the simulation of Izhikevich under 1 ms, which is highly required for the simulation of this model [5]. 

Therefore, 1000 neurons can be emulated in SNAVA by using 10 FPGA boards, by keeping the same 

execution time (1.72 µs) in all FPGAs. This is because all FPGAs work in parallel. The spike 

transmission time would however increase. 

The calculation of the execution time to perform the Izhikevich model in Ubichip was carried out as 

follows: 

The execution time ETU was calculated by using the expression 5.10. The expression (5.9) allows the 

calculation the number of clock cycles NTU required to simulate the Iglesias and Villa model in a single 

step simulation in Ubichip. 

xNxSxSxNNTU 81281011492     (5.9) 

Where: the N is the number of neurons and S is the number of synapses. The time execution ETU is 

obtained as follows: 

                (5.10) 

Where: the NTU is the number of clock cycles to simulate the algorithm in a single step simulation and Tclk 

is the time of the clock of the system. In the case of Ubichip, the clock system works at 50 MHz.  

The execution time ETS, which is required to perform the Izhikevich model in SNAVA, is calculated by 

the expression 5.11,  

             (5.11) 

Where NTD is the number of clock cycles, and      is the time clock of the system. The calculation of the 

execution time ETS of current prototype is particularized at 125 MHz clock or 8 ns period. NTD is 

calculated by using the expression (5.8). The following values were taken: P = 100 processors, BS = 32, 

B = 4, Nv = 1 and ND = 1 to calculate the number of clock cycles NTD. ND implies the visualization of the 

post-synaptic spike and the membrane voltage. 

 
  
   
   

    (5.12) 
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Although it has achieved a great improvement in terms of speed of processing, the increment in the 

system clock in SNAVA has increased the performance when compared with Ubichip, as it has been 

demonstrated in the previous analysis. However, a significant improvement has been achieved by 

modifying the structure of Ubichip. The improvement factor IF is carried out by considering the number 

of clocks. Therefore, the clock of the system is not considered in the calculation. Fig. 5.17 shows the 

improvement factor in terms of clock cycles by considering 100 neurons and 100 synapses in both 

architectures. The calculation of this IF was done by using the expression (5.12). The improvement would 

be around 6 times of the target criteria which is around 100 neurons with 100 synapses for each neuron, 

with one virtual layer for the case of SNAVA. This improvement is mainly due to the single cycle 

instructions for fetching and saving the synapse parameters and the hardware multiplier that simplifies the 

multiplication operations in the algorithm. 

 

 

 

 

 

 

 

 

Figure 5.17: Improvement ratio for SNAVA against Ubichip simulating Izhikevich model 

5.4.3 Leaky integrate-and-fire model execution analysis 

The leaky integrate-and-fire model was presented in Chapter 4. The algorithm, which has been written in 

assembler code for SNAVA, is provided in Annexure C. The LIF model has been implemented on 

Ubichip and SNAVA in order to be used in the applications that involve processing of sensory 

information (see Chapter 6). The algorithm consists of 5 subroutines dedicated to compute the neural 

parameters and a loop to calculate synaptic parameters. The required number of cycles to execute each 
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subroutine in phase 1 is indicated in Table 5.8. The encoding of subroutines contained in the synapse loop 

is shown in Table 5.9. 

Table 5.8: Main loop subroutine encoding and execution number of clock cycles 

Symbol Subroutine Clock cycles
* 

M P Membrane Potential 26 

C S Cycle per each synapse (21) ∙S 

S U Spike update 34 

R F Refractory period 5 

N S Neuron save 15 

S E Spike Enable  5 

* The number of clock cycles depends on the number of synapses (S) and number of virtual layers (Nv) 

Table 5.9: Synapse loop routine encoding 

Symbol Subroutine Clock cycles * 

S L Synapse Load 1 

S W Synaptic weight 19 

S S Synapse Save 1 

 

The expression to calculate the total number of clocks to execute the algorithm in one step emulation is 

obtained by the addition of all contributions from Table 5.8: 

SNN vT  2185  (5.13) 

 

Where: NT is the number of clock cycles, Nv is the number of virtual layers and, S is the number of 

synapses per processor 

The previous expression does not take into account the number of clock cycles to observe the activity of 

the network (neural variables or synaptic variables) through the monitor. The expression 5.14 adds the 

delay in order to complete the calculation: 

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses 

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the 

 NDNSDS
B

BS
PSNN vvTD 








 3085  

(5.14) 
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number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is 

the Buffer size. 

The execution time required to perform the LIF model in SNAVA is around of 27 µs, while the execution 

time required for the same in Ubichip is around 5.14 ms in a single simulation step, considering the 

Perplexus target (which is 100 neurons and 300 synapses per neuron). The target of 1 ms time step 

resolution in Ubichip is not achieved. Despite the complexity of the SNN model to be simulated in 

Ubichip has been reduced by means of simulating one of the simplest SNN model, which does not 

demand high computation. In the case of reducing the number of synapses per neuron from 300 to 100, 

the execution time to perform the LIF model in Ubichip is 1.73 ms by implementing this amount of 

synapses in Ubichip is closer to the target of 1 millisecond step time resolution. 

The calculation of the execution time to perform the LIF model in Ubichip was carried out as follows: 

The execution time ETU was calculated by using the expression 5.16. The expression (5.15) allows the 

calculation the number of clock cycles NTU required to simulate the Iglesias and Villa model in a single 

step simulation in Ubichip. 

xNxSxSxNNTU 85116260     (5.15) 

Where: the N is the number of neurons and S is the number of synapses. The time execution ETU is 

obtained as follows: 

                 (5.16) 

Where: the NTU is the number of clock cycles to simulate the algorithm in a single step simulation and Tclk 

is the time of the clock of the system. In the case of Ubichip, the clock system works at 50 MHz.  

The execution time ETS, which is required to perform the LIF model in SNAVA, is calculated by the 

expression 5.17,  

              (5.17) 

Where NTD is the number of clock cycles, and      is the time clock of the system. The calculation of the 

execution time ETS of current prototype is done at 125 MHz clock or 8 ns period. NTD is calculated by 

using the expression (5.14). The following values were taken: P = 100 processors, BS = 32, B = 4, Nv = 1 

and ND = 1 to calculate the number of clock cycles NTD. ND implies the visualization of the post-synaptic 

spike and the membrane voltage. 

The increment in the value of the clock system in SNAVA allows to easy achieving the simulation of LIF 

in real time (1 ms step time resolution), however, SNAVA has important improvements with respect to 
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the Ubichip architecture. The improvement factor clarifies the impact of these improvements 

implemented in SNAVA. This improvement factor IF is obtained by dividing the number of clock cycles 

required to perform LIF in Ubichip and the number of cycles to perform the same model in SNAVA by 

using the expression (5.18): 

 
  
   
   

    (5.18) 

Fig. 5.18 shows the improvement ratio achieved in SNAVA by simulating the LIF model in comparison 

with Ubichip. Evidently, the LIF model is one of the simplest SNN models which require less number of 

instructions when compared to the Hodgkin-Huxley model [6]. This model describes the neural dynamics 

in detail.  

 

Figure 5.18: Improvement ratio for SNAVA against Ubichip simulating LIF model. 

5.3.4 Processing time and distribution time for any SNN 

model 

Three spiking neuron models were implemented in SNAVA, Iglesias and Villa model, Izhikevich model, 

and Leaky integrate-and-fire model. However, this architecture was designed to support any arbitrary 

SNN model under the condition that the communication between neurons is through spikes. In fact, the 

SNN models can be simulated with different levels of abstraction, however the mechanism to perform 

their variables follow the almost the same pattern of processing. The equation 5.19 generalizes the 

calculation of clock cycles for any SNN model implemented on SNAVA. The equation is defined by 

constants K1 and K2, the number of virtual layers and synapses per processor. 
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SKNKN vT  21  (5.19) 

The general equation that calculates the number of clock cycles for processing phase and the monitor 

delay is expressed by 5.20. 

 NDNSDS
B

BS
PSKNKN vvTD 








 21

 
(5.20) 

 

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses 

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the 

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is 

the Buffer size.  

The value of constants K1 and K2 for each SNN model are shown in Table 5.10. In order to calculate the 

total time required in one emulation step (processing phase + distribution phase) equation 5.21 must be 

added to equation 5.19 or 5.20 in each case, where the clock system is 125 MHz in the current prototype. 

The required number of clock cycles to execute the distribution phase NTD depends on the number of 

neurons NF that fire at every emulation step and the number of SNAVA chips
CHIPSN . 

CHIPSFTD NNN   (5.21) 

 

Table 5.10: Value of constants for three SNN models implanted on SNAVA 

5.5 Comparison with other architectures 

Any architecture that intends to support the simulation of large scale neural networks must guarantee 

three aspects in order to achieve the maximum performance. These include low power consumption, less 

area consumption and faster processing time. At the present, only a few digital architectures are trying to 

cover these three aspects in order to achieve good performance besides offering great flexibility. Many 

modern digital systems like Graphics Processing Units (GPUs), multiprocessors and FPGAs provide a 

SNN model K1 K2 

Leaky integrate-and-fire 85 30 

Izhikevich 159 15 

Iglesias and Villa 152 122 
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platform for designing highly parallel systems which are suitable for the emulation of SNN models. 

Evidently, these architectures are designed for general purposes making them less efficient in terms of 

area and power consumption in comparison with the dedicated hardware. This section is vital because it is 

necessary to show the impact of our contribution in the emulation of large scale SNN in the world of 

neuromorphic circuits, especially in the digital domain. The digital domain is chosen in order to be 

consistent. Therefore, the objective of the following analysis is to find the main advantages and 

drawbacks in emulating large-scale SNN models on SNAVA, and make a comparative study with the 

existing architectures which claim to emulate Large-scale SNN models efficiently. This takes into 

account numerous leading architectures reported in the literature. 

5.5.1 Implementations on Multiprocessor 

One of the representative SNN emulators based on multiprocessors is the custom SpiNNaker machine [8] 

which can emulate a large number spiking neural networks using a custom ASIC with asynchronous 

interconnection. This architecture is a reprogrammable platform to emulate the spiking neural networks. 

The Table 5.11 summarizes technical specifications of SNAVA architecture and SpiNNaker.  

Table 5.11: Technical specifications of the SNAVA and other existing multicores implementations 

Project Reference This work for single FPGA SpiNNaker 

Neuron model Izhikevich 

Iglesias and Villa 

Leaky-integrate-and-fire 

Leaky-integrate-and-fire 

Izhikevich 

Number of neurons 200 

 

20,000 

Number of synapses 9900 

 

2,000,000 

Scalability yes yes 

Flexibility yes yes 

Migration yes no 

Processing step 1 ms 1 ms 

Hardware Kirtex-7 ARM 968E 

Technology 28 nm 90 nm 

Number of cores 100 processing elements 18 ARM9 processing 

Frequency operation 125 MHz 200 MHz 

Format representation Fixed precision Fixed precision 

Number of bits 16 bits 32 bits 
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- Discussion of multiprocessor implementation 

This customized architecture promises to be a powerful platform in the simulation of large-scale of SNN 

models. SpiNNaker can support up to 20000 neurons and 2000000 of synapses per Chip, as shown in 

Table 5.11. Evidently, the number of neurons and synapses per neurons supported in SpiNNaker are 

much larger when compared with SNAVA. However, there are some aspects to discuss about this 

architecture. One of them is regarding the communication system. They assume that the network will not 

be saturated and there is no mechanism of congestion. This mechanism of congestion is vital when the 

activity of large networks becomes more active. Another aspect is regarding the memory system of 

spiNNaker. A large amount of data is transferred from the external memory to the processors. The high 

memory-bandwidth data interfaces compensate the negative effect of transfer of data from the external 

memory to the processors. 

5.5.2 Implementations on GPU 

There have been efforts to develop SNN emulators using Graphical Processing Units. The developers of 

these devices argue that there can be an efficient design platform for parallel computing, due to its 

inherent parallelization. It is important to note that these devices were designed especially for parallel 

processing of graphics. However, few works have confirmed the advantages of using these devices as 

SNN emulators. Two of the representative works were proposed by [10] and [11]. The technical 

specifications of these works are summarized in the Table 5.12. 

Table 5.12: Technical specifications of the SNAVA and other existing GPU implementation 

Project Reference This work  for single FPGA Nageswaran Arista 

Neuron model Izhikevich 

Iglesias and Villa 

Leaky-integrate-and-fire 

Leaky-integrate-and-fire 

Izhikevich 

Izhikevich 

Number of neurons 200 

 

100000 7000 

Number of synapses 9900 

 

10000000 7000000 

Scalability yes yes yes 

Flexibility yes no yes 

Migration yes no yes 

Processing step 1 ms 1 ms 1 ms 

Hardware Kirtex-7 NVIDIA GTX280 NVIDIA TESLA 

C2050 

Technology 28 nm 65 nm 40 nm 

Number of cores 100 processing elements 228 scalar processor 

(SISD) 

448 CUDA cores 

Area (mm
2
) ND ND 

Frequency operation 125 MHz 1.2   GHz 1.15 GHz 

Format representation Fixed precision Float point Float point 

Number of bits 16 bits 128 bits 128 ts 
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- Discussion of GPUs implementations 

The two SNN emulators presented in this work are based on GPUs, which can compute a large number of 

neurons and synapses by using processors operating around of 10 times more higher frequency than 

SNAVA, as it can be observed from Table 5.12. The higher processing speed compensates the negative 

effect produced by the utilization of multi-threads. This computational technique reduces the performance 

of SNN calculation when a large amount of data must load to processors from the GPU memory or vice 

versa when the data are stored from processors to memory. The bottlenecks that are present in this type of 

systems are due to their memory access system, programmability and the limited memory bandwidth. 

Nageswaran implementation [10] presents the development of large scale SNN model on GPUs, in 

particular the proposed by Izhikevich taking into account the STDP rule. There are many reasons which 

make difficult to map this learning rule in this architecture or even in any architecture. One of them is 

given by the required high memory bandwidth to store recordings of future events. This was discussed in 

Chapter 2. Therefore, this makes any architecture expensive in terms of hardware resources. Although 

this architecture is capable of simulating large scale spike neurons network with process of learning, there 

are several negative aspects to be discussed here. Most of them are associated to the structure of the 

system, so that there is depletion in the throughput of SNN computation. One of them is related to the 

optimization of the parallel execution, namely the number of threads that are limited in number so that not 

all cores are used. Another important aspect to be discussed here is the process of serialization of the 

instructions in a stream of multiprocessors. This implies that a greater number of clock cycles are required 

by executing an instruction in different processors. As mentioned above, the plasticity implemented in the 

synapses increases the complexity of control of threads. 

The SNN emulator proposed by Arista [11] offers scalability in the definition of the number of synapses 

and neurons. This proposal intends to create a generic SNN implementation to be executed in any GPU 

device. But this has a cost, which is clearly observed in Table 5.12 when comparing with the capacity of 

the system for supporting a large scale SNN between this work and Nageswaran work. This system can 

support fourteen times less number of neurons and hundred times less number of synapses and has two 

times more number of available cores. This is because the technique proposed by Arista make regular the 

multithread execution, namely the same number of threads executes the same number of blocks. For that 

reason the complexity of the threads are reduced and this general implementation can be used in any 

GPU. 

5.5.3 Implementations on FPGA 

For several years there has been an evolution of astounding FPGA devices in the industry of 

programmable devices. The integration of multiple cores into these devices has eased the implementation 
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of complex systems within a short span of time in comparison to the time requirements of an ASIC 

system. Many applications has been developed using these FPGAs due to its high configurability besides 

its guarantee towards a very high performance. In particular, neuromorphic systems are being 

implemented on FPGAs in order to support large scale SNN emulations taking the advantage of the 

available resources creating configurable architectures with high performance or high communication 

system. This can be clearly observed by analysing two of the most representative FPGA implementations. 

Cassidy [12] has proposed a system of supporting one million neurons in real time and another system is 

named Bluehive [7] which can support 64k neurons with 64 million synapses per each FPGA.  The 

Bluehive project is composed by 64 FPGAs while the architecture of Cassidy is limited to be 

implemented in a single FPGA. The technical specifications of these works are summarized in the Table 

5.13. 

Table 5.13: Technical specifications of the SNAVA and other existing FPGA implementation 

 

Project Reference This work for single 

FPGA 
Bluehive Cassidy 

Neuron model Izhikevich 

Iglesias and Villa 

Leaky-integrate-and-

fire 

Izhikevich Leaky-integrate-

and-fire 

Number of neurons 200 

 

64000 1000000 

Number of synapses 9900 

 

64000000 1000000 

Scalability yes yes yes 

Flexibility yes no no 

Migration yes yes yes 

Processing step 1 ms 1 ms 10 ms 

Hardware Kirtex-7 

407600 Flip-flops 

203800 LUTs 

Altera Startix IV 

1459200 Flips-flops 

182400 LUTs 

Virtex 5 SX240T 

149760 Flips-

flops 

149760 LUTs 

Technology 28 nm 40 nm 65 nm 

Frequency operation 125 MHz 200 MHz 200 MHz 

Format representation Fixed precision Fixed precision Fixed precision 

Number of bits 16 bits 16 bits 16 bits 

 

- Discussion of FPGAs implementation 

The earlier works indicated above intend to offer a platform to emulate large scale number of neurons 

where their efforts were focused to optimize the SNN processing by making emphasis in the processing 

system or communication system forgetting that both aspects are important to be considered when it 



Chapter 5   SNAVA: Spiking Neural-networks Architecture for Versatile Applications  

 

115 

 

requires the design and implementation of an architecture to simulate a large number of neurons 

efficiently. 

The Bluehive system implements thousands of neurons and synapses by exploiting the communication 

system to the maximum, based on high serial speed links taking the risk that the system could be saturated 

when the activity of large scale SNN network will be increased, and the logic in order to prevent 

congestion is not guaranteed in this work. Another aspect to be analysed is the memory access when large 

number of parameters are to be processed, this reduces the processing time and the parallel architecture is 

not exploited to the maximum.  

The work that implements one million of neurons in a single-FPGA is proposed by Cassidy. This system 

utilizes a large state cache and also consumes more time to implement such network. The important 

aspect that has to be discussed in this work is the implementation of more number of neurons but the 

limiting the number of synapses. This is because of large interconnections involved in the network 

produces major consumption of power, area resources in any architecture. 

The mechanism implemented in both architectures to process huge amount of neurons are based on fixed 

pipelines stages, which reduce the capacity of the system for supporting different SNN models. These 

architectures were designed for simulating specific simple SNN models which does not implement the 

plasticity of the synapses which plays the major role to carry out the learning process. The whole 

architecture must be redesigned and implemented again for any small modification to support this type of 

biological mechanisms. Therefore, both the systems are suitable if the SNN model is fixed. 

5.5.4 General discussion 

As mentioned in the introduction of this section, there are three aspects to be evaluated on the 

neuromorphic systems which include the performance in power consumption, area consumption and 

processing time. SNAVA is compared with the previously discussed architectures which were 

implemented on multiprocessors, GPU devices and FPGAs. Not all architectures discuss about the power 

or area consumption which is considered to be a vital factor. This section presents the comparison 

between SNAVA and another approaches regarding on these two factors. Make this comparison is not a 

simple task due to the several factors to be into account, for instance the structure of the architecture, the 

number of neurons and synapses supported in each one, the technology of the devices, etc., for 

consistency in the comparison. Therefore, the proposed criteria to carry out the estimation of power and 

area consumption have been defined in the evaluation of a single processor. The Single processor of all 

previous architectures, which are analysed in this section, tends to implement the multiplexing time 

technique. The multiplex time technique increases the capacity of the systems to support large number of 

neurons, at the cost of time and memory bandwidth. 
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Table 5.14: Comparison of SNAVA performance against other existing approaches 

Projects Power 

consumption 

per processor 

Area 

consumption 

per processor 

Processing 

step time 

Number of 

neurons per 

processor 

and 

synapses 

per neuron 

SNN model 

This work 4 m W* 994 Flip-Flops 

1416 LUTs* 

1ms 2 

50 

-Izhikevich 

-Iglesias and Villa 

-Leaky-integrate-

and-fire 

Spinnaker[8] 41.1 mW 

35 mW 

N/D 1ms 250 

250 

Leaky-integrate-

and-fire 

Izhikevich 

Bluehive[7] N/D 18240 Flip-

Flops 

1ms 1000 

1000 

Izhikevich 

Nageswaran[10] N/D N/D 1ms 400 

1000 

Leaky-integrate-

and-fire 

Izhikevich 

Arista[11] N/D N/D 1ms 15 

1000 

Izhikevich 

Cassidy[12] N/D N/D 10ms N/D 

1 

Leaky-integrate-

and-fire 

*This results have been obtained from the VIVADO tool report. This tool has many advanced strategies for synthesis 

and implementation to optimize the area and power consumption. 

The estimation of the power consumption of Spinnaker system is presented in [13]. This architecture is 

composed of 48 SpiNNaker chips, and each chip contains 18 ARM cores, where each ARM core can 

support a population of around 250 neurons with 250 synapses per neuron. According to the data 

presented considering the evaluation of power performance, the average power consumption of each chip 

is 0.74 Watts. This means that every ARM consumes around 41.1 mW by supporting 250 neurons and 

250 synapses per neuron in the case of Leaky-integrate-and-fire model simulation. And the power 

consumption required to simulate the Izhikevich model is around 35 mW per ARM core. 

The estimation of the area consumption of Bluehive system was analysed in this thesis taking into 

account the technology of the FPGA in terms of number of Flip-Flops and LUTs. As it was indicating in 

the Table 5.14, this system was implemented on Altera Startix IV board, which contains a FPGA with 

1459200 Flips-flops 182400 LUTs. The structure of their architecture was analysed in order to estimate 

the area consumption. The first assumption is related to the number of processing nodes required to 

emulate 64000 neurons. According to the information provided in this work every node has four 

Processing Engines (PEs) and every PE can emulate up to 1000 neurons. Therefore, the total number of 

nodes calculated is 16 this is obtained by using the equation 5.22. 

enginexneuronsenginespnodespneurons NNNT ____   
(5.22) 
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The second assumption is related the use of registers to implement 64 processing engines. By looking at 

the structure of the architecture, the processing nodes are mainly used to execute operations like 

multiplications, subtractions and shift operations. Therefore, the largest amount of area consumption in 

this architecture could be associated to the Flip-flops consumption. This can be clearly observed in the 

specifications that the architecture is implemented on a FPGA with a million of Flip-Flops and reduced 

number of LUTs. They also indicated that the architecture was proposed to exploit the parallel 

computation and every node can be replicated homogenously when a large number of nodes are required. 

This feature facilitates the evaluation of the area consumption per each node. If the percentage of the area 

required for the implementation of Bluehive architecture is taken into account, then around 80% of the 

total number of flip flops (1459200) which is 1167360 are required. Then, the number of Flip-Flops to 

implement a single PE is around 18,240 Flip-Flops, which are calculated by the equation 5.23. 

  

(5.23) 

PE

FFPE
64

 1167360 Flops-Flip
 = 18,240 Flip-Flops 

The result obtained in this comparison reveals that the power consumption for every processor on 

SNAVA is 10.25 times lower than SpiNNaker, and the consumption of Flip-Flops is 18 times lower than 

Bluehive processor, taking into account the data of Table 5.14. The evaluation is done by taking hundred 

processors with 2 layers of virtualization. Evidently, the number of neurons and synapses in our work is 

lower. This is due to the strategy implemented in this work which uses a bank of registers per virtual 

layer. Hence there will be a rise in the power consumption as well as area consumption when the number 

of virtual layers is increased. Making the assumption of using bigger FPGA, and doing an extrapolation to 

verify the feasibility to continue working on the same manner, namely a bank of registers emulates a 

virtual layer. For instance, if 100 neurons and 100 synapses per neuron are emulated in a single 

processing element, it will require around 0.4 mW, 99400 Flip-Flops and 141600, where the capacity of 

the Kintex-7 FPGA is 407600 Flip-flops, and 203800 LUTs. Only one processor requires around 24 % of 

Flip-Flops and 69.4 % of LUTS of the total. Thus, a change in the strategy will increase the potential of 

our project in order to emulate more neurons and synapses by maintaining the area resources and power 

consumption down. This is possible if the neural values are stored in BRAMs as it has been done for the 

synaptic parameters. The current version of the system show some advantages compared to another 

approaches which are listed below: 

1. Congestion 

The problem of congestion of data during the process of communication in SNAVA is resolved with the 

help of the synchronous AER system along with the implementation of parallel and serial strategies in the 

distribution of spikes through the network. The mechanism behind this is that, every postsynaptic spike is 
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transmitted serially to all CAMs via the AER bus, which reads the spikes to generate matches within a 

single clock cycle. It should be noted that the mechanism of congestion is not considered in other 

architectures. The saturation of the system will be produced when a large-scale neural activity is 

increased.   

2. Time resolution 

Almost all architectures follow the same trend in the processing of large number of synapses, except for 

the case of Cassidy where the number of synapses are limited. The number of instructions required to 

execute the SNN model varies in accordance with the presence of the presynaptic spikes. Therefore, the 

processor requires more or less instructions to update the neural values. These architectures are efficient 

in terms of number of instructions, however the time-step simulation (1 ms) is not guaranteed. Two 

aspects are guaranteed in the emulation of the SNN models in SNAVA. The first is the step time 

resolution (1 ms) and second is the constant power consumption. This is possible because the processing 

elements (PEs) execute the same number of neurons and synapses at every step simulation irrespective of 

whether there is or not pre-synaptic spike. 

5.6 Improvements in SNAVA: SNAVA+ 

Starting from the analysis of the results of processing timing, area and power consumption of SNAVA 

some bottlenecks were identified regarding area consumption. Some changes and optimizations were 

proposed in previous section in order to improve this factor in the SNAVA architecture, with the ultimate 

aim of occupying less resource, mainly due to LUTs consumption of the FPGA, and therefore be able to 

increase the number of neurons and synapses that can be emulated. From this work is then born 

SNAVA+, the new version of SNAVA.  

5.6.1 Brief description of SNAVA+ architecture  

This short section only aims to briefly present in a purely descriptive way the architectural changes that 

have resulted from SNAVA to SNAVA+. For further detailed information about SNAVA+ can be found 

in “SNAVA+: a large-scale spiking neural network emulation architecture” [14]. 

SNAVA+ intends to exploit the neural multiplexing-time processing or best known as virtualization at the 

maximum. This is because the changes done in SNAVA+ consists of the change the hardware storing 

devices for the neural parameters to support more neurons when compared with SNAVA. In SNAVA, 

several neurons can be implemented in a single Processing Element by using the bank of registers. The 

PE is the arithmetic unit which is mainly in charge of performing neural and synaptic variable processing. 
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Each Processing Element has 7 banks of shadow registers which correspond to the 7 layers of 

virtualization. The implementation of these banks of registers generates a negative impact in the area 

consumption of the FPGA. The positive benefit of this approach is that the neural parameters that can be 

accessed in a single clock which helps to increase the processing speed of the SNN algorithms. In 

SNAVA+ architecture, the virtualization is made by using the Block Random-Access Memory (BRAMs) 

available on the FPGA. Whereby for each neuron is allocated with n words of memory which contains the 

neuronal parameters for that specific neuron (n is programmable by the user according to the model to be 

emulated and can vary from 1 to a maximum of 8 words per neuron) as shown in Fig. 5.19. Therefore, the 

area consumption is decreased, however the processing time is increased since access to neuronal BRAM 

memory requires two clock cycles to read a single memory position. In SNAVA, the maximum number 

of virtual layers per each processor which can be implemented in the target FPGA with 100 processors 

and 100 synapses per processor is 2. The number of neurons that can be emulated by using a single 

BRAM is shown in 5.23. This is because, each Block of RAM in the FPGA consists of 32 bits of data and 

10 bits of address and since every neuron can have maximum 8 BRAM words.  

 

Figure 5.19: The allocation of neural parameters on SNAVA and SNAVA+ 

                            
   

 
       

(5.24)   

 

An important decrement in the consumption of registers and LUTs has been achieved in SNAVA+ by 

removing the shadow registers in SNAVA. Other profit is regarding the number of synapses supported in 
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SNAVA. Besides, a significant increment in the number of synapses per neuron is obtained. This will be 

illustrated in detail in the following sections of this chapter. 

