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Abstract

Over the last few decades, data analysis has swiftly evolved from being a task ad-
dressed mainly within the remit of multivariate statistics, to an endevour in which
data heterogeneity, complexity and even sheer size, driven by computational ad-
vances, call for alternative strategies, such as those provided by pattern recognition
and machine learning.

Any data analysis process aims to extract new knowledge from data. Knowledge
extraction is not a trivial task and it is not limited to the generation of data models or
the recognition of patterns. The use of machine learning techniques for multivariate
data analysis should in fact aim to achieve a dual target: interpretability and good
performance. At best, both aspects of this target should not conflict with each other.
This gap between data modelling and knowledge extraction must be acknowledged,
in the sense that we can only extract knowledge from models through a process of
interpretation.

Exploratory information visualization is becoming a very promising tool for in-
terpretation. When exploring multivariate data through visualization, high data di-
mensionality can be a big constraint, and the use of dimensionality reduction tech-
niques is often compulsory. The need to find flexible methods for data modelling has
led to the development of non-linear dimensionality reduction techniques, andmany
state-of-the-art approaches of this type fall in the domain of probabilistic modelling.
These non-linear techniques can provide a flexible data representation and a more
faithful model of the observed data compared to the linear ones, but often at the
expense of model interpretability, which has an impact in the model visualization
results.

In manifold learning non-linear dimensionality reduction methods, when a
high-dimensional space is mapped onto a lower-dimensional one, the obtained em-
bedded manifold is subject to local geometrical distortion induced by the non-linear
mapping. This kind of distortion can often lead to misinterpretations of the data
set structure and of the obtained patterns. It is important to give relevance to the
problem of how to quantify and visualize the distortion itself in order to interpret
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data in a more faithful way.
The research reported in this thesis focuses on the development of methods and

techniques for explicitly reintroducing the local distortion created by non-linear di-
mensionality reduction models into the low-dimensional visualization of the data
that they produce, as well as in the definition of metrics for probabilistic geometries
to address this problem. We do not only provide methods only for static data, but
also for multivariate time series.

The reintegration of the quantified non-linear distortion into the visualization
space of the analysed non-linear dimensionality reduction methods is a goal by it-
self, but we go beyond it and consider alternative adequate metrics for probabilistic
manifold learning. For that, we study the role of Random geometries, that is, distri-
butions of manifolds, in machine learning and data analysis in general. Methods for
the estimation of distributions of data-supporting Riemannian manifolds as well as
algorithms for computing interpolants over distributions of manifolds are defined.
Experimental results show that inferencemade according to the randomRiemannian
metric leads to a more faithful generation of unobserved data.



Abstract
(Catalan)

Durant les últimes dècades, l’anàlisi de dades ha evolucionat ràpidament de ser una
tasca dirigida principalment dins de l’àmbit de l’estadística multivariant, a un ende-
vour en el qual l’heterogeneïtat de les dades, la complexitat i la simple grandària,
impulsats pels avanços computacionals, exigeixen estratègies alternatives, tals com
les previstes en el Reconeixement de Formes i l’Aprenentatge Automàtic.

Qualsevol procés d’anàlisi de dades té com a objectiu extreure nou coneixement
a partir de les dades. L’extracció de coneixement no és una tasca trivial i no es limita
a la generació de models de dades o el reconeixement de patrons. L’ús de tècniques
d’aprenentatge automàtic per a l’anàlisi de dades multivariades, de fet, hauria de
tractar d’aconseguir un objectiu doble: la interpretabilitat i un bon rendiment. En el
millor dels casos els dos aspectes d’aquest objectiu no han d’entrar en conflicte entre
sí. S’ha de reconèixer la bretxa entre el modelatge de dades i l’extracció de coneix-
ement, en el sentit que només podem extreure coneixement a partir dels models a
través d’un procés d’interpretació.

L’exploració de la visualització d’informació s’està convertint en una eina molt
prometedora per a la interpretació dels models. Quan s’exploren les dades multi-
variades a través de la visualització, la gran dimensionalitat de les dades pot ser un
obstacle, i moltes vegades és obligatori l’ús de tècniques de reducció de dimension-
alitat. La necessitat de trobar mètodes flexibles per al modelatge de dades ha portat
al desenvolupament de tècniques de reducció de dimensionalitat no lineals. L’estat
de l’art d’aquests enfocaments cau moltes vegades en el domini de la modelització
probabilística. Aquestes tècniques no lineals poden proporcionar una representació
de les dades flexible i un model de les dades més fidel comparades amb els mod-
els lineals, però moltes vegades a costa de la interpretabilitat del model, que té un
impacte en els resultats de visualització.

En els mètodes d’aprenentatge de varietats amb reducció de dimensionalitat no
lineals, quan un espai d’alta dimensió es projecta sobre un altre de dimensió menor,
la varietat immersa obtinguda està subjecta a una distorsió geomètrica local induïda
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per la funció no lineal. Aquest tipus de distorsió pot conduir a interpretacions er-
rònies de l’estructura del conjunt de dades i dels patrons obtinguts. Per això, és
important donar rellevància al problema de com quantificar i visualitzar aquesta
distorsió en sí, amb la finalitat d’interpretar les dades d’una manera més fidel.

La recerca presentada en aquesta tesi se centra en el desenvolupament de mè-
todes i tècniques per reintroduir de forma explícita a l’espai de visualització la dis-
torsió local creada per la funció no lineal. Aquesta recerca se centra també en la
definició de mètriques per a geometries probabilístiques per fer front al problema
de la distorsió de la funció en els models de reducció de dimensionalitat no lineals.
No proporcionem mètodes només per a les dades estàtiques, sinó també per a sèries
temporals multivariades.

La reintegració de la distorsió no lineal a l’espai de visualització dels mètodes de
reducció de dimensionalitat no lineals analitzats és un objectiu en sí mateix, però
aquesta anàlisi va més enllà i considera també les mètriques probabilístiques ade-
quades a l’aprenentatge de varietats probabilístiques. Per això, estudiem el paper de
les Geometries Aleatòries (distribucions de les varietats) en Aprenentatge Automàtic
i anàlisi de dades en general. Es defineixen aquí els mètodes per a l’estimació de les
distribucions de varietats de Riemann de suport a les dades, així com els algorismes
per calcular interpolants en les distribucions de varietats. Els resultats experimen-
talsmostren que la inferència feta segons lesmètriques de les varietats Riemannianes
Aleatòries dóna origen a una generació de les dades observades més fidel.



Alla mia famiglia.
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Chapter 1

Introduction

Over the last few decades, data analysis has swiftly evolved from being a task ad-
dressed mainly within the remit of multivariate statistics, to an endevour in which
data heterogeneity, complexity and even sheer size, driven by computational ad-
vances, call for alternative strategies, such as those provided by pattern recognition
and machine learning.

These new data requirements, nowadays under the fashionable concept of Big
data, come not only from business enterprises as an extension of traditional data
mining, but also from scientific fields such as, for instance, biology [Marx, 2013]. The
ensuing big challenge for pattern recognition andmachine learning is the translation
of raw data into useful knowledge that can be acted upon in practical terms.

Any data analysis process, in the end, aims to extract new knowledge from data.
Knowledge extraction is not a trivial task and it is not limited to the generation of
data models (regardless their sophistication) or to the recognition of (possibly rele-
vant) patterns. Those patterns and models and, in fact, any other results stemming
from our analyses require interpretation to become knowledge.

Consequently, the use ofmachine learning techniques formultivariate data (MVD)
analysis should aim to achieve a dual target: interpretability and good performance.
At best, both aspects of this target should not conflict with each other. A gap be-
tween data modeling and knowledge extraction must thus be acknowledged, in the
sense that we can only extract knowledge from models through a process of inter-
pretation [Vellido et al., 2012]. Models are often built with the sole goal of achieving
high accuracy or precision, even though in many practical applications an optimum
performance is likely to be less relevant than achieving interpretability.

In this context, exploratory information visualization becomes an useful tool.
When exploring MVD through visualization, high data dimensionality can be a big
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constraint, and the use of dimensionality reduction techniques becomes almost com-
pulsory.

Dimensionality reduction techniques are in fact a key tool in high-dimensional
MVD analysis, and a large corpus of literature addressing this problem (mostly from
the viewpoints of feature selection and feature extraction) is currently available to
us, tracing back to over a century ago. The best known and most widely used linear
feature extraction dimensionality reduction method is Principal Component Analy-
sis (PCA), introduced by Pearson [1901]. In essence, PCA assumes that a low dimen-
sional latent space, with Gaussian distributed variables, is mapped into the observed
data space under a linear transformation. The reduction of dimensionality is oper-
ated by finding a few orthogonal linear combinations (principal components) of the
original variables with the largest variance. The key to the resilience of this method
after more than a century is, probably, its easy interpretability, as the extracted fea-
tures are just linear combinations of the original ones in the data set.

The need to find more flexible (and hopefully better performing) methods for
MVD modeling has led to the development of non-linear techniques for dimension-
ality reduction, which are slowly growing in popularity [Lee and Verleysen, 2007].
A modern approach to non-linear dimensionality reduction (NLDR) of relevance to
the current thesis and that involves probabilistic modeling (and, therefore, statisti-
cal machine learning) is latent variable modeling (LVM), which works by defining a
subset of latent (or hidden) variables to accompany and explain the observed ones.
NLDR methods can provide a flexible data representation and a more faithful model
of the observedMVD than linear ones. This target is too often reached at the expense
of model interpretability, which has an impact in the model visualization results.

Both linear and non-linear DR methods aim, in one way or another, to preserve
the structure of the observed data as much as possible in the low dimensional data
representation that they generate. Unfortunately (from the point of view of inter-
pretation) NLDR methods usually generate different levels of mapping distortion,
geometrical and topological, including: manifold compression, stretching, gluing
and tearing [Aupetit, 2007]. Many distortion measures (often associated with spe-
cific models and specific visualization techniques) have been proposed for different
NLDR methods.

In manifold learning, when a high-dimensional space is mapped onto a lower-
dimensional one, the obtained embedded manifold is subject to some kind of local
geometrical distortion induced by the non-linear mapping. This means that there
is no guarantee that the inter-point distances in the observed data space will be
uniformly reflected in the visualization space. This kind of distortion can often lead
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to misinterpretations of the data set itself.
At best, these NLDR methods can aspire to minimize the distortion of the ob-

served data introduced in their representation, according to some objective function.
But, given that it is almost impossible to completely avoid geometrical distortions
while reducing dimensionality, it is important to give relevance to another aspect of
the problem: how to quantify and visualize this distortion itself in order to interpret
data in a more faithful way.

The research reported in this thesis focuses on the development of methods and
techniques for explicitly reintroducing the local distortion created by NLDR models
into the low-dimensional representation of the MVD for visualization that they pro-
duce, as well as on the definition of metrics for probabilistic geometries to address
this problem.

For part of this research, we draw inspiration from a technique originally de-
vised for the analysis of geographic information, namely density-equalizing maps,
or Cartograms [Gastner and Newman, 2004]. These maps were originally defined
as geographic maps in which the sizes of delimited regions appear distorted in pro-
portion to underlying quantities such as their population. Cartograms were later
redefined, using diffusion techniques from physics, to avoid drawbacks such as the
undesired overlapping of regions, or a too strong dependence on the choice of coor-
dinate axes.

The interpretation leap in the use of Cartograms for NLDR model visualization
consists on extrapolating from geographical maps to the latent visualization spaces
of NLDR models (particularly manifold learning methods in this thesis), as well as
on substituting geography-distorting quantities such as population density by quan-
tities reflecting the mapping distortion introduced by the non-linear methods.

We do not aim to provide methods only for static data in the thesis, but also for
multivariate time series (MTS). Again, MTS visualization may become difficult to
interpret when data are modelled using non-linear techniques. This is the case, for
instance, when modelled using Variational Bayesian Generative Topographic Map-
ping Through Time (VB-GTM-TT) [Olier and Vellido, 2008a], a variational Bayesian
variant of the manifold learning family defined for MTS visualization. Its inter-
pretability will be improved through the explicit estimation of probabilities of tran-
sition between states described in the visualization space and the quantification of
the non-linear mapping distortion.

The reintegration of the quantified non-linear distortion into the visualization
space of the analysed NLDR methods is a goal by itself, but we want to go beyond
that and consider alternative adequate metrics for probabilistic manifold learning.
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To accomplish this, we study the role of RandomGeometries, that is, distributions of
manifolds in machine learning and data analysis in general. Methods for the estima-
tion of distributions of data-supporting Riemannian manifolds, as well as algorithms
for computing interpolants (geodesics) over distributions of manifolds are defined.

In this thesis we propose methods to increase the interpretability of NLDRmeth-
ods in different instances of MVD analysis using visualization. It is important to
stress that this analysis could quite straightforwardly be extended not only to other
variants of themethodswe investigate (variants of Self-OrganizingMaps (SOM) [Ko-
honen, 2001], Generative Topographic Mapping (GTM) [Bishop et al., 1998a; Sven-
sén, 1998] and Gaussian Process LVM (GP-LVM) [Lawrence, 2005]), but also to other
alternative NLDR visualization-oriented methods, provided a local distortion mea-
sure, or some approximation for it, could be calculated.

1.1 Summary of the main goals of the thesis

The generic goals of the current thesis could be summarily listed as follows:

• GG1: Exploration of the concept of local mapping distortion in non-linear
dimensionality reduction methods (with specific attention paid to manifold
learning techniques) from the viewpoint of the analytical quantification of
such distortion.

• GG2: Exploration of the Cartogram representation in bounded and partitioned
visualization spaces as a tool for increasing the interpretability and usability
of such multivariate data visualizations. Definition and implementation of
Cartogram-based algorithms for visual representation of multivariate data for
batch-SOM and GTM, based on magnification factor (MF) measurements of
the mapping distortion they generate.

• GG3: Explicit estimation of probabilities of transition between states described
in the visualization space and quantification of the non-linear mapping distor-
tion for VB-GTM-TT in the analysis of multivariate time series.

• GG4: Definition of adequate metrics for probabilistic manifold learning as an
alternative to the standard Euclidean metrics through the study of Random
Geometries, including definition of methods for the estimation of distributions
of data-supporting Riemannian manifolds as well as algorithms for computing
interpolants over distributions of manifolds.
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1.2 Structure of the document

The thesis document is structured in the following chapters:

Chapter 1
The document starts with a general introduction to the field of interest, men-
tioning problems that will be tackled later on in this work. We then provide a
summary of the notation and symbols used over the document.

Chapter 2
This chapter provides the introductory technical background about probabilis-
tic data modelling with a focus on non-linear dimensionality reduction meth-
ods for multivariate data visualization. We devote some special attention to
manifold learning techniques such as the Generative Topographic Mapping
(GTM) and the Gaussian Process Latent Variable Model (GP-LVM).

Chapter 3
This is again a technical background chapter, which focuses on the general
theme of distortion measures in non-linear dimensionality reduction meth-
ods, paying special attention to the concept of Magnification Factors. We also
include some necessary basics about Riemannian geometry.

Chapter 4
In this chapter, we present research results in the topic of Cartogram-based vi-
sualization of multivariate data using manifold learning models. This includes
self-contained introductions to Cartogram methods and to Self-Organizing
Maps (SOM) models in different variants. We show how to apply Cartograms
to the representations of non-linear dimensionality reduction distortion mea-
sures in the visualization space with experiments including batch-SOM and
t-GTM.

Chapter 5
Our analysis departs from static i.i.d. data to address methods to improve
visualization-based analysis ofmultivariate time series using dynamic variants
of manifold learning models. This chapter includes a self-contained definition
of Variational BayesianGTM through time (VB-GTM-TT) and an experimental
set.

Chapter 6
It provides a study of adequate metrics for probabilistic geometries and their
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impact on model interpretability. It includes a definition of a probabilistic Rie-
mannian metric for GP-LVM and algorithms for the calculation of geodesics
distances for this model. A battery of experiments to evaluate the proposed
methods is reported.

Chapter 7
The final chapter summarises some conclusions of the thesis, highlighting its
novelties. It also includes and lists some advanced themes and expected po-
tential future avenues of research that we envisage beyond the advances pre-
sented in the thesis.

1.3 Refereed publications directly related to the the-

sis

[1] A. Tosi, S. Hauberg, A. Vellido, N.D. Lawrence. Metrics for probabilistic
geometries. In The 30th Conference on Uncertainty in Artificial Intelligence
(UAI 2014), pp. 800–808. Quebec City, Canada.

[2] A. Tosi, A. Vellido. Probabilistic Geometries as a tool for Interpretability
in Dimensionality Reduction Models. The 8th WiML Workshop, Advances in
Neural Information Processing Systems (NIPS 2014). Montreal, Canada.

[3] A. Tosi and A. Vellido. Local metric and graph based distance for proba-
bilistic dimensionality reduction. The Workshop on Features and Structures
(FEAST 2014) International Conference on Pattern Recognition (ICPR 2014),
Stockholm, Sweden.

[4] A. Tosi, I. Olier, A. Vellido. Probability ridges and distortion flows: Visu-
alizing multivariate time series using a variational Bayesian manifold learning
method. In Advances in Intelligent Systems and Computing, Vol.295, pp.55-64,
procs. of the 10th Workshop on Self-Organizing Maps (WSOM 2014), Mit-
tweida, Germany.

