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SUMMARY  
 

Due to the large amount of pollutants produced by the chemical industry, the 

European Union (EU) approved in 2007 the regulation on Registration, Evaluation, 

Authorisation and Restriction of Chemicals (REACH). This aims at improving the 

identification and knowledge of up to 30,000 existing chemical substances. Among them, 

1,500 compounds are considered “substances of very high concern” due to their 

environmental and human health risk. Animal experimentation is the classical approach 

to test the harmful effects of chemicals. However, due to the huge amount of chemicals, 

expensive cost and ethical reasons, alternatives testing methods are being implemented 

nowadays. According to REACH, the experimentation in animals should be used as a 

“last resort”. In this framework, in silico computational methods are promising tools, being 

physiologically-based pharmacokinetic (PBPK) models specially relevant. PBPK models 

are mathematical representations of the human body, where human tissues are 

considered as compartments linked by the blood flow. These tools allow estimating the 

concentration and behaviour of environmental contaminants in the human body. The use 

of PBPK models is still incipient in human health risk assessment. Therefore, there is a 

lack of validated PBPK models. Polychlorinated dibenzo-p-dioxins and dibenzofurans 

(PCDD/Fs) and perfluoroalkyl substances (PFASs) are two of the most harmful groups 

of chemicals for the human health. These environmental pollutants are well known for 

their high persistence, bioaccumulation and toxicity (PBT), exhibiting also a long-range 

transport capacity. Furthermore, PCDD/Fs as well as perfluorooctane sulfonic acid 

(PFOS), the mostly studied PFAS, are included in the list of persistent organic pollutants 

(POPs) in the Stockholm Convention. 

The objective of the present thesis was to develop a PBPK model to study the 

behaviour and concentration of POPs in human tissues. PCDD/Fs and PFASs, two 

notably different POPs, were selected. Since late 1970s, PCDD/Fs have been posing 

special concern for the regulatory agencies. In contrast, PFASs have not been so 

extensively studied yet. To identify the potential risk of PFASs, a PBT-based ranking was 

developed to confirm their potential human health risk in front of other environmental 

contaminants. Because of their easy pharmacokinetics, the PBPK model was firstly 

developed for PCDD/Fs. Afterwards, the model was adapted to estimate the 

accumulation of PFASs in human tissue.  

In Chapter I, a ranking to prioritize the risk of chemical compounds in river water 

was developed. Up to 205 compounds, including pharmaceutic compounds, illicit drugs, 
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endocrine disruptors, UV filters, pesticides as well as PFASs, were selected. The index 

was based on the PBT properties of the chemicals and the water concentration of 4 

Spanish rivers. Self-organizing maps (SOM) were used to cluster the compounds 

according to their PBT characteristics, and the final result was a hazard index (HI), where 

pollutants were prioritized according to their harmful effects. With a HI of 5.58 over 10, 

PFASs were identified among the most harmful group of compounds for the human 

health. Afterwards, an integrated risk index for the chemical aquatic pollution (IRICAP) 

was obtained by multiplying the HI of each compound by its concentration found in river 

water. The IRICAP was applied to 77 sampling points located in the basins of Ebro, 

Júcar, Guadalquivir and Llobregat.  

Chapter II and III developed the PBPK model for PCDD/Fs, highlighting their 

presence in blood and adipose tissue, respectively. The main characteristics of the PBPK 

model were: 1) PCDD/Fs are not metabolized in the human body, 2) the ingestion may 

be considered only through food and water intake, and 3) the elimination occur only 

through feces. The simulated compartments were blood, muscle, skin, richly perfused, 

fat, kidney, and liver. Experimental data on PCDD/F levels in blood and adipose tissue 

samples from the adult population in Tarragona County (NE of Spain), were collected. 

The model was validated comparing the simulated and experimental results, which were 

highly coincident. In plasma, the modelled mean level of PCDD/Fs was 7.95 pg I-TEQ/g 

lipid, while the experimental concentration was 6.18 pg I-TEQ/g lipid. In adipose tissue, 

the simulated and experimental levels of PCDD/Fs were also of the same order of 

magnitude (4.77 vs 11.15 pg I-TEQ/g lipid). Due to the reasonable coincidence between 

the experimental and simulated results, the PBPK model developed was considered as 

validated. The PBPK model was simulated in four temporal scenarios, for which 

experimental data were available: 1998, 2002, 2007, and 2012. 

Chapter IV adapted the previously developed PBPK model to perfluorooctanoic 

acid (PFOA) and PFOS. In this case, the elimination mechanism was considered to occur 

only through urine by a mechanism of resorption, according to chemicals in urine are 

resorbed back to plasma through a saturable process. Furthermore, the binding to 

plasma albumin was also considered in the model equations. The PBPK model simulated 

the concentration of PFOS and PFOA in humans for a non-occupationally exposed 

population in Tarragona County. Nine body compartments were considered: plasma, 

liver, brain, lungs, kidney, gut, filtrate, rest of the body, and fat. Data of PFOS and PFOA 

in 5 autopsy tissues (liver, brain, lung, kidney and bone marrow) were used to validate 

the PBPK model. In liver, the target tissue of PFOS and PFOA, the simulated 
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concentration of PFOA was 3.33 ng/g, while the experimental concentration was 

13.6±35.2 ng/g. For PFOS, the concentrations found were 36.4 ng/g and 102.3±122.9 

ng/g according to simulated and experimental results, respectively. Because simulated 

concentrations were within the range of the measured levels of PFOS and PFOA, the 

model was considered as validated. 

Chapter V extended the previous model to other 9 PFASs. The model followed 

the same structure, and only parameterization data were modified according on each 

specific compound. Values of partition coefficient (Pks), elimination constants and 

binding to albumin protein were assessed by using experimental data of biological 

tissues from residents in Tarragona County. Parameterization data were assessed by 

fitting the PBPK simulation with the experimental data. For validation purposes, the 

PBPK model was applied in a case-study. Andøya Island (Norway) was used as a 

scenario because data on human intake and plasma concentration of PFASs were 

available for a non-occupationally exposed population. Validation consisted on 

comparing the range of the simulations and the experimental results. The model was 

considered validated for PFHxS, PFOS, PFHpA, PFOA and PFNA, due to the important 

coincidence between the ranges of the simulated and measured concentrations. For 

instance, for PFNA the simulated concentration ranged from 0.02 to 1.14 ng/g, whereas 

the mean experimental concentration was 0.95 ng/g, ranging from 0.26 to 2.9 ng/g. 

Given the importance of uncertainty, Chapter VI was focused on quantifying the 

influence of uncertainty in the PBPK model for PFOS and PFOA. The uncertainty 

analysis was focused on the parametric uncertainty, which is the study of the error 

associated to the experimental parameters used in the PBPK model. The objective of 

this chapter was to study the validation process of PBPK models and to mathematically 

assess their validity. Therefore, the minimum and maximum concentrations for the PBPK 

simulations were assessed by using the range of data of the most uncertain parameters 

(elimination parameters, protein binding, and daily intake) to obtain a range of simulated 

concentrations. The model was considered as visually validated if the experimental 

results were in the same range of the simulated range. Moreover, the validity of the PBPK 

model was mathematically studied by using the Student’s t-test. Finally, the visual and 

the statistical validation were compared to analyze the influence of the uncertainty in the 

process of model validation. For few tissues, the model was not statistically validated, 

indicating that the inclusion of the statistical analysis should be incorporated in the 

development of PBPK models to ensure the validity of the final outcomes.  
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The here developed PBPK model has been demonstrated to be a reliable tool to 

simulate the levels of PCDD/Fs and PFASs in human tissues. The simulations were 

highly coincident with the experimental results for most of the PCDD/F congeners, 

whereas for PFASs, the simulated and experimental concentrations were also of the 

same order of magnitude. Moreover, the statistical study of the uncertainty in the PBPK 

models was incorporated into the process of model development to ensure the validity 

of the PBPK models. As a general conclusion, PBPK models are not only a promising 

tool, but also a reality to simulate the concentrations of environmental pollutants in 

human tissues, for their subsequent use in human health risk assessment.  
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RESUM 
 

Degut a la gran quantitat de productes contaminants produïts per la indústria 

química, la Unió Europea va aprovar a l’any 2007 la regulació sobre registració, 

avaluació, autorització i restricció de productes químics (REACH), amb l’objectiu de 

millorar la identificació i coneixement de més de 30,000 compostos químics. Entre 

aquests, 1,500 son considerats “compostos de molt alt perill” degut al seu risc per la 

salut humana i pel medi ambient. L’aproximació clàssica per mesurar els efectes 

perjudicials sobre la salut dels compostos químics és l’experimentació en animals. No 

obstant, degut a la gran quantitat de compostos químics que es necessiten estudiar i 

degut al seu cost i raons ètiques, s’estan implementant mètodes alternatius. Segons 

REACH, l’experimentació en animals hauria de ser l’“última alternativa”. En aquest 

context, les eines computacionals o in silico son una bona alternativa. Entre elles, es 

troben els models farmacocinètics o PBPK (·physiologically-based pharmacokinetic 

models”). Els models PBPK són representacions matemàtiques del cos humà on els 

teixits es consideren compartiments units pel flux de sang. L’ús de models PBPK és 

encara incipient en l’avaluació de risc per a la salut, i per tant hi ha una falta de models 

per calcular la concentració i el comportament de contaminants ambientals en el cos 

humà. Les dibenzo-p-dioxines policlorades i dibenzofurans policlorats (PCDD/Fs) i 

compostos perfluorats (PFASs), són dos dels grups de contaminants més perillosos per 

a la salut humana. Aquest compostos són ben coneguts per la seva alta persistència, 

bioacumulació i toxicitat (PBT), a més d’una alta capacitat pel transport a llarga distància. 

A més a més, les PCDD/Fs i l’àcid perfluorooctà sulfònic (PFOS), que és el PFASs més 

estudiat, estan inclosos a la llista de compostos orgànics persistents (COPs) en la 

Convenció d’Estocolm.  

L’objectiu de la present tesis va ser el desenvolupar d’un model PBPK per 

estudiar el comportament i concentració de compostos orgànics persistents (COPs) en 

teixits humans. Es van seleccionar dos grups de compostos notablement diferents, com 

son els PCDD/Fs i PFASs. Des de finals dels 70, les PCDD/Fs han tingut una 

preocupació especial per les agencies reguladores. Però, per altra banda, els PFASs 

encara no han estat gaire estudiats. Per conèixer amb exactitud la perillositat dels 

PFASs es va desenvolupar un índex de risc humà enfront a contaminants ambientals. 

Després, el model PBPK va ser primerament desenvolupat per PCDD/Fs degut a la seva 

relativament simple farmacocinètica en el cos humà. A continuació, el model es va 

adaptar per estimar l’acumulació de PFASs en teixits humans.  
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En el Capítol I es va desenvolupar un índex de risc per prioritzar compostos 

químics en aigua fluvial. Es van estudiar més de 205 compostos incloent farmacèutics, 

drogues, disruptors endocrins, filtres ultraviolats, pesticides i PFASs. L’índex es va basar 

en les propietats PBT dels químics i en la concentració en aigua en 4 conques fluvials 

Espanyoles. Els mapes autoorganitzats (SOM) van ser utilitzats per agrupar els 

compostos segons les seves característiques PBT. El resultat final va ser un índex de 

perillositat (HI), on els compostos es van prioritzar en funció dels seus efectes nocius. 

Els PFASs es van identificar entre els compostos més perillosos per a la salut humana 

amb un HI de 5.58 sobre 10. A continuació, es va calcular l’índex de risc integrat per la 

contaminació aquàtica (IRICAP) multiplicant el HI de cada compost per la seva 

concentració en aigua. L’IRICAP es va aplicar a 77 punts localitzats a l’Ebre, Xúcar, 

Guadalquivir i Llobregat.  

Els Capítols II i III van desenvolupar un model PBPK per PCDD/Fs en sang i en 

teixit adipós, respectivament. Les principals característiques del model PBPK van ser: 

1) els compostos PCDD/Fs no es metabolitzen en el cos humà, 2) la ingestió es va 

considerar exclusivament per ingestió d’aliments i aigua, 3) l’eliminació és exclusivament 

per femta. Els compartiments estudiats van ser la sang, múscul, pell, grassa, ronyó, 

fetge i resta del cos. En aquest estudi, les dades sobre la població adulta es van extreure 

a l’àrea de Tarragona (NE d’Espanya). El model es va validar comparant dades 

simulades i experimentals. Es va trobar una gran similitud entre les simulacions i les 

dades experimentals. En plasma, les dades del model per PCDD/Fs van ser 7.95 pg I-

TEQ/g greix, mentre les concentracions experimentals van ser de 6.18 pg I-TEQ/g greix. 

En teixit adipós els valors simulats i experimentals van ser igualment del mateix ordre 

de magnitud (4.77 vs 11.15 pg I-TEQ/g greix). Degut a la raonable coincidència entre 

els resultats experimentals i simulats, el model PBPK es va considerar com a validat per 

simular les concentracions de PCDD/Fs en sang i en greix per població no ocupacional. 

Les simulacions amb el model PBPK es van calcular en 4 escenaris on hi havia dades 

experimentals disponibles: 1998, 2002, 2007 i 2012. 

El Capítol IV va adaptar el model PBPK desenvolupat prèviament, a àcid 

perfluorooctanoic (PFOA) i a PFOS. En aquest cas el mecanisme d’eliminació es va 

considerar només a través de l’orina, mitjançant un procés de reabsorció, on des del 

plasma els compostos es reabsorveixen a l’orina, seguint un procés saturable. A més, 

es va considerar que hi havia una forta unió a l’albúmina del plasma. El model PBPK va 

simular la concentració de PFOA i PFOS per població no ocupacional de l’àrea de 

Tarragona. Els teixits que es van estudiar van ser plasma, fetge, cervell, pulmons, ronyó, 
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estomac, veixiga, resta del cos i teixit adipós. Per validar el model es van utilitzar dades 

de teixits humans en autòpsia. En el fetge, que és l’òrgan diana per PFOA i PFOS, la 

concentració simulada de PFOA va ser de 3.33 ng/g, mentre que la concentració 

experimental va ser de 13.6±35.2 ng/g. Per PFOS les concentracions van ser de 36.4 

ng/g i de 102.3±122.9 ng/g, per valors simulats i experimentals, respectivament. Degut 

a la coincidència entre els valors simulats i els rangs dels valors experimentals, el model 

es va considerar com a validat. 

En el Capítol V es va estendre el model previ a 9 compostos PFASs més. El 

model va seguir la mateixa estructura i només les dades paramètriques es van modificar 

en funció del compost. Els coeficients de partició (Pks), les constants d’eliminació i la 

unió a l’albúmina es va calcular utilitzant dades experimentals de residents de l’àrea de 

Tarragona. Les dades paramètriques es van calcular ajustant les simulacions del model 

PBPK amb les dades experimentals. A continuació, per tal de validar el model, el model 

PBPK es va aplicar en un cas d’estudi. L’illa d’Andøya (Noruega) es va utilitzar com 

escenari degut a la disponibilitat de dades de concentracions en plasma i d’ingesta en 

població no ocupacional. El model es va validar per simular les concentracions de 

PFASs en teixits humans per població sota exposició no ocupacional. Per considerar el 

model com a vàlid, es va considerar que el rang entre els valors simulats i experimentals 

havien de ser coincidents. Per exemple per PFNA, la concentració simulada va ser 

d’entre 0.02 i 1.14 ng/g (mínim i màxim), i el valor experimental va ser de 0.95 ng/g (rang 

entre 0.26 i 2.9 ng/g). El model es va considerar com a validat per PFHxS, PFOS, 

PFHpA, PFOA i PFNA degut a la coincidència entre el rang dels valors simulats i els 

valors experimentals 

Donada la gran importància de la incertesa, en el Capítol VI es va estudiar la 

incertesa en els models PBPK per PFOS i PFOA. L’anàlisi de incertesa es va enfocar 

en la incertesa paramètrica, que és l’estudi de l’error associat als paràmetres 

experimentals utilitzats en el model PBPK. Per tant, l’objectiu d’aquest capítol és l’estudi 

del procés de validació dels models PBPK i calcular matemàticament la seva validesa. 

Conseqüentment, els valors màxim i mínim dels valors simulats pel model PBPK es van 

calcular utilitzant el rang de concentració dels paràmetres amb més incertesa 

(eliminació, ingesta i unió amb proteïnes), per obtenir un rang de concentracions 

simulades. El model es va considerar com a vàlid quan els resultats experimentals 

estaven dins del rang dels resultats simulats. A més a més, la validesa del model PBPK 

es va estudiar utilitzant el test estadístic de la t de Student. Finalment les validacions 

visual i estadística es van comparar per analitzar la influència de la incertesa en el procés 
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de validació. Per alguns pocs teixits el model no es va poder considerar com a validat. 

És per això que la inclusió d’anàlisis estadístic hauria de ser incorporat en el 

desenvolupament dels models PBPK com una pràctica habitual per assegurar la 

validesa dels resultats finals.  

El model PBPK ha demostrat ser una eina fiable per simular la concentració de 

PCDD/Fs i PFASs en teixits humans per població no ocupacional. Les simulacions de 

PCDD/Fs van ser altament coincidents amb els resultats experimentals per la major part 

del congéners, mentre que per PFASs les concentracions simulades i experimentals van 

ser raonablement coincidents. A més a més l’estudi estadístic de la incertesa en el model 

PBPK va ser incorporat en el procés de validació del model. Com a conclusió, els models 

PBPK son no només una eina prometedora, sinó una realitat per simular les 

concentracions de contaminants ambientals en teixits humans, pel seu posterior ús en 

l’avaluació de risc per a la salut humana.  
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INTRODUCTION 

1. New computational methods: In silico tools 
 

Classic approaches to estimate the toxicity of chemical compounds for human 

health have involved the usage of animal testing. However this is a relatively slow 

technique, subject to a big variability and expensive costs, besides obvious ethical 

reasons (Robson and Toscano, 2007). Furthermore there is a huge amount of chemicals 

which required to be tested, making terribly difficult their assessment by means of animal 

experimentation studies. The European Commission (EC) has estimated that over 

30,000 chemicals in 11 years will be regulated under REACH (Registration, Evaluation 

and Authorisation of Chemicals). Given the impressive number of chemicals, new testing 

methods have emerged on powerful, reliable and cheaper alternatives. One of these are 

in silico methods, whose main objective is to reduce the usage of animal experimentation 

(Roncaglioni et al., 2013). In silico techniques may be either Expert Systems (ES) or 

Data Driven Systems (DDS) (Bakhtyari et al., 2013). ES attempts to emulate the decision 

making ability of the human experts, while DDS are methods to extract and predict 

models directly from experimental data. DDS vary in sophistication from simple methods 

(Read-across methods) to more complex methods (QSAR: Quantitative structure-activity 

relationship). 

