

Efficient multiprocessing architectures for

Spiking Neural Network emulation based

on configurable devices

Tesi doctoral presentada per a l’obtenció

del títol de Doctor per la Universitat

Politècnica de Catalunya, dins el

Programa de Doctorat en Enginyeria

Electrònica

Giovanny Sánchez Rivera

Director: Jordi Madrenas Boadas

June, 2014

iii

Abstract

The exploration of the dynamics of bio-inspired neural networks has allowed neuroscientists to

understand some clues and structures of the brain. Electronic neural network implementations are

useful tools for this exploration. However, appropriate architectures are necessary due to the extremely

high complexity of those networks. There has been an extraordinary development in reconfigurable

computing devices within a short period of time especially in their resource availability, speed, and

reconfigurability (FPGAs), which makes these devices suitable to emulate those networks.

Reconfigurable parallel hardware architecture is proposed in this thesis in order to emulate in real time

complex and biologically realistic spiking neural networks (SNNs). Some relevant SNN models and

their hardware approaches have been studied, and analyzed in order to create an architecture that

supports the implementation of these SNN models efficiently. The key factors, which involve

flexibility in algorithm programmability, high performance processing, low area and power

consumption, have been taken into account. In order to boost the performance of the proposed

architecture, several techniques have been developed: time to space mapping, neural virtualization,

flexible synapse-neuron mapping, and specific learning and execution modes, among others.

Besides this, an interface unit has been developed in order to build a bio-inspired system, which can

process sensory information from the environment. The spiking-neuron-based system combines analog

and digital multi-processor implementations. Several applications have been developed as a proof-of-

concept in order to show the capabilities of the proposed architecture for processing this type of

information.

iv

Resumen

El estudio de la dinámica de las redes neuronales bio-inspiradas ha permitido a los

neurocientíficos entender algunos procesos y estructuras del cerebro. Las implementaciones

electrónicas de estas redes neuronales son herramientas útiles para llevar a cabo este tipo de

estudio. Sin embargo, ls alta complejidad de las redes neuronales requiere de una arquitectura

apropiada que pueda simular este tipo de redes. Emular este tipo de redes en dispositivos

configurables es adecuado debido a su extraordinario desarrollo en cuanto a recursos,

velocidad y capacidad de reconfiguración (FPGAs).

En esta tesis se propone una arquitectura hardware paralela y configurable para emular las

complejas y realistas redes neuronales tipo spiking en tiempo real. Se han estudiado y

analizado algunos modelos de neuronas tipo spiking relevantes y sus implementaciones en

hardware, con el fin de crear una arquitectura que soporte la implementación de estos

modelos de manera eficiente.

Se han tenido en cuenta varios factores clave, incluyendo flexibilidad en la programación de

algoritmos, procesamiento de alto rendimiento, bajo consumo de energía y área. Se han

aplicado varias técnicas en la arquitectura desarrollada con el propósito de aumentar su

desempeño. Estas técnicas son: mapeado de tiempo a espacio, virtualización de las neuronas,

mapeo flexible de neuronas y sinapsis, modos de ejecución, y aprendizaje específico, entre

otras.

Además, se ha desarrollado una unidad de interfaz de datos con el fin de construir un sistema

bio-inspirado, que puede procesar información sensorial del medio ambiente. Este sistema

basado en neuronas tipo spiking combina implementaciones analógicas y digitales. Varias

aplicaciones se han desarrollado usando este sistema como prueba de concepto, con el fin de

mostrar las capacidades de la arquitectura propuesta para el procesamiento de este tipo de

información.

I am very grateful with my parents Elpidio, Paulina, and my brother Humberto, who always have been

supporting me and they never let me down, and my wife Albina and my daughter Angelina for

encouraging throughout my life

vi

vii

Acknowledgments

First of all, I would like to thank all people who have been participated with me in the development of

this project. It is very difficult to write it in few lines how they were important in this project.

I would like to thank Dr. Jordi Madrenas Boadas, who is the director of this thesis, for his supporting, and

guiding me in the development of this thesis. I am very grateful with him for allowing me to do this

thesis, also for his friendship. His valuable help has allowed me to develop this thesis and improve several

professional aspects.

I would like to thank Dr. Alister Hamilton, and Dr. Thomas Jacob Koickal for their support, guidance

during my research stage at Institute for Micro and Nano Systems, School of Engineering and Joint

Research Institute for Integrated Systems, University of Edinburgh, Edinburgh, UK. The contribution

with new ideas and observations given by Dr. Alister and Dr. Thomas has allowed improving this work.

I would like to thank to Adam Sokolnicki, Karthikeyan k., Salvo cambria, Vito pirrone for participating in

the development of this thesis.

I would like to thank to Athul sripad for his important contributions in the development of this thesis. I

am so grateful for his valuable help in the development and for his friendship.

I would like to thank to Sanjana Sekar for checking my speling spelling mistakes to improve my thesis

and for her valuable friendship.

I would like to thank to Piotr Michalik, besides being my collage, he is my friend. I am so grateful with

his help in several issues and friendship.

Quiero dar las gracias a mi amiga Rosario Zarate Maldonado, por su apoyo emocional que me ha

brindado durante mi estancia en España.

viii

I would like to thank to the Catalan Department of Innovation, Universities and Companies, and the

European Social Fund for sponsoring this work.

Agradezco al Consejo de Ciencia y Tecnologia CONACyT por patrocinio para la realización de este

proyecto de tesis.

Contents

Abstract iii

Acknowledgments v

List of Figures xv

List of Tables xix

Chapter 1 Introduction

1.1 Problem statement 1

1.2 Work methodology 11

1.3 Outline of the thesis 13

 References 14

Part I – Ubichip benchmarks and applications

Chapter 2 Description and performance study of SNN implementation

2.1 Introduction 19

2.2 Ubichip architecture description 20

 2.2.1 Architectural functional details 22

 2.2.1.1 AER system 24

2.3 Performance evaluation – Iglesias and Villa model 25

 2.3.1 Iglesias and Villa model description 25

 2.3.2 Iglesias and Villa model implementation 28

 2.3.3 Figures of performance 30

 2.3.4 Architecture limitations 34

2.4 Performance evaluation – Izhikevich model 40

 2.4.1 Izhikevich model description 40

 2.4.2 Izhikevich model implementation 41

 2.4.3 Figures of performance 42

 2.4.4 Architecture limitations 46

2.5 Conclusions 51

 References 53

Chapter 3 Development of a data interface between Analog and Digital

Neuromorphic systems

3.1 Introduction 55

3.2 The Analogue-Digital neuromorphic system 57

3.3 The Analogue Pre-Processor (APP) 58

 3.3.1 AER channel 59

3.4 Transceiver functional description 59

3.5 Metric considerations in the design of the data interface 62

3.6 Results 64

3.7 Conclusions 65

 References 66

Chapter 4 Application on Ubichip

4.1 Introduction 67

4.2 Frequency level detection system 68

 4.2.1 SNN model 69

 4.2.1.1 Parameters values 70

 4.2.2 Frequency classifier 71

 4.2.3 Experimental result 72

4.3 Conclusions 78

 References 78

Part II - SNAVA architecture and applications

Chapter 5 SNAVA: Spiking Neural-network Architecture for Versatile

Applications

5.1 Introduction 82

5.2 SNAVA description 84

 5.2.1 The Configurable Processing Element array 84

 5.2.2 The execution module 88

 5.2.3 Access control module 88

 5.2.4 AER address generator 90

 5.2.5 Ethernet user side 90

 5.2.6 Phases of operation 91

5.3 Implementation and performance 92

 5.3.1 Area consumption 93

 5.3.2 Power consumption 96

5.4 Performance evaluation 98

 5.4.1 Iglesias and Villa model execution analysis 99

 5.4.2 Izhikevich model execution analysis 103

 5.4.3 Leaky Integrate-and-Fire model execution analysis 106

 5.4.4 Processing time and distribution time for any SNN model 109

5.5 Comparison with other approaches 110

 5.5.1 Implementation on multi-processor 111

 5.5.2 Implementations on GPU 112

 5.5.3 Implementations on FPGA 113

 5.5.4 General discussion 115

5.6 Improvements in SNAVA: SNAVA+ 118

 5.6.1 Brief description of SNAVA+ architecture 118

 5.6.2 Implementation and performance 121

 5.6.2.1 Area consumption 121

 5.6.2.2 Power consumption 122

 5.6.3 Performance evaluation 124

 5.6.4 Comparison with other approaches 128

5.7 Conclusions 130

 References 130

Chapter 6 Proof-of-concept application on SNAVA

6.1 Introduction 133

6.2 Bio-inspired system description 134

6.3 Amplitude detection 136

 6.3.1 SNN model description 137

 6.3.2 Amplitude classifier 139

6.4 Experimental results 140

6.5 Conclusions 145

 References 146

Chapter 7 General Conclusion and ongoing work

7.1 General Conclusion 147

7.2 Ongoing work 148

 References 149

Annexure A Set of instructions of SNAVA

A.1 Introduction 151

A.2 Operation of the sequencer 152

A.3 Instructions classification and formats 153

A.4 Algorithm structure 160

A.5 Architecture functional details 164

A.6 Sequencer register mapping 167

Annexure B Register mapping in SNAVA for CPU access

B.1 Register mapping 171

Annexure C Assembly codes

C.1 Assembler code of Iglesias and villa algorithm – Ubichip 177

C.2 Assembler code of Izhikevich algorithm – Ubichip 185

C.3 Assembler code of Leaky integrate-and-fire algorithm – Ubichip 194

C.4 Assembler code of Iglesias and villa algorithm – SNAVA 199

C.5 Assembler code of Izhikevich algorithm – SNAVA 205

C.6 Assembler code of Leaky integrate-and-fire algorithm – SNAVA 208

C.7 Assembler code of Leaky integrate-and-fire algorithm – SNAVA+ 211

Annexure D Onset detection

D.1 Introduction 215

 D.1.1 Onset detection system description 215

 D.1.1.1 Filtering 216

 D.1.1.2 Spikes coders 217

 D.1.1.3 Onset detector 218

 D.1.1.4 Three reservoir model 218

 D.1.2 Experimental results 220

 D.1.3 Conclusion 223

Annexure E Digital spiking coders

E.1 Spiking coder description 225

E.2 VHDL code 225

List of publications and conferences 227

xv

List of figures

1.1 A single neuron in the schematic view. Dendrites, soma, and axon are the main

components of the neuron and can be clearly distinguished

2

1.2 The development of Neural Networks models 3

1.3 Flowchart of development of this PhD thesis, a) Ubichip architecture, b) SNAVA

architecture

12

2.1 The Ubichip architecture for the multiprocessor mode 21

2.2 Processing Element path 22

2.3 Simplified view of the PERPLEXUS framework 24

2.4 Conceptual view of the transmission through the common bus 24

2.5 Execution loop for SNN emulation. Phase 1 main operations are detailed 28

2.6 Main program of the SNN emulation assembly code and number of cycles of each

subroutine

29

2.7 Required number of cycles for the execution of Iglesias-Villa implementation for 4, 16,

36 and 100 neurons with 1 synapse per neuron

32

2.8 Required number of cycles for the execution of the synapse loop for 4, 16, 36 and 100

neurons with 1 synapse per neuron

32

2.9 Required number of cycles for the execution of Iglesias-Villa SNN for 3, 30 and 300

synapses on a 100 neuron array

33

2.10 Required number of cycles for the execution of the synapse loop for 3, 30 and 300

synapses on a 100 neuron array

33

2.11 Clock cycle number distribution of instructions as classified in Table 2.3 34

2.12 a) Clock cycle number distribution of instructions taking into account the proposed

architecture improvements. a) Full parallel LOAD and STNC instructions and full-

parallel multipliers; b) Full parallel LOAD and STNC instructions and radix-4 multiplier.

c) Full parallel LOAD and STNC instructions and parallel-serial multiplier. d) Column-

parallel row-serial LOAD and STNC instructions and parallel-serial multiplier

36

2.13 a) The execution time required to perform the Iglesias and Villa algorithm in a single step

simulation, by taking into account the proposed architecture improvements. a) Full

parallel LOAD and STNC instructions and full-parallel multipliers; b) Full parallel

LOAD and STNC instructions and radix-4 multiplier. c) Full parallel LOAD and STNC

instructions and parallel-serial multiplier. d) Column-parallel row-serial LOAD and

STNC instructions and parallel-serial multiplier

39

2.14 Main program of the SNN emulation assembly code 42

2.15 Required number of cycles for the execution of Izhikevich implementation for 4, 16, 36

and 100 neurons with 1 synapse per neuron

44

2.16 Required number of cycles for the execution of the synapse loop for 4, 16, 36 and 100

neurons with 1 synapse per neuron

44

2.17 Required number of cycles for the execution of Iglesias-Villa SNN for 3, 30 and 300

synapses on a 100 neuron array

45

2.18 Required number of cycles for the execution of the synapse loop for 3, 30 and 300

synapses on a 100 neuron array

46

2.19 Clock cycle number distribution of instructions as classified in Table 2.12 47

2.20 a) Clock cycle number distribution of instructions taking into account the proposed

architecture improvements. a) Full parallel LOAD and STNC instructions and full-

parallel multipliers; b) Full parallel LOAD and STNC instructions and radix-4 multiplier;

c) Full parallel LOAD and STNC instructions and parallel-serial multiplier; d) Column-

parallel row-serial LOAD and STNC instructions and parallel-serial multiplier.

48

2.21 a) The execution time required to perform the Izhikevich algorithm in a single step

simulation, by taking into account the proposed architecture improvements. a) Full

parallel LOAD and STNC instructions and full-parallel multipliers; b) Full parallel

LOAD and STNC instructions and radix-4 multiplier. c) Full parallel LOAD and STNC

instructions and parallel-serial multiplier. d) Column-parallel row-serial LOAD and

STNC instructions and parallel-serial multiplier

51

xvi

3.1 NESSIE2 system 56

3.2 Functional block diagram of the proposed analog-digital bio-inspired system 57

3.3 Architecture diagram. The array of Configurable Analogue Blocks (CABs) is connected

using an asynchronous digital channel

58

3.4 Event coding block diagram 59

3.5 Functional block diagram of the analog-digital bio-inspired system 60

3.6 Functional blocks of the AER transceiver 61

3.7 Time-to-space translation diagram 63

3.8 Spike transmission process between the Analog chip, the transceiver and the DMP 65

4.1 Functional block diagram of the digital bio-inspired prototyping and debugging system

for the frequency detection application

68

4.2 a) Input sinusoidal signals; b) corresponding spike train emulated by the digital encoder 69

4.3 Network topology 71

4.4 Phases of operation of Ubichip and generation of spikes by the digital 72

4.5 Phases of operation of Ubichip and generation of spikes by the digital 74

4.6 Raster plot of neuron spikes 76

4.7 Membrane potential of the output layer; the dashed line represents the potential threshold

(-290 mV).

77

5.1 Architectural Overview of SNAVA 83

5.2 Functional Block diagram Configurable Processor Element (CPE) 84

5.3 PE data paths for simplicity of the drawing only three bank of registers are shown, one

active register and two shadow register banks

85

5.4 Synaptic BRAM wired to active registers 87

5.5 Switch BRAM Access 88

5.6 mux-demux CPE access 89

5.7 Biology and SNAVA 91

5.8 SNAVA Communication Network 92

5.9 Utilization Representation of fully connected SNAVA project 10x10 94

5.10 Utilization Representation of fully connected 10x10 SNAVA 95

5.11 Utilization Representation of a Single Processor Element in fully connected SNAVA

10x10

95

5.12 Power consumption of fully connected SNAVA 10 x 10 96

5.13 Dynamic Power distribution of fully connected SNAVA 10 x 10 – SNAVA project 97

5.14 Dynamic Power distribution of fully connected SNAVA 10 x 10 – SNAVA 97

5.15 Dynamic Power distribution of fully connected SNAVA 10 x 10 – Single CPE 98

5.16 Improvement ratio for SNAVA against Ubichip simulating Iglesias and Villa model 102

5.17 Improvement ratio for SNAVA against Ubichip simulating Izhikevich model 106

5.18 Improvement ratio for SNAVA against Ubichip simulating LIF model 109

5.19 The allocation of neural parameters on SNAVA and SNAVA+ 119

5.20 Structure of the Configurable Processing Element in SNAVA+ 120

5.21 Processing Element data path 120

5.22 Power consumption of SNAVA+ with 10x10 PE array size and 99 synapses per PE unit 123

5.23 1) Execution time for the simulation of 100 LIF neurons and 500 synapses without

considering the delay produced for the visualization of the parameters in the monitor, 2)

the execution time taking into account the display delay

127

6.1 Amplitude and Frequency classification by means of bio-inspired system 134

6.2 Phases of operation of Ubichip and spikes generated by the digital coders 135

6.3 Phases of operation of SNAVA with respect to the input signal 135

6.4 Spike coder 136

6.5 Implementation of the bio-inspired system

140

6.6 Amplitude detection of the input signal (300 mV @ 20Hz) 144

A.1 Architectural Overview of SNAVA 151

A.2 Handshake sequencer signals for change of the operation mode 152

A.3 Instruction formats. GOTO, READMP, LOOP and other instructions 154

xvii

A.4 Code structure of a typical SNN emulation in SNAVA 160

A.5 Synaptic BRAM wired to active registers 161

A.6 Neural multiplexing – load operation 162

A.7 Neural multiplexing – store operation 162

A.8 Monitor buffer structure of SNAVA 163

A.9 Format of the AER address per each neuron 163

A.10 Scheme of reading of the spikes per each PE by the AER address generator 164

A.11 Instructions and constants BRAM memory map 165

A.12 Sequencer datapath 166

A.13 Sequencer state machine 167

D.1 Schematic of the Bio-inspired system using LIF-Reservoir model for Cochlea, from

simplicity of the drawing only one sensitivity level is connected

216

D.2 Schematic of a single spike coder with 4 sensitivity levels. (Each box is a comparator

module)[1]

217

D.3 Diagrammatic Representation of the 3 Reservoir Model 219

D.4 Onset Detection using Lookup Table as input to the spike coders 220

D.5 Raster plot of the Onset Detector block detecting 4 different frequencies by neuron no 1,

8, 15 and 22

221

D.6 Neural waveform for Neuron1 222

D.7 Synaptic Waveform for Neuron 1 223

E.1 Spike coder datapath 225

xviii

xix

List of Tables

 1.1 Feature summary of SNN implementations on compact devices and using a single chip 10

 2.1 Main loop subroutine encoding and execution number of clock cycles 30

 2.2 Synapse loop routine encoding 30

 2.3 Execution time of one simulation cycle for different SNN size 31

 2.4 Clock cycles devoted to LOAD, STORE, multiplication and all other instructions for the

execution of Iglesias and Villa algorithm (100 neurons and 300 synapses per neuron)

34

 2.5 Clock cycle number calculation for modified architectures 36

 2.6 Calculation of the clock cycle number in each subroutine for each proposed architecture

change

37

 2.7 Performance improvement ratio for the proposed architecture changes (100 neurons and

300 synapses)

38

 2.8 Values of the constants K1 and K2 of equation 2.12 for the full parallel LOAD and STNC

instructions and the three types of multipliers

38

 2.9 Main loop subroutine encoding and execution number of clock cycles 42

 2.10 Synapse loop routine encoding 43

 2.11 Execution time of one simulation cycle for different SNN size 43

 2.12 Clock cycles devoted to LOAD, STORE, multiplication with saturation, addition with

saturation and all other instructions for the execution of Izhikevich algorithm (100 neurons

and 300 synapses per neuron)

46

 2.13 Clock cycle number calculation for modified architectures 48

 2.14 Calculation of the clock cycle number in each subroutine for each proposed architecture

change

49

 2.15 Performance improvement ratio for the proposed architecture changes (100 neurons and

300 synapses)

49

 2.16 Values of the constants K1 and K2 of equation 2.13 for the full parallel LOAD and STNC

instructions and the three types of multipliers

50

 4.1 Parameter list of the main variables used for leaky integrate-and-fire neurons 70

 4.2 Number of neurons of input layer for several frequencies (1-32 Hz) 75

 4.3 Output neural layer for several frequencies (1-32Hz) 75

 4.4 Frequencies to test the system 76

 4.5 Output levels theoretically estimated and experimentally obtained by applying four

different frequencies

77

 5.1 Details of Configuration Registers 89

 5.2 Utilization Summary of Fully Connected SNAVA 94

 5.3 Utilization Summary of Single Synapses SNAVA 94

 5.4 Main loop subroutine encoding and execution number of clock cycles 100

 5.5 Synapse loop routine encoding 100

 5.6 Main loop subroutine encoding and execution number of clock cycles 104

 5.7 Synapse loop routine encoding 104

xx

 5.8 Main loop subroutine encoding and execution number of clock cycles 107

 5.9 Synapse loop routine encoding 107

 5.10 Value of constants for three SNN models implanted on SNAVA 110

 5.11 Technical specifications of the SNAVA and other existing multicores implementations 111

 5.12 Technical specifications of the SNAVA and other existing GPU implementation 112

 5.13 Technical specifications of the SNAVA and other existing FPGA implementation 114

 5.14 Comparison of SNAVA performance against other existing approaches 116

 5.15 Area occupation of SNAVA+ with different numbers of synapses per Processing Element 121

 5.16 Area occupation of SNAVA+ with different numbers of synapses per Processing Element 122

 5.17 Synthesis time for the implementation for different number of neurons 122

 5.18 Power consumption of SNAVA and SNAVA + 123

 5.19 Power consumption of a single Configurable PE in SNAVA and SNAVA + 124

 5.20 Power consumption of a single PE in SNAVA and SNAVA + 124

 5.21 Neuronal loop subroutines 125

 5.22 Synaptic loop subroutines 125

 5.23 The execution time in SNAVA and the execution time in SNAVA+ (200 neurons and 50

synapses)

127

 5.24 Comparison of SNAVA performance against other existing approaches 129

 6.1 Parameter list of the main variables used for leaky integrate-and-fire neurons 138

 6.2 Number of samples for four different frequencies in the first quarter of the signal 142

 6.3 Input layer neurons to detect the peak of amplitude from 0 V to 1 V 142

 6.4 Number of spikes produced by the spike coder for different frequencies (10Hz-1300Hz) @

1Volt

143

 6.5 Amplitude and frequency detection for 4 different frequencies 145

 A.1 Sequencer instruction group A/S ALU-related/Sequencer 153

 A.2 CPE Instruction with opcode 158

 A.3 Registers of the sequencer 167

 B.1 Format of the bus of the address 171

 B.2 Register mapping in the PE 172

 B.3 LFSR Register mapping in the PE 173

 B.4 Ethernet user side register mapping 174

 B.5 AER control register mapping 175

Introduction

1.1 Problem Statement

1.2 Work methodology

1.3 Outline of the thesis

1.1 Problem Statement

For several decades the anatomy of the human brain has fascinated many neuroscientists and engineers

due to its complex functions and structures. Some of the functions performed by the brain are associated

with reasoning, speech recognition, movement, visual processing [1]. These biological processes are

carried out through the cells known as ‘neurons’ which constitutes the fundamental part of the brain. The

neuron has the ability to propagate signals rapidly over large distances. Basically, these signals are

electrical pulses called action potentials or, more simply, spikes, which travel through nerve fibers. The

information in the neurons is represented by firing sequences of spikes in various temporal patterns.

These patterns provide information to perform functions such as detection of the light, detection of the

sound intensity, or motor actions in the form of action potentials [1]. The structure of a neuron can be

divided into three parts where each part is analogous to the input (dendrites), processing unit (soma) and

output of the system (axon), as is shown in Fig. 1.1. Basically, the structure of a neuron can be divided

into three parts where each part is analogous to the input (dendrites), processing unit (soma) and output of

the system (axon), as is shown in Fig. 1.1. Basically, the soma or cell body can be considered as the

Central Processing unit of the neuron where all the information processing is done. The transfer of

information from one neuron to another takes place through the synapse connection typically by means of

a discharge of a chemical neurotransmitter. The neurotransmitters received from the dendrites are

received in the soma producing a potential. If the increased potential in the soma is large enough to cross

a threshold level, then an electrical pulse is produced. The pulse travels through the axon, activating the

synapses of the other neurons. Pre-Synaptic is a term that is used for the transmitter neuron whereas the

receiver neurons are called as Post-synaptic. The ability to change the strength or weakness of the

excitatory or inhibitory synapses is called plasticity. This is one of the important mechanisms which are

Chapter 1 Introduction

2

linked to the learning and memory processes in the human brain. Neuroscientists assume that this process

is due to the change of the strength or weakness of the synapses [2]. This strength or weakness changes

according to the response to the activity of both pre and post synaptic neurons. Alterations in the synaptic

transmission can be roughly subdivided into two classes of mechanisms: long-term potentiation (LTP),

and long-term depression (LTD), LTP is measured as a persistent increase in the amplitude of the

excitatory postsynaptic potentials (EPSP), whereas LTD is measured as the persistent decrease in the

amplitude of the EPSPs.

Figure 1.1: A single neuron in the schematic view. Dendrites, soma, and axon are the main components of

the neuron and can be clearly distinguished.

In this present era, there has been a lot of research on the modelling of the cortex which is one of the vital

parts of the human brain. This part performs some important functions such as thinking, information

processing, perception, etc. The cortical models, also known as Spiking Neural Network (SNN) models

intend to mimic the biological neuron by making the neural simulation real time. This is because the

concept of the time is inherent in these types of models. So that, the representation of the information is

through spikes, which makes the SNN model more biologically plausible. Therefore, Spiking neurons

differ from conventional Artificial Neural Networks (ANN) models as information is transmitted by

means of spikes rather than firing rates. The ANNs are computational models inspired by the structure

and functionality of biological neurons. The ANNs have been classified in three generations according to

the level of realism in the neural simulation. The first generation of ANN models involves binary

Chapter 1 Introduction

3

networks (activation of 0 or 1). The second generation takes into account the networks where the

activation is the representative of ‘mean firing rate’ of the neuron. These types of networks have been

implemented in analogue devices where the firing rate values can be between 0 and 1. These values are

normalized and hence it is also known as rate-coding scheme. It is called so because this implies a

mechanism for averaging. The SNN models are classified as the third generation of these models, which

includes the concept of time in their operating model. The neuron fires only when the membrane potential

crosses a certain threshold producing a spike. This spike increases or decreases the potential of other

neurons in accordance with this signal. For several years, conventional ANNs (second generation) have

demonstrated their best performance as engineering tools and in many other domains like pattern

recognition, control, bio-informatics, and robotics. Nevertheless, these models suffer from intrinsic

limitations such as processing enormous amount of data or the ability to adapt to the changes in the

environment. This is because of several characteristics, such as iterative learning algorithms or artificially

designed neuron model and network architecture, that are strongly limited in comparison with the

processes carried out in biological neural networks.

The development of neural network models has been progressing according to two vital applications as

shown in Fig. 1.2. The first one is mainly given to the development of engineering applications where the

efficiency of the model is given the highest priority without focusing on the biological process taking

place inside the human brain. The second type of application is mainly dedicated for the simulation and

modelling of the behaviour of the brain.

Figure 1.2: The development of Neural Networks models

Neural Network
models

Engineering
Applications

Brain modeling

Chapter 1 Introduction

4

A wide variety of SNN models have been proposed for several years. Most of them model the ion

channels that are responsible for generating the spikes at the axon hillock. The most relevant works

presented here is due to its importance in the modelling of the neurons, and its widespread use in several

applications. One such SNN model was proposed by Hodgkin-Huxley [3]. This model describes the

conductance-based neuron by reproducing electrophysiological measurements to a very high degree of

accuracy [4]. Unfortunately, this model is very complex, usually difficult to analyze and computationally

expensive in numerical implementations. Other SNN models which were derived from Hodgkin-Huxley

model are integrate-and-fire model and Leaky-Integrate and fire model. These two models are extensively

used in many applications, mostly in applications pertaining to processing of time-varying signals

[5].These models are simple to understand, easy to implement and commonly used in the networks

designed using spiking neurons. Apart from these, there have been a lot of efforts being put to propose

SNN models with different properties. One such neural model was proposed by Izhikevich [6]. This

model combines the biologically plausibility of the Hodgkin–Huxley-type dynamics and the

computational efficiency of integrate-and-fire neurons to reproduce the spiking behavior of many neurons

dynamics. The Bifurcation methodologies enable the author to reduce many biophysically accurate

Hodgkin–Huxley-type neuronal models into a two-dimensional (2-D) system of ordinary differential

equations. These equations have the ability to handle about 20 fundamental neuro-computational

properties of biological neurons [6]. Finally, the SNN model, which was proposed by Iglesias and Villa

[7] during the development of the European PERPLEXUS project [8], has served as a benchmark for this

thesis. In this SNN model the neuron is modelled as a simple leaky integrate-and-fire model which makes

it computationally efficient and as an important functional aspect of the cortical circuits. In particular, the

spike-timing-dependent synaptic plasticity (STDP) of the synapses is modeled according to the learning

rule suggested by Donald Hebb [2].

The computer simulation of the human brain has been considered as an important tool to understand its

structure and dynamics. After simulating several large-scale SNN models, neuroscientists have tried to

test their computational model hypothesis of the brain structure, dynamics and function by interacting

with the real or virtual environment. The extraordinary performance of the human brain has propelled

many engineers to design architectures that imitate the functionality of the brain in order to create bio-

inspired machines or robots that can mimic these functions to solve complex perception problems as

Chapter 1 Introduction

5

learning visual features, character recognition, and autonomous navigation. Also, this performance in the

human brain imposes big challenges in the development of cortical emulators regarding several factors

like: the complexity of the neural behaviour, the scale of the network, interconnection, plasticity in the

synapses, and power consumption. The brain exhibits high performance in terms of processing speed, so

that it could be considered as an interesting computer, because it performs approximately 3.6x10
15

synaptic operations per second. Moreover, it is highly efficient in terms of power consumption (12

Watts). Even though the neurons work slowly, there is a tremendous amount of computation achieved in

real time. Due to this, several questions are cropping up regarding the efficiency of the brain. The

physical structure and composition of each neuron membrane in the design of the human brain, the wiring

plans between the neurons and the astounding capability to learn are some of the reasons to justify the

efficiency of the brain.

The simulation of large scale Spiking Neural Network models has been performed with different

approaches which mainly involve supercomputers, general purpose computers, analogue circuits,

multiprocessors, graphics processing units and field-programmable gate arrays. These approaches have

been proposed as suitable platforms to be used to simulate such SNN models in order to explore the

neural dynamics involved in the SNN models. However there are several aspects to be discussed and

analysed in order to create this platform which involves the model flexibility, architectural scalability,

power consumption, and area consumption.

- Supercomputers and general purpose computers

During the last years, several projects have been proposed to create cortical simulators which try to

emulate large-scale SNN models. They intend to emulate millions of neurons and billions of synapses.

One of the most important emulator is implemented on a supercomputer. This project is the ‘Blue brain

project’ which was started in 2005 at École Polytechnique Fédérale de Lausanne (EPFL) [9]. Several

aspects of the brain were modelled and verified by EPFL. Now, attempts are being made to simulate the

whole brain [10]. The simulation of thousands of neurons was done in the Blue brain project at ion-

channel level which was implemented with the help of the details given in [9]. And billions of synapses

were modelled with the help of non-linear differential equations [11]. But, the implementation of the

neurons and synapses as per the Blue Brain project requires a high amount of power consumption (around

8.4 GW) [12]. The power consumption and size limitations are some of the ordeals this project faces right

Chapter 1 Introduction

6

now. But there were certain ways to overcome them. The project focussed only in the reproduction of the

dynamics of the membrane potential, which in turn reduced the energy as well as the time required for

performing the simulation.

The software approach involves developing codes and algorithms for general purpose computers/High

Performance Computing (HPC) modelling the neural behaviour. This is the approach adopted in the blue

brain project in terms of HPCs and several others using general purpose computers. In case of

conventional processors, the memory bandwidth and parallelism is minimal to be able to implement large

scale real time simulation of complex spiking neural networks.

- Digital implementations

As mentioned before, in digital domain several works have been proposed to develop cortical emulators

in compact digital devices such as multiprocessors, Graphic Processing Units (GPUs), and Field-

Programmable Gate Arrays (FPGAs). The important features of these digital implementations are

flexibility, scalability and re-configurability. Although the digital implementation is less compact when

compared to analog implementation, the cost of analog designs is much higher in comparison with digital

or software implementations. Therefore, some research groups are aiming to make an SNN emulator

which is flexible and scalable in order to offer a system which can be used as a platform for experimental

research, which involves the study of the neural dynamics in certain part of the brain.

. Multiprocessor units

One the most representative work which has been developed a SNN emulator based on multiprocessor is

proposed in [13]. This multiprocessor called SpiNNaker intends to simulate billion neurons and trillion-

synapses using a network of 50K SpiNNaker chips. Each SpiNNaker chip is composed of 18 identical

ARM processors with custom interconnections. Its programmable feature allows SpiNNaker to support

different SNN models. This customized architecture promises to be a powerful platform in the simulation

of large-scale of SNN models. However, there are some aspects to discuss about this architecture. One of

them is regarding the communication system. They assume that the network will not be saturated and

there is no mechanism of congestion. This mechanism of congestion is vital when large networks become

more active. Another aspect is regarding the memory system of SpiNNaker. A large amount of data is

Chapter 1 Introduction

7

transferred from the external memory to the processors. The high bandwidth memory data interfaces

compensate the negative effect of transfer of data from the external memory to the processors.

. Graphic Processing Units

There have been efforts to create SNN emulators based on GPU implementations to simulate large-scale

SNN models [14, 15]. Currently, the GPUs are becoming very popular because these types of digital

devices offer excellent parallel computation, due to its inherent parallelization. However, despite having a

parallel architecture it could be an excellent platform for the simulation of large-scale SNN models. This

is because the calculation of the membrane potential of every spiking neuron exhibits significant parallel

computation. There are many factors which reduce the performance of the simulation of these SNN

models in GPUs architectures. However, many of these works have reported that the simulation of the

SNN models on GPUs is around of 10 to 100 times faster when compared to the simulations on general

purpose computers. The method used to measure the performance of the SNN model simulations on this

type of digital device is not provided in [14, 15]. One of the factors which decrease the performance is

related to the memory bandwidth [14]. This presents an important problem to the GPUs due to the

enormous rate at which the processors read data from the memory or load data to the memory, which was

reported in [14]. The other is related to the optimization of the parallel execution, which depends on the

number of threads and the memory system in every GPU. These threads, which are in charge of

transferring data from the memory to the processors or vice versa, are limited in number, so that, not all

cores are used [14, 15]. The threads have been programmed with high level of complexity in order to

exploit maximum number of processors that are available in the GPU. This solution limits the use of the

algorithm for the simulation of the SNN model to a specific GPU architecture. The flexibility and

scalability are the two vital factors to be noted in order to explore the neural dynamics in the SNN

models. The work proposed by [15] intends to offer a programming method which can be applied in

different GPUs, regardless of the structure of the memory of the GPUs and the number of threads.

However, the number of neurons and synapses are decreased in number in comparison with [14]. The

number of processors implemented in [15] is two times more than [14]. However, the number of neurons

simulated in [15] is 1000 thousand times less than [14]. In these components the factor called scalability

is limited. Almost all of the architectures presented here have simulated thousands of neurons by using a

single GPU. Also, the absence of an efficient communication system in these devices generates an

Chapter 1 Introduction

8

overhead memory access. This is because also the threads are in charge of the distribution of the spikes.

GPUs devices exhibit high performance on certain algorithms which involves a large amount of

computation. However, simulations of large-scale SNN require large computation and large high

communication bandwidth.

. Field-Programmable Gate Arrays

Several works have been proposed in order to develop an SNN emulator which support emulate large

scale SNN models in a FPGA device [8, 16, 17, 18, 19, and 20]. Only few of these works have achieved

to simulate very large scale SNN models [19, 20]. One of these works is proposed by [19], who has

achieved the implementation of 1000000 leaky integrate-and-fire neurons. The implementation of the

spiking neurons was carried out in very simple processors that are many in number but integrated into a

single FPGA. In this work the number of neurons implemented is of a good number but the number of

synapses was unreported. But in case of the human brain there a large number of neurons present at the

same time the number of synapses are much higher. In other words, neurons require a high level of

connectivity. The connectivity of the neurons imposes a big challenge to develop such levels of

connectivity in the current FPGAs. An architecture called Bluehive [20] is proposed to support large

number of neurons and synapses. This architecture is composed of 64-FPGAs interconnected by high

speed serial links. Each FPGA can emulate up to 64k Izhikevich neurons and 64000000 synapses per

neuron [6]. The proposal of this work is focused to build a system with high speed communication by

using high speed serial links available in the FPGA. However, there is no mechanism that can manage

congestion in the SNN network in the case of saturation.

The mechanisms implemented in both architectures [19] and [20] process a huge amount of neurons

based on fixed pipeline stages, which reduce the capacity of the system for supporting different SNN

models. These architectures were designed for simulating a simple specific SNN model which does not

implement the plasticity of the synapses which plays a major role to carry out the learning process.

Despite the configurable features that the FPGA approaches offer when compared with the ASIC design,

the design is fixed to a particular model. In case of any minor change to implement other SNN models or

by adding the modelling of the plasticity of the synapses using the previously implemented model the

whole architecture has to be defined.

Chapter 1 Introduction

9

- Mixed signal implementations

The sub threshold levels of the transistor dynamics is being exploited in case of analogue domain

approach so as to model the neuron in silicon. One the most relevant works done in this domain is the

BrainScaleS project [21], which proposes analogue circuits to simulate the spiking neurons. The spike

distribution is carried out by digital packet-switched routers. These circuits are manufactured on a single

wafer. Every wafer can contain 180k I&F neurons and 4x10
7
 synapses. A great energy efficiency and low

area consumption can be obtained in the simulation of large-scale networks in these types of analogue-

digital circuits. However, the programmability on these architectures is affected, which is very important

when there is a need to explore the dynamics of the model, which is being studied and the final

description is not yet defined. Therefore, the analogue implementations can be used for applications

where the behaviour of the SNN is well characterized. Otherwise, the cost of fabrication will be costly

and determining dynamics of the SNN models by using analogue approaches would be time consuming.

Several other factors also decrease the performance of the spiking neural computation in analogue

circuits. This is due to various non-idealities in circuit and reduced precision of the calculation. Also, the

noise starts to accumulate in case of cascaded analog stages, thereby making it strenuous to build such

complex systems using analog devices. A hybrid system could be another solution to create a

configurable SNN emulator which exhibits high computational performance in the simulation of large-

scale SNN models, with low power consumption. It represents a big challenge to develop a system that

benefits from the fruits of both approaches (analog and digital). There have been developing

architectures, which combine the digital and analog implementations. One of them is proposed by [22].

This approach proposes a hybrid analog/digital circuit with very large-scale integration. The simulation of

spiking neurons in this architecture is suitable for applications which require real-time large-scale neural

simulations. Nevertheless, the simulation of the spiking neurons gives some qualitative approximations in

the behaviour when compared with the simulation on digital devices. This work offers an option for

simulating SNN models on a “general purpose” silicon emulator.

As it has been mentioned, several projects have been developed in order to create SNN emulators, which

can support the simulation of large scale SNN models, using different development platforms as High

Chapter 1 Introduction

10

performance computing, general purpose computers, digital multiprocessors, FPGAs, GPUs, Mixed-

signal aVLSI architecture, and VLSI architectures. There are some important aspects to be discussed,

which are related to the portability and the maximum structural parallelism of these emulators. The first

feature opens the possibilities to use such devices in applications as mobile robotics [23], because the

SNN emulations on these compact devices require less power and area consumption when compared with

HPC or general purpose computer simulations. The second aspect is related to the maximum structural

parallelism in these architectures because the computation of the SNN models demands large parallel

computation in order to achieve real time emulations [24]. Although, modern parallel architectures such

as supercomputers are considered as powerful alternatives, for speeding large-scale SNN model

simulations. They are facing several problems all of them are related to the energy consumption, area

consumption.

Table 1.1: Feature summary of SNN implementations on compact devices and using a single chip

Implementatio

n

SNN

model

used

of

neuron

s

of

synapses

Device

used

Migratio

n

Program

Flexibilit

y

Scalabilit

y

SpiNNaker

[13]

Izhikevic

h

Leaky

Integrate-

and-Fire

20000 2000000 ARM9

processing

NO YES YES

Nageswaran

[14]

Izhikevic

h

Range:

50000

to

225000

Range:

100000

to

1000000

NVIDIA

GTX280

GPU card

NO YES NO

Arista [15] Izhikevic

h

7000 7000000 NVIDIA

TESLA

C2050

YES YES NO

Bluehive [20] Izhikevic

h

64000 6400000

0

Altera

Startix IV

YES NO YES

Cassidy [19] Leaky-

integrate-

and-fire

100000

0

1000000 Virtex 5

SX240T

YES NO YES

Vogelstein [22] Leaky-

integrate-

and-fire

2400 1048576 3 mm x 3

mm chip

in -0.5 µm

CMOS

technolog

y

NO YES NO

Chapter 1 Introduction

11

As it can be observed from Table 1.1, the current architectures provide a SNN emulator to be used as tool

for understanding the biological functions carried out in the brain through the simulation of large-scale

spiking neurons. However, these works are facing problems which are related to the performance,

processing speed, high level of interconnectivity, support of complex neural modelling, etc. Therefore,

the development of an efficient and configurable emulator imposes big challenges in terms of program

flexibility, computational performance, communication structure and low power and low area

consumption.

The construction of an emulator that supports a large number of neurons in any device in either analog or

digital or mixed signal, shall take into account some of the essential aspects as mentioned above. Even

though analog circuits provide a large-scale support to emulate SNN in compact designs, while doing

experiments to get results in a short period of time, flexibility becomes an important factor. Upgrading

and expanding the network becomes a part of flexibility. The modern FPGAs offer exceptional

performance and flexibility which supports large scale SNNs. Evidently, the FPGAs consumes a

significant amount of area and there is a performance penalty in re-configurability when compared with

the ASIC design. Thus, the idea of implementing the biological neuron’s basic features from nature in

modern programmable digital systems becomes a very exciting and high impact research topic.

The main focus of this work is to build a real time configurable emulator that can support large-scale

spiking neural networks with vital features such as low-area consumption, minimum-power consumption,

and good performance.

1.2 Work methodology

This work focuses on the development of a digital emulator, in particular using FPGAs, to support large

scale SNN models. The proposed system maximizes its properties offering the following characteristics to

emulate large SNN:

1. Integrated large scale SNN models

2. Multi-model support

3. High processing speed (parameter calculation and spike distribution)

Chapter 1 Introduction

12

4. Easy upgradability

5. Low power and area consumption

 (a)

 (b)

Figure 1.3: Flowchart of development of this PhD thesis, a) Ubichip architecture [8], b) SNAVA

architecture.

- Design and development of the new multi-

processor architecture called SNAVA.

- Development of advanced bio-inspired

applications

FIRST PHASE

SECOND PHASE

- Study and analyze of existing multiprocessor

architecture called Ubichip developed in

PERPLEXUS project as a reference point.

- Implementation of SNN models of the major

interest.

- Development of system to process sensory

information

Chapter 1 Introduction

13

The proposed methodology used to achieve an architecture that meets the criteria specified above, is

composed of two design phases. The starting point of this thesis is the analysis of an existing

multiprocessor called Ubichip which was developed during PERPLEXUS project [8]. The performance of

the Izhikevich model [6], the Iglesias and Villa model [7] were measured in Ubichip and new ideas

emerged to generate the next architecture with better benefits and features. The new architecture was

designed and evaluated in the second phase. Apart from this, advanced bio-inspired applications were

also implemented on it. The Figure 1.4 shows the general flowchart, which resumes the process

development of this thesis.

1.3 Outline of the thesis

The thesis is divided into two parts according to the development of this project. The first part, which

comprises of Chapter 2, Chapter 3 and Chapter 4, is dedicated to analyze the Ubichip architecture and to

develop applications on it in order to determine the extent to which the Ubichip architecture supports in

different SNN models. The second part consists of Chapter 5 and Chapter 6, which explains the new

architecture called SNAVA and the advanced applications which can be developed on it. A detailed

description of the chapters is presented in the following paragraphs:

Chapter 2: This chapter introduces the operation of the multiprocessor called Ubichip which was

developed in PERPLEXUS Project, and presents a detailed analysis of the performance of the Ubichip.

As a result of this analysis, several bottlenecks were detected. Possible modifications and new ideas to

generate advanced architecture are discussed in this chapter.

Chapter 3: A spiking-neuron-based system that combines analog and digital multiprocessor is reported.

A data interface to establish the communication between analog-digital neuromorphic systems is

developed and the key factors related to the synchronization of the communication are discussed in this

chapter. This work was a collaboration project between the University of Edinburgh and the Universitat

Politècnica de Catalunya.

Chapter 4: Perception environment applications using sensory information as proof of concept are

presented in this Chapter. These applications are detection of frequency and amplitude of a signal and

LEGION image segmentation. Experimental results are provided in this Chapter.

Chapter 5: The new improved architecture called SNAVA is described in this chapter. Results of

implementation of SNAVA architecture were compared with other implementation using multiprocessors,

GPU and FPGA. The motivation is to put light on the contribution of SNAVA architecture to realistic

SNN models support by analysis of its efficiency.

Chapter 1 Introduction

14

Chapter 6: The frequency and amplitude detection application of chapter 4 was extended and

implemented in SNAVA. This chapter proposes SNN topology to work with a wider bandwidth. The

experimental results are presented in this Chapter.

Chapter 7: The conclusion of this research work and the future work are presented in this Chapter.

References

[1] J. Nolte, “The Human Brain: An Introduction to Its Functional Anatomy," Elsevier, pp. 25-35,

2009.

[2] Hebb, D. O., "The organization of behaviour," Wiley, conference on New York, 1949.

[3] A.L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application

to conduction and excitation in nerves”, Journal of Physiology 117, pp 500–544, 1952.

[4] Jolivet, R., T.J. Lewis, and W. Gerstner, “Generalized Integrate-and-Fire Models of Neuronal

Activity Approximate Spike Trains of a Detailed Model to a High Degree of Accuracy”, J.

Neurophysiology, pp. 959-976, 2004.

[5] F. Gabbiani and C. Koch, “Coding of time-varying signals in spike trains of integrate-and-fire

neurons with random threshold”, Neural Comput., vol. 8, pp. 44-66, 1996.

[6] Izhikevich, E.M., “Simple model of spiking neurons”, Neural Networks, IEEE Transactions on,

pp. 1569-1572, 2003.

[7] J. Iglesias, J. Eriksson, F. Grize, M. Tomassini, and A. E. P. Villa, "Dynamics of pruning in

simulated large-scale spiking neural networks," Biosystems, vol. 79, Issues 1-3, 2005.

[8] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M. Moreno, and J. Madrenas, “The

Perplexus bio-inspired reconfigurable circuit”, in Adaptive Hardware and Systems, AHS 2007,

Second NASA/ESA Conference on, pp. 600-605, 2007.

[9] H. Markram, “The blue brain project”, Nat Rev Neurosci, vol. 7, pp. 153-60, Feb 2006.

[10] https://www.humanbrainproject.eu/discover/the-project/

[11] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha, “The cat is out of the bag:

cortical simulations with 10
9
 neurons, 10

13
 synapses”, presented at the Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis, Portland,

Oregon, pp. 1-12, 2009.

[12] T. Sharp, F. Galluppi, A. Rast, and S. Furber, “Power-efficient simulation of detailed cortical

microcircuits on SpiNNaker”, Journal of Neuroscience Methods, vol. 210, pp. 110-118,

9/15/2012.

[13] J. Xin, Luja, x, M. n, L. A. Plana, S. Davies, et al., “Modelling Spiking Neural Networks on

SpiNNaker”, Computing in Science & Engineering, vol. 12, pp. 91-97, 2010.

Chapter 1 Introduction

15

[14] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V. Veidenbaum, “A configurable

simulation environment for the efficient simulation of large-scale spiking neural networks on

graphics processors”, Neural Networks, vol. 22, pp. 791-800, 2009.

[15] A. Arista-Jalife and R. A. Vazquez, "Implementation of configurable and multipurpose spiking

neural networks on GPUs", in Neural Networks (IJCNN), The 2012 International Joint

Conference on, pp. 1-8, 2012.

[16] Bellis, S., et al. “FPGA implementation of spiking neural networks - an initial step towards

building tangible collaborative autonomous agents,” in Field-Programmable Technology,

Proceedings, 2004 IEEE International Conference on, pp. 245-250, 2004.

[17] Pearson, M.J., et al. “Design and FPGA implementation of an embedded real-time biologically

plausible spiking neural network processor,” in Field Programmable Logic and Applications,

2005, International Conference on, pp. 1205-1220, 2005.

[18] Teuscher, C., “FPGA Implementations of Neural Networks,” (Ormondi. A.R. and Rajapakse,

J.C., Eds.; 2006). Neural Networks, IEEE Transactions on, pp. 1550-1550, 2007.

[19] Cassidy A, Andreou AG, Georgiou J (2011), “Design of a one million neuron single FPGA

neuromorphic system for real-time multimodal scene analysis”, Information Sciences and

Systems (CISS), 45th Annual Conference on, pp 1-6, 2011.

[20] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar, “Bluehive - A field-

programable custom computing machine for extreme-scale real-time neural network

simulation”, in Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th

Annual International Symposium on, pp. 133-140, 2012.

[21] Schemmel, J. and Br derle, . and Gr bl, A. and Hock, M. and Meier, . and Millner, S., “A

wafer-scale neuromorphic hardware system for large-scale neural modelling,” Circuits and

Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pp. 1947-1950, 2010.

[22] Vogelstein, R.J. and Mallik, U. and Vogelstein, J.T. and Cauwenberghs, G., “Dynamically

Reconfigurable Silicon Array of Spiking Neurons With Conductance-Based Synapses,” Neural

Networks, IEEE Transactions on, pp. 253-265, 2007.

[23] X. Wang, Z. G. Hou, M. Tan, Y. Wang, and Z. Huang, “Spiking neural networks and its

application for mobile robots”, in Control Conference (CCC), 2011 30th Chinese, pp. 4133-

4138, 2011.

[24] T. Schönauer, A. Jahnke, U. Roth, H. lar, “Digital Neurohardware: Principles and

Perspectives,” in proceedings of neuronale netze in der anwendung, pp. 101-106, 1998.