[5] A. Tosi, A. Vellido. Robust cartogram visualization of outliers in manifold
learning. In Proceedings of the 21st European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN 2013),
Bruges, Belgium, pp.555-560.



1.4 Other refereed publications 7

[6] A. Tosi, A. Vellido. Cartogram representation of the batch-SOM magnifi-
cation factor. In Proceedings of the 20th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning (ESANN
2012), Bruges, Belgium, pp.203-208.

Description of contributions in relation to the refereed publications

In Chapter 3 we introduce the Cartogram-based method which has been presented
in [6] and [5] for the batch-SOM algorithm and the t-GTM respectively; in Sec. 4.3
and Sec. 4.4 we illustrate the experimental results as reported in the two papers.

The analysis on multivariate time series reported in [4] is presented in Chapter
5, together with the experimental results; the design and implementation of the
algorithms has been done using software tools for VB-GTM-TT [Olier and Vellido,
2008b] provided by Dr. Iván Olier.

The idea of probabilistic geometries presented inChapter 6 is the result of a joint
project carried out at theMachine Learning group of the University of Sheffield, with
Professor Neil Lawrence. The experimental results of [1] are reported in Sec. 6.4.
The tools used to design the experiments and train the models are built on the GP-
LVM [Lawrence, 2005] software provided by the Machine Learning group of the
University of Sheffield1; the tools used to compute manifold structures and geodesics
via ODE’s solutions, as described in 6.3.2, use the software provided by Dr. Søren
Hauberg and previously used in [Hauberg et al., 2012]. The description of the geodesic
computation via discrete graphs presented in 6.3.1 refers to [3].

Finally, the work presented in [2] provides an overall summary of the topics of
this thesis, focusing on the problem of interpretability in dimensionality reduction
introduced in Chapter 2 and Chapter 3 and presenting the advances detailed in
Chapter 6.

1.4 Other refereed publications

It is worth mentioning other publications that, although not included in the the-
sis, have inspired its development while exploring new and interesting topics of
research:

[7] L. A. Belanche, A. Tosi. Averaging of Kernel Functions. Neurocomputing 112
(2013), pp.19-25.

1Software can be downloaded here: https://github.com/SheffieldML/, both in the Matlab and in
the Python version
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[8] L. A. Belanche, A. Tosi. Averaging of kernel functions. In Proceedings of
the 20th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN 2012), Bruges, Belgium, pp.363-
368.

1.5 Symbols and notation

• Notation:

The matrix Y ∈ RN×p represents the observed data space, where each row
corresponds to an observed data point and each column to a dimension. We
denote with Y:,j the columns of the data matrix, with yi the rows of the data
matrix and with yi,j a single scalar element.

Y = [Y:,1Y:,2 . . .Y:,p] =



data features︷ ︸︸ ︷
y1,1 y1,2 · · · y1,p

y2,1 y2,2 · · · y2,p

·
·

yN,1 yN,2 · · · yN,p




data points

Similarly, we denote with xi the rows of the matrix X.

In this document we use the symbol x to represent a latent vector of dimension
q, and the symbol y to represent an observed vector (data point) of dimension
p. We always consider q < p.

Given a differentiable function

f : Rq −→ Rp

x 7→ y = f(x)

we call Jacobian the p× q matrix J containing all the partial derivatives

J =


∂y(1)

∂x(1) . . . ∂y(1)

∂x(q)

... ...
∂y(p)

∂x(1) . . . ∂y(p)

∂x(q)

 (1.1)
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• Symbols:

R the set of real numbers
I identity matrix
Φ(·) a vector of function values, themth element corresponds to ϕm(·)
f(X) a vector of function values, the ith element corresponds to f(xi).
Kf ,f covariance matrix whose elements are given by k(xi,xj)

x(i) the ith component of the vector x
∂

∂x(i) the partial derivative with respect to x(i)

J the Jacobian of a function
▽2 the Laplacian operator of a function
∼ distributed according to the following probability distribution
GP(·, ·) Gaussian Process
N (·, ·) Gaussian Distribution
Γ(·, ·) Gamma Distribution
E[x] expectation of the random variable x
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• Acronyms:

BMU Best Matching Unit
BSOM Batch Self Organizing Maps
DM Data Mining
EQ Exponentiated Quadratic kernel
GP Gaussian Process
GPDM Gaussian Process Dynamical Model
GP-LVM Gaussian Process Latent Variable Model
GTM Generative Topographic Mapping
GTM-TT Generative Topographic Mapping Through Time
HHM Hidden Markov Model
ISOMAP Isometric Feature Mapping
LE Laplacian Eigenmaps
LLE Local Linear Embedding
LVM Latent Variable Model
MDS Multidimensional Scaling
MF Magnification Factor
ML Machine Leaning
MTS Multivariate Time Series
MVD Multivariate Data
MVU Maximum Variance Unfolding
NLDR Non-linear Dimensionality Reduction
ODE Ordinary Differential Equation
PCA Principal Component Analysis
PPCA Probabilistic Principal Component Analysis
PR Pattern Recognition
SML Statistical Machine Leaning
SOM Self Organizing Maps
tGTM Student-t Generative Topographic Mapping
VB-GTM-TT Variational Bayesian GTM Through Time



Chapter 2

Probabilistic Modelling

The increasing availability of high-dimensional data sets, with different levels of
complexity and growing diversity of characteristics, sometimes under the fashion-
able remit of Big Data, is one of the driving forces behind recent advances in the
development of machine learning techniques (c.f. Fig. 2.1 for examples of high-
dimensional datasets).

Data from real-world processes and phenomena are likely to involve quality is-
sues. They may include acquisition errors of several types, as well as the presence of
noise. Within the constraints of this context, probabilistic modelling turns out to be
a powerful approach due to its flexibility, and also one that is ideally suited to deal
with uncertainty in its many forms.

In this chapter, we summarily review the theory of probabilistic modelling in the
context of dimensionality reduction. We focus on models of the manifold learning
family oriented towards exploratory multivariate data visualization. In particular,
we present the details of some specific models, namely the generative topographic
mapping (GTM) in section § 2.2 and the Gaussian process latent variable model (GP-
LVM)in section § 2.3, both of which will be used in the following chapters to display
experimental results.

2.1 Probabilistic dimensionality reduction

Non-linear dimensionality reduction (NLDR) methods [Lee and Verleysen, 2007]
provide a flexible alternative for multivariate data modelling and representation that
can lead to more faithful models of the observed data compared to those obtained
with their simpler linear counterparts.

One specific approach is to perform probabilistic NLDR defining a model that
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introduces a set of unobserved (or latent) variables X that can be related to the
observed onesY, in order to define a joint distribution over both. These models are
known as latent variable models (LVMs).

The latent space is dominated by a prior distribution p(X) which induces a dis-
tribution over Y under the assumption of a probabilistic mapping of the form:

yi,j = fj(xi) + ϵi, (2.1)

where xi ∈ Rq is the latent point associated with the ith observation yi ∈ Rp, j is
the index of the features of Y, and ϵi is a noise term that accounts for noise in the
data as well as for inaccuracies in the model. The noise is typically chosen to be
Gaussian distributed ϵ ∼ N (0, β−1), where β is the precision.

One of the advantages of this approach is that it accommodates DR in an intuitive
manner, if we assume that the dimensionality of the latent space is significantly
lower than that of the observation space. In this case, the reduced dimensionality
provides us with both implicit regularisation and a low-dimensional representation
of the data, which can be used for visualisation (and, therefore, for data exploration
[Vellido et al., 2011]) if the dimension is low enough. If the mapping f in Eq. (2.1) is
taken to be linear and equal to a matrixW ∈ Rp×q :

yi,j = wjxi + ϵi, (2.2)

where wj are the rows of W, this model is known as probabilistic version of PCA
[Roweis, 1997; Tipping and Bishop, 1999]. Given a Gaussian prior p(X) over the
latent variables, PCA is recovered in the limit as the precision β is going to infinity.
The conditional probability of the data given the latent space can be written as

p(yi | xi,W, β) = N (yi | Wxi, β
−1I). (2.3)

With a further assumption of independence across data points, the marginal likeli-
hood of the data is

p(Y | W, β) =

∫ N∏
i=1

p(yi | xi,W, β)p(xi)dX. (2.4)

It can be proven [Tipping and Bishop, 1999] that the maximum likelihood so-
lution for W spans the principal sub-space of the data (even when the precision is
finite).
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In general, this approach can be applied to both linear and non-linear dimen-
sionality reduction models, leading to the definition of, for instance, Factor Analysis
[Bartholomew, 1987], GTM [Bishop et al., 1998a], or GP-LVM [Lawrence, 2005], to
name just a few.

In the classic approach, the latent variables are marginalised (integrated out) and
the parameters are optimised by maximising the model likelihood. An alternative
(and equivalent) approach proposes to marginalise the parameters and optimise the
latent variables, leading to the formulation of the GP-LVM model.

Fig. 2.1 Examples of high dimensional datasets of different nature. Top left: many
samples of images of handwritten digits, from the MNIST dataset available at:
http://yann.lecun.com/exdb/mnist/. Top center: sample pose of a human motion cap-
ture, from the CMU motion capture database available at http://mocap.cs.cmu.edu/.
Right: image of a protein, taken from the home page of the Kappaim project
https://sites.google.com/site/kappaaim/home. Bottom: image of an object captured dur-
ing a rotation, from the Columbia Object Image Library (COIL) database available at
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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2.2 Generative Topographic Mapping

The GTM is a non-linear LVM developed by Bishop, Svensén and Williams in the
late nineties [Bishop et al., 1998a; Svensén, 1998]. In this model, manifold learning
vector quantization techniques are applied and the observed variables are related
with the latent ones through a non-linear function. The idea is to define a probability
distribution in the latent space, in order to induce the corresponding probability
distribution in the observed data space, using concepts of Bayesian inference.

GTM can be seen as a mixture of distributions whose centres are constrained
to lay on an intrinsically low-dimensional space. Given that the generative model
specifies a mapping from latent space to observed data space, such latent space can
be used for data visualization when its dimensionality is equal to 1 or 2.

In the following section we first introduce the standard algorithm for GTM,
§ 2.2.1. Many extensions to the model have been proposed [Bishop et al., 1998b]
over the years. For example, unless regularization is included, the GTM is prone
to overfitting, and adaptive regularization for GTM was proposed in [Bishop et al.,
1998b] and [Vellido et al., 2003]. Other extensions to GTM have been developed,
such as those in [Vellido et al., 2006; Vellido, 2006b,a].

The GTM was redefined as a constrained Hidden Markov Model (HMM) by
Bishop et al. [1997b] for the analysis of multivariate time series. The resulting GTM
Through Time (GTM-TT), presented in section § 2.2.2 of this chapter, can be consid-
ered as a GTMmodel in which the latent states are linked by transition probabilities,
in a similar fashion to HMMs.

2.2.1 The GTMmodel

Considering the noise model in Eq. (2.1), an example that generalises from the linear
case to the non-linear one is the GTM, in which the mapping f is taken to be a linear
combination of a set ofM basis functions in the form

yi,j = fj(xi,W) + ϵi =
M∑

m=i

wjϕm(xi) + ϵi. (2.5)

In the current notation, Φ is a set ofM basis functions ϕm(x) (Gaussians in the
standardmodel; other distributions can be considered for different types of data) and
W ∈ Rp×M is a matrix of adaptive weight parameterswi,j , where p is the dimension
of the observed data space and wj are the rows ofW.

This model, illustrated in Fig. 2.2, can be seen as a mixture of distributions whose
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Fig. 2.2 Illustrative example of GTM mapping. A 15× 15 2-D squared grid of latent points is
mapped in a non-linear way onto a 3-D data space, fitting 2 clusters of random observations
(black crosses). The 3-D plot shows how the support of the data can be represented with a
2-D surface embedded in an higher dimensional space.
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centres µm are constrained to lay on an intrinsically low-dimensional space. In the
standard case, the basis distribution is chosen to be a set of Gaussian radial basis
functions with the same lengthscale γ:

ϕm(x) = exp
(
−γ
2
∥ x− µm ∥2

)
, (2.6)

but other distributions can be considered for different types of data; one example
will be provided later on in § 4.4.1, in which a mixture if Student-t distributions is
used to define a GTM variant that behaves robustly in the presence of atypical data
or outliers.

The centres of the mixture of distributions can be interpreted as data prototypes
or cluster centroids that can be further agglomerated in a full-blown clustering pro-
cedure. In this manner, GTM combines the functionalities of Self-Organising Maps
(c.f. section §4.3) and mixture models by providing both data visualisation over the
latent space and data clustering [Olier and Vellido, 2008c].

Provided a prior distribution over the latent space, this model leads, in a similar
way to probabilistic PCA (PPCA) [Tipping and Bishop, 1999], to a Gaussian condi-
tional distribution of the data

p(yi | x,W, β) = N

(
y

∣∣∣∣∣
M∑

m=i

w⊤
j ϕm(xi), β

−1I

)
(2.7)

=

(
β

2π

)D/2

exp

−β
2

p∑
j=1

(
yi,j −

M∑
m=i

w⊤
j ϕm(xi)

)2
 . (2.8)

Model likelihood and expectation maximization

The GTM algorithm aims to find the probability p(y|W, β) of a data point given the
adaptive weight parametersW and the noise variance β. To do so, the latent vectors
x are integrated out of the model. To make the computation analytically tractable,
the prior distribution p(x) is defined by a set ofK equally weighted delta functions

p(x) =
1

K

K∑
k=1

δ(x− xk). (2.9)

The K centres xk are distributed in a predefined regular lattice, which is taken to
be squared in the standard case (other choices are allowed, for example hexagonal
grids). This discrete choice of the prior distribution simplifies the integration and,
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as a result, the data distribution becomes

p(y|W, β) =

∫
p(y|x,W, β)p(x)dx =

1

K

K∑
k=1

p(y|xk,W, β), (2.10)

and assuming the data points i.i.d., we obtain the following final expression of the
model likelihood:

L =
N∏

n=1

p(yn|W, β). (2.11)

To estimate the parameters W and β, we can use a maximum likelihood approach,
which is equivalent to consider the maximum of the log-likelihood

ℓ = log(L) =
N∑

n=1

log

(
1

K

K∑
k=1

p(yn|xk,W, β)

)
. (2.12)

The optimization of the adaptive parameters can be achieved by any standard
non-linear optimization technique (see e.g. [Press et al., 1988]) but, since we are
workingwith amixture of Gaussians, themost common choice is to use the expectation-
maximization (EM) algorithm [dem; Bishop, 1995]. Given the initial values for W
and β, the E-step for the standard GTM formulation is the same as for the general
Gaussian Mixture model, where the the conditional probability of each latent point
given each observed data point is computed using Bayes’ theorem. The probabilities
are usually referred to as the responsibilities rkn

rkn ≡ p(xk|yn,W, β, ) =
p(yn|xk,W, β)p(xk)∑K

k′=1 p(yn|xk′ ,W, β)p(xk′)
. (2.13)

Notice that, for the choice of prior distribution made in Eq: (2.9), the effect of the
term p(xk) is cancelled. Considering now the choice of the GTM mapping made in
Eq. (2.5), we obtain that the M-step of the EM algorithm reduces to the solution of
a set of linear equations. For more details about the EM algorithm and the update
equations for the standard GTM see [Bishop et al., 1998a, § 2.2].



18 Probabilistic Modelling

Fig. 2.3 Visualization of modes projections (black dots, left diagram) and means projections
(black dots, right diagram) on the 2-D GTM latent space for the 3-D artificial dataset in
Fig. 2.2.

Data Visualization

Since we are especially interested in data visualization, we can use the conditional
probability defined by Eq: (2.13) to obtain both a posterior mode projection of yn

kmode
n = argmax

k

rk,n (2.14)

(which implies assigning each observed data point to that latent point with the high-
est responsibility for its generation), or a posterior mean projection

xmean
n =

K∑
k=1

rknxk (2.15)

(locating the observed data point at a location in latent space that results from a
responsibility-weighted combination of all latent point locations).

We can nowvisualize (see Fig. 2.3) the observed data points over the low-dimensional
latent space using the posterior mean projection, which also provides an assignment
of each data point to a representative cluster. For a visualisation purpose, the typical
setting is a latent dimension q = 2 or 3.

2.2.2 Time-series analysis with GTM-TT

When the observed data space is known to be in the form of a time series, the time-
dependent nature of the observations makes the assumption of i.i.d. inappropriate.
In order to make the GTM model suitable to the analysis of temporal data, we con-
sider here an extension within the framework of hidden Markov models (HMMs)
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[Rabiner, 1989]. This model is known as GTM Through Time (GTM-TT) [Bishop
et al., 1997b] and was proposed almost in parallel to the standard GTM.

The GTM-TT can be interpreted as a standard GTM model in which the latent
points are considered as hidden states

Z = {zt}t=1,...,T

for every time step t. Similarly to HMMs, the states are connected by a transition
probability aij = p(zj|zi), which represents the probability of making a transition
to the state j from the current state i. We denote withA the matrix which describes
the transition states

A = {aij} : aij = p (zt = xj|zt−1 = xi) , i, j = 1, . . . , K (2.16)

where K is the number of allowed hidden states xk (which is the number of vector
prototypes). Given the initial state probabilities on each of the latent points at the
first time step t = 1

π = {πk} : πk = p (z1 = xk) , (2.17)

then the parameters governing the GTM-TT model are

Θ = (π,A, W, β) . (2.18)

Notice that the parameters W and β, together with the transition probabilities A,
are common to all time steps of the GTM algorithm, so that the number of adaptive
parameters in the model is independent of the length of the time series.