In silico techniques can extract information easier and quicker than with in vivo 

experiments. Mathematical models are relatively simple to build and with the additional 

advantage that validated models can be applied to a number of different hypothetical 

scenarios including new routes, dose, species and the involvement of new chemicals. In 

silico tools also allow to replacing in vivo animal studies by extrapolating results between 

species with a relatively high degree of reliability. Furthermore, modeling seems to be a 

better technique to extrapolate kinetic or toxicological results from animals to humans, 

thus increasing confidence in health risk assessment (Bouvier et al., 2007). Despite, 

modeling is a useful tool, it must be highlighted that they are an oversimplification of the 

real processes of the body, as was pointed out by Suresh Moolgavkar, and eminent 

professor of toxicology and risk assessment: “No model can be said to be ‘correct’. The 

role of any model is to provide a framework for viewing known facts and to suggest 

experiments”. 
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2. Physiologically-based pharmacokinetic (PBPK) models 

2.1. Introduction and needs  

Human health risk assessment is a fundamental step to estimate the impact of 

chemicals emitted to the environment, and to estimate the exposure. Dose and time of 

exposure have been considered traditionally as the most important parameters to 

perform evaluation of the human health risk. However, when a chemical enters the 

human body, there are complex processes which must be taken into account: absorption, 

distribution, metabolism and elimination (ADME). Physiologically-based pharmacokinetic 

(PBPK) models provide a tool to predict these ADME processes inside the body along 

time. Physiologically-based pharmacokinetic (PBPK) models are mathematical 

representations of the human body where the tissues are represented as compartments 

linked by the blood flow. The final result is a set of ordinary differential equations that can 

be solved using computational software. These models can be used for pharmacological 

research, health risk assessment and other fields in medicine. 

 

2.2. History of PBPK models  

The first PBPK model including a multi-compartmental structure and PK/PD data 

was introduced by Teodorell (1937). Unfortunately, the lack of mathematical tools to 

solve differential equations made PBPK models a difficult problem to solve in that time. 

Moreover, there was a lack of methods to predict the parameters needed for the PBPK 

model parameterization (Jones and Rowland-Yeo, 2013). The proliferation of PBPK 

models started in the 1980s due to the improvement of the new in vitro technologies, and 

computational tools (Edginton et al., 2008). Bischoff et al. (1971), published an early 

report that established the basis for the current PBPK models incorporating metabolism 

mechanisms in a PBPK model for methotrexate. Another seminal report of the early 

development of PBPK modeling was developed by Ramsey and Andersen (1984) that 

applied a PBPK model to assess styrene in rats for several routes of administration. 

Since the eighties, the PBPK model started to proliferate increasing its complexity and 

being used in pharmaceutical research and in environmental risk assessment. Over the 

last two decades, the number of scientific publications about PBPK modeling has 

gradually increased, demonstrating its utility in drug development and risk analysis 

(Huang et al., 2013) (Figure 1).  
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Fig. 1.  Annual rate of publications whose title contains the phrase 

“Physiologically-based pharmacokinetic”; Source: ISI Web of Knowledge. 

 

2.3. Development of PBPK models  

The development of PBPK models involves three main steps: 1) definition of the 

model, 2) data collection and 3) mathematical simulation (Figure 2). Subsequently, the 

model is compared with experimental data available for calibration and validation 

purposes, and the model is finally modified according to new suppositions and 

presumptions.  

 

 

 

0

10

20

30

40

50

60

70

80

90

100

1985 1990 1995 2000 2005 2010

P
u

b
li

ca
ti

o
n

s 
p

e
r 

y
e

a
r

Year

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELING OF PCDD/FS AND PFASS IN HUMANS. 
Francesc Fabrega Bonadona 
Dipòsit Legal: T 1660-2014



Introduction 

 

4 

 

Fig. 2.  Steps on the PBPK model development (Reddy et al., 2005). 

 

The first step on the PBPK model building is to identify the organs or tissues 

involved in the ADME processes. Models generally simplify the biological complexity by 

subdividing the body in discrete compartments (Bouvier et al., 2007). The construction 

of the model can be done by considering previously available information about the 

distribution of the compound inside the body, and the biochemical information on 

chemicals metabolism. For instance, if a compound is strongly lipophobic, it is senseless 

to include fat tissues. Realism and simplification must be balanced. 

Each organ or tissue is considered a compartment, characterized by its own initial 

concentration, tissue volumes, solubility, metabolic constants, etc. The different tissues 

are connected by the arterial and venous blood flow. To maintain the mass balance, the 

sum of arterial blood flows must to be equal to the venous flow. It is also important to 

distinguish between interstitial and intracellular space because the compartments are 

separated from membranes that act as a barrier with a limiting distribution (permeation 

limiting kinetics), and this distribution can be a limiting step (von and Huisinga, 2007). 

Usually, metabolism is considered only in liver, although this may also occur in lungs, 

kidney or gut (Beaudouin et al., 2010). The administration of the compound can be by 

gastric intake, dermal exposure or inhalation, and therefore all the possible human 

exposures can be simulated (Di Muria et al., 2010). A model can be as complex as the 

modeler wants, including all the organs of the body, but the simplicity of the model can 

avoid unnecessary waste time. In this first step, an overestimation or oversimplification 

is possible, becoming one of the most problematic steps. If the model does not run well, 
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a new adjustment will be necessary in the future. In this way, models are useful not only 

to simulate the behaviour of a chemical, but also to determine the metabolic and 

biochemical processes inside the human body (Edginton et al., 2008). 

Once the conceptual model is created, the next step is to make a mathematical 

representation of each compartment or tissue. Generally, mass-balance ordinary 

differential equations are used to explain the change of a chemical in a tissue over the 

time, describing the transfer between compartments, as well as metabolism and 

excretion processes. The PBPK compartments are usually defined as a well-stirred tank 

or two-subcompartment tissues, being defined by flow-limited and permeability-limited 

equations (Thompson and Beard, 2011; Thompson et al., 2012). These equations 

establish the rate at which molecules enter and leave a tissue, and the speed of 

metabolism in the same tissue. Once a set of equations is obtained, the resolution is 

done by specific computational software (e.g., Berkley Madonna, AcslX) or by 

programming the equations with generic mathematical programs (e.g., Matlab, Fortran 

95) (Schmitt and Willmann, 2004). The building of the model also involves the collection 

of parametric data. Pharmacokinetic data are available in medical literature, where have 

been compiled (Brown et al., 1997; Price et al., 2003). In turn, information can be 

calculated through different algorithms (Peyret et al., 2010; Poulin and Theil, 2009). 

Sometimes there exist gaps in human body data, and then extrapolation from 

experimentation on animal data is necessary. There are three kinds of parameters that 

are necessary to build PBPK models: physiological (e.g., ventilation rate, body weight, 

blood rate), thermodynamic (e.g., tissue partition coefficients), and biochemical (e.g., Km 

and Vmax) (Mumtaz, 2010). 

Once the model is created, it can be compared with experimental data for 

calibration and validation purposes. If the model is not in agreement with the 

experimental observations, some possibilities arise: either a wrong estimation was done 

in some step of the process or some information had been misunderstood. Then, it is 

necessary to check which the mistake is and solve the problem or refine much more the 

model. Sometimes PBPK models are created as a hypothesis-testing in toxicology to 

conduct in silico experiments to know much more about some toxicological processes. 

Once a model is correctly validated, then it is ready to be used in other scenarios. 
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2.4. PBPK in human health risk assessment  

Firstly, it is important to distinguish between tissue dose or target dose in front of 

the exposure dose. Exposure dose is the administrated dose via food intake, dermal 

exposure or air inhalation, while target dose is the dose in a tissue or organ after different 

ADME processes in the body (Leahy, 2006). Beneficial or adverse effects are not related 

only to the exposure but also with the different processes inside the body. 

Pharmacokinetic models allow to evaluating the chemical distribution and to making 

much more precise approximations than exposure-based models.  

PBPK models vary in complexity according to their purpose, while there are not always 

necessary for human risk assessment. Traditionally, cancer and noncancer risk 

assessment rarely considers chemical-specific pharmacokinetic information, but PBPK 

models may improve risk assessment. There are four important uses of PBPK models in 

risk assessment (Clark et al., 2004; Clewell et al., 2002):  

1) Cross-species extrapolation. Classical risk assessment assumes the 

same mode of action for both animals and humans. PBPK models may be used to 

extrapolate from animals to humans when the mode of action is different between 

species.  

2) Cross-route extrapolation. It consists on extrapolating data between 

different exposure pathways. For instance, PBPK modeling can be used to assess the 

tissue-dose associated to a target tissue in animals through one route, and then 

assessing the equivalent exposure in human by using another exposure pathway.  

3) Dose extrapolation. This incorporates the dose-response of a chemical. 

As for instance, the toxicity of the vinyl chloride is not lineal due to the saturation of its 

metabolism. By using PBPK models, the response in the metabolism may be estimated 

and the accuracy of the model improved.  

4) Time extrapolation. PBPK modeling provides more accuracy to 

extrapolate exposure frames than other methods such as average daily dose. For 

instance, exposure to one chemical to a single dose is not the same than a repeated 

exposure to multiple low doses. Moreover, PBPK models may simulate the dosimetry 

under pregnancy, lactation and developmental age. 
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3. POPs 
Persistent organic pollutants (POPs) are organic compounds intentionally or 

unintentionally released to the environment. They are characterized by a high 

persistence in the environment, high bioaccumulation in the human body, high toxicity 

for both humans and wildlife, as well as long-range transport capacity (Boethling et al., 

2009). The Stockholm convention (SC) on POPs is a global treaty for the regulation of 

such compounds that was adopted in May 2001 and came into force in 2004. The SC 

aims to reduce or eliminate the use and production of these compounds. The initial SC 

list included 12 compounds, but this list has increased in recent years. Currently, up to 

22 compounds are included. 

 

4. PCDD/Fs 
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans 

(PCDFs) are a group of halogenated organic compounds, constituted by two rings of 

benzene linked by two or one oxygen atoms, respectively. This family of compounds is 

generally known as “dioxins or furans”. It family includes 210 congeners, which depend 

on the position of the chlorine atom: 75 are dioxins (PCDD), and 135 furans (PCDFs). 

The general structure of dioxins and furans is depicted in Figure 3.  

 

 

Fig. 3.  Chemical structure of PCDDs and PCDFs. 

 

4.1. Sources of exposure 

PCDD/Fs are unintentional by-products of industrial and burning processes, 

being human activities the main emission source. In turn, this can be divided into 

regulated and non regulated or diffuse source (Fiedler, 1996; Kulkarni et al., 2008). The 

former group includes municipal solid waste incinerators, chemical waste incinerators, 

clinical waste incinerators, cement kilns, sinter plants and sewage sludge incinerators 
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(Alcock et al., 2001). Non regulated emissions come from traffic, domestic combustion 

and accidental fires. In the last decades, important legislation efforts to reduce the 

environmental emissions of PCDD/Fs have give place to a substantial reduction of the 

emissions and the atmospheric concentrations (Hassanin et al., 2006). Consequently, a 

reduction in human exposure and in body burdens of PCDD/Fs has also been observed 

(Nadal et al., 2013).  

Scientific studies, have indicated that the main source of human exposure to 

PCDD/Fs is food ingestion, over the >95% of the total intake (Linares et al., 2010; Martí-

Cid et al., 2008; Nadal et al., 2011). In general, food from animal origin contains more 

dioxins that the food coming from vegetal origin (Chan and Wong, 2013), while relatively 

high levels of PCDD/Fs have also been found in fish and seafood.  

 

4.2. Toxicity 

The toxicity of the different PCDD/F congeners may vary in a 1000-folder 

magnitude depending of the congener. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-

TCDD) is considered the most toxic of the dioxins congeners and a toxic factor of 1 has 

been assigned to this congener. All the other congeners of PCDD/Fs have a relative 

toxicity that ranges from 0 to 1 (Table 1). This scale of toxicity is called the Toxicological 

Equivalent Factor (TEF). It is agreed that the most toxic congeners for the human Health 

risk are those that contains Cl in the positions 2, 3, 7 and 8 in the ring (Linden et al., 

2010). Up to 17 toxic congeners have been selected: 7 dioxins and 10 furans. For the 

remaining 193 PCDD/F congeners, the toxicity for the human health may be considered 

as negligible (TEF=0). The most and more extensively used TEF values for human 

toxicity are I-TEF and WHO-TEF. I-TEF was set up by NATO in 1989 and after that was 

extended and validated (Kutz et al., 1990). WHO-TEF where set up by the World Health 

Organization (WHO) in 1998, and reevaluated in 2005 (Van den Berg et al., 2005). I-TEF 

and WHO-TEF values are summarized in table 1.  
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Table 1.  I-TEF and WHO-TEF valued for the 17 PCDD/Fs congeners 

Compound  I-TEF WHO-TEF 

PCDDs   

2,3,7,8-TCDD 1 1 

1,2,3,7,8-PeCDD 0.5 1 

1,2,3,4,7,8-HxCDD 0.1 0.1 

1,2,3,6,7,8-HxCDD 0.1 0.1 

1,2,3,7,8,9-HxCDD 0.1 0.1 

1,2,3,4,6,7,8-HpCDD 0.01 0.01 

OCDD 0.001 0.0003 

PCDFs   

2,3,7,8-TCDF 0.1 0.1 

1,2,3,7,8-PeCDF 0.05 0.03 

2,3,4,7,8-PeCDF 0.5 0.3 

1,2,3,4,7,8-HxCDF 0.1 0.1 

1,2,3,6,7,8-HxCDF 0.1 0.1 

1,2,3,7,8,9-HxCDF 0.1 0.1 

2,3,4,6,7,8-HxCDF 0.1 0.1 

1,2,3,4,6,7,8-HpCDF 0.01 0.01 

1,2,3,4,7,8,9-HpCDF 0.01 0.01 

OCDF 0.001 0.0003 

 

 

In order to assess the toxicity of a mixture of dioxins the toxic equivalents (TEQ) 

is used. TEQ is calculated as a summation of the multiplying the toxicity (WHO-TEQ or 

I-TEQ) for the concentration of each congener, according the equation 1. 

 

TEQ=∑ (TEFi · Ci)      (1) 

 

4.3. Health effects 

The International Agency for Research on Cancer (IARC) classified the 2,3,7,8-

tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) as a carcinogen for the human health 

(Group 1), and recently, the 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PeCDF) was 
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also included (IARC, 2012). In turn, other PCDD/F congeners, such as 1,2,3,7,8-PeCDD, 

1,2,3,6,7,8-HxCDD and 1,2,3,7,8,9-HxCDD have been included in the Group 3 by the 

IARC, therefore not being classifiable as to its carcinogenicity to humans (IARC, 1997). 

In turn, USEPA considers there is sufficient evidence in animals but insufficient in 

humans (carcinogenic B2) to classify PCDD/Fs as carcinogenic, when considered alone 

(U.S.EPA, 2000). However, in complex mixtures, dioxins and related compounds were 

classified as likely to be carcinogenic for humans (Group B1) (U.S.EPA, 2000). In spite 

of these classifications, of some authors point out there is important lack of conclusive 

data to consider PCDD/Fs as a carcinogenic (Boffetta et al., 2011; Cole et al., 2003).  

The hallmark of non-carcinogenic toxicity of PCDD/Fs in humans is chloracne 

that may be manifested after occupational exposure or high acute exposure (Linden et 

al., 2010). Children are more sensitive to chloracne than the adult population, according 

to the experience of the accident of Seveso (Italy) in 1976 (Mocarelli et al., 1991). 

Moreover, harmful effects on the reproductive system, hepatoxicity, development, 

immunology, neurotoxicity and endocrine systems have been observed (Linden et al., 

2010; Sweeney and Mocarelli, 2000). The aryl hydrocarbon receptor (AhR) seems to be 

implied in the mode of action (MoA) of PCDD/Fs. Thus, the MoA is similar to the 

hormonal biochemistry, and PCDD/Fs are considered endocrine disruptors (ED) 

(Vasseur and Cossu-Leguille, 2006; Wang et al., 2006). 

In 1990, the World Health Organization (WHO) established a tolerable daily 

intake (TDI) of 1-4 pg-TEQ/kg-day for PCDD/Fs (Van et al., 2000). However, it was 

indicated that human intake should be less than 1 pg-TEQ/kg-day. In 2001, the Joint 

FAO/WHO Expert Committee on Food Additives (JECFA) concluded that, due to the long 

half-lives in blood, the human doses of PCDD should be evaluated in a monthly period, 

establishing a Provisional Tolerable Monthly Intake (PTMI) of 70 pg WHO-TEQ/kg BW 

per month (WHO, 2002). In 2012, a RfD of 0.7 pg/kg-day for TCDD was suggested by 

U.S.EPA (2012). Such dose was derived based in two previous studies: a study that 

related the sperm concentration and mobility on men exposed to TCDD, and a second 

study that related the concentration of TCDD with thyroid hormone levels on newborns 

(Baccarelli et al., 2008; Mocarelli et al., 2008). 

 

4.4. Pharmacokynetics and Pharmocodynamics (PK/PD) 

The absorption of PCDD/Fs is mainly through oral intake, being the inhalation 

another important route of exposure. In contrast, dermal intake seems to be a minor 
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pathway according to previous reports (McLachlan, 1993; Schlummer et al., 1998). 

PCDD/Fs may be absorbed in a range of 80%-90% by oral route. The limiting factor of 

the absorption is the passage across the intestinal wall, decreasing in relation to 

molecular size (ATSDR, 1998). 

The distribution and disposition of PCDD/Fs is dependent of the congener, dose, 

route of administration and age. The main storage compartments of dioxins for mammals 

are the liver and the adipose tissue (mesentery fat), due to the high lipophilicity of these 

compounds. Furthermore, the blood compartment also works as a storage compartment 

and correlation between the levels found in blood and other tissues has been established 

(Iida et al., 2007). The distribution of PCDD/Fs in the lipid fraction of the tissues, and 

specially for the highly chlorinated compounds, is not equal depending of the depot 

(ATSDR, 1998). Quantifiable concentration of dioxins have been found in the liver of 

neonates, suggesting a transplacental transfer in gestational mothers (Schecter et al., 

1990). Moreover, detectable concentrations of several PCDD/Fs congeners have been 

found in breast milk samples (Schuhmacher et al., 2009, 2013). 

The half-life of 2,3,7,8-TCDD have been estimated in 7.1 years, according to data 

from a group of Vietnam veterans highly exposed to TCDD in the Ranch Hand operation 

of herbicide warfare (Pirkle et al., 1989). After that, in a more recent study, the same 

value of half-life elimination of 7.1 years was reported in a cohort of women exposed to 

2,3,7,8-TCDD in a highly residential exposure in Seveso (Italy) (Warner et al., 2013). 