 

Figure 5.20: Structure of the Configurable Processing Element in SNAVA+   

Figure 5.20 illustrates the new structure of the architecture of the Configurable Processing Element which 

includes the neuronal BRAM. The shadow registers have been removed from the Processing Element as 

shown in Fig. 5.21. The implementation of the neuronal BRAMS in the structure of SNAVA+ has 

consequently required several further changes and improvements. The details of the changes made on 

SNAVA to generate SNAVA+ are provided in the Master thesis of Mr. Vito Pirrone [14]. 

 

Figure 5.21 Processing Element data path 
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5.6.2 Implementation and performance 

 In this section, the post-synthesis results of SNAVA+ are shown and are compared with those of 

SNAVA, firstly in terms of area (resource occupation of FPGA)  and secondly in terms of power 

consumption. 

5.6.2.1 Area consumption 

Table 5.15 shows the comparison between SNAVA and SNAVA+ in terms of area consumption. The 

comparison is made considering the same conditions for both the architectures, so it means the same array 

dimension (same number of processing element of the array) and the same number of synapses. 

Regarding the number of neurons, for SNAVA+ it should be considered that for any number of 

virtualized neurons (from 1 to 128) the same area is occupied on the FPGA, because regardless of the 

number of neurons a BRAM 1024-byte x 32-bit  is synthetized for each processing element of the array. 

Table 5.15:  Area occupation of SNAVA+ with different numbers of synapses per Processing Element 

Resource SNAVA 10x10 2 levels of 

virtualization (99 synapses per PE) 

SNAVA+ 10x10 n levels of 

virtualization* (99 synapses per 

PE) 

Available 

Flip-Flops 99487 – 24% 77444 – 19% 407600 

LUTs 171291 – 84% 134400 –  66% 203800 

BRAMs 135 – 15% 213 – 24% 890 

Note: *n can be from 1 to 128 

An important reduction of hardware resources can be obtained by the implementation of the BRAMs to 

store the neural parameters instead of using the bank of registers used for the same, as can be observed 

from the Table 5.15. The percentage in the consumption of Flip-Flops is reduced around of 5%. This is 

because the number of bank registers and instructions were removed from the original Processing 

Element. A detailed study was carried out to implement the instructions that are used with more 

frequency in the description of the SNN algorithms implemented in SNAVA+ [14]. As a consequence of 

this study, several instructions were removed. The best contribution to the new strategy is given to the 

consumption of the LUTs and the consumption of the available resources in the FPGA. Around of 18% in 

the consumption of the LUTs is a gain. This implies that a greater number of synapses can be 

implemented. Evidently, the increment of the BRAMs is visible, but the consumption is not significantly 

when compared the consumption of BRAMs in SNAVA. 

Table 5.16 shows the area occupation of SNAVA+ with different numbers of synapses available per each 

Processing Element of the array. Regarding the number of neurons, for SNAVA+ it should be considered 
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that for any number of virtualized neurons (from 1 to 128) the same area is occupied on the FPGA, 

because regardless of the number of neurons a BRAM 1024-byte x 32-bit  is synthetized for each 

processing element of the array. Note: These results are obtained considering a chip ID of 4 bits, so 

considering a maximum number of 16 interconnected boards  

Table 5.16: Area occupation of SNAVA+ with different numbers of synapses per Processing Element 

Note: *n can be from 1 to 128 

As can be observed in Table 5.16, the percentage in the consumption in the number of LUTs and registers 

is increasing by 3% in the case of 100 synapses per Processing Element with respect to the 

implementation of 50 synapses per PE. If the percentage of consumption is increased by 3% for every 50 

synapses per PE, the possible maximum number synapses that could be implemented in every PE is 500 

by consuming around 90% of the total number of LUTs available in the FPGA. However, the time 

required to synthesize the design in VIVADO increases as shown in Table 5.17. This has prevented to 

implement so far prototypes with larger number of synapses. 

Table 5.17: Synthesis time for the implementation for different number of neurons 

 

 

 

 

5.6.2.2 Power consumption 

The total power consumption of SNAVA+ project is around 1.216 Watts, which can be calculated by 

adding the static power and dynamic power. As it can be observed from Fig. 5.22, the static power is 

around 0.186 W while the dynamic power is around 1.216 W. Regarding the static power would be 

constant for all the array sizes and dynamic power, which varies based on the design. The results of 

power consumption reported in this section were obtained by enabling the settings on VIVADO to 

optimize the power on the design. These options are: 

Resource SNAVA+ 10x10  

n levels of 

virtualization* 

(50 synapses per 

PE) 

SNAVA+ 10x10  

n levels of 

virtualization* 

(100 synapses per PE) 

SNAVA+ 10x10  

n levels of 

virtualization* 

(200 synapses per PE) 

Available 

Flip-Flops 65216 – 16% 77444 – 19% 97824 – 24% 407600 

LUTs 128394 –  63% 134508 –  66% 148774 – 73% 203800 

BRAMs 213 – 24% 213 – 24% 213 – 24% 890 

SNAVA+ 10x10  

n levels of 

virtualization* 

(50 synapses per 

PE) 

SNAVA+ 10x10  

n levels of 

virtualization* 

(100 synapses per PE) 

SNAVA+ 10x10  

n levels of 

virtualization* 

(200 synapses per PE) 

4 hours 17 hours 62 hours 
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1. power opt design 

2. post placed power opt design 

 

Dynamic Power Static power 

1.216 W 0.186 W 

Figure 5.22: Power consumption of SNAVA+ with 10x10 PE array size and 99 synapses per PE unit 

Table 5.18 shows the comparison between SNAVA and SNAVA+ in terms of power consumption. The 

comparison is obviously made considering the same conditions for both the architectures. So, it means the 

same array dimension (same number of processing element of the array) and the same number of 

synapses. Regarding the number of neurons, for SNAVA+ it should be considered that for any number of 

virtualized neurons (from 1 to 128) the same area is occupied on the FPGA, because regardless of the 

number of neurons a BRAM 1024-byte x 32-bit  is synthetized for each processing element of the array. 

Table 5.18: Power consumption of SNAVA and SNAVA + 

Resource SNAVA 10x10  

1 levels of virtualization 

(99 synapses per PE) 

SNAVA+ 10x10 

10 levels of virtualization 

(99 synapses per PE) 

SNAVA 0.649 W 0.922 W 

Ethernet controller 0.039 W 0.043 W 

AER controller 0.249 W 0.251 W 

TOTAL 0.931 W 1.216 W 

 

As it can be observed from Table 5.19, there is an increment in the power consumption of SNAVA+ 

when compared with SNAVA by an amount of 285 mW. The module of SNAVA in SNAVA+ project, 

which contains the configurable processing elements, the sequencer, and other components (for further 

details see [14]) is contributing around of 273 mW more than the SNAVA project. It should be noted that 

the sequencer and the other components maintain the same consumption for both versions (SNAVA and 

SNAVA+). Therefore, the bigger consumption is generated by the Configurable PE unit.  Table 5.20 

shows the consumption of each module of a single Configurable PE in SNAVA module. Evidently, the 

integration of the BRAM block to store the neural parameters in SNAVA+ is contributing to the total of 2 

mW of power per each Configurable Processing Element. 
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Table 5.19: Power consumption of a single Configurable PE in SNAVA and SNAVA +  

Resource SNAVA 10x10 

1 levels of virtualization 

(99 synapses per PE) 

SNAVA+ 10x10 

10 levels of virtualization* 

(99 synapses per PE) 

CAM 0.001 W 0.001 W 

Spike register 0.0001 W 0.0001 W 

Processing element 0.0039 W 0.003 W 

neuronal BRAM  - 0.002 W 

synaptic BRAM  0.001 W 0.002 W 

TOTAL 0.006 W 0.0081 W 

Note: *n can be from 1 to 128 

Table 5.20: Power consumption of a single PE in SNAVA and SNAVA +  

 

Table 5.20 shows the power consumption of SNAVA+ with different numbers of available synapses and 

virtualization level of 10 per each Processing Element of the array. These results are obtained by 

considering the chip ID to be 4 bits, so that the maximum number of boards that can be connected is 16. 

5.6.3 Performance evaluation – Leaky integrate-and-fire 

model 

The computation of the LIF model in SNAVA+ is carried out through two operational phases like in 

SNAVA. The model was described in Chapter 4. The processing phase (phase 1) is in charge of 

computing the neural and synaptic parameters, and the second phase is responsible of making the spike 

distribution through the SNN network. The following performance study is dedicated to analyse the 

Resource SNAVA+ 10x10 

10 levels of virtualization* 

 (50  synapses  per PE) 

SNAVA+ 10x10 

10 levels of virtualization* 

(100  synapses  per PE) 

SNAVA+ 10x10 

10 levels of virtualization* 

(200  synapses  per PE) 

CAM 0.001 W 0.001 W 0.001 W 

Spike register 0.0001 W 0.0001 W 0.0001 W 

Processing element 0.003 W 0.003 W 0.003 W 

BRAM neuronal 0.002 W 0.002 W 0.002 W 

BRAM synaptic 0.002 W 0.002 W 0.002 W 

TOTAL 0.0081 W 0.0081 W 0.0081 W 
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processing speed. This is because the new strategy in the mapping of the neural variables affects the 

performance of the computation of the LIF model in SNAVA+. 

Table 5.21: Neuronal loop subroutines 

NEURONAL LOOP 

Symbol Subroutine Clock cycles 

L N P Load neuronal parameters 2∙N* 

S N P Save neuronal parameters 2∙N* 

M P Membrane Potential 39 

C S Cycles per each synapse (43) ∙S 

S U Spike update 48 

R F Refractory period 5 

N S Neuron save 24 

S E Spikes enable 6 

Note: *N is the number of words in the neuronal BRAM assigned to each neuron in order to store the 

neuronal parameters 

The LIF algorithm consists of 7 subroutines dedicated to compute neural parameters and a loop to 

calculate synaptic parameters. The required number of cycles to execute each subroutine in phase 1 is 

indicated in Table 5.21. The encoding of subroutines contained in the synapse loop is shown in Table 

5.22. 

Table 5.22: Synaptic loop subroutines 

 SYNAPTIC LOOP 

Symbol Subroutine Clock cycles  

S L Synapse Load 3 

S W Synaptic weight 21 

S S Synapse Save 1 

 

Hence it can be formulated an equation that relates the number of execution cycles with the number of 

emulated neurons and synapses by adding the contribution of each subroutine to the total delay. There are 

two equations to compute the number of clock cycles to emulate the LIF model. The first equation (5.25), 

calculate the number of clocks without considering the delay to display the neuronal parameters in the 

monitor, and equation (5.26) considers the monitor delay produced by the visualization of the parameters. 

Without parameters display: 

            SNNNN vvBW NT  431224
                                      

(5.25) 

With parameters display: 
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where: NT and NTD are the total number of clock cycles for the case of discarding the display of the 

parameters in the monitor, and considering the motorization time, respectively, NBWN  is the number of 

neuronal BRAM words per each neuron, Nv  is the number of virtualization, S  is the number of synapses 

per each Processing Element of the array, P is the number of Processing Elements, B is the Ethernet Bus 

width, SD is the number of synapse parameters to be displayed, ND is Number of neuronal parameters to 

be displayed, and BS is the Buffer size. 

The execution time required emulating the LIF model in SNAVA and SNAVA+ is calculated, by 

considering 200 neurons and 50 synapses per neuron, and the results are shown in Table 5.23. In the case 

of SNAVA, equations 5.13 and 5.14 calculate the number of clock cycles for a single step simulation of 

the LIF algorithm. The delay generated by the display of the parameters is not considered in the equation 

5.5, while the number of clock cycles required to display the neural parameters as a Postsynaptic spike, 

and the membrane voltage are considered in equation 5.14. In the case of SNAVA+, the equations 5.25 

and 5.26 are used to calculate the number of clock cycles for the simulation of the LIF algorithm taken 

into account the same conditions from the equations 5.14 and 5.26, for consistency in the comparison 

between SNAVA and SNAVA+. SNAVA and SNAVA+ work under the frequency of 125 MHz which is 

the same clock frequency used by the communication interfaces such as Ethernet communication system 

and AER system, in order to avoid problems of synchronization. 

The distinctive difference between equations 5.13, 5.14 and 5.25, 5.26, is the inclusion of a new variable 

NBWN, which considers the number of BRAM words to store the neural parameters for each neuron in the 

case of SNAVA+. In the presented results, the number of neural BRAM words for each neuron is equal to 

2. Since, it is sufficient to use two words of memory for storing the neural parameters of the LIF model. 

In the case of considering the implementation of the Iglesias and Villa model or Izhikevich in SNAVA+, 

the number of words to store the neural parameters will change according to the requirements of each 

model. The following values were taken for the equations 5.13, 5.14, 5.25, and 5.26: P = 100 processors, 

BS = 32, B = 4, Nv = 2 and ND = 1 to calculate the number of clock cycles NTD. ND implies the 

visualization of the post-synaptic spike and the membrane voltage. 

Table 5.23 shows the execution time required to compute the LIF model in SNAVA and SNAVA+ 

respectively. The calculation of the execution time takes into account the maximum number of virtual 

neurons and synapses per neuron (200 neurons and 50 synapses per neuron) supported by SNAVA. The 

execution time in SNAVA+ is evaluated considering the same number of neurons and synapses in order 

to compare these architectures under the same conditions. As can be seen from Table 5.23, SNAVA+ has 

a penalization of about 6 µs with respect to SNAVA in both the cases, without and with display. 

       NDNSDS
B

BS
PSNNNN vvvBWNTD 








 431224

           

     (5.26) 
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Table 5.23: The execution time in SNAVA and the execution time in SNAVA+ (200 neurons and 50 

synapses) 

SNAVA SNAVA+ 

Without Display delay With display delay Without Display delay With display delay 

13.36 µs 16.56 µs 19.28 µs 22.12 µs 

 

 

Figure 5.23: 1) Execution time for the simulation of 100 LIF neurons and 500 synapses without 

considering the delay produced for the visualization of the parameters in the monitor, 2) the execution 

time taking into account the display delay 

The proposed target in the current version of the system called SNAVA+ is to implement 10 neurons and 

500 synapses per PE. Therefore, the number of virtual neurons is 10 and every virtual layer has 50 

synapses. The proposed target takes into account the results from the previous area consumption analysis. 

Figure 5.23 points out the execution time for the simulation of LIF model in SNAVA and SNAVA+ 

taking into account the proposed target. The bar charts reveal the loss of performance time in SNAVA+ 

when the parameters are sent to the monitor for visualization. The execution time to perform the LIF 

model in SNAVA is around 184 µs without displaying the parameters on the monitor and around 214.4 

µs by considering the delay on the monitor. In both cases the execution of 100 neurons and 50 synapses 
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per neuron is considered (see Fig. 5.23). The time step resolution is less than 1 ms for both cases, even 

though the delay is considered for the visualization of the parameters on the monitor. An important 

improvement is achieved in terms of area consumption by decreasing the processing speed by using two 

clock cycles to access to the neural BRAM.  So this leads to an overhead which does not degrade the 

performance in a striking and significant way. So in the face of positive results in terms of area and power 

consumption, a slight loss of time performance time can be certainly considered a good trade off. 

5.6.4 Comparison with other approaches 

The digital SNN emulators presented and studied in Section 5.5 intends to perform large-scale SNN 

models. Several aspects were discussed regarding the flexibility, high processing performance, low power 

and area consumption in order to obtain an efficient SNN emulator. Some of these architectures try to 

take into account some of the factors mentioned above. However, there are important trade-offs which 

makes it impossible to offer an efficient architecture to emulate this type of SNN models. One of them is 

related to the area consumption and flexibility. SNAVA architecture intends to offer an emulator which 

supports large-scale SNN models by making equilibrium between these two factors. SNAVA offers the 

possibility to emulate different SNN models with different levels of computational complexity, from the 

simple Leaky integrate and fire model to the complex Iglesias and Villa model [4] or Izhikevich[5], and 

keeping the area consumption low. The results obtained in Section 5.5 reveals that SNAVA demands 

large area consumption in the implementation of the neurons. SNAVA+ is created to abate this 

consumption and generate a possibility to increase the number of neurons to be emulated. A significant 

improvement is obtained related to the increment in the number of neurons supported in SNAVA+ at the 

cost of time processing.  The results of the performance evaluation of SNAVA+ indicate that the 

processing speed is minimally decreased. 

SNAVA+ is compared with other approaches in order to clarify the contribution of this work. It is 

important to be noted that not all architectures, which were presented in Section 5.5, give the details of 

the power and area consumption of their implementations. Two of the most relevant works are compared 

with SNAVA+. The first work is implemented in a multiprocessor architecture called SpiNNaker [8]. The 

second work is implemented in a 64 FPGA boards [7]. In the comparison, the first architecture is selected 

to be compared with SNAVA+ due to the relevance of this work. Because this work can emulate a very 

large scale SNN models in a customized architecture. The second work is compared with SNAVA+ in 

order to make it clear that even though the FPGA has the main feature called configurability. This work 

does not exploit these advantages and they create a customized architecture for a specific SNN model. 
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Table 5.24: Comparison of SNAVA performance against other existing approaches 

Projects Power 

consumption 

per processor 

Area 

consumption 

per processor 

Processing 

step time 

Number of 

neurons per 

processor 

and 

synapses 

per neuron 

SNN model 

SNAVA 0.004 W* 994 Flip-Flops 

1416 LUTs* 

1ms 2 

50 

-Izhikevich 

-Iglesias and Villa 

-Leaky-integrate-

and-fire 

SNAVA+ 0.0039 W 774 Flip-Flops 

61 LUTs* 

1ms 10 

20 

-Leaky-integrate-

and-fire 

Spinnaker[8] 41.1 mW 

35 mW 

N/D 1ms 250 

250 

Leaky-integrate-

and-fire 

Izhikevich 

Bluehive[7] N/D 18240 Flip-

Flops 

1ms 1000 

1000 

Izhikevich 

*This results have been obtained from the VIVADO tool report. This tool has many advanced strategies for synthesis 

and implementation to optimize the area and power consumption. 

Taking the data from Table 5.24, the SpiNNaker processor consumes around 41.1 mW and 35 mW for the 

emulation of LIF model and Izhikevich model respectively. Every processor can emulate up to 250 

neurons and 250 synapses per neuron, while SNAVA+ consumes around of 3.9 mW per processor by 

simulating different SNN algorithms. Every processor can emulate up to 10 neurons and 20 synapses per 

neuron. In fact, SNAVA+ can emulate up to 128 neurons but the number of synapses per neuron is 

limited to 1.Therefore, SNAVA+ consumes thirteen times lesser than SpiNNaker processor. SpiNNaker 

can be more efficient than SNAVA+, respect to the synaptic calculation, because SpiNNaker process the 

synaptic parameters when there is a presynaptic spike while SNAVA+ processes all synapses irrespective 

of the presynaptic spike. Therefore, the regularity of the execution of SNAVA+ guarantees the power 

consumption. Hence, there is no significant rise in the power consumption when the SNN is more active. 

But, SpiNNaker cannot guarantee this important factor.  

The area consumption in Bluehive was calculated in Section 5.5.4. According to this data, every 

processing unit consumes around of 18240 Flip-Flops, and it can emulate up to 1000 Izhikevich neurons 

with 1000 synapses per neuron. SNAVA+ consumes around of 774 Flip-Flops to emulate 10 neurons and 

61 LUTs to implement 50 synapses per processing element. The consumption of SNAVA+ is 23 times 

lower than the Bluehive with respect to the consumption of Flip-Flops. This comparison is based on the 

consumption of the Flip-Flops because the strategy followed in Bluehive involves the implementation of 

simple processors which can support the Izhikevich neurons. The processors of Bluehive are in charge of 

performing the neural parameters and synaptic parameters of a neuron only when there is a spike to be 

processed by this neuron, so that, the data to update this neuron are transferred from external memory to 

this processor. Another issue to be discussed is the strategy followed to implement the role of the 
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synapses in Bluehive, which differs from the SNAVA+. This is because Bluehive makes a customized 

connectivity configuration. Therefore, the routers require a simple logic based on LUTs. While SNAVA+ 

offers the possibility to create any topology and the neurons can have different number of synapses. 

5.6 Conclusions 

The flexibility is one the main features of SNAVA and SNAVA+ in terms of easy programmability of 

SNN models. The emulation of three SNN models with different levels of computational complexity has 

been demonstrated. Several ideas were taken into account to design an efficient architecture in terms of 

processing speed and distribution time. Therefore, the bottleneck is now not in the algorithm execution. 

However, the study of the performance of the implementation indicates that there are some remaining 

aspects regarding the area consumption which were discussed in this chapter. The strategy of time-

multiplexing neural computation implemented in this work to emulate more neurons by using the bank of 

registers of CPE has produced large area consumption on the FPGA. If the register banks are being 

replaced by the BRAM, the amount of neurons will be increased by wasting lesser amount of area 

resources. The feasibility to implement this idea has been demonstrated by implementing SNAVA+. 

Here, greater number of neurons is supported by keeping the area consumption low. Another bottleneck is 

generated when large number of the synapses is implemented on the CAMs. This strategy allows the 

encoding of the spikes in parallel to a single pulse, but the area consumption becomes relevant when the 

number of neurons and synapses are increased. The current strategy to decode the spikes is efficient in 

terms of processing time by spending a lot of hardware resources. A possible solution to this problem is 

to change the implementation of CAM to BRAMs. The first benefit of applying this idea is to make the 

connections programmable. Currently, the synapses are recorded in LUTs, and each time the connectivity 

has to be changed the whole architecture has to be re-synthesized. Some of these modifications have been 

applied on SNAVA in order to improve its remaining weak points, so as to create a SNN emulator with 

high performance and low area consumption.  
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6.1 Introduction 

This chapter shows an engineering application on SNAVA as a proof of concept in order to demonstrate 

the potential of SNAVA for processing sensors. This application involves detection of frequency and 

amplitude of a sinusoidal signal by means of the proposed bio-inspired system. A previous version of this 

application was developed on the Ubichip architecture in Chapter 4. There are several aspects, which 

were analysed and discussed in order to successfully detect the frequency of a sinusoidal signal by means 

of a Spiking Neural Network. The proposed system in this work uses the SNAVA architecture in order to 

extend the previous application. Some changes were done in order to detect both frequency and amplitude 

from the original version [1]. SNAVA offers several advantages in comparison with the Ubichip 

architecture. One of these advantages is related to high processing speed and spike distribution. This 

feature of SNAVA makes it feasible for the implementation of applications which involve processing 

time-varying signals, where the real time execution (1 ms time step resolution) of the emulator is 

required. In the available KC705 (based on Xilinx Kintex7) FPGA development board. SNAVA can 

emulate 200 neurons and 50 synapses per neuron much lower 1 ms time step resolution. Considering that 

the neuron can be modelled as Leaky Integrate-and-Fire (LIF) model, Izhikevich [2] or Iglesias and Villa 

model [3]. Operations such as integration and differentiation are some which are being done in circuits 

which work with time dependent signals. The various processes happening in the nervous system are 

based on these time dependent functions. One example of these functions is the process carried out in the 

ear, which responses to derivative signals. The work reported in [4], mimics these types of functions to 

carry out the audio signal processing by means of LIF model. The range of frequencies for this 

application is defined from 200 Hz and 7000 Hz. These types of functions also can be applied on SNAVA 

to perform various applications associated with the feature extraction of the sound. The current ongoing 

application is inspired on the function of the cochlea [5]. Preliminary results are presented in the 

Annexure D. 
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6.2 Bio-inspired system description 

A bio-inspired system is proposed in this work in order to achieve the detection of the amplitude and 

frequency of a sinusoidal signal. Regarding the detection of the amplitude of the signal, the peak 

amplitude of this signal is estimated by means of the Spiking Neural Networks, while the frequency is 

detected by the bank of filters.  

The proposed bio-inspired system is composed of three modules, which are: 

1. Bandpass filter banks  

2. Spike coders 

3. Digital Multi Processor (DMP)/ Amplitude Classifier system 

 

Figure 6.1: Amplitude and Frequency classification by means of bio-inspired system 

The functionality of the bio-inspired system is as follows: the bio-inspired system takes information from 

the external sources by using sensors (MEMS, microphone, etc.). The output signal from the sensors is 

fed to the Bank of filters block. Here, each band-pass filter bank is centered to a particular frequency. 

Every spike coder processes the input signal, which is provided by the corresponding bank filter, 

translating the continuous signals into equivalent spikes. In other words there is a one-to-one connection 

between the each channel of the filter bank and the spike coder. Hence the output spikes from every spike 

coder block correspond to a certain frequency, as shown in Fig. 6.1. The spike coder is working on the 

same principle of operation (delta modulation) as encoders that were used in the previous work [1]. The 

spikes generated by the spike coders are sent to the Spiking Neural Network through the Address Event 

Representation AER bus [6]. The SNN network is divided into several groups of neurons, and each group 

of neuron indicates the amplitude of the input signal by processing the spikes received from its spike 

coder and the frequency of the signal is detected mainly by the filter bank. The firing of a particular group 

of neurons indicates which channel of the filter bank is active. 
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In the previous application, the time-to-space technique was proposed in order to process higher input 

frequencies by the Ubichip. This technique implies that the spikes, which are generated by the digital 

coders, are stored in a FIFO, while Ubichip is in its processing phase. These spikes are only transmitted to 

the Ubichip, when Ubichip is in its phase of distribution. As it can be observed in Fig. 6.2, the density of 

the train of spikes is variable. Indeed the input signal is asynchronous with respect to the phases of 

operation (processing and distribution) of Ubichip. This produces that the number of spikes stored in the 

FIFO varies according to the factors mentioned above for every simulation cycle. A new method to solve 

the problem is proposed in this work in order to have the correct number of spikes every emulation cycle 

independently of the density of the spikes and the synchronism between the processing phase and the 

input signal. 

 

Figure 6.2: Phases of operation of Ubichip and spikes generated by the digital coders 

The new method consists of sending the spikes to the SNN network only when the input signals have 

been processed by the spike coders for the first quarter after detecting the zero crossing, as shown in Fig. 

6.3. In other words, the input signal will be processed by the spike coders, while SNAVA is in its 

distribution phase. When the spike coders finish processing their input frequencies, these spikes will be 

transferred to the SNAVA to resume its processing phase. Therefore, SNAVA can process a single 

sample of each coder every processing cycle.  Only the first quarter is processed by the SNN network in 

order to determine the peak amplitude of the input signal.  

 

 

 

 

 

 

Figure 6.3: Phases of operation of SNAVA with respect to the input signal  
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The spike coder generates an enable_tx signal to indicate to the AER module that it has processed the first 

quarter of the signal after zero crossing detection, as shown in Fig. 6.4. Therefore, the spikes can be 

transferred to the amplitude classifier. The AER module can transfer these spikes to the amplitude 

classifier only when the SNAVA is in its distribution phase. After SNAVA finishes the processing of 

these spikes, it enters in its distribution phase. During this phase, it will wait for processing the next 

spikes.  

 

Figure 6.4: Spike coder  

6.3 Amplitude detection 

The SNN network consists of several groups of neurons which are in charge of detecting the amplitude of 

the signal. Each group of neurons is connected to a spike coder block that corresponds to a certain center 

frequency Fc. This group of neurons can be allocated as an array in SNAVA where each array element 

represents the group of neurons. This is feasible because of scalability of the SNAVA architecture. In this 

application, the degree to which SNAVA has to be scaled will be a function of the number of frequencies, 

as shown in Fig. 6.1. 

