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Abstract

The study of ultracold atoms constitutes one of the hottest areas of atomic,
molecular, and optical physics and quantum optics. The experimental and the-
oretical achievements in the last three decades in the control and manipulation
of quantum matter at macroscopic scales lead to the so called third quantum
revolution. Concretely, the recent advances in the studies of ultracold gases
in optical lattices are particularly impressive. The very precise control of the
diverse parameters of the ultracold gas samples in optical lattices provides a
system that can be reshaped and adjusted to mimic the behaviour of other
many-body systems: ultracold atomic gases in optical lattices act as genuine
quantum simulators. The understanding of gauge theories is essential for the
description of the fundamental interactions of our physical world. In particular,
gauge theories describe one of the most important class of systems which can
be addressed with quantum simulators. The main objective of the thesis is to
study the implementation of quantum simulators for gauge theories with ultra-
cold atomic gases in optical lattices.

First, we analyse a system composed of a non-interacting ultracold gas in
a 2D lattice under the action of an exotic and external gauge �eld related to
the Heisenberg-Weyl gauge group. We describe a novel method to simulate the
gauge degree of freedom, which consists of mapping the gauge coordinate to
a real and perpendicular direction with respect to the 2D space of positions.
Thus, the system turns out to be a 3D insulator with a non-trivial topology,
speci�cally, a quantum Hall insulator.

Next, we study an analog quantum simulation of dynamical gauge �elds by
considering spin-5/2 alkaline-earth atoms in a 2D honeycomb lattice. In the
strongly repulsive regime with one particle per site, the ground state is a chiral
spin liquid state with broken time reversal symmetry. The spin �uctuations
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around this con�guration are given in terms of an emergent U(1) gauge theory
with a Chern-Simons topological term. We also address the stability of the
three lowest lying states, showing a common critical temperature. We consider
experimentally measurable signatures of the mean �eld states, which can also
be key insights for revealing the gauge structure .

Then, we introduce the notion of constructive approach for the lattice gauge
theories, which leads to a family of gauge theories, the gauge magnets. This
family corresponds to quantum link models for the U(1) gauge theory, which
consider a truncated dimensional representation of the gauge group. First of
all, we (re)discover the phase diagram of the gauge magnet in 2+1 D. Then,
we propose a realistic implementation of a digital quantum simulation of the
U(1) gauge magnet by using Rydberg atoms, considering that the amount of
resources needed for the simulation of link models is drastically reduced as the
local Hilbert space shrinks from in�nity to 2D (qubit).

Finally, motivated by the advances in the simulation of open quantum sys-
tems, we turn to consider some aspects concerning the dynamics of correlated
quantum many body systems. Speci�cally we study the time evolution of a
quench protocol that conserves the entanglement spectrum of a bipartition. We
consider the splitting of a critical Ising chain in two independent chains, and
compare it with the case of joining two chains, which does not conserve the en-
tanglement spectrum. We show that both quenches are both locally and globally
distinguishable. Our results suggest that this conservation plays a fundamental
role in both the out-of-equilibrium dynamics and the subsequent equilibration
mechanism.
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Resum: Simulació quàntica de

teories gauge amb atoms

ultrafreds

L'estudi dels àtoms ultrafreds constitueix una de les àrees més actives de la
física atòmica, molecular, òptica i de l'òptica quàntica. Els èxits teòrics i ex-
perimentals de les tres últimes dècades sobre el control i la manipulació de la
matèria quàntica a escala macroscòpica condueixen a l'anomenada tercera rev-
olució quàntica. Concretament, els recents avenços en els estudis dels àtoms
ultrafred en xarxes òptiques proporcionen un sistema que es pot reajustar i re-
organitzat per imitar el comportament d'altres sistemes de molts cossos: els
gasos d'àtoms ultrafreds en xarxes òptiques actuen com a genuïns simuladors
quàntics. La comprensió de les teories de gauge és clau per a la descripció de
les interaccions fonamentals del nostre món físic. Particularment, les teories de
gauge descriuen una de les més importants classes de sistemes que poden ser
tractats amb simuladors quàntics. L'objectiu principal de la tesi és estudiar la
implementació de simuladors quàntics de teories de gauge amb gasos d'àtoms
ultrafreds en xarxes òptiques.

En primer lloc, analitzem un sistema format per un gas ultrafred no interac-
cionant en una xarxa 2D sota l'acció d'un camp de gauge exòtic i extern descrit
pel grup de gauge de Heisenberg-Weyl. Descrivim un nou mètode per simular
el grau de llibertat de gauge, que consisteix en associar la coordenada gauge
a una coordenada real i perpendicular a l'espai 2D de les posicions. Així, el
sistema resulta ser un aïllant en 3D amb una topologia no trivial, concretament
un aïllant Hall quàntic.

3



Seguidament, estudiem un simulador quàntic analògic de camps de gauge
dinàmics amb àtoms alcalinoterris en una xarxa hexagonal. En el régim fort-
ament repulsiu i amb un àtom en cada lloc de la xarxa, l'estat fonamental és
un líquid espinorial quiral amb la simetria d'inversió temporal trencada. Les
�uctuacions d'espín al voltant d'aquesta con�guració sÃ³n descrites per una
teoria gauge U(1) emergent amb un terme topològic de Chern-Simons. També
tractem l'estabilitat dels tres estats amb mínima energia, tot observant una
temperatura crítica comuna. Considerem indicis experimentals mesurables dels
estats de camp mitj, que poden ser claus per revelar l'estructura gauge.

A continuació, introduïm un enfoc constructiu per a teories gauge en el ret-
icle, la qual porta a una família de teories de gauge, els magnets de gauge.
Aquesta família es correspon amb els models d'enllaços quàntics de la teoria
gauge U(1). Primer, (re)descobrim el diagrama de fases del magnet de gauge en
2+1 D. Després, proposem una implementació realista d'un simulador quàntic
digital del magnet de gauge U(1) amb àtoms de Rydberg, considerant que el
nombre de recursos necessaris per a la simulació dels models d'enllaços es re-
dueix dràsticament pel fet que l'espai d' Hilbert local disminueix de dimensió
in�nita a 2 (bit quàntic).

Finalment, motivats pels avenços en la simulació de sistemes quàntics oberts,
considerem alguns aspectes de la dinàmica de sistemes quàntics correlacionats
de molts cossos. Especí�cament, estudiem l'evolució temporal en un proto-
col de canvi sobtat que conserva l'espectre d'entrellaçament d'una bipartició.
Considerem la ruptura d'una cadena d'Ising en dues cadenes independents i
ho comparem amb la unió de dues cadenes, situació que no conserva l'espectre
d'entrellaçament. Observem que aquests dos diferents escenaris són localment
i globalment distingibles. El nostre resultat suggereix que l'esmentada con-
servació juga un paper fonamental en la dinàmica fora de l'equilibri i en el
consegüent equilibri.

4



Resumen: Simulación

cuántica de teorías gauge con

átomos ultrafríos

El estudio de los átomos ultrafríos constituye una de las áreas mas activas de
la física atómica, molecular, óptica y de la óptica cuántica. Los logros teóricos
y experimentales de las tres últimas décadas sobre el control y la manipulación
de la materia cuántica a escala macroscópica conducen a la denominada ter-
cera revolución cuántica. Concretamente, los avances recientes en los estudios
de átomos ultrafríos en redes ópticas proporcionan un sistema que puede ser
reajustado y reorganizado para imitar el comportamiento de otros sistemas de
muchos cuerpos: los gases de átomos ultrafríos en redes ópticas actúan como
genuinos simuladores cuánticos. La comprensión de las teorías de gauge es clave
para la descripción de la interacciones fundamentales de nuestro mundo físico.
En particular, las teorías de gauge describen una de las mas importante clase
de sistemas que pueden ser abordados con simuladores cuánticos. El objetivo
principal de la tesis es estudiar la implementación de simuladores cuánticos de
teorías de gauge con gases de átomos ultrafríos en redes ópticas.

En primer lugar, analizamos un sistema formado por un gas ultrafrío no
interactuante en una red 2D, bajo la acción de un campo de gauge exótico y
externo descrito por el grupo de gauge de Heisenberg-Weyl. Describimos un
método novedoso para simular el grado de libertad gauge , que consiste en aso-
ciar la coordenada gauge a una coordenada real y perpendicular al espacio 2D
de las posiciones. Así, el sistema resulta ser un aislante 3D con una topología
no trivial, especí�camente un aislante Hall cuántico.
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Seguidamente, estudiamos un simulador cuántico analógico de campos de
gauge dinámicos, considerando átomos alcalinotérreos en una red hexagonal.
En el régimen fuertemente repulsivo con una átomo en cada sitio, el estado fun-
damental es un liquido espinorial quiral con la simetría de inversión temporal
rota. Las �uctuaciones de espín alrededor de dicha con�guración vienen dadas
en términos de una teoría de gauge U(1) emergente con un término topológico
de Chern-Simons. También tratamos la estabilidad de los tres estados con mín-
ima energía, observando una temperatura crítica común. Consideramos indicios
experimentales medibles de los estados de campo medio, que pueden claves para
revelar la estructura de gauge.

A continuación, introducimos la noción del enfoque constructivo para teorías
de gauge en el retículo, lo que conduce a una familia de teorías de gauge, los
magnetos de gauge. Esta familia se corresponde con los modelos de enlaces
cuánticos para la teoría de gauge U(1), los cuales consideran una representación
dimensional truncada del grupo de gauge. Primeramente, (re)descubrimos el di-
agrama de fases del magneto de gauge en 2+1D. Seguidamente, proponemos un
implementación realista de un simulador cuántico digital del magneto de gauge
U(1) usando átomos de Rydberg, considerando que el número de recursos nece-
sarios para la simulación de los modelos de enlace está drásticamente reducido
debido a que el espacio de Hilbert local disminuye de in�nitas dimensiones a 2
(bit cuántico).

Finalmente, motivados por los avances en la simulación de sistemas cuánticos
abiertos, consideramos algunos aspectos sobre la dinámica de sistemas cuánticos
correlacionados de muchos cuerpos . Especí�camente, estudiamos la evolución
temporal en un protocolo de cambio súbito que conserva el espectro de entre-
lazamiento de una bipartición. Consideramos la ruptura de una cadena de Ising
en dos cadenas independientes y lo comparamos con la unión de dos cadenas,
la cual no conserva el espectro de entrelazamiento. Estos dos cambios abruptos
son localmente y globalmente distinguibles. Nuestro resultado sugiere que la
mencionada conservación juega un papel fundamental en la dinámica fuera de
equilibrio y en el consiguiente equilibrio.
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Chapter 1

Introduction

The study of ultracold atoms constitutes one of the hottest areas of atomic,
molecular, and optical physics and quantum optics [1, 2, 3]. The explosion of
studies of weakly interacting, dilute and cold atomic gases stems back to more
than one decade, to the experimental achievement of Bose-Einstein condensa-
tion (BEC) in gas samples of alkali atoms [4, 5, 6]. The original aim was to
observe BEC and to study quantum mechanical e�ects on a macroscopic scale.

Our daily experiences indicate that the physical world which surrounds us
can be described with classical physics. The e�ects of the temperature mask
the quantum behaviour of the usual macroscopic systems. This e�ect can be
read from the de Broglie relation λ ∼ 1√

T
, where λ is the quantum wave length

of a quantum object at temperature T . At room temperatures, the wave length
for a normal gas is much smaller than the inter-particle distance, dat, and , con-
sequently, the quantum regime remains hidden. Then, one strategy for �nding
evidences of the quantum world at macroscopic scales is to cool the physical
system and/or to increase the density, i.e. to diminish dat. At su�cient low
temperatures, the wave length λ for a bosonic gas start to be comparable with
dat and the system undergoes a genuine phase transition, where a macroscopic
number of particles condense to the ground state, which is the BEC regime.
This e�ect was originally predicted by A. Einstein [7], based on some ideas de-
veloped by Bose originally for photons [8]. It was �rst experimentally observed
in the nineties in the above mentioned ultracold atomic system of alkali atoms.

The experimental and theoretical achievements of the atomic and optic
physics community in the last three decades in the control and manipulation of
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quantum matter at macroscopic scales lead to a quantum engineering era and
to the so called third quantum revolution [2].

The current techniques in cooling, trapping and manipulating atoms, ions
and molecules up to nanokelvin scales provide an ideal scenario to study macro-
scopic quantum many-body systems with a highly accurate level of control and
tunability in the quantum system. Concretely, the recent advances in the studies
of ultracold gases in optical lattices are particularly impressive. Optical lattices
are composed of several laser beams arranged to produce standing wave con-
�gurations creating a periodic optical potential for polarize particles, such as
atoms. They provide practically ideal, free of losses potentials, in which ultra-
cold atoms may move and interact one with another. Nowadays it is routinely
possible to create systems of ultracold bosonic or fermionic atoms, or their mix-
tures, on one, two or three dimensional optical lattices in strongly-correlated
states. Genuine quantum correlations, such as entanglement extend over large
distances in the system.

The very precise control of the diverse parameters of the ultracold gas sam-
ples in optical lattices, supported by atomic transitions in the optical range,
provides not a just a unique quantum system, but also some sort of a meta sys-
tem that can be reshaped and adjusted to mimic the behaviour of other many-
body systems, such as: systems in periodic potentials, which are inevitably the
foundation stone of solid-state physics [9, 10]; disordered systems, playing an
important role in the transport and equilibrium properties of materials [11];
strongly coupled fermion systems, arising in high temperature superconductors
[3]. Ultracold atomic gas systems in optical lattices thus act as genuine quantum
simulators.

An inherent characteristic of generic quantum many-body systems is that
the description of such systems requires a number of parameters which grows
exponentially with the number of constituents. Therefore, the exact classical
computation of these systems is possible only for systems with small numbers of
constituents. The community has put in a great e�ort towards the development
of techniques for the classical computation of many-body quantum systems.
Thus, very powerful and successfully numerical tools and complementing ana-
lytical methods have been developed for characterising many-body systems with
a large number of constituents. Within this category one can �nd mean �eld
methods, quantum Monte Carlo algorithms and tensor networks tools. These
methods, which are based in classical computations, do not consider the feature
of the complexity of many body quantum systems completely.

R. P. Feynman suggested a solution for overcoming the problem of computing
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complex many-body quantum systems. In his seminal work [12], he proposed to
study the complex quantum system by performing a simulation with a control-
lable quantum machine, the quantum simulator. This machine mimics, emulates
and encloses all the relevant physics of the system of interest. Since this simula-
tor is a genuine quantum machine, it would to address the inherent exponential
number of degrees of freedom in a controlled and, in principle, accurate manner.

For instance, let us consider that we are dealing with the time evolution of
a quantum state |ψ(0)〉, with a given Hamiltonian H. A generic quantum sim-
ulation for such a scenario contains three well de�ned steps: i) The preparation
of the initial state in the quantum simulator, i.e. |ψ(0)〉sim, ii) time evolution of
this state, iii) measurement of the evolved state |ψ(t)〉sim. An implementation
of a quantum simulator is deemded e�cient if only polynomial resources are
required for performing al three steps [13, 14].

One may distinguish two di�erent types of quantum simulations:

• Digital quantum simulator. The time evolution of |ψ(t)〉sim, which
is expressed in a computational basis, is performed through a quantum
circuit model [15] which is composed of the sequence of many small time-
ordered sequence of gates Ul. These gates come from the Trotter expansion
[16] of the time evolution operator. For real physical systems, the Hamil-
tonian is composed of the sum of local terms: H =

∑
sHs. Therefore, the

gates Ul can be described with a universal set of gates [17, 18, 15]

• Analog quantum simulator. The Hamiltonian H of the system of
interest is mapped to a Hamiltonian Hsim: Hsim = fHf−1 acting on the
quantum simulator [14]. The time evolution of the state is performed
continuously in the quantum simulator through Hsim. In some cases, it is
possible to map exactly the Hamiltonian H into the quantum simulator.
But in the most general case Hsim is an e�ective Hamiltonian of H, since
it retains some speci�c features of H. The level of analogy between both
systems is given by the map f .

Quantum simulators are getting a great and impressive impact on many areas
of physics and chemistry, as condensed matter systems, high energy physics and
atomic physics. They are changing our understanding about the quantum world,
since they make accessible the study of quantum systems which are intractable
classically, such as the study of some spin systems, topological matter, Hubbard-
type systems, chemical properties of molecules, etc. Speci�cally, in this thesis
we have focused on the quantum simulations of gauge theories.
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All of the fundamental interactions in the known world can be expressed in
terms of gauge-theories. These theories describe all of the phenomenology of
high energy physics accessible in current experiments: from quantum electrody-
namics, through the Weinberg-Salam model of weak interactions, to quantum
chromodynamics describing strong interactions. All these theories are uni�ed in
the Standard Model, in which interactions between matter (leptons and quarks)
are mediated by gauge bosons (e.g. photons). Gravity can also be derived from
the gauge principle. Evidently, gauge theories provide an elegant and beautiful
geometrical description of the fundamental interactions.

Moreover, gauge theories also play a fundamental role in other areas of
physics. Thus, collective �uctuations in certain condensed matter systems can
be described through the emergence of e�ective gauge theories [19, 20].

Quantum simulators for lattice gauge theories can provide understanding of
very challenging problems, as the phase diagram of pure gauge theories, with
the consequent con�nement-decon�nement phase transition or the study of the
phase diagram of a �nite density of fermionic matter coupled to the SU(3) gauge
�elds, with the emergence of novel phases, as the color-superconductors [21].

Applying analog quantum simulators to study gauge theories is particularly
challenging since, in general, their dynamics involve Hamiltonian with couplings
among more than just two-body terms. This is the reason why, until recently,
the main focus had been on simulating the e�ects of static and external non-
trivial background gauge �elds on the phases of matter. The interest in such
studies ranges from Quantum Hall physics, where strong magnetic �uxes, very
hard to obtain in condensed matter with real magnetic �eld, are needed, to the
simulation of relativistic matter and topological insulators, or extra-dimensions
[22, 23].

A natural step further towards the simulation of gauge theories is to include
the dynamics of the gauge �elds. Such aim, for instance in two dimensions,
requires the engineering of at least four-body couplings in the most common
square lattices. These kind of interactions are challenging to induce in quantum
simulator platforms, as optical lattice or trapped ions.

The �rst quantum simulator for dynamical gauge �elds was proposed by
Buchler et al. [24]. The proposal considers a ring exchange interaction in a
cold atomic gas between one type of bosons with a two particle or molecular
state. In a certain regime, the molecular �eld can be integrated out leading to
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an e�ective U(1) gauge theory for the bosons:

He� = k
∑
P

(b†1b2b
†
3b4 + b1b

†
2b3b

†
4 − n1n3 − n2n4) (1.1)

where the sum is done over the plaquettes P of the lattice and b† (b) is the
creation (annihilation) operator for the bosons and ni = b†i bi.

Substantial progress towards the simulation of dynamical gauge theories in
ultracold atomic systems has been achieved in the last years. In particular, pro-
posals for the quantum simulation of relativistic matter �elds [25], pure U(1)
gauge theories [26, 27], compact U(1) gauge theory interacting with matter
�eld [28, 29, 30] have been made. These methods have been extended to sim-
ulate pure non-Abelian gauge theories, as the 1+1 Yang-Mills SU(2) theory
[31] or non-Abelian gauge �elds interacting with matter �elds [32, 33]. While
these proposals correspond of analog quantum simulators, hybrid-digital quan-
tum simulation of lattice gauge theories has also been considered [34, 35], which
consider a �nite dimensional representation of the gauge group. Recent studies
also consider the formulation of lattice gauge theories in a tensor network lan-
guage [36, 37, 38].

The simulation of many body quantum systems not only refers to the sim-
ulation of closed systems, as the quantum simulators of gauge theories. The
engineering of quantum simulation can be applied to open quantum systems:
the system of study is coupled to an environment in a controlled way [39]. This
simulation can be done either by simulating an open system as part of a closed
quantum system or by considering the natural decoherence of the quantum sim-
ulator [14].

Quantum simulations for open systems can address very challenging prob-
lems concerning to the dynamics of strongly correlated many body systems.
One of them is the characterization the system in equilibrium regime. In the
last years very meaningful studies of this topic have concluded that an isolated
generic quantum many-body system relaxes to a equilibrium state well described
by standard statistical methods, with a generalized Gibbs ensemble. This en-
semble takes in account all the conserved quantities of the system during the
evolution [40].

Interest in the out-of equilibrium quantum dynamics has increased recently
due to the numerous theoretical studies and new experiments in this context
using cold atomic gases and optical lattices [41, 42, 43, 44, 45]. One of the
impressive phenomenon which appear in these far-from-equilibrium scenarios
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is the so-called pre-thermalization. In such a situation, some properties of the
many-body quantum system acquire their thermal values in a time scale much
lower than the typical thermal scale of the system [46].

1.1 Objectives and overview of the thesis

The overall main objective of the thesis is to harvest the bene�ts of the high
precision control and excellent detection and imaging techniques available for
ultracold atomic gases in order to:

• study the implementation and phenomenology of quantum simulator for
quantum systems subjected to external and exotic gauge �elds.

• implement quantum simulators for dynamical pure gauge theories based
on gauge link models and digital quantum simulations.

• understand the behaviour of high spin systems and their projection to
e�ective gauge �eld theories.

• study the role of the conservation of the entanglement spectrum in the
dynamics of strongly-many body systems.

The thesis is organized as follow:

• In chapter 2, we present a summary of the physics of gauge theories. First
we introduce the notion of gauge symmetry in classical �eld theory on the
continuum under the Lagrangian formulation. We also discuss the Hamil-
tonian formulation for such systems. Later on, we describe the quantum
formulation of gauge �eld theory in the continuum. Finally, we summa-
rize the formulation of gauge theories on a lattice, focusing on the lattice
formulation of pure gauge theories, i.e. the Wilson's formulation and the
Kogut-Susskind's formulation based on the Lagrangian and Hamiltonian
description of the system respectively. More detailed discussions on these
topics can be found in the literature. Particularly, we refer the reader to
the excellent books by V. Rubakov [47], by I. Montvay and G. Münster
[48] and by P. Ramond [49].

• In chapter 3, we present a summary on the quantum simulation of exter-
nal gauge �eld in ultracold atomic gases placed in optical lattices. First,
we describe the physics of ultracold gases in optical lattices, focusing in
the tight binding approximation. We introduce the lattice formulation of
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the system, arriving to a Hubbard-type description of the system. Then,
we describe the consequent Mott insulator-Super�uid phase transition for
such a system, which is a genuine pure quantum phase transition at T=0.
Later on, we summarize di�erent techniques for engineering, mimicking
and emulating external gauge �elds, both Abelian and non-Abelian, in
optical lattices. Then, we focus on the study of a 2D quantum system
subjected to an external and constant magnetic �eld. Since this system
presents non-trivial topological properties due to the appearance of the
quantum Hall e�ect, we �nish this chapter describing the physics of this
phenomenon.

• In chapter 4, motivated by the topics treated in the previous chapter,
we analyse systems composed of a non-interacting ultracold gas placed
on a 2D lattice under the action of an exotic gauge �eld. Speci�cally,
we consider the action of an external magnetic �eld generated by the
Heisenberg-Weyl gauge group, which is the simplest non-compact gauge
group. We describe a novel method to simulate the gauge degree of free-
dom, which consists of mapping the gauge coordinate of the system to a
the real and perpendicular direction with respect to the 2D space of posi-
tions. Thus, the system turns out to be a 3D insulator with a non-trivial
topology, speci�cally, a quantum Hall insulator. We further show that
non trivial combinations of quantized transverse Hall conductivities can
be engineered with the help of a staggered potential. We investigate the
robustness and topological nature of this conductivity and connect it to
the surface modes of the system. We also propose a simple experimental
realization with ultracold atoms in 3D con�ned to a 2D square lattice with
the third dimension being mapped to the gauge coordinate.

• Chapter 5 is devoted to present an experimentally feasible setup with
ultracold alkaline earth atoms to simulate the dynamics of U(1) lattice
gauge theories in 2+1 dimensions with a Chern-Simons term. To this end
we consider the ground state properties of spin-5/2 alkaline earth fermions
on a honeycomb lattice. We focus in the strong repulsive regime, where
essentially the system ful�lls the constraint of one fermion per site, i.e. 1/6
�lling. First, we analyse the characteristic of the system at T=0 by a mean
�eld approach. We show that the ground state of the system is a chiral spin
liquid state with an emergent magnetic �ux of 2π/3 per plaquette, which
spontaneously violates time reversal invariance. Thus, the system exhibits
quantum Hall e�ect and chiral edge states. We also discuss the properties
of the lowest energy competing orders. Later on, we study the stability
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of the system at �nite temperature, under a path integral formalism and
saddle point approximation. We identify a critical temperature, where
all the spin liquid phases melt and the system goes to the paramagnetic
phase. We also show that the chiral spin liquid state is realized even at
�nite temperatures. We also determine the spin structure factor, which,
in principle, is an experimentally measurable quantity and is the basic
tool to map the spectrum of elementary excitations of the system. We
relate the spin �uctuations of the system to an emerging gauge �eld and
we identify the Lagrangian system, which describes a system composed of
fermionic matter coupled to a dynamical U(1) gauge �eld.

• We continue the line of the study of quantum simulation for dynamical
gauge theories. Thus, in chapter 6 we present a family of gauge theories
that can be e�ciently simulated with ultracold atomic systems in optical
lattice. This is the so-called family of gauge magnets, which corresponds
to quantum link models for the U(1) gauge theory. The Kogut-Susskind
formulation of lattice gauge theory considers that every site of the lattice
contains a local Hilbert space with dimension equals to the dimension of
the regular representation of the gauge group. For the U(1) gauge group,
this dimension is in�nite. However, link model formulation of gauge theo-
ries considers a truncated dimension of the local Hilbert space, preserving
the total gauge symmetry. We present a constructive approach for lat-
tice gauge theory where the links models come out in a natural way. We
give the prescription for the construction of the di�erent link models for
Abelian gauge groups. As an example, we focus on the gauge magnets,
which are link models for the U(1) gauge group with a truncated local
Hilbert space of dimension 2, We re-derived the phase diagram of this
system, which was already studied some years ago. Finally, we summarize
the proposal developed by A. Celi, L. Tagliacozzo, M. Lewenstein and me
related to the digital quantum simulation of the U(1) gauge magnet by
using Rydberg atoms.

• In chapter 7, motivated by the advances in the simulation of open quan-
tum systems, we turn to consider some aspects concerning the dynamics
of strongly correlated quantum many body systems. Speci�cally we study
the dynamics in a physical system produced by a quench protocol that
conserves the entanglement spectrum of a bipartition of the strongly cor-
related system. Concretely we consider the splitting of a critical Ising
chain in two chains, and compare it with the well studied case of joining
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of two chains. We show that both the out of equilibrium and equilib-
rium regimes after the quench are di�erent in the two scenarios. Since
the two quenches only di�er in the presence/absence of the conservation
of the entanglement spectrum, our results suggest that this conservation
plays a fundamental role in both the out-of-equilibrium dynamics and the
subsequent equilibration mechanism.

• Chapter 8 is devoted to the conclusions of the work which forms the
thesis. We also present some open questions and future investigations
related to the di�erent topics treated in the thesis.

Chapters 4, 5, 6 and 7 contain original studies and results obtained dur-
ing the doctoral period. The list of original publications which conform these
investigations is:

• Layered quantum Hall insulators with ultracold atoms.

A. Zamora, G. Szirmai and M. Lewenstein.

Physical Review A, 84, 053620 (2011).

Chapter 4 of the thesis.

• Gauge �elds emerging from time-reversal symmetry breaking for spin-5/2
fermions in a honeycomb lattice.

G. Szirmai, E. Szirmai, A. Zamora, M. Lewenstein

Physical Review A, 84, 011611 (2011).

Chapter 5 of the thesis.

• Spin liquid phases of alkaline-earth-metal atoms at �nite temperature.

P. Sinkovicz, A. Zamora, E. Szirmai, M. Lewenstein and G. Szirmai.

Physical Review A, 88, 043619 (2013).

Chapter 5 of the thesis.

• Optical Abelian lattice gauge theories.

L.Tagliacozzo, A. Celi, A. Zamora, M. Lewenstein

Annals of Physics, 330 (2013).

Chapter 6 of the thesis.
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• Splitting a critical spin chain.

A. Zamora, J. Rodríguez Laguna, M. Lewenstein and L. Tagliacozzo.

Accepted in Journal of Statistical Mechanics: Theory and Experiment.

Chapter 7 of the thesis.
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Chapter 2

Gauge theories

Gauge theories describe fundamental interaction appearing in Nature. More-
over, gauge interactions appear as emergent phenomena in many low energy
e�ective systems in condensed matter, such as frustrated quantum systems and
high-temperature superconductors [21].

The gauge symmetry re�ects a freedom in the description of the system
through gauge �elds. These �elds contain degrees of freedom which are not
physical. Therefore, in�nitely many di�erent con�gurations of the gauge �eld
are gauge equivalent and provide the same physical results, which are gauge
invariant quantities.

In the simplest and probably best known gauge-theory, the Abelian-gauge
theory of electrodynamics, the �eld strengths can be expressed with the help of
scalar φ and vector potentials A:

E(x, t) = −∇φ(x, t)− 1

c

∂A(x, t)

∂t
,

B(x, t) = ∇×A(x, t), (2.1)

where c is the speed of light.
The �eld strengths E and B are physical �elds, whereas the scalar and the

vector potentials are non-physical, they can not be measured. This indicates
the system has some kind of arbitrariness or freedom in the selection of these
non physical �elds. In fact, performing the following transformation:
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φ(x, t)→ φ′(x, t)− 1

c

∂θ(x, t)

∂t
,

A(x, t)→ A′(x, t) +∇θ(x, t), (2.2)

with an arbitrary scalar function θ(x, t) on space and time coordinates, it is easy
to check that the equations (2.1) do not change, i.e. the �eld strengths E and B
are invariant under this transformation. This transformation whose parameter
χ depends on space and time is called gauge transformation, while the term
global transformation refers to a transformation with a space-time independent
parameter.

The main postulate for the gauge theories is that all the physical quantities
should be invariant under local gauge transformations. Electromagnetism ful�ls
this condition, and it is in fact the most simple gauge theory.

2.1 Gauge symmetry in electrodynamics

The aim of this section is to study the gauge structure of the classical electro-
magnetism. The 4-vector of the electromagnetism is given by Aµ = (−φ,A).
Then, the gauge transformation introduced at Eq. (2.2) can be expressed as:

Aµ → A′µ = Aµ + ∂µθ, (2.3)

where ∂µ = ( 1
c∂t,∇). The metric we use is gµν = diag(−1, 1, 1, 1). Then,

Aµ = gµνA
ν = (−A0,A), using the Einstein summation convention.

The action for the free electromagnetic �eld is:

SEM =

∫
d4xLEM =

∫
d4x

(
−1

4
FµνFµν

)
, (2.4)

with
Fµν = ∂µAν − ∂νAµ. (2.5)

The gauge transformation (2.3) leaves the action SEM invariant:

SEM → S′EM = SEM. (2.6)
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Let us now consider a system composed of an electromagnetic �eld interacting
with a particle with electrical charge e. The action of the systems contains three
terms:

S[A] = SP + SEM + Sint = SP +

∫
d4x

(
−1

4
FµνFµν + jµAµ

)
, (2.7)

where SP is the free action of the particle, Sint =
∫
d4xjµAµ is the action term

corresponding to the interaction and jµ = qδ(x)(1,v) is the four current of the
particle with charge q.

Considering the invariance of SEM under the gauge transformation and the
independence of SP on the vector potential, the action of the gauge transforma-
tion (2.3) on this action is:

S[A]→ S′[A] = S[A′] = SP + SEM[A′] + Sint[A
′] = S[A]−

∫
d4x(ejµ∂

µθ) =

= S[A]−
∫
d4x∂µ(qjµθ) +

∫
d4x(q∂µjµ)θ = S[A]. (2.8)

The full action S[A] of the system remains invariant. Since

•
∫
d4x∂µ(qjµθ) = 0, because it is the integral of the �ux over an in�nitely

distant 4D surfacer where θ(xµ) vanishes.

• Conservation of the four current:

∂µjµ = 0, (2.9)

which can be derived from the variation of the �eld equation

∂µF
µν = qjν . (2.10)

Therefore, there is an intimate connection between the gauge invariance and
the conservation of the current. This point will be treated later.
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2.2 Gauge symmetry in classical �eld theory

In this section, we are going to construct a gauge invariant theory by imposing
the gauge invariance principle in a system containing classical matter �elds.

Let us start with a system composed of a free scalar complex �eld. The
action is given by the integral of the Lagrangian density L�eld over space-time:

S�eld =

∫
d4xL�eld =

∫
d4x

(
1

2
|∂µϕ|2 − V (ϕ)

)
, (2.11)

where |∂µϕ| = ∂µϕ · ∂µϕ∗ and V (ϕ) = 1
2m|ϕ|

2 + λ|ϕ|4 + ..., which can be a
polynomial potential in powers of ϕ, containing a mass term (quadratic term)
and interacting terms (hight order in ϕ) [47, 49].

The energy E for such a �eld is given by:

E =

∫
d3x

(
∂L�eld
∂(∂tϕ)

∂tϕ+
∂L�eld
∂(∂tϕ∗)

∂tϕ
∗ − L�eld

)
=

∫
d3x

(
1

2
|∂tϕ|2 +

1

2
|∇ϕ|2 + V (ϕ)

)
. (2.12)

A stable physical theory requires an energy bounded from below. Consider-
ing V (ϕ) = 1

2m|ϕ|
2 + λ|ϕ|4, the stability requirement implies λ ≥ 0. For m > 0

there is one minimum of the potential at ϕ = 0, while for m < 0 there is set of
minima at |ϕ| = +

√
m
2λ and an unstable (maximum) con�guration |ϕ| = 0 (see

Fig.2.1) . The theory given by λ = 0 and m > 0 describes a Klein-Gordon �eld.
The action (2.11) is invariant under the following global gauge transforma-

tions:

ϕ(x)→ ϕ′(x) = eiθϕ(x),

ϕ∗(x)→ ϕ∗′(x) = e−iθϕ∗(x), (2.13)

where the parameter θ does no depen on the space-time position. Following
Noether's theorem [50], one obtains the conserved current associated to this
transformation:

jν = −i (ϕ∗∂νϕ− ∂νϕ∗ϕ) (2.14)
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Figure 2.1: Left panel : Graphical representation of the potential V (ϕ) =
1
2m|ϕ|

2 + λ|ϕ|4 for m < 0, λ > 0 as a function of the complex �eld ϕ = |ϕ|eiθ.
It is invariant with respect to the angle θ. There is an unstable physical con�g-
uration at ϕ = 0 and there are in�nitely many degenerate stable con�gurations
at |ϕ| =

√
m
2λ . Right panel : Section of the potential for an speci�c θ = θ̃, which

determines ϕ̃ = ϕ|θ̃. The potential exhibits two minima at ϕ̃± = ±|ϕ̃|.

Let us now consider local gauge transformations, where the parameter of the
transformation depends on the space-time position x = (t, r).

ϕ(x)→ ϕ′(x) = eiθ(x)ϕ(x),

ϕ∗(x)→ ϕ∗′(x) = e−iθ(x)ϕ∗(x). (2.15)

We observe that the term with derivatives in the action transforms as:

∂µϕ→ ∂µϕ
′ = eiθ(x) (∂µ + i(∂µθ(x))ϕ) , (2.16)

The appearing ∂µθ(x) term makes the action (2.11) non-invariant under
such local transformations. The requirement of invariance under the local gauge
transformation needs the introduction of a new �eld in the theory, the gauge �eld
Aµ(x). This gauge �eld transforms under a gauge transformation in such way
that compensates the ∂µθ(x) term. The gauge �eld is introduced by replacing
the usual derivative ∂µ by the so-called covariant derivative Dµ:

∂µ → Dµ = ∂µ − iqAµ. (2.17)
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By Doing such replacement, the action given at (2.11) becomes:

S�eld[Dµ] =

∫
d4x

(
1

2
|Dµϕ|2 − V (ϕ)

)
=

∫
d4x

(
1

2
|(∂µ − iqAµ)ϕ|2 − V (ϕ)

)
,

(2.18)
which is the action of a matter scalar �eld ϕ coupled to a gauge �eld Aµ.

Under the local gauge transformation:

ϕ(x)→ ϕ′(x) = eiθ(x)ϕ(x),

ϕ∗(x)→ ϕ∗′(x) = e−iθ(x)ϕ∗(x),

Aµ(x)→ Aµ(x)′ = Aµ(x) +
1

q
∂µθ(x), (2.19)

the covariant derivative transforms as:

Dµϕ→ D′µϕ
′ = eiθ(x)Dµϕ. (2.20)

Then, the action (2.18) is invariant under such local gauge transformation.
However, the systems described by (2.18) contains an external gauge �eld.

Then, it is necessary to add a gauge invariant kinetic term for the gauge �eld
to this action in order to consider dynamical gauge �elds. In the last section we
observed the action for the gauge �eld (2.4) is gauge invariant. Then, adding
this term, we end up to the action for a complex matter �eld coupled to a
dynamical gauge �eld:

S = S�eld[Dµ] + SEM = S�eld[∂µ + ieAµ] + SEM =

=

∫
d4x

(
1

2
|Dµϕ|2 − V (ϕ)− 1

4
FµνFµν

)
=

=

∫
d4x

(
1

2
|(∂µ − ieAµ)ϕ|2 − V (ϕ)− 1

4
FµνFµν

)
. (2.21)

It can be checked that this action in invariant under the gauge transforma-
tion expressed in (2.19).

The equations of motion for this system are obtained by the variational
principle: δS

δϕ = 0 and δS
δAµ

= 0. Applying this principle, we obtain:
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∂µF
µν = jν ,

|Dµ|2ϕ+m2ϕ = 0, (2.22)

where jν = −i (ϕ∗Dνϕ− (Dνϕ)∗ϕ) is the four-current of the matter �eld cou-
pled to the gauge �eld. It can be obtained as well by the replacement with the
covariant derivative in the expression appearing at Eq. (2.14). These equations
of motion are also gauge invariant expressions. For instance:

|Dµ|2ϕ+m2ϕ = 0 → |D′µ|2eiθ(x)ϕ+m2eiθ(x)ϕ = 0 →
eiθ(x)|Dµ|2ϕ+m2eiθ(x)ϕ = 0 → |Dµ|2ϕ+m2ϕ = 0 (2.23)

2.3 Gauge principle and constrained Hamiltonian

The gauge symmetry indicates that the description of the physical system in
terms of the gauge �eld Aµ contains non-physical degrees of freedom, i.e. there
is a freedom in the choice of this �eld. In this section we will see the relation
between this freedom and the appearance of constraints in the Hamiltonian for-
mulation of gauge theories.

Let us consider an electromagnetic �eld interacting with external sources.
The Lagrangian density for such a system is given by:

L = jµAµ −
1

4
FµνFµν . (2.24)

The canonical Hamiltonian density reads as:

Hc = Πµ(∂tAµ)− L =
1

2
(E2 + B2) + E · ∇A0 − jµAµ, (2.25)

where Πµ = ∂L
∂(∂tAµ) = −F 0µ is the conjugate momentum, and the electric Ei

and magnetic �elds Bi read as:

Ei = −F0i = ∂iA0 − ∂tAi,

Bi = −1

2
εijkFjk = −1

2
εijk(∂jAk − ∂kAj). (2.26)

The momentum conjugate of A0 vanishes due to A0 has no time derivative in
L:
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Π0 = 0. (2.27)

The introduction of this constraint in (2.25), and the integration over the space
leads to the Hamiltonian of the system:

H =

∫
d3x(Hc + λ(x)Π0) =∫

d3x

(
1

2
(E2 + B2) + λ(x)Π0 −A0(∇ ·E + j0) + j ·A

)
, (2.28)

where λ(x) is a Lagrange multiplier and we have dropped out a surface term
coming from the integration by parts of the term E · ∇A0.

Since the constraint (2.27) has to be ful�lled at every time t:

0 = ∂tΠ0 = − δH
δA0

= −∂H1

∂A0
+ ∂i

∂H1

∂iA0
= {H,Π0}, (2.29)

where we have introduced the Poisson bracket :

{M,N} =

∫
d3x

(
δM

δAµ

δN

δΠµ
− δM

δΠµ

δN

δAµ

)
. (2.30)

Therefore, an additional constraint, the so-called Gauss Law GG, is generated:

GG = ∇E + j0 = 0. (2.31)

This constraint is already present in the Hamiltonian (2.28), with the �eld
A0 as a Lagrange multiplier. Since the time derivative of the �eld A0 can be
expressed as:

∂tA0 =
δH

δΠ0
=
∂H1

∂Π0
= λ(x), (2.32)

�nally we can write:

H =

∫
d3x

(
1

2
(E2 + B2) + (∂tA0)Π0 −A0(∇ ·E + j0) + j ·A

)
, (2.33)
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which is the constrained Hamiltonian where the Lagrange multipliers are given
in terms of the gauge �eld component A0.

Since the Gauss Law has to be ful�lled at every time t, this leads to the
conservation of the four current jµ:

0 =
∂

∂t
(∇E + j0) = {H,∇E + j0} = ∂µj

µ, (2.34)

which was introduced already in (2.10). This equation is related to a symmetry
of the system, i.e. the invariance of the physical quantities with respect to a
certain transformations. This transformations are generated by the constraints
appering at the Hamiltonian. (2.33):

G[θ] =

∫
d3x
(
∂tθ(x)G1(x)− θ(x)GG(x)

)
, (2.35)

where θ(x) is the parameter of the transformation, G1(x) = Π0(x) and GG(x)
is the Gauss law.

The gauge �eld transforms under G[θ] as:

δAµ = A′µ −Aµ = {G[θ], Aµ} = ∂µθ. (2.36)

This result indicates that the transformation generated by G[θ] is the gauge
transformation expressed in Eq. (2.2).

As we expect, the Hamiltonian (2.33) is invariant under the action of this
transformation:

δH = H ′ −H = {G[θ], H} = −∂µjµ = 0. (2.37)

Thus, the dynamics of the system is invariant under such transformations.
The systems related by these transformations are physically equivalent, they
belong to the same equivalent class.

2.4 Gauge group and parallel transport

Considering that g(x) ≡ eiθ(x) ∈ U(1), where U(1) is the unitary group of
dimension 1, i.e. the complex number of modulus 1 under the multiplication
operation; the matter �eld appearing in Eq. (2.19) transforms under the action
of the fundamental representation of such group:
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ϕ→ ϕ′ = g(x)ϕ. (2.38)

It is natural to think of the extension of this transformation law considering
other groups. First we notice that the action of N -component scalar �elds:

S�eld =

∫
d4x

(
1

2

n∑
a=1

∂µϕ∗a∂µϕa + V (ϕ∗aϕa)

)
=

=

∫
d4x

(
1

2
∂µ~ϕ†∂µ~ϕ+ V (~ϕ†~ϕ)

)
, (2.39)

is invariant under the global transformation:

~ϕ→ ~ϕ′ = g~ϕ,

~ϕ† → ~ϕ′† = ~ϕ†g†, (2.40)

where g, is an element of a unitary group G:

g ∈ G → g = ei
∑
a θaTa . (2.41)

Here G can be any semi-simple Lie group with N dimensional representation.
The matrices Ta are the generators, due to the unitarity of the group, the
generators are hermitian: Ta = T †a . They satisfy the corresponding Lie algebra
of the group:

[Ta, Tb] = i
∑
c

fabcTc, (2.42)

where fabc are the antisymmetric structure constants of the group.

Here the gauge �eld is a linear combination of such generators:

Aµ(x) =
∑
a

Aµa(x)Ta. (2.43)

To construct the interacting theory between matter �eld and gauge �elds
we require the full action of the system to be invariant under the local gauge
transformation g(x) = ei

∑
a θa(x)Ta . Then the procedure is:

• To replace the usual derivative ∂µ by the covariant derivative Dµ = ∂µ +
ie
∑
aA

µ
a(xµ)Ta in the action (2.39). This gives the action for the matter

�eld and the interaction between matter and gauge �eld.
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• To add a gauge invariant action Sgauge for the gauge �eld. The best gauge
invariant candidate is given by the Yang-Mills action [51]:

Sgauge =

∫
d4xLgauge =

∫
d4x

(
−1

4
Tr(FµνFµν)

)
, (2.44)

with the strength tensor Fµν constructed as:

Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ + i[Aµ, Aν ] =
∑
a

Fµνa Ta,

Fµνa = ∂µAνa − ∂νAµa − fabcA
µ
bA

ν
c . (2.45)

We stress that fabc 6= 0 for a non-Abelian gauge theory and this charac-
teristic provides a self-interacting term for the gauge �eld.