Other studies of Vietnam veteran subjects suggested higher values of half-lives, ranging 

from 8.7 and 11.3 years (Michalek et al., 1996; Wolfe et al., 1994). A correlation between 

the percentage of adipose content in the human body and the human half-lives has been 

established in several studies (Flesch-Janys et al., 1996; Wolfe et al., 1994).  

PCDD/Fs are poorly metabolized in humans (Hu and Bunce, 1999; Wendling et 

al., 1990), and the slow metabolism of PCDD/Fs is hypothesized to be the responsible 

of the long half-lives elimination in humans (Reddy et al., 2005). The major elimination 

routes of PCDD/Fs are feces, and in a smaller quantity, the urine. In feces, the 

mechanism of TCDD was proposed to be a passive diffusion into the intestinal lumen 

from blood to feces and subsequently excreted (Olson, 1986). In urine, detectable 

amounts of metabolites of TCDD were found in a study conducted in rats after a bolus 

injection of 2,3,7,8-TCDD (Weber et al., 1993). Furthermore, breast milk can be also an 

important source of PCDD/Fs elimination. High-chlorinated dioxins are more present in 

milk, decreasing the concentration with the chlorination of the aromatic rings (ATSDR, 

2008). OCDD is usually the main PCDD/F congener found in milk samples, with 
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percentages over 50% of the total (ATSDR, 1998). The highest concentration in milk is 

in the first weeks of lactation, with a sharp decline after that (Takekuma et al., 2011). 

Some studies have demonstrated that dioxins in breast milk may be quickly absorbed by 

nursing babies (McLachlan, 1993).  

 

4.5. PBPK models for PCDD/Fs 

PBPK models have been demonstrated to be useful to predict the distribution of 

TCDD body burdens. The first PBPK model for TCDD was developed in 1983 by King et 

al. (1983) using rats, mice and monkeys. Some years later, Leung et al. (1988) improved 

the model including the hepatic CYP1A2 binding in the PBPK model of TCDD. Currently, 

more than 25 PBPK models have been elaborated to predict the tissue distribution of 

TCDD in rats, humans or other animals (Reddy et al., 2005).The degree of complexity in 

the model for TCDD in rodents has been increasing over the time. Four levels of 

complexity of PBPK models have been described for TCDD in rodents depending of the 

protein binding, binding to AhR, the CYP1A1/2 induction, extrahepatic biochemical 

responses, etc (Figure 4) (Reddy et al., 2005). In summary, Level 1 models feature two 

binding proteins in liver that are cytosolic AhR and microsomal CYP1A2 (Lawrence and 

Gobas, 1997; Leung et al., 1988). Level 2 models include the interaction between AhR-

TCDD complex and DREs and the induction of CYP1A1/2 (Andersen et al., 1993; 

Santostefano et al., 1998). Level 3 models features the nonuniform induction of enzymes 

in liver (Andersen et al., 1997). Level 4 model include extrahepatic responses, like 

induced effects on thyroid hormones (Kohn et al., 1996). Most of these models were only 

applicable and validated for acute and subchronic exposure, but not for chronic 

exposure. 

Chronic exposure to PCDD/Fs in humans is obviously in much lower levels than 

exposure in experimentation animals. At chronic concentrations, TCDD do not induce 

protein binding, and most of the models do not induce CYP1A1 binding, with some 

exceptions (Carrier et al., 1995a, b). Thus, the level of complexity is lower than in rodent 

studies. Most of the human PBPK models have been developed only for TCDD, and only 

few works developed PBPK model for the 17 PCDD/F congeners (Carrier et al., 1995a, 

b; Maruyama et al., 2002, 2003). Furthermore, few PBPK models were have been 

developed to consider the distribution of TCDD from mother to fetus, and to newborns 

via pregnancy and breast milk feeding (Gentry et al., 2003; Maruyama et al., 2003).  
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Fig. 4.  Diagram of the four levels of PBPK models of TCDD in rats. Adapted from 

Reddy et al. (2005). 

 

5. Perfluoroalkyl substances (PFASs) 
Perfluoroalkyl substances (PFASs) are a group of fluorinated compounds, 

constituted by a carbon backbone where all the hydrogen atoms are substituted by 

fluorine, with the exception of those hydrogen atoms that are part of a functional group. 

The most common PFASs includes carboxylic acid (-COOH) or sulfonic acid (-SO3H) as 

functional groups (Buck et al., 2011), being perfluorooctane sulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA) the foremost studied PFASs. The structure of PFOS and 

PFOA is depicted in Figure 5.  
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Fig. 5.  Chemical structure of PFOS and PFOA. 

 

5.1. Sources of exposure 

PFASs are a group of manmade organic environmental pollutants. The sources 

of emissions are defined as either direct (manufacture, use and consumption) or indirect 

(impurities, degradation products and precursors) (Prevedouros et al., 2006). More than 

80% of the PFASs emitted to the environment come from fluoropolymer manufacture 

and the use of products such as stain repellent treated carpets, waterproof apparel and 

aqueous firefighter foams (Paul et al., 2009; Prevedouros et al., 2006). Indirect sources 

are not well understood yet due to the lack of information about their degradation (Paul 

et al., 2009). PFASs have been detected in water and biota worldwide (Falk et al., 2012; 

Rotander et al., 2012). Specifically, PFOS is the most predominant PFAS found 

worldwide, being detected in animal wildlife like fish, birds and mammals (Giesy and 

Kannan, 2001). A general decrease of PFASs in the environment has been observed 

(Paul et al., 2009), since the phase-out of the PFOA production by the 3M company in 

2002 (Wang et al., 2009). 

The main source of human exposure to PFASs is the oral intake through food 

and water ingestion (Domingo, 2012; Ericson et al., 2008; Vestergren and Cousins, 

2009). PFASs are also present in food packaging materials for oil resistance, and 

migration of PFASs from packaging materials to food may also occur (Llorca et al., 2010; 

Zafeiraki et al., 2014). Dust intake of PFASs is negligible in the adult population, whereas 

in toddlers it is also low (Ericson et al., 2012). Furthermore, inhalation exposure is 

negligible even in the indoor areas, due to the low volatility of PFASs (Schlummer et al., 

2013). In newborn infants, exposure from breast milk may be notable source of exposure 

(Karrman et al., 2010; Karrman et al., 2007; Llorca et al., 2010). Recently, a decrease of 

PFASs concentration in food items and drinking water has been observed (Calafat et al., 

2007; Ericson et al., 2008; Johansson et al., 2014), in parallel to the environmental 

reduction of their environmental burdens. As a result of the declining of human intake, 
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decrease of PFASs concentration in human blood has also been observed in individuals 

of Western countries (D’eon and Mabury, 2011; Olsen et al., 2008).  

 

5.2. Toxicity and Health effects  

The potential toxicity of some PFASs has been characterized in animal studies. 

On general, the toxicity of PFASs is relatively similar among congeners, being the liver 

the target tissue (Yeung et al., 2013). PFASs cause hepatotoxicity, reproductive toxicity, 

toxic effects on body weight (BW), development, cholesterol, thyroid hormone and 

immunotoxicity (Lau et al., 2007; Stahl et al., 2011). Acute toxicities of PFASs have been 

studied in animals, but studies have been mainly focused on PFOS and PFOA. The lethal 

dose [LD50] of PFOS is estimated in 251 mg/kg BW, and that of PFOA in a range between 

430 and 680 mg/kg BW in PFOA (EFSA, 2008). The lethal concentration [LC50] in rats 

for 1h of inhalation of contaminated airbone dust was assessed estimated in 5.2mg/L for 

PFOS, and 0.98 mg/L for PFOA. In studies of LD50 in fresh water organisms such as flea, 

planaria, snail or shrimp, PFOS has showed to be more toxic than PFOA (Ji et al., 2008; 

Li, 2009). 

Acute exposure to PFOS in mice causes developmental effects like reduction of 

fetal weight, edema, cardiac abnormalities, delayed ossification and behavioral effects 

(Fuentes et al., 2006; Fuentes et al., 2007a; Fuentes et al., 2007b; Lau et al., 2004). 

Exposure to PFOA has been suggested to cause kidney and testicular cancer in human 

population (Barry et al., 2013). Subchronic and subacute toxicities in rats induce 

hepatotoxicity, reduction of body weight, reduction of the levels of triglycerides, reduction 

of cholesterol in serum, liver hypertrophy, thyroid hormones reduction and damage on 

the neuroendocrine system for PFOS (Austin et al., 2003). 

 

5.3. Pharmacokynetics and Pharmocodynamics (PK/PD)  

The pharmacokinetic and pharmacodynamic characteristics of PFASs have been 

studied in animals (Lau et al., 2007). In general, PFASs are well absorbed in oral intake, 

not metabolized and poorly eliminated (Cui et al., 2009; Hundley et al., 2006). The main 

tissues of distribution are plasma and liver, being the concentration in liver several times 

higher than plasma concentration. In rats, the concentration of PFOA and PFOS in liver 

is between 3 and 5 higher than in plasma in animals, and between 1.3 and 2 times higher 

in humans (Hundley et al., 2006; Seacat et al., 2003). The distribution of PFOS is mainly 

extracellular (Noker and Gorman, 2003). PFOS and PFOA have a high affinity to bind to 
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β-lipoproteins, plasma albumin and fatty acid liver proteins (Han et al., 2003; Luebker et 

al., 2002). The fraction of binding of PFASs to plasma albumin is estimated to be over 

the 90% in rats and humans (Han et al., 2003). Detectable concentrations of PFASs 

have been found in umbilical cord suggesting that PFASs can cross the placenta 

exposing the fetus (Apelberg et al., 2007). Furthermore, PFASs have been detected in 

breast milk, exposing the neonate to PFASs (Karrman et al., 2007).  

PFASs half-lives in plasma have been studied in detail. The plasma/serum 

elimination in PFOA show notably differences among species, ranging 2-6 h, 17-19 days 

and 30-21 days in rats, mice and monkey, respectively (Lau et al., 2007). Regarding 

PFOS, half-lives have been set in 1-2 months, 4 months and 4.8 years in rodents, 

monkey and humans, respectively (Chang et al., 2012). Moreover, in animals PFOS and 

PFOA exhibits different elimination rates depending on the gender and the age of the 

individuals (Lau et al., 2007). For PFOA, the elimination half-lives in adult female rat was 

assessed in 2-4h, whereas in adult male rat was assessed in 4-6 days (Kemper, 2003). 

In monkey, the elimination rate of PFOA was assessed in 30 days for adult female and 

21 days for adult male (Butenhoff et al., 2004). On the other hand, in mouse and humans, 

sex differences on the elimination rate have not been observed yet. The explanations of 

the differences in the elimination rates in rats were not conclusive, but some studies 

suggested that the transporters in the proximal tube of the kidney may be the responsible 

(Andersen et al., 2006; Tan et al., 2008; Yang et al., 2009). In humans, blood half-lives 

of 5.4, 3.8 and 8.5 years have been estimated for PFOS, PFOA and perfluorohexane 

sulfonic acid (PFHxS), respectively (Lau, 2012). In contrast, half-lives of 32, 30 and 3 

days have been observed for perfluorohexanoic acid (PFHxA), perfluorobutane sulfonic 

acid (PFBS), and perfluorobutanoic acid (PFBA), respectively (Lau, 2012; Olsen et al., 

2009). The organic anion transporter proteins are compound, gender and chain length 

dependent (Han et al., 2011). PBPK models have been used in the past to successfully 

simulate the elimination of PFOS and PFOA via a resorption mechanism, that once the 

chemical is in the urine is resorbed back to plasma following a saturable mechanism 

(Andersen et al., 2006; Loccisano et al., 2011; Tan et al., 2008).  

 

5.4. PBPK models for PFASs 

Recently, a number of PBPK models have been developed for PFASs. However, 

most of them are limited to the study of PFOS and PFOA. One of the first PBPK model 

for PFOS and PFOA was developed by Andersen et al. (2006), who described the 

elimination of PFOS and PFOA in monkey. The model included three compartments 
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(central compartment, tissue and filtrate) and included two key features of the ADME 

characteristics of PFOS and PFOA. First, the elimination was mainly urinary, following a 

resorption mechanism, that when the chemicals are in the urine are resorbed back to the 

plasma following a saturable process. This kinetic is analogous to the Michaelis-Menten 

kinetics. The second feature of that PBPK model was the binding of PFOS and PFOA to 

plasma albumin. As a consequence, only a fraction of the total amount of PFASs present 

in urine was available to be distributed to other tissues. Afterwards, the PBPK model was 

extended to rats and humans, and the pharmacokinetics and pharmacodynamics 

properties of PFOS and PFOA were studied (Loccisano et al., 2012a; Lou et al., 2009; 

Tan et al., 2008). The model was applied in a case study of human individuals living in 

Little Hocking (Ohio, USA) and Arnsberg (Germany), and exposed to relatively high 

concentrations of PFOS and PFOA through consumption of drinking water. The result 

was a PBPK model reasonably capable to estimate the concentration of PFOS and 

PFOA in the human body. The model was firstly developed to study the pregnant and 

lactating concentrations of PFOS and PFOA in rats (Loccisano et al., 2012b) and after 

that, the model was scaled to humans to assess the pregnancy and lactational 

concentrations of PFOS and PFOA (Loccisano et al., 2013). 

Other PBPK models have considered other pharmacokinetic mechanisms, 

different from that firstly suggested by Andersen et al. (2006). A PBPK model was 

developed for PFOS by Harris and Barton (2008). In rats the structure of the model 

differentiated blood, liver, rest of the body, and two compartments for the gastrointestinal 

tract (GI), being tissues described as diffusion-limited compartments (Thompson and 

Beard, 2011). For validation purposes, experimental data of concentration of PFOS in 

rats were used, and the model was based on the elimination via urinary and biliary 

excretion. Sonne et al. (2009) developed a PBPK model to estimate the burdens of 

PFOS in Greenland polar bears (Ursus Maritimus). This PBPK model was based on a 

previous generic model applied to organohalogen contaminants (OHC) (Cahill et al., 

2003). Another approach was done for cows, for which PBPK model was developed to 

assess the transfer of PFOS from contaminated feed to milk (van Asselt et al., 2013). 

Two tissues were considered in the model (carcass and serum), while the elimination of 

PFOS occurred mainly in milk, instead of urine and feces. The estimated half-life of 

PFOS in milk was 56 days.  

It must be highlighted that most PBPK models have been exclusively developed 

for PFOS and PFOA. Unfortunately, pharmacokinetic information about other PFASs is 

particularly scarce. Instead of some PBPK models were elaborated for PFOS and PFOA 
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in animals and in humans, none of them were elaborated for other PFASs. Thus, there 

is a lack of PBPK models to describe the pharmacokinetics of PFAS in the human body. 

Due to the lack of knowledge of the pharmacokinetics of compounds different of PFOS 

and PFOA this is a challenging area of study. 
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HYPOTHESIS 

 

The human health risk assessment of exposure to environmental pollutants may 

be improved if the time course concentrations of these chemicals in the human body are 

well known. In silico tools are cheap, quick and reliable techniques to estimate the body 

burdens of chemicals, being a serious complement to in vivo or in vitro investigations.  

PBPK models may simulate and predict the distribution and accumulation of 

POPs in the human body. Therefore, they may be a good alternative to biological 

monitoring of PCDD/Fs and PFASs.  
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OBJECTIVES 

 

General objective 

To develop and validate a PBPK model to simulate and predict the time course 

concentration of PCDD/Fs and PFASs in human tissues.  

 

Specific objectives 

• To develop a Ranking Index to prioritize those environmental pollutants 

posing the highest health risk for humans. 

• To develop a PBPK model to predict the tissue concentration of 17 

PCDD/F congeners in human plasma and adipose tissue.  

• To determine the main biochemical parameters needed to develop a 

PBPK model for the estimation of PFASs in the human body.  

• To develop a PBPK model to predict the tissue concentration of 11 PFASs 

in human tissues, including plasma, liver, kidney, brain and lungs. 

• To study the parametric uncertainty of a PBPK model for PFOS and 

PFOA. 
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CHAPTER 1 

INTEGRATED RISK INDEX OF CHEMICAL AQUATIC POLLUTION 
(IRICAP): CASE STUDIES IN IBERIAN RIVERS 

 

Abstract 

The hazard of chemical compounds can be prioritized according to their PBT 

(persistence, bioaccumulation, toxicity) properties by using Self-Organizing Maps 

(SOM). The objective of the present study was to develop an Integrated Risk Index of 

Chemical Aquatic Pollution (IRICAP), useful to evaluate the risk associated to the 

exposure of chemical mixtures contained in river waters. Four Spanish rivers basins were 

considered as case-studies: Llobregat, Ebro, Jucar and Guadalquivir. A SOM-based 

hazard index (HI) was estimated for 205 organic compounds. IRICAP was calculated as 

the product of the HI by the concentration of each pollutant, and the results of all 

substances were aggregated. Finally, Pareto distribution was applied to the ranked lists 

of compounds in each site to prioritize those chemicals with the most significant 

incidence on the IRICAP. According to the HI outcomes, perfluoroalkyl substances, as 

well as specific illicit drugs and UV filters, were among the most hazardous compounds. 

Xylazine was identified as one of the chemicals with the highest contribution to the total 

IRICAP value in the different river basins, together with other pharmaceutical products 

such as loratadine and azaperol. These organic compounds should be proposed as 

target chemicals in the implementation of monitoring programs by regulatory 

organizations. 

 

1. Introduction 

Due to the massive use of chemicals in industrial and agricultural activities, as 

well as their content in home products, water pollution in rivers has been growing in 

recent decades. Detectable and quantifiable amounts of chemicals can be found in 

rivers, some-times at harmful concentrations for the environment and especially for the 

human health (Carafa et al., 2011; Fernández-Turiel et al., 2003). Furthermore, 

Mediterranean rivers are characterized by a strong rainfall and temperature seasonality, 

with periods of severe drought and floods (López-Doval et al., 2012; Petrovic et al., 

2011). Because of these special characteristics, climate change models conclude that 

Mediterranean regions will be among the most impacted regions in a near future (Giorgi 
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et al., 2008). Therefore, climate change and the anthropogenic manipulation of water 

resources in Mediterranean rivers may lead to enhance human health risks of river water 

exposure. 

As humans are exposed to chemical mixtures rather than individual substances, 

new realistic approaches have been developed to assess the risks associated to 

combined exposure to sets of pollutants (McCarty et al., 2006; Sumpter et al., 2006). 