The SNN network intends to indicate the amplitude of the input signal. It is important to be noted that the 

current version of the bio-inspired system only includes the spike generator and the SNN network to 

detect the amplitude at a certain frequency. Since the design, debugging and testing of the bank of filters 

demands more time it increases the overall development time of the bio-inspired system. Therefore, it has 

been considered that the signal fed has already been filtered and the spike coder generates spikes that 

have to be sent to the SNN network as in Fig. 6.3. As it can be observed from Fig. 6.3, a spike train is 

generated by the digital spike coders as in [7] the encoding a sinusoidal waveform. The VHDL code is 

provided in the Annexure E. In [7] the analog coders generate spikes with sign. The negative spikes are 

translated to positive to be processed by the DMP. This is because the DMP was designed to process 

positive spikes. In order to determine the peak amplitude of the signal filtered by the filter bank only the 

first quarter of the signal is considered (i.e. the first 25% of the signal) after detecting the zero crossing by 



Chapter 6 Proof-of-concept application on SNAVA 

 

137 

 

the spike coders. This is shown in Fig. 6.3. Therefore, only the spikes generated by digital coders for this 

time are sent to the SNN network to indicate the peak amplitude of the signal after the detecting the zero 

crossing. The digital spike coder generates spike trains where the density of the spike train is in a function 

of slope of the input signal. So that the information regarding the amplitude is given by the number of 

spikes generated by the spike coder, while the time spacing between the spikes which were generated by 

the spike coders, is the information about the frequency of the signal. Since this information is indicated 

by the bank of filters, the space between spikes are not considered. However, the samples are preserved 

since these samples give information about the amplitude of the signal. To make sure there is no loss of 

samples, every sample is being mapped to a particular neuron and this is done till the end of one quarter 

cycle of the sinusoidal wave. Once the first quarter cycle is processed, the samples preserved in a FIFO, 

are immediately sent to the neurons of the amplitude detector block, which is shown in Fig 6.5. Here, the 

first sample is mapped to Neuron 1 and the next sample to Neuron 2 and so does the pattern continues till 

the end of the first quarter cycle. The number of samples that are being preserved solely depend on the 

number of neurons that are available in the input layer (layer 1) as it is shown in Fig 6.5.  

6.3.1 SNN model description 

The spiking neural model used in this application is modified from the original model proposed by 

Iglesias and Villa [3], which was already described in Chapter 2, in order to obtain a simple LIF model. 

There are some reasons to use this model in this application. One of these reasons is that the LIF model is 

suitable for applications which involve processing of time-varying signals [2, 8]. The model proposed by 

Iglesias and Villa models the neuron as LIF model and describes the mechanism of plasticity in the 

synapses. In this application, the plasticity of the synapses are not used.   

6.3.1.1 Membrane Potential 

  (   )        (    ( ))((  ( )       ))     ∑   ( ) 
                (6.1) 

 

 

Where: 

 1iV t   refers to the membrane potential of the neuron 

      corresponds to the value of the membrane resting potential  

Si(t) is the spike generated by the neuron 

      
  
     is the time constant associated to the current of leakage of the neurons 
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 ji t  is the postsynaptic potential (excitatory or inhibitory) 

The generation of the spike in the neuron Si(t) is a function of the membrane potential Vi(t) and a 

threshold potential  , such that Si(t)=H(Vi(t)-  ), where H is the Heaviside function, H(x)=0: x<0, 

H(x)=1:x>0.  

6.3.1.2 Synaptic strength 

The post-synaptic potentials  ji t  is a function of the state of the pre-synaptic unit Sj, post-synaptic 

potential in the synapses P1,2(t), where the postsynaptic potential P1,2(t) is fixed for the particular type of 

synapse (excitatory or inhibitory). The post-synaptic potential is expressed by the following equation: 

 

In the previous application [1], which was developed to detect the frequency level, the value of the 

synaptic and neural parameters of the SNN model was chosen artificially. Some of these values do not 

correspond to real time values with which the biological neuron operates. For this application, the values, 

which are not the same as proposed in the original model, are the post-synaptic potentials P1 and P2. 

Where the postsynaptic potential P1,2(t) is fixed for the particular type of synapse (excitatory or 

inhibitory). From Table 6.1 one can see that the values of P1 and P2 was selected very high, around of 10 

times more than the original values, since the number of synapses per neuron and the number of neurons 

are very small (100 neurons and 8 synapses per neuron) in comparison with the values being proposed for 

the simulation of 10000 neurons with 300 synapses per neuron).  

Table 6.1: Parameter list of the main variables used for leaky integrate-and-fire neurons 

Variable Original 

values 

Modified 

values 

Hexadecimal 

representation for 

the modified 

values 

Short description 

P1 0.84 mV 10 mV 03E8 Excitatory Post synaptic potential   

P2 -1.40 mV -20 mV F830 Inhibitory Post synaptic potential   

Vrest -78 mV -78 mV E188 Membrane resting potential  

 i   -40 mV -40 mV E1BA Membrane threshold potential  

trefract 3 ms 3 ms 0003 Absolute refractory period 

 
mem   15 ms 15 ms EF7D Membrane time constant  

 

   (   )    ( )      ( )   (6.2) 
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The decimal values of the synaptic parameters and neural parameters were converted to hexadecimal 

values by using the expression (6.3), every increment in the value of the synaptic and neural parameters is 

represented by 1 µV. 

            (     )   

                  ((  )        )         

 

(6.3) 

Where: V is the synaptic or neural value in decimal to be converted in hexadecimal value. For instance, 

the value of excitatory post synaptic potential P1 (10 mV) is converted in hexadecimal by using the 

expression (6.3), its the corresponding value in hexadecimal is 3E816.  

The expression 6.4 is used for calculating the time constant associated to the current of leakage of the 

neurons 

     ( 
   )   

 
      

     (( 
    )    

 
  )

  

        

(6.4) 

 

Where: N the maximum number of bits to represent the time constant, and 
mem  is the membrane time 

constant. 

 

6.3.2 Amplitude classifier 

The selected topology consists of 50 neurons distributed in two layers per frequency band. The 

description of the topology was explained in Chapter 4.  The same mechanism is used in this application. 

The only difference that it is applied to detect the amplitude whereas the same topology used in Chapter 4 

detects the frequency of the input signal. This topology was proposed in order to process the spikes that 

are mapped from time to space by using the time-to-space converter (see Chapter 4). The number of 

spikes is a function of the value of amplitude of the input signal, while the information of the frequency is 

given by the inter-spike time. Therefore, the variation in the frequency allows to store different number of 

spikes, while the DMP (Ubichip) is in its processing phase. So that different levels of frequencies can be 

detected. The value of the amplitude is fixed to a certain value. In SNAVA, the change in the amplitude 

allows to have different number of spikes, which are stored in the FIFO of the time to space converter, by 

fixing the value of the frequency. By applying these spikes to the SNN topology, different levels of 

amplitude can be detected. 
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The number of bands to be implemented in SNAVA depends mainly on the capacity of the FPGA and the 

number of levels of amplitude to be detected by means of the SNN network. The current implementation 

of SNAVA has the capacity of 2 frequency bands by using a single virtual layer. The input layer has 40 

neurons which are responsible to detect the input spikes and the second layer has 10 neurons which 

indicate the amplitude level.  

6.4 Experimental results 

The results presented in this section show the performance of the current version of the bio-inspired 

system which only includes the spike generator and the SNN network to detect the amplitude at a certain 

frequency. The filter bank has not been implemented in the current version of the bio-inspired system due 

to time constraints. The above work would be carried out in the future. Therefore, it has been considered 

that the signal fed has already been filtered as shown in Fig. 6.4. In this experiment, the signal provided 

by the function generator is fed to the Analog to Digital Converter (ADC). The ADC module is embedded 

in the AMS101 Evaluation Card [9]. This ADC is in charge of translating the continuous signals into 

equivalent digital words of 16 bits and the rate of conversion is 1 Msamples/s. All these modules have 

been implemented on two Xilinx KC705 development kits. The ADC was connected to one of these 

boards, as shown in Fig. 6.5. The implementation of the coders was done in a single board. This is 

because they can act as the input of the system network. The SNN network is implemented in another 

board in order to exploit the maximum capacity of the FPGA to support maximum number of neurons. 

These two boards are connected a ring topology [6] through the AER in order to distribute the spikes 

through the network. The chip id 1 indicates the board in which the spike coders have been implemented 

and chip id 2 is the board in which the SNN network is implemented as shown in Fig. 6.5. 

 

Figure 6.5: Implementation of the bio-inspired system 



Chapter 6 Proof-of-concept application on SNAVA 

 

141 

 

Our experiments were done by analysing three frequencies, which were generated by the function 

generator, with different amplitudes ranging from 0 to 1 Volt. The three frequencies proposed are 20 Hz, 

200 Hz, 2000 Hz with five different voltages each one 100 mV, 300 mV, 500 mV, 700 m V, and 900 mV. 

As mentioned earlier, every spike coder is connected to one group of neurons. These spike coders were 

programed to perform the detection of zero crossing. Besides, these coders generate ‘n’ number of spikes 

for every 100% of the amplitude of sinusoidal signal. However, in this application only the 25% signal is 

processed by the digital coders in order to achieve the detection of the amplitude by means of SNN (see 

Fig. 6.3). As it was mentioned above, the SNN network consists of 50 neurons in each group. This group 

has two layers; the first layer (40 neurons) is in charge of processing the spikes produced by the spike 

coders by using the time to space technique. Therefore, it is necessary to calculate the number of spikes 

produced by the spike coder in the first quarter of the signal in order to allocate 40 spikes in 40 neuron 

input layer, to indicate the maximum amplitude voltage which corresponds to 1 V. The 10 neurons output 

layer indicate the level of the amplitude, each neuron indicates an increment of 100 mV. The spikes are 

produced by the digital coder are in the same way that the spikes produced by the APP (see Chapter 4). 

The calculation of the maximum inter-spike time Tspikemax indicates the time between spikes. The number 

of spikes produced by the first quarter is in function of the time T1/4 and the Tspikemax as is indicating by the 

equation 6.5. The number of spikes for the first quarter is calculated as follows: 

                    
    

      (   )
 (6.5) 

 

The process to obtain the Tspikemax was described in Chapter 4, so that substituting the following values: A 

= 1 V, NB = 8 bits, and the input frequency fin = 20 Hz in the equations 4.4 and 4.5, the Tspikemax is 

calculated. 

                    
       

       
     spikes  

 

The maximum number of neurons in the input layer is 40. Therefore, every 5 samples are processed by 

the spike coders in order to obtain 40 spikes when the amplitude is 1 volt, where these samples are 

provided by the ADC in every 1 µs. The procedure to calculate the maximum number of spikes which are 

generated by the first quarter was applied to 3 different frequencies, and tabulated in Table 6.2.This table 

summarizes the values obtained taking into account the same data except for the value of the frequency of 

the signal fin. 
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 Table 6.2: Number of samples for three different frequencies in the first quarter of the signal 

 

 

 

According to the SNN topology proposed in this work, every block of neurons is composed by two 

layers, the first layer contains 4 neurons and the second layer contains 1 output. The output of each 

neuron of the second layer indicates an increment of 100 mV. Table 6.3 shows the number of input spikes 

which are required to be mapped in the input layer, in order to detect the increment of 100 mV in each 

output neuron. The allocation of the input spikes in the input layer is based on the time to space 

translation. This technique was explained in Chapter 4.  

Table 6.3: Input layer neurons to detect the peak of amplitude from 0 V to 1 V 

 

The number of spikes produced by the spike generator, by considering the range from (20 Hz to 2000 

Hz), reveals that the value of the frequency of the input signal does not have any incidence in the 

calculation of the number of spikes for different frequencies as shown in Table 6.4 

 

As it mentioned in the beginning of this section, 3 frequencies have been used to test the bio-inspired 

system (see Fig. 6.6). Every frequency was tested by using one group of neurons from the available two. 

This is because the system has only one ADC, which is connected to the spike coders. Every signal was 

introduced to the system for 300 cycles of simulation. Every cycle of processing phase in SNAVA lasts 

for 8.68 µs by executing the leaky integrate-and-fire model. This time was calculated by using the 

expression 6.6.  

 

Frequencies fin T1/4 Tspikemax Number of spikes 

20 Hz 12.5 ms 62.41 µs 200 

200 Hz 1.25 ms 6.241 µs 200 

2000 Hz 0.125 ms 0.6241 µs 200 

Voltage  Number of input spikes Voltage Number of spikes 

1000 mV 40 500 mV 20 

900 mV 36 400 mV 16 

800 mV 32 300 mV 12 

700 mV 28 200 mV 8 

600 mV 24 100 mV 4 

 NDNSDS
B

BS
PSNN vvT 








 3085  

(6.6) 
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Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses 

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the 

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is 

the Buffer size. The following values were considered in the calculation of a single processing phase in 

SNAVA. Nv =1, S= 8, P = 100, BS = 32, B = 4, SD = 0, and ND = 1. The value of ND implies the 

sending of the neural parameters to be displayed on the monitor. In this case, the membrane voltage and 

the post-synaptic spike can be observed. This expression gives the number of clock cycles to execute the 

LIF model, so that this value has multiplied by the value of the clock system which is 125MHz. 

Table 6.4: Number of spikes produced by the spike coder for different frequencies (20Hz-2000Hz) @ 

1Volt 

  

f (Hz) fspike(max) (Hz) Tspike(max) (s) T 1/4 (s) Number of spikes 

20 16028.57 6.23E-05 0.0125 200.3 

30 24042.85 4.15E-05 0.0083 200.3 

40 32057.14 3.11-05 0.0062 200.3 

50 40071.42 2.49E-05 0.005 200.3 

60 48085.71 2.07E-05 0.0041 200.3 

70 56100 1.78E-05 0.0035 200.3 

80 64114.28 1.55E-05 0.0031 200.3 

90 72128.57 1.38E-05 0.0027 200.3 

100 80142.85 1.24E-05 0.0025 200.3 

200 160285.71 6.23E-06 0.0012 200.3 

300 240428.57 4.15E-06 0.00083 200.3 

400 320571.42 3.11E-06 0.00062 200.3 

500 400714.28 2.49E-06 0.0005 200.3 

600 480857.14 2.07E-06 0.00041 200.3 

700 561000 1.78E-06 0.00035 200.3 

800 641142.85 1.55E-06 0.00031 200.3 

900 721285.71 1.38E-06 0.00027 200.3 

1000 801428.57 1.24E-06 0.00025 200.3 

2000 1602857.14 6.23E-06 0.0005 200.3 
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Figure 6.6: Amplitude detection of the input signal (300 mV @ 20Hz) 

 

Figure 6.6 shows the output of the group of neurons by enabling the frequency of 20 Hz and the 

amplitude of 300 mV. As it can be observed from the Fig. 6.6, the output neuron 4 is indicating that the 

amplitude is around 300 mV. But theoretically, neuron 3 must indicate the amplitude value as 300mV. 

One of the possible reasons to justify this deviation in the neuron number is due to noise existing in the 

conversion of the ADC of the input signal at low frequencies (20-200Hz). The maximum value of the 

noise at low frequencies is around of 40 mV, and the value of the threshold of the spike coder is 30mV. A 

similar test was being done and for certain cases the results were coinciding with the theoretical values 

and in some it was not. The summary of the series of experiments the network underwent has been 

tabulated in Table 6.5.  
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Table 6.5: Amplitude and frequency detection for 3 different frequencies 

{This summarises the results obtained by the detection of 3 different frequencies (2 Hz, 200 Hz, and 2000 

Hz) with 5 different voltages each one (100 mV, 300 mV, 500 mV, 700 m V, and 900 mV).} 

Frequency Amplitude Output neuron 

20 Hz 100 mV 1 

 300 mV 4 

 500 mV 5 

 700 mV 7 

 900 mV 9 

200 Hz 100 mV 1 

 300 mV 4 

 500 mV 6 

 700 mV 8 

 900 mV 9 

2000 Hz 100 mV 1 

 300 mV 3 

 500 mV 5 

 700 mV 7 

 900 mV 9 

 

6.5 Conclusion 

The bio-inspired system for processing the information from the multiple-input sensor is presented in this 

work. The amplitude and frequency detection application was implemented by using this bio-inspired 

system. The proposed system extracts the frequency of the input signals by using a bank of band-pass 

filters. Therefore, the information of the amplitude is given by the number of spikes that are generated by 

the coders in the first quarter cycle of the signal after the detection of zero crossing. The detection of the 

amplitude of the input signal was achieved successfully. 

 

The results presented in this chapter were obtained by running the simulation for 300 cycles and keeping 

the same input signal during the whole simulation. A future testbench will include the evaluation of the 

system on real time emulation, where the amplitude will change during the simulation in order to observe 

the transitions in the change of the amplitude. The current version of the software which allows the 
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displaying of the neural activity suffers for some limitations, in particular to display the simulation of the 

SNN on real time (1 ms step time resolution).  
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Conclusion and ongoing work  

 

  

 

 

 

7.1 Conclusion 

7.2 Ongoing work 

References 

 

This chapter presents the conclusion as well as the ongoing work. The conclusion gives details about the 

observations, the original contributions and issues in the development of the bio-inspired system to 

emulate large-scale SNN models efficiently. The ongoing work is dedicated to the development of a 

sound application implementation which based on the onset detection. This application is inspired by the 

functionality of the cochlea. The preliminary results of this implementation are provided in the Annexure 

B. 

7.1 Conclusion 

 

In this thesis, several techniques and methodologies were used for the development of a bio-inspired 

configurable system for efficient emulation of Large-scale SNN models in FPGA devices. The term 

efficient refers mainly to the factors to be considered in the Large-scale SNN emulation in compact 

digital devices. These factors are high processing speed, high interconnectivity, low area and power 

consumption. In addition to these factors, the bio-inspired system was designed to take maximum 

advantage of configurability a main feature offered by FPGAs . Therefore, this bio-inspired architecture 

intends to offer an interesting development tool to support different SNN models by exploiting the re-

configurability of the FPGA and minimizing implementation time. 

The methodology proposed in this work consisted of two phases in order to achieve the configurable SNN 

emulator. The first phase was dedicated to the debugging and commissioning of the complex prototype 

called Ubichip which was proposed in the PERPLEXUS project [1]. These tasks have consumed a 

significant amount of time and effort because large number of errors were detected and solved. During 

this period of time, several SNN models were simulated in Ubichip in order to verify its performance. 

Also, the development of a data interface was done in order to provide sensory information to the Ubichip 

from an analogue bioinspired pre-processor. This gave an opportunity for the implementation of an 

application which involves the detection of frequency of a sinusoidal signal by means of spiking neurons. 

The value of the neural and synaptic parameters involved in the SNN algorithm used in this application 
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was analysed and fixed to determine the right measures to assess that the network activity corresponded 

to desired behaviour in the application. Many tests were carried out to achieve successful implementation. 

The configurability of Ubichip has helped in the easy implementation of different algorithms in relatively 

short time. The second phase was dedicated to the development of the SNAVA SNN emulator and also to 

the development of proof-of-concept sensing applications. The use of modern FPGAs requires the 

knowledge of new software tools which synthesize and implement the design in an optimized manner. 

Several technical issues regarding the implementation of SNAVA in Kintex-7 FPGA were attended. 

These include the timing delays. These important delays must be taken into account in the design of any 

digital system that is implemented in new FPGA technologies, because they work at high frequency 

clocks. 

From this point, several original contributions have been made. Firstly, the performance of the Ubichip 

was quantified and several ideas were obtained from these results. The design of SNAVA takes into 

account the bottlenecks of Ubichip. Thereby, the contribution is given by the optimal resource allocation 

in the FPGA. One of these resource allocation is regarding the memory system. Another important 

contribution is the development of customized instructions in order to increase the performance of the 

processing system. Therefore, SNAVA provides several features in order to implement different SNN 

model for different applications: 

- Multi-model support 

- Different number of synapses per neuron 

- Connection between neurons is point to multi-point  

- Virtual neuron support 

The SNAVA architecture has been compared with other state-of-the-art SNN digital emulators. A 

distinguishing factor of our architecture is the time-driven processing, in contrast with event-driven 

processing of most digital implementations. Although event-driven may be more efficient in processing 

time, it splits from the real-time biological principle as it is very inconvenient (and virtually impossible) 

to model local noise sources, as this would require continuous event processing. The good point, and also 

the limitation of the time-driven architectures is that they can faithfully emulate analogue neurons 

(artificial or biological) provided the processing time step is kept small enough. In this direction, the fact 

of using simple and time-multiplexed processing elements confers a distinguishing advantage compared 

with other approaches for network scalability. 
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7.2 Future work 

The available SNAVA prototype is being tested to support various neural models. Hence SNAVA is now 

being used for the development of the onset detection system proposed in [2]. The onset detection system 

is an application that determines the sudden changes or the beginning of an acoustic signal. In other 

words, the functionality of the human middle ear i.e. the cochlea is tried to be imitated using the SNAVA 

architecture. This application was initially done in the simulation level using MATLAB by the Prof. 

Leslie Smith team from University of Sterling, Scotland. The future work aims to the implementation of 

the same application using a hardware platform. The preliminary results are obtained and discussed in 

Annexure B of this thesis. 

There is a remaining point that has to be resolved is the area consumption in SNAVA+. This consumption 

is due to the implementation of large number of synapses. The current approach requires a large amount 

of hardware resources. Therefore, there must change in the strategy in order to avoid unnecessary 

consumption of hardware. The possible method to save the area is to build a system with routers. The 

current approach in the connection is point to multipoint. Therefore, the flexibility is being reduced 

because these routers make the connections point to point.  

Also the modelling the delay in the dendrites and the axon is a remaining work. Many implementations 

do not take them into account either, but this is very important aspect since in the biological neuron such 

delays present in the dendrites and axon are supposed to play a relevant role. Hence in order to realize a 

more realistic application in SNAVA this modification has to be done which will also improve the 

performance of SNAVA.  
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Set of instructions of SNAVA 

  

 

 

 

A.1 Introduction 

A.2 Operation of the sequencer 

A.3 Instructions classification and formats 

A.4 Algorithm structure  

A.5 Architecture functional 

A.6 Sequencer register mapping   

 

A.1 Introduction 

This annexure describes the operation of the SNAVA sequencer, the format and classification of its 

instructions, the algorithm structure and finally the mapping of the registers of this sequencer.  

 

Figure A.1: Architectural Overview of SNAVA 
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The sequencer controls the program flow of computing the Spiking Neural Network algorithms. Several 

algorithms can be performed by SNAVA, under the condition that the communication between neurons is 

represented by spikes. This is possible because the instructions to execute the algorithm are stored in the 

Block of RAM. Only changing the memory program different SNN algorithms can be simulated. This 

represents the main feature of SNAVA called programming flexibility. The sequencer read the 

instructions from this BRAM and decoded it to indicate the operation to be executed by the ALU of the 

Processing Element (PE) when required. As it can be observed in Figure A.1, the sequencer is a single 

block that is external to all Configurable Processing Elements. This block is responsible for fetching and 

decoding the instructions stored in a block of RAM, broadcasting the instruction to be executed by the PE 

array, executing the instructions specific for the sequencer itself, and provides synapse count to the spike 

register and synaptic BRAM of the PE to deliver the right data to the PE. The details of these functions 

will be explained in the next sections. 

A.2 Operation of the Sequencer  

The sequencer provides two phases of operation, the processing phase (phase 1) and the spike 

communication phase (phase 2). In phase 1, is used for the general parallel execution in the PE array. The 

sequencer executes instructions and controls the execution of the PE array. After every cycle of synapse 

and neuron dynamics computation, the generated output spikes have to be transmitted by the AER 

module to all the neurons inputs by means of the AER bus [1]. During phase 2 the sequencer stop its 

operation, only the sequencer resumes its processing phase when the AER module finish its spike 

communication distribution.  

In Figure A.2, a time diagram shows the handshake signals. The default sequencer operation is in 

processing phase, so after the system reset, it operates in phase 1. When the sequencer executes a 

SpikeDis instruction, it enters the halt state, and sets the eo_exec signal, indicating the phase 2 starts. The 

AER module perform the distribution of the spikes through the AER bus, when this module finishes it 

sets the ei_exec signal. This signal is read by the sequencer to resume its processing phase. 

 

Figure A.2: Handshake sequencer signals for change of the operation mode 
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A.3 Instruction classification and formats 

The sequencer instruction set includes the ALU-related and the control-flow instructions. These two main 

classes of instructions are distinguished depending on their purpose:  

a) Flow control: These instructions determine the program sequence and they are executed by the 

sequencer. Some of these instructions are transmitted to the PE array, and every PE has the logic to 

perform customized instructions in combination with the operation of the sequencer in order to increase 

the processing speed in the computation of the SNN algorithms. 

b) Data processing: These are ALU-related instructions to be executed by the PEs. These instructions are 

broadcasted to the PE array.  

- Set of instructions of the sequencer – Flow control  

Within each class, the instructions that require the same control line can be joined in groups, as shown in 

Table A.1. There are 9 groups of instructions related to the operations carried out in the ALU of the PE, 

and 10 group of instructions related to the sequencer operation in order to control de flow of the 

processing of the SNN algorithms.  

Table A.1: Sequencer instruction group A/S: ALU-related/Sequencer 

Instruction  group Class Description 

NOP A No operation 

REGISTERS A ALU register operation 

ARITHMETIC A ALU arithmetic operation 

LOGIC A ALU logic operation 

MOVEMENT A ALU register transfer 

CONDITIONAL A Disable or enable of ALU registers 

FLAGS A Flag set or reset 

RANDON A Pseudorandom number operation 

STORESP A Data load from the synaptic BRAM to the ALU registers 

STOREPS A Data store from the ALU registers to the synaptic BRAM 

STOREB A Data transfer from the buffer to the CPU monitor through the 

Ethernet bus  

LOOPS S Start loop. Counter setting of the synapses 
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LOOPN S Start loop. Counter setting of the virtual layers 

ENDL S End loop. Counter decreasing for LOOPS and LOOPN 

GOTO S Unconditional jump instruction 

GOTONL S Conditional jump instruction.  

RET S Return instruction 

HALT S Halt instruction 

SPKDIS S SPKDIS instruction for the AER module  

READMP S Read memory pointer from the BRAM instruction 

RST_SEQ S Reset sequencer 

 

Almost all the instructions executed by the sequencer require a single cycle except for the multiplication 

operation which requires 2 cycles. In certain instructions like the GOTO, RET, LOOPS, LOOPN, ENDL 

and READMP the pipeline has to be broken as the data to be distributed is also to be fetched from the 

BRAM. Only 2 clock cycles are required to resume the pipeline operation.  

Figure A.3 shows the format of the instructions. These instructions have been defined according the 

function that performs. As it can be observed from Figure A.3, only three of the instructions require 2 

byte, the remaining instructions require 11 bits.  

 

Figure A.3: Instruction formats. GOTO, READMP, LOOP and other instructions 

A brief explanation about the instructions is provided below 
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- GOTO: the field of the address indicates the position of the BRAM to be read by the 

sequencer when is required. The length defined in this architecture is the 10 bits. 

- READMP: the field of the address refers to the memory position of the constants which are 

allocated in the BRAM instructions. 

- LOOP: the LOOP instruction includes LOOPS and LOOPN, the function of each loop will 

be explained in the following section.  

- OTHER: The format of the default instructions linked with the sequencer only need the 

specification of the opcode, while the ALU instructions require the position of the bank of 

registers (from 1 to 7) to execute the instruction. The details of the format of the ALU 

instructions will be explained in the next section. 

 

- PE instructions – Data processing 

Some instructions of SNAVA were designed in order to increase the processing speed in the algorithm 

execution. As it was indicated above, almost all of the following instruction requires a single clock cycle 

to be executed, except for the multiplication. This instruction requires 2 clock cycles. Table A.2 shows 

the instructions which are processed by the ALU. 

• NOP: it does not perform any operation.  

• LLFSR reg: loads in the selected active register the 16 MSB of the  64-bit Galois Pseudo 

random number generator 

• LOADSP: loads the synaptic parameters of the current virtual layer from the synaptic 

BRAM to the active register bank. 

• STOREB: the monitor buffer contains the values of the register accumulator and the 

register 1 of each PE. All the monitor buffers of the array are read by the Ethernet user side 

when the sequencer executes the STOREB instruction. The STOREB instruction is used 

only when the user wants to send parameters to be displayed on the monitor. These 

parameters are send to an external CPU (external interface) via Ethernet. 

• STORESP: saves the synaptic parameters of the current neuron from the active register 

bank to the synaptic BRAM.  

• RST reg: resets to 0 the content of the selected active register 

• SET reg: sets to 1 the content of the selected active register 

• SHLN n: operates a left shift of n positions on the accumulator. The last shifted bit is saved 

in the carry out register 

• SHRN n: operates a right shift of n positions on the accumulator. The last shifted bit is 

saved in the carry out register 
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• RTL: operates a left shift of 1 position on the accumulator. The last shifted bit is saved in 

the carry out register 

• RTR: operates a right shift of 1 position on the accumulator. The last shifted bit is saved in 

the carry out register 

• INC: increment 1 to the accumulator. 

• DEC: subtracts 1 to the accumulator. 