The adaptive parameters of the model can now be computed (in a similar way to
GTM) using a maximum likelihood approach, via EM algorithm. In the context of
HMMs, this is generally known as the Baum-Welch algorithm. Given an observed
p-variate time seriesY = {yi}i=1,...,p, the complete data log-likelihood is given by

ℓ =
K∑
k=1

vk,1 log πk +
N∑

n=2

K∑
i=1

K∑
k=1

vi,n−1vk,n log aik

+
pN

2
log

(
β

2π

)
− β

2

N∑
n=1

K∑
k=1

vk,n ∥ yn − f(xk,W, β) ∥2 , (2.19)

where the binary vector vn such that its component vk,n returns 1 if zn is in state
k, and zero otherwise (this indicators are suitable to simplify the expression of the
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likelihood in order to perform the EM steps). Moreover, vn satisfies
∑K

k=1 vk,n = 1.
A detailed description of the updating equations of the EM algorithm for GTM-TT
can be found in [Bishop et al., 1997b, § 4].

Visualization of Time Series

In the same fashion as GTM, the GTM-TT allow data visualization simultaneously to
data clustering. In this way we have a low-dimensional (usually q = 2) latent space
where themultivariate time series is represented by themeans of the posterior-mode
projection, defined as

k(mode)n = argmax
k

rk,n (2.20)

where rk,n are the responsibilities probabilities

rk,n ≡ p(zn = xk|yn,Θ) (2.21)

This model, even if useful for MTS clustering and visualization, does not involve
any regularization process.

2.3 Gaussian Processes Latent Variable Models

In this section we present the GP-LVMmodel, which is a Gaussian Process based di-
mensionality reduction model. To do so, in this section we firstly review the theory
of Gaussian Processes (GPs) in section, including GPs for regression and some intu-
ition about covariance functions. After this, we describe the details of the GP-LVM
model.

2.3.1 Introduction to Gaussian Processes

A GP is used to describe distributions over functions and it is defined as a collection
of random variables, any finite number of which have a joint Gaussian distribution
[Rasmussen and Williams, 2006].

Let the vector x ∈ Rq and the function f : Rq → R. A GP is a stochastic process
determined by its mean function µ(x) and its covariance function k(x,x′), and it is
denoted as

f(x) ∼ GP(µ(x), k(x,x′)), (2.22)
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The function f takes values over continuum on the input space (infinite input
values). But, in practical applications, we only consider a finite set of instantiations
of the function, since (computationally) we can only have access to a finite number
of input vectors. If we consider a collection of inputs X = {xn}n=1,...,N , we can
generate a random vector of function values

f = f(X) = (f(x1), . . . , f(xN)) ∈ RN (2.23)

which is Gaussian distributed with covariance matrix K given by the gram matrix
of the covariance function k, denoted with Kf ,f

Kf ,f =


k(x1,x1) k(x1,x2) · · · k(x1,xN)

k(x2,x1) k(x2,x2) · · · k(x2,xN)

· · · · · ·
· · · · · ·

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)

 (2.24)

In this document we equivalently refer to the covariance function k as the kernel
function or simply the kernel.

The kernel k defines the correlation between two inputs and can be interpreted as
a similarity or as a distance into the functional space of positive semidefinite kernels
k. There is, in fact, a relation between GP prediction and the regularization theory
in reproducing kernel Hilbert spaces (RKHSs), as described in detail by Rasmussen
and Williams [2006, § 6].

Without loss of generality, the mean function is typically chosen to be equal to
zero.

An intuitive understanding of the distribution of f(X) can be gained if we think
of it as a marginal distribution. In fact, the input space X can be divided in two
sets of input vectors, the observed onesX and the unobserved (potentially infinite)
ones: due to the properties of joint Gaussian distributions, we can integrate over the
unobserved variables. A sample of the function f can be obtained by sampling from
its distribution following the standard procedure for Gaussians. (For more technical
details about Gaussian distributions andmathematical identities check Appendix A).

Gaussian Processes for regression

Let’s consider a regression problem in which a set of observationsX = {xn}n=1,...,N

is mapped into a set of outputs Y = {yn}n=1,...,N . We want to find the function f
that maps the inputs into the outputs. Using Bayesian statistics, we can perform in-
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ference over the function values by combining two pieces of information: our prior
belief over the properties of f , encoded in the prior distribution, and the information
given by the input data, encoded in the likelihood distribution. We assume that Y
constitutes a noise-corrupted version of f(X), according to Eq. 2.1. That is, we as-
sume thatyn it is obtained by the correspondig f(xn)with the addition of a Gaussian
noise of β−1 variance. Then we have

p(f | X,Y) =

prior︷ ︸︸ ︷
p(f | X)

likelihood︷ ︸︸ ︷
p(Y | X, f)

p(Y | X)︸ ︷︷ ︸
marginal likelihood

(2.25)

Assuming i.i.d. inputs X and a likelihood following a Gaussian distribution, if
we use a GP prior over the mapping f we have

p(f | X,Y) = N (f | 0,Kf ,f )
N∏

n=1

N (yn | f , βI). (2.26)

The computation of the marginal likelihood has been solved analytically using
the matrix determinant lemma and the Woodbury identity.

Prediction of an unobserved function value f∗ = f(x∗) computed in a test point
x∗ is obtained considering the joint distribution[

f

f∗

]
∼ N

(
0,

[
Kf ,f Kf∗,f

K⊤
f∗,f

Kf∗,f∗

])
, (2.27)

where the elements of the covariance matrix Kf ,f are given by 2.24 and Kf∗,f and
Kf∗,f∗ are

Kf∗,f =


k(x∗,x1)

k(x∗,x2)

·
·

k(x∗,xN)

 (2.28)

Kf∗,f∗ = k(x∗,x∗)

and, applying the properties of the conditional Gaussians (see Appendix A), it fol-
lows

p(f∗ | f ,X) = N (K⊤
f∗,fK

−1
f ,f f︸ ︷︷ ︸

mean

, Kf∗,f∗ −K⊤
f∗,fK

−1
f ,fKf∗,f︸ ︷︷ ︸

covariance

). (2.29)
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In applications to real datasets we are typically interested in prediction of noisy
observations (as seen in Eq. 2.1). To do so, we can assume an additive i.i.d. Gaussian
noise ϵ ∼ N (0, β−1) and we use a GP covariance K̃ = K+ β−1I. More details will
be provided in section § 2.3.2 (in particularly Eq. 2.34) for GP-LVM.

Linear White noise

−2 −1 0 1 2−2 −1 0 1 2−2 −1 0 1 2 −2 −1 0 1 2−2 −1 0 1 2−2 −1 0 1 2

Fig. 2.4 Examples of different GP prior distributions over f according to different covariance
functions: linear and noisy. Hear each function in different colors represents a different
sample of f . The mean function is equal to zero, due to our choice of m(x) = 0. The
variance of f is here represented by the pink area (corresponding to the 95% confidence
interval).

Covariance functions

In general, a GP prior is fully defined by its covariance. We present here the ba-
sic concepts about covariance functions needed for the understanding of the next
chapters, and we refer to [Rasmussen and Williams, 2006, § 4] for a more detailed
analysis.

Let’s consider an input domain X ∈ Rq. A covariance function k(x,x′) (also
known as kernel function) is a positive definite function which, intuitively, it is used
to describe the similarity between two inputs.

A wide range of covariance functions can be used in GP models, and a correct
choice might be crucial for specific applications. Each covariance function encodes,
in a different way, the properties of the function we wish to learn. We can see in
Fig. 2.4 and Fig.2.5 some examples of GP samples from different covariance functions:
linear, white noise and periodic.

A widely used covariance function is the exponentiated quadratic (also known as
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Periodic Covariance
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Fig. 2.5 Example of a Gaussian distribution of functions according to period kernel function.
The corresponding covariance matrix is displayed on the right. We use 50 inputs equally
distributed over the horizontal axis, with values taken between -1 and 2. High values of
the covariance correspond to high correlation: notice that input points are correlated with
a periodic structure (for example, the input x1 is highly correlated with the inputs x17, x33).

squared exponential or RBF kernel):

k(x,x′) = α exp
(
−ω
2
∥ x− x′ ∥22

)
. (2.30)

The popularity of the exponentiated quadratic covariance function is due to the
fact that it is capable of smoothly modelling different kind of functions only by vary-
ing the value of the lengthscale 1/ω. We can, in fact, find sensible initialization of the
model by considering that the lenghtscale is proportional to the number of points
where the function is crossing the zero axis.

In the left column of Fig. 2.6 we see different examples of GP priors over f . In the
central and right columns of Fig. 2.6 we see the posterior distribution of f , after the
observation of some data: notice that, far from the observed data, the distribution
of the function tends to revert to the prior. The variance of the random variable is
here represented by the pink area (corresponding to the 95% confidence interval).

2.3.2 Dimensionality reduction with GPs: the GP-LVM

Considering themapping given by the noisemodel in Eq. (2.1), GPs have been used in
probabilistic non linear dimensionality reduction to define a prior distribution over
the mapping f , leading to the formulation of the Gaussian process latent variable
model (GP-LVM).
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Fig. 2.6 This diagram shows, in each row, the effect of changing the lenghtscale in the ex-
ponentiated quadratic covariance function (from top to bottom: ω = 0.2, 1, 5). In the first
column we can see how the GP prior distribution is affected by this change. The second and
third columns show some samples from the posterior after seeing 2 and 9 data points. Each
function in different colors represents a different sample of f . The mean function is in black.
The variance of f is here represented by the pink area (corresponding to the 95% confidence
interval).

Lawrence [2005] introduces GP-LVMpointing out its dualistic relationwith prob-
abilistic principal component analysis (PPCA). The expression of the marginal like-
lihood of the PPCA model, as defined in Eq. 2.4, is a tractable integral which leads
to the following solution

p(Y | W, β) =
N∏

n=1

N (yn | 0,WW⊤ + β−1I). (2.31)

We now want to find the values of the parametersW which give the maximum
value for the marginal likelihood of the data. As suggested in [Roweis, 1997; Tip-
ping and Bishop, 1999], the solution of this problem can be treated as an eigenvalue
problem, resulting in a fast computation.

In the standard dimensionality reduction approach described before, the likeli-
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hood of the data Y given X , as seen in Eq. (2.31) and Eq. (2.10), is computed by
marginalising out the latent variables and optimising the mapping. In GP-LVM, on
the contrary, the likelihood is computed by marginalizing out the linear mapping
W and optimizing the latent variablesX, providing a dual expression of Eq. 2.31

p(Y | X, β) =
N∏

n=1

N (yn | 0,XX⊤ + β−1I). (2.32)

However, since the mapping is integrated out, this means that we are free to
consider non-linear mappings too. Indeed, the GP-LVMmodels considers non-linear
mappings which are marginalised out after placing a GP prior on them. This leads
to an expression of the likelihood which is similar to the one obtained for the GPs,
with the difference of X being unobserved.

More specifically, here the likelihood is the product of p independent GPs, each
one associated with a dimension of the observed datasetY, so that

p(Y | X, f , β) =
p∏

j=1

N (Y:,j | 0,K+ β−1I) =

p∏
j=1

N (Y:,j | 0, K̃). (2.33)

The GP-LVM prediction of an unobserved value y∗ computed in a test point x∗

is obtained considering the joint distribution

p(y∗ | Y,X,x∗) =

p∏
j=1

N (y∗ | K⊤
f∗,fK̃

−1
f ,fY:,j, Kf∗,f∗ −K⊤

f∗,fK̃
−1
f ,fKx,∗).

To follow the notation previously introduced, the noise model in Eq. (2.1) can be
expressed as

yi,j = Kfi,fKY:,j + ϵi, (2.34)

Derivatives of a GP

GPs have many interesting properties. We introduce here the analysis of the deriva-
tives of the process, since this tool will be useful later on in this thesis for further
investigation and application.

Due to the linear nature of the differential operator, the derivative of a GP is again
a GP [Rasmussen and Williams, 2006, § 9.4], as long as the covariance function is
differentiable. In fact, It GP allows to combine derivative information, and associated
uncertainty with the function observations into the learning and inference process
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[Solak et al., 2002].
This property allows inference and predictions about derivatives of a GP and,

therefore, the Jacobian J of the GP-LVMmapping can be computed over continuum
for every latent point x∗ and we denote with ∂y∗

∂x(i) the partial derivative of y(x∗)
with respect to the ith component in the latent space:

J⊤ =
∂y∗

∂x
=

[
∂y∗

∂x(1)
; · · · ; ∂y∗

∂x(q)

]
, (2.35)

where ∂y∗
∂x

is a q × p matrix whose columns are multivariate normal distributions.
We now consider the jointly Gaussian random variables[

Y
∂y∗
∂x

]
∼ N

(
0,

[
K̃f ,f ∂K̃f∗,f

∂K̃⊤
f∗,f

∂2K̃f∗,f∗

])
, (2.36)

where ∂Kf ,f∗ , ∂
2Kf∗,f∗ are a matrices given by

(∂Kf∗,f )n,l =
∂k(fn, f∗)

∂x(l)
,

n = 1, · · · , N
l = 1, · · · , q

(2.37)

(∂2Kf∗,f∗)i,l =
∂2k(x∗,x∗)

∂x(i)∂x(l)
.

i = 1, · · · , q
l = 1, · · · , q

(2.38)

The GP-LVM model provides an explicit mapping from the latent space to the
observed space. This mapping defines the support of the observed data Y as a q
dimensional manifold embedded into Rp. If the covariance function of the model is
continuous and differentiable, the Jacobian of the GP-LVM mapping is well-defined
and the natural metric follows a Wishart Distribution (c.f. Chapter 6).

2.3.3 Illustrative example

High dimensional datasets coming from different domains have different levels of
characteristics and raise different problems which we aim to solve. In computa-
tional biology, for example, we might want to use machine learning to design and
interpret gene expression microarrays data, or we might want to infer the structure
and characteristics of a protein given its amminoacid sequence. In computer vision
machine learning can be used, for example, to model motions or videos, to infer
missing sequences or to reconstruct partial images (whene occlusions or missing
frames occur). Examples of datasets from different categories are given in Fig. 2.1.

To illustrate an example of dimensionality reduction, we describe here the hu-
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man motion capture data from the CMU Motion Capture Database1. The dataset
consists of a collection of human motions, taken from different subjects and ac-
quired using 12 static cameras (more info about tool and data process are give here:
http://mocap.cs.cmu.edu/info.php).

We showhere a simplemotion of jogging taken from the subject 35 of the dataset.
We consider N = 163 input vectors and p = 62 features, corresponding the 3-D
coordinates of 20 joints, plus the 2-D coordinates of the subject with respect to the
floor. Example of 4 motion captures are displayed in Fig. 2.7.

Using the GP-LVM algorithm described in Sec. 2.3.2 we can learn a 2-D latent
space and use it to visualise the motion captures, Fig. 2.8.

Fig. 2.7 Example of four poses of a jogging motion from the CMU motion capture database.
Each motion capture is characterised by 20 joints (dots) connected by a skeleton.

1Public dataset, available at http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu/info.php
http://mocap.cs.cmu.edu/
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Fig. 2.8 Example of GP-LVM latent space for a jogging motion from CMU motion capture
database. Each motion is project into a 2-D space and represented as a black dot. Notice that
the low dimensional representation reflects the periodicity of a wealking motion.





Chapter 3

Some Tools for Improving
Interpretability

Probabilistic modelling is at the heart of modern machine learning (in the form of
statistical machine learning) This is the result of the confluence of two needs: the
need to merge standard statistics with the modern algorithmic approaches to data
analysis that machine learning provides and the need to deal with uncertainty in
a principled way. The latter need responds, amongst other things, to the common
presence of noise, in different forms, in the analysed data.

Even if these types of models are becoming increasingly popular, they are not
without their practical problems. For instance, when combining probabilistic models
with algorithms that involve the computation of distances or interpolants of the
data space, our current tools are insufficient if they are defined according to the
assumption that the observations span a Euclidean vector space, without taking into
account the noise of the underlying geometry and the distortion produced by non-
linear mappings.

In the first section of this chapter, we present a review of how the problem of
local mapping distortion has been tackled in non-linear dimensionality reduction
(NLDR). In the second section, we introduce the formalism of differential geometry
that will be used later on in chapter § 6 as a tool needed to reinterpret distances and
point-interpolations in a full probabilistic setting. In this way, we will be able to
interpret the existing models in a meaningful way, thus making them more flexible
and applicable even in those fields in which the interpretability as a key to usable
knowledge extraction is as important as an optimal performance (such as, for in-
stance, medicine, biology, finance, or astronomy, to name just a few).