Classically, two main approaches have been used to evaluate the toxicity of chemical 

mixtures: concentration addition (CA) and independent action (IA), which assume a 

similar or different mode of action (MoA), respectively. Although these approaches have 

been successfully applied in the past (Backhaus et al., 2012), mixtures of compounds 

can interact, modifying therefore the final toxicity (Boobis et al., 2011). In 2004, the 

Agency of Toxic Substances and Disease Registry (ATSDR) elaborated a guide manual 

for the evaluation of join action of chemical mixtures (ATSDR, 2004), which contained 

flows charts to help toxicologists (Wilbur et al., 2004). Nevertheless, proper schemes of 

the MoA considering possible interactions among pollutants, are clearly necessary 

(Teuschlet et al., 2007).  

Ranking systems allow the prioritization of chemicals according to their chemical, 

physical or toxicological properties. Ranking methods have become useful tools for 

stakeholders involved in water management. The European Union (EU) developed a 

combined monitoring-based and modeling-based priority settings (COMMPS) 

methodology (EC, 1999). COMMPS procedure is based on the exposure of pollutants in 

freshwater, as well as the effects of the pollutants on aquatic organisms and humans. 

Among ranking methods, an extended method to prioritize organic chemicals is the use 

of 3 basic properties: persistence, bioaccumulation and toxicity commonly known as PBT 

(Arnot et al., 2008; Pennington et al., 2001). The main outcome of this exercise was the 

list of 33 priority substances identified under the Water Framework Directive (Directive 

2000/60/EC) and its “daughter” specifically devoted to this issue (Directive 

2008/105/EC). However, PBT models cannot be used to study interactions among com-

pounds. Alternatively, Self-Organizing Maps (SOM) may be a good option. SOM are a 

kind of artificial neural network (ANN) extensively used in data analysis, which are able 

of friendly visualizing large amounts of information (Alvarez Guerra et al., 2008; Arias et 

al., 2008; Mari et al., 2008). Data can be analyzed and the extracted results studied in a 

two-dimensional grid. In addition to information visualization, SOM has been also used 

for environmental modeling (Kalteh et al., 2008). Due to the ability of the SOM algorithm 

to group data according to similar characteristics, it has been previously used to create 
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PBT-based rankings pollutants (Nadal et al., 2006; Nadal et al., 2008). Recently, SOM 

was also applied to elaborate an ecological hazard index of a series of pollutants found 

in Ebro River waters (Spain) (Ocampo-Duque et al., 2012). 

In recent years, some statistical and mathematical tools have been used to detect 

the chemicals with a higher contribution. Some examples are h-index (Hirsch index) and 

Zipf’s law, which were successfully applied in a recent study performed to prioritize 

pharmaceuticals in a wastewater treatment plant (Ginebreda et al., 2011). H-index is 

capable to identify the most relevant compounds in a list of ranked chemicals by means 

of a Pareto distribution, according to some specific parameters. In turn, Zipf’s law, based 

on the inverse proportion between the frequency of one event and its ranking position, 

has been also widely applied in different domains (Hisano et al., 2011). 

The objective of the present study was to rank the hazard of 205 organic 

compounds analyzed in water samples from 4 river basins in Spain (Llobregat, Ebro, 

Júcar and Guadalquivir), according to the PBT properties of the pollutants. Firstly, a 

hazard index (HI) was developed and applied to each individual compound by using 

SOM. Secondly, an Integrated Risk Index of Chemical Aquatic Pollution (IRICAP) was 

elaborated to rank the human health risks depending on the HI and the concentration of 

each individual chemical. Finally, the compounds with the highest contribution were 

characterized using the h index and the power law exponent of the Zipf’s law.  

 

2. Materials and Methods 

2.1. Data and study area 

As part of a large monitoring program (Navarro-Ortega et al., 2012), a total 

amount of 205 organic pollutants were analyzed in four Spanish rivers with different 

pressures and impacts: Llobregat, Ebro, Júcar and Guadalquivir. The former three are 

located in the Mediterranean catchment basin, while Guadalquivir waters discharge into 

the Atlantic Ocean (Fig. 1). A network of representative 77 sampling points was 

previously established to assess the main stressors of the river basins. The geographical 

distribution of the sampling sites is presented in Table S1 (Annex 1). 
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Fig. 1. Area of study. 

 

The list of analyzed compounds included pharmaceutical products, illicit drugs, 

endocrine disruptors (ED), pesticides, perfluoroalkyl substances (PFAS), and UV filters. 

Eighty-one pharmaceutics, including analgesics such as ibuprofen and acetaminophen, 

antibiotics such as ofloxacin and amoxicilin, and antihypertensives such as enalapril and 

losartam, were determined. Pharmacy products, like psychiatric drugs, diuretic or 

veterinary pharmaceuticals, were also analyzed. Nineteen illicit drugs including 

cannabinoids, and recreational drugs such as cocaine, LSD or amphetamine, were also 

studied. Thirty-one endocrine disruptors were added to the set of target pollutants, 

including diethylstilbestrol and nonylphenol. Forty-two different pesticides (insecticides 

and herbicides) were analyzed, including ethion and propanil, among others. Finally, 21 

perfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA) and 

perfluorooctane sulfonate (PFOS), and 11 UV filters, including benzophenone and 

octocrylene, were also determined. Full names and abbreviations are summarized in 

Table S2 (Annex 1). Water samples were collected in Autumn of 2010 and 2011. 

The Llobregat river basin is located in the north-east of Spain. It has a drainage 

basin of 1948 km2 and a total length of 170 km, being the main drinking water resource 

of Barcelona and surrounding cities. Because of its proximity to Barcelona, the lowest 

course of the river receives strong anthropogenic pressures. Urban and industrial waste 
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water are discharged in the Llobregat river, in addition to the surface run off coming from 

agricultural and salt mining areas (Cabeza et al., 2012). Furthermore, the Mediterranean 

climate of this area usually changes the water flow, and consequently the natural 

capacity of the river water dilution. The Ebro river basin is the largest in Spain in terms 

of water flow, with a drainage basin of 85,550 km2 and a length of 928 km. Situated in 

the north of Spain, it is regulated by numerous dams and channels in all the river flow. 

At the end of the 20th century, approximately 30% of the river flow had decreased due 

to surface water extractions for irrigation, land use change (reforestation) and rainfall 

decrease as well as due to the impact of industrial activities, which are concentrated in 

the main cities along the river. An important “hot spot” of chemical pollution has been 

also identified in the Flix (Catalonia) reservoir, where thousands of tons of toxic 

substances (e.g., radio nuclides, heavy metals, organo chlorine compounds, etc.) have 

been accumulated (Ferré-Huguet et al., 2009a; Ferré-Huguet et al., 2009b; Mola et al., 

2011). These pressures have also altered the sediment regimes and the water quality. 

The Jucar river basin, located in the east of Spain, covers a drainage area of 21,632 km2, 

and the mainstream shows a length of 500 km. Agriculture pressures are located in the 

medium and lower parts of the river basin, where there is also a notable industrial activity. 

Since it flows in a semiarid zone, the most important problems of this basin are the 

hydrological modification of the river course, the aquifers overexploitation, and the river 

contamination. The Guadalquivir river basin is located in the south of Spain, with a 

drainage basin of 57,071 km2 and a length on the main stream of 657 km. This area 

covers a population of approximately 7 million inhabitants, and the river consequently 

receives many anthropogenic pressures. The total agriculture area of the river basin is 

700,000 ha (mainly rice, olives and fruit trees), with the consequent environmental 

effects. The regime of the river is highly modified by dams and reservoirs, especially in 

the lower course. Doñana National Park, a natural area severely affected by metal inputs 

after a mining accident (Gómez et al., 2004), is located at the mouth of the river. 

 

2.2. Hazard Index 

Originally developed by Kohonen (Kohonen, 1982), Self-Organizing Maps (SOM) 

use an unsupervised learning algorithm that reduces large amounts of input data 

(Kohonen, 2013). The results are generally visualized in two-dimension maps, allowing 

clustering the input information by grouping similar data. The final result is, on one hand, 

a Kohonen’s map showing the distribution of the input values on a two dimensional grid, 

and on the other hand, a set of component planes (c-planes) showing the clusters 
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created by the algorithm in the Kohonen’s grid. In previous studies, we successfully used 

SOM in order to create prioritization rankings of pollutants (Nadal et al., 2006; Nadal et 

al., 2008). 

A hazard index (HI) was elaborated for the whole set of 205 compounds, using 

the PBT properties of each individual chemical. Data of persistence, bioaccumulation 

and toxicity were gathered using Estimation Program Interface (EPI) SuiteTM for Microsoft 

Windows®, v 4.1 (EPI SuitTM). EPI SuitTM is a set of tools developed by the US 

Environmental Protection Agency (US EPA) to estimate physical and chemical 

properties, environmental fate and aquatic toxicology of chemicals. It uses a database 

of more than 41,000 chemical compounds, coming from the PHYSPROP© database. The 

predictive methods and the equation used for each calculation parameter have been 

described elsewhere (Boethling et al., 2004). Half-lives were assessed by using BiowinTM 

tool. Based on a previously developed model (Boethling et al., 1994), BiowinTM tool 

predicts the primary aerobic degradation of the organic compounds. The result is a semi-

quantitative rate of times with the following units: 5-h, 4-days, 3-weeks, 2-months and 1-

years. Bioaccumulation was estimated by using BCFBAFTM tool. The method was initially 

developed by Meyland et al., (1997; 1999), and subsequently improved by Arnot and 

Gobas et al., (2006), who added experimental values of bioconcentration factor (BCF). 

Finally, toxicity was estimated by applying the ECOSARTM tool, which let assess the 

aquatic (fish) toxicology based on Kow levels (Sanderson et al., 2003). As low levels of 

persistence and toxicity derive in a higher hazard, inverse values obtained from the 

BiowinTM and ECOSARTM tools, respectively, were considered in the HI building. Final 

data constituted a matrix of 205 compounds and 3 parameters (Table S2, Annex 1), 

which was run with the SOM toolbox for Matlab® (Alhoniemi et al., 1999). Values were 

normalized using the same toolbox to obtain a variance equal to one for each parameter. 

A linear initialization was applied. The learning phase consisted on 10,000 steps, while 

the tuning phase added other 10,000 steps. HI was considered as the sum of the PBT 

values for each compound, after the SOM training. Default range (from 0 to 3) was re-

scaled to 0–10. 

 

2.3. Integrated Risk Index of Chemical Aquatic Pollution (IRICAP) 

The Integrated Risk Index of Chemical Aquatic Pollution (IRICAP) was calculated 

by applying the following formula: 
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chemicalsofNumber

ionconcentratChemicalIndexHazard
IRICAP ∑ ×

=    (1) 

The HI of each individual compound was multiplied by the normalized water 

concentration found in each sampling point (unpublished data), being the final sum 

divided by the number of pollutants (205). Concentrations were normalized to avoid any 

overestimation. They were re-scaled from 0 to 10, being the same as the HI. The 

concentrations were normalized for each chemical by using the following formula: 

minmax

min

CC

CiC
normC

−
−=     (2) 

 

2.4. H-index and Zipf’s law  

The list of 205 compounds was initially ordered according to their IRICAP. The 

percentage of the product of the normalized concentration by the HI was obtained for all 

the individual compounds studied in each sampling point. Afterwards, data were 

distributed following a Pareto distribution, using h-index and Zipf’s law were used to study 

some of the characteristics of the distribution. The h-index was suggested by Hirsch 

(Hirsch et al., 2005) in order to evaluate the quality of the scientific and academic 

publications. In the academic area, the number h is the number of papers published by 

an author that have the same number (h) of citations. However, this can be translated to 

other research areas. In the present study, all compounds were ranked according to the 

HI and the subsequent h-index was obtained. Furthermore, the h-content or percentage 

of IRICAP covered by h-compounds, was assessed. The h-compounds are defined as 

those located in the first h positions of the list of compounds, ordered according to the 

HI. Finally, the number of compounds representing the 90% of HI (referred to as P 90) 

was assessed by means of Pareto distributions. 

The Zipf’s law was formulated for the first time by the linguist Zipf, and it has been 

extensively used in experimental and social sciences (Newman et al., 2005). It assumes 

that there is a relationship on the frequency of one event that varies depending of some 

attribute of the event. This mathematical relationship is called a power law. The power 

law usually follows this formula: 

α−×= xcxy )(      (3) 

where y is the frequency of the event of rank x, c is a constant factor, and α is the power 

parameter. The α exponent is numerically determined by linear regression of the log–log 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELING OF PCDD/FS AND PFASS IN HUMANS. 
Francesc Fabrega Bonadona 
Dipòsit Legal: T 1660-2014



Chapter 1. Integrated Risk Index of Chemical Aquatic Pollution (IRICAP): Case studies in Iberian rivers 

 

28 

transformed experimental data (log y = −α·log x + log c). It may give a measure of the 

complexity of the distribution in the following sense: When α = 0, there is a situation of 

“minimum complexity”, as x0= 1. In contrast, when α = ∞ there is a situation of “maximum 

complexity”, because x∞= ∞. Because α gives important information about the curve 

shape, this power parameter was assessed in each sampling point. 

 

3. Results and Discussion 

3.1. Hazard Index 

The final result for the HI was a two dimensional grid of 96 hexagons (12 × 8), 

where the compounds are spread around the cells according to PBT similarities. 

Moreover, three c-planes maps were obtained, one for each of the PBT parameters (Fig. 

2). C-planes show the normalized values of half-lives, bioaccumulation and toxicity, 

obtained after the SOM training of the initial PBT data. The numerical values of the c-

planes were extracted for the HI calculation developing specific commands using the 

SOM Toolbox for Matlab® (Table S3, Annex 1). HI outcomes are summarized in Table 

1. Half-lives ranged from 0.04 to 2.48. A cluster of 16 PFASs was identified as the group 

of compounds with highest values of half-lives. The environmental persistence of some 

PFASs has been reported in previous studies (Thomas et al., 1990). Surprisingly, neither 

PFOS nor PFOA, two of the most known and well-studied PFASs, were among the 

perfluoroalkyl substances presenting a highest persistence. Half-life scores for other 

compounds were comparatively lower, being distributed in a list with no appreciable 

trends. 
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Fig. 2. Self-Organizing Map of the Hazard Index: a) Kohonen’s map, and b) c-
planes of PBT. 

(a) (b) 
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Table 1. SOM-based Hazard Index (HI) developed for 205 organic compounds. 

Compound  HI Compound  HI Compound  HI Compound  HI Compound  HI Compound  HI 
*PFHxDA 5.58 ¶NP 4.34 *PFDA 3.52 #Cocaethylene 3.02 *PFOA 2.30 ¥3-hydroxycarbofuran 1.76 
*PFODA 5.58 ¥Inazalil 4.34 *PFNA 3.52 ¥Diuron 3.02 ¥Fenoxon 2.29 ¥Dimethoate 1.76 
*PFTeDA 5.58 ¥Fenthion  4.26 ¥Metolachlor 3.46 ¥Azinphos methyl 2.96 ∆4DHB 2.29 ¥Fenoxon sulfone 1.76 
*PFTrDA 5.58 *I,p-PFNS 4.20 ¶E1 3.45 ¶NP1EC 2.92 ⊥Fluvastatin 2.21 ¥Fenoxon sulfoxide 1.76 
*PFDoA 5.58 *L-PFOS 4.20 ¥Molinate 3.45 ¶OP1EC 2.92 ⊥Ibuprofen 2.21 ⊥Acridone 1.75 
*PFUdA 5.58 ⊥Norfluoxetine 4.13 ¥Propanil 3.45 ∆BP1 2.92 ⊥Valsartan 2.21 #1S,2R(+)Ephedrine  1.75 
#THC 5.45 #Methadonehydrochloride 4.13 ⊥Azaperone 3.45 ⊥Propyphenazone 2.90 ¶BT 2.21 ⊥Ranitidine 1.69 
#Cannabidiol 5.45 ¥Prochloraz 4.13 ⊥Clarithromycin 3.40 ¶Etilparaben 2.80 ¶E2-17G 2.21 Trimethoprim 1.69 
#Cannabinol 5.45 ⊥Fluoxetine 4.06 ⊥Erithromycin 3.40 ¶TBEP 2.80 ¥Deisopropylatrazine 2.21 #2-oxo-3-hydroxy- 1.69 
∆4MBC 5.45 ¶E2 4.06 ⊥Olanzapine 3.40 ¥Carbofuran  2.80 ¥Desethylatrazine 2.21 ⊥Metoprolol 1.64 
∆OD-PABA 5.45 ¥Diazinon 4.06 ⊥Torasemide 3.40 #Metaamphetamine 2.72 ⊥Hydrocodone 2.15 ⊥Atenolol 1.64 
∆EHMC 5.45 ¥Paratión ethyl 4.06 ⊥Trazodone 3.40 ¶Metilparaben 2.72 ⊥Oxycodone 2.15 ⊥Ronidazole 1.64 
∆OC 5.45 *I,p-PFNA 3.99 ⊥Carazolol 3.32 ¶TCCP 2.72 *PFHxA 2.15 ⊥Sotalol 1.64 
¥Hexythiazox 5.32 ⊥Atorvastatin 3.98 ⊥Losartan 3.32 ¥Fenthion sulfone 2.72 ⊥Dimetridazole 2.14 ¶E1-3G 1.64 
*PFOSA 5.32 #11-nor-9-carboxy-9-THC 3.98 ⊥Warfarin 3.28 ¥Fenthion sulfoxide 2.72 ⊥Diclofenac 2.12 ⊥Famotidine 1.57 
⊥Irbesartan 5.26 ¶NP1EO 3.98 ∆BP3 3.28 ∆4HB 2.72 ¶TCEP 2.12 ⊥Hydrochlrothiazide 1.57 
¥Pyriproxyphen 5.26 ¶OP 3.98 ⊥Albendazol 3.27 ∆BP2 2.72 ¥Simazine 2.12 ⊥Tetracyclin 1.57 
⊥Loratadine 5.13 ¥Terbutryn 3.94 ⊥Amlodipine 3.27 ¶E3 2.71 #6-acetylmorphine 2.10 ¶E1-3S 1.57 
⊥Sertraline 5.13 ⊥Azithromycin 3.90 ¶Propilparaben 3.27 #MDMA 2.68 #Heroin 2.10 ⊥Acetaminophen 1.53 
¥Dichlofenthion 5.13 ⊥Citalopram 3.90 ¥Methiocarb 3.27 ¥Malathion 2.68 ⊥Codeine 2.06 ⊥Tenoxicam 1.53 
*L-PFDS 5.06 ⊥Clopidogrel 3.90 Azaperol 3.23 Indomethacine 2.66 ¶TT 2.06 ¶Caffeine 1.53 
⊥Glibenclamide 4.91 ¶EE2 3.90 #LSD 3.23 Phenazone 2.66 ⊥Dexamethasone 2.02 ¥Omethoate 1.53 
#EDDPperchlorate 4.91 ¥Alachlor 3.90 ⊥Diazepam 3.17 ¥Imdacloprid 2.66 ⊥Pravastatin 1.99 *PFBA 1.53 
¶Triclocaraban 4.91 ¶NP2EO 3.74 ⊥Propranolol 3.17 *PFPeA 2.66 ⊥Cimetidine 1.91 *L-PFBS 1.46 
¶Triclosan 4.91 ¶OP2EO 3.74 ¥Isoproturon 3.17 ¥Atrazine  2.60 ⊥Furosemide 1.91 ⊥Amoxicillin 1.41 
¥Chlorpyriphos 4.91 ¶OP1EO 3.74 ¥Chlorfenvinphos 3.17 #Cocaine  2.55 ⊥Sulfamethoxazole 1.91 ⊥Cefalexin 1.41 
¶DES 4.86 ¥Acethochlor 3.74 ⊥Alprazolam 3.16 ⊥Bezafibrate 2.42 #Morphine 1.91 ⊥Metronidazole-OH 1.41 
#11-hydri-9-THC 4.85 ⊥Meloxicam 3.62 ¥Propazine 3.16 ⊥Gemfibrozil 2.42 ⊥Nadolol 1.86 ⊥Ciprofloxacin 1.24 
¥Ethion 4.85 ¶Benzilparaben 3.62 ¥Paratión methyl 3.08 ⊥Levamisol 2.35 ⊥Naproxen 1.86 ⊥Enalaprilat 1.24 
⊥Paroxetine 4.64 ¶BPA 3.62 ⊥Carbamazepine 3.02 #Amphetamine 2.35 ⊥Enalapril 1.76 ⊥Iopromide 1.24 
¥Tolclofos methyl 4.64 ¥Azynphos ethyl 3.62 ⊥Diltiazem 3.02 ∆Et-PABA 2.35 ⊥Ketoprofen 1.76 ⊥Metformin 1.24 
⊥Desloratadine 4.57 ¥Fenitrothion 3.62 ⊥Lorazepam 3.02 *L-PFHpS 2.30 ⊥Metronidazole 1.76 ⊥Ofloxacin 1.24 
⊥Xylazine 4.57 ∆DHMB 3.61 ⊥Tamsulosin 3.02 *L-PFHxS 2.30 ⊥Piroxicam 1.76 #Benzoilecgonine 1.24 
¥Buprofezin 4.37 ⊥Venlafaxine 3.58 ⊥Thiabendazole 3.02 *PFHpA 2.30 ⊥Salbutamol 1.76 ¶E3-16G 1.24 
          ¶E3-3S 1.24 

*PFCs, #Illicit drugs, ⊥Pharmaceutics, ¥Pesticides, ¶Endocrine disruptors, ∆UV filters
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Bioaccumulation scores ranged from 0.29 to 2.70. In contrast to persistence, 

PFASs were not especially found to be bioaccumulative compounds, excepting PFOSA. 