• NEG reg: copy in the accumulator the content of selected register, changing its sign. 

• ADD reg: sums the selected register with the accumulator. The result is stored in the 

accumulator. 

• SUB reg: subtracts the value contained in the selected register from the value contained in 

the accumulator. The result is stored in the accumulator. 

• MUL reg: multiplies the selected register with the accumulator. The 16 bit result out from 

the  actual 32 bit result is stored in the accumulator. The result is represented by unsigned 

format. 

• UNMUL reg: multiplies the selected register with the accumulator. The 16 bit saturated and 

signed result is stored in the accumulator. 

• AND reg: performs a logical AND between the selected register and the accumulator. The 

result is stored in the accumulator. 

• OR reg: performs a logical OR between the selected register and the accumulator. The 

result is stored in the accumulator. 

• INV reg: performs a logical NOT on the selected register and the stores the result in the 

accumulator.  

• XOR reg: performs a logical XOR between the selected register and the accumulator. The 

result is stored in the accumulator. 

• MOVA reg: moves the content of the selected register in the accumulator. 

• MOVR reg: moves the content of the accumulator in the selected register. 

• SWAPS reg, n: swaps the contents of the selected shadow register and the corresponding 

active register. This instruction has two parameters: 

• reg: is the number of register to swap with its corresponding active register.  

• n: is the number of register bank from which it is wanted to select the register 

(reg) to swap.   

• FREEZEC: disables the registers of the ALU if the carry out is 1. 

• FREEZENC: disables the registers of the ALU if the carry out is 0. 
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• FREEZEZ: disables the registers of the ALU if the zero flag signal is 1. 

• FREEZENZ: disables the registers of the ALU if the zero flag signal is 0. 

• SETZ: sets to 1 the zero flag. 

• SETC: sets to 1 the carry flag (carry out). 

• CLRZ: clear to 0 the carry flag (carry out). 

• CLRC: clear to 0 the carry flag (carry out). 

• RANDON: enables the LFSR. The LFSR register is the source of the LLFSR operation. 

• RANDON1: enables the LFSR. The LFSR register is the source of the LLFSR operation. 

• RANDOFF: disables the LFSR. 

Table A.2: CPE Instruction with opcode 

Instructi

on 

Group Format Opco

de 

Description  Function 

NOP NOP NOP 0 No operation 

LDALL  LOADALL LDALL 

reg 

1 reg <= BRAM sequencer(constants)  

LLFSR LLFSR LLFSR reg 10 reg <= LFSR register (63 downto 48)  

LOADS

P  

LOADSP LOADSP 11 reg <= BRAM & spike_register (synapse parameters) 

STORE

B 

STOREB STOREB 100 Monitor BUFFER <= acc 

STORE

SP  

STORESP  STORESP 101 BRAM <= reg  

STORE

PS 

STOREPS STOREPS 110 AER_FIFO <= pre-synaptic (Si) 

RST       REGISTER

S 

RST reg 111 reg <= (others=>’0’) 

SET       REGISTER

S 

SET reg 1000 reg <= (others=>’1’) 

SHLN        REGISTER

S 

SHLN n 1001 ACC <= ACC (n) <<, (1 < n < 8), (n = number of 

positions) 

SHRN      REGISTER

S 

SHRN n 1010 ACC <= ACC (n) >>, (1 < n < 8), (n = number of 

positions) 

RTL       REGISTER

S 

RTL 1011 ACC <= ACC <<, carry = ACC(msb)   

RTR      REGISTER

S 

RTR 1100 ACC <= ACC >>, carry = ACC(lsb)   

INC       REGISTER

S 

INC 1101 ACC <= ACC + 1 

DEC      REGISTER

S 

DEC 1110 ACC <= ACC – 1 

NEG      ARITHME

TIC 

NEG     reg 1111 ACC <= 0 – reg 
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ADD      ARITHME

TIC 

ADD    reg 1000

0 

ACC <= ACC + reg  (Saturation) 

SUB      ARITHME

TIC 

SUB     reg 1000

1 

ACC <= ACC – reg  (Saturation) 

MUL        ARITHME

TIC 

MUL    reg 1001

0 

ACC <= ACC * reg   (Saturation) 

UNMUL ARITHME

TIC 

UNMUL       

reg 

1001

1 

ACC <= ACC * reg    (unsigned) 

AND      LOGIC AND     reg 1010

0 

ACC <= ACC AND reg 

OR        LOGIC OR       reg 1010

1 

ACC <= ACC OR   reg 

INV       LOGIC INV      reg 1011

0 

ACC <= INV   OR   reg 

XOR     LOGIC XOR    reg 1011

1 

ACC <= ACC XOR reg 

MOVA     MOVEME

NT 

MOVA    

reg 

1100

0 

ACC <= reg 

MOVR     MOVEME

NT 

MOVR    

reg 

1100

1 

reg <=  ACC 

SWAPS   MOVEME

NT 

SWAPS  

reg, n 

1101

0 

reg ↔ shadow_reg, 1<n<7, n = number of  shadow 

banks levels 

FREEZ

EC 

CONDITIO

NAL 

FREEZEC 1000

01 

Disable the registers of the ALUs if C=1  

FREEZ

ENC 

CONDITIO

NAL 

FREEZEN

C 

1000

10 

Disable the registers of the ALUs if C=0 

FREEZ

EZ 

CONDITIO

NAL 

FREEZEZ 1000

11 

Disable the registers of the ALUs if Z=1  

FREEZ

ENZ 

CONDITIO

NAL 

FREEZEN

Z 

1001

00 

Disable the registers of the ALUs if Z=0 

UNFRE

EZE 

CONDITIO

NAL 

UNFREEZ

E 

1001

01 

Enables the registers of the ALUs 

SETZ FLAGS SETZ 1001

11 

Sets the zero flag: Z <= 1 

SETC FLAGS SETC 1010

00 

Sets the carry flag: C <= 1 

CLRZ FLAGS CLRZ 1010

01 

Clears the zero flag: Z <= 0 

CLRC FLAGS CLRC 1010

10 

Clears the zero flag: C <= 0 

RANDO

N  

RANDON RANDON 1010

11 

random_en <= 1;  LFSR becomes source register for 

LLFSR 

RANDO

N1  

RANDON RANDON 1011

00 

random_en <= 1; LFSR_STEP<=1; LFSR becomes 

source register for LLFSR 

RANDO

FF 

RANDON RANDON 1011

01 

random_en <= 0; LFSR_STEP <=0; LFSR disabled 

A.4 Algorithm structure 

Every SNN algorithm to be implemented in SNAVA, it must contain in its code the neuronal LOOP 

(LOOPN) and the synaptic LOOP (LOOPS). The LOOPS and LOOPN are the two instructions that are 
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executed by the ALU and the sequencer in order to perform synaptic parameters and neural parameters 

respectively. Therefore, the synapses and virtual neurons are carried out serially in SNAVA. Figure A.4 

shows a generic code structure of SNN algorithms to be emulated in SNAVA. The details of each Loop 

and the instructions are provided in the following paragraphs. 

 

Figure A.4: Code structure of a typical SNN emulation in SNAVA 

- Structure of the synaptic loop 

As can be observed from Figure A.4, the LOOPS contain the instructions LOADSP and STORESP. 

These instructions were designed in order to load the synaptic parameters from the synaptic BRAM to the 

active registers by using a single clock cycle or vice versa. 

• LOADSP & STORESP: these instructions load the synaptic parameters in the current virtual 

layer from the synaptic BRAM to the active register bank (LOADSP) and the reverse operation 

(STORESP). The synaptic BRAM is wired to the active register of every PEs as shown in Figure 

A.5. 

• STOREB: the monitor buffer contains the values of the register accumulator and the register 1 of 

each PE. All the monitor buffers of the array are read by the Ethernet user side when the 

sequencer executes the STOREB instruction. The STOREB instruction is used only when the 

user wants to send parameters to be displayed on the monitor. These parameters are send to an 

external CPU (external interface) via Ethernet. Figure A.8 shows the structure of the monitor 

buffers which are allocated in each Processing Element and the interface with the Ethernet 

controller. 
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Figure A.5: Synaptic BRAM wired to active registers 

- Structure of the neuronal loop 

The instructions contained inside of the LOOPN instruction are repeated in equal number of times as the 

number of virtual layers was defined. The execution of the LOOPN instruction by the sequencer indicates 

the index of the virtual neuron to the ALU. Therefore, the neural values, which are stored in the bank of 

shadow registers, can be transferred from the shadow registers to the active registers in a single clock 

cycle, or vice versa, by executing the SWAP instruction. The index of the loop indicates which bank of 

shadow register must be transferred in order to calculate the neural parameters by the ALU. The load 

operation is illustrated in Fig. A.6, while the store operation is illustrated in Fig. A.7. 



Annexure A Set of instructions of SNAVA 

 

161 

 

 

Figure A.6: Neural multiplexing – load operation 

 

Figure A.7: Neural multiplexing – store operation  

There are some fixed instructions that the neuronal loop should contain: 

• STOREB: the monitor buffer contains the values of the register accumulator and the 

register 1 of each PE. All the monitor buffers of the array are read by the Ethernet user side 

when the sequencer executes the STOREB instruction. The STOREB instruction is used 

only when the user wants to send parameters to be displayed on the monitor. These 

parameters are send to an external CPU (external interface) via Ethernet. Figure A.8 shows 
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the structure of the monitor buffers which are allocated in each Processing Element and the 

interface with the Ethernet controller. 

• STOREPS: the sequencer enables the operation of the AER address Generator (see Fig. 

A.10) in order to send the spikes, which are generated by each virtul layer, to the AER 

module by executing the instruction STOREPS, as shown in Fig. A.4. Every virtual layer, 

which corresponds to one neuron, is processed serially by means of the LOOPN cycle (see 

Fig. A.4). Therefore, the spikes are read by the address generator only when the STOREPS 

instruction is executed by the sequencer, and the neural parameters of one virtual layer have 

been calculated. The AER address generator generates the AER address for each virtual 

layer by taking into account the format that is illustrated in Fig. A.9. The AER address 

generator indicates the position of the neuron, which has fired, this position involves its 

position in the array of the PEs (row,colum) and its virtual layer (depth). The index of the 

virtual layer is provided by the sequencer to the AER address generator through the signal 

depth. The AER address generator write these spikes in the FIFO memory of the AER 

control unit, as shown in Fig. A.10.  

 

 

Figure A.8: Monitor buffer structure of SNAVA 
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ROW COLUM DEPTH 

4 bits 4 bits 3 bits 

Figure A.9: Format of the AER address per each neuron 

 

Figure A.10: Scheme of reading of the spikes per each PE by the AER address generator 

 

A.5 Architecture functional details 

The SNAVA architecture is defined as Harvard machine, so that the instructions and data can be 

simultaneously accessed from each memory which saves bus cycles, because of this has allowed 

implementing the pipeline of a single stage mechanism in the sequencer in order to increase the 

processing speed in performing the SNN algorithms. The data is stored in two hardware components 

which are: Blocks of Random Access Memory (BRAM) and bank of registers. The BRAMs store the 

parameters of the synapses, while the bank of registers is used to store the neural parameters. The BRAM 
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of the sequencer is dedicated to store the instruction memory pointer IMEMP, constants of the algorithm 

and the instructions and as shown in Fig. A.11. 

 

Figure A.11: Instructions and constants BRAM memory map 

The sequencer module contains all the necessary logic to control the flow of the process in the simulation 

of the Spiking Neural Network algorithms. The data path of the sequencer consists of a program counter 

(PC) that point to the memory position of the next instruction. The length of the memory program is 

limited to 1024 bytes due to 10-bit addressing of the PC. This component also has the IMEMP register 

which indicates the position of the first instruction of the program. The DMEM register points the 

position of the constants to be loaded to the registers of the PE array. Three Last-In First-Out (LIFO) 

stacks are provided to keep track of iterations in the LOOPS and LOOPN instructions. The LIFO depth 

by default is 8, so eight nesting levels are supported. Nesting requires storing the PC contents, the current 

iteration number and the loop limit in the stacks depicted in Fig. A.12 (PC_LIFO, LOOP_LIFO, and 

LOOP_LIFO2 blocks).   
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Figure A.12: Sequencer datapath 

A Moore-type Finite State Machine was designed in VHDL in order to control the sequencer datapath. 

The FSM state diagram is shown in Fig. A.13. FSM works as follows: a synchronous reset set the reset 

state, so that all registers of the sequencer are set to 0. The initial state is reached after the reset state, 

where the first position of the BRAM instruction is read and loaded into the instruction address pointer 

IMEMP. Therefore, the program starts from the location pointed by the IMEMP. The next state is FECH. 

In this state the BRAM is read using the IMEMP as base address so the first instruction is read and 

decoded by the multiplexor called opcode. This multiplexor indicates the instruction. The PC is 

incremented to point the next instruction. This process is carried out simultaneously. While the instruction 

is decoded the next instruction is read by increment the PC counter. This mechanism allows the pipeline 

execution, only in the instruction needs two clock cycles the pipeline process must broke. These 

instructions involve the READMP, ENDL, GOTO and RET.   
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Figure A.13: Sequencer state machine 

A.6 Sequencer register mapping 

In this section the list of the internal sequencer registers has been provided. The mapping is shown in 

Table A.3. 

Table A.3: Registers of the sequencer  

REGISTER CPU_ADDRESS(6:0) DESCRIPTION DATA IN 

seq_enable_register 0110011 Loads enable flag from 

external CPU 

seq_enable_flag <= 

CPU_data_in(0) 
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escape_flag 0000010 Loads escape flag from 

external CPU (to escape 

from S_HALT) 

escape <= 

CPU_data_in(0) 

Int_aux_flag 0101101 Loads int_aux flag from 

external CPU 

int_aux <= 

CPU_data_in(0) 

counter_N_L 0000101 Load in the no learning 

counter coming from the 

external CPU 

counter_N_L<= 

CPU_data_in 

simulation_steps_halt 0000011 Loads the number of 

simulation steps 

simulation_step_halt<= 

CPU_data_in (15 downto 

0) 

PC_register 0000000 Lods the progrm counter 

from the external CPU 

PC <= 

CPU_data_in(pc_length - 

1 downto 0) 

IMEM_P_register 0000100 Loads the pointer to 

BRAM instruction bank 

(IMEM_P) from the 

external CPU 

IMEM_P <= 

CPU_data_in(pc_length - 

1 downto 0) 

DMEM_register 0000010 Loads the pointer to 

SRAM data banks 

(DMEM) from the 

external CPU 

DMEM <= CPU_data_in 

PC_BUFFER(0) 0011000 Loads PC_BUFFER(0) 

from the external CPU 

PC_BUFFER(0) <= 

CPU_data_in (pc_length - 

1 downto 0) 

PC_BUFFER(1) 0011010 Loads PC_BUFFER(1) 

from the external CPU 

PC_BUFFER(1) <= 

CPU_data_in (pc_length - 

1 downto 0) 

PC_BUFFER(2) 0011100 Loads PC_BUFFER(2) 

from the external CPU 

PC_BUFFER(2) <= 

CPU_data_in (pc_length - 

1 downto 0) 

PC_BUFFER(3) 0011110 Loads PC_BUFFER(3) 

from the external CPU 

PC_BUFFER(3) <= 

CPU_data_in (pc_length - 

1 downto 0) 

PC_BUFFER(4) 0100000 Loads PC_BUFFER(4) 

from the external CPU 

PC_BUFFER(4) <= 

CPU_data_in (pc_length - 

1 downto 0) 

PC_BUFFER(5) 0100010 Loads PC_BUFFER(5) 

from the external CPU 

PC_BUFFER(5) <= 

CPU_data_in (pc_length - 

1 downto 0) 

PC_BUFFER(6) 0100100 Loads PC_BUFFER(6) 

from the external CPU 

PC_BUFFER(6) <= 

CPU_data_in (pc_length - 

1 downto 0) 

PC_BUFFER(7) 0100110 Loads PC_BUFFER(7) 

from the external CPU 

PC_BUFFER(7) <= 

CPU_data_in (pc_length - 

1 downto 0) 

PC_LIFO(0) 0001000 Loads PC_LIFO(0) from 

the external CPU 

PC_LIFO(0)<= 

CPU_data_in(pc_length - 

1 downto 0) 

PC_LIFO(1) 

 

0001010 Loads PC_LIFO(1) from 

the external CPU 

PC_LIFO(1)<= 

CPU_data_in(pc_length - 

1 downto 0) 

PC_LIFO(2) 

 

0001100 Loads PC_LIFO(2) from 

the external CPU 

PC_LIFO(2)<= 

CPU_data_in(pc_length - 

1 downto 0) 



Annexure A Set of instructions of SNAVA 

 

168 

 

PC_LIFO(3) 

 

0001110 Loads PC_LIFO(3) from 

the external CPU 

PC_LIFO(3)<= 

CPU_data_in(pc_length - 

1 downto 0) 

PC_LIFO(4) 

 

0010000 Loads PC_LIFO(4) from 

the external CPU 

PC_LIFO(4)<= 

CPU_data_in(pc_length - 

1 downto 0) 

PC_LIFO(5) 

 

0010010 Loads PC_LIFO(5) from 

the external CPU 

PC_LIFO(5)<= 

CPU_data_in(pc_length - 

1 downto 0) 

PC_LIFO(6) 

 

0010100 Loads PC_LIFO(6) from 

the external CPU 

PC_LIFO(6)<= 

CPU_data_in(pc_length - 

1 downto 0) 

PC_LIFO(7) 

 

0010110 Loads PC_LIFO(7) from 

the external CPU 

PC_LIFO(7)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO(0) 

 

1000000 Loads LOOP_LIFO(0) 

from the external CPU 

LOOP_LIFO(0)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO(1) 

 

1000010 Loads LOOP_LIFO(1) 

from the external CPU 

LOOP_LIFO(1)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO(2) 

 

1000100 Loads LOOP_LIFO(2) 

from the external CPU 

LOOP_LIFO(2)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO(3) 

 

1000110 Loads LOOP_LIFO(3) 

from the external CPU 

LOOP_LIFO(3)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO(4) 

 

1001000 Loads LOOP_LIFO(4) 

from the external CPU 

LOOP_LIFO(4)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO(5) 

 

1001010 Loads LOOP_LIFO(5) 

from the external CPU 

LOOP_LIFO(5)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO(6) 

 

1001100 Loads LOOP_LIFO(6) 

from the external CPU 

LOOP_LIFO(6)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO(7) 

 

1001110 Loads LOOP_LIFO(7) 

from the external CPU 

LOOP_LIFO(7)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO2(0) 1010000 Loads LOOP_LIFO2(0) 

from the external CPU 

LOOP_LIFO2(0)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO2(1) 1010010 Loads LOOP_LIFO2(1) 

from the external CPU 

LOOP_LIFO2(1)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO2(2) 1010100 Loads LOOP_LIFO2(2) 

from the external CPU 

LOOP_LIFO2(2)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO2(3) 1010110 Loads LOOP_LIFO2(3) 

from the external CPU 

LOOP_LIFO2(3)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO2(4) 1011000 Loads LOOP_LIFO2(4) 

from the external CPU 

LOOP_LIFO2(4)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO2(5) 1011010 Loads LOOP_LIFO2(5) LOOP_LIFO2(5)<= 
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from the external CPU CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO2(6) 1011100 Loads LOOP_LIFO2(6) 

from the external CPU 

LOOP_LIFO2(6)<= 

CPU_data_in(pc_length - 

1 downto 0) 

LOOP_LIFO2(7) 1011110 Loads LOOP_LIFO2(7) 

from the external CPU 

LOOP_LIFO2(7)<= 

CPU_data_in(pc_length - 

1 downto 0) 
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Register mapping in SNAVA for 

CPU access 

  

 

 

 

B.1 Register mapping 

 

B.1 Register mapping 

This annexure presents the registers contained in every module in SNAVA in order to be accessed from 

the external CPU. The access control is the unit which in charge of providing access to the Processing 

Element array, sequencer, synaptic BRAMs, BRAM instructions, as shown in Fig. 5.1. 

All components mentioned above are accessed by the user side of the Ethernet module. This interface 

establishes the communication between SNAVA and external CPU. The module is responsible for the 

initialization of the system and the process of debugging. There are two buses of 32 bits each one to 

interface to the User side protocol and the SNAVA in order to initialise the components of SNAVA or in 

the case of debugging the SNAVA system. Therefore, two words of 32 bits must send to SNAVA from 

the external CPU in order to access to SNAVA registers. The first 32 bits word indicates the address of 

the component to be accessed and the second word has the information to be loaded in the register or 

memory which is indicated by the address. The Tx and the Rx modules of Ethernet user side have an 

Ethernet bus of 8 bits to carried out the communication between SNAVA and the external CPU. 

Therefore, 4 clock cycles are required to receive the 4 bytes of words, which are a part of the address and 

another 4 bytes words, which are a part of the data. The Ethernet user side has a buffer in the TX module 

in order to store the data, which are received by the external CPU, and the Ethernet user side enables the 

data to be read by SNAVA only when these 8 bytes are have been received.  

Table B.1: Format of the bus of the address 

31  30  29  28  27-26  25-16  15-13  12-8  7-3  2-0  

1  2  3  4  5  6  7  8  9  10  
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 The 32 bit word address is composed by 10 fields:  

Field: Description  

1 = WR_SNAVA   1 indicates the process of write in the SNAVA components 

2 = RD_SNAVA    1 indicates the process of read the SNAVA components 

3 = BRAM ACCESS 

1 enables the access to the BRAMs  

4 = BRAM SELECT 0 indicates the access to the instruction BRAM 

1 indicates the access to the synaptic BRAM 

5 = EXT   These 3 bits are not used in the version of SNAVA. It can be used in the case of 

extending the system, in particular the address of instruction BRAM.  The current 

length is 10, so that adding these three bits, the address can be increased to 13. 

6 = ADDRESS Address to be accessed in the case of BRAMs/ (18-16) level of shadow in case of 

CPE/ address of register in case of others  

 

7 = LAYER   The module to be accessed as is illustrated: 

LAYER Component 

0 0 0 No used FREE 

0 0 1 REGISTERS PE (Active and shadow registers) 

0 1 0 LFSR PE 

0 1 1 REGISTERS CPE -> CAM 

1 0 0 REGISTERS TX_MODULE 

1 0 1 REGISTERS SEQUENCER 

1 1 0 REGISTERS AER 

1 1 1 REGISTERS CONF. UNIT. 
 

8 = COLUMN Indicated the column address of the PE to be accessed   



Annexure B Register mapping in SNAVA for CPU access 

 

173 

 

9 = ROW Indicated the row address of the PE to be accessed   

10 = ADDRESS 

REGISTERS 

Address of the register to be accessed in PE (active register 0 to active register 7 

or shadow register 0 to shadow register 7)  

 

- REGISTER BANK 

 
The register bank can be access under the following conditions: 

- CPU_address(15 downto 13) = "001" 

 

- CPU_address(7 downto 3) = row (from 1 to 16  ) 

 

- CPU_address(12 downto 8) = col (from 1 to 16  ) 

 

- The signal bank_address is composed by CPU_address(18 downto 16) & 

CPU_address(2 downto 0) 

-  

Table B.2: Register mapping in the PE 

REGISTER BANK_ADDRESS DESCRIPTION DATA IN 

active_registers(0) 000000 Loads the active 

register from the 

external CPU 

active_registers(0)<= 

CPU_data_in(15 downto 0) 

active_registers(1) 000001 Loads the active 

register from the 

external CPU 

active_registers(1)<= 

CPU_data_in(15 downto 0) 

active_registers(2) 000010 Loads the active 

register from the 

external CPU 

active_registers(2)<= 

CPU_data_in(15 downto 0) 

active_registers(3) 000011 Loads the active 

register from the 

external CPU 

active_registers(3)<= 

CPU_data_in(15 downto 0) 

active_registers(4) 000100 Loads the active 

register from the 

external CPU 

active_registers(4)<= 

CPU_data_in(15 downto 0) 

active_registers(5) 000101 Loads the active 

register from the 

external CPU 

active_registers(5)<= 

CPU_data_in(15 downto 0) 

active_registers(6) 0000110 Loads the active 

register from the 

external CPU 

active_registers(6)<= 

CPU_data_in(15 downto 0) 



Annexure B Register mapping in SNAVA for CPU access 

 

174 

 

 

- LFSR REGISTERS 

The the 64-bit Galois LFSR (pseudo-random number generator) can be access under the following 

conditions: 

CPU_address(15 downto 13) = "010" 

 

CPU_address(7 downto 3) = row (from 1 to 16  ) 

 

CPU_address(12 downto 8) = col (from 1 to 16  ) 

 

The address of the specific LFSR register to be accessed is placed in CPU_address (2 downto 0)  

Table B.3: LFSR Register mapping in the PE   

active_registers(7) 0000111 Loads the active 

register from the 

external CPU 

active_registers(7)<= 

CPU_data_in(15 downto 0) 

shadow_registers1(0) 0001000 Loads the shadow 

register1 from the 

external CPU 

shadow_registers1(0)<= 

CPU_data_in(15 downto 0) 

shadow_registers1(1) 0001001 Loads the shadow 

register1 from the 

external CPU 

shadow_registers1(1)<= 

CPU_data_in(15 downto 0) 

shadow_registers1(2) 0001010 Loads the shadow 

register1 from the 

external CPU 

shadow_registers1(2)<= 

CPU_data_in(15 downto 0) 

shadow_registers1(3) 0001011 Loads the shadow 

register1 from the 

external CPU 

shadow_registers1(3)<= 

CPU_data_in(15 downto 0) 

shadow_registers1(4) 0001100 Loads the shadow 

register1 from the 

external CPU 

shadow_registers1(4)<= 

CPU_data_in(15 downto 0) 

shadow_registers1(5) 0001101 Loads the shadow 

register1 from the 

external CPU 

shadow_registers1(5)<= 

CPU_data_in(15 downto 0) 

shadow_registers1(6) 0001110 Loads the shadow 

register1 from the 

external CPU 

shadow_registers1(6)<= 

CPU_data_in(15 downto 0) 

shadow_registers1(7) 0001111 Loads the shadow 

register1 from the 

external CPU 

shadow_registers1(7)<= 

CPU_data_in(15 downto 0) 

REGISTER CPU_address(2 : 0) DESCRIPTION DATA IN 

LFSR(63 :48) 000 Loads LFSR value 

(63:48) from exteral CPU 

LFSR(63downto48)<= 

CPU_data_in(15 downto 

0) 

LFSR(47 :32) 001 Loads LFSR value LFSR(47downto32)<= 
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- SYNAPTIC BRAM 

The synaptic BRAM can be access under the following conditions: 

The access to the PE BRAMs is possible by setting: 

 CPU_address(29) = ‘1’  

 CPU_address(28) = ‘1’   synaptic BRAM  or CPU_address(27) = ‘1’   neuronal 

BRAM 

 

- ETHERNET USER SIDE 
 

The Ethernet user side tx module can be access under the following conditions: 

 
 CPU_address (15 downto 13) = "100",  

 

Table B.4: Ethernet user side register mapping    

REGISTER CPU_ADDRESS(6:0) DESCRIPTION DATA IN 

length _ena_bus 000001 Configure tx length of 

ethernet  

length_ena<=     

CPU_data_in(1 downto 0) 

overhead_count_max 000010 Set the value of the 

maximum delay between 

two consecutive packets  

overhead_count_max<= 

CPU_data_in(13 downto 

0) 

 

 

- AER CONTROL 

The AER control module can be access under the following conditions: 

(47:32) from external 

CPU 

CPU_data_in(15 downto 

0) 

LFSR(31:16) 010 Loads LFSR value 

(31:16) from external 

CPU 

LFSR(31downto16)<= 

CPU_data_in(15 downto 

0) 

LFSR(15 :0) 011 Loads LFSR value (15:0) 

from external CPU 

LFSR(15downto0)<= 

CPU_data_in(15 downto 

0) 

LFSR_en 100 Loads the LFSR enable 

from external CPU 

LFSR_en <=  

CPU_data_in(0) 

LFSR_step_flag 101 Loads from external CPU 

the LFSR flag that 

permits only LFSR 

updating when it is read 

LFSR_step <= 

CPU_data_in(1) 
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CPU_address(15 downto 13) = "110" 

 

Table B.5: AER control register mapping    

REGISTER CPU_ADDRESS(6:0) DESCRIPTION DATA IN 

chip id register 000001 Set the board ID chip_id_reg <= 

CPU_data_in 

(CHIP_ID_WIDTH - 1 

downto 0) 

boards 000010 Set the number of the 

boards interconnected 

with the AER 

boards <= CPU_data_in(6 

downto 0) 

 

- CONFIG UNIT 

The config unit module can be access under the following conditions: 

CPU_address (15 downto 13) = "111" 

Table B.6: Config unit register mapping    

 

REGISTER CPU_address(7:3

) 

DATA IN DATA OUT 

config_done_int 000 config_done_int<= 

CPU_data_in(0) 

CPU_data_out(0)<= 

config_done_int 

clk_mode_register 001 clk_mode  <= 

CPU_data_in(0) 

CPU_data_out(0)<= 

clk_mode 

dec_clk_counter  010 dec_clk_counter<= 

CPU_data_in  

CPU_data_out<= 

dec_clk_counter 

sna_size register 011 ONLY READ 

REGISTER 

CPU_data_out <=  

SNA_size 

inc_clk_counter(15:

0) 

100 inc_clk_counter(15 downto 0) 

<= CPU_data_in 

CPU_data_out<= 

inc_clk_counter(15  

downto 0) 

inc_clk_counter(31:

16) 

101 inc_clk_counter(31 downto  

16) <=  CPU_data_in 

CPU_data_out<= 

inc_clk_counter(31  

downto 16) 

inc_clk_counter(47:

32) 

110 inc_clk_counter(47 downto  

32) <= CPU_data_in 

CPU_data_out<= 

inc_clk_counter  

(47 downto 32) 

contr_reset 111 contr_reset_reg <=  

CPU_data_in (0) 

CPU_data_out(0)<= 

contr_reset_reg 
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C.1 Assembler code of Iglesias and villa algorithm – Ubichip  

C.2 Assembler code of Izhikevich algorithm – Ubichip  

C.3 Assembler code of Leaky integrate-and-fire algorithm – Ubichip  

C.4 Assembler code of Iglesias and villa algorithm – SNAVA 

C.5 Assembler code of Izhikevich algorithm – SNAVA  

C.6 Assembler code of Leaky integrate-and-fire algorithm – SNAVA  

C.7 Assembler code of Leaky integrate-and-fire algorithm – SNAVA+  

 

This annexure presents the assembler codes of three SNN models: Iglesias and Villa model, Izhikevich 

model, and Leaky integrate-and-fire model. These models were implemented in Ubichip, and SNAVA in 

order to study the performance of these architectures. The Leaky integrate-and-fire model was used to 

carry out the application developed in this work (Chapter 6). The Leaky integrate-and-fire model was 

implemented in SNAVA+ in order to evaluate the performance of this architecture (see Chapter 5). 