Chapter 1 Introduction

16

Ubichip benchmarks and applications

Part I

18

Performance study of SNN model

implementations on Ubichip

2.1 Introduction

2.2 Ubichip architecture description

 2.2.1 Architecture functional details

 2.2.1.1 AER system

2.3 Performance evaluation – Iglesias and Villa model

 2.3.1 Iglesias and Villa model description

 2.3.2 Iglesias and Villa model implementation

 2.3.3 Figures of performance

 2.3.4 Architecture limitations

2.4 Performance evaluation – Izhikevich model

 2.4.1 Izhikevich model description

 2.4.2 Izhikevich model implementation

 2.4.3 Figures of performance

 2.4.4 Architecture limitations

2.5 Conclusions

2.1 Introduction

According to the objective of this thesis, the development of the SNN emulator which guarantees high

performance, low power and area consumption, and flexibility for supporting different large-scale SNN

models is required. Several aspects were discussed in Chapter 1 in order to select the appropriate digital

compact device (Graphical Processing Units, Multiprocessor, or Field Programmable Gate Array) to be

the development platform to create such SNN emulator which fulfils the needs mentioned above. As a

result of the study of these digital compact devices, the FPGA was selected to be the development

platform for the new architecture in this work. This is because the modern programmable FPGAs offer

attractive hardware interfaces, which involves high-bandwidth memory interfaces and high speed serial

links. These interfaces allow to build a system where the high processing and high distribution system is

required to simulate large-scale SNN models. Also, the new architecture can take advantage of the main

characteristic of the FPGAs, which is called configurability. This will allows the easy implementation of

different SNN models in a short time when compared to the ASIC design.

The Advanced Hardware Architectures (AHA) group at the Universitat Politècnica de Catalunya has been

involved actively in Research projects in order to develop digital architectures for the emulation of bio-

inspired systems. One of the most recent projects in this area was the PERPLEXUS project [1]. This

Chapter 2 Performance study of SNN model implementations on Ubichip

20

project was funded by the European Commission through the 6
th

 framework programme and established

the collaboration eight research institutions from four different countries. One of the objectives of this

project was to develop hardware capable of implementing biologically-inspired spiking neurons. The

AHA group was responsible for developing the neural emulation architecture called Ubichip. Besides the

emulation of SNN the Ubichip was developed also to support dynamic routing, mechanisms of self-

replication. These features permit to carry out numerous bio-inspired mechanisms such as learning,

growth, and evolution by simulating complex systems. A significant increase in the area consumption is

the price for the implementation of all the above mechanisms. Therefore, the neural emulator was

implemented with large area overhead. The Ubichip architecture was prototyped on FPGA for testing and

verification for later to be transferred to an ASIC chip.

The idea of implementing the neural mechanism processing, using a parallel architecture based on Single

Instruction, Multiple Data (SIMD) was introduced in Ubichip. It is an interesting approach which could

be explored in order to take full advantage of all its capabilities, in order to emulate large-scale SNN

models, which demands high parallel computation. As mentioned above, the current version of the

Ubichip was designed under some limitations, so that it has generated architecture with poor processing

efficiency. A great improvement of this architecture imposes a big challenge in order to create an

emulator of spiking neurons efficiently, in addition maintaining low area and power consumption. This

chapter is devoted to analyze how the bottlenecks of Ubichip affect its performance, from here possible

improvements will be proposed to generate a new architecture

A performance evaluation of the Ubichip, in terms of processing and communication, has been carried out

through the simulation of two Spiking Neural Networks (SNN) models. The result of the evaluation

provides insight on further improvements. The first SNN model evaluated was proposed by Iglesias and

Villa [2], which was used as a reference model for the development of the PERPLEXUS project. The

second SNN model analyzed here is one of the most commonly used in the simulation of spiking neurons

which was proposed by Izhikevich [3].

This Chapter gives a brief explanation of Ubichip architecture and its phases of operation in the emulation

of an SNN model. And finally, the results of the performance evaluation of the two models are provided

in detail along with the prominent architectural limitations affecting performance.

2.2 Ubichip architecture description

The configurable architecture called Ubichip was designed for supporting complex bio-inspired systems,

the emulation of large-scale spiking neural network (SNN) being one of them. The Ubichip architecture is

composed of array of Single Instruction, Multiple Data (SIMD) units. This type of architecture is

classified as a parallel architecture according to the Flynn´s taxonomy [4]. There are two aspects which

Chapter 2 Performance study of SNN model implementations on Ubichip

21

were considered in the development of Ubichip in order to simulate Spiking Neural Networks models on

SIMD architecture. Firstly the nature of SNN models is completely parallel which represents the best

challenge for parallel architectures to be used as the base of SNN emulators [5], and secondly the selected

SIMD machine presents a simple architecture which makes the machine potentially inexpensive in terms

of area and energy consumption. Therefore, the proposed architecture intends to simulate large scale SNN

models by expending the minimum area resources. Several modes were implemented in Ubichip for

supporting different applications. The concerning mode to develop this work is the multiprocessor mode.

This mode was specially developed to emulate such bio-inspired SNN models [1, 6].

The Ubichip has three main modules, which are: Configurable array, System Manager, and the Address

Event Representation (AER) module, as shown in Fig. 2.1. The configurable array consists of Processing

Elements (PE), which are the basic building blocks of the system. The AER controller takes care of the

communication between the processing elements within the chip and also between different chips. It

consists of an encoder or control unit and a decoder or Content Address Memory (CAM) unit. The system

manager comprises of the configuration unit, sequencer, memory controller and the CPU interface or

Variable Latency Input Output unit (VLIO). Outside the FPGA there is an External SRAM that stores the

synapse and neural parameters and the CPU that is used for initial configuration and access to the chip for

response analysis.

Figure 2.1: The Ubichip architecture for the multiprocessor mode, figure extracted from [1]

The functional operation of Ubichip was designed to work in two operational phases, which are the data

processing (phase 1) and the spike distribution (phase 2). Therefore, the emulation of SNN models could

be executed by these two periodic phases. During the processing phase, the synapse and neural

parameters are calculated. The spikes generated by the neurons in phase 1 are distributed by the AER

module through the SNN network. The spike distribution is carried out by the synchronous AER protocol

defined in [5] in order to avoid overhead connection when a large-scale SNN models are implemented.

Chapter 2 Performance study of SNN model implementations on Ubichip

22

2.2.1 Architecture functional details

- Configurable array

The configurable array is based on parallel SIMD units, which were defined in this architecture as

Processing Elements (PEs). Each PE is a 16 bit processor. It is built with two 16-bit register banks and a

16 bit ALU. The ALU is capable of performing arithmetic and logical operations like 2’complement

addition and subtraction, shifting, and, or, xor, 2’complement and Negation. Multiplication is also

possible but by software through repeated addition. The two sets of 8-register banks containing 16-bit

registers are called the active and the shadow registers. The active register is the one the ALU operates on

where one operand is always the register 0 also known as accumulator. The shadow register as the name

implies serves as a temporary storage for the active registers providing space for complex algorithms.

Data move operations are possible between the active and the shadow registers either as bulk or single.

The structure of the PE is shown in Fig. 2.2.

This SIMD approach allows the removal of the local program memory from PEs at the cost of forcing the

same program to be executed by all PEs. The program is thus stored in a common single memory, while

the data which is being processed is locally stored in the PE register bank. The data is transferred to/from

the common external SRAM (Static Random Access Memory) when necessary. The flexibility to change

the values of synaptic parameters, neural parameters, as well as the structure of the connectivity pattern

can be made only by changing the program and configuration parameters stored in an SRAM.

The selected parallelization approach consists of assigning a PE to each neuron and its associated input

synapses. Thus, neurons are emulated in parallel, and the synapses of each neuron, serially. This approach

exhibits a good trade-off between today´s utopia fully-parallel emulation and the serial approach.

Figure 2.2: Processing Element path, figure extracted from [6]

Chapter 2 Performance study of SNN model implementations on Ubichip

23

- System Manager

The system manager is composed by the sequencer, configuration unit, memory controller and

microprocessor interface. An explanation is of function of each module is provided as follows:

 A single sequencer, which is external to all PEs [7], is in charge of controlling the program flow.

It performs the following tasks:

- Fetching and decoding the instructions stored in a common memory.

- Broadcasting the instructions to be executed by the SIMD PE array.

- Executing the instructions which are specific for the sequencer itself.

- Transferring the data between the external SRAM and PE array.

- Interfacing with an AER/CAM controller [7].

 The configuration unit takes care of managing the configuration of the different building blocks

of the Ubichip. It also permits to set the registers that drive the integrated debugging capabilities

present in the device like setting the clock mode, debugging step by step, enabling and disabling

the AER, Sequencer, resetting the array etc. Two modes of configuration are supported by the

configuration unit: serial and parallel configuration. In serial configuration mode the Ubichip is

configured through a serial interface driven by an external unit (CPU or CPLD). In parallel

configuration mode the Ubichip is configured from an external CPU unit though its memory bus.

 A memory controller is in charge for generating the signals to access to the SRAM (Static RAM)

from the sequencer.

 The microprocessor interface as well-known as the VLIO (Variable Latency Input-Output)

interface is just a control state machine that synchronizes with a set of signals the external CPU

access. The Ubichip is thus configured through the memory bus in VLIO mode consisting in a

26-bit address bus (CPU_addr), a 32-bit data bus (CPU_data). This interface controller is

connected to a Colibri board (external CPU), which contains an XScale processor that is

responsible for configuring, controlling and providing input-output functions to the Ubichip.

- The Address Event Representation (AER) module

The function of the AER module is dedicated to broadcast post-synaptic spikes from any Ubichip to all

Ubichips connected to the AER bus (see Fig. 2.1). This module works under the synchronous AER

protocol which was defined in [7] during the development of PERPLEXUS project. Also, the AER

module works 10 times less than the frequency operation of the multiprocessor in order to achieve the

communication between 100 Ubichips. The AER module consists basically of three components which

are:

- An AER controller that reads the spikes produced by the multiprocessor array and sends them to

the AER bus.

Chapter 2 Performance study of SNN model implementations on Ubichip

24

- An AER decoder, that detects the synapses connected to the AER spike and writes the

corresponding pre-synaptic spikes into the suitable SRAM positions.

- A CAM (Content-Addressable Memory) models the synaptic connections between neurons.

Each CAM has tags that have the ID’s of the PE’s connected to that particular PE. Thus the

number of associated tags is the number of synaptic connections to the neuron.

2.2.1.1 AER system

This section describes briefly the AER protocol implemented in AER module of Ubichip. The AER

protocol was developed during PERPLEXUS project [1]. This AER protocol theoretically allows 100

Ubichips to communicate through the common bus and avoids the interconnectivity overhead. Also, this

protocol allows the synchronization in communication between the Ubichips. Fig. 2.3 shows the

simplified view of the proposed network in PERPLEXUS project.

Figure 2.3: Simplified view of the PERPLEXUS framework, figure extracted from [7]

Figure 2.4: Conceptual view of the transmission through the common bus, figure extracted from [7]

The transmission of the spikes through the common bus is carried out sequencially. The operation can be

briefly explained as follows. Every Ubichip has an ID in order to identify the current Ubichip that is given

access to the bus. The transmission begins when the master Ubichip (with the highest ID) sends the

START_TX signal and its chip ID. This Ubichip sends its spikes to other Ubichips. Once, the master

Chapter 2 Performance study of SNN model implementations on Ubichip

25

Ubichip has finished its transmission, the chip ID value is decremented by 1, thereby giving access to the

next higher priority Ubichip. Similar pattern is followed for giving the access to subsequent Ubichips in

the network. Fig. 2.4 shows the general idea in the synchronization between Ubichips (see [7], for further

information).

2.3 Performance evaluation – Iglesias and Villa model

This section presents the performance analysis of the algorithm implementation of the complex bio-

inspired SNN algorithm proposed by Iglesias and Villa [2] in assembly code of the Ubichip in

multiprocessor mode. The implementation has been done following a structured manner [9], using certain

procedures so as to simplify the maintenance and updating. The low-level programming allows

optimizing the algorithm´s execution time. The algorithm, which has been written in assembler code for

Ubichip, is provided in Annexure C.

2.3.1 Iglesias and Villa model description

The SNN model proposed by Iglesias and Villa includes the modelling of the neuron as leaky integrate

and fire neuron but they include in the modelling the synapses important mechanisms like learning based

on the Spike-Timing-Dependent-synaptic Plasticity (STDP). They also included the noise in the

simulation of their model and the refractoriness in the neuron. The equation 2.1 that describes the

membrane potential Vi(t) in their model is calculated as follows:

                  1 1i i i i jirest q rest q mem q
j

V t V B t S t V t V k t      
(2.1)

where  1iV t  refers to the membrane potential of neuron type either excitatory or inhibitory,  rest q
V

corresponds to the value of the resting potential for the units of class type (excitatory or inhibitory), Bi(t)

is the background activity noise, Si(t) is the postsynaptic unit state,
 

 

1

e
mem q

mem q
k



 
 
 
  is the time

constant associated to the current of leakage for the units of class type q (excitatory or inhibitory), and

finally,  ji t is the postsynaptic potentials. Therefore, the postsynaptic potential  ji t is a function of

the state of the presynaptic unit Sj, of the type of the synapse (excitatory or inhibitory) P[qj,qi], and of the

activation level of the synapse  jiA t . This is expressed by the following equation:

 () () ()
 (2.2)

Chapter 2 Performance study of SNN model implementations on Ubichip

26

The real-valued variable
jiL (t) was introduced in order to determine the activation level  jiA t of a

synapse. The variable
jiL (t) is used to implement the STDP rule for  jiA t . It is important to be noted

that the STDP rule depends on the occurrence of presynaptic spikes, the generation of postsynaptic spikes

and the correlation between both. It integrates the timing of the pre- and postsynaptic activities and

decays itself overtime. STDP defines how the value of
jiL (t) at the time t is changed by the arrival of the

presynaptic spikes, by the generation of postsynaptic spikes and the correlation existing between these

events. That means if a neuron generates a postsynaptic spike (Si(t)), the real valued variable is going to

be incremented. Similarly, when a presynaptic spikes arrives at the synapse (Sj(t)), the variable
jiL (t)

receives a decrement. The increments or decrements are reflected directly in the value of  jiA t . This

was proposed to implement the plasticity in the synapses. The calculation of the real-valued variable
jiL

is given by the following equation:

 () () () () () () (2.3)

As one can see, there is another dependency to the variables    ,j iM t M t and
,qj qiact

k
 
 

.  jM t and

 iM t describe the “memory” of latest inter-spike, they are explained later on.
,qj qiact

k
 
 

 is responsible

for decaying jiL exponentially, this is due to the decreasing of the elapsed time from the previous

postsynaptic spike.

 

1

e
act q

qact
k



 
 
 
 

 
 



 (2.4)

The variables
jiL are user-defined boundaries of attraction L0 < L1 < L2 < ∙∙∙ Lk-1 < Lk. The distance

between two neighbored boundaries is always a constant i.e.
1k kL L const   . Overstepping one of

these boundaries induces
jiL to reset to the middle of its upper or lower domain, where the Lmax is

defined as the maximum value of
jiL . The reset value of

jiL is calculated by the equation 2.5

  max1
2ji

L
L t  

(2.5)

Chapter 2 Performance study of SNN model implementations on Ubichip

27

iM and
jM can be viewed as the memory of the latest inter-spike interval. iM stays for the memory of

the latest presynaptic spike

          max
1 () 1i i iqi syn qii

M t s t M s t M t k      
(2.6)

iM however, is the memory of the latest postsynaptic spike and refers to the projected neuron (2.9) in

other words it describes the neuron that has been fired, hierarchically it is not part of the synapse. The

following formula represents the memory of the latest presynaptic spike: when spike is generated

(presynaptic or postsynaptic) the according memory is reset to its maximum value. On the other side,

when no spike was emitted the memory variable just will be decayed by the synaptic plasticity time

constant
synk .The formula for the latest postsynaptic spike looks similar, but must be assigned to the

characteristics of the projected neuron.

If a neurons membrane potential crosses a certain threshold value
 q

 from below, it generates spike, also

called action potential, and sends it out down the axon. Shortly after the membrane value resets to its

resting potential.

    ()
i i q i

s t H V t   (2.8)

Where, H is the Heaviside function and indicates, whether a spike is generated or not. This condition is

also conditioned to the refractoriness of the neuron. After firing a spike, the neuron enters a short moment

of rest, the absolute refractory period prevents that the neuron fires again. Even with very strong input, it

is impossible to excite a second spike during or immediately after a first one. The minimal distance

between two spikes defines the absolute refractory period of the neuron.

 ji jiA L 

 0,     min
1

ji ji
if A L L  

 1,         max min
0 2

ji ji ji ji
if A L L A L L      

 2,         max min
1 4

ji ji ji ji
if A L L A L L       (2.10)

 4,     max
2

ji ji
if A L L  

jiA ,     max minji ji

if L L L L  

          max
1 () 1j j jqj syn qjj

M t s t M s t M t k       (2.7)

0 : 0
()

1: 0

x
H x

x


 



(2.9)

Chapter 2 Performance study of SNN model implementations on Ubichip

28

The activation variable  jiA t reflects the activity of a synapse. In the model it is distinguished between

four different activation states for a synapse: 0,1,2,4 (N=4). In this case 0 means that there is no activity

anymore, the synapse is dead – this characteristic is known as synaptic pruning. On the other side an

activation level of 4 indicates the highest level of synapse activity. This has a significant impact for the

postsynaptic neuron, because its membrane value will grow and spiking is provoked quicker.

The activation variable  jiA t is directly dependent on the variable
jiL . Whenever

jiL exceeds the

border from one of its domains to another  jiA t is directly affected by it and jumps to one of its

neighboured states,  kA to  1kA  for increasing and  kA to  1kA  for decreasing  jiA t .

2.3.2 Iglesias and Villa model implementation

The execution loop to emulate the Iglesias and Villa model is shown in Fig. 2.5. As it can be noted, after a

short parameter initialization, the SNN algorithm is cyclically emulated by means of an infinite loop that

executes phase 1 to emulate the neural network and stops for the AER decoder to execute the spike

broadcasting of phase 2. In this phase, no instructions are executed, but the AER controller and AER

decoder control units perform the required operations by means of finite state machines. When phase 2 is

done, the sequencer resumes execution of phase 1 and this loop is made to run continuously.

Figure 2.5: Execution loop for SNN emulation. Phase 1 main operations are detailed

In phase 1, when the neuron and synapse algorithms are executed, the neuron parameters are first loaded

and then the membrane value is calculated. Then, the input synapses of the associated neuron are

Chapter 2 Performance study of SNN model implementations on Ubichip

29

calculated. Finally, the neuron is updated taking into account the input synapses, background noise and

refractory period, thereby determining whether it spikes or not.

As mentioned earlier in the beginning of this section, the algorithm to perform the Iglesias and Villa

model in Ubichip was programmed in assembler language. The main loop of this assembler program is

shown in Figure 2.6. This loop consists of 8 subroutine calls which are dedicated to calculate the neural

parameters, and a synapse loop which is dedicated to compute the synaptic parameters. The number of

times the synaptic loop is executed is equal to the defined number of synapses. This synaptic loop also

includes 6 additional subroutines. Every subroutine requires a certain number of clock cycles to perform a

specific part of the algorithm. The number of clock cycles per subroutine were measured and translated

into a mathematical equation as a function of the constants K and the variables S or N. Where variables N

and S are defined based on the number of neurons and the number of synapses to be emulated by the

Ubichip multiprocessor. Also, the variable N is related to the number of times the sequencer can access to

the external SRAM for loading and storing data from the PE and vice versa. Whereas, in case of spike

distribution the sequencer gets access to the SRAM to save the data received from the AER module. This

can be seen clearly in Fig 2.6, the subroutines which are dedicated to load and save parameters takes into

account the variable N. Therefore, The constants K1··K13 and variables N and S allow the calculation of

the number of clock cycles required for the execution of each subroutine as shown in Fig. 2.6.

Figure 2.6: Main program of the SNN emulation assembly code and number of cycles of each subroutine.

K1 + K2xN
.MAIN

GOTO 00NEURONLOAD

GOTO 01MEMBRANEVALUE

LOOP synapses

GOTO 00SYNAPSELOAD

GOTO 02SYNAPTICWEIGHT

GOTO 03REALVALUEDVARIABLE

GOTO 04ACTIVATIONVARIABLE

GOTO 05MEMORYOFLASTPRESYNAPTICSPIKE

GOTO 99SYNAPSESAVE

ENDL

GOTO 06MEMORYOFLASTPOSTSYNAPTICSPIKE

GOTO 07SPIKEUPDATE

GOTO 08BACKGROUNDACTIVITY

GOTO 09REFRACTORYP

GOTO 99NEURONSAVE

GOTO SPIKESENABLE

STOP ; AER/CAM UPDATE OF SPIKES

GOTO MAIN

N: Number of PEs

S: Number of synapses

K4 + K5xS + K6xNxS

K3

K7

K8 + K9xN
K10

K11 + K12xN + K13xN2

Chapter 2 Performance study of SNN model implementations on Ubichip

30

2.3.3 Performance figures

The encoding for each subroutine in phase 1, which is indicated in Table 2.1, takes into account the

expressions defined in Fig. 2.6. The initial conditions (IC) (initialization of Fig. 2.5) are also considered,

although they do not have any relevance in the calculation. The encoding of subroutines contained in the

synapse loop is shown in Table 2.2. Adding the number of cycles of these subroutines, the Cycle per

Synapse (CS) figure of Table 2.1 is obtained.

Table 2.1: Main loop subroutine encoding and execution number of clock cycles

Symbol Subroutine Clock cycles *

I C Initial conditions 24 + N

N L Neuron Load 148 + 4N

M V Membrane value 538

C S Cycle per each synapse (1392+4N)S

M O L P Memory of last post-

synaptic

496

S U Spike Update 70

B A Background activity 527+ N

R P Refractory period 6

N S Neuron save 92+4N

S E Spike enable 8

* The number of clock cycles depends on the number of synapses (S) and number of neurons (N).

Table 2.2: Synapse loop routine encoding

Symbol Subroutine Clock cycles *

S L Synapse Load 150 + 2N

S W Synaptic weight 70

R V V Real value variable 472

A V Activation variable 100

M O L P Memory of last pre-synaptic spike 450

S S Synapse Save 150 + 2N

* The number of clock cycles depends on the number of neurons (N).

Adding all the contributions of Table 2.1, the number of clock cycles NT that is required for the

initialization and the phase 1 execution in one simulation cycle is obtained which is shown in equation

(2.11).

Chapter 2 Performance study of SNN model implementations on Ubichip

31

SNSNNT  41392101909

(2.11)

As it can be observed from equation 2.11, the number of clock cycles varies with respect to the number of

neurons (N) and synapses (S). It is important to consider both synapses and neurons when evaluating

scalability. From inspection of eq. (2.11), clearly the major contribution to the delay is given by the

number of synapses, while the number of neurons is contributing less to the delay when compared to the

number of synapses. As indicated before, the maximum number of neurons to be emulated in Ubichip is

limited by the number of PEs. This is because every neuron is associated to each processor. The

maximum number of synapses is defined in function of the size of the Content Address Memory (CAMs),

which contains the logic mapping of the connection of the SNN network.

In Table 2.3, the previous expression (2.11) is used to calculate execution times for different SNN

emulation array sizes to infer scalability. The execution time depends on the system clock. Here, the

conservative Ubichip prototype 50 MHz clock, or 20 ns period, is assumed, although the delays would be

proportionally reduced as the clock period decreases. The distribution time (spike propagation) is also

considered for the calculation, taking into account that in the PERPLEXUS implementation the AER bus

is working at around 5 MHz [1]. The AER bus is working 10 times slower than the multiprocessor in

order to ensure a successful communication between several Ubichips.

As shown in the Table 2.3, even working with the current prototype clock, the system performance is

very close to the real-time emulation. For the 300-synapse 10000-neuron network proposed case, using

100 Ubichips, 78 spike/s rate is obtained for individual neurons, which is very close to the proposed target

in the PERPLEXUS project [1]. Furthermore, the spiking phase is calculated on a worst-case, all-neuron

spike basis, because not all neurons will be spiking at every simulation step.

Table 2.3: Execution time of one simulation cycle for different SNN size

In the following figures, the number of clock cycles required for one-step emulation of the SNN

algorithm is analyzed. The purpose is to show the influence of every subroutine as a function of the

number of neurons and synapses being emulated. The figures have been obtained from simulations and

they have been verified for consistency with eq. (2.11).

Array #PE #Syn #Chip Processing phase (clock cycles) fCK Total phase1 Spiking phase Total phase2 TOTAL SPIKE RATE

N N S C K1 K2*N K3*S K4*N*S TOTAL (MHz) (ms) AER (MHz) (ms) (ms) (s-1)

2x2 4 2 1 1909 40 2784 32 4765 50 0,095 8 5 0,0016 0,10 10320

2x2 4 3 1 1909 40 4176 48 6173 50 0,123 8 5 0,0016 0,13 7996

6x6 36 8 1 1909 360 11136 1152 14557 50 0,291 40 5 0,008 0,30 3343

6x6 36 12 1 1909 360 16704 1728 20701 50 0,414 40 5 0,008 0,42 2370

10x10 100 300 1 1909 1000 417600 120000 540509 50 10,810 104 5 0,0208 10,83 92

100x100 100 300 100 1909 1000 417600 120000 540509 50 10,810 10202 5 2,0404 12,85 78

Chapter 2 Performance study of SNN model implementations on Ubichip

32

To infer scalability, the Ubichip arrays that emulate 2x2, 4x4, 6x6 and 10x10 neuron networks are

considered in the analysis. In fact, a 6x6 array has been mapped into the FPGA of the first Ubichip

prototype and 10x10 was the array implemented in a standard-cell ASIC in the PERPLEXUS project [1].

In Fig. 2.7, the required number of cycles per emulation step for the four configurations is shown. In this

case, a single synapse is considered, to show scaling with the number of neurons. As predicted by eq.

(2.1), the total execution time increases linearly with the number of neurons. The figure displays both the

total number of cycles (in the last column) and its distribution among the main loop subroutines.

As it can be observed, the delay mostly depends on the synapse cycle, even for a single synapse. In Fig.

2.8, the number of cycles for the synapse loop (CS in Fig. 2.7) distributed among the internal subroutines

is shown, also for the neural network arrays previously indicated. It can be observed that the only

subroutines that increase their number of cycles with the number of neurons N are SL (synapse load) and

SS (synapse save), i.e., when the SRAM is accessed. Since they are inside the synapse loop, they will

linearly increase with the synapse number, so they provide a major contribution to the total delay.

Figure 2.7: Required number of cycles for the execution of Iglesias-Villa implementation for 4, 16, 36

and 100 neurons with 1 synapse per neuron [10].

Figure 2.8: Required number of cycles for the execution of the synapse loop for 4, 16, 36 and 100 neurons

with 1 synapse per neuron [10].

Chapter 2 Performance study of SNN model implementations on Ubichip

33

In Fig. 2.9, the required number of cycles per emulation step is presented from the synapse number point

of view. For the target 100 (10x10) neuron array per Ubichip, a varying of number of synapses 3, 30 and

300 are analyzed.

The serial emulation of synapses implies that each synapse requires a synapse emulation loop. This is

why CS (Synapse Cycle) is dominant even for a small number of synapses and the remaining subroutines

become irrelevant, as Fig. 2.9 indicates. In fact, for the 100-neuron 300-synapse neuron array, 99.5% of

the cycles are dedicated to synapse cycle.

Figure 2.9: Required number of cycles for the execution of Iglesias-Villa SNN for 3, 30 and 300 synapses

on a 100 neuron array [10].

Figure 2.10: Required number of cycles for the execution of the synapse loop for 3, 30 and 300 synapses

on a 100 neuron array [10]

Chapter 2 Performance study of SNN model implementations on Ubichip

34

The contribution to CS of Fig. 2.9 for each subroutine inside the synapse loop is shown in Fig. 2.10.

Taking into account that the selected number of synapses varies exponentially, the exponential increase in

the figure corresponds to a linear growth with the number of synapses, as expected.

2.3.4 Architecture limitations

The target of real-time emulation has been almost achieved with the current implementation. Simply by

slightly increasing the current operating frequency (50 MHz) it would be totally fulfilled. Nevertheless,

from the previous performance analyses, there are some possible modifications that would significantly

boost the processing power of SNN algorithms based on the PERPLEXUS multiprocessor.

This section explains the limitations that were identified after the previous analysis. The current

architecture´s bottlenecks will be clearly shown when a large SNN is considered, as in the case of 100

neurons and 300 synapses per neuron. Analyzing the synapse cycle operations, the main time-consuming

tasks are memory access (LOAD and STORE instructions). This is because either neural or synaptic

parameters are loaded and stored from the array of PEs to the external SRAM memory. Another

bottleneck is the implementation of the exponential decays which are based on a software multiplication

algorithm.

Table 2.4: Clock cycles devoted to LOAD, STORE, multiplication and all other instructions for the

execution of Iglesias and Villa algorithm (100 neurons and 300 synapses per neuron)

Figure 2.11: Clock cycle number distribution of instructions as classified in Table 2.3 [10]

Instructions and subroutine # # cycles/instruction Total number of cycles

LOAD NEURONS 6 100 600

LOAD SYNAPSES 600 100 60000

STNC NEURONS 4 100 400

STNC SYNAPSES 600 100 60000

MULT. NEURONS 3 432 1296

MULT. SYNAPSES 600 432 259200

REMAINING INSTRUCTIONS 159013

TOTAL 540509

Chapter 2 Performance study of SNN model implementations on Ubichip

35

The number of clock cycles required to execute the algorithm, LOAD, STORE (where STNC is a

particular case of STORE) [6], and multiplication instructions are shown in Table 2.4. In the Remaining

instructions row, all the other instructions that complete the algorithm are accounted.

As it can be observed in the pie chart of Fig. 2.11, the relative execution time of these instructions is

displayed. Approximately, one-fourth of the processing time is devoted to LOAD and STORE, i.e., to

SRAM access, one-half of the time to product instructions and the other one fourth, to the remaining

instructions.

In order to speed up processing the following improvements can be considered:

 Parallelization of LOAD and STNC instructions.

 Hardware multiplier: Full parallel multiplier, radix-4 multiplier or parallel-serial multiplier.

- Parallelization of LOAD and STORE instructions feasibility

It would be feasible to parallelize the LOAD and STNC instructions only by amending the memory

system architecture. Currently, modern FPGAs integrates thousands of block memory that are optimized

for resource and power, so that, the possible modification could be based on the implementation of a

distributed memory system. Every processor element could have a memory block. The data values could

be sent from block memory to PE when the LOAD or STORE parallel instructions are executed in a

single clock.

- Hardware multiplier feasibility

Regarding hardware multipliers, taking into account that the current architecture has 16-bit precision of

the PE registers, the 16-bit multipliers mentioned above would require 1, 8, and 16 clock cycles,

respectively. The PE area overhead is almost insignificant with respect to the implementation of the

radix-4 and parallel-serial multiplier. But, for the full-parallel implementation, it would require further

analysis. However, new FPGAs provide cores that generate parallel multipliers, and constant coefficient

multipliers giving rise to a system with maximum performance and resource efficiency.

In Table 2.5, the calculated clock cycle number for several architectural modifications is shown. The first

column indicates the best case, with fully parallel LOAD and STNC instructions and fully-parallel

hardware multipliers. Second column replaces the full-parallel multiplier by a radix-4 multiplier, and a

parallel-serial multiplier in the third column. The fourth column keeps the P.S. multiplier, but assumes

that the LOAD and STNC instructions are row-serial and column-parallel (using row cache). Finally, the

last column shows the current implementation figures.

Chapter 2 Performance study of SNN model implementations on Ubichip

36

Table 2.5: Clock cycle number calculation for modified architectures

 (a) (b)

 (c) (d)

Figure 2.12: a) Clock cycle number distribution of instructions taking into account the proposed

architecture improvements. a) Full parallel LOAD and STNC instructions and full-parallel multipliers; b)

Full parallel LOAD and STNC instructions and radix-4 multiplier. c) Full parallel LOAD and STNC

instructions and parallel-serial multiplier. d) Column-parallel row-serial LOAD and STNC instructions

and parallel-serial multiplier [10].

Chapter 2 Performance study of SNN model implementations on Ubichip

37

In Fig. 2.12, the pie charts for the proposed improvements show how the execution time could be

redistributed from the current implementation that was depicted in Fig. 2.11. As it can be seen, great

improvements may be achieved. In the best case (Fig. 12a), the LOAD, STNC and product instructions

become almost neglectable, but the hardware overhead will increase by the fully-parallel array of

multipliers. In Fig. 12b, 12c and 12d, the percent of those instructions still remain significantly reduced.

Table 2.6 points out the number of clock cycles required for each subroutine to compute the algorithm of

Iglesias and Villa taking into account the four cases showed in Table. 2.5.

Table 2.6: Calculation of the clock cycle number in each subroutine for each proposed architecture

change

Symbol

Subroutine

Clock cycles

Parallel-

parallel

multiplier

Clock

cycles

Radix-4

multiplier

Clock cycles

Parallel –

serial

multiplier

Clock cycles

P.S. mult. &

Row cache

I C Initial

conditions

22 22 22 21 + n

N L Neuron Load 158 158 158 154 + 4 n

M V Membrane

value

102 109 117 117

C S Cycle per

each synapse

(534  s) (548  s) (564  s)  560 4 n s 

M O L P Memory of

last post-

synaptic

61 68 76 76

S U Spike Update 70 70 70 70

B A Background

activity

94 101 109 108 + n

R P Refractory

period

10 10 10 10

N S Neuron save 101 101 101 97 + 4 n

S E Spike enable 8 8 8 8

Chapter 2 Performance study of SNN model implementations on Ubichip

38

Table 2.7: Performance improvement ratio for the proposed architecture changes (100 neurons and 300

synapses)

Type of improvement Estimated execution time of the proposed

architecture

Improvement

ratio

Full parallel LOAD and STNC instructions & Full

parallel multiplier

 160826 3.3

Full parallel LOAD and STNC instructions &

Radix-4 multiplier

 165047 3.2

Full parallel LOAD and STNC instructions &

Parallel-serial

 169871 3.1

Parallel-serial & row cache 180761 2.9

Current implementation 540509 1

Considering LOAD and STNC parallel instructions, for any multiplier, the number of cycles follows the

eq. (2.12) form:

SKKNT 21  (2.12)

Notice that NT does not grow anymore with the number of neurons. Of course, the expression is limited

by the feasibility of block storage memory of all the synapse parameters in the synapse loop time. The

values of the constants K2 and K2 are shown in the Table 2.8.

Table 2.8: Values of the constants K1 and K2 of equation 2.12 for the full parallel LOAD and STNC

instructions and the three types of multipliers

Type of improvement K1 K2

Full parallel multiplier 626 534

Radix-4 multiplier 647 548

Parallel-serial 671 564

In case of column-parallel row-serial LOAD and STNC instructions (row cache) and parallel-serial

multiplier, NT takes the form of eq. (2.13), where the growth depends also on the square root of the

number of neurons.

NSSNNT 456010661 
(2.13)

Figure 2.11 shows the execution time for a single simulation step by considering the four improvements

mentioned above. The maximum number of neurons and synapses per neuron is assumed to be 100 and

300 respectively. These values were the target values of the PERPLEXUS project [1]. The number of

Chapter 2 Performance study of SNN model implementations on Ubichip

39

clock cycles for the emulation of Iglesias and Villa model is calculated by using the equation 2.12, from

which the values of K1 and K2 are determined and these are tabulated in Table 2.8. Equation 2.13

computes the number of clock cycles taken by the neural model of case (d).

a) b)

c) d)

Figure 2.13: a) The execution time required to perform the Iglesias and Villa algorithm in a single step

simulation, by taking into account the proposed architecture improvements. a) Full parallel LOAD and

STNC instructions and full-parallel multipliers; b) Full parallel LOAD and STNC instructions and radix-4

multiplier. c) Full parallel LOAD and STNC instructions and parallel-serial multiplier. d) Column-

parallel row-serial LOAD and STNC instructions and parallel-serial multiplier.

From the graphs shown in Figure 2.13, the value of the single emulation cycle was found to be in the

range of 3.2 to 3.5 ms. From the results obtained, it has to be understood that the amendments proposed

are not adequate enough to achieve an emulation cycle value of 1ms in case of Iglesias and Villa model

which was one of the goals of PERPLEXUS project [1]. Hence further changes are to be thought and

implemented in Ubichip in order to support the design of this neural model.

Chapter 2 Performance study of SNN model implementations on Ubichip

40

2.4 Performance evaluation – Izhikevich model

This section presents the evaluation of the Izhikevich model which has become quite popular for the

simulation of Spiking Neural Networks [3]. This is because the SNN model exhibits various spiking

bursting behaviours of cortical neuron. The Izhikevich model is claimed to be computationally as efficient

as the integrate-and-fire model, and also this model require minimum hardware to emulate a large number

of neurons [11, 12]. The algorithm, which has been written in assembler code for Ubichip, is provided in

Annexure C.

2.4.1 Izhikevich model description

Izhikevich presented a simple spiking model (2.14), (2.15). The author has reduced many biophysically

accurate Hodgkin–Huxley-type neuronal models to a two dimensional (2-D) system of ordinary

differential equations of the form:

2´ 0.04 5 140v v v u I     (2.14)

 ´u a bv u 

(2.15)

if

30 ,
v c

v mV then
u u d


 

 

 (2.16)

Here, v and u are dimensionless variables, and a, b, c, and d are dimensionless parameters, and´
d

dt
 ,

where t is the time. The variable v represents the membrane potential of the neuron and u represents a

membrane recovery variable, which accounts for the activation of K
+
 ionic currents and inactivation of

Na
+
 ionic currents, and it provides negative feedback to v . After the spike reaches its apex (+30 mV), the

membrane voltage and the recovery variable are reset according to the (2.16). Synaptic currents or

injected dc-currents are delivered via the variable I.

 Parameter a describes the time scale of the recovery variable u. Smaller values result in slower

recovery.

 Parameter b describes the sensitivity of the recovery variable u to the sub-threshold fluctuations

of the membrane potential v. Greater values couple v and u more strongly resulting in possible

sub-threshold oscillations and low-threshold spiking dynamics. A typical value is b=0.2.

 Parameter c describes the after-spike reset value of the membrane potential v caused by the fast

high-threshold K
+
 conductances. A typical value is c = -65mV.

Chapter 2 Performance study of SNN model implementations on Ubichip

41

 Parameter d describes after-spike reset of the recovery variable u caused by slow high-threshold

Na
+
 and K

+
 conductances. A typical value is d = 2.

Depending on the values of the parameters (a, b, c, d), the model can exhibit firing patterns of all known

types of cortical neurons [3].

2.4.2 Izhikevich model implementation

The Izhikevich model implemented in this work does not include the STDP, dendrites and axon delays

[3]. This is because the mechanism to implement the STPD and axon delay, and dendrites delay proposed

by Izhikevich requires excessive hardware resources which makes the implementation very expensive in

terms of communication and memory system [11, 12]. The Izhikevich model which includes the

modelling of the STDP in the synapses is described in [13]. This model takes into account the delay in the

axon and in the dendrites. The STDP rule is based on the Hebbian learning, which is a temporal

correlation between the spikes of the pre and post synaptic neurons. In the case that repeated presynaptic

spikes arrive before the neuron fires, its synapses stay in long-term potentiation (LTP), in the contrary

case, after the neuron fires its synapses leads in long-term depression (LTD).

The implementation of the LTP and LTD in the Izhikevich model [13] is described by the following

equations:

- LTP

 () () (() ()) (2.17)

- LTD

 () () (() ()) (2.18)

- Variable STDP

 (2.19)

The variable sd is in charge of doing the correlation between spikes of the pre and post synaptic neurons

in this model [13]. The LTP and LTD mechanisms use a common parameter called STDP (equations 2.17

and 2.18). The STDP variable is an exponential decay variable which is set to the value 0.1 when the

postsynaptic neuron fires. The STDP variable takes into account the axon delay which correspond to the

value of 20 ms. As can been seen in equation 2.19, the STDP (t) value takes the value of the same

variable after 20 ms. The LTP and LTD takes into account the delay in the dendrites, which is indicated

by . The values of are generated by a random function and the range of these values is defined

between 0 ms and 5 ms. Obviously, the future spike timing information is not available when the pre-

synaptic spike Sj arrives because this process has not occurred yet. Therefore, the STDP mechanism

STDP (t) = STDP (t + 20)

Chapter 2 Performance study of SNN model implementations on Ubichip

42

proposed by Izhikevich requires high bandwidth memory to store the value of synaptic variables at

different instants of time and a high bandwidth communication to exchange the parameter STDP between

synapses. The implementation of this complex STDP mechanism demands a lot of hardware resources, so

that many hardware emulators do not implement it in their platforms [12, 14]. It is important to be noted

that the role of the synaptic plasticity is linked to the biological process of learning.

The proposed emulation of Izhikevich model is carried out by means of these seven subroutine calls and a

synaptic loop as shown in Fig. 2.14. The synaptic loop is composed of 3 additional calls. The number of

times the loop is executed is equal to the number of synapses. The constants K1 to K15 allow the

calculation of the number of clock cycles required to execute each procedure. In some cases the number

of clock cycles is calculated as a function of the number of neurons and the number of synapses.

Figure 2.14: Main program of the SNN emulation assembly code

2.4.3 Performance figures

The value of the constants K for each subroutine is shown in Table 2.9. Table 2.10 shows the encoding of

subroutines contained inside of the synapse loop.

Table 2.9: Main loop subroutine encoding and execution number of clock cycles

Symbol Subroutine Clock cycles*

T I Thalamic Input 36 + N

S U Spike Update 36

M P Membrane Potential 52 + N

S E Spike Enable 6 + N

C S Cycle per each synapse (128 + 8N)S

M V Membrane Value 9840

R V Recovery Value 1516

N S Neuron save 6 + N

* The number of clock cycles depends on the number of synapses (S) and number of neurons (N).

Chapter 2 Performance study of SNN model implementations on Ubichip

43

Table 2.10: Synapse loop routine encoding

Symbol Subroutine Clock cycles *

S L Synapse Load 1 + 4N

S W Synaptic weight 111

S S Synapse Save 16 + 4N

* The number of clock cycles depends on the number of neurons (N).

The equation 2.20 allows the calculation of the number of clock cycles required for the execution of

phase 1 in one simulation step. This equation is obtained from the addition of all contributions of the

Table 2.9:

xNxSxSxNNT 81281011492  (2.20)

Table 2.11: Execution time of one simulation cycle for different SNN size

Table 2.11 shows the calculated execution times for different SNN emulation array sizes using the

expression (2.20). The calculation considers the spike distribution time and the processing time. The

execution time dedicated to processing phase is about 7 times longer than the phase of distribution. This

is taking into account the proposed target in PERPLEXUS project [1] (300-synapse 10000-neuron, 100-

ubichip). The spike distribution phase was calculated assuming that all neurons will be spiking at every

simulation step. As it was indicated in previous analysis the spike rate was very close to the proposed

target in PERPLEXUS project [1] (average spiking rate: 100-200 spikes/second) by obtaining 65 spike/s

rate. Therefore, the following study will be dedicated to analyze the performance of the processing phase.

The method used to analyze the performance of the Izhikevich model has also been used for the Iglesias

and Villa model. This method consists of two approaches to measure the number of clock cycle. First, by

varying the size of the array (2x2, 4x4, 6x6 and 10x10) with one synapse per neuron, and second by

varying the number of synapses (3, 30 and 300 per neuron), but keeping the number of neurons as a

constant (100). The results show the measurement of the SNN algorithm in one-step emulation and they

have been verified for consistency with eq. (2.20). The proposed strategy has helped us to understand how

every subroutine call is affected either by increasing the number of neurons or synapses.

Array # PE # Synapse # Chip FCK Total phase 1 Spiking phase Total phase 2 TOTAL SPIKE RATE

N N S C K1 K2*N K3*S K4*N*S (MHz) (ms) AER (MHz) (ms) (ms) (s-1)

2x2 4 2 1 11492 40 2784 64 50 0.2876 8 5 0.0016 0.29 3458

2x2 4 3 1 11492 40 4176 96 50 0.31608 8 5 0.0016 0.32 3148

6x6 36 8 1 11492 360 11136 2304 50 0.50584 40 5 0.008 0.51 1946

6x6 36 12 1 11492 360 16704 3456 50 0.64024 40 5 0.008 0.65 1543

10x10 100 300 1 11492 1000 417600 240000 50 13.40184 104 5 0.0208 13.42 75

100x100 100 300 100 11492 1000 417600 240000 50 13.40184 10202 5 2.0404 15.44 65

 Processing phase (clock cycles)

Chapter 2 Performance study of SNN model implementations on Ubichip

44

Figure 2.15: Required number of cycles for the execution of Izhikevich implementation for 4, 16, 36 and

100 neurons with 1 synapse per neuron.

Figure 2.16: Required number of cycles for the execution of the synapse loop for 4, 16, 36 and 100

neurons with 1 synapse per neuron.

Figure 2.15 shows the required number of clock cycles per emulation step for the four configurations. It is

clear that the major number of cycles is dedicated to execute the membrane voltage. This is due to the

number of multiplications required to calculate it. The initial proposal for the implementation of the

multiplication was to carry out by software in order to save area in the FPGA. The cost of this

Chapter 2 Performance study of SNN model implementations on Ubichip

45

implementation is high in terms of processing speed because the saturated multiplication executed by

software requires a lot of clock cycles as it can be observed in Figure 2.15 in the calculation of the

membrane voltage (eq. 2.16). Another delay, which becomes important when the number of synapses is

increasing, is the synapse cycle (SC). SL (synapse load) and SS (synapse save) provide the major

contribution of the total delay as it is shown in Fig. 2.18. A better case to observe the impact produced by

increasing the number of synapses per neurons is shown in Fig. 2.17, where the number of clock cycles

increases linearly. In the case of 100-neurons 300-synapse neuron array it can be clearly observed that

99.5% of the clock cycles are dedicated to synapse cycle. Fig. 2.18 shows the contribution to CS for each

subroutine inside the synapse loop in order to detect the subroutines that are making the major

contribution to the delay. The identified subroutines are dedicated to storing and loading synaptic

parameters.

Figure 2.17: Required number of cycles for the execution of Iglesias-Villa SNN for 3, 30 and 300

synapses on a 100 neuron array.

Chapter 2 Performance study of SNN model implementations on Ubichip

46

Figure 2.18: Required number of cycles for the execution of the synapse loop for 3, 30 and 300 synapses

on a 100 neuron array.

2.4.4 Architecture limitations

The previous performance analysis indicates that the memory access system and the execution of

arithmetic operations abate the effectiveness of the SIMD architecture for the computation of the

Izhikevich model when the number of neurons and synapses to be emulated is increased. The

improvements that were proposed in Section 2.3.4 are also considered in order to boost the processing

power of this model.

Table 2.12: Clock cycles devoted to LOAD, STORE, multiplication with saturation, addition with

saturation and all other instructions for the execution of Izhikevich algorithm (100 neurons and 300

synapses per neuron)

Chapter 2 Performance study of SNN model implementations on Ubichip

47

Table 2.12 shows the number of clock cycles required to execute the LOAD, STORE (conditional store

family), and multiplication and adder instructions. Also the remaining instructions are considered in order

to complete the Izhikevich algorithm.

Figure 2.19: Clock cycle number distribution of instructions as classified in Table 2.12

The pie chart of the Fig. 2.19 displays the distribution of clock cycles required for the instructions and

subroutines indicated in Table 2.12. Almost the half of the total of the clock cycles are dedicated to

executing the memory access and arithmetic operations. These figures indicate the need for implementing

strategies to improve the performance of the system by keeping low-area consumption, in order to

allocate a large number of neurons in a single FPGA.

The possible changes are shown in Table 2.13. These modifications are based on the implementation of

three types of multipliers, saturation adders and distributed memory architecture. Therefore, fully-parallel

hardware multiplier and fully parallel LOAD and STORE instructions would be able to carry out in a

single clock cycle.

(a)

(b)

Chapter 2 Performance study of SNN model implementations on Ubichip

48

(c)

(d)

Figure 2.20: a) Clock cycle number distribution of instructions taking into account the proposed

architecture improvements. a) Full parallel LOAD and STNC instructions and full-parallel multipliers; b)

Full parallel LOAD and STNC instructions and radix-4 multiplier; c) Full parallel LOAD and STNC

instructions and parallel-serial multiplier; d) Column-parallel row-serial LOAD and STNC instructions

and parallel-serial multiplier.

Figure 2.20 shows the distribution of the clock cycles for each instruction or subroutine which were

indicated in Table 2.10 taking account the four proposed configurations. The best case (see Fig. 2.20 a))

represents an important improvement because LOAD, STNC, addition and product instructions are

reduced significantly. For the remaining cases, a negligible increment in the percentage of these

instructions is gained as it can be observed in Fig. 2.20 b), 2.20 c) and 2.20 d) respectively.

Table 2.13: Clock cycle number calculation for modified architectures

Table 2.14 shows the calculation of clock cycle number for each subroutine by considering the proposed

improvements. Table 2.15 indicates the estimated performance improvement ratio taking into account

these possible modifications.

Chapter 2 Performance study of SNN model implementations on Ubichip

49

Table 2.14: Calculation of the clock cycle number in each subroutine for each proposed architecture

change

Symbol

Subroutine

Clock cycles

Parallel-parallel

multiplier

Clock

cycles

Radix-4

multiplier

Clock

cycles

Parallel –

serial

multiplier

Clock cycles

P.S. mult. &

Row cache

T I Thalamic Input 37 37 37 36 + √

S U Spike Update 36 36 36 36

M P Membrane Potential 53 53 53 52 + √

S E Spike Enable 7 7 7 6 + 2 √

C S Cycle per each synapse (136 S) (136 S) (136 S) (128 + 4 √) S

M V Membrane Value 67 88 112 112

R V Recovery Value 46 60 76 76

N S Neuron save 101 101 101 6 + √

Table 2.15: Performance improvement ratio for the proposed architecture changes (100 neurons and 300

synapses)

Type of improvement Estimated execution time of the

proposed architecture

Improvement ratio

Full parallel multiplier 41147 7.6

Radix-4 multiplier 41182 7.5

Parallel-serial 41222 7.5

Parallel-serial & row cache 50774 6.1

Current implementation 312972 1

Considering LOAD and STNC parallel instructions, for any multiplier, and the saturated adder in

hardware, the number of cycles follows the eq. (2.21) form:

SKKNT 21  (2.21)

Notice that NT does not grow anymore with the number of neurons. Of course, the expression is limited

by the feasibility of block storage memory of all the synapse parameters in the synapse loop time. The

values of the constants K2 and K2 are shown in the Table 2.16.