In turn, 3 illicit drugs (THC, cannabidiol and canabinol) and 4 UV filters (4MBC, OD-

PABA, EHMC, OC) presented the highest bioaccumulation factor (2.70).With regard to 

this, cannabinoids could present a high bioaccumulation potential due to their important 

lipophilicity (Thomas et al., 1990). Toxicity ranges were within 0.57 and 2.53. Two PFAS, 

PFDoA and PFUdA, seemed to be the most toxic compounds, with a toxicity score of 

2.53. Moreover, some cannabinoids (e.g., THC, cannabidiol, and cannabinol) and UV 

filters (e.g., 4MBC, OD-PABA, EHMC and OC) were also among the most toxic 

chemicals among the 205 com-pounds analyzed (2.40). In general terms, most 

pesticides, such as pyriproxiphen, ethion and anazalil, also presented relatively high 

levels of toxicity. By contrast, and with the exception of irbesartan, pharmaceutical 

products mostly were in the lowest part of the list. 

HI was obtained by summing the individual score of persistence, 

bioaccumulation, and toxicity, and re-scaling to 0–10. The final HI values ranged from 

1.24 to 5.58. Some trends and clusters can be visually established by means of the SOM. 

Six PFASs (PFHxDA, PFODA, PFTeDA, PFTrDA, PFDoA, and PFUdA) were identified 

as the most hazardous pollutants, in terms of PBT parameters, reaching a HI value of 

5.58. These perfluoroalkyl substances were characterized by a high environmental 

persistence and aquatic toxicity, but a relatively low bioaccumulation potential. However, 

PFOS and PFOA were not included in this set of hazardous pollutants, as their HI was 

lower (4.20 and 2.30, respectively). A group of cannabinoids (THC, cannabinol and 

cannabidiol) and UV filters (4 MBC, OD-PABA, EHMC, OC) showed also a high HI (5.45), 

given their high bioaccumulation and toxicity. Since pharmaceutical compounds 

generally have low half-lives and toxicity, most of them also showed a comparatively low 

HI. Bioaccumulation of each particular pharmaceutic determined its final position in the 

HI ranking. Thus, irbesartan, loratadine, and sertraline were identified as hazardous 

compounds (HI > 5), which agree with previous results (Roos et al., 2012). In turn, 

ciprofloxacin, enalaprilat, iopromide, metformin andofloxacin, were selected as 

pharmaceutical compounds with a low hazard (HI = 1.24). Illicit drugs did not show any 

special trend, being well distributed in the whole range of HI values. As abovementioned, 

cannabinoids were among the most hazardous com-pounds. In contrast, 

benzoilecgonine hazard was poor (HI = 1.24). In the group of pesticides, hexythiazox 

was the most hazardous (HI = 5.53), while Omethoate presented the lowest HI (1.53). 
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3.2. IRICAP: Case-studies 

An IRICAP value was estimated in each one of the 77 sampling points of the four 

Spanish rivers above described. IRICAP was estimated by the HI and the water 

concentration of each one of the 205 compounds (unpublished data). Final IRICAP 

values are summarized in Table 2, and also depicted for all the four river basins in Fig. 

3. A high value of IRICAP is an indicator of more hazard, while a small value of IRICAP 

indicates water hazardless in terms of risks. 

In the Llobregat area, sampling was performed in 14 points across the river basin, 

including the main course and two tributaries: Anoia and Cardener. In general, the water 

hazard in Cardener was lower than that in the 2 remaining rivers, as expected owing to 

its location in the upper basin. The IRICAP score for Cardener ranged between 5.26 

(CAR2) and 5.59 (CAR3). CAR1 is considered a reference station with no (or minimum) 

anthropogenic pressures. Water presented a low risk, with an IRICAP score of 5.58. 

CAR4, located after a wastewater treatment plant in Manresa, showed an IRICAP value 

of 5.88. In contrast, highest levels of IRICAP were found in the lowest part of the river 

basin. Specifically, ANO2, which receives agricultural pressures and the discharges of 

an industrial pole located in the town of Igualada, showed a high IRICAP value (10.29). 

ANO3, located at the mouth of the tributary river, is also impacted by the waste waters 

from a population living close to the river (IRICAP = 7.09). Finally, the Llobregat river had 

an IRICAP ranging from 6.03 (LLO2) to 11.62 (LLO7). The IRICAP showed a logical 

tendency in Llobregat, as values increased downriver. The up river area (LLO1 and 

LLO2) is a mountainous zone with no agricultural and industrial activities. In the mid part 

of the river course (from LLO3 to LLO6), there are urban and industrial areas, while the 

final point on the mainstream (LLO7) is located near the mouth of the river close to the 

Barcelona town area, with high urban, industrial and agricultural activities in the 

surroundings. The IRICAP value in this last site was 11.62. It is the highest value of all 

the river basins, indicating a high degree of risk. The Ebro is the largest river of Spain 

and water was sampled in 24 points across the whole river basin. IRICAP ranged from 

4.08 (GAL1) to 11.36 (ZAD). The Ebro river basin is constituted by several tributaries 

such as Arga, Cinca, Gallego and Matarranya, among others. GAL1 could be considered 

as a reference point (IRICAP = 4.08), whereas GAL2 is much more affected by 

agricultural activities (IRICAP = 5.93). The river mainstream, from EBR2 to EBR9, is 

severely affected by the anthropogenic activities of some cities located nearby: Miranda 

de Ebro (EBR2), Logroño (EBR4), Tudela (EBR5), and Tortosa (EBR8), all of them with 

important populations. Furthermore, some sites also receive the impact of agricultural 

and industrial activities, such as EBR3 (Haro) and EBR7 (Flix), respectively. Despite Flix 
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reservoir was previously identified as a “hot spot” of pollution due to accumulation of toxic 

sediments formerly discharged by an existing chloro-alkali industry, the sampling point 

presenting the highest risk was ZAD. It strongly receives the influence of the city of 

Vitoria, located a few kilometers upstream. It is important to highlight that the current 

IRICAP was exclusively developed taking into account the levels in the water 

compartment, while other environmental relevant compartment such as sediments or 

biota were disregarded. Pollutant levels of organic chemicals near Flix were not found to 

be of especial concern (Ferré-Huguet et al., 2009a; Ferré-Huguet et al., 2009b). 

 

Table 2. Values for the IRICAP in the 77 sampling points studied.  

Llobregat  Ebro  Júcar  Guadalquivir  
Site IRICAP Site IRICAP Site IRICAP Site IRICAP 

LLO7 11.62 ZAD 11.36 JUC8 7.80 GUAA 6.32 
ANO2 10.29 HUE 8.47 JUC7 7.63 GUA3 5.93 
LLO5 8.35 ARG 8.35 JUC4 7.07 GEN1 5.93 
LLO6 7.75 EBR6 7.51 MAG1 6.97 GUA6 5.91 
LLO1 7.60 EBR1 7.26 JUC6 6.79 GUA4 5.84 
ANO3 7.09 EBR3 7.24 JUC1 6.52 HER 5.65 
LLO4 6.92 EBR4 7.17 JUC2 6.47 GUA2 5.64 
LLO3 6.88 EBR2 7.13 JUC5 6.43 GEN2 5.48 
ANO1 6.76 OCA 7.10 CAB1 6.09 COR 5.41 
LLO2 6.03 SEG 7.03 MAG2 6.04 GUAR 5.32 
CAR4 5.88 EBR5 6.92 CAB3 6.01 GUAL 5.32 

CAR3 5.59 EBR9 6.85 JUC3 5.79 CAC 5.26 
CAR1 5.58 EBR8 6.59 CAB4 5.74 GUAN 5.16 
CAR2 5.26 MAT 6.54 CAB5 5.64 GUA5 5.14 

  MAR 6.40 CAB2 4.41 PIC 5.13 
  EBR7 6.30   GUA8 5.11 
  NAJ 6.25   GUA7 5.06 
  CIN2 6.21   BOR 5.05 
  ESE 6.01   GUA1 5.03 
  GAL2 5.93   BEM 4.84 
  RS 5.78   MAG 4.82 
  ALG 5.53   GUAM 4.79 
  CIN1 5.41   GUA9 4.71 

  GAL1 4.08   YEG 4.69 
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Fig. 3. IRICAP score of 4 Spanish river basins: (a) Ebro, (b) Jucar, (c) Guadalquivir, and (d) Llobregat.
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(c) (d) 
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Fifteen points were sampled in the Jucar river basin: 8 in the mainstream, 5 in 

Cabriel tributary, and the remaining 2 in Magro tributary. IRICAP ranged from 4.41 

(CAB2) to 7.80 (JUC8). Cabriel showed lower IRICAP values (range: 4.41–6.09), 

indicating the quality of its waters. Cabriel River is located in a semiarid area with a low 

industrial/agricultural pressure. In Magro River, MAG1 showed the highest IRICAP score 

(6.97). It corresponds to a point just located after a village with no wastewater treatment 

plant. Therefore, sewage is directly discharged to the river waters, influencing the 

environmental conditions of the river at that point. The Jucar has several scenarios in the 

mainstream with some agricultural and industrial areas. JUC1 should be considered as 

a reference point (IRICAP = 6.52), although the risk score was somehow higher than that 

obtained in reference sites of other river basins. This value does not really differ from the 

IRICAP in JUC2 (6.47), which his affected by the Cuenca city, whose population exceeds 

50,000 inhabitants. In JUC 3, the contamination from Cuenca city is diluted, resulting in 

a final IRICAP outcome of 5.79. From JUC4 to JUC 6, the IRICAP again increased 

(range: 7.07–7.63) as a consequence of the immediate affection of some small village 

and agricultural practices. Finally, JUC7 and JUC8 showed the highest IRICAP values 

(7.63 and 7.80, respectively) in the basin, which presents a high industrial activity in its 

mouth. In general terms, Guadalquivir was the river basin with the lowest IRICAP values, 

and consequently, with lower human health risks. The Guadalquivir river basin is 

constituted by other sub-river basins such as Yeguas, Bembézar, Guadaira or Genil, 

among others. Twenty-four sampling points were included. The IRICAP values ranged 

from 4.69 (YEG) to 6.32 (GUAA). Although notable high levels of metals were previously 

reported in Sanlcar de Barrameda (GUA9) (Kraus et al., 2006), a high degree of pollution 

is not reflected in our index, as only organic contaminants were considered in the 

development of the IRICAP. However, quantifiable amounts of some pharmaceutically 

active compounds have been recently reported in the waters of Doñana National Park 

(Camacho-Muñoz et al., 2010; Dowse et al., 2013).The most polluted area of the basin 

was GUAA (IRICAP = 6.32), a sampling point downstream a military area. On the other 

hand, the less polluted area corresponded to YEG (IRICAP = 4.69). 

The results obtained after application of h-index and Zipf’s law are summarized 

in Table 3. The h-index ranged between 2 and 3 in all the sampling points, except for 

ZAD, whose h-index was 1. This means that 2–3 compounds are the most important 

contributors to the IRICAP score, being the determination of their levels in river water 

sufficient as indicators of the total risk in terms of both hazard and pollutant 

concentration. More specifically, the contribution percentage of the 2–3 compounds with 

respect to the total IRICAP, defined as the percentage of h-values content, would range 
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from 1.74% to 13.68% (ZAD and CAB2, respectively). Between 35 and 96 compounds 

(CAB2 and ZAD, respectively) summed up to 90% of the IRICAP (Table 3, P90). The 

current results denote that more than one-half of the 205 compounds here assessed play 

a minor role, since their aggregated contribution to the risk is less than 10%. Finally, the 

specific h-compounds for each sampling point are given in Table 4. In 3 of the river 

basins, xylazine was identified as one of the h-compounds. Xylazine is a veterinary drug 

used for sedation, anesthesia, muscle relaxation, and analgesia in animals. Loratadine, 

pyriproxyphen and azaperol were also cataloged as h-compounds (in Ebro, Jucar and 

Guadalquivir, respectively). In contrast, the h-compounds in Llobregat river basin were 

loratadine and azaparone. According to this, we strongly suggest that xylazine, firstly, as 

well as other major pharmaceutical products (loratadine, azaperol, loratadine, and 

azaperone) and pesticides (pyriproxyphen) should be definitively included in the set of 

pollutants that are routinely measured in river waters. As top contributors to health risks, 

their levels should be controlled when implementing water monitoring programs in rivers 

with typical Mediterranean regimes. Power-law equations generally fitted well to the 

ranked list of compounds in each sampling site (regression coefficient R2 between 0.47 

and0.93). However, it must be also highlighted that ranges of the exponent (from 0.99 to 

2.44) were relatively small (Table 3). Values of α exponent obtained in all the sampling 

points denote relatively flat curves, thus indicating that there is a lack of compounds with 

a prominent dominating weight. Therefore, the IRICAP-based risk load is not clustered 

with a few compounds. 
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Table 3. Results of h-index and Zipf’s law applied on the IRICAP. 

Sampling 
site  

h-index  h-content 
(%) 

P 90 α Sampling 
site  

h-index  h-content 
(%) 

P 90 α 
ANO1 3 9.98 62 1.74 CAB1 3 10.86 50 2.37 

ANO2 2 4.66 90 1.25 CAB2 3 13.68 35 1.97 

ANO3 2 6.41 84 1.45 CAB3 3 11.80 52 2.19 

CAR1 2 6.48 56 1.87 CAB4 3 10.78 54 2.23 

CAR2 2 6.87 53 1.95 CAB5 3 11.26 52 2.28 

CAR3 2 6.46 57 1.88 JUC1 3 10.63 52 2.19 

CAR4 2 6.14 68 1.54 JUC2 3 10.32 52 2.19 

LLO1 3 10.36 60 2.00 JUC3 2 7.02 54 1.99 

LLO2 3 10.43 52 1.87 JUC4 3 9.62 58 1.97 

LLO3 2 6.72 63 1.67 JUC5 3 9.91 53 2.24 

LLO4 2 6.32 63 1.65 JUC6 3 9.79 55 2.09 

LLO5 2 6.52 76 1.38 JUC7 2 6.42 58 1.94 

LLO6 2 5.38 79 1.36 JUC8 2 6.36 63 2.07 

LLO7 2 4.36 95 1.11 MAG1 2 6.10 63 1.82 

ALG 3 9.61 52 2.00 MAG2 2 6.73 58 2.08 

ARG 2 4.13 83 1.34 BEM 3 11.10 50 2.20 

CIN1 3 10.95 50 2.05 BOR 3 9.61 53 2.04 

CIN2 2 6.69 56 1.88 CAC 2 8.18 48 2.40 

EBR1 3 9.63 59 1.88 COR 2 7.07 52 2.11 

EBR2 2 6.49 62 1.68 GEN1 2 6.70 61 1.84 

EBR3 2 5.75 68 1.42 GEN2 2 7.20 59 1.93 

EBR4 2 5.80 67 1.47 GUA1 3 10.68 50 2.22 

EBR5 2 6.01 65 1.53 GUA2 2 7.39 59 1.88 

EBR6 2 4.92 74 1.53 GUA3 2 7.09 60 2.02 

EBR7 2 6.15 56 1.69 GUA4 2 7.46 58 1.79 

EBR8 2 6.31 60 1.74 GUA5 3 10.42 55 1.99 

EBR9 3 8.65 61 1.79 GUA6 2 7.12 63 1.85 

ESE 3 9.87 51 1.96 GUA7 3 10.58 51 2.07 

GAL1 3 13.44 36 1.95 GUA8 3 10.52 53 2.06 

GAL2 2 6.19 59 1.86 GUA9 3 10.07 50 2.14 

HUE 3 6.99 78 1.45 GUAA 2 6.48 64 1.81 

NAJ 2 6.66 54 1.88 GUAL 2 9.18 53 2.13 

MAR 2 6.50 52 1.92 GUAM 3 11.22 48 2.23 

MAT 2 6.59 55 1.92 GUAN 3 10.41 59 1.89 

OCA 2 5.86 63 1.75 GUAR 2 7.89 51 2.16 

RS 3 10.26 49 2.14 HER 2 5.61 58 1.97 

SEG 2 5.91 68 1.50 MAG 3 11.39 56 2.33 

ZAD 1 1.74 96 0.99 PIC 3 10.49 52 2.03 

     YEG 3 11.40 49 2.15 
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Table 4. List of h-compounds according to the IRICAP in 77 sampling sites in Spanish 
river basins. 