As a solution to the fact that Euclidean geometry becomes insufficient when
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dealing with noise and observations with complex structure and non linearities, the
use of the tools of Riemannian geometry are becoming more popular among the
machine learning community. In fact, we show that we can interpret an embedded
Riemannian manifold as the underlying support of the data distribution. For every
point on the manifold, all the geometrical properties are specified by a local positive
definite matrix, called themetric tensor. Once this tensor is known, it is then possible
to compute interesting objects as lengthminimizing curves (known as geodesics) and
magnification factors (introduced in chapter § 3.3).

3.1 Dimensionality reduction and distortion mea-

sures

The use of dimensionality reduction techniques is an essential tool when dealing
with visualization oriented applications involving high-dimensional data. Examples
of popular models are Principal Component Analysis (PCA) and multidimensional
scaling (MDS). PCA, independently introduced by Pearson [1901] and Hotelling
[1933], provides a low dimensional linear representation of the data set which cap-
tures the most variation in the observed high-dimensional variables, while MDS
[Mardia et al., 1979] aims to preserve distances and proximities between pairs of
observations by the definition of a similarity matrix.

These methods are easy to interpret for practical purposes, but they also suffer
from some limitations. For example, PCA is very useful for reducing redundancy
of features in the original data set, but is restricted to the assumption of linearity,
and MDS relies on the preservation of local distances, which is not always the best
approach. The need to find less constrained (more flexible) methods for multivariate
datamodelling has ledmany researchers to explore and define non-linear techniques
of dimensionality reduction (NLDR), which are becoming increasingly popular [Lee
and Verleysen, 2007].

The most interesting contributions to this area range from spectral-based meth-
ods to manifold learning techniques. Some examples of spectral approaches include
kernel PCA [Schölkopf et al., 1997], local linear embedding (LLE) [Roweis and Saul,
2000], isometric feature mapping (ISOMAP) [Tenenbaum et al., 2000], Laplacian
eigenmaps (LE) [Belkin and Niyogi, 2003], or maximum variance unfolding (MVU)
[Weinberger and Saul, 2006].

Advantages of spectral approaches include the reach of a global optimum and a
smooth mapping from the data space to the low-dimensional space. On the other
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side, when considering a probabilistic framework, the advantages typically include
the explicit access to a (smooth) mapping from the low dimensional space to the high
dimensional observed space. Other relevant advantages include marginalization of
missing data, model selection through Bayesian inference and integrationwith other
models (such as mixture models or temporal models).

Specific attention will be paid, in the following sections, to the analysis of proba-
bilistic generative models of the latent variable models family. In particular, we will
focus part of our research on models which can be expressed by the mapping given
in Eq. (2.1). These models include the aforementioned models in § 2.1.

In general, NLDR techniques attempt tominimize the unavoidable distortion that
they introduce in the mapping of the high-dimensional data from the observed space
onto lower-dimensional spaces. For a more faithful interpretation of models, a large
number of distortion measures have been proposed and adapted to visualization
techniques for different NLDR methods.

While reducing dimensionality, NLDR generate different levels of local mapping
distortion, that lead to a loss of information that we aim to recover, to some extent,
into the visualization space. Stretching or compressing a space affects the preserva-
tion of pairwise distances between points. An example of such non-linear mapping
is displayed in Fig. 3.1.

An interesting contribution comes from research by Aupetit [2007], who iden-
tifies different types of distortion, classified as geometrical and topological (includ-
ing: manifold compression, stretching, gluing and tearing) and proposes the use of
Voronoi diagrams and colour scales to visualize manifold-based measures such as
point-based, segment-based and triangle-based measures.

The non-linearity of dimensionality reduction methods such as the Generative
Topographic Mapping (GTM) and the Gaussian Process Latent Variable Model (GP-
LVM) entails the existence of local distortion in the mapping of the data from the
observed space onto the visualization space. This fact limits the direct interpreta-
tion of the visual data representation and there have been efforts to provide visual
solutions to this limitation by defining and visualizing DR quality measures that,
embedded in the method, can be associated to each data point, using colouring pro-
cedures for the data-corresponding cells in the Voronoi tessellation of the projection
space.

A widespread used method for Self-Organising Maps (SOM) (which is not a true
latent or generative model), called Unified distance Matrix (U-matrix), proposed in
[Ultsch, 2003], allows the visualization of the pairwise distances between corre-
sponding points in the original data space on the pseudo-latent space of the model.
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The values of these distances can be represented with a color map accompanying
the SOM topographic grid.

Another interesting approach, proposed in [Bishop et al., 1997a] for GTM (and
extended to SOM), is the calculation of a magnification measure in a continuous way
over the representation map. We delve into this technique in §3.3.

We show in the following section that, while dealing with generative LVMs
where the mapping is continuous and differentiable, the expression of magnifica-
tion factors (MFs) can be analytically derived. To do so, we will will use the tools of
Riemannian geometry in order to formalize this approach.

Fig. 3.1 Mapping between a 2-D plane and a surface embedded in a 3-D space. A straight
line is subject to distortion under the non-linear projection.

3.2 Concepts of Riemannian Geometry

We study latent variable models as embeddings of uncertain surfaces (or manifolds)
into the observation space. From a machine learning point of view, we can interpret
this embedded manifold as the underlying support of the data distribution. To this
end, we review the basic ideas of differential geometry, which study surfaces through
local linear models.

Gauss’ study [1827] of curved surfaces are among the first examples of (determin-
istic) latent variable models. He noted that a 2-dimensional surfaceM embedded in
a 3-dimensional Euclidean space is well-described through a collection of mappings
xα for each point ξ ∈ S

xα : U ∈ R2 → V ∩ S ∈ R3 (3.1)

α 7→ ξ (3.2)

Intuitively, the regular surface is defined by a collection of open sets ofR2 (small
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pieces of planes) stick together in a way that the transition from a set to an other is
made in a smooth way (with no sharp points, no self-intersections and no edges).

Historically, Gauss considered the case of two-dimensional surfaces embedded
in R3, while the extension to higher dimensional manifolds is due to his student
Bernhard Riemann [1854].

The pair (xα, Uα) is called parametrization (or system of coordinates) on the man-
ifold. A differential manifold is characterized by mappings xα that are smoothly
varying (i.e., varying in a differentiable way) between the open sets Uα.

Given a smooth manifold, we can take advantage of its differential structure in
order to make computations wit its elements. We can, in fact, define a smoothly-
varying inner product on the tangent space TM: this is a Riemannian metric.

Definition (Riemannian Metric): A Riemannian metric1 Gx on the differential
manifold M is symmetric and positive definite matrix associated with a smoothly
varying inner product ⟨·, ·⟩x

⟨a,b⟩x = a⊤Gxb (3.3)

on the tangent space TxM, for each point x ∈ M and a,b ∈ TxM. The matrix G

is called the metric tensor. The pair (M, ⟨·, ·⟩x) is called Riemannian manifold.

Example 3.2.1: Themost common and fundamental example of Riemannianmanifold
is the Euclidean space equipped with the canonical inner product (R, can).

Example 3.2.2: Suppose thatwe have an embedding f : M −→ N , and that (N , ⟨·, ·⟩y)
is a Riemannian manifold. We can construct a Riemannian metric on M by pulling
back ⟨·, ·⟩y to ⟨·, ·⟩x = f ∗⟨·, ·⟩y onM. In other words we have: a⊤Gxb = ⟨a,b⟩x =

⟨ ∂
∂x
f(a), ∂

∂x
f(b)⟩y where

G = J⊤J (3.4)

Remark: The Riemannian metric needs not be restricted to G = J⊤J and can
be any smoothly changing symmetric positive definite matrix [do Carmo, 1992].
In this research we restrict ourselves to the more simple definition of Eq. 3.4 as it
suffices for our purposes, but note that the more general approach has been used
in machine learning, e.g. in metric learning [Hauberg et al., 2012] and information
geometry [Amari and Nagaoka, 2000].

1For simplicity we use x instead of xα(α) to denote a point on the manifold. The subscript x in
Gx is omitted when there is no ambiguity.
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The Riemannian metric encodes the geometrical properties of the manifolds and
can be employed to compute useful quantities, such as curvatures, arc lengths and
angles. In particular, we are interested in computing distances.

Definition (Geodesic Curve): Given two points x1,x2 ∈ M, a geodesic is a
length-minimising curve connecting the points

γg = argmin
γ

Length(γ), γ(0) = x1, γ(1) = x2, (3.5)

where the length of a general curve γ : [0, 1] → Rq is computed as

Length (γ) =

∫ 1

0

√
⟨γ′(t), γ′(t)⟩γ(t).dt (3.6)

It can be shown [do Carmo, 1992] that geodesics satisfy the following second order
ordinary differential equation

γ′′ = −1

2
G−1

[
∂ vecG

∂γ

]⊤
(γ′ ⊗ γ′), (3.7)

where vecG stacks the columns of G and ⊗ denotes the Kronecker product. The
Picard-Lindelöf theorem [Tenenbaum and Pollard, 1963] then implies that geodesics
exist and are locally unique given a starting point and an initial velocity.

3.3 Magnification Factors

The metric tensor defines the local geometrical properties of the considered genera-
tive LVMmodel and it can be used as a tool to data exploration. One way to visualise
the tensor metric is through the differential volume of the high dimensional paral-
lelepiped spanned by the mapping; this, for a latent dimension q = 2 is known as
MF and it was introduced by Bishop et al. [1997a] for GTM (and standard SOM). Its
explicit formulation, using the notation given in Eq. 3.4, is given by

MF =
√

det (J⊤J). (3.8)

The MF points out the non-linear distortion generated by the projection of the
observed data onto the representation map.

Being computed over continuum on the input space, the MF values can be visu-
alised as a colormap over the 2-D display of the latent space of the chosen model. We
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display in Fig. 3.2 a colormap representing MF values compute over a fine regular
grid over the 2-D latent space of a GP-LVM model. The explicit formulation of the
MF for the GP-LVM model is detailed later on in this document, in section §6.2.
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Fig. 3.2 Magnification Factor colormap on the GP-LVM latent space for a jogging motion
from the CMU motion capture database.

Other examples of this type of this visualisation are provided throughout this
document in the sections describing the experimental results. See Fig. 4.5 (top left),
Fig. 4.6 (center), Fig. 4.7 (center), Fig. 5.1 (bottom right), Fig. 5.2 (bottom right),
Fig. 6.1, Fig. 6.3 and Fig. 6.9.

We also introduce a 3-D plot of the MF colormap, in which the vertical axes rep-
resents the values of the MF. In Chapter 6 we define a distribution over the local
metric tensor for generative latent variable models and in this context the 3-D dis-
play is used to visualise the variation of MF values between different samples from
the metric, as in Fig. 7.1.

Another interesting example of visualization is provided in [Svensén, 1998, § 4.5],
where the author visualizes the different levels ofmagnitude and directions of stretch
of the MF over the GTM latent space.

The concept of MF has its origin in the field of computational neuroscience,
where it evaluates the mapping distortion between the spatial density of biological
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sensors and the two-dimensional spatial density of the corresponding topographic
maps in the visual and somatosensory areas of the cortex. More specifically, the
cortical MF would indicate the linear distance along the primary visual cortex con-
cernedwith each degree of visual field [Pointer, 1986], although controversy remains
on whether the cortical magnification of the central visual field reflects its selec-
tive amplification, or merely reflects the ganglion cell density of the retina [Wässle
et al., 1990]. As expressed in the context of vector quantization models [Hammer
et al., 2007], local magnification is the result of a specific connection of the density
of model prototypes and stimuli.

One of the most interesting facts is that the distortion caused by the non-linear
mapping can be explicitly quantified as a MF over the latent space used for data
visualization. For this property, the concept of magnification has recently been ap-
plied to manifold learning methods for NLDR, in order to visualize the distortion
due to the embedding of a manifold in a high-dimensional space [Tosi and Vellido,
2012; Vellido et al., 2013; Tosi and Vellido, 2013; Gianniotis, 2013; Tosi et al., 2014b,a].
More details about novel visualization techniques involving MF are presented in the
following chapter.



Chapter 4

Advances in Mapping Distortion
Visualization for Non-linear
Dimensionality Reduction Using
Cartograms

One of the main advantages of non-linear dimensionality reduction methods, as
mentioned in previous chapters, is their flexibility in the process of multivariate
data modelling. Unfortunately, this flexibility is also accompanied by limitations,
such as the difficult interpretation of the data (visual) representations they generate.
Even latent variable manifold learning models, which represent multivariate data in
low-dimensional representation spaces, can be difficult to make sense of, due to the
fact that their coordinates in latent space are complex non-linear transformations
of the observed ones, so that heterogeneous levels of local distortion are generated.
These locally varying distortions and the loss of straightforward meaning in the low
dimensional variables make tools to assist their interpretation an almost compulsory
requirement.

Linear dimensionality reduction methods, on the other hand, are less flexible
and their data representation can be less faithful as a result, but they compensate
for this with the straightforward interpretation of their representation coordinates.
This comes a long way to explain the popularity of linear dimensionality reduction
techniques and the difficulties for non-linear ones to become mainstream.

Given that some of the modelling techniques considered in this thesis are of
non-linear nature, we are faced with an interpretability challenge. In the current
chapter, we respond to this challenge using a technique for data visualization in non-
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linear latent models that is inspired in geographical representation methods. This
technique is suited to both static data and multivariate time series representation.

The technique in question, known as Cartogram, draws inspiration from both
geographic representations and physics. We introduce novel variants of Cartogram-
based visualization for NLDR techniques. We illustrate the proposedmethod provid-
ing a self-contained description of the algorithms for the visualization of the Batch-
SOM algorithm in § 4.3 and the robust tGTM algorithm in § 4.4.

4.1 Cartograms

In the area of thematic representations for geography, there is a particular type of
mapping known as Cartogram. In this mapping, specific areas, often delimited by
political borders, are locally distorted (both stretched or compressed) to convey the
information on locally-varying underlying quantities of interest such as population
density or socio-economic data. Examples of applications of Cartogram techniques
include the visualization of census data, disease incidence, birth rate, and annual
income.

Fig. 4.1 Cartogram representation of the world map according to the population density:
countries with a higher population density are represented with an area that is bigger than
the geographical one. In this way it is easy to visually notice the contrast between countries
with high population densities (such as India or Japan) and countries with lower population
density (such as Australia or Canada). Source of image: http://www.worldmapper.org/
display.php?selected=2.

In the last decades, the development of feasible computer-based Cartograms has
been a challenging undertaking and several methods have been proposed to ac-
complish it. An extended review of the recent history of this subject is given by

http://www.worldmapper.org/display.php?selected=2
http://www.worldmapper.org/display.php?selected=2
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Tobler [2004], where the author completes and unifies pioneering work started in
the 1960’s. Nowadays, the use of cartograms for the visual representation of socio-
economic data in geographical maps has become popular thanks to public resources
such as Worldmapper1 (An example is provided in Fig. 4.1).

From a mathematical point of view, the geometrical distortion of Cartograms
takes the form of a continuous transformation from R2 to itself. Fig. 4.2 represents
the distortion of a square patch on the original plane: here a vector x = (x(1), x(2))

is mapped onto a vector x′ = (x′(1), x′(2)) according to a transformation T in such a
way that the Jacobian of the transformation is proportional to an underlying distor-
tion variable d, which describes the deformation of the patch quantitatively :

T : R2 → R2

x → T (x) = x′

[
∂Ti

∂x(j)

]
i,j

∝ d. (4.1)

Fig. 4.2 A continuous trans-
formation is applied to a 2-D
square, which is mapped into a
distorted patch (dashed line).

The Cartogram projection is not determined uniquely by the condition 4.1, since
the problem has two degrees of freedom. To fix the projection we need one more
constraint and, to do so, we can operate in many different ways. Since there is not a
single choice for the constraints of the projection T , some choices may result in loss
of connectivity between the fragment borders or overlapping of neighbours areas.

A method for building Cartograms, based on the physics’ principle of linear dif-
fusion processes, has been proposed by Gastner and Newman [2004]. The principle
of diffusion applies the theory of parabolic partial differential equations to the prob-
lem of diffusion of a large number of particles, knowing their density as a function
of the position and the time. In a natural system, the particles will flow, over time,
from areas of higher density to areas of lower density, resulting in a final state where
the overall density is homogeneous. In order to apply this model to the problem of
Cartograms, the distorting variable d is interpreted as a diffusion function ρ(x, t)
depending on the position x ∈ R2 and time t ∈ [0,∞). The diffusion function is

1www.worldmapper.org

www.worldmapper.org
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normalized over the map d = ρ(x,t)
ρ̄

, where ρ̄ is the average population density over
the area to be distorted. Intuitively, we start with a map where different areas are
characterized by different density of the chosen variable (population density, as an
example) and we let the original locations diffuse for t → ∞. The resulting map
presents a consistent distortion: every point has been displaced in order to have the
same density (as displayed in Fig. 4.1). For this reason, Cartograms are also known
as density-equalizing maps, as in Gastner and Newman [2004]. The system can be
associated to the partial differential equation

∇2ρ− ∂ρ

∂t
= 0, (4.2)

which has to be solved for ρ(x, t), assuming that the initial condition corresponds
to each map fragment being assigned its value of ρ. The distortion diffusion velocity
is defined as v(x, t) = −∇ρ

ρ̄
and, from it, the map location displacement can be

calculated as

x(t) = x(0) +

∫ t

0

v(x, t′)dt′. (4.3)

As a result, the Cartogram is generated using the new locations.
To avoid arbitrary diffusion through the external map boundaries, the map is

assumed to be surrounded by an area in which the distortion is set to be the mean
distortion of the complete map. This guarantees that the total map area will remain
constant. Moreover, the whole system, including the surrounded areas, is considered
to be enclosed in a rectangular box, for simplicity. For further details about boundary
conditions on the walls of the box and other calculations we refer to [Gastner and
Newman, 2004].