Finally the total action of the system is:

S =

∫
d4x

(
1

2
(Dµ~ϕ)†Dµ~ϕ+ V (~ϕ†~ϕ)− 1

4
Tr(FµνFµν)

)
. (2.46)

This action is invariant under the local gauge transformations:

~ϕ→ ~ϕ′ = g(x)~ϕ,

~ϕ† → ~ϕ′† = ~ϕ†g(x)†,

ieAµ → ieA′µ = ieg(x)Aµg†(x) + g(x)∂µg†(x),

Fρσ → F ′ρσ = g(x)Fρσg
†(x), (2.47)

where the last equation can be derived from the previous ones by requiring Dµ~ϕ
to transform under the fundamental representation of G:

Dµ~ϕ→ ∂µ~ϕ′ + ieA′µ~ϕ′ = g(x)Dµ~ϕ. (2.48)

The appearance of the covariant derivative in the formulation of gauge the-
ories is a consequence of a general principle which consists of the independence
of the physical laws with respect to the choice of a local basis. In gauge the-
ories the coordinates we refer to are the N components of the vector ~ϕ(x) at
a given site x, forming a basis which we call Vx. The gauge transformation
~ϕ→ ~ϕ′ = g(xµ)~ϕ can be viewed as a change of basis Vx → V ′x. Since the gauge
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transformation is local, the basis depends explicitly on the position x. There-
fore, if we want to compare a vector ϕ(x) at site x with a vector ϕ(y) at site y
it is necessary to parallel transport the vector from the �rst point to the next
along some curve γyx:

U(γyx) : Vx → Vy

ϕ(x)→ U(γyx)ϕ(x) ∈ Vy, (2.49)

where U(γyx) ∈ U(N) is the parallel transporter

As a parallel transport, this object U(γyx) ful�ls the next properties:

• U(∅) = I, where ∅ is the curve zero length.

• U(γ1 ◦ γ2) = U(γ1)U(γ2) where the symbol ◦ denotes the composition of
curves.

• U(γ)−1 = U(−γ) where −γ is the reversed curve γ

If we compare a vector at x with the corresponding one at x+ dx, the parallel
transport di�ers in�nitesimally from the identity:

Dϕ(x) = U(γx,x+dx)ϕ(x+ dx)− ϕ(x) = (I + iAdx)ϕ(x+ dx)− ϕ(x) =

= (I + ieAµ(x)dxµ)ϕ(x+ dx)− ϕ(x), (2.50)

where we have considered the expression (2.17) in the last step.

The strength tensor appering in Eq. (2.45) can be obtained by considering
the parallel transport among a closed curve γxx which covers the perimeter of
an in�nitesimal parallelogram:

Fµν(x) = I− U(γxx). (2.51)

The parallel transporters are de�ned unequivocally by the speci�cation of the
gauge �elds A(x) and vice versa. With the help of the expression Eq. (2.50), the
parallel transport can be reconstructed among a curve γ with the path ordered
expression, the so-called Dyson's formula [52, 48]:

U(γ) = Pe−
∫
γ
Aµ(x)dxµ . (2.52)
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2.5 Gauge symmetry in quantum systems

Let us consider a charged particle coupled to an external electromagnetic �eld.
The classical Hamiltonian for the system is given by:

H =
1

2m
(p− qA)2 + qφ, (2.53)

where q is the charge of the particle.

The quantum Hamiltonian in the space position basis is obtained from the
last expression, by replacing the canonical coordinates and momenta, x, p by
the multiplicative operator x and the derivative operator −i∇, respectively:

H = − 1

2m
(∇− iqA)2 + qφ. (2.54)

The Schrödinger equation for wave function ϕ(x, t) reads as:(
− 1

2m
(∇− iqA)2 + qφ

)
ϕ(x, t) = i

∂ϕ(x, t)

∂t
. (2.55)

Using the covariant derivative de�ned in Eq. (2.17), we can rewrite the last
equation as:

− 1

2m
D2ϕ(x, t) = iD0ϕ(x, t), (2.56)

where Dµ = (D0,D) = (∂t − iqφ,∇ − iqA). This equation remains invariant
under the gauge transformation (2.2):

− 1

2m
D2ϕ(x, t) = iD0ϕ(x, t) → − 1

2m
(D′)2eiθ(x,t)ϕ(x, t) = iD′0e

iθ(x,t)ϕ(x, t) →

→ eiθ(x,t)
(
− 1

2m

)
D2ϕ(x, t) = eiθ(x,t)iD0ϕ(r, t) →

− 1

2m
D2ϕ(x, t) = iD0ϕ(x, t). (2.57)

Therefore, two di�erent quantum systems, S1 and S2, characterized by the wave
function and the vector potential:

S1 : {ϕ(x, t), Aµ(x, t)},
S2 : {ϕ′(x, t), A′µ(x, t)}, (2.58)
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are physically indistinguishable if they are related by a gauge transformation g:

g : {ϕ(x, t), Aµ(x, t)} → {ϕ′(x, t), A′µ(x, t)}. (2.59)

As we have seen in the previous section for classical systems, the gauge
principle can be extended to di�erent gauge groups. This extension leads to a
generalized Schrödinger equation:(

− 1

2m
(∇ · IN − iqA)2 + eφ)

)
~ϕ(x, t) = i

∂~ϕ(x, t)

∂t
, (2.60)

with

~ϕ = (ϕ1, ϕ2, ..., ϕN )T , (2.61)

A =
∑
a

Aa(x, t) · Ta,

φ =
∑
a

φa(x, t) · Ta,

where A, ϕ are real �elds and Ta are the generators of the gauge group G. They
obey the commutation relations appearing in Eq. (2.42) and generate the Lie
algebra of the group.

It can be checked that the equation (2.60) is invariant under the gauge
transformations appearing in Eq. (2.47).

2.5.1 Quantum �eld theory and gauge symmetry

We are interested in the study of a system composed of an atomic gas, which
is a many-body quantum system. Then it is convenient to treat the system
in the second quantized formalism, introducing non-relativistic quantum �eld
matter ~̂ϕ. The Hamiltonian for a non-relativistic N -component quantum gas
with two-body interaction reads as:

Ĥ�eld =

∫
d3x

[
~̂ϕ†
(
− 1

2m
∇2 + V (x)

)
~̂ϕ+ g ~̂ϕ† ~̂ϕ† ~̂ϕ~̂ϕ

]
, (2.62)

where ~̂ϕ is the �eld operator for an atom at site x, V (x) is a time-independent
external potential and g is the coupling of the interaction between the atoms,
g < 0 (g > 0) for attractive (repulsive) interaction. Concretely, we are interested
s-wave scattering processes, then g = 4πa

m , where a the s-wave scattering length.
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The Lagrangian density L�eld is given in term of the matter �eld ~ϕ by:

L�eld = ~ϕ†i∂t~ϕ+ ~ϕ†
(

1

2m
∇2 − V (x)

)
~ϕ− g~ϕ†~ϕ†~ϕ~ϕ. (2.63)

The theory which describes the quantum atomic gas coupled to a gauge �eld
is obtained by introducing the covariant derivative (2.17) and by adding a dy-
namical term for the gauge �eld (see Eq. (2.44)):

L = L�eld[∂µ → Dµ] + Lgauge =

~ϕ†i(∂t − iqφ)~ϕ+ ~ϕ†
(

1

2m
(∇− iqA)2 − V (x)

)
~ϕ− g~ϕ†~ϕ†~ϕ~ϕ− 1

4
Tr(FµνFµν),

(2.64)

It can be checked that the action S =
∫
d4xL for such a system is invariant

under the gauge transformations appearing in (2.3).

The Hamiltonian of the system read as:

Ĥ =

∫
d3x

[
~̂ϕ†
(
− 1

2m
(∇− iqA)2 + V (x) + φ̂

)
~̂ϕ+ g ~̂ϕ† ~̂ϕ† ~̂ϕ~̂ϕ

]
+ Ĥ�eld,

(2.65)

where Ĥ�eld is the Hamiltonian for the gauge �eld. Speci�cally for the electro-
magnetic �eld, it is a function of the electric E and magnetic B �eld strengths:

Ĥ�eld =

∫
d3x

1

2
(E2 + B2), (2.66)

which is obtained from the classical Hamiltonian (2.28) without the constraints
and replacing of the �elds by operators and considering a free gauge �eld.

For the Hamiltonian formulation of the gauge theory it is convenient to work
in the temporal or Weyl gauge, de�ned with the condition A0 = 0. This choice
does not �x the gauge completely, since there is a freedom for performing time-
independent transformations [53].

As we indicated in Eq. (2.35), the time-independent gauge transformations
are generated by the Gauss law, GG, de�ned at (2.31). Then, it is necessary
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to introduce this constraint in a quantum level. We notice that the Gauss law,
which is enforced to vanish at a classical level, can not vanish on an operator
level for the quantum system, since there are relations as:

[GG(x), GG(y)] = iδ(x− y)I (2.67)

Then, in quantum �eld theory the constraint GG, which generates the gauge
symmetry, has to be implemented in a certain subspaceHphys of the total Hilbert
space. This subspace is composed of all the vectors which ful�l:

GG|ψ〉phys = 0. (2.68)

This condition is ful�lled during all the time evolution due to:[
H,GG

]
= 0, (2.69)

As we showed at Section 2.4, the gauge and the matter �elds are not gauge
invariant quantities. Therefore, at a quantum level, there is a certain unitary
operator V [g], whose generator is GG, which implements the transformation law
appearing at (2.3). Speci�cally for the U(1) gauge group:

A→ A′ = V [g]AV †[g] = g(x)Ag†(x)− ig(x)∇g†(x) =

A−∇θ → δA = i
[
GG[θ],A

]
= −∇θ(x),

ϕ̂→ ϕ̂′ = V [g]ϕ̂V †[g] = g(x)ϕ̂ = eiθ(x)ϕ̂→ δϕ̂ = i
[
GG[θ], ϕ̂] = iθ(x)ϕ̂, (2.70)

and g(x) = eiθ(x) is the element of the gauge group U(1).
Then, V [g] takes the form:

V [g] = exp (iGG[θ]) = exp

(
i

∫
dx3 θ(x)GG(x)

)
, (2.71)

Since we work in the temporal gauge, we only consider time-independent gauge
transformations.

2.6 Lattice formulation of the gauge theories

In the present thesis we focus on the quantum simulation of lattice gauge the-
ories, therefore in this section we review an introduction to the formulation of
gauge theories on a lattice. For simplicity we will consider a lattice in D di-
mensions with a constant lattice spacing a (square lattice in 2D, cubic lattice
in 3D,...). The generalization of the results to other lattices is straightforward.
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2.6.1 Covariant derivative on the lattice

The formulation of the lattice theory requires the replacement of the integrals
to �nite sums and the derivatives to �nite di�erences. Therefore, some helpful
relations are:

∫
dDxϕ†(x)ϕ(x)→

∑
x

aDϕ†xϕx, (2.72)∫
dDxϕ†(x)(−∇2)ϕ(x) = −

∫
dDx∇(ϕ†(x)∇ϕ(x)) +

∫
dDx∇ϕ†(x) · ∇ϕ(x) =

=

∫
dDx∇ϕ†(x) · ∇ϕ(x)→ aD

∑
<x,y>

1

a2
(ϕ†y − ϕ†x) · (ϕy − ϕx) =

= aD
∑
〈x,y〉

1

a2
(−ϕ†yϕx − ϕ†xϕy + 2ϕ†xϕx), (2.73)

where x, y are lattice points and ϕx ≡ ϕ(x). We have used the fact that the
integral of the total derivative vanishes becuase we are considering �elds which
obey periodic boundary conditions:∫

dDx∇(ϕ†(x)∇ϕ(x)) = 0. (2.74)

To construct the covariant derivative let's go back to Eq. (2.50). In the con-
tinuum case, the covariant derivative is understood as the parallel transporter
along a curve with in�nitesimally small length. However, in the lattice formal-
ism, the lattice spacing a is the shortest distance. Therefore the lattice version
of the covariant derivative connects the point x with its nearest neighbour y via
a parallel transporter U(y, x) ∈ U(N) along the curve with �nite length a over
the link which connects the two points:
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∫
dDxϕ†(x)(−D2)ϕ(x) = −

∫
dDxϕ†(x)(∇− iqA)2ϕ(x)

=

∫
dDx((∇− iqA)ϕ)†(∇− iqA)ϕ =

=

∫
dDx(Dϕ)†(Dϕ)→ aD

∑
〈x,y〉

1

a
(Uϕy − ϕx)†(Uϕy − ϕx) =

= aD
∑
〈x,y〉

1

a2
(−ϕ†yU†xyϕx − ϕ†xUxyϕy + 2ϕ†xϕx), (2.75)

with Uxy = exp(iqaAxy), the element of the gauge group G at the 〈x, y〉 link,
and Axy is the vector potential. Therefore, the relevant degrees of freedom for
a gauge theory de�ned on the lattice are the parallel transporters, {U〈x,y〉} de-
�ned on the links of the lattice.

Equation (2.75) is the basic ingredient of the lattice theory for the matter
�eld. Introducing this expression in the Hamiltonian (2.65), we end up to the
lattice Hamiltonian for a quantum matter �eld coupled to a gauge �eld:

Ĥ = −t̃
∑
〈x,y〉

(ϕ†yU
†
xyϕx+ϕ†xUxyϕy−2ϕ†xϕx)+

∑
x

Vxϕ
†
xϕx+g̃

∑
x

ϕ†xϕ
†
xϕxϕx+H�eld,

(2.76)
where t̃ = aD/2ma2, g̃ = gaD/a2 and:∑

x

Vxϕ
†
xϕx →

∫
dDxV (x)ϕ†(x)ϕ(x), (2.77)

in the continuum limit, where V (x) is an external potential.

The lattice expression of the Hamiltonian for the gauge �eld, H�eld, is ob-
tained in the next section.

2.6.2 Pure gauge �eld on a lattice

As we have seen in the previous section, the lattice theory contains two ingre-
dients: the matter �eld ϕ, which is de�ned on the vertices of the lattice, and
the gauge variables U , which are de�ned on the links between nearest neighbour
vertices. The last ones are the lattice version of the parallel transporter given
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Figure 2.2: Left panel Two points a and b on the lattice connected trough a
curve γ. The parallel transporter of the curve is given by the product of the
parallel transporters at each link. Right panel Elementary plaquette with a given
orientation, de�ned by the direction of the curve which encloses the plaquette.

in Eq. (2.49) and they ful�l the characteristics of parallel transporters. Under
the gauge transformations (2.3), the link variable transforms as:

Uxy → U ′xy = g(x)Uxyg
†(y). (2.78)

Consider two points on the lattice, namely a and b and a path γ which
connects these two points through l links. The parallel transporter Uab on the
lattice associated to this curve is formed by the composition of the di�erent link
variables among the curve (see Fig 2.2):

Uab = U1 ◦ U2 ◦ · · · ◦ Ul, (2.79)

which is the lattice version of the object appearing in Eq. (2.52). It transforms
under a gauge transformation as:

Uab → U ′ab = g(a) Uab g
†(b), (2.80)

since the gauge transformations inside the curve are always cancelled. Then,
the trace of the link variable associated to a closed path is a gauge invariant
object:

Tr(Uaa)→ Tr(g(a) Uaa g
†(a))→ Tr(Uaa) (2.81)

Since the action of the pure gauge �eld has to be gauge invariant object, these
traces over closed paths can act as building blocks for the action. Inspired by
the Yang-Mills action (2.44) and the relation between the strength tensor Fµν
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and the parallel transporter U (2.51), a suitable candidate for the pure gauge
action on the lattice is given by the so-called Wilson's action SW [54]:

SW = aD
∑
P

1

a2g̃2

(
Tr(UP + U−1

P )
)

(2.82)

where the sum is over the elementary plaquettes of the lattice (see Fig. 2.2),
which de�ne the shortest closed path on the lattice, UP is the product of the link
variables U over these plaquettes, and g̃ is a constant, whose value is determined
by performing the continuum limit and recovering the result in the continuum.
The sum considers the two di�erent orientations of the plaquettes.

For instance, for the SU(N) gauge group, this action is reduced to:

SW = aD
∑
P

1

a22g̃2
Re (TrUP ). (2.83)

Let us now derive the Hamiltonian formulation of the lattice gauge theories.
The quantum Hamiltonian for the gauge �eld in the continuum is given by Eq.
(2.66), where the �elds Ê and B̂, rather than C-numbers, they are operators. For
the Hamiltonian formulation on the lattice we consider the gauge link variable
Uxy = eiqaAxy and the electric �eld Ê as degrees of freedom. The commutation
relations between these operators are given by [21]:

[Exy, Ux′y′ ] = δxx′δyy′Uxy,

[Exy, U
†
x′y′ ] = −δxx′δyy′U†xy. (2.84)

The Gauss law (2.31) on the lattice reads as:

Gx = ϕ†xϕx +
∑
q̂

(Ex+q̂,x − Ex,x+q̂), (2.85)

where j0 = ϕ†xϕx is the charge density of the matter �eld and q̂ is the vector
between neighboring sites.

This Gauss law generates the spatial gauge transformations (we remind
that we are working in the temporal gauge and, therefore, we only consider
time-independent gauge transformations ). In the lattice, the transformations
appearing in (2.70) take the form:

ϕx → ϕ′x = V [g]ϕxV
†[g] = g(x)ϕx,

Uxy → U ′xy = V [g]UxyV
†[g] = g(x)Uxyg

†(y), (2.86)
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where:
V [g] =

∏
x

Ax(θx) =
∏
x

eiqθxGx , (2.87)

is the unitary operator on the lattice which implements the gauge transforma-
tions and g(x) is the element of the gauge group.

A physical state |ψ〉 ful�ls:

Gx|ψ〉 = 0→ V [g]|ψ〉 = |ψ〉 ∀g ∈ G (2.88)

This relation leads to the de�nition of the physical Hilbert space, Hphys, as
the set of those states in H that are gauge invariant,

Hphys = {|ψ〉} s.t. V [g]|ψ〉 = |ψ〉, ∀g ∈ G, (2.89)

which is the lattice version of the relation (2.68) in the continuum.

The lattice version of the quantum Hamiltonian for the pure gauge �eld
expressed in (2.66) reads as:

Ĥgauge =
ag2

2

∑
l

E2
l +

4

ag2

∑
P

(UP + U−1
P ) (2.90)

where a is the lattice spacing and g are constant, whose values are obtained by
performing the continuum limit. The �rst term contains the magnitude of the
electric �eld at every link l, while the second one contains the elementary pla-
quette terms UP , which are the product of link variables through an elementary
loop on the lattice (see Fig. 2.2 and Eq. (2.82)). This plaquette term encodes
the magnetic �eld B appearing in (2.66).

This Hamiltonian was �rst derived by Kogut and Susskind [55]. It plays an
important role in di�erent topics treated in this thesis and we will refer to it as
Kogut-Susskind Hamiltoian.

As in the continuum case (see Eq. (2.69)), the Hamiltonian Ĥgauge on the
lattice commutes with the generator of the gauge transformations, i.e. Gx:

[Ĥgauge, Gx] = 0. (2.91)

Then, the condition (2.88), which de�nes the physical Hilbert space, is ful�lled
during all the evolution of the system.
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Chapter 3

Quantum simulation of

external gauge �elds in

ultracold atomic systems

The very precise control of the diverse parameters of the ultracold gases in
optical lattices provides a platform that can be reshaped and adjusted to mimic
and simulate the behaviour of many other quantum many-body systems. This
capability is supported by very particular and important features:

• It is possible to create systems of ultracold bosonic or fermionic atoms, or
their mixtures in practically any lattice con�guration, due to the high
degree of control on the direction and polarization of the laser beams.
The range of the di�erent lattice con�gurations runs from cubic lattices
in 1D, 2D and 3D, through triangular lattices, hexagonal lattices, kagomé
lattices. Furthermore recently developed techniques facilitate the creation
of more intricate lattices. For instance, the superlattice method adds an
extra lattice on a top of an existing one, creating a �nal lattice with a
double well potential per unit cell.

• The interaction between the atoms in a dilute ultracold gas is governed by
the s-wave scattering because of the low range of temperatures (nanoKelvin).
Therefore the interaction between the atoms can be described by an on-
site interaction characterized by a scattering length ag. This parameter
can be very well controlled in the experiments by Feshbach resonances in
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magnetic �elds, achieving a vast range of values, from positive (repulsive
interaction) to negative (attractive interaction) ones.

• The non zero overlap between the wave function of the atoms at di�er-
ent minima of the potential causes a tunneling between di�erent sites.
In many realistic situations it is only considered the tunnelling between
neighbour sites, which is characterized by a parameter t. This parameter
can be well controlled and tuned in current experiments.

• The standard optical lattice is a phonon free system, due to its robust-
ness and rigidity.

• It is feasible to explore new phases of the matter related to the long
range interaction, such as supersolids or dilute Mott insulators with
crystal order in ultracold atomic systems, due to the recent developments
in control and manipulation of polar molecules or magnetic dipolar gases.

This chapter contains an introduction to the physics of the ultracold atomic
gas in optical lattice and a summary of the techniques for the quantum simula-
tion of external gauge �elds with the help of neutral atoms in optical lattices.

3.1 Optical lattices

The interaction between a neutral atom with a dipole moment d with an elec-
tromagnetic wave takes the form:

HI = −d ·E, (3.1)

where E is the electric �eld of the electric �eld.
Let us consider a two level atom coupled to a laser with frequency ν = ω/2π

largely detuned from any optical transition of the atom,. Due to the matter-�eld
interaction, the atom experiences a spectral shift ∆E, which can be calculated
perturbatively:

∆E ∝ |Ω(x)|2

∆
∝ I

∆
, (3.2)

where ∆ = ω−ωat is the detuning of the laser from the atomic transition ~ωat,
Ω(x) is the Rabi-frequency (Ω(x) ∝ eikx for plane waves) and I is the intensity
of the laser beam. This energy shift is the so called ac-Stark shift [56].
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Then, the Hamiltonian for the atom in a light �eld can be simpli�ed to an
expression which contains only two terms, the kinetic term Hkin and the energy
shift, renamed as the optical potential Vopt(x):

H =
p2

2m
+ Vopt(x). (3.3)

The superposition of two counter-propagating waves yields a Rabi frequency
which is periodic in space. In this situation, the optical potential takes the form:

Vopt = V0 sin2(kx), (3.4)

where k=2π/λ and λ is the wave length of the laser beam.

A su�ciently deep optical potential thus acts as a one dimensional 1D trap:
the atoms tend to stay at the minima of these periodical potential. Thus, the
laser beams create a 1D regular lattice, with lattice spacing a = λ/2 (the dis-
tance between the minima). Applying this con�guration of counter-propagating
lasers simultaneously in other spatial directions, one can engineer di�erent lat-
tices in 2D or 3D (see Fig. 3.1). For instance, a 3D cubic lattice with a constant
lattice spacing a = λ/2 can be created with the use of counter-propagating
waves in the x, y and z directions with laser beams of equal wave length:

Vopt = Vx sin2(kx) + Vy sin2(ky) + Vz sin2(kz). (3.5)

Manipulating the wave lengths of the lasers, the direction of the beams, the
intensity of the atom-light interaction and the polarizations, a vast number of
di�erent lattice con�gurations can be implemented in the laboratory, providing
ideal scenarios for the study of quantum matter in various con�gurations.

3.2 Hubbard model

In this section we are going to consider the quantum simulation with ultracold
atoms of a paradigmatic model, the Hubbard model [57]. Despite the simplicity
of the this model, it is considered a key element for understanding very chal-
lenging phenomena in condensed matter systems, like high Tc superconductors.

Let us start from the time-independent Schrödinger equation for an atom
placed on an optical potential:(

− 1

2m
∇2 + Vopt(r)

)
ϕ(r) = Eϕ(r), (3.6)
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Figure 3.1: Left panel : A 2D optical potential created with two pairs of counter-
propagating lasers. The maxima and the minima are separated by λ/2. Right
panel : Ultracold atomic gas on a 1D optical lattice. The transition amplitude
for the tunnelling between one site i and its neighbour j is given by tij .

where ϕ(r) is the eigenfunction of the atom with energy E.
The optical potential is a perodic function:

Vopt(r) = Vopt(r + a), (3.7)

where:
a = m1â1 +m2â2 +m3â3 (3.8)

is the translational vector in all the directions and m1, m2 and m3 are in-
teger numbers. For instance, for the 3D cubic lattice, these three directions
correspond to the x, y and z-direction and the lattice spacing is ai = |ai| = λ/2.

Due to the periodicity of the potential, we can apply the Bloch theorem,
which states that the wave function has a simple form containing two di�erent
factors: a function which has the periodicity of the potential times a plane wave:

ϕ(r)→ ϕ
(n)
k (r) = u(n)(r) · eikr, (3.9)

with u(n)(r) = u(n)(r+ a) and − π
ai
< ki <

π
ai

(i=1,2,3) is the quasimomentum,
which lies in the �rst Brillouin zone. The band index n labels the di�erent
solutions for a given momentum k, which form the band structure.
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Substituting the last expression in (3.6), we end up to:(
− 1

2m
∇2 + Vopt(r)

)
ϕ

(n)
k (r) = E

(n)
k ϕ

(n)
k (r)→(

− 1

2m
(∇2 + k2) + Vopt(r)

)
u

(n)
k (r) = E

(n)
k u

(n)
k (r). (3.10)

The solution of this equation leads to the band spectrum of a periodic quantum
systems.

Let us turn to consider an ultracold atomic gas in an optical lattice. Since,
this many body systems is composed of a large number of atoms, it is practical
to describe the system under the second quantized formalism. Thus, the Hamil-
tonian is written in terms of the quantum �eld operator ϕ̂, which is the matter
�eld which characterizes the ultracold atomic gas:

Ĥ =

∫
d3xϕ̂†(x)

(
−∇

2

2m
+ Vopt + Vtrap

)
ϕ̂(x) + g̃

∫
d3xϕ̂†(x)ϕ̂†(x)ϕ̂(x)ϕ̂(x),

(3.11)
where Vtrap denotes an external potential which con�nes the atoms in a trap
(such as harmonic potential). The �rst integral contains the kinetic energy
of the gas and the potential energy. The last term describes the interaction
between the atom of the gas. Considering a s-wave scattering process between
the atoms, the interaction is on-site and it is governed by the coupling g̃ = 4πa

m ,
where a is the s-wave scattering length.

The �eld operators ϕ̂†(x) (ϕ̂(x)) are the creation (anihilation) operators of
an atom at site x. For a bosonic system, they obey the bosonic commutation
relation:

[ϕ̂(x), ϕ̂†(x′)] = δ(x− x′),

[ϕ̂(x), ϕ̂(x′)] = [ϕ̂†(x), ϕ̂†(x′)] = 0, ∀ x,x′, (3.12)

while the �elds anticommute in a fermionic system:

{ϕ̂(x), ϕ̂†(x′)} = δ(x− x′),

{ϕ̂(x), ϕ̂(x′)} = {ϕ̂†(x), ϕ̂†(x′)} = 0, ∀ x,x′, (3.13)

The vacuum |Ω〉 of the systems contains no atoms: ~̂ϕ(x)|Ω〉 = 0, ∀ x
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Due to the periodicity of the optical potential Vopt, we can describe the
system applying the Bloch functions introduced in Eq. (3.9), as we already did
for the one particle case.

However, for our purpose, it is more practical to describe the �elds in the
space position. Thus, we introduce the Wannier functions: w(n)(x−Xi), where
Xi label the minima of the optical potential. The change of basis from the Bloch
to the Wannier functions is given by:

w(n)(x−Xi) =
1√
N

∑
k

ϕ
(n)
k e−ikXi . (3.14)

The Wannier functions form an orthonormal basis:∫
w∗(n)(x−Xi) · w(m)(x−Xj) = δnmij . (3.15)

Thus, the �eld operator can be written as:

ϕ̂(n)(x) =
∑
j

b
(n)
j w(n)(x−Xj), (3.16)

where b(n)†
i

(
b
(n)
i

)
is the atom creation (annihilation) �eld operator in the n

band at site Xi, which is a minimum of the optical potential. They obey the
usual commutation (anticommutation) relation for bosons (fermions) appearing
at (3.12) and (3.13).

By increasing the strength of the optical potential, the gaps between the
di�erent bands increase. Therefore, for su�ciently deep potentials, the atoms
occupy basically the lowest band and the occupation of the other bands can be
neglected. In such conditions, the Hamiltonian of the system takes the form:

Ĥ = −
∑
ij

tijb
†
i bj + g

∑
i

b†i b
†
i bibi, (3.17)

where we have omitted the label of the �rst band and

tij = −
∫
d3xϕ∗(1)(x− xi)

(
−∇

2

2m
+ Vopt

)
ϕ(1)(x− xj), (3.18)

g = g̃

∫
d3xϕ∗(1)(x− xi)ϕ

∗(1)(x− xi)ϕ
(1)(x− xi)ϕ

(1)(x− xi), (3.19)
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are the tunnelling and the interaction strengths respectively. The label (1)
indicates that we are considering only the �rst band.

Numerical computation of tij indicates that the leading term is obtained
for the tunnelling between nearest neighbours: i, i+ 1. Then, considering only
tunnelling between nearest neighbours is signi�cant, the Hamiltonian of the
system reads as:

Ĥ = −
∑
〈i,j〉

tijb
†
i bj +

∑
j

vjb
†
jbj + g

∑
i

b†i b
†
i bibi, (3.20)

whith vj ≡
∫
d3xVtrap(x)|ϕ(0)(x− xj)|2.

Then, the ultracold atomic system in an optical lattice is a genuine system
on a lattice, where the e�ect of the optical potential has been encoded in the
tunnelling t between neighbour sites. The Hamiltonian was derived �rst by
Jaksch et al. [58]. It takes the same form as the celebrated Hubbard model [57].
Due to its many-body nature, the complexity of its computation increases expo-
nentially with the number of constituents. Therefore, some numerical methods
have been developed for addressing this type of systems, as quantum Monte-
Carlo techniques, mean �eld theory or tensor network methods [2].

As it was theoretically studied for bosonic systems (liquid helium systems)
at T = 0, this Hubbard-type system can experience a phase transition between
two di�erent competing phases: the Mott insulator phase and a super�uid phase
[59].

At zero temperature, the thermal �uctuations of the system are frozen out.
Therefore the system, which is in the ground state, can not experience a phase
transition mediated by thermal �uctuations. However, the system can support
non-zero quantum �uctuations a T = 0. Depending on the regime where the
system is at, these quantum �uctuations can be really important, driving the
system from one phase to another phase. Thus, the system can experience a
purely quantum phase transition at T = 0 between the super�uid phase and the
Mott insulator phase.

The control parameter which governs this quantum phase transition is the
ratio t/g. When t � g the system is in the super�uid phase: the tunnelling
between the sites dominates over the on site interaction and therefore the atoms
are fully delocalised and the wave function is spread over the entire lattice. In
this situation the wave function exhibits long range phase coherence and the
system is in a Bose-Einstein condensate. However, when t decreases (for ex-
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ample by making the optical lattice deeper) and/or by increasing the on-site
interaction, the delocalization of the atoms start to diminish and the system
can undergoes a transition to a regime where the minimization of the energy is
achieved by a well de�ned number of atoms per site: the Mott insulator phase.
In this phase, the long-range phase coherence is completely lost and the system
exhibits a gap between the ground state and the excitations.

The wave function of a system with N atoms on a lattice with M sites can
be written down in these two limiting cases:

Super�uid phase: |ϕSF〉g=0 ∝

(
M∑
i=1

b̂†i

)N
|Ω〉,

Mott insulator phase: |ϕMI〉t=0 ∝
M∏
i=1

(b̂†i )
n|Ω〉, (3.21)

where n is the numbeer of atoms per site.

This pure quantum phase transition was theoretically predicated for ultra-
cold bosons in an optical lattice by Jaksch et al. [58]. It was successfully
achieved experimentally driving a BEC condensate (Super�uid phase) composed
by atoms 87Rb, in a 3D cubic optical lattice, to the Mott insulator phase, by
increasing the optical depth [60]. The detection of phase coherence was carried
out by turning o� the optical lattice, allowing the ultracold gas to expand freely
and interfere with itself. The interference pattern changes drastically when the
depth of the optical lattice is increased, indicating the quantum phase transition
(see Fig. 3.2)

3.3 Ultracold atomic gas subjected to external
gauge �elds

In the recent years there has been a considerable development regarding to
the simulation of quantum system subjected to external gauge �elds in ultra-
cold atomic platforms. The aim of this section is to review di�erent techniques
for this purpose, focusing in the simulation of external and classical gauge �elds.

As we discussed in the last chapter in a usual system composed of mat-
ter, the substitution of the usual derivative by the covariant derivative (see Eq.
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Figure 3.2: Mott insulator-Super�uid phase transit for an ultracold atomic sys-
tem described by the Hubbard model. The transition goes from a fully coherent
super�uid phase phase (left panel) to a fully non-coherent phase or Mott phase
(central panel) and the return back to the super�uid phase (right panel). re-
tirived from greiner.physics.harvard.edu/MottInsulator.html

(2.17)) leads to the appearance of the gauge �eld in the system. On a lattice,
this prescription requires the introduction of the link variable Ul at the link l,
which encodes the gauge degree of freedom (see Eq. (2.75)).

Then, by performing the next substitution:

tij → tij Uij (3.22)

in the expression (3.20), we end up to the Hamiltonian for a ultracold atomic
gas on a lattice coupled to a gauge �eld:

Ĥ = −t
∑
〈i,j〉

Uijb
†
i bj +

∑
j

vjb
†
jbj + g

∑
i

b†i b
†
i bibi, (3.23)

where we have considered a homogeneous tunnelling: tij = t ∀ link i, j. Since
in this chapter we focus on external gauge �elds, we do not consider the Hamil-
tonian for the free gauge �eld in the expression (3.23)

The high level of tunability of the atomic neutral gas in an optical lattice
provides mechanisms to synthesise the gauge link variable Uij appearing in
(3.23). Therefore, the ultracold gas experiences the action of an arti�cial gauge
�eld and acts as a quantum simulator.
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Moreover, the high level of control of the parameters of the system per-
mits the simulation of a wide variety of gauge con�gurations: from standard
con�gurations, as the electromagnetism to more exotic and sophisticate ones.
Speci�cally, Chapther 4 is devoted to the description of the quantum simulation
of the exotic gauge theory generated by the Heisenberg-Weyl group.

In the recent years there has been a considerable experimental development
towards the simulation of external gauge �elds in ultracold atomic setups, both
considering optical lattices [61, 62, 63, 64, 65] and non optical lattices platforms
[66, 67, 68, 69, 70, 71]. Moreover, recent experiments with spin orbit coupled
atomic gas open the posibility of exploring spin Halls topological insulators
[72, 70, 71, 73, 74, 75, 76, 77].

Next, we review some of the proposals for emulating the action of external
gauge �elds in optical lattice setups. We refer the reader to the excellent review
about the subject by N. Goldman et al. [78] for details.

Arti�cial gauge �elds by laser-assisted tunneling

In the original proposal by Jaksch and Zoller [79], it is considered a 2D optical
lattice with an ultracold of one-specie atomic gas, with two di�erent internal
states, namely |e〉 and |g〉. The atoms are placed such that the rows in the
lattice are alternating in state |e〉 and state |g〉 (see Fig. 3.3). The tunnelling in
the x− direction conserves the internal state and is gives a trivial link variable:

Ux = 1. (3.24)

However, the tunnelling in the y− direction is assisted by a Raman laser and
produces a change in the internal state of the atom depending on the x− coor-
dinate:

Uy(x) = ei
σλ
2π x, (3.25)

where λ is the wavelength of the optical lattice and σ is given by the assisting
laser.

Therefore, if an atom hops around a loop over a plaquette, it acquires a
non-trivial phase:

ψ(x, y)→ ψ′(x, y) =U†y (x, y + 1)U†xUy(x+ 1, y)Ux(x, y)ψ(x, y) =

= ei2πφψ(x, y), (3.26)

where φ = σλ
4π is the �ux in the elementary plaquette created by the arti�cial

gauge �eld. This �ux can be tuned due to the controllability of the Raman
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V/V
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0

Figure 3.3: Jaksch and Zoller's scheme for the creation of an arti�cial U(1)
gauge �eld on a 2D lattice. The tunnelling in the y−direction in laser assisted
by two Raman lasers with Ω1,Ω2 frequencies. Due to the presence of an external
electric �eld in the y−direction, there is a shift ∆ in the energy for the adjacent
points in this direction (right panel). A neutral atom picks up a non-trivial
phase, when it performs an elementary loop on the lattice (left panel).
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transitions.

This method was extended for the simulation of non-Abelian gauge groups
[80], by considering a gas composed of one specie with two di�erent states, |e〉
and |g〉, each of them contains two di�erent hyper�ne state, namely a and b.
Thus, the atomic gas is composed of atoms in the states |e〉i and |g〉j , where
i, j = a, b are the labels for the hyper�ne state. The usual tunnelling in both
directions is suppressed and it is allowed by laser assistance: the tunnelling in
the x− direction maintains the internal state but changes the hyper�ne, while
the tunnelling in the y− direction changes the internal state and conserves the
hyper�ne state. This setup permits the simulation of non-Abelian gauge groups,
as the U(2). For example, with a suitable combination of the parameter, one
can obtain:

Ux =

(
0 eiα

e−iα 0

)
,

Uy(x) =

(
ei2πβ1x 0

0 ei2πβ2x

)
. (3.27)

In this particular case, the wave function ~ψ(x, y) of an atom transforms along
a close path over a plaquette as:

~ψ(x, y)→ ~ψ′(x, y) =U†y (x, y + 1)U†xUy(x+ 1, y)Ux(x, y)~ψ(x, y) =

=

(
ei2πx(β2−β1)+i2πβ1 0

0 e−i2πx(β2−β1)+i2πβ2

)
~ψ(x, y),

(3.28)

where ~ψ = (ψa, ψb).

This system can exhibit phases with non trivial topology, as quantum Hall
insulators. Moreover, the system presents Dirac cones and it can act as a sim-
ulator of relativistic �eld theories [81, 82].

Rotating ultracold atomic systems

The similarity between the Coriolis and the Lorentz forces permets to describe
a rotating neutral gas in a harmonic trap as charged atomic gas subjected to an
external and perpendicular magnetic �eld [83, 84].
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The Hamiltonian for a 2D rotating gas with angular velocity Ω reads as:

H =
1

2m
p2 +

1

2
mω2

trr
2 − ~Ω · (r× p), (3.29)

where the last term is the angular momentum of the system and ωtr is the
frequency of an external harmonic trap. This expression can be written as:

H =
1

2m
(p−mωtr · ez × r)2 + (ωtr − Ω)r× p, (3.30)

where we consider a rotation perpendicular with respect to the plane which con-
tains r and p. Thus, this system is equivalent to a system under the presence
of a vector potential A = −mωtr · ez × r, with an additional term.

A rapidly rotating optical lattice can simulate the e�ect of an external vector
potential A. In the limit Ω → ωtr, the last term of the Hamiltonian vanishes
and the spectrum of the system recovers exactly the energies of the Landau
Hamiltonian, which describes 2D charged particles coupled to a perpendicular
magnetic �eld:

En = 2~ωtr(1/2 + n). (3.31)

Each value of n presents a degeneracy corresponding to the values of the angular
momentum l.

By considering interaction between the atoms, rich phenomena emerge in
the system, as crystal-type structures for the Laughlin state [85, 86, 87].

Arti�cial gauge �eld by geometric phase

Let us consider a system composed of an ultracold atomic gas of two-level atoms,
|e〉 and |g〉, interacting with a �eld which couples those internal states. This
external �eld can be a laser �eld with frequency near the resonance frequency
ωS of the internal states, a microwave or a static electric or magnetic �eld
interacting with the dipole moment of the atom [88]. The Hamiltonian for the
atoms in the basis {|e〉,|g〉} reads as:

H = (
p2

2m
+ V ) · I2×2 +Heg, (3.32)
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Figure 3.4: A two level atom coupled to a laser beam with a frequency which
di�ers from the atomic resonance by ∆.

where the �rst term contains dynamics of the atoms (kinetic terms and trapping
potential V ) and Heg is the coupling between the two internal states:

Heg =
~Ω

2

(
cos θ e−iφ sin θ

eiφ sin θ cos θ

)
, (3.33)

where Ω is the Rabi frequency of the coupling and θ and φ are position-
dependent parameters.

For example, let us consider a two level atom system on a 2D space, coupled
to a laser beam propagating in the x-direction with wave number k = 2π/λ and
frequency ωL close to the resonance of the transition between the levels (see
Fig. 3.4). Then the coupling term of the Hamiltonian reads as [88, 89, 90]:

Heg =
~
2

(
∆ γ
γ∗ −∆

)
, (3.34)

with ∆ = ωL−ωS and γ = |γ(y)|eikx is the spatially depending coupling between
the two levels.

Iin term of the eigenstates of the matrix Heg, the wave function reads as:

|ψ〉 = C1(r, t)|ϕ(r, t)〉1 + C2(r, t)|ϕ(r, t)〉2, (3.35)

where the eigenstates take the form:

|ϕ(r, t)〉1 =

(
cos(θ/2)

eiφ sin(θ/2)

)
,

|ϕ(r, t)〉2 =

(
−e−iφ sin(θ/2)

cos(θ/2)

)
, (3.36)
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with eigenvalues ±~Ω/2 respectively.
The momentum operator in this basis reads as:

〈ϕj |P|ψ〉 = −i~〈ϕj |~∇| (C1(r, t)|ϕ(r, t)〉1 + C2(r, t)|ϕ(r, t)〉2) =

=
(
−i~~∇δjl −A(r, t)jl

)
Cl(r, t), (3.37)

where A(r, t)jl = i~〈ϕj |~∇ϕl〉, is the synthetic gauge �eld. As we will see at
Section 9.1, this expression for A is the de�nition of the Berry's connection in
the space of parameters of the Hamiltonian (3.35).

If the initial state is prepared in one of these two dressed states, namely
|ϕ〉1 and it evolves adiabatically , then, the state will remain for all the times in
such state. The evolution of the state is obtained from the Hamiltonian (3.32),
projecting over the subspace |ϕ〉1:

i~
∂C1(r, t)

∂t
=

(
1

2m
(P−A)2 + Ṽ

)
C1(r, t), (3.38)

where Ṽ is a position dependent potential coming from the change of basis. The
vector potential and its magnetic �eld take the form:

A(r) = i~〈ϕ2|~∇ϕ1〉 =
~
2

(cos θ − 1)∇φ,

B(r) = ∇×A(r) =
~
2

(∇ cos θ)×∇φ. (3.39)

This scheme of a two-level atom can be e�ciently used if the excited state |e〉
has a very long lifetime, as e.g. for the alkali atoms.

Let us now consider a three level atom with states: |g1〉, |g2〉, |e〉, such that
|g1〉, |g2〉 are quasi degenerate states. The Hamiltonian Heg reads as:

Heg =
~
2

−2∆ γ∗1 0
γ1 0 γ2

0 γ∗2 2∆

 , (3.40)

where ∆ is the detunning between the Raman resonances γi.

When the detuning ∆ is negligible, there is a zero energy eigenstate of Heg,
the so-called dark state D. The other two eigenstates are |ẽ〉± = (|B〉±|e〉)/

√
2,
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being |B〉 the brigth state:

D =
1

γ̃
(γ1|g1〉 − γ2|g2〉),

B =
1

γ̃
(γ∗1 |g1〉+ γ∗2 |g2〉), (3.41)

with γ̃ the normalization factor.