C.1 Assembler code of Iglesias and villa algorithm – 

Ubichip 

AMAX="00000003" 
DACT1="0000FFFA" 

DACT2="0000012C" 

DBACK="0000FAEE"  
DMEM1="0000EF7D" 

DMEM2="0000EF7D" 
DSYN1="0000F9AE" 

DSYN2="0000F9AE" 

LMAX="00003FFF" 
 

MMAX="00000666" 

POT1="000003E8"    
POT2="0000FFB0"   

PROB="00001FFF" 

SEED="A553A75A,A554A75A" 
THETA1="0000F060" 

THETA2="0000F060" 

VREST1="0000E188" 
VREST2="0000E188" 

UNO="00000001" 

MASC="00000003" 
MASK1="0000E000" 

MASK2="0000C000" 

 
.CODE 

 

; ---------------------------------- INIT   VARIABLES  ----------------------------- 
LDALL R4,PROB  

MOVA R4 

SETMP SEED 
READMP 

RANDINI 

RANDON 
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LOAD R1  

RANDOFF 

AND R1 
MOVR R1 

SWAP R1       ;SR1 <-- activation probability 

; -------------------------------------------------------------------------------------------- 
 

GOTO MAIN 

 
; ***************************** PROCEDURES BEGIN *************************** 

; -------------------------------  NEURON LOAD -------------------- 

.NEURON_LOAD 
SWAP  R6 

LOAD  R6,NEU-2     ;SR6 <-- Vi 

SWAP  R6 
SWAP  R0 

LOAD  R0,NEU-3     ;SR0 <-- SUM_WEIGHTS 

SWAP  R0 
; ------------------------------ Neuron Type + Si ---------------------- 

LOAD  R2,NEU-1          ;R2  <-- Mi + Neuron Type + Si 

MOVA  R2 
LDALL R3,MASC 

AND   R3 

SWAP  R5 
MOVR  R5                     ;SR5 <-- Neuron Type + Si 

SWAP  R5 

; ------------------------------------- Mi ---------------------------------- 
MOVA  R2 

SHR 

SHR 
SWAP  R4 

MOVR  R4     ;SR4 <-- Mi 

SWAP  R4 
;------------------------------ Tref + exponential --------------------- 

LDALL R3,MASK1  ;MASK1="0000E000" 
SWAP  R5 

MOVA  R5 

SWAP  R5 
SHR 

SHR 

FREEZENC 
LDALL R3,MASK2     ;MASK2="0000C000"  

UNFREEZE 

LOAD  R1,NEU-4           ;R1  <-- Tref + exponential 
INV   R3        ;MASK1 --> 1FFF ; MASK2 --> 3FFF   

AND   R1    

MOVR  R7                     ;R7  <-- 1FFF   
SWAP  R7                      ;SR7 <-- exponential 

MOVA  R1    

AND   R3        ;MASK1 = E000 ; MASK2 = C000 
MOVR  R7                      ;R7  <-- Tref 

 

RET 
 

; ------------------------------- MEMBRANE VALUE ------------------------- 

.MEMBRANE_VALUE 
 

RST  R1   

RST  R2 
SWAP R5         ;SR5 --> NEURON TYPE + Si 

LDALL R3,DMEM1         ;R3  <-- DECAY DONATOR 1 

LDALL R4,VREST1               ;R4  <-- Vres1  
MOVA R5 

SHR   

SHR                                      ;IF NEURON TYPE = TYPE_II (CONDITIONAL LOAD) 
FREEZENC  

 LDALL R3,DMEM2        ;R3  <-- DECAY DONATOR 2 

 LDALL R4,VREST2       ;R4  <-- Vres2 
UNFREEZE 

;----------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) ----------------- 

MOVA R5 
SHR  
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FREEZEC  ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem) 

 SWAP R6    ;SR6 <-- Vi  

 MOVA R6    ;R0  <-- Vi 
 SUB R4    ;R0  <-- Vi - Vres 

 MOVR R2   ;R2  <--(Vi(t)-Vres)  

 GOTO DECAY   ;R2  =  (Vi(t)-Vres), R3 = DECAY DONATOR (1 or 2) 
     ;R2  <--(Vi(t)-Vres) * (Kmem)    

UNFREEZE 

MOVA R5 
SHR 

FREEZENC    ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0 

    RST  R2         ;R2  <-- ((0)*(Vi(t)-Vres)*(Kmem) 
UNFREEZE 

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ---------- 

LDALL R4,VREST1    ;R4  <-- Vres1 
MOVA R5    

SHR   

SHR    
FREEZENC    ;IF NEURON TYPE = TYPE_II (CONDITIONAL LOAD) 

 LDALL R4,VREST2    ;R4  <-- Vres2 

UNFREEZE   
MOVA R4             ;R0  <-- Vres1 or Vres2  

ADD  R2             ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) 

MOVR R2             ;R2  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) 
SWAP R0             ;R0  <-- SUM_WEIGHTS 

ADD  R2     ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + 

SUM_WEIGHTS 
MOVR R6    ;SR6 <-- Vi 

SWAP R5     ;SR5 <-- NEURON TYPE + Si 

RST R0     ;SUM_WEIGHTS = 0  
SWAP R0     ;SR0 <-- SUM_WEIGHTS 

RET  

; ------------------------------------------------------------------------------- 
 

; -------------------------- SYNAPSE LOAD ---------------------------- 
.SYNAPSE_LOAD 

; ------------------------------------------------------------------------------- 

; -------------------------------------- SP1 ---------------------------------- 
; ------------------------------------------------------------------------------- 

; ----------------------------  Mj + Synapse Type + Sj ----------------- 

LDALL R1,MASC 
SETC 

SETMP SYN-0     ;LOOP INDEX 

READMP 1    
LOAD R2      ;R2  <-- Mj + Synapse Type + Sj 

; -------------------------------  Synapse Type + Sj ----------------------- 

MOVA R2 
AND  R1 

MOVR R6    ;R6  <-- Synapse Type + Sj 

; ------------------------------------ Mj ---------------------------------------- 
MOVA R2 

SHR 

SHR 
MOVR R5    ;R5  <-- Mj 

; ------------------------------------------------------------------------------- 

; -------------------------------------- SP2 ----------------------------------- 
; ------------------------------------------------------------------------------- 

; ----------------------------------- Lji + Aji -------------------------------- 

LOAD R2     ;R2  <-- Lji + Aji 
; --------------------------------------- Aji ----------------------------------- 

SWAP R3 

MOVA R2 
AND  R1 

RST  R1 

MOVR R3   
SWAP R3                 ;SR3  <-- Aji 

; --------------------------------------- Lji ----------------------------------- 

MOVA R2 
SWAP R2 

SHR 

SHR 
MOVR R2    ;SR2  <-- Lji 
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SWAP R2 

RET 

; -------------------------------------------------------------------------------- 
; ----------------------------- SYNAPTIC WEIGHT -------------------- 

.SYNAPTIC_WEIGHT 

RST R1      
MOVA R6 

SHR 

FREEZENC    ;IF (Sj = 1) THEN R0 <-- wji = Sj * Aji * P 
  

 LDALL R4,POT1   ;R4  <--  POT1 

 MOVA R6   
 SHR 

 SHR 

 FREEZENC 
  LDALL R4,POT2 

 UNFREEZE 

;---------------------------------------- Aji * P ---------------------------------  
 MOVFS R3   

 MOVA R3    

 SHR 
 MOVR R3 

 FREEZENC 

  MOVA R1   
  ADD R4   

  MOVR R1 

 UNFREEZE 
  

 MOVA R3 

 SHR 
 MOVR R3 

 FREEZENC 

  MOVA R1  
  ADD R4  

  ADD R4 
  MOVR R1 

 UNFREEZE 

  
 MOVFS R3 

 MOVA R3 

 SHR 
 FREEZENC 

  SHR 

  FREEZENC 
   MOVA R1  

   ADD  R4  

   MOVR R1 
  UNFREEZE 

 UNFREEZE 

UNFREEZE 
SWAP R0     

ADD R1     ; SR0 <-- wji = Sj * Aji * P 

SWAP R0     
RET 

; --------------------------------------------------------------------------- 

; ---------------------------- REAL_VALUE_VARIABLE ---------------- 
.REAL_VALUE_VARIABLE 

;-------------Lji(t+1)  = Lji(t) * Kact + Si(t) * Mj - Sj(t) * Mi(t)-------   

LDALL R3,DACT1    ;R3  <-- DACT1 
MOVA R6   

SHR 

SHR 
FREEZENC 

 LDALL R3,DACT2   ;R3  <-- DACT2 

UNFREEZE 
MOVFS R2    ;R2  <-- Lji 

;--------------------------------- Lji(t) * Kact 1 or 2 ------------------------ 

GOTO DECAY      ;R2 <-- Lji(t) * Kact 1 or 2 
SWAP R5 

MOVA R5 

SWAP R5 
SHR      ;R5  <-- Si 
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FREEZENC 

 MOVA R2 

 ADD R5      ;R0  <-- Mj 
 MOVR R2                 ;R2  <-- (Lji(t) * Kact) + (Si(t) * Mj) 

UNFREEZE 

MOVA R6 
SHR       ;R6  <-- Sj 

FREEZENC 

 MOVA R2 
 SWAP R4 

 SUB R4      ;R0  <-- Mi 

 SWAP R4 
 MOVR R2                 ;R2  <-- (Lji(t) * Kact) + (Si(t) * Mj) - Sj(t) * Mi(t) 

UNFREEZE 

MOVTS R2      ;SR2 --> Lji 
RET  

; ------------------------------------------------------------------------------------ 

; ------------------------- ACTIVATION_VARIABLE -------------------- 
.ACTIVATION_VARIABLE 

LDALL R1,UNO 

SWAP R3 
MOVA R3 

FREEZEZ      ; if (Aji =/ 0) then 

  
 LDALL R0,LMAX    ; R0 <--- Lmax 

 SWAP R2                ; R2 <-- SR2  <-- Lji 

 SUB  R2                ; Lmax - Lji 
 SHL    

 FREEZENC     

  MOVA R3     ; ACC <-- R3 <-- Aji 
  ADD R1   ; Aji + 1 

  MOVR R3  ; Aji --> SR3 

  LDALL R0,AMAX  
  SUB R3   ; R0 <--  Amax - Aji 

  SHL     
  FREEZENC  ; Aji - R1 = 0 

   LDALL R3,AMAX 

  UNFREEZE 
  LDALL R0,LMAX ; Lji=Lmax/2 

  SHR 

  MOVR R2 
 UNFREEZE 

                    ; else if (Lji < Lmin)  

 MOVA R2    ; Lji --> ACC, Lmin=0 
 SHL      

 FREEZENC   ; (Lji-Lmin) 

  MOVA R3 
  SUB R1   ; Aji-1 

  MOVR R3  ; Aji --> R3 

  LDALL R0,LMAX  ; Lji=Lmax/2 
  SHR 

  MOVR R2 

 UNFREEZE 
UNFREEZE 

MOVA R3 

FREEZENZ                  ;IF CONNECTION IS INACTIVE 
 RST R2 

UNFREEZE 

SWAP R3 
SWAP R2 

RET 

; ----------------------------------------------------------------------------------------- 
; --------------- MEMORY_OF_LAST_PRESYNAPTIC_SPIKE --------- 

.MEMORY_OF_LAST_PRESYNAPTIC_SPIKE 

; --------  Mj(t+1) = (Sj(t) * Mmax) + (1 - Sj(t)) * Mj(t) * Ksyn -----------  
;--------------------- R2 <-- (1 - Sj(t)) * Mj(t) * Ksyn --------------------------- 

LDALL R3,DSYN1    ; R3 <-- Ksyn1  

MOVA R6     ; R6 <-- Synapse Type + Sj 
SHR 

SHR 

FREEZENC 
 LDALL R3,DSYN2   ; R3 <-- Ksyn2 
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UNFREEZE 

MOVA R5     ; R5 <-- Mj 

MOVR R2    ; R2 <-- Mj 
 GOTO DECAY      ; R2 <-- (1 - Sj(t)) * Mj * Ksyn1 or Ksyn2 

MOVA R6     ; R6 <-- Synapse Type + Sj 

SHR 
FREEZENC        ;IF Sj(t) = 1 THEN R2 <-- Mmax 

 LDALL R0,MMAX 

 MOVR R2               ; R2 <-- Mmax 
UNFREEZE 

MOVA R2 

MOVR R5                    ; R5 <-- (Sj(t) * Mmax) + (1 - Sj(t)) * Mj(t) * Ksyn 
RET 

; ----------------------------------------------------------------------------- 

; --------------------------- SYNAPSE_SAVE ------------------------- 
.SYNAPSE_SAVE 

 

SETMP SYN-0    ;LOAD LOOP INDEX! 
READMP 1        ;READMPX 

;  ----------------------------- MJ+SI+TYPE -------------------------- 

MOVA R6          ;R6 <--- S type + Sj 
SHR 

SHL 

MOVR R6 
MOVA R5     ;<--MJ 

SHL 

SHL 
ADD R6     ;+TYPE+SJ 

MOVR R3    ;composed DATA 

RST R0 
SHR 

STNC R3 ;SAVE DATA 

; -----------------------------------  LJI+AJI  -------------------------------- 
SWAP R2 

MOVA R2     ;<--LJI 
SWAP R2 

SHL 

SHL 
SWAP R3 

ADD R3     ;+AJI 

SWAP R3 
MOVR R3    ;composed DATA 

RST R0 

SHR 
STNC R3      ;SAVE DATA 

RET 

; ------------------------------------------------------------------------------------- 
; ---------- MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE --------- 

.MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE 

LDALL R3,DSYN1   ;TYPE=1 
SWAP R5 

MOVA R5 

SHR 
SHR     ;--> TYPE  

FREEZENC  

 LDALL R3,DSYN2   ;TYPE=2 
UNFREEZE 

SWAP R4        ;R2=MI 

MOVA R4  
SWAP R4 

MOVR R2 

GOTO DECAY     ;R2=OPERAND, R3=DECAY DONATOR --> R2=RESULT DECAY 
MOVA R5 

SWAP R5 

SHR     ;-->SI 
FREEZENC 

 LDALL R0,MMAX 

 MOVR R2   ;OVERWRITE DECAY RESULT 
UNFREEZE 

MOVA R2 

SWAP R4 
MOVR R4    ;RES IN SR4 
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SWAP R4 

RET  

; ---------------------------------------------------------------------------------- 
; ---------------------------- SPIKE UPDATE ------------------------------ 

.SPIKE_UPDATE 

LDALL R3,THETA1        ;R3  <-- THETA1 = "0000F060" 
SWAP R5     ;SR5 <-- Neuron Type + Si 

MOVA R5     

SHR 
SHR 

FREEZENC 

 LDALL R3,THETA2       ;R3  <-- THETA2 = "0000F060" 
UNFREEZE 

 

MOVA R5      
SHR 

SHL 

MOVR R5    ;R5  <-- Neuron Type + 0 
SWAP R6                     ;SR6 <--  Vi 

MOVA R6                     ;R0  <--  Vi 

SUB  R3     ;R0  <--  Vi - (THETA1 or THETA2)  
SWAP R6 

 

FREEZENC 
 MOVA R7    ;R0  <-- refractary period 

 SHL 

 FREEZEC     
  MOVA  R5 

  LDALL R3,UNO 

  ADD   R3 
  MOVR  R5          ;R5  <-- Neuron Type + 1 

  SET   R7   ;R7  <-- activation of refractory time 

 UNFREEZE 
UNFREEZE 

SWAP R5      
RET 

; ----------------------------------------------------------------------------- 

; ------------------------ BACKGROUND_ACTIVITY------------- 
.BACKGROUND_ACTIVITY 

SWAP R7                     ; SR7 <-- exponential 

MOVA R7 
SWAP R7 

MOVR R2    ; R2  <-- exponential 

LDALL R3,DBACK             ; R3  <-- DBACK = "0000FEB9" 
 GOTO DECAY   ; R2  <-- DBACK * exponential 

SWAP R1      ; R1  <-- activation probability 

LDALL R4,PROB     ; R4  <-- PROB = "00001FFF" 
MOVA R4     ; R0  <-- PROB 

SUB R2                      ; R0  <-- PROB - (DBACK * exponential) 

RANDON 
CLRC 

SUB R1     ; (PROB - (DBACK * exponential)) - Activation probability 

FREEZENC    ; If ((PROB - (DBACK * exponential)) > Activation probability) then 
 LOAD R1    ; R1  <-- new activation probability 

 RANDOFF     

 MOVA R4              ; R0  <-- PROB = "00001FFF" 
 AND R1                 ; R0  <-- PROB = "00001FFF" AND new activation probability 

 MOVR R1                ;/ R1  <-- PROB = "00001FFF" AND new activation probability 

 MOVA R4    ; R0  <-- PROB = "00001FFF" 
 MOVR R2               ;/ R2  <-- PROB = "00001FFF" 

 MOVA R7    ; R0  <-- Tref 

 SHL 
 FREEZEC    ; IF  ( C = 1 ) THEN Tref  

  SWAP R5   ; SR5 <-- Neuron Type + Si   

  MOVA R5 
  SHR 

  SHL             ; SR5 <-- Neuron Type + Si = 0 

  LDALL R3,UNO     
  ADD R3          ; SR5 <-- Neuron Type + Si = 1 

  MOVR R5 

  SWAP R5 
  SET R7   ; R7  <-- activation of refractory time 
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 UNFREEZE 

UNFREEZE 

SWAP R1     ; SR1 <-- Activation probability 
MOVA R2      

SWAP R7 

MOVR R7 
SWAP R7     ; SR7 <-- exponential 

RET 

; ------------------------------------------------------------------------ 
; ------------------------------- REFRACTORY P ----------------- 

.REFRACTORY_P 

MOVA R7   
SHL     ; -1ms 

MOVR R7  

RET 
; ------------------------------------------------------------------------ 

; ------------------------------- NEURON SAVE ------------------ 

.NEURON_SAVE 
SWAP R4             ;R4  <-- Mi 

SWAP R5    ;R5  <-- Neuron Type + Si 

SWAP R6 
RST R3     

MOVA R4     

SHL 
SHL 

ADD R5 

MOVR R3             ;R3  <-- Mi + Neuron Type + Si  
;--------------------- INDIVIDUAL DATA STORE --------------- 

RST R0 

SHR 
STNC R3,NEU-1  ;SRAM  <-- Mi + Neuron Type + Si  

RST R0 

SHR 
STNC R6,NEU-2  ;SRAM  <-- Vi 

SWAP R0 
CLRC 

STNC R0,NEU-3  ;SRAM  <-- SUM_WEIGHTS 

SWAP R0 
LDALL R3,          ;MASK1 = "0000E000" 

MOVA R5 

SWAP R5 
SHR 

SHR 

FREEZENC 
 LDALL R3,MASK2  ;MASK2 = "00008000"  

UNFREEZE 

MOVA R7    ;ACC   <-- Tref 
AND R3   

SWAP R7    ;R7    <-- exponential 

OR R7 
SWAP R7     

CLRC 

STNC R0,NEU-4  ;SRAM  <-- Tref + exponential 
RET 

; -------------------------------------------------------------------------      

;-------------------------ENABLE SPIKES PROPAGATION---- 
.SPIKES_ENABLE 

SWAP R5    ; ACC <== Spikes 

MOVA R5 
SWAP R5 

SETC   

SETMP SYN-0    ; Point to Sj  
READMP 

RET  

;------------------------------------------------------------------------- 
; ---------------------------- EXPONENTIAL DECAY ---------- 

.DECAY 

RST R1 
MOVA R2  

MOVR R4  

SHL 
FREEZENC 
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 RST R0 

 SUB R2 

 MOVR R2 
UNFREEZE 

LOOP 15 

 MOVA R2 
 SHL 

 MOVR R2 

 FREEZENC 
  MOVA R1 

  ADD R3 

  MOVR R1 
 UNFREEZE 

 MOVA R3 

 SHR 
 MOVR R3 

ENDL 

MOVA R1 
SHR  

MOVR R1  

MOVA R4  
SHL 

FREEZENC 

 RST R0 
 SUB R1 

 MOVR R1 

UNFREEZE 
MOVA R1 

MOVR R2  

RST R1 
RET 

; --------------------------------------------------------------------------- 

; ******************************* PROCEDURES END **************************** 
 

; **************************** MAIN PROGRAMME BEGIN ************************ 
.MAIN 

GOTO NEURON_LOAD 

GOTO MEMBRANE_VALUE 
LOOP synapses 

 GOTO SYNAPSE_LOAD 

 GOTO SYNAPTIC_WEIGHT 
 GOTO REAL_VALUE_VARIABLE 

 GOTO ACTIVATION_VARIABLE 

 GOTO MEMORY_OF_LAST_PRESYNAPTIC_SPIKE 
 GOTO SYNAPSE_SAVE 

ENDL 

GOTO MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE 
GOTO SPIKE_UPDATE 

GOTO BACKGROUND_ACTIVITY 

GOTO REFRACTORY_P 
GOTO NEURON_SAVE 

GOTO SPIKES_ENABLE 

STOP 
HALT 

GOTO MAIN 

; **************************** MAIN PROGRAMME END ************************** 

C.2 Assembler code of Izhikevich algorithm – Ubichip 

CTEIN="00001400" 

CTEAE="0000000A"         ;a=  0.04   excitatory = E 

CTEAE1="00000005"       ;0.02 * v 
CTEAI1="00000033"      ;a=  0.2    inhibitory = E 

CTEAI="0000001A"      ;a=  0.1    inhibitory = I 

CTESE="00000600"  ;s=  6 
CTESI="0000FB00"  ;s= -5    

CTEB="00000033"      ;b=  0.2 

CTECE="0000BF00"  ;c=-65 
CTECI="0000F300"         ;c=-13 

CTEDE="00000800"  ;d=  8 
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CTEDI="00000200"  ;d=  2 

CTECU="00000400"         ;cte=4 

CTECIN="00000500"         ;cte=5 
CTEIN="00001400"        ;I= 20 

CTEZE="00000000"        ;CTE=0 

CTE30="00001E00"         ;Vmax = 30 
CTE25="00000280"        ;2.5 

CTE70="00004600"        ;70 

CTE05="00000080"         ;0.5 
CTE12="0000FECD"         ;-1.2 

CUNO="00000001"          ;CTE=1 

CTE095="000000F4"       ;0.95 
CTE090="000000E7"        ;0.90 

CTEBT="00008000" 

UNO="00000001" 
DOS="00000002" 

TRES="00000003" 

UNO1="00000001" 
DOS2="00000002" 

TRES3="00000003" 

CUATRO4="00000004" 
CARRY="00000004" 

CCARRY="00000003" 

CTE1000="000003E8"       ;CTE=1000 
CTE128N="00008000"       ;CTE=-128 

CTE127P="00007FFF"       ;CTE=127,9961 

CTE20="00000014"         ;CTE=20 
CTEP01="00000003"        ;CTE=0.01 

 

.CODE 
;--------------------------INIT SOME VARIABLES----------------------------- 

SETMP SEED 

READMP 
RANDINI 

;-------------------------------------------------------------------------- 
GOTO MAIN 

;------------------------- INICIALIZATION I ------------------------------- 

.INICIALIZATION_I 
RANDON1 

LDALL R1  

RANDOFF 
RST R2 

SWAP R2 

RST R2 
LDALL R2,MASCP     ;MASCP="00000003"   

MOVA R1 

SHR 
SHR 

SHR 

SHR 
SHR 

SHR 

SHR 
SHR 

SHR 

AND R2 
MOVR R1            

LOAD R3,ID 

MOVA R3 
SUB  R1 

FREEZENZ 

   LDALL R2,CTEIN               ;R2     <--    I = 20 ONLY FOR ONE PROCESSOR 
   SWAP R2 

UNFREEZE  

RET 
;----------------------------------------------------------------------------------- 

;----------------------------------------------------------------------------------- 

.SPIKE_UPDATE 
   SWAP R1                   ; It has to be deleted the previous spike 

   MOVA R1 

   SHR 
   SHL  
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   MOVR R1 

   SWAP R1                  ; It has deleted the previous spike 

   SWAP R7 
   MOVA R7                 ; ACC <-- v 

   MOVR R4                  ; R4  <-- v 

   SWAP R7 
   SHL 

FREEZENC 

         LDALL R4,CTESE          ; It has assigned a positive value under 30 because it has verified that is lower than 0  
UNFREEZE 

   MOVA   R4 

   LDALL  R3,CTE30         ; R3  <-- 30 
   SUB    R3                ; v - 30  

FREEZENC                   ; if v > 30   

 SWAP  R1 
 MOVA  R1 

 SHR 

 SHL 
 LDALL R3,CUNO  

 ADD   R3 

 MOVR  R1 
 SWAP  R1              ; SR1 <---  counter = 1000 + Carrypa + Carrypb + Neuron type + Si <-- 1          

UNFREEZE 

RET 
;--------------------------------------------------------------------------------------------- 

; ---------------------- UPDATE MEMBRANE VALUE ---------------------------- 

.UPDATE_MEMBRANE_VALUE 
SWAP R1               ; R1 contains the current spike generated by research the threshold potential to be distribuited to anothers 

neurons  

RST R0 
SHR  

STNC R1,NEU-1         ; for drawing the spikes over raster plot 

SWAP R1 
SWAP R1                 ;  SR1    <--  counter = 1000 + Carrypa + Carrypb + Neuron type + Si 

MOVA R1 
SWAP R1 

SHR 

SHR 
FREEZENC                ; NEURON TYPE EXCITATORY = 1          

 LDALL  R2,CTEDE   ; Conditional store  d = 8 constant (excitatory)         

UNFREEZE 
FREEZEC             ; NEURON TYPE INHIBITORY = 0 

 LDALL  R2,CTEDI   ; Conditional store  d = 2 constant (inhibitory) 

UNFREEZE 
SWAP  R7 

MOVA  R7                 ; ACC <-- v 

MOVR  R4                 ; R4  <-- v 
SWAP  R7 

SHL 

 FREEZENC 
   LDALL R4,CTESE      ; It has assigned a positive value under 30 because it has verified that is lower than 0 

 UNFREEZE 

MOVA  R4 
LDALL R3,CTE30           ; R3  <-- 30 

SUB   R3                 ; v - 30  

FREEZENC                  ; v = -65 , u = u + d, STDP = 0.1, only if v >= 30 
 

 SWAP  R7           ; R7  <-- v 

 LDALL R7,CTECE      ; v   <-- -65 
 SWAP  R7             ; SR7 <-- v = -65 

 

 SWAP  R6 
 MOVA  R6             ; ACC <-- u  

    ADD   R2            ; ACC <-- ACC + d            

 MOVR  R6            ; R6  <-- u + d  
    SWAP  R6             ; SR6 <-- u = u + d   

     

UNFREEZE 
RET  

;---------------------------------------------------------------------------------- 

;----------------------------------------------------------------------------------- 
.SPIKES_ENABLE 
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LOAD  R6,NEU-12          ; R6 <-- u  

SWAP  R6                 ; SWAP R6 <-- u 

SWAP R1 
MOVA R1 

SWAP R1 

SETC 
SETMP SYN-0; Point to Sj, indicate to memory pointer the beginning of the distribution per each synapse of each neuron   

READMP 

RET 
;----------------------------------------------------------------------------------- 

;*************************************************** Sj ************************************************ 

; ---------------------------- SYNAPSE LOAD ------------------------------ 
.SYNAPSE_LOAD1 

SETMP SYN-0    ;LOAD LOOP INDEX! 