4.2 Cartogram representation for NLDR methods

In this chapter, we describe and assess Cartogram representation as a tool for in-
creasing the interpretability and usability of multivariate data visualization through
non-linear dimensionality reduction methods (NLDR), extending recent work re-
ported in [García et al., 2013]. We introduce the cartography-inspired method of
Cartogram representation of mapping distortion in a way that should help to intu-
itively interpret the data visualization of the considered non-linear models.

As described in § 3.3, the distortion of non-linear models can be quantified over a
continuum in the representation map in the form of an MF. The visualization of the
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2-D latent space of the NLDR manifold learning methods that we use is transformed
into a Cartogram taking in account these two points:

• A square regular grid generated by discretizing the latent space continuum
forming a lattice centred in the points xk, k = 1, . . . K is used to define the
map internal boundaries.

• It is assumed that the level of distortion dexternal in the space beyond this
square is uniform and equal to the mean distortion over the complete map,
that is

dexternal ≡ 1

K

K∑
k=1

MFxk
,

x
k

dexternal

where MFxk
is the MF computed in xk. Likewise, we assume that the level

of distortion within each of the squares (hexagons) associated to xk is itself
uniform.

An advantage of this Cartogram-based method is its portability: it is easy to
implement for different representation architectures and alternative NLDR visual-
ization techniques for which distortion can be quantified.

4.3 Cartogram representations for batch-SOM

4.3.1 Self-Organization Maps and their variants

A well-known and widely used NLDR vector quantization method for data visual-
ization in low-dimensional spaces is Kohonen’s SOM [Kohonen, 2001], in its many
variants. This method attempts to model data through a discrete version of a low-
dimensional manifold consisting of a topologically ordered grid of prototypes.

SOM simultaneously performs a combination of vector quantization and topo-
graphic representation and can be intuitively interpreted as a kind of nonlinear but
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discrete PCA. The popular K-Means algorithm can also be seen as an specific in-
stantiation of SOM. Its nonlinearity has not prevented SOM to achieve mainstream
status, even in very practical application fields.

Let Y be a design matrix with N samples yn of dimension p, according to the
notation in section § 1.5. A SOM consists of a discrete layer (map) of prototypes, also
called units or neurons due to its connectionist origins. The prototypes are arranged
in a low dimensional regular grid of dimension q, which is often taken to be 2-D for
ease of visualization.

The low dimensional prior structure consists of a set of units xk ∈ Rq, k =

1, . . . , K , which is related, through an embedding function, to the prototypesmk ∈
Rp, k = 1, . . . , K , in the data space.

The iterative algorithm initializes the weight vectorsmk randomly, chosen from
the dataset Y. Other types of initialization are used as well, for example according
to some basic pre-projection of the data. For each data sample yj , j = 1, . . . , N , it
finds the best matching unit (BMU)mkj of index kj , computed as

kj = argmin
k

{d(yj,mk)} ,

where the distance function d(·, ·) : Rp×Rp → R is usually defined as the Euclidean
distance

L2(y,mk) = ∥y −mk∥ ,

although L1 or L∞ distances, for instance, can also be considered (c.f. [Kohonen,
2001]).

The update of the adaptive parameters is not limited to the BMU. This is not
a winner-takes-all but a winner-takes-most algorithm. The weights of the BMU are
the most modified, but neighbouring SOM units also undergo modification. This
practically implemented by defining a neighbourhood function h(·, ·) that controls
the range of the modifications. Different functions can be considered, such as

h(xk,xc) = exp

(
− 1

2σ2
∥ xk,xc ∥2

)
(Gaussian)

h(xk,xc) =

{
0 if d(xk,xc) > λ

1 if d(xk,xc) ≤ λ
(bubble)

The prototype vectormk is updated according the following rule:

m
(t+1)
k = m

(t)
k + α(t)h

(t)
k,c

(
y(t) −m

(t)
i

)
, (4.4)
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where t is time, y(t) ∈ Y is randomly selected at time t, and 0 ≤ α(t) ≤ 1 denotes
the learning rate.

4.3.2 The batch-SOM algorithm and its magnification factors

The original version of the SOM algorithm makes a separate update of the model
parameters for each data point, taken one at a time, whereas its batch version, called
batch SOM, makes the update on the basis of all data points.

Each data point is assigned to the region of the map to which is closest, according
to the neighbourhood function h(·, ·). In this way the model defines a set of clusters
in the data space.

The update of the weight vectors now follows the rule:

m
(t+1)
k =

N∑
j=1

h(t)(xk,xkj)∑N
j′=1 h

(t)(xk,xkj′
)
yj, (4.5)

where xkj is the node corresponding to the BMU for yj . To improve the method, the
data set is partitioned in each training step according to the m Voronoi regions Vj
of weight vectorsmj , each one containing nVj

samples.

This update equation can be rewritten in a kernel regression form [Mulier and
Cherkassky, 1995], for a given iteration, as:

mk =
∑
k′

(F (xk,xk′)ȳk′) , (4.6)

where x̄k′ =
1

nV ′
k

∑
j∈V ′

k
xj is the mean of the group Vk′ of nV ′

k
data points assigned

to a given node k′, and

F (x,xk) =
Nkh(x,xk)∑
k′ Nk′h(x,xk′)

. (4.7)

Magnification factors:

As stated in [Svensén, 1998] and [Bishop et al., 1997a], it is possible to explicitly
calculate the magnification factor (MF) for the batch-SOM algorithm. We only need
to compute the Jacobian of the mapping transformation in Eq. 4.6, whose columns
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are given by

J:,i =
∂m

∂x(i)
=
∑
k

(
∂F (x,xk)

∂x(i)
ȳk

)
=
∑
k

x(i) − x
(i)
k

σ2

(
F (x,xk)

2 − F (x,xk)
)
ȳk.

(4.8)

The MF follows from Eq. 3.8

MF =
√
det(J⊤J) (4.9)
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Fig. 4.3 Direct visualization of the artificial 3-D data, where each of the three clusters is
represented in a different color. The display includes the overlaid embedded regular grid of
batch-SOM reference vectors represented as a connected network. On the top: the regular
grid is initialized as a linear projection of the data in 2-D. On the bottom: the grid is trained
to fit the data with the batch-SOM algorithm. Note that this representation is only possible
for 3-D observed data.
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Fig. 4.4 Predefined square grid of the batch-SOM in the 2-D visualization space, where each
cell corresponds to one map unit. Different colors are used to represent each of the three
artificial data clusters. The cell area is proportional to the number of prototypes assigned to
that cell.

4.3.3 Cartogram visualization for batch-SOM

We illustrate here the Cartogram representation of the MF for the batch-SOMmodel
described in the previous section [Tosi and Vellido, 2012].

A first experiment involves the analysis of artificial data. A total of 1,500 3-
D points are randomly drawn from 3 spherical Gaussian distributions (500 points
each), all with unit variance, and with centres sitting at the vertices of a triangle. We
choose 3-D data in order to explicitly allow the direct visualization of the reference
vectors in the observed data space, to better understand the effects of the non-linear
dimensionality reduction operated by SOM.

The batch-SOM algorithm is implemented in Matlab®, using the SOM-toolbox2.
Data are preprocessed with both normalisation and scaling. We use a 20×20 rectan-
gular regular grid for latent space and a Gaussian neighbourhood function. Figs.4.3
and 4.4 include, in turn, the direct visualization of the 3-D data together with the
overlaid embedded regular grid of batch SOM reference vectors (which would not
be available for data of higher dimensionality), and the standard batch-SOM map
visualization in the form of a regular square grid of clusters.

The visualization space map reflects a neat but narrow separation between the
2www.cis.hut.fi/somtoolbox
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three clusters which, in fact, are far from each other, as evidenced by the direct data
visualization.
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Fig. 4.5 Top row: left) Map ofMF values together with a colorbar on the right-hand side of the
map; right) corresponding Cartogram. Bottom row: left) U-matrixmap; right) corresponding
Cartogram.

We compute the MF value for each node xk using Eq. 4.8. In the experiments,
the batch-SOM maps are transformed into a Cartogram by using the rectangular
grid, defined by the nodes xk, as map internal boundaries (effectively, defining a
centroidal Voronoi tesselation [Du et al., 1999]). As described in section § 4.2, we
assume that the level of distortion dexternal in the space beyond this rectangle is
uniform and equal to the mean distortion over the complete map.

A similar procedure is applied to compute the Cartogram using the unified dis-
tancematrix as the underling distortionmeasure. The U-matrix [Ultsch, 2003] allows
the visualization of the pairwise distances between corresponding points in the orig-
inal data space on the low-dimensional visualization space of the SOM topographic
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grid.
Results are displayed in Fig. 4.5. The overlaid grid of reference vectors seen in

Fig. 4.3 explains the fact that many reference vectors are squashed in data-dense
regions whereas only a few are stretched to cover the empty space in-between. This
varying distortion is nicely reflected by both the MF and the U-matrix, on the left
column of Fig. 4.5.

The batch-SOM map and the distortion measures finally come together in the
Cartograms (MF: top-right, and U-matrix: bottom-right of Fig. 4.5. The empty spaces
between clusters are now fairly stretched, providing a clear view of the separation.

Interestingly, part of the data reside in stretched areas: These are the ones further
from the cluster centres. This effect should warn us against a too straightforward
interpretation of high-distortion areas as completely empty spaces.

The visualization of the MF on the batch-SOM map may inform us of the exis-
tence of data clusters and the sparsely populated spaces that separate them, as they
undergo different levels of distortion: low in dense areas, while high in empty ones.
In this task, it is a principled alternative to the widely used U-Matrix [Ultsch, 2003].
This direct visualization is not always intuitive. Instead, the Cartogram-based rep-
resentation of the batch-SOM map retains its simplicity while visually factoring out
the non-linear distortion as measured by the MF.

4.4 Cartogram representations for GTM

The same idea proposed above for batch-SOM algorithm can be applied to the Gen-
erative Topographic Mapping (GTM), cfr section 2.2. In the following section, we
propose here to explore some artificial data sets with simple statistical properties, in
order to assess the properties of the method in a controlled setting.

We will work with 3-D data divided into three neatly defined clusters, to which
atypical cases or outliers will be added. The dimensionality of data is chosen, again,
to allow the direct visualization of prototypes embedded in the observed data space.
Following the line of the experiment described in § 4.3, we explicitly calculated the
MF for the t-GTM variant of the standard GTM and we introduce a Cartogram vi-
sualization of the latent space.

The standard GTM algorithmwas implemented inMatlab®, using the drtoolbox3.

3http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_
Reduction.html

http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
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4.4.1 Robust topographic mapping and its magnification fac-
tors

One constraint of the basic GTM model is due to the fact that the centres of the
mixture components do not move independently from each other, as they are limited
by definition to lie in a low-dimensional embedded manifold. The basic GTM model
presented in § 2.2.1, has some obvious limitations when dealing with atypical data
or outliers, due to the narrowness of the tails of the Gaussian distributions. The
point is that the presence of outliers is likely to bias the estimation of parameters
W and β, so other more robust formulations of GTM has been proposed using a
mixture of Student’s t-distributions (the t-GTMmodel). This model, when applied to
multivariate data clustering and visualization, provides a more accurate imputation
of missing values and it is robust when dealing with outliers [Vellido et al., 2006;
Vellido, 2006b].

To introduce the multivariate t-GTM model, we assume that the basis functions
ϕm in the GTM mapping given by Eq. 2.5 are replaced by Student t-distributions.

The conditional distribution of the data given the latent variables and the adap-
tive parameters is:

p(y|x,W, βν) =
Γ
(
ν
2
+ p

2

)
βp/2

Γ
(
ν
2

)
(νπ)p/2

1 +
β

ν

p∑
j=1

(
yj −

M∑
m=i

w⊤
j ϕm(x)

)2
−(ν+p)/2

(4.10)
where Γ is the gamma function

Γ(t) =

∫ ∞

0

xt−1e−x dx (4.11)

and ν is an adaptive parameter such that the multivariate t-distributions con-
verges to a multivariate normal one when ν → ∞.

We can now integrate the latent variables out. After this, we obtain new ex-
pressions of the log-likelihood and again the model can be fitted to data using the
EM algorithm to obtain, along with other results, the responsibilities rkn. For more
details, see Vellido [2006a,b].

To update the parameters W and β, we apply the maximization step of the al-
gorithm by maximizing the expected log-likelihood, but a similar update cannot be
applied to the parameter ν. To update ν, we have to consider alternative approaches
such as, for instance, running experiments for a range of its possible values, selecting
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the best choice out them.
Svensèn [1998] gives an interpretation of the update expression of β as the off-

manifold variance of the model being updated to the average weighted distance be-
tween original data and prototypes. This update formula, together with the one of
the responsibility, implies the existence of a further weighting term for the t-GTM,
which will be small for data outliers, as stated in [Peel andMclachlan, 2000]. As a re-
sult, the influence of outliers on the model parameters will be effectively minimized
[Vellido et al., 2006].

Magnification factors

The t-GTM generates, as its standard counterpart, a varying local distortion that can
make exploratory data visualization difficult. This distortion can again be quantified
over the latent space continuum with MF, as explained in § 3.3.

The analytical quantification of the MF can be expressed in terms of the deriva-
tives of the basis functions ϕm as

MF =
√

det ((WΨ)⊤WΨ), (4.12)

where J = WΨ is the Jacobian of the mapping transformation andΨ ∈ RM×q has
elements ψmi defined as

∂ψm(x)

∂x(i)
=

Γ(ν+p
2
)(−ν − p)β

p+2
2

Γ(ν
2
)πp/2ν

p+2
2

(
x(i) − µ(i)

m

)(
1 +

β

ν
∥x− µm∥2

)− ν+p−2
2

(4.13)

where µm,m = 1, . . . ,M are the centres of the Student t-distributions.

Remark

Notice that the computation of the MF for the basic GTM can be done in the same
way according to Eq. 4.12. The only change that need to be done is to replace the
derivatives of the the Student-t functions with the derivatives of the Gaussian radial
basis functions.

4.4.2 Cartogram visualization for t-GTM

The following experiments compare the effect of outliers on the Cartogram repre-
sentations of the MF for the standard GTM and for t-GTM. An artificial data set of
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3-D points is used to make possible the direct visualization of the data vectors yk

in the observed data space. A total of 1,500 3-D points are randomly drawn from 3
spherical Gaussian distributions (500 points each), all with unit variance and with
centres set at the vertices of an equilateral triangle. Two different subsets of outliers
are added to this data set:

• A-type): three outliers located on the normal to the imaginary plane defined
by the cluster triangle that passes through its barycenter;

• B-type): three outliers located on the normal to one vertex of the imaginary
triangle.

We choose a 15 × 15 regular grid of 2-D latent points. Both GTM and t-GTM are
trained with the same initialization. The MF is calculated for both methods and Car-
tograms are generated using these values. In all cartograms, we assume assumed a
homogeneous level of distortion in the space beyond the grid: this value is chosen
to be equal to the mean distortion over the complete map 1/K

∑K
k=1MFxk

, as de-
scribed in section § 4.2. Likewise, we assume that the level of distortion within each
of the squares associated to xk is itself uniform.

The first experiment, displayed in Fig. 4.6, corresponds to the inclusion of A-
type outliers, while the second, displayed in Fig. 4.7, corresponds to the inclusion of
B-type outliers.

Despite the fact that most GTM prototypes concentrate in the three clusters,
it is clear from the image in Fig. 4.6 (top row, left) that, in the case of standard
GTM, the A-type outliers force the manifold towards them in an undue manner.
This causes a distortion that is more controlled by the outliers than by the empty
space between clusters. Even though, the Cartogram visualizations generated by
GTM and t-GTM are rather similar. The reason for this is the artificial symmetry of
the outliers location.

The maps in Fig. 4.7, corresponding to the second experiment with added B −
type outliers, tell a very different story. Now, the symmetry is lost and the MF of
the standard GTM reflects the fact that the model stretches one of the sides of the
manifold in its attempt to cover the outliers (top row, left). As a result, an artefactual
high distortion appears in the top-righ corner of the MF representation map (where
outliers are seen to be mapped) and biases the Cartogram representation. The t-
GTM, instead, ignores the outliers and respects the symmetry of the representation
while restricting themanifold to the imaginary triangle defined by the three clusters.
This is clearly reflected in the corresponding Cartogram.
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Notice that, in both experiments, the extra MF distortion introduced by the out-
liers makes the data representation of the data of all clusters far more compact for
GTM than for t-GTM. In any case, this simple preliminary experiments illustrate
how modelling methods that behave robustly in the presence of outliers are more
likely to produce more faithful representations of the non-linear mapping distortion
and, as a result, more faithful data visualizations.