Considering an adiabatic evolution for the dark state, the physical state is
assumed to remain in such state over the evolution: |ψ(r, t)〉 = CD(r, t)|D〉 .
The Schrodinger equation reads as:

i~
∂CD(r, t)

∂t
=

(
1

2m
(P−A)2 + Ṽ

)
CD(r, t), (3.42)

where the synthetic vector potential takes the form:

A(r) = i~〈D|~∇D〉. (3.43)

This scheme can be modi�ed to allow the simulation of non-Abelian gauge
�elds [91, 92, 93], by considering nearly degenerate subspace of dark states
{|D1〉, |D2〉, ..., |DN 〉}, such that the physical state can be written as:

ψ(r, t)〉 =

i=N∑
i=1

Ci(r, t)|Di〉. (3.44)

We end this section about geometric potentials by mentioning that these
type of schemes have been extended to other systems with atoms with two or
more internal degrees of freedom [94, 95].

Arti�cial gauge �eld in synthetic dimensions

Recently, a new proposal for generating synthetic gauge �eld in ultracold atomic
systems has been presented by A. Celi et al [96]. The remarkable di�erence with
respect to the previous proposals it that it interprets the internal state of the
atoms as a synthetic dimension of the lattice .
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Figure 3.5: A 2D lattice de�ned by the real x−position of the atom and the
synthetic dimension given by the internal state of the atom (speci�cally we
have considered F = 1). If an atom performs a closed loop over an elementary
plaquette, it acquires a phase eiγ , where γ = kRa

π and kR is the recoil energy.
Then, the magnetic �ux per plaquette is Φ = γ. Retreived from [96].

Let us consider a 1D optical lattice with a single species of atom with some
magnetic sublevels mF :

mF = −F,−F + 1, ..., 0, 1, 2, ..., F. (3.45)

Due to this internal degree of freedom of the atoms, it can be considered that
they are placed in a 2D lattice. This lattice contains real space x-dimension and
a synthetic y-dimension with 2F + 1 sites.

Two additional Raman lasers couple the internal states of the atom, produc-
ing transitions between the statemF tomF +1. This transition provides a recoil
momentum kR, which appears as a phase factor. It depends on the position of
the atom in the x axis. Then, a suitable combination of the optical lattice in the
real x− direction and the Raman coupling in the y− synthetic direction leads
to an e�ective 2D system under the presence of an uniform and perpendicular
magnetic �eld B. The arti�cial magnetic �ux Φ depends strongly on the recoil
momentum:

Φ =
kR a

π
, (3.46)

where a the lattice spacing over the x-direction. At Fig. 3.5 there is a pictorial
representation of the system.

Thus, this 2D system can exhibit fascinating phenomena like quantum Hall
e�ect and topological phase transitions. The experimental achievement is sup-
ported by the fact that it is possible to manipulate systems with large number
of internal states (like 40K, with F = 9/ which contains 10 magnetic states).
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Synthetic gauge �elds in shaken optical lattices

Finally we present a new method for generating arti�cial gauge �elds in optical
lattice by using periodic lattice shaking techniques [97].

The Hamiltonian of the ultracold gas, which is time-dependent, reads as:

Ĥ(t) = Ĥ0 +
∑
i

v(t)b†i bi, (3.47)

where
Ĥ0 = −

∑
〈i,j〉

tij(b
†
i bi + H.c.) +Hint, (3.48)

is the usual time-independent Hamiltonian for an atomic gas on an optical
lattice, where Hint contains on-site interactions between atoms and on-site in-
teractions with an external potential.

It is convenient to transform the Hamiltonian (3.47):

Ĥ(t)→ Ĥ ′(t) = Û†Ĥ(t)Û − i~Û† dÛ
dt
, (3.49)

by introducing Û = ei
∑
i ϕi(t)·b̂

†
i b̂i (see [97] for details). The time average of

Ĥ ′(t) leads to a new time-independent Hamiltonian which takes the form:

Ĥe� = −
∑
<ij>

teffij b̂†i b̂j +Hint, (3.50)

where the e�ective hoppings te�ij can be either positive or neg1ative. The real-
ization on triangular and hexagonal optical lattices leads to the emergence of
rich topological phases [98, 99].

This system can be used for the simulation of non-Abelian gauge �elds. The
scheme contains a two level atom, nameley |a〉, |b〉, on a 2D lattice with a Raman
coupling Ω between the levels and site-dependent energy splitting ∆Ez for these
levels. We refer the reader to the original work [97] for the details of the scheme.
The Hamiltonian with a periodic driving term vi(t) is:

Ĥ(t) = −
∑
<ij>

tij(~b
†
i
~bi + H.c.) +

∑
i

~b†i (∆Ezσz + Ωσx + vi(t))~bi, (3.51)
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where ~̂b† = (~̂b†a,
~̂b†b), we consider a sinusoidal driving term vi(t) = Ci sin(ωt) and

the Pauli matrices are:

σx =

(
0 1
1 0

)
σz =

(
1 0
0 −1

)
(3.52)

The time average leads to a dynamics governed by:

H = −
∑

〈i,j〉,σ,σ′
t̃ij~b
†
σ Uσ,σ′

~bσ′ , (3.53)

with σ, σ′ = a, b and Uσ,σ′ is the 2 × 2 hopping matrix, which may be unitary
matrices by tuning the system properly. Thus, this method allows the simulation
of external non-Abelian gauge �elds.

3.4 Periodic quantum systems subjected to ex-
ternal gauge �elds: the Hofstadter butter�y

We are going to study one of the simplest systems with the action of a gauge
�eld: a 2D non-interacting quantum gas under the presence of an external and
perpendicular magnetic �eld. Despite the simplicity of the system, as we will
see, it represents the paradigm of topological phase transition.

The Hamiltonian for a non-interacting quantum gas in the presence of an
external gauge �eld is given by:

Ĥ = −t
∑
〈i,j〉

( ~̂ϕ†iUij ~̂ϕj + ~̂ϕ†jU
†
ij ~̂ϕi), (3.54)

which is the Hamiltonian (3.23) for non interacting atoms. The �eld ϕ̂†i,σ (ϕ̂i,σ)

creates(anihilates) a particle at site i with internal state σ. Then, ~̂ϕ†i = (ϕ̂†i,1, ..., ϕ̂
†
i,N ).

Any point of the 2D lattice can be labelled by two integers, namely m1,m2,
such that ~r = m1~ex +m2~ey. Therefore, the last equation takes the form:

Ĥ = −t
∑
m1m2

( ~̂ϕ†m1+1,m2
U†x(m1,m2) ~̂ϕm1,m2

+

~̂ϕ†m1,m2+1U
†
y (m1,m2) ~̂ϕm1,m2

+ H.c.). (3.55)
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Since we consider a non interacting quantum gas, we focus on the state of a
one particle:

|ψ〉 =
∑

m1,m2,σ

ψ(m1,m2, σ)ϕ̂†m1,m2,σ|0〉, (3.56)

where |0〉 is the vacuum state: ~̂ϕm1,m2 |0〉 = 0 ∀ m1,m2, and ψ(m1,m2, σ) the
set of complex coe�cients conforms the wave function of the state. It ful�ls:∑

m1,m2,σ

|ψ(m1,m2, σ)|2 = 1. (3.57)

The Schrödinger equation for the one particle quantum system reads as:

∑
m1,m2

〈m1,m2|Ĥ|m′1,m′2〉~ψ(m′1,m
′
2) = E~ψ(m1,m2)→

Ux(m1,m2) ~̂ψ(m1 + 1,m2) + Uy(m1,m2) ~̂ψ(m1,m2 + 1)+

+ U†x(m1,m2) ~̂ψ(m1 − 1,m2) + U†y (m1,m2) ~̂ψ(m1,m2 − 1) = −E
t
~ψ(m1,m2),

(3.58)

where ~ψ(m1,m2) = (ψ(m1,m2, 1), ..., ψ(m1,m2, N)).

The usual electromagnetic interaction is given by the U(1) gauge group, i.e.
the complex number with modulus one. Then, the hopping matrix is given by:

Uij = eiqaAij ∈ C, (3.59)

where q is the charge of the particle. Due to the presence of Uij , the particle
acquires a phase Uij when it hops from i→ j.

In this particular case of the U(1) gauge group, the internal space of the
particle due the gauge symmetry is a 1D space. Then, we omit the vector
symbol and the label σ for the wave function: ~ψ → ψ. Then, the Schrödinger
equation (3.58) takes the form:

Uxψ(m1 + 1,m2) + U∗xψ(m1 − 1,m2)

+ Uyψ(m1,m2 + 1) + U∗yψ(m1,m2 − 1) = −E
t
ψ(m1,m2). (3.60)
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We consider a homogeneous magnetic �eld. Then, the vector potential A is
chosen according to the Landau gauge:

A = (0, Bm1a, 0)←→ ∇×A = B. (3.61)

This choice of the vector potential leads to the following hopping amplitudes:

(m1,m2 → m1 + 1,m2)→ Ux(m1,m2) = eiqaAx = 1,

(m1,m2 → m1,m2 + 1)→ Uy(m1,m2) = eiqaAy = eiqB·m1a
2

. (3.62)

Therefore, when a particle hops along the closed path of an elementary
plaquette, as is represented at Fig. 3.6, it picks up a phase Φ, which is the
magnetic �ux penetrating the plaquette:

ψ(m1,m2)→ ψ′(m1,m2) =

U†y (m1,m2 + 1)U†x(m1 + 1,m2 + 1)Uy(m1 + 1,m2)Ux(m1,m2) ψ(m1,m2) =

U†y (m1,m2 + 1)Uy(m1 + 1,m2) ψ(m1,m2) = e−iqB·m1a
2

eiqB·(m1+1)a2 ψ(m1,m2) =

eiqBa
2

ψ(m1,m2) = eiqΦψ(m1,m2), (3.63)

The product of the hopping operators over the links along a closed path Γ
is called Wilson loop WΓ and it is a gauge invariant quantity, as we discussed
at Section 2.6:

WΓ =
∏
i

Ui, (3.64)

where Ui is the hooping amplitude on the link i → i + 1. For this case, the
particle hopping on a elementary plaquette the Wilson loop corresponds to:

WC(m1,m2) = U†y (m1,m2 + 1)U†x(m1 + 1,m2 + 1)

Uy(m1 + 1,m2)Ux(m1,m2) = eiqΦ, (3.65)

which is independent of the position.
Substituting the hopping elements U (3.62), �nally the Schrödinger equation

can be written as:

ψ(m1 + 1,m2) + ψ(m1 − 1,m2)

+ ei2πν·m1ψ(m1,m2 + 1) + e−i2πν·m1ψ(m1,m2 − 1) = −E
t
ψ(m1,m2), (3.66)
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U †
x(m1+ 1 2 + 1), m

  
Uy(m1+ 1 2), m

Ux(m1 2), m

U †
y(m1 2+ 1), m

Figure 3.6: Closed path around an elementary plaquette on the 2D lattice. The
path encloses a magnetic �ux Φ = Ba2

where ν = Φ
2π = qBa2

2π and a2q is the �ux quanta per unit cell for a square
plaquette of lenght a.

If ν = r/s, r, s ∈ Z, the Hamiltonian (3.54), which generates the previous
Schrodinger equation, with the hopping amplitudes (3.62) is invariant under the
space translations:

Tx : H(m1,m2)→ H ′(m1,m2) = TxH(m1,m2)T †x = H(m1 + s,m2) = H(m1,m2),

Ty : H(m1,m2)→ H ′(m1,m2) = TyH(m1,m2)T †y = H(m1,m2 + 1) = H(m1,m2).

(3.67)

where the translation vector T is given by:

T = (Tx, Ty) = (s, 1) = s~ex + ~ey. (3.68)

Then, the Bloch theorem (see Eq. (3.9)) can be applied to eigenvalue prob-
lem (3.66). The eigenstates of the Hamiltonian ψ(α)

k (r) read as:

ψ
(α)
k (r) = u(α)(r) · eikr, (3.69)
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Figure 3.7: Energy Spectrum for a 2D charged particle subjected to a per-
pendicular magnetic �eld with φ = 1

4 . It can be seen the gaps between the
upper(lower) band and the next one and the Dirac cones appearing between the
central bands.
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where u(α)(r) = u(α)(r+T) and the k = (kx, ky) is the quasi-momentum, which
belongs to the �rst Brillouin zone:

kx ∈
[
− π

as
,
π

as

]
,

ky ∈
[
−π
a
,
π

a

]
. (3.70)

The index α labels the bands: each value of momentum k gives di�erent
solutions, corresponding to the di�erent bands.

Since the periodicity in the y-direction is 1 (see Eq. (3.68)), the system of in-
terest does not depend explicitly on the y coordinate. Therefore, the Schrödinger
equation (3.66) takes the form:

eikxu(α)(n+ 1) + e−ikxu(α)(n− 1) + 2 cos(2πνn− ky)u(α)(n) = −Eα
t
u(α)(n),

(3.71)
which is known as Harper's equation [100].

The solution of this equation forms a spectrum composed of s bands which
may be separated by gaps depending on the external magnetic �eld. In Fig. 3.7
it is shown the band structure for ν = 1/4.

The plot of the energy spectrum as a function of the number of quanta of
magnetic �ux per plaquette, ν, leads to the emergence of a wonderful �gure,
the Hofstadter butter�y, which was �rst derived by D. Hotstadter [100]. This
impressive �gure it a self-similar object, it exhibits fractal nature (Figure 3.8).
This �gure has been extensively studied for the community since it was discov-
ered.

Despite the simplicity of the system considered in this section, it represents
a paradigmatic example of non-trivial topological order. It exhibits the so-
called quantum Hall e�ect : at very low temperatures it presents a quantized
transverse conductivity related to the appearance of edge currents. Thus, the
system exhibits some topological invariants, it is a topological insulator.

3.5 The Quantum Hall e�ect

As we mentioned in the last section, the 2D system under the action of a per-
pendicular magnetic �eld represents a paradigm of a novel phase of matter, the
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Figure 3.8: Energy spectrum as a function of the magnetic �ux per plaquette
for the quantum charged particle in a 2D lattice under the action of a constant
and perpendicular magnetic �eld. The fractal �gure is known as the Hofstadter
butter�y.
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topological insulator. We are going to treat this phenomenon in this section.
We will start with a short introduction to the classical Hall e�ect, which appears
in classical conductors. Next we will consider the quantum Hall system and we
will derive their topological properties.

Let us start considering a classical a piece of a 2D conductor material under
the action of some electric �eld Ex, acting in the x− direction. The presence
of Ex induces a current in the x-direction: jx. However, the picture changes
drastically when a perpendicular and homogeneous magnetic �eld B = (0, 0, Bz)
is applied to the conductor. The Lorentz force, qvB causes the carriers to curve
their trajectories. This e�ect produces the accumulation of charges in the edges
of the material, and consequently the appearance of a non-zero voltage, VH (Hall
voltage) and a non-zero component of the electric �eld, Ey, in this y-direction
(see Fig. 3.9). In a steady state, the electrical and magnetic forces on the
carriers are balanced on the y-direction:

Ey = vxBz, (3.72)

where vx is the velocity in the x-direction.
Therefore, in such situation, the current j reads as:

j = σME, (3.73)

where j = (jx, jy), E = (Ex, Ey) and the conductivity σM is a matrix given by:

σM =

(
σxx σxy
σxy σyy

)
. (3.74)

The magnetic �eld causes the appearance of non-zero o�-diagonal terms σxy.
This phenomenon is referred as the Hall e�ect. The Hall conductivity σH = σxy
is the o�-diagonal element of the conductivity σM . From Eq. (3.72) it turns out
that the Hall conductivity is proportional to the inverse of the applied magnetic
�eld:

σH ∝
1

Bz
. (3.75)

However, when the system is cold enough, the quantum regime gets relevant
and the behaviour of the Hall conductivity changes drastically. It is no longer
inversely proportional to the magnetic �eld, it presents a series of plateaus for
some quantized values [101]:

σH = N
e2

h
, (3.76)
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Figure 3.9: A 2D metallic material is placed on a perpendicular magnetic �eld
B. The presence of an external �eld Ex leads to the appearance of current in
the x−direction, jx and additionally, another current, jy in the y−direction,
due the presence of the magnetic �eld. This current produces a di�erence in the
electric potential, the Hall voltage (VH), between the edges of the material.

where h is the Planck's constant, e is the electron charge and N ∈ Z is an in-
teger number. Thus, the transverse conductivity only depends on fundamental
constants of Nature. This is the so-called integer quantum Hall e�ect. In Fig.
3.10 the transverse and longitudinal conductivities are represented for a typical
2D quantum Hall system.

The conductivity can be calculated under the theory developed by R. Kubo,
which is based on the linear response of a system under the action of an external
perturbation [102], namely hP . The starting Hamiltonian is given by:

Ĥ = Ĥ0 + ĥP = Ĥ0 +
∑
m1,m2

qaEx · ~̂ϕ†m1,m2
~̂ϕm1,m2 , (3.77)

where Ĥ0 is the Hamiltonian appearing in (3.55), q, and a are the charge of the
particle and the lattice spacing, respectively and Ex is the external electric �eld.

When a small electric �eld Ex is applied, the system can be studied by
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Figure 3.10: Transverse (RH , green plot) and longitudinal (ρxx, red plot)
resistance for a 2D quantum Hall system as a function of the applied
perpendicular magnetic �eld B. It can be seen the plateaus for RH
at integral multiples of the von Klitzing constant h/e2. Retreived from
http://oer.physics.manchester.ac.uk/AQM2/Notes/Notes-4.4.html
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considering perturbation theory. Thus, the conductivity reads as:

σij =
q2~
i

∑
Eα<EF<Eβ

〈α|vj |β〉〈β|vi|α〉 − 〈α|vi|β〉〈β|vj |α〉
(Eα − Eβ)2

, (3.78)

where vi is the velocity along the i direction, EF is the Fermi energy and |α〉, |β〉
are the eigenstates of the Hamiltonian Ĥ0 with energies Eα, Eβ respectively.

Since the Harper equation (3.71) reads as:

Ĥ0(kx, ky)u(α) = Eαu
(α), (3.79)

the term 〈α|vj |β〉 of the conductivity can be written as [103]:

〈α|vj |β〉 =
1

~

〈
u(α)

∣∣∣∣∂ĥ(kx, ky)

∂kj

∣∣∣∣u(β)

〉
=

1

~
(Eα − Eβ)

〈
u(α)

∣∣∣∣∂u(β)

∂kj

〉
(3.80)

Then, the conductivity can be expressed as:

σij =
q2

i~
∑

Eα<EF<Eβ

[〈
u(α)

∣∣∣∣∂u(β)

∂kj

〉〈
u(β)

∣∣∣∣∂u(α)

∂ki

〉
−
〈
u(α)

∣∣∣∣∂u(β)

∂ki

〉〈
u(β)

∣∣∣∣∂u(α)

∂kj

〉]

=
q2

i~
∑

Eα<EF

[〈
∂u(α)

∂kj

∣∣∣∣∂u(α)

∂ki

〉
−
〈
∂u(α)

∂ki

∣∣∣∣∂u(α)

∂kj

〉]
, (3.81)

where we stress that the last sum is performed over the occupied states below
the Fermi level. Moreover, we have considered the completeness relation:∑

Eα<EF

|u(α)〉〈u(α)|+
∑

Eβ>EF

|u(β)〉〈u(β)| = I. (3.82)

The sum over the energies below the Fermi energy is carried out for each
occupied band of all the possible momenta of the magnetic Brillouin zone. For
the considered case, this momentum space is topologically a 2D torus T2 :
(kx, ky), where the ranges of the momenta kx and ky are expressed in Eq.(3.70).
Then, the points kx = 0 and kx = 2π/as are equivalent (similarly for the points
ky = 0 and ky = 2π).

Then, the transverse conductivity σxy is given by:

σxy =
∑
α

σ(α)
xy =

∑
α

q2

i~

∫
T2

d2k

(〈
∂u(α)

∂kj

∣∣∣∣∂u(α)

∂ki

〉
−
〈
∂u(α)

∂ki

∣∣∣∣∂u(α)

∂kj

〉)
.

(3.83)
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De�ning the Berry's connection ~A(α)(kx, ky) in the magnetic Brillouin zone as:

~A(α)(kx, ky) =

〈
∂u(α)

∂kj

∣∣∣∣∂u(α)

∂ki

〉
−
〈
∂u(α)

∂ki

∣∣∣∣∂u(α)

∂kj

〉
=

〈u(α)(kx, ky)|∇k|u(α)(kx, ky)〉. (3.84)

The conductivity for �lled band α can be expressed as:

σ(α)
xy =

q2

h

1

2πi

∫
T2

d2k
(
∇k × ~A(α)(kx, ky)

)
z
, (3.85)

which is the so-called Thouless-Kohmoto-Nightingale-Den Nijs formula or TKNN
formula [104, 105].

The, , the total Hall conductivity can be expressed as a sum of topological
invariant numbers, the Chern numbers (Cα) [104, 106, 107]:

σxy =
∑
α

σ(α)
xy =

q2

h

∑
α

Cα, (3.86)

where:

Cα =
1

2πi

∫
T2

d2k
(
∇k × ~A(α)(kx, ky)

)
=

1

2πi

∫
T2

d2kF(kx, ky), (3.87)

is the Chern number related to the �lled band α and we have introduced the
Berry's curvature F(kx, ky):

F(kx, ky) = ∇k × ~A(α)(kx, ky). (3.88)

Therefore, we can express the Hall conductivity as:

σxy =
∑
α

σαxy =
∑
α

q2

h
n(α) =

q2

h
n, (3.89)

where n(α) ∈ Z and n =
∑
α n

(α).

For the quantum Hall system considered, the Hilbert space is a manifold
parametrized by a 2D Torus T2. As we discuss in Appendix 9.1, the Chern
number results from the non trivial topology of this manifold. Moreover, this is
an intimately relation between this feature and the geometric phase [108], which
is also discussed in this Appendix.
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Chapter 4

Layered Quantum Hall

Insulators with Ultracold

Atoms

As we have reviewed in last section, in recent years there has been an incresing
interest in the study and implementation of quantum simulators of arti�cial
gauge �elds in ultracold atomic platforms. These studies open the posibility of
the characteritzation of novel states of matter, as the topological insulators. The
simplest paradigmatic example of topological transport is the integer quantum
Hall e�ect taking place at low enough temperatures (see Section 3.5)), where the
transverse conductivity takes only quantized values. Soon after the topological
considerations of two-dimensional insulator phases the theory has been general-
ized to three dimensions where the transverse conductiviy is a tensor [109, 110].
However, in three dimensions one usually su�ers from the collapse of the energy
gaps and the system remains an insulator only in special situations. Another
generalization of the integer quantum Hall e�ect to higher degrees of freedom
is to stack more layers of more or less independent quantum Hall insulators
on top of each other. Since inter-layer tunneling is small well developed gaps
remain. A lot of work has been devoted to study the e�ects of bi- or multi-layer
structures on the quantum Hall e�ect, especially the fractional one [111, 112].
In bilayer graphene the TC plateaus were studied and a new type of IQH e�ect
was found with a zero-level anomaly interpreted by a 2π Berry's phase of the
charge carriers [113].
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In this chapter, we propose a novel scheme for the realization of synthetic
gauge �elds in ultracold atomic setups. Particularly we focus in non-Abelian
gauge �elds, where the di�culty arising from the multicomponent nature of
particles sensitive to a non-Abelian gauge �eld is overcome quite naturally by
mapping the gauge index to an external coordinate, thus rendering the realiza-
tion of a non-Abelian external gauge �eld experimentally easier. The external
coordinate is the position in a perpendicular direction. Depending on whether
the extension of the system is �nite or in�nite in this direction, one can realize
compact, or non-compact external gauge groups, respectively. In this chap-
ter we consider the non-compact case. We propose therefore an experimental
scheme with single component ultracold atoms in a 3D optical lattice with cubic
geometry but anisotropic hoppings to mimic the behavior of a 2D system but
with (possibly) in�nitely many internal states.

Until now not much interest has been directed towards non-compact gauge
groups, which is mainly rooted in that these gauge groups have ill de�ned in-
variants, such as Wilson loops. However, as external �elds they can induce
topological phases with peculiar transport properties. The question is what
kind of physics does it yield, and what can be their physical realization? This
work answers positively to both questions.

Here we study the e�ects of the simplest non-compact gauge group, namely
the Heisenberg-Weyl group, which is generated by two elements, say ẑ and p̂z,
with the canonical commutation relation:

[ẑ, p̂z] = iI. (4.1)

As a consequence of non-compactness this commutator cannot be represented
in �nite dimensions (one arrives to a contradiction by taking the trace in both
sides of the last relation for �nite matrices).

We show that despite of the above di�culties this gauge group can be re-
alized relatively simply with today's technology of ultracold fermions and op-
tical lattices by identifying the role of the Heisenberg Weyl group in layered
3-dimensional lattice systems. We provide the phase diagram of the system. We
also show that the multilayer structure provides further prospects beyond the
zero level anomaly, such as a signi�cant tunability of the positions and strengths
of the quantum Hall plateaus. In a possible interferometric application such a
strong transverse conductivity can, in principle, enhance the precision of the
measurement.
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4.1 Lattice formulation of the Heisenberg-Weyl
gauge group theory

A 2D non-interacting ultracold fermionic gas coupled to an external gauge �eld
in a su�ciently deep optical lattice is described by the tight binding Hamiltonian
(3.54):

Ĥ2d = t
∑

m,n,σ,σ′

(
Ux(m,n, σ) ĉ†m+1,n,σ′ ĉm,n,σ+Uy(m,n, σ) ĉ†m,n+1,σ′ ĉm,n,σ+H.c.

)
,

(4.2)

where ĉm,n,σ (ĉ†m,n,σ) is the fermion annihilation (creation) operator at position
~r = ma~ex + na~ey ( a being the lattice spacing and m,n integer numbers) and
σ is the gauge coordinate corresponding to the internal space. The hopping
amplitude is given by t.

As we discussed in Chapter 2, the link matrices Ux(m,n) and Uy(m,n)
encode the gauge degree of freedom in a lattice. For electromagnetism, the
U(1) gauge theory, the hopping matrices are ordinary site dependent phase
factors (see Eq.(3.59)). If the gauge group is non-Abelian, but compact they
become unitary matrices with �nite dimension. Here we choose them to be
elements of the Heinsenber-Weyl group, which is non-compact, and it does not
have �nite dimensional representation. Then, the link matrices become in�nite
dimensional. Speci�cally we focus the study on the following choice:

Ux(m,n) = eiα p̂z ,

Uy(m,n) = e2πi(βm+γ ẑ). (4.3)

The operators ẑ and p̂z obey the commutation relations given in (4.1) The
e�ect of these operators for a given physical state ψ is:

ẑψ(z) = zψ(z)→ eiγẑψ(z) = eiγzψ(z),

eiαp̂zψ(z) = ψ(z + α). (4.4)

where z labels the internal space of ψ. Then, ẑ is a diagonal operator in the z
position basis, while p̂z is the generator of translations in such internal space.
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The x− y position dependence of the vector potential has been chosen here
similarly to the Landau gauge (see Eq.(3.61)), which in the case of U(1) elec-
trodynamics gives a homogeneous magnetic �eld responsible for the quantum
Hall e�ect. The numeric parameters α, β, and γ are real numbers, which can
be controlled experimentally, and are measuring the �ux penetrating each pla-
quette.

The key idea of our work is to map the gauge coordinate σ to the real ex-
ternal z direction. Let us further assume, that the z direction also supports
a su�ciently deep optical lattice with lattice spacing a. So the 2-dimensional
problem with in�nitely many internal states is mapped to a true 3-dimensional
problem, where the position is given by ~r = ma~ex + na~ey + σ a~ez. Since a
particle can hop only from site to site � even in the z direction, therefore the
parameter α, appearing in Eq. (4.4), has to be integer times the lattice spacing.

By considering the simplest choice, α = a, then Ux(m,n) becomes the trans-
lation operator in the z direction by one lattice site (see (4.3)). Therefore, the
tunneling operators in the lattice Hamiltonian (4.2) act as:

Ux(m,n, σ)ĉ†m+1,n,σ′ ĉm,n,σ = ĉ†m+1,n,σ ĉm,n,σ−1,

Uy(m,n, σ)ĉ†m,n+1,σ′ ĉm,n,σ = e2πi(βm+γ σ)ĉ†m,n+1,σ ĉm,n,σ. (4.5)

The �rst expression represents the annihilation of a fermion at site r̃1 =
(m,n, σ − 1) and creation of a fermion at site r̃2 = (m + 1, n, σ), where r̃ is
a vector with components belonging to the real space x − y together with the
internal component σ. The second expression indicates that the hopping in the
y-direction is accompanied by a phase factor which depends on the external
position x and on the internal one σ

Going back to the mapped real x− y − z space, the process at the previous
equation describes a tunnelling process in the xz plane which is special because
when the particle tunnels in the x direction by one to the left (right), it has to
tunnel one position in the z direction up (down) too. Then, it is convenient to
introduce new coordinates in order to characterize this simultaneous hopping in
both directions:

ξ =
1

2
(m− σ),

η =
1

2
(m+ σ). (4.6)
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Then, the Hamiltonian takes the following form:

ĤHWG = t
∑
ξ,η,n

(
ĉ†ξ+1,η,nĉξ,η,n + eiθy ĉ†ξ,η,n+1ĉξ,η,n + H.c.

)
. (4.7)

The phase factor acquired by tunneling along the y-direction reads in the new
coordinates as

θy = 2πβ′ξ + πγ′η, (4.8)

with the de�nitions β′ ≡ β − γ, and γ′ ≡ β + γ.

As there is no tunneling along the η-direction, Eqs. (4.7) and (4.8) describe
a system composed by independent 2-dimensional integer quantum Hall systems
layered on top of each other.

Each layer behaves similarly, except for η even, ξ takes integer values and
for η odd, ξ takes half integer values. The tunneling phase Eq. (4.8) depends
also on η (the quantum number indexing the di�erent planes). Refer to Fig. 4.1
a) for illustration.

We study the eigenvalue problem of the Schrödinger equation for the single
quantum particle system (see Sec. 3.4):

∑
ξ′,n′

〈ξ, η, n|ĤHWG|ξ′, η, n′〉ψ(ξ′, η, n′) = Eψ(ξ, η, n)→

ψ(ξ + 1, η, n) + ψ(ξ − 1, η, n)+

+ eiθyψ(ξ, η, n+ 1) + e−iθyψ(ξ, η, n− 1) = −E
t
ψ(ξ, η, n), (4.9)

where ψ(ξ, η, n) is the one particle wave function:

|ψ〉 =
∑
ξ,η,n

ψ(ξ, η, n)ĉ†ξ,η,n|0〉, (4.10)

and |0〉 is the vacuum state: ĉξ,η,n|0〉 = 0 ∀ ξ, η, n.

Each value of η gives an independent Schrödinger equation, whose solution
lies in a 2D ξ-n plane:

ψ(ξ, η, n)→ ψη(ξ, n). (4.11)
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Figure 4.1: a) The schematic illustration of the new coordinates, the system
splits into independent quantum Hall layers. b)-c) The density of states for
β′ = 1/4 as a function of the energy. In sub�gure b) each di�erent η plane
contributes equally to the density of states. In c) the value of the staggered
potential in Eq. (4.18) is chosen to be λ = 2.2t. The net transverse conductivitys
are shown on the �gure for each band gap.
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We chose β′ as a rational number: β′ = p/q with p and q co-prime integers. In
this case the Hamiltonian is invariant under translations in the ξ coordinate by q
lattice positions and under translations int the y-direction by 1 lattice position:

Tξ : HHWG(ξ, η, n)→ HHWG(ξ + q, η, n) = HHWG(ξ, η, n),

Ty : HHWG(ξ, η, n)→ HHWG(ξ, η, n+ 1) = HHWG(ξ, η, n) (4.12)

Then, we proceed as in Section 3.4, applying the Bloch's theorem:

ψη(ξ, n)→ ψ(r)
η (ξ, n) = u(r)

η (ξ)ei(kξξ+kyn) (4.13)

where r is the band index and the function u
(r)
η has the perodicity in the

ξ−direction: u
(r)
η (ξ) = u

(r)
η (ξ + q). Thereby, the Schrödinger equation (4.9)

can be written as a Harper equation:

eikξξu(r)
η (ξ−1)+e−ikξξu(r)

η (ξ+1)+2 cos(2πβ′ξ+πγ′η−ky)u(r)
η (ξ) = −E

t
u(r)
η (ξ).

(4.14)

Concretely, we consider the case for β′ = 1/4, where we have 4 bands for each
layer η, which are the lattice counterparts of the Landau levels of the continuum
case. In such case, the Brilluoin zone de�nes a 2D torus:

T2 : kξ × ky kξ ∈ [0, 2π/q], ky ∈ [0, 2π]. (4.15)

We calculate the density of states for this speci�c value of β′ by direct di-
agonalization and plot in Fig 4.1 b). It can be seen that the central two bands
show the features of a Dirac cone like touching.

When the Fermi energy lies inside a band, the system is metallic and has
a non-vanishing longitudinal conductivity. In contrast, when the Fermi energy
lies inside a gap, the longitudinal conductivity is zero, and quantum Hall e�ect
can take place: the transverse conductivity is integer times the conductivity
quantum.

Since the spectrum is independent of the value of η, the e�ect of layering is
just a degeneracy in the spectrum by the number of planes. For these (longitu-
dinally) insulating phases the transverse conductivity of each plane is given the
expression given by the TKNN formula (see Eq. (3.85)):

ση =
∑
α

σ(α),η =
∑
α

C(α),η =
1

2πi

∫
d2kFη(kξ, ky), (4.16)
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where we have considered h = 1 and q = 1 (which de�nes unit for the charge
of the Heisenberg Weyl group interaction). The sum is performed over all the
�lled bands. The expression for the Chern number C(α),η is given at (3.87), and
we have introduced the Berry's curvature Fη (3.88):

Fη = ∇k × ~Aη(kξ, ky), (4.17)

with the Berry's connection ~Aη(kξ, ky) =
∑N
r=1〈u

(r)
kξ,ky
|∇ku

(r)
kξ,ky
〉 (see Eq. (3.84)).

We have computed the transverse conductivity with the e�cient algorithm of
Fukui et al [114]. As we showed in the last chapter, the transverse conductivity
takes only integer values since it is a topological invariant: the �rst Chern class
of the U(N) principal bundle over the Brillouin-zone torus (kξ, ky). Furthermore
at every η plane the transverse conductivity can be only 0, 1 or −1, depending
on whether the Fermi energy lies outside the band structure (in this case the
lattice is either empty or fully �lled and the conductivity is zero), or it lies
inside a gap between the satellite bands and the central band (for negative
energies the transverse conductivity is negative and for positive energies it is
positive for our model and choice of parameters). Accordingly, when we add up
all of the contributions to the transverse conductivity from each of the planes
we get zero if the Fermi energy lies outside of the band structure, or we get
σ⊥ =

∑
η ση = ±2r, where 2r is the number of planes, what we choose to be

even. We have also shown in Fig. 4.1 b) and c) the net transverse conductivity
of the band gaps.

4.2 E�ects of a staggered potential

The above combination rule of the transverse conductivity can be controlled in
a striking way by applying a staggered potential of strength λ, added to the
Hamiltonian as

Hλ = HHWG + λ
∑
ξ,η,n

(−1)η c†ξ,η,ncξ,η,n, (4.18)

which shifts the energy spectrum locally by ±λ for the even/odd planes.

In Fig. 4.1 c) we have plotted the resulting density of states for λ = 2.2t.
Note, that the original degeneracy is partially lifted by the 2λ energy di�erence
of the planes with di�erent lambda parities. One can imagine as we start to
increase λ from zero to a �nite value that the original 3 bands start to widen and
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Figure 4.2: The phase diagram of the system in the Fermi energy � staggered
potential plane (measured in the hopping strength). Sub�gure a) corresponds to
the Hamiltonian (4.18). Sub�gure b)-d) correspond to Eq. (4.19) with ε = 0.1
b), ε = 0.5 c), and ε = 1.0 d). The �ux is taken to be β′ = 1/4. The hatched
regions represent areas where either the even or the odd planes are metallic.

then separate, since the one particle energies on the even η planes are getting
bigger, while those on the odd η planes are getting smaller.
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The phase diagram in the (EF , λ) plane is plotted in Fig. 4.2 a). One can
get a grasp of the structure by imagining that the 3 energy bands of Fig. 4.1
b) get shifted by ±λ providing 3 tilted stripes of metallic behaviour for the
even and another 3 stripes (tilted to the other direction) for the odd planes.
At the intersections of the stripes all of the planes are metallic at the same
time. In the insulating regions, i.e. when the point (EF , λ) lies outside of the
metallic stripes, the net transverse conductivity is the sum of the contributions
of the even and odd planes: σ⊥ = σe + σo. With the variation of λ one can
achieve that the Fermi energy falls into di�erent band gaps for the even and
odd planes, where σe 6= σo. In the β′ = 1/4 case the gaps are characterized by
σe,o = {0,−r,+r, 0}. Therefore one can have σ⊥ = −2r, if both set of planes
have σe,o = −r, and σ⊥ = +2r for σe,o = +r. We highlight that the zero
net transverse conductivity is realized in two ways: either by σe,o = 0, or by
σe = −σo. In this latter case the even and odd planes have opposite transverse
conductivities, which is similar to the spin quantum Hall e�ect (for a review see
Ref. [115]).

There is an important di�erence though: in our case the net transverse con-
ductivity is an integral number, not just a Z2 invariant, the higher is its value
the greater is the transverse current. If a quantum phase transition is induced
either by the change of the Fermi energy, or by the variation of λ, the transverse
conductivity changes at least by half of the number of planes, not just by one
conductance quantum.

Another physical picture can be assigned to the insulating regions of the
phase diagram based on the bulk-boundary correspondence [116]: by consid-
ering the x direction �nite, when the Fermi energy is inside a bulk gap with
nonzero transverse conductivity, edge states (responsible for the transverse cur-
rent) traverse the energy spectrum between the two bulk bands surrounding the
gap.

In the β′ = 1/4 �ux phase one can have a maximum of 1 pair of edge states
per plane and the direction of their propagation is determined by the sign of the
transverse conductivity. Fig. 4.3 shows a qualitative picture of the possible edge
state con�gurations. In sub�gure a) all planes are in the same QHI phase and
the transverse currents carried by the edge states add together 'constructively'.
Such a situation corresponds to the two diamond shaped regions with σ⊥ = ±2r
of Fig. 4.2 a). In sub�gure 4.3 b) every second plane is in a QHI phase while
the other half of the planes are either in a metallic or in a normal insulator
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a) b) c) d)

Figure 4.3: The edge states. In situation a) all of the planes are in the same
spectral gap, therefore the edge states of the di�erent planes contribute equally
to the transverse conductivity; in b) half of the planes is either metallic, totally
empty or completely �lled thus lacking the edge states, while the other half of
the planes have a transverse conductivity of 1; in c) the di�erent parity planes
have oppositely propagating edge states; in d) all of the planes are either metallic
or trivial insulators, there are no edge states in this case.

phase. Therefore σ⊥ = ±r and the corresponding regions in the phase diagram
are those marked out by the integer quantum Hall stripes (except for their
intersecting diamond shape regions). The situation in Fig. 4.3 c), where the
edge states of the neighbouring planes are counter-propagating, is situated in
the intersections of the oppositely transverse conducting integer quantum Hall
stripes of Fig. 4.2 a). The net transverse conductivity is zero and an analogy
with quantum spin Hall insulators can be established [115].

4.3 Interplane tunneling

In experiments with ultracold atoms in anisotropic 3D lattices it is possible,
that the inter-plane tunneling is not exactly zero, and therefore the Heisenberg
Weyl group is not realized perfectly. Therefore an analysis of the robustness of
the accumulated transverse conductivity is needed.

One introduces tunnelling between the di�erent planes (in a controllable
way) by adding an extra term to the Hamiltonian:

Hλ,ε = Hλ + ε
∑
ξ,η,n

(
c†ξ,η,ncξ,η+1,n + H.c.

)
, (4.19)
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then η will not be a good quantum number any longer, and consequently ση of
the individual planes looses its meaning. As an e�ect of the ε strength inter-
plane hopping the eigenstates of the di�erent η planes get hybridized and the
conducting regions get widened as shown in the phase diagram Fig 4.2 b)-d).
However, while ε is su�ciently small, the gaps persist and the net σ⊥ keeps its
signi�cance.

In this case the Brillouin zone is a 3-dimensional torus and one needs to
make 2-dimensional slices to get topological invariants [104]. In our case the
only nonzero invariant is the one with slicing along a constant kη value. (For
nonzero values of the other components of the conductivity tensor one needs
�rst a gap closing and than a reopening.) As the inter-plane tunneling ampli-
tude is raised the QHI regions shrink and give way to the metallic phase. There
is a competition between the staggered potential strength λ and the tunnelling
strength ε. Therefore the high transverse conductivity QHI regions vanish �rst
(around εc ≈ 0.8) since they are located around λ = 0.

When ε 6= 0 the edge currents are not protected against back-scattering
by any discrete symmetry, in contrary to the case of the spin QHIs. If the
state of the system is located in the σ⊥ = 0 islands inside the metallic stripes,
corresponding to the alternating transverse edge current setup of Fig. 4.3 c),
then inter-plane tunneling causes an e�ective back scattering, and the originally
massless Dirac-like dispersions of the edge states develop mass gaps. The edge
states of the other integer quantum Hall regions (σ⊥ 6= 0) retain their topolog-
ically protected nature and the massless touching of their Dirac cones.

So far we have not yet studied the consequences of varying the γ′ �ux pa-
rameter of the vector potential (4.8). While ε = 0 the distinct planes are
independent and the inclusion of γ′ 6= 0 does not change the transport prop-
erties. In Fig. 4.2, the �rst panel corresponds essentially to uncoupled layers
with constant synthetic Abelian magnetic �eld. This is because the Heisenberg
Weyl gauge potential is restricted to ε = 0. In contrast, in Fig. 4.4 the full
non-Abelian nature of the Heisenberg Weyl group is considerd by setting γ′ 6= 0
together with ε 6= 0. The �rst panel again essentially reduces to the case of
constant synthetic Abelian magnetic �eld, but for the coupled layers. The fol-
lowing panels illustrate then the e�ects of non-Abelian Heisenberg Weyl gauge
�elds on the conductivity in coupled layers. This e�ect consist in appearance
of novel insulating islands with transverse conductivities equal to ±3r in these
new regions, which are bigger then those for γ′ = 0. It constitutes one of the
improtant results of this study.
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4.4 Experimental realization

The experimental implementation of the Heisenberg Weyl group is straightfor-
ward. According to Eq. (4.7) one needs to create a 3-dimensional optical lattice
with cubic geometry in 2-dimensions (ξ − y planes) and an AB type layering in
the 3rd (η) direction. The gauge potential (4.8) is actually just a phase in this
basis, and therefore it can be realized in the usual way [79, 117, 66]. One only
needs a staggered potential along the 3rd (η) direction and a control over the
tunneling amplitude along this direction. All of these elements are in the reach
of current experimental technologies.

The detection of the transverse conductivity and the edge states is a currently
running issue. There are di�erent proposals what we are aware of:

• by changing the atomic isotope to a bosonic one, loading them into and
�nally imaging them in the edge states [118]

• with the help of stimulated Raman scattering one can measure one particle
excitations directly [119]

• with the help of Bragg scattering one can directly measure the dynamical
structure factor and hence also the single particle excitations [120]

• by a trapping potential which creates a sharp interface, e.g. by controlling
the hopping in the y direction and exciting the edge state channel by a
focused laser beam [121, 122].
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Chapter 5

Gauge �elds emerging from

time reversal symmetry

breaking in optical lattices

In the two previous chapter we have considered the implementation of quantum
simulators of external gauge �elds in ultracold atomic platforms. The aim of
this chapter is to study another, somewhat simpler, proposal with only a single
species of ultracold atoms to simulate a 2+1 dimensional U(1) lattice gauge
theory with a Chern-Simons term. Our proposal is . The novel features of this
new proposal are: i) it is based on the observation that low energy excitations
of certain Mott insulators phases can be described by emergent lattice gauge
theories [19, 111] ii) it supports the simulation of dynamical gauge theories [111].