READMP 1    ;READMPX 
SWAP  R3                ;SR3  <-- s 

SWAP  R4                ;SR4  <-- sd 

MOVA  R5 
SWAP  R0                ; respaldo de R5 en SR0 <-- Neuron ID + Synapse ID 

RET 

;----------------------------------------------------------------------------- 
;----------------------------------------------------------------------------- 

.SYNAPSE_SAVE1 

SETMP SYN-0 
READMP 1 

MOVA R7 

SHR 
SHL 

MOVR R7 

RST R0 
SHR 

STNC R7 ;R7 <-- Sj 

RET 
;----------------------------------------------------------------------------- 

;----------------------------MEMBRANE VALUE--------------------- 
.MEMBRANE_VALUE 

RST    R0  

SWAP   R0 
RST    R0 

SWAP   R7                    ;SR7 ----> R7 

MOVA   R7                    ;ACC <---- v <---- R7 
SWAP   R7 

MOVR   R2                    ;R2 <-- v  

LDALL  R3,CTEAE              ;R3 <-- CTEAE="00000005" = 0.04 
        GOTO MULTIPLICATION    ;R6 contains the result = 0.04*v 

MOVA   R6 

MOVR   R3                  ;R3 <-- 0.04*v   
LDALL  R2,CTECIN             ;R2 <-- 5    

        GOTO SUMA              ;R4 <-- 0.04*v + 5 

MOVA   R4 
SWAP   R0                    ;SR0 <-- 0.04*v + 5       

SWAP   R7 

MOVA   R7 
SWAP   R7                

MOVR   R2                    ;R2 <----- v 

SWAP   R0 
MOVR   R3                    ;R3 <----- 0.04*v + 5 

SWAP   R0 

        GOTO MULTIPLICATION    ;R6 <----- (0.04*v + 5)*v  
LDALL  R2,CTE127P 

MOVA   R6 

MOVR   R3 
        GOTO SUMA              ;R4 <-- (0.04*v + 5)*v + 140 

MOVA   R4 

MOVR   R3                  ;R3  <-- (0.04*v + 5)*v + 140 
SWAP   R6                    ;SR6 <-- u 

RST    R0 

SUB    R6 
MOVR   R2                    ;R2  <--- - u                  

SWAP   R6                    ;ACC <---- (0.04*v + 5)*v + 140 - u 

        GOTO SUMA 
MOVA    R4                   ;R4 <---- (0.04*v + 5)*v + 140 - u  
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MOVR    R3                   ;R3 <---- (0.04*v + 5)*v + 140 - u 

SWAP    R2       

MOVA    R2                    
SWAP    R2 

MOVR    R2                   ;R2 <---- I 

        GOTO SUMA            ;R4 <---- (0.04*v + 5)*v + 140 - u + I 
MOVA  R4    

MOVR  R2                     ;R2 <---- (0.04*v + 5)*v + 140 - u + I  

LDALL R3,CTE05               ;R3 <----  0.5 
        GOTO MULTIPLICATION    ;R6 <----  0.5 * ((0.04*v + 5)*v + 140 - u + I)  

 

MOVA   R6 
MOVR   R2                  ;R2 <----  0.5 * ((0.04*v + 5)*v + 140 - u + I) 

SWAP   R7 

MOVA   R7 
MOVR   R3 

        GOTO   SUMA                  ;R4  <---- v + 0.5 * ((0.04*v + 5)*v + 140 - u + I) 

MOVA   R4                     
MOVR   R7                    ;R7 <---- v + 0.5 * ((0.04*v + 5)*v + 140 - u + I)                      

SWAP   R7 

RET 
;---------------------------- COMPUTATION OF RECOVERY VALUE ------------------------ 

.RECOVERY_VALUE 

;----------------------------------u = u + a(0.2*v-u)------------------------------- 
LDALL R2,CTEB                ;R2 <---- 0.2 = b   

SWAP R7 

MOVA R7 
MOVR R3                      ;R3 <---- v 

SWAP R7 

    GOTO MULTIPLICATION       ;R6 <----- 0.2*v 
MOVA R6 

MOVR R2                      ;R2 <----- 0.2*v 

 
SWAP   R6 

RST    R0 
SUB    R6 

MOVR   R3                    ;R3  <--- - u     

SWAP   R6    
    GOTO SUMA                ;R4 <--- 0.2*v - u  

MOVA R4 

MOVR R3                ;R3 <--- 0.2*v - u 
SWAP R1 

MOVA R1 

SWAP R1 
SHR 

SHR 

FREEZENC               ; NEURON TYPE EXCITATORY = 1        
 LDALL  R2,CTEAE1   ; Conditional store to a =  0.02 constant (excitatory)         

UNFREEZE 

FREEZEC             ; NEURON TYPE INHIBITORY = 0 
 LDALL  R2,CTEAI    ; Conditional store to a =  0.1 constant (inhibitory) 

UNFREEZE   

    GOTO MULTIPLICATION       ;R6 <----- a*(0.2*v - u)  
MOVA R6 

MOVR R2                    ;R2 <----  a*(0.2*v - u)  

 
SWAP R6                    ;R6 <---  u 

MOVA R6                                       

SWAP R6 
MOVR R3                    ;R3 <---  u 

    GOTO SUMA              ;R4 <---- u + a*(0.2*v - u) 

MOVA R4 
MOVR R6 

SWAP R6                       

RET   
;-----------------------------------------------------------------------------------   

;----------------------------------------------------------------------------------- 

.NEURON_SAVE 
SWAP R7        ;R7  <-- Vi 

MOVA R7 

MOVR R2 
RST R0 
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SHR  

STNC R2,NEU-2    

SWAP R7 
RET 

;----------------------------------------------------------------------------------- 

.SUMA 
;#################################################################################### 

RST  R4 

;------------------------------------ PRIMER BLOQUE --------------------------------- 
;------------------------------- DOS NUMEROS POSITIVOS ------------------------------ 

MOVA R3 

SHL 
FREEZEC 

  MOVA R2 

  SHL  
    FREEZEC 

       MOVA R3 

    ADD  R2 
    MOVR R4          ;R4 CONTIENE EL VALOR DE LA SUMA 

    SHL 

     FREEZENC 
     LDALL R4,CTE127P 

        UNFREEZE     

    UNFREEZE 
UNFREEZE  

;------------------------------------------------------------------------------------- 

;------------------------------------ SEGUNDO BLOQUE --------------------------------- 
;------------------------------------- R2 ES NEGATIVO  ------------------------------- 

MOVA R3 ;B  

SHL  
 FREEZEC 

    MOVA R2 ;A  NEGATIVO                   

    SHL    
    FREEZENC 

      RST     R0 
      SUB     R2                      

      MOVR    R2 

      MOVA    R2 
   SUB     R3 

      FREEZENC 

     MOVR    R2 
  RST     R0 

  SUB     R2 

     MOVR    R4 
      UNFREEZE    

        MOVA    R3 

     SUB     R2 
      FREEZENC 

  MOVR    R4 

      UNFREEZE 
    UNFREEZE 

 UNFREEZE   

;------------------------------------------------------------------------------------- 
;------------------------------------ TERCER BLOQUE --------------------------------- 

;------------------------------------- R3 ES NEGATIVO  ------------------------------- 

MOVA R3 ;B NEGATIVO 
SHL  

 FREEZENC 

    MOVA R2 ;A                     
    SHL    

    FREEZEC 

      RST     R0 
      SUB     R3                      

      MOVR    R3       ;VALOR POSITIVO DE R3 

    
      MOVA    R2 

   SUB     R3 

      FREEZENC 
     MOVR  R4 

      UNFREEZE    

        MOVA    R3 
     SUB     R2 
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      FREEZENC 

        MOVR    R2 

  RST     R0 
  SUB     R2 

  MOVR    R4 

      UNFREEZE 
    UNFREEZE 

 UNFREEZE   

 ;------------------------------------------------------------------------------------- 
;------------------------------------   CUARTO BLOQUE --------------------------------- 

;------------------------------------- AMBOS NEGATIVOS  ------------------------------- 

    MOVA R3 
    SHL 

    FREEZENC 

        MOVA R2                      
        SHL    

        FREEZENC 

            RST     R0 
            SUB     R3                      

            MOVR    R3       ;VALOR POSITIVO DE R3   

            RST     R0 
            SUB     R2                      

            MOVR    R2       ;VALOR POSITIVO DE R2  

            MOVA    R3 
         ADD     R2 

   MOVR    R3  

      RST     R0 
   SUB     R3 

   MOVR    R4       ;R4 CONTIENE EL VALOR DE LA SUMA TOTAL 

         MOVA    R3       ;R3 CONTIENE EL RESPALDO VALOR DE LA SUMA 
         SHL 

             FREEZENC 

                 LDALL R4,CTE128N 
                UNFREEZE            

        UNFREEZE 
 UNFREEZE  

RET 

;------------------------------------------------------------------------------------ 
;#################################################################################### 

.MULTIPLICATION 

;------------------------------DETECCION DEL SIGNO DE R2----------------------------- 
RST  R6 

MOVA    R2 

MOVR    R4                  ;R4 MANTIENE EL VALOR DE M1 
 

SHL 

FREEZENC 
RST     R0 

SUB     R2                      

MOVR    R2 
UNFREEZE 

;------------------------------DETECCION DEL SIGNO DE R3----------------------------- 

MOVA    R3 
MOVR    R7                  ;R7 MANTIENE EL VALOR DE M2  

 

SHL 
FREEZENC 

RST     R0 

SUB     R3                      
MOVR    R3 

UNFREEZE 

;-------------------------------Calculo de la parte baja---------------------------- 
        MOVA R2 

        MOVR R5 

   LOOP 15 
       MOVA R3 

       SHR 

       MOVR R3 
        FREEZENC 

               CLRC 

               MOVA R6 
               ADD  R5 
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               MOVR R6 

               FREEZENC 

                 SWAP R1 
                 MOVA R1 

                 LDALL R2,CARRY 

                 OR R2 
                 MOVR R1 

                 SWAP R1 

               UNFREEZE 
        UNFREEZE 

       MOVA R5 

       SHL 
       MOVR R5              ;R5 <-- M1 * M2 

   ENDL 

RST R0 
RST R1 

RST R2 

RST R3 
RST R5 

;------------------------------DETECCION DEL SIGNO DE R2---------------------------- 

MOVA    R4 
MOVR    R2 

SHL 

FREEZENC 
RST     R0 

SUB     R4                      

MOVR    R2 
UNFREEZE 

;------------------------------DETECCION DEL SIGNO DE R3----------------------------- 

MOVA    R7 
MOVR    R3 

SHL 

FREEZENC 
RST     R0 

SUB     R7                      
MOVR    R3 

UNFREEZE 

MOVA    R7 
MOVR    R1        ;AHORA EL VALOR DE R7 ESTA EN R 

;----------------------------Calculo de la parte alta-------------------- 

        RST  R7 
        MOVA R2 

        MOVR R5 

 
   LOOP 15 

        MOVA R3 

        SHL 
        MOVR R3   

     FREEZENC 

               MOVA R7 
               ADD  R5 

               MOVR R7 

        UNFREEZE 
     MOVA R5 

        SHR 

        MOVR R5  
    ENDL 

;--------------------------------------------------------------------------- 

SWAP R1 
MOVA R1 

SWAP R1 

SHR 
SHR 

ADD R7 

SHR 
MOVR R7 

MOVA R6 

SHR 
SHR 

SHR 

SHR 
SHR 
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SHR 

SHR 

SHR 
MOVR R6         ;MOVIMIENTO HACIA LA DERECHA PARA OBTENER EL VALOR DE LA PARTE FRACCIONARIA 

MOVA R7 

SHL 
SHL 

SHL 

SHL 
SHL 

SHL 

SHL 
SHL 

MOVR R7         ;MOVIMIENTO HACIA LA DERECHA PARA OBTENER EL VALOR DE LA PARTE ENTERA 

MOVA R7 
XOR  R6         ;UNION DE LAS DOS PARTES 

MOVR R6 

MOVR R5             ; R5 TIENE EL VALOR DE R6 
 

;------------------------CALCULO FINAL DEL SIGNO DEL PRODUCTO--------------- 

MOVA    R1 
LDALL   R2,CTEBT 

AND     R2 

MOVR    R2 
MOVA    R4 

LDALL   R3,CTEBT 

AND     R3 
MOVR    R3 

MOVA    R2 

XOR     R3 
MOVR    R3             ; R3 CONTIENE EL BIT DE SIGNO DEL PRODUCTO FINAL      

SHL                       ; IF  + or - the final sign is negative  

FREEZENC 
   RST  R0 

   SUB  R6 
   MOVR R6  

   MOVA R5 

   SHL 
   FREEZENC 

    LDALL R6,CTE128N    ;SE CARGA EL MAXIMO NUMERO NEGATIVO REPRESENTADO EN 7 BITS DE LA PARTE 

ENTERA 
   UNFREEZE 

UNFREEZE 

MOVA     R3 
SHL 

FREEZEC 

    MOVA R5 
    SHL    

    FREEZENC   

        LDALL R6,CTE127P    ;SE CARGA EL MAXIMO NUMERO POSITIVO REPRESENTADO EN 7 BITS DE LA PARTE 
ENTERA 

  UNFREEZE 

UNFREEZE 
SWAP R1 

MOVA R1 

LDALL R2,CCARRY  
AND R2 

MOVR R1 

SWAP R1 
RET 

;########################################################################### 

 
; **************************** MAIN PROGRAMME BEGIN ************************ 

.MAIN 

  
 GOTO INICIALIZATION_I 

 GOTO SPIKE_UPDATE               ;OUT SPIKE Si 

 GOTO UPDATE_MEMBRANE_VALUE 
 GOTO SPIKES_ENABLE 

 STOP                ;AER/CAM UPDATE OF SPIKES  

 LOOP synapses                  ; spikes Sj        
      GOTO SYNAPSE_LOAD1 
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      GOTO SYNAPTIC_WEIGHT_PRE    

      GOTO SYNAPSE_SAVE1 

    ENDL  
 GOTO MEMBRANE_VALUE 

 GOTO MEMBRANE_VALUE 

 GOTO RECOVERY_VALUE 
 GOTO NEURON_SAVE 

  

GOTO MAIN 
; **************************** MAIN PROGRAMME END *************************** 

 

C.3 Assembler code of Leaky integrate-and-fire algorithm 

– Ubichip 

THETA1="0000F060" 

THETA2="0000F060" 

POT1="000003E8"    
POT2="0000FFB0" 

VREST1="0000E188" 

VREST2="0000E188" 
UNO="00000001" 

MASC="00000003" 

MASK1="0000E000" 
MASK2="0000C000" 

 

.CODE 
 

GOTO MAIN 

 
; ---------------------------------------------------------------------------- 

; ***************************** PROCEDURES BEGIN *************************** 

; -------------------------------  NEURON LOAD --------------------- 
.NEURON_LOAD 

SWAP  R6 
LOAD  R6,NEU-2   ;SR6 <-- Vi 

SWAP  R6 

SWAP  R0 
LOAD  R0,NEU-3   ;SR0 <-- SUM_WEIGHTS 

SWAP  R0 

; ------------------------------ Neuron Type + Si ---------------------- 
LOAD  R2,NEU-1      ;R2  <-- Mi + Neuron Type + Si 

MOVA  R2 

LDALL R3,MASC 
AND   R3 

SWAP  R5 

MOVR  R5      ;SR5 <-- Neuron Type + Si 
SWAP  R5 

; ------------------------------------- Mi ---------------------------------- 

MOVA  R2 
SHR 

SHR 

SWAP  R4 
MOVR  R4   ;SR4 <-- Mi 

SWAP  R4 

;------------------------------ Tref + exponential ---------------------- 
LDALL R3,MASK1     ;MASK1="0000E000" 

SWAP  R5 

MOVA  R5 
SWAP  R5 

SHR 

SHR 
FREEZENC 

 LDALL R3,MASK2   ;MASK2="0000C000"  

UNFREEZE 
LOAD  R1,NEU-4   ;R1  <-- Tref + exponential 

INV   R3        ;MASK1 --> 1FFF ; MASK2 --> 3FFF   

AND   R1    
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MOVR  R7    ;R7  <-- 1FFF   

SWAP  R7               ;SR7 <-- exponential 

MOVA  R1    
AND   R3    ;MASK1 = E000 ; MASK2 = C000 

MOVR  R7   ;R7  <-- Tref 

RET 
; ---------------------------------------------------------------------------- 

; -------------------------- MEMBRANE VALUE -------------------- 

.MEMBRANE_VALUE 
RST  R1   

RST  R2 

SWAP R5       ;SR5 --> NEURON TYPE + Si 
LDALL R3,DMEM1  ;R3  <-- DECAY DONATOR 1 

LDALL R4,VREST1  ;R4  <-- Vres1  

MOVA R5 
SHR   

SHR   ;IF NEURON TYPE = TYPE_II (CONDITIONAL LOAD) 

FREEZENC  
 LDALL R3,DMEM2 ;R3  <-- DECAY DONATOR 2 

 LDALL R4,VREST2 ;R4  <-- Vres2 

UNFREEZE 
;----------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) ----------------- 

MOVA R5 

SHR  
FREEZEC  ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem) 

 SWAP R6   ;SR6 <-- Vi  

 MOVA R6   ;R0  <-- Vi 
 SUB R4   ;R0  <-- Vi - Vres 

 MOVR R2  ;R2  <--(Vi(t)-Vres)  

 GOTO DECAY  ;R2  =  (Vi(t)-Vres), R3 = DECAY DONATOR (1 or 2) 
    ;R2  <--(Vi(t)-Vres) * (Kmem)    

UNFREEZE 

MOVA R5 
SHR 

FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0 
    RST  R2      ;R2  <-- ((0)*(Vi(t)-Vres)*(Kmem) 

UNFREEZE 

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ---------- 
LDALL R4,VREST1  ;R4  <-- Vres1 

MOVA R5    

SHR   
SHR 

   ;IF NEURON TYPE = TYPE_II (CONDITIONAL LOAD) 

FREEZENC   
 LDALL R4,VREST2 ;R4  <-- Vres2 

UNFREEZE   

MOVA R4           ;R0  <-- Vres1 or Vres2  
ADD  R2           ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) 

MOVR R2           ;R2  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) 

SWAP R0           ;R0  <-- SUM_WEIGHTS 
ADD  R2   ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS 

MOVR R6  ;R6  <-- Vi = (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS  

SWAP R6   ;SR6 <-- Vi 
SWAP R5   ;SR5 <-- NEURON TYPE + Si 

RST R0   ;SUM_WEIGHTS = 0  

SWAP R0   ;SR0 <-- SUM_WEIGHTS 
RET  

; ----------------------------------------------------------------------------------------- 

; ---------------------------------- SYNAPSE LOAD ------------------------------- 
.SYNAPSE_LOAD 

; ------------------------------------------------------------------------------- 

; -------------------------------------- SP1 ----------------------------------- 
; ------------------------------------------------------------------------------- 

; ----------------------------  Synapse Type + Sj ------------------------- 

LDALL R1,MASC 
SETC 

SETMP SYN-0           ;LOOP INDEX 

READMP 1    
LOAD R2               ;R2  <-- Synapse Type + Sj 

; -------------------------------  Synapse Type + Sj ---------------------------- 

MOVA R2 
AND  R1 
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MOVR R6   ;R6  <-- Synapse Type + Sj 

MOVA R2 

SHR 
SHR 

MOVR R5    

; -------------------------------------------------------------------------------------------- 
; --------------------------------- SYNAPTIC WEIGHT ------------------------------ 

.SYNAPTIC_WEIGHT 

RST R1      
MOVA R6 

SHR 

FREEZENC  ;IF (Sj = 1) THEN R0 <-- wji = Sj * Aji * P 
 LDALL R4,POT1 ;R4  <--  POT1 

 MOVA R6   

 SHR 
 SHR 

 FREEZENC 

  LDALL R4,POT2 
 UNFREEZE 

;---------------------------------------- Aji * P ---------------------------------  

 MOVFS R3   
 MOVA R3    

 SHR 

 MOVR R3 
 FREEZENC 

  MOVA R1   

  ADD R4   
  MOVR R1 

 UNFREEZE 

 MOVA R3 
 SHR 

 MOVR R3 

 FREEZENC 
  MOVA R1  

  ADD R4  
  ADD R4 

  MOVR R1 

 UNFREEZE 
 MOVFS R3 

 MOVA R3 

 SHR 
 FREEZENC 

  SHR 

  FREEZENC 
   MOVA R1  

   ADD  R4  

   MOVR R1 
  UNFREEZE 

 UNFREEZE 

UNFREEZE 
SWAP R0     

ADD R1    ; SR0 <-- wji = Sj * Aji * P 

SWAP R0     
RET 

; ---------------------------------------------------------------------------------- 

; --------------------------- SYNAPSE_SAVE ------------------------------- 
.SYNAPSE_SAVE 

SETMP SYN-0   ;LOAD LOOP INDEX! 

READMP 1        ;READMPX 
; ************************** 1. MJ+SI+TYPE ******************************** 

MOVA R6      ;R6 <--- S type + Sj 

SHR 
SHL 

MOVR R6 

MOVA R5   ;<--MJ 
SHL 

SHL 

ADD R6   ;+TYPE+SJ 
MOVR R3  ;composed DATA 

RST R0 

SHR 
STNC R3 ;SAVE DATA 
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; ***************************** 2. LJI+AJI ********************************* 

SWAP R2 

MOVA R2   ;<--LJI 
SWAP R2 

SHL 

SHL 
SWAP R3 

ADD R3   ;+AJI 

SWAP R3 
MOVR R3  ;composed DATA 

RST R0 

SHR 
STNC R3   ;SAVE DATA 

RET 

; ----------------------------------------------------------------------------------  
; ---------------------------- SPIKE UPDATE -------------------------------- 

.SPIKE_UPDATE 

LDALL R3,THETA1      ;R3  <-- THETA1 = "0000F060" 
SWAP R5     ;SR5 <-- Neuron Type + Si 

MOVA R5     

SHR 
SHR 

FREEZENC 

 LDALL R3,THETA2     ;R3  <-- THETA2 = "0000F060" 
UNFREEZE 

MOVA R5      

SHR 
SHL 

MOVR R5    ;R5  <-- Neuron Type + 0 

SWAP R6                 ;SR6 <--  Vi 
MOVA R6                 ;R0  <--  Vi 

SUB  R3     ;R0  <--  Vi - (THETA1 or THETA2)  

SWAP R6 
FREEZENC 

 MOVA R7    ;R0  <-- refractary period 
 SHL 

 FREEZEC     

  MOVA  R5 
  LDALL R3,UNO 

  ADD   R3 

  MOVR  R5        ;R5  <-- Neuron Type + 1 
  SET   R7  ;R7  <-- activation of refractory time 

 UNFREEZE 

UNFREEZE 
SWAP R5      

RET 

; ---------------------------------------------------------------------------------- 
; ------------------------------- REFRACTORY P --------------------------- 

.REFRACTORY_P 

MOVA R7   
SHL     ; -1ms 

MOVR R7  

RET 
; ---------------------------------------------------------------------------------- 

; ------------------------------- NEURON SAVE ---------------------------- 

.NEURON_SAVE 
SWAP R4             ;R4  <-- Mi 

SWAP R5    ;R5  <-- Neuron Type + Si 

SWAP R6 
RST R3     

MOVA R4     

SHL 
SHL 

ADD R5 

MOVR R3             ;R3  <-- Mi + Neuron Type + Si  
;--------------------------- INDIVIDUAL DATA STORE ------------------ 

RST R0 

SHR 
STNC R3,NEU-1  ;SRAM  <-- Neuron Type + Si  

RST R0 

SHR 
STNC R6,NEU-2  ;SRAM  <-- Vi 
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SWAP R0 

CLRC 

STNC R0,NEU-3  ;SRAM  <-- SUM_WEIGHTS 
SWAP R0 

LDALL R3,          ;MASK1 = "0000E000" 

MOVA R5 
SWAP R5 

SHR 

SHR 
FREEZENC 

 LDALL R3,MASK2  ;MASK2 = "00008000"  

UNFREEZE 
MOVA R7    ;ACC   <-- Tref 

AND R3   

SWAP R7    ;R7    <-- exponential 
OR R7 

SWAP R7     

CLRC 
STNC R0,NEU-4  ;SRAM  <-- Tref + exponential 

RET 

; -------------------------------------------------------------------------------------------      
;-------------------------ENABLE SPIKES PROPAGATION----------------------- 

.SPIKES_ENABLE 

SWAP R5    ; ACC <== Spikes 
MOVA R5 

SWAP R5 

SETC   
SETMP SYN-0    ; Point to Sj  

READMP 

RET  
;------------------------------------------------------------------------------------------- 

; ---------------------------- EXPONENTIAL DECAY ----------------------------- 

.DECAY 
RST R1 

MOVA R2  
MOVR R4  

SHL 

FREEZENC 
 RST R0 

 SUB R2 

 MOVR R2 
UNFREEZE 

LOOP 15 

 MOVA R2 
 SHL 

 MOVR R2 

 FREEZENC 
  MOVA R1 

  ADD R3 

  MOVR R1 
 UNFREEZE 

 MOVA R3 

 SHR 
 MOVR R3 

ENDL 

MOVA R1 
SHR  

MOVR R1  

MOVA R4  
SHL 

FREEZENC 

 RST R0 
 SUB R1 

 MOVR R1 

UNFREEZE 
MOVA R1 

MOVR R2  

RST R1 
RET 

; --------------------------------------------------------------------------- 

; **************************** PROCEDURES END ****************************** 
; **************************** MAIN PROGRAMME BEGIN *********************** 
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.MAIN 

GOTO NEURON_LOAD 

GOTO MEMBRANE_VALUE 
LOOP synapses 

 GOTO SYNAPSE_LOAD 

 GOTO SYNAPTIC_WEIGHT 
 GOTO SYNAPSE_SAVE 

ENDL 

GOTO SPIKE_UPDATE 
GOTO REFRACTORY_P 

GOTO NEURON_SAVE 

GOTO SPIKES_ENABLE 
STOP 

HALT 

GOTO MAIN 
; **************************** MAIN PROGRAMME END ************************** 

 

 

C.4 Assembler code of Iglesias and villa algorithm – 

SNAVA 

 

 
AMAX="00000003" 

DACT1="0000FFFA" 

DACT2="0000FFFA" 
DBACK="0000E7A3"  

DMEM1="0000EF7D" 

DMEM2="0000EF7D" 
DSYN1="0000F9AE" 