4.5 Discussion

In this chapter we have presented a novel technique that allows to introduce into the
visualization space a quantitative representation of the non-linear mapping distor-
tion due to the chosen dimensionality reduction model. One advantage of this tech-
nique is its portability, since a Cartogram visualization is possible for any non-linear
dimensionality reduction method in which a distortion measure can be defined.

The experiments presented here are meant to be exploratory, aiming to asses
the validity of the proposed model. Further investigation can be done by using more
complex datasets, with different characteristics and different statistical properties.
One example of this is presented in the recent work of Vellido et al. [2013], where
the results over diverse artificial datasets provide some guidelines for the use of
Cartograms in NLDR. It is shown that some underlying quantities, such as the di-
mensionality of the data features, affect the visualization space more than others,
such as the density of data clusters or the size of the latent grid.

It is important to stress that the use of Cartogram visualization does not affect
or modify the performance of the model during its training. It is just an a posteriori
method for the visual display of the results. The Cartograms provide added value to
the visualization of the low-dimensional space by enabling a deeper analysis of the
model capabilities. One example of this has been given in section 4.4, where we have
shown that the Cartogram representation reflects the model capability of behaving
robustly in the presence of atypical data.
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Fig. 4.6 Top row) Representation of the original data clusters (1,500 points, 500 in each cluster,
plus A − type outliers, all represented with crosses) with standard GTM (left) and t-GTM
(right) The generated manifold is superimposed; it is represented as a grid whose knots
are the model prototypes yk; central row) Maps of MF values together with a colorbar for
interpretation on the right-hand side of the maps; bottom row) Corresponding Cartograms,
based on the MF, to which the mean projections of the data are superimposed. The mapping
locations of outliers are highlighted with circles.
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Fig. 4.7 Representation of data, manifold grid, MF maps and Cartograms for the second ex-
periment withB−type outliers as in Fig. 4.6. Notice the difference in the mapping locations
of outliers (again highlighted with circles) as compared to Fig. 4.6. In this case, GTM maps
the outliers in a high-distortion area that is generated by the own outliers and not by the
cluster data points (note that this high distortion appears because of just three outlier points),
whereas the t-GTM maps them correctly to the closest cluster, without any artefactual dis-
tortion.





Chapter 5

Increasing Interpretability of MTS
Modelling through Visualization
Using Manifold Learning

Time-dependent natural phenomena and artificial processes can often be quanti-
tatively expressed as multivariate time series (MTS). As in any other process of
knowledge extraction from data, the analyst can benefit from the exploration of the
characteristics of MTS through data visualization. This visualization often becomes
difficult to interpret when MTS are modelled using non-linear techniques. Despite
their flexibility, non-linear models can be rendered useless if such interpretability is
lacking.

The methods described in previous chapters have mostly focused on static i.i.d.
data. In this chapter, we model MTS using VB-GTM-TT, a variational Bayesian vari-
ant of a constrained hidden Markov model (HMM) of the manifold learning family
defined for MTS visualization. We aim to increase its interpretability by taking ad-
vantage of two results of the probabilistic definition of the model: the explicit es-
timation of probabilities of transition between states described in the visualization
space and the quantification of the non-linear mapping distortion.

5.1 Exploring MTS

Most applied analysis of multivariate time series involves, in one way or another,
problems with specific targets such as prediction, forecasting, or anomaly detection.
A less explored avenue of research is the exploratory analysis of multivariate time
series using machine learning and computational intelligence methods [Fu, 2011].
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Data exploration may be a key stage in knowledge extraction from multivariate
time series using complex non-linear methods, as it opens the door to their inter-
pretability [Vellido et al., 2012].

As in any other processes of knowledge extraction from data, the analyst could
benefit from the exploration of the characteristics of temporal data consisting of
a high number of individual series through their visualization [Vellido et al., 2011].
The direct visualization of such high-dimensional data, though, can easily be beyond
the interpretation capabilities of human experts. Therefore, the exploration of tem-
poral data can be assisted by dimensionality reduction methods. In particular, the
visualization of multivariate time series using non-linear dimensionality reduction
(NLDR) methods [Lee and Verleysen, 2007] can provide the expert with inductive
reasoning tools as a means to hypothesis generation. Visualization can thus facili-
tate interpretation, which is paramount given that NLDR methods can be rendered
useless in practice if interpretability is lacking.

In this chapter, we merge two strands of previous research on data visualization.
The first one involves the visualization of multivariate time series using statistical
machine learning and NLDR methods [Bishop et al., 1997b]. The second tackles one
of the main interpretability bottlenecks of NLDR techniques: the difficulty of ex-
pressing the non-linear mapping distortion they introduce in the data visualization
space in an intuitive manner. Specifically, we attempt to increase the interpretability
of the variational Bayesian generative topographic mapping (VB-GTM-TT), a vari-
ational Bayesian variant of a constrained hidden Markov model (HMM) [Rabiner,
1989] of the manifold learning family, defined for the visualisation of multivariate
time series [Olier and Vellido, 2008a]. For this, we use two results of the probabilistic
definition of the model: the explicit estimation of probabilities of transition between
states described in the visualization space and the quantification of the distortion
introduced by the non-linear mapping of the multivariate time series in the form of
magnification factors (MFs).

Note that our analysis does not address the assessment of the quality of the map-
ping as such. In fact, the proposed visualization strategies are meant to be inde-
pendent from it. Although VB-GTM-TT is used here for illustration (as a method
that, even if prone to limitations such as local minima, has been shown to perform
robustly in the presence of noise), the proposed approach could be extended to al-
ternative dimensionality reduction models for multivariate time series, for which
distortion and probability of state transition (or some approximations to them) are
quantifiable.
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5.2 Variational Bayesian GTM Through Time

The standard GTM model has been reformulated within a variational full Bayesian
framework by Olier and Vellido [2008b], providing an extention to the analysis of
MTS in Olier and Vellido [2008a]. The result is the VB-GTM-TT: a model that in-
tegrates regularization explicitly and provides adaptive optimization of most of the
model parameters involved.

Assuming a sequence of hidden statesZ = {zn}n=1,...,N for every time step n and
the observedMTSY = {yn, }n=1,...,N , the complete-data likelihood for VB-GTM-TT
is given by:

The model parameters areΘ = (π,A,U, β), specified by

initial state probabilities : π = {πj} : πj = p (z1 = j) (5.1)

transition state probabilities : A = {aij} : aij = p (zn = j|zn−1 = i) (5.2)

emission probabilities : {U, β} : p (yn|zn = j) =

(
β

2π

)p/2

exp

(
−β
2
∥yn − uj∥2

)
(5.3)

inverse variance : β (5.4)

The emission probabilities are controlled by spherical Gaussian distributions
with common inverse variance β and a matrix U of K centroids uj, 1 ≤ j ≤
K . They can be considered as hidden variables and integrated out to describe the
marginal likelihood as:

p (Z,Y) =

∫
p (Θ) p (Z,Y|Θ) dΘ,

whereΘ = (π,A,U, β) . (5.5)

VB-GTM-TT assumes its parameters to be independent, so that

p(Θ) = p(π)p(A)p(U)p(β),

where the set of prior distributions p (Θ) are defined as:
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p (π) = Dir ({π1, . . . , πK} |ν)

p (A) =
K∏
j=1

Dir ({aj1, . . . , ajK} |λ)

p (U) =
[
(2π)K |K|

]−p/2
p∏

i=1

exp

(
−1

2
u(i)TK−1u(i)

)
p (β) = Γ (β|dβ, sβ) .

Here, Dir (·) represents the Dirichlet distribution and Γ (·) is the Gamma dis-
tribution. The vector ν, the matrix λ and the scalars dβ and sβ correspond to the
hyperparameters of the model which are fixed a priori. The prior over the param-
eter U defines the mapping from the hidden states to the data space as a Gaussian
Process (GP), where u(d) is each of the row vectors (centroids) of the matrix U and
K is a matrix where each element is defined by the covariance function as:

Ki,j = c (xi,xj) = exp

(
−∥xi − xj∥2

2α2

)
, i, j = 1 . . . K.

The α parameter controls the flexibility of the mapping from the latent space to
the data space. The vector xj, j = 1 . . . K corresponds to the state j in a latent
space of usually lower dimension than that of the data space (for MTS visualization
purposes). Thus, a topography over the states is defined by the GP as in the standard
GTM. The VB-GTM-TT is optimized using variational approximation techniques.
A more detailed description of the VB-GTM-TT and its formulation is provided in
[Olier and Vellido, 2008a; Olier, 2008].

5.2.1 The VB-GTM-TT model and its magnification factors

As stated in § 3.3, the magnification factor (MF) can be explicitly computed for the
batch-SOM (c.f. Eq. 4.8) and GTM (c.f. Eq. 4.12). In this section, we introduce here
the calculation of the MF for the VB-GTM-TT model. For this, we first consider the
jointly Gaussian random variables[

y

y∗

]
∼ N

(
0,

[
K K(∗,·)

K(·,∗) K(∗,∗)

])
, (5.6)

where y∗ is a test point and C(·,·) is the covariance matrix defined according to (5.6).
Due to the properties of Gaussian distributions, we can explicitly write the posterior



5.2 Variational Bayesian GTM Through Time 61

probability as follows:

y∗|x∗,Θ ∼ N
(
y∗ | K(∗,·)K

−1U, K(∗,∗) −K(∗,·)K
−1K(·,∗)

)
. (5.7)

The Jacobian J of this mapping can be obtained by computing the derivatives of
⟨(y∗|x∗,Θ)⟩ with respect to x, using:

∂k(∗,j)
∂xl

∗
=

1

α2
(xl∗ − xlj) exp

(
−∥x∗ − xj∥2

2α2

)
, l = 1 . . . q, j = 1 . . . K,

being q the dimension of the latent space. As a result, the MF is calculated as:

MF = det−
1
2

(
JTJ

)
(5.8)

The MF does not only provide us with a quantification of the local mapping
distortion that separates areas of the visual map which have undergone much com-
pression or stretching from those which have not; it also tells us about data sparsity:
the model distorts the most in areas which are mostly empty of data and the least
in densely populated areas. For this reason, the MF has been used as an indicator of
the existence of data clusters and the boundaries between those clusters [Tosi and
Vellido, 2013]. For MTS, we would expect the time series to flow over time through
areas of low MF mostly when the MTS evolve slowly, whereas fast transitions be-
tween MTS regimes might require crossing areas of higher distortion.

5.2.2 Cumulative state transition probabilities

Another metric that might help improving the interpretability of the mapping is
the likelihood for a state to be transited by any of the potential trajectories through
states. Again, this can explicitly be quantified, for each state j defined by VB-GTM-
TT, as the estimated cumulative state transition probability (CSTP ) defined as the
sum of the probabilities of transition from all states to it

CST Pj =
K∑
i=1

aij, (5.9)

where the transition state probabilities are defined according to Eq. (5.2).
We would expect the MTS trajectory to pass through areas of high CSTP , be-

cause these should be areas of highly likely transition. As such, theCSTP plays the
opposite role to MF, because the areas of large manifold stretching (high MF) should
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mostly be areas that the MTS is unlikely to cross (low CSTP ).

5.3 Experiments and discussion

5.3.1 Materials and experimental setup

We illustrate the proposed MTS visualization using two different datasets. The first
is an artificial 3-variate time series, with 1, 000 time points. The second set is the
Shuttle-data from Space Shuttle mission STS-571: a time series consisting of 1,000
points described by 6 features. This data set has previously been used for cluster
detection [Lin et al., 2004].

5.3.2 MTS Visualization

The considered MTS are particularly suitable for the illustration of the proposed
visualization techniques due to the nature of their regimes and transitions periods.
The artificial dataset, displayed in Fig. 5.1 (top-row, left), is characterized by two
intervals with regular regimes, divided by a sudden transition at point 700. The VB-
GTM-TT model was trained over a 8 × 8, 2 − D grid of hidden states and each of
the MTS points was mapped by VB-GTM-TT to a particular state in the grid.

The result of this mapping assignment is shown in Fig. 5.1 (top-row, right). Be-
fore point 700, the periodicity of the data is well-captured by the roughly circular
structure of populated states. The sudden transition to a higher-amplitude periodic
interval is also neatly visualized.

On the other hand, Shuttle_Data presents four periods of little variability A-C-
D-E and one period of high (quasi-periodic) variability B, which are separated by
sudden transitions, as evidenced by their display in Fig. 5.2 (top row, left).

The VB-GTM-TT model was trained over a 13 × 13 grid of hidden states and
each of the MTS points was mapped by VB-GTM-TT to a particular state in the
grid, as shown in Fig. 5.2 (top row, right). There is a clear interpretation for this
state membership mapping, as the Shuttle-data trajectory is confined to a limited
number of its states (a common characteristic of VB-GTM-TT mappings, in which
over-complexity is penalized). Only a few of them are relatively big: these aremostly
stationary states with little MTS change in intervals C, D and E. The quasi-periodic
interval B evolves slowly through a cloud of states on the top-left and center of the
map.

1Which can be downloaded under request from www.cs.ucr.edu/∼eamonn.
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Fig. 5.1 Top row, left: Artificial dataset: a 3-variate time series, characterized by a sudden
transition at n = 700. Top row, right: State-membership map of VB-GTM-TT, with a 8× 8
grid of hidden states represented as squares, whose relative size is proportional to the time
data points assigned to them; the starting point of the MTS is represented as a star and the
ending point is represented as a circle. The sudden transition point is signalized by an arrow.
Bottom row, right: MF gray-shade color map, represented in the VB-GTM-TT latent space
visualization grid. The trajectory of the MTS over the map is displayed as a white solid line.

TheMFswere computed for artificial and Shuttle-data and represented in Figs. 5.1
and 5.2 (bottom, right) through color maps over the grid of hidden states. For both
datasets, it might seem at first sight that the MTS cross through areas of high MF
(high distortion), a behaviour that would refute the hypothesis that the densely data
populated areas correspond to low mapping distortion. In fact, this is not the case:
the MTS mostly flows over time through channels of low distortion surrounded by
borders of high distortion. These borders seem to act as barriers that compel theMTS
to follow a given trajectory. In fact, these barriers are only breached (with the MTS
moving briskly towards higher MF) in sudden transitions between regimes. These
can clearly be seen for Shuttle-data if we plot the value of MF over time, as in Fig. 5.2
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Fig. 5.2 Top left: Plot of Shuttle-data; the five intervals or regimes separated by sudden tran-
sitions are identified as A, B, C, D and E. Top right: State-membership map generated by
VB-GTM-TT, with a 13 × 13 grid of hidden states represented as squares; the relative size
of these squares is proportional to the time data points assigned to them; the starting point
of the MTS is represented as a star, the ending point as a circle. Bottom Left: The Magni-
fication Factors as a function of time, including the mean MF over all states (represented
as a dashed line); narrow peaks of distortion are detected precisely in the areas of sudden
transitions. Bottom Right: MF gray-shade color map, represented in the VB-GTM-TT latent
space visualization grid; white areas correspond to high distortion.

(bottom row, left): MF narrow spikes of varying magnitude (particularly strong in
the transition from B to C) appear in the transitions between time intervals. These
spikes take values well over the mean MF of the map. This result suggests that the
evolution of the MF over time could directly be used to detect sudden regime tran-
sitions in MTS.

The CSTP maps in Fig. 5.3 are very consistent with their MF counterparts, and
complement them. Alternatively displayed as 3 − D maps over the grid of hidden
states, they provide an intuitive illustration of the previously described behaviour.
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Following a geographical representation visual metaphor, the MTS can be seen to
flow across cumulative state transition probability ridges, where rapid transitions
between regimes see the MTS moving through relatively lower-valued depressions
in those ridges. An opposite graphical metaphor could be used for the MF distortion,
with the MTS flowing through its valleys, that is, across areas of the map character-
ized by low MF values.
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Fig. 5.3 A 3−D representation for the CSTP plots. The values in the vertical axis correspond
to the CSTP values over the latent space. Left: artificial data; right: Shuttle-data.

5.4 Discussion

Data visualization can be of great assistance in knowledge extraction processes.
High dimensionality is always a barrier for visualization. In the case of MTS, this is
compounded by their i.i.d. nature, because the search for patterns over time is often
relevant in their study. Dimensionality reduction can make visualization operative
for high-dimensional MTS. The use of non-linear dimensionality reduction methods
to this purpose poses a challenge of model interpretability due to the existence of
locally-varying distortion.

In this chapter, we have proposed to useMF andCSTP to improve interpretabil-
ity for VB-GTM-TT, a manifold learning NLDR method. The model mapping distor-
tion has been explicitly quantified in the latent space continuum and the proba-
bilistic nature of the method has allowed us to define a cumulative probability of
state transition. The reported experiments have shown that both metrics can pro-
vide interesting insights that enhance the low-dimensional visualization of the MTS
provided by the model.

This exploration approach is quite flexible and could be extended to other dimen-
sionality reduction models for MTS analysis, provided their local distortion can be



66 Increasing MTS Model Interpretability through Visualization Using Manifold Learning

quantified. Examples of this may include GP-LVM [Lawrence, 2005]), GP dynamical
models (GPDM, [Wang et al., 2008; Damianou et al., 2011]) or temporal Laplacian
eigenmaps [Lewandowski et al., 2010]. It could also be extended to alternative vi-
sual display methods, such as the Cartograms presented in chapter § 4, [García et al.,
2013; Tosi and Vellido, 2013, 2012] and warped topographic maps [Gianniotis, 2013].