Site h-compounds Site h-compounds 

ANO1 Triclocaraban Xylazine  CAB1 Pyriproxyphen Xylazine NP 

ANO2 Triclosan EDDPperchlorate  CAB2 Pyriproxyphen NP Dichlofenthion 

ANO3 Loratadine L-PFOS  CAB3 PFUdA Xylazine Pyriproxyphen 

CAR1 Loratadine Azaperone  CAB4 Xylazine Pyriproxyphen Hexythiazox 

CAR2 Loratadine Azaperone  CAB5 Xylazine Pyriproxyphen Buprofezin 

CAR3 Loratadine Azaperone  JUC1 Pyriproxyphen Xylazine Buprofezin 

CAR4 Loratadine Azaperone  JUC2 Pyriproxyphen Xylazine Desloratadine 

LLO1 OC EHMC Hexythiazox JUC3 NP Hexythiazox  

LLO2 Xylazine Paroxetine Atorvastatin JUC4 Dichlofenthion Pyriproxyphen Xylazine 

LLO3 Triclocaraban Xylazine  JUC5 Xylazine Pyriproxyphen Buprofezin 

LLO4 Xylazine Desloratadine  JUC6 Pyriproxyphen Xylazine Desloratadine 

LLO5 PFTrDA PFTeDA  JUC7 Dichlofenthion Chlorpyriphos  

LLO6 Xylazine Atorvastatin  JUC8 Hexythiazox Ethion  

LLO7 Irbesartan Sertraline  MAG1 Xylazine Pyriproxyphen  

ALG Triclocaraban Xylazine Paroxetine MAG2 Xylazine Pyriproxyphen  

ARG Meloxicam Azaperone  BEM Xylazine Azaperol Desloratadine 

CIN1 Xylazine Loratadine Meloxicam BOR Azaperone Warfarin Azaperol 

CIN2 Xylazine Loratadine  CAC Xylazine 4MBC  

EBR1 Triclocaraban Diethylstilbestrol Xylazine COR Xylazine Warfarin  

EBR2 Triclocaraban Xylazine  GEN1 Xylazine 4MBC  

EBR3 Xylazine Loratadine  GEN2 Xylazine PFNA  

EBR4 Xylazine Loratadine  GUA1 Xylazine Azaperol Desloratadine 

EBR5 Xylazine Loratadine  GUA2 Xylazine 11-nor-9-carboxy-9-  

EBR6 Loratadine Meloxicam  GUA3 Xylazine Estradiol (E2)  

EBR7 i,p-PFNA Loratadine  GUA4 Xylazine Desloratadine  

EBR8 Xylazine Loratadine  GUA5 Xylazine Azaperol Diazepam 

EBR9 Xylazine Loratadine Meloxicam GUA6 Xylazine Diazinon  

ESE Xylazine Loratadine Meloxicam GUA7 Xylazine Azaperol Diazepam 

GAL1 Xylazine Azaperone Azaperol GUA8 Xylazine Azaperol Desloratadine 

GAL2 Loratadine NP2EO  GUA9 terbutryn Desloratadine Alprazolam 

HUE Xylazine Loratadine Meloxicam GUAA Xylazine NP  

NAJ Xylazine Loratadine Meloxicam GUAL 4MBC Xylazine  

MAR Xylazine Loratadine  GUAM Xylazine Azaperol Desloratadine 

MAT Xylazine Fenthion  GUAN Xylazine Azaperol Desloratadine 

OCA Xylazine Loratadine  GUAR Xylazine NP  

RS Xylazine Loratadine Meloxicam HER Propilparaben Azaperol  

SEG Xylazine Loratadine  MAG Xylazine Estrone (E1) Azaperol 

ZAD Fluoxetine   PIC Xylazine Azaperol Desloratadine 

    YEG Xylazine Desloratadine Alprazolam 
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4. Conclusions  

IRICAP means an important effort to elaborate methods for assessing human 

health risks associated to exposure to chemical mixtures, or the aggregated exposure to 

chemicals. Although interactions have not been considered in the current study, this tool 

was able to easily integrate a large amount of compounds to establish similar patterns, 

with the ultimate goal of prioritizing contaminants in terms of health risks. IRICAP showed 

logical and reliable results in most sampling points, taking into account the chemical 

characteristics of each site. Furthermore, IRICAP considers the joint effect of the 

chemical mixture, but not single groups of pollutants. Consequently, although some 

places (e.g., agricultural areas) are known to have high concentrations of pesticides, this 

effect is not reflected in IRICAP because of their low weight vs. other contaminants with 

a higher HI or concentration. An important limitation of the IRICAP is the use of 

theoretical values as HI parameters. Data on persistence, bioaccumulation and toxicity 

for each one of the 205 compounds were derived by applying the US EPA EPI SuitTM 

software, which is a very powerful tool to get estimative values when experimental 

information is not available. However, the process of modeling PBT data may be 

inherently associated to a high uncertainty. This is especially remarkable in the variable 

“toxicity”. In this case, only fish toxicity values were used to build the HI by means of the 

ECOSARTM tool, which is in turn based on Kow levels. This approach may lead to a 

significant bias, as the impact on aquatic species of other steps in the food web, or even 

on the human health, is not taken into account. In this framework, further improvements 

of the IRICAP, in general, and the hazard index, in particular, should be focused on 

incorporating as many species as possible. Species Sensitivity Distributions (SSDs) are 

distributions of species’ responses to a given toxicant (Dowse et al., 2013). Using SSDs, 

instead of point toxicity values, could reduce the exclusion of key pollutants, for which 

fish toxicity is not significant, but the effects on other species may be notable. In order to 

solve other limitations of this index, as well as to improve the robustness of the model, 

further studies should include other groups of pollutants, such as heavy metals and 

POPs and include, if possible, other environmental compartments (sediments and biota). 

In addition, validation of the index should be considered in future studies by comparing 

IRICAP values with scores obtained by applying biological indices. Pareto distribution-

based indices have been proven to be a useful complement for risk assessment. In the 

current study, the final results allowed estimating the distribution of the compounds in 

the curve. Furthermore, the h-compounds, this is, those with a highest contribution on 

the hazard/concentration-based risk, were identified. Xylazine, as well as loratadine, 

azaperol, loratadine, azaperone, and pyriproxyphen, should be selected as key 
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pollutants when measuring the chemical pollution of fresh waters, at least in rivers of 

similar characteristics to those here evaluated. In conclusion, these chemicals must be 

priority pollutants in quality control monitoring networks of river basins. IRICAP may be 

a useful tool for stakeholders involved in water management, for its capabilities to 

evaluate and compare human risks in water river samples. 
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Discussion of Chapter I 
 

Up to 205 environmental contaminants were ranked according their Hazard Index 

(HI), which, in turn was basedon the PBT properties of the chemicals. The whole list 

included 81 pharmaceutical compounds, 19 illicit drugs, 31 endocrine disruptors (ED), 

42 pesticides, 11 UV filters and 21 perfluoroalkyl substances (PFASs). PBT data were 

derived by applying EpiSuitTM, due to the impossibility to found experimental data in the 

scientific literature. PFASs were characterized by a high environmental persistence and 

aquatic toxicity, but relatively low bioaccumulation potential. A cluster of 16 PFASs was 

identified as the group of compounds with the highest half-lives. PFASs were ranked as 

the most harmful familiy of compounds, with a HI of 5.58 in a scale from 0 to 10. PFASs 

were subsequently chose to develop the PBPK model, due to the harmful effects of the 

whole family of compounds, and the relatively similar behaviour with PCDD/Fs. The 

groups of cannabinoids (THC, cannabinol and cannabidiol) and UV filters (4 MBC, OD-

PABA, EHMC and OC) also showed a high HI (5.45).  

A specified risk ranking (IRICAP) was designed to identify the environmental 

pollutants posing the highest risk for the human health in freshwater. IRICAP was the 

product of the HI and the respective concentration of each chemical in water. This tool 

allows assessing the aggregated effect of chemical mixtures. IRICAP showed logical and 

reliable results in most sampling points, taking into account the chemical characteristics 

of each site. Although the interactions of chemical pollutants were not taken into account 

in the IRICAP, this index improved previous PBT-based rankings.  
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CHAPTER 2 

PCDD/Fs IN PLASMA OF INDIVIDUALS LIVING NEAR A 
HAZARDOUS WASTE INCINERATOR. A COMPARISON OF 

MEASURED LEVELS AND ESTIMATED CONCENTRATIONS BY 
PBPK MODELING 

Abstract 

The construction of the first and, until now, only hazardous waste incinerator 

(HWI) in Spain finished in 1998. To assess its potential impact on the population living in 

the vicinity, a surveillance program was established. It includes the periodical 

biomonitoring of PCDD/Fs body burden. On the basis of this program, in 2012 we 

determined the levels of PCDD/Fs in plasma of nonoccupationally exposed individuals 

living near the HWI. The results were compared with those of the baseline study, and 

with those of two previous surveys (2002 and 2007). A multicompartment, 

physiologically-based pharmacokinetic (PBPK) model was also applied to estimate the 

levels of PCDD/Fs in plasma. The model was validated by comparing the results with 

our experimental data (baseline, 2002, 2007, and 2012). The current mean concentration 

was 6.18 pg I-TEQ/g lipid, with a range between 2.03 and 18.8 pg I-TEQ/g lipid. In 1998 

(baseline), the mean concentration of PCDD/Fs in plasma was 27.0 pg I-TEQ/g lipid 

(reduction of 77%, p< 0.001). Significant reductions were also noted in our previous 2002 

and 2007 surveys, with mean concentrations of 15.7 and 9.36 pg I-TEQ/g lipid, 

respectively. However, the comparison between simulated (using the PBPK model) and 

experimental results was very successful, as PCDD/F values in plasma were very similar 

(7.95 vs 6.18 pg I-TEQ/g lipid). The levels of PCDD/Fs in plasma of nonoccupationally 

exposed individuals living near the HWI here assessed are comparatively lower than 

most recently reported values. 
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1. Introduction 

If not safely managed and disposed, hazardous waste (HW) may mean risk to 

human health and the environment. According to Eurostat (European Commission, 

2012) in 2010, a total of 94.5 million tons of HW were generated in the EU-27, that 

amount being higher than that generated in 2004 (89 million tons), but lower than the 

amounts generated in 2006 (101 million tons) and 2008 (98 million tons). For the 

treatment of HW, Eurostat indicates that about 9.8 million of tons (or 13.2% of all HW) 

were incinerated or used for energy recovery, while 29.1 million of tons (or 39.2% of all 

HW) were recovered (European Commission, 2012). Although waste combustion, 

including HW, offers a number of advantages (i.e., volume reduction and energy 

recovery) with respect to other waste management strategies (Domingo et al., 2002), the 

construction and/or operation of incinerators has been, and remains, an issue of 

considerable public concern. It is well-known that waste incinerators emit pollutants such 

as heavy metals and organic chemicals, whose potential toxicity at certain environmental 

concentrations is well-established. With respect specifically to HW incineration, although 

the number of HW incinerators (HWIs) is notably lower than that of municipal solid waste 

incinerators (MSWIs), and the volume of waste to be treated is remarkably different, 

special attention has been paid to those facilities (García-Pérez et al., 2013), as a 

consequence of the notable pressure that plants managing hazardous waste receive 

from the administration and the people living nearby. 

In 1999, the first HWI in Spain initiated its regular operations in Constantí 

(Tarragona County, Catalonia). This facility started its activities before the Waste 
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Incineration Directive (WID) entered into force in December 2000 (European 

Commission, 2000). However, since the construction of the facility generated an 

important concern among the local population, on behalf of the Catalan Agency of Waste, 

we initiated a wide environmental surveillance program during the construction of the 

HWI (baseline study, 1996−1998). This program was focused on evaluating the 

environmental impact of the stack emissions, particularly of metals and polychlorinated 

dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) on the environment, as well as 

assessing the health risks for the population living in the area under potential influence 

of the HWI. Although metals and PCDD/Fs are produced in many processes, incineration 

has received prolonged special attention by scientists and politicians (Domingo et al., 

2002; Mari et al., 2010; Tian et al., 2012). Our surveillance program is in addition to the 

requirements of the WID, which sets emission limit values and monitoring requirements 

for air pollutants such as dust, nitrogen oxides (NOx), sulfur dioxide (SO2), hydrogen 

chloride (HCl), hydrogen fluoride (HF), heavy metals, and PCDD/Fs. Since then, the 

program has been continuously maintained, measurements of the pollutants in different 

environmental and/ or biological matrixes being carried out annually (Bocio et al., 2005; 

Ferré-Huguet et al., 2005; Ferré-Huguet et al., 2009; Nadal et al., 2005; Nadal et al., 

2009; Schuhmacher et al., 2002a; Schuhmacher et al., 2002b; Schuhmacher et al., 

2004a; Schuhmacher et al., 2004b; Vilavert et al., 2010).  

The aim of the present study was to determine, after approximately 13 years of 

regular operations in the HWI, the concentrations of PCDD/Fs in plasma samples of 

individuals living in the neighborhood of the facility. In order to assess the temporal trend 

of these pollutants in the general, nonoccupationally exposed population of the area, the 

results of this survey have been compared with those of the baseline survey 

(Schuhmacher et al., 1999), and also with those of two previous campaigns carried out 

after the plant initiated its regular activities (2002 and 2007) (Agramunt et al., 2005; Nadal 

et al., 2008). We have also applied a multicompartment physiologically-based 

pharmacokinetic (PBPK) model in order to estimate the levels of PCDD/Fs in plasma. 

The model was validated by comparing the results with our experimental data, not only 

from the current, but also from our previous surveys (1998, 2002, and 2007) (Agramunt 

et al., 2005; Nadal et al., 2008; Schuhmacher et al., 1999). 
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2. Materials and Methods 

2.1. Area of Study 

The HWI herein studied is located in the industrial park of Constantí, relatively 

close to other significant industrial sources of environmental pollutants, such as a big oil 

refinery, an important complex of petrochemical industries, and a municipal solid waste 

incinerator among others. The plant is situated 5 km from the closest populated nuclei 

(Constantí and Reus), and 10 km from Tarragona city. Despite the presence of some 

chemical industries, the closest land to the plant is mainly used for agricultural purposes, 

in which hazel and olives are the predominant vegetal species. A few chicken farms are 

also sporadically situated in the surrounding zone. The number of farm workers is 

relatively reduced, as the main activities in the zone are oriented to the secondary and 

tertiary sectors of the economy. 

 

2.2. Sampling 

Blood collection was done in collaboration with the Joan XXIII and Santa Tecla 

Hospitals (Tarragona, Spain), where people living in the zone under the potential 

influence of the HWI emissions are mostly treated. Some samples were also obtained 

through blood donors of the area, with the collaboration of the Blood and Tissue Bank of 

the Vall d’Hebron Hospital (Barcelona, Spain). Plasma samples (80 mL per sample) were 

obtained from 40 individuals. All participants in the study had lived at least during the last 

10 years in zones near the HWI. All individuals with potential occupational exposure to 

PCDD/Fs, including welders and smelters, stations workers, PVC workers, and workers 

in waste incinerators, were excluded. No further consideration was done according to 

the eating habits of the subjects. People followed regular Mediterranean diets, 

characterized by a higher contribution of fruits, vegetables, and cereals. In turn, eggs 

and pulses showed the lowest values in the weekly intake. 

Blood samples were collected from individuals of both genders (20 men and 20 

women) and different ages (22−67 years). As in our previous surveys, 18−20 volunteers 

were also classified according to the specific place of residence: urban (living in 

Tarragona City) or industrial (living near incinerators and chemical/petrochemical 

industries) areas. Once collected, samples were kept at −20 °C until analysis. 
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2.3. Analytical Procedure 

PCDD/F concentrations in plasma samples were determined following a 

methodology derived from the U.S. EPA methods 1613 and 8290A. Forty mL of a 

standard solution containing a mixture of 13C12−PCDD/Fs was added to 75 g of plasma. 

Lipid extraction was carried out using a mixture of isopropanol/hexane through a solid 

phase (marine plankton diatomite). The concentrated lipids were calculated by 

gravimetry. For cleaning, extracts were passed through a column of acid/basic silica gel. 

Then, 40 mL of tetradecane was added as a control. After being concentrated to 1 mL, 

solutions were passed through a second column with activated Al2O3 and Na2SO4. 

Fractionation was performed with hexane. The third fraction, which contained PCDD/Fs, 

was immediately passed through a column of charcoal. A mixture (18%/82%) of 0.5 g of 

Carbopack C (Supelco Inc., Bellefonte, PA, U.S.) and Celite 545 (Fluka AG, Buchs, 

Switzerland) was used. Finally, the extract was evaporated to dryness with a stream of 

nitrogen, being redissolved with a solution containing 13C6-1,2,3,4- TCDD until a final 

volume of 20 mL with ultrasonic agitation. 

Cleaned extracts were analyzed by high resolution gas chromatography/high 

resolution mass spectrometry (HRGC/ HRMS), with selected ion recording at resolution 

>10000 and working with SIR mode (Selected Ion Recording). The calculation of the 

toxic native compounds was made by using the corresponding 13C12−PCDD/F internal 

standards, automatically correcting for any potential losses occurring during the 

processes of extraction, cleanup, and analysis. To check the reliability of the method and 

the apparatus, blanks and standards were set during the analytical procedure. The 

average recovery percentages ranged between 53% and 95%. 