Chapter 2 Performance study of SNN model implementations on Ubichip

50

Table 2.16: Values of the constants K1 and K2 of equation 2.13 for the full parallel LOAD and STNC

instructions and the three types of multipliers

Type of improvement K1 K2

Full parallel multiplier 347 136

Radix-4 multiplier 382 136

Parallel-serial 422 136

In case of column-parallel row-serial LOAD and STNC instructions (row cache) and parallel-serial

multiplier, NT takes the form of eq. (2.22), where the growth depends on the square root of the number of

neurons.

NSSNNT 41285324 
(2.22)

Figure 2.21 shows the execution time for a single simulation step by considering the four improvements

mentioned above. The maximum number of neurons and synapses per neuron is assumed to be 100 and

300 respectively. These values were the target values of the PERPLEXUS project [1]. The number of

clock cycles for the emulation of Izhikevich model is calculated by using the equation 2.21, from which

the values of K1 and K2 are determined and these are tabulated in Table 2.16. Equation 2.22 computes the

number of clock cycles taken by the neural model of case (d). The product of the number of emulation

cycles with that of the clock cycles will provide the execution time. Hence this execution time is being

calculated and found to be 50MHz.

a) b)

Chapter 2 Performance study of SNN model implementations on Ubichip

51

c) d)

Figure 2.21: a) The execution time required to perform the Izhikevich algorithm in a single step

simulation, by taking into account the proposed architecture improvements. a) Full parallel LOAD and

STNC instructions and full-parallel multipliers; b) Full parallel LOAD and STNC instructions and radix-4

multiplier. c) Full parallel LOAD and STNC instructions and parallel-serial multiplier. d) Column-

parallel row-serial LOAD and STNC instructions and parallel-serial multiplier.

From the graphs shown in Fig. 2.21 the value of the single emulation cycle was found to be in the range

of 0.82 to 0.85 ms. According to Izhikevich, the model has to be executed for every 1ms. But this can be

implemented only by taking into account the four changes proposed in the Ubichip architecture.

2.5 Conclusions

A detailed performance analysis of two SNN models with different levels of computational complexity

has been carried out in the previous PERPLEXUS SNN multi-model architecture called Ubichip. The

study of the performance has been evaluated in clock cycles only to give some real figures at the end it

has been particularized for the nominal 50 MHz operation. Results show that the target objective in both

cases (Iglesias-Villa model and Izhikevich model) has not been reached (12.85 milliseconds and 15.44

milliseconds respectively), where the target of the project is to simulate SNN models under 1 millisecond

step time resolution. Some improvements were analysed to increase the performance of the Ubichip.

These improvements involve different topologies of the memory, different type of multipliers. These

improvements try to abate the main bottlenecks in Ubichip architecture.

Beyond the performance increase by means of frequency clock boosting, the inclusion of hardware

multipliers in the current architecture and reduction in the RAM access bottleneck by introducing block

RAMs and dedicated instruction memory improves the performance of Iglesias and Villa model and

Izhikevich by a factor of 3 and 7 respectively, by considering the simulation of 100 neurons and 300

synapses per neuron in a single Ubichip. The improvement in the processing speed of the current

Chapter 2 Performance study of SNN model implementations on Ubichip

52

architecture could guarantee a step time resolution of 1 ms in the emulation of Izhikevich model [3],

taking into account the target (10000 neurons 300 synapses per neuron) which was proposed in the

PERPLEXUS project [1].

In fact, given the simple architecture of the PE in the multiprocessor mode, larger PE arrays could be

easily implemented with currently available CMOS technologies, and higher operation frequency could

be easily achieved. Therefore, the performance would increase to 4 fold (50 MHz – 200 MHz) as the

clock used in the modern FPGAs works at 200MHz.

References

[1] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M. Moreno, and J. Madrenas, "The

Perplexus bio-inspired reconfigurable circuit," in Adaptive Hardware and Systems, 2007. AHS

2007. Second NASA/ESA Conference on, 2007, pp. 600-605.

[2] J. Iglesias, J. Eriksson, F. Grize, M. Tomassini, and A. E. P. Villa, "Dynamics of pruning in

simulated large-scale spiking neural networks," Biosystems, vol. 79, 2005.

[3] E. M. Izhikevich, "Simple model of spiking neurons," Neural Networks, IEEE Transactions on,

vol. 14, pp. 1569-1572, 2003.

[4] Flynn, M.J., Rudd, K.W, “Parallel architectures. ACM Computation Surveys”, pp. 67–70, 1996.

[5] Ferscha, “Parallel and distributed simulation of discrete event systems”, Parallel and Distributed

Computing Handbook, McGraw-Hill, pp. 1003–1041, 1996.

[6] J. M. Moreno and J. Madrenas, "A reconfigurable architecture for emulating large-scale bio-

inspired systems," in Evolutionary Computation, 2009. CEC '09, IEEE Congress on, pp. 126-

133, 2009.

[7] J. M. Moreno, J. Madrenas, and L. Kotynia, "Synchronous Digital Implementation of the AER

Communication Scheme for Emulating Large-Scale Spiking Neural Networks Models," in

Adaptive Hardware and Systems, NASA/ESA Conference on, pp. 189-196, 2009.

[8] Jordi Madrenas, “Specification of the Ubichip Sequencer,” Internal report WP2-T2.3-UPC-1,

Version 2.0, June 15, 2009.

[9] Michael Hauptvogel, "Design of a bio-inspired spiking network environment," Thesis of Master

in network centre computing high performance computing and communication, Faculty of

science, The university of reading, 17 of march 2008.

[10] G. Sanchez, J. Madrenas, and J. Moreno, "Performance Evaluation and Scaling of a

Multiprocessor Architecture Emulating Complex SNN Algorithms," in Evolvable Systems:

From Biology to Hardware, vol. 6274: Springer Berlin Heidelberg, pp. 145-156, 2010.

Chapter 2 Performance study of SNN model implementations on Ubichip

53

[11] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar, "Bluehive - A field-

programable custom computing machine for extreme-scale real-time neural network simulation,"

in Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual

International Symposium on, pp. 133-140, 2012.

[12] J. Xin, Luja, x, M. n, L. A. Plana, S. Davies, et al., "Modeling Spiking Neural Networks on

SpiNNaker," Computing in Science & Engineering, vol. 12, pp. 91-97, 2010.

[13] E. M. Izhikevich, "Polychronization: Computation with Spikes," Neural Comput., vol. 18, pp.

245-282, 2006.

Chapter 2 Performance study of SNN model implementations on Ubichip

54

55

Development of a data interface between

Analog and Digital Neuromorphic systems

3.1 Introduction

3.2 The Analogue-Digital neuromorphic system

3.3 The Analogue Pre-Processor (APP)

 3.3.1 AER channel

3.4 Transceiver functional description

3.5 Metric considerations in the design of the data interface

3.6 Results

3.7 Conclusions

References

3.1 Introduction

This chapter presents the development of data interface in order to achieve the communication between

analog and digital multi-processor implementations for bio-inspired processing of sensors. This

combination allows us to create a bio-inspired multiple-input sensor processing system for applications

that mimic the perception of the environment such as vision, hearing or other modalities. This work has

been a part of the Neural and Self-adaptive Sensory Integration for Environment-Perception Embedded

Systems (NESSIE2) project [1]. The main motivation behind this project is to develop a pre-processing

integrated system of physical information in order to be connected to the Digital Multi-Processor (DMP)

system or as well known as Ubichip, which was developed as part of the PERPLEXUS project [2]. So

that the DMP may be able of acquiring information from the environment and perception applications

could be implemented by using this bio-inspired system (analogue – digital systems). Figure 3.1 shows

the bio-inspired system proposed in the NESSIE2 project. The pre-processing system consists of three

main components which are: the sensors (internal sensors or external sensors), sensor conditioning, and

the pre-processing system circuits.

The information-preprocessing circuits are in charge of performing two important tasks, first task is the

sensor conditioning and second one is the digitization of the data into a format that is compatible with the

DMP (Digital Multi-Processor) by using the Address Event Representation (AER). Therefore, the

challenge is to develop a parallel acquisition system i.e. a sensory unit to acquire analog data from

multiple sensors and pre-process the raw data with an analog implementation/Analog pre-processor that

translates the data from the sensory unit into a data which is compatible with the DMPs (Digital Multi-

Processors) for processing.

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

56

Figure 3.1: NESSIE2 system, drawing partially reproduced from [1]

During the last 5 years, the University of Edinburgh was taking efforts to develop an analog spike coder-

decoder prototype [3]. This prototype is suitable to be used as an analog pre-processor in bio-inspired

systems. This is because of two reasons. Firstly, the Analog spike coder-decoder is also a bio inspired

design which works on the principles of SNN as the DMP. Secondly, it uses the AER communication

protocol for spike communication and can be easily interfaced with the DMP. The AER protocol is one of

the predominant solutions used in the latest neuromorphic systems in order to prevent interconnection

overhead which occurs due to the reduction in the number of physical lines that are required for the

interconnection of large neural networks [4]. The collaboration between the Institute of Micro and nano-

systems, University of Edinburgh and the Advanced Hardware Architecture Research Group, Universitat

Politècnica de Catalunya has shortened the development time.

The analog front-end, which was developed in the University of Edinburgh, encodes the input signal in a

signed spike representation, which is further processed by means of a digital Spiking Neural Network

(SNN) on a Single-Instruction Multiple-Data (SIMD) multiprocessor. The APP generates positive and

negative spikes, but the sign is not used in this work because Ubichip was not designed to process

negative spikes, however this information is not discarded and negative spikes are converted to positive

spikes. The spike distribution for both the systems is based on Address-Event Representation (AER)

scheme. AER is asynchronous for the Analog Pre-Processor (APP) [3] and synchronous for the Digital

Multi-Processor (DMP) [5]. Therefore, the analogue pre-processor have been connected to the DMP

through data interface which is responsible for the synchronization between two systems.

This chapter gives an outline of this analog-digital neuromorphic system, a brief explanation about the

APP, designed by the University of Edinburgh, and a detailed explanation about the functionality of the

transceiver interface between the APP and the DMP designed by the Universitat Politècnica de Catalunya

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

57

and the metrics considered for the design. Finally, real-time results of the communication through the

interface are provided.

3.2 The Analogue-Digital neuromorphic system

The system consists of 3 functional units which are the sensory unit, the transceiver unit and the Digital

Multi Processors as shown in Fig. 3.2. As specified earlier, the sensory unit consists of the sensors and

the Analog Pre-processor. The general idea of the proposed system is to acquire external environment

information and process them in two steps. The signals are detected by the sensors (acoustic, infrared, or

pressure, etc. which have analogue output). In the first step, the acquired signals are converted to spike-

timing representation by the Analog Pre-processor. This module conveys the spikes to DMPs using the

AER bus through a transceiver that converts the spikes into a format which the DMPs can comprehend.

Figure 3.2: Functional block diagram of the proposed analog-digital bio-inspired system

The advantage of using the transceiver as an interface is that the input sensory unit can be changed and

any other sensory unit can be replaced in the same system within a short duration of time. It is important

to note that these replacements must work under AER protocol [4]. This allows faster prototyping. The

transceiver plays a vital role in providing data in appropriate formats and the synchronization of data

transactions on both sides. It is important to note that the APP and DMP were designed to support

different applications based on Spiking Neural Networks. The APP was developed in order to process

the input analog signal and the minimum inter-spike time/ spike transmission rate supported by the APP

is in the order of microseconds. While the DMP was developed to emulate complex SNN models that

resemble biological neurons and supports an inter-spike time/ spike transmission rate of several

milliseconds. Another challenge to synchronization is that the APP works on Asynchronous AER and

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

58

the DMP on Synchronous AER. These are the most important factors to be focused in order to achieve

the synchronization between the APP and the DMP. In the second step, the data translated by the

transceiver is analyzed and processed by the DMPs.

3.3 The Analogue Pre-Processor (APP)

The purpose of this section is to give a general description of the APP in order to give a better

understanding of the system. This work has been developed by Dr. Luiz Gouveia as part of his PhD thesis

in University of Edinburgh [3]. The APP consists of Configurable Analog Blocks (CABs). These CABs

are programmed to perform analog computation and signal processing functions as is shown in Fig. 3.3.

Figure 3.3: Architecture diagram. The array of Configurable Analogue Blocks (CABs) is connected using

an asynchronous digital channel, this figure was extracted from [3]

The analog signals are encoded as spikes timed events and are transmitted between CABs via

asynchronous AER bus. The coding and decoding process is implemented by spiking coders and decoders

respectively, as shown in Fig. 3.4. In the coder, the error signal e(t) is the difference between the analog

input x(t) and the reconstructed feedback signal z(t). The comparators in the feed-forward loop compare

the error signal e(t) against their respective threshold values and their outputs form the input to a spike

generator block. The spike generator block generates a positive spike if the comparator output state C1(t)

goes high and a negative spike if the comparator output C2(t) is high. The spike events generated by the

spike event block are outputted using an asynchronous AER interface. In the feedback loop, which is

implemented inside of the coder, the spikes are integrated by the integrator block to form the

reconstructed signal z(t). The spike to analog decoder is essentially the feedback path of the spike

encoder. At the decoder, a low pass filter is added to the integrator output to improve the resolution of the

reconstructed signal.

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

59

Figure 3.4: Event coding block diagram, this figure was extracted from [3]

3.3.1 AER channel

In the analog pre-processor architecture, an array of spike encoders shares a common digital AER bus

through an AER interface. When a spike event is generated by one of the encoder blocks, the AER

interface broadcasts asynchronously the digital address of that encoder. Each spike event is therefore

identified by the digital address representing the address of the encoder. Usually, in neuromorphic

systems, events are represented by two states, i.e. the presence or absence of a spike. In the encoder

implementation, the analog signal is represented in the spike domain by three states: a positive spike, a

negative spike and an absence of a spike. This extra information on the sign of the spike event is provided

by appending an additional MSB bit in the digital address code, where a positive spike is represented by a

1 at the MSB location and a negative spike is represented by 0. For example, when an encoder with a

digital address 00 generates a positive spike, the output at the AER bus will be represented by the digital

code 100.

3.4 Transceiver functional description

In Subsections 2.2 and 3.3 the basic features of the DMP (Ubichip) and the APP were presented

respectively. Thus, this section describes the transceiver design to synchronize the communication

between DMP and APP using the AER protocol in two different operation modes, synchronous and

asynchronous respectively. Synchronous AER is used to distribute spikes but not only inside of each

DMP, but also the spikes are broadcasted to external chips through the synchronous AER bus; this feature

allows processing external inputs that support the synchronous AER protocol. In order to develop an

autonomous system (DMP) capable to interact with outer world, the analogue preprocessing circuit is

used to provide such inputs in appropriate data form to DMP through the asynchronous AER. The AER

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

60

transceiver is the key element that synchronizes the communication between both processors (see Fig.

3.5).

Figure 3.5: Functional block diagram of the analog-digital bio-inspired system

The analog-digital bio-inspired system processes the sensor information through four domains, providing

the analysis of characteristics of the signal. The sensor information in the analog domain is acquired by

the Analog-Preprocessor, which processes the information in the analog spike domain and converts it into

Asynchronous-digital spikes. These spikes are read by the transceiver that converts it into the

Synchronous digital spikes. Then these spikes are forwarded to the DMP. But this depends on, if the

DMP is in its processing phase or execution phase. If it’s in the processing phase then the spikes are

stored in the transceiver, if not then the spikes are forwarded to the DMP (see section 2.2.1). The

transceiver acts as a master that controls spikes to be transmitted to the DMP by using the synchronous

AER protocol. According to the AER protocol defined and implemented in the DMP [5], the connection

between several DMPs through a common AER bus forms the DMP network. In an only-DMP network,

the distribution of the spikes is started by the master DMP. For this particular case, it has been decided

that the configuration of the AER transceiver module performs as the AER Master; therefore, other DMPs

that are connected to the synchronous AER perform as slaves (for further details see Section 2.2.1.1 in

Chapter 2).

From the interfacing point of view, the transceiver does two functions. Firstly, it adapts to the AER

protocols in each side. In the current implementation, the APP has a 3-bit asynchronous AER protocol

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

61

and the DMP an 8-bit synchronous one. Secondly, it buffers the data to be sent to the DMP, when it is not

ready to accept spikes (in phase 1) by means of FIFO (First-In First-Out) stacks.

Figure 3.6: Functional blocks of the AER transceiver

In Fig. 3.6, the AER transceiver is shown. It consists of the following elements:

- Control Unit that is responsible for generating internal and external signals to control the DMP

and the APP.

- Input logic was designed to detect the asynchronous events generated by the APP coder. A

simple method to avoid meta-stability on the bus has been implemented to guarantee fidelity of

the information. This method consists on registering the data during at least two clock cycles and

validates the same when stable.

- Output logic generates the acknowledge signal to indicate to APP that the current sample has

been successfully stored, and the next sample is ready to be received.

- Addr2DMP converts the AER bus width from 3 bits (FIFO) to 8 bits (DMP) to make it

compatible.

- Addr2APP converts the AER bus width from 8 bits (DMP) to 3 bits (APP) to make it

compatible.

- FIFO buffers the AER input address_in in order to sample each spike generated by APP, due to

the DMP is capable of reading spikes only when it is in its distribution phase. For this reason the

spikes must be stored during the processing phase.

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

62

3.5 Metrics considerations in the design of the data

interface

One of the most important parameter to be analyzed in this work is the spike transmission rate. It is the

key to allow synchronizing between the APP and the DMP, so that the spikes are properly processed by

the whole bio-inspired system. Since spikes generated by analog coders are read by the DMP only during

phase 2 (see Section 2.2.1), spikes cannot be accepted by the DMP when it is in phase 1. During the

processing time neural parameters and synaptic parameters are calculated. Considering the Iglesias & Villa

model [6] the processing time PT required by the DMP to execute phase 1 is

where: NTP is the number of clock cycles needed to execute the algorithm, which depends on the number

of neurons and number of synapses per neuron (see section 2.3.2), and TCLK is the DMP clock period (20ns

in the DMP prototype). NTP is formulated by:

1909 10 1392 4TPN N S N S        (3.2)

where: N is the number of neurons and S represents the number of synapses per neuron emulated by the

DMP.

Since the main delay is produced by the DMP in phase 1, it is necessary to calculate the minimum time

between two successive output spikes, or thus, maximum inter-spike frequency fspike(max) produced by the

APP spike generator [3] for a sinusoidal input signal:

(max)

(max) (max)

1

2 2

in

in spikef f
A

 

 
   

 
 (3.3)

where: fin(max) is the maximum input frequency, the amplitude is represented by A and  defines the

tracking step of the input magnitude for maximum input signal in range:

where:

NB is the desired resolution in bits.

As observed in (3.3), the maximum inter-spike frequency, or thus, the minimum inter spike time is a

function of the input signal frequency. Therefore, the maximum input frequency fin(max) is obtained by

assuming that the minimum inter-spike period is limited by the data processing delay (phase 1). In order

*T TP CLKP N T

(3.1)

2

2 1BN

A
 


 (3.4)

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

63

to calculate the fin(max), the following values were taken: N = 30, S = 30, A = 1 V, and 8-bit resolution.

The maximum spike frequency is

by replacing fspike(max) in (3.3), the corresponding input signal frequency becomes fin(max) ≈ 1.3 Hz.

In order to cope with higher input frequency, a bio-inspired spatial encoding is proposed. This mechanism

consists in performing an input spike time-to-space translation. i.e., for a given time slot, each one of the

spikes that would otherwise be lost, is mapped to a different input neuron of the DMP. Thus many input

neurons in a specific time will be devoted to process the output spikes of an individual APP coder as is

shown in Fig. 3.7.

Figure 3.7: Time-to-space translation diagram

Taking into account the new conditions, the maximum spike frequency is determined by:

(max)
i

spike

T

N
f

P

 
  
 

 (3.6)

where: Ni is the number of neurons in charge of detecting the input spikes of a single analog coder. In the

current implementation of the application example, Ni = 24, so the maximum input frequency is increased

by this number: fin(max) ≈ 32 Hz. Larger number of neurons and higher clock frequency will allow higher

frequency processing in the next implementations.

()

()

1 1 1
1075

930 s
spike max

spike max T

f Hz
T P µ

    (3.5)

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

64

3.6 Results

This section presents a simple communication sequence between the transceiver and a single DMP. Both

are using the AER protocol [5] as shown in Fig. 3.8. The beginning of the transmission process is carried

out by the Transceiver (master) by detecting the STOP signal, which is controlled by the DMP. This

signal indicates the end of the DMP processing phase and thus the beginning of the spike distribution

phase. The process starts with the transmission of the spikes from the analogue circuit to the DMP. This is

indicated by the word FE in hexadecimal. After that, the master sends its Chip ID, in this case it is 2.

Then, the spike transmission starts. The spikes are encoded by the transceiver to be properly addressed to

the desired DMP neuron. As it can be observed from Fig. 3.8, four spikes were encoded by the analogue

circuit. Every CAB consists of 4 coders which generates four different addresses. These four spikes

correspond to the address of the analog coders of the Configurable Analog Block (CAB). After that, the

FB code indicates that all spikes of chip ID 2 were sent to the DMP. The FF code indicates the beginning

of the following frame, therefore, the DMP send its Chip ID. In this case it is 1. It is important to note that

the network can be configured to connect several DMPs through the AER common bus. As it can be

observed from Fig. 3.8, three spikes were generated by the DMP and they are sent to the transceiver,

which, in turn, processes and propagates them to the analogue board, where they are decoded. Once all

the spikes have been sent, the FB word is sent by the DMP to indicate the end of frame. Finally, the FF

word indicates the last frame. When the master sends FD, it indicates START_PROCESSING which

means that the spike transmission phase is over and the DMP will resume the data processing phase. After

that, the FC code sent by the master indicates that all DMPs operate in the data processing phase.

The following list describes the function of each signal shown in Figure 3.8.

- Stop: this signal is generated by the DMP internal sequencer and it indicates that the DMP is in

phase 2 (spike broadcast mode) and thus the AER communication is ready to be executed.

- Syn_address: It is a common bus that transmits the spike address between several DMPs based

on the synchronous AER protocol. In this work, the transceiver first sends the spikes generated

by the analog encoders to the DMP and later, the DMP transmits its spikes to the transceiver.

- Asy_address_out: The spikes generated by the DMP are received by the transceiver, which sends

them by means of these lines to the analog decoders.

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

65

- ChipReqin: This signal is generated by the transceiver to indicate that the Asy_address_out is

ready to be read by the decoders inside the analogue circuit. According to Fig. 3.8, three spikes

generated by the DMP and processed by the transceiver are ready to be decoded by the analogue

board.

Figure 3.8: Spike transmission process between the Analog chip, the transceiver and the DMP.

3.7 Conclusions

The architecture and proof-of-concept implementation of an analog-digital spiking-neuron-based system

capable of processing multiple-input sensor information is presented in this work. For successful

communication between analog and digital processors, a transceiver has been developed and the

maximum input frequency has been calculated. A spatial encoding has been proposed to increase this

frequency limit, with a direct trade-off between frequency and DMP input layer neurons. The maximum

frequency of the input signal that can be processed by the current Ubichip was increased from 1.2Hz to

~32Hz by applying the proposed encoding. The challenge in synchronization such as the different modes

of AER operation (Asynchronous in APP and Synchronous in DMP) has been discussed. A successful

communication through the interface between the APP and DMP has been verified experimentally.

Chapter 3 Development of a data interface between Analog and Digital Neuromorphic systems

66

The synergy between UPC and UoE has been very successful with fruitful research collaboration. A

simple prototype of Analog-Digital neuromorphic system has been implemented and experimental results

have been obtained.

References

[1] Integración Sensorial Neuronal y Autoadaptativa para sistemas empotrados de percepción del

entorno (Nessie2) -Neural and Self-adaptive Environment-Perception Embedded Systems -

funded by Spanish Ministerio de Ciencia e Innovación (MICINN) - TEC2008-06028, Project

proposal, unpublished, 2008.

[2] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M. Moreno, and J. Madrenas, “The

Perplexus bio-inspired reconfigurable circuit,” in Adaptive Hardware and Systems, AHS 2007,

Second NASA/ESA Conference on, pp. 600-605, 2007.

[3] Gouveia, L.C., T.J. Koickal, and A. Hamilton, “An asynchronous spike event coding scheme for

programmable analog array,” in Circuits and Systems, 2011, ISCAS 2011, IEEE International

Symposium on, pp. 791-799, 2011.

[4] Boahen, K.A., “Point-to-point connectivity between neuromorphic chips using address events,”

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, pp. 416-

434, 2000.

[5] Moreno, J.M., et al. “Synchronous Digital Implementation of the AER Communication Scheme

for Emulating Large-Scale Spiking Neural Networks Models,” in Adaptive Hardware and

Systems, pp. 189-196, 2009.

[6] Iglesias, J., et al., “Dynamics of pruning in simulated large-scale spiking neural networks,”

Biosystems, pp. 11-20, 2005.

Chapter 4 Application on Ubichip

67

 Application on Ubichip

4.1 Introduction

4.2 Frequency level detection system

 4.2.1 SNN model

 4.2.1.1 Parameter values

 4.2.2 Frequency classifier

 4.2.3 Experimental results

References

4.1 Introduction

The upcoming engineering systems are inspired by the neural processing performed in the brain. This

processing enables faster perceptual decisions based on the evolution of incoming sensory information

from the environment. The term “perception” defines a characteristic of the biological organisms, which

interacts with the environment. This term involves cognitive, sensorial and controllable processes, which

are related to vision, hearing or other modalities [1]. The continued development in the field of embedded

systems (for supporting information processing of the environment) which is inspired by the biological

process carried out in the brain through its neurons, has allowed carrying out these types of applications

related to perception such as speech recognition [2], vision [3], olfactory pathway [4], textual and image

content recognition [5], and robotic control [6] in compact devices either in analogue or in digital domain.

These systems involve the implementation of large interconnected neurons, and mechanisms of learning

and evolution. One way to support such enormous amount of neurons and these types of mechanisms was

proposed in the PERPLEXUS project [7]. In order to demonstrate the capabilities of Ubichip to process

the sensory information, a bio-inspired engineering application was proposed in this work. This

application was developed in order to detect the frequency of an input signal from low-frequency sensors

such as olfactive or auditory. A point to be noted here is that the application mentioned above was carried

out using the bio-inspired sensory system (see Chapter 3). As indicated before, the system has been

developed in collaboration with the University of Edinburgh. Some modifications were done in the mixed

signal bio-inspired system according to our needs. The original system is composed of three elements,

which are: the Analogue Pre-Processor (APP), the transceiver and the Digital Multi-Processor (DMP).

The analogue coders of the APP [8] were replaced by digital spike coders (for further details see

Annexure E), which generate spikes under the same principle of operation as the analogue coders (see

Chapter 3), except that the sign is not detected. This digital implementation was done because the

analogue coder prototype is located at University of Edinburgh and the majority of our experiments were

Chapter 4 Application on Ubichip

68

done at Universitat Politècnica de Catalunya. The system that is used to carry out this application has

been developed in digital domain. The details of the digital bio-inspired system are provided in the next

section.

4.2 Frequency level detection system

This section presents an engineering application which is based on the detection of frequency of a

sinusoidal signal by using a digital bio-inspired system. The digital bio-inspired system, which is

proposed in this work, is composed of two modules which are: the digital spike coder module and the

Digital Multi-Processor, as shown in Fig. 4.1. In this application, a sinusoidal input signal was created

artificially, by recording the values of a sinusoidal waveform in a ROM memory. The sinusoid module

can be replaced by an external signal by adding a sensor at the input. The analogue output of the sensor

can be converted to digital in order to be processed by the spike coder using an Analogue Digital

Converter (ADC) module. Therefore, the Sinusoid module replaces the real input sensory information

provided by the ADC module in this application. The digital spike coder module integrates modules like

the sinusoid, the spike coder, and the time to space converter. The communication between the digital

spike coder module and the Digital Multiprocessor is carried out by the synchronous Address Event

Representation (AER) bus.

Figure 4.1: Functional block diagram of the digital bio-inspired prototyping and debugging system

for the frequency detection application

Chapter 4 Application on Ubichip

69

The functionality of the new bio-inspired system is as follows: the sinusoidal module (see Fig. 4.1)

generates the sinusoidal wave (see Fig. 4.2a), which is the sampled version of unit amplitude, unit

frequency sine wave and it has been stored as look up tables. The data is fetched and manipulated from

this lookup table with respect to the amplitude and frequency and it is the input to the spike coder. The

spike coder is responsible of producing spikes using the time step differentiation. The principle of

operation of the digital coders is the same as that of the analogue coders. A spike is generated if the

present sample value is greater than the previous sample value by a predetermined threshold value. It is

important to be noted that the analogue coder generates positive and negative spikes. The negative spikes

are converted to positive spikes in this application. This is because the DMP was designed to process only

positive spikes. The spikes generated by the spike coder are sent to the time to space converter module

which is responsible for assigning every spike (which is produced by the spike coder) to a specific neuron

(see Fig. 3.7 in Chapter 3). The First Input First Output (FIFO) stores the address of the neuron which has

been assigned with a spike by the time to space converter module. The values stored in the FIFO are sent

to the Digital Multiprocessor, only when the Multiprocessor is in the spike distribution phase. The DMP

executes the spiking neural network algorithm, which performs a frequency classification. The details of

the frequency classifier will be provided in the section 4.2.2.

Figure 4.2: a) sinusoidal input signal; b) corresponding spike train calculated by the digital encoder

4.2.1 SNN model

The spiking neural model used in this application is proposed by Iglesias and Villa [9], which was already

described in Chapter 2. The assembler code of this algorithm is provided in Annexure C.

Chapter 4 Application on Ubichip

70

4.2.1.1 Parameter values

The spiking neural network is initialized with the values presented in Table 4.1. Some of these values

were modified from the original bio-inspired model [9]. Two of them are the threshold voltage and the

post-synaptic potential (excitatory or inhibitory) of the synapses. The reason behind the modification of

these two values in this application is due to the proposed topology and network size to detect the

frequency level. As it can be seen from Fig. 4.3, the proposed topology consists of two layers. The input

layer is in charge of processing the spikes, which are generated by the digital coders and the second layer

is responsible of indicating the level of the input signal. The details of this SNN topology are provided in

the next section. In this application, the neurons of the first layer must fire after receiving the pre-synaptic

spikes in order to produce the excitation or inhibition in the second layer (output layer). This way allows

detecting the frequency level by sending these spikes to the second layer in few milliseconds. One way to

achieve this was to reduce the threshold Ɵi so that the membrane potentials of the input layer cross the

threshold with few excitations of its excitatory synapses P1. The threshold Ɵo of the second layer was

modified in order to have a dynamic range of 50mV between the membrane resting potential and the

threshold Ɵo. It is worth to mention that the Ubichip architecture support of individual neuron parameters

allows for these settings.

Table 4.1: Parameter list of the main variables used for leaky integrate-and-fire neurons

Variable
Original

values

Modified

values

Hexadecimal

representation

for the modified

values

Short description

P1 0.84 mV 2 mV 00C8 Excitatory Post synaptic potential

P2 -1.40 mV -8 mV FCE0 Inhibitory Post synaptic potential

Vrest -78 mV -300 mV E188 Membrane resting potential

 Ɵi -40 mV -299 mV E1BA Membrane threshold potential of input

layer neurons

 Ɵo -40 mV -250 mV 9E58 Membrane threshold potential of the

output layer neurons

trefract 3 ms 3 ms 0003 Absolute refractory period

mem 15 ms 500 ms FFAE Membrane time constant

The membrane resting potential was also changed with respect to the original SNN model. The

architecture of Ubichip suffers from some deficiencies. One of the deficiencies is linked to the absence of

native saturated operations such as multiplication, addition and subtraction. In order to avoid the overflow

in the arithmetic operations, the dynamic range of the membrane voltage was increased. Also, the

multiplier affects the calculation of the membrane decay due to reduced precision in the calculation of

this variable. Therefore, the membrane time constant was increased in order to ensure that there is a

proper decay in the membrane value. It is important to indicate that the problem of saturation and

precision can be solved by software, however the number of clock cycles required to implement these

Chapter 4 Application on Ubichip

71

mechanisms are: 6420 clock cycles for every saturated multiplication and 950 clock cycles per each

saturated addition (see Table 2.3 in Chapter 2). If these mechanisms are implemented it will generate an

important delay.

4.2.2 Frequency classifier

This section presents a general network topology for the frequency classifier. The spiking neural network

is divided into several blocks; each one represents a frequency level estimator. One block is composed of

four input neurons and one output neuron. In the case of reducing the number of input neurons the

resolution of the frequency levels by the output layer increase, as it will be demonstrated in the next

section. In other words, a range of frequencies can be detected by means of the SNN network by the firing

of a particular output neuron. The range of frequencies a particular output neuron indicates depends on

the number of neurons that can be supported in the FPGA and the distribution of the input layer per each

block. In the initial experiments, it has been decided arbitrarily that the output neuron is connected to the

four input neurons through the excitatory synapses and to four input neurons of the upper block through

inhibitory synapses, as shown in Fig. 4.3. The reason to select four input neurons is to provide better

stability to the output level.

Figure 4.3: Proposed network topology

Frequency level is determined by the excitatory potential of the output neurons. And the firing of several

output neurons at once is prevented by the inhibitory connection from the input neurons of a higher block.

Consider the case that 5 spikes were generated by the spike coder in such a way that the first 5 neurons

receive one spike each. In other words, if there is an input up to the 5
th

 neuron (see Fig. 4.3), then

according to the spatial distribution, the spikes would be distributed from N1 to N5. In the absence of

inhibitory connection of the synapses it leads to the generation spikes in both O1 and O2. But when there

is an inhibitory connection from the input neuron of the block 2 to the output neuron of block 1, as shown

in Fig. 4.3, only O2 would fire indicating that the amplitude of the input has reached level 2. This is

Chapter 4 Application on Ubichip

72

mainly due to the presence of these inhibitory connections which will prevent the output neurons from

crossing the threshold voltage immediately. In other words, the potential provided by inhibitory

connections will be more negative than the excitatory connections. From Table 4.1 it is evident that the

potential provided by the inhibitory connections is 4 times more than the potential provided by the

excitatory connections.

4.2.3 Experimental results

This section shows the experimental results in the implementation of the frequency detection of a

sinusoidal input signal in Ubichip. The Ubichip prototype implemented in a FPGA can support 36

neurons and 30 synapses per neuron. In our first experiments, the number of neurons and synapses were

distributed according to the requirements of this experiment. The maximum number of neurons used in

this experiment is 30 and 30 synapses per neuron. In other words a full connected network was created.

All calculations carried out in this experiment were done by considering these values. Once achieving the

detection of the frequency by the SNN, the numbers of synapses were fixed to 8 and the remaining

synapses were disabled by software.

The amplitude of the signal is fixed to 1 V. It is important to notice that the amplitude needs to be fixed to

properly detect frequency. The range of frequencies that are used to test the bio-inspired system is

selected from 1 Hz to 32 Hz. This is because the maximum frequency of the input signal in the available

Ubichip FPGA implementation is 32 Hz. Several aspects were discussed in Chapter 3 in order to increase

the frequency of the input signal which can be processed by the Ubichip (see Section 3.5 for further

details). The experiments carried out in this work consist of generating artificially a sinusoidal waveform.

The values of this sinusoidal waveform are stored in the FPGA LUTs (lookup tables), by means of Direct

Digital Synthesis (DDS) while the frequency value of the signal is set by the user through the circuit

input, as shown in Fig. 4.4.

Figure.4.4: Phases of operation of Ubichip and generation of spikes by the digital

Chapter 4 Application on Ubichip

73

The frequency classifier requires 30 neurons to perform the detection of 6 levels of frequency. These 30

neurons are distributed into two feed-forward layers in order implement the frequency classifier according

to the mapping proposed in the Fig. 4.3. The 24-neuron input layer maps in space the input spike

frequency and the second layer consists of 6 neurons that indicate the frequency level by means of

excitation and inhibition from the previous layer. The number of neurons in the input layer is calculated

taking the equation 4.3, since the main delay is produced by the DMP in processing phase. This is

because the DMP cannot process spikes during this phase, only in the distribution phase, and the

generated spikes need to be mapped in space (see Fig. 3.7 in Chapter 3). The expression 4.3, allows

calculating the number of input neurons Ni based on the number of spikes which are generated by the

spike coder during the processing time of the Ubichip. Let us assume that every spike is produced every

Tspike(max), in the worst case.

It is necessary to calculate the minimum time between two successive output spikes, or thus, maximum

inter-spike frequency fspike(max) produced by the APP spike generator [8] for a sinusoidal input signal, in

order to ensure that the allocation of the spikes reaches up to 24 neurons in the input layer

 ()

 ()

(4.4)

Where, fin(max) is the maximum input frequency, and  defines the tracking step of the input magnitude

for maximum input signal in range, and the calculation of  is given by expression (4.4):

.

Where:

A is the amplitude is represented, and NB is the desired resolution in bits.

The maximum input frequency fin(max) to be processed by the SNN network classifier is 32Hz according to

the maximum frequency fin(max) calculated in Chapter 3. The fspike(max) is calculated taking into account the

following values: N = 30, S = 30, A = 1 V, and 8-bit resolution. By replacing these values in equation 4.5

and 4.4, the fspike(max) is 25635.51 Hz or Tspike(max) = 39 µs.

 ()

 (4.3)

2

2 1BN

A
 


 (4.5)

2

2 1BN

A
 



 ()

Chapter 4 Application on Ubichip

74

 ()

 ()

 ()

 ()

As indicated before, the digital spike coder works under the same principle of operation of the analogue

coders. Thus, the time between the spikes, which are generated by the digital spike coder, for the worst

case is 39 µs, and the processing phase in the Ubichip lasts for 930 µs. This is graphically shown in Fig.

4.5. The calculation of the processing phase PT was done in Chapter 3 (for further information see Section

3.5). The calculation of the maximum number of neurons of the input layer is calculated by equation

(4.3). As it can be observed from Fig. 4.5, the time of the distribution phase is shown. This spike

distribution time TD is obtained by considering the worst case where all neurons fire every emulation

cycle, in this case ND = 30. This value is calculated by using the expression (4.6)

Where: ND is the number of neurons that fire every simulation cycle and it is assumed that the AER

module works at 5 MHz. The worst case is TD = 6 μs, much lower than the processing phase time.

Figure.4.5: Phases of operation of Ubichip and generation of spikes by the digital coder.

 ()

 (4.6)

Chapter 4 Application on Ubichip

75

The number of neurons of the input layer for different frequencies was calculated following the same

procedure as discussed above. Table 4.2 summarizes the calculation of the number of neurons in the input

layer for the frequencies in the range of 1 Hz to 32 Hz.

 Table 4.2: Number of excited neurons of input layer for several frequencies (1-32 Hz)

Frequency (Hz) Ni Frequency (Hz) Ni Frequency (Hz) Ni Frequency (Hz) Ni

32 24 24 17 16 11 8 5

31 23 23 16 15 10 7 4

30 22 22 15 14 9 6 4

29 21 21 14 13 8 5 3

28 20 20 14 12 8 4 2

27 19 19 13 11 7 3 2

26 18 18 12 10 6 2 1

25 17 17 11 9 5 1 1

The frequency level is indicated by the corresponding output neuron (O1 to O6) which fires as it can be

observed in Fig. 4.6. Hence six levels of frequencies can be distinguished because the numbers of block

(n) is set to 6 (see Fig. 4.3). Taking the data from Table 4.2, in specific, the number of neurons of layer 1

required for each the selected frequency. The calculation of the level will be indicated by the neurons (O1

to O6). Every level is composed of 4 input neurons and one output neuron. Therefore, the N i obtained in

Table 4.2 is divided into 4, the criteria to define the number of output level, based on the result of the

division, was to rounded values greater that 0.5 to the top value. The Table 4.3 shows the neurons (O1 to

O6) which indicate the level of the frequency of the input signal.

Table 4.3: Output neural layer for several frequencies (1-32Hz)

Frequency (Hz) On Frequency (Hz) On Frequency (Hz) On Frequency (Hz) On

32 6 24 4 16 3 8 1

31 6 23 4 15 3 7 1

30 6 22 4 14 3 6 1

29 5 21 4 13 2 5 1

28 5 20 4 12 2 4 1

27 5 19 4 11 2 3 1

26 5 18 3 10 2 2 0

25 5 17 3 9 2 1 0

In this experiment, the frequency of the input signal was modified by the user while the Ubichip was

executing its two phases of operation. The main objective of the following experiment is to see how

Ubichip can process the signals varying on the time. The test lasted for 800 ms, and the value of the

frequency was changed by four times. Table 4.4 shows the values of each selected frequency to test the

system.

An experimental spike raster plot can be observed in Fig. 4.6. The input signal was maintained at the

same value for four different changes. These times are indicated by the labels T1, T2, T3, and T4 on Figure

Chapter 4 Application on Ubichip

76

4.6 in order to validate the level of the frequency for each input frequency indicated by their

corresponding output neuron (O1 to O6). The input frequency is at its maximum (32 Hz) at the beginning

of the emulation during the time defined by T1, which is around 280 ms. The output neuron O6 level

indicates 6 for this first frequency. The first change was done to set the frequency of the input signal at 24

Hz. During the time T2, which lasts for 100 ms, the frequency classifier indicated that the level of this

frequency is 5 by firing the output neuron O5. The frequency of the input decreases to 11 Hz. Hence, the

corresponding level of output neuron was 2 since the output neuron O2 fired during the time T3, which

lasted for 180ms. Finally, the frequency of the input signal was decreased to 5 Hz. The sinusoidal input

signal was fed to the amplitude classifier during the time T4, which lasted for 180 ms. Neuron which fired

to indicate this level of the frequency was O1.

Table 4.4: Frequencies to test the system

Figure.4.6: Raster plot of neuron spikes [10].

Frequency Value

F1 32 Hz

F2 24 Hz

F3 11 Hz

F4 5 Hz

Chapter 4 Application on Ubichip

77

In Fig. 4.7, it can be observed how the membrane voltage of the output neurons was inhibited by their

upper blocks. As the frequency was decremented over the time, the membrane voltage of the lower blocks

started to increase their membrane potential.

Figure 4.7: Membrane potential of the output layer; the dashed line represents the potential threshold (-

290 mV) [10].

Table 4.5: Output levels theoretically estimated and experimentally obtained by applying four different

frequencies

As it can be observed from Table 4.5, there is one value which deviates from the estimated value. This

input frequency signal corresponds to the frequency of 24 Hz. As, it can see from the Table 4.3, the value

of 24 Hz is in the border between the level 4 or 5. The ambiguity in determining the several frequencies

by one output neuron per each block could be reduced by decreasing the number of input neurons per

each block. This depends mainly in the number of neurons which can be allocated in a single FPGA and

its distribution per each layer. As it can be observed from Table 4.3, a single neuron output can detect up

to 6 Hz bandwidth.

Frequency Value Theoretical Value

Noutput(1-6)

Experimental Value

Noutput(1-6)

F1 32 Hz 6 6

F2 24 Hz 4 5

F3 11 Hz 2 2

F4 5 Hz 1 1

Chapter 4 Application on Ubichip

78

4.3 Conclusions

In this work an application based on the sensory information process performed by Ubichip is presented.

As a proof-of-concept, the frequency detection application has been experimentally demonstrated.

The maximum input frequency is limited by the processing time of the Ubichip. This was studied in

Chapter 3. A spatial encoding has been proposed to increase this frequency limit, with a direct trade-off

between the frequency and DMP of input layer neurons. In its present form, the system could be applied

to embedded neuromorphic systems using olfactory sensors that have typical operating frequencies under

10Hz [4]. In the ongoing work, the system is being adapted to support audio signal processing.

References

[1] G. Duckworth, "Concepts and Mechanisms of Perception," Psychologycal Medicine, volume 5,

pp. 55-60, 1974.

[2] Schaik A., Fragniere E., Vittoz E., “Improved silicon cochlea using compatible lateral bipolar

transistors,” MIT Press, pp 671–677, 1996.

[3] Koch C, Li H, “Vision Chips: Implementing Vision Algorithms with Analog VLSI Circuits,”

Institute of Electrical & Electronics Engineering, pp 234-237, 1995.

[4] T. J. Koickal, A. Hamilton, S. L. Tan, J. A. Covington, J. W. Gardner, and T. C. Pearce, "Analog

VLSI Circuit Implementation of an Adaptive Neuromorphic Olfaction Chip," Circuits and

Systems I: Regular Papers, IEEE Transactions on, vol. 54, pp. 60-73, 2007.

[5] Bhuiyan MA, Jalasutram R, Taha TM, “Character recognition with two spiking neural network

models on multicore architectures,” In: Computational Intelligence for Multimedia Signal and

Vision Processing, 2009 CIMSVP '09 IEEE Symposium on, pp 29-34, 2009.

[6] Sasaki H., Kubota N., “Distributed behavior learning of multiple mobile robots based on spiking

neural network and steady-state genetic algorithm,” In: Robotic Intelligence in Informationally

Structured Space, 2009 RIISS '09 IEEE Workshop on, pp 73-78, 2009.

[7] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M. Moreno, and J. Madrenas, “The

Perplexus bio-inspired reconfigurable circuit”, in Adaptive Hardware and Systems, AHS 2007,

Second NASA/ESA Conference on, pp. 600-605, 2007.

[8] Gouveia, L.C., T.J. Koickal, and A. Hamilton. "An asynchronous spike event coding scheme for

programmable analog arrays", in Circuits and Systems, ISCAS 2008. IEEE International

Symposium on, pp. 791-799 ,2008.

[9] J. Iglesias, J. Eriksson, F. Grize, M. Tomassini, and A. E. P. Villa, "Dynamics of pruning in

simulated large-scale spiking neural networks", Biosystems, vol. 79, pp. 15-27, 2005.

[10] Sanchez, G.; Koickal, T.J.; Sripad, T.A.A.; Gouveia, L.C.; Hamilton, A.; Madrenas, J., "Spike-

based analog-digital neuromorphic information processing system for sensor applications,"

Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, pp. 1624-1627, 19-23

May 2013.

79

SNAVA architecture and applications

Part II

80

81

SNAVA: Spiking Neural-network

Architecture for Versatile Applications

5.1 Introduction

5.2 SNAVA description

 5.2.1 Processing Element array

 5.2.2 The execution module

 5.2.3 Access control module

 5.2.4 AER address generator

 5.2.5 Ethernet user side

 5.2.6 Phases of operation

5.3 Implementation and performance

 5.3.1 Area consumption

 5.3.2 Power consumption

5.4 Performance evaluation

5.4.1 Iglesias and Villa model

5.4.2 Izhikevich model

5.4.3 Leaky Integrate-and-Fire model

5.4.4 Processing time and distribution time for any SNN model

5.5 Comparison with other architectures

 5.5.1 Implementations on multi-processor

 5.5.2 Implementations on GPU

 5.5.3 Implementations on FPGA

5.5.4 General discussion

5.6 Improvements in SNAVA: SNAVA+

 5.6.1 Brief description of SNAVA+ architecture

5.6.2 Implementation and performance

 5.6.2.1 Area consumption

 5.6.2.2 Power consumption

5.6.3 Performance evaluation

5.6.4 Comparison with other approaches

5.7 Conclusion

References

Etymology

The word ‘snava’ is derived from the Sanskrit root which refers to a“neuron”. This word has equivalent

translations, for instance: ‘nervus’ is in Latin, ‘neuron’ in Greek. From these roots the word “Neuron”has

been created in English. As per the Sanskrit-English Dictionary by Monier-Williams, Ernst Leumann and

Carl Cappeller “snava” refers to a tendon/sinew/muscle/nerve.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

82

5.1 Introduction

The goal of SNAVA is to implement a reconfigurable and scalable digital architecture which can be a

platform to emulate Spiking Neural Network (SNN) models that involve bio-inspired mechanisms. This

provides an opportunity to explore the neural dynamics involved in the SNN modelling through the

experimental investigation.

As mentioned in Chapter 1, the predecessor of SNAVA is Ubichip, which offers interesting features for

the emulation of SNN models like SIMD processing, multi-model support and scalability. This

architecture was proposed in the PERPLEXUS project [1]. As the starting point in the development of

this thesis, Ubichip was studied in order to measure the performance in terms of processing speed and

spike distribution time. The result of this study indicates clearly that the Ubichip´s performance is

affected drastically due to multiple bottlenecks in its Memory System, Processing System and

Communication System. Every Ubichip can support 36 number of neurons and 30 number of synapses at

the maximum. This limitation is mainly given by the area occupancy of the FPGA that was used to

implement it. The Ubichip architecture was implemented in an FPGA Spartan 3 (XC3S5000). Better

results can be obtained with the use of bigger FPGA, because the architecture was designed to be scalable

in terms of number of processing elements to be implemented in FPGAs with better area resources. Also,

migration is an important feature, which makes it feasible to translate this architecture into bigger FPGAs.

Therefore, a new architecture named SNAVA is proposed to guarantee high performance execution and

flexibility in order to support large-scale SNN models. The term flexibility is defined in terms of

programmability which allows easy implementation of the synapses as well as neuron modelling on

SNAVA. This has been achieved by analyzing and customizing the instructions according to the need for

processing different SNN models to achieve maximum performance with minimum computation.

This chapter gives a brief explanation of the SNAVA architecture and its modules, the results of detailed

evaluation of the performance of SNAVA in terms of speed, area and power, and finally the contribution

of our system to the state-of-the art when compared with another approaches.

5.2 SNAVA description

The SNAVA architecture is composed of an array of Single Instruction Multiple Data (SIMD) units.

Several aspects regarding the use of the SIMD architecture for simulating SNN models were presented in

Chapter 2. Basically, three ideas have contributed to achieve high performance regarding processing and

communication speed. These ideas are linked to the processing system, memory system and

communication system.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

83

 Processing system/Virtualized topology

The virtualization concept also known as time-multiplexing of neural computations increases the capacity

of the architecture in order to support various neurons by using the same core. This technique tries to

minimize the consumption of hardware in exchange for the increase in the execution time. The

implementation of the virtualization concept is feasible in SNAVA architecture. This is because SNAVA

was designed to execute SNN models at high processing speed achieving less than 1 millisecond for

every time step simulation. Here the time resolution in the biological neurons is considered to be around 1

millisecond. Therefore, several neurons could be emulated in 1 millisecond by using the same core.