The study of Mott insulating states of spin-1/2 systems has a long history
in condensed matter physics. The main motivation of these studies lies in their
relation to high-Tc superconductivity [19]. Ultracold atoms in optical lattices
provides a nice alternative to study Mott insulators and quantum magnetism,
since the optical lattice is free of any defects and there is a great liberty in
choosing or even tuning the geometry of the lattice even in situ.

In the last decade Mott states of bosonic [60] as well as fermionic [123]
atoms have been reached experimentally, however, it still remains a challenge to
reach quantum magnetism and detect magnetic correlations. The main reason
behind the di�culties is the limitation on cooling, since with present experimen-
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tal methods it is hard to access the temperatures at the scale of the magnetic
superexchange, i.e. in the range of few nano Kelvins (for recent progress see
[124, 125]). Nevertheless, a series of nice experiments were developed to catch
quantum [126, 127, 128], or even classical [129] (frustated) magnetism. One
possibility is the realization of e�ective models that can be easier to cool down
to su�ciently low temperature. In Ref. [127] tilted Hubbard model was used
to mimic an Ising chain, where the empty and double occupied sites represent
the spin up and down states, respectively. Another possibility opens by tun-
ing the tunnelling amplitude between the neighbouring lattice sites to create
a staggered-dimerized lattice or a quasi-one-dimensional lattice [128]. In these
cases the energy scale of the stronger bonds are tuned above the temperature
of the cloud, while along the weak bonds the energy is well bellow of it. With
this arrangement the system preserves some features of the lower temperature
state, and can show weak magnetic order.

High spin Mott insulating states also have been realized experimentally with
ytterbium isotopes [130, 131, 132]. Ytterbium just as alkaline-earth atoms have
2 electrons on the outer s-shell, therefore their total electronic angular momen-
tum is zero, and the total hyper�ne spin of the atom comes only from the nuclear
spin. These atoms interact essentially via s-wave scattering independent of the
nuclear spin. As a consequence of the spin independent interaction, alkaline-
earth metal systems � or atoms with equivalent electron shell structure �
can be described with good accuracy even by extremely high SU(N) symmetric
models, where N= 2S+1 is given by the nuclear spin S of the atom. Comparing
with the usual two-component electron systems, high spin fermionic systems can
show novel magnetic behaviour [133, 134, 135, 136]. In the strong atom-atom
interaction limit they can provide di�erent multipole orders [137], valence bond
solid (VBS) states, spin liquid (SL) states [138, 139, 140, 141, 142], or even
chiral spin liquid states with non-trivial topology [140, 141]. SL states lack any
kind of long range order, but due to the violation of time reversal invariance,
they are stable also at low temperatures. The SU(4) symmetric spin-3/2 sys-
tem as the simplest case after the usual spin-1/2 electrons, has been studied
intensively in the last few years [138, 139, 143, 144, 145, 146, 147], mostly on
square lattice. On mean-�eld level the ground state is a VBS state with dis-
connected resonating valence bond plaquettes, but di�erent numerical results
for small systems raises the possibility of a bond-antiferromagnetic columnar
dimer state [143]. On a honeycomb lattice it was found that the pure SU(4)
Heisenberg system realizes a spin-orbital liquid phase [144], while the addition
of next nearest neighbor exchange induces collapse to a tetramerized VBS like
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state [148].

Speci�cally we consider a Mott insulator composed of spin-5/2 alkaline earth
atoms, such as 173Yb. The study of such systems in square lattices reveals that
its mean �eld ground state is a chiral spin liquid (CSL) [140, 141]. The CSL
state violates time reversal symmetry, and is topologically nontrivial and sup-
ports chiral edge states on the boundary of the lattice. The low-energy dynamics
is described by 6-�avor spinons (as matter �elds) interacting with a U(1) gauge
�eld emerging from the antiferromagnetic correlations. The arising U(1) gauge
theory is a dynamical Chern-Simons �eld theory, where the gauge �eld dynam-
ics is generated by the short distance physics of the underlying fermions [111].

Here we study the spin-5/2 system in a honeycomb lattice. We show that
the lowest energy spin liquid ansatz with one particle per site is a CSL. We
also identify the following two lowest energy spin liquid states. We show also
how the dynamics of the emerging gauge �elds is measurable by spin correlation
functions.

Further motivation to study spin liquid phases in a honeycomb lattice with
ultracold atoms is due to a newly rising interest in related challenging problems,
like superconductivity in graphene [149, 150, 151, 152], or other forms of time
reversal symmetry breaking that appear for honeycomb and pyrochlore lattices
[153, 154].

5.1 Mean �eld study of the system at T=0

Let us consider a spin-5/2 atomic gas in a deep optical potential. The system
can be described with a SU(N) symmetryc Hubbard Hamiltonian:

H = −t
∑
〈i,j〉,α

(
c†iαcjα + H.c.

)
+
U

2

∑
i,α,β

c†iαc
†
iβciβciα, (5.1)

where ciα(c†iα) annihilates (creates) an atom at site i with spin α ∈ {− 5
2 . . .

5
2},

t stands for the tunnelling amplitude, and U for the strength of the on-site in-
teraction.

In the strongly repulsive regime, U � t, the motional (charge) degree of
freedom of the fermions gets frozen at low temperatures leading to a Mott
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insulator state, and the system can be described by an e�ective SU(6) spin
Hamiltonian [136, 111]. The Néel order is ruled out by energy constraints and
the systems exhibits chiral spin liquids states [140]. For 1/6 �lling, there is
exactly one particle per site. In this case particle tunneling is forbidden due to
the very high energy cost of the multiply occupied sites. Only virtual hoping is
allowed, and the Hamiltonian (5.1) can be approximated by

He� = −J
∑
〈i,j〉,α,β

c†iαcjαc
†
jβciβ , (5.2)

with J = 2t2/U > 0.

This e�ective Hamiltonian acts in the restricted Hilbert space of 1 atom per
site; and therefore, this condition is enforced by the local constraint:∑

α

c†iαciα = 1. (5.3)

This constrained Hamiltonian already exhibits gauge invariance, i.e. it is
invariant under the following local transformation:

ciα → ciα e
iθi . (5.4)

We decouple the quartic Hamiltonian (5.2), by introducing a mean �eld χij ,
which is a C-number de�ned as:

χij ≡
∑
α

〈c†iαcjα〉 = χ∗ji. (5.5)

Then, the mean �eld e�ective Hamiltonian takes the form:

Hmf = −J
∑
〈i,j〉

[∑
α

(
χijc

†
jαciα + χjic

†
iαcjα

)
− |χij |2

]
−
∑
i

ϕi(c
†
iαciα−1), (5.6)

where we introduce the �elds ϕi as Lagrange multipliers for enforcing the one-
particle per site constraint (5.3).

Though the mean-�eld Hamiltonian (5.6) is already quadratic, one still needs
to make further assumptions about the solution in order to obtain a tractable
set of equations. We choose a hexagonal unit cell containing 6 lattice sites,
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Figure 5.1: Illustration of the unit cell considered here. The unit cell is sur-
rounded by the dashed line and contains 6 sites. The numbers close to the nodes
(blue in the color version) label the sublattice index (the sites inside the unit
cell), while the (m,n) pair indexes the unit cell itself. There are mean �elds
inside each unit cell labeled by χ1 . . . χ6 and 3 other independent ones between
the neighboring unit cells χ7 . . . χ9. We also show the elementary lattice vectors
connecting the neighboring unit cells.
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as depicted in Fig. 5.1; such cell respects the original lattice symmetries, and
contains as many sites as needed to form a SU(6) singlet.

Then, a site r of the lattice is indexed by three integers, from which m and n
are selecting the unit cell (with a coordinate rm,n = m e(1) + n e(2) pointing to
the center of the cell), and another integer s ∈ {1 . . . 6} selecting the sublattice
inside the cell. The elementary lattice vectors e(1) and e(2) point from the center
of a unit cell to the centers of the two neighboring unit cells as illustrated in
Fig. 5.1. The fermion �elds ciα are arranged into the 6 component vector:

ciα = cs,α(rmn),

~cα(rmn) = [c1,α(rmn), c2,α(rmn), . . . c6,α(rmn)]T . (5.7)

We use plane wave basis for one particle states:

cs,α(rm,n) =
1√
V

∑
k

cs,α(k)ei(k1m+k2n), (5.8)

where k = k1f
(1) +k2f

(2) is the wavenumber in reciprocal space spanned by f (1)

and f (2). We use the normalization (f (i), e(j)) = δij .
With our choice of the unit cell we have 6 independent mean �elds inside

the cell (m,n) (see Fig. 5.1.): χ1(rmn) . . . χ6(rmn) and another 3 connecting
the unit cell (m,n) to its 3 neighbors to the left: χ7 . . . χ9:

χi(rm,n) =
1

V

∑
k

χi(k)ei(k1m+k2n). (5.9)

Now, the �elds ϕ corresponding to the Lagrange multipliers can be writeen
as:

ϕi(rm,n) =
1

V

∑
k

ϕi(k)ei(k1m+k2n), (5.10)

Then, the mean �eld Hamiltonian given at Eq. (5.6) can be written as:

Hmf =
∑
k,α

~c†α(k) ·M(k) · ~cα(k) +
V

J

9∑
i=1

|χi|2 + V

6∑
s=1

ϕs, (5.11)
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where we have rede�ned the �elds as: Fi → 1
JFi, for F being the χ �elds and

the ϕ �elds.
The matrix M(k) reads as:

M(k) =


ϕ1 −χ1 0 −χ7e

−iγ7 0 −χ∗6
−χ∗1 ϕ2 −χ2 0 −χ8e

−iγ8 0
0 −χ∗2 ϕ3 −χ3 0 −χ9e

−iγ9

−χ∗7eiγ7 0 −χ∗3 ϕ4 −χ4 0
0 −χ∗8eiγ8 0 −χ∗4 ϕ5 −χ5

−χ6 0 −χ∗9eiγ9 0 −χ∗5 ϕ6

 ,

(5.12)
where the γi = γi(k) are phase factors describing the momentum dependence
of the inter unit cell links. They are given in Table 5.1.

The diagonalization of the Hamiltonian (5.11) or analogously, the diagonal-
ization of the M(k) matrix, introduces the eigenvectors of the system:∑

s

Ms′s(k)v(a)
s (k) = λ

(a)
k v(a)

s (k). (5.13)

After some straightforward algebra and using the self-consistency condition
(5.5), one arrives at a set of equations for the mean-�eld amplitudes and for the
local Lagrange multipliers (5.3):

χ̄j =
6J

V

∑
k,a

eiγj(k)v
(a)
βj

(k) v(a)∗
αj (k), for j ∈ {1 . . . 9},

1 =
6

V

∑
k,a

v(a)
s (k) v(a)∗

s (k), for s ∈ {1 . . . 6}. (5.14)

The speci�c form of the newly introduced indices αi and βi are given in
Table 5.1 together with the phase factor γi(k).

This set of equations is highly nonlinear and there are in�nitely many solu-
tions which give the same physical wave function of the spin system Ψ

χij
spin. This

wave function is obtained by the Gutzwiller projection, i.e., by restricting the
solution to the space with one particle per site:

Ψ
(χij)
spin = 〈0c|

∏
i

ci|Ψ(χij)
mean〉, (5.15)
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j αj βj γj(k) j αj βj γj(k) j αj βj γj(k)
1 2 1 0 4 5 4 0 7 4 1 k1 − k2

2 3 2 0 5 6 5 0 8 5 2 k1

3 4 3 0 6 1 6 0 9 6 3 k2

Table 5.1: The "incoming" and "outgoing" indices αj and βj and the phase
factor γj(k) appering at the mean �eld equations

where |0c〉 is the vacuum for the c fermions, i.e. ci|0c〉 = 0 ∀ ci

Under the gauge transformation appering at (5.4), the mean �eld transforms
as:

χij → χ′ij = eiθiχije
−iθj , (5.16)

and the physical only gets a global phase:

Ψ
(χij)
spin → Ψ

′(χij)
spin = Ψ

(χ′ij)

spin = 〈0c|
∏
i

ci|Ψ
(χ′ij)
mean〉 = 〈0c|

∏
i

c′i|Ψ(χij)
mean〉 = ei

∑
i θiΨ

(χij)
spin .

(5.17)

Since two di�erent physical wave functions related by the gauge transformation
di�er by a global phase, they describe the same physical state, i.e. they are
physically equivalent.

In order to factor out the gauge freedom in the set of solutions, we distinguish
the mean �eld solutions by the elementary Wilson loops, which are obtained
with the product of the χ �elds around an elementary plaquette of the lattice.
Equivalent solutions exhibit equal Wilson loops, they are, gauge equivalent.

The unit cell consists of three elementary and independent plaquettes. One
of them is the plaquette corresponding to the central hexagon of the unit cell,
its Wilson loop is:

Π1 = χ̄1 χ̄2 χ̄3 χ̄4 χ̄5 χ̄6. (5.18)

The other two can be chosen from the neighboring plaquettes with the re-
quirement that they have to be independent. One of them can be the one which
is between the unit cells (m,n), (m− 1, n) and (m− 1, n + 1), its Wilson loop
is:

Π2 = χ̄7 χ̄
∗
3 χ̄
∗
4 χ̄
∗
5 χ̄
∗
8 χ̄
∗
1, (5.19)
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E Π1 Π2 Π3

−6.148 −0.159− 0.276i −0.159− 0.276i −0.159− 0.276i
−6.148 −0.159 + 0.276i −0.159 + 0.276i −0.159 + 0.276i
−6.062 0.460 −0.223 −0.223
−6.062 −0.223 0.460 −0.223
−6.062 −0.223 −0.223 0.460
−6 1 0 0
−6 0 1 0
−6 0 0 1

Table 5.2: Mean-�eld solutions. The �rst column represents the energy of the
mean-�eld solution, the other three columns give the Wilson loops of the 3
di�erent plaquettes.

and the third one can be the one between (m,n) and (m− 1, n) and (m,n− 1),
with a Wilson loop:

Π3 = χ̄8 χ̄
∗
4 χ̄
∗
5 χ̄
∗
6 χ̄
∗
9 χ̄
∗
2. (5.20)

The three lowest energy states solutions are showed in Table 5.2. The ground
state of the system corresponds to the solution with the lowest energy (�rst two
lines of Table 5.2). It is a CSL liquid, or ΦΦΦ-�ux phase [140] (or [155] for the
analog SU(3) system). All of the χ �elds have an equal magnitude:

|χ1| = |χ2| = . . . = |χ9| ≈ 0.82651, (5.21)

and all of the 3 non-equivalent Wilson loops are equal:

Π1 = Π2 = Π3 = |χ1|6 eiΦ, (5.22)

where Φ = ±2π/3. As the phase of the Wilson loop is neither 0 non π, this state
exhibits complex �elds. The emerging Φ phase can be thought as the �ux of a
�ctitious magnetic �eld that points up or down perpendicular to the plane of the
lattice, it is doubly degenerate. The two degenerate states are related by time
reversal symmetry. This phase is symmetric with respect to lattice translations
and rotations, but it violates time reversal symmetry � that causes the chiral
nature of this spin liquid state.

The next three lines of Table 5.2 show the next phase, whose energy is a bit
higher: the quasi plaquette or 0ππ-�ux phase. In this phase the χ �elds inside
a central plaquette have higher absolute values than the others: |χ1| = |χ2| =
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. . . = |χ6| > |χ7| = |χ8| = |χ9|. The �ux of the central plaquette is 0, while the
�ux of the neighboring plaquettes is π. This phase is three times degenerate
due to the choice of the central plaquette, which can be any of the three inde-
pendent elementary plaquettes, i.e. the hexagon of the unit cell, or one of its
two independent neighbors. This state is time reversal symmetric, but violates
the translation symmetry by one hexagon.

Finally, the three last lines of of Table 5.2 contains the third phase sorted
by energy. It is the plaquette phase. The χ �elds inside a the central plaquette
are non zero an equal in magnitude:

|χ1| = |χ2| = . . . = |χ6|, (5.23)

with a Wilson loop:
Π1 = 1. (5.24)

Whereas, the others χ �elds conecting di�erent plaquettes are zero: χ7 = χ8 =
χ9 = 0 and consequently, Π2 = Π3 = 0. This phase also contains degeneracy
and violates the lattice space translation by one plaquette, but is invariant under
time reversal.

All these three phases are showed schematically in Figure 5.5.

In the CSL state, the complex value of the Wilson loops indicates the exis-
tence of a penetrating equivalent magnetic �ux. This magnetic �ux is arti�cial,
it is generated by the con�guration of the mean-�eld solutions. As a conse-
quence, these 2D system can exhibit quantum Hall e�ect and the corresponding
edge states localized in the boundaries. Figure 5.3 depicts the energy spectrum
with the bulk bands and the edge states. For 1/6 �lling only the lowest bulk
band is �lled, which is well separated from the next band. We have calculated
the Chern number (C) for the system, obtaining a value C = 6 for the lowest
gap, which is in accordance with the observation that there is one edge state
pair per spin component. Then, an elementary �ux of Φ0 = π/3 is attached to
every spinon (the quasi-particle excitation of the c†i,α operators). The spinons
are not neither bosons non fermions, they follow anyoninc statistics. Each site of
the lattice belongs to 3 di�erent plaquettes, e�ectively every plaquette contains
2 spinons, generating a �ux with value Φ = 2Φ0 = 2π/3, as expected.
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a)

b) c)

Figure 5.2: Lowest energy mean-�eld solutions. Sub�gure a) illustrates the chi-
ral spin-liquid con�guration with all bonds having the same magnitude. Sub-
�gure b) depicts the quasi plaquette phase with real Wilson loops. The dashed
line represents a smaller bond value than the solid line. Sub�gure c) shows the
plaquette phase con�guration with only one nonzero Wilson loop per three cells.
Links with a zero mean-�eld value are removed from the �gure.
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Figure 5.3: The energy spectrum of the system for open boundary conditions
in one direction.

5.2 E�ective gauge theory

The inclusion of the �uctuations around the mean �eld con�gurations has deep
consequences in the system we are considering. This point is going to be treated
in this section.

There are two types of �uctuations: the amplitude and the phase �uctua-
tions. We are going to consider only the last ones, since the �rst ones have a
�nite energy gap [111]. Adding the phase �uctuation aij , the mean �eld χij
takes the form:

χij = χmfij e
iaij , (5.25)

where χmfij is the value of the mean �eld without �uctuations.
Under the U(1) gauge transformation (5.4), the mean �eld transforms as:

χmfij e
iaij → χmfij e

iaij+θi−θj . (5.26)

Therefore, the phase �eld aij transforms as a gauge �eld under the action of the
U(1) gauge group:

aij → aij + θi − θj . (5.27)

The Lagrangian Lmf for the system of interested with the �uctuations is given
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by:

Lmf =
∑
i,α

c†iα(i∂t)ciα −Hmf =
∑
i,α

c†iα(i∂t + ϕi)ciα−

−
∑
〈i,j〉,α

[
χmfij e

iaijc†jαciα + (χmfij )∗ e−iaijc†iαcjα −
1

J
|χmfij |2

]
−
∑
i

ϕi, (5.28)

where we have considered the Hamiltonian appearing in (5.6) with the �uctua-
tion of the mean �elds.

By considering time-dependent gauge transformations, the gauge transfor-
mations for the �elds become:

cj → cje
iθj ,

aij → aij + θi(t)− θj(t),
ϕj → ϕj + ∂tθj(t). (5.29)

Therefore, the �eld aij plays the role of a gauge vector potential, whereas the
�eld ϕj as the scalar potential.

under such transformations, the action S =
∫
dtL transforms as:

S → S′ = S −
∑
i

∫
dt∂tθi(t). (5.30)

Then, the action is invariant as long as θi(−∞) = θi(+∞). This condition can
be relaxed considering a speci�c family of gauge transformations [156].

The Lagrangian (5.28) describes a non-relativistic matter �eld on a 2D lat-
tice coupled to a U(1) gauge �eld aij , concretely a compact gauge �eld, the
Lagrangian is invariant under aij → aij + 2π.

But, the dynamical term for the gauge �eld SEM (see Eq. (2.4)) does not
appear in this expression. This is because the gauge �eld is a constraint in
our theory. As we will discuss in detail in the next section, in the path inte-
gral formalism the e�ective action Se�EM for the gauge �eld can be obtained by
integrating out the fermionic �eld in the expression (5.28):

eiS
e�

EM
(a) =

∫
D[c̄, c]ei

∫
dtLmf . (5.31)
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By integrating out only the high energy fermionic �eld, the resulting theory in
the continuum considers a fermionic matter �eld interacting with a dynamical
gauge �eld:

L = − 1

4g2
(e2 − vb2)− C

4π

4∑
µ,ν,λ=0

εµνλaµ∂νaλ

+

6∑
α=1

−ic†l,α(∂t − ia0)cl,α +
1

2ms

3∑
j=1

c†l,α(∂j + iaj)
2cl,α

 . (5.32)

The low energy spinon excitations are coming from the vicinity of the energy
maxima of the valence band, and from the energy minima of the conduction
band. Since there are 6 such points, the low-energy dynamics is governed by
spinons with 6 �avors interacting with a U(1) gauge �eld. The speed of sound
v is proportional to 1/J ∼ U/t2.

The �rst term of the last relation corresponds to usual free Lagrangian den-
sity for the U(1) gauge �eld. The constant g2 arises from the integration of the
spinon �elds and is in the order of the spinon gap ∆. The �elds e, and b, are the
arti�cial electric and magnetic �elds, respectively. They come from the scalar
and vector potentials a0 and a through the Maxwell equations. These �elds are
related to their lattice counterpart (5.32) with the relations:

ϕi = a0 (ri) ,

aij =
a(ri)− a(rj)

2
. (5.33)

The second term in (5.32) is the so called Chern-Simons term. It breaks parity
and time reversal symmetries. It depends only on the topology of the system:
it is proportional to the Chern number C. This term is non zero (C = 6) for
the CSL phase (this phase exhibits a non trivial topology), whereas it is zero
for the quasi plaquette and the plaquette phases.

Due to this topological term, the propagator of the gauge boson contains a
pole [156]:

q2 − g4θ2 = 0, (5.34)

where |θ| = C/(2π). Thus, the gauge boson γ is massive for the CSL phase:
mγ = g2|θ|. Consequently, it can only mediate short range interactions between
the spinons. Then, the �uctuations of the mean �eld solution are suppressed by
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the mass gap and the mean-�eld solution is stable [111], as we will discuss in
the next sections of the chapter.

Then, the considered ultracold atomic platform in the deep Mott insulator
phase may act as a quantum simulator of a U(1) compact lattice gauge theory
with dynamical gauge �elds.

5.3 Stability analysis: �nite temperature consid-
eration

In the �rst section of the chapter we described the three lowest energy phases
for the mean �eld theory at T = 0. Next, we showed the emergence of a gauge
theory in the spin liquid phase by considering the phase �uctuations around
the mean �eld con�gurations. In this section we are going to continue the �uc-
tuation analysis by considering the stability of the mean �eld phases around
the �uctuations. Since we are dealing with a physical system, we expect it to
be stable under �uctuations. Moreover, since experiments are always done at
�nite temperature, in this section we also are going to study the stability of the
di�erent phases respect to the �nite temperature.

The �nite temperature calculation was made for a similar system in Ref.
[157] in the high temperature regime, and they managed to describe the metal-
insulator transition, but still left open the �nite temperature physics far in the
Mott insulator regime, where quantum magnetism characterizes the system.

5.3.1 Path integral formulation of SU(N) magnetism

Since we are focussed to discuss the �nite temperature properties of the system,
we are going to work in the canonical formalism. Then, the partition function
of the system at inverse temperature β is evaluated in the imaginary time path-
integral formalism [158]:

Z(β) =

∫
D[c, c]e−S[c,c]

∏
i,τ

δ

(∑
α

ciαciα − 1

)
. (5.35)

The delta functions in the integrand assures the one-particle constraint at
every site for every imaginary time τ = −it. We use ~ = 1 units, and c (c) are
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Grassmann numbers associated to c† (c).

The action in the imaginary time is given by:

S[c, c] =

∫ β

0

dτ

∑
i,α

ciα∂τ ciα +H

 , (5.36)

where H is expressed in (5.2). It is quartic in the fermion �elds, thus we need
to rely on an approximation scheme. According to the pioneering works by
Marston and A�eck on the general SU(N) Hubbard models [133], and the more
recent analysis of Hermele, Gurarie and Rey on SU(N) symmetric models real-
ized with ultracold atoms [140], we consider only spin liquid states, i.e. where
the global SU(6) symmetry is not broken. In this case, with the help of a
Hubbard-Stratonovich (HS) transformation [158], new, slowly varying �elds are
introduced.

exp

(
J

∫ β

0

dτ
∑
〈i,j〉,α,β

ci,αcj,αcj,βci,β

)

=

∫
D[χ∗, χ] exp

{∫ β

0

dτ
∑
〈i,j〉

[∑
α

(
χijcj,αci,α + χ∗ijci,αcj,α

)
− 1

J
|χij |2

]}
.

(5.37)

The Hubbard-Stratonovich �eld χij lives on the links between adjacent sites
and are complex, furthermore χ∗ij = χji. Finally, another bosonic �eld, ϕi, is
introduced in order to cast the delta functions also to a Gaussian form by

∏
i,τ

δ

(∑
α

ciαciα − 1

)

=

∫
D[ϕ] exp

[
−
∫ β

0

dτ
∑
i

ϕi

(∑
α

ci,αci,α − 1

)]
. (5.38)

The bosonic �eld ϕi is purely imaginary for the proper Fourier representation
of the delta functions. However, we conceal its imaginary nature, because it is
very suggestive in the �nal form of the action, as playing the role of a scalar
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potential for the fermions.

Combining Eqs. (5.2), (5.35), (5.36), (5.37) and (5.38) the partition function
takes the form

Z(β) =

∫
D[c, c, χ∗, χ, ϕ]e−Stot[c,c,χ

∗,χ,ϕ] , (5.39)

with the total action

Stot[c, c, χ
∗, χ, ϕ] =

∫ β

0

dτ

{∑
i,α

ciα(∂τ − ϕi)ciα

+
∑
〈i,j〉

[∑
α

(
χijcjαciα + H.c.

)
− 1

J
|χij |2

]
+
∑
i

ϕi

}
. (5.40)

As we already mentioned in section 5.2, the total action (5.40) is also U(1) gauge
invariant under the transformations:

χij → χije
i(θj−θi), (5.41a)

ϕi → ϕi − i∂τθi. (5.41b)

Thus, the phase of χ transforms as a vector potential, and ϕ transforms as a
scalar potential. The theory expressed in (5.40) describes a fermionic matter in
a lattice coupled to a U(1) gauge �eld. Indeed, the integration over the gauge
degrees of freedom is the essence of the path-integral formulation of the problem
as it renders the expectation values of all non gauge invariant quantities to be
zero. Then, the mean value of those operators, which violate the one particle
per site constraint, are annulled [159, 160].

As we discussed in the �rst section, in order to be able to treat the system,
we introduce the nontrivial unit cell depicted in Fig. 5.1.

Introducing the plane wave basis for one particle states, the �elds can be
written as:
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cs,α(rm,n, τ) =
1√
V β

∑
k,l

cs,α(k, iωl)e
i(k1m+k2n−ωlτ), (5.42)

χi(rm,n, τ) =
1

V β

∑
k,l

χi(k, iνl)e
i(k1m+k2n−νlτ),

ϕs(rm,n, τ) =
1

V β

∑
k,l

ϕs(k, iνl)e
i(k1m+k2n−νlτ),

where the Fourier transform has been extended over the imaginary time dimen-
sion with the help of ωl = (2l+1)π/β and νl = 2lπ/β, which are the Matsubara
frequencies for fermions and bosons respectively. Moreover, k = k1f

(1) + k2f
(2)

is the wavenumber in reciprocal space spanned by f (1) and f (2). We use the
normalization (f (i), e(j)) = δij . Here and from now on, i = 1 . . . 9 indexes the
9 di�erent χi �elds and s = 1 . . . 6 denotes the sublattice and therefore indexes
the ϕs �elds.

The cs,α(rm,n, τ) fermionic �eld is de�ned at (5.7). With our choice of the
unit cell there are 6 independent HS �elds inside the cell (m,n) (see Fig. 5.1.),
χ1(rmn) . . . χ6(rmn) and another 3 connecting the unit cell (m,n) to its 3 neigh-
bors to the left, χ7 . . . χ9 (see �rst Section). The ϕs(rmn) �elds lie on the sites
(6 per unit cell). They are analogue to the ϕ �elds appearing in (5.10).

The total action Eq. (5.40) in momentum space is evaluated by some
straightforward algebra to

Stot[c, c, χ
∗, χ, ϕ] = −

∑
s

ϕs(q̂ = 0)

+
1

JV β

∑
q̂,i

|χi(q̂)|2 −
∑

k̂,q̂,s,s′,α

cs′α(k̂ + q̂)G−1
s′s(k̂, q̂)csα(k̂), (5.43)

where we have used the shorthand notations k̂ ≡ (k, iωn), and q̂ ≡ (q, iνm). In
the sum α is over the spin components of the fermions, while i = 1 . . . 9, and
s, s′ = 1 . . . 6.

G−1
s′,s(k̂, q̂) is the inverse of the fermion propagator, depending on the boson

�elds. Its explicit form is given by

G−1
s′s(k̂, q̂) = iωnδq,0δm,0δs′,s −Hs′s(k̂, q̂), (5.44)
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and

H(k̂, q̂)=
−1

βV



−ϕ1(q̂) χ1(q̂) 0
χ∗1(−q̂) −ϕ2(q̂) χ2(q̂)

0 χ∗2(−q̂) −ϕ3(q̂)
χ∗7(−q̂)eiγ7(k+q) 0 χ∗3(−q̂)

0 χ∗8(−q̂)eiγ8(k+q) 0
χ6(q̂) 0 χ∗9(−q̂)eiγ9(k+q)

χ7(q̂)e−iγ7(k) 0 χ∗6(−q̂)
0 χ8(q̂)e−iγ8(k) 0

χ3(q̂) 0 χ9(q̂)e−γ9(k)

−ϕ4(q̂) χ4(q̂) 0
χ∗4(−q̂) −ϕ5(q̂) χ5(q̂)

0 χ∗5(−q̂) −ϕ6(q̂)

 , (5.45)

where the γi phase factors are given in Table 5.1.
All the ϕs and χi �eld depend on the transferred momentum q and Mat-

subara frequency νm. In the phases, k1, k2, q1 and q2 denote the respective
components of the wavenumbers.

The total action (5.43) is quadratic in the fermionic �elds, thus, this �eld
can be integrated out in the functional integral (5.39):

Z(β) =

∫
D[χ∗, χ, ϕ] e−Se�[χ∗,χ,ϕ], (5.46)

where the e�ective action reads as:

Se�[χ∗, χ, ϕ] = −
∑
s

ϕs(q̂ = 0) +
1

JV β

∑
k̂,i

|χi(k̂)|2 − 6 tr[ln(βG−1)], (5.47)

where the trace is a sum over k̂ and s and factor 6 comes from the summation
over the spin index α.

Equations (5.46) and (5.47) are the main results of the general path integral
formulation of SU(N) magnetism for non-classically ordered antiferromagnetic
states [133, 141].
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The e�ective action (5.47) is a functional of the slowly varying (both in space
and in imaginary time) bosonic �elds χ and ϕ.

The expression e−Se� acts as a weight function of the �eld con�gurations. If
this expression was evaluated, all the correlation functions of the �elds and of
the original fermionic operators could be calculated exactly.

5.3.2 Saddle-point approximation

Derivation of the saddle-point equations

Since the e�ective action (5.47) is highly non-polynomial in the bosonic �eld, in
order to evaluate the expression (5.46) it is needed to rely on an approximation
scheme. We are going to consider the saddle-point evaluation method: we
assume that the probability distribution e−Se� is dominated by the maxima
values and their neighbouring are close to a Gaussian functions. Thus, we
proceed by expanding the �elds χ and ϕ around the homogeneous saddle-point
con�gurations and by considering the �uctuations around them,

χi(q̂) = βV χ̄iδq̂,0 + δχi(q̂), (5.48a)

ϕs(q̂) = βV ϕ̄sδq̂,0 + δϕs(q̂). (5.48b)

Here and in the following δq̂,0 = δq,0δm,0.

The complex numbers χ̄ and ϕ̄ are the homogeneous stationary points: the
functional derivative of Se� with respect to δχ and δϕ has to vanish.

δSe�[δχ∗, δχ, δϕ]

δφ

∣∣∣∣
δχ=δχ∗=δϕ=0

= 0, (5.49)

where we have introduced a 24 component vector φµ composed of the �uc-
tuations. The �rst 18 elements are the complex �elds δχ and their complex
conjugates, and the last 6 elements are the δϕ �elds:

φµ(q̂) = [δχi(q̂), δχ
∗
i (−q̂)), δϕs(q̂)]µ. (5.50)

With the decomposition (5.48) of the �elds χ and ϕ, the inverse of the fermionic
Green's function (5.44) is split to two parts

G−1
s′s(k̂, q̂) = G−1

(0)s′s(k̂, q̂)− Σs′s(k̂, q̂), (5.51)
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where the inverse of the saddle-point Green's function, G−1
(0), contains only the

saddle-point values of the HS �elds, while the self-energy, Σ contains the �uc-
tuations of the HS �elds (their explicit forms are given below).

With such a separation a systematic expansion around the saddle point can
be done in terms of powers of Σ. The e�ective action (5.47) can be expanded
in powers of the �uctuations around the mean �eld:

Se� = S0 + S1 + S2 + 6

∞∑
n=1

tr (G0Σ)n

n
, (5.52a)

S0 = −βV
∑
s

ϕ̄s +
βV

J

∑
i

|χ̄i|2 − 6 tr log(βG−1
0 ), (5.52b)

S1 = −
∑
s

δϕs(q̂ = 0) +
1

J

∑
i

[χ̄∗i δχi(q̂ = 0) + H.c.] , (5.52c)

S2 =
1

JβV

∑
i,q̂

δχ∗i (q̂)δχi(q̂), (5.52d)

where S0, S1, S2 contains the �uctuations of the �elds with zeroth, �rst, and
second order, respectively, and the logarithm in Eq. (5.47) is expanded in
powers of the self-energy Σ as:

tr log(βG−1) = tr log
[
β(G−1

(0) − Σ)
]
= tr log

(
βG−1

(0)

)
+

∞∑
n=1

tr(G(0)Σ)n

n
. (5.53)

The evaluation of tr(G(0)Σ)n via a systematic Feynman diagram method is de-
tailed in Appendix 9.2.

Now the saddle-point equations (5.49) are cast to a more direct form by
collecting the �rst order contributions to the e�ective action, and therefore

∂S1

∂φµ(q̂)
+ 6 tr

(
G(0)

∂Σ

∂φµ(q̂)

)
= 0. (5.54)

These equations provide the self consistent equations for the mean-�eld (i.e.
saddle-point) solutions. In order to solve them we need the explicit form of the
saddle-point Green's function G(0), and the self-energy Σ.
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The saddle-point Green's function is diagonal in momentum space, and in
the Matsubara frequencies:

G−1
(0)s′s(k̂, q̂) = G−1

(0)s′s(k̂)δq̂,0, (5.55)

with

G−1
(0)s′s(k̂) ≡ G−1

(0)s′s(k, iωn) =
(
iωnδs′,s −H(0)

s′s (k)
)
. (5.56)

The mean-�eld fermion Hamiltonian H(0)
s′s (k)δq̂,0 is obtained by replacing χi(q̂)

and ϕs(q̂) in Eq. (5.45) with βV χ̄iδq̂,0 and βV ϕ̄sδq̂,0. The H
(0)
s′s (k) Hamiltonian

can be easily diagonalized for all k momentum∑
s

H
(0)
s′s (k)v(a)

s (k) = ε
(a)
k v(a)

s (k), (5.57)

with eigenvalues ε(a)
k and eigenvectors v(a)

s (k), where the eigenvalue index is
a ∈ {1 . . . 6}. With the help of Eqs. (5.56) and (5.57) the saddle-point Green's
function is expressed as

G(0)s′s(k̂) ≡ G(0)s′s(k, iωn) =
∑
a

v
(a)
s′ (k) v

(a)∗
s (k)

iωn − ε(a)
k

. (5.58)

Note, that the saddle-point Green's function depends on the saddle-point values
of the �elds, χ̄ and ϕ̄, through the eigenvalues and eigenvectors of the matrix
H(0).

The self-energy is obtained by replacing χi(q̂) and ϕs(q̂) in Eq. (5.45) with
their �uctuations δχi(q̂) and δϕs(q̂). It can be compactly written as

Σs′s(k̂, q̂) =
−1

βV

9∑
i=1

[
δs′,βiδs,αie

−iγi(k)δχi(q̂)

+ δs′,αiδs,βie
iγi(k+q)δχ∗i (−q̂)

]
+

1

βV

6∑
r=1

δs′rδsrδϕ(q̂), (5.59)

where the speci�c form of the indices αi and βi together with the phase factor
γi(k) appear in Table 5.1.
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Equation (5.54) can be cast to an explicit form now. The �rst term is easily
evaluated with the help of Eq. (5.52c). In the second term the trace is a sum
over the wavenumber k, Matsubara frequency ωn and the sublattice index s.
Using the "free" propagator (5.58) and performing the sum for the Matsubara
frequencies, one arrives to

tr

(
G(0)

∂Σ

∂φµ(q̂)

)
=
∑
k̂,s,s′

G(0)s,s′(k̂)
∂Σs′,s(k̂, q̂)

∂φµ(q̂)

=
∑

k,a,s,s′

β
v

(a)
s (k) v

(a)∗
s′ (k)

1 + eβε
(a)
k

∂Σs′,s(k̂, q̂)

∂φµ(q̂)
. (5.60)

The derivative of Σ can also be readily evaluated with the help of its compact
form Eq. (5.59). After some straightforward algebra one arrives to the explicit
form of the self-consistency equations (5.54):

χ̄j =
6J

V

∑
k,a

eiγj(k)
v

(a)
βj

(k) v
(a)∗
αj (k)

1 + eβε
(a)
k

, for j ∈ {1 . . . 9},

1 =
6

V

∑
k,a

v
(a)
s (k) v

(a)∗
s (k)

1 + eβε
(a)
k

, for s ∈ {1 . . . 6}. (5.61)

We observe that these saddle-point equations extensions to �nite T of the
corresponding ones obtained for the mean �eld treatment at T=0 (see Eq.
(5.14)). Since we are considering the �nite temperature case, the unique di�er-
ence between both sets of equations is the appearance of the occupation number
factor or the Fermi-Dirac distribution function:

n(a)(k) =
1

1 + eβε
(a)
k

. (5.62)

In the limit T → 0 the previous equations are reduced to the ones given in Eq.
(5.14).

It is worth to emphasize that we have used the term �mean �eld� through-
out this section as a synonym for �saddle point�. In the mean-�eld calculation
the χij mean �elds are the fermion correlators χij =

∑
α〈c
†
iαcjα〉. Here they
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are HS �elds and their saddle-point values correspond to the mean �elds. The
advantage of the path-integral method beyond its transparency is its straight-
forward application for non-zero temperatures, just as when going beyond the
saddle-point approximation as we will see in Sec. (5.3.3).

At �nite temperature each solution is characterized by th free energy. The
state with the lowest free energy dominates the partition function. The free
energy

F = −kBT logZ(β), (5.63)

at mean-�eld level, i.e. by neglecting quantum �uctuations, is given by:

Fmf(T, V ) =
S0

β
= −V

∑
s

ϕ̄ +
V

J

∑
i

|χ̄|2 − 6

β

∑
k,a

log
(

1 + e−βε
(a)
k

)
, (5.64)

where we have performed the sum for the Matsubara frequencies [158]

tr log(βG−1
0 ) =

∑
k,n,a

log
(
iβωn − βε(a)

k

)
=

∑
k,a

log
(

1 + e−βε
(a)
k

)
. (5.65)

In order to describe the possible competition of various con�gurations we de-
termine the three lowest lying solutions. Their basic properties are discussed in
the next subsection.

Finite temperature mean-�eld solutions

We present the lowest free energy solutions of Eqs. (5.61). As we already men-
tioned in the �rst section, there are in�nitely many solutions to the coupled
equations due to the gauge freedom Eqs. (5.41). From any set of saddle-point
solutions we can generate new ones with the same free energy by applying an
arbitrary τ independent gauge transformation according to (5.41a). In order to
factor out this trivial gauge freedom, we distinguish the saddle-point solutions
by the elementary Wilson loops (see Eqs. (5.18), (5.19),(5.20)), i.e. those solu-
tions are considered to be equivalent, whose elementary Wilson loops are equal.

The results at T=0 coincide completely with those analysed at Section 5.1.
Even at �nite temperatures these three states remain to be the three lowest
free energy solutions. The behaviour of the free energy as a function of the
temperature is plotted for these three phases in Fig. 5.4. We have found that the
free energy of the CSL state remains slightly below the two other states, however,
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Figure 5.4: The free energy per plaquette Fmf(T, V )/V of the three lowest lying
saddle-point solutions.

close to the critical point the free energy curves approach each other with high
accuracy. This is in agreement with the behavior of the order parameters.

When the temperature is increased the order parameters, the saddle-point
values of the HS �elds, get smaller and smaller and eventually vanish at a
common critical temperature Tc ≈ 0.83 J/kB . The order parameters vanish
with an exponent of 1/2, characteristic to the mean-�eld approximation. Above
this temperature the paramagnetic Mott phase is stable, and close to Tc a
Ginzburg-Landau type analysis, based on this saddle-point expansion, describes
the critical behavior. The temperature dependence of |χ| together with a sketch
of the elementary �uxes is plotted in Fig. 5.5.

In the last section we have considered the stationary values of the �eld (see
Eq. (5.54)) in the saddle-point approximation. The e�ective action Eq. (5.52a)
has no �rst order contribution in the �uctuations. In order to go beyond the
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Figure 5.5: The saddle-point solutions for the three lowest free energy spin liquid
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saddle-point approximation we consider the leading correction, which is the
second order one in the �uctuations. Thus the functional integral becomes a
Gaussian integral with the e�ective action:

Se� ≈ S0 + S2 + 3 tr(G(0)Σ)2. (5.66)

The last two terms, which are quadratic in the �uctuations, can be arranged to
a convenient matrix form:

S
(2)
e� =

1

JβV

9∑
i=1

∑
q̂

δχ∗i (q̂)δχi(q̂) + 3 tr(G0Σ)2

=
1

2βV

24∑
µ,ν=1

∑
q̂

φ∗µ(q̂)Cµν(q̂)φν(q̂). (5.67a)

The Cµ,ν kernel is the so-called Hessian and provides the curvature of the e�ec-
tive action:

Cµν(q̂) =
∂2Se�

∂φ∗µ(q̂)∂φν(q̂)
. (5.67b)

The Hessian is a 24× 24 matrix, and depends on the saddle-point values of
the �elds χ̄, ϕ̄. The derivation and explicit form of Cµν is given in Appendix 9.2.

Throughout the study we have assumed that the weight function e−Se� in
the path integral around the saddle-point con�gurations takes Gaussian form.
In this case the path integral can be evaluated and the partition function is the
sum of the Gaussian contributions of the di�erent saddle-points. The �rst step
to test the validity of a speci�c phase is to check whether the Hessian Cµν(q̂)
is positive de�nite at the related con�guration [160]. If Cµν(q̂) is positive de�-
nite, the weight function in the path integral drops when we move a bit farther
from the saddle point, so the saddle-point solution is stable. The curvature
(5.67b) is complex for nonzero Matsubara frequencies, but the sum of the con-
tributions of the ±iνm pairs always provides a non-negative curvature, since
Cµν(q,−iνm) = C∗νµ(q, iνm). Therefore, it is su�cient to check the stability of
the phases for νm = 0 only.