 

2.4. Data treatment 

Toxic equivalents (TEQs) of the analyzed PCDD/Fs were calculated using both 

international NATO/ CCMS toxic equivalency factors (I-TEFs) and WHO-TEFs2005 (Van 

den Berg et al., 2006; Van Zorge et al., 1989). Data were statistically evaluated using 

the SPSS 19.0 software package. The Levene test was applied to study the equality of 

variances. Subsequently, statistical significance between groups was determined by 

using analysis of variance (ANOVA) or a Kruskal−Wallis test, respectively, depending on 

whether data followed a normal distribution or not. A probability lower than 0.05 (p < 

0.05) was considered as statistically significant. For calculations, the concentrations of 

those PCDD/F congeners with a value below the limit of detection (LOD) were 

considered to be one-half of the respective LOD (ND = 1/2 LOD). 
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3. Results and Discussion 

3.1. Concentration of PCDD/Fs in human plasma 

Table S1 (Annex 2) summarizes the individual concentrations of PCDD/Fs in 

plasma of 40 subjects living in the vicinity of the HWI here assessed. The mean 

concentration was 6.18 pg I-TEQ/g lipid (6.26 pg WHO-TEQ/g lipid), with a range 

between 2.03 and 18.8 pg I-TEQ/g lipid (2.16−25.4 pg WHO-TEQ/g lipid). Table 1 shows 

a general comparison between the results obtained in the baseline (1998) and the 

current surveys. In 1998, the mean concentration of PCDD/Fs in plasma was 27.0 pg I-

TEQ/g lipid (n = 20), which significantly decreased to 6.18 pg I-TEQ/g lipid (reduction of 

77%, p < 0.001) in the present study. Considerable and significant reductions in the 

PCDD/F levels in plasma were already noted in our previous 2002 and 2007 surveys, 

with mean concentrations of 15.7 and 9.36 pg I-TEQ/g lipid, respectively (Agramunt et 

al., 2005; Nadal et al., 2008). There was a significant (p < 0.001) reduction in the PCDD/F 

concentrations for both genders between the baseline survey (1998) and the current 

study. Pearson correlation was applied to analyze the influence of age on body levels of 

PCDD/Fs. A significant decrease in the levels of these pollutants was noted for all age 

groups. In contrast to other studies (Huang et al., 2007), no correlation between the 

concentrations of PCDD/Fs in plasma and age was found. However, in the present study, 

PCDD/F levels in plasma of the residents in urban zones were slightly higher than the 

mean level of subjects living in industrial areas (7.15 and 5.21 pg I-TEQ/g lipid, 

respectively). However, the difference did not reach a level of statistical significance (p 

> 0.05). A very notable and significant decrease in the mean concentrations of PCDD/Fs 

in plasma between the baseline (1998) and the current survey was found for the 

individuals living in both areas. The temporal evolution of the PCDD/F levels in plasma 

of the population living near the HWI is depicted in Figure S1 (Annex 2). 
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Table 1. Total concentration of PCDD/Fs (in pg I-TEQ/g lipid) in plasma of residents 
nearby the HWI, according to gender, age and specific area of residence (industrial or 
urban). 

  
No. 

Samples   Mean   
Standard 
deviation   Range   Variation % 

 1998 2012  1998 2012  1998 2012  1998 2012  1998-2012 

Total  20 40  27.0 6.18  8.2 4.06  14.8-49.0 2.03-18.8  -77** 

Gender               

Male 13 20  26.7 6.48  2.5 4.52  14.8-49.0 2.11-18.8  -76** 

Female 7 20  27.8 5.88  2.7 3.63  14.9-34.7 2.03-17.5  -79** 

Age              

18-30 4 4  17.2 6.26  3.8 3.98  14.8-22.9 3.82-12.1  -64* 

31-45 4 10  25.2 4.93  5.0 2.85  17.9-29.2 2.04-9.21  -80** 

46-55 8 19  32.0 5.18  8.4 3.18  21.2-48.9 2.03-13.3  -84** 

>56 4 7  28.8 10.4  5.1 5.45  23.9-33.8 5.72-18.8  -64** 

Area              

Industrial 15 20  26.4 5.21  8.8 3.18  14.8-49.0 2.03-12.1  -80** 

Urban 5 20   28.7 7.15   7.1 4.66   16.5-34.7 2.04-18.8   -75** 

Significant differences at: *p < 0.01; **p < 0.001. 

 

Nowadays, it is well-known that for nonoccupationally exposed populations, diet 

is the main route of exposure to PCDD/Fs, being the percentages of the daily intake of 

PCDD/Fs through food consumption even higher than 95% (Domingo et al., 2007; 

Linares et al., 2010; Perelló et al., 2012). On the basis of this, we have also periodically 

measured the levels of PCDD/Fs in the most consumed food items in the zone under 

evaluation, and determined the dietary intake of these pollutants by the local population 

(Bocio et al., 2005; Domingo et al., 1999; Llobet et al., 2008). In the baseline survey 

(1998), the dietary intake of PCDD/Fs was 210.1 pg I-TEQ/ day, while the current dietary 

intake was estimated in 33.1 pg WHO-TEQ/day (Domingo et al., 2012). This intake was 

similar to that obtained in our previous survey (27.8 pg WHO-TEQ/day) (Llobet et al., 

2008), and lower than that found in the 2002 study (59.6 pg I-TEQ/day). It is evident that 

there is a parallel decrease and a direct relationship between the exposure to PCDD/Fs 

through the diet, and the concentrations of PCDD/Fs in the plasma of the population 

living in the area under the current evaluation. It has been suggested that there might be 
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some delay between the dietary intake of PCDD/Fs and the detection of these 

contaminants in biological tissues, such as plasma or breast milk (Nadal et al., 2008). 

The reduction in the levels of PCDD/Fs in foodstuffs and the corresponding decrease in 

the concentration of PCDD/Fs in human tissues and biological matrixes agree well with 

the results of other recent international studies (Consonni et al., 2012; Lakind et al., 2009; 

Lopez-Espinosa et al., 2008). Moreover, it is important to note that in an additional 

monitoring program, which we annually perform to determine the levels of PCDD/ Fs in 

blood of the workers at the same HWI, we have also observed a significant and continued 

reduction in these levels, which decreased from an initial (baseline values) mean 

concentration of 26.7 pg I-TEQ/g lipid to 4.6 pg I-TEQ/g lipid in 2011 (Domingo et al., 

2001; Mari et al., 2013). The profiles of the PCDD/F congeners in the 4 campaigns since 

the baseline (1998) study are depicted in Fig. 1. In the current (2012) survey, OCDD was 

the predominant congener, followed by 1,2,3,6,7,8 HxCDD and 1,2,3,4,6,7,8-HpCDD, 

while the lowest concentrations corresponded to 2,3,7,8-TCDD and 1,2,3,7,8,9-HxCDF. 

 

 
Fig. 1. PCDD/F congener profiles in plasma of non-occupationally exposed subjects living 

in the vicinity of a HWI. Temporal trends. 

 

Data on PCDD/F concentrations in blood of nonoccupationally exposed 

populations are rather scarce. While in the scientific literature, a number of reports 

concerning the levels of PCDD/Fs in human blood of populations living in the 

neighborhood of MSWIs has been published, information regarding PCDD/F levels in 

subjects living near HWIs and industrial incinerators is tremendously limited. In Missouri 
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(U.S.), Evans et al., (2000) assessed whether living in the vicinity of a HWI in Times 

Beach, which was burning 2,3,7,8-TCDDcontaminanted material, increased TCDD and 

toxicity equivalencies (TEQ) in individuals living near the facility. Subjects were randomly 

chosen from an area close to the HWI and compared to individuals outside the exposure 

area. TCDD and related compounds were measured in blood serum before incineration, 

four months after incineration started, and at the end of incineration. The results showed 

that incineration of TCDD did not result in any measurable exposure to the population 

surrounding the incinerator, as indicated by the biomarkers TCDD and TEQ serum 

levels. In Korea, Leem et al., (2003) analyzed blood samples of 45 subjects living near 

two MWSIs at Seoul, and an industrial waste incinerator at Pyongtaek, where high 

emissions of PCDD/Fs were suspected. The industrial waste incinerator began its 

operations in 1988 and ceased in 2001. The average TEQ concentration of PCDD/Fs in 

residents near the industrial waste incinerator was 53.4 pg I-TEQ/g lipid, whereas that in 

residents near MSWIs was 12.2 pg I-TEQ/g lipid. In a subsequent study performed in the 

vicinity of the same Korean incinerator, Park et al., (2004) assessed the spatial changes 

in the influence of that facility. A total of 47 soil samples (in continuous manner with 

distance) and 60 human blood samples (40 within 5 km, and 20 at 7 and 12 km) were 

collected and analyzed for the levels of PCDD/Fs. The mean PCDD/F value in the blood 

samples from the near-site zone was 12.2 pg I-TEQ/g lipid, while the mean concentration 

in the blood samples collected at the far-site zone was 11.0 pg I-TEQ/g lipid. Influence 

of the incinerator was not clearly observed both on soil and blood concentrations of 

PCDD/Fs, as the levels in the zone within 5 km were not significantly different from those 

at 7 and 12 km. However, the congener patterns of PCDD/Fs in both soil and blood 

changed with the distance to the facility. In the area under the potential influence of that 

same Korean incinerator, Leem et al., (2006) estimated whether blood levels and isomer 

patterns of PCDD/Fs in residents living near the facility were affected by its presence. 

Blood levels and homologue patterns of PCDD/Fs were determined in a group of 40 

residents living within 5 km of the industrial waste incinerator, and in a group of 20 

residents living 20 km away from the facility. The average concentration of PCDD/Fs in 

the near-site zone was 11.9 pg ITEQ/ g lipid, whereas that of the far-site zone was 11.2 

pg ITEQ/g lipid, the difference not being statistically significant. The authors observed 

that the group living next to the industrial incinerator presented the typical isomer pattern, 

in which the proportions of OCDDs were lower, while those of PCDFs were higher. These 

scarce international data, together with those obtained for the population living in the 

vicinity of the Spanish HWI here assessed, are summarized in Table 2. It can be seen 

that, among those reported, the current and previous mean PCDD/F levels (6.26 and 
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9.36 pg I-TEQ/g lipid, respectively) correspond to the lowest concentrations of these 

chemicals in human plasma of populations living near industrial or hazardous waste 

incinerators. Moreover, the continued decrease in the mean PCDD/F concentrations is 

well correlated with the reductions in the dietary intake of PCDD/Fs, which have been 

also noted in this same surveillance program. 

For comparison purposes only, we next summarize the results of some recent 

studies from different scenarios, in which the levels of PCDD/Fs were also determined 

in human blood. (Zubero et al., 2011) analyzed the concentrations of PCDD/Fs in 16 

“composite” samples of individuals living near a MSWI in Zabalgarbi (Bilbao, Spain), and 

established the temporal changes between 2006 and 2008. The average concentrations 

of PCDD/Fs were 13.4 and 13.2 pg WHO-TEQ/g lipid, respectively. No significant 

differences based on the specific place of residence, near or far from the facility, were 

found. In Germany, the Integrated Exposure Assessment Survey (INES) is designed to 

obtain data on exposure of the German population, including the analysis of several 

persistent organic pollutants (POPs) in biological matrixes. The latest campaign, 

conducted in 2005, showed an average PCDD/F concentration of 8.9 pg WHO-TEQ/g 

lipid (Fromme et al., 2009). Also in Germany, and specifically in the region of 

Baden−Württemberg, recently Link et al., (2012) observed a progressive reduction of the 

levels of PCDD/Fs in blood of children between 1996 and 2009. In that survey, PCDD/F 

levels ranged between 4.9 and 7.6 pg WHOTEQ/g lipid, depending on the type of 

breastfeeding. In turn, Turrio-Baldassarri et al., (2008) estimated in 22 pg WHO-TEQ/g 

lipid the average concentration of PCDD/Fs (assuming ND = LOD) in human serum of 

differently exposed population groups living in Brescia (Italy). In Japan, Arisawa et al., 

(2011) found a median concentration of 10 pg WHO-TEQ/g lipid in 1656 Japanese 

individuals, while in Australia, Staff et al., (2012) reported concentrations of PCDD/Fs 

between 9.5 and 10.1 pg WHOTEQ/g lipid in blood of a control group. Interestingly, the 

calculated concentration of PCDD/Fs in plasma samples of 43 workers who had been 

assigned to work in the vicinity of the World Trade Center (New York, U.S.) during the 

week after the collapse of the buildings was, on average, 41.2 pg WHOTEQ/g lipid (Horii 

et al., 2010). The levels of PCDD/Fs in plasma of the nonoccupationally exposed 

population, and living near the HWI here assessed, were lower than all of the above 

recently reported values. 
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Table 2. Summary of studies reporting PCDD/F levels in plasma of non-occupationally 
exposed populations living near industrial or hazardous waste incinerators. 

 

n.a.: not available. 

 

3.2. Multicompartment physiologically-based pharmacokinetic (PBPK) model 

PBPK models are mathematical representations of the human body, where 

organs are considered as compartments (Spear et al., 1994). These models allow 

prediction of the theoretical concentration of chemicals along the time in different human 

tissues (Fàbrega et al., 2011), taking into account species-specific physiological, 

chemical, and biochemical parameters. PBPK models are based on a system of 

differential equations which estimate the concentration or amount of individual 

substances of sets of chemicals in each body compartment. These tools are increasingly 

used in the field of human health risk assessment, particularly in quantifying the 

relationship between measures of external exposure and internal dose (Thompson et al., 

2008). In the present study, a multicompartment PBPK model developed by Maruyama 

et al., (2003) was applied to estimate the levels of PCDD/Fs in plasma. The model was 

validated by comparing the results with experimental data, not only from the current 

survey, but also from our previous surveys (1998, 2002, and 2007) (Agramunt et al., 

2005; Nadal et al., 2008; Schuhmacher et al., 1999). As mentioned above, dietary intake 

is the most important pathway of exposure to PCDD/Fs, with contribution percentages 

higher than 95%. Therefore, we assumed that: (1) food intake was the only source of 

PCDD/F exposure, and (2) this route of exposure was constant along time. Data about 
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dietary intake of PCDD/Fs were obtained from previous studies conducted in the same 

area (Bocio et al., 2005; Domingo et al., 1999; Domingo et al., 2012; Llobet et al., 2008). 

The conceptual representation of the PBPK model, which included 7 individual 

compartments, is depicted in Figure S2 (Annex 2). Fat, liver, kidney, skin, muscle, and 

richly perfused tissues (lung, spleen, and brain) were considered as independent 

compartments, while blood was the only matrix interrelated with the others. The predicted 

concentration of PCDD/Fs in fat, kidney, skin, muscle, and richly perfused tissues was 

based on the following mass balance equation: 








 −×=×
Pi

Ci
CaQi

dt

dCi
Vi     (1) 

where Vi is the volume of the tissue i (L), Ci is the concentration of PCDD/Fs in 

the tissue i (pg/L), Qi is the blood flow (L/h), Pi is the tissue i:blood partition coefficient 

(unitless), and Ca is the arterial concentration (pg/L). In turn, the predicted level of 

PCDD/Fs in blood was determined by applying the following expression: 

∑ ∑ ×+






 −−






 ×=×
i i

AbsDQiCa
Pi

CiQi

dt

dCblood
Vi   (2) 

where Vi is the volume of blood (L), Cblood is the PCDD/F concentration in blood 

(pg/L), Ci is the PCDD/F concentration in the tissue i (pg/L), Qi is the blood flow (L/h), Pi 

is the tissue i:blood partition coefficient (unitless), Ca is the arterial concentration (pg/L), 

D is the daily intake of PCDD/Fs (in pg/day), and Abs is the gastrointestinal absorption 

factor (unitless). In order to estimate the blood concentration of PCDD/Fs (pg/g lipid), the 

lipid percentage (weight:weight) of each sample was analyzed (mean: 0.79%; range: 

0.39%− 1.39%). As liver was considered as an elimination organ, the predicted 

concentration of PCDD/Fs in this tissue was estimated by the following equation: 

KiVliverCliver
Pliver

Cliver
CaQliver

dt

dCliver
Vliver +×−







 −×=×   (3) 

where Vliver is the liver volume (L), Cliver is the PCDD/F concentration in liver 

(pg/L), Qliver is the blood flow (L/h), Ca is the arterial concentration (pg/L), Pliver is the 

liver:blood partition coefficient (unitless), and K1 is the elimination constant. Values of 

tissue volume, cardiac output, partition coefficient, absorption rates, and elimination 

constant were obtained from Maruyama et al., (2003). As the model was restricted to a 

simulation period of 4 years and applied to an adult population, no variations in volumes 

and cardiac output along the time were considered. The final system of differential 

equations was coded in Matlab using the Stiff method. Calculations were made for the 
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17 toxic 2,3,7,8-chlorinated PCDD/Fs, being the total levels estimated according to I-

TEF values. 

Simulated concentrations of PCDD/Fs in each one of the 7 compartments, taking 

into account intake data of 2012, are summarized in Table 3. The highest levels were 

found in fat and blood (17.6 and 7.95 pg I-TEQ/g lipid, respectively). In contrast, kidney 

and skin showed the minimum levels (0.14 and 0.24 pg I-TEQ/g tissue, respectively). 

Adipose tissue is considered an accumulation reservoir of PCDD/Fs in the human body 

(Moon et al., 2011), while plasma is also a good biomarker of PCDD/Fs, given its 

distribution capacity. When comparing the modeled and experimental concentrations of 

PCDD/Fs in plasma, very similar values were observed: 7.95 vs 6.18 pg ITEQ/g lipid, 

respectively. This corroborates the validity and suitability of this particular model to 

predict the PCDD/F burdens in plasma. Moreover, the simulation was also performed on 

the basis of the dietary intake of PCDD/Fs in previous monitoring campaigns. The results 

are depicted in Fig. 2, together with experimental values of PCDD/Fs in plasma and the 

dietary intake. Because food intake was assumed to be the only single exposure 

pathway, a significant reduction of plasma concentrations of PCDD/Fs was noted, which 

is in agreement with the significant decrease in the dietary intake of PCDD/Fs. In our 

preoperational study (1998), the dietary intake of PCDD/F ingestion through food 

consumption by the general population was 210.1 pg I-TEQ/day (Domingo et al., 1999), 

while in subsequent surveys (2002 and 2007) the intake decreased to 27.8 pg WHO-

TEQ/day (Bocio et al., 2005; Llobet et al., 2008). In our last assessment period 

(2007−2012), the dietary intake slightly increased, reaching 33.1 pg WHO-TEQ/day. The 

increase was attributed to the inclusion of a new food group (industrial bakery), whose 

incidence had not been previously evaluated. The daily intake of PCDD/Fs, exclusively 

due to the consumption of industrial bakery, was estimated in 3.49 pg WHO-TEQ (10.5% 

of the total). Considering only the food groups evaluated in both 2007 and 2012 surveys, 

it was noted that the dietary intake had remained nearly constant, from 27.8 to 29.4 pg 

WHO-TEQ/ day (Domingo et al., 2012). 

 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELING OF PCDD/FS AND PFASS IN HUMANS. 
Francesc Fabrega Bonadona 
Dipòsit Legal: T 1660-2014



Chapter 2. A PBPK model to estimate PCDD/F levels in plasma 

 

58 

 

Fig. 2. Dietary intake of PCDD/Fs, and comparison between measured and 
simulated PCDD/F concentrations in plasma, between 1998 (baseline survey) and 2012 
(current data). PCDD/F intake in 1998 is given as pg I-TEQ/day. 

 

Table 3. PBPK modeling results: Simulated concentrations of PCDD/Fs in 7 human 
compartments according to dietary intake data of 2012. 