 Memory system

A distributed memory system has been implemented in the current architecture. The memory system

allows accessing the memory in each processor by spending a single clock cycle. Putting into practice of

such a system was possible since modern FPGAs have thousands of Blocks of RAM integrated in them

which could be used for this purpose. Besides, the BRAMs have been manufactured in such a way that

they optimize the area and power consumption.

 Communication System

The technological advancements in terms of communication have enabled the development of new

protocols of communication at very high speeds. This important aspect has been considered in design of

SNAVA in order to be upgradeable with the newest technology without having to make radical changes

in the architecture.

Figure 5.1: Architectural Overview of SNAVA

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

84

SNAVA architecture is composed of four modules (Fig. 5.1):

1. The Configurable Processing Element array

2. Execution module

3. Access control module

4. Spike generation

The flow of the input and output data on SNAVA is carried out by two communication protocols

(Address Event Representation and Ethernet). These two communication protocols manage the spike

communication between the neurons and the communication between the user and SNAVA, respectively.

The overall organization of the SNAVA is shown in Figure 5.1. The function of each module is provided

in the next sections. And the technical details of the SNAVA architecture are provided in [2].

5.2.1 The Configurable Processing Element array

Each Configurable Processing Element (CPE) is equipped with all the necessary elements to carry out the

processing information in a neuron similar to what happens in the biological process. This module

consists of a processing element, synaptic BRAM, Content Address Memory (CAM), and spike register,

as shown in Fig. 5.2.

Figure 5.2: Functional Block diagram: Configurable Processor Element (CPE)

Each component of the CPE was designed for specific uses according to the needs to emulate the neuron

efficiently. It is explained as follows:

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

85

1. Processing Element

Figure 5.3 illustrates the data path of the PE. Each PE contains n register banks where each bank contains

eight 16-bit registers. The number of neurons that each PE can emulate is a function of the number of

banks of registers. The neural time multiplexing is applied in SNAVA by storing the neural parameters

for each neuron using its bank of registers. Hence several neurons can be implemented without a

significant increase in the PE area consumption at the cost of time. Now, since each neuron is

implemented in a single register bank instead of being implemented in an entire PE, the total area

consumed will be reduced to a significant amount.

Figure 5.3: PE data paths for simplicity of the drawing only three bank of registers are shown, one active

register and two shadow register banks

The key role of the processing element is to perform several mathematical computations involved in an

algorithm. These computations involve Arithmetic, Boolean, logical and SNN-customized operations.

Several changes were applied to the structure of the PE in Ubichip to optimize the computation of SNN

algorithms. The description of every change is listed as follows:

- The structure of the PE in SNAVA was modified with respect to the PE

implemented in Ubichip so that each PE can support more number of neurons. One

of the goals in the proposal of SNAVA was to implement seven virtual layers

containing the array of processing elements. Hence, each processing element in a

virtual layer would emulate one neuron. While in Ubichip there is no concept of

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

86

virtualization being implemented. The mechanism to process every virtual layer,

specifically the neural parameters, is explained in Annexure A (see Section A.4).

- The multiplier implemented in Ubichip was based on software multiplier. The

execution of this multiplier takes several clock cycles to perform the saturated

multiplication operation. This affects the performance of the SNN models as it has

been demonstrated in Chapter 2. A 16x16 bit hardware multiplier is implemented

in the ALU of the PE. Several protection mechanisms were implemented in order

to prevent overflow in the operations. These mechanisms involve saturated

multiplication for positive values and negative values. Also, these protection

mechanisms were implemented in the addition and subtraction operations. The

saturated multiplier, saturated addition and saturated subtraction perform the

multiplication, addition, and subtraction operation in two clock cycles respectively.

- The Pseudo random number generator implemented in Ubichip is a 64-bit LFSR in

Galois configuration. This LFSR register is shared by all PEs. Therefore, the

distribution of every pseudorandom value in each PE is carried out serially by the

sequencer. An LFSR register is implemented in each PE of SNAVA, so that the

pseudorandom value is loaded in parallel to the entire array of PEs. This feature is

relevant since most neural algorithms require the presence of noise for a correct

behaviour. The local noise support greatly enhances the multiprocessor

performance, clearly compensating the cost of a larger area overhead.

- The number of synapses per neuron is constant in Ubichip but can be variable in

SNAVA. This feature in SNAVA permits to create SNN networks using the

maximum number of synapses available at each PE. Because not all applications

require the same number of synapses per neuron, so that some synapses are not

used. By applying the virtualization concept in SNAVA, the total number of

synapses can be distributed to every layer such that each layer can have different

number of synapses. This distribution of the synapses for each layer is to be done

by the user. It is important to be noted that the maximum number of synapses

available in the whole array of PEs is a constant. So, the number of synapses per

PE is distributed into number of layers according to the requirements of the

application.

- The monitor buffer has been implemented in every PE in order to send the

calculated parameters to the CPU for visualization, as shown in Fig. 5.3. This was

done to make the system transparent. This would reduce the bottleneck in the flow

of the data to be sent for visualization. In Ubichip the data are sent to the CPU,

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

87

only after the all parameters has been processed. In SNAVA, every parameter is

sent to the monitor after it has been processed.

2. Synaptic BRAM

This memory block is dedicated to store the synaptic parameters. Every 32-bit memory word is allocated

for each synapse in order to store its synaptic parameters. These synaptic parameters are hardwired into

the internal registers of the corresponding PEs, as shown in Fig. 5.4, in order to ensure that a single cycle

instruction fetches all the parameters for every synapse at a time, by executing the LOADSP instruction.

Similarly, the STORESP instruction is made to be used for storing the newly computed parameters back

to the memory. The LOAD and STORESP are the customized instructions that are dedicated to store or

save the data from the PE to the synaptic BRAM or vice versa.

3. Content Addressable Memory – Spike register

The Content Addressable Memory (CAM) represents the detailed synapse formation and functionality

due to interconnection of several neurons to form a certain topology. The role of the CAM is to create

matches during phase 2 by reading the addresses that are broadcasted on the AER bus. The encoded

spikes are stored in the spike register. The functionality of the CAM implemented in SNAVA is the same

as in Ubichip but there were two amendments made in the structure of the CAM. Firstly, every PE was

allotted with its own CAM. In other words, the implementation of the CAM has been distributed.

Secondly, due to this distributed CAM, multiple spikes are processed at every clock cycle. In case of

Ubichip there is only one CAM which is shared by all PEs. Hence only one spike can be processed in

every 2 clock cycles.

Figure 5.4: Synaptic BRAM wired to active registers

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

88

5.2.2 The execution module

The sequencer and the instruction Block RAM constitute the execution unit. The structure of the SNAVA

has been defined as Harvard architecture while the structure in Ubichip was defined to operate as Von

Neumann architecture. The pipeline strategy was implemented in the sequencer of SNAVA. This

technique includes 3 stages, which are: fetch, decode and execute. These two changes have decreased the

processing time of SNAVA in the computation of SNN algorithms in comparison with Ubichip. The

sequencer is responsible for the entire control flow of the system. The emulation of the SNN models is

carried out through two phases (processing phase and distribution phase) as it was defined in Ubichip

operation. Firstly, the synapse and neural parameters are calculated and the possible spikes are generated

which is marked by the termination of the sequencer during the first phase. Secondly, a signal is being

generated by the sequencer along with the AER address generator which indicates the beginning of the

distribution phase also known as phase 2. The sequencer begins its operation during phase 1 upon

receiving a notification from the AER controller. The instruction set of SNAVA is provided in Annexure

A.

5.2.3 Access Control Module

The Access control module controls external access to entities in SNAVA. All the access from the host

CPU is only through the User-side Ethernet. Access to any entity is allowed only when SNAVA is not

processing neural and synaptic parameters or distributing spikes. The access from the CPU is allowed

when the sequencer is in halt state. The access control consists of the following components:

Figure 5.5: Switch BRAM Access

- BRAM Access switch allows accessing the synaptic BRAM from the CPU in order

to load the initial values for the synaptic parameters. It also delivers the data from

the synaptic BRAM to the CPU when requested. The structure of the switch is

shown in Fig. 5.5.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

89

- CPU access control is basically a multiplexer and de-multiplexer that allows the CPU to

access to each PE in order to initialize the neural parameters and the LFSR register.

Also, the sequencer can have access to PE in order to give the data to be processed. This

is done when the operation is being performed by the ALU of the PE, as shown in Fig.

5.6.

Figure 5.6: mux-demux CPE access

- Config Unit consists of a register bank for global SNAVA control. The register bank

consists of seven 16 bits registers. The description of each register is summarized in the

Table 5.1.

Table 5.1: Details of Configuration Registers

Register

number

Description Function

0 config_done_int

register (0)

1= it indicates that the configuration has been

completed, and the SNAVA can start its regular

operation

1 clk_mode

register(0)

0 = the system clock runs in free-run mode

1= the system clock runs in step-by-step mode.

2 dec_clk_counter

register

In step-by-step mode, it stores the number of clock

steps to execute, decreasing at each clock cycle. It is a

16 bit register.

4, 5, 6 inc_clk_counter They form a 48-bits clock counter allowing having a

time foot print for recovered states of the chip. It

increases at each clock cycle.

7 contr_reset

register (0)

This register can be set from the CPU in order to reset

every reconfigurable unit. This signal resets the CPE

array, and sequencer.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

90

5.2.4 AER address generator

This module is responsible for sending spikes that are produced during the processing phase to the AER

module. These spikes are stored in a FIFO, which is included in the AER module. The instruction

SPIKEDIS has been implemented in the sequencer to indicate the AER that it can start to perform the

distribution of the spikes through network once the sequencer has finished the processing phase. One of

the features of this module is to inform the AER control unit the details of the neurons that have fired by

sending the address of the neuron to it. The AER address generator reads the LSB of the accumulator

from every PE, which contains the spike generated by the neuron. This address is composed by three

fields, which are: the row, the col, and the position of the virtual layer where the neuron fired. The length

of the address is the 11 bits, which is composed by 4 bits for column, 4 bits for the row and 3 bits for the

virtual layer. The spike generator sends to the AER module the address of the fired neuron every time that

a virtual layer has been processed. It is important to note that the execution of every layer is carried out

serially. Detailed information regarding the process of sending the spikes from the array of CPEs to the

AER modules is provided in the Annexure A (see section A.4).

5.2.5 Ethernet user side

Ethernet user side provides the control to the user to send Neural and Synaptic information to the Host

CPU for monitoring the network at any point in the algorithm. There are two modes in which the Ethernet

user side operates which are online scan and offline scan:

1. Online scan: In this mode the sequencer is not halted and the Ethernet User side scans the

whole array for data in the monitor buffers and sends it to the Ethernet core which in turn

sends the data to the external CPU. The instruction STOREB is one of the instructions of the

sequencer which was implemented in order to indicate to the Ethernet user side that this

module can read the values of each PE. These values are allocated in the buffer of each PE.

The buffer contains the neural and synaptic parameters which have been processed by the

PE when SNAVA is in the processing phase. The advantage of using this mode is that

visualization of the parameters is possible and the parameters can be sent to the monitor

once they have been processed. The sequencer does not interrupt its operation except if the

Ethernet transmitter is busy.

2. Offline Scan: In this mode the processor is halted and the Ethernet User side scans the

whole array for data in the monitor buffers and sends it to the Ethernet core which in turn

sends the data to the external CPU. The offline was mainly developed to carry out the

process of debugging of SNAVA. In this mode the user can access to the components to

SNAVA to verify the value in the registers of a component. These components are: the

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

91

sequencer, the processing element, the synaptic BRAM, and the BRAM instructions. The

SNAVA memory map to access to these components from the CPU is provided in Annexure

B.

5.2.6 Phases of operation

The process for the simulation of any SNN model is carried out in SNAVA by means of two periodic

phases, which were introduced in Section 5.2.2. The events happening in SNAVA is similar to that in a

biological neuron. Figure 5.7 shows how the biological process in the neuron is being mimicked by the

SNAVA architecture. In case of the biological process, the neuron receives chemical and electrical

signals via the synapses which are the interconnections made between neurons. These signals travel

through the dendrites to be processed by the soma. The soma fires a spike when its membrane potential

reaches the threshold voltage. The spike flows through the axon and is propagated to the dendrites of

other neurons. SNAVA tries to mimic the biological process described above through its processing

phases, the function of dendrites are carried out by the synaptic register (see Fig. 5.2) which store the

spikes from the previous distribution phase. Spikes are processed by the PE only in the processing phase

according to the SNN algorithm. The soma is the important region of the neuron which consists of the

Processing Element, the synaptic parameter BRAM, Instruction BRAM and the Sequencer. Since the

concept of virtualization has been implemented in SNAVA, when a layer of neurons complete the

processing phase, a corresponding series of spikes are generated by the AER address Generator module.

When the execution of the algorithm is completed i.e. when all layers of neurons have been processed, it

marks the end of the processing phase. Once the processing phase is completed, the spike distribution

begins. This phase is indicated by the flow of spikes to the dendrites of the destination neurons. The

transmission of the spikes is emulated by means of broadcasting these spikes in the AER bus and then

creating the synaptic contact in the CAM that is located in the PE of each neuron. The spikes that enter

the neuron are stored in the Synaptic register (Dendrites) that corresponds to that particular neuron.

Figure 5.7: Biology and SNAVA based on [2]

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

92

5.3 Implementation and performance

The SNAVA prototype is implemented on the KC705 board kit which includes a Xilinx Kintex7 FPGA

embedded on it. This board offers advanced modules of hardware which involve high speed serial links

and advanced memory interfaces. Therefore, the use of these has facilitated the development of the

present architecture with high performance in terms of communication and processing. In regards to

communication, two protocols have been implemented on SNAVA in order to manage the flow of the

data, as shown in Fig. 5.8.

Figure 5.8: SNAVA Communication Network. Figure extracted from [2]

1. Aurora is a communication protocol which is used to transmit data point to point through

fast serial links. This protocol offers several benefits like high bandwidth transmission,

support Full Duplex & Simplex channels and minimum area consumption. Therefore, it has

been decided to use this protocol, to carrying out the communication between neurons due

to its interesting features, in order to achieve the maximum performance in communication

on SNAVA by maintaining the low latency and low power consumption. It is important to

note that this work has been developed by Mr.Taho Dorta Pérez collaborating with the

SNAVA project [3].

2. Ethernet MAC protocol is one the most popular networking protocol adopted in FPGAs due

to its features like: flexibility, performance and reliability. These features has been taken

into account in development of SNAVA in order to create an efficient interface that allows

to the user take the control of the flow of data between SNAVA and the external CPU.

FPGA
4

FPGA 1

FPGA
2

FPGA 3

Ext CPU

G- Ethernet

Aurora

SMA
Cables

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

93

The scalability is one of the main features offers by SNAVA which allow the emulation of large scale

SNN by connecting multiple FPGAs boards. The proposed network topology is based in a ring

configuration which enables the efficient use of the resources available, namely the construction of the

network does not require extra hardware to connect a large number of FPGA boards. This reduces the

effort for making expensive dedicated interfaces to connect large number of boards like [7]. Besides, the

pipeline operation carry in every board increases the performance of the communication through the

network. But SNAVA is not only scalable respect to the number of boards is also scalable in the number

of processing elements. Therefore, the user can define the number of processing elements that are

required for a specific application enabling the creation of an optimized architecture.

The following sections present the study of the area and power consumption of SNAVA architecture by

testing 2x2, 4x4, 6x6, 8x8, and 10x10 configurable processing array sizes where all processing elements

have enabled 2 level of virtualization. The experiments were done by considering two cases, the first

consist of a network which one layer is full connected, and the second case considers that a virtual layer

has a single synapse in order to clarify the logic utilization for the implementation of the two modules:

CAMs and the processing elements. The results presented in these evaluations were taken from report

utilization and report power, which are provided by the utilization of VIVADO software tool. This

software is released by Xilinx Company in order to implement the designs efficiently on the FPGAs.

5.3.1 Area consumption

It can be seen clearly that the biggest consumption hardware resources is due to the use of LUTs, which

increases when a large number of processors are implementing on SNAVA, when the Table 5.2 and 5.3

compares. In the case of 100 processors and the communication controllers the area consumption is

around 80% of the total for both cases. Then the number of synapses has a small impact on the

consumption by considering an increment around 4%. Therefore, it is important to analyze the area

consumption of each component in order to optimize the current implementation in order to achieve better

performance and a large number of synapses per neuron.

The following figures points out the area consumption for each module in the design hierarchically,

namely from the top level until the processing elements. As it can be observed from Fig. 5.9, the

consumption of the Ethernet controller and the AER controller are negligible when is compared with the

area consumption of the SNAVA. Fig. 5.10 shows the SNAVA consumption, this architecture is

composed by the sequencer, the array of Processing Elements, and the configuration module. It is clear

that main area consumption is due the implementation of configurable processing units which consumes

around the 93% of the total. Figure 5.11 shows clearly that the main area consumption is due to the

implementation of the Processing Element. The major consumption of LUTS is attributed to the

implementation of the multiplexors inside of the PE to carry out the customized instructions.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

94

Table 5.2: Utilization Summary of Fully Connected SNAVA

Resource 2x2

(3 synapses)

4x4

(15 synapses)

6x6

(35 synapses)

8x8

(63 synapses)

10x10

(99 synapses)

Available

Flip-Flops 6623 – 2% 15282 – 6% 31532 – 8% 58257 – 14% 99487 – 24% 407600

LUTs 9805 – 5 % 29595 – 15% 67727 – 33 % 109801 –

54%

171291 –

84%

203800

BRAMs 39 – 4% 51 – 6% 71 – 8% 99 – 11% 135 – 15% 890

Table 5.3: Utilization Summary of Single Synapses SNAVA

Resource 2x2

(1 synapses)

4x4

(1 synapses)

6x6

(1 synapses)

8x8

(1 synapses)

10x10

(1 synapses)

Available

Flip-Flops 6606 – 2% 14609 – 4% 27861 – 7% 46351 – 11% 69996 – 17% 407600

LUTs 10421 – 5 % 29317 – 14% 60212 – 30 % 104533 –

51%

161158 –

79%

203800

BRAMs 39 – 4% 51 – 6% 71 – 8% 99 – 11% 135 – 15% 890

Figure 5.9: Utilization Representation of fully connected SNAVA project 10x10

0

50000

100000

150000

200000

SNAVA
Ethernet
controller AER controller

TOTAL

168680

2104 507

171291

Components of SNAVA project

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

95

Figure 5.10: Utilization Representation of fully connected 10x10 SNAVA

Figure 5.11: Utilization Representation of a Single Processor Element in fully connected SNAVA 10x10

0

20000

40000

60000

80000

100000

120000

140000

160000

Configurable Processing
Element array

Sequencer Configuration module

156872

8400 3408

Components of SNAVA

0

200

400

600

800

1000

1200

1400

1600

1800

CAM Spike register Processing
Element

Total

168 101

1416

1686

Components of a single CPE

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

96

5.3.2 Power consumption

The total power consumption of SNAVA project has been estimated around 0.891 Watts, which can be

calculated by adding the static power and dynamic power. It is important to be noted that the confidence

level of this estimation is low. This is because the software calculates the power consumption by testing

the architecture with test vectors. This vector of test enables all the nodes of the architecture, so that the

architecture is evaluated by considering the worst case. Namely, the architecture is working with all the

components all time.

As it can be observed from Fig. 5.12, the static power is around 0.169 W while the dynamic power is

around 0.931 W. Regarding the static power would be constant for all the array sizes and dynamic power,

which varies based on the design. Therefore, the dynamic power of a fully connected SNAVA is analysed

in order to make clear the power consumption for each its modules. The results of power consumption

reported in this section were obtained by enabling the settings on VIVADO to optimize the power on the

design. These options are:

1. power opt design

2. post placed power opt design

Dynamic Power Static power

0.931 W (79 %)

0.169 W (21 %)

Figure 5.12: Power consumption of fully connected SNAVA 10 x 10

Figure 5.13 shows the power consumption for the SNAVA implementation which is composed by

SNAVA, and AER controller and Ethernet controller. As can be seen from this table, the power

consumption of Ethernet controller is negligible when compared to SNAVA and AER controller. Almost

the half of the power consumption is spend by SNAVA architecture while the AER controller takes

around of one quarter of the total as shown in the figure. As it has been expected, the large power

consumption is spent by the processing elements as shown in Fig. 5.14 and Fig. 5.15. The processing

element contributes to the major consumption of area and power of the Configurable Processing element

module, as shown in Fig. 5.11 and 5.15, respectively. Only two 2 layers/2 bank of registers on the current

SNAVA architecture have been implemented, so that the implementation of more bank of registers will

increase the area and power consumption in order to support large-scale SNN models. Therefore, some

modifications have been proposed in this work to increase the capability of SNAVA to support large-

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

97

scale spiking neurons by decreasing the area consumption at the cost of processing speed. These new

ideas have led to develop the new version with better performance will be presented in Section 5.6.

Figure 5.13: Dynamic Power distribution of fully connected SNAVA 10 x 10 – SNAVA project

Figure 5.14: Dynamic Power distribution of fully connected SNAVA 10 x 10 – SNAVA

0

0.2

0.4

0.6

0.8

1

SNAVA
Ethernet
controller

AER
controller

TOTAL

W
at

ts

SNAVA
Ethernet
controller

AER
controller

TOTAL

Components of SNAVA
project

0.643 0.039 0.249 0.931

Dynamic power consumption of SNAVA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Configurab
le

Processing
Element

array

Sequencer Configurati
on module

TOTAL

Components of SNAVA 0.6 0.007 0.036 0.643

W
at

ts

Dynamic power consumption of SNAVA

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

98

Figure 5.15: Dynamic Power distribution of fully connected SNAVA 10 x 10 – Single CPE

5.4 Performance evaluation

SNAVA exhibits many advances with respect to Ubichip in terms of processing speed and spike

distribution. Many of these are due to the improvements performed on it. SNAVA tries to exploit the

benefits of the parallel SIMD architecture, so a majority of its instructions are carried out in a single clock

cycle in all Processing Elements. The important changes made on SNAVA with respect to Ubichip

architecture are listed below:

1. Two strategies related to the structure of memory system have been implemented in SNAVA in

order to exploit the available Block RAMs on the FPGA. The first strategy consisted on

separating BRAM for storing the instructions and global constants was implemented as these are

common for all the PEs. And second, One BRAM per each Processing Element for storing the

synapse parameters was implemented and the output of the BRAM was hardwired to the internal

registers of the PEs, as shown in Fig. 5.4. Then a single cycle instruction is used to fetch all the

parameters for individual synapse at a time. In the same way an instruction can be made use of to

store the computed new parameters back to the memory. These strategies allow the best use of

the available on-FPGA resources.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Sinaptic
BRAM

CAM Spike
register

Processin
g

Element

TOTAL

Series1 0.002 0.0001 0.0001 0.0039 0.0061

W
at

ts

Dynamic power consumption of a single
CPE

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

99

2. The neural parameters are specific to each PE. Hence these parameters can be stored locally in

the register bank instead of storing them in a common memory. This will save the time and

complexity in fetching them each time. Instructions capable of swapping bulk data between the

active and shadow registers have been implemented.

3. The CAM was modified to detect multiple matches in a single clock cycle. This change has

accelerated the spike distribution. Therefore, the encoding of the spikes is in parallel, which

represents the best improvement with respect to Ubichip. The Ubichip can detect only one spike

by using two clock cycles. Also, a spike register array corresponding to the neurons, that stores

the matches in the specific synapse numbers, was implemented.

4. There are several hardware multipliers available in the FPGA. These multipliers have been used

in SNAVA to accelerate this operation used in most SNN algorithms.

All these changes have helped to boost both processing speed and spike distribution in order to achieve

real-time simulation of large number of neurons below 1ms resolution. The following evaluations were

carried out in order to obtain the figures of performance of the SNAVA, in terms of processing speed and

spike distribution time, by considering the emulation of Iglesias and Villa model [4], Izhikevich model [5]

and Leaky integrate and fire model in 16-bit fixed point arithmetic operations. The following evaluation

in the performance of SNAVA considers this amount of neurons and synapses. The algorithms for the

emulation of the mentioned models have been programmed in assembler code in order to achieve the

maximum efficiency in terms of the execution time. Also, the program was defined in a structured

manner in order to simplify the process of update. Taking into account the results of the previous analysis

regarding the area consumption, the maximum number of neurons and synapses per processor that can be

supported in the current FPGA are: 200 and 100 respectively (with 100 processors and 2 levels of

virtualization).

5.4.1 Iglesias and Villa model execution analysis

The description of the Iglesias and Villa model is provided in Chapter 2, and the algorithm, which has

been written in assembler code for SNAVA, is provided in Annexure C. The performance of SNAVA has

been evaluated in clock cycles in order to obtain real figures. The required number of cycles to execute

each subroutine in phase 1 is indicated in Table 5.4. The encoding of subroutines contained in the synapse

loop is shown in Table 5.5.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

100

Table 5.4: Main loop subroutine encoding and execution number of clock cycles

Symbol Subroutine Clock cycles *

M V Membrane value 37

C S Cycle per each synapse (122)∙S

M O L P Memory of last post-synaptic 28

S U Spike Update 24

B A Background activity 34

R P Refractory period 5

N S Neuron save 19

S E Spike enable 5

* The number of clock cycles for the subroutine CS depends on the number of synapses (S).

Table 5.5: Synapse loop routine encoding

Symbol Subroutine Clock cycles

S L Synapse Load 1

S W Synaptic weight 19

R V V Real value variable 30

A V Activation variable 43

M O L P Memory of last pre-synaptic

spike

24

S S Synapse Save 5

Adding all the contributions of Table 5.4, except the initialization process, the number of clock cycles NT

that is required to carry out the phase 1 in one simulation cycle is obtained in equation (5.1), where the

growth depends on virtual layers and number of synapses per each processor.

SNN vT  122152
(5.1)

Where: NT is the number of clock cycles, Nv is the number of virtual layers and, S is the number of

synapses per processor

Monitoring the synaptic parameters and neural parameters on real time is essential to observe the SNN

dynamics. Thus, SNAVA allows the user to define the number of synaptic parameters or neural

parameters to be displayed on the monitor. Neural and synaptic parameters in phase 1 could be shown on

the monitor once it has been processed, this implies that the sequencer stops its operation and the Ethernet

user side module reads the data stored in every buffer serially and these data are sent to the computer

through its Ethernet bus. Sequencer resumes its operation only when the user side module finishes

reading all the buffers. Equation 5.2 takes into account the number of clock cycles required by the user

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

101

side module to read all buffers. The size of Ethernet bus and the size of the buffer in the current

implementation are 8 bits and 32 bits respectively.

 NDNSDS
B

BS
PSNN vvTD 








 122152

(5.2)

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is

the Buffer size.

The Iglesias and Villa model was proposed during the development of PERPLEXUS project. The

proposed target in case of this project includes the implementation of 300-synapses and 100-neurons in a

single Ubichip, and 1 ms time step resolution by simulating this SNN model. The time required to

execute these many number of synapses and neurons is 13 ms approximately for every simulation cycle

(see Table 2.3 in Chapter 2). Therefore, the simulation of the Iglesias and Villa in real time is not

achieved (1 ms step time resolution).

The required execution time for a single simulation step, by considering 100 neurons with 100 synapses

per neuron, is about 3.64 ms. In this case the number of synapses has reduced (from 300 to 100) the step

resolution is not achieved. The execution time ETU was calculated by using the expression (5.4). The

expression (5.3) allows the calculation the number of clock cycles NTU required to simulate the Iglesias

and Villa model in a single step simulation in Ubichip.

SNSNNTU  41392101909 (5.3)

Where: the N is the number of neurons and S is the number of synapses. The time execution ETU is

obtained as follows:

 (5.4)

Where: the NTU is the number of clock cycles to simulate the algorithm in a single step simulation and Tclk

is the time of the clock of the system. In the case of Ubichip, the clock system works at 50 MHz.

In SNAVA, the maximum number of neurons, which can be implemented in a single FPGA, is 100

neurons (1 layer of virtualization) and the maximum number of synapses is 100 synapses per neuron (100

synapses per processor). The required execution time ETS for a single step simulation is 102.86 µs. The

Execution time ETS is calculated by the expression 5.5.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

102

 (5.5)

Where NTD is the number of clock cycles, and is the time clock of the system. The calculation of the

execution time ETS of current prototype is particularized at 125 MHz clock or 8 ns period. This is because

the modules of SNAVA, which involve the Configurable Processing Elements, the Ethernet module and

the AER system, work at 125 MHz. It is important to be note that the calculation of the processing time in

SNAVA considers the display time assuming the post-synaptic spike and the membrane voltage are send

to the monitor for its visualization. To calculate the number of clock cycles NTD (5.2) the following values

were taken: P = 100 PEs, BS = 32, B = 8, Nv = 1 and ND = 1.

The step time simulation required in Ubichip to perform the Iglesias and Villa model is 35 times lower

than SNAVA. An important improvement in the processing time was achieved by implementing the

distributed memory system, the multipliers, and increasing the frequency clock of the system in SNAVA.

These improvements were already mentioned above. In order to clarify the real improvement achieved in

SNAVA when compared with Ubichip by neglecting the increment in the value of the clock system, the

following comparison was carried out by calculating the improvement ratio in term of clock cycles

instead of doing with execution time cycle.

Figure 5.16: Improvement ratio for SNAVA against Ubichip simulating Iglesias and Villa model.

Figure 5.16 shows the improvement factor IF which was obtained by dividing the number of clock cycles

required to perform the Iglesias and Villa model in Ubichip and the number of clock cycles required to

simulate the same model in SNAVA. The equation 5.6 allows the calculation of this improvement factor:

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

103

 (5.6)

where: NTU is the number of clock cycles required to perform the Iglesias and Villa model in Ubichip and

NTD is the number of clock cycles to perform the same model in SNAVA. The following values were

taking into account to calculate the NTD: P = 100 PEs, BS = 32, B = 8, Nv = 1 and ND = 1. ND implies the

visualization of the post-synaptic spike and the membrane voltage on the monitor. NTD was calculated by

using the expression (5.2).

The improvement ratio between Ubichip and SNAVA was calculated in terms of clock cycles,

considering up to 100 neurons and up to 300 synapses per neuron. For SNAVA only one level of virtual

layer was taken into account for consistency in the comparison. As it can be observed in Fig. 5.16, the

improvement factor is significant, but it is important to note that Ubichip was designed under restrictions

in the area consumption, resulting in a low-performance implementation. The purpose of the Fig. 5.16 is

only to show that enhancement factor increases with increase in the number of neurons and synapses

taken into consideration. As it can be observed from Fig. 5.16, the improvement factor gradually

increases linearly from 100 neurons – 100 synapses to 100 neurons – 300 synapses. In the current version

of SNAVA is possible to support 100 neurons with 100 synapses. In the case of using a bigger FPGA the

number of synapses can be incremented in SNAVA in order to allocate 300 synapses per neuron. As it

was mentioned above the synapses were implemented in LUTs. The implementation of the 300 synapses

is feasible for instance in the Virtex 7 FPGA (series XC7VX980T), which contains three times more

number of LUTs when compared with the Kintex 7 FPGA (series XC7K325T), the available device for

the developed prototypes.

5.4.2 Izhikevich model execution analysis

This section shows the performance evaluation by emulating the selected Izhikevich model [5] by

simulating 100 neurons and 100 synapses per neuron. The description of the Izhikevich model is provided

in Chapter 2. The algorithm, which has been written in assembler code for SNAVA, is provided in

Annexure C. The number of clock cycles for each subroutine and also the whole algorithm in terms of the

number of neurons and number of synapses per neuron has been reported below.

The required number of cycles to execute each subroutine in phase 1 is indicated in Table 5.6. The

encoding of subroutines contained in the synapse loop is shown in Table 5.7.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

104

Table 5.6: Main loop subroutine encoding and execution number of clock cycles

Symbol Subroutine Clock cycles
*

T I Thalamic Input 28

S U Spike Update 23

M P Membrane Potential 19

S E Spike Enable 5

C S Cycle per each synapse (15) ∙S

M V Membrane Value 70

R V Recovery Value 14

* The number of clock cycles depends on the number of synapses (S) and number of virtual layers (Nv)

Table 5.7: Synapse loop routine encoding

Symbol Subroutine Clock cycles *

S L Synapse Load 1

S W Synaptic weight 9

S S Synapse Save 5

Equation 5.7 calculates the number of clock cycles. This was obtained by adding all contributions of

Table 5.6.The growth in the number of clock cycles depends on two variables, the number of virtual

layers and the number of synapses.

SNN vT  15159 (5.7)

Where: NT is the number of clock cycles, Nv is the number of virtual layers and, S is the number of

synapses per processor

The scanning time to monitor the parameters of the model is not considered in previous equation (5.7).

The number of clock cycles to compute the algorithm in phase one is calculated as follows:

 NDNSDS
B

BS
PSNN vvTD 








 15159

(5.8)

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is

the Buffer size.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

105

1000 neurons with 100 synapses per neuron is the target network size proposed by Izhikevich [5], with a

time step resolution of 1 ms. The execution time obtained is around of 2.1 ms to simulate one step of the

Izhikevich model in Ubichip by simulating 100 neurons – 100 synapses per neuron, while the execution

time to execute the same model with the same number of neurons and synapses in SNAVA is around of

1.72 µs. In both the cases, the spike distribution was calculated under worst-case assumption that all

neurons would fire at every simulation cycle. This improvement guarantees the time step resolution for

the simulation of Izhikevich under 1 ms, which is highly required for the simulation of this model [5].

Therefore, 1000 neurons can be emulated in SNAVA by using 10 FPGA boards, by keeping the same

execution time (1.72 µs) in all FPGAs. This is because all FPGAs work in parallel. The spike

transmission time would however increase.

The calculation of the execution time to perform the Izhikevich model in Ubichip was carried out as

follows:

The execution time ETU was calculated by using the expression 5.10. The expression (5.9) allows the

calculation the number of clock cycles NTU required to simulate the Iglesias and Villa model in a single

step simulation in Ubichip.

xNxSxSxNNTU 81281011492  (5.9)

Where: the N is the number of neurons and S is the number of synapses. The time execution ETU is

obtained as follows:

 (5.10)

Where: the NTU is the number of clock cycles to simulate the algorithm in a single step simulation and Tclk

is the time of the clock of the system. In the case of Ubichip, the clock system works at 50 MHz.

The execution time ETS, which is required to perform the Izhikevich model in SNAVA, is calculated by

the expression 5.11,

 (5.11)

Where NTD is the number of clock cycles, and is the time clock of the system. The calculation of the

execution time ETS of current prototype is particularized at 125 MHz clock or 8 ns period. NTD is

calculated by using the expression (5.8). The following values were taken: P = 100 processors, BS = 32,

B = 4, Nv = 1 and ND = 1 to calculate the number of clock cycles NTD. ND implies the visualization of the

post-synaptic spike and the membrane voltage.

 (5.12)

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

106

Although it has achieved a great improvement in terms of speed of processing, the increment in the

system clock in SNAVA has increased the performance when compared with Ubichip, as it has been

demonstrated in the previous analysis. However, a significant improvement has been achieved by

modifying the structure of Ubichip. The improvement factor IF is carried out by considering the number

of clocks. Therefore, the clock of the system is not considered in the calculation. Fig. 5.17 shows the

improvement factor in terms of clock cycles by considering 100 neurons and 100 synapses in both

architectures. The calculation of this IF was done by using the expression (5.12). The improvement would

be around 6 times of the target criteria which is around 100 neurons with 100 synapses for each neuron,

with one virtual layer for the case of SNAVA. This improvement is mainly due to the single cycle

instructions for fetching and saving the synapse parameters and the hardware multiplier that simplifies the

multiplication operations in the algorithm.

Figure 5.17: Improvement ratio for SNAVA against Ubichip simulating Izhikevich model

5.4.3 Leaky integrate-and-fire model execution analysis

The leaky integrate-and-fire model was presented in Chapter 4. The algorithm, which has been written in

assembler code for SNAVA, is provided in Annexure C. The LIF model has been implemented on

Ubichip and SNAVA in order to be used in the applications that involve processing of sensory

information (see Chapter 6). The algorithm consists of 5 subroutines dedicated to compute the neural

parameters and a loop to calculate synaptic parameters. The required number of cycles to execute each

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

107

subroutine in phase 1 is indicated in Table 5.8. The encoding of subroutines contained in the synapse loop

is shown in Table 5.9.

Table 5.8: Main loop subroutine encoding and execution number of clock cycles

Symbol Subroutine Clock cycles
*

M P Membrane Potential 26

C S Cycle per each synapse (21) ∙S

S U Spike update 34

R F Refractory period 5

N S Neuron save 15

S E Spike Enable 5

* The number of clock cycles depends on the number of synapses (S) and number of virtual layers (Nv)

Table 5.9: Synapse loop routine encoding

Symbol Subroutine Clock cycles *

S L Synapse Load 1

S W Synaptic weight 19

S S Synapse Save 1

The expression to calculate the total number of clocks to execute the algorithm in one step emulation is

obtained by the addition of all contributions from Table 5.8:

SNN vT  2185 (5.13)

Where: NT is the number of clock cycles, Nv is the number of virtual layers and, S is the number of

synapses per processor

The previous expression does not take into account the number of clock cycles to observe the activity of

the network (neural variables or synaptic variables) through the monitor. The expression 5.14 adds the

delay in order to complete the calculation:

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the

 NDNSDS
B

BS
PSNN vvTD 








 3085

(5.14)

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

108

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is

the Buffer size.

The execution time required to perform the LIF model in SNAVA is around of 27 µs, while the execution

time required for the same in Ubichip is around 5.14 ms in a single simulation step, considering the

Perplexus target (which is 100 neurons and 300 synapses per neuron). The target of 1 ms time step

resolution in Ubichip is not achieved. Despite the complexity of the SNN model to be simulated in

Ubichip has been reduced by means of simulating one of the simplest SNN model, which does not

demand high computation. In the case of reducing the number of synapses per neuron from 300 to 100,

the execution time to perform the LIF model in Ubichip is 1.73 ms by implementing this amount of

synapses in Ubichip is closer to the target of 1 millisecond step time resolution.

The calculation of the execution time to perform the LIF model in Ubichip was carried out as follows:

The execution time ETU was calculated by using the expression 5.16. The expression (5.15) allows the

calculation the number of clock cycles NTU required to simulate the Iglesias and Villa model in a single

step simulation in Ubichip.

xNxSxSxNNTU 85116260  (5.15)

Where: the N is the number of neurons and S is the number of synapses. The time execution ETU is

obtained as follows:

 (5.16)

Where: the NTU is the number of clock cycles to simulate the algorithm in a single step simulation and Tclk

is the time of the clock of the system. In the case of Ubichip, the clock system works at 50 MHz.

The execution time ETS, which is required to perform the LIF model in SNAVA, is calculated by the

expression 5.17,

 (5.17)

Where NTD is the number of clock cycles, and is the time clock of the system. The calculation of the

execution time ETS of current prototype is done at 125 MHz clock or 8 ns period. NTD is calculated by

using the expression (5.14). The following values were taken: P = 100 processors, BS = 32, B = 4, Nv = 1

and ND = 1 to calculate the number of clock cycles NTD. ND implies the visualization of the post-synaptic

spike and the membrane voltage.

The increment in the value of the clock system in SNAVA allows to easy achieving the simulation of LIF

in real time (1 ms step time resolution), however, SNAVA has important improvements with respect to

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

109

the Ubichip architecture. The improvement factor clarifies the impact of these improvements

implemented in SNAVA. This improvement factor IF is obtained by dividing the number of clock cycles

required to perform LIF in Ubichip and the number of cycles to perform the same model in SNAVA by

using the expression (5.18):

 (5.18)

Fig. 5.18 shows the improvement ratio achieved in SNAVA by simulating the LIF model in comparison

with Ubichip. Evidently, the LIF model is one of the simplest SNN models which require less number of

instructions when compared to the Hodgkin-Huxley model [6]. This model describes the neural dynamics

in detail.

Figure 5.18: Improvement ratio for SNAVA against Ubichip simulating LIF model.

5.3.4 Processing time and distribution time for any SNN

model

Three spiking neuron models were implemented in SNAVA, Iglesias and Villa model, Izhikevich model,

and Leaky integrate-and-fire model. However, this architecture was designed to support any arbitrary

SNN model under the condition that the communication between neurons is through spikes. In fact, the

SNN models can be simulated with different levels of abstraction, however the mechanism to perform

their variables follow the almost the same pattern of processing. The equation 5.19 generalizes the

calculation of clock cycles for any SNN model implemented on SNAVA. The equation is defined by

constants K1 and K2, the number of virtual layers and synapses per processor.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

110

SKNKN vT  21 (5.19)

The general equation that calculates the number of clock cycles for processing phase and the monitor

delay is expressed by 5.20.

 NDNSDS
B

BS
PSKNKN vvTD 








 21

(5.20)

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is

the Buffer size.

The value of constants K1 and K2 for each SNN model are shown in Table 5.10. In order to calculate the

total time required in one emulation step (processing phase + distribution phase) equation 5.21 must be

added to equation 5.19 or 5.20 in each case, where the clock system is 125 MHz in the current prototype.

The required number of clock cycles to execute the distribution phase NTD depends on the number of

neurons NF that fire at every emulation step and the number of SNAVA chips
CHIPSN .

CHIPSFTD NNN  (5.21)

Table 5.10: Value of constants for three SNN models implanted on SNAVA

5.5 Comparison with other architectures

Any architecture that intends to support the simulation of large scale neural networks must guarantee

three aspects in order to achieve the maximum performance. These include low power consumption, less

area consumption and faster processing time. At the present, only a few digital architectures are trying to

cover these three aspects in order to achieve good performance besides offering great flexibility. Many

modern digital systems like Graphics Processing Units (GPUs), multiprocessors and FPGAs provide a

SNN model K1 K2

Leaky integrate-and-fire 85 30

Izhikevich 159 15

Iglesias and Villa 152 122

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

111

platform for designing highly parallel systems which are suitable for the emulation of SNN models.

Evidently, these architectures are designed for general purposes making them less efficient in terms of

area and power consumption in comparison with the dedicated hardware. This section is vital because it is

necessary to show the impact of our contribution in the emulation of large scale SNN in the world of

neuromorphic circuits, especially in the digital domain. The digital domain is chosen in order to be

consistent. Therefore, the objective of the following analysis is to find the main advantages and

drawbacks in emulating large-scale SNN models on SNAVA, and make a comparative study with the

existing architectures which claim to emulate Large-scale SNN models efficiently. This takes into

account numerous leading architectures reported in the literature.

5.5.1 Implementations on Multiprocessor

One of the representative SNN emulators based on multiprocessors is the custom SpiNNaker machine [8]

which can emulate a large number spiking neural networks using a custom ASIC with asynchronous

interconnection. This architecture is a reprogrammable platform to emulate the spiking neural networks.

The Table 5.11 summarizes technical specifications of SNAVA architecture and SpiNNaker.

Table 5.11: Technical specifications of the SNAVA and other existing multicores implementations

Project Reference This work for single FPGA SpiNNaker

Neuron model Izhikevich

Iglesias and Villa

Leaky-integrate-and-fire

Leaky-integrate-and-fire

Izhikevich

Number of neurons 200

20,000

Number of synapses 9900

2,000,000

Scalability yes yes

Flexibility yes yes

Migration yes no

Processing step 1 ms 1 ms

Hardware Kirtex-7 ARM 968E

Technology 28 nm 90 nm

Number of cores 100 processing elements 18 ARM9 processing

Frequency operation 125 MHz 200 MHz

Format representation Fixed precision Fixed precision

Number of bits 16 bits 32 bits

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

112

- Discussion of multiprocessor implementation

This customized architecture promises to be a powerful platform in the simulation of large-scale of SNN

models. SpiNNaker can support up to 20000 neurons and 2000000 of synapses per Chip, as shown in

Table 5.11. Evidently, the number of neurons and synapses per neurons supported in SpiNNaker are

much larger when compared with SNAVA. However, there are some aspects to discuss about this

architecture. One of them is regarding the communication system. They assume that the network will not

be saturated and there is no mechanism of congestion. This mechanism of congestion is vital when the

activity of large networks becomes more active. Another aspect is regarding the memory system of

spiNNaker. A large amount of data is transferred from the external memory to the processors. The high

memory-bandwidth data interfaces compensate the negative effect of transfer of data from the external

memory to the processors.

5.5.2 Implementations on GPU

There have been efforts to develop SNN emulators using Graphical Processing Units. The developers of

these devices argue that there can be an efficient design platform for parallel computing, due to its

inherent parallelization. It is important to note that these devices were designed especially for parallel

processing of graphics. However, few works have confirmed the advantages of using these devices as

SNN emulators. Two of the representative works were proposed by [10] and [11]. The technical

specifications of these works are summarized in the Table 5.12.

Table 5.12: Technical specifications of the SNAVA and other existing GPU implementation

Project Reference This work for single FPGA Nageswaran Arista

Neuron model Izhikevich

Iglesias and Villa

Leaky-integrate-and-fire

Leaky-integrate-and-fire

Izhikevich

Izhikevich

Number of neurons 200

100000 7000

Number of synapses 9900

10000000 7000000

Scalability yes yes yes

Flexibility yes no yes

Migration yes no yes

Processing step 1 ms 1 ms 1 ms

Hardware Kirtex-7 NVIDIA GTX280 NVIDIA TESLA

C2050

Technology 28 nm 65 nm 40 nm

Number of cores 100 processing elements 228 scalar processor

(SISD)

448 CUDA cores

Area (mm
2
) ND ND

Frequency operation 125 MHz 1.2 GHz 1.15 GHz

Format representation Fixed precision Float point Float point

Number of bits 16 bits 128 bits 128 ts

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

113

- Discussion of GPUs implementations

The two SNN emulators presented in this work are based on GPUs, which can compute a large number of

neurons and synapses by using processors operating around of 10 times more higher frequency than

SNAVA, as it can be observed from Table 5.12. The higher processing speed compensates the negative

effect produced by the utilization of multi-threads. This computational technique reduces the performance

of SNN calculation when a large amount of data must load to processors from the GPU memory or vice

versa when the data are stored from processors to memory. The bottlenecks that are present in this type of

systems are due to their memory access system, programmability and the limited memory bandwidth.

Nageswaran implementation [10] presents the development of large scale SNN model on GPUs, in

particular the proposed by Izhikevich taking into account the STDP rule. There are many reasons which

make difficult to map this learning rule in this architecture or even in any architecture. One of them is

given by the required high memory bandwidth to store recordings of future events. This was discussed in

Chapter 2. Therefore, this makes any architecture expensive in terms of hardware resources. Although

this architecture is capable of simulating large scale spike neurons network with process of learning, there

are several negative aspects to be discussed here. Most of them are associated to the structure of the

system, so that there is depletion in the throughput of SNN computation. One of them is related to the

optimization of the parallel execution, namely the number of threads that are limited in number so that not

all cores are used. Another important aspect to be discussed here is the process of serialization of the

instructions in a stream of multiprocessors. This implies that a greater number of clock cycles are required

by executing an instruction in different processors. As mentioned above, the plasticity implemented in the

synapses increases the complexity of control of threads.

The SNN emulator proposed by Arista [11] offers scalability in the definition of the number of synapses

and neurons. This proposal intends to create a generic SNN implementation to be executed in any GPU

device. But this has a cost, which is clearly observed in Table 5.12 when comparing with the capacity of

the system for supporting a large scale SNN between this work and Nageswaran work. This system can

support fourteen times less number of neurons and hundred times less number of synapses and has two

times more number of available cores. This is because the technique proposed by Arista make regular the

multithread execution, namely the same number of threads executes the same number of blocks. For that

reason the complexity of the threads are reduced and this general implementation can be used in any

GPU.

5.5.3 Implementations on FPGA

For several years there has been an evolution of astounding FPGA devices in the industry of

programmable devices. The integration of multiple cores into these devices has eased the implementation

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

114

of complex systems within a short span of time in comparison to the time requirements of an ASIC

system. Many applications has been developed using these FPGAs due to its high configurability besides

its guarantee towards a very high performance. In particular, neuromorphic systems are being

implemented on FPGAs in order to support large scale SNN emulations taking the advantage of the

available resources creating configurable architectures with high performance or high communication

system. This can be clearly observed by analysing two of the most representative FPGA implementations.

Cassidy [12] has proposed a system of supporting one million neurons in real time and another system is

named Bluehive [7] which can support 64k neurons with 64 million synapses per each FPGA. The

Bluehive project is composed by 64 FPGAs while the architecture of Cassidy is limited to be

implemented in a single FPGA. The technical specifications of these works are summarized in the Table

5.13.

Table 5.13: Technical specifications of the SNAVA and other existing FPGA implementation

Project Reference This work for single

FPGA
Bluehive Cassidy

Neuron model Izhikevich

Iglesias and Villa

Leaky-integrate-and-

fire

Izhikevich Leaky-integrate-

and-fire

Number of neurons 200

64000 1000000

Number of synapses 9900

64000000 1000000

Scalability yes yes yes

Flexibility yes no no

Migration yes yes yes

Processing step 1 ms 1 ms 10 ms

Hardware Kirtex-7

407600 Flip-flops

203800 LUTs

Altera Startix IV

1459200 Flips-flops

182400 LUTs

Virtex 5 SX240T

149760 Flips-

flops

149760 LUTs

Technology 28 nm 40 nm 65 nm

Frequency operation 125 MHz 200 MHz 200 MHz

Format representation Fixed precision Fixed precision Fixed precision

Number of bits 16 bits 16 bits 16 bits

- Discussion of FPGAs implementation

The earlier works indicated above intend to offer a platform to emulate large scale number of neurons

where their efforts were focused to optimize the SNN processing by making emphasis in the processing

system or communication system forgetting that both aspects are important to be considered when it

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

115

requires the design and implementation of an architecture to simulate a large number of neurons

efficiently.

The Bluehive system implements thousands of neurons and synapses by exploiting the communication

system to the maximum, based on high serial speed links taking the risk that the system could be saturated

when the activity of large scale SNN network will be increased, and the logic in order to prevent

congestion is not guaranteed in this work. Another aspect to be analysed is the memory access when large

number of parameters are to be processed, this reduces the processing time and the parallel architecture is

not exploited to the maximum.