A minor di�culty still remains. Namely, the scalar potential, introduced in
Eq. (5.38) has to be purely imaginary for the representation of the Dirac delta
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functions. However, the saddle-point equations provide real solutions for ϕ̄s.
Such solutions are physical, and one can interpret the homogeneous and real
ϕ̄ as the chemical potential of the system. Consequently the functional inte-
gral representation (5.38) has to be understood after an analytical continuation
δϕs → iδϕs. Hence in the Hessian the curvature is changed from positive to
negative along the 6 directions of the scalar potential. The easiest way to treat
the problem is to perform the Gaussian integral over δϕs, as was done e.g. in
Ref [133] to arrive to an e�ective action only for the δχ �elds,

S
(2)′

e� =
1

2βV

18∑
k,l=1

∑
q̂

φ∗k(q̂)C̃kl(q̂)φl(q̂), (5.68)

with φk(q̂) a vector of 18 elements, obtained from φµ(q̂) by simply dropping the
last 6 entries. C̃kl(q̂) is a 18 × 18 matrix whose elements are formed from the
matrix Cµν(q̂). Its �nal form is also given in Appendix 9.2.

Now we reduced the stability problem to the eigenvalue analysis of the C̃kl
matrix: if all the 18 eigenvalues of C̃kl for each q (i.e. in the whole Brillouin
zone) are positive, C̃kl is positive de�nite, the path integral remains Gaussian,
so the saddle-point approximation is reliable.

5.3.3 Stability analysis

We have determined the spectrum of C̃kl for each of the three low lying states
at low temperatures. In Fig. 5.6 we plot the lowest nonzero eigenvalues for the
stability matrix C̃ij(q, 0) in the Brillouin zone for the CSL phase a), and for the
quasi plaquette phase b). The CSL phase is stable against perturbations, as the
lowest nonzero eigenvalue is positive everywhere. Contrary, the lowest nonzero
eigenvalue of the curvature of e�ective action in case of the quasi plaquette
phase develops prominent negative values around the Γ point. This phase turns
out to be unstable. Note that among the 18 eigenvalues (for every q) of the
stability matrix C̃ij(q, 0) we have some �at zero modes corresponding to the
local gauge symmetry. Both the CSL and quasi plaquette phases have 6 such
�at bands, since 6 of the link variables can be chosen real with the help of gauge
�xing.

In the plaquette phase all eigenvalues are constant, because the lattice is
formed by the completely disjoint plaquettes and no momentum dependence
remains. In this phase three of the links are zero, and we can �x only 5 of the
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Figure 5.6: The lowest static eigenvalues of the curvature of the e�ective action
in the Brillouin zone at zero temperature for the chiral spin liquid phase a), and
for the quasi plaquette phase b).

6 remaining χ̄ links to be real. Correspondingly only 5 �at zero modes remain.
All the other (nonzero) eigenvalues are positive, which means that the plaquette
phase is stable.

It is worth to emphasize however, that the free energy analysis suggests a
strong competition of the quasi plaquette state and the CSL state (see Fig. 5.4).
The stability analysis shows that the quasi plaquette state collapses towards
the lower free energy solution. The situation is similar to the case when the
π-�ux state of the SU(2) system on square lattice turns out to be unstable and
collapse into the so called "box" state [133, 161]. Accordingly, only the CSL state
remains the lowest lying state at least up to kBT ∼ 0.5J , where its free energy
starts to compare with that of the plaquette state. Above this temperature
the two states have practically the same free energy, and with simple cooling it
can not be predicted, which phase will stabilize. Nevertheless, the two phases
have di�erent symmetries and most importantly di�erent topological properties
that may allow to select the demanded state. For example it could happen
during cooling and yet in the high temperature phase via imprinting a synthetic
external gauge �eld to generate the nontrivial topology of the CSL state, on the
low temperature state the enforced topological property remains even, when the
external constraints are switched o�.
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5.3.4 Experimental observation: the structure factor

Ultracold alkaline earth atoms are produced routinely nowadays. A honeycomb
optical lattice can also be created by sophisticated laser con�gurations [162].
Another, even cleaner experimental implementation would be to use the holo-
graphic methods of Greiner et al., or Esslinger et al., where an arbitrary two
dimensional lattice potential can be created with the help of an optical imaging
system [163, 164]. Detecting the CSL phase, or the emerging dynamical gauge
theory is not straightforward, but possible. For example, one can measure near-
est neighbor pair correlations [165], but there is only access to |χij |. In fact,
according to the Elitzur's theorem non gauge invariant quantities, such as χij ,
average to zero [159, 166].

A gauge invariant quantity sensitive to chirality and possible to measure is
the phase of a loop, which can be detected directly by measuring 3-spin corre-
lations: ~Si · (~Sj × ~Sk). It's nonzero value witnesses for the chiral nature of the
spin liquid phase [167].

Finally, and more importantly, one can measure the spin structure factor in
experiments, using for instance spin polarization spectroscopy [168]:

Szz(r, r′; t) = 〈Sz(r, t)Sz(r′, 0)〉, (5.69)

where
Sz(r, t) = Sz(rmns) =

∑
αβ

F zαβc
†
sα(rmn, t)csβ(rmn, t) (5.70)

is the z-component of the spin operator of a spin-5/2 alkaline earth atom at
site rmns, accordingly, F z = diag(5/2, 3/2, 1/2,−1/2,−3/2,−5/2) is the z-
component of the three SU(2) generators in 6 dimensional representation.

This quantity can be expressed with the help of the four point spinon Green's
functions, and in the RPA approximation is given by (in momentum space and
Matsubara representation):

Szz(q, iνm) =
35

2

1

V β

∑
k,a,b

n(ε
(a)
k )− n( ε

(b)
k+q )

iνm + ε
(a)
k − ε

(b)
k+q

×

v(a)∗
s (k)v

(a)
s′ (k)v

(b)∗
s′ (k + q)v(b)

s (k + q). (5.71)
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Figure 5.7: (Color online) The static structure factor S(q, 0) in the Brillouin
zone at zero temperature for the chiral spin liquid phase a), and for the quasi
plaquette phase b).

The numeric factor comes from spin summation:
∑
αβ F

z
αβF

z
βα = 35/2. The

fermionic occupation number at �nite temperature is given by the Fermi dis-
tribution function n(ε) = [eβε + 1]−1. Here, εk and vs(k) are the eigenenergies
and eigenvectors of H(0), respectively, as they were introduced in Eq. (5.57).

The structure factor Szz(q, iνm) in Eq. (5.71) is a 6 × 6 matrix in the
sublattice space. In order to take into account the total contribution of the unit
cell, one needs to consider its trace:

S(q, iνm) =
∑
s

Szzss (q, iνm). (5.72)

We plot the static structure factors in Fig. 5.7 of the CSL phase a) and of
the quasi plaquette phase b). That of the plaquette phase is completely �at
due to its dispersionless spectra, and is not shown. For the other two low lying
saddle-point solutions the static structure factors look completely di�erent, both
carry unambiguous features to identify them. In the CSL phase the structure
factor has a minimum at the center of the Brillouin zone (the Γ point) and it has
maxima at the K points. In contrary, in the quasi plaquette phase the structure
factor is peaked close to the Γ point and has minima around the edge of the
Brillouin zone. Since the experimentally measurable structure factor of the three
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Figure 5.8: The spectral density ρtot(ω) at zero temperature of the chiral spin
liquid phase a), the quasi plaquette phase b), and the plaquette phase c).

lowest lying saddle-point con�gurations show completely di�erent behavior, it
is a suitable tool to distinguish between them.

By radio-frequency-spectroscopy one can measure the spectral density in-
tegrated to the whole lattice. This quantity can also be extracted from the
structure factor given by Eq. (5.71). It can be obtained by analytically contin-
uing S(q, iνm) on the the upper half plane of complex frequencies and through
the real axis by setting iνm → ω + iη:

ρtot(ω) =
∑
q

ImS(q, ω + iη), (5.73)

with η being an in�nitesimally small number.
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In our calculation we set its value to 10−2 (in units of the coupling strength
J). We plot the spectral density of the three mean-�eld solutions in Fig. 5.8.
The spectral function of the three di�erent phases looks completely di�erent
indicating some characteristic features of the speci�c phase. While the CSL
phase (a), and the plaquette phase (c) are gapped phases, there are no accessible
states up to a gap, the quasi plaquette phase (b) is gapless. Furthermore, the
plaquette phase is very simple, it contains only 3 delta peaks, also because of
the lack of dispersion of the fermion energies. The �rst two peaks have twice
the strength of the third one according to the fermion spectrum that consists of
4 dispersionless �at bands. From these 4 �at bands the lowest and the highest
energy bands have only one state for every q momentum, and between them
two doubly degenerate �at bands can be found. At zero temperature the lowest
band is occupied and the higher bands are empty. By exciting a fermion to the
upper bands the middle two have twice the number of states than the last one.

119



Chapter 6

The U(1) gauge magnet:

phenomenology and digital

quantum simulation

The Kogut-Susskind Hamiltonian (2.90) for the U(1) pure gauge theory was
originally derived by considering the analogy between the space of con�gurations
for the quantum rigid rotor and the pure quantum gauge theory [55]. It can
also be derived from the transfer matrix of the model [169, 53].

In this chapter, we consider an alternative route for the derivation of a lattice
gauge theory, the so called constructive approach. Using this approach one can
interpret di�erent lattice gauge theories known in the literature as link models or
gauge magnets [170, 171, 172, 173] as a truncated version of the original Kogut-
Susskind proposal. We would like to mention that this approach is rooted in
the celebrated works by Kitaev about the Toric Code and Quantum Doubles
[20] that we follow closely.

A lattice gauge theory is a particular case of a many-body quantum system,
where the constituents are arranged on a lattice and the states (and the observ-
ables) are invariant under local transformations, which are elements of a given
group G. Starting by this operative de�nition, the basics steps for constructing
a gauge invariant Hamiltonian for a lattice system, are:

• the choice of the representation of the gauge group G that, as we will see,
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has immediate consequences on the de�nition of the Hilbert space of the
model.

• the de�nition of the operators de�ning the gauge transformations.

• the determination of the set of operators that can be used to build the
Hamiltonian, which has to be invariant under gauge transformation.

It is worth to notice that, for a given G, in�nitely many gauge invariant
theories � and Hamiltonian, can be de�ned, although many of them may be
equivalent under renormalization group �ow, i.e., may share the same �xed
point and critical properties.

6.1 Constructive approach to lattice gauge theo-
ries

In this section we are going to derive the Hamiltonian formulation of a gauge
theory, following the constructive prescription. We will focus in Abelian lattice
gauge theories, particularly in the simplest one, the Z2 gauge theory. This is the
simplest lattice gauge theory one could construct (apart from the percolation
lattice gauge theories of [174]), since there are only two di�erent elements of the
group, the �rst is 1 and the other is e, with the following multiplication table:

1 e
1 1 e

e−1 = e e 1
(6.1)

6.1.1 The Hilbert space

As we showed at Section 2.6, the constituents of the lattice gauge theories are
attached to the links l connecting sites x of an oriented lattice L. The orien-
tation of the lattice means that, when addressing a link, one has not only to
specify its position but also its orientation (the direction to follow in order to
walk along it, i.e., in 2D either from left to right or from up to down or vicev-
ersa). Considering the physical picture of the links as currents moving from a
site to another, the orientation is the direction of the current (and the gauge
condition is the analogue of the conservation of the current at each site).
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Each of the constituents attached to the oriented links is described by a
vector in a local Hilbert space Vl. If the lattice has N links, the global Hilbert
space is de�ned as the tensor product H = V⊗Nl .

We remark that the choice of Vl is not unique, and this is the �rst freedom
at hand in the construction of lattice gauge theories. In particular, the original
formulation by Kogut and Susskind uses as local Hilbert space the group algebra
C(G), so that the space of constituents is the vector space generated by linear
combinations of elements of G with complex coe�cients. To each element of
the group G, one associates a vector |g〉, with the property 〈h|g〉 = δg,h. Here
δ.,. is the Kronecker delta. Therefore, in the Kogut-Susskind formulation, the
dimension of the local Hilbert space is strictly related to the number of elements
in the group. Hence, it becomes in�nite for continuous groups like U(1). In the
simplest case of Z2, the local Hilbert space is generated by the two orthogonal
vectors |1〉 and |e〉, and it is isomorphic to C2. However, as we will show below,
it is perfectly consistent to consider a local Hilbert space, whose dimension does
not depend on the number of elements G.

As an example, the space of constituents of a 2D lattice is sketched in Fig.
6.1. Since we are dealing with an oriented lattice, we also orient the states.
Following physical intuition of a links as currents between sites, the change of
orientation corresponds to an inversion of the currents, which is equivalent to
the operation

|h〉l → |h−1〉−l. (6.2)

It is worth to observe that, for the guiding example of G = Z2, the orientation
plays no role since e−1 = e and 1−1 = 1, hence, |e〉l = |e〉−l and |1〉l = |1〉−l.

As we indicated, the choice of the local Hilbert space Vl is not unique. The
only requirement is that Vl has to be isomorphic to a representation of the
symmetry group G. In particular, the choice of C(G) induces the choice of
the regular representation of the group, R(G). The action of an element of
X(g) ∈ R(G) on |h〉, is de�ned as

X(g)|h〉 = |(gh)〉, (6.3)

This means that the matrix representation of X(g) reads

X(g) =
∑
h∈G

|gh〉〈h|. (6.4)

Therefore, in the regular representation the matrices are constructed directly
from the multiplication table of the group. In order to get the representation
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a)

b)

c)

Figure 6.1: a) A lattice gauge theory is many-body system de�ned on a lattice
L. The constituents |h〉l are attached to the links l. The lattice is oriented,
meaning that links inherit the standard orientation of the embedding space,
depicted in the �gure as arrows. When de�ning operators acting on the states
attached to links, one has also to specify an orientation. b) and c) The building
blocks of a lattice gauge theories include two sets of four-body operators. b)
The one attached to sites s, As, which we also refer to as star operators, are
used to impose the gauge invariance. c) The ones attached to plaquettes p Bp,
which we also refer to as plaquette operators, describe the dynamics. We de�ne
both As and Bp by using a customary oriented star and plaquette.
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of multiplication by a given element, one substitute the given element in the
multiplication with one and all the others with zeros. For the Z2 case it results:

X(1) = I, X(e) = σx, (6.5)

due to the multiplication table is expressed in (6.1).
When we change the orientation of a link, according to (6.2), we also have

to invert the operator that is acting on it,

|(gh)〉l → |(h−1g−1)〉−l = X−l(h
−1g−1h)|h−1〉−l = X−l(g)†|h−1〉−l (6.6)

where l is an arbitrary oriented link of L and we have used the fact that, for
Abelian groups, h−1g−1h = g−1, and, for unitary representations, X(g−1) =
X(g)†. The irrelevance of the orientation in the Z2 case translates to that both
X(1) and X(e) are Hermitian.

6.1.2 Gauge invariance and the physical Hilbert space

As we discussed in Section 2.6.2, a generic gauge transformation is implemented
in the Hilbert space by an unitary operator V acting on the links of the lattice L
(see Eq. (2.87)). This transformation is de�ned by choosing a group element for
each site of the lattice and rotating all the links entering that particular site with
the matrices representing the rotation for that particular element. The building
blocks of gauge transformations are thus obtained by acting on all links entering
a given site with X(g). The operator that induces such rotation is often referred
as star operator (see (2.87)). In the constructive approach it is convenient to
express it as:

As(g) ≡
⊗

l∈{li}s

Xl(g) |hl1 , hl2 , hl3 , hl4〉 → |ghl1 , ghl2 , ghl3 , ghl4〉, (6.7)

where s is a generic site of the lattice and {li}, i = 1, . . . , 4, is the set of all
the links entering s, as depicted on Fig. 6.1 b). In view of (6.2) and (6.6), this
operator acting on the links of a lattice oriented in the conventional way (such
as in Fig. 6.1a) becomes

As(g) : |h−l1 , h−l2 , hl3 , hl4〉 → |h−1
l1
g−1, h−1

l2
g−1, ghl3 , ghl4〉, (6.8)

where the links are numbered clockwise starting by the one on the top. In terms
of X(g) operators, the above expression is equivalent to:
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As(g) = X†l1(g)X†l2(g)Xl3(g)Xl4(g). (6.9)

Since we are considering local gauge transformations, the choice of the group
element g can vary from site to site so it would be more appropriate to use g(s)
but in order to simplify the notation we stick to g.

For G = Z2, we have two possible As(g):

As(1) = Il1Il2Il3Il4 = I,
As(e) = σxl1σ

x
l2σ

x
l3σ

x
l4 = (σx)⊗4. (6.10)

Thus, the unique non-trivial operator for G = Z2 is As(e), which induces spin-
�ips on all qubits entering the speci�c site s.

States are invariant under the gauge transformations at site s if they are
eigenvectors of the As(g) operators with eigenvalue +1,

As(g)|ψ〉 = |ψ〉,∀g ∈ G. (6.11)

Since generic gauge transformations are product of local ones, a state is gauge
invariant if

V [g]|ψ〉 ≡
⊗
s∈L

As(g)|ψ〉 = |ψ〉,∀g ∈ G, (6.12)

which leads to the de�nition of the physical Hilbert space expressed in (2.89).

For G = Z2, the requirement of invariance at a speci�c site under the action
of As(e) reduces the 24 state of the four links to 8, for a system on a 2D lattice.
In order to determine the allowed states, it is better to diagonalize σx:

σx = |+〉〈+| − |−〉〈−|. (6.13)

In this basis, all those states formed as tensor product of four eigenstates of σx

with an even number of |−〉 are eigenstates of As(e) with eigenvalue +1, and
thus gauge-invariant. As we will describe in the following, one can give a nice
geometrical interpretation to those states in terms of closed string of |−〉.
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6.1.3 Operators compatible with the requirement of gauge
invariance

By de�nition, the Hamiltonian H has to respect the local symmetry, i.e., com-
mute with all star operators As(g(s)),

[H,As] = 0, ∀As. (6.14)

Our goal is to build up H as a sum of local terms. To this aim, we introduce a
set of operators Zr, (where r labels the representation of the group) acting on
the tensor product of the local Hilbert spaces Vl ⊗ Vg. Again, there is a lot of
freedom in de�ning the local Hilbert spaces Vg, since the only requirement is to
support an irreducible representation (irrep) of the gauge group (for a de�nition
of irreducible representation refer to [175]).

When the local Hilbert space is the group algebra, the operators Zr acquire
the following form

Zr =
∑
h∈G

Rr(h)⊗ |h〉〈h|, (6.15)

where Rr(h) is the matrix representing h in the irreducible representation r of
G. Since all irreducible representation of Abelian groups are one dimensional
and isomorphic, for Abelian theories we can drop the index r from Rr and think
of them as acting only on Vl since, in this case, R(h) is just a phase.

For the case of G = Z2, the only non-trivial choice for Z is:

Z = σz = |1〉〈1| − |e〉〈e|. (6.16)

The relation between Z and X(g) is encoded in the commutation relation

[ZX(g)−X(g)Z] = R(g)XZ. (6.17)

This immediately suggests a minimal choice to ful�ll (6.14). We can, indeed,
consider as building blocks for H the product of four Z operators acting on links
around elementary plaquettes of the lattice

Bp ≡
⊗

l∈{li}p

Zl,r, (6.18)

that we generally call plaquette operator. Here, {li}p, i = 1, . . . , 4, is a set
of links belonging to the plaquette p and anti-clockwise oriented starting from
bottom, as sketched in Fig. 6.1c.
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By rewriting Bp for the standard-oriented lattice, as in Fig. 6.1a, we obtain

Bp = Zl1,rZl2,rZ
†
l3,r

Z†l4,r. (6.19)

In the elementary case ofG = Z2, the plaquette operator is justBp = σzl1σ
z
l2
σzl3σ

z
l4
.

As a plaquette and a star operator share none or two links, l and l′, it is
su�cient to verify the relation

[Zl(r)⊗ Zl′(r), Xl(g)⊗X†l′(g)] = 0, (6.20)

in order to check that Bp and As commute. As the above relation is a direct
consequence of (6.17) (and that for any representation R(g−1) = R−1(g)), the
desired result holds:

[Bp, As(g)] = 0, ∀{p, s} ∈ L, g ∈ G. (6.21)

For an Abelian gauge group � the case of interest in this work� any operator
Xl(h) commutes with As(gs). Hence, it follows that any hermitian functional of
Bp and Xl(h) is a good gauge invariant Hamiltonian for Abelian gauge theories.
In particular, we focus on the linear combination

H(θ) = − cos θ
∑
p

Bp + sin θ
∑
l

Xl(g) +H.c. , (6.22)

where p are the elementary plaquettes of the lattice and l are the links. This
coincides with the Kogut-Susskind Hamiltonians [176], by indentifying the pla-
quette term as the magnetic term and the star operator term as the electric
�eld.

In the speci�c case of G = Z2, it can be written explicitly in terms of Pauli
matrices:

H(θ) = − cos θ
∑
p

∏
l∈p

σzl + sin θ
∑
l

σxl (g). (6.23)

The Bp and Xl operators describe magnetic and electric interactions respec-
tively. They can only have two values, ±1 for the case of G = Z2. When θ = 0
there is no electric �eld in the Hamiltonian and we refer this regime as plaquette
or magnetic regime, whereas the electric regime is refered in the case θ = π

2

It is worth noticing that the presence in the Hamiltonian of terms involving
four-body interactions is a direct consequence of gauge invariance. There have
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been several attempts to obtain a gauge invariant Hamiltonian starting from
a model with only �rst neighbour interactions. For instance, by de�ning two-
body Hamiltonians on a coarse grained lattice [177], one can obtain in some case
equivalent Hamiltonians to those with four-body interactions. However, at the
moment these type of constructions are restricted to exactly solvable models,
and it is unclear how to generalize them to a generic Hamiltonian, as the one
we will consider in the following. Thus, in this thesis we stick to the idea that
gauge invariance (on square lattices) requires four-body interactions.

6.2 Gauge magnets or link models

The Kogut-Susskind type Hamiltonian (2.90) is obtained from the constructive
approach by choosing:

• The local Hilbert space to be the group algebra C(G).

• The X(g) operators to be obtained by considering the regular representa-
tion of the rotation by an element g of group G.

• The Hamiltonian to be constructed using the simplest closed path of the
lattice, the plaquettes.

Here, we focus on alternative choices to the �rst point. The reason is that
the C(G) algebra for a continuous group is in�nite dimensional, while the imple-
mentation we propose for the simulation of lattice gauge theories with optical
lattices can only deal with �nite dimensional local Hilbert spaces (see Chapter
6). Therefore, our aim is to construct Abelian lattice gauge theories with the
smallest possible local Hilbert space, independently on the number of elements
of the group G. This leads to lattice gauge theories that have been called gauge
magnets or link models [170, 171, 172, 173] in the literature, whose particular
cases are U(1) lattice gauge theories with �nite dimensional local Hilbert space.

Let us consider again the (possibly in�nite dimensional) local Hilbert space
C(G). A celebrated theorem of group theory, Maschke's theorem, allows us to
truncate C(G) to a �nite dimensional Hilbert space, keeping the gauge sym-
metric structure. The theorem states that the regular representation (the one
that acts on C(G)) can be written as the direct sum of all possible irreducible
representations (with a multiplicity equal to their dimensionality) [175].
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As a consequence of this theorem, we are guaranteed that there is a change
of basis such that the operators X(g) become block diagonal,

X(g) = ⊕r
∑
ij

Rr(g)i,j |(r, i)〉〈(r, j)|, (6.24)

where we have explicitly written the block structure of X(g) labeled by the
r irrep, and the Rr(g)i,j are matrix elements of the irrep r of g ∈ G, i, j =
1 · · · dim(r).

We call the rotation matrix that brings all X(g) to the block diagonal form,
α((r, i), g), so that we can express the Zr operators in the new basis as

Zr =
∑

(p,i),(q,j)

z(pi),(qj)
r |(p, i)〉〈(q, j)|. (6.25)

where
z(pi),(qj)
r =

∑
g

α((p, i), g)Rr(g)α−1(g, (q, j)). (6.26)

We call the new basis with abuse of notation {|r〉} basis.

In the {|r〉} basis, we can safely truncate the local Hilbert space of the lattice
gauge theories without any e�ect on the symmetry requirements. Indeed, we
just have to include at least one of the diagonal blocks of X(g). However, it
could happen that by keeping just one block either X(g) or Z(r) become trivial
(that is indeed the case for Abelian theories). For this reason, we need to keep
at least two irreps. In this case, the local Hilbert space will have dimension
d = dim(r1) + · · · dim(rn), where one can stop at the �rst n that provides both
non-trivial symmetry requirement, and non-trivial dynamics.

In the following, we will provide the speci�c example of the U(1) gauge
magnets, since it is the one we are interested in simulating with optical lattices.
In the Appendix 9.3, we provide further examples for generic ZN gauge magnets.

6.3 U(1) gauge magnet

For the case of U(1) gauge group, the Hilbert space of the algebra of the group is
in�nite dimensional. Since this group is Abelian, its irrep. are one-dimensional.
Therefore there is basis where all the X(g) are diagonal:
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R(α) =


1 0 0 0 · · ·
0 eiα 0 0 · · ·
0 0 ei2α 0 · · ·
0 0 0 ei3α · · ·
...

...
...

...
. . .

 , (6.27)

the X(g) are obtained by choosing a phase. In each irrep. a generic element
of the group is obtained by multiplying the chosen phases su�cient number of
times, except for the �rst one, r1, where all the elements are mapped to 1.

For constructing the corresponding gauge magnet one retains at least two
arbitrary irreps, r1 ⊕ r2. Since they are one-dimensional, we can work with
qubits. We could choose any irreps r1 and r2, the simplest choice is to select
the trivial irrep, where all the elements are mapped to 1, and the irrep. where a
given element g ∈U(1), distinct than the identity I, is mapped to the phase eiαg :
As we are interested in faithful irreps, αg has to be chosen not commensurable
with 2π:

α 6= 2π
p

q
p, q ∈ Z. (6.28)

Then:
∀ β ∃ n : R(β) = R(nα) = R(α)n (6.29)

Local invariant under a g is su�cient to ensure invariance under any local
U(1)-transformation.

We denote the eigenvectors of the X(g)s as |+〉 and |−〉. This means that
the X operators are

X(g) = |+〉〈+|+ |−〉〈−|eiαg , (6.30)

while the Z operator reads
Z = |+〉〈−|. (6.31)

This speci�c model can be mapped (on bipartite lattices) by a unitary transfor-
mation to the one studied in [178].

In order to describe the physics of the model, it is important to notice that
we can characterize HG graphically. In the |+〉 and |−〉 basis and with the
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standard 2D orientation of Fig. 6.1, the gauge condition (6.11) reads as:

As|tl1 , tl2 , tl3 , tl4〉 = R(−α)l1R(−α)l2R(α)l3R(α)l4 =

|tl1 , tl2 , tl3 , tl4〉. (6.32)

Then, a given site s the gauge symmetry selects among the 24 states of the four
links entering s only six possible con�gurations:

|+,+,+,+〉, |−,+,−,+〉, |+,−,+,−〉, |−,−,−,−〉, |−,+,+,−〉, |+,−,−,+〉.
(6.33)

These are shown in Fig. 6.2.

Similarly to standard lattice gauge theories, we can interpret the U(1)-
invariant Hilbert space as the space of closed strings formed by |−〉 states,
onto the vacuum of |+〉 states. Indeed, as any of the six allowed states contains
an even number of |−〉, at each site of the lattice, for any ingoing |−〉 there is
also the corresponding outgoing one. Hence, the string cannot end on a (bulk)
site, i.e. only closed string (or string touching the boundary) are compatible
with gauge invariance.

In addition, it is worth to notice that the six allowed con�gurations do not
allow to construct a closed string of �nite size (without reaching the boundary).
This means that, for lattices with periodic boundary conditions, strings can only
close by wrapping around the whole lattice. This implies that their length is
at least equal to the lattice size. This is an important di�erence with respect
to standard lattice gauge theories. In standard lattice gauge theories, indeed,
closed strings can be of arbitrary length, the shortest being the strings around
a single plaquette.

In order to clarify the origin of this discrepancy, one can consider the Kogut-
Susskind Z2 lattice gauge theories introduced in the previous section. There,
the group algebra is two-dimensional, that is, the local Hilbert space is still
made of qubits. As we have already shown, the gauge condition selects 8 out of
the 16 states of the four links entering a given site. It turns out that 6 of them
coincide with the one of the U(1) gauge magnet of Fig. 6.2 a), but there are
two extra states as shown in Fig. 6.2 b):

|−,−,+,+〉, |+,+,−,−〉. (6.34)

These states are, indeed, the ones needed to close a small loop of |−〉 (for
example a single plaquette). In fact, this small di�erence produces completely
di�erent strings patterns, as we can appreciate in Fig. 6.3.
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a) b)

Figure 6.2: a) The requirement of gauge invariance of the states using (6.11)
selects only 6 out of the total 16 states of the four qubits entering a given site. In
the standard 2D orientation, one can visualize the 6 allowed states by coloring
in red states |+〉 and blue |−〉. b) If we consider the standard Z2 lattice gauge
theories the gauge symmetry condition of (6.11) selects 8 out of the 16 states
of the four qubits attached to the links entering a given site. They include the
same 6 states than those of the U(1) gauge magnet of panel a). The two extra
states are represented here, and are those responsible of the existence short
closed loops.
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Figure 6.3: Here, we depict a 4x4 lattice with periodic boundary conditions in
both directions. Red qubits are in the state |+〉, while blue qubits are in the state
|−〉. The blue qubits form closed string pattern as required by gauge invariance.
On the left, we show a possible gauge invariant state of the standard Z2 lattice
gauge theories. On the right, the same plot is presented for the U(1) gauge
magnet. In both cases, the states can be mapped to closed string con�gurations.
There is an important di�erence between the two cases, however. In Z2 lattice
gauge theories, closed strings can form arbitrary small closed loops. In the U(1)
gauge magnet, due to the absence of the states in Fig. 6.2 b), strings are forced
to close by wrapping around the whole lattice. This means that their typical
length exceeds that of the linear lattice size. Blue lines are drawn as a guide to
the eye to recognize the closed string wrapping around the periodic boundaries
of the lattice.
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6.3.1 Pure gauge theory in the magnetic or plaquette phase:
θ = 0

The di�erent string patterns have deep consequences on the physics of the mod-
els. Standard lattice gauge theories, indeed, have at least two phases, a con-
�ned phase and a decon�ned phase. In the con�ned phase, short closed string
abound, while long closed string are very rare and vice-versa in the decon�ned
phase [179]. In the U(1) gauge magnet, by just noticing the absence of short
closed strings, we already have a strong indication that the phase diagram of the
model is very di�erent from the one of the standard U(1) lattice gauge theories.

Let us analyse it in details. First, let us consider the dynamics induced by
the Hamiltonian (6.22) when θ = 0: plaquette or magnetic phase. Contrary to
what happens in standard Abelian lattice gauge theories, for the gauge magnets
two plaquettes operator sharing one link are not commuting, i.e., generally:

[Bp, B
′
p] 6= 0. (6.35)

This means that the ground-state is not a simultaneous eigenvector of all the
Bp's. However, for the sake of the present discussion we can, as suggested in
[178], circumvent this problem on bipartite lattices by considering, �rst, only
half of Hamiltonian, and, afterwards, the e�ects of the other terms in (6.22).
We start with

H0 = −
∑
py

(Bpy +B†py ), (6.36)

where with py we label half of the plaquettes, the ones drawn in yellow in Fig.
6.4. In this way, H0 only contains operators that do not share any link, and,
thus, all commuting.

The model (6.36) is exactly solvable, and we can write its ground-state as
the action of a series of projectors onto a given reference state. It is important to
notice that the reference state should be i) gauge invariant, and ii) not belonging
to the kernel of the various Bp considered.

Indeed, in contrast to what happens for standard lattice gauge theories, the
Bp here has only two eigenvalues di�erent from zero, equal to ±1. It is easy
to check that a possible reference state ful�lling these requirements is the one
depicted in the central panel of Fig. 6.4, consisting of two strings each of length
L2/2 wrapping around the lattice of size L × L with periodic boundary condi-
tions. We call this reference state |ψ0〉.
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l0 0

u0

 r0

d0

a) b) c)

Figure 6.4: a) Lattices with an even number of sites and periodic boundary
conditions are bipartite. This allow to consider the model with half of the
plaquettes (�lled in yellow in the �gure) turned on. In this way, the di�erent
yellow plaquettes do not share any link and the U(1) gauge magnet Hamiltonian
is built up of mutually commuting terms. This implies that the ground-state
is simultaneous eigenvector of all the terms appearing in the Hamiltonian. b)
Reference state used to construct the ground-state of the Hamiltonian (6.36)
through the action of projectors (6.37). c) An example of reference state used
to obtain an excitation with gap ∆ = 2.

We can de�ne the three di�erent projectors on to the subspace of di�erent
eigenvectors of (Bp +B†p) as

P 1
p =

1

2
(Bp +B†p)

(
Bp +B†p + I

)
, (6.37)

P−1
p =

1

2
(Bp +B†p)

(
Bp +B†p − I

)
, (6.38)

P 0
p = −

(
Bp +B†p + I

) (
Bp +B†p − I

)
, (6.39)

so that the ground-state |Ω(0)〉 is proportional to

|Ω(0)〉 ∝
⊗
py

P 1
py |ψ0〉. (6.40)

By construction the above state is not null and minimizes the energy as

|Ω(0)〉 =
⊗
py

|1〉py ,
(
Bpy +B†py

)
|1〉py = |1〉py ,∀py ∈ {yellow plaquettes}.

(6.41)
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As, in principle, all the eigenvectors of H0 can be constructed by applying
the projectors (6.37-6.39) on an appropriate gauge invariant state, it follows
that there is a gap to the �rst excited state. Such gap is at least equal to one,
corresponding to a state

|Φ({0, p′y})〉 =
⊗
py 6=p′y

|1〉py ⊗ |0〉p′y ,
(
Bp′y +B†p′y

)
|0〉p′y = 0. (6.42)

However, it is easy to argue that such a state cannot satisfy the gauge invariance
requirement on each of the sites at the vertices of the plaquette p′y.

Hence, |Ω(0)〉 describes a gapped phase with gap 2. The simplest excited
state with such energy is

|Φ({−1, p′y})〉 =
⊗
py 6=p′y

|1〉py⊗|−1〉p′y ,
(
Bp′y +B†p′y

)
|−1〉p′y = −|−1〉p′y , (6.43)

as |Φ({−1, p′y})〉 ∝
⊗

py 6=p′y
P 1
py ⊗ P

−1
p′y
|ψ0〉.

It is worth to notice that �rst excited states of the form:

|Φ({0, p′y}, {0, p′′y})〉 =
⊗

py 6=p′y,p′′y

|1〉py ⊗ |0〉p′y ⊗ |0〉p′′y , (6.44)

also exist and are gauge invariant, but cannot be obtained just by applying pro-
jectors on the reference state |ψ0〉 as P 0

py |ψ0〉 = 0, ∀py in the yellow plaquettes'
sublattice. In this case, the procedure is more complex, and it involves a B
operator acting on a plaquette of the other sublattice, as illustrated in the right
pannel of Fig. 6.4. It is found that

|Φ({0, l0}, {0, u0})〉 ∝ P 0
d0P

0
r0B0|Ω(0)〉, (6.45)

where d0, r0, u0, l0 are the plaquettes in the yellow sublattice that surrounds the
0 plaquette of the complementary sublattice.

6.3.2 Plaquette or magnetic regime in presence of static
charges

In this simple model, we can compute exactly how the presence of static external
charges modi�es the ground-state. A static charge ±1 at site s modi�es the
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gauge condition (6.11) to

As(g)|ψ〉 = exp(±iαg)|ψ〉. (6.46)

That is to say, the presence of static charges modi�es the allowed string con�g-
urations. Open strings are, indeed, allowed if they start and end on the charges.
This, clearly, a�ects the properties of the ground-state of the system.

With two charges ±1, the ground-state is orthogonal to the one without
static charges. This implies that we have to change both the reference state and
the set of projectors, in order to construct the new ground-state

|Ω(0)±〉 ∝
⊗
py

P̃py |ψ±1〉. (6.47)

A simple candidate for |ψ±1〉 can be obtained by transforming one of the two
closed strings of |−〉 contained in |ψ0〉 into an open one. As illustrated in Fig.
6.5 for a 4 × 4 lattice with periodic boundary condition, this can be done by
�ipping one or more consecutive |−〉 (blue) links to (red) |+〉 links. This creates
two static charges of opposite charge at the two ends of the blue string, where
modi�ed gauge condition (6.46) holds. Two possible choices of the reference
state ψ±1, which di�er on the position of the static charges, are sketched in Fig.
6.5. The +1 static charges are denoted by �lled black dots, while −1 ones by
empty dots.

Now, the projectors P̃py are determined by the requirement of minimizing
the energy while respecting the new gauge condition, which depends only on
the position of the ±1 charges. Since the above de�ned |ψ±1〉 di�er from |ψ0〉
only by few �ipped links, located between the two ends of the open string, the
projectors P̃py may be distinct from the P 1

py only for the plaquettes py (of the
yellow lattice) interested by such �ips, py ∈ {�ipped region} (pale yellow shaded
plaquettes of Fig. 6.5). In fact, as manifestation of orthogonality of the ground-
state with back-ground charges to the ground-state without charges, |ψ±1〉 is
annihilated by the projectors (6.37) acting on the plaquettes between the two
ends of the open string. Hence, the proper choice of projectors in such a region,
which minimizes the energy and does not annihilate the state, is given by the
projector of (6.39), P̃py = P 0

py , ∀py ∈ {�ipped region}.
As a consequence, the ground-state energy of the system with two static

charges is higher than the one without the two charges. The energy gap ∆q

is equal to the number of P 0 projectors, i.e., the number of yellow plaquettes
that contain �ipped links. Up to artifacts of the discretization, such number is
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proportional to the number of �ipped links itself, nF , i.e., is proportional to the
distance r, in lattice spacing unit, between the charges, ∆q(r) ∝ r. As it can
be easily deduced from Fig. 6.5, the exact relation between the gap and the
number of �ipped links is

∆q = nF − Int[
nF
2

],

while the distance between the charge depends on nF as

r =
∣∣∣(nF − Int[

nF
2

]
)

(1, 0) + Int[
nF
2

](0, 1)
∣∣∣ =

√
n2
F + 2 Int[

nF
2

]
2
− 2 nF Int[

nF
2

],

where Int[x] is the integer part of x. The above formula is obtained by taking
in account the �zig-zag� behavior the displacement of the charges shows when
one additional link is �ipped.

These two relations together are the footprint of charge con�nement, a phe-
nomenon that the present model shares with many other gauge theories, among
them, QCD. This means that the gap scales as

∆q(r) = σr, (6.48)

where σ is called string tension. In the long distance regime, i.e., nF � 1, it
follows that ∆q ∼ nF

2 and r ∼ nF√
2
, hence, ∆q ∼ r√

2
, and the string tension for

this model is σ ∼ 1√
2
.

6.3.3 Gauge magnet in intermediate regimes: θ 6= 0

At this point, we consider the e�ect of the link term for θ 6= 0. By the Hamil-
tonian cos θH0 + sin θ

∑
l(Xl(g) + X†l (g)). The last term of the Hamiltonian,

cos θH0 + sin θ
∑
l(Xl(g) +X†l (g)) is certainly dominant close to θ = π

2 . In this
phase, the ground-state is the product state

|Ω
(π

2

)
〉 =

⊗
l

|−〉l, (6.49)

regardless of the αg we have chosen to represent a generic U(1) element g.
Hence, one expects to encounter a phase transition when θ grows from zero to
π
2 . We observe that i)

H0|Ω
(π

2

)
〉 = 0, (6.50)
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a) b)

Figure 6.5: The presence of static external charges modi�es the ground-state. a)
Sketch of the reference con�guration used to obtain the ground-state with two
static �rst neighbors charges (presented as �lled black dots for charge +1 and
empty dots for charge −1). The blue string os states |−〉 is broken in between
them. The plaquettes states along the broken part of the string are orthogonal to
the eigenstates of Bp with eigenvalue 1. These plaquette are �lled in with a pale
shade of yellow in the drawing while regular plaquettes that contribute −1 to
the ground-state energy �lled in solid yellow. This implies that the ground-state
energy in the presence of static charges increases by an amount proportional to
the inter-charge separation, manifestation of charge con�nement. b) Sketch of
the reference state for charges at distance r = 2

√
2. The reference state induces

a further pale yellow plaquette with respect to the reference state on the left
and has thus higher energy.
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i.e., the expectation value of the plaquette part of the Hamiltonian vanishes in
the ground-state at θ = π

2 , and, as well, ii)∑
l∈p

(Xl +X†l )|1〉p = 4(1 + cosαg)|1〉p,∀p, (6.51)

which implies
∑
l(Xl + X†l )|Ω(0)〉 = (1 + cosαg)L

2|Ω(0)〉. From i) and ii), it
immediately follows that the states |Ω(0)〉 and |Ω

(
π
2

)
〉 are not deformed, but

simply shifted in energy, by the change of θ. Hence, the transition between
them is a �rst order phase transition (level crossing), where the expectation
value of any (yellow) plaquette operator can be taken as an order parameter,
which jumps abruptly from −1 to 0.

Furthermore, the relations (6.50,6.51) allow to compute the critical value
of the coupling θc simply by equating the energy per plaquette of |Ω(0)〉 and
|Ω
(
π
2

)
〉

θc : − cos θc+4 sin θc(1+cosαg) = 8 sin(θc) cos(αg), → θc = arctan

(
1− cos(αg)

4

)
.

(6.52)
Also in the product state phase, static charges are con�ned. The minimal

con�guration containing to two charge excitations of opposite sign, ±1, is given
by the shortest open string of |+〉-links connecting the charges. These con�gu-
rations have an energy cost per link that is constant and equal to 2− 2 cos(αg).
Again, the linear behavior of energy gap with the charge distance is a manifes-
tation of the con�nement of charges.

Finally, we are ready to study the whole Hamiltonian (6.22). We notice that
although the actual shape of ground-state in the plaquette dominated phase
|Ω(0)〉 is modi�ed, the conditions (6.50-6.51) are not, as the plaquette ground-
state has always an equal number of plus and minus links. This implies just a
change in the actual value of θc, but not in the nature of the phase transition
that remains a �rst order level-crossing phase transition.

Hence, all the properties of the plaquette dominated phase can be studied
at θ = 0, as a change of θ only induces a shift in the energy of such state and
of the states associated to plaquette excitations.

In order to obtain the full gauge magnet Hamiltonian, we can add the other
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Figure 6.6: Scaling of the gap ∆ between the ground-state and the �rst excited
state of the Hamiltonian of (6.53) as a function of the coupling cw for a 4 × 4
lattice with periodic boundary conditions in all directions. The gap decreases
and eventually saturates to its �nite size value. On a in�nite lattice the results
of [178] predict that it would vanishes at the point at cw = 1.

half of the plaquettes to the Hamiltonian (6.36) adiabatically

Hcw = −
∑
py

(Bpy +B†py )− cw
∑
pw

(Bpw +B†pw), (6.53)

where pw are the white plaquettes in Fig. 6.4. By varying cw from 0 to 1 the
system is driven to a gapless phase [178]. The dependence of the gap on cw
for the 4 × 4 lattice is shown in Fig. 6.6. There we appreciate that the gap
systematically decreases and eventually saturates to its �nite size value.

6.4 Digital quantum simulation of the U(1) gauge
magnet

A natural further step in the study of gauge magnets is the implementation of a
quantum simulation of such systems with the help of ultracold atoms in optical
lattices. It can be done successfully by considering digital ultracold Rydberg
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atoms and, speci�cally, digital quantum simulations. The detailed original pro-
posal was published together with the study of gauge magnet presented in the
last section in Ref. [35]. Althought my role in these investigations of implemen-
tations was not dominant, in this section I introduce the mentioned work to the
reader. We refer to the original work for explicit details of the system.

Rydberg atoms are neutral atoms that can be excited to states close to
the continuum spectrum, having very strong dipolar moments. Such dipoles
induce long-range interactions that make possible the simultaneous interaction
of several atoms together. The basic ideas for digital quantum simulations with
Rydberg atoms are described in [180] and involve the presence of ancilla atoms,
apart from the ones entering the Hamiltonian of the system to be simulated.
These are called �control� Rydberg atoms (see Fig. 6.7 a)). The other atoms,
whose interaction should encode the Hamiltonian to be simulated, are generally
called �ensemble� Rydberg atoms. They have to be physically arranged following
the pattern of the many-body interactions appearing in the desired Hamiltonian.
For example, if one is trying to encode four-body interaction of the four atoms
around an elementary plaquette of a square lattice, such atoms should be inside
the blockade radius of a given control atom, whose dipole moment is used to
implement the wanted plaquette interaction among them.