DSYN2="0000F9AE" 

LMAX="00003FFF" 
MMAX="00000666" 

POT1="000003E8"    
POT2="0000FFB0"   

PROB="00001FFF" 

THETA1="0000F060" 
THETA2="0000F060" 

VREST1="0000E188" 

VREST2="0000E188" 
UNO="00000001"  

DOS="00000002"  

CTETP="0000F448" 
CTE1="00000007"    

 

.CODE 
 

LOOPN neurons_virtualized 

; --------------------------INIT SOME VARIABLES----------------------------- 
LDALL R2,PROB    

MOVA R2         

RANDON 
LLFSR R1 

RANDOFF 

AND R1 
MOVR  R5 

SWAPS R5     ;SR5_2 <-- activation probability 

; -------------------------------------------------------------------------- 
ENDL  

 

GOTO MAIN 
; -------------------------------------------------------------------------- 

; ***************************** PROCEDURES BEGIN *************************** 

; ------------------------------- MEMBRANE VALUE -------------------------------  
.MEMBRANE_VALUE 

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ---------- 
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 LDALL R4,DMEM1    ;R4    <-- DECAY DONATOR 1 

 LDALL R5,VREST1    ;R5    <-- Vres1  

 SWAPS R0       ;R0    <-- SR0_2 = Nt + Si 
 MOVR  R3                ;R3    <-- Nt + Si 

 SWAPS R0                ;SR0_2 <-- R0 = Nt + Si 

 MOVA  R3 
 SHRN DOS        

 FREEZENC ;IF NEURON TYPE = II (CONDITIONAL LOAD) 

  LDALL R4,DMEM2   ;R4  <-- DECAY DONATOR 2 
  LDALL R5,VREST2   ;R5  <-- Vres2 

 UNFREEZE 

;----------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) ----------------- 
 MOVA R3                     ;R0  <-- R3 = Nt + Si 

 RTR  

 FREEZEC  ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem) 
  SWAPS R1   ;R1  <-- SR1_2 = Vi  

  MOVA  R1    ;R0  <-- R1 = Vi 

  SUB   R5    ;R0  <-- Vi - Vres 
  UNMUL   R4       ;R0  <--(Vi(t)-Vres) * (Kmem) 

  MOVR  R2                ;R2  <--(Vi(t)-Vres) * (Kmem)  

 UNFREEZE 
 MOVA R3 

 RTR 

 FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0 
  RST  R2      ;R2  <-- ((0)*(Vi(t)-Vres)*(Kmem) 

 UNFREEZE 

MOVA R2          ;R0  <-- (Vi(t)-Vres)*(Kmem) 
ADD  R5          ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)   

SWAPS R2        ;R2  <-- SR2_2 = SUM_WEIGHTS 

ADD  R2    ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS 
MOVR R1             ;R1  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS 

SWAPS R1  ;SR1_2  <-- R1 = Vi  

RST R2    ;SUM_WEIGHTS <-- 0  
SWAPS R2        ;SR2_2 <-- R2 = SUM_WEIGHTS 

RET  
; ------------------------------------------------------------------------------- 

; ---------------------------------- SYNAPSE LOAD ------------------------------- 

.SYNAPSE_LOAD 
LOADSP 

        ;R4 <-- St + Sj 

  ;R5 <-- Aj 
  ;R6 <-- Lji 

  ;R7 <-- Mj 

RET 
; ------------------------------------------------------------------------------------------- 

; --------------------------------- SYNAPTIC WEIGHT ------------------------------ 

.SYNAPTIC_WEIGHT 
      

MOVA R4             ; R0 <-- St + Sj 

RTR 
FREEZENC  ;IF (Sj = 1) THEN R0 <-- wji = Aji * P 

 LDALL R1,POT1 ; R1  <--  POT1 

 MOVA  R4     ; R0 <-- St + Sj  
 SHRN  DOS 

  FREEZENC 

  LDALL R1,POT2 
  UNFREEZE 

 MOVA R1         ;R0  <-- POT1 or POT2    

 MUL  R5         ;R0  <-- wji = Aji * P   
    SWAPS R2    ;R2  <-- SR2_2 = sumW 

 ADD  R2      ;SR0 <-- wji = Sj * Aji * P 

 MOVR R2         ;R2  <-- wji = Sj * Aji * P 
    SWAPS R2    ;SR2_2 <-- R2  = sumW  

UNFREEZE 

RET 
;-------------------------------------------------------------------------------------------- 

;---------------------------- REAL_VALUE_VARIABLE -------------------------- 

 .REAL_VALUE_VARIABLE 
;---------------Lji(t+1)  = Lji(t) * Kact + Si(t) * Mj - Sj(t) * Mi(t)-------   

LDALL R1,DACT1   ;R1  <-- DACT1 

MOVA  R4          ;R0  <-- St + Sj    
SHRN  DOS 
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FREEZENC        ;St = 1 = inhibitory synapse 

 LDALL R1,DACT2  ;R1  <-- DACT2 

UNFREEZE 
MOVA  R6        ;R0 <-- R6 = Lji   

UNMUL   R1        ;R0 <-- Lji(t) * Kact      

MOVR  R6        ;R6 <-- Lji 
 

SWAPS R0    ;R0 <-- SR0_2 = St + Si 

MOVR  R2 
SWAPS R0    ;R0 <-- SR0_2 = St + Si 

MOVA  R2 

RTR            
FREEZENC        ;IF Si = 1 THEN 

 MOVA R7             ;R0  <-- R7 = Mj 

 ADD  R6       ;R0  <-- (Lji(t) * Kact) + (Si(t) * Mj) 
 MOVR R6             ;R6  <-- (Lji(t) * Kact) + (Si(t) * Mj) 

UNFREEZE 

 
MOVA R4         ;R4  <-- St + Sj 

RTR             

FREEZENC        ;IF Sj = 1 THEN 
 SWAPS R3        ;R3  <-- SR3_2 = Mi 

 MOVA  R6            ;R0  <-- Mi 

 SUB   R3   ;R0  <--(Lji(t) * Kact) + (Si(t) * Mj) - Sj(t) * Mi(t) 
 SWAPS R3        ;R3  <-- SR3_2 = Mi 

 MOVR  R6            ;R6  <--(Lji(t) * Kact) + (Si(t) * Mj) - Sj(t) * Mi(t) 

UNFREEZE 
RET  

; ------------------------------------------------------------------------------ 

; ------------------------------- ACTIVATION_VARIABLE -------------------------- 
.ACTIVATION_VARIABLE 

MOVA R5                 ;R0 <-- R5 = Aji 

 FREEZEZ  ; IF (Aji =/ 0) THEN 
  LDALL R0,LMAX  ; R0 <--- Lmax  

  SUB   R6            ; Lmax - Lji 
  RTL    

  FREEZENC     

   MOVA R5      ; R0 <-- R5 <-- Aji 
   INC       ; R0 <-- Aji + 1 

   MOVR R5  ; R5 <-- Aji   

    
   LDALL R0,AMAX  

   SUB   R5  ; R0 <--  Amax - Aji 

   RTL     
   FREEZENC   

    LDALL R5,AMAX 

   UNFREEZE 
   LDALL R0,LMAX ; Lji=Lmax/2 

   RTR 

   MOVR R6 
  UNFREEZE 

       ;else if (Lji < Lmin)  

  MOVA R6    ; Lji --> ACC, Lmin=0 
  RTL      

  FREEZENC   ; (Lji-Lmin) 

   MOVA R5         ; R0 <-- R5 = Aji  
   DEC       ; Aji-1 

   MOVR R5  ; Aji --> R5 

   LDALL R0,LMAX ; Lji=Lmax/2 
   RTR 

   MOVR R6 

  UNFREEZE 
 UNFREEZE 

 

MOVA R5 
FREEZENZ    ;IF CONNECTION IS INACTIVE 

 RST R6 

UNFREEZE 
RET 

; ----------------------------------------------------------------------------------------- 

; -------------------------------- MEMORY_OF_LAST_PRESYNAPTIC_SPIKE ----------------------- 
.MEMORY_OF_LAST_PRESYNAPTIC_SPIKE 
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; ----------------- Mj(t+1) = (Sj(t) * Mmax) + (1 - Sj(t)) * Mj(t) * Ksyn -----------------  

;--------------------------- R2 <-- (1 - Sj(t)) * Mj(t) * Ksyn ---------------------------- 
LDALL R1,DSYN1   ; R1 <-- Ksyn1  

MOVA R4     ; R0 <-- R4 = Synapse Type + Sj 

SHRN DOS 
FREEZENC 

 LDALL R1,DSYN2  ; R1 <-- Ksyn2 

UNFREEZE 
 

MOVA R4     ; R0 <-- R4 = Synapse Type + Sj 

RTR 
FREEZEC     ; IF Sj = 0 THEN 

MOVA R7     ; R7 <-- Mj 

UNMUL  R1                 ; R0 <-- (1 - Sj(t)) * Mj * Ksyn1 or Ksyn2 
MOVR R7                 ; R3 <-- (1 - Sj(t)) * Mj * Ksyn1 or Ksyn2 

UNFREEZE 

  
MOVA R4     ; R0 <-- R4 = Synapse Type + Sj 

RTR 

FREEZENC    ;IF Sj= 1  THEN R7 <-- Mmax 
 LDALL R7,MMAX        ;R2 <-- Mmax              

UNFREEZE 

;MOVA R7                 ; R0 <-- (1 - Sj(t)) * Mj * Ksyn1 or Ksyn2 
RET 

; ------------------------------------------------------------------------- 

; --------------------------- SYNAPSE_SAVE ------------------------------- 
.SYNAPSE_SAVE 

; THE SYNAPTIC PARAMETERS GO TO BUFFER 32 bits 

;MOVA R5                ;R5 <-- Aji 
MOVA  R6                ;R6 <-- Lji 

;RTR 

;RTR 
RTL 

RTL 
OR    R5 

MOVR  R1                ;R1 <-- Lji + Aji 

;MOVA R4                ;R4 <-- St + Sj   
MOVA  R7       ;R0 <-- R7 = Mj 

;RTR 

;RTR 
RTL 

RTL 

OR    R4    ;R0 <-- Mj + St + Sj   
STOREB 

NOP 

 
MOVA R4         ;R0 <--- R4 = St + Sj   to delete the spike 

RTR 

RTL 
MOVR R4 

STORESP 

RET 
; ----------------------------------------------------------------------------------------------------- 

; ------------------------ MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE --------------- 

.MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE 
; ----------------- Mi(t+1) = (Si(t) * Mmax) + (1 - Si(t)) * Mi(t) * Ksyn -----------------  

 

 
SWAPS R0            ;R0 <-- SR0_2 = St + Si 

MOVR  R2            ;R2 <-- St + Si 

SWAPS R0            ;SR0_2 <-- R0 = St + Si  
MOVA R2 

LDALL R1,DSYN1   ;TYPE=1 

SHRN DOS        
 FREEZENC 

  LDALL R1,DSYN2  ;TYPE=2 

 UNFREEZE 
 

SWAPS R3            ;R3 <-- SR3_2 = Mi      

  
MOVA R2                 ;R0 <-- St + Si 
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RTR 

 FREEZEC 

  MOVA   R3             ;R0 <-- Mi  
  UNMUL  R1             ;R0 <-- (1 - Si(t)) * Mi * Ksyn1 or Ksyn2 

  MOVR   R3             ;R4 <-- (1 - Si(t)) * Mi * Ksyn1 or Ksyn2    

 UNFREEZE 
  

MOVA R2 

RTR       
 FREEZENC 

  LDALL R3,MMAX 

 UNFREEZE 
 

;MOVA R3 

SWAPS R3           ; SR3_2 <-- R3 = Mi 
RET  

; --------------------------------------------------------------------------- 

; ---------------------------- SPIKE UPDATE -------------------------------- 
.SPIKE_UPDATE 

SWAPS R0    ;R0  <-- SR0_2 = Nt + Si 

MOVR  R2  
LDALL R3,THETA1      ;R3   <-- THETA1 = "0000F060"   

SHRN  DOS 

FREEZENC 
 LDALL R3,THETA2     ;R3   <-- THETA2 = "0000F060" 

UNFREEZE 

 MOVA R2      
 RTR 

 RTL 

 MOVR R2 ;R2   <-- Neuron Type + 0 It has been set Si = 0 
 

    SWAPS R1      ;R1 <-- SR1_2 = Vi 

 MOVA  R1 
    MOVR  R5  

 SWAPS R1             ;SR1_2  <-- R1 = Vi 
 RTL 

  FREEZEC 

   LDALL R5,CTETP     ; It has assigned a positive value under 30 because it has verified that is 
lower than 

  UNFREEZE 

MOVA  R5                ;R0   <--  Vi 
SUB   R3    ;R0   <--  Vi - (THETA1 or THETA2)  

 FREEZENC 

        SWAPS  R4  ;R4   <-- SR4 = Tref 
  RST  R0  

  SUB     R4 

  SWAPS   R4 
  FREEZENZ    ; IF  (Z = 1) THEN Tref is setting   

  MOVA  R2 

  INC 
  MOVR  R2 

  LDALL   R4,CTE1   ;CTE1 = 7 

  SWAPS   R4 
  UNFREEZE   

 UNFREEZE 

MOVA  R2                ;R0    <--  Nt + Si  
SWAPS R0    ;SR0_2 <-- R0 = Nt + Si   

RET 

; ----------------------------------------------------------------------------- 
; ------------------------------- REFRACTORY P --------------------------- 

.REFRACTORY_P 

 SWAPS  R4  ;R4   <-- SR4 = Tref 
 MOVA    R4 

 RTR 

 MOVR    R4 
 SWAPS  R4  ;SR4   <-- R4 = Tref  

RET 

; ------------------------------------------------------------------------ 
.NEURON_SAVE 

;SWAPS R0   ;Nt + Si 

;SWAPS R1           ;Vi 
;SWAPS R2           ;sum_W  
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;SWAPS R3           ;Mi 

SWAPS  R0           ;R0  <-- SR0 = Nt + Si  

MOVR   R1           ;R1  <-- R0 
SWAPS  R0           ;SR0 <-- R0  = Nt + Si 

SWAPS  R3           ;R3 <-- SR3 = Mi 

MOVA   R3 
;RTR 

;RTR 

RTL 
RTL 

OR     R1           ;R0 <-- Mi + Nt + Si 

SWAPS  R3           ;R3 <-- SR3 = Mi 
SWAPS  R1           ;R1 <-- SR1 = Vi  

STOREB 

NOP 
SWAPS  R1 

RST   R1 

SWAPS R2            ;R2 <-- SR2 = sum_W 
MOVA  R2           

SWAPS R2 

STOREB 
NOP  

RET 

; ----------------------------- BACKGROUND_ACTIVITY---------------------------- 
.BACKGROUND_ACTIVITY 

SWAPS R6           ; R6  <-- SR6_2 = exponential   

MOVA  R6 
SWAPS R6           ; SR6_2 <-- R6 = exponential 

 

LDALL R4,PROB    ; R4  <-- PROB = "00001FFF" 
LDALL R3,DBACK          ; R3  <-- DBACK = "00005E2C" 

UNMUL   R3    ; R0  <-- DBACK * exponential 

MOVR  R2                ; R2  <-- DBACK * exponential 
SWAPS R5       ; R5  <-- SR5_2 = activation probability 

MOVA R4     ; R0  <-- PROB 
SUB R2                  ; R0  <-- PROB - (DBACK * exponential) 

RANDON 

CLRC 
SUB R5     ; (PROB - (DBACK * exponential)) - Activation probability 

FREEZENC  ;If ((PROB - (DBACK * exponential)) > Activation probability) then 

 LLFSR R5  ; R1  <-- new activation probability 
 RANDOFF 

 MOVA R4             ; R0  <-- PROB = "00001FFF" 

 MOVR R2             ; R2  <-- PROB = "00001FFF" 
 AND  R5             ; R0  <-- PROB = "00001FFF" AND new activation probability 

 MOVR R5             ; R1  <-- PROB = "00001FFF" AND new activation probability  

  FREEZENC    ; IF  ( C = 1 ) THEN Tref  
        SWAPS  R4  ;R4   <-- SR4 = Tref 

  RST  R0  

  SUB     R4 
  SWAPS   R4 

   FREEZENZ    ; IF  (Z = 1) THEN Tref is setting   

    SWAPS   R0   ; R0 <-- SR0_2 = Neuron Type + Si   
    RTR 

    RTL 

    INC 
    SWAPS   R0   ; R0 <-- SR0_2 = Neuron Type + Si   

    LDALL   R4,CTE1   ;CTE1 = 7 

    SWAPS   R4 
   UNFREEZE   

  UNFREEZE 

UNFREEZE 
SWAPS R5        ;SR5_2 <-- R5 = activation probability 

MOVA  R2      

SWAPS R6           ; R6  <-- SR6_2 = exponential   
MOVR  R6 

SWAPS R6           ; SR6_2 <-- R6 = exponential 

RET 
; ------------------------------------------------------------------------ 

;-------------------------ENABLE SPIKES PROPAGATION----------------------- 

.SPIKES_ENABLE 
SWAPS R0     
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MOVR R2                 ; R2 <-- St + Si 

SWAPS R0 

MOVA R2     ; R0 <== Spikes 
STOREPS 

RET  

; ------------------------------------------------------------------------ 
; **************************** PROCEDURES END ****************************** 

; **************************** MAIN PROGRAMME BEGIN ************************ 

.MAIN 
LOOPN neurons_virtualized 

GOTO MEMBRANE_VALUE 

ENDL 
 

LOOPS synapses                 ;synaptic loop 

 GOTO  SYNAPSE_LOAD 
 GOTO  SYNAPTIC_WEIGHT 

 GOTOL REAL_VALUE_VARIABLE 

 GOTOL ACTIVATION_VARIABLE 
 GOTOL MEMORY_OF_LAST_PRESYNAPTIC_SPIKE 

 GOTO  SYNAPSE_SAVE 

ENDL 
 

LOOPN neurons_virtualized 

GOTO MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE 
GOTO SPIKE_UPDATE 

GOTO BACKGROUND_ACTIVITY 

GOTO REFRACTORY_P 
GOTO NEURON_SAVE 

GOTO SPIKES_ENABLE 

ENDL 
NOP  

SPKDIS 

NOP 
NOP 

GOTO MAIN 
; **************************** MAIN PROGRAMME END ************************** 

 

C.5 Assembler code of Izhikevich algorithm – SNAVA 

PROB="0000FFFF"  ;0.99 

CTE1="00000000"  ;5 
CTE2="00000000"  ;2 

CTE3="00000000"  ;140 

CTE4="00000000"  ;0.04 
CTE5="00000000"  ;0.5 

CTE6V="00000000" ;6 

CTE30V="00000000";30 
MAXE="00000000"  ;800 

 

.CODE 
; --------------------------INITIALIZATION PHASE----------------------------- 

 

GOTO MAIN 
 

.thalamic_input 

 LDALL  R0,PROB 
 RANDON 

 LLFSR   R1   ; R1  <-- new probability 
 RANDOFF 

 LDALL   R2,CTE1  ; CTE1 = 5 

 MOVA    R1 
 MUL     R2 

 MOVR    R2          ; R2 <-- 5 * new probability 

 SWAPS R0 ;R0  <-- SR0 =  Nt + Si 
 MOVR    R3 ;R3  <-- R0  =  Nt + Si     

 SWAPS   R0  ;SR0 <-- R0  =  Nt + Si 

 MOVA    R3  ;R0  <-- R3  =  Nt + Si 
     RTR          

 RTR  
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 FREEZENC ;1 = inhibitory, 0 = excitatory  

  LDALL   R0,CTE2  ; CTE2 = 2 

         MUL     R1 
  MOVR    R2  ; R2 <-- 2 * new probability 

 UNFREEZE 

 MOVA  R2 
 MOVR  R1 

 SWAPS R1 

RET 
 

.spike_update  

 SWAPS R0        ; Si <-- 0 
    RTR 

 RTL 

 SWAPS   R0 
 SWAPS   R2     

 MOVA   R2 ; R0  <-- v 

 SWAPS   R2 
 RTL 

  FREEZENC 

   LDALL R4,CTE6V      
  UNFREEZE 

 MOVA  R4 

 LDALL R3,CTE30V       ; R3  <-- 30 
 SUB   R3              ; v - 30  

 FREEZENC              ; v = c , u = u + d, only if v >= 30 

  SWAPS R0        ; Si <-- 1 
          INC 

  SWAPS   R0 

 UNFREEZE  
RET 

  

.membrane_potential_update 
 

  SWAPS   R0 
  MOVR    R1 

  SWAPS   R0 

  MOVA    R1 
  RTR 

  FREEZENC 

   SWAPS R6      ; SR6  <-- c 
   MOVA    R6 

   MOVR    R2 

   SWAPS   R2         ; SR2  <-- v = c 
   SWAPS R6         ; SR6  <-- v = c 

    

   SWAPS   R7   ; R7  <-- SR7 = d 
   SWAPS   R3    ; R3  <-- SR3 = u 

   MOVA    R3   ; R0  <-- u 

   ADD    R7          ; R0  <-- u + d 
               MOVR    R3 

   SWAPS   R3    ; R3  <-- SR3, u = u + d               

   SWAPS   R7   ; R7  <-- SR7 = d 
  UNFREEZE 

RET 

 
 

.SPIKES_ENABLE 

  SWAPS R0     
  MOVR R2                 ; R2 <-- Si 

  SWAPS R0 

  MOVA R2     ; R0 <== Spikes 
  STOREPS 

RET  

.SYNAPSE_LOAD 
  LOADSP 

   ;R4 <--  

   ;R5 <--  
   ;R6 <-- Sj 

   ;R7 <-- S 

RET 
.SYNAPTIC_WEIGHT 



Annexure C Assembly codes 

 

207 

 

      

 MOVA   R6   ; R0 <-- Sj 

    RTR 
    FREEZENC  

  SWAPS  R1 ; R1 <-- SR1 = I 

     MOVA   R7 ; R0 <-- R7 = S 
  ADD    R1   ; R0 <-- I= I + S   

  MOVR   R1 

  SWAPS  R1 
 UNFREEZE 

 

RET 
.SYNAPSE_SAVE 

 

 MOVA R6      ;R0 <--- R4 = St + Sj   to delete the spike 
 RTR 

 RTL 

 MOVR R6 
 STORESP 

RET 

.membrane_potential_calculation 
 

 SWAPS R1 ;R1 <-- SR1 = I 

 SWAPS R2 ;R2 <-- SR2 = v 
 SWAPS   R3 ;R3 <-- SR3 = u 

 SWAPS   R4 ;R4 <-- SR4 = a   

 SWAPS   R5 ;R5 <-- SR5 = b 
 LDALL   R0,CTE3 ;CTE3 = 140 

    SUB     R3  ;R0 = 140 - u 

 ADD     R1  ;R0 = 140 - u + I 
 MOVR    R7  ;R7 = 140 - u + I 

 LDALL   R0,CTE1 ;5 

 MUL     R2  ;R0 = 5 * v 
 ADD     R7  ;R0 = 5 * v + 140 - u + I 

 MOVR    R7  ;R7 = 5 * v + 140 - u + I 
 LDALL   R0,CTE4 ;0.04 

 MUL     R2 

 MUL     R2 
 ADD     R7  ;R0 = 0.04 * v * v + 5 * v + 140 - u + I  

 MOVR    R7  ;R7 = 0.04 * v * v + 5 * v + 140 - u + I 

 LDALL   R0,CTE5 ;0.5 
 MUL     R7 

 ADD     R2 

 MOVR    R2 ;R2 = v = v + 0.5 * (0.04 * v * v + 5 * v + 140 - u + I)  
 SWAPS R1 ;R1 <-- SR1 = I 

 SWAPS R2 ;R2 <-- SR2 = v 

 SWAPS   R3 ;R3 <-- SR3 = u 
 SWAPS   R4 ;R4 <-- SR4 = a   

 SWAPS   R5 ;R5 <-- SR5 = b  

RET 
.recovery_variable_calculation 

  

 SWAPS   R2  ;R2 <-- SR2 = v 
 SWAPS   R3 ;R3 <-- SR3 = u 

 SWAPS   R4 ;R4 <-- SR4 = a 

 SWAPS   R5 ;R5 <-- SR5 = b  
 MOVA    R2 

 SUB     R3  ; v - u 

 MUL     R5  ; b * (v - u) 
 MUL     R4  ; a * (b * (v - u)) 

 ADD     R3 

 MOVR    R3  ; u = u + a * (b * (v - u)) 
 SWAPS   R2  ;R2 <-- SR2 = v 

 SWAPS   R3 ;R3 <-- SR3 = u 

 SWAPS   R4 ;R4 <-- SR4 = a 
 SWAPS   R5 ;R5 <-- SR5 = b      

 

RET 
;------------------------------ MAIN ------------------------- 

 

.MAIN 
 LOOPN neurons_virtualized 
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 GOTO thalamic_input 

 GOTO spike_update  

 GOTO membrane_potential_update 
 GOTO SPIKES_ENABLE 

 ENDL 

 SPKDIS 
 NOP  

 LOOPS synapses 

 GOTO SYNAPSE_LOAD 
 GOTO SYNAPTIC_WEIGHT 

 GOTO SYNAPSE_SAVE 

 ENDL 
 LOOPN neurons_virtualized 

 GOTO membrane_potential_calculation 

 GOTO membrane_potential_calculation 
 GOTO recovery_variable_calculation 

 ENDL 

GOTO MAIN 
 

C.6 Assembler code of Leaky integrate-and-fire algorithm 

– SNAVA 

DMEM="0000EF7D" 
VREST="00008AD0"   ; -300 mV 

POT1="00000002" 

POT2="0000FFF8" 
CTE1="00000007"    ;  "111"   

DOS="00000002"     ;  "2" 

CTETP="0000F448" 
 

.CODE 

 
GOTO MAIN 

 
; -------------------------------------------------------------------------- 

; ***************************** PROCEDURES BEGIN *************************** 

 
; ------------------------------- MEMBRANE VALUE ----------------------------- 

.MEMBRANE_VALUE 

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ---------- 
 LDALL R4,DMEM   ;R4    <-- Kmem 

 LDALL R5,VREST    ;R5    <-- Vres  

 SWAPS R0       ;R0    <-- SR0 = Si 
 MOVR  R3                ;R3    <--  Si 

 SWAPS R0                ;SR0   <--  R0 = Si 

 MOVA  R3 
 RTR  

 FREEZEC  ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem) 

  SWAPS   R1    ;R1  <-- SR1 = Vi  
  MOVA    R1    ;R0  <-- R1 = Vi 

  SUB     R5    ;R0  <-- Vi - Vres 

  UNMUL   R4       ;R0  <--(Vi(t)-Vres) * (Kmem) 
  MOVR    R2              ;R2  <--(Vi(t)-Vres) * (Kmem)  

 UNFREEZE  

 MOVA R3 
 RTR 

 FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0 

  RST  R2         ;R2  <-- ((0)*(Vi(t)-Vres)*(Kmem) 
 UNFREEZE 

 MOVA  R2            ;R0  <-- (Vi(t)-Vres)*(Kmem) 

 ADD   R5            ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)   
 SWAPS  R2           ;R2  <-- SR2 = SUM_WEIGHTS 

 ADD   R2     ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-

Vres)*(Kmem) SUM_WEIGHTS 
 MOVR  R1               ;R1  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS 

 SWAPS  R1     ;SR1 <-- R1 = Vi  

 RST  R2     ;SUM_WEIGHTS <-- 0  
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 SWAPS  R2           ;SR2 <-- R2 = SUM_WEIGHTS 

RET  

;  ------------------------------------------------------------------------------- 
   

; ---------------------------------- SYNAPSE LOAD ------------------------------- 

 
.SYNAPSE_LOAD 

 LOADSP 

   ;R7 <-- St + Sj 
   ;R6 <-- Aj 

RET 

; -------------------------------------------------------------------------------- 
 