The work that implements one million of neurons in a single-FPGA is proposed by Cassidy. This system

utilizes a large state cache and also consumes more time to implement such network. The important

aspect that has to be discussed in this work is the implementation of more number of neurons but the

limiting the number of synapses. This is because of large interconnections involved in the network

produces major consumption of power, area resources in any architecture.

The mechanism implemented in both architectures to process huge amount of neurons are based on fixed

pipelines stages, which reduce the capacity of the system for supporting different SNN models. These

architectures were designed for simulating specific simple SNN models which does not implement the

plasticity of the synapses which plays the major role to carry out the learning process. The whole

architecture must be redesigned and implemented again for any small modification to support this type of

biological mechanisms. Therefore, both the systems are suitable if the SNN model is fixed.

5.5.4 General discussion

As mentioned in the introduction of this section, there are three aspects to be evaluated on the

neuromorphic systems which include the performance in power consumption, area consumption and

processing time. SNAVA is compared with the previously discussed architectures which were

implemented on multiprocessors, GPU devices and FPGAs. Not all architectures discuss about the power

or area consumption which is considered to be a vital factor. This section presents the comparison

between SNAVA and another approaches regarding on these two factors. Make this comparison is not a

simple task due to the several factors to be into account, for instance the structure of the architecture, the

number of neurons and synapses supported in each one, the technology of the devices, etc., for

consistency in the comparison. Therefore, the proposed criteria to carry out the estimation of power and

area consumption have been defined in the evaluation of a single processor. The Single processor of all

previous architectures, which are analysed in this section, tends to implement the multiplexing time

technique. The multiplex time technique increases the capacity of the systems to support large number of

neurons, at the cost of time and memory bandwidth.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

116

Table 5.14: Comparison of SNAVA performance against other existing approaches

Projects Power

consumption

per processor

Area

consumption

per processor

Processing

step time

Number of

neurons per

processor

and

synapses

per neuron

SNN model

This work 4 m W* 994 Flip-Flops

1416 LUTs*

1ms 2

50

-Izhikevich

-Iglesias and Villa

-Leaky-integrate-

and-fire

Spinnaker[8] 41.1 mW

35 mW

N/D 1ms 250

250

Leaky-integrate-

and-fire

Izhikevich

Bluehive[7] N/D 18240 Flip-

Flops

1ms 1000

1000

Izhikevich

Nageswaran[10] N/D N/D 1ms 400

1000

Leaky-integrate-

and-fire

Izhikevich

Arista[11] N/D N/D 1ms 15

1000

Izhikevich

Cassidy[12] N/D N/D 10ms N/D

1

Leaky-integrate-

and-fire

*This results have been obtained from the VIVADO tool report. This tool has many advanced strategies for synthesis

and implementation to optimize the area and power consumption.

The estimation of the power consumption of Spinnaker system is presented in [13]. This architecture is

composed of 48 SpiNNaker chips, and each chip contains 18 ARM cores, where each ARM core can

support a population of around 250 neurons with 250 synapses per neuron. According to the data

presented considering the evaluation of power performance, the average power consumption of each chip

is 0.74 Watts. This means that every ARM consumes around 41.1 mW by supporting 250 neurons and

250 synapses per neuron in the case of Leaky-integrate-and-fire model simulation. And the power

consumption required to simulate the Izhikevich model is around 35 mW per ARM core.

The estimation of the area consumption of Bluehive system was analysed in this thesis taking into

account the technology of the FPGA in terms of number of Flip-Flops and LUTs. As it was indicating in

the Table 5.14, this system was implemented on Altera Startix IV board, which contains a FPGA with

1459200 Flips-flops 182400 LUTs. The structure of their architecture was analysed in order to estimate

the area consumption. The first assumption is related to the number of processing nodes required to

emulate 64000 neurons. According to the information provided in this work every node has four

Processing Engines (PEs) and every PE can emulate up to 1000 neurons. Therefore, the total number of

nodes calculated is 16 this is obtained by using the equation 5.22.

enginexneuronsenginespnodespneurons NNNT ____ 
(5.22)

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

117

The second assumption is related the use of registers to implement 64 processing engines. By looking at

the structure of the architecture, the processing nodes are mainly used to execute operations like

multiplications, subtractions and shift operations. Therefore, the largest amount of area consumption in

this architecture could be associated to the Flip-flops consumption. This can be clearly observed in the

specifications that the architecture is implemented on a FPGA with a million of Flip-Flops and reduced

number of LUTs. They also indicated that the architecture was proposed to exploit the parallel

computation and every node can be replicated homogenously when a large number of nodes are required.

This feature facilitates the evaluation of the area consumption per each node. If the percentage of the area

required for the implementation of Bluehive architecture is taken into account, then around 80% of the

total number of flip flops (1459200) which is 1167360 are required. Then, the number of Flip-Flops to

implement a single PE is around 18,240 Flip-Flops, which are calculated by the equation 5.23.

(5.23)

PE

FFPE
64

 1167360 Flops-Flip
 = 18,240 Flip-Flops

The result obtained in this comparison reveals that the power consumption for every processor on

SNAVA is 10.25 times lower than SpiNNaker, and the consumption of Flip-Flops is 18 times lower than

Bluehive processor, taking into account the data of Table 5.14. The evaluation is done by taking hundred

processors with 2 layers of virtualization. Evidently, the number of neurons and synapses in our work is

lower. This is due to the strategy implemented in this work which uses a bank of registers per virtual

layer. Hence there will be a rise in the power consumption as well as area consumption when the number

of virtual layers is increased. Making the assumption of using bigger FPGA, and doing an extrapolation to

verify the feasibility to continue working on the same manner, namely a bank of registers emulates a

virtual layer. For instance, if 100 neurons and 100 synapses per neuron are emulated in a single

processing element, it will require around 0.4 mW, 99400 Flip-Flops and 141600, where the capacity of

the Kintex-7 FPGA is 407600 Flip-flops, and 203800 LUTs. Only one processor requires around 24 % of

Flip-Flops and 69.4 % of LUTS of the total. Thus, a change in the strategy will increase the potential of

our project in order to emulate more neurons and synapses by maintaining the area resources and power

consumption down. This is possible if the neural values are stored in BRAMs as it has been done for the

synaptic parameters. The current version of the system show some advantages compared to another

approaches which are listed below:

1. Congestion

The problem of congestion of data during the process of communication in SNAVA is resolved with the

help of the synchronous AER system along with the implementation of parallel and serial strategies in the

distribution of spikes through the network. The mechanism behind this is that, every postsynaptic spike is

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

118

transmitted serially to all CAMs via the AER bus, which reads the spikes to generate matches within a

single clock cycle. It should be noted that the mechanism of congestion is not considered in other

architectures. The saturation of the system will be produced when a large-scale neural activity is

increased.

2. Time resolution

Almost all architectures follow the same trend in the processing of large number of synapses, except for

the case of Cassidy where the number of synapses are limited. The number of instructions required to

execute the SNN model varies in accordance with the presence of the presynaptic spikes. Therefore, the

processor requires more or less instructions to update the neural values. These architectures are efficient

in terms of number of instructions, however the time-step simulation (1 ms) is not guaranteed. Two

aspects are guaranteed in the emulation of the SNN models in SNAVA. The first is the step time

resolution (1 ms) and second is the constant power consumption. This is possible because the processing

elements (PEs) execute the same number of neurons and synapses at every step simulation irrespective of

whether there is or not pre-synaptic spike.

5.6 Improvements in SNAVA: SNAVA+

Starting from the analysis of the results of processing timing, area and power consumption of SNAVA

some bottlenecks were identified regarding area consumption. Some changes and optimizations were

proposed in previous section in order to improve this factor in the SNAVA architecture, with the ultimate

aim of occupying less resource, mainly due to LUTs consumption of the FPGA, and therefore be able to

increase the number of neurons and synapses that can be emulated. From this work is then born

SNAVA+, the new version of SNAVA.

5.6.1 Brief description of SNAVA+ architecture

This short section only aims to briefly present in a purely descriptive way the architectural changes that

have resulted from SNAVA to SNAVA+. For further detailed information about SNAVA+ can be found

in “SNAVA+: a large-scale spiking neural network emulation architecture” [14].

SNAVA+ intends to exploit the neural multiplexing-time processing or best known as virtualization at the

maximum. This is because the changes done in SNAVA+ consists of the change the hardware storing

devices for the neural parameters to support more neurons when compared with SNAVA. In SNAVA,

several neurons can be implemented in a single Processing Element by using the bank of registers. The

PE is the arithmetic unit which is mainly in charge of performing neural and synaptic variable processing.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

119

Each Processing Element has 7 banks of shadow registers which correspond to the 7 layers of

virtualization. The implementation of these banks of registers generates a negative impact in the area

consumption of the FPGA. The positive benefit of this approach is that the neural parameters that can be

accessed in a single clock which helps to increase the processing speed of the SNN algorithms. In

SNAVA+ architecture, the virtualization is made by using the Block Random-Access Memory (BRAMs)

available on the FPGA. Whereby for each neuron is allocated with n words of memory which contains the

neuronal parameters for that specific neuron (n is programmable by the user according to the model to be

emulated and can vary from 1 to a maximum of 8 words per neuron) as shown in Fig. 5.19. Therefore, the

area consumption is decreased, however the processing time is increased since access to neuronal BRAM

memory requires two clock cycles to read a single memory position. In SNAVA, the maximum number

of virtual layers per each processor which can be implemented in the target FPGA with 100 processors

and 100 synapses per processor is 2. The number of neurons that can be emulated by using a single

BRAM is shown in 5.23. This is because, each Block of RAM in the FPGA consists of 32 bits of data and

10 bits of address and since every neuron can have maximum 8 BRAM words.

Figure 5.19: The allocation of neural parameters on SNAVA and SNAVA+

(5.24)

An important decrement in the consumption of registers and LUTs has been achieved in SNAVA+ by

removing the shadow registers in SNAVA. Other profit is regarding the number of synapses supported in

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

120

SNAVA. Besides, a significant increment in the number of synapses per neuron is obtained. This will be

illustrated in detail in the following sections of this chapter.

Figure 5.20: Structure of the Configurable Processing Element in SNAVA+

Figure 5.20 illustrates the new structure of the architecture of the Configurable Processing Element which

includes the neuronal BRAM. The shadow registers have been removed from the Processing Element as

shown in Fig. 5.21. The implementation of the neuronal BRAMS in the structure of SNAVA+ has

consequently required several further changes and improvements. The details of the changes made on

SNAVA to generate SNAVA+ are provided in the Master thesis of Mr. Vito Pirrone [14].

Figure 5.21 Processing Element data path

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

121

5.6.2 Implementation and performance

 In this section, the post-synthesis results of SNAVA+ are shown and are compared with those of

SNAVA, firstly in terms of area (resource occupation of FPGA) and secondly in terms of power

consumption.

5.6.2.1 Area consumption

Table 5.15 shows the comparison between SNAVA and SNAVA+ in terms of area consumption. The

comparison is made considering the same conditions for both the architectures, so it means the same array

dimension (same number of processing element of the array) and the same number of synapses.

Regarding the number of neurons, for SNAVA+ it should be considered that for any number of

virtualized neurons (from 1 to 128) the same area is occupied on the FPGA, because regardless of the

number of neurons a BRAM 1024-byte x 32-bit is synthetized for each processing element of the array.

Table 5.15: Area occupation of SNAVA+ with different numbers of synapses per Processing Element

Resource SNAVA 10x10 2 levels of

virtualization (99 synapses per PE)

SNAVA+ 10x10 n levels of

virtualization* (99 synapses per

PE)

Available

Flip-Flops 99487 – 24% 77444 – 19% 407600

LUTs 171291 – 84% 134400 – 66% 203800

BRAMs 135 – 15% 213 – 24% 890

Note: *n can be from 1 to 128

An important reduction of hardware resources can be obtained by the implementation of the BRAMs to

store the neural parameters instead of using the bank of registers used for the same, as can be observed

from the Table 5.15. The percentage in the consumption of Flip-Flops is reduced around of 5%. This is

because the number of bank registers and instructions were removed from the original Processing

Element. A detailed study was carried out to implement the instructions that are used with more

frequency in the description of the SNN algorithms implemented in SNAVA+ [14]. As a consequence of

this study, several instructions were removed. The best contribution to the new strategy is given to the

consumption of the LUTs and the consumption of the available resources in the FPGA. Around of 18% in

the consumption of the LUTs is a gain. This implies that a greater number of synapses can be

implemented. Evidently, the increment of the BRAMs is visible, but the consumption is not significantly

when compared the consumption of BRAMs in SNAVA.

Table 5.16 shows the area occupation of SNAVA+ with different numbers of synapses available per each

Processing Element of the array. Regarding the number of neurons, for SNAVA+ it should be considered

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

122

that for any number of virtualized neurons (from 1 to 128) the same area is occupied on the FPGA,

because regardless of the number of neurons a BRAM 1024-byte x 32-bit is synthetized for each

processing element of the array. Note: These results are obtained considering a chip ID of 4 bits, so

considering a maximum number of 16 interconnected boards

Table 5.16: Area occupation of SNAVA+ with different numbers of synapses per Processing Element

Note: *n can be from 1 to 128

As can be observed in Table 5.16, the percentage in the consumption in the number of LUTs and registers

is increasing by 3% in the case of 100 synapses per Processing Element with respect to the

implementation of 50 synapses per PE. If the percentage of consumption is increased by 3% for every 50

synapses per PE, the possible maximum number synapses that could be implemented in every PE is 500

by consuming around 90% of the total number of LUTs available in the FPGA. However, the time

required to synthesize the design in VIVADO increases as shown in Table 5.17. This has prevented to

implement so far prototypes with larger number of synapses.

Table 5.17: Synthesis time for the implementation for different number of neurons

5.6.2.2 Power consumption

The total power consumption of SNAVA+ project is around 1.216 Watts, which can be calculated by

adding the static power and dynamic power. As it can be observed from Fig. 5.22, the static power is

around 0.186 W while the dynamic power is around 1.216 W. Regarding the static power would be

constant for all the array sizes and dynamic power, which varies based on the design. The results of

power consumption reported in this section were obtained by enabling the settings on VIVADO to

optimize the power on the design. These options are:

Resource SNAVA+ 10x10

n levels of

virtualization*

(50 synapses per

PE)

SNAVA+ 10x10

n levels of

virtualization*

(100 synapses per PE)

SNAVA+ 10x10

n levels of

virtualization*

(200 synapses per PE)

Available

Flip-Flops 65216 – 16% 77444 – 19% 97824 – 24% 407600

LUTs 128394 – 63% 134508 – 66% 148774 – 73% 203800

BRAMs 213 – 24% 213 – 24% 213 – 24% 890

SNAVA+ 10x10

n levels of

virtualization*

(50 synapses per

PE)

SNAVA+ 10x10

n levels of

virtualization*

(100 synapses per PE)

SNAVA+ 10x10

n levels of

virtualization*

(200 synapses per PE)

4 hours 17 hours 62 hours

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

123

1. power opt design

2. post placed power opt design

Dynamic Power Static power

1.216 W 0.186 W

Figure 5.22: Power consumption of SNAVA+ with 10x10 PE array size and 99 synapses per PE unit

Table 5.18 shows the comparison between SNAVA and SNAVA+ in terms of power consumption. The

comparison is obviously made considering the same conditions for both the architectures. So, it means the

same array dimension (same number of processing element of the array) and the same number of

synapses. Regarding the number of neurons, for SNAVA+ it should be considered that for any number of

virtualized neurons (from 1 to 128) the same area is occupied on the FPGA, because regardless of the

number of neurons a BRAM 1024-byte x 32-bit is synthetized for each processing element of the array.

Table 5.18: Power consumption of SNAVA and SNAVA +

Resource SNAVA 10x10

1 levels of virtualization

(99 synapses per PE)

SNAVA+ 10x10

10 levels of virtualization

(99 synapses per PE)

SNAVA 0.649 W 0.922 W

Ethernet controller 0.039 W 0.043 W

AER controller 0.249 W 0.251 W

TOTAL 0.931 W 1.216 W

As it can be observed from Table 5.19, there is an increment in the power consumption of SNAVA+

when compared with SNAVA by an amount of 285 mW. The module of SNAVA in SNAVA+ project,

which contains the configurable processing elements, the sequencer, and other components (for further

details see [14]) is contributing around of 273 mW more than the SNAVA project. It should be noted that

the sequencer and the other components maintain the same consumption for both versions (SNAVA and

SNAVA+). Therefore, the bigger consumption is generated by the Configurable PE unit. Table 5.20

shows the consumption of each module of a single Configurable PE in SNAVA module. Evidently, the

integration of the BRAM block to store the neural parameters in SNAVA+ is contributing to the total of 2

mW of power per each Configurable Processing Element.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

124

Table 5.19: Power consumption of a single Configurable PE in SNAVA and SNAVA +

Resource SNAVA 10x10

1 levels of virtualization

(99 synapses per PE)

SNAVA+ 10x10

10 levels of virtualization*

(99 synapses per PE)

CAM 0.001 W 0.001 W

Spike register 0.0001 W 0.0001 W

Processing element 0.0039 W 0.003 W

neuronal BRAM - 0.002 W

synaptic BRAM 0.001 W 0.002 W

TOTAL 0.006 W 0.0081 W

Note: *n can be from 1 to 128

Table 5.20: Power consumption of a single PE in SNAVA and SNAVA +

Table 5.20 shows the power consumption of SNAVA+ with different numbers of available synapses and

virtualization level of 10 per each Processing Element of the array. These results are obtained by

considering the chip ID to be 4 bits, so that the maximum number of boards that can be connected is 16.

5.6.3 Performance evaluation – Leaky integrate-and-fire

model

The computation of the LIF model in SNAVA+ is carried out through two operational phases like in

SNAVA. The model was described in Chapter 4. The processing phase (phase 1) is in charge of

computing the neural and synaptic parameters, and the second phase is responsible of making the spike

distribution through the SNN network. The following performance study is dedicated to analyse the

Resource SNAVA+ 10x10

10 levels of virtualization*

 (50 synapses per PE)

SNAVA+ 10x10

10 levels of virtualization*

(100 synapses per PE)

SNAVA+ 10x10

10 levels of virtualization*

(200 synapses per PE)

CAM 0.001 W 0.001 W 0.001 W

Spike register 0.0001 W 0.0001 W 0.0001 W

Processing element 0.003 W 0.003 W 0.003 W

BRAM neuronal 0.002 W 0.002 W 0.002 W

BRAM synaptic 0.002 W 0.002 W 0.002 W

TOTAL 0.0081 W 0.0081 W 0.0081 W

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

125

processing speed. This is because the new strategy in the mapping of the neural variables affects the

performance of the computation of the LIF model in SNAVA+.

Table 5.21: Neuronal loop subroutines

NEURONAL LOOP

Symbol Subroutine Clock cycles

L N P Load neuronal parameters 2∙N*

S N P Save neuronal parameters 2∙N*

M P Membrane Potential 39

C S Cycles per each synapse (43) ∙S

S U Spike update 48

R F Refractory period 5

N S Neuron save 24

S E Spikes enable 6

Note: *N is the number of words in the neuronal BRAM assigned to each neuron in order to store the

neuronal parameters

The LIF algorithm consists of 7 subroutines dedicated to compute neural parameters and a loop to

calculate synaptic parameters. The required number of cycles to execute each subroutine in phase 1 is

indicated in Table 5.21. The encoding of subroutines contained in the synapse loop is shown in Table

5.22.

Table 5.22: Synaptic loop subroutines

 SYNAPTIC LOOP

Symbol Subroutine Clock cycles

S L Synapse Load 3

S W Synaptic weight 21

S S Synapse Save 1

Hence it can be formulated an equation that relates the number of execution cycles with the number of

emulated neurons and synapses by adding the contribution of each subroutine to the total delay. There are

two equations to compute the number of clock cycles to emulate the LIF model. The first equation (5.25),

calculate the number of clocks without considering the delay to display the neuronal parameters in the

monitor, and equation (5.26) considers the monitor delay produced by the visualization of the parameters.

Without parameters display:

 SNNNN vvBW NT  431224

(5.25)

With parameters display:

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

126

where: NT and NTD are the total number of clock cycles for the case of discarding the display of the

parameters in the monitor, and considering the motorization time, respectively, NBWN is the number of

neuronal BRAM words per each neuron, Nv is the number of virtualization, S is the number of synapses

per each Processing Element of the array, P is the number of Processing Elements, B is the Ethernet Bus

width, SD is the number of synapse parameters to be displayed, ND is Number of neuronal parameters to

be displayed, and BS is the Buffer size.

The execution time required emulating the LIF model in SNAVA and SNAVA+ is calculated, by

considering 200 neurons and 50 synapses per neuron, and the results are shown in Table 5.23. In the case

of SNAVA, equations 5.13 and 5.14 calculate the number of clock cycles for a single step simulation of

the LIF algorithm. The delay generated by the display of the parameters is not considered in the equation

5.5, while the number of clock cycles required to display the neural parameters as a Postsynaptic spike,

and the membrane voltage are considered in equation 5.14. In the case of SNAVA+, the equations 5.25

and 5.26 are used to calculate the number of clock cycles for the simulation of the LIF algorithm taken

into account the same conditions from the equations 5.14 and 5.26, for consistency in the comparison

between SNAVA and SNAVA+. SNAVA and SNAVA+ work under the frequency of 125 MHz which is

the same clock frequency used by the communication interfaces such as Ethernet communication system

and AER system, in order to avoid problems of synchronization.

The distinctive difference between equations 5.13, 5.14 and 5.25, 5.26, is the inclusion of a new variable

NBWN, which considers the number of BRAM words to store the neural parameters for each neuron in the

case of SNAVA+. In the presented results, the number of neural BRAM words for each neuron is equal to

2. Since, it is sufficient to use two words of memory for storing the neural parameters of the LIF model.

In the case of considering the implementation of the Iglesias and Villa model or Izhikevich in SNAVA+,

the number of words to store the neural parameters will change according to the requirements of each

model. The following values were taken for the equations 5.13, 5.14, 5.25, and 5.26: P = 100 processors,

BS = 32, B = 4, Nv = 2 and ND = 1 to calculate the number of clock cycles NTD. ND implies the

visualization of the post-synaptic spike and the membrane voltage.

Table 5.23 shows the execution time required to compute the LIF model in SNAVA and SNAVA+

respectively. The calculation of the execution time takes into account the maximum number of virtual

neurons and synapses per neuron (200 neurons and 50 synapses per neuron) supported by SNAVA. The

execution time in SNAVA+ is evaluated considering the same number of neurons and synapses in order

to compare these architectures under the same conditions. As can be seen from Table 5.23, SNAVA+ has

a penalization of about 6 µs with respect to SNAVA in both the cases, without and with display.

  NDNSDS
B

BS
PSNNNN vvvBWNTD 








 431224

 (5.26)

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

127

Table 5.23: The execution time in SNAVA and the execution time in SNAVA+ (200 neurons and 50

synapses)

SNAVA SNAVA+

Without Display delay With display delay Without Display delay With display delay

13.36 µs 16.56 µs 19.28 µs 22.12 µs

Figure 5.23: 1) Execution time for the simulation of 100 LIF neurons and 500 synapses without

considering the delay produced for the visualization of the parameters in the monitor, 2) the execution

time taking into account the display delay

The proposed target in the current version of the system called SNAVA+ is to implement 10 neurons and

500 synapses per PE. Therefore, the number of virtual neurons is 10 and every virtual layer has 50

synapses. The proposed target takes into account the results from the previous area consumption analysis.

Figure 5.23 points out the execution time for the simulation of LIF model in SNAVA and SNAVA+

taking into account the proposed target. The bar charts reveal the loss of performance time in SNAVA+

when the parameters are sent to the monitor for visualization. The execution time to perform the LIF

model in SNAVA is around 184 µs without displaying the parameters on the monitor and around 214.4

µs by considering the delay on the monitor. In both cases the execution of 100 neurons and 50 synapses

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

128

per neuron is considered (see Fig. 5.23). The time step resolution is less than 1 ms for both cases, even

though the delay is considered for the visualization of the parameters on the monitor. An important

improvement is achieved in terms of area consumption by decreasing the processing speed by using two

clock cycles to access to the neural BRAM. So this leads to an overhead which does not degrade the

performance in a striking and significant way. So in the face of positive results in terms of area and power

consumption, a slight loss of time performance time can be certainly considered a good trade off.

5.6.4 Comparison with other approaches

The digital SNN emulators presented and studied in Section 5.5 intends to perform large-scale SNN

models. Several aspects were discussed regarding the flexibility, high processing performance, low power

and area consumption in order to obtain an efficient SNN emulator. Some of these architectures try to

take into account some of the factors mentioned above. However, there are important trade-offs which

makes it impossible to offer an efficient architecture to emulate this type of SNN models. One of them is

related to the area consumption and flexibility. SNAVA architecture intends to offer an emulator which

supports large-scale SNN models by making equilibrium between these two factors. SNAVA offers the

possibility to emulate different SNN models with different levels of computational complexity, from the

simple Leaky integrate and fire model to the complex Iglesias and Villa model [4] or Izhikevich[5], and

keeping the area consumption low. The results obtained in Section 5.5 reveals that SNAVA demands

large area consumption in the implementation of the neurons. SNAVA+ is created to abate this

consumption and generate a possibility to increase the number of neurons to be emulated. A significant

improvement is obtained related to the increment in the number of neurons supported in SNAVA+ at the

cost of time processing. The results of the performance evaluation of SNAVA+ indicate that the

processing speed is minimally decreased.

SNAVA+ is compared with other approaches in order to clarify the contribution of this work. It is

important to be noted that not all architectures, which were presented in Section 5.5, give the details of

the power and area consumption of their implementations. Two of the most relevant works are compared

with SNAVA+. The first work is implemented in a multiprocessor architecture called SpiNNaker [8]. The

second work is implemented in a 64 FPGA boards [7]. In the comparison, the first architecture is selected

to be compared with SNAVA+ due to the relevance of this work. Because this work can emulate a very

large scale SNN models in a customized architecture. The second work is compared with SNAVA+ in

order to make it clear that even though the FPGA has the main feature called configurability. This work

does not exploit these advantages and they create a customized architecture for a specific SNN model.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

129

Table 5.24: Comparison of SNAVA performance against other existing approaches

Projects Power

consumption

per processor

Area

consumption

per processor

Processing

step time

Number of

neurons per

processor

and

synapses

per neuron

SNN model

SNAVA 0.004 W* 994 Flip-Flops

1416 LUTs*

1ms 2

50

-Izhikevich

-Iglesias and Villa

-Leaky-integrate-

and-fire

SNAVA+ 0.0039 W 774 Flip-Flops

61 LUTs*

1ms 10

20

-Leaky-integrate-

and-fire

Spinnaker[8] 41.1 mW

35 mW

N/D 1ms 250

250

Leaky-integrate-

and-fire

Izhikevich

Bluehive[7] N/D 18240 Flip-

Flops

1ms 1000

1000

Izhikevich

*This results have been obtained from the VIVADO tool report. This tool has many advanced strategies for synthesis

and implementation to optimize the area and power consumption.

Taking the data from Table 5.24, the SpiNNaker processor consumes around 41.1 mW and 35 mW for the

emulation of LIF model and Izhikevich model respectively. Every processor can emulate up to 250

neurons and 250 synapses per neuron, while SNAVA+ consumes around of 3.9 mW per processor by

simulating different SNN algorithms. Every processor can emulate up to 10 neurons and 20 synapses per

neuron. In fact, SNAVA+ can emulate up to 128 neurons but the number of synapses per neuron is

limited to 1.Therefore, SNAVA+ consumes thirteen times lesser than SpiNNaker processor. SpiNNaker

can be more efficient than SNAVA+, respect to the synaptic calculation, because SpiNNaker process the

synaptic parameters when there is a presynaptic spike while SNAVA+ processes all synapses irrespective

of the presynaptic spike. Therefore, the regularity of the execution of SNAVA+ guarantees the power

consumption. Hence, there is no significant rise in the power consumption when the SNN is more active.

But, SpiNNaker cannot guarantee this important factor.

The area consumption in Bluehive was calculated in Section 5.5.4. According to this data, every

processing unit consumes around of 18240 Flip-Flops, and it can emulate up to 1000 Izhikevich neurons

with 1000 synapses per neuron. SNAVA+ consumes around of 774 Flip-Flops to emulate 10 neurons and

61 LUTs to implement 50 synapses per processing element. The consumption of SNAVA+ is 23 times

lower than the Bluehive with respect to the consumption of Flip-Flops. This comparison is based on the

consumption of the Flip-Flops because the strategy followed in Bluehive involves the implementation of

simple processors which can support the Izhikevich neurons. The processors of Bluehive are in charge of

performing the neural parameters and synaptic parameters of a neuron only when there is a spike to be

processed by this neuron, so that, the data to update this neuron are transferred from external memory to

this processor. Another issue to be discussed is the strategy followed to implement the role of the

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

130

synapses in Bluehive, which differs from the SNAVA+. This is because Bluehive makes a customized

connectivity configuration. Therefore, the routers require a simple logic based on LUTs. While SNAVA+

offers the possibility to create any topology and the neurons can have different number of synapses.

5.6 Conclusions

The flexibility is one the main features of SNAVA and SNAVA+ in terms of easy programmability of

SNN models. The emulation of three SNN models with different levels of computational complexity has

been demonstrated. Several ideas were taken into account to design an efficient architecture in terms of

processing speed and distribution time. Therefore, the bottleneck is now not in the algorithm execution.

However, the study of the performance of the implementation indicates that there are some remaining

aspects regarding the area consumption which were discussed in this chapter. The strategy of time-

multiplexing neural computation implemented in this work to emulate more neurons by using the bank of

registers of CPE has produced large area consumption on the FPGA. If the register banks are being

replaced by the BRAM, the amount of neurons will be increased by wasting lesser amount of area

resources. The feasibility to implement this idea has been demonstrated by implementing SNAVA+.

Here, greater number of neurons is supported by keeping the area consumption low. Another bottleneck is

generated when large number of the synapses is implemented on the CAMs. This strategy allows the

encoding of the spikes in parallel to a single pulse, but the area consumption becomes relevant when the

number of neurons and synapses are increased. The current strategy to decode the spikes is efficient in

terms of processing time by spending a lot of hardware resources. A possible solution to this problem is

to change the implementation of CAM to BRAMs. The first benefit of applying this idea is to make the

connections programmable. Currently, the synapses are recorded in LUTs, and each time the connectivity

has to be changed the whole architecture has to be re-synthesized. Some of these modifications have been

applied on SNAVA in order to improve its remaining weak points, so as to create a SNN emulator with

high performance and low area consumption.

References

[1] E. Sanchez, A. Perez-Uribe, A. Upegui, Y. Thoma, J. M. Moreno, A. Napieralski, et al.,

“PERPLEXUS: Pervasive Computing Framework for Modeling Complex Virtually-Unbounded

Systems”, in Adaptive Hardware and Systems, 2007. AHS 2007. Second NASA/ESA

Conference on, pp. 587-591, 2007.

[2] Athul Sripad, “SNAVA: A Generic Threshold-Based-SNN Emulation Solution”, Master Thesis,

Universitat Politècnica de Catalunya, September 2013.

[3] Taho Dorta Pérez, “AER-RT: Interfaz de Red con Topología en Anillo para SNN Multi-FPGA”,

Master Thesis, Universitat Politècnica de Catalunya, July 2013.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

131

[4] J. Iglesias, J. Eriksson, F. Grize, M. Tomassini, and A. E. P. Villa, “Dynamics of pruning in

simulated large-scale spiking neural networks”, Biosystems, vol. 79, 2005.

[5] E. M. Izhikevich, "Simple model of spiking neurons”, Neural Networks, IEEE Transactions on,

vol. 14, pp. 1569-1572, 2003.

[6] A.L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application

to conduction and excitation in nerves”, Journal of Physiology 117, pp 500–544, 1952.

[7] Moore, S.W.; Fox, P.J.; Marsh, S.J.T.; Markettos, A.T.; Mujumdar, A., Bluehive, “A field-

programable custom computing machine for extreme-scale real-time neural network

simulation”, Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th

Annual International Symposium on, pp. 133-140, 2012.

[8] Khan MM, Lester DR, Plana LA, Rast A, Jin X, Painkras E, Furber SB, “SpiNNaker: Mapping

neural networks onto a massively-parallel chip multiprocessor”, Neural Networks, 2008 IJCNN

2008 (IEEE World Congress on Computational Intelligence) IEEE International Joint Conference

on, pp 2849-2856, 2008.

[9] Nageswaran, J.M., et al. “Computing spike-based convolutions on GPUs”, in Circuits and

Systems, 2009, ISCAS 2009, IEEE International Symposium on, pp. 1917-1920, 2009.

[10] A. Arista-Jalife and R. A. Vazquez, "Implementation of configurable and multipurpose spiking

neural networks on GPUs", in Neural Networks (IJCNN), The 2012 International Joint

Conference on, , pp. 1-8, 2012.

[11] Cassidy A, Andreou AG, Georgiou J (2011), “Design of a one million neuron single FPGA

neuromorphic system for real-time multimodal scene analysis”, Information Sciences and

Systems (CISS), 45th Annual Conference on, pp 1-6, 2011.

[12] E. Stromatias, F. Galluppi, C. Patterson, and S. Furber, “Power analysis of large-scale, real-time

neural networks on SpiNNaker”, in Neural Networks (IJCNN), The 2013 International Joint

Conference on, pp. 1-8, 2013.

[13] Vito pirrone, “SNAVA+: a large-scale spiking neural network emulation architecture”, Master

Thesis, Universitat Politècnica de Catalunya, June 2014.

Chapter 5 SNAVA: Spiking Neural-networks Architecture for Versatile Applications

132

133

Proof-of-concept application on

SNAVA

6.1 Introduction

6.2 Bio-inspired system description

6.3 Amplitude detection

 6.3.1 SNN model description

 6.3.2 Amplitude classifier

6.4 Experimental results

6.5 Conclusions

Reference

6.1 Introduction

This chapter shows an engineering application on SNAVA as a proof of concept in order to demonstrate

the potential of SNAVA for processing sensors. This application involves detection of frequency and

amplitude of a sinusoidal signal by means of the proposed bio-inspired system. A previous version of this

application was developed on the Ubichip architecture in Chapter 4. There are several aspects, which

were analysed and discussed in order to successfully detect the frequency of a sinusoidal signal by means

of a Spiking Neural Network. The proposed system in this work uses the SNAVA architecture in order to

extend the previous application. Some changes were done in order to detect both frequency and amplitude

from the original version [1]. SNAVA offers several advantages in comparison with the Ubichip

architecture. One of these advantages is related to high processing speed and spike distribution. This

feature of SNAVA makes it feasible for the implementation of applications which involve processing

time-varying signals, where the real time execution (1 ms time step resolution) of the emulator is

required. In the available KC705 (based on Xilinx Kintex7) FPGA development board. SNAVA can

emulate 200 neurons and 50 synapses per neuron much lower 1 ms time step resolution. Considering that

the neuron can be modelled as Leaky Integrate-and-Fire (LIF) model, Izhikevich [2] or Iglesias and Villa

model [3]. Operations such as integration and differentiation are some which are being done in circuits

which work with time dependent signals. The various processes happening in the nervous system are

based on these time dependent functions. One example of these functions is the process carried out in the

ear, which responses to derivative signals. The work reported in [4], mimics these types of functions to

carry out the audio signal processing by means of LIF model. The range of frequencies for this

application is defined from 200 Hz and 7000 Hz. These types of functions also can be applied on SNAVA

to perform various applications associated with the feature extraction of the sound. The current ongoing

application is inspired on the function of the cochlea [5]. Preliminary results are presented in the

Annexure D.

Chapter 6 Proof-of-concept application on SNAVA

134

6.2 Bio-inspired system description

A bio-inspired system is proposed in this work in order to achieve the detection of the amplitude and

frequency of a sinusoidal signal. Regarding the detection of the amplitude of the signal, the peak

amplitude of this signal is estimated by means of the Spiking Neural Networks, while the frequency is

detected by the bank of filters.

The proposed bio-inspired system is composed of three modules, which are:

1. Bandpass filter banks

2. Spike coders

3. Digital Multi Processor (DMP)/ Amplitude Classifier system

Figure 6.1: Amplitude and Frequency classification by means of bio-inspired system

The functionality of the bio-inspired system is as follows: the bio-inspired system takes information from

the external sources by using sensors (MEMS, microphone, etc.). The output signal from the sensors is

fed to the Bank of filters block. Here, each band-pass filter bank is centered to a particular frequency.

Every spike coder processes the input signal, which is provided by the corresponding bank filter,

translating the continuous signals into equivalent spikes. In other words there is a one-to-one connection

between the each channel of the filter bank and the spike coder. Hence the output spikes from every spike

coder block correspond to a certain frequency, as shown in Fig. 6.1. The spike coder is working on the

same principle of operation (delta modulation) as encoders that were used in the previous work [1]. The

spikes generated by the spike coders are sent to the Spiking Neural Network through the Address Event

Representation AER bus [6]. The SNN network is divided into several groups of neurons, and each group

of neuron indicates the amplitude of the input signal by processing the spikes received from its spike

coder and the frequency of the signal is detected mainly by the filter bank. The firing of a particular group

of neurons indicates which channel of the filter bank is active.

Chapter 6 Proof-of-concept application on SNAVA

135

In the previous application, the time-to-space technique was proposed in order to process higher input

frequencies by the Ubichip. This technique implies that the spikes, which are generated by the digital

coders, are stored in a FIFO, while Ubichip is in its processing phase. These spikes are only transmitted to

the Ubichip, when Ubichip is in its phase of distribution. As it can be observed in Fig. 6.2, the density of

the train of spikes is variable. Indeed the input signal is asynchronous with respect to the phases of

operation (processing and distribution) of Ubichip. This produces that the number of spikes stored in the

FIFO varies according to the factors mentioned above for every simulation cycle. A new method to solve

the problem is proposed in this work in order to have the correct number of spikes every emulation cycle

independently of the density of the spikes and the synchronism between the processing phase and the

input signal.

Figure 6.2: Phases of operation of Ubichip and spikes generated by the digital coders

The new method consists of sending the spikes to the SNN network only when the input signals have

been processed by the spike coders for the first quarter after detecting the zero crossing, as shown in Fig.

6.3. In other words, the input signal will be processed by the spike coders, while SNAVA is in its

distribution phase. When the spike coders finish processing their input frequencies, these spikes will be

transferred to the SNAVA to resume its processing phase. Therefore, SNAVA can process a single

sample of each coder every processing cycle. Only the first quarter is processed by the SNN network in

order to determine the peak amplitude of the input signal.

Figure 6.3: Phases of operation of SNAVA with respect to the input signal

Chapter 6 Proof-of-concept application on SNAVA

136

The spike coder generates an enable_tx signal to indicate to the AER module that it has processed the first

quarter of the signal after zero crossing detection, as shown in Fig. 6.4. Therefore, the spikes can be

transferred to the amplitude classifier. The AER module can transfer these spikes to the amplitude

classifier only when the SNAVA is in its distribution phase. After SNAVA finishes the processing of

these spikes, it enters in its distribution phase. During this phase, it will wait for processing the next

spikes.

Figure 6.4: Spike coder

6.3 Amplitude detection

The SNN network consists of several groups of neurons which are in charge of detecting the amplitude of

the signal. Each group of neurons is connected to a spike coder block that corresponds to a certain center

frequency Fc. This group of neurons can be allocated as an array in SNAVA where each array element

represents the group of neurons. This is feasible because of scalability of the SNAVA architecture. In this

application, the degree to which SNAVA has to be scaled will be a function of the number of frequencies,

as shown in Fig. 6.1.

The SNN network intends to indicate the amplitude of the input signal. It is important to be noted that the

current version of the bio-inspired system only includes the spike generator and the SNN network to

detect the amplitude at a certain frequency. Since the design, debugging and testing of the bank of filters

demands more time it increases the overall development time of the bio-inspired system. Therefore, it has

been considered that the signal fed has already been filtered and the spike coder generates spikes that

have to be sent to the SNN network as in Fig. 6.3. As it can be observed from Fig. 6.3, a spike train is

generated by the digital spike coders as in [7] the encoding a sinusoidal waveform. The VHDL code is

provided in the Annexure E. In [7] the analog coders generate spikes with sign. The negative spikes are

translated to positive to be processed by the DMP. This is because the DMP was designed to process

positive spikes. In order to determine the peak amplitude of the signal filtered by the filter bank only the

first quarter of the signal is considered (i.e. the first 25% of the signal) after detecting the zero crossing by

Chapter 6 Proof-of-concept application on SNAVA

137

the spike coders. This is shown in Fig. 6.3. Therefore, only the spikes generated by digital coders for this

time are sent to the SNN network to indicate the peak amplitude of the signal after the detecting the zero

crossing. The digital spike coder generates spike trains where the density of the spike train is in a function

of slope of the input signal. So that the information regarding the amplitude is given by the number of

spikes generated by the spike coder, while the time spacing between the spikes which were generated by

the spike coders, is the information about the frequency of the signal. Since this information is indicated

by the bank of filters, the space between spikes are not considered. However, the samples are preserved

since these samples give information about the amplitude of the signal. To make sure there is no loss of

samples, every sample is being mapped to a particular neuron and this is done till the end of one quarter

cycle of the sinusoidal wave. Once the first quarter cycle is processed, the samples preserved in a FIFO,

are immediately sent to the neurons of the amplitude detector block, which is shown in Fig 6.5. Here, the

first sample is mapped to Neuron 1 and the next sample to Neuron 2 and so does the pattern continues till

the end of the first quarter cycle. The number of samples that are being preserved solely depend on the

number of neurons that are available in the input layer (layer 1) as it is shown in Fig 6.5.

6.3.1 SNN model description

The spiking neural model used in this application is modified from the original model proposed by

Iglesias and Villa [3], which was already described in Chapter 2, in order to obtain a simple LIF model.

There are some reasons to use this model in this application. One of these reasons is that the LIF model is

suitable for applications which involve processing of time-varying signals [2, 8]. The model proposed by

Iglesias and Villa models the neuron as LIF model and describes the mechanism of plasticity in the

synapses. In this application, the plasticity of the synapses are not used.

6.3.1.1 Membrane Potential

 () (())((())) ∑ ()
 (6.1)

Where:

 1iV t  refers to the membrane potential of the neuron

 corresponds to the value of the membrane resting potential

Si(t) is the spike generated by the neuron

 is the time constant associated to the current of leakage of the neurons

Chapter 6 Proof-of-concept application on SNAVA

138

 ji t is the postsynaptic potential (excitatory or inhibitory)

The generation of the spike in the neuron Si(t) is a function of the membrane potential Vi(t) and a

threshold potential , such that Si(t)=H(Vi(t)-), where H is the Heaviside function, H(x)=0: x<0,

H(x)=1:x>0.

6.3.1.2 Synaptic strength

The post-synaptic potentials  ji t is a function of the state of the pre-synaptic unit Sj, post-synaptic

potential in the synapses P1,2(t), where the postsynaptic potential P1,2(t) is fixed for the particular type of

synapse (excitatory or inhibitory). The post-synaptic potential is expressed by the following equation:

In the previous application [1], which was developed to detect the frequency level, the value of the

synaptic and neural parameters of the SNN model was chosen artificially. Some of these values do not

correspond to real time values with which the biological neuron operates. For this application, the values,

which are not the same as proposed in the original model, are the post-synaptic potentials P1 and P2.

Where the postsynaptic potential P1,2(t) is fixed for the particular type of synapse (excitatory or

inhibitory). From Table 6.1 one can see that the values of P1 and P2 was selected very high, around of 10

times more than the original values, since the number of synapses per neuron and the number of neurons

are very small (100 neurons and 8 synapses per neuron) in comparison with the values being proposed for

the simulation of 10000 neurons with 300 synapses per neuron).

Table 6.1: Parameter list of the main variables used for leaky integrate-and-fire neurons

Variable Original

values

Modified

values

Hexadecimal

representation for

the modified

values

Short description

P1 0.84 mV 10 mV 03E8 Excitatory Post synaptic potential

P2 -1.40 mV -20 mV F830 Inhibitory Post synaptic potential

Vrest -78 mV -78 mV E188 Membrane resting potential

 i -40 mV -40 mV E1BA Membrane threshold potential

trefract 3 ms 3 ms 0003 Absolute refractory period

mem 15 ms 15 ms EF7D Membrane time constant

 () () () (6.2)

Chapter 6 Proof-of-concept application on SNAVA

139

The decimal values of the synaptic parameters and neural parameters were converted to hexadecimal

values by using the expression (6.3), every increment in the value of the synaptic and neural parameters is

represented by 1 µV.

 ()

 (())

(6.3)

Where: V is the synaptic or neural value in decimal to be converted in hexadecimal value. For instance,

the value of excitatory post synaptic potential P1 (10 mV) is converted in hexadecimal by using the

expression (6.3), its the corresponding value in hexadecimal is 3E816.

The expression 6.4 is used for calculating the time constant associated to the current of leakage of the

neurons

 (
)

 ((
)

)

(6.4)

Where: N the maximum number of bits to represent the time constant, and
mem is the membrane time

constant.

6.3.2 Amplitude classifier

The selected topology consists of 50 neurons distributed in two layers per frequency band. The

description of the topology was explained in Chapter 4. The same mechanism is used in this application.

The only difference that it is applied to detect the amplitude whereas the same topology used in Chapter 4

detects the frequency of the input signal. This topology was proposed in order to process the spikes that

are mapped from time to space by using the time-to-space converter (see Chapter 4). The number of

spikes is a function of the value of amplitude of the input signal, while the information of the frequency is

given by the inter-spike time. Therefore, the variation in the frequency allows to store different number of

spikes, while the DMP (Ubichip) is in its processing phase. So that different levels of frequencies can be

detected. The value of the amplitude is fixed to a certain value. In SNAVA, the change in the amplitude

allows to have different number of spikes, which are stored in the FIFO of the time to space converter, by

fixing the value of the frequency. By applying these spikes to the SNN topology, different levels of

amplitude can be detected.

Chapter 6 Proof-of-concept application on SNAVA

140

The number of bands to be implemented in SNAVA depends mainly on the capacity of the FPGA and the

number of levels of amplitude to be detected by means of the SNN network. The current implementation

of SNAVA has the capacity of 2 frequency bands by using a single virtual layer. The input layer has 40

neurons which are responsible to detect the input spikes and the second layer has 10 neurons which

indicate the amplitude level.

6.4 Experimental results

The results presented in this section show the performance of the current version of the bio-inspired

system which only includes the spike generator and the SNN network to detect the amplitude at a certain

frequency. The filter bank has not been implemented in the current version of the bio-inspired system due

to time constraints. The above work would be carried out in the future. Therefore, it has been considered

that the signal fed has already been filtered as shown in Fig. 6.4. In this experiment, the signal provided

by the function generator is fed to the Analog to Digital Converter (ADC). The ADC module is embedded

in the AMS101 Evaluation Card [9]. This ADC is in charge of translating the continuous signals into

equivalent digital words of 16 bits and the rate of conversion is 1 Msamples/s. All these modules have

been implemented on two Xilinx KC705 development kits. The ADC was connected to one of these

boards, as shown in Fig. 6.5. The implementation of the coders was done in a single board. This is

because they can act as the input of the system network. The SNN network is implemented in another

board in order to exploit the maximum capacity of the FPGA to support maximum number of neurons.

These two boards are connected a ring topology [6] through the AER in order to distribute the spikes

through the network. The chip id 1 indicates the board in which the spike coders have been implemented

and chip id 2 is the board in which the SNN network is implemented as shown in Fig. 6.5.

Figure 6.5: Implementation of the bio-inspired system

Chapter 6 Proof-of-concept application on SNAVA

141

Our experiments were done by analysing three frequencies, which were generated by the function

generator, with different amplitudes ranging from 0 to 1 Volt. The three frequencies proposed are 20 Hz,

200 Hz, 2000 Hz with five different voltages each one 100 mV, 300 mV, 500 mV, 700 m V, and 900 mV.

As mentioned earlier, every spike coder is connected to one group of neurons. These spike coders were

programed to perform the detection of zero crossing. Besides, these coders generate ‘n’ number of spikes

for every 100% of the amplitude of sinusoidal signal. However, in this application only the 25% signal is

processed by the digital coders in order to achieve the detection of the amplitude by means of SNN (see

Fig. 6.3). As it was mentioned above, the SNN network consists of 50 neurons in each group. This group

has two layers; the first layer (40 neurons) is in charge of processing the spikes produced by the spike

coders by using the time to space technique. Therefore, it is necessary to calculate the number of spikes

produced by the spike coder in the first quarter of the signal in order to allocate 40 spikes in 40 neuron

input layer, to indicate the maximum amplitude voltage which corresponds to 1 V. The 10 neurons output

layer indicate the level of the amplitude, each neuron indicates an increment of 100 mV. The spikes are

produced by the digital coder are in the same way that the spikes produced by the APP (see Chapter 4).

The calculation of the maximum inter-spike time Tspikemax indicates the time between spikes. The number

of spikes produced by the first quarter is in function of the time T1/4 and the Tspikemax as is indicating by the

equation 6.5. The number of spikes for the first quarter is calculated as follows:

 ()
 (6.5)

The process to obtain the Tspikemax was described in Chapter 4, so that substituting the following values: A

= 1 V, NB = 8 bits, and the input frequency fin = 20 Hz in the equations 4.4 and 4.5, the Tspikemax is

calculated.

 spikes

The maximum number of neurons in the input layer is 40. Therefore, every 5 samples are processed by

the spike coders in order to obtain 40 spikes when the amplitude is 1 volt, where these samples are

provided by the ADC in every 1 µs. The procedure to calculate the maximum number of spikes which are

generated by the first quarter was applied to 3 different frequencies, and tabulated in Table 6.2.This table

summarizes the values obtained taking into account the same data except for the value of the frequency of

the signal fin.

Chapter 6 Proof-of-concept application on SNAVA

142

 Table 6.2: Number of samples for three different frequencies in the first quarter of the signal

According to the SNN topology proposed in this work, every block of neurons is composed by two

layers, the first layer contains 4 neurons and the second layer contains 1 output. The output of each

neuron of the second layer indicates an increment of 100 mV. Table 6.3 shows the number of input spikes

which are required to be mapped in the input layer, in order to detect the increment of 100 mV in each

output neuron. The allocation of the input spikes in the input layer is based on the time to space

translation. This technique was explained in Chapter 4.