Blood  Liver  Fat Kidney  Muscle  Richly perfused  Skin  
2,3,7,8-TCDD 1.06 0.08 2.09 0.03 0.14 0.03 0.02 
1,2,3,7,8-PeCDD 3.78 0.51 13.1 0.09 0.57 0.14 0.06 
1,2,3,4,7,8-HxCDD 1.10 0.26 1.03 0.01 0.04 0.02 0.02 

1,2,3,6,7,8-HxCDD 6.78 2.96 12.0 0.16 0.71 0.15 0.09 
1,2,3,7,8,9-HxCDD 0.27 0.61 3.32 0.02 0.29 0.06 0.01 
1,2,3,4,6,7,8-HpCDD 18.5 5.01 21.3 0.34 5.78 2.07 2.07 
OCDD 16.3 7.22 7.18 0.36 3.38 2.08 1.82 
2,3,7,8-TCDF 4.08 0.59 1.79 0.03 0.15 0.08 0.31 
1,2,3,7,8-PeCDF 1.49 0.23 1.55 0.02 0.12 0.08 0.11 
2,3,4,7,8-PeCDF 4.11 1.47 11.1 0.07 1.25 0.12 0.09 
1,2,3,4,7,8-HxCDF 3.45 0.69 2.07 0.04 0.30 0.17 0.06 
1,2,3,6,7,8-HxCDF 1.41 0.50 1.47 0.02 0.28 0.02 0.03 
1,2,3,7,8,9-HxCDF 3.95 0.06 5.44 0.01 0.09 0.12 0.35 
2,3,4,6,7,8-HxCDF 3.80 0.12 1.46 0.03 0.09 0.11 0.19 
1,2,3,4,6,7,8-HpCDF 13.2 2.32 14.7 0.09 0.77 0.24 1.16 

1,2,3,4,7,8,9-HpCDF 3.58 0.25 3.23 0.01 0.09 0.05 0.31 
OCDF 17.2 2.06 19.8 0.23 0.76 0.62 1.92 

I-TEQ 7.95 1.75 17.6 0.14 1.33 0.26 0.24 

Concentrations in plasma are given in pg I-TEQ/g fat, while those of the remaining tissues 
are shown in pg I-TEQ/g tissue. 
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4. Conclusions 

In conclusion, the PBPK model has demonstrated to be a very reliable tool to 

predict the levels of PCDD/Fs in plasma. The comparison between simulated and 

experimental results was very successful, as PCDD/F values in plasma were very similar 

(7.95 vs 6.18 pg I-TEQ/g lipid). For validation purposes, modeling results for other 

compartments may also be compared with the levels of PCDD/Fs found in different 

human tissues. In this sense, it must be highlighted that, in addition to plasma, 

periodically we also use other biological monitors, such as breast milk and adipose 

tissue, as biomonitors of accumulation of PCDD/Fs in subjects living in the zones under 

potential influence of the HWI. In previous studies, the concentrations of PCDD/Fs in 

samples of adipose tissue of autopsied subjects living in these zones were 40.1, 9.89, 

and 14.6 pg I-TEQ/g lipid in 1998, 2002, and 2007, respectively (Nadal et al., 2009). 

These values are very similar to those obtained after executing the model (31.0, 9.27, 

and 14.0 pg I-TEQ/g lipid, respectively). As part of the current biological surveillance 

program of the HWI, the concentration of PCDD/Fs will again be determined in adipose 

tissue during 2013. The outcomes of that survey will be fundamental in the design and 

implementation of future monitoring programs of the HWI. If the PBPK model results are 

sufficiently effective in adipose tissue, as they already seem to be in plasma, then the 

cost of surveillance studies might be notably reduced by minimizing the number of 

biological samples, something critical in the context of the current economic crisis. 
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CHAPTER 3 

A PBPK MODEL TO ESTIMATE PCDD/F LEVELS IN ADIPOSE 
TISSUE: COMPARISON WITH EXPERIMENTAL VALUES OF 
RESIDENTS NEAR A HAZARDOUS WASTE INCINERATOR 

Abstract 

This study was aimed at determining the concentrations of polychlorinated 

dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in 15 samples of 

adipose tissue from subjects who had been living in the vicinity of a hazardous waste 

incinerator (HWI). The results were compared with levels obtained in previous surveys 

carried out in 1998 (baseline study), 2002 and 2007. The current (2013) concentrations 

of PCDD/Fs in adipose tissue ranged from 2.8 to 46.3 pg WHO-TEQ/g fat (mean and 

median concentrations: 11.5 and 7.4 pg WHO-TEQ/g fat, respectively), being 

significantly lower (64%) than those observed in 1998.  In contrast, no significant 

differences in the mean PCDD/F concentrations were noted in the period 2002-2013. 

The significant decrease of the PCDD/F content in fat, also noted in other biological 

monitors such as plasma and breast milk, is in agreement with the reduction in the dietary 

intake of PCDD/Fs found in the same area of study. Similarly to other investigations 

across Europe, an increase of PCDD/F levels in adipose tissue in relation to age was 

observed, while no significant differences were noted according to gender. A 

multicompartmental physiologically-based pharmacokinetic (PBPK) model was also 

applied to estimate the levels of PCDD/Fs in adipose tissue. When comparing the 

modelled and experimental concentrations of PCDD/Fs in that tissue, very similar values 

were obtained for the four surveys, which indicates this can be a reliable tool to predict 

the internal dose of PCDD/Fs.  

 

1.Introduction 

Due to their toxic potential for humans and wildlife, as well as bioaccumulation 

and persistence capacity, contamination by polychlorinated dibenzo-p-dioxins and 

polychlorinated dibenzofurans (PCDD/Fs) is an environmental problem of global 

concern. PCDD/Fs are released to the environment from a number of sources, including 

traffic, chemical manufacturing, iron and steelmaking, as well as open burning of 

materials in forest fires, accidental fires and unintentional landfill fires (Schuhmacher and 

Domingo, 2006; Estrellan and Iino, 2010; Ooi and Lu, 2011). In the past, incinerators 
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were catalogued as important sources of toxic emissions, particularly PCDD/Fs and 

heavy metals (Hu et al., 2004). However, the installation of modern cleaning technologies 

to comply with maximum emission levels, according to European standards (0.1 ng I-

TEQ Nm3), has substantially reduced the environmental impact of these facilities, not 

only in terms of PCDD/Fs, but also other air pollutants (Glorennec et al., 2005; Vilavert 

et al., 2010).  

Incineration, also known as waste-to-energy, has become one of the most widely 

used alternatives for waste management, being considered as a serious option for the 

disposal of municipal solid, hazardous and medical wastes. In comparison to other waste 

treatments, incineration has a wide range of advantages, of which volume reduction, 

energetic recovery and microbial elimination are the most evident. Moreover, the 

incineration of hazardous waste is often selected as the most desirable disposal method, 

when these cannot be properly recycled (Ferré-Huguet et al., 2005; Mari et al., 2013). 

Unfortunately, this process may release a wide range of chemicals to air, therefore 

contaminating water, soil and biota by pollutant deposition, and ultimately affecting the 

human health of residents living in the surrounding of hazardous waste incinerators 

(HWIs). Despite of the heterogeneity of stack emissions, which include heavy metals, 

semivolatile and volatile organic compounds, especial attention has been paid to 

PCDD/Fs (Kulkarni et al., 2008; Mari and Domingo, 2010), becoming one of the 

chemicals of most scientific and social interest. Because of this, the European Union 

(EU) imposed strict operating conditions and technical requirements on waste 

incineration plants and co-incineration plants, according to the EU Directive 2000/76/EC. 

After application of this regulatory measures and implementation of Best Available 

Techniques (BAT), a gradual decrease in the concentrations of PCDD/Fs in human 

biological tissues has been noted worldwide (Hagmar et al., 2006; Nadal et al., 2013), 

being plasma and breast milk two of the most visible monitors. This fact has been 

associated to the parallel reduction in the dietary intake of these pollutants (Domingo et 

al., 2012). Notwithstanding, the potential health risks derived from HWI stack emissions 

still generate a considerable concern among the population (Liu et al., 2012; Bunsan et 

al., 2013). PCDD/Fs accumulate in human adipose tissues over lifetime. These 

contaminants are slowly metabolized in the human body and elicit adverse effects 

including developmental and reproductive toxicity, cancer, and endocrine disruption 

(Mocarelli et al., 2008; White and Birnbaum, 2009). The levels of contaminant residues 

in adipose tissue can provide valuable information on steady-state concentrations, as a 

way to integrate the body burdens of lipophilic chemicals accumulated overtime. For 

instance, the Stockholm convention (SC) of persistent organic pollutants (POPs) have 
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the goal to reduce the emissions of PCDD/Fs in a 50% in 10 years. To prove this, SC 

establishes a global monitoring system to prove the reduction of PCDD/Fs in 

environmental matrices as well as human tissues, like adipose tissue. 

The objective of this study was to determine the concentrations of PCDD/Fs in 

samples of adipose tissue of individuals living in the neighborhood of a HWI in Catalonia 

(Spain), 14 years after the facility started its regular operations. The results of this survey 

were compared with data from previous campaigns carried out before (1998) and after 

(2002 and 2007) the plant began to operate. Data from the biological monitoring study 

was also used to validate a multicompartment physiologically-based pharmacokinetic 

(PBPK) model to estimate the levels of PCDD/Fs in adipose tissue. 

 

2. Material and Methods 

2.1. Area of study 

The HWI herein studied is located in Constantí (Tarragona County, Catalonia, 

Spain), relatively close to other potential industrial sources of environmental pollutants, 

such as a big oil refinery, an important complex of chemical industries, and a municipal 

solid waste incinerator (MWSI), among others. In addition, an intense traffic is present in 

the zone, which is crossed by a highway, a motorway and a number of roads. The facility 

is located 5 km from the closest populated nuclei (Constantí and Reus), and 10 km from 

Tarragona downtown. Information about the HWI, as well as more characteristics of the 

surrounding area were described in detail elsewhere (Schuhmacher et al., 1999a,b,c). 

 

2.2. Sampling 

During 2012-2013, adipose tissue samples of 15 autopsied subjects living in 

zones of Tarragona County (Catalonia, Spain) under potential impact of the HWI were 

collected. At the time of death, all the individuals had lived for at least the last 10 years 

in the area under evaluation. All samples were obtained from the same body 

compartment (abdominal adipose tissue). Samples were stored in polyethylene 

containers and kept at -20 °C until analysis. Samples were classified according to sex (9 

men and 6 women) and age (mean age of the subjects was 52 years, ranging from 30 

to 74). Individual and medical information of the participants were collected by passing 

a questionnaire to the relatives. No occupational exposure to PCDD/F was found for any 

of the subjects. Sampling was conducted in collaboration with forensic physicians of the 
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Institute of Legal Medicine of Catalonia (Tarragona Division), whose Research 

Committee evaluated and approved the study. 

 

2.3. Analytical procedure 

Analysis of PCDD/Fs was done according to a procedure derived from the US 

EPA methods 1613 and 8290A. Samples were dissolved in hexane, and a mixture of 
13C12-PCDD/F standards was spiked in order to control potential losses during the 

extraction and clean-up processes. Lipids were destructed by adding acid silica. In order 

to remove interfering components, a multi-step clean-up was performed. The first step 

consisted on a multilayer silica column clean-up. Further, the extract was eluted on a 

basic alumina column by passing different solvents in order to separate PCDD/Fs from 

other compounds. The PCDD/F fraction was collected and concentrated to near dryness 

with a nitrogen flux. Finally, 25 μL of 13C12-PCDD/F injection standards were added. 

The analysis of PCDD/Fs was carried out by high resolution gas 

chromatography/high resolution mass spectrometry (HRGC/HRMS). The extract 

obtained after extraction and clean-up was injected on an Agilent 6890 gas 

chromatograph equipped with a ZB5-MS capillary column and coupled to a Waters 

Autospec Ultima mass spectrometer. The chromatographic process separated the 17 

toxic 2,3,7,8-substituted congeners from each other. The mass spectrometer measured 

(via “selected ion recording” at a resolution of >10 000) two selected ions per congener 

group for both the native and labelled compounds. The calculation of the concentrations 

was done by using the corresponding 13C congener level, automatically correcting 

according to the recovery percentage specific for each congener. In addition, the relative 

standard deviation (RSD) was calculated as a measure of the uncertainty. In all cases, 

the RSD of the control sample was lower than 10%. 

 

2.4. Data treatment 

The SPSS 19.0 statistical software package was used for data analysis. Total 

PCDD/F concentrations were calculated according to the 2005 WHO-TEFs (van den 

Berg et al., 2006). PCDD/F levels obtained in previous campaigns (1998, 2002 and 2007) 

were also recalculated according to the 2005 WHO-TEFs. The Levene test was applied 

to study the equality of variances. Furthermore, the ANOVA or Kruskal–Wallis tests were 

executed. A probability lower than 0.05 (p < 0.05) was considered as statistically 

significant. For calculations, when a PCDD/F congener presented a level below the 
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respective limit of detection (LOD), the concentration was assumed to be one-half of that 

limit (ND = 1/2 LOD). 

 

3. Results and Discussion 

3.1. Concentrations of PCDD/Fs in adipose tissue 

The individual PCDD/F concentrations in adipose tissue samples from 15 

subjects from Tarragona County, are summarized in Table 1. Age and sex of the 

individuals are also given. The mean levels of the 17 substituted-PCDD/F congeners, as 

well as the total PCDD/F concentration, in adipose tissue samples collected in the 

baseline (1998), previous (2002 and 2007) and current (2013) surveys, are summarized 

in Table 2. In the baseline (1998) study, a mean PCDD/F concentration in adipose tissue 

of 32.1  pg WHO-TEQ/g fat was found (median: 26.7 pg WHO-TEQ/g fat; range: 14.2-

70.1 pg WHO-TEQ/g fat) (Schuhmacher et al., 1999b). In the 2002 survey, the mean 

and median levels of PCDD/Fs were 9.9 and 6.8 pg WHO-TEQ/g fat, with minimum and 

maximum values of 1.4 and 36.1 pg WHO-TEQ/g fat, respectively (Schuhmacher et al., 

2004). In the immediately previous campaign (2007), the mean PCDD/F concentration 

in adipose tissue was 14.6 pg WHO-TEQ/g fat (median: 7.5 WHO-TEQ/g), with values 

ranging from 3.3 to 55.4 pg WHO-TEQ/g fat (Nadal et al., 2008).  

In the current (2013) survey, mean and median PCDD/F concentrations of 11.5 

and 7.4 pg WHO-TEQ/g fat, respectively, were observed, while minimum and maximum 

concentrations were 2.8 and 46.3 pg WHO-TEQ/g fat, respectively. Comparing the mean 

PCDD/F concentrations of the baseline (1998) study with those of the current (2013) 

survey, an important significant reduction was found (64%). However, during the period 

2002-2013 no significant differences in the mean PCDD/F concentrations were noted, 

being median levels very similar. This temporal trend is in agreement with the significant 

reduction of PCDD/Fs in other biological tissue samples from non-occupationally 

exposed people of the same area. 
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Table 1. Individual PCDD/F concentrations (pg WHO-TEQ/g fat) in adipose tissue 
samples of individuals who had been living for at least the last 10 years in Tarragona 
County, Spain. 

Sample  Gender  Age (years)  pg WHO-TEQ/g fat  
1 M 56 10.2 
2 M 53 7.4 
3 F 74 21.4 
4 M 37 2.9 
5 F 40 6.7 
6 M 50 18.2 
7 M 59 11.3 
8 M 46 2.8 
9 M 56 12.8 

10 F 72 46.3 
11 F 40 5.1 
12 M 64 6.0 
13 M 36 2.9 
14 F 73 13.9 
15 F 30 5.1 

 M: Male; F: Female 

 

Table 2. Mean levels of PCDD/F congeners (in pg/g fat) in adipose tissue 
samples of residents near a HWI in Tarragona County (Catalonia, Spain). 

Congener  1998 2002 2007 2013 
2,3,7,8-TCDD 4.13 ± 3.03a 1.39 ± 1.53b 1.68 ± 1.86b 1.24 ± 1.14b 
1,2,3,7,8-PeCDD 11.37 ± 4.74a 3.73 ± 3.51b 5.28 ± 4.80b 4.11 ± 3.48b 
1,2,3,4,7,8-HxCDD 5.61 ± 2.86a 2.78 ± 1.73b 3.30 ± 3.61a,b 2.26 ± 2.26b 
1,2,3,6,7,8-HxCDD 59.4 ± 30.2a 19.2 ± 18.9b 28.1 ± 29.3b 25.3 ± 26.6b 
1,2,3,7,8,9-HxCDD 8.12 ± 6.45a 2.08 ± 2.03b 3.55 ± 4.47b 2.63 ± 4.37b 
1,2,3,4,6,7,8-HpCDD 84.9 ± 60.9a 10.2 ± 8.0b 20.0 ± 28.9b 20.3 ± 52.9b 
OCDD 477.5 ± 320.2a 53.6 ± 51.0b 151.9 ± 187.8b 113.3 ± 195.6b 
2,3,7,8-TCDF 0.94 ± 0.58a 0.34 ± 0.4b 0.40 ± 0.40b 0.35 ± 0.27b 
1,2,3,7,8-PeCDF 0.92 ± 0.47a,b 0.5 ± 0.45b 1.4 ± 1.33a 0.31 ± 0.26b 
2,3,4,7,8-PeCDF 21.1 ± 11.5a 5.71 ± 5.95b 9.94 ± 9.43b 7.43 ± 6.93b 
1,2,3,4,7,8-HxCDF 7.02 ± 3.33a 2.32 ± 1.75b 3.29 ± 3.25b 2.83 ± 2.97b 
1,2,3,6,7,8-HxCDF 8.22 ± 3.99a 2.03 ± 1.86b 3.31 ± 3.47b 2.69 ± 2.86b 
1,2,3,7,8,9-HxCDF 0.62 ± 0.35a 0.39 ± 0.41b 0.06 ± 0.05b 0.07 ± 0.05b 
2,3,4,6,7,8-HxCDF 2.2 ± 1.28a 0.38 ± 0.44a 0.88 ± 0.73a 0.69 ± 1.15a 
1,2,3,4,6,7,8-HpCDF 4.81 ± 2.17a 2.06 ± 0.65a 2.99 ± 2.54a,b 2.34 ± 3.13b 
1,2,3,4,7,8,9-HpCDF 0.39 ± 0.10a 0.31 ± 0.52a,b 0.10 ± 0.06b 0.11 ± 0.05b 
OCDF 0.72 ± 0.27a 2.59 ± 1.27b 0.49 ± 0.30a 0.31 ± 0.15a 
Total WHO-TEQ 32.1 ± 15.3a 9.9 ± 9.3b 14.6 ± 14.2b 11.5 ± 11.1b 

 a,bDifferent superscripts indicate statistically significant differences at p <0.05. In 
parenthesis, median values. 
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Between 1998 and 2012, a significant decrease of mean PCDD/F concentrations 

in plasma from residents in Tarragona County was found. Levels were reduced from 27.0 

to 6.18 pg I-TEQ/g lipid (77%; p<0.001) (Nadal et al., 2013). Similarly, the concentrations