; --------------------------------- SYNAPTIC WEIGHT ------------------------------ 

.SYNAPTIC_WEIGHT 
    

MOVA R7             ; R0 <-- St + Sj 

RTR 
FREEZENC  ;IF (Sj = 1) THEN R0 <-- wji = Aji * P 

 LDALL R1,POT1 ; R1  <--  POT1 

 MOVA  R7     ; R0 <-- St + Sj  
 SHRN  DOS 

  FREEZENC 

  LDALL R1,POT2 
  UNFREEZE 

 MOVA  R1          ;R0  <-- POT1 or POT2    

 MUL   R6          ;R0  <-- wj = Aj * P   
    SWAPS  R2      ;R2  <-- SR2 = sumW 

 ADD   R2      ;SR0 <-- wj = Sj * Aj * P 

 MOVR  R2          ;R2  <-- wj = Sj * Aj * P 
    SWAPS  R2      ;SR2 <-- R2  = sumW  

UNFREEZE 

RET 
;--------------------------------------------------------------------------- 

; --------------------------- SYNAPSE_SAVE ----------------------- 
.SYNAPSE_SAVE 

 

RST     R1 
MOVA  R6 

SHLN  DOS 

OR    R7 
STOREB       ;buffer <-- R0 = A + St + Sj   

 

MOVA  R7      ;R0 <--- R4 = St + Sj   to delete the spike 
RTR 

RTL 

MOVR  R7 
STORESP       

RET 

; --------------------------------------------------------------------------- 
; ---------------------------- SPIKE UPDATE ------------------------ 

.SPIKE_UPDATE 

 SWAPS  R4  ;R4  <-- SR4 = THETA  
 SWAPS  R0               ;R0  <-- Si <-- '0'     

 RTR 

 RTL 
 SWAPS  R0 

    SWAPS R1         ;R1 <-- SR1_2 = Vi 

 MOVA  R1 
    MOVR  R5  

 SWAPS R1              ;SR1_2  <-- R1 = Vi 

 RTL 
  FREEZEC 

   LDALL R5,CTETP        

UNFREEZE 
 MOVA  R5              ;ACC   <--  Vi 

 SUB   R4    ;ACC   <--  Vi - (THETA1 or THETA2)  

  FREEZENC 
   SWAPS  R3  ;R3   <-- SR3 = Tref 

   RST  R0  

   SUB     R3 
   SWAPS   R3 



Annexure C Assembly codes 

 

210 

 

   FREEZENZ    ; IF  (Z = 1) THEN Tref is setting   

    SWAPS   R3 

    SWAPS   R0 
    RST     R0 

    INC 

    SWAPS   R0 
    LDALL   R3,CTE1   ;CTE1 = 7 

    SWAPS   R3 

   UNFREEZE   
  UNFREEZE 

 SWAPS  R4    ;R4  <-- SR4 = THETA 

RET 
; ----------------------------------------------------------------------------- 

; ------------------------------- REFRACTORY P --------------------------- 

.REFRACTORY_P 
 SWAPS  R3  ;R3   <-- SR3 = Tref 

 MOVA    R3 

 RTR 
 MOVR    R3 

 SWAPS  R3  ;SR3   <-- R3 = Tref  

RET 
; ------------------------------------------------------------------------ 

; ------------------------------- Ethernet TX --------------------------- 

.NEURON_SAVE 
 ;SR0 <-- Si 

 ;SR1 <-- Vi 

 ;SR2 <-- Sum_W 
 ;SR3 <-- Tref 

 ;SR4 <-- theta 

 SWAPS R0 
 MOVR  R5 

 SWAPS R0 

 SWAPS R3 
 MOVA  R3 

 RTL 
 OR    R5 

 SWAPS R1 

 STOREB  ;buffer = R1 + R0 = Vi + Tref + Si 
 SWAPS R1 

 SWAPS R3 

 SWAPS R2 
 MOVA  R2 

 STOREB      ;buffer = R0 = Sum W 

 SWAPS R2 
RET 

;-------------------------ENABLE SPIKES PROPAGATION----------------------- 

.SPIKES_ENABLE 
SWAPS  R0     

MOVR  R2                 ; R2 <-- St + Si 

SWAPS  R0 
MOVA  R2     ; R0 <== Spikes 

STOREPS 

RET  
; ******************************* PROCEDURES END ****************************** 

 

; **************************** MAIN PROGRAMME BEGIN ************************ 
.MAIN 

 

LOOPN neurons_virtualized 
GOTO MEMBRANE_VALUE 

ENDL 

 LOOPS synapses 
  GOTO SYNAPSE_LOAD 

  GOTO SYNAPTIC_WEIGHT 

  GOTO SYNAPSE_SAVE 
 ENDL 

LOOPN neurons_virtualized 

GOTO SPIKE_UPDATE 
GOTO REFRACTORY_P 

GOTO NEURON_SAVE 

GOTO SPIKES_ENABLE 
ENDL 
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SPKDIS 

NOP 

NOP 
GOTO MAIN 

; **************************** MAIN PROGRAMME END ************************** 

 
 

C.7 Assembler code of Leaky integrate-and-fire algorithm 

– SNAVA+ 

 
 

DMEM1="0000EF7D" 

DMEM2="0000EF7D" 
POT1="000003E8"    

POT2="0000FFB0"   

THETA1="0000E380" 
THETA2="0000E380" 

VREST1="0000E188" 

VREST2="0000E188" 
UNO="00000001"  

DOS="00000002"  

CTETP="0000F448" 
CTE1="00000000"    

 

.CODE 
 

GOTO MAIN 

 
.LOAD_NEURAL_PARAMETERS 

 NOP 

 NOP 
 NOP 

RET  
 

.SAVE_NEURAL_PARAMETERS 

 NOP 
 NOP 

 NOP 

RET 
 

; -------------------------------------------------------------------------- 

; ***************************** PROCEDURES BEGIN *************************** 
; ------------------------------- MEMBRANE VALUE -------------------------------  

.MEMBRANE_VALUE 

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ---------- 
 

 LDALL R4,DMEM1    ;R4    <-- DECAY DONATOR 1 

 LDALL R5,VREST1    ;R5    <-- Vres1  
 SWAPS R0       ;R0    <-- SR0_2 = Nt + Si 

 MOVR  R3                ;R3    <-- Nt + Si 

 SWAPS R0                ;SR0_2 <-- R0 = Nt + Si 
 MOVA  R3 

 SHRN DOS        

 FREEZENC ;IF NEURON TYPE = II (CONDITIONAL LOAD) 
  LDALL R4,DMEM2   ;R4  <-- DECAY DONATOR 2 

  LDALL R5,VREST2   ;R5  <-- Vres2 

 UNFREEZE 
;----------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) ----------------- 

 MOVA R3                     ;R0  <-- R3 = Nt + Si 

 SHRN UNO  
 FREEZEC  ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem) 

  SWAPS R1   ;R1  <-- SR1_2 = Vi  

  MOVA  R1    ;R0  <-- R1 = Vi 
  SUB   R5    ;R0  <-- Vi - Vres 

  UNMUL   R4       ;R0  <--(Vi(t)-Vres) * (Kmem) 

  MOVR  R2                ;R2  <--(Vi(t)-Vres) * (Kmem)  
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 UNFREEZE 

 

 MOVA R3 
 SHRN UNO 

 FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0 

  RST  R2      ;R2  <-- ((0)*(Vi(t)-Vres)*(Kmem) 
 UNFREEZE 

MOVA R2          ;R0  <-- (Vi(t)-Vres)*(Kmem) 

ADD  R5          ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)   
SWAPS R2        ;R2  <-- SR2_2 = SUM_WEIGHTS 

ADD  R2    ;R0  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS 

MOVR R1             ;R1  <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS 
SWAPS R1  ;SR1_2  <-- R1 = Vi  

RST R2    ;SUM_WEIGHTS <-- 0  

SWAPS R2        ;SR2_2 <-- R2 = SUM_WEIGHTS 
RET  

; ----------------------------------------------------------------------------------------- 

; ---------------------------------- SYNAPSE LOAD ------------------------------- 
.SYNAPSE_LOAD 

NOP 

NOP 
NOP 

LOADSP 

        ;R4 <-- St + Sj 
  ;R5 <-- Aj 

  ;R6 <-- Lji 

  ;R7 <-- Mj 
RET 

; ---------------------------------------------------------------------------------------- 

; --------------------------------- SYNAPTIC WEIGHT -------------------------- 
.SYNAPTIC_WEIGHT 

      

MOVA R4             ; R0 <-- St + Sj 
SHRN UNO 

FREEZENC  ;IF (Sj = 1) THEN R0 <-- wji = Aji * P 
 LDALL R1,POT1 ; R1  <--  POT1 

 MOVA  R4     ; R0 <-- St + Sj  

 SHRN  DOS 
  FREEZENC 

  LDALL R1,POT2 

  UNFREEZE 
 MOVA R1         ;R0  <-- POT1 or POT2    

 MUL  R5         ;R0  <-- wji = Aji * P   

    SWAPS R2    ;R2  <-- SR2_2 = sumW 
 ADD  R2      ;SR0 <-- wji = Sj * Aji * P 

 MOVR R2         ;R2  <-- wji = Sj * Aji * P 

    SWAPS R2    ;SR2_2 <-- R2  = sumW  
UNFREEZE 

RET 

;--------------------------------------------------------------------------- 
; --------------------------- SYNAPSE_SAVE ------------------------------- 

.SYNAPSE_SAVE 

; THE SYNAPTIC PARAMETERS GO TO BUFFER 32 bits 
;MOVA R5                ;R5 <-- Aji 

MOVA  R6                ;R6 <-- Lji 

SHLN UNO 
SHLN UNO 

OR    R5 

MOVR  R1                ;R1 <-- Lji + Aji 
;MOVA R4                ;R4 <-- St + Sj   

MOVA  R7       ;R0 <-- R7 = Mj 

SHLN UNO 
SHLN UNO 

OR    R4    ;R0 <-- Mj + St + Sj   

STOREB 
NOP 

MOVA R4         ;R0 <--- R4 = St + Sj   to delete the spike 

SHRN UNO 
SHLN UNO 

MOVR R4 

 
STORESP 
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RET 

; ---------------------------------------------------------------------------------- 

; ---------------------------- SPIKE UPDATE -------------------------------- 
.SPIKE_UPDATE 

 

SWAPS R0    ;R0  <-- SR0_2 = Nt + Si 
MOVR  R2  

LDALL R3,THETA1      ;R3   <-- THETA1 = "0000F060"   

SHRN  DOS 
FREEZENC 

 LDALL R3,THETA2     ;R3   <-- THETA2 = "0000F060" 

UNFREEZE 
 MOVA R2      

 SHRN UNO 

 SHLN UNO 
 MOVR R2    ;R2   <-- Neuron Type + 0 It has been set Si = 0 

    SWAPS R1      ;R1 <-- SR1_2 = Vi 

 MOVA  R1 
    MOVR  R5  

 SWAPS R1             ;SR1_2  <-- R1 = Vi 

 SHLN UNO 
  FREEZEC 

   LDALL R5,CTETP     ; It has assigned a positive value under 30 because it has verified that is 

lower than 0 
  UNFREEZE 

MOVA  R5                ;R0   <--  Vi 

SUB   R3    ;R0   <--  Vi - (THETA1 or THETA2)  
 FREEZENC 

        SWAPS  R4  ;R4   <-- SR4 = Tref 

  RST  R0  
  SUB     R4 

  SWAPS   R4 

  FREEZENZ    ; IF  (Z = 1) THEN Tref is setting   
  LDALL R3,UNO 

  MOVA  R2 
  ADD   R3 

  MOVR  R2 

  LDALL   R4,CTE1   ;CTE1 = 7 
  SWAPS   R4 

  UNFREEZE   

 UNFREEZE 
MOVA  R2                ;R0    <--  Nt + Si  

SWAPS R0    ;SR0_2 <-- R0 = Nt + Si  

RET 
; ---------------------------------------------------------------------------------- 

; ------------------------------- REFRACTORY P --------------------------- 

.REFRACTORY_P 
 SWAPS  R4  ;R4   <-- SR4 = Tref 

 MOVA    R4 

 SHRN UNO 
 MOVR    R4 

 SWAPS  R4  ;SR4   <-- R4 = Tref  

RET 
; ----------------------------------------------------------------------------------- 

 

.NEURON_DISPLAY 
;SWAPS R0   ;Nt + Si 

;SWAPS R1           ;Vi 

;SWAPS R2           ;sum_W  
;SWAPS R3           ;Mi 

SWAPS  R0           ;R0  <-- SR0 = Nt + Si  

MOVR   R1           ;R1  <-- R0 
SWAPS  R0           ;SR0 <-- R0  = Nt + Si 

SWAPS  R3           ;R3 <-- SR3 = Mi 

MOVA   R3 
SHLN UNO 

SHLN UNO 

OR     R1           ;R0 <-- Mi + Nt + Si 
SWAPS  R3           ;R3 <-- SR3 = Mi 

SWAPS  R1           ;R1 <-- SR1 = Vi  

STOREB 
NOP 
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SWAPS  R1 

 

RST   R1 
SWAPS R2            ;R2 <-- SR2 = sum_W 

MOVA  R2           

SWAPS R2 
STOREB 

NOP  

RET 
; ----------------------------- BACKGROUND_ACTIVITY---------------------------- 

.BACKGROUND_ACTIVITY 

 
SWAPS R3           ; R3  <-- SR3_2 = INITIAL SPIKING   

MOVA  R3 

SWAPS R3  
SHRN UNO 

MOVR R3        

      FREEZENC    ; IF  (Z = 1) THEN Tref is setting   
    SWAPS   R0   ; R0 <-- SR0_2 = Neuron Type + Si   

    SHRN    UNO 

    SHLN    UNO 
    LDALL R0,UNO 

    SWAPS   R0   ; R0 <-- SR0_2 = Neuron Type + Si   

   UNFREEZE   
SWAPS R3        ;SR3_2 <-- R3 = NEW SPIKING REG VALUE 

RET 

; ------------------------------------------------------------------------------------------------- 
;-------------------------ENABLE SPIKES PROPAGATION----------------------- 

.SPIKES_ENABLE 

SWAPS R0     
MOVR R2                 ; R2 <-- St + Si 

SWAPS R0 

MOVA R2     ; R0 <== Spikes 
STOREPS 

RET  
; --------------------------------------------------------------------------------------------- 

; **************************** PROCEDURES END ****************************** 

 
; **************************** MAIN PROGRAMME BEGIN *********************** 

.MAIN 

LOOPN neurons_virtualized 
GOTO LOAD_NEURAL_PARAMETERS 

GOTO MEMBRANE_VALUE 

GOTO SAVE_NEURAL_PARAMETERS 
ENDL 

 

LOOPS synapses                 ;synaptic loop 
 GOTO  SYNAPSE_LOAD 

 GOTO  SYNAPTIC_WEIGHT 

 GOTO  SYNAPSE_SAVE 
ENDL 

LOOPN neurons_virtualized 

GOTO LOAD_NEURAL_PARAMETERS 
GOTO SPIKE_UPDATE 

GOTO BACKGROUND_ACTIVITY 

GOTO NEURON_DISPLAY 
GOTO SPIKES_ENABLE 

GOTO SAVE_NEURAL_PARAMETERS 

ENDL 
NOP  

SPKDIS 

NOP 
NOP 

GOTO MAIN 

; **************************** MAIN PROGRAMME END ************************* 
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This annexure presents the current ongoing work. This ongoing work is dedicated to the development of 

an implementation based on the onset detection, which is inspired by the functionality of the cochlea. The 

preliminary results of this implementation, which have recently been obtained, are provided in this 

annexure. 

D.1 Onset detection 

The ear in our human body detects sound from the external environment in an amazing manner and 

interprets the signals by using signal processing techniques. Onset refers to the starting of any changes in 

acoustic signals which can be perceived by the ear [1]. Onset detection is the process of detecting the 

beginning of these changes in the sound that is entering the system. This detection is used in various 

applications such as speech recognition, music transcription, sound segmentation, lip synchronisation and 

so on [1, 2]. One of the future works of SNAVA is to imitate the functionality of the ear´s main auditory 

portion i.e. Onset detection by the Cochlea. This is done by means of the 3 reservoir algorithm using the 

Leaky Integrate and Fire model of Spiking Neural Networks on SNAVA. The results of this 

implementation are presented in this section. The intricate details about this implementation can be seen 

in the thesis of Ms.Sanjana Sekar [3]. 

D.1.1 Onset detection system description 

The diagrammatic representation of the complete implementation of the detection of onset is shown in Fig 

D.1. Onset detection is made up of four main blocks they are the sensors, filters, spike coders and the 

spiking neural network. The sensors are those which detect the external parameters and convert into 

equivalent electrical signal. Here the sound is being converted into equivalent electrical signals. These 
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signals are then passed through the bank of filters. Each filter is centered to a particular frequency and the 

signals are being filtered accordingly. The response from the filter is then passed through the spike coder 

in order to generate equivalent spikes for these signals so as to activate the spiking neural network. 

Finally, these spikes enter the SNN topology and accordingly alter the neural and synaptic parameters of 

certain neurons so that certain neurons fire indicating the detection of onset in the system. This system 

was proposed in [1,2], the results are shown in simulation level using MATLAB software. This work 

concentrates on extending the same project in a real time environment with the help of SNAVA. The 

schematic of the entire system is shown in Fig D.1.  

 

Figure D.1: Schematic of the Bio-inspired system using LIF-Reservoir model for Cochlea, from 

simplicity of the drawing only one sensitivity level is connected. This Figure is extracted from [1]. 

D.1.1.1 Filtering 
As shown in Fig. D.1, the input sound is first detected using a sensor (Eg. Microphone) and sampled at 

the rate of a minimum of 16K samples per second and 16 bits linear. These samples are then filtered using 

a series of Bandpass filters called Gammatone filters [1]. The response of this filter is analogous to the 

basilar membrane of the cochlea [1]. 
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Each filter is tuned at different centre frequencies Fc (around 15 bands are being used) ranging between 

250 Hz to 6 KHz .The filters can be designed by determining the coefficients in MATLAB software (use 

gammatonefir function from the LTFT toolbox) and getting the IP core from Xilinx filter design tool. The 

filter delay also referred to as the gammatone delay, is assumed to be proportional to the reciprocal of the 

bandwidth. The filtered signals are then passed to the Spike coder Module in order to obtain the onset 

fingerprint. 

D.1.1.2 Spike coders 
The spike coders are similar to the design proposed by Smith [1]. The design of these coders has been 

derived from the concept proposed by Ghitza [1]. Here the filtered signal is converted to an equivalent 

spike which is fed to the SNN. The advantage of spike based representation is that this makes the system 

to work under a wide dynamic range [1]. For every filter bank there is a corresponding spike coder 

associated with it. In other words there is a one to one connection between the outputs of the gammatone 

filter to the input of the spike coders. Each spike coder block consists of one input and certain number of 

sensitivity levels as outputs. Each coder can have N sensitivity levels. The sensitivity level is the 

minimum energy level or mean voltage level the signal must have crossed in order to produce a spike. 

The threshold levels are made to be 3dB or 6 dB away from each other [1]. The equation for the threshold 

levels is given by:  

 

Figure D.2:  Schematic of a single spike coder with 4 sensitivity levels. (Each box is a comparator 

module)[1] 

       Ei = D
i
 ∙ E0

           
     (D.1) 
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where Ei is the energy associated with the i
th

 band where i=1 to N. E0 is the minimum mean voltage of the 

signal and D is the separation between the threshold levels whose value is around 3dB as discussed before 

Each spike coder consists of N comparators here N will be equal to the number of sensitivity levels of 

every coder has. . The output from the filter is taken and the positive going zero crossing is being 

detected. Once the zero crossing is detected the overall mean voltage level for the first quarter cycle is 

calculated. This energy is compared with the threshold level value as mentioned in equation (D.1). If the 

value crosses this threshold value an equivalent spike is being generated in the same instance of time. A 

point to be noted is that the greater the threshold value the lesser would be the sensitivity level. Since 

sensitivity level describes the maximum ability of the coder to detect the weakest signal possible. When 

there is a spike generated in a band “m” then there will be spikes generated in all j bands where j ranges 

between 0 to m. The schematic diagram of a spike coder implemented is shown below in Fig. D.2. 

Here each threshold level is D dB more than the previous value. The value of D was taken as 3 dB i.e. 

1.414. Upon observing the outputs one can see that all bands before the third band produce spike as the 

third band is the maximum value the signal crosses the threshold value.  

D.1.1.3 Onset detector 
The onset detector is designed using the reservoir model. The topology of the network is shown in Fig. 

D.1. As we can see that each onset neuron has three inputs. One comes from the current frequency band 

and one from the previous band and the last from the next band.  In case of the first and the last onset 

neuron we can see from the diagram that there are only two inputs. The third one is indicated by a dotted 

line which represents no connection as there is no previous band or next band respectively [1]. This can 

be clearly seen in the diagram. Here the synapses are depressing in nature and the onset neuron fires once 

the membrane potential crosses a particular threshold value. Depending upon the frequency of the signal 

the threshold value varies from each onset neuron. The firing of a particular neuron indicates the presence 

of the signal and hence onset is detected. The neural model used in this application is leaky integrate and 

fire which has already been discussed in detail in chapter 4. 

D.1.1.4 Three reservoir model 

The onset detection block is being designed as per the 3 reservoir model [1] of the synapses. As the name 

suggests this model has three interconnected regions/reservoirs consisting of the neurotransmitter which 

are: 

1. M= The presynaptic neurotransmitter reservoir (available) 

2. C= The amount of neurotransmitter in the synaptic cleft (in use) 

3. R= The amount if neurotransmitter in the process of reuptake ( which is used, but not yet 

available again) 
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The interconnections of these three regions or reservoirs are done using the assistance of the three 

differential equations which explicitly describe their connection [1]. These equations are: 

Here α and β are rate constants, and g is a positive quantity when a spike occurs whereas when there is no 

spike it is considered to be zero. These constants are calculated for each sample period. Neither the losses 

nor the synthesis of the neurotransmitter are taken into account while deriving these equations and the 

amount of post-synaptic depolarization is assumed to be directly proportional to C. 

The 3 Reservoir model can be visualized as shown in the diagram below (Fig D.3). The shown processes 

happen in a parallel manner except for the third one which happens only when a spike is encountered. For 

initial level implementation, the sinusoidal wave from the generator is taken as input. The gammatone 

filters are replaced by a simple band pass filter with good frequency response. Once the output from the 

onset detector is available it indicates the beginning of the musical note. 

 

Figure D.3: Diagrammatic Representation of the 3 Reservoir model [1] 

dM/dt = βR – gM 

dC/dt = gM – αC 

dR/dt = αC  – βR 

        

 

(D.2) 
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In order to implement the above equations, they are integrated and converted into equivalent differential 

equations [1] which are shown in equation (D.2).  

 (   )    ( )  (  (  ( )   ))  ( ) 

                 (   )  ((  ( )   )) ( )+ (1-α)C(t)                              

 (   )   (α*C(t)) + (1- ) R(t) 

Here the condition for the constant g is included by means of adding   ( ) to the equation  

D.1.2 Experimental results 

In the experiments carried out, the filters were not included as it involves large amount of computation 

which is the current work being done Advanced Hardware Architecture (AHA) research group members 

from Universitat Politècnica de Catalunya, Barcelona. In order to check the system, an equivalent lookup 

table was implemented for the first level of testing the system assuming the output from this lookup table 

is analogous to the filter response. The lookup table consists of several sample values of sinusoidal 

signals which are stored in ROM memory. These signals are generated according to the frequency and 

amplitude the user provides. A schematic diagram of the implemented onset detection block is depicted in 

Fig. D.4 below: 

 

Figure D.4: Onset Detection using Lookup Table as input to the spike coders [1] 
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The lookup table works in such a way that one unit of signal will be equivalent to 1 volt of sample with 

frequency of 1 Hz. Based upon the hexadecimal value of amplitude and frequency the user gives an 

equivalent number of units are being generated [7]. 

Onset detection was successfully working in the SNAVA architecture and the experiments were done for 

frequencies in the range of 250 Hz to 6 kHz as proposed in [1]. Here the frequency values were taken into 

account was 500, 1500, 3500 and 5000 Hz so that they fall into the range proposed as well as they are 

logarithmic in nature. The detection of 4 frequencies is depicted in the neural raster plot shown in Fig 

D.5. Here the onsets are detected at the emulation cycles 7 and 8. 

 

Figure D.5: Raster plot of the Onset Detector block detecting 4 different frequencies by neuron no 1, 8, 15 

and 22.  
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The behavior of each neuron was studied by analyzing the neural waveform of the membrane potential, 

the post synaptic spike and the sum of weights. To understand the neuron 1 is analyzed here. This is 

shown in Fig D.6. As can be seen from this figure, the initial membrane potential is around -300mV and it 

keeps rising for every emulation cycle. The onset is detected during the emulation cycle 11 which is clear 

from the raster plot. At this moment, a post synaptic spike is being generated which indicates the firing of 

the onset neuron. This marks the detection of the frequency component. 

 

Figure D.6: Neural waveform for Neuron1 

By looking at the process happening in the synapse of neuron 1 is similar to the reservoir equations 

discussed earlier (see Fig. D.7). As can seen from this graph, the behavior of M is almost complementary 

to the behavior of C. During the presence of the spike the value of M is completely transferred to C. The 

value of R gradually decreases, but at some cycles this value increases due to the contribution of reuptake 

process from C to R.   
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Figure D.7: Synaptic Waveform for Neuron 1 

D.1.3 Conclusion 

The onset detection was implemented for a single sensitivity level and for 4 different frequencies of 

which belong to the audible range. The results were analysed and compared with the theoretical 

explanations given in [1]. This work can be made more real time by replacing the look up tables with 

gammatone filter bank. The value of the reservoir model parameters were restricted to certain number of 

bits hence in this application the resource constraints were taken into account thereby reducing the range 

of values the system can operate on. As a future work one can extend the architecture to support floating 

point operations as well as increase the amount of resources. Moreover, once the number of frequency 

bands increase the entire topology needs to be redesigned from the beginning manually, in order to 
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improvise this, an application could be created in order to automatically design the entire topology given 

the basic amount of information about the topology. 
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Spike coder 

  

 

 

 

E.1 Spike coder description 

E.2 VHDL  

 

 

This annexure presents the spike coder structure which generates spikes under the same principle of 

operation like the analogue coders [1]. The VHDL code is provided in this Annexure.  

E.1 Spike coder description 

Figure E.1 shows the datapath of the spike coder. The spike coder is composed by three components 

which are: a Flip-Flop, a conditional subtractor, and a comparator. The mechanism of the spike coder is 

as follows: the spike coder receives the signal, which can be generated artificially by the values stores in 

LUTs, or the signal is provided by the ADC converter. The conditional subtractor only executes the 

subtraction operation only when the comparator indicates the difference between the signal sin and 

sin_in_aux_delayed crosses a certain threshold. 

 

Figure E.1: Spike coder datapath 

E.2 VHDL code  

entity spike_generator is 

    Port    (  

     clock        : in  STD_LOGIC; 

     rst          : in  STD_LOGIC; 

     enable       : in  STD_LOGIC; 

     sin_in       : in  STD_LOGIC_VECTOR(15 DOWNTO 0); 

     Spike_out   : out STD_LOGIC 
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   ); 

end spike_generator; 

 

architecture Behavioral of spike_generator is 

    

     

 

 signal   sin_in_aux_delayed       : std_logic_vector(15 downto 0) := (others => '0');  

 constant  threshold               : std_logic_vector(15 downto 0) := 

"0000100001110011"; 

 signal   enable_comparator    : std_logic := '0'; 

 signal   absolute_value          : std_logic_vector(7 downto 0) := (others => '0');  

 

  

 begin 

 

 

    process (clock)      

 begin 

     if (rising_edge(clock)) then 

      if (rst = '1') then 

   sin_in_aux_delayed <= (others => '0'); 

    elsif enable = '1' and enable_comparator = '1' then 

    sin_in_aux_delayed <= sin_in;  

   end if; 

     end if; 

 end process product_delayed;  

 

    addition: process (clock) 

 begin 

     if (rising_edge(clock)) then 

      if (rst = '1')  or (enable_comparator = '1') then 

     absolute_value <= (others => '0'); 

     elsif enable = '1' then 

      absolute_value <= conv_std_logic_vector(abs( 

(CONV_INTEGER (sin_in))-(CONV_INTEGER (sin_in_aux_delayed)) ),8); 

   end if;  

          end if;    

 end process addition;  

  

 Spike_out <= '1'   when (absolute_value >= threshold)  else '0';       

 

 enable_comparator <= '1'  when  (absolute_value >= threshold) else '0'; 

  

end Behavioral; 
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