One can carry out simultaneous operations on all the atoms inside the block-
ade radius of a control atom, operations determined by the state of the control
atom itself. This can be achieved through a laser setup involving two- and
three-photons transitions. In particular, one can engineer 2D lattices where the
ensemble atoms are arranged on the links, while the control atoms are at each
site and at the center of each plaquette (see Fig. 6.7 b)); at same time, one
can tune the lattice spacing so that all the links belonging to a plaquette and
entering a site are simultaneously contained inside the blockade radius of the
respective plaquette and site control qubits.

In this setup, one can perform arbitrary time-evolution with the desired
(Abelian) lattice gauge theories Hamiltonian, and, in some simple cases, one
can also accomplish dissipative quantum simulations to prepare a desired state.
This is, for instance, the technique proposed for the preparation of the ground-
state of the Toric Code in [181], whose low-energy physics, in the appropriate
limit, can be mapped to the Z2 lattice gauge theories.

In our proposal it is provided a speci�c proposal to perform a digital quan-
tum simulations with Rydberg atoms of a U(1) lattice gauge theories in two
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Figure 6.7: a) Schematic of the Rydberg gate. The ensemble atoms, which
admit as logical states |A〉 and |B〉, are placed su�ciently close to the control
atom, whom logic states are |0〉 and |1〉, so that the Rydberg interaction, i.e.,
the dipole interaction in the Rydberg state of the control, is strong (shadow
green volume). At the same time, the atoms are su�ciently separated to allow
individual single-site addressing by laser pulses. b) Schematic of the simulator.
As indicated in the legend, the red dots represent the ensemble atoms, while the
blue dots represent the control ones. Between the control atoms, we distinguish
the ones at the lattice sites (intersections of continuous lines) and the ones at the
center of the plaquettes. The former are needed to impose the gauge condition
and interact with the ensemble atoms at the corners of the green squares. The
latter control the dynamics of the plaquettes, which involves the ensemble atoms
at the corner of the yellows squares. Adapted from [35].
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dimensions. Concretely, the authors proposed the quantum simulation of link
model or gauge magnet, with the choice of a speci�c U(1) lattice gauge theo-
ries where the constituents are qubits. Such qubits can be represented in terms
of atoms with two logical level states, such as the ones available in standard
Rydberg setups.

The work contains a speci�c protocol to prepare the ground-state of the
model and perform arbitrary, out of equilibrium, dynamical simulations. As
well known, one can extract the excitation spectrum of the model by perform-
ing these simulations. In practise, the study can be applied to any system
governed by a local Hamiltonian in bipartite lattices. These Hamiltonians can
be very complex, strongly interacting, non frustration-free Hamiltonians.

The experimental sequence for the preparation of the ground state contains
the next steps:

1. Loading of the ultracold atoms in the appropriate square (super)lattice as
in Fig. 6.7 b).

2. Preparation of the initial appropriate product state by using dissipation
via Rydberg gates (or dissipation combined with single-site manipulation
of individual ensemble atoms). As discussed in section 6.3, the matter con-
tent of the �nal desired state to achieve (after the driving, see next point)
determines which is the appropriate initial state to start with. The authors
proposed as key experimental observables to probe whether the simulator
is working properly the absence of spontaneous symmetry breaking and
the presence of charge con�nement.

3. The second step involves a driven evolution via digital quantum simu-
lations with Rydberg atoms to the �nal Hamiltonian of gauge magnets.
The turning on of the part of the Hamiltonian that has been neglected
in the �rst instance, can be adiabatic or not. Indeed, the e�ciency of
the ground-state driving can be improved by following the chopped ran-
dom basis protocol [182, 183]. Moreover, commuting operations can be
performed on parallel.

4. Error minimization by enforcing the gauge condition during the driving via
dissipation. The two procedures, driving and dissipation, can be applied
for alternative intervals of time.

5. Validation of the simulator. Once the ground-state of the system (for the
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chosen matter content) has been achieved, it is characterized by measuring
correlation functions.

Furthermore, the work also considers how to perform out of equilibrium
long-time-evolution of the U(1) gauge magnet with a digital quantum simula-
tions with Rydberg atoms, following the prescription of [181].

This protocol for digital quantum simulation provides a generalization of the
techniques described in [184, 185, 186], such to permit to prepare ground-states
of Hamiltonians that are not frustration-free.

We end this chapter with a summary of the requirements for the implemen-
tation of the simulator for the U(1) guage magnet:

• The �rst requirement for setting up the experiments is the choice of ul-
tracold atoms suitable for the implementation of the mesoscopic Rydberg
gate and for the load in the appropriate optical lattice. In the simplest
scenario the authors consider, ensemble and control atoms are of the same
atomic species, for instances Rubidium. As a consequence, an ordinary
square lattice, obtained by shining the atoms with two pairs of counter-
propagating lasers in the X and Y direction, respectively, is su�cient to
host all the atoms. If distinct atomic species for ensemble and control are
considered, a more complicated superlattice structure has to be employed.
In any case, the lattice potential has to be su�ciently high that the free
hopping is suppressed (compared with the time scale of the experiment):
for simplicity, the atoms are assumed to be in Mott state with just one
atom per site.

• The second crucial requirement is single-site addressing, i.e., the capac-
ity of (laser) manipulating the atom in each site individually. Single-site
addressing is technically hard, but possible [163] in ultracold atom exper-
iments. It is at the hearth of the functioning of mesoscopic Rydberg gate,
see Fig. 6.7 a). Furthermore, due to single-site addressing, the position
in the lattice is su�cient by itself to distinguish control atoms from the
ensemble ones.

• The third requirement is that the system be su�ciently cold such that
the energy scale E associated to the Hamiltonian can be resolved, i.e.,
KT < E where T is the temperature and K the Boltzmann constant.
The energy scale E, roughly speaking the normalization of the plaquette
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term (for convenient it has been �xed to 1 in our analysis), is limited by
the Trotter approximation to be much less than the inverse of the time ∆t
in which one unitary step of time evolution is performed. Such time ∆t
is determined by the number of sequential Rydberg gates NR needed to
engineer the plaquette term evolution, ∆t = NRtR, as the further delay
due to single-qubit rotations entering the process is negligible compared
to the Rydberg gate delay tR. Hence, it follows NR � tRKT . For state
of the art experiments tRKT & 102, as tR is about few µs and T is about
few tens of nK.

146



Chapter 7

Splitting a many-body

quantum system

The dynamical evolution of an isolated quantum system is governed by a uni-
tary operator and is, consequently, reversible. Therefore, one might think
that irreversibility and thermalization should only appear through the system-
environment interaction [187]. For a small region inside a large isolated quan-
tum system, a legitimate environment is the system itself. In particular, it is
important to understand, under which conditions the large-time out of equilib-
rium evolution of an isolated system will lead to a thermal state of the small
region. Although the decoherence time of most experimental systems is too
short for an e�ective study of that regime, recent advances in cold atomic
physics [2] have allowed to experimentally address such situations and have
boosted renewed interest in the theoretical understanding of these phenomena
[41, 42, 43, 188, 45]. The experiments have been complemented with theoretical
insights [189, 190, 40, 191, 192], which have brought about interesting rami�ca-
tions of the problem, ranging from quantum information and entanglement to
the issue of integrability in quantum systems.

In the context of the low energy physics of a many body quantum systems,
entanglement has emerged as a privileged tool to characterize quantum phases.
In 1D, for example, the scaling of entanglement allows to distinguish between
gapped systems and critical systems, and the structure of the entanglement
spectrum allows to identify symmetry protected topological phases. Here we
try to analyze the e�ects of the conservation of the entanglement in the out-of-
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equilibrium evolution after a quantum quench.
Conserved quantities play a very special role in Physics. In classical me-

chanics, they allow to de�ne integrable systems as those systems that possess
as many conserved quantities as degrees of freedom. In quantum mechanics,
this concept is hard to generalize. The expectation value of any operator that
commutes with the system Hamiltonian is conserved. In particular, arbitrary
powers of the Hamiltonian itself (that in general can de�ne independent oper-
ators) are conserved during the out-of equilibrium dynamics. This means that
a generic quantum system possesses as many conserved quantities as degrees of
freedom, and we still miss a proper de�nition of integrable quantum systems.

Furthermore, when considering local equilibration, the equilibration of a small
region inside a large quantum many body system, among all conserved quanti-
ties, only few seem to be relevant. For example when a generic quantum many
body system locally relaxes, it does it to a thermal state and thus the only rele-
vant conserved quantity is the expectation value of the energy. Indeed the Gibbs
ensemble (or thermal state) is formally obtained by maximizing the entropy at
�xed value of the energy [193, 194, 195]. Exactly solvable systems, can still
locally equilibrate, but to more complex ensembles obtained by maximizing the
entropy subject to the constraints arising from the conservation of all relevant
quantities. It is still unclear in general how to identify the relevant conserved
quantities, but in the cases where they are known, the ensembles that describe
the equilibrium of small regions are called generalized Gibbs ensembles (GGE)
[196, 197].

Is entanglement one of those relevant conserved quantities? In order to un-
derstand this we address the non-equilibrium dynamics arising after a quantum
quench [192]. The system is originally in the ground state of a certain Hamilto-
nian H0. One suddenly quenches the Hamiltonian from H0 to H and observes
the subsequent out of equilibrium dynamics. Depending on if H di�ers from
H0 locally (on few sites) or globally (on the whole system) quenches are called
global or local. In particular, we characterize the quench obtained by splitting a
critical spin chain into two equal halves. This amounts to turning o� at t = 0
the interaction between the two half chains. This, together with the fact that
the evolution inside each of the two halves is unitary, implies that the original
entanglement between them is conserved during the evolution. Thus, the initial
correlations between the two halves are expected to survive along the whole
evolution.

A similar phenomenon was observed already in the experiments carried out
by Gring and coworkers in Vienna [43], where a quasi-1D Bose gas was split
into two halves. The two halves were subsequently allowed to evolve inde-
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pendently. After a time shorter than the expected equilibration time, many
of the observables had relaxed, a phenomenon usually called prethermalization
[46, 198]. After the prethermalization, the evolution was much slower, and com-
patible with the e�ects of the heating of the system due to the residual small
interactions with the environment. Nevertheless, the original almost stationary
interference pattern between the two halves persisted for large times after the
prethermalization time. In a truly isolated system this would have been there
forever as a consequence of the initial entanglement between the two halves. A
truly isolated quantum system, indeed, conserves the initial entanglement be-
tween two systems that are separated and stop interacting. While it is clear,
that by splitting the system one initially injects into the system an amount of
extra energy that is proportional to the geometry of the splitting (extensive in
the Vienna experiment and intensive in the case we consider here) and thus gen-
erate the subsequent out-of-equilibrium dynamics, it is not clear what is the role
of the conservation of the entanglement in the subsequent equilibration process.

From a quantum information perspective, the key insight is that not only
the entanglement is conserved, but also each of the individual eigenvalues of the
reduced density matrix of any of the two separated regions is conserved. All
together they constitute the entanglement spectrum (ES) [199]. How does this
large amount of constraint a�ect the dynamics?

In order to address this point, we compare the non equilibrium dynamics
generated by two similar quenches. We either split a critical spin chain into
two halves (we will refer to this situation as to the split quench), or we join two
critical chains in a larger one (and we will refer to this scenario as to the join
quench). Both scenarios are local quenches. Initially, in the bulk, in middle of
the two regions that are either split or joined, any correlation function of local
observables (once appropriately rescaled) is the same in the two cases. Also the
post-quench Hamiltonian is the same in the bulk for both quenches. We thus
say that the two quenches are in the bulk initially �locally� indistinguishable.
They are clearly distinguishable close to the boundaries of the sub-systems.
While the split quench conserves the initial correlations between the two halves,
the join quench does not since the interaction between the two halves allows to
distribute correlations among them along the evolution.

The main result that we present here, is that the out-of-equilibrium dynamics
and the subsequent relaxation of the bulk of the two systems are distinguishable,
and, thus, the presence/absence of conservation of the entanglement spectrum
a�ects the out of equilibrium dynamics of the system (for related ideas see also
Ref. [200]).
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7.1 The Splitting Quench

7.1.1 Quenched dynamics and thermalization

Let us consider the ground state |φ0〉 of a certain closed system described by the
Hamiltonian H0. A quench is performed by changing abruptly the Hamiltonian
from H0 to H, in such a way that |φ0〉 ceases to be an eigenstate, and thus
undergoes non-trivial unitary evolution

|φ(t)〉 = exp(−iHt)|φ0〉. (7.1)

Let us consider a a (small) region of the system, namely A, containing r � N
spins, described by the reduced density matrix ρA(t) = TrB |φ(t)〉〈φ(t)|, where B
is the complement of A. Under certain conditions, the limit ρ̄A ≡ limt→∞ ρA(t)
exists, i.e., for large enough times, the region A equilibrates to a stationary state
[201, 202, 203, 204]. Typically, a certain amount of time-averaging is necessary
in order to remove small �uctuations.

If, at equilibrium, the state of A is well described by a thermal state, it means
that, for the equilibration process, the only relevant conserved quantity is the
energy E. The thermal state is indeed given by ρ̄A ' TrB exp(−βH), where β
is chosen such that Tr(HρA)/Tr(ρA) = E. If the Hamiltonian is known to com-
mute with a larger set of relevant local observables, {〈Hi〉}Ki=1, the equilibrium
state is a generalization of the thermal state, ρ̄A ' TrB exp(−

∑K
i=1 βiH

i) and
is called a Generalized Gibbs ensemble [197, 205].

7.1.2 The quench protocol

Consider a spin-chain of length N , described by a local homogeneous Hamil-
tonian with open boundary conditions, H0, which can be formally decomposed
into three terms:

H0 = HL +HR +HLR. (7.2)

where HL and HR act, respectively, on the left and right halves, and HLR

represents the term connecting them. We prepare the system in its ground
state, |Ω0〉, and proceed to quench the Hamiltonian to

Ht → H = HL +HR, (7.3)

i.e., we remove the connecting term,HLR. The upper panel of Fig. 7.1 illustrates
the procedure.
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JOIN

SPLIT

Figure 7.1: Upper panel: Splitting a spin chain. After the ground state of a spin-
chain of length N has been obtained, the Hamiltonian is quenched by removing
the term which connects both halves, e�ectively splitting them. Lower panel:
Joining two spin chains. The situation is reversed, the ground states of two sep-
arate chains are quenched by adding the missing term in the Hamiltonian which
connects them. This provides a reference quench for comparison since the two
quenches are locally indistinguishable and only di�er by the presence/absence
of the conservation of the entanglement spectrum.
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The state now evolves as

|φ(t)〉 = exp(−iHt)|Ω0〉. (7.4)

The initial state |Ω0〉 has excess energy with respect to the ground state of the
new Hamiltonian H, |ΩL〉 ⊗ |ΩR〉. This excess energy can be interpreted as the
presence at t = 0 of a �nite density of quasi-particles located at the junction
between L and R [206]. If H is a sum of local terms, these quasi-particles will
propagate with a �nite speed, giving rise to the characteristic light-cone e�ects
observed in local quenches [42]. Of course, if H contains long-range interactions,
this behavior can di�er [207, 208].

The left half of the system L, at time t = 0, is described by a mixed state,
obtained by the following reduced density matrix

ρL(0) = TrR|ΩT 〉〈ΩT |. (7.5)

that can be diagonalized as,

ρL(0) =

m∑
α=1

λα|χα〉〈χα|, (7.6)

where m is the Schmidt rank, and the orthonormal {|χα〉} are called Schmidt
vectors. The subsequent time evolution of ρL(t) will be given by

ρL(t) = UL(t)ρL(0)U†L(t) (7.7)

where UL(t) = exp(−iHLt). An immediate consequence is that the spectrum of
ρL(t), the set of {λk}mk=1, is preserved by the evolution. The Schmidt vectors,
nonetheless, evolve in a non-trivial way, describing a time dependent set of
orthogonal vectors. At any later time indeed,

ρL(t) =

m∑
α=1

λα|χα(t)〉〈χα(t)|, (7.8)

with the same set of {λk}mk=1 than the one in Eq. 7.7. It is customary to describe
ρL(0) in terms of a certain entanglement Hamiltonian HL, such that ρL(0) =
exp(−HL) [199], i.e., as if it were a thermal state at an e�ective temperature
β = 1. The entanglement spectrum (ES) is de�ned to be the set of eigenvalues
of HL, εα = − log(λα). Thus, as a consequence of the conservation of the
eigenvalues of ρL, the ES between the left and right parts is also conserved.
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How does in general change the local equilibration after a quench when the
ES is conserved? In order to address this question we can study the equilibration
of a generic mixed state constructed from a set of orthogonal vectors |φ〉α each
appearing with probabilities λα. We can perform the time evolution for each of
the state individually (it is a linear map) and then reconstruct the appropriate
mixed state by summing the result with the appropriate probabilities. In the
simplest scenario we can assume that each of the vectors |φ〉α ful�lls the nec-
essary conditions for thermalization described in Ref. [203]. Depending on the
initial energy of each them Eα, they will locally thermalize to the corresponding
temperatures βα such that Tr(H exp(βαH))/Tr(exp(βαH)) = Eα. If the βα ob-
tained in this way are not su�ciently close, the �nal state can not be described
by a single temperature. Similarly, if there are more preserved quantities, the
�nal state will not be uniquely determined by their initial expectation values.
The �nal state might, therefore, not be described by a Gibbs (or generalized
Gibbs) ensemble. In other words, the system would not locally thermalize in
the usual sense but it would equilibrate to an exotic ensemble.

Is this non-thermalization likely to occur for the initial mixed state obtained
in the split quench? A generic scaling argument suggests that such tempera-
ture mixing is di�cult to achieve. Ground states of gapped 1D Hamiltonians
ful�ll the area law of entanglement [209, 210]. This implies that the number
of Schmidt vectors saturates with the system size in the thermodynamic limit.
The temperature mixing e�ect might be more relevant for a critical initial state,
for which the number of Schmidt vectors scale as a power law of the system size
[211]. Still di�erent Schmidt vectors, typically only di�er locally so that their
initial energies are very similar. We thus do not expect to observe the temper-
ature (or generalized parameter) mixing in our setting. Still, in the results we
present, we will observe some remnants of the fact that the ES is conserved.

In order to clarify the role of the ES-conservation, we will compare the
splitting quench with the joining quench of the same spin-chain, as illustrated
in the lower panel of Fig. 7.1. In this last case, one �rst obtains the ground state
of Ht in Eq. (7.3) and then quenches the Hamiltonian by adding the connecting
term HLR, i.e.: applying H0. This e�ectively joins the two independent chains.
This case has been addressed both at criticality and away from it using several
techniques, which range from conformal �eld theories (CFT) to free fermions
[212, 213, 214].

Since both quenches are locally described by the same Hamiltonian, and the
correlation functions of any local operator, in the bulk of the initial states, are
indistinguishable, we might expect that the di�erence between the correspond-
ing out-of-equilibrium evolutions should be negligible far away from the division
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between L and R. We will show that this is not the case, and the two quenches
produce substantially di�erent states, both globally and �more interestingly�
also locally.

7.1.3 The critical Ising chain

As a prototypical example, let us consider the Ising model in transverse �eld
(ITF), a simple integrable one-dimensional spin-chain,

H0 = −J
N∑
i=1

[
σxi σ

x
i+1 + λσzi

]
, (7.9)

where i ranges over the N sites of a 1D lattice and σx and σz stand for the
Pauli matrices. The model presents two phases: a X-polarized phase for λ < 1
and a Z-polarized phase for λ > 1. They are separated by a second-order phase
transition at λc = 1, where we will perform all our calculations. The ITF can
be rewritten as a free-fermion model via a Jordan-Wigner and a Bogoliubov
transformation [215]

H0 =
∑
k

εk

(
η†kηk −

1

2
,

)
(7.10)

with η†k and ηk following the usual anticommutation relations. The model is,
therefore, integrable, and all its conserved quantitites can be expressed as a
function of the mode occupations nk [205]:

nk = 〈ΩT |η†kηk|ΩT 〉. (7.11)

The low-energy physics of the ITF model close to the phase transition and
its out-of-equilibrium dynamics can also be described using CFT [212, 213, 216].

In this work we have studied the two quenches via both free-fermion tech-
niques [217] and the time evolving block decimation (TEBD) method, based
on matrix product states (MPS) [218, 219]. MPS techniques have the advan-
tage that they can be extended to both interacting models and non-integrable
models.

7.2 Numerical results

We �rst analyse the relation between the Schmidt vectors of the initial state and
the eigenvectors of the post quench Hamiltonian H. This gives us the oppor-
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tunity to understand better the possible connections between the conservation
of the entanglement spectrum and the long-time equilibrium regime. As we
have discussed, the distribution of the expectation value of the energy and all
relevant conserved quantities taken on the set of the Schmidt vectors are the
ultimate quantities that determine if the system equilibrates to a well de�ned
GGE ensemble or not.

We then will proceed to a more traditional characterization of the states
resulting from the split quench focusing on two types of properties, global and
local. Among the global properties, we will consider the entanglement entropy
of di�erent types of blocks and large-distance correlation functions. The local
properties are characterized by studying the expectation values of local opera-
tors.

The entanglement entropy of a block A, with reduced density matrix ρA, is
de�ned as

SA = −trρA log ρA. (7.12)

We consider both the case in which A is completely contained in one of the two
blocks (say L) and when it is shared in between L and R, see Fig. 7.6.

With respect to correlation functions, we will evaluate the two-point corre-
lation function of the order parameter, de�ned as

C(r1, r2, t) = 〈ϕ(t)|σx(r1)σx(r2)|ϕ(t)〉 (7.13)

− 〈ϕ(t)|σx(r1)|ϕ(t)〉〈ϕ(t)|σx(r2)|ϕ(t)〉.

In particular, we will consider distances |r1 − r2| scaling with the size of the
system, |r2 − r1| ∝ N , in order to study the thermodynamic limit. Since both
the splitting and the joining quenches break the translation invariance explicitly,
we will consider separately the cases in which both r1 and r2 are on the same
side with respect to the splitting point, or when they lie in di�erent sides.

All those properties will be studied as a function of time. We will also focus
on the equilibrium regime which emerges after the transient out-of-equilibrium
dynamics. Although global properties, as discussed in the introduction, do not
equilibrate, in a local quench we can still observe equilibration of an extensive
region A that nevertheless should be separated from the boundaries. Indeed,
in our simulations, we always observe three di�erent regimes: (i) the static,
(ii) the out-of-equilibrium regime and (iii) the equilibration regime, see Fig.
7.2. This fact is well understood by the approximate picture of the radiation
of quasi-particles introduced by Cardy and Calabrese [206]. Indeed, through a
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local quench, one typically populates all single quasi-particle momentum states
with equal probability, which then propagate outwards with �nite speed v.

Since our model is described at low energy by a CFT, all pseudo-particles
propagate with the same speed at �rst order in 1/N . In this work we will not
address the corrections to this picture, that i.e. for long times, are responsible for
the spread of the pesudo-particles and thus spoil the periodicity of the dynamics.

The out-of-equilibrium evolution of a region A which lies at a distance d
from the interface between L and R will start after a time t1 ≈ d/v. For earlier
times, a static regime is observed. Eventually, at a time t2 > t1 the slowest
particles leave the region and the equilibration regime begins. Due to the �nite
size of the chains, if we wait for a large enough time tN � t2, the quasi-particles
will bounce back at the boundary and return to the region A, thus making the
system depart from equilibration. Thus, we will search for the equilibration
regime in the time window t2 � t � tN , which depends on the distance from
A to the boundaries and the velocities of the di�erent types of quasi-particles.
For times t � tN the behavior of the system is plagued with �nite-size e�ects,
which we want to avoid since we are interested in the thermodynamic limit.
This implies that we can consider at most times of the order of tN .

When addressing local properties, the static regime is followed by a very fast
relaxation which leads to the equilibration regime. This can be readily explained
assuming that times t1 and t2 coincide.

7.2.1 Schmidt vectors of the initial state

We want to understand the relation between each of the Schmidt vectors and
the expectation value of the observables that are conserved during the time
evolution. We start with the energy. We arrange the eigenvalues of the reduced
density matrix ρL(0), {λα}, in decreasing order. In this way we can de�ne an
e�ective energy gap as

∆EL = 〈χ2|HL|χ2〉 − 〈χ1|HL|χ1〉. (7.14)

We �nd numerically that ∆EL decays as a power of the logarithm of the system
size, as shown in Fig. 7.3. The appearance of a logarithmic scaling could
be related with the results of [220, 221, 222, 223], that establish a mapping
between the reduced density matrix of the ITF and the transfer matrix of the
corresponding classical model on a cylinder whose radius grows logarithmically
with the size of the block.
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EQUILIBRIUM

OUT OF EQUILIBRIUM

STATIC

Figure 7.2: Relevant time scales: During the out-of-equilibrium evolution which
follows the split quench, the region A is characterized by three di�erent regimes
as a consequence of the �nite speed at which the quasi-particles created at
the junction between L and R radiate. A static regime, lasting up to time
t1, in which the behavior is almost unchanged. This time t1 is indeed the
time necessary for the fastest quasi-particle to reach the region. After t1, A
experiences an out-of-equilibrium regime up to a certain t2, the time needed
by the slowest quasi-particles to travel through A and abandon it. From t2
up to tN , we observe the equilibration of the region. At tN , the fastest quasi-
particles bounce back from the boundaries so that �nite size e�ects start to play
a dominant role.
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Figure 7.3: Energy gap ∆EL between the �rst two Schmidt vectors of the left
half of a critical Ising chain as a function of the chain length. The data suggest
that the gap closes as a power of the logarithm of the system size.
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Figure 7.4: Main panel: occupation numbers of the modes of Hamiltonian HL

for the �rst three Schmidt vectors, for chains with N = 100 spins. Left inset:
the di�erences in occupation are more pronounced around the Fermi energy.
Right inset: Those di�erences scale as a power of the system size.

The mode occupations 7.11 for the �rst three Schmidt vectors are presented
in the main panel of Fig. 7.4. They resemble Fermi-Dirac distribution functions
at low temperature, and it is possible to identify a certain Fermi level that
discriminates between almost fully and almost empty modes. Nonetheless, the
occupations near the Fermi level di�er considerably among di�erent Schmidt
vectors, as shown in the left inset of Fig. 7.4. Those di�erences decrease slowly
as a power law of the system size (see Fig. 7.4, right inset).

The Ising model can be mapped to free fermions and thus all conserved
charges are functionally dependent on the mode occupations. Since for each
Schmidt vector the mode occupations are di�erent this suggests that this type
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Figure 7.5: Main panel: Energy �uctuations as a function of the system size.
We see that local �uctuations (inset) decay to zero as 1/N , as expected in the
case of a local quench.

of quench could provide an example of equilibration to a strongly correlated
state that di�ers both from the Gibbs and the Generalized Gibbs Ensembles
(GGE), as opposed to what is expected for standard quenches.

A more careful quantitative analysis, however, shows that this is not the
case. Indeed, the �uctuations of the energy in the initial state are not large
enough to produce signi�cant e�ects on the equilibration state. As shown in
Fig. 7.5, those �uctuations are independent of the system size, so that in the
thermodynamic limit they vanish as 1/N (inset).

This is not surprising since, in a local quench, the initial state of the system
does not possess enough energy to equilibrate to a thermal (or generalized ther-
mal) state characterized by an extensive scaling of the entanglement entropy of
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a region. Indeed, in the initial state of a local quench, the excess energy density
with respect to the ground state scales with 1/N , and thus it is not surprising
that also its �uctuations scale as 1/N . This implies that the equilibrium state
of a local quench is very close to a zero temperature state where, for critical
systems, the entanglement entropy of a region only grows logarithmically with
its size [224, 225, 226, 211, 227]. Still, as we will see in the following, the con-
servation of the entanglement spectrum has non-trivial consequences both on
local and global properties of the system.

7.2.2 Entanglement entropy

The time evolution of the entanglement entropy has been computed analytically
in a few selected settings [206, 212, 213, 228, 216], and numerically in many
others, local or global quenches, impurities or disorder [214, 229, 229, 230, 231,
232, ?, ?].

In this section we analyze the time evolution of the entanglement entropy of
a block A of size r < N , as de�ned in Eq. 7.12, for two di�erent geometrical
con�gurations (see Fig. 7.6), A may have (i) a single active boundary or (ii)
two of them. In this second case, the two boundaries may lay on di�erent parts
(ii.a) or on the same part (ii.b) of the splitting point.

Fig. 7.7 is devoted to the analysis of entanglement in con�guration (i). Let
A be formed by the leftmost r sites of a chain with N = 160 spins, split into
two halves. The upper panel of Fig. 7.7 shows the entanglement entropy S(r, t)
as a function of both the size of the block (X-axis, marked r), and time in
units of 1/J (Y -axis, marked t (1/J)). Notice that, since the entanglement
Hamiltonian of the left part, HL, is a constant of motion, S(N/2, t) is preserved
during time evolution. At t = 0, Sr presents the characteristic shape of a critical
system: S(r, 0) = c

6 log
(
L
π sin

(
πl
L

))
[224, 225, 226, 211, 227]. But for further

times, a light-cone develops at the LR interface, and the entanglement entropy
only changes when the fastest quasi-particles generated at the quench cross the
active boundary of A as a speci�c case of the cartoon sketched qualitatively in
Fig. 7.2.

The lower panel of Fig. 7.7 shows the time evolution of S for blocks of
type (i) and di�erent sizes. S(N/2, t) is constant; S(N/4, t), has a single active
boundary that lies at the left of the splitting point, and thus it presents a
stationary behavior for short times followed by a fast increase when the quasi-
particles reach N/4; we also analyze S(2N/3, t), whose active boundary lies to
the right of the split point. In this case quasi-particles are radiated from within
the region and only contribute to an increasing entropy when they leave the
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i)

ii.a)

ii.b)

Figure 7.6: The geometrical con�guration of block A within the full chain, (i)
A has only one active boundary; (ii.a) A has two active boundaries, one in L
and the other in R; (ii.b) the two active boundaries are both inside L.

region.
From the space-time diagram of the upper panel of Fig. 7.7 we can extract

two projections. A time-like projection S̃T (t) is obtained by �nding, for each
time t, the maximal entropy among all block-sizes, and a space-like projection
S̃S(r) de�ned by �nding, for each block-size, the maximal entropy achieved
along the evolution. After a joining quench, the time-like projection S̃T only
grows logarithmically with time [213, 229]

S̃T (t) =
c

3
log2

∣∣∣∣Nπ
(

sin
πvt

N

)∣∣∣∣+ const,

where c = 1
2 is the central charge of the critical Ising chain and v is the quasi-

particle velocity. The space-like projection, S̃S(r) is described by the same
equation, just replacing t with r. On the other hand, after a splitting quench,
S̃T (t) behaves as

S̃T (t) =
c

3
log2

∣∣∣∣∣Nπ
(

sin
πvt

N

)1/2
∣∣∣∣∣+ const, (7.15)
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Figure 7.7: Upper panel: Time evolution of the entanglement entropy S(r, t) for
a chain of N = 160 after the splitting. Lower panel: Time evolution of S(r)
for three di�erent values of r. When r = N/2, entropy remains constant. In
the other two cases, entropy starts to grow only after the fastest quasi-particles
enter (if r < N/2) or leave (if r > N/2) the block.
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where the main di�erence with the result for the joining quench is the presence
of the square root (see upper panel of Fig. 7.8). The space-time projection
S̃S(r) presents a cusp at r = N/2 which is absent in the joining case. Still, for
small r, the two cases are di�cult to distinguish (see lower panel of Fig. 7.8).
The detailed analysis is presented in Appendix 9.4.

The block in con�gurations (ii) in Fig. 7.6 have two active boundaries. As
discussed previously, we distinguish between blocks (ii.a) which overlap with
both parts, which we will place centered on the LR interface, and (ii.b), those
which lie totally within one part. In Fig. 7.9 we consider two blocks of size
r = 8, one of them centered on the LR interface (ii.a) and the other at a
distance l = 10 from it. Notice that the time evolution of the entropy of two
blocks presents the three aforementioned stages: static, out-of-equilibrium and
equilibrium. In both cases, at large times the entropy converges to a �nite value
Seq.

In the joining quench the relaxation towards Seq is governed by [214]

S(r0, t) = Seq +
α log(t) + β

t
, (7.16)

where the parameters α and β depen on the distance l between the block and
the site of the quench.

The insets of Fig. 7.9 unveil a leading behavior of the same type as Eq. 7.16
with superimposed oscillations and faster time scales.

The entanglement spectrum of a block in con�guration (i) of Fig. 7.6 presents
only the �rst two out of the three time regimes, static and out-of-equilibrium.
This is a consequence of the fact that the block extends up to the extreme of
L and the quasi-particles never have space to escape. The Schmidt coe�cients
of the reduced density matrix of a block increase abruptly when the quasi-
particles reach the block, and slower further increase afterwards. During this
last regime, the Schmidt coe�cients λrα decay as a power of α (see lower panel
of Fig. 7.10), pointing to the possibility of approximating the state by keeping
only a small number of them, χ. The error of this approximation, which is the
usual systematic error of MPS-based techniques, is given by

ε = 1−
χ∑
α=1

(λrα)2. (7.17)

The lower panel of Fig. 7.10 shows also the Schmidt number χas a function
of time required to achieve two possible desired tolerances ε. Notice that the
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Figure 7.8: Upper panel: Time-like projection of the entropy, S̃T (t), after a
splitting quench. The inset shows that the growth is compatible with a loga-
rithmic growth with a pre-factor close to c

3 , as in the join quench, but with an
extra square root inside the logarithm (see Eq. 7.15). Lower panel: Space-like
projection, S̃S(r). For block sizes very di�erent from N/2, it behaves as in the
join quench, displaying a logarithmic growth with a pre-factor close to c

3 .
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Figure 7.9: Upper panel: Time evolution of the entanglement entropy for a block
with r0 = 8 sites centered on the LR interface in a spin-chain of N = 160 sites.
Notice the sudden jump to a maximum value and the slower relaxation towards
Seq. Lower panel: Same evolution, but for a block with r0 = 8 sites, located
at a distance l = 10 from the interface. In both cases the insets show that the
relaxation behavior is compatible with the one of Eq. 7.16, as in the case of the
joining quench, but with faster timescales and super imposed oscillations.
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value of χ increases only moderately during the whole time interval, justifying
our choice to use the TEBD algorithm [233].

7.2.3 Correlation functions

Let us turn to the time evolution of the two-point correlation functions of the
order parameter after splitting the chain, de�ned in Eq. 7.13, and compare them
with the joining case, which has been studied in detail by several authors [212,
234]. As with the entanglement entropy, we will study them in two geometric
con�gurations, shown in Fig. 7.11, when both sites r1 and r2 are in di�erent
halves of the chain (top panel) and when they lie in the same half (bottom).

In the static regime, since the system is critical, for |r2−r1| ∝ N , C(r1, r2, t) ∝
N−2x with x = 1/8 (see Fig. 7.14, both panels, for short times).

Let d1 and d2 be the distances from both points to the LR interface, dmin =
min(d1, d2) and dmax = max(d1, d2). The out-of-equilibrium regime is de�ned
by the condition dmin < vt < dmax, i.e.: the time lapse in which the quasi-
particles have already reached the closest point and have not yet left the region
between the two points. In the time-regime where dmin < vt � dmax, the
CFT predicts that after a joining quench the correlation function will behave
as C ∝ d

−2x−1/2
max [212], independently on whether the points are in the same

or di�erent halves. This prediction has been con�rmed numerically [234]. Fig.
7.12 shows the results in our case. After the split quench, when the points are
in the same half, we also observe C ∝ d−αmax, but with α ≈ 1/2 (α = 0.46(5)).
Generalizing the CFT prediction, we may write this as C ∝ d

−2x−1/4
max . In the

case of points in di�erent halves, we do not observe any power law decay in the
correlation function, as shown in the lower panel of Fig. 7.12.

We study next a kind of light-cone regime by �xing the ratios ε(t) = dmin

vt < 1

and R(t) = dmax

vt > 1. In the joining quench, the correlation in this regime is
described by C ∝ t−3x as t → ∞ [234]. Our results for the split quench are
shown in Fig. 7.13. We can observe also a power law decay of correlations as in
the joining case but when both points are located in the same half of the chain
the exponent we extract is 0.46(1) that apparently is not compatible with the
joining case. Interestingly, when they lay in di�erent halves, we still observe a
polynomial decay of the correlations with t, but with the exponent close 3/4,
0.72(1), that doubles the one observed in the joining case.

Finally, we reach the equilibrium regime. If both points lie on the same half,
correlations decay as a power law of the system size, as in the joining quench as
shown in the inset of the upper panel of Fig. 7.14. This means that the system
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Figure 7.10: Upper panel: Time evolution after a split quench of the entangle-
ment spectrum for a block of type (i) with size N/4 in a chain of length N = 140.
Notice that only two time regimes are present: static and out-of equilibrium.
Lower panel: After the fast increase (t = 40), the entanglement spectrum decays
polynomially, showing that the state is neatly approximable with a few Schmidt
vectors, χ. Small values of the representation error are obtained with χ ≈ 20,
as shown in the inset.
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Figure 7.11: The two-point correlation function of the order parameter, de�ned
in Eq. 7.13, is studied in two di�erent con�gurations, when the two sites are on
di�erent halves (top) and when they lie on the same half (bottom) of the split
chain.

is still critical, with the same critical exponent x = 1/8, and has thermalized to
a temperature which is very close to zero. If the points are on di�erent halves
we still observe power-law behavior but this time we observe anti-correlations
that decay with the same critical exponent x = 1/8, as shown the inset in the
lower panel of Fig. 7.14. See Appendix 9.5 for a detailed explanation of this
anti-correlation in terms of quasiparticles coming from the quenched point.

7.2.4 Local properties

As we have seen, the evolution of global quantities after the split quench is
very di�erent from the one after a join quench. This is not very surprising,
since both quenches are globally very di�erent. Still, we can attempt a local
characterization of the equilibrium regime. Since the quenching Hamiltonian are
locally identical, and the initial states provide the same correlations functions
in the bulk, one might expect similar behaviors in both quenches.

The top panel of Fig. 7.15 shows that, as expected, after splitting or joining,
local observables display all three stages, the static, the out-of-equilibrium and
the equilibrium stages. The static value of the magnetization depends on the
system size as

〈σz〉0 = σ∞ +
cz
N
, (7.18)

where both σ∞ and cz are known analytically [235]. Let us consider the two cases
of a N = 200 spin-chain split into two halves and two N = 100 chains joined
in a single chain. In both cases the static values di�er because of the di�erent
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Figure 7.12: Correlations in the out-of-equilibrium regime. Both panels show
the correlations in the time window dmin < vt � dmax, as a function of dmax.
The upper panel considers the case in which both points lie in the same half,
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Figure 7.13: Correlations in the light-cone regime. We measure the correlations
between two points in the regime described in the text as light-cone, with dmin

vt =

1/2, dmax

vt = 2 and vt < N/2. Upper panel: if both points are in the same
half, correlations decay with time as t−3x with x = 0.46(1). Lower panel: if
both points are in di�erent halves, correlations decay with the same law, but
x = 0.72(1), close to 3/4.
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Figure 7.14: Time-evolution of the correlation functions. In the upper panel we
consider the case when both points are in the same half of the chain. Concretely,
we plot C(N/4, N/4 +N/10, t) for di�erent chain lengths N . In both the static
and equilibrium regime we observe a polynomial decay of the correlation as a
function of the system size N . The critical exponent x governing the decay has
been monitored as a function of time during the equilibrium regime, showing
oscillatory convergence to the static value 1/8 (see inset). The lower panel shows
the time evolution of the correlator when both points lie in di�erent halves,
symmetrically placed with respect to the LR interface. Concretely, we plot
C(N/2 − N/10, N/2 + N/10, t). Interestingly, the equilibrium regime leads to
anti-correlation between the two half-chains (see Appendix 9.5), whose critical
exponent x again converges through some oscillations to 1/8 (inset).
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initial system sizes, with the split value displaying larger magnetization than the
join. As expected, both values cross during the out-of-equilibrium phase, and the
split equilibrium magnetization is lower than the join equilibrium magnetization.
The equilibrium magnetization for the split chain converges to the static value
of the two chains that have been joined, while the opposite does not happen, the
equilibrium value for the joint chain is not the same as the static value of larger
chain before the split. This is a �nite-size e�ect. In the thermodynamic limit,
the magnetization is the same before and after the quench in both cases. Still, for
�nite chains, we can distinguish both quench protocols, since the magnetization
approaches the thermodynamic limit from opposite directions.

Indeed, as shown in the bottom panel of Fig. 7.15, the �t to Eq. 7.18 of
the �nite-size data shows that c̃splitz < 0 and c̃joinz > 0, implying that even at a
local level the two quench protocols are well distinguishable. The same study
is performed for the energy density in Fig. 7.16, where again we see that the
quenches are completely distinguishable at a local level.

Finally we can also characterize intermediate quenches, considering a param-
eter t̃ that modi�es the strength of the bond connecting L and R, as t̃ ·HLR(see
Eq. (7.2)) so that the quench is obtained by varying the initial value of t̃. In this
way we can either weaken the Hamiltonian bond between L and R by passing
from the initial value of t̃ = 1 to a quench value of 0 < t̃ < 1 so to partially split
the chain. Alternatively we can quench from the initial t̃ = 0 to again any value
0 < t̃ < 1 so to partially join L and R by switching on a weaker bond between
them (weaker than the other present in the chain). The numerical results for
such intermediate quenches are shown in Fig. 7.17 where we appreciate that by
looking at the sign of the �nite size corrections we can distinguish if the chain is
being split (even partially) or joined. This last situation is similar to the study
of the e�ects of impurities in critical systems [236].
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Figure 7.15: Top: Time-evolution of the expected magnetization at a site r =
N/2−N/10, both after a split quench of an initial chain with N = 200, and after
a join quench of two initial chains with size 100. During the out-of-equilibrium
regime, the join and the split values interchange and �nally relax to di�erent
equilibrium values. Bottom: Scaling analysis shows that in both cases the
equilibrium value is well described by Eq. 7.18, but the thermodynamic limit is
approached from di�erent directions, c̃splitz < 0, while c̃joinz > 0, implying that
even at a local level the two quench protocols are well distinguishable.
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Figure 7.16: Top: Time-evolution of the expected energy at link r1 = N/2 −
N/10, both after a split quench of an initial chain with N = 200, and after a join
quench of two initial chains with size 100. They relax to di�erent equilibrium
values. Bottom: The scaling analysis shows that in both cases the equilibrium
value is the same but the thermodynamic limit is approached from di�erent
directions, implying that even at a local level the two quench protocols are well
distinguishable.
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Figure 7.17: Intermediate quenches. The scaling of local observable with respect
to the system size are presented in the equilibrium regime after either weakening
the Hamiltonian between L and R so to provide a partial split of the two orig-
inally joined chains (upper panel) and after introducing a weak bond between
L and R so to partially join the originally separated chains (lower panel). The
slope of the �nite size e�ects is in one to one correspondence with the strength
of the Hamiltonian bond joining L and R giving the possibility to local discern
all the above scenarios. We have considered r1 = N/2−N/10.
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Chapter 8

Conclusions and further

investigations

In the present thesis we analysed the realization of di�erent quantum simula-
tions in ultracold atomic platforms in optical lattice. Particularly, we focused
on the quantum simulation of lattice gauge theories, considering both analog
and digital simulations. We studied quantum systems coupled to either exter-
nal or dynamical gauge �elds and we considered also the quantum simulation of
pure gauge theories. Finally, we also analysed the time evolution of a particular
strongly correlated quantum many-body system subjected to a sudden quench.
The conclusions and further investigations related to these topics are discussed
in detail below.