Table 6.3: Input layer neurons to detect the peak of amplitude from 0 V to 1 V

The number of spikes produced by the spike generator, by considering the range from (20 Hz to 2000

Hz), reveals that the value of the frequency of the input signal does not have any incidence in the

calculation of the number of spikes for different frequencies as shown in Table 6.4

As it mentioned in the beginning of this section, 3 frequencies have been used to test the bio-inspired

system (see Fig. 6.6). Every frequency was tested by using one group of neurons from the available two.

This is because the system has only one ADC, which is connected to the spike coders. Every signal was

introduced to the system for 300 cycles of simulation. Every cycle of processing phase in SNAVA lasts

for 8.68 µs by executing the leaky integrate-and-fire model. This time was calculated by using the

expression 6.6.

Frequencies fin T1/4 Tspikemax Number of spikes

20 Hz 12.5 ms 62.41 µs 200

200 Hz 1.25 ms 6.241 µs 200

2000 Hz 0.125 ms 0.6241 µs 200

Voltage Number of input spikes Voltage Number of spikes

1000 mV 40 500 mV 20

900 mV 36 400 mV 16

800 mV 32 300 mV 12

700 mV 28 200 mV 8

600 mV 24 100 mV 4

 NDNSDS
B

BS
PSNN vvT 








 3085

(6.6)

Chapter 6 Proof-of-concept application on SNAVA

143

Where: NTD is the number of clock cycles, Nv is the number of virtual layers, S is the number of synapses

per processor, P is the number of Processing Elements (PEs), B is the Ethernet bus width, SD is the

number of synapse parameters to display, ND is the number of neuronal parameters to display and BS is

the Buffer size. The following values were considered in the calculation of a single processing phase in

SNAVA. Nv =1, S= 8, P = 100, BS = 32, B = 4, SD = 0, and ND = 1. The value of ND implies the

sending of the neural parameters to be displayed on the monitor. In this case, the membrane voltage and

the post-synaptic spike can be observed. This expression gives the number of clock cycles to execute the

LIF model, so that this value has multiplied by the value of the clock system which is 125MHz.

Table 6.4: Number of spikes produced by the spike coder for different frequencies (20Hz-2000Hz) @

1Volt

f (Hz) fspike(max) (Hz) Tspike(max) (s) T 1/4 (s) Number of spikes

20 16028.57 6.23E-05 0.0125 200.3

30 24042.85 4.15E-05 0.0083 200.3

40 32057.14 3.11-05 0.0062 200.3

50 40071.42 2.49E-05 0.005 200.3

60 48085.71 2.07E-05 0.0041 200.3

70 56100 1.78E-05 0.0035 200.3

80 64114.28 1.55E-05 0.0031 200.3

90 72128.57 1.38E-05 0.0027 200.3

100 80142.85 1.24E-05 0.0025 200.3

200 160285.71 6.23E-06 0.0012 200.3

300 240428.57 4.15E-06 0.00083 200.3

400 320571.42 3.11E-06 0.00062 200.3

500 400714.28 2.49E-06 0.0005 200.3

600 480857.14 2.07E-06 0.00041 200.3

700 561000 1.78E-06 0.00035 200.3

800 641142.85 1.55E-06 0.00031 200.3

900 721285.71 1.38E-06 0.00027 200.3

1000 801428.57 1.24E-06 0.00025 200.3

2000 1602857.14 6.23E-06 0.0005 200.3

Chapter 6 Proof-of-concept application on SNAVA

144

Figure 6.6: Amplitude detection of the input signal (300 mV @ 20Hz)

Figure 6.6 shows the output of the group of neurons by enabling the frequency of 20 Hz and the

amplitude of 300 mV. As it can be observed from the Fig. 6.6, the output neuron 4 is indicating that the

amplitude is around 300 mV. But theoretically, neuron 3 must indicate the amplitude value as 300mV.

One of the possible reasons to justify this deviation in the neuron number is due to noise existing in the

conversion of the ADC of the input signal at low frequencies (20-200Hz). The maximum value of the

noise at low frequencies is around of 40 mV, and the value of the threshold of the spike coder is 30mV. A

similar test was being done and for certain cases the results were coinciding with the theoretical values

and in some it was not. The summary of the series of experiments the network underwent has been

tabulated in Table 6.5.

Chapter 6 Proof-of-concept application on SNAVA

145

Table 6.5: Amplitude and frequency detection for 3 different frequencies

{This summarises the results obtained by the detection of 3 different frequencies (2 Hz, 200 Hz, and 2000

Hz) with 5 different voltages each one (100 mV, 300 mV, 500 mV, 700 m V, and 900 mV).}

Frequency Amplitude Output neuron

20 Hz 100 mV 1

 300 mV 4

 500 mV 5

 700 mV 7

 900 mV 9

200 Hz 100 mV 1

 300 mV 4

 500 mV 6

 700 mV 8

 900 mV 9

2000 Hz 100 mV 1

 300 mV 3

 500 mV 5

 700 mV 7

 900 mV 9

6.5 Conclusion

The bio-inspired system for processing the information from the multiple-input sensor is presented in this

work. The amplitude and frequency detection application was implemented by using this bio-inspired

system. The proposed system extracts the frequency of the input signals by using a bank of band-pass

filters. Therefore, the information of the amplitude is given by the number of spikes that are generated by

the coders in the first quarter cycle of the signal after the detection of zero crossing. The detection of the

amplitude of the input signal was achieved successfully.

The results presented in this chapter were obtained by running the simulation for 300 cycles and keeping

the same input signal during the whole simulation. A future testbench will include the evaluation of the

system on real time emulation, where the amplitude will change during the simulation in order to observe

the transitions in the change of the amplitude. The current version of the software which allows the

Chapter 6 Proof-of-concept application on SNAVA

146

displaying of the neural activity suffers for some limitations, in particular to display the simulation of the

SNN on real time (1 ms step time resolution).

References

[1] Sanchez, G.; Koickal, T.J.; Sripad, T.A.A.; Gouveia, L.C.; Hamilton, A.; Madrenas, J., "Spike-

based analog-digital neuromorphic information processing system for sensor

applications," Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, pp. 1624-

1627, 19-23 May 2013.

[2] E. M. Izhikevich, "Simple model of spiking neurons," Neural Networks, IEEE Transactions on,

vol. 14, pp. 1569-1572, 2003

[3] J. Iglesias, J. Eriksson, F. Grize, M. Tomassini, and A. E. P. Villa, "Dynamics of pruning in

simulated large-scale spiking neural networks," Biosystems, vol. 79, 2005.

[4] Wysoski, Simei Gomes and Benuskova, Lubica and Kasabov, Nikola, “Evolving spiking neural

networks for audiovisual information processing,” Neural Networks, pp. 819-835, 2010.

[5] Smith, L.S.; Fraser, D.S., “Robust sound onset detection using leaky integrate-and-fire neurons

with depressing synapses”, Neural Networks, IEEE Transactions on, vol. 15, no.5, pp. 1125-

1134, Sept.2004.

[6] Taho Dorta Pérez, “AER-RT: Interfaz de Red con Topología en Anillo para SNN Multi-FPGA,”

Master Thesis, Universitat Politècnica de Catalunya, July 2013.

[7] Gouveia, L.C., T.J. Koickal, and A. Hamilton, “An asynchronous spike event coding scheme for

programmable analog array,” in Circuits and Systems, 2011, ISCAS 2011, IEEE International

Symposium on, pp. 791-799, 2011.

[8] A. van Schaik, E. Fragniere, and E. Vittoz, “A silicon model of amplitude modulation detection

in the auditory brainstem,” In M.C. Mozer et al., editor, Advances in Neural Information

Processing Systems 9, MIT Press, pp. 741-747, 1997.

[9] http://www.xilinx.com/products/boards-and-kits/DK-K7-EMBD-G.htm

147

Conclusion and ongoing work

7.1 Conclusion

7.2 Ongoing work

References

This chapter presents the conclusion as well as the ongoing work. The conclusion gives details about the

observations, the original contributions and issues in the development of the bio-inspired system to

emulate large-scale SNN models efficiently. The ongoing work is dedicated to the development of a

sound application implementation which based on the onset detection. This application is inspired by the

functionality of the cochlea. The preliminary results of this implementation are provided in the Annexure

B.

7.1 Conclusion

In this thesis, several techniques and methodologies were used for the development of a bio-inspired

configurable system for efficient emulation of Large-scale SNN models in FPGA devices. The term

efficient refers mainly to the factors to be considered in the Large-scale SNN emulation in compact

digital devices. These factors are high processing speed, high interconnectivity, low area and power

consumption. In addition to these factors, the bio-inspired system was designed to take maximum

advantage of configurability a main feature offered by FPGAs . Therefore, this bio-inspired architecture

intends to offer an interesting development tool to support different SNN models by exploiting the re-

configurability of the FPGA and minimizing implementation time.

The methodology proposed in this work consisted of two phases in order to achieve the configurable SNN

emulator. The first phase was dedicated to the debugging and commissioning of the complex prototype

called Ubichip which was proposed in the PERPLEXUS project [1]. These tasks have consumed a

significant amount of time and effort because large number of errors were detected and solved. During

this period of time, several SNN models were simulated in Ubichip in order to verify its performance.

Also, the development of a data interface was done in order to provide sensory information to the Ubichip

from an analogue bioinspired pre-processor. This gave an opportunity for the implementation of an

application which involves the detection of frequency of a sinusoidal signal by means of spiking neurons.

The value of the neural and synaptic parameters involved in the SNN algorithm used in this application

148

was analysed and fixed to determine the right measures to assess that the network activity corresponded

to desired behaviour in the application. Many tests were carried out to achieve successful implementation.

The configurability of Ubichip has helped in the easy implementation of different algorithms in relatively

short time. The second phase was dedicated to the development of the SNAVA SNN emulator and also to

the development of proof-of-concept sensing applications. The use of modern FPGAs requires the

knowledge of new software tools which synthesize and implement the design in an optimized manner.

Several technical issues regarding the implementation of SNAVA in Kintex-7 FPGA were attended.

These include the timing delays. These important delays must be taken into account in the design of any

digital system that is implemented in new FPGA technologies, because they work at high frequency

clocks.

From this point, several original contributions have been made. Firstly, the performance of the Ubichip

was quantified and several ideas were obtained from these results. The design of SNAVA takes into

account the bottlenecks of Ubichip. Thereby, the contribution is given by the optimal resource allocation

in the FPGA. One of these resource allocation is regarding the memory system. Another important

contribution is the development of customized instructions in order to increase the performance of the

processing system. Therefore, SNAVA provides several features in order to implement different SNN

model for different applications:

- Multi-model support

- Different number of synapses per neuron

- Connection between neurons is point to multi-point

- Virtual neuron support

The SNAVA architecture has been compared with other state-of-the-art SNN digital emulators. A

distinguishing factor of our architecture is the time-driven processing, in contrast with event-driven

processing of most digital implementations. Although event-driven may be more efficient in processing

time, it splits from the real-time biological principle as it is very inconvenient (and virtually impossible)

to model local noise sources, as this would require continuous event processing. The good point, and also

the limitation of the time-driven architectures is that they can faithfully emulate analogue neurons

(artificial or biological) provided the processing time step is kept small enough. In this direction, the fact

of using simple and time-multiplexed processing elements confers a distinguishing advantage compared

with other approaches for network scalability.

149

7.2 Future work

The available SNAVA prototype is being tested to support various neural models. Hence SNAVA is now

being used for the development of the onset detection system proposed in [2]. The onset detection system

is an application that determines the sudden changes or the beginning of an acoustic signal. In other

words, the functionality of the human middle ear i.e. the cochlea is tried to be imitated using the SNAVA

architecture. This application was initially done in the simulation level using MATLAB by the Prof.

Leslie Smith team from University of Sterling, Scotland. The future work aims to the implementation of

the same application using a hardware platform. The preliminary results are obtained and discussed in

Annexure B of this thesis.

There is a remaining point that has to be resolved is the area consumption in SNAVA+. This consumption

is due to the implementation of large number of synapses. The current approach requires a large amount

of hardware resources. Therefore, there must change in the strategy in order to avoid unnecessary

consumption of hardware. The possible method to save the area is to build a system with routers. The

current approach in the connection is point to multipoint. Therefore, the flexibility is being reduced

because these routers make the connections point to point.

Also the modelling the delay in the dendrites and the axon is a remaining work. Many implementations

do not take them into account either, but this is very important aspect since in the biological neuron such

delays present in the dendrites and axon are supposed to play a relevant role. Hence in order to realize a

more realistic application in SNAVA this modification has to be done which will also improve the

performance of SNAVA.

References

[1] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M. Moreno, and J. Madrenas, “The

Perplexus bio-inspired reconfigurable circuit”, in Adaptive Hardware and Systems, AHS 2007,

Second NASA/ESA Conference on, pp. 600-605, 2007.

[2] M. J. Newton and L. Smith, “A neurally inspired musical instrument classification system based

upon the sound onset”, J. Acoust. Soc. Am. 131, pp. 4785–4798, 2012.

150

151

Set of instructions of SNAVA

A.1 Introduction

A.2 Operation of the sequencer

A.3 Instructions classification and formats

A.4 Algorithm structure

A.5 Architecture functional

A.6 Sequencer register mapping

A.1 Introduction

This annexure describes the operation of the SNAVA sequencer, the format and classification of its

instructions, the algorithm structure and finally the mapping of the registers of this sequencer.

Figure A.1: Architectural Overview of SNAVA

Annexure A Set of instructions of SNAVA

152

The sequencer controls the program flow of computing the Spiking Neural Network algorithms. Several

algorithms can be performed by SNAVA, under the condition that the communication between neurons is

represented by spikes. This is possible because the instructions to execute the algorithm are stored in the

Block of RAM. Only changing the memory program different SNN algorithms can be simulated. This

represents the main feature of SNAVA called programming flexibility. The sequencer read the

instructions from this BRAM and decoded it to indicate the operation to be executed by the ALU of the

Processing Element (PE) when required. As it can be observed in Figure A.1, the sequencer is a single

block that is external to all Configurable Processing Elements. This block is responsible for fetching and

decoding the instructions stored in a block of RAM, broadcasting the instruction to be executed by the PE

array, executing the instructions specific for the sequencer itself, and provides synapse count to the spike

register and synaptic BRAM of the PE to deliver the right data to the PE. The details of these functions

will be explained in the next sections.

A.2 Operation of the Sequencer

The sequencer provides two phases of operation, the processing phase (phase 1) and the spike

communication phase (phase 2). In phase 1, is used for the general parallel execution in the PE array. The

sequencer executes instructions and controls the execution of the PE array. After every cycle of synapse

and neuron dynamics computation, the generated output spikes have to be transmitted by the AER

module to all the neurons inputs by means of the AER bus [1]. During phase 2 the sequencer stop its

operation, only the sequencer resumes its processing phase when the AER module finish its spike

communication distribution.

In Figure A.2, a time diagram shows the handshake signals. The default sequencer operation is in

processing phase, so after the system reset, it operates in phase 1. When the sequencer executes a

SpikeDis instruction, it enters the halt state, and sets the eo_exec signal, indicating the phase 2 starts. The

AER module perform the distribution of the spikes through the AER bus, when this module finishes it

sets the ei_exec signal. This signal is read by the sequencer to resume its processing phase.

Figure A.2: Handshake sequencer signals for change of the operation mode

Annexure A Set of instructions of SNAVA

153

A.3 Instruction classification and formats

The sequencer instruction set includes the ALU-related and the control-flow instructions. These two main

classes of instructions are distinguished depending on their purpose:

a) Flow control: These instructions determine the program sequence and they are executed by the

sequencer. Some of these instructions are transmitted to the PE array, and every PE has the logic to

perform customized instructions in combination with the operation of the sequencer in order to increase

the processing speed in the computation of the SNN algorithms.

b) Data processing: These are ALU-related instructions to be executed by the PEs. These instructions are

broadcasted to the PE array.

- Set of instructions of the sequencer – Flow control

Within each class, the instructions that require the same control line can be joined in groups, as shown in

Table A.1. There are 9 groups of instructions related to the operations carried out in the ALU of the PE,

and 10 group of instructions related to the sequencer operation in order to control de flow of the

processing of the SNN algorithms.

Table A.1: Sequencer instruction group A/S: ALU-related/Sequencer

Instruction group Class Description

NOP A No operation

REGISTERS A ALU register operation

ARITHMETIC A ALU arithmetic operation

LOGIC A ALU logic operation

MOVEMENT A ALU register transfer

CONDITIONAL A Disable or enable of ALU registers

FLAGS A Flag set or reset

RANDON A Pseudorandom number operation

STORESP A Data load from the synaptic BRAM to the ALU registers

STOREPS A Data store from the ALU registers to the synaptic BRAM

STOREB A Data transfer from the buffer to the CPU monitor through the

Ethernet bus

LOOPS S Start loop. Counter setting of the synapses

Annexure A Set of instructions of SNAVA

154

LOOPN S Start loop. Counter setting of the virtual layers

ENDL S End loop. Counter decreasing for LOOPS and LOOPN

GOTO S Unconditional jump instruction

GOTONL S Conditional jump instruction.

RET S Return instruction

HALT S Halt instruction

SPKDIS S SPKDIS instruction for the AER module

READMP S Read memory pointer from the BRAM instruction

RST_SEQ S Reset sequencer

Almost all the instructions executed by the sequencer require a single cycle except for the multiplication

operation which requires 2 cycles. In certain instructions like the GOTO, RET, LOOPS, LOOPN, ENDL

and READMP the pipeline has to be broken as the data to be distributed is also to be fetched from the

BRAM. Only 2 clock cycles are required to resume the pipeline operation.

Figure A.3 shows the format of the instructions. These instructions have been defined according the

function that performs. As it can be observed from Figure A.3, only three of the instructions require 2

byte, the remaining instructions require 11 bits.

Figure A.3: Instruction formats. GOTO, READMP, LOOP and other instructions

A brief explanation about the instructions is provided below

Annexure A Set of instructions of SNAVA

155

- GOTO: the field of the address indicates the position of the BRAM to be read by the

sequencer when is required. The length defined in this architecture is the 10 bits.

- READMP: the field of the address refers to the memory position of the constants which are

allocated in the BRAM instructions.

- LOOP: the LOOP instruction includes LOOPS and LOOPN, the function of each loop will

be explained in the following section.

- OTHER: The format of the default instructions linked with the sequencer only need the

specification of the opcode, while the ALU instructions require the position of the bank of

registers (from 1 to 7) to execute the instruction. The details of the format of the ALU

instructions will be explained in the next section.

- PE instructions – Data processing

Some instructions of SNAVA were designed in order to increase the processing speed in the algorithm

execution. As it was indicated above, almost all of the following instruction requires a single clock cycle

to be executed, except for the multiplication. This instruction requires 2 clock cycles. Table A.2 shows

the instructions which are processed by the ALU.

• NOP: it does not perform any operation.

• LLFSR reg: loads in the selected active register the 16 MSB of the 64-bit Galois Pseudo

random number generator

• LOADSP: loads the synaptic parameters of the current virtual layer from the synaptic

BRAM to the active register bank.

• STOREB: the monitor buffer contains the values of the register accumulator and the

register 1 of each PE. All the monitor buffers of the array are read by the Ethernet user side

when the sequencer executes the STOREB instruction. The STOREB instruction is used

only when the user wants to send parameters to be displayed on the monitor. These

parameters are send to an external CPU (external interface) via Ethernet.

• STORESP: saves the synaptic parameters of the current neuron from the active register

bank to the synaptic BRAM.

• RST reg: resets to 0 the content of the selected active register

• SET reg: sets to 1 the content of the selected active register

• SHLN n: operates a left shift of n positions on the accumulator. The last shifted bit is saved

in the carry out register

• SHRN n: operates a right shift of n positions on the accumulator. The last shifted bit is

saved in the carry out register

Annexure A Set of instructions of SNAVA

156

• RTL: operates a left shift of 1 position on the accumulator. The last shifted bit is saved in

the carry out register

• RTR: operates a right shift of 1 position on the accumulator. The last shifted bit is saved in

the carry out register

• INC: increment 1 to the accumulator.

• DEC: subtracts 1 to the accumulator.

• NEG reg: copy in the accumulator the content of selected register, changing its sign.

• ADD reg: sums the selected register with the accumulator. The result is stored in the

accumulator.

• SUB reg: subtracts the value contained in the selected register from the value contained in

the accumulator. The result is stored in the accumulator.

• MUL reg: multiplies the selected register with the accumulator. The 16 bit result out from

the actual 32 bit result is stored in the accumulator. The result is represented by unsigned

format.

• UNMUL reg: multiplies the selected register with the accumulator. The 16 bit saturated and

signed result is stored in the accumulator.

• AND reg: performs a logical AND between the selected register and the accumulator. The

result is stored in the accumulator.

• OR reg: performs a logical OR between the selected register and the accumulator. The

result is stored in the accumulator.

• INV reg: performs a logical NOT on the selected register and the stores the result in the

accumulator.

• XOR reg: performs a logical XOR between the selected register and the accumulator. The

result is stored in the accumulator.

• MOVA reg: moves the content of the selected register in the accumulator.

• MOVR reg: moves the content of the accumulator in the selected register.

• SWAPS reg, n: swaps the contents of the selected shadow register and the corresponding

active register. This instruction has two parameters:

• reg: is the number of register to swap with its corresponding active register.

• n: is the number of register bank from which it is wanted to select the register

(reg) to swap.

• FREEZEC: disables the registers of the ALU if the carry out is 1.

• FREEZENC: disables the registers of the ALU if the carry out is 0.

Annexure A Set of instructions of SNAVA

157

• FREEZEZ: disables the registers of the ALU if the zero flag signal is 1.

• FREEZENZ: disables the registers of the ALU if the zero flag signal is 0.

• SETZ: sets to 1 the zero flag.

• SETC: sets to 1 the carry flag (carry out).

• CLRZ: clear to 0 the carry flag (carry out).

• CLRC: clear to 0 the carry flag (carry out).

• RANDON: enables the LFSR. The LFSR register is the source of the LLFSR operation.

• RANDON1: enables the LFSR. The LFSR register is the source of the LLFSR operation.

• RANDOFF: disables the LFSR.

Table A.2: CPE Instruction with opcode

Instructi

on

Group Format Opco

de

Description Function

NOP NOP NOP 0 No operation

LDALL LOADALL LDALL

reg

1 reg <= BRAM sequencer(constants)

LLFSR LLFSR LLFSR reg 10 reg <= LFSR register (63 downto 48)

LOADS

P

LOADSP LOADSP 11 reg <= BRAM & spike_register (synapse parameters)

STORE

B

STOREB STOREB 100 Monitor BUFFER <= acc

STORE

SP

STORESP STORESP 101 BRAM <= reg

STORE

PS

STOREPS STOREPS 110 AER_FIFO <= pre-synaptic (Si)

RST REGISTER

S

RST reg 111 reg <= (others=>’0’)

SET REGISTER

S

SET reg 1000 reg <= (others=>’1’)

SHLN REGISTER

S

SHLN n 1001 ACC <= ACC (n) <<, (1 < n < 8), (n = number of

positions)

SHRN REGISTER

S

SHRN n 1010 ACC <= ACC (n) >>, (1 < n < 8), (n = number of

positions)

RTL REGISTER

S

RTL 1011 ACC <= ACC <<, carry = ACC(msb)

RTR REGISTER

S

RTR 1100 ACC <= ACC >>, carry = ACC(lsb)

INC REGISTER

S

INC 1101 ACC <= ACC + 1

DEC REGISTER

S

DEC 1110 ACC <= ACC – 1

NEG ARITHME

TIC

NEG reg 1111 ACC <= 0 – reg

Annexure A Set of instructions of SNAVA

158

ADD ARITHME

TIC

ADD reg 1000

0

ACC <= ACC + reg (Saturation)

SUB ARITHME

TIC

SUB reg 1000

1

ACC <= ACC – reg (Saturation)

MUL ARITHME

TIC

MUL reg 1001

0

ACC <= ACC * reg (Saturation)

UNMUL ARITHME

TIC

UNMUL

reg

1001

1

ACC <= ACC * reg (unsigned)

AND LOGIC AND reg 1010

0

ACC <= ACC AND reg

OR LOGIC OR reg 1010

1

ACC <= ACC OR reg

INV LOGIC INV reg 1011

0

ACC <= INV OR reg

XOR LOGIC XOR reg 1011

1

ACC <= ACC XOR reg

MOVA MOVEME

NT

MOVA

reg

1100

0

ACC <= reg

MOVR MOVEME

NT

MOVR

reg

1100

1

reg <= ACC

SWAPS MOVEME

NT

SWAPS

reg, n

1101

0

reg ↔ shadow_reg, 1<n<7, n = number of shadow

banks levels

FREEZ

EC

CONDITIO

NAL

FREEZEC 1000

01

Disable the registers of the ALUs if C=1

FREEZ

ENC

CONDITIO

NAL

FREEZEN

C

1000

10

Disable the registers of the ALUs if C=0

FREEZ

EZ

CONDITIO

NAL

FREEZEZ 1000

11

Disable the registers of the ALUs if Z=1

FREEZ

ENZ

CONDITIO

NAL

FREEZEN

Z

1001

00

Disable the registers of the ALUs if Z=0

UNFRE

EZE

CONDITIO

NAL

UNFREEZ

E

1001

01

Enables the registers of the ALUs

SETZ FLAGS SETZ 1001

11

Sets the zero flag: Z <= 1

SETC FLAGS SETC 1010

00

Sets the carry flag: C <= 1

CLRZ FLAGS CLRZ 1010

01

Clears the zero flag: Z <= 0

CLRC FLAGS CLRC 1010

10

Clears the zero flag: C <= 0

RANDO

N

RANDON RANDON 1010

11

random_en <= 1; LFSR becomes source register for

LLFSR

RANDO

N1

RANDON RANDON 1011

00

random_en <= 1; LFSR_STEP<=1; LFSR becomes

source register for LLFSR

RANDO

FF

RANDON RANDON 1011

01

random_en <= 0; LFSR_STEP <=0; LFSR disabled

A.4 Algorithm structure

Every SNN algorithm to be implemented in SNAVA, it must contain in its code the neuronal LOOP

(LOOPN) and the synaptic LOOP (LOOPS). The LOOPS and LOOPN are the two instructions that are

Annexure A Set of instructions of SNAVA

159

executed by the ALU and the sequencer in order to perform synaptic parameters and neural parameters

respectively. Therefore, the synapses and virtual neurons are carried out serially in SNAVA. Figure A.4

shows a generic code structure of SNN algorithms to be emulated in SNAVA. The details of each Loop

and the instructions are provided in the following paragraphs.

Figure A.4: Code structure of a typical SNN emulation in SNAVA

- Structure of the synaptic loop

As can be observed from Figure A.4, the LOOPS contain the instructions LOADSP and STORESP.

These instructions were designed in order to load the synaptic parameters from the synaptic BRAM to the

active registers by using a single clock cycle or vice versa.

• LOADSP & STORESP: these instructions load the synaptic parameters in the current virtual

layer from the synaptic BRAM to the active register bank (LOADSP) and the reverse operation

(STORESP). The synaptic BRAM is wired to the active register of every PEs as shown in Figure

A.5.

• STOREB: the monitor buffer contains the values of the register accumulator and the register 1 of

each PE. All the monitor buffers of the array are read by the Ethernet user side when the

sequencer executes the STOREB instruction. The STOREB instruction is used only when the

user wants to send parameters to be displayed on the monitor. These parameters are send to an

external CPU (external interface) via Ethernet. Figure A.8 shows the structure of the monitor

buffers which are allocated in each Processing Element and the interface with the Ethernet

controller.

Annexure A Set of instructions of SNAVA

160

Figure A.5: Synaptic BRAM wired to active registers

- Structure of the neuronal loop

The instructions contained inside of the LOOPN instruction are repeated in equal number of times as the

number of virtual layers was defined. The execution of the LOOPN instruction by the sequencer indicates

the index of the virtual neuron to the ALU. Therefore, the neural values, which are stored in the bank of

shadow registers, can be transferred from the shadow registers to the active registers in a single clock

cycle, or vice versa, by executing the SWAP instruction. The index of the loop indicates which bank of

shadow register must be transferred in order to calculate the neural parameters by the ALU. The load

operation is illustrated in Fig. A.6, while the store operation is illustrated in Fig. A.7.

Annexure A Set of instructions of SNAVA

161

Figure A.6: Neural multiplexing – load operation

Figure A.7: Neural multiplexing – store operation

There are some fixed instructions that the neuronal loop should contain:

• STOREB: the monitor buffer contains the values of the register accumulator and the

register 1 of each PE. All the monitor buffers of the array are read by the Ethernet user side

when the sequencer executes the STOREB instruction. The STOREB instruction is used

only when the user wants to send parameters to be displayed on the monitor. These

parameters are send to an external CPU (external interface) via Ethernet. Figure A.8 shows

Annexure A Set of instructions of SNAVA

162

the structure of the monitor buffers which are allocated in each Processing Element and the

interface with the Ethernet controller.

• STOREPS: the sequencer enables the operation of the AER address Generator (see Fig.

A.10) in order to send the spikes, which are generated by each virtul layer, to the AER

module by executing the instruction STOREPS, as shown in Fig. A.4. Every virtual layer,

which corresponds to one neuron, is processed serially by means of the LOOPN cycle (see

Fig. A.4). Therefore, the spikes are read by the address generator only when the STOREPS

instruction is executed by the sequencer, and the neural parameters of one virtual layer have

been calculated. The AER address generator generates the AER address for each virtual

layer by taking into account the format that is illustrated in Fig. A.9. The AER address

generator indicates the position of the neuron, which has fired, this position involves its

position in the array of the PEs (row,colum) and its virtual layer (depth). The index of the

virtual layer is provided by the sequencer to the AER address generator through the signal

depth. The AER address generator write these spikes in the FIFO memory of the AER

control unit, as shown in Fig. A.10.

Figure A.8: Monitor buffer structure of SNAVA

Annexure A Set of instructions of SNAVA

163

ROW COLUM DEPTH

4 bits 4 bits 3 bits

Figure A.9: Format of the AER address per each neuron

Figure A.10: Scheme of reading of the spikes per each PE by the AER address generator

A.5 Architecture functional details

The SNAVA architecture is defined as Harvard machine, so that the instructions and data can be

simultaneously accessed from each memory which saves bus cycles, because of this has allowed

implementing the pipeline of a single stage mechanism in the sequencer in order to increase the

processing speed in performing the SNN algorithms. The data is stored in two hardware components

which are: Blocks of Random Access Memory (BRAM) and bank of registers. The BRAMs store the

parameters of the synapses, while the bank of registers is used to store the neural parameters. The BRAM

Annexure A Set of instructions of SNAVA

164

of the sequencer is dedicated to store the instruction memory pointer IMEMP, constants of the algorithm

and the instructions and as shown in Fig. A.11.

Figure A.11: Instructions and constants BRAM memory map

The sequencer module contains all the necessary logic to control the flow of the process in the simulation

of the Spiking Neural Network algorithms. The data path of the sequencer consists of a program counter

(PC) that point to the memory position of the next instruction. The length of the memory program is

limited to 1024 bytes due to 10-bit addressing of the PC. This component also has the IMEMP register

which indicates the position of the first instruction of the program. The DMEM register points the

position of the constants to be loaded to the registers of the PE array. Three Last-In First-Out (LIFO)

stacks are provided to keep track of iterations in the LOOPS and LOOPN instructions. The LIFO depth

by default is 8, so eight nesting levels are supported. Nesting requires storing the PC contents, the current

iteration number and the loop limit in the stacks depicted in Fig. A.12 (PC_LIFO, LOOP_LIFO, and

LOOP_LIFO2 blocks).

Annexure A Set of instructions of SNAVA

165

Figure A.12: Sequencer datapath

A Moore-type Finite State Machine was designed in VHDL in order to control the sequencer datapath.

The FSM state diagram is shown in Fig. A.13. FSM works as follows: a synchronous reset set the reset

state, so that all registers of the sequencer are set to 0. The initial state is reached after the reset state,

where the first position of the BRAM instruction is read and loaded into the instruction address pointer

IMEMP. Therefore, the program starts from the location pointed by the IMEMP. The next state is FECH.

In this state the BRAM is read using the IMEMP as base address so the first instruction is read and

decoded by the multiplexor called opcode. This multiplexor indicates the instruction. The PC is

incremented to point the next instruction. This process is carried out simultaneously. While the instruction

is decoded the next instruction is read by increment the PC counter. This mechanism allows the pipeline

execution, only in the instruction needs two clock cycles the pipeline process must broke. These

instructions involve the READMP, ENDL, GOTO and RET.

Annexure A Set of instructions of SNAVA

166

Figure A.13: Sequencer state machine

A.6 Sequencer register mapping

In this section the list of the internal sequencer registers has been provided. The mapping is shown in

Table A.3.

Table A.3: Registers of the sequencer

REGISTER CPU_ADDRESS(6:0) DESCRIPTION DATA IN

seq_enable_register 0110011 Loads enable flag from

external CPU

seq_enable_flag <=

CPU_data_in(0)

Annexure A Set of instructions of SNAVA

167

escape_flag 0000010 Loads escape flag from

external CPU (to escape

from S_HALT)

escape <=

CPU_data_in(0)

Int_aux_flag 0101101 Loads int_aux flag from

external CPU

int_aux <=

CPU_data_in(0)

counter_N_L 0000101 Load in the no learning

counter coming from the

external CPU

counter_N_L<=

CPU_data_in

simulation_steps_halt 0000011 Loads the number of

simulation steps

simulation_step_halt<=

CPU_data_in (15 downto

0)

PC_register 0000000 Lods the progrm counter

from the external CPU

PC <=

CPU_data_in(pc_length -

1 downto 0)

IMEM_P_register 0000100 Loads the pointer to

BRAM instruction bank

(IMEM_P) from the

external CPU

IMEM_P <=

CPU_data_in(pc_length -

1 downto 0)

DMEM_register 0000010 Loads the pointer to

SRAM data banks

(DMEM) from the

external CPU

DMEM <= CPU_data_in

PC_BUFFER(0) 0011000 Loads PC_BUFFER(0)

from the external CPU

PC_BUFFER(0) <=

CPU_data_in (pc_length -

1 downto 0)

PC_BUFFER(1) 0011010 Loads PC_BUFFER(1)

from the external CPU

PC_BUFFER(1) <=

CPU_data_in (pc_length -

1 downto 0)

PC_BUFFER(2) 0011100 Loads PC_BUFFER(2)

from the external CPU

PC_BUFFER(2) <=

CPU_data_in (pc_length -

1 downto 0)

PC_BUFFER(3) 0011110 Loads PC_BUFFER(3)

from the external CPU

PC_BUFFER(3) <=

CPU_data_in (pc_length -

1 downto 0)

PC_BUFFER(4) 0100000 Loads PC_BUFFER(4)

from the external CPU

PC_BUFFER(4) <=

CPU_data_in (pc_length -

1 downto 0)

PC_BUFFER(5) 0100010 Loads PC_BUFFER(5)

from the external CPU

PC_BUFFER(5) <=

CPU_data_in (pc_length -

1 downto 0)

PC_BUFFER(6) 0100100 Loads PC_BUFFER(6)

from the external CPU

PC_BUFFER(6) <=

CPU_data_in (pc_length -

1 downto 0)

PC_BUFFER(7) 0100110 Loads PC_BUFFER(7)

from the external CPU

PC_BUFFER(7) <=

CPU_data_in (pc_length -

1 downto 0)

PC_LIFO(0) 0001000 Loads PC_LIFO(0) from

the external CPU

PC_LIFO(0)<=

CPU_data_in(pc_length -

1 downto 0)

PC_LIFO(1)

0001010 Loads PC_LIFO(1) from

the external CPU

PC_LIFO(1)<=

CPU_data_in(pc_length -

1 downto 0)

PC_LIFO(2)

0001100 Loads PC_LIFO(2) from

the external CPU

PC_LIFO(2)<=

CPU_data_in(pc_length -

1 downto 0)

Annexure A Set of instructions of SNAVA

168

PC_LIFO(3)

0001110 Loads PC_LIFO(3) from

the external CPU

PC_LIFO(3)<=

CPU_data_in(pc_length -

1 downto 0)

PC_LIFO(4)

0010000 Loads PC_LIFO(4) from

the external CPU

PC_LIFO(4)<=

CPU_data_in(pc_length -

1 downto 0)

PC_LIFO(5)

0010010 Loads PC_LIFO(5) from

the external CPU

PC_LIFO(5)<=

CPU_data_in(pc_length -

1 downto 0)

PC_LIFO(6)

0010100 Loads PC_LIFO(6) from

the external CPU

PC_LIFO(6)<=

CPU_data_in(pc_length -

1 downto 0)

PC_LIFO(7)

0010110 Loads PC_LIFO(7) from

the external CPU

PC_LIFO(7)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO(0)

1000000 Loads LOOP_LIFO(0)

from the external CPU

LOOP_LIFO(0)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO(1)

1000010 Loads LOOP_LIFO(1)

from the external CPU

LOOP_LIFO(1)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO(2)

1000100 Loads LOOP_LIFO(2)

from the external CPU

LOOP_LIFO(2)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO(3)

1000110 Loads LOOP_LIFO(3)

from the external CPU

LOOP_LIFO(3)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO(4)

1001000 Loads LOOP_LIFO(4)

from the external CPU

LOOP_LIFO(4)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO(5)

1001010 Loads LOOP_LIFO(5)

from the external CPU

LOOP_LIFO(5)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO(6)

1001100 Loads LOOP_LIFO(6)

from the external CPU

LOOP_LIFO(6)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO(7)

1001110 Loads LOOP_LIFO(7)

from the external CPU

LOOP_LIFO(7)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO2(0) 1010000 Loads LOOP_LIFO2(0)

from the external CPU

LOOP_LIFO2(0)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO2(1) 1010010 Loads LOOP_LIFO2(1)

from the external CPU

LOOP_LIFO2(1)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO2(2) 1010100 Loads LOOP_LIFO2(2)

from the external CPU

LOOP_LIFO2(2)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO2(3) 1010110 Loads LOOP_LIFO2(3)

from the external CPU

LOOP_LIFO2(3)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO2(4) 1011000 Loads LOOP_LIFO2(4)

from the external CPU

LOOP_LIFO2(4)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO2(5) 1011010 Loads LOOP_LIFO2(5) LOOP_LIFO2(5)<=

Annexure A Set of instructions of SNAVA

169

from the external CPU CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO2(6) 1011100 Loads LOOP_LIFO2(6)

from the external CPU

LOOP_LIFO2(6)<=

CPU_data_in(pc_length -

1 downto 0)

LOOP_LIFO2(7) 1011110 Loads LOOP_LIFO2(7)

from the external CPU

LOOP_LIFO2(7)<=

CPU_data_in(pc_length -

1 downto 0)

Annexure A Set of instructions of SNAVA

170

171

Register mapping in SNAVA for

CPU access

B.1 Register mapping

B.1 Register mapping

This annexure presents the registers contained in every module in SNAVA in order to be accessed from

the external CPU. The access control is the unit which in charge of providing access to the Processing

Element array, sequencer, synaptic BRAMs, BRAM instructions, as shown in Fig. 5.1.

All components mentioned above are accessed by the user side of the Ethernet module. This interface

establishes the communication between SNAVA and external CPU. The module is responsible for the

initialization of the system and the process of debugging. There are two buses of 32 bits each one to

interface to the User side protocol and the SNAVA in order to initialise the components of SNAVA or in

the case of debugging the SNAVA system. Therefore, two words of 32 bits must send to SNAVA from

the external CPU in order to access to SNAVA registers. The first 32 bits word indicates the address of

the component to be accessed and the second word has the information to be loaded in the register or

memory which is indicated by the address. The Tx and the Rx modules of Ethernet user side have an

Ethernet bus of 8 bits to carried out the communication between SNAVA and the external CPU.

Therefore, 4 clock cycles are required to receive the 4 bytes of words, which are a part of the address and

another 4 bytes words, which are a part of the data. The Ethernet user side has a buffer in the TX module

in order to store the data, which are received by the external CPU, and the Ethernet user side enables the

data to be read by SNAVA only when these 8 bytes are have been received.

Table B.1: Format of the bus of the address

31 30 29 28 27-26 25-16 15-13 12-8 7-3 2-0

1 2 3 4 5 6 7 8 9 10

Annexure B Register mapping in SNAVA for CPU access

172

 The 32 bit word address is composed by 10 fields:

Field: Description

1 = WR_SNAVA 1 indicates the process of write in the SNAVA components

2 = RD_SNAVA 1 indicates the process of read the SNAVA components

3 = BRAM ACCESS

1 enables the access to the BRAMs

4 = BRAM SELECT 0 indicates the access to the instruction BRAM

1 indicates the access to the synaptic BRAM

5 = EXT These 3 bits are not used in the version of SNAVA. It can be used in the case of

extending the system, in particular the address of instruction BRAM. The current

length is 10, so that adding these three bits, the address can be increased to 13.

6 = ADDRESS Address to be accessed in the case of BRAMs/ (18-16) level of shadow in case of

CPE/ address of register in case of others

7 = LAYER The module to be accessed as is illustrated:

LAYER Component

0 0 0 No used FREE

0 0 1 REGISTERS PE (Active and shadow registers)

0 1 0 LFSR PE

0 1 1 REGISTERS CPE -> CAM

1 0 0 REGISTERS TX_MODULE

1 0 1 REGISTERS SEQUENCER

1 1 0 REGISTERS AER

1 1 1 REGISTERS CONF. UNIT.

8 = COLUMN Indicated the column address of the PE to be accessed

Annexure B Register mapping in SNAVA for CPU access

173

9 = ROW Indicated the row address of the PE to be accessed

10 = ADDRESS

REGISTERS

Address of the register to be accessed in PE (active register 0 to active register 7

or shadow register 0 to shadow register 7)

- REGISTER BANK

The register bank can be access under the following conditions:

- CPU_address(15 downto 13) = "001"

- CPU_address(7 downto 3) = row (from 1 to 16)

- CPU_address(12 downto 8) = col (from 1 to 16)

- The signal bank_address is composed by CPU_address(18 downto 16) &

CPU_address(2 downto 0)

-

Table B.2: Register mapping in the PE

REGISTER BANK_ADDRESS DESCRIPTION DATA IN

active_registers(0) 000000 Loads the active

register from the

external CPU

active_registers(0)<=

CPU_data_in(15 downto 0)

active_registers(1) 000001 Loads the active

register from the

external CPU

active_registers(1)<=

CPU_data_in(15 downto 0)

active_registers(2) 000010 Loads the active

register from the

external CPU

active_registers(2)<=

CPU_data_in(15 downto 0)

active_registers(3) 000011 Loads the active

register from the

external CPU

active_registers(3)<=

CPU_data_in(15 downto 0)

active_registers(4) 000100 Loads the active

register from the

external CPU

active_registers(4)<=

CPU_data_in(15 downto 0)

active_registers(5) 000101 Loads the active

register from the

external CPU

active_registers(5)<=

CPU_data_in(15 downto 0)

active_registers(6) 0000110 Loads the active

register from the

external CPU

active_registers(6)<=

CPU_data_in(15 downto 0)

Annexure B Register mapping in SNAVA for CPU access

174

- LFSR REGISTERS

The the 64-bit Galois LFSR (pseudo-random number generator) can be access under the following

conditions:

CPU_address(15 downto 13) = "010"

CPU_address(7 downto 3) = row (from 1 to 16)

CPU_address(12 downto 8) = col (from 1 to 16)

The address of the specific LFSR register to be accessed is placed in CPU_address (2 downto 0)

Table B.3: LFSR Register mapping in the PE

active_registers(7) 0000111 Loads the active

register from the

external CPU

active_registers(7)<=

CPU_data_in(15 downto 0)

shadow_registers1(0) 0001000 Loads the shadow

register1 from the

external CPU

shadow_registers1(0)<=

CPU_data_in(15 downto 0)

shadow_registers1(1) 0001001 Loads the shadow

register1 from the

external CPU

shadow_registers1(1)<=

CPU_data_in(15 downto 0)

shadow_registers1(2) 0001010 Loads the shadow

register1 from the

external CPU

shadow_registers1(2)<=

CPU_data_in(15 downto 0)

shadow_registers1(3) 0001011 Loads the shadow

register1 from the

external CPU

shadow_registers1(3)<=

CPU_data_in(15 downto 0)

shadow_registers1(4) 0001100 Loads the shadow

register1 from the

external CPU

shadow_registers1(4)<=

CPU_data_in(15 downto 0)

shadow_registers1(5) 0001101 Loads the shadow

register1 from the

external CPU

shadow_registers1(5)<=

CPU_data_in(15 downto 0)

shadow_registers1(6) 0001110 Loads the shadow

register1 from the

external CPU

shadow_registers1(6)<=

CPU_data_in(15 downto 0)

shadow_registers1(7) 0001111 Loads the shadow

register1 from the

external CPU

shadow_registers1(7)<=

CPU_data_in(15 downto 0)

REGISTER CPU_address(2 : 0) DESCRIPTION DATA IN

LFSR(63 :48) 000 Loads LFSR value

(63:48) from exteral CPU

LFSR(63downto48)<=

CPU_data_in(15 downto

0)

LFSR(47 :32) 001 Loads LFSR value LFSR(47downto32)<=

Annexure B Register mapping in SNAVA for CPU access

175

- SYNAPTIC BRAM

The synaptic BRAM can be access under the following conditions:

The access to the PE BRAMs is possible by setting:

 CPU_address(29) = ‘1’

 CPU_address(28) = ‘1’  synaptic BRAM or CPU_address(27) = ‘1’  neuronal

BRAM

- ETHERNET USER SIDE

The Ethernet user side tx module can be access under the following conditions:

 CPU_address (15 downto 13) = "100",

Table B.4: Ethernet user side register mapping

REGISTER CPU_ADDRESS(6:0) DESCRIPTION DATA IN

length _ena_bus 000001 Configure tx length of

ethernet

length_ena<=

CPU_data_in(1 downto 0)

overhead_count_max 000010 Set the value of the

maximum delay between

two consecutive packets

overhead_count_max<=

CPU_data_in(13 downto

0)

- AER CONTROL

The AER control module can be access under the following conditions:

(47:32) from external

CPU

CPU_data_in(15 downto

0)

LFSR(31:16) 010 Loads LFSR value

(31:16) from external

CPU

LFSR(31downto16)<=

CPU_data_in(15 downto

0)

LFSR(15 :0) 011 Loads LFSR value (15:0)

from external CPU

LFSR(15downto0)<=

CPU_data_in(15 downto

0)

LFSR_en 100 Loads the LFSR enable

from external CPU

LFSR_en <=

CPU_data_in(0)

LFSR_step_flag 101 Loads from external CPU

the LFSR flag that

permits only LFSR

updating when it is read

LFSR_step <=

CPU_data_in(1)

Annexure B Register mapping in SNAVA for CPU access

176

CPU_address(15 downto 13) = "110"

Table B.5: AER control register mapping

REGISTER CPU_ADDRESS(6:0) DESCRIPTION DATA IN

chip id register 000001 Set the board ID chip_id_reg <=

CPU_data_in

(CHIP_ID_WIDTH - 1

downto 0)

boards 000010 Set the number of the

boards interconnected

with the AER

boards <= CPU_data_in(6

downto 0)

- CONFIG UNIT

The config unit module can be access under the following conditions:

CPU_address (15 downto 13) = "111"

Table B.6: Config unit register mapping

REGISTER CPU_address(7:3

)

DATA IN DATA OUT

config_done_int 000 config_done_int<=

CPU_data_in(0)

CPU_data_out(0)<=

config_done_int

clk_mode_register 001 clk_mode <=

CPU_data_in(0)

CPU_data_out(0)<=

clk_mode

dec_clk_counter 010 dec_clk_counter<=

CPU_data_in

CPU_data_out<=

dec_clk_counter

sna_size register 011 ONLY READ

REGISTER

CPU_data_out <=

SNA_size

inc_clk_counter(15:

0)

100 inc_clk_counter(15 downto 0)

<= CPU_data_in

CPU_data_out<=

inc_clk_counter(15

downto 0)

inc_clk_counter(31:

16)

101 inc_clk_counter(31 downto

16) <= CPU_data_in

CPU_data_out<=

inc_clk_counter(31

downto 16)

inc_clk_counter(47:

32)

110 inc_clk_counter(47 downto

32) <= CPU_data_in

CPU_data_out<=

inc_clk_counter

(47 downto 32)

contr_reset 111 contr_reset_reg <=

CPU_data_in (0)

CPU_data_out(0)<=

contr_reset_reg

Assembly codes

C.1 Assembler code of Iglesias and villa algorithm – Ubichip

C.2 Assembler code of Izhikevich algorithm – Ubichip

C.3 Assembler code of Leaky integrate-and-fire algorithm – Ubichip

C.4 Assembler code of Iglesias and villa algorithm – SNAVA

C.5 Assembler code of Izhikevich algorithm – SNAVA

C.6 Assembler code of Leaky integrate-and-fire algorithm – SNAVA

C.7 Assembler code of Leaky integrate-and-fire algorithm – SNAVA+

This annexure presents the assembler codes of three SNN models: Iglesias and Villa model, Izhikevich

model, and Leaky integrate-and-fire model. These models were implemented in Ubichip, and SNAVA in

order to study the performance of these architectures. The Leaky integrate-and-fire model was used to

carry out the application developed in this work (Chapter 6). The Leaky integrate-and-fire model was

implemented in SNAVA+ in order to evaluate the performance of this architecture (see Chapter 5).