Chapter 6

Metrics for Probabilistic
Geometries and Their Impact on
Interpretability

In many practical applications of multivariate data analysis, probabilistic models are
combined with heuristic algorithms that use computed distances and interpolants
between observations; this is, for instance, the case of distance-based methods for
classification and clustering, methods of data interpolation for the reconstruction of
missing frames (in computer vision problems), or techniques for the definition of the
optimal path from one data point to another (in robotics, or cartography), to name a
few. These heuristic algorithms are often based on the assumption of a deterministic
system, without taking into account the uncertainty deriving from the probabilistic
framework. Therefore, if the data observations are noisy, should the underlying
geometry (and hence distances and interpolants) not be considered noisy as well?

This chapter studies the role of Random Geometries, i.e. distributions of mani-
folds, inmachine learning and, more generally, in data analysis. We developmethods
for the estimation of distributions of Riemannian manifolds which support observa-
tions as well as algorithms for computing interpolants (geodesics) over distributions
of manifolds.

The new geometrical insight given to the interpretation of probabilistic mod-
elling may not only theoretically advance statistical machine learning, but also im-
prove the usability and flexibility of existing models.
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6.1 Metrics for Probabilistic LVMs

Manifold learning approaches attempt to learn the underlying support of the data
(the manifold). Using the concepts of Riemannian geometry presented in section
§ 3.2, it is possible to derive the intrinsic geometrical properties of the model by
explicitly computing its local metric tensor continuously over the input space. Once
the metric has been derived, is then possible to compute geometrical quantities such
as distances, angles, or the curvature of the space.

Given that manifold learning models can be of different nature, we have decided
to restrict the developments in this chapter to smooth generative models. In such
models, the local metric varies smoothly across the input space, in contrasts with
prior approaches such as those reported in [Bregler and Omohundro, 1994; Tenen-
baum, 1997; Tenenbaum et al., 2000], which use metrics that vary discretely across
the space. Other relevant approaches related to Gaussian models can be found in
[Lawrence, 2012].

In the following sections, the local metric tensor for generative latent variable
models is first defined. We then illustrate the specific cases of GP-LVM and GTM,
providing two algorithm to compute shortest paths (geodesics). The novelty of this
approach is the probabilistic expression of the local metric, which opens to new
streams of investigation in the field of probabilistic geometries for latent variable
models.

6.2 The distribution of the natural metric

Given a noise model as in in Eq. (2.1), we assume the mapping f between the latent
space and the observed space to be a differentiable function. This appears not to be
a strict requirement, since some of the most used models fulfill it. Two examples are
the standard GTM and the GP-LVM with the exponentiated quadratic kernel (EQ),
since in both cases the differential of f reduces to the differential of an exponential.

Under this assumption of smoothness, the output of the mapping can be inter-
preted as a differential manifold (c.f. section § 3.2). It is then possible to explicitly
compute the natural Riemannian metric of the given model as follows: let J be the
Jacobian of the mapping f given as in Eq. (1.1), then the tensor

G = J⊤J

defines a local inner product structure over the latent space according to Eq. 3.3.
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Being the Gaussian distribution widely used in latent variable models, it is prac-
tical to analyse the particular case in which the conditional probability over the
Jacobian follows a Gaussian distribution as well. The distribution over the Jacobian
is inducing a distribution over the local metric tensor G in a natural way. In fact,
assuming independent rows of J, the distribution of the Jacobian is the product of p
multivariate Gaussians

p(J | X, f , β) =
p∏

j=1

N (Jj,: | µJj,:
,ΣJ). (6.1)

The resulting random variable follows a non-central Wishart distribution [An-
derson, 1946]

G = Wq(p,ΣJ ,E[J⊤]E [J]), (6.2)

where p represents the number of degrees of freedom; the quantity Σ−1
J E[J⊤]E [J]

is known as the non-centrality matrix and it is equal to zero in the central Wishart
distribution. Intuitively, we can interpret the Wishart distribution as a multivariate
generalisation of the Gamma distribution.

It is interesting to observe that the expectation of the metric tensor is given by
the sum of two terms, a mean term and a covariance term

E[J⊤J] = E[J⊤]E[J]︸ ︷︷ ︸
mean term

+ p ·ΣJ︸ ︷︷ ︸
covariance term

, (6.3)

whose role will be made more explicit at the end of the section.
Given the general formulation of the distribution of the Riemannian metric ten-

sor in generative latent variable models, we can now provide the explicit expression
for the models of our interest.

GP-LVM local metric

As described in section § 2.3, a Gaussian process (GP) can be used in dimensionality
reduction to describe distributions over a mapping f

f(x) ∼ GP(m(x), k(x,x′))

yi,j = Kfi,fKY:,j + ϵi,

leading to the formulation of the Gaussian process latent variable model (GP-LVM)
Lawrence [2005].
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It follows from Eq. 2.36 and the properties of the GPs that the distribution of the
Jacobian of the GP-LVMmapping is the product of p independent Gaussian distribu-
tions (one for each dimension of the dataset) with mean µJ(j,:) and covariance ΣJ .
For every latent point x∗, the Jacobian takes the following form:

p(J | Y,X,x∗) =

p∏
j=1

N (Jj,: | µJj,:
,ΣJ) (6.4)

=

p∏
j=1

N (∂K⊤
f∗,fK̃

−1
f ,fY:,j, ∂

2Kf∗,f∗ − ∂K⊤
f∗,fK̃

−1
f ,f ∂Kf∗,f ),

which (c.f. Eq. 6.2) gives a distribution over the metric tensorG

G = Wq(p, ∂
2Kf∗,f∗ − ∂K⊤

f∗,fK̃
−1
f ,f ∂Kf∗,f ,E[J⊤]E[J]). (6.5)

From this distribution, the expected metric tensor can be computed as

E[J⊤J] = E[J⊤]E[J] + p ∂2Kf∗,f∗ − ∂K⊤
f∗,fK̃

−1
f ,f ∂Kf∗,f︸ ︷︷ ︸

covariance term

. (6.6)

Magnification Factors

The metric tensor defines the local geometric properties of the GP-LVM model and
it can be used as a tool for data exploration that helps increasing the model inter-
pretability. One way to visualise the tensor metric is through the differential volume
of the high dimensional parallelepiped spanned by GP-LVM; this, for a latent dimen-
sion q = 2 is known as the Magnification Factor (MF), see section § 3.3. The explicit
formulation of the MF for GP-LVM is given by

MF =
√
det (E[J⊤J]). (6.7)

An illustrative example of MF visualization, using the Shuttle dataset presented
in section § 5.3.1, is displayed in Fig. 6.1. The colormap is computed over a fine
regular grid defined over the latent space. An additional example has been displayed
in the background section § 3.3, using the joggingmotion of the CMUmotion capture
database described in section § 2.3.3.

Further examples are provided in the experimental results of this chapter.
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Fig. 6.1 Magnification Factor colormap computed over the GP-LVM latent space using the
Shuttle dataset described in section § 5.3.1.

6.3 Computing geodesics

Given a latent space endowedwith an expected Riemannianmetric, we now consider
how to compute geodesics (shortest paths) between given points. Once a geodesic is
computed, its length can be evaluated through the numerical integration of Eq. 3.6.

An obvious solution to the shortest path problem is to discretise the latent space
and compute shortest paths on the resulting graph using, e.g., Dijkstra’s algorithm
[Cormen et al., 1990]. The computational complexity of this approach, however,
grows exponentially with the dimensionality of the latent space and the approach
quickly becomes unfeasible. Moreover, this approach (presented in section § 6.3.1)
will also introduce discretisation errors due to the finite size of the graph.

Instead, we propose solving the geodesic differential equation (3.7) numerically.
This scales more gracefully as it only involves a discretisation of the geodesic curve
which is always one-dimensional independently of the dimension of the latent space.
This approach is presented in section § 6.3.2.
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Remark

Note that the expectation of the GP-LVM metric tensor includes a covariance term
depending on the covariance function of the GP prior. This implies that the metric
tensor expands as the uncertainty over the mapping increases. Hence, curve length
also increases when traversing uncertain regions and, as a consequence, geodesics
will tend to avoid these regions. This nice effect comes from on the fact that in GP-
LVM the covariance term depends on the values of the latent mapping. Not all the
latent variable models have this property.

For instance, in GTM (c.f. Eq. 2.10) the covariance of the data posterior distribu-
tion is constant and equal to β−1. It follows that the derivatives of the covariance
terms with respect to the latent space are equal to zero, which means that also the
covariance term which appears in the formulation of the expected metric in Eq. 6.3
is equal to zero. This observation shows that the formulation of the expected metric
tensor for the GTM reduces to the original formulation of the metric given by Bishop
et al. [1997a], which is computed without taking into account the covariance term.
In the case of GTM, this omission makes no difference because the covariance of J
is constant, due to the fact that the covariance of the conditional distribution given
by Eq. 2.10 does not depend on the latent space.

6.3.1 Geodesics via discretisation

As a first approach, we propose [Tosi and Vellido, 2014] to discretise the space into
a square grid of nodes ν(i,j) ∈ Rq and build a weighted graph where every node is
connected to its eight neighbours. A graphical visualisation of the connections of
ν(i,j) is the following

ν(i−1,j−1) ν(i−1,j) ν(i−1,j+1)

. . . ... ...

ν(i,j−1) · · · ν(i,j) · · · ν(i,j+1)

... ... . . .
ν(i+1,j−1) ν(i+1,j) ν(i+1,j+1)

The weights ω(i,j) of the graph are computed according the local value of the MF
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evaluated in the node ν(i,j)

ω(i,j) =MFx∗ =
√

det ((WΨ(x∗))⊤WΨ(x∗)), x∗ = ν(i,j). (6.8)

Notice that the MF expression presented in Eq. 4.12 for the t-GTM can be used
for the computation of the MF in GTM by replacing the derivatives of the Student-t
functions with the derivatives of the Gaussians.

The distance between any two nodes is then defined as the shortest path over
the graph using Dijkstra’s algorithm1 [Cormen et al., 1990].

We display an illustrative example using 3-D data points sampled from a spiral.
A standard GTM is trained wit it in order to learn a 2-D representation of the given
data (see Fig. 6.2). We show in Fig. 6.3 that geodesic distances computed as shortest
paths over the graph provide a more faithful interpolation between data points: in
fact, the resulting interpolating path follows the natural structure of the data, giving
a more faithful distance than to the Euclidean straight line.

Fig. 6.2 A 3-D artificial dataset (a spiral) is used for training. The Generative Topographic
Mapping (GTM) is used here as an illustrative technique; the model is trained over a 15×15
grid of nodes, laying on a 2-D latent space (left); training data are represented as blue dots,
connected by a continuous line. The GTM latent grid is projected into the 3-D observed
space to visualise the embed of the observations.

The computational complexity of the algorithm is that of the Dijkstra algorithm.
To achieve a better accuracy in the geodesic computation, we can consider a finer
grid, but this results in a growing computational cost.

1The algorithm has been implemented using the function graphshortest in Matlab®.
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Fig. 6.3 Using the dataset given in Fig. 6.2, the local metric tensor is computed over the
2-D latent space and visualized via a Magnification Factor (MF) that quantifies distortion;
the colormap shows areas of higher distortion in white and areas of lower distortion in
black. Training points are represented in blue; the yellow dashed-dotted line represents the
Euclidean distance between two training points; the red dashed line represents the geodesic
distance between two training points, computed using the MF graph-based distance.

6.3.2 Geodesics via ODE’s solution

Considering the concepts of differential geometry introduced in section § 3.2, we
now focus on the definition of the geodesic curve given by Eq. (3.7). Here, the
2nd order ODE can be rewritten in a standard way as a system of 1st order ODE’s,
which can be solved using a four-stage implicit Runge-Kutta method[Kierzenka and
Shampine, 2001]2. This yields a smooth solution which is fifth order accurate. Al-
ternatively, such equations can be solved by repeated GP regression [Hennig and
Hauberg, 2014].

To evaluate Eq. 3.7, we need the derivative of the expected metric:

∂ vecE[G(x)]

∂x
=
∂ vec(E[J⊤]E[J] + p · cov(J,J))

∂x
. (6.9)

For the GP-LVM, this reduces to computing the derivatives of the covariance func-

2We use an off-the-shelf numerical solver (bvp5c in Matlab®); runnig times and computational
cost are provided in the reference.
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tion k (cf. Eq.(6.4)). Given two vectors x1,x2 ∈ Rq, a widely used covariance func-
tion is the exponentiated quadratic (EQ) (or RBF ) kernel

k(x1,x2) = α exp
(
−ω
2
∥ x1 − x2 ∥22

)
. (6.10)

We choose here the EQ as an illustrative example, but our approach would apply to
any other kernel that leads to a differential mapping.

This function is differentiable in x and will be used here (and in section § 6.4)
to provide a specific algorithm. Eq. 2.37 and 2.38 are explicitly computed for the
squared exponential kernel to have the explicit form of Eq. 6.4:

(∂Kf1,f2)1,j = −ω(x(j)1 − x
(j)
2 ) k(x1,x2) (6.11)(

∂2Kf1,f2

)
i,l
= (6.12)

=

{
ω(x

(i)
1 − x

(i)
2 )(x

(l)
1 − x

(l)
2 ) k(x1,x2), i ̸= l

ω(ω(x
(i)
1 − x

(i)
2 )2 − 1) k(x1,x2), i = l

Due to symmetry conditions, the upper triangular of the Hessian matrix is suffi-
cient to the computation. Note that, for our choice of kernel, the Hessian is diagonal
and constant for x1 = x2, which is the case of ∂2Kf∗,f∗ , so there is no need to com-
pute its derivative (which appears in the expression of ∂ vecG).

6.4 Experiments and results

In the following section we compute geodesics via ODE’s solution with GP-LVM
over three different datasets.

6.4.1 Motivating example: Images of handwritten digits

When themappings fj(·) are nonlinear, the LVMcan potentially capture non-linearities
on the data and thereby provide an even lower dimensional representation as well
as a more useful view of the data. While this line of thinking is popular, it is not
without its practical issues. As an illustrative example, Fig. 6.4 shows the latent rep-
resentation of a set of artificially rotated images obtained through a GP-LVM. The
dataset consists a single image of a hand-written digit (number 5) rotated from 0 to
360 degrees to produce 200 rotated images.

It is clear from the display that the latent representation captures the underlying
periodic structure of the process which generated the data (a rotation). If we want
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to analyse the data in the latent space, e.g. by interpolating latent points, our cur-
rent tools are insufficient. As can be seen, fitting a straight line in the latent space
between the two-points leads to a solution that does not interpolate well in the data
space: the interpolant goes through regions where the data does not reside, regions
where the actual functions, fj(·), cannot be well determined.

We then estimate a GP-LVM model3 with a q = 2 dimensional latent space; the
latent space is shown in Fig. 6.4. We interpolate two points using either a straight line
or a geodesic, and reconstruct images along these paths. The results in Fig. 6.5 show
the poor reconstruction of the straight-line interpolator. The core problem with this
interpolator is that it goes through regions with little data support, meaning that the
resulting reconstruction will be similar to the average of the entire data set.

 

 

Straight line interpolant

Expected Riemannian geodesic

Fig. 6.4 The latent space from a GP-LVM that was trained over a dataset of artificially rotated
digits. Black dots represent the latent points. The dashed brown line show the commonly
used straight-line interpolant, and the green curve is the suggested expected Riemannian
geodesic. This figure is best viewed in colour.

In the next two sections, we consider experiments on real data, but the reported
results are similar to those obtained in the synthetic digit experiment. First, we
consider images of rotating objects (section § 6.4.2), and then motion capture data
(section § 6.4.3).

3Software from the Machine Learning group, University of Sheffield
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/software.html
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Fig. 6.5 Rotated digit sampled from the latent space displayed in Fig. 6.4. Inference after
sampling over the latent space following the Geodesic distance (top row) and the Euclidean
distance (bottom row). Images are inverted and bicubically upscaled for improved viewing.

6.4.2 Images of rotating objects

In this experiment, we consider images from the COIL data set [Nene et al., 1996],
which consists of images from a fixed camera depicting 100 different objects on a
motorised turntable against a black background. Each image is acquired after a 5-
degree rotation of the turntable, giving a total of 72 images per object. Here, we only
consider the images of object 74 (a rubber duck, Fig. 6.6) as an example, but similar
results are attained for other objects.

Fig. 6.6 Objects from COIL 100 dataset. Object 74: a rubber duck (right).

A q = 2 dimensional latent space is estimated using the GP-LVM, and two latent
points are interpolated using either a straight line according to the Euclidean dis-
tance, or a geodesic. Reconstructed images along the interpolated paths are shown
in Fig. 6.7. It is clear that the geodesic gives a better interpolation, as it avoids re-
gions with high uncertainty associated (which are unavoidably crossed if using the
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Euclidean distance).

Fig. 6.7 COIL example image reconstruction. Inference after sampling over the latent space
following the geodesic (top row) and the Euclidean straight line (bottom row).
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Euclidean interpolant

Geodesic

Avg. training error

Fig. 6.8 COIL reconstruction error. Inference after sampling over the latent space following
the geodesic (green) and the Euclidean straight line (brown). For reference, the average
reconstruction error of the latent observations is shown as well (dashed). This figure is best
viewed in colour.