In chapter 4, we considered the quantum simulation of 2D fermions on a
lattice under the presence of an external gauge �eld related to the non-compact
Heisenberg-Weyl group. We showed that the quantum simulation of such a sys-
tem is experimentally realizable by considering layered 3-dimensional Abelian
quantum Hall system. Thus, we gave a theoretical proposal for realizing non-
Abelian and non-compact gauge groups with ultracold atoms in an optical lattice
with phase imprinting techniques only. We considered its advantages in engi-
neering di�erent integer quantum Hall phases by varying the gauge potential
and an external staggered potential. Explicitly, we calculated the phase dia-
gram for the Abelian �ux of 1/4 per plaquette and related the bulk topological
properties to the edge states of open boundary conditions. We also showed that
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by varying the other �ux parameter one can achieve a non-Abelian character,
when the layers are coupled su�ciently strongly. Layered fermion systems are
encountered in many corners of condensed matter physics and our motivation
was to �nd new insulating phases with non trivial topologies to get a better
understanding on the possible complicated phase diagrams found in such sys-
tems. Our analysis opens a viewpoint on such systems, where the layering can
be understood as an additional gauge potential on a system with reduced di-
mensions. Concerning practical points of view, the robustness of the topological
quantization of measurable quantities can lead to metronomy standards or to
applications in quantum information processing.

Next, in chapter 5, we studied an analog quantum simulation of dynami-
cal gauge �elds by considering spin-5/2 alkaline-earth atoms loaded into a 2D
hexagonal lattice. In the strongly repulsive regime with a �lling of one parti-
cle per site, the system is described by an e�ective nearest-neighbour model of
SU(6) spin exchange. We found that the ground state is a chiral spin liquid
state with broken time reversal symmetry. We integrated out the high energy
spinon �elds and arrived to a dynamical U(1) gauge �eld theory with a Chern-
Simons term. This gauge theory describes the spin �uctuations of the system.
The gauge �eld dynamics can be accessed experimentally with the help of spin
response measurements. The stability and the �nite temperature properties of
the three lowest lying states were analysed within the path integral formalism,
which is a reformulation of the Gutzwiller projected variational mean-�eld the-
ory. We found these three phases melt at a common critical temperature in the
order of the superexchange interaction. We also studied the stability of the en-
countered states and showed that the chiral spin liquid state is indeed the stable
saddle-point and the quasi plaquette state is unstable against �uctuations with
zero momentum. The plaquette state is also stable, though with higher free
energy. In experiments cooling the fermions towards quantum degeneracy is a
di�cult to achieve goal. Combining new experimental methods, as the Pomer-
anchuk cooling [237] with lattice shaking [97], which can imprint a nontrivial
topology to the system, it might be possible to directly cool the SU(6) symmet-
ric Mott insulator into the topologically nontrivial chiral spin liquid state even
if its free energy is close to other valence bond solid like phases. The experi-
mentally measurable signatures of the mean-�eld states, namely the spin-spin
correlation function, and its spectral function, of the alkaline earth atoms were
considered in this work. This quantities can be key insights for revealing the
gauge structure of the di�erent phases.
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In chapter 6, we introduced the notion of constructive approach for the
lattice gauge theories, which leads to the link models or gauge magnets. As a
paradigmatic example, we considered the U(1) gauge magnet, which is a the
truncated version of the standard U(1) lattice gauge theory. First of all, we
(re)discovered that the simplest plaquette Hamiltonian gives rise to con�ned
phase, as expected, but gapless. Such property distinguishes the gauge magnets
from the ordinary U(1) gauge theory in 2+1 (cf. [238]), and it is a consequence of
novel gauge condition arising from the di�erent choice of the Hilbert space (such
choice, for instance, rules out the existence of short closed-string con�gurations).
The amount of resources needed for the simulation of link models is drastically
reduced as the local Hilbert space shrinks from in�nity to 2D (qubit). This
allows to engineer a digital simulation of gauge magnet in optical lattices based
on the developments in Rydberg gates.

How the choice of the group representation a�ects universal properties like
phase diagrams and phase transitions is a fundamental question that raises nat-
urally here and is asking for solutions. Similarly, our constructive approach to
gauge magnets allows an in�nite class of Hamiltonians built up of local terms
to be considered. It is totally unknown, at the moment, whether novel phases
and phase transitions are described by such models, and, for instance, whether
the Polyakov phase could coexist in the same phase diagram with the gapless
phase we encountered in our study. The above questions are especially stim-
ulating as nowadays novel tools in both classical simulation algorithms and in
quantum simulation may be designed and employed to �nd a solution. Further-
more, another interesting line of investigation is the search for analogues of the
gauge magnets formulations in 3+1 dimensions and/or for non-Abelian groups.
In parallel, the introduction of the coupling to charged matter is very appealing.

Finally, chapter 7 we discussed the time evolution of a critical spin-chain
which is quenched by splitting the system in two independent halves. Due to
the entanglement in the initial state, each of the two halves is originally in a
mixed state. The bipartite entanglement between the halves is conserved during
the evolution. We addressed the role of the conservation of the entanglement
spectrum by comparing this quench with the one where two independent spin
chains are joined together. In the split scenario and in the joining scenario,
both the initial state and the Hamiltonian are locally indistinguishable in the
bulk of the system away from the partition in two halves. The joining quench
however, due to the interaction between the two halves, does not conserve the
entanglement spectrum of the bipartition. We showed that the equilibrium
states emerging after these two di�erent quenches di�er both globally and lo-
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cally. This suggests that the conservation of the entanglement spectrum has
important consequences on both the out-of-equilibrium evolution of many-body
systems and their equilibration regime. As opposed to other scenarios discussed
in the literature, the conservation of the entanglement spectrum is not related
to integrability of the dynamics, but rather to the speci�c quench protocol and
the basic nature of entanglement. The splitting of a spin chain in two halves is a
local quench and as such does not inject enough energy in the system to observe
thermalization at any non-zero temperature. In other terms, it can not give
rise to an equilibrium state with �nite entropy density. We plan to generalize
this analysis to global quenches that inject enough energy in the initial state for
e�ective thermalization to take place an thus address which are the e�ects of
the conservation of the entanglement spectrum also in those scenarios.
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Chapter 9

Appendix

9.1 Geometric phase

In Chapter 3 we considered a 2D quantum system under the presence of a per-
pendicular and uniform magnetic �eld. The Brillouin zone of such a system can
be parametrized by a 2D torus. We introduced the Berry's connection and cur-
vature, A(kx, ky) (see Eq. (3.84)) and F(kx, ky) (see Eq. (3.88)) respectively.
We found that these �elds appear in the calculation of the Hall conductivity.
This magnitude is intimately related to some topological invariants of the man-
ifold de�ned by the Hilbert space.

Let us consider the e�ect of the next transformation on the eigenvectors
|u(α)〉 of the Harper equation (3.71):

|u(α)〉 → |u(α)〉′ = eiθ(kx,ky)|u(α)〉. (9.1)

Under this transformation, the Berry's connection A is also changing, while the
Berry's curvature F is invariant:

A(α)(kx, ky)→ A′(α)(kx, ky) = A(α)(kx, ky) + i∇kθ(kx, ky),

F(kx, ky)→ F ′(kx, ky) = F(kx, ky), (9.2)
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The conductivity is invariant under such transformation too:

σ(α)
xy → σ′(α)

xy =
q2

h

1

2πi

∫
T2

d2kF ′(kx, ky) =

q2

h

1

2πi

∫
T2

d2kF ′(kx, ky) = σ(α)
xy . (9.3)

The invariance indicates the freedom in the choice of the Berry's connection
A(α)(kx, ky), this vector contains redundant degrees of freedom. This feature
is analogous to the gauge freedom discussed in the present thesis, as we can
identify comparing the expressions (9.1) and (9.2) with the expression appering
at Eq. (2.19). The appearance of this gauge symmetry has been studied in the
theory of the geometric or Berry's phase in quantum systems.

In 1984, Sir Michael Berry published a paper [108] that a quantum system
which performs an adiabatic evolution under a closed loop in its parametric
Hilbert space, acquires a phase factor, which is purely geometrical. This geo-
metrica e�ect is closely related to the change of the orientation of a vector which
is parallel transported along a close path on a surface with a non-zero curvature
(see Fig. 9.1).

The theory studied in this seminal work establishes a common framework
for the study of di�erent systems characterized by the emergence of geometric
phases, like the Aharonov-Bohm e�ect [239], its analogue in a molecular sys-
tem [240], in di�erent polarization optics phenomena [241], the quantum Hall
e�ect [104],the classical Foucault pendulum and the classical Hannay angle [242].

Let us consider a quantum system |ψ〉 whose evolution is given by a certain
Hamiltonian H which depends on a set of parameters r1, r2, ..rn. The time
evolution of the system reads as:

i~
d

dt
|ψ〉 = H(~R(t))|ψ〉, (9.4)

where ~R = (r1, r2, ..rn) is the vector composed of the di�erent parameters of H.

At every time t, there is a certain basis {|n(~R(t))〉} which diagonalizes the
Hamiltonian:

H(~R(t))|n(~R(t))〉 = En(~R(t))|n(~R(t))〉. (9.5)
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Figure 9.1: A vector is parallel transported along a closed path A→ B → C →
A on the surface of a sphere. Due to the non-zero curvature of the sphere, the
initial vector and the �nal one di�er by an angle β.
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Let us consider an adiabatic change of the parameters during the time evo-
lution. Then, if the system initially was the nth eigenstate of the initial Hamil-
tonian, it will remain during all the evolution in the nth eigenstate of the in-
stantaneous Hamiltonian. Therefore, the state of the system can be written
as:

|ψ(t)〉 = eiθ(t)|n(~R(t))〉, (9.6)

with |ψ(0)〉 = |n(~R(0))〉.

To determine θ(t) we insert (9.6) in the Schrödinger equation (9.4):

−i~
(
i
d

dt
θ(t)eiθ(t)|n(~R(t))〉+ eiθ(t)

d

dt
|n(~R(t))〉

)
= eiθ(t)En(~R(t))|n(~R(t))〉.

(9.7)
Multiplying this equation by 〈n(~R(t))|eiθ(t) from the left, we end up to:

d

dt
θ(t) = −1

~
En(~R(t)) + i

〈
n(~R(t)

∣∣∣∣ ddtn(~R(t))

〉
. (9.8)

The integration of this equation yields:

θ(T ) = −1

~

∫ T

0

dt En(~R(t)) + i

∫
C
d~R 〈n(~R(t))|∇~R n(~R(t))〉, (9.9)

where C denotes the curve parametrized by ~R(t), with t ∈ [0, T ]. For deriving
the latter expression we have used the following relation:〈

n(~R(t))

∣∣∣∣ ddtn(~R(t))

〉
=

d

dt
~R(t)〈n(~R(t))|∇~R n(~R(t))〉; (9.10)

Then, the phase factor θ(t) appearing at (9.6) contains two di�erent terms:
the dynamical phase factor θd(t), which is the phase accumulated by a system
in the state with energy E(t), and the geometrical phase factor γ which is a
time-independent term, it only depends on the path C in the parameter space
of the Hamiltonian.

θd(t) = −1

~

∫ T

0

dt En(~R(t))

γ = i

∫
C
d~R 〈n(~R(t))|∇~R n(~R(t))〉 (9.11)
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De�ning the Berry's connection:

~A(R) = −i〈ψ(~R(t))|∇~R ψ(~R(t))〉, (9.12)

the geometric phase (9.11) can be written as:

γ = −
∫
C
d~R ~A(R). (9.13)

The connection A acts as a paralell transporter of the vector state |ψ〉 from
a initial point ~R0 to a �nal one ~RT along a speci�c curve C on the manifold:

|ψ(~R0)〉 → |ψ(~RT )〉 = e−i
∫
C
~A d~R|ψ(~R0)〉, (9.14)

where the curve is parametrized as

C : R→M

t→ ~R(t) t ∈ [0, T ]. (9.15)

When the state performs an adiabatic closed path (~R0 = ~RT ) in the parameter
space ~R, the geometrical phase reads as:

|ψ〉 → |ψ〉′ = exp

(
−i
∮
C
~A(R)d~R

)
|ψ〉 = exp

(
−i
∫
SC

F dSC

)
|ψ〉, (9.16)

where the last equation appears applying the Stoke's theorem over the surface
SC closed by the curve C. The new object is the berry's curvature F , �rst
introduced in (3.88)

Fij =

〈
∂ψ

∂Ri

∣∣∣∣ ∂ψ∂Rj
〉
−
〈
∂ψ

∂Rj

∣∣∣∣ ∂ψ∂Ri
〉
. (9.17)

The TKNN formula (3.85) is expressed in terms of this Berry's connection
and the Berry's curvature. Therefore there is an intimately connection between
the geometrical phase and the quantum Hall e�ect.

This relation can be understood in the theory of the �bre bundles [107]. Let
us consider a quantum system whose evolution is given by Hamiltonian H(~R)

(see Eq. (9.4)). The parameter space generated by ~R forms a manifold M.
For example, this manifold can be parametrized by a Euclidean space Rn, a D
dimensional torus Tn. Since the states |ψ〉 and eiφ|ψ〉 (where α is a global phase)
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Figure 9.2: A quantum state performs a closed path C from the starting point
A, on the manifoldM given by the con�guration space of its Hamiltonian. The
starting state |ψ〉 and the �nal state |ψ〉′ do not coincide; they di�er by a phase,
which is the co-called geometrical phase. The values of the phase is given by the
parallel transporter of the quantum state along C by the Berry's connection A

identify the same physical state, both states belong to the same equivalence
class. This equivalence class is fully characterized by the U(1) group. Then,
the manifold represents the projected Hilbert space. The U(1) group forms a
line bundle over each point of the manifold. Both entities, the manifold and the
U(1) �bre form the principal �bre bundle P (M, U(1)).

When a quantum state performs a closed path overM, the initial and �nal
states can di�er by a phase, which is the geometrical phase (9.13). The phase
is obtained by parallel transporting the quantum state over the close path. The
parallel transporter is the connection associated to the �bre bundle, which is
the Berry's connection expressed as (9.12). In Fig. 9.2 there is a schematic
representation of this process.

For a quantum Hall system, the manifoldM is parametrized over a 2D torus
T2 de�ned by the Brilluoin zone and the �bre bundle is P (T2, U(1)). This �-
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Figure 9.3: An incident beam of charged quantum particles is splitted into two
di�erent beams which travel along the curves C1 and C2. These two beams
�nally interfere at point P . The two curves de�ne a closed curve which en-
closes a certain region (yellow area) with a non-vanishing magnetic �ux φ. The
interference pattern obtained at P depends on the magnetic �ux.

bre bundle can be non trivial and, therefore, it represents some non-vanishing
topological invariants, which are the Chern numbers [107, 103].

The Aharonov-Bohm e�ect is a manifestation of the geometric phase. It
takes place when an incident beam of charged quantum particles is splitted
in two di�erent beams which interfere later (see Fig. 9.3). The presence of
a non-zero perpendicular magnetic �eld B enclosed by the trajectories of the
beams a�ects the interference pattern, even when the quantum particles do not
penetrate into the zone with non zero magnetic �ux.

The time dependent Schr�dinger equation for such a system is:

1

2m
(−i~∇− (q/c)A)ϕ(~r, t) = i~

∂ϕ(~r, t)

∂t
, (9.18)

where A is the vector potential: B = ∇×A.

Let us consider a magnetic �eld B which is non zero over a certain surface
S̃, and zero outside. The quantum particle travels through two di�erent paths,
de�ned by the curves C1 and C2 (see Fig. 9.3). This trajectories are placed in
the region where B vanishes. However, the vector potential A is not zero along
these trajectories. Therefore, the solution for the Eq. (9.18) is given by:

ϕi(~r, t) = ϕ0(~r, t) e
iq
~c

∫
Ci
d~rA(~r)

, (9.19)
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where the label i indicates the di�erent trajectory and ϕ0(~r, t) is the solution
for A = 0. This expression is exactly the parallel transport of the state ϕ0(~r, t)
among the closed curve C = C1 ∪ C2, on a �bre bundle P(M, U(1)), whose
manifold is the 2D-Euclidean space of positions R2. The Berry's connection
coincides with the vector potential: ~A = − q

~cA. Then, the geometric phase γ̃i
of each trajectory is:

γ̃i =
q

~c

∫
Ci
d~rA(~r). (9.20)

The interference pattern at P (see Fig. 9.3) contains a contribution coming
from the di�erence of the geometric phase of the two di�erent trajectories:

e
iq
~c

∫
C1
d~rA(~r)− iq

~c
∫
C2
d~rA(~r)

= e
iq
~c

∮
C d~rA(~r) = eiγ . (9.21)

Finally, we can write the geometric phase in terms of the magnetic �ux φ
contained in the surface enclosed by the trajectories:

γ =
q

~c

∮
C
d~rA(~r) =

q

~c

∫
SC

d~S(∇×A(~r)) =

q

~c

∫
S̃

d~S(∇×A(~r)) =
q

~c

∫
S̃

d~S B =
qφ

~c
, (9.22)

where SC is the surface bounded by the closed path C and S̃ ⊂ S is the surface
with non-vanishing magnetic �ux.

Thus, the geometrical phase induces a shift in the interference pattern with
respect to the case with zero magnetic �ux.

9.2 Feynman rules for the spin liquid phases

In this appendix our goal is to derive the curvature of the e�ective action and
give the explicit form of the stability matrix (5.67b) and the one in Eq. (5.68).
To this end we need to evaluate

tr(G0Σ)n =
∑

k̂,q̂1...q̂n

tr
[
G(0)(k̂)Σ(k̂ − q̂1, q̂1)

×G(0)(k̂ − q̂1)Σ(k̂ − q̂1 − q̂2, q̂2)× . . .

×G(0)(k̂ − q̂1 − . . .− q̂n−1)Σ(k̂ − q̂1 − . . .− q̂n, q̂n)
]
, (9.23)
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a) b) c)

Figure 9.4: Feynman graphs representing the expansion Eq.(9.23). We have
plotted the �rst order a), the second order b) and the nth order c) diagrams.
The straight lines represent the free fermion propagator, while the wiggly line
is for the Σ vertex. The sum of the incoming momentum has to be zero.

where
∑
n q̂n = 0. In the left hand side of the �rst line, the trace tr is a sum

for momentum, Matsubara frequency and sublattice index. In the right hand
side, Tr is understood only in the sublattice indices as the sum is explicitly
indicated for the momentum and Matsubara frequencies. Eq.(9.23) is prone to
be represented by Feynman diagrams. At a given order (say n) we have exactly n
free fermion propagators G(0), represented by straight lines, and also n incoming
vertices Σ, represented by wiggly lines. The arrows show the direction of the
transfer of momentum. The entire graph is connected and contains a single
loop with momentum and Matsubara frequency conservation. For illustration
we have shown the �rst (a), the second (b), and the general, nth order (c) graphs
in Fig. 9.4. Note that both G(0) and Σ are matrices in the sublattice index.

For the curvature of the e�ective action (5.67) we need to evaluate

Rµν(q̂) ≡ tr

[
∂2
(
G(0)Σ

)2
∂φ∗µ(q̂)∂φν(q̂)

]

= tr

(
G(0)(k̂)

∂Σ(k̂ + q̂,−q̂)
∂φ∗µ(q̂)

G(0)(k̂ + q̂)
∂Σ(k̂, q̂)

∂φν(q̂)

)
=

∑
k,iωn

s1,s2,s3,s4

G(0)s1,s2(k, iωn)G(0)s3,s4(k + q, iωn + iνm)

× ∂Σs2,s3(k̂ + q̂,−q̂)
∂φ∗µ(q̂)

∂Σs4,s1(k̂, q̂)

∂φν(q̂)
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=
∑
k,a,b

s1,s2,s3,s4

v
(a)
s1 (k) v

(a)∗
s2 (k) v

(b)
s3 (k + q) v

(b)∗
s4 (k + q)

iνm + ε
(a)
k − ε

(b)
k+q

×
[
n(ε

(a)
k )− n(ε

(b)
k+q)

] ∂Σs2,s3(k̂ + q̂,−q̂)
∂φ∗µ(q̂)

∂Σs4,s1(k̂, q̂)

∂φν(q̂)
. (9.24)

The derivatives of the self-energies are again easily evaluated with the help of
Eq. (5.59). Combining Eq. (9.24) with Eqs. (5.67) we arrive to the 24 × 24
Hessian matrix

Cµν(q̂) = 6Rµν(q̂) +
1

J

18∑
i=1

δµ,iδν,i. (9.25)

With the help of Eq. (9.24) it can be directly checked that

Cµν(q, iνm) = C∗νµ(q,−iνm). (9.26)

Finally let us construct the Hessian matrix C̃kl(q̂) appearing in Eq. (5.68)
after integrating out the δϕ �elds. For a convenient notation let us introduce
submatrices of the original 24× 24 matrix Cµν(q̂), such that

Cµν(q̂) =



C1,1(q̂) C1,2(q̂) . . . C1,18(q̂) W1,1(q̂) W1,2(q̂) . . . W1,6(q̂)
. . .

...
...

...

C18,18(q̂) W18,1(q̂) . . . W18,6(q̂)
E1,1(q̂) . . . E1,6(q̂)

. . .
...

E6,6(q̂)


(9.27)

where Ckl is a 18× 18, Wks is a 18× 6 and Esr is a 6× 6 matrix. The elements
below the diagonal are understood to be �lled according to the relation (9.26).
With the help of this notation, the path integral over the δϕ �elds, in the
Gaussian approximation Eq. (5.67) is performed by∫

D[δϕ] e−S
(2)
e�

[δχ,δχ∗,δϕ] =
1√

detE
e−S

(2)′
e�

[δχ,δχ∗], (9.28)

with S(2)′

e� given in Eq. (5.68) with the matrix
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C̃kl(q, iνm) = Ckl(q, iνm) −
6∑

r,s=1

Wks(q, iνm)E−1
sr (q, iνm)W ∗lr(q,−iνm).

(9.29)

9.3 Quantum link models for ZN gauge theories

9.3.1 Gauge group Z2.

The local Hilbert space

The gauge theory generated by the Z2 group is the simplest one could imagine
(apart from the percolationg lattice gauge theory of [174]). The orientation of
the lattice is not important, since there are only two di�erent elements of the
group, the �rst is 1 and the other is e, which has the property that e2 = ee−1 =
1. The local Hilbert space with spin 1/2 is the algebra of the group and the
representation matrices of the group coincide with the regular representation
of the group. The regular representation is de�ned to be the representation in
which the matrices are constructed directly from the multiplication table of the
group. In order to get the representation of multiplication by a given element,
one substitute the given element in the multiplication with one and all the others
with zeros. For the Z2 case we have the following group multiplication table

1 e
1 1 e

e−1 = e e 1
(9.30)

thus X(1) = I, X(e) = σx. There is an important theorem relating the regular
representation with the irreducible representations. This theorem states that
the regular representation contains all the irreducible representations a number
of time equal to their dimensions [175].

In this case, we have two As(g), As(1) = I and As(e) = (σx)⊗4. Thus the
condition (2.89) is projecting out half of the 24 states associated to a site.

The gauge invariant Hilbert space

In order to show that the condition (2.89) is neither trivial or empty, and how
it can be implemented, we �rst consider the minimal lattice, made of only one
plaquette. This is shown explicitly in Fig. 9.5 v). The gauge invariant Hilbert
space is embedded in the 24 = 16 dimensional Hilbert space {|l1l2l3l4〉}. Due to
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the periodic identi�cation of of the links on the plaquette, (2.89) applied for s1

implies
σxl4 ⊗ σ

x
l1 |l1l4〉 = |l1l4〉. (9.31)

Since σx has eigenvalues ±1. We have two possibilities |l1l4〉 = |++〉, |l1l4〉 =
|−−〉, where

σx|+〉 = |+〉, σx|−〉 = −|−〉. (9.32)

By iteratively applying all the As(g) on subsequent sites, one realizes that there
are two allowed states and thus a generic gauge invariant state is a linear com-
bination of them

|φ+〉 = |+ + ++〉, |φ−〉 = |− − −−〉. (9.33)

This formalize the naive intuition (which has to be modi�ed for �nite systems
with periodic boundary conditions [243]) that gauge invariant states are related
to the elementary plaquettes of the lattice.

The gauge invariant operators

The operators compatible with gauge invariance constraints are either

• product of σx on arbitrary links of the lattice

• product of σi 6=x on closed paths

The simplest choice is then σzl1⊗σ
z
l2
⊗σzl3⊗σ

z
l4
. Going back to the lattice formed

by a single plaquette of Fig. 9.5 v) we de�ne the Hamiltonian

H0 = −BP = −σzl1 ⊗ σ
z
l2 ⊗ σ

z
l3 ⊗ σ

z
l4 , (9.34)

that is the form that the generic Hamiltonian of (6.22) on the chosen lattice
when θ = 0. In this simple example, we see that the ground-state is given by
the linear combination

|ψBp0 〉 =
1√
2

(|+ + ++〉+ |− − −−〉) , (9.35)

and the �rst excitation is given by

|ψBp1 〉 =
1√
2

(|+ + ++〉 − |− − −−〉) . (9.36)
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Figure 9.5: i) Example of an oriented lattice L with L sites s and N = 2L
links l. ii) A many-body state of the lattice is obtained by de�ning a local
Hilbert space V on each of the links. A state of the lattice is then a state of
the tensor product |ψ〉 ∈ HG = V⊗N . iii) For each site s of the lattice we can
de�ne operators As(g) acting on the local Hilbert space HG|s = V⊗4, where
V is the Hilbert space of a link ending in s. As(g) multiplies each link state
|hli〉s for the X(g) or X(g−1) depending on the fact if the link is entering or
exiting the particular site. Gauge invariance is the requirement that the state
As(g)

⊗
i |hli〉s〉 =

⊗
i |hli〉s〉〉.iv) A particular case is obtained when the local

Hilbert space V is chosen to be the group algebra C(G). In this case, the states
are labeled by |gli〉s and changing the orientation of the link, corresponds to
|hli〉s → |h−1

li〉s. v) A simple example of a one plaquette lattice, discussed in
the main text, is worked out in details. It consists of four sites, s1 · · · s4 and
four links l1 · · · l4. The four elementary gauge transformations related to the
four sites are explicitly introduced.
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We also see that the two states are separated by an energy gap (that does
not depend on the system size),

∆2 = 2. (9.37)

On the other hand, if we consider the opposit limit of the Hamiltonian of (6.22)
and set θ = π/2, we obtain

Hπ/2 = −
∑
li

σxli , (9.38)

which ground-state becomes

|ψσ
x

0 〉 = |+ + ++〉, (9.39)

and which �rst excited state is

|ψσ
x

1 〉 = |− − −−〉. (9.40)

Already in this simple example we can appreciate that in the two limit consid-
ered of (6.22) we are in a gaped phase but the ground-states of the Hamiltonian
in (9.38) and (9.34) have di�erent entanglement properties. Indeed, the ground-
state of the latter Hamiltonian is a product state, while the one of the former is
locally maximally entangled, since the reduced density matrix of a single link is
proportional to the identity. This reasoning can be extended to larger systems
since both Hamiltonians of (9.38) and (9.34) are �xed point of the RG �ow
[243]. The general Hamiltonian (6.22) is not in general a �xed point of the RG
�ow. From the above discussion it is easy to accept the appearence of a phase
transition at a given θc in between θ = 0 and θ = π/2 that separate the domain
of attraction of the RG �xed point at θ = 0 usually called the topological-
decon�ned phase with the one of the RG �xed point at θ = π/2 usually called
the con�ned phase.

9.3.2 The case of the group Z3, prototype for the generic
ZN

The next step of complication is obtained by considering a Z3. The main di�er-
ence with respect to the Z2 theory is that the group algebra of Z3 has dimension
3 - N for a generic ZN - and not all the elements of the group are the inverse of
themselves. Hence, the orientation of the lattice plays a central role. From now
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on, we will consider two di�erent basis, the group algebra basis |g〉, and the basis
in which the regular representation becomes the direct sum of the irreducible
representations |t〉.

In the |g〉-basis the X(g)s read

1 e2 = e−1
1 e1 = e−1

2

1 1 e2 e1

e1 e1 1 e2

e2 e2 e1 1

, (9.41)

X(1) = I , (9.42)

X(e1) =

 0 0 1
1 0 0
0 1 0

 , (9.43)

X(e2) =

 0 1 0
0 0 1
1 0 0

 . (9.44)

As done previously for σx, we can diagonalize all the X and we pass to the basis
|ti〉〈ti|, i = 1 . . . 3. In this basis

X(1) = diag{1, 1, 1}, (9.45)

X(e1) = diag{1, e 4π
3 i, e

2π
3 i}, (9.46)

X(e2) = diag{1, e 2π
3 i, e

4π
3 i}. (9.47)

We then can �nd the gauge invariant states in the |t〉-basis

|t1,t1, t1, t1〉, |t2, t2, t2, t2〉, |t3, t3, t3, t3〉. (9.48)

Now, let us focus on the construction of the plaquette of the Hamiltonian,
taking properly in account the orientation of the links. In order to do so, we
have to specify the form of the Z operator for the group Z3, which generalizes
the σz employed for Z2. In the |g〉-basis, it is

Z =

 1 0 0

0 e
2πi
3 0

0 0 e
4π
3 i

 . (9.49)
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It has the following properties

ZX(e1) = e
2π
3 iX(e1)Z, ZX(e2) = e

4π
3 iX(e2)Z. (9.50)

If we orient the plaquettes in such a way that they always have one enter-
ing and one exiting link for each site (either anti-clockwise or clockwise) the
plaquette will meet a gauge transformation on two consecutive links but the
orientation is such that the gauge transformation on these links will look like
X(e) ⊗ X(e−1) . Since the orientation of the plaquette is di�erent from the
orientation of the gauge transformation given in Fig. 9.5 iii) we are multiplying
one of the two links for X(e−1) instead than X(e). Hence, the only possibility
to obtain an operator commuting with all the gauge transformations is to take
again a product of Z as

[Z ⊗ Z,X(e)⊗X(e−1)] = 0, (9.51)

accordingly to (9.50). It follows that the correspondent Hamiltonian term, writ-
ten on the anti-clockwise or clockwise oriented plaquettes (as the one of Fig.
9.5 v) ), reads

HP = −1

2

∑
p

(
Zl1Zl2Zl3Zl4 + Z†l1Z

†
l2
Z†l3Z

†
l4

)
. (9.52)

This is, as expected, the explicit realization of Hamiltonian of (6.22) with θ = 0
for the group Z3. It is important to notice that now the l1 · · · l4 are the links
around a given plaquette in the order of Fig. 9.5 v). Once we move back to
the standard orientation of the 2D space of Fig. 9.5 ii) we recover the standard
form [?]

HP = −1

2

∑
p

(
Z†l1Z

†
l2
Zl3Zl4 + Zl1Zl2Z

†
l3
Z†l4

)
. (9.53)

Once the basis is rotated from |g〉 to |t〉, the form of the Z operator is
determined by (9.50) to be

Z : |ti〉 → |ti+1〉, (9.54)

and
Z† : |ti〉 → |ti − 1〉, (9.55)

i.e., X(e1)→ Z, and Z → X(e1).
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Again we can consider the ground-state of the plaquette operator for a lattice
made of a single plaquette as in Fig. 9.5 v). It turns out that

Zl1Zl2Zl3Zl4 : |titititi〉 → |ti+1ti+1ti+1ti+1〉, (9.56)

Z†l1Z
†
l2
Z†l3Z

†
l4

: |titititi〉 → |ti−1ti−1ti−1ti−1〉. (9.57)

It is easy to realize that the eigenvalues of HP are −1 or +1/2 and its ground-
state on a single plaquette is given by

|ψ0〉 =
1√
3

∑
i

|titititi〉. (9.58)

Here, again we discover the emergence of gauge invariant plaquette states. Their
number is now 3 and clearly coincide with the |G|, the cardinality of the group.
The plaquette Hamiltonian is still gapped, but the gap, ∆3 = 3/2 is now smaller
than in the Z2 case. We can again study the opposite limit of (6.22) with
θ = π/2. There we see that all spins are aligned in the t1 direction. As before,
by passing to larger lattices, we can repeat the same reasoning and we �nd two
di�erent phases. One in which the ground-state in a product state and the other
in which it is robustly entangled. It is also known that by increasing the rank
of the group a third phase appear. Here, we will not study that phase and refer
the interested reader to the literature [244].

9.4 Splitting quench: pro�le of the entanglement
entropy

From the pro�le for the for the projection of the entanglement entropy S(r, t)
in Section 7.2.2, we guess the following expression for such a quantity:

S̃X(x) =
c

αx
log2

∣∣∣∣Nπ
(

sin
2πx

Tx

)νx ∣∣∣∣+ cst. (9.59)

By either choosing x = r or x = t we recover both space and time sections
of the entanglement entropy (see Fig. 7.8). In each case Tx has to be chosen
accordingly to the de�nition discussed in the next paragraph.

x = r → S̃X(x) = S̃S(r)

x = t→ S̃X(x) = S̃T (t) (9.60)
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• Calculation of the parameter αx. This value is extracted through a
�nite size scaling analysis. By �xing the ratio t

N , the dependency of the
expression (9.59) on N is given by S̃X(x) = c

αx
log2N + cst. Speci�cally,

we have considered chains with N = 100, 120, 140, 160, 200, 240.

For the case of S̃T (t) we have considered ratios

t

N
=

1

2
·
(

2

10
,

3

10
,

5

10
,

6

10

)
, (9.61)

while for S̃S(r) we have considered sites r � N/2 and ratios

t

N
=

(
2

10
,

3

10
,

4

10
,

6

10
,

7

10

)
. (9.62)

Averaging on the values of α extracted from the various ratios we obtain

S̃T (t)→ αT = 2.919 (41)

S̃S(r)→ αS = 2.947 (13) (9.63)

that are both compatible with α = 3. In order to cross-check our strategy
we have repeated the same procedure for the join quench. In this case we
obtain

S̃T (t)→ αjoin = 3.012 (59)

S̃S(r)→ αjoin = 3.042 (10) (9.64)

that is in agreement with the available theoretical prediction αjoin = 3
[228, 213, 229].

• Calculation of the parameter νx.

At �xed N , S̃X(x) depends linearly on y = log2

∣∣∣(sin 2πx
Tx

)∣∣∣. We can thus

extract the value of νx through a linear �t of S̃X as a function of y at
a �xed N . We have performed such analysis for several chains of length
N = 100, 120, 140, 160, 200, 240, obtaining several estimates values of νx.
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In particular for S̃T (t), Tx = N , and for each N we have considered the
set of times

t =

(
N

8
,
N

8
+ 1, ...,

N

2
− N

8

)
. (9.65)

For S̃S(r), Tx = 2N and we have considered r � N/2:

r =

(
2N

10
,

2N

10
+ 1, ...,

N

4

)
(9.66)

Averaging on the values of ν obtained for each N we get

S̃T (t)→ νT = 0.500 (14) (9.67)

S̃S(r)→ νS = 1.004 (5) (9.68)

While the �rst result is un-expected, the second is compatible with what
expected in a join quench. By repeating the analysis for the join quench
where we expect νjoin = 1 [228, 213, 229] we indeed �nd

S̃T (t)→ νjoin = 0.975 (34)

S̃S(r)→ νjoin = 1.070 (10) (9.69)

as expected.

9.5 Splitting quench: two point anti-correlations
from a quasi-particle treatment

As we discussed at Section 7.1, our initial state |Ω〉0 has excess energy with
respect to the ground state of the new Hamiltonian H, |Ω〉L ⊗ |Ω〉R. This
excess of energy, which is located in the junction between the two chains, can
be interpreted as a �nite density of quasi-particles of Ht [206]. These quasi-
particles start to propagate away with a �nite speed. This propagation produces
the characteristic light-cone-type spreading of the perturbation [42]. The Lieb-
Robinson bound [245] for a system described with a Hamiltonian with local
operators explains the �nite velocity for the propagation of this perturbation.

For the quantum Ising chain in transverse �eld, the quasi-particles corre-
spond to the free fermions appearing through the diagonalization of H (see Eq.
(7.9)). The quasi-particle picture provides successfully results in the analysis
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of quantum Ising chains, as the calculation of correlation lengths in chains in
thermal equilibrium [246], or the time evolution of the entanglement entropy
[247, 248, 249, 250].

In the spliting scenario studied in Chapter 7, the correlation function C(r1, r2, t)
appearing in (7.13) exhibits a regime with negative sign or anti-correlation for
points r1, r2 located at di�erent halves (see Fig. 7.14). Our goal is to explain
this anti-correlated behaviour in terms of quasi-particles propagating from the
quench point.

Since H0 = HL + HR + HLR, we can write the initial state |Ω〉0, i.e. the
ground state of H0, in terms of the eigenstates |Ψm〉 of H, which is the Hamil-
tonian responsible of the time evolution:

|Ω〉0 = |ΩL〉 ⊗ |ΩR〉+
∑
m 6=0

〈Ψm|HLR (|ΩL〉 ⊗ |ΩR〉)
E0 − Em

|Ψm〉, (9.70)

where we have considered �rst order in perturbation theory, where HLR is the
perturbation. Moreover, H = HL + HR and H|Ψm〉 = Em|Ψm〉, where |Ω〉L ⊗
|Ω〉R = |Ψ0〉 is the ground state of H.

Since H = HL +HR, we can write:

H|Ψm〉 = (HL +HR)(|ψ〉Lm1 ⊗ |ψ〉Rm2) =

HL|ψ〉Lm1 ⊗ |ψ〉Rm2 + |ψ〉Lm1 ⊗HR|ψ〉Rm2 = (ELm1 + ERm2)|ψ〉Lm1 ⊗ |ψ〉Rm2. (9.71)

HR and HL can be diagonalized in terms of free fermions:

HX =
∑
k

εXk η
X†
k ηXk , X = R,L, (9.72)

where ηX†k (ηXk ) is the creation (annihilation) fermionic operator of the k mode.

Since we consider the quasi-particle picture, then we only take into account
the states with one k fermion:

|ψ〉Xm1 = ηX†k |ΩX〉 ≡ |kX〉. (9.73)

Therefore, the expression (9.70) can be written as:

|Ω〉0 = |Ω〉L ⊗ |Ω〉R −
∑
k,k′

F (k, k′, N/2, N/2 + 1)|k〉 ⊗ |k′〉, (9.74)
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where:

F (k, k′, N/2, N/2+1) = −〈Ψm|HLR (|ΩL〉 ⊗ |ΩR〉)
E0 − Em

=
〈k|σxN

2

|ΩL〉〈k′|σxN
2 +1
|ΩR〉

E0 − (Ek + Ek′)
,

(9.75)
with HLR = −σxN

2

σxN
2 +1

.

The time evolution of |Ω〉0 is given by:

|ϕ(t)〉 = e−iHt|Ω〉0 = e−iE0t|ΩL〉 ⊗ |ΩR〉

−
∑
k,k′

e−it(Ek+Ek′ ) · F (k, k′, N/2, N/2 + 1) · |k〉 ⊗ |k′〉. (9.76)

9.5.1 Calculation of the two point correlator

Lets now calculate the two point correlator function (7.13) for points located
in di�erent halves. Considering the last expression, the correlator contains four
terms:

〈ϕ(t)|σxr1σ
x
r2 |ϕ(t)〉 =

4∑
i

Pi (9.77)

• First term: P1

P1 ≡ e−iE0teiE0t(〈ΩL| ⊗ 〈ΩR|)σxr1σ
x
r1(|ΩL〉 ⊗ |ΩR〉) =

〈ΩL|σxr1 |ΩL〉〈ΩR|σ
x
r1 |ΩR〉 = 0, (9.78)

since 〈ΩX |σxr |ΩX〉 = 0 ∀ r, X = L,R.

• Second term: P2

P2 ≡
∑

k1,k2,k3,k4

F ∗(k1, k2, N/2, N/2 + 1) · F (k3, k4, N/2, N/2 + 1)·

·D2 · e−it[(Ek3+Ek4 )−(Ek1+Ek2 )] = 0, (9.79)

where

D2 = (〈k1|⊗〈k2|)σxr1σ
x
r1(|k3〉⊗|k4〉) = 〈k1|σxr1 |k3〉·〈k2|σxr2 |k4〉 = 0, (9.80)

since 〈k|σxr |k′〉 = 0 ∀ r, k, k′.
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• Third and fourth terms: P3, P4

P3 ≡ −e−it[−E0+(Ek+Ek′ )]
∑
k,k′

C(k, k′, , N/2, N/2 + 1) ·D3, (9.81)

where

D3 = (〈ΩL| ⊗ 〈ΩR|)σxr1σ
x
r1(|k〉 ⊗ |k′〉) = 〈ΩL|σxr1 |k〉〈ΩR|σ

x
r2 |k

′〉 =

= F (−k,−k′, r1, r2) · (E0 − (Ek + Ek′)) =

= F ∗(k, k′, r1, r2) · (E0 − (Ek + Ek′)). (9.82)

Then

P3 =
∑
k,k′

e−it∆(k,k′)C(k, k′, N/2, N/2 + 1) · C∗(k, k′, r1, r2) ·∆(k, k′)

(9.83)

with the energy gap ∆(k, k′) = ((Ek + Ek′)− E0).

The termP4 is the complex conjugate of the third term, P4 = P ∗3 .

Then, the time evolution of the two point correlator can be written as:

C(r1, r2, t) = P3 + P4 =∑
k,k′

2 ·∆(k, k′) · F (k, k′, r1, r2) · F (k, k′, N/2, N/2 + 1) · cos(∆(k, k′)t) (9.84)

where we take into account the fact that F are real functions.

The dependence of the correlator with respect to the number of k modes
considered is displayed in Fig. 9.6.

Considering only the �rst excited k mode, i. e. k1, the correlation can be
written as:

C(r1, r2, t)→
g

∆0
cos(2∆0t) (9.85)

where g = 〈ΩL|σxr1 |k1〉〈ΩR|σxr2 |k1〉〈k1|σxN
2

|ΩL〉〈k1|σxN
2 +1
|ΩR〉 and ∆0 is the gap

between |k1〉 and the ground state of half of the chain.
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Figure 9.6: Time evolution of two point correlator under the quasi-particle
picture for the splitting quench. The consideration of only the �rst mode,k = k1,
(dashed-dotted line) produces an anti-correlation for t > 40. The consideration
of a higher number of modes leads to the exact anti-correlated result appearing
in Fig. 7.14.
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Considering that:
∆0 →

π

2LL
=
π

L
, (9.86)

in the limit L → ∞ [251] (LL is the length of the left half of the chain), the
correlator behaves as cosine a function with period L. Thus, the system exhibits
anti-correlations for a certain values of the time t (see dotted-dashed plot in Fig.
9.6. By considerading more k modes, it is recovered the exact anticorrelation
behaviour displayed in Fig. 7.14.

Thus, the quasi-particle picture describes succesfully this change of sing of
the correlator.

9.6 Free fermions: Jordan-Wigner transforma-
tion

The Hilbert space of 1D quantum spin-1/2 systems is isomorphic to the Hilbert
space of 1D spinless fermions and 1D hard-core bosons [252, 253].

The transformation from the 1D spin system to a spinless fermion system
is obtained trough the celebrated Jordan-Wigner transformation [254]. In this
section we will examine such transformation and we will focus in the calculation
of some physical magnitudes in the 1D spin system through the Jordan-Wigner
transformation.

Let us consider a 1D spin-1/2 system whose Hamiltonian is given in term of
the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
, (9.87)

This matrices can be expressed as linear combination of the raising and lowering
operators a†, a, de�ned as:

a†j = σ+
j =

1

2
(σxj + iσyj ) =

(
0 1
0 0

)
, (9.88)

aj = σ−j =
1

2
(σxj − iσ

y
j ) =

(
0 0
1 0

)
, (9.89)

where the index j labels the site of the 1D spin chain.
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One is tempted to use a†j , aj as creation and annihilation operators respec-
tively at site j. However, it works only for a system composed of one spin due
to these operators are neither fermionic operators non bosonic operators:

{σ+
j , σ

−
j } = I

[σ+
i , σ

−
j ] = 0, ∀i 6= j. (9.90)

The truly fermionic operators c†j , cj are introduced through the Jordan-Wigner
transformation [254]:

cj = eiπ
∑
l<j σ

+
l σ
−
l σ−j =

∏
l<j

(−σzj )σ−l ,

c†j = σ+
j e
−iπ

∑
l<j σ

+
l σ
−
l = σ+

j

∏
l<j

(−σzj ), (9.91)

where we have used the relation:

eiπa
†
l al = −σzl . (9.92)

Considering that c†i ci = σ+
i σ
−
i , the inverse transformations read as:

σ+
j = e−iπ

∑
l<j c

†
l clcj =

∏
l<j

(−σzj )cj ,

σ−j = c†je
iπ

∑
l<j c

†
l cl = c†j

∏
l<j

(−σzj ). (9.93)

The ci operators ful�ll the anticommutation rules for fermions:

{ci, c†j} = δi,j , (9.94)

{ci, cj} = {c†i , c
†
j} = 0.