C.1 Assembler code of Iglesias and villa algorithm –

Ubichip

AMAX="00000003"
DACT1="0000FFFA"

DACT2="0000012C"

DBACK="0000FAEE"
DMEM1="0000EF7D"

DMEM2="0000EF7D"
DSYN1="0000F9AE"

DSYN2="0000F9AE"

LMAX="00003FFF"

MMAX="00000666"

POT1="000003E8"
POT2="0000FFB0"

PROB="00001FFF"

SEED="A553A75A,A554A75A"
THETA1="0000F060"

THETA2="0000F060"

VREST1="0000E188"
VREST2="0000E188"

UNO="00000001"

MASC="00000003"
MASK1="0000E000"

MASK2="0000C000"

.CODE

; ---------------------------------- INIT VARIABLES -----------------------------
LDALL R4,PROB

MOVA R4

SETMP SEED
READMP

RANDINI

RANDON

Annexure C Assembly codes

178

LOAD R1

RANDOFF

AND R1
MOVR R1

SWAP R1 ;SR1 <-- activation probability

; --

GOTO MAIN

; ***************************** PROCEDURES BEGIN ***************************

; ------------------------------- NEURON LOAD --------------------

.NEURON_LOAD
SWAP R6

LOAD R6,NEU-2 ;SR6 <-- Vi

SWAP R6
SWAP R0

LOAD R0,NEU-3 ;SR0 <-- SUM_WEIGHTS

SWAP R0
; ------------------------------ Neuron Type + Si ----------------------

LOAD R2,NEU-1 ;R2 <-- Mi + Neuron Type + Si

MOVA R2
LDALL R3,MASC

AND R3

SWAP R5
MOVR R5 ;SR5 <-- Neuron Type + Si

SWAP R5

; ------------------------------------- Mi ----------------------------------
MOVA R2

SHR

SHR
SWAP R4

MOVR R4 ;SR4 <-- Mi

SWAP R4
;------------------------------ Tref + exponential ---------------------

LDALL R3,MASK1 ;MASK1="0000E000"
SWAP R5

MOVA R5

SWAP R5
SHR

SHR

FREEZENC
LDALL R3,MASK2 ;MASK2="0000C000"

UNFREEZE

LOAD R1,NEU-4 ;R1 <-- Tref + exponential
INV R3 ;MASK1 --> 1FFF ; MASK2 --> 3FFF

AND R1

MOVR R7 ;R7 <-- 1FFF
SWAP R7 ;SR7 <-- exponential

MOVA R1

AND R3 ;MASK1 = E000 ; MASK2 = C000
MOVR R7 ;R7 <-- Tref

RET

; ------------------------------- MEMBRANE VALUE -------------------------

.MEMBRANE_VALUE

RST R1

RST R2
SWAP R5 ;SR5 --> NEURON TYPE + Si

LDALL R3,DMEM1 ;R3 <-- DECAY DONATOR 1

LDALL R4,VREST1 ;R4 <-- Vres1
MOVA R5

SHR

SHR ;IF NEURON TYPE = TYPE_II (CONDITIONAL LOAD)
FREEZENC

 LDALL R3,DMEM2 ;R3 <-- DECAY DONATOR 2

 LDALL R4,VREST2 ;R4 <-- Vres2
UNFREEZE

;----------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) -----------------

MOVA R5
SHR

Annexure C Assembly codes

179

FREEZEC ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem)

 SWAP R6 ;SR6 <-- Vi

 MOVA R6 ;R0 <-- Vi
 SUB R4 ;R0 <-- Vi - Vres

 MOVR R2 ;R2 <--(Vi(t)-Vres)

 GOTO DECAY ;R2 = (Vi(t)-Vres), R3 = DECAY DONATOR (1 or 2)
 ;R2 <--(Vi(t)-Vres) * (Kmem)

UNFREEZE

MOVA R5
SHR

FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0

 RST R2 ;R2 <-- ((0)*(Vi(t)-Vres)*(Kmem)
UNFREEZE

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ----------

LDALL R4,VREST1 ;R4 <-- Vres1
MOVA R5

SHR

SHR
FREEZENC ;IF NEURON TYPE = TYPE_II (CONDITIONAL LOAD)

 LDALL R4,VREST2 ;R4 <-- Vres2

UNFREEZE
MOVA R4 ;R0 <-- Vres1 or Vres2

ADD R2 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)

MOVR R2 ;R2 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)
SWAP R0 ;R0 <-- SUM_WEIGHTS

ADD R2 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) +

SUM_WEIGHTS
MOVR R6 ;SR6 <-- Vi

SWAP R5 ;SR5 <-- NEURON TYPE + Si

RST R0 ;SUM_WEIGHTS = 0
SWAP R0 ;SR0 <-- SUM_WEIGHTS

RET

; ---

; -------------------------- SYNAPSE LOAD ----------------------------
.SYNAPSE_LOAD

; ---

; -------------------------------------- SP1 ----------------------------------
; ---

; ---------------------------- Mj + Synapse Type + Sj -----------------

LDALL R1,MASC
SETC

SETMP SYN-0 ;LOOP INDEX

READMP 1
LOAD R2 ;R2 <-- Mj + Synapse Type + Sj

; ------------------------------- Synapse Type + Sj -----------------------

MOVA R2
AND R1

MOVR R6 ;R6 <-- Synapse Type + Sj

; ------------------------------------ Mj --
MOVA R2

SHR

SHR
MOVR R5 ;R5 <-- Mj

; ---

; -------------------------------------- SP2 -----------------------------------
; ---

; ----------------------------------- Lji + Aji --------------------------------

LOAD R2 ;R2 <-- Lji + Aji
; --------------------------------------- Aji -----------------------------------

SWAP R3

MOVA R2
AND R1

RST R1

MOVR R3
SWAP R3 ;SR3 <-- Aji

; --------------------------------------- Lji -----------------------------------

MOVA R2
SWAP R2

SHR

SHR
MOVR R2 ;SR2 <-- Lji

Annexure C Assembly codes

180

SWAP R2

RET

; --
; ----------------------------- SYNAPTIC WEIGHT --------------------

.SYNAPTIC_WEIGHT

RST R1
MOVA R6

SHR

FREEZENC ;IF (Sj = 1) THEN R0 <-- wji = Sj * Aji * P

 LDALL R4,POT1 ;R4 <-- POT1

 MOVA R6
 SHR

 SHR

 FREEZENC
 LDALL R4,POT2

 UNFREEZE

;-- Aji * P ---------------------------------
 MOVFS R3

 MOVA R3

 SHR
 MOVR R3

 FREEZENC

 MOVA R1
 ADD R4

 MOVR R1

 UNFREEZE

 MOVA R3

 SHR
 MOVR R3

 FREEZENC

 MOVA R1
 ADD R4

 ADD R4
 MOVR R1

 UNFREEZE

 MOVFS R3

 MOVA R3

 SHR
 FREEZENC

 SHR

 FREEZENC
 MOVA R1

 ADD R4

 MOVR R1
 UNFREEZE

 UNFREEZE

UNFREEZE
SWAP R0

ADD R1 ; SR0 <-- wji = Sj * Aji * P

SWAP R0
RET

; ---

; ---------------------------- REAL_VALUE_VARIABLE ----------------
.REAL_VALUE_VARIABLE

;-------------Lji(t+1) = Lji(t) * Kact + Si(t) * Mj - Sj(t) * Mi(t)-------

LDALL R3,DACT1 ;R3 <-- DACT1
MOVA R6

SHR

SHR
FREEZENC

 LDALL R3,DACT2 ;R3 <-- DACT2

UNFREEZE
MOVFS R2 ;R2 <-- Lji

;--------------------------------- Lji(t) * Kact 1 or 2 ------------------------

GOTO DECAY ;R2 <-- Lji(t) * Kact 1 or 2
SWAP R5

MOVA R5

SWAP R5
SHR ;R5 <-- Si

Annexure C Assembly codes

181

FREEZENC

 MOVA R2

 ADD R5 ;R0 <-- Mj
 MOVR R2 ;R2 <-- (Lji(t) * Kact) + (Si(t) * Mj)

UNFREEZE

MOVA R6
SHR ;R6 <-- Sj

FREEZENC

 MOVA R2
 SWAP R4

 SUB R4 ;R0 <-- Mi

 SWAP R4
 MOVR R2 ;R2 <-- (Lji(t) * Kact) + (Si(t) * Mj) - Sj(t) * Mi(t)

UNFREEZE

MOVTS R2 ;SR2 --> Lji
RET

; --

; ------------------------- ACTIVATION_VARIABLE --------------------
.ACTIVATION_VARIABLE

LDALL R1,UNO

SWAP R3
MOVA R3

FREEZEZ ; if (Aji =/ 0) then

 LDALL R0,LMAX ; R0 <--- Lmax

 SWAP R2 ; R2 <-- SR2 <-- Lji

 SUB R2 ; Lmax - Lji
 SHL

 FREEZENC

 MOVA R3 ; ACC <-- R3 <-- Aji
 ADD R1 ; Aji + 1

 MOVR R3 ; Aji --> SR3

 LDALL R0,AMAX
 SUB R3 ; R0 <-- Amax - Aji

 SHL
 FREEZENC ; Aji - R1 = 0

 LDALL R3,AMAX

 UNFREEZE
 LDALL R0,LMAX ; Lji=Lmax/2

 SHR

 MOVR R2
 UNFREEZE

 ; else if (Lji < Lmin)

 MOVA R2 ; Lji --> ACC, Lmin=0
 SHL

 FREEZENC ; (Lji-Lmin)

 MOVA R3
 SUB R1 ; Aji-1

 MOVR R3 ; Aji --> R3

 LDALL R0,LMAX ; Lji=Lmax/2
 SHR

 MOVR R2

 UNFREEZE
UNFREEZE

MOVA R3

FREEZENZ ;IF CONNECTION IS INACTIVE
 RST R2

UNFREEZE

SWAP R3
SWAP R2

RET

; ---
; --------------- MEMORY_OF_LAST_PRESYNAPTIC_SPIKE ---------

.MEMORY_OF_LAST_PRESYNAPTIC_SPIKE

; -------- Mj(t+1) = (Sj(t) * Mmax) + (1 - Sj(t)) * Mj(t) * Ksyn -----------
;--------------------- R2 <-- (1 - Sj(t)) * Mj(t) * Ksyn ---------------------------

LDALL R3,DSYN1 ; R3 <-- Ksyn1

MOVA R6 ; R6 <-- Synapse Type + Sj
SHR

SHR

FREEZENC
 LDALL R3,DSYN2 ; R3 <-- Ksyn2

Annexure C Assembly codes

182

UNFREEZE

MOVA R5 ; R5 <-- Mj

MOVR R2 ; R2 <-- Mj
 GOTO DECAY ; R2 <-- (1 - Sj(t)) * Mj * Ksyn1 or Ksyn2

MOVA R6 ; R6 <-- Synapse Type + Sj

SHR
FREEZENC ;IF Sj(t) = 1 THEN R2 <-- Mmax

 LDALL R0,MMAX

 MOVR R2 ; R2 <-- Mmax
UNFREEZE

MOVA R2

MOVR R5 ; R5 <-- (Sj(t) * Mmax) + (1 - Sj(t)) * Mj(t) * Ksyn
RET

; ---

; --------------------------- SYNAPSE_SAVE -------------------------
.SYNAPSE_SAVE

SETMP SYN-0 ;LOAD LOOP INDEX!
READMP 1 ;READMPX

; ----------------------------- MJ+SI+TYPE --------------------------

MOVA R6 ;R6 <--- S type + Sj
SHR

SHL

MOVR R6
MOVA R5 ;<--MJ

SHL

SHL
ADD R6 ;+TYPE+SJ

MOVR R3 ;composed DATA

RST R0
SHR

STNC R3 ;SAVE DATA

; ----------------------------------- LJI+AJI --------------------------------
SWAP R2

MOVA R2 ;<--LJI
SWAP R2

SHL

SHL
SWAP R3

ADD R3 ;+AJI

SWAP R3
MOVR R3 ;composed DATA

RST R0

SHR
STNC R3 ;SAVE DATA

RET

; ---
; ---------- MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE ---------

.MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE

LDALL R3,DSYN1 ;TYPE=1
SWAP R5

MOVA R5

SHR
SHR ;--> TYPE

FREEZENC

 LDALL R3,DSYN2 ;TYPE=2
UNFREEZE

SWAP R4 ;R2=MI

MOVA R4
SWAP R4

MOVR R2

GOTO DECAY ;R2=OPERAND, R3=DECAY DONATOR --> R2=RESULT DECAY
MOVA R5

SWAP R5

SHR ;-->SI
FREEZENC

 LDALL R0,MMAX

 MOVR R2 ;OVERWRITE DECAY RESULT
UNFREEZE

MOVA R2

SWAP R4
MOVR R4 ;RES IN SR4

Annexure C Assembly codes

183

SWAP R4

RET

; --
; ---------------------------- SPIKE UPDATE ------------------------------

.SPIKE_UPDATE

LDALL R3,THETA1 ;R3 <-- THETA1 = "0000F060"
SWAP R5 ;SR5 <-- Neuron Type + Si

MOVA R5

SHR
SHR

FREEZENC

 LDALL R3,THETA2 ;R3 <-- THETA2 = "0000F060"
UNFREEZE

MOVA R5
SHR

SHL

MOVR R5 ;R5 <-- Neuron Type + 0
SWAP R6 ;SR6 <-- Vi

MOVA R6 ;R0 <-- Vi

SUB R3 ;R0 <-- Vi - (THETA1 or THETA2)
SWAP R6

FREEZENC
 MOVA R7 ;R0 <-- refractary period

 SHL

 FREEZEC
 MOVA R5

 LDALL R3,UNO

 ADD R3
 MOVR R5 ;R5 <-- Neuron Type + 1

 SET R7 ;R7 <-- activation of refractory time

 UNFREEZE
UNFREEZE

SWAP R5
RET

; ---

; ------------------------ BACKGROUND_ACTIVITY-------------
.BACKGROUND_ACTIVITY

SWAP R7 ; SR7 <-- exponential

MOVA R7
SWAP R7

MOVR R2 ; R2 <-- exponential

LDALL R3,DBACK ; R3 <-- DBACK = "0000FEB9"
 GOTO DECAY ; R2 <-- DBACK * exponential

SWAP R1 ; R1 <-- activation probability

LDALL R4,PROB ; R4 <-- PROB = "00001FFF"
MOVA R4 ; R0 <-- PROB

SUB R2 ; R0 <-- PROB - (DBACK * exponential)

RANDON
CLRC

SUB R1 ; (PROB - (DBACK * exponential)) - Activation probability

FREEZENC ; If ((PROB - (DBACK * exponential)) > Activation probability) then
 LOAD R1 ; R1 <-- new activation probability

 RANDOFF

 MOVA R4 ; R0 <-- PROB = "00001FFF"
 AND R1 ; R0 <-- PROB = "00001FFF" AND new activation probability

 MOVR R1 ;/ R1 <-- PROB = "00001FFF" AND new activation probability

 MOVA R4 ; R0 <-- PROB = "00001FFF"
 MOVR R2 ;/ R2 <-- PROB = "00001FFF"

 MOVA R7 ; R0 <-- Tref

 SHL
 FREEZEC ; IF (C = 1) THEN Tref

 SWAP R5 ; SR5 <-- Neuron Type + Si

 MOVA R5
 SHR

 SHL ; SR5 <-- Neuron Type + Si = 0

 LDALL R3,UNO
 ADD R3 ; SR5 <-- Neuron Type + Si = 1

 MOVR R5

 SWAP R5
 SET R7 ; R7 <-- activation of refractory time

Annexure C Assembly codes

184

 UNFREEZE

UNFREEZE

SWAP R1 ; SR1 <-- Activation probability
MOVA R2

SWAP R7

MOVR R7
SWAP R7 ; SR7 <-- exponential

RET

; --
; ------------------------------- REFRACTORY P -----------------

.REFRACTORY_P

MOVA R7
SHL ; -1ms

MOVR R7

RET
; --

; ------------------------------- NEURON SAVE ------------------

.NEURON_SAVE
SWAP R4 ;R4 <-- Mi

SWAP R5 ;R5 <-- Neuron Type + Si

SWAP R6
RST R3

MOVA R4

SHL
SHL

ADD R5

MOVR R3 ;R3 <-- Mi + Neuron Type + Si
;--------------------- INDIVIDUAL DATA STORE ---------------

RST R0

SHR
STNC R3,NEU-1 ;SRAM <-- Mi + Neuron Type + Si

RST R0

SHR
STNC R6,NEU-2 ;SRAM <-- Vi

SWAP R0
CLRC

STNC R0,NEU-3 ;SRAM <-- SUM_WEIGHTS

SWAP R0
LDALL R3, ;MASK1 = "0000E000"

MOVA R5

SWAP R5
SHR

SHR

FREEZENC
 LDALL R3,MASK2 ;MASK2 = "00008000"

UNFREEZE

MOVA R7 ;ACC <-- Tref
AND R3

SWAP R7 ;R7 <-- exponential

OR R7
SWAP R7

CLRC

STNC R0,NEU-4 ;SRAM <-- Tref + exponential
RET

; ---

;-------------------------ENABLE SPIKES PROPAGATION----
.SPIKES_ENABLE

SWAP R5 ; ACC <== Spikes

MOVA R5
SWAP R5

SETC

SETMP SYN-0 ; Point to Sj
READMP

RET

;---
; ---------------------------- EXPONENTIAL DECAY ----------

.DECAY

RST R1
MOVA R2

MOVR R4

SHL
FREEZENC

Annexure C Assembly codes

185

 RST R0

 SUB R2

 MOVR R2
UNFREEZE

LOOP 15

 MOVA R2
 SHL

 MOVR R2

 FREEZENC
 MOVA R1

 ADD R3

 MOVR R1
 UNFREEZE

 MOVA R3

 SHR
 MOVR R3

ENDL

MOVA R1
SHR

MOVR R1

MOVA R4
SHL

FREEZENC

 RST R0
 SUB R1

 MOVR R1

UNFREEZE
MOVA R1

MOVR R2

RST R1
RET

; ---

; ******************************* PROCEDURES END ****************************

; **************************** MAIN PROGRAMME BEGIN ************************
.MAIN

GOTO NEURON_LOAD

GOTO MEMBRANE_VALUE
LOOP synapses

 GOTO SYNAPSE_LOAD

 GOTO SYNAPTIC_WEIGHT
 GOTO REAL_VALUE_VARIABLE

 GOTO ACTIVATION_VARIABLE

 GOTO MEMORY_OF_LAST_PRESYNAPTIC_SPIKE
 GOTO SYNAPSE_SAVE

ENDL

GOTO MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE
GOTO SPIKE_UPDATE

GOTO BACKGROUND_ACTIVITY

GOTO REFRACTORY_P
GOTO NEURON_SAVE

GOTO SPIKES_ENABLE

STOP
HALT

GOTO MAIN

; **************************** MAIN PROGRAMME END **************************

C.2 Assembler code of Izhikevich algorithm – Ubichip

CTEIN="00001400"

CTEAE="0000000A" ;a= 0.04 excitatory = E

CTEAE1="00000005" ;0.02 * v
CTEAI1="00000033" ;a= 0.2 inhibitory = E

CTEAI="0000001A" ;a= 0.1 inhibitory = I

CTESE="00000600" ;s= 6
CTESI="0000FB00" ;s= -5

CTEB="00000033" ;b= 0.2

CTECE="0000BF00" ;c=-65
CTECI="0000F300" ;c=-13

CTEDE="00000800" ;d= 8

Annexure C Assembly codes

186

CTEDI="00000200" ;d= 2

CTECU="00000400" ;cte=4

CTECIN="00000500" ;cte=5
CTEIN="00001400" ;I= 20

CTEZE="00000000" ;CTE=0

CTE30="00001E00" ;Vmax = 30
CTE25="00000280" ;2.5

CTE70="00004600" ;70

CTE05="00000080" ;0.5
CTE12="0000FECD" ;-1.2

CUNO="00000001" ;CTE=1

CTE095="000000F4" ;0.95
CTE090="000000E7" ;0.90

CTEBT="00008000"

UNO="00000001"
DOS="00000002"

TRES="00000003"

UNO1="00000001"
DOS2="00000002"

TRES3="00000003"

CUATRO4="00000004"
CARRY="00000004"

CCARRY="00000003"

CTE1000="000003E8" ;CTE=1000
CTE128N="00008000" ;CTE=-128

CTE127P="00007FFF" ;CTE=127,9961

CTE20="00000014" ;CTE=20
CTEP01="00000003" ;CTE=0.01

.CODE
;--------------------------INIT SOME VARIABLES-----------------------------

SETMP SEED

READMP
RANDINI

;--
GOTO MAIN

;------------------------- INICIALIZATION I -------------------------------

.INICIALIZATION_I
RANDON1

LDALL R1

RANDOFF
RST R2

SWAP R2

RST R2
LDALL R2,MASCP ;MASCP="00000003"

MOVA R1

SHR
SHR

SHR

SHR
SHR

SHR

SHR
SHR

SHR

AND R2
MOVR R1

LOAD R3,ID

MOVA R3
SUB R1

FREEZENZ

 LDALL R2,CTEIN ;R2 <-- I = 20 ONLY FOR ONE PROCESSOR
 SWAP R2

UNFREEZE

RET
;---

;---

.SPIKE_UPDATE
 SWAP R1 ; It has to be deleted the previous spike

 MOVA R1

 SHR
 SHL

Annexure C Assembly codes

187

 MOVR R1

 SWAP R1 ; It has deleted the previous spike

 SWAP R7
 MOVA R7 ; ACC <-- v

 MOVR R4 ; R4 <-- v

 SWAP R7
 SHL

FREEZENC

 LDALL R4,CTESE ; It has assigned a positive value under 30 because it has verified that is lower than 0
UNFREEZE

 MOVA R4

 LDALL R3,CTE30 ; R3 <-- 30
 SUB R3 ; v - 30

FREEZENC ; if v > 30

 SWAP R1
 MOVA R1

 SHR

 SHL
 LDALL R3,CUNO

 ADD R3

 MOVR R1
 SWAP R1 ; SR1 <--- counter = 1000 + Carrypa + Carrypb + Neuron type + Si <-- 1

UNFREEZE

RET
;---

; ---------------------- UPDATE MEMBRANE VALUE ----------------------------

.UPDATE_MEMBRANE_VALUE
SWAP R1 ; R1 contains the current spike generated by research the threshold potential to be distribuited to anothers

neurons

RST R0
SHR

STNC R1,NEU-1 ; for drawing the spikes over raster plot

SWAP R1
SWAP R1 ; SR1 <-- counter = 1000 + Carrypa + Carrypb + Neuron type + Si

MOVA R1
SWAP R1

SHR

SHR
FREEZENC ; NEURON TYPE EXCITATORY = 1

 LDALL R2,CTEDE ; Conditional store d = 8 constant (excitatory)

UNFREEZE
FREEZEC ; NEURON TYPE INHIBITORY = 0

 LDALL R2,CTEDI ; Conditional store d = 2 constant (inhibitory)

UNFREEZE
SWAP R7

MOVA R7 ; ACC <-- v

MOVR R4 ; R4 <-- v
SWAP R7

SHL

 FREEZENC
 LDALL R4,CTESE ; It has assigned a positive value under 30 because it has verified that is lower than 0

 UNFREEZE

MOVA R4
LDALL R3,CTE30 ; R3 <-- 30

SUB R3 ; v - 30

FREEZENC ; v = -65 , u = u + d, STDP = 0.1, only if v >= 30

 SWAP R7 ; R7 <-- v

 LDALL R7,CTECE ; v <-- -65
 SWAP R7 ; SR7 <-- v = -65

 SWAP R6
 MOVA R6 ; ACC <-- u

 ADD R2 ; ACC <-- ACC + d

 MOVR R6 ; R6 <-- u + d
 SWAP R6 ; SR6 <-- u = u + d

UNFREEZE
RET

;--

;---
.SPIKES_ENABLE

Annexure C Assembly codes

188

LOAD R6,NEU-12 ; R6 <-- u

SWAP R6 ; SWAP R6 <-- u

SWAP R1
MOVA R1

SWAP R1

SETC
SETMP SYN-0; Point to Sj, indicate to memory pointer the beginning of the distribution per each synapse of each neuron

READMP

RET
;---

;*** Sj **

; ---------------------------- SYNAPSE LOAD ------------------------------
.SYNAPSE_LOAD1

SETMP SYN-0 ;LOAD LOOP INDEX!

READMP 1 ;READMPX
SWAP R3 ;SR3 <-- s

SWAP R4 ;SR4 <-- sd

MOVA R5
SWAP R0 ; respaldo de R5 en SR0 <-- Neuron ID + Synapse ID

RET

;---
;---

.SYNAPSE_SAVE1

SETMP SYN-0
READMP 1

MOVA R7

SHR
SHL

MOVR R7

RST R0
SHR

STNC R7 ;R7 <-- Sj

RET
;---

;----------------------------MEMBRANE VALUE---------------------
.MEMBRANE_VALUE

RST R0

SWAP R0
RST R0

SWAP R7 ;SR7 ----> R7

MOVA R7 ;ACC <---- v <---- R7
SWAP R7

MOVR R2 ;R2 <-- v

LDALL R3,CTEAE ;R3 <-- CTEAE="00000005" = 0.04
 GOTO MULTIPLICATION ;R6 contains the result = 0.04*v

MOVA R6

MOVR R3 ;R3 <-- 0.04*v
LDALL R2,CTECIN ;R2 <-- 5

 GOTO SUMA ;R4 <-- 0.04*v + 5

MOVA R4
SWAP R0 ;SR0 <-- 0.04*v + 5

SWAP R7

MOVA R7
SWAP R7

MOVR R2 ;R2 <----- v

SWAP R0
MOVR R3 ;R3 <----- 0.04*v + 5

SWAP R0

 GOTO MULTIPLICATION ;R6 <----- (0.04*v + 5)*v
LDALL R2,CTE127P

MOVA R6

MOVR R3
 GOTO SUMA ;R4 <-- (0.04*v + 5)*v + 140

MOVA R4

MOVR R3 ;R3 <-- (0.04*v + 5)*v + 140
SWAP R6 ;SR6 <-- u

RST R0

SUB R6
MOVR R2 ;R2 <--- - u

SWAP R6 ;ACC <---- (0.04*v + 5)*v + 140 - u

 GOTO SUMA
MOVA R4 ;R4 <---- (0.04*v + 5)*v + 140 - u

Annexure C Assembly codes

189

MOVR R3 ;R3 <---- (0.04*v + 5)*v + 140 - u

SWAP R2

MOVA R2
SWAP R2

MOVR R2 ;R2 <---- I

 GOTO SUMA ;R4 <---- (0.04*v + 5)*v + 140 - u + I
MOVA R4

MOVR R2 ;R2 <---- (0.04*v + 5)*v + 140 - u + I

LDALL R3,CTE05 ;R3 <---- 0.5
 GOTO MULTIPLICATION ;R6 <---- 0.5 * ((0.04*v + 5)*v + 140 - u + I)

MOVA R6
MOVR R2 ;R2 <---- 0.5 * ((0.04*v + 5)*v + 140 - u + I)

SWAP R7

MOVA R7
MOVR R3

 GOTO SUMA ;R4 <---- v + 0.5 * ((0.04*v + 5)*v + 140 - u + I)

MOVA R4
MOVR R7 ;R7 <---- v + 0.5 * ((0.04*v + 5)*v + 140 - u + I)

SWAP R7

RET
;---------------------------- COMPUTATION OF RECOVERY VALUE ------------------------

.RECOVERY_VALUE

;----------------------------------u = u + a(0.2*v-u)-------------------------------
LDALL R2,CTEB ;R2 <---- 0.2 = b

SWAP R7

MOVA R7
MOVR R3 ;R3 <---- v

SWAP R7

 GOTO MULTIPLICATION ;R6 <----- 0.2*v
MOVA R6

MOVR R2 ;R2 <----- 0.2*v

SWAP R6

RST R0
SUB R6

MOVR R3 ;R3 <--- - u

SWAP R6
 GOTO SUMA ;R4 <--- 0.2*v - u

MOVA R4

MOVR R3 ;R3 <--- 0.2*v - u
SWAP R1

MOVA R1

SWAP R1
SHR

SHR

FREEZENC ; NEURON TYPE EXCITATORY = 1
 LDALL R2,CTEAE1 ; Conditional store to a = 0.02 constant (excitatory)

UNFREEZE

FREEZEC ; NEURON TYPE INHIBITORY = 0
 LDALL R2,CTEAI ; Conditional store to a = 0.1 constant (inhibitory)

UNFREEZE

 GOTO MULTIPLICATION ;R6 <----- a*(0.2*v - u)
MOVA R6

MOVR R2 ;R2 <---- a*(0.2*v - u)

SWAP R6 ;R6 <--- u

MOVA R6

SWAP R6
MOVR R3 ;R3 <--- u

 GOTO SUMA ;R4 <---- u + a*(0.2*v - u)

MOVA R4
MOVR R6

SWAP R6

RET
;---

;---

.NEURON_SAVE
SWAP R7 ;R7 <-- Vi

MOVA R7

MOVR R2
RST R0

Annexure C Assembly codes

190

SHR

STNC R2,NEU-2

SWAP R7
RET

;---

.SUMA
;##

RST R4

;------------------------------------ PRIMER BLOQUE ---------------------------------
;------------------------------- DOS NUMEROS POSITIVOS ------------------------------

MOVA R3

SHL
FREEZEC

 MOVA R2

 SHL
 FREEZEC

 MOVA R3

 ADD R2
 MOVR R4 ;R4 CONTIENE EL VALOR DE LA SUMA

 SHL

 FREEZENC
 LDALL R4,CTE127P

 UNFREEZE

 UNFREEZE
UNFREEZE

;---

;------------------------------------ SEGUNDO BLOQUE ---------------------------------
;------------------------------------- R2 ES NEGATIVO -------------------------------

MOVA R3 ;B

SHL
 FREEZEC

 MOVA R2 ;A NEGATIVO

 SHL
 FREEZENC

 RST R0
 SUB R2

 MOVR R2

 MOVA R2
 SUB R3

 FREEZENC

 MOVR R2
 RST R0

 SUB R2

 MOVR R4
 UNFREEZE

 MOVA R3

 SUB R2
 FREEZENC

 MOVR R4

 UNFREEZE
 UNFREEZE

 UNFREEZE

;---
;------------------------------------ TERCER BLOQUE ---------------------------------

;------------------------------------- R3 ES NEGATIVO -------------------------------

MOVA R3 ;B NEGATIVO
SHL

 FREEZENC

 MOVA R2 ;A
 SHL

 FREEZEC

 RST R0
 SUB R3

 MOVR R3 ;VALOR POSITIVO DE R3

 MOVA R2

 SUB R3

 FREEZENC
 MOVR R4

 UNFREEZE

 MOVA R3
 SUB R2

Annexure C Assembly codes

191

 FREEZENC

 MOVR R2

 RST R0
 SUB R2

 MOVR R4

 UNFREEZE
 UNFREEZE

 UNFREEZE

 ;---
;------------------------------------ CUARTO BLOQUE ---------------------------------

;------------------------------------- AMBOS NEGATIVOS -------------------------------

 MOVA R3
 SHL

 FREEZENC

 MOVA R2
 SHL

 FREEZENC

 RST R0
 SUB R3

 MOVR R3 ;VALOR POSITIVO DE R3

 RST R0
 SUB R2

 MOVR R2 ;VALOR POSITIVO DE R2

 MOVA R3
 ADD R2

 MOVR R3

 RST R0
 SUB R3

 MOVR R4 ;R4 CONTIENE EL VALOR DE LA SUMA TOTAL

 MOVA R3 ;R3 CONTIENE EL RESPALDO VALOR DE LA SUMA
 SHL

 FREEZENC

 LDALL R4,CTE128N
 UNFREEZE

 UNFREEZE
 UNFREEZE

RET

;--
;##

.MULTIPLICATION

;------------------------------DETECCION DEL SIGNO DE R2-----------------------------
RST R6

MOVA R2

MOVR R4 ;R4 MANTIENE EL VALOR DE M1

SHL

FREEZENC
RST R0

SUB R2

MOVR R2
UNFREEZE

;------------------------------DETECCION DEL SIGNO DE R3-----------------------------

MOVA R3
MOVR R7 ;R7 MANTIENE EL VALOR DE M2

SHL
FREEZENC

RST R0

SUB R3
MOVR R3

UNFREEZE

;-------------------------------Calculo de la parte baja----------------------------
 MOVA R2

 MOVR R5

 LOOP 15
 MOVA R3

 SHR

 MOVR R3
 FREEZENC

 CLRC

 MOVA R6
 ADD R5

Annexure C Assembly codes

192

 MOVR R6

 FREEZENC

 SWAP R1
 MOVA R1

 LDALL R2,CARRY

 OR R2
 MOVR R1

 SWAP R1

 UNFREEZE
 UNFREEZE

 MOVA R5

 SHL
 MOVR R5 ;R5 <-- M1 * M2

 ENDL

RST R0
RST R1

RST R2

RST R3
RST R5

;------------------------------DETECCION DEL SIGNO DE R2----------------------------

MOVA R4
MOVR R2

SHL

FREEZENC
RST R0

SUB R4

MOVR R2
UNFREEZE

;------------------------------DETECCION DEL SIGNO DE R3-----------------------------

MOVA R7
MOVR R3

SHL

FREEZENC
RST R0

SUB R7
MOVR R3

UNFREEZE

MOVA R7
MOVR R1 ;AHORA EL VALOR DE R7 ESTA EN R

;----------------------------Calculo de la parte alta--------------------

 RST R7
 MOVA R2

 MOVR R5

 LOOP 15

 MOVA R3

 SHL
 MOVR R3

 FREEZENC

 MOVA R7
 ADD R5

 MOVR R7

 UNFREEZE
 MOVA R5

 SHR

 MOVR R5
 ENDL

;---

SWAP R1
MOVA R1

SWAP R1

SHR
SHR

ADD R7

SHR
MOVR R7

MOVA R6

SHR
SHR

SHR

SHR
SHR

Annexure C Assembly codes

193

SHR

SHR

SHR
MOVR R6 ;MOVIMIENTO HACIA LA DERECHA PARA OBTENER EL VALOR DE LA PARTE FRACCIONARIA

MOVA R7

SHL
SHL

SHL

SHL
SHL

SHL

SHL
SHL

MOVR R7 ;MOVIMIENTO HACIA LA DERECHA PARA OBTENER EL VALOR DE LA PARTE ENTERA

MOVA R7
XOR R6 ;UNION DE LAS DOS PARTES

MOVR R6

MOVR R5 ; R5 TIENE EL VALOR DE R6

;------------------------CALCULO FINAL DEL SIGNO DEL PRODUCTO---------------

MOVA R1
LDALL R2,CTEBT

AND R2

MOVR R2
MOVA R4

LDALL R3,CTEBT

AND R3
MOVR R3

MOVA R2

XOR R3
MOVR R3 ; R3 CONTIENE EL BIT DE SIGNO DEL PRODUCTO FINAL

SHL ; IF + or - the final sign is negative

FREEZENC
 RST R0

 SUB R6
 MOVR R6

 MOVA R5

 SHL
 FREEZENC

 LDALL R6,CTE128N ;SE CARGA EL MAXIMO NUMERO NEGATIVO REPRESENTADO EN 7 BITS DE LA PARTE

ENTERA
 UNFREEZE

UNFREEZE

MOVA R3
SHL

FREEZEC

 MOVA R5
 SHL

 FREEZENC

 LDALL R6,CTE127P ;SE CARGA EL MAXIMO NUMERO POSITIVO REPRESENTADO EN 7 BITS DE LA PARTE
ENTERA

 UNFREEZE

UNFREEZE
SWAP R1

MOVA R1

LDALL R2,CCARRY
AND R2

MOVR R1

SWAP R1
RET

;###

; **************************** MAIN PROGRAMME BEGIN ************************

.MAIN

 GOTO INICIALIZATION_I

 GOTO SPIKE_UPDATE ;OUT SPIKE Si

 GOTO UPDATE_MEMBRANE_VALUE
 GOTO SPIKES_ENABLE

 STOP ;AER/CAM UPDATE OF SPIKES

 LOOP synapses ; spikes Sj
 GOTO SYNAPSE_LOAD1

Annexure C Assembly codes

194

 GOTO SYNAPTIC_WEIGHT_PRE

 GOTO SYNAPSE_SAVE1

 ENDL
 GOTO MEMBRANE_VALUE

 GOTO MEMBRANE_VALUE

 GOTO RECOVERY_VALUE
 GOTO NEURON_SAVE

GOTO MAIN
; **************************** MAIN PROGRAMME END ***************************

C.3 Assembler code of Leaky integrate-and-fire algorithm

– Ubichip

THETA1="0000F060"

THETA2="0000F060"

POT1="000003E8"
POT2="0000FFB0"

VREST1="0000E188"

VREST2="0000E188"
UNO="00000001"

MASC="00000003"

MASK1="0000E000"
MASK2="0000C000"

.CODE

GOTO MAIN

; --

; ***************************** PROCEDURES BEGIN ***************************

; ------------------------------- NEURON LOAD ---------------------
.NEURON_LOAD

SWAP R6
LOAD R6,NEU-2 ;SR6 <-- Vi

SWAP R6

SWAP R0
LOAD R0,NEU-3 ;SR0 <-- SUM_WEIGHTS

SWAP R0

; ------------------------------ Neuron Type + Si ----------------------
LOAD R2,NEU-1 ;R2 <-- Mi + Neuron Type + Si

MOVA R2

LDALL R3,MASC
AND R3

SWAP R5

MOVR R5 ;SR5 <-- Neuron Type + Si
SWAP R5

; ------------------------------------- Mi ----------------------------------

MOVA R2
SHR

SHR

SWAP R4
MOVR R4 ;SR4 <-- Mi

SWAP R4

;------------------------------ Tref + exponential ----------------------
LDALL R3,MASK1 ;MASK1="0000E000"

SWAP R5

MOVA R5
SWAP R5

SHR

SHR
FREEZENC

 LDALL R3,MASK2 ;MASK2="0000C000"

UNFREEZE
LOAD R1,NEU-4 ;R1 <-- Tref + exponential

INV R3 ;MASK1 --> 1FFF ; MASK2 --> 3FFF

AND R1

Annexure C Assembly codes

195

MOVR R7 ;R7 <-- 1FFF

SWAP R7 ;SR7 <-- exponential

MOVA R1
AND R3 ;MASK1 = E000 ; MASK2 = C000

MOVR R7 ;R7 <-- Tref

RET
; --

; -------------------------- MEMBRANE VALUE --------------------

.MEMBRANE_VALUE
RST R1

RST R2

SWAP R5 ;SR5 --> NEURON TYPE + Si
LDALL R3,DMEM1 ;R3 <-- DECAY DONATOR 1

LDALL R4,VREST1 ;R4 <-- Vres1

MOVA R5
SHR

SHR ;IF NEURON TYPE = TYPE_II (CONDITIONAL LOAD)

FREEZENC
 LDALL R3,DMEM2 ;R3 <-- DECAY DONATOR 2

 LDALL R4,VREST2 ;R4 <-- Vres2

UNFREEZE
;----------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) -----------------

MOVA R5

SHR
FREEZEC ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem)

 SWAP R6 ;SR6 <-- Vi

 MOVA R6 ;R0 <-- Vi
 SUB R4 ;R0 <-- Vi - Vres

 MOVR R2 ;R2 <--(Vi(t)-Vres)

 GOTO DECAY ;R2 = (Vi(t)-Vres), R3 = DECAY DONATOR (1 or 2)
 ;R2 <--(Vi(t)-Vres) * (Kmem)

UNFREEZE

MOVA R5
SHR

FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0
 RST R2 ;R2 <-- ((0)*(Vi(t)-Vres)*(Kmem)

UNFREEZE

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ----------
LDALL R4,VREST1 ;R4 <-- Vres1

MOVA R5

SHR
SHR

 ;IF NEURON TYPE = TYPE_II (CONDITIONAL LOAD)

FREEZENC
 LDALL R4,VREST2 ;R4 <-- Vres2

UNFREEZE

MOVA R4 ;R0 <-- Vres1 or Vres2
ADD R2 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)

MOVR R2 ;R2 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)

SWAP R0 ;R0 <-- SUM_WEIGHTS
ADD R2 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS

MOVR R6 ;R6 <-- Vi = (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS

SWAP R6 ;SR6 <-- Vi
SWAP R5 ;SR5 <-- NEURON TYPE + Si

RST R0 ;SUM_WEIGHTS = 0

SWAP R0 ;SR0 <-- SUM_WEIGHTS
RET

; ---

; ---------------------------------- SYNAPSE LOAD -------------------------------
.SYNAPSE_LOAD

; ---

; -------------------------------------- SP1 -----------------------------------
; ---

; ---------------------------- Synapse Type + Sj -------------------------

LDALL R1,MASC
SETC

SETMP SYN-0 ;LOOP INDEX

READMP 1
LOAD R2 ;R2 <-- Synapse Type + Sj

; ------------------------------- Synapse Type + Sj ----------------------------

MOVA R2
AND R1

Annexure C Assembly codes

196

MOVR R6 ;R6 <-- Synapse Type + Sj

MOVA R2

SHR
SHR

MOVR R5

; --
; --------------------------------- SYNAPTIC WEIGHT ------------------------------

.SYNAPTIC_WEIGHT

RST R1
MOVA R6

SHR

FREEZENC ;IF (Sj = 1) THEN R0 <-- wji = Sj * Aji * P
 LDALL R4,POT1 ;R4 <-- POT1

 MOVA R6

 SHR
 SHR

 FREEZENC

 LDALL R4,POT2
 UNFREEZE

;-- Aji * P ---------------------------------

 MOVFS R3
 MOVA R3

 SHR

 MOVR R3
 FREEZENC

 MOVA R1

 ADD R4
 MOVR R1

 UNFREEZE

 MOVA R3
 SHR

 MOVR R3

 FREEZENC
 MOVA R1

 ADD R4
 ADD R4

 MOVR R1

 UNFREEZE
 MOVFS R3

 MOVA R3

 SHR
 FREEZENC

 SHR

 FREEZENC
 MOVA R1

 ADD R4

 MOVR R1
 UNFREEZE

 UNFREEZE

UNFREEZE
SWAP R0

ADD R1 ; SR0 <-- wji = Sj * Aji * P

SWAP R0
RET

; --

; --------------------------- SYNAPSE_SAVE -------------------------------
.SYNAPSE_SAVE

SETMP SYN-0 ;LOAD LOOP INDEX!

READMP 1 ;READMPX
; ************************** 1. MJ+SI+TYPE ********************************

MOVA R6 ;R6 <--- S type + Sj

SHR
SHL

MOVR R6

MOVA R5 ;<--MJ
SHL

SHL

ADD R6 ;+TYPE+SJ
MOVR R3 ;composed DATA

RST R0

SHR
STNC R3 ;SAVE DATA

Annexure C Assembly codes

197

; ***************************** 2. LJI+AJI *********************************

SWAP R2

MOVA R2 ;<--LJI
SWAP R2

SHL

SHL
SWAP R3

ADD R3 ;+AJI

SWAP R3
MOVR R3 ;composed DATA

RST R0

SHR
STNC R3 ;SAVE DATA

RET

; --
; ---------------------------- SPIKE UPDATE --------------------------------

.SPIKE_UPDATE

LDALL R3,THETA1 ;R3 <-- THETA1 = "0000F060"
SWAP R5 ;SR5 <-- Neuron Type + Si

MOVA R5

SHR
SHR

FREEZENC

 LDALL R3,THETA2 ;R3 <-- THETA2 = "0000F060"
UNFREEZE

MOVA R5

SHR
SHL

MOVR R5 ;R5 <-- Neuron Type + 0

SWAP R6 ;SR6 <-- Vi
MOVA R6 ;R0 <-- Vi

SUB R3 ;R0 <-- Vi - (THETA1 or THETA2)

SWAP R6
FREEZENC

 MOVA R7 ;R0 <-- refractary period
 SHL

 FREEZEC

 MOVA R5
 LDALL R3,UNO

 ADD R3

 MOVR R5 ;R5 <-- Neuron Type + 1
 SET R7 ;R7 <-- activation of refractory time

 UNFREEZE

UNFREEZE
SWAP R5

RET

; --
; ------------------------------- REFRACTORY P ---------------------------

.REFRACTORY_P

MOVA R7
SHL ; -1ms

MOVR R7

RET
; --

; ------------------------------- NEURON SAVE ----------------------------

.NEURON_SAVE
SWAP R4 ;R4 <-- Mi

SWAP R5 ;R5 <-- Neuron Type + Si

SWAP R6
RST R3

MOVA R4

SHL
SHL

ADD R5

MOVR R3 ;R3 <-- Mi + Neuron Type + Si
;--------------------------- INDIVIDUAL DATA STORE ------------------

RST R0

SHR
STNC R3,NEU-1 ;SRAM <-- Neuron Type + Si

RST R0

SHR
STNC R6,NEU-2 ;SRAM <-- Vi

Annexure C Assembly codes

198

SWAP R0

CLRC

STNC R0,NEU-3 ;SRAM <-- SUM_WEIGHTS
SWAP R0

LDALL R3, ;MASK1 = "0000E000"

MOVA R5
SWAP R5

SHR

SHR
FREEZENC

 LDALL R3,MASK2 ;MASK2 = "00008000"

UNFREEZE
MOVA R7 ;ACC <-- Tref

AND R3

SWAP R7 ;R7 <-- exponential
OR R7

SWAP R7

CLRC
STNC R0,NEU-4 ;SRAM <-- Tref + exponential

RET

; ---
;-------------------------ENABLE SPIKES PROPAGATION-----------------------

.SPIKES_ENABLE

SWAP R5 ; ACC <== Spikes
MOVA R5

SWAP R5

SETC
SETMP SYN-0 ; Point to Sj

READMP

RET
;---

; ---------------------------- EXPONENTIAL DECAY -----------------------------

.DECAY
RST R1

MOVA R2
MOVR R4

SHL

FREEZENC
 RST R0

 SUB R2

 MOVR R2
UNFREEZE

LOOP 15

 MOVA R2
 SHL

 MOVR R2

 FREEZENC
 MOVA R1

 ADD R3

 MOVR R1
 UNFREEZE

 MOVA R3

 SHR
 MOVR R3

ENDL

MOVA R1
SHR

MOVR R1

MOVA R4
SHL

FREEZENC

 RST R0
 SUB R1

 MOVR R1

UNFREEZE
MOVA R1

MOVR R2

RST R1
RET

; ---

; **************************** PROCEDURES END ******************************
; **************************** MAIN PROGRAMME BEGIN ***********************

Annexure C Assembly codes

199

.MAIN

GOTO NEURON_LOAD

GOTO MEMBRANE_VALUE
LOOP synapses

 GOTO SYNAPSE_LOAD

 GOTO SYNAPTIC_WEIGHT
 GOTO SYNAPSE_SAVE

ENDL

GOTO SPIKE_UPDATE
GOTO REFRACTORY_P

GOTO NEURON_SAVE

GOTO SPIKES_ENABLE
STOP

HALT

GOTO MAIN
; **************************** MAIN PROGRAMME END **************************

C.4 Assembler code of Iglesias and villa algorithm –

SNAVA

AMAX="00000003"

DACT1="0000FFFA"

DACT2="0000FFFA"
DBACK="0000E7A3"

DMEM1="0000EF7D"

DMEM2="0000EF7D"
DSYN1="0000F9AE"

DSYN2="0000F9AE"

LMAX="00003FFF"
MMAX="00000666"

POT1="000003E8"
POT2="0000FFB0"

PROB="00001FFF"

THETA1="0000F060"
THETA2="0000F060"

VREST1="0000E188"

VREST2="0000E188"
UNO="00000001"

DOS="00000002"

CTETP="0000F448"
CTE1="00000007"

.CODE

LOOPN neurons_virtualized

; --------------------------INIT SOME VARIABLES-----------------------------
LDALL R2,PROB

MOVA R2

RANDON
LLFSR R1

RANDOFF

AND R1
MOVR R5

SWAPS R5 ;SR5_2 <-- activation probability

; --
ENDL

GOTO MAIN
; --

; ***************************** PROCEDURES BEGIN ***************************

; ------------------------------- MEMBRANE VALUE -------------------------------
.MEMBRANE_VALUE

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ----------

Annexure C Assembly codes

200

 LDALL R4,DMEM1 ;R4 <-- DECAY DONATOR 1

 LDALL R5,VREST1 ;R5 <-- Vres1

 SWAPS R0 ;R0 <-- SR0_2 = Nt + Si
 MOVR R3 ;R3 <-- Nt + Si

 SWAPS R0 ;SR0_2 <-- R0 = Nt + Si

 MOVA R3
 SHRN DOS

 FREEZENC ;IF NEURON TYPE = II (CONDITIONAL LOAD)

 LDALL R4,DMEM2 ;R4 <-- DECAY DONATOR 2
 LDALL R5,VREST2 ;R5 <-- Vres2

 UNFREEZE

;----------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) -----------------
 MOVA R3 ;R0 <-- R3 = Nt + Si

 RTR

 FREEZEC ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem)
 SWAPS R1 ;R1 <-- SR1_2 = Vi

 MOVA R1 ;R0 <-- R1 = Vi

 SUB R5 ;R0 <-- Vi - Vres
 UNMUL R4 ;R0 <--(Vi(t)-Vres) * (Kmem)

 MOVR R2 ;R2 <--(Vi(t)-Vres) * (Kmem)

 UNFREEZE
 MOVA R3

 RTR

 FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0
 RST R2 ;R2 <-- ((0)*(Vi(t)-Vres)*(Kmem)

 UNFREEZE

MOVA R2 ;R0 <-- (Vi(t)-Vres)*(Kmem)
ADD R5 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)

SWAPS R2 ;R2 <-- SR2_2 = SUM_WEIGHTS

ADD R2 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS
MOVR R1 ;R1 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS

SWAPS R1 ;SR1_2 <-- R1 = Vi

RST R2 ;SUM_WEIGHTS <-- 0
SWAPS R2 ;SR2_2 <-- R2 = SUM_WEIGHTS

RET
; ---

; ---------------------------------- SYNAPSE LOAD -------------------------------

.SYNAPSE_LOAD
LOADSP

 ;R4 <-- St + Sj

 ;R5 <-- Aj
 ;R6 <-- Lji

 ;R7 <-- Mj

RET
; ---

; --------------------------------- SYNAPTIC WEIGHT ------------------------------

.SYNAPTIC_WEIGHT

MOVA R4 ; R0 <-- St + Sj

RTR
FREEZENC ;IF (Sj = 1) THEN R0 <-- wji = Aji * P

 LDALL R1,POT1 ; R1 <-- POT1

 MOVA R4 ; R0 <-- St + Sj
 SHRN DOS

 FREEZENC

 LDALL R1,POT2
 UNFREEZE

 MOVA R1 ;R0 <-- POT1 or POT2

 MUL R5 ;R0 <-- wji = Aji * P
 SWAPS R2 ;R2 <-- SR2_2 = sumW

 ADD R2 ;SR0 <-- wji = Sj * Aji * P

 MOVR R2 ;R2 <-- wji = Sj * Aji * P
 SWAPS R2 ;SR2_2 <-- R2 = sumW

UNFREEZE

RET
;--

;---------------------------- REAL_VALUE_VARIABLE --------------------------

 .REAL_VALUE_VARIABLE
;---------------Lji(t+1) = Lji(t) * Kact + Si(t) * Mj - Sj(t) * Mi(t)-------