To measure the quality of the different interpolators, we reconstruct 50 images
equidistantly along each interpolating path and measure the distance to the nearest
neighbour in the training data. This is shown in Fig. 6.8, which, for reference, also
shows the average reconstruction error of the latent representations of the training
data, or average training error (ATE)

ATE =
1

N

N∑
n=1

∥E [f(xn)]− yn∥. (6.13)



6.4 Experiments and results 79

It is clear that the straight line interpolator performs poorly away from the end-
points, while the geodesic yields errors which are comparable to the average error
of the latent representation of the training data.

6.4.3 Human motion capture

Wenext consider humanmotion capture data from theCMUMotion Capture Database4.
Specifically, we study motion 16 from subject 22, which is a repetitive jumping jack
motion. Each time instance of this data consist of a human pose as acquiried by a
marker-based motion capture system; see Fig. 6.12 for example data. We represent
each pose by the three-dimensional joint positions, i.e. as a vector yn,: ∈ R3, where
P denotes number of joint positions.

We estimate aGP-LVMusing dynamics as is common for this type of data ([Wang
et al., 2008], extended with further research by Damianou et al. [2011]). The dynam-
ics constraints the latent space X to be smooth, by using a temporal prior. The re-
sulting latent space is shown in Fig. 6.10, and the metric tensor is shown in Fig. 6.9,
where the background colour is proportional to the magnification factor (Eq. 6.7) of
the expected Riemannian metric.

As can be seen, the latent points xn,: follow a periodic pattern as expected for this
motion, and the metric tensor is generally smaller in regions of high data density.

We pick two latent extremal points of the motion (x1 and xT ) and interpo-
late them using the Euclidean straight line and the expected Riemannian geodesic.
Fig. 6.10 shows the interpolants: again, the geodesic follows the trend of the data
while the straight line goes through regions with high model uncertainty. Recon-
structed poses along the interpolants are shown in Figs. 6.13 and 6.14. A compari-
son with the intermediate poses (x2 . . .xT−1) in the training sequence (see Fig. 6.12)
shows that the geodesic interpolant is a more truthful reconstruction compared to
that of the straight line.

To measure the quality of the reconstruction, we note that the length of the
subject’s limbs should stay constant throughout the sequence. Our representation
does, however, not enforce this constraint. Fig. 6.11 shows the length of the subjects
forearm for the two reconstructions along with the correct length. The straight line
interpolant drastically changes the limb lengths, while the geodesic matches the
ground truth well. Similar observations have been made for other limbs.

4http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu/
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Fig. 6.9 GP-LVM latent space representation for the motion capture data. White dots denote
latent points xn, whereas the background colour is proportional to the values of the MF
(6.7), according to the code expressed by the colorbar. It is quite obvious that latent points
are spread across paths of low MF, whereas latent space areas of high MF are avoided.

6.5 Discussion

When the mapping between a latent space and the observation space is not isomet-
ric (the common case for non-linear mappings), a Euclidean distance measure in
the latent space does not match that of the original observation space. In fact, the
distance measures in the latent and observation spaces can be arbitrarily different.
This makes it difficult to perform any meaningful statistical operation directly in the
latent space as the used metric is difficult to interpret.

We solve this issue by carrying the metric from the observation space into the la-
tent space in the form of a random Riemannian metric. This gives a distribution over
a smoothly changing local metric at each point in the latent space. We then provide
an expression for the expected local metric and show how shortest paths (geodesics)
can be computed numerically under the resulting metric. These geodesics provide
natural generalisations of straight-lines and they are, as a result, suitable for inter-
polation under the new metric.
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Euclidean Distance

Fig. 6.10 GP-LVM latent space for the motion capture data. Black dots denote latent points
xn. The green curve denotes the geodesic interpolant, while the dashed brown curve is the
straight-line interpolant. This figure is best viewed in colour.
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Fig. 6.11 Length, in centimetres, of the subjects forearm during latent space interpolation.
The blue curve is according to the geodesic interpolant, and the red dashed curve is according
to the straight-line interpolant. For reference, the black dots show the true length.

For the GP-LVM model, the expected metric depends on its uncertainty, in such
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a way that distances become longer in regions of high uncertainty. This effectively
forces geodesic curves to avoid uncertain regions in the latent space, which is the
desired behaviour for most applications. It is worth noting that a similar analysis for
the GTM does not provide a metric with this capacity as the uncertainty is constant
in this model.

The idea of considering the expectedmetric is practical as it turns the latent space
into a Riemannian manifold and this opens up to many applications. E.g. tracking
can be performed in the latent space through a Riemannian Kalman filter [Hauberg
et al., 2013], classification can be done using the geodesic distance, etc.

It is, however, potentially misleading to only consider the expectation of themet-
ric rather than the entire distributions of metrics. Although, if the latent dimension
is much lower than the observed data dimension, it can be shown that the distribu-
tion of the metric concentrates around its mean. But, in general, random Riemannian
manifolds are mathematically less well-understood, e.g. it is known that geodesics
are almost surely not length minimising curves under a randommetric [LaGatta and
Wehr, 2014]. We are suggesting that manifolds derived from data are necessarily un-
certain, and there is much to gain from further consideration of these spaces, which
then naturally lead to distributions over geodesics, distances, angles, curvature and
so forth.

In this chapter, we have only considered how geometry can be used to under-
stand an already estimated LVM, but it is also worth considering if this geometry
can be used as part of the LVM estimation. That is, it would be worth investigating
if a prior on the curvature of the latent manifold is an effective way to influence
learning.
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Fig. 6.12 Example poses from the motion capture data. These poses are temporarily spaced
between the end-points of the interpolating curves, i.e. they are comparable to the interpo-
lated reconstructions.

Fig. 6.13 Interpolated poses according to the straight-line interpolant. In particular, note the
bending of the knees, which does not occur in the training data.

Fig. 6.14 Interpolated poses according to the geodesic. These are visually similar to the poses
in Fig. 6.12.





Chapter 7

Conclusions

The final chapter of the thesis aims to summarise the main contributions presented
in previous chapters and sketch some avenues for future research.

7.1 Summary of the thesis and its main contribu-

tions

In this thesis, we have addressed the problem of visualization of high-dimensional
data sets, with the main objective of improving the interpretability (and as result,
the usability) of the probabilistic non-linear dimensionality reduction models used
to generate such visualization. To do so, we have mainly, but not only, exploited the
intrinsic geometrical structure of the aforementioned models.

The main contribution in the domain of visualization techniques is given by the
Carotgram-based representation, presented in chapter § 4. This novel technique,
inspired by cartographic maps in the geography domain, has been used to reintro-
duce in the visualization space a loss of information in which the non-linear map-
ping incurs. The analytical quantification of such a distortion has been expressed
in the form of Magnification Factors, and then computed and visualised together in
the form of the Cartogram maps. Results for the case of Self Organizing Maps and
Student-t Generative Topographic Mapping have been presented.

The research carried out in this thesis can be applied to multivariate data of
different nature and from different domains. In chapter § 5 we presented exper-
imental results for multivariate time series. We improved interpretability for the
VB-GTM-TT model and we introduced the explicit estimation and visualisation of
the cumulative probabilities of transition between states CSTP .

The main theoretical contribution in the domain of Random Geometries is
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provided in the last chapter, § 6. There we reinterpreted latent variable models as
Riemannian manifolds, by pulling back the Riemannian metric from the observation
space. Differently from previous approaches to metric learning, our local metric is
defined in a probabilistic way, providing an explicit expression of its probability dis-
tribution for the considered models. Experimental results have shown that inference
made following the Riemannian metric leads to a more faithful generation of new
data.

In addition, we have stated that the algorithms described in this thesis can be
extended to other generative latent variable models characterised by a smooth map-
ping between the latent space and the observed space. This property points out to
the portability of the proposed approach.

In conclusion, we have carried out an extensive analysis of the problem of inter-
pretability in probabilistic dimensionality reduction, from the differential geometry
point of view. We hope that this work will be of help to other researches with related
focus and open the way to novel investigation, such as the one suggested in the next
session.

7.2 Open questions and future directions

Random geometries

We have shown how to define a distribution over the metric in latent variable mod-
els. In particular, this was achieved by pulling back the metric from the observation
space into the latent space in the form of a random Riemannian metric. This re-
search opens to new streams of investigation in the field of Random Geometries in
relation to machine learning. Random Riemannian manifolds are mathematically
less well-understood than Riemannian manifolds. In fact, it is known that geodesics
are almost surely not length minimising curves under a randommetric [LaGatta and
Wehr, 2014]. We are suggesting that manifolds derived from data are necessarily un-
certain, and there is much to gain from further consideration of these spaces, which
then naturally lead to distributions over geodesics, distances, angles, curvature and
so forth.

In this thesis, we have only considered how probabilistic geometry can be used
to understand an already estimated generative latent variable model. This work
opens the way to promising direction of investigation, namely the applicability of
probabilistic geometry as part of the model estimation itself and, if so, it is worth
understanding its influence in the learning process.
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Distributions of geodesics

We have developed a probabilistic framework where the support of the data can be
interpreted as a random Riemannian manifold and geodesic distances can be com-
puted by taking the uncertainty of the metric into account. The preliminary results
presented in chapter § 6 give rise to some questions, such as: (1) How does uncer-
tainty defined over the the metric tensor impact the geodesic distances computed
in the observed space? (2) What are the conditions of existence and uniqueness of
geodesics in a more general setting? (3) How do we analytically define, if exists, a
distribution over geodesics? (4) What is the behaviour of the lengths of geodesics
when the number of features grows? Do distances concentrate as the dimensionality
of the feature space goes to infinity?

In order to answer these questions, we are currently investigating how to de-
velop an algorithm to explicitly compute distributions over geodesics in probabilis-
tic dimensionality reduction. One approach to be considered is that which entails
combining the local distributions of the metric tensor for a given set of points by
considering a joint sample: this way we would obtain samples of the metric along
the whole manifold (i.e. samples from the distribution of the random manifold).

We display examples of these samples in Fig. 7.1, where the diagrams refer to
the 3-dimensional visualization of the MF computed over a 2-dimensional GP-LVM
latent space (the 3-D visualisation has been introduced in section § 3.3). Here the
first diagram represents the plot of the MF of the expected metric tensor, defined
according to Eq. 6.6; the rest of diagrams show some random joint samples from the
Wishart distribution of the metric tensor (rather than showing just the mean).

Once the samples of the manifold are computed, we can compute (for each sam-
ple) the samples of geodesics using the algorithms proposed in section § 6.3.1 and
section § 6.3.2. This is straightforward for the GP-LVM model and a Wishart dis-
tributed metric introduced above, and the results can be extended to similar gener-
ative models.

This will provide new theoretical insights into the problems of probabilistic ge-
ometries, as the conditions of existence and uniqueness of geodesics in a more gen-
eral setting (i.e. wider class of models) are not well known. One challenge is the fact
that, in general, the distribution of the geodesic can be very complex because even
small changes in the metric tensor can result in a big change in the geodesic and its
length. Moreover, if the dimensionality of the feature space is increased and sent
to infinity, this is thought to have an effect on the lengths of interpolating paths,
resulting in an effect of concentrated distances. This aspect represents one of the
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↙ ↓ ↘

Fig. 7.1 On the top plot: mean of the distribution of a random manifold (generated after
training a GP-LVM over a jumping jacks motion form the CMU database, c.f. Experimental
results in section § 6.4.3). Three different joint random samples are generated from this
Wishart, and values of the MF factors are represented by a colormap. A 3-D visualization of
the MF is used: the vertical axes of each plot represents the values of the MF.

future directions of research.

Probabilistic numerics

New sparks of research aim to identify numerical methods as learning problems
using probabilistic models. This approach is know as Probabilistic numerics1 and
addresses classical optimisation algorithms and numerical methods for the solution
of differential equations and integrals.

Such probabilistic numerical methods, applied to find solutions of ordinary dif-
ferential equations (ODEs), have an impact on the analysis of statistical Rieman-
nian manifolds [Hennig and Hauberg, 2014]. In particular, the very recent work of
Schober et al. [2014] provides a probabilistic model for the solution of ODEs which
matches the classical Runge-Kutta method. A future direction of research is to in-
vestigate the combination of these recent advances in probabilistic numerics and the
propagation of the uncertainty defined over the metric tensor through the geodesic
ODE solver presented in section § 6.3.2.

Big data

In this thesis, we have addressed the issue of high-dimensional data as a problem of
datasets with a high number of features. But we also need to consider that, given
the ever increasing amount of available data generated on daily basis in different

1About: http://probabilistic-numerics.org/
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domains, we have at our disposal a growing amount of datasets which are big mostly
in terms of number of observations. This has come to be popularised under the name
of Big data ant constitutes a very up-to date problem.

Performing inference with Gaussian processes-based techniques suffers from a
high computational cost, and scaling up GPs is a topic of ongoing research. The
complexity can be reduced using appropriated approximation techniques as well as
appropriate distributed algorithms. Very recent results [Hensman et al., 2013; Gal
et al., 2014] apply GPs to data of the order of N ∼ 106. Following these promising
results, we aim to extend the approach presented in this thesis to the analysis of
larger datasets.

Intrinsic dimensionality of the dataset

While performing dimensionality reduction, we have mostly set the dimensionality
of the latent space to be q = 2, in order to display the experimental results on the
visualisation space. This has been done because one of the scopes of this thesis is to
make progress in the visualization techniques in order to improve the interpretabil-
ity of the considered models. The theoretical results presented, however, are valid
for any choice of latent dimension q ≤ p.

By removing the restriction of a 2-D latent space, we face the problem of how
to set the value of q. This question has been answered for a certain class of models,
and in the context of GP based dimensionality reduction has been solved by the Vari-
tional GP-LVM [Titsias and Lawrence, 2010; Damianou et al., 2014]. In this model
the algorithm is capable of computing the intrinsic dimensionality of the data by
optimising the lengthscales of the kernel in each latent dimension (and, eventually,
switching off the non relevant ones).

Extension to other models

The focus of this work is mainly on two models of interest, the Generative To-
pographic Mapping and Gaussian Process Latent Variable Model, both part of the
family of generative latent variable models. We have explicitly defined a distribu-
tion over the local metric and we have visualised such metric using the values of
Magnification Factors. The conditions to extend our approach to a wider class of
probabilistic models is to have a smooth mapping between the latent space and the
observed space. This is the case of GP-based models that use differentiable kernel
functions, which opens to a wide class of models. Examples of a straightforward
extension have been done in this thesis using the GP dynamical system (GPDM,
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[Wang et al., 2008; Damianou et al., 2011]). Further extensions are object of ongoing
investigation, using the Variational GP [Titsias and Lawrence, 2010; Damianou et al.,
2014], and the more recent Deep GP [Damianou and Lawrence, 2013]. These models
apply a fully Bayesian approach



Appendix A

Mathematical Background

This appendix aims to make the thesis self-contained, providing a short reference to
the basic mathematical identities used among the document.

A.1 Gaussian Identities

Let X = {x1, . . . , xn} be a set of random variables. Let’s consider two Gaussian
random vectors

xA ∼ N (µA,ΣA) and xB ∼ N (µB,ΣB).

The joint distribution p(xA,xB) is given by

[
xA

xB

]
∼ N

([
µA

µB

]
,

[
ΣA ΣAB

Σ⊤
AB ΣB

])
= N

[ µA

µB

]
,

[
Σ̃A Σ̃AB

Σ̃
⊤
AB Σ̃B

]−1
 .

(A.1)
themarginal distribution is given by

p(xA) =
∫
p(xA,xB)dxB = N (µA,ΣA)

p(xB) =
∫
p(xA,xB)dxA = N (µB,ΣB).

(A.2)

The conditional distribution of xA given xB is

p(xA | xB) = N
(
µA +ΣABΣ

−1
B (xB − µB),ΣA −ΣABΣ

−1
B Σ⊤

AB

)
, (A.3)

similarly the conditional distribution of xB given xA is

p(xB | xA) = N
(
µB +Σ⊤

ABΣ
−1
A (xA − µA),ΣB −Σ⊤

ABΣ
−1
A ΣAB

)
. (A.4)
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The product of two Gaussian distributions over the same domain gives an un-
normalised Gaussian

N (µA,ΣA)N (µB,ΣB) ∝ N (µC ,ΣC)

µC = ΣC

(
Σ−1

A µA −Σ−1
B µB

)−1

ΣC =
(
Σ−1

A −Σ−1
B

)−1

(A.5)

A.2 Matrix identities

A.2.1 Matrix inversion lemma (Woodbury matrix identity)

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 (A.6)

A.2.2 Matrix determinant lemma

| A+ UWV ⊤ |=| W−1 + V⊤A−1U | | W | | A | . (A.7)

A.3 The diffusion equation

The diffusion equation (also known as the Heat equation), describes a system where
a quantity u is considered as a function of the spatio-temporal coordinates. In the
classical problem this function u(x, t) is taken to be the temperature of the particles
in a conductive body. Given the initial condition at t = 0, the equation describes the
values of the temperature for t ∈ [0,∞).

α∇2u− ∂u

∂t
= 0, (A.8)
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