Thus, a 1D spin-1/2 can be written in terms of fermionic modes. For in-
stance, let us consider the case of a quantum Ising chain in tranverse �eld (see
Eq. (7.9)). Applying the Jordan-Wigner transformation (9.91), the Hamiltonian
(7.9) in terms of the fermionic operators reads as:

H/J =
∑
i

(
−c†i ci+1 − c†i c

†
i+1 + cici+1 + cic

†
i+1 + 2λc†i ci − λ

)
(9.95)
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where we have used the relation:

σxi σ
x
i+1 = (c†i − ci)(c

†
i+1 + ci+1). (9.96)

Therefore, the initial spin system can be mapped to a system of free spinless
fermions. We remark that the total fermion number Nf =

∑
i c
†
i ci is not a

conserved quantity. Therefore, the vacuum state |Ωc〉 of the c−fermions:

ci|Ωc〉 = 0 ∀ i, (9.97)

is not an eigenstate of the Hamiltonian (9.95).

Let us now diagonalize this free fermion Hamiltonian. First, we consider
the fermions in momentum space, i.e. we perform a Fourier transform of the ci
operators:

cq =
1√
N

N∑
j

cje
iqrj ,

c†q =
1√
N

N∑
j

c†je
−iqrj , (9.98)

with the wave-vector q = πm/(2N), where:

m = −(N − 1),−(N − 1) + 1, ..., 0, 1, ..., N − 1 for N even,

m = −N,−N + 1, ..., 0, 1, ..., N for N odd.

(9.99)

Then, the Hamiltonian (9.95) reads as:

H/J = −
∑
q

(
e−iqc†qc

†
−q − eiqcqc−q

)
+
∑
q

2
(
λ− cos q)c†qcq

)
−N (9.100)

The last relation can be written in terms of the positive q modes:

H/J =
∑
q>0

2i sin q
(
c†qc
†
−q − c−qcq

)
+
∑
q

2
(

(λ− cos q)(c†qcq − c−qc
†
−q)
)

=

2(c†q c−q)

(
λ− cos q i sin q
−i sin q −(λ− cos q)

)(
cq
c†−q

)
, (9.101)
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where we have dropped out the constant term N . The eigenvalues of the Hamil-
tonian are:

ε̃q = ±
√

(1 + λ(λ− 2 cos q)). (9.102)

By employing the Bogoliubov transformation, we can construct a suitable basis
of fermionic operators ηq which diagonalize the Hamiltonian:(

ηq
η†−q

)
= Uη,c

(
cq
c†−q

)
=

(
uq ivq
ivq uq

)(
cq
c†−q

)
, (9.103)

where Uη,c is the matrix for the change of basis and vq and uq are real coe�cients.
Since:

{ηq, η†q′} = δqq′ , {ηq, ηq′} = {η†q , η
†
q′} = 0, (9.104)

the vq and uq satify v2
q + u2

q = 1.
Thereby, the Hamiltonian (9.95) in the diagonal form reads as:

H/J =
∑
q>0

ε̃q(η
†
qηq − η−qη

†
−q) =

∑
q>0

εq(η
†
qηq − 1/2), (9.105)

where εq = 2ε̃q.
The ground state of the Hamiltonian is the Bogoliubov vacuum |Ω〉η:

ηq|Ω〉η = 0 ∀q

H|Ω〉η = E0|Ω〉η, E0 = −1

2

∑
q>0

εq = −
∑
q>0

ε̃q. (9.106)

9.6.1 Diagonalization of a general fermion quadratic Hamil-
tonian

Let us consider a general quadratic fermionic Hamiltonian:

H = (~c† ~c) ·Hc†c ·
(
~c
~c†

)
(9.107)

where ~c is a N component vector de�ned as:

~c = [c1 c2 ... cN ]T . (9.108)

The matrix Hc†c is hermitian and, due to the anti-commutation relations of the
c fermionic modes, it can be written as:

Hc†c =

(
α β
−β∗ −α∗

)
, (9.109)
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where α and β are hermitian and antisymmetric matrices respectively:

α† = α, β = −βT . (9.110)

Let us consider a given eigenvector u = (g h)T with eigenvalue ω:

Hu = ωu→
(

α β
−β∗ −α∗

)(
g
h

)
= ω

(
g
h

)
→
(
−α∗ −β∗
β α

)(
g∗

h∗

)
=

− ω
(
g∗

h∗

)
→
(

α β
−β∗ −α∗

)(
h∗

g∗

)
= −ω

(
h∗

g∗

)
→ Hũ = −ωũ. (9.111)

Then, the eigenvalues of the matrix Hc†c appear in pairs (ω,−ω). Thus, we can
write:

Hc†c = U†c,η ·Hη†η · Uη,c (9.112)

where Hη†η is the diagonal matrix composed of the all eigenvalues:

Hη†η =

(
Σ 0N
0N −Σ

)
, (9.113)

where ON is the N ×N zero matrix and

Σ =


ω1 0 · · · 0
0 ω2 · · · 0
...

... · · · 0
0 0 · · · ωN

 . (9.114)

The change of basis from the ~c fermionic operators to the new ones ~η, which
diagonalize the Hamiltonian, is given by the Uη,c. As we indicate in (9.111),
this matrix reads as:

Uη,c =

(
g h∗

h g∗

)
. (9.115)

Then:

~η = g~c+ h∗~c† → ηk =
∑
i

(gkici + h∗kic
†
i ),

~η† = h~c+ g∗~c† → η†k =
∑
i

(hkici + g∗kic
†
i ). (9.116)
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The unitarity of the Uη,c matrix implies:

gg† + h∗hT = I,
gh† + h∗gT = 0. (9.117)

These relations are equivalent to the fermionic commutation relations for the η
operators:

{ηk, η†k′} = δkk′ , {η†k, η
†
k′} = {ηk, ηk′} = 0 (9.118)

The Hamiltonian (9.107) reads as:

H = (~c† ~c) ·Hc†c ·
(
~c
~c†

)
= (~η† ~η) ·Hη†η ·

(
~η
~η†

)
= (~η† ~η) ·

(
Σ 0
0 −Σ

)
·
(
~η
~η†

)
=

N∑
k=1

ωk(η†kηk − ηkη
†
k) =

∑
k

εk(η†kηk −
1

2
), (9.119)

where εk = 2ωk. As we showed in (9.106), the ground state of the Hamiltonian
is the vacuum of the η fermionic operators:

ηk|Ω〉 = 0 ∀k,

H|Ω〉 = E0|Ω〉 → E0 = −1

2

∑
k

εk = −
∑
k

ωk (9.120)

In the Schrödinger picture, the time evolution of the ηk operators is given by:

−i d
dt
ηk = [H, ηk] = −2ωkηk → ηk(t) = e−2iωktηk (9.121)

9.6.2 Correlation matrix

Let us consider a set of operators φi, which are linear combinations of certain
fermionic operators cj :

φi =
∑
j

(aijcj + bijc
†
j). (9.122)

Applying the Wick's theorem, the expectation value of a product of such
operators φi operators can be obtained through the elementary contractions of
pairs of them:
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〈φiφ2...φM 〉 = Pf


0 〈φ1φ2〉 〈φ1φ3〉 · · · 〈φ1φM 〉

〈φ1φ2〉 0 〈φ2φ3〉 · · · 〈φ2φM 〉
...

...
... · · ·

...
〈φMφ1〉 〈φMφ2〉 〈φMφ3〉 · · · 0

 , (9.123)

where, 〈φiφj〉 = −〈φjφi〉.

Then, all the information of the correlation function 〈φiφ2...φM 〉 is encoded
in the set of all the two point correlation functions:

〈CiCj〉, Ci ∈ {c1, c2, ..., cL, c†1, c
†
2, ..., c

†
L}. (9.124)

The set of the two point correlation functions of the c fermionic operators
forms the so-called correlation matrix Γc†c. This matrix contains all the infor-
mation of the physical state:

Γc†c =

(
〈~c†~c〉 〈~c†~c†〉
〈~c ~c〉 〈~c ~c†〉

)
, (9.125)

where

〈~c†~c〉 =


〈c†1c1〉 〈c†1c2〉 · · · 〈c†1cN 〉
〈c†2c1〉 〈c†2c2〉 · · · 〈c†2cN 〉

...
... · · ·

...
〈c†Nc1〉 〈c

†
Nc2〉 · · · 〈c

†
NcN 〉

 , (9.126)

and the other sub-matrices appearing in the expression of Γc†c can be con-
structed analogously.

The change of basis of the correlation matrix from the c fermionic basis to
the c′ basis is given by:

Γc′†c′ = Uc′c · Γc†c · U
†
c′c, (9.127)

where Uc′c is the unitary matrix for the change of basis.
The time evolution of the correlation matrix is given by:

Γc†c(t, t0) = U†
c†c

(t, t0) · Γc†c(t0) · Uc†c(t, t0), (9.128)
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where the time evolution operator reads as:

Uc†c(t, t0) = e−i(t−t0)2H
c†c = U†ηc · e

−i(t−t0)2H
η†η · Uηc, (9.129)

where Hη†η is the diagonal Hamiltonian, in the basis η (see Eq.(9.121)). The
factor 2 in the exponential of the last equation comes from the relation given at
(9.113).

The correlation matrix for the ground state |Ω〉 of a given Hamiltonian H is
easily written in the basis η, which diagonalizes such Hamiltonian:

ΓΩ
η†η =

(
0N 0N
0N IN

)
, (9.130)

where IN is the N ×N identity matrix.

9.6.3 Expected values of some spin operators

In this section we are going to compute some expected values of spin opera-
tors with the help of the fermionic operators resulting from the Jordan-Wigner
transformations.

Let us start considering the magnetization in the z-direction. It can be
written in terms of the correlation matrix Γc†c as:

mz
i = 〈σzi 〉 = 〈2c†i ci − 1〉 = 2〈c†i ci〉 − 1 = 2 · Γc†c(i, i)− 1, (9.131)

where we have considered:

σz = 2σ+σ− − 1 = 2c†c− 1. (9.132)

Speci�cally for the ground state |Ω〉, the correlation matrix ΓΩ
c†c can be

obtained from the expression appearing at (9.130):

ΓΩ
c†c = U†ηc

(
0N 0N
0N IN

)
Uηc, (9.133)

where Uηc is the matrix for the change of basis between the c and the η fermions.

Let us now to compute the two point correlation Czzij function for the of the
σz operator:

Czzij ≡ 〈σzi σzj 〉 = 4〈c†i cic
†
jcj〉 − 2(〈c†i ci〉+ 〈c†jcj〉) + 1. (9.134)
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The �rst term of the last relation can be expressed using (9.123) as:

〈c†i cic
†
jcj〉 = Pf


0 〈c†i ci〉 〈c

†
i c
†
j〉 〈c

†
i cj〉

〈cic†i 〉 0 〈cic†j〉 〈cicj〉
〈c†jc

†
i 〉 〈c

†
jci〉 0 〈c†jcj〉

〈cjc†i 〉 〈cjci〉 〈cjc
†
j〉 0

 =

〈c†i cj〉〈cic
†
j〉 − 〈c

†
i c
†
j〉〈cicj〉+ 〈c†i ci〉〈c

†
jcj〉. (9.135)

Let us know to consider the two point correlation function Cxxij for the σx

operator. In term of the c fermions, this spin operator reads as:

σxi =
∏
l<i

(−σzl )(c†i + ci). (9.136)

Therefore, Cxxij can be expressed as:

Cxxij ≡ 〈σxi σxj 〉 = 〈(c†i + ci)

l−1∏
l=i

(−σzl )(c†j + cj)〉 =

〈(c†i + ci)

l−1∏
l=i

(
−(c†l − cl)(c

†
l + cl)

)
(c†j + cj)〉, (9.137)

where we have considered:

σzl = 2c†l cl − 1 = (c†l − cl)(c
†
l + cl) = −(c†l + cl)(c

†
l − cl) (9.138)

With the de�nitions:

Al = c†l + cl,

Bl = c†l − cl, (9.139)

and considering A2 = 1, the expression (9.137) can be written as:

Cxxij = 〈BlAl+1Bl+1 · · ·Aj−1Bj−1Aj〉. (9.140)

Due to:

〈AiAj〉 = −〈BiBj〉 = δij , (9.141)
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the only non-zero contractions for the expression of Cxxij are given by 〈AiBj〉
and 〈BjAl〉 (the contractions 〈AiAi〉 and 〈BiBi〉 do not appear). Then, the two
point correlator reads as:

Cxxij = det


Gi,i+1 Gi,i+1 · · · Gi,j
Gi+1,i+1 Gi+1,i+1 · · · Gi+1,j

...
...

...
...

Gj−1,i+1 Gj−1,i+2 · · · Gj−1,j

 , (9.142)

where
Gm,n ≡ 〈BmAn〉 = −〈AnBm〉. (9.143)

For transnational invariant systems:

Gi,i+s = Gs, Gs = G−s, (9.144)

and the correlation can be expressed as:

Cxxij = det


G1 G2 · · · Gr
G0 G1 · · · Gr−1

...
...

...
...

Gr−2 Gr−3 · · · G1

 , (9.145)

9.6.4 Entanglement entropy

As we discussed in Chapter 7, the density matrix ρA of a sub-block A with M
sites of a system is obtained tracing B, which is the part of the system that
does not belong to A.

This density matrix is the exponential of a certain Hamiltonian H, the so-
called entanglement Hamiltonian:

ρA = trBρ = CeH, (9.146)

where C is a constant which ensures the trace of ρA to be one.
The entanglement Hamiltonian can be diagonalized in a certain basis with

M fermionic modes η̃:

H =

M∑
k=1

(
ε̃η̃†kη̃k −

1

2

)
(9.147)

Since the M fermionic modes are independent, the density matrix ρA can be
expressed as the direct product of M density matrices ρ̃k:
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ρA = CeH = C exp

(
M∑
k=1

ε̃

(
η̃†kη̃k −

1

2

))
=

C
M∏
k=1

exp

(
M∑
k=1

ε̃k

(
η̃†kη̃k −

1

2

))
=

M∏
k=1

ρ̃k, (9.148)

where ρ̃k reads as:

ρ̃k = Ck exp

(
ε̃k

(
η̃†kη̃k −

1

2

))
= Ck exp

(
ω̃k

(
η̃†kη̃k − η̃kη̃

†
k

))
=

1

e−ω̃k + eω̃k

(
eω̃k 0
0 e−ω̃k

)
=

1

1 + eε̃k

(
eε̃k 0
0 1

)
, (9.149)

with ε̃k = 2ω̃k.

Thus, the entanglement entropy (7.12) is the sum of the entanglement en-
tropies for each independent η̃k mode:

SA = −tr ρA log ρA =

M∑
k=1

Sk = −
M∑
k=1

tr ρ̃k · log (ρ̃k) =

−
M∑
k=1

(
pk log(pk) + (1− pk) log(1− pk)

)
, (9.150)

where:
pk =

1

1 + eε̃k
. (9.151)

The correlation matrix ΓAc†c for the considered block A is fully determined
by the density matrix ρA:

〈CiCj〉 = tr(ρACiCj), ∀ Ci, Cj ∈ {c1, c2, ..., cM , c†1, c
†
2, ..., c

†
M}, (9.152)

where the indices 1, 2, ...,M of the c operators label the di�erent sites of the
block A. Therefore, there is a fermionic basis {η̃k} which diagonalizes simulta-
neously the correlation matrix ΓAc†c and the reduced density matrix ρA, which
corresponds to the basis that diagonalizes the entanglement Hamiltonian. More-
over, the eigenvalues γi of ΓAc†c coincides with the coe�cients pk appearing at
(9.151).
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Thus, the entanglement entropy can be computed with the eigenvalues of
the correlation matrix through the relation:

SA = −
M∑
k=1

(γk log(γk) + (1− γk) log(1− γk)) , (9.153)

where the correlation matrix in the diagonal form reads as:

ΓAη̃†η̃ = diag[1− γ1, 1− γ2, 1− γM , γ1, γ2, ..., γM ], (9.154)

The relation between the eigenvalues γk and the energies ε̃k (see Eq.(9.149))
of the entanglement Hamiltonian is given by the expression (9.151):

γk = pk =
1

1 + eε̃k
, (9.155)

9.6.5 Schmidt vectors

As we indicated in Chapter 7, the density matrix of a block A for a certain
system can be written as:

ρA =
∑
i

ci|φi〉〈φi|, (9.156)

where ci and |φi〉 are the Schmidt coe�cients and vectors respectively. If there
are at least two non-vanishing Schmidt coe�cients, the system is entangled with
respect to this bipartition and ρA describes a mixed state.

Let us consider a certain block A of a fermionic system. The eigenvalues of
the correlation for such a block (see Eq. (9.154)) de�ne a certain distribution
of probability for occupied modes, pF.D.H . This distribution corresponds to a
Fermi-Dirac distribution for the entanglement Hamiltonian at β = 1:

pF.D.H = {pF.D.1 , pF.D.2 , ..., pF.D.M , ..., pF.D.2M } =

{1− p1, 1− p2, ..., 1− pM−1, 1− pM , p1, p2, p3, ..., pM}, (9.157)

where pi are given in (9.155). The distribution of probability for the empty
modes is given by 1− pF.D.H .

The mixed state ρA is characterized completely by pF.D.H . Each Schmidt vec-
tor can be obtained by populating M of these 2M modes, considering the con-
strain that a populated (non-populated) mode l < M implies a non-populated
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(populated) mode M − l.

The �rst Schmidt vector corresponds to the most probable state with M
modes. It is obtained by populating the last M modes, i.e. from M + 1 to 2M .
Thus, its correlation matrix in the η̃ basis is given by:

ΓA1
η̃†η̃ = diag[0, 0, ...., 0, 1, 1, ..., 1, 1]. (9.158)

The probability of such state is the �rst Schmidt coe�cient, c1:

c1 =

M∏
i=1

(1 − pF.D.i )

2M∏
j=M+1

(pF.D.j ) =

M∏
i=1

pi

M∏
j=1

pj =

(
M∏
i=1

pi

)2

. (9.159)

The second Schmidt vector is the second most probable state according to
pF.D.H . It is obtained by populating the mode M and the modes from M + 1 to
M − 1:

ΓA2
η̃†η̃ = diag[0, 0, ..., 1, 1, ..., 1, 0]. (9.160)

Thus, the second Schmidt coe�cient reads as:

c2 =

(
M−1∏
i=1

(1− pF.D.i )

)
pF.D.M

(
2M∏

i=M+1

pF.D.i

)
(1− pF.D.2M ) =

(
M−1∏
i=1

pi

)
(1− pM )

M−1∏
j=1

pj

 (1− pM ) =

(
(1− pM )

M−1∏
i=1

pi

)2

. (9.161)

The di�erent Schmidt vectors and coe�cients can be obtained applying this
procedure.

For instance, let us consider a block with 3 sites. The correlated matrices
for the 23 = 8 Schmidt vectors are given in the η̃ basis by:

ΓA1
η̃†η̃ = diag[0 0 0 1 1 1],

ΓA2
η̃†η̃ = diag[0 0 1 1 1 0],

ΓA3
η̃†η̃ = diag[0 1 0 1 0 1],

ΓA4
η̃†η̃ = diag[1 0 0 0 1 1],

ΓA5
η̃†η̃ = diag[1 1 0 0 0 1],
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ΓA6
η̃†η̃ = diag[1 0 1 0 1 0],

ΓA7
η̃†η̃ = diag[0 1 1 1 0 0],

ΓA8
η̃†η̃ = diag[1 1 1 0 0 0]. (9.162)

The �rst state corresponds to the ground state of the entanglement Hamilto-
nian. The next three state are the states with one particle-hole excitation. The
5th, 6th, 7th states contain two particle-hole excitations, whereas the last state
corresponds to a state with 3 particle-hole excitations.

9.7 Matrix product states and time evolving block
decimation

The dimension of the Hilbert space of a many body quantum system composed
of N constituents grows exponentially:

dim(H) = dN , (9.163)

where d is the internal dimension degree of freedom of each constituent.
Thus, the exact classical computation of these systems are restricted to

many-body systems with a few number of constituents. Some numerical meth-
ods have been developed for overcoming this feature but they present limita-
tions. For example, the mean �eld techniques do not consider the quantum
correlation between the constituents of the many body system and the quantum
Monte Carlo algorithms present problems in the treatment of fermionic system
and frustrated spin models due to the sign problem.

Here we summarize a successfully numerical method for classically comput-
ing quantum many-body systems based on tensor networks (TN) techniques. A
TN is a tensor resulting from the product of certain tensors. For instance:

Tijk =
∑
αβνσδ

AiασδBkαβCαβσDjνδ. (9.164)

In this example, the 3-rank tensor Tijk is a TN which results from the multipli-
cation of four di�erent tensors, A,B,C,D. TN can be represented pictorially
(see sketch in Fig. 9.7 a)).
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a) 

b)

c)

d)

Disetangler
     Isometry

MPS 

PEPS

MPS in canonical form

MERA

Figure 9.7: a) Pictorical representation of the TN corresponding to the ex-
pression (9.164). The tensors are represented by circles and the contraction of
indices (multiplcation) by links connecting tensors. The resulting TN contains
3 open indices: i, j, k. b) A MPS (up) and its natural generalization to a 2D
system, the PEPS (down). c) MPS in the canonical form. It contains two types
of tensors, the Γ tensors, with physical indices and the λ matrices, without
physical indices. d) Multiscale Entanglement Renormalization Anzats (MERA)
tensor network. It is composed of two di�erent types of tensors: disetanglers
and isometries. The indices with black dots are physical indices. The additional
dimension L introduced by the TN corresponds to a real space renormaliza-
tion �ow: each layer Li, is a renormalization step of the 1D system. This TN
captures the physics of the ground state of some 1D critical systems.
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9.7.1 Matrix product states

The matrix product states (MPS) [255, 256] is a TN consisting of a 1D array of
tensors (see Figure (9.7) (b) and (d)). This TN emerges naturally in success-
fully numerical studies of di�erent 1D many-body quantum systems, as Density
Matrix Renormalization Group [257, 258] and Time Evolving Block Decimation
(TEBD) [218, 219, 259]. The latter method will be reviewed in this section.

It turns out that the MPS can e�ciently describe slightly entangled quantum
many body systems. Low energy states of one dimensional gapped systems
described through local Hamiltonians fall into this category, in particular the
ground state. One can show that these states ful�l the so called area law [260,
261]: the entropy of a subsystem A of a certain systems grows with the boundary
between the block A and the rest of the system (see Fig. 9.8 a))

SA ∼ ∂A ∼ LD−1, (9.165)

where D and L are the dimension of the system and the size of the block re-
spectively.

The states which satisfy the are law lie in a small region, Hlow, of the full
Hilbert space. This region can be successfully explored with the use of MPS.
Moreover, it can be proven that the time evolution for a polynomial time in
N only explores a exponentially small region of states. Then, the time evolved
state of an initial state in Hlow, also lies in this region during all the practical
evolution [262].

Let us consider a bipartition between blocks A and E of a given quantum
state |ψ〉:

|ψ〉 =

χ∑
ν

|ϕ[A]
ν 〉|ϕ[E]

ν 〉, (9.166)

where |ϕ[A]
ν 〉} and {|ϕ[E]

ν 〉} are the orthogonal basis of the vectors for the block
A and the environment E respectively. They come from the Schmidt decompo-
sition (SD) of the bipartition.

If the state |ψ〉 admits a MPS description (see Fig. 9.7 c)), then:

χ ≤ B2, (9.167)
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where B is the bond dimension, i.e. the internal dimension of the MPS.
The density matrix ρA of the block A is obtained tracing out the environment

E:

ρA = trE(ρ) = trE (|ψ〉〈ψ|) =∑
α

〈ϕ[E]
α | (|ψ〉〈ψ|) |ϕ[E]

α 〉 =

B2∑
ν

λ̃2
ν |ϕ[A]

ν 〉〈ϕ[A]
ν |, (9.168)

where λ̃2
ν = |〈ϕ[E]

ν |ϕ[E]
ν 〉|2. Thus, the rank of ρA is bounded by the bond dimen-

sion B:
rank(ρA) ≤ B2, (9.169)

Then, for this 1D system, the entanglement entropy of the block (see Eq.(7.12))
reads as:

S = −trρA log ρA = −
∑
α

λα log λα ≤ −B2(
1

B2
) log

1

B2
= 2 logB, (9.170)

which is independent of L, the size of A. It ful�lls the area law.

Let us now consider a 2D spin system represented by a Projected Entangled
Pair Spin (PEPS) [263], which is the natural extension of the MPS for 2D
systems (see Fig. 9.7 b)). Proceeding as the last example, the quantum state
|ψ〉 can be written as:

|ψ〉 =

B4L∑
ν

|ϕ[A]
ν 〉|ϕ[E]

ν 〉, (9.171)

where A is a rectangular block L × L of the system and E is the rest of the
system and {|ϕ[A]

ν 〉} ({|ϕ[E]
ν 〉}) are orthogonal basis for the block A and for the

environment E respectively (see Fig. 9.8 b)).
The density matrix of the block A reads as:

ρA =

B4L∑
ν

λ̃2
ν |ϕ[A]

ν 〉〈ϕ[A]
ν |, (9.172)

with λ̃2
ν = |〈ϕ[E]

ν |ϕ[E]
ν 〉|2. Therefore, the rank of ρA is bounded by:

rank(ρA) ≤ B4L, (9.173)
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In this 2D system, the entanglement entropy for the block is bounded by the
perimeter 4L of the block:

S = −trρA log ρA = −
∑
α

λα log λα ≤ −B4L(
1

B4L
) log

1

B4L
= 4L logB.

(9.174)
Thus, the entanglement entropy of the block is proportional to the length of the
block in this 2D system.

By inspecting the last relation and (9.170), we conclude that:

• Both the MPS and PEPS tensor networks represent quantum states which
ful�l the area law expressed in (9.165).

• Each bond link of the border between the block A and the environment
contributes with log(B) to the entropy of the block.

Let us consider a many-body quantum state |ψ〉 composed of N constituents
(for instance, a spin chain of length N :

|ψ〉 =
∑

i1,i2,...,1N

Ci1i2 ... 1N |i1i2 ... 1N 〉, (9.175)

where the local basis {|ij〉} labels the internal state of each constituent, with
dimension d. The coe�cients Ci1i2 ... 1N form a N -rank tensor, composed of dN

elements and N opened indices. Our goal is to express this tensor as a MPS.
A general SD of a bipartition in the system leads to express the state as:

|ψ〉 =

B∑
α=1

λα|ϕ[L]
α 〉|ϕ[R]

α 〉, (9.176)

where the diagonal matrix λ contains all the Schmidt coe�cients, whereas
|ϕ[L]
α 〉(|ϕ[R

α 〉) correspond to the left (right) Schmidt vectors, which de�ne two
di�erent orthonormal basis.

Let us consider the bipartition for the �rst spin and the N − 1 remaining
spins. The SD decomposition reads as:

|ψ〉 =

B1∑
α=1

λ[1]
α1
|ϕ[1]
α1
〉|ϕ[2...N ]

α1
〉 =

∑
i1

B1∑
α1

Γ
[1]
i1α1

λ[1]α1
α1
|i1〉|ϕ[2...N ]

α1
〉, (9.177)
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a)
b)

c)

L

Figure 9.8: a) A many body quantum system composed of a block A and the
rest of the system or environment E. If the systems ful�ls the are law, the
entanglement entropy is proportional to the area of the boundary ∂A. b) A
2D system represented by a PEPS. Since the boundary is proportional to the
number of bonds, this TN satis�es the are law. ci) A block A in a 1D system
represented by a MPS. This TN also ful�ls the area law for the entropy cii) ρA
is obtained by contracting the indices of the environment. ciii). The trace of
the environment introduces new tensors (yellow tensors) even though the bond
between them and the tensors of the block, which determines the rank of ρA,
remains the same.
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where the last expression is obtained by writing the Schmidt vector in the local
basis of the site 1: Γ

[1]α1

i1
is the coe�cient of |ϕ[1]

α1〉 in the {|i1〉} basis.
Now, we can continue performing a SD for each vector |ϕ[2...N ]

α1 〉 for the
bipartition of site 2 and sites 3,4...,N:

|ϕ[2...N ]
α1

〉 =
∑
i2

B2∑
α2

Γ
[2]α1

i2α2
λ[2]α2
α2
|i2〉|ϕ[3...N ]

α2
〉, (9.178)

where, we have used the local basis {|i2〉}.
Introducing this expression in the relation (9.177) we obtain:

|ψ〉 =
∑
i1

B1B2∑
α1,α2

Γ
[1]
i1α1

λ[1]α1
α1

Γ
[2]α1

i2α2
λ[2]α2
α2
|i1〉|i2〉|ϕ[3...N ]

α2
〉. (9.179)

This procedure can be done for all the sites of the system, leading to a �nal
expression of the quantum state which reads as:

|ψ〉 =

B1B2···BN−1∑
i1i2···1N

α1,α2···αN−1

Γ
[1]
i1α1

λ[1]α1
α1

Γ
[2]α1

i2α2
λ[2]α2
α2
· · ·

Γ
[N−2]αN−2

iN−2αN−1
λ[N−1]αN−1
αN−1

Γ
[N ]αN−1

iN
|i1〉|i2〉|i3〉 · · · |iN−1〉|iN 〉. (9.180)

Thus, the coe�cient Ci1i2...1N (see Eq.(9.175)) can be written as a MPS form:

Ci1i2...1N = Γ
[1]
i1α1

λ[1]α1
α1

Γ
[2]α1

i2α2
λ[2]α2
α2
· · ·Γ[N−2]αN−2

iN−2αN−1
λ[N−1]αN−1
αN−1

Γ
[N ]αN−1

iN
, (9.181)

where it is assumed the summation over the bond indices α1, α2, ..., αN .

This is the canonical form of the MPS [219, 264] (see Fig. 9.7 c). It contains
two di�erent types of tensors:

• 3-rank tensors Γ
[r]αr−1

ir αr
. They are the coe�cients of the Schmidt vectors

in the local basis {|i〉}. The label [r] indicates that this tensor can be site-
dependent. For a spin system with N sites and open boundary conditions,
Γ[1] and Γ[N ] are 2-rank tensors or matrices.

• 2-rank tensors or matrices λ[r]αr
αr . This matrices contain the Schmidt co-

e�cients coming from the SD of the bipartition [1, 2, ..., r]&[r + 1, ..., N ].
They can be r-dependent.
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The calculation of an observable O for quantum state expressed as a TN
requires the contraction of this tensor (see Fig. 9.9 for the MPS case). This
contraction can be done with a �nite number of operations O(NdB3), which is
polynomial both in N and B for the MPS.

Unlike for MPS, the calculation of an observable in a general TN can be a
hard problem. For instance, if we consider a PEPS, the natural generalization
of a MPS for 2D, it turns out that the contraction of the TN requires a number
of operations which grows exponentially with N .

We mention that when the MPS is written in the canonical form, the entan-
glement entropy of the bipartition [1, 2, ..., r]&[r+ 1, ..., N ] can be read directly
from the λ[r] matrices due to they contain all the information of the bipartition
of the system at that site:

S(r) = −tr
(
λ[r]
)2

log
(
λ[r]
)2

. (9.182)

9.7.2 Computing of the ground state

In this section we summarize the TEBD method for computing the ground state
|Ω〉 corresponding to a given Hamiltonian H, in a MPS form.

The procedure consist in to evolve in imaginary time an initial state |ψ〉.
The time evolved state converges to the ground state for a su�cient long time
if the initial state the state has a non zero overlap with the ground state:

lim
τ→∞

e−τH |ψ〉
‖|ψ〉‖

→ |Ω〉 (9.183)

This imaginary time evolution can be done in a given number of steps by split-
ting the total time:

e−τH =
(
e−δτH

)τ/δτ ≡ UH(δτ)τ/δτ (9.184)

We write the Hamiltonian as a sum of di�erent elements, which do not neces-
sarily commute. Speci�cally, we express H as the sum of operators acting on
the odd links of the spin chain, Ho, and operators acting on the even links, He:

H =
∑
l

(H [l]
e +H [l]

o ). (9.185)
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...

e)

2 2

2 2

Figure 9.9: a) Sequence of basic contractions for a MPS. b) Calculation of the
expectation value 〈O〉 for the MPS. The left(right) contractions lead to the
appereance of the TL(TR) tensors. c) The left contraction from site 1 to site
s involving Γ[1], λ[1] · · ·λ[s−1]Γ[s] for a MPS in the canonical basis gives the
identity tensor. The same result appears in the analogous right contraction. d)
The expectation value of O takes a simple form in a MPS in canonical form
due to the identity tensors appearing in the left/right contractions. e) Two sites
expectation value 〈OmOr〉 for a MPS in the canonical basis. The contraction of
the physical indexes between the sites m and r can not be reduced to identity
tensors.
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Then, the next relations are ful�lled:

[H [l]
e , H

[l′]
e ] = [H [l]

o , H
[l′]
o ] = 0,

[H [l]
e , H

[l′]
o ] 6= 0, for some l, l′. (9.186)

Since we consider a family of Hamiltonians that can be written in terms of
operators acting at the link l, H =

∑
lH

[l]
link, the odd and even operators take

the form:

H [l]
o = H

[l]
link, l = 1, 3, 5, ...,

H [l]
e = H

[l]
link, l = 2, 4, 6, ..., (9.187)

For instance, for the quantum Ising model in tranverse �eld (see Eq.(7.9)):
H

[l]
link = J(σxl σ

x
l+1 + λσzl ).

We introduce the expression (9.185) inside the time evolution operator for
small time expressed at (9.184) and we decompose the exponential operator
trough a Suzuki-Trotter expansion or decomposition [16]:

UH(δτ) = exp [−δτH] = exp

[
−δτ

(∑
l

(H [l]
e +H [l]

o )

)]
=

exp

[
−δτ

2

(∑
l

(H [l]
o

)]
exp

[
−δτ

(∑
l

(H [l]
e

)]
exp

[
−δτ

2

(∑
l

(H [l]
o

)]
,

(9.188)

where, speci�cally we have considered a second order Trotter-Suzuki expansion.
Due to the non-zero commutator appearing at (9.186), this expansion is not

exact and it introduces an error in the computation of the ground state. This
error can be minimized by considering a higher order in the Suzuki-Trotter ex-
pansion.

This last expression can be written as:

UH(δτ) =
∏
odd

Ũ
[l]
H (δτ/2)

∏
even

Ũ
[l]
H (δτ)

∏
odd

Ũ
[l]
H (δτ/2), (9.189)

with
Ũ

[l]
H (δτ) = e−δτH

[l]
link (9.190)
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This last operator acts in two sites, l and l+ 1. In the terminology of quantum
circuits, it is a two sites gate. Then, the imaginary time evolution (9.184) can
be viewed as a quantum circuit where the initial state |ψ〉, which is expressed
as a MPS, is transformed by the action of the gate Ũ [l]

H following the sequence
appearing at (9.189). This sequence is repeated τ/δτ times. The Figure (9.10
a) contains a pictorial representation of this of this process.

Protocol for the computation of the ground state

The basic process in the algorithm for the computation of |Ω〉 is the update of
the MPS when the gate Ũ [r]

H is applied:

Ũ
[r]
H : MPS −→ MPS′. (9.191)

Since Ũ [r]
H is a two sites operator and we are working in the canonical basis

for the MPS, the update of the MPS requires the update of the tensors Γ
[r]αr−1

ir αr
,

Γ
[r+1]αr
ir+1 αr+1

and λ[r]αr
αr . The rest of the tensors remain invariant.

Ũ
[r]
H : Γ[1]λ[1] · · ·λ[r−1]Γ[r]λ[r]Γ[r+1]λ[r+1] · · ·λ[N−1]Γ[N ] −→

Γ[1]λ[1] · · ·λ[r−1]Γ̃[r]λ̃[r]Γ̃[r+1]λ[r+1] · · ·λ[N−1]Γ[N ], (9.192)

where we have omitted the indices of the tensors of the MPS and the "tilde"
symbol indicates the updated tensors.

This update contains a series of operations over the tensor Ωνijµ, which the
tensor of the MPS concerning to the links r and r + 1:

Ωνijµ =
∑

α1···α4

λ[r−1]α1
ν Γ

[r]α2

i α1
λ[r]α3
α2

Γ
[r]α3

j α4
λ[r+1]α4
µ . (9.193)

These operation are:

1. Transformation of Ωνijµ to Ω̃νijµ by applying the two sites gate Ũ [r] i′j′

H ij :

Ω̃νijµ =
∑
i′j′

α1···α4

Ωνi′j′µ·Ũ [r] i′j′

H ij =
∑
i′j′

α1···α4

λ[r−1]α1
ν Γ

[r]α2

i′ α1
Ũ

[r] i′j′

H ij λ[r]α3
α2

Γ
[r]α3

j′ α4
λ[r+1]α4
µ .

(9.194)
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Figure 9.10: a) The evolution in imaginary can be viewed as a quantum circuit
where an initial quantum state |ψ〉 is sequentially transformed through a two
sites gate U [r]

H . The Trotter-Suzuki expansion permits to write the entire evo-
lution as a repetition of a certain sequence acting for δτ . b) Updating of the
MPS when the gate U [r]

H is applied. The SD of the tensor Ω(νi, jµ) provides
the updated matrix λ[r]. The transformed Γ[r],Γ[r+1] are obtained from the
Schmidt vectors by the action of (λ[r−1])−1, (λ[r+1])−1 respectively.
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2. Schmidt decomposition of the tensor Ω̃νijµ according to the bipartition
[νi][jµ]:

Ω̃νijµ =

χ∑
α

Uαν i · λ̃[r]α
α · V j µα , (9.195)

where U , V are the Schmidt vectors and λ̃[r] is the matrix with the Schmidt
coe�cients, which is the updated λ[r]. We remark that we only consider
a maximum of χ Schmidt coe�cients. This truncation is necessary for
the practical implementation of the protocol in a classical computer and
it introduces an error in the calculation, as we will comment later.

3. Normalization of the state |ψ〉 → |ψ〉
|||ψ〉|| :

λ̃[r] → λ̃[r]√∑χ
α(λ̃

[r]α
α )2

. (9.196)

4. Update of the tensor Γ[r] and Γ[r+1] using the Schmidt vectors appearing
in U and V :

Ω̃ = Uλ̃[r]V = λ[r−1](λ[r−1])−1Uλ̃[r]V (λ[r+1])−1λ[r+1] =

λ[r−1]Γ̃[r]λ̃[r]Γ̃[r+1]λ[r+1]. (9.197)

Therefore:

Γ̃
[r]α
i β =

∑
ν

(λ[r−1])−1
∣∣α
ν
· Uνi β

Γ̃
[r+1]α
i β =

∑
ν

V νi β · (λ[r+1])−1
∣∣α
ν
. (9.198)

In Fig. 9.10 b) we can see a pictorial representation of all these di�erent
operations for updating the MPS.

Finally let us consider a one site gate operator S[r]. The action of this type
of gates only requires the update of MPS consists on the update of the Γ[r]

tensor:
Γ̃[r] = S[r] · Γ[r] −→ Γ̃

[r]α
i β =

∑
j

S
[r]j
i Γ

[r]α
j β (9.199)
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Truncation of the Hilbert subspace

As we saw in the last section, the computation of the ground state requieres the
update of the MPS at every loop. This update is given by a SD of the tensor Ω
(Fig. 9.10 b) ). In this operatio, the rank of the λ̃ matrices can increase:

rank(λ̃) ≤ max(ν · i, j · µ) (9.200)

Thus, a practical calculation of the ground state needs an upper value (χ)
of the bond dimension of the MPS, such that all the SDÂ´s are restricted to
this value (see Eq. (9.206)). By doing thies, we are restricting the Hilbert
subspace to a sector with can support a maximum of entanglement entropy for
a bipartition:

S ≤ log(χ). (9.201)

This truncation of the Hilbert subspace introduces an approximation in the
computation of the ground state. This approximation is reasonable provided
the ground state is a slightly entangled state. As we showed in the last section,
this is the case for 1D gapped systems with local interactions, where the Schmidt
coe�cients decay exponentially [219]:

λ
[r]
l ∼ e

−Cl, (9.202)

where l labels the Schmidt coe�cient and C is a real constant.
In such situation, it is reasonable to consider su�cient large but �nite num-

ber χ of Schmidt coe�cients for encoding all the properties of the ground state.
At Fig. 9.11 it is shown the exponential decay (9.202) for a particular realization
of the Ising quantum chain in transverse �eld.

9.7.3 Time evolution in the TEBD formalism

Let us consider the time evolution of a given state |ψ〉 represented by a MPS:

|ψ(t)〉 = eitH |ψ(0)〉. (9.203)

Proceeding as in the imaginary time evolution, the time evolution operator can
be written as:

e−itH =
(
e−iδtH

)t/δt ≡ UH(iδt)t/δt. (9.204)

It takes the same form than the imaginary time evolution operator (9.184),
substituting the imaginary time τ per real time it.
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Figure 9.11: Exponential decay of the Schmidt coe�cients λ[N/2] for the ground
state of a quantum Ising: H =

∑
i(−σxi σxi+1 + σzi ), for a chain of total length

N = 100. The computation of the ground state has been done considering
χ = 32.
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Thus, the protocol for the real time evolution of the state contains the same
structure than the one for the computation of the ground state, by considering
that the time evolution is given by an unitary operator and the state is not
normalized at every sequence:

1. Update the MPS by applying the gate Ũ [r] i′j′

H ij (see Eq.(9.193)) :

Ω̃νijµ =
∑
i′j′

α1···α4

Ωνi′j′µ · Ũ [r] i′j′

H ij =

∑
i′j′

α1···α4

λ[r−1]α1
ν Γ

[r]α2

i′ α1
Ũ

[r] i′j′

H ij λ[r]α3
α2

Γ
[r]α3

j′ α4
λ[r+1]α4
µ . (9.205)

2. Schmidt decomposition of Ω̃νijµ according to the bipartition [νi][jµ]:

Ω̃νijµ =

χ∑
α

Uαν i · λ̃[r]α
α · V j µα , (9.206)

where U , V contain the Schmidt vectors and λ̃[r] is the matrix with the
Schmidt coe�cients and it is the updated λ[r]. As in the computation
of the ground state protocol, we only consider as a maximum χ of the
Schmidt coe�cients.

3. Update of the tensor Γ[r] and Γ[r+1] using the tensors U and V :

Ω̃ = Uλ̃[r]V = λ[r−1](λ[r−1])−1Uλ̃[r]V (λ[r+1])−1λ[r+1] =

λ[r−1]Γ̃[r]λ̃[r]Γ̃[r+1]λ[r+1]. (9.207)

Therefore:

Γ̃
[r]α
i β =

∑
ν

(λ[r−1])−1
∣∣α
ν
· Uνi β

Γ̃
[r+1]α
i β =

∑
ν

V νi β · (λ[r+1])−1
∣∣α
ν
. (9.208)

The truncation to χ Schmidt vectors in the Hilbert subspace (step 2) can
introduce an error ε in the norm of the state:
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ε(t) = 1−
χ∑
α

(λαα(t))2. (9.209)

Then, the real time evolution considering the truncation of the Hilbert subspace
gives accurate results provided that the ε is an small number. This fact depends
strongly on the considered system.

In di�erent local perturbation of the ground states in 1D slightly entangled
systems, the TEBD method leads to accurate results for real time evolution for
medium and long times. As an example, we �nd the split quench studied in
Chapter 7, where the error ε seems to be an small number for medium and long
time evolution after the quench (see Fig. 7.10 (inset, lower panel)). We refer
the reader to the excellent work carried out by A. Perales and G. Vidal about
the topic for di�erent 1D quantum systems. [233]. In contrast, this situation
may change drastically for global perturbations of the system, where the bond
dimension χ of the MPS can increase a lot even for short times.
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