LDALL R1,DACT1 ;R1 <-- DACT1

MOVA R4 ;R0 <-- St + Sj
SHRN DOS

Annexure C Assembly codes

201

FREEZENC ;St = 1 = inhibitory synapse

 LDALL R1,DACT2 ;R1 <-- DACT2

UNFREEZE
MOVA R6 ;R0 <-- R6 = Lji

UNMUL R1 ;R0 <-- Lji(t) * Kact

MOVR R6 ;R6 <-- Lji

SWAPS R0 ;R0 <-- SR0_2 = St + Si

MOVR R2
SWAPS R0 ;R0 <-- SR0_2 = St + Si

MOVA R2

RTR
FREEZENC ;IF Si = 1 THEN

 MOVA R7 ;R0 <-- R7 = Mj

 ADD R6 ;R0 <-- (Lji(t) * Kact) + (Si(t) * Mj)
 MOVR R6 ;R6 <-- (Lji(t) * Kact) + (Si(t) * Mj)

UNFREEZE

MOVA R4 ;R4 <-- St + Sj

RTR

FREEZENC ;IF Sj = 1 THEN
 SWAPS R3 ;R3 <-- SR3_2 = Mi

 MOVA R6 ;R0 <-- Mi

 SUB R3 ;R0 <--(Lji(t) * Kact) + (Si(t) * Mj) - Sj(t) * Mi(t)
 SWAPS R3 ;R3 <-- SR3_2 = Mi

 MOVR R6 ;R6 <--(Lji(t) * Kact) + (Si(t) * Mj) - Sj(t) * Mi(t)

UNFREEZE
RET

; --

; ------------------------------- ACTIVATION_VARIABLE --------------------------
.ACTIVATION_VARIABLE

MOVA R5 ;R0 <-- R5 = Aji

 FREEZEZ ; IF (Aji =/ 0) THEN
 LDALL R0,LMAX ; R0 <--- Lmax

 SUB R6 ; Lmax - Lji
 RTL

 FREEZENC

 MOVA R5 ; R0 <-- R5 <-- Aji
 INC ; R0 <-- Aji + 1

 MOVR R5 ; R5 <-- Aji

 LDALL R0,AMAX

 SUB R5 ; R0 <-- Amax - Aji

 RTL
 FREEZENC

 LDALL R5,AMAX

 UNFREEZE
 LDALL R0,LMAX ; Lji=Lmax/2

 RTR

 MOVR R6
 UNFREEZE

 ;else if (Lji < Lmin)

 MOVA R6 ; Lji --> ACC, Lmin=0
 RTL

 FREEZENC ; (Lji-Lmin)

 MOVA R5 ; R0 <-- R5 = Aji
 DEC ; Aji-1

 MOVR R5 ; Aji --> R5

 LDALL R0,LMAX ; Lji=Lmax/2
 RTR

 MOVR R6

 UNFREEZE
 UNFREEZE

MOVA R5
FREEZENZ ;IF CONNECTION IS INACTIVE

 RST R6

UNFREEZE
RET

; ---

; -------------------------------- MEMORY_OF_LAST_PRESYNAPTIC_SPIKE -----------------------
.MEMORY_OF_LAST_PRESYNAPTIC_SPIKE

Annexure C Assembly codes

202

; ----------------- Mj(t+1) = (Sj(t) * Mmax) + (1 - Sj(t)) * Mj(t) * Ksyn -----------------

;--------------------------- R2 <-- (1 - Sj(t)) * Mj(t) * Ksyn ----------------------------
LDALL R1,DSYN1 ; R1 <-- Ksyn1

MOVA R4 ; R0 <-- R4 = Synapse Type + Sj

SHRN DOS
FREEZENC

 LDALL R1,DSYN2 ; R1 <-- Ksyn2

UNFREEZE

MOVA R4 ; R0 <-- R4 = Synapse Type + Sj

RTR
FREEZEC ; IF Sj = 0 THEN

MOVA R7 ; R7 <-- Mj

UNMUL R1 ; R0 <-- (1 - Sj(t)) * Mj * Ksyn1 or Ksyn2
MOVR R7 ; R3 <-- (1 - Sj(t)) * Mj * Ksyn1 or Ksyn2

UNFREEZE

MOVA R4 ; R0 <-- R4 = Synapse Type + Sj

RTR

FREEZENC ;IF Sj= 1 THEN R7 <-- Mmax
 LDALL R7,MMAX ;R2 <-- Mmax

UNFREEZE

;MOVA R7 ; R0 <-- (1 - Sj(t)) * Mj * Ksyn1 or Ksyn2
RET

; ---

; --------------------------- SYNAPSE_SAVE -------------------------------
.SYNAPSE_SAVE

; THE SYNAPTIC PARAMETERS GO TO BUFFER 32 bits

;MOVA R5 ;R5 <-- Aji
MOVA R6 ;R6 <-- Lji

;RTR

;RTR
RTL

RTL
OR R5

MOVR R1 ;R1 <-- Lji + Aji

;MOVA R4 ;R4 <-- St + Sj
MOVA R7 ;R0 <-- R7 = Mj

;RTR

;RTR
RTL

RTL

OR R4 ;R0 <-- Mj + St + Sj
STOREB

NOP

MOVA R4 ;R0 <--- R4 = St + Sj to delete the spike

RTR

RTL
MOVR R4

STORESP

RET
; ---

; ------------------------ MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE ---------------

.MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE
; ----------------- Mi(t+1) = (Si(t) * Mmax) + (1 - Si(t)) * Mi(t) * Ksyn -----------------

SWAPS R0 ;R0 <-- SR0_2 = St + Si

MOVR R2 ;R2 <-- St + Si

SWAPS R0 ;SR0_2 <-- R0 = St + Si
MOVA R2

LDALL R1,DSYN1 ;TYPE=1

SHRN DOS
 FREEZENC

 LDALL R1,DSYN2 ;TYPE=2

 UNFREEZE

SWAPS R3 ;R3 <-- SR3_2 = Mi

MOVA R2 ;R0 <-- St + Si

Annexure C Assembly codes

203

RTR

 FREEZEC

 MOVA R3 ;R0 <-- Mi
 UNMUL R1 ;R0 <-- (1 - Si(t)) * Mi * Ksyn1 or Ksyn2

 MOVR R3 ;R4 <-- (1 - Si(t)) * Mi * Ksyn1 or Ksyn2

 UNFREEZE

MOVA R2

RTR
 FREEZENC

 LDALL R3,MMAX

 UNFREEZE

;MOVA R3

SWAPS R3 ; SR3_2 <-- R3 = Mi
RET

; ---

; ---------------------------- SPIKE UPDATE --------------------------------
.SPIKE_UPDATE

SWAPS R0 ;R0 <-- SR0_2 = Nt + Si

MOVR R2
LDALL R3,THETA1 ;R3 <-- THETA1 = "0000F060"

SHRN DOS

FREEZENC
 LDALL R3,THETA2 ;R3 <-- THETA2 = "0000F060"

UNFREEZE

 MOVA R2
 RTR

 RTL

 MOVR R2 ;R2 <-- Neuron Type + 0 It has been set Si = 0

 SWAPS R1 ;R1 <-- SR1_2 = Vi

 MOVA R1
 MOVR R5

 SWAPS R1 ;SR1_2 <-- R1 = Vi
 RTL

 FREEZEC

 LDALL R5,CTETP ; It has assigned a positive value under 30 because it has verified that is
lower than

 UNFREEZE

MOVA R5 ;R0 <-- Vi
SUB R3 ;R0 <-- Vi - (THETA1 or THETA2)

 FREEZENC

 SWAPS R4 ;R4 <-- SR4 = Tref
 RST R0

 SUB R4

 SWAPS R4
 FREEZENZ ; IF (Z = 1) THEN Tref is setting

 MOVA R2

 INC
 MOVR R2

 LDALL R4,CTE1 ;CTE1 = 7

 SWAPS R4
 UNFREEZE

 UNFREEZE

MOVA R2 ;R0 <-- Nt + Si
SWAPS R0 ;SR0_2 <-- R0 = Nt + Si

RET

; ---
; ------------------------------- REFRACTORY P ---------------------------

.REFRACTORY_P

 SWAPS R4 ;R4 <-- SR4 = Tref
 MOVA R4

 RTR

 MOVR R4
 SWAPS R4 ;SR4 <-- R4 = Tref

RET

; --
.NEURON_SAVE

;SWAPS R0 ;Nt + Si

;SWAPS R1 ;Vi
;SWAPS R2 ;sum_W

Annexure C Assembly codes

204

;SWAPS R3 ;Mi

SWAPS R0 ;R0 <-- SR0 = Nt + Si

MOVR R1 ;R1 <-- R0
SWAPS R0 ;SR0 <-- R0 = Nt + Si

SWAPS R3 ;R3 <-- SR3 = Mi

MOVA R3
;RTR

;RTR

RTL
RTL

OR R1 ;R0 <-- Mi + Nt + Si

SWAPS R3 ;R3 <-- SR3 = Mi
SWAPS R1 ;R1 <-- SR1 = Vi

STOREB

NOP
SWAPS R1

RST R1

SWAPS R2 ;R2 <-- SR2 = sum_W
MOVA R2

SWAPS R2

STOREB
NOP

RET

; ----------------------------- BACKGROUND_ACTIVITY----------------------------
.BACKGROUND_ACTIVITY

SWAPS R6 ; R6 <-- SR6_2 = exponential

MOVA R6
SWAPS R6 ; SR6_2 <-- R6 = exponential

LDALL R4,PROB ; R4 <-- PROB = "00001FFF"
LDALL R3,DBACK ; R3 <-- DBACK = "00005E2C"

UNMUL R3 ; R0 <-- DBACK * exponential

MOVR R2 ; R2 <-- DBACK * exponential
SWAPS R5 ; R5 <-- SR5_2 = activation probability

MOVA R4 ; R0 <-- PROB
SUB R2 ; R0 <-- PROB - (DBACK * exponential)

RANDON

CLRC
SUB R5 ; (PROB - (DBACK * exponential)) - Activation probability

FREEZENC ;If ((PROB - (DBACK * exponential)) > Activation probability) then

 LLFSR R5 ; R1 <-- new activation probability
 RANDOFF

 MOVA R4 ; R0 <-- PROB = "00001FFF"

 MOVR R2 ; R2 <-- PROB = "00001FFF"
 AND R5 ; R0 <-- PROB = "00001FFF" AND new activation probability

 MOVR R5 ; R1 <-- PROB = "00001FFF" AND new activation probability

 FREEZENC ; IF (C = 1) THEN Tref
 SWAPS R4 ;R4 <-- SR4 = Tref

 RST R0

 SUB R4
 SWAPS R4

 FREEZENZ ; IF (Z = 1) THEN Tref is setting

 SWAPS R0 ; R0 <-- SR0_2 = Neuron Type + Si
 RTR

 RTL

 INC
 SWAPS R0 ; R0 <-- SR0_2 = Neuron Type + Si

 LDALL R4,CTE1 ;CTE1 = 7

 SWAPS R4
 UNFREEZE

 UNFREEZE

UNFREEZE
SWAPS R5 ;SR5_2 <-- R5 = activation probability

MOVA R2

SWAPS R6 ; R6 <-- SR6_2 = exponential
MOVR R6

SWAPS R6 ; SR6_2 <-- R6 = exponential

RET
; --

;-------------------------ENABLE SPIKES PROPAGATION-----------------------

.SPIKES_ENABLE
SWAPS R0

Annexure C Assembly codes

205

MOVR R2 ; R2 <-- St + Si

SWAPS R0

MOVA R2 ; R0 <== Spikes
STOREPS

RET

; --
; **************************** PROCEDURES END ******************************

; **************************** MAIN PROGRAMME BEGIN ************************

.MAIN
LOOPN neurons_virtualized

GOTO MEMBRANE_VALUE

ENDL

LOOPS synapses ;synaptic loop

 GOTO SYNAPSE_LOAD
 GOTO SYNAPTIC_WEIGHT

 GOTOL REAL_VALUE_VARIABLE

 GOTOL ACTIVATION_VARIABLE
 GOTOL MEMORY_OF_LAST_PRESYNAPTIC_SPIKE

 GOTO SYNAPSE_SAVE

ENDL

LOOPN neurons_virtualized

GOTO MEMORY_OF_LAST_POSTSYNAPTIC_SPIKE
GOTO SPIKE_UPDATE

GOTO BACKGROUND_ACTIVITY

GOTO REFRACTORY_P
GOTO NEURON_SAVE

GOTO SPIKES_ENABLE

ENDL
NOP

SPKDIS

NOP
NOP

GOTO MAIN
; **************************** MAIN PROGRAMME END **************************

C.5 Assembler code of Izhikevich algorithm – SNAVA

PROB="0000FFFF" ;0.99

CTE1="00000000" ;5
CTE2="00000000" ;2

CTE3="00000000" ;140

CTE4="00000000" ;0.04
CTE5="00000000" ;0.5

CTE6V="00000000" ;6

CTE30V="00000000";30
MAXE="00000000" ;800

.CODE
; --------------------------INITIALIZATION PHASE-----------------------------

GOTO MAIN

.thalamic_input

 LDALL R0,PROB
 RANDON

 LLFSR R1 ; R1 <-- new probability
 RANDOFF

 LDALL R2,CTE1 ; CTE1 = 5

 MOVA R1
 MUL R2

 MOVR R2 ; R2 <-- 5 * new probability

 SWAPS R0 ;R0 <-- SR0 = Nt + Si
 MOVR R3 ;R3 <-- R0 = Nt + Si

 SWAPS R0 ;SR0 <-- R0 = Nt + Si

 MOVA R3 ;R0 <-- R3 = Nt + Si
 RTR

 RTR

Annexure C Assembly codes

206

 FREEZENC ;1 = inhibitory, 0 = excitatory

 LDALL R0,CTE2 ; CTE2 = 2

 MUL R1
 MOVR R2 ; R2 <-- 2 * new probability

 UNFREEZE

 MOVA R2
 MOVR R1

 SWAPS R1

RET

.spike_update

 SWAPS R0 ; Si <-- 0
 RTR

 RTL

 SWAPS R0
 SWAPS R2

 MOVA R2 ; R0 <-- v

 SWAPS R2
 RTL

 FREEZENC

 LDALL R4,CTE6V
 UNFREEZE

 MOVA R4

 LDALL R3,CTE30V ; R3 <-- 30
 SUB R3 ; v - 30

 FREEZENC ; v = c , u = u + d, only if v >= 30

 SWAPS R0 ; Si <-- 1
 INC

 SWAPS R0

 UNFREEZE
RET

.membrane_potential_update

 SWAPS R0
 MOVR R1

 SWAPS R0

 MOVA R1
 RTR

 FREEZENC

 SWAPS R6 ; SR6 <-- c
 MOVA R6

 MOVR R2

 SWAPS R2 ; SR2 <-- v = c
 SWAPS R6 ; SR6 <-- v = c

 SWAPS R7 ; R7 <-- SR7 = d
 SWAPS R3 ; R3 <-- SR3 = u

 MOVA R3 ; R0 <-- u

 ADD R7 ; R0 <-- u + d
 MOVR R3

 SWAPS R3 ; R3 <-- SR3, u = u + d

 SWAPS R7 ; R7 <-- SR7 = d
 UNFREEZE

RET

.SPIKES_ENABLE

 SWAPS R0
 MOVR R2 ; R2 <-- Si

 SWAPS R0

 MOVA R2 ; R0 <== Spikes
 STOREPS

RET

.SYNAPSE_LOAD
 LOADSP

 ;R4 <--

 ;R5 <--
 ;R6 <-- Sj

 ;R7 <-- S

RET
.SYNAPTIC_WEIGHT

Annexure C Assembly codes

207

 MOVA R6 ; R0 <-- Sj

 RTR
 FREEZENC

 SWAPS R1 ; R1 <-- SR1 = I

 MOVA R7 ; R0 <-- R7 = S
 ADD R1 ; R0 <-- I= I + S

 MOVR R1

 SWAPS R1
 UNFREEZE

RET
.SYNAPSE_SAVE

 MOVA R6 ;R0 <--- R4 = St + Sj to delete the spike
 RTR

 RTL

 MOVR R6
 STORESP

RET

.membrane_potential_calculation

 SWAPS R1 ;R1 <-- SR1 = I

 SWAPS R2 ;R2 <-- SR2 = v
 SWAPS R3 ;R3 <-- SR3 = u

 SWAPS R4 ;R4 <-- SR4 = a

 SWAPS R5 ;R5 <-- SR5 = b
 LDALL R0,CTE3 ;CTE3 = 140

 SUB R3 ;R0 = 140 - u

 ADD R1 ;R0 = 140 - u + I
 MOVR R7 ;R7 = 140 - u + I

 LDALL R0,CTE1 ;5

 MUL R2 ;R0 = 5 * v
 ADD R7 ;R0 = 5 * v + 140 - u + I

 MOVR R7 ;R7 = 5 * v + 140 - u + I
 LDALL R0,CTE4 ;0.04

 MUL R2

 MUL R2
 ADD R7 ;R0 = 0.04 * v * v + 5 * v + 140 - u + I

 MOVR R7 ;R7 = 0.04 * v * v + 5 * v + 140 - u + I

 LDALL R0,CTE5 ;0.5
 MUL R7

 ADD R2

 MOVR R2 ;R2 = v = v + 0.5 * (0.04 * v * v + 5 * v + 140 - u + I)
 SWAPS R1 ;R1 <-- SR1 = I

 SWAPS R2 ;R2 <-- SR2 = v

 SWAPS R3 ;R3 <-- SR3 = u
 SWAPS R4 ;R4 <-- SR4 = a

 SWAPS R5 ;R5 <-- SR5 = b

RET
.recovery_variable_calculation

 SWAPS R2 ;R2 <-- SR2 = v
 SWAPS R3 ;R3 <-- SR3 = u

 SWAPS R4 ;R4 <-- SR4 = a

 SWAPS R5 ;R5 <-- SR5 = b
 MOVA R2

 SUB R3 ; v - u

 MUL R5 ; b * (v - u)
 MUL R4 ; a * (b * (v - u))

 ADD R3

 MOVR R3 ; u = u + a * (b * (v - u))
 SWAPS R2 ;R2 <-- SR2 = v

 SWAPS R3 ;R3 <-- SR3 = u

 SWAPS R4 ;R4 <-- SR4 = a
 SWAPS R5 ;R5 <-- SR5 = b

RET
;------------------------------ MAIN -------------------------

.MAIN
 LOOPN neurons_virtualized

Annexure C Assembly codes

208

 GOTO thalamic_input

 GOTO spike_update

 GOTO membrane_potential_update
 GOTO SPIKES_ENABLE

 ENDL

 SPKDIS
 NOP

 LOOPS synapses

 GOTO SYNAPSE_LOAD
 GOTO SYNAPTIC_WEIGHT

 GOTO SYNAPSE_SAVE

 ENDL
 LOOPN neurons_virtualized

 GOTO membrane_potential_calculation

 GOTO membrane_potential_calculation
 GOTO recovery_variable_calculation

 ENDL

GOTO MAIN

C.6 Assembler code of Leaky integrate-and-fire algorithm

– SNAVA

DMEM="0000EF7D"
VREST="00008AD0" ; -300 mV

POT1="00000002"

POT2="0000FFF8"
CTE1="00000007" ; "111"

DOS="00000002" ; "2"

CTETP="0000F448"

.CODE

GOTO MAIN

; --

; ***************************** PROCEDURES BEGIN ***************************

; ------------------------------- MEMBRANE VALUE -----------------------------

.MEMBRANE_VALUE

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ----------
 LDALL R4,DMEM ;R4 <-- Kmem

 LDALL R5,VREST ;R5 <-- Vres

 SWAPS R0 ;R0 <-- SR0 = Si
 MOVR R3 ;R3 <-- Si

 SWAPS R0 ;SR0 <-- R0 = Si

 MOVA R3
 RTR

 FREEZEC ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem)

 SWAPS R1 ;R1 <-- SR1 = Vi
 MOVA R1 ;R0 <-- R1 = Vi

 SUB R5 ;R0 <-- Vi - Vres

 UNMUL R4 ;R0 <--(Vi(t)-Vres) * (Kmem)
 MOVR R2 ;R2 <--(Vi(t)-Vres) * (Kmem)

 UNFREEZE

 MOVA R3
 RTR

 FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0

 RST R2 ;R2 <-- ((0)*(Vi(t)-Vres)*(Kmem)
 UNFREEZE

 MOVA R2 ;R0 <-- (Vi(t)-Vres)*(Kmem)

 ADD R5 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)
 SWAPS R2 ;R2 <-- SR2 = SUM_WEIGHTS

 ADD R2 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-

Vres)*(Kmem) SUM_WEIGHTS
 MOVR R1 ;R1 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS

 SWAPS R1 ;SR1 <-- R1 = Vi

 RST R2 ;SUM_WEIGHTS <-- 0

Annexure C Assembly codes

209

 SWAPS R2 ;SR2 <-- R2 = SUM_WEIGHTS

RET

; ---

; ---------------------------------- SYNAPSE LOAD -------------------------------

.SYNAPSE_LOAD

 LOADSP

 ;R7 <-- St + Sj
 ;R6 <-- Aj

RET

; --

; --------------------------------- SYNAPTIC WEIGHT ------------------------------

.SYNAPTIC_WEIGHT

MOVA R7 ; R0 <-- St + Sj

RTR
FREEZENC ;IF (Sj = 1) THEN R0 <-- wji = Aji * P

 LDALL R1,POT1 ; R1 <-- POT1

 MOVA R7 ; R0 <-- St + Sj
 SHRN DOS

 FREEZENC

 LDALL R1,POT2
 UNFREEZE

 MOVA R1 ;R0 <-- POT1 or POT2

 MUL R6 ;R0 <-- wj = Aj * P
 SWAPS R2 ;R2 <-- SR2 = sumW

 ADD R2 ;SR0 <-- wj = Sj * Aj * P

 MOVR R2 ;R2 <-- wj = Sj * Aj * P
 SWAPS R2 ;SR2 <-- R2 = sumW

UNFREEZE

RET
;---

; --------------------------- SYNAPSE_SAVE -----------------------
.SYNAPSE_SAVE

RST R1
MOVA R6

SHLN DOS

OR R7
STOREB ;buffer <-- R0 = A + St + Sj

MOVA R7 ;R0 <--- R4 = St + Sj to delete the spike
RTR

RTL

MOVR R7
STORESP

RET

; ---
; ---------------------------- SPIKE UPDATE ------------------------

.SPIKE_UPDATE

 SWAPS R4 ;R4 <-- SR4 = THETA
 SWAPS R0 ;R0 <-- Si <-- '0'

 RTR

 RTL
 SWAPS R0

 SWAPS R1 ;R1 <-- SR1_2 = Vi

 MOVA R1
 MOVR R5

 SWAPS R1 ;SR1_2 <-- R1 = Vi

 RTL
 FREEZEC

 LDALL R5,CTETP

UNFREEZE
 MOVA R5 ;ACC <-- Vi

 SUB R4 ;ACC <-- Vi - (THETA1 or THETA2)

 FREEZENC
 SWAPS R3 ;R3 <-- SR3 = Tref

 RST R0

 SUB R3
 SWAPS R3

Annexure C Assembly codes

210

 FREEZENZ ; IF (Z = 1) THEN Tref is setting

 SWAPS R3

 SWAPS R0
 RST R0

 INC

 SWAPS R0
 LDALL R3,CTE1 ;CTE1 = 7

 SWAPS R3

 UNFREEZE
 UNFREEZE

 SWAPS R4 ;R4 <-- SR4 = THETA

RET
; ---

; ------------------------------- REFRACTORY P ---------------------------

.REFRACTORY_P
 SWAPS R3 ;R3 <-- SR3 = Tref

 MOVA R3

 RTR
 MOVR R3

 SWAPS R3 ;SR3 <-- R3 = Tref

RET
; --

; ------------------------------- Ethernet TX ---------------------------

.NEURON_SAVE
 ;SR0 <-- Si

 ;SR1 <-- Vi

 ;SR2 <-- Sum_W
 ;SR3 <-- Tref

 ;SR4 <-- theta

 SWAPS R0
 MOVR R5

 SWAPS R0

 SWAPS R3
 MOVA R3

 RTL
 OR R5

 SWAPS R1

 STOREB ;buffer = R1 + R0 = Vi + Tref + Si
 SWAPS R1

 SWAPS R3

 SWAPS R2
 MOVA R2

 STOREB ;buffer = R0 = Sum W

 SWAPS R2
RET

;-------------------------ENABLE SPIKES PROPAGATION-----------------------

.SPIKES_ENABLE
SWAPS R0

MOVR R2 ; R2 <-- St + Si

SWAPS R0
MOVA R2 ; R0 <== Spikes

STOREPS

RET
; ******************************* PROCEDURES END ******************************

; **************************** MAIN PROGRAMME BEGIN ************************
.MAIN

LOOPN neurons_virtualized
GOTO MEMBRANE_VALUE

ENDL

 LOOPS synapses
 GOTO SYNAPSE_LOAD

 GOTO SYNAPTIC_WEIGHT

 GOTO SYNAPSE_SAVE
 ENDL

LOOPN neurons_virtualized

GOTO SPIKE_UPDATE
GOTO REFRACTORY_P

GOTO NEURON_SAVE

GOTO SPIKES_ENABLE
ENDL

Annexure C Assembly codes

211

SPKDIS

NOP

NOP
GOTO MAIN

; **************************** MAIN PROGRAMME END **************************

C.7 Assembler code of Leaky integrate-and-fire algorithm

– SNAVA+

DMEM1="0000EF7D"

DMEM2="0000EF7D"
POT1="000003E8"

POT2="0000FFB0"

THETA1="0000E380"
THETA2="0000E380"

VREST1="0000E188"

VREST2="0000E188"
UNO="00000001"

DOS="00000002"

CTETP="0000F448"
CTE1="00000000"

.CODE

GOTO MAIN

.LOAD_NEURAL_PARAMETERS

 NOP

 NOP
 NOP

RET

.SAVE_NEURAL_PARAMETERS

 NOP
 NOP

 NOP

RET

; --

; ***************************** PROCEDURES BEGIN ***************************
; ------------------------------- MEMBRANE VALUE -------------------------------

.MEMBRANE_VALUE

;---------- Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ----------

 LDALL R4,DMEM1 ;R4 <-- DECAY DONATOR 1

 LDALL R5,VREST1 ;R5 <-- Vres1
 SWAPS R0 ;R0 <-- SR0_2 = Nt + Si

 MOVR R3 ;R3 <-- Nt + Si

 SWAPS R0 ;SR0_2 <-- R0 = Nt + Si
 MOVA R3

 SHRN DOS

 FREEZENC ;IF NEURON TYPE = II (CONDITIONAL LOAD)
 LDALL R4,DMEM2 ;R4 <-- DECAY DONATOR 2

 LDALL R5,VREST2 ;R5 <-- Vres2

 UNFREEZE
;----------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) -----------------

 MOVA R3 ;R0 <-- R3 = Nt + Si

 SHRN UNO
 FREEZEC ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem)

 SWAPS R1 ;R1 <-- SR1_2 = Vi

 MOVA R1 ;R0 <-- R1 = Vi
 SUB R5 ;R0 <-- Vi - Vres

 UNMUL R4 ;R0 <--(Vi(t)-Vres) * (Kmem)

 MOVR R2 ;R2 <--(Vi(t)-Vres) * (Kmem)

Annexure C Assembly codes

212

 UNFREEZE

 MOVA R3
 SHRN UNO

 FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0

 RST R2 ;R2 <-- ((0)*(Vi(t)-Vres)*(Kmem)
 UNFREEZE

MOVA R2 ;R0 <-- (Vi(t)-Vres)*(Kmem)

ADD R5 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem)
SWAPS R2 ;R2 <-- SR2_2 = SUM_WEIGHTS

ADD R2 ;R0 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS

MOVR R1 ;R1 <-- (Vres1 or Vres2) + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS
SWAPS R1 ;SR1_2 <-- R1 = Vi

RST R2 ;SUM_WEIGHTS <-- 0

SWAPS R2 ;SR2_2 <-- R2 = SUM_WEIGHTS
RET

; ---

; ---------------------------------- SYNAPSE LOAD -------------------------------
.SYNAPSE_LOAD

NOP

NOP
NOP

LOADSP

 ;R4 <-- St + Sj
 ;R5 <-- Aj

 ;R6 <-- Lji

 ;R7 <-- Mj
RET

; --

; --------------------------------- SYNAPTIC WEIGHT --------------------------
.SYNAPTIC_WEIGHT

MOVA R4 ; R0 <-- St + Sj
SHRN UNO

FREEZENC ;IF (Sj = 1) THEN R0 <-- wji = Aji * P
 LDALL R1,POT1 ; R1 <-- POT1

 MOVA R4 ; R0 <-- St + Sj

 SHRN DOS
 FREEZENC

 LDALL R1,POT2

 UNFREEZE
 MOVA R1 ;R0 <-- POT1 or POT2

 MUL R5 ;R0 <-- wji = Aji * P

 SWAPS R2 ;R2 <-- SR2_2 = sumW
 ADD R2 ;SR0 <-- wji = Sj * Aji * P

 MOVR R2 ;R2 <-- wji = Sj * Aji * P

 SWAPS R2 ;SR2_2 <-- R2 = sumW
UNFREEZE

RET

;---
; --------------------------- SYNAPSE_SAVE -------------------------------

.SYNAPSE_SAVE

; THE SYNAPTIC PARAMETERS GO TO BUFFER 32 bits
;MOVA R5 ;R5 <-- Aji

MOVA R6 ;R6 <-- Lji

SHLN UNO
SHLN UNO

OR R5

MOVR R1 ;R1 <-- Lji + Aji
;MOVA R4 ;R4 <-- St + Sj

MOVA R7 ;R0 <-- R7 = Mj

SHLN UNO
SHLN UNO

OR R4 ;R0 <-- Mj + St + Sj

STOREB
NOP

MOVA R4 ;R0 <--- R4 = St + Sj to delete the spike

SHRN UNO
SHLN UNO

MOVR R4

STORESP

Annexure C Assembly codes

213

RET

; --

; ---------------------------- SPIKE UPDATE --------------------------------
.SPIKE_UPDATE

SWAPS R0 ;R0 <-- SR0_2 = Nt + Si
MOVR R2

LDALL R3,THETA1 ;R3 <-- THETA1 = "0000F060"

SHRN DOS
FREEZENC

 LDALL R3,THETA2 ;R3 <-- THETA2 = "0000F060"

UNFREEZE
 MOVA R2

 SHRN UNO

 SHLN UNO
 MOVR R2 ;R2 <-- Neuron Type + 0 It has been set Si = 0

 SWAPS R1 ;R1 <-- SR1_2 = Vi

 MOVA R1
 MOVR R5

 SWAPS R1 ;SR1_2 <-- R1 = Vi

 SHLN UNO
 FREEZEC

 LDALL R5,CTETP ; It has assigned a positive value under 30 because it has verified that is

lower than 0
 UNFREEZE

MOVA R5 ;R0 <-- Vi

SUB R3 ;R0 <-- Vi - (THETA1 or THETA2)
 FREEZENC

 SWAPS R4 ;R4 <-- SR4 = Tref

 RST R0
 SUB R4

 SWAPS R4

 FREEZENZ ; IF (Z = 1) THEN Tref is setting
 LDALL R3,UNO

 MOVA R2
 ADD R3

 MOVR R2

 LDALL R4,CTE1 ;CTE1 = 7
 SWAPS R4

 UNFREEZE

 UNFREEZE
MOVA R2 ;R0 <-- Nt + Si

SWAPS R0 ;SR0_2 <-- R0 = Nt + Si

RET
; --

; ------------------------------- REFRACTORY P ---------------------------

.REFRACTORY_P
 SWAPS R4 ;R4 <-- SR4 = Tref

 MOVA R4

 SHRN UNO
 MOVR R4

 SWAPS R4 ;SR4 <-- R4 = Tref

RET
; ---

.NEURON_DISPLAY
;SWAPS R0 ;Nt + Si

;SWAPS R1 ;Vi

;SWAPS R2 ;sum_W
;SWAPS R3 ;Mi

SWAPS R0 ;R0 <-- SR0 = Nt + Si

MOVR R1 ;R1 <-- R0
SWAPS R0 ;SR0 <-- R0 = Nt + Si

SWAPS R3 ;R3 <-- SR3 = Mi

MOVA R3
SHLN UNO

SHLN UNO

OR R1 ;R0 <-- Mi + Nt + Si
SWAPS R3 ;R3 <-- SR3 = Mi

SWAPS R1 ;R1 <-- SR1 = Vi

STOREB
NOP

Annexure C Assembly codes

214

SWAPS R1

RST R1
SWAPS R2 ;R2 <-- SR2 = sum_W

MOVA R2

SWAPS R2
STOREB

NOP

RET
; ----------------------------- BACKGROUND_ACTIVITY----------------------------

.BACKGROUND_ACTIVITY

SWAPS R3 ; R3 <-- SR3_2 = INITIAL SPIKING

MOVA R3

SWAPS R3
SHRN UNO

MOVR R3

 FREEZENC ; IF (Z = 1) THEN Tref is setting
 SWAPS R0 ; R0 <-- SR0_2 = Neuron Type + Si

 SHRN UNO

 SHLN UNO
 LDALL R0,UNO

 SWAPS R0 ; R0 <-- SR0_2 = Neuron Type + Si

 UNFREEZE
SWAPS R3 ;SR3_2 <-- R3 = NEW SPIKING REG VALUE

RET

; ---
;-------------------------ENABLE SPIKES PROPAGATION-----------------------

.SPIKES_ENABLE

SWAPS R0
MOVR R2 ; R2 <-- St + Si

SWAPS R0

MOVA R2 ; R0 <== Spikes
STOREPS

RET
; ---

; **************************** PROCEDURES END ******************************

; **************************** MAIN PROGRAMME BEGIN ***********************

.MAIN

LOOPN neurons_virtualized
GOTO LOAD_NEURAL_PARAMETERS

GOTO MEMBRANE_VALUE

GOTO SAVE_NEURAL_PARAMETERS
ENDL

LOOPS synapses ;synaptic loop
 GOTO SYNAPSE_LOAD

 GOTO SYNAPTIC_WEIGHT

 GOTO SYNAPSE_SAVE
ENDL

LOOPN neurons_virtualized

GOTO LOAD_NEURAL_PARAMETERS
GOTO SPIKE_UPDATE

GOTO BACKGROUND_ACTIVITY

GOTO NEURON_DISPLAY
GOTO SPIKES_ENABLE

GOTO SAVE_NEURAL_PARAMETERS

ENDL
NOP

SPKDIS

NOP
NOP

GOTO MAIN

; **************************** MAIN PROGRAMME END *************************

215

Onset detection

D.1 Introduction

 D.1.1 Onset detection system description

 D.1.1.1 Filtering

 D.1.1.2 Spike coders

 D.1.1.3 Onset detector

 D.1.1.4 Three reservoir model

 D.1.2 Experimental results

 D.1.3 Conclusion

References

This annexure presents the current ongoing work. This ongoing work is dedicated to the development of

an implementation based on the onset detection, which is inspired by the functionality of the cochlea. The

preliminary results of this implementation, which have recently been obtained, are provided in this

annexure.

D.1 Onset detection

The ear in our human body detects sound from the external environment in an amazing manner and

interprets the signals by using signal processing techniques. Onset refers to the starting of any changes in

acoustic signals which can be perceived by the ear [1]. Onset detection is the process of detecting the

beginning of these changes in the sound that is entering the system. This detection is used in various

applications such as speech recognition, music transcription, sound segmentation, lip synchronisation and

so on [1, 2]. One of the future works of SNAVA is to imitate the functionality of the ear´s main auditory

portion i.e. Onset detection by the Cochlea. This is done by means of the 3 reservoir algorithm using the

Leaky Integrate and Fire model of Spiking Neural Networks on SNAVA. The results of this

implementation are presented in this section. The intricate details about this implementation can be seen

in the thesis of Ms.Sanjana Sekar [3].

D.1.1 Onset detection system description

The diagrammatic representation of the complete implementation of the detection of onset is shown in Fig

D.1. Onset detection is made up of four main blocks they are the sensors, filters, spike coders and the

spiking neural network. The sensors are those which detect the external parameters and convert into

equivalent electrical signal. Here the sound is being converted into equivalent electrical signals. These

Annexure D Onset detection

216

signals are then passed through the bank of filters. Each filter is centered to a particular frequency and the

signals are being filtered accordingly. The response from the filter is then passed through the spike coder

in order to generate equivalent spikes for these signals so as to activate the spiking neural network.

Finally, these spikes enter the SNN topology and accordingly alter the neural and synaptic parameters of

certain neurons so that certain neurons fire indicating the detection of onset in the system. This system

was proposed in [1,2], the results are shown in simulation level using MATLAB software. This work

concentrates on extending the same project in a real time environment with the help of SNAVA. The

schematic of the entire system is shown in Fig D.1.

Figure D.1: Schematic of the Bio-inspired system using LIF-Reservoir model for Cochlea, from

simplicity of the drawing only one sensitivity level is connected. This Figure is extracted from [1].

D.1.1.1 Filtering
As shown in Fig. D.1, the input sound is first detected using a sensor (Eg. Microphone) and sampled at

the rate of a minimum of 16K samples per second and 16 bits linear. These samples are then filtered using

a series of Bandpass filters called Gammatone filters [1]. The response of this filter is analogous to the

basilar membrane of the cochlea [1].

Annexure D Onset detection

217

Each filter is tuned at different centre frequencies Fc (around 15 bands are being used) ranging between

250 Hz to 6 KHz .The filters can be designed by determining the coefficients in MATLAB software (use

gammatonefir function from the LTFT toolbox) and getting the IP core from Xilinx filter design tool. The

filter delay also referred to as the gammatone delay, is assumed to be proportional to the reciprocal of the

bandwidth. The filtered signals are then passed to the Spike coder Module in order to obtain the onset

fingerprint.

D.1.1.2 Spike coders
The spike coders are similar to the design proposed by Smith [1]. The design of these coders has been

derived from the concept proposed by Ghitza [1]. Here the filtered signal is converted to an equivalent

spike which is fed to the SNN. The advantage of spike based representation is that this makes the system

to work under a wide dynamic range [1]. For every filter bank there is a corresponding spike coder

associated with it. In other words there is a one to one connection between the outputs of the gammatone

filter to the input of the spike coders. Each spike coder block consists of one input and certain number of

sensitivity levels as outputs. Each coder can have N sensitivity levels. The sensitivity level is the

minimum energy level or mean voltage level the signal must have crossed in order to produce a spike.

The threshold levels are made to be 3dB or 6 dB away from each other [1]. The equation for the threshold

levels is given by:

Figure D.2: Schematic of a single spike coder with 4 sensitivity levels. (Each box is a comparator

module)[1]

 Ei = D
i
 ∙ E0

 (D.1)

Annexure D Onset detection

218

where Ei is the energy associated with the i
th

 band where i=1 to N. E0 is the minimum mean voltage of the

signal and D is the separation between the threshold levels whose value is around 3dB as discussed before

Each spike coder consists of N comparators here N will be equal to the number of sensitivity levels of

every coder has. . The output from the filter is taken and the positive going zero crossing is being

detected. Once the zero crossing is detected the overall mean voltage level for the first quarter cycle is

calculated. This energy is compared with the threshold level value as mentioned in equation (D.1). If the

value crosses this threshold value an equivalent spike is being generated in the same instance of time. A

point to be noted is that the greater the threshold value the lesser would be the sensitivity level. Since

sensitivity level describes the maximum ability of the coder to detect the weakest signal possible. When

there is a spike generated in a band “m” then there will be spikes generated in all j bands where j ranges

between 0 to m. The schematic diagram of a spike coder implemented is shown below in Fig. D.2.

Here each threshold level is D dB more than the previous value. The value of D was taken as 3 dB i.e.

1.414. Upon observing the outputs one can see that all bands before the third band produce spike as the

third band is the maximum value the signal crosses the threshold value.

D.1.1.3 Onset detector
The onset detector is designed using the reservoir model. The topology of the network is shown in Fig.

D.1. As we can see that each onset neuron has three inputs. One comes from the current frequency band

and one from the previous band and the last from the next band. In case of the first and the last onset

neuron we can see from the diagram that there are only two inputs. The third one is indicated by a dotted

line which represents no connection as there is no previous band or next band respectively [1]. This can

be clearly seen in the diagram. Here the synapses are depressing in nature and the onset neuron fires once

the membrane potential crosses a particular threshold value. Depending upon the frequency of the signal

the threshold value varies from each onset neuron. The firing of a particular neuron indicates the presence

of the signal and hence onset is detected. The neural model used in this application is leaky integrate and

fire which has already been discussed in detail in chapter 4.

D.1.1.4 Three reservoir model

The onset detection block is being designed as per the 3 reservoir model [1] of the synapses. As the name

suggests this model has three interconnected regions/reservoirs consisting of the neurotransmitter which

are:

1. M= The presynaptic neurotransmitter reservoir (available)

2. C= The amount of neurotransmitter in the synaptic cleft (in use)

3. R= The amount if neurotransmitter in the process of reuptake (which is used, but not yet

available again)

Annexure D Onset detection

219

The interconnections of these three regions or reservoirs are done using the assistance of the three

differential equations which explicitly describe their connection [1]. These equations are:

Here α and β are rate constants, and g is a positive quantity when a spike occurs whereas when there is no

spike it is considered to be zero. These constants are calculated for each sample period. Neither the losses

nor the synthesis of the neurotransmitter are taken into account while deriving these equations and the

amount of post-synaptic depolarization is assumed to be directly proportional to C.

The 3 Reservoir model can be visualized as shown in the diagram below (Fig D.3). The shown processes

happen in a parallel manner except for the third one which happens only when a spike is encountered. For

initial level implementation, the sinusoidal wave from the generator is taken as input. The gammatone

filters are replaced by a simple band pass filter with good frequency response. Once the output from the

onset detector is available it indicates the beginning of the musical note.

Figure D.3: Diagrammatic Representation of the 3 Reservoir model [1]

dM/dt = βR – gM

dC/dt = gM – αC

dR/dt = αC – βR

(D.2)

Annexure D Onset detection

220

In order to implement the above equations, they are integrated and converted into equivalent differential

equations [1] which are shown in equation (D.2).

 () () ((())) ()

 () ((())) ()+ (1-α)C(t)

 () (α*C(t)) + (1-) R(t)

Here the condition for the constant g is included by means of adding () to the equation

D.1.2 Experimental results

In the experiments carried out, the filters were not included as it involves large amount of computation

which is the current work being done Advanced Hardware Architecture (AHA) research group members

from Universitat Politècnica de Catalunya, Barcelona. In order to check the system, an equivalent lookup

table was implemented for the first level of testing the system assuming the output from this lookup table

is analogous to the filter response. The lookup table consists of several sample values of sinusoidal

signals which are stored in ROM memory. These signals are generated according to the frequency and

amplitude the user provides. A schematic diagram of the implemented onset detection block is depicted in

Fig. D.4 below:

Figure D.4: Onset Detection using Lookup Table as input to the spike coders [1]

Annexure D Onset detection

221

The lookup table works in such a way that one unit of signal will be equivalent to 1 volt of sample with

frequency of 1 Hz. Based upon the hexadecimal value of amplitude and frequency the user gives an

equivalent number of units are being generated [7].

Onset detection was successfully working in the SNAVA architecture and the experiments were done for

frequencies in the range of 250 Hz to 6 kHz as proposed in [1]. Here the frequency values were taken into

account was 500, 1500, 3500 and 5000 Hz so that they fall into the range proposed as well as they are

logarithmic in nature. The detection of 4 frequencies is depicted in the neural raster plot shown in Fig

D.5. Here the onsets are detected at the emulation cycles 7 and 8.

Figure D.5: Raster plot of the Onset Detector block detecting 4 different frequencies by neuron no 1, 8, 15

and 22.

Annexure D Onset detection

222

The behavior of each neuron was studied by analyzing the neural waveform of the membrane potential,

the post synaptic spike and the sum of weights. To understand the neuron 1 is analyzed here. This is

shown in Fig D.6. As can be seen from this figure, the initial membrane potential is around -300mV and it

keeps rising for every emulation cycle. The onset is detected during the emulation cycle 11 which is clear

from the raster plot. At this moment, a post synaptic spike is being generated which indicates the firing of

the onset neuron. This marks the detection of the frequency component.

Figure D.6: Neural waveform for Neuron1

By looking at the process happening in the synapse of neuron 1 is similar to the reservoir equations

discussed earlier (see Fig. D.7). As can seen from this graph, the behavior of M is almost complementary

to the behavior of C. During the presence of the spike the value of M is completely transferred to C. The

value of R gradually decreases, but at some cycles this value increases due to the contribution of reuptake

process from C to R.

Annexure D Onset detection

223

Figure D.7: Synaptic Waveform for Neuron 1

D.1.3 Conclusion

The onset detection was implemented for a single sensitivity level and for 4 different frequencies of

which belong to the audible range. The results were analysed and compared with the theoretical

explanations given in [1]. This work can be made more real time by replacing the look up tables with

gammatone filter bank. The value of the reservoir model parameters were restricted to certain number of

bits hence in this application the resource constraints were taken into account thereby reducing the range

of values the system can operate on. As a future work one can extend the architecture to support floating

point operations as well as increase the amount of resources. Moreover, once the number of frequency

bands increase the entire topology needs to be redesigned from the beginning manually, in order to

Annexure D Onset detection

224

improvise this, an application could be created in order to automatically design the entire topology given

the basic amount of information about the topology.

References

[1] Smith, L.S.; Fraser, D.S., “Robust sound onset detection using leaky integrate-and-fire neurons

with depressing synapses”, Neural Networks, IEEE Transactions on, vol. 15, no.5, pp. 1125-

1134, Sept.2004.

[2] M. J. Newton and L. Smith, “A neurally inspired musical instrument classification system based

upon the sound onset”, J. Acoust. Soc. Am. 131, pp. 4785–4798, 2012.

[3] Sanjana Sekar, “Bio inspired Application Using SNAVA Architecture”, Bachelor Thesis,

SASTRA University and Universitat Politècnica de Catalunya, April 2014.

225

Spike coder

E.1 Spike coder description

E.2 VHDL

This annexure presents the spike coder structure which generates spikes under the same principle of

operation like the analogue coders [1]. The VHDL code is provided in this Annexure.

E.1 Spike coder description

Figure E.1 shows the datapath of the spike coder. The spike coder is composed by three components

which are: a Flip-Flop, a conditional subtractor, and a comparator. The mechanism of the spike coder is

as follows: the spike coder receives the signal, which can be generated artificially by the values stores in

LUTs, or the signal is provided by the ADC converter. The conditional subtractor only executes the

subtraction operation only when the comparator indicates the difference between the signal sin and

sin_in_aux_delayed crosses a certain threshold.

Figure E.1: Spike coder datapath

E.2 VHDL code

entity spike_generator is

 Port (

 clock : in STD_LOGIC;

 rst : in STD_LOGIC;

 enable : in STD_LOGIC;

 sin_in : in STD_LOGIC_VECTOR(15 DOWNTO 0);

 Spike_out : out STD_LOGIC

Annexure E Spike coder

226

);

end spike_generator;

architecture Behavioral of spike_generator is

 signal sin_in_aux_delayed : std_logic_vector(15 downto 0) := (others => '0');

 constant threshold : std_logic_vector(15 downto 0) :=

"0000100001110011";

 signal enable_comparator : std_logic := '0';

 signal absolute_value : std_logic_vector(7 downto 0) := (others => '0');

 begin

 process (clock)

 begin

 if (rising_edge(clock)) then

 if (rst = '1') then

 sin_in_aux_delayed <= (others => '0');

 elsif enable = '1' and enable_comparator = '1' then

 sin_in_aux_delayed <= sin_in;

 end if;

 end if;

 end process product_delayed;

 addition: process (clock)

 begin

 if (rising_edge(clock)) then

 if (rst = '1') or (enable_comparator = '1') then

 absolute_value <= (others => '0');

 elsif enable = '1' then

 absolute_value <= conv_std_logic_vector(abs(

(CONV_INTEGER (sin_in))-(CONV_INTEGER (sin_in_aux_delayed))),8);

 end if;

 end if;

 end process addition;

 Spike_out <= '1' when (absolute_value >= threshold) else '0';

 enable_comparator <= '1' when (absolute_value >= threshold) else '0';

end Behavioral;

References

[1] Gouveia, L.C., T.J. Koickal, and A. Hamilton, “An asynchronous spike event coding
scheme for programmable analog array”, in Circuits and Systems, 2011, ISCAS 2011,
IEEE International Symposium on, pp. 791-799, 2011.

227

List of publications and conferences

Giovanny Sánchez, Thomas Jacob Koickal, Athul Sripad, Luiz Carlos Gouveia, Alister Hamilton and Jordi

Madrenas, Spike-Based Analog-Digital Sensor Information Processing System for Neuromorphic Applications,

The IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, pp. 1624-1627, 2013.

(CONGRESO NOTABLE)

Adam Sokolnicki, Giovanny Sánchez, Jordi Madrenas, Manuel Moreno y Bartosz Sakowicz, Graphical

representation of data for a multiprocessor array emulating spiking neural networks, Przegląd

Elektrotechniczny, vol. R. 88, nr 11a, pp. 332-336, 2012.

Jordi Madrenas, Daniel Fernández, Jordi Cosp, J. Manuel Moreno, Luis Martínez-Alvarado and Giovanny

Sánchez, bio-inspired sensory integration for environment-perception embedded systems, International

Conference on Biomedical Electronics and Devices, Rome, Italy, pp. 260-267, 2011.

Giovanny Sánchez, Jordi Madrenas and J. Manuel Moreno, Performance evaluation and scaling of a

multiprocessor architecture emulating complex SNN algorithms, 9th International Conference on Evolvable

Systems - From Biology to Hardware, from Biology to Hardware 6th-8th September 2010, St Williams College,

York, UK, pp. 145-156, 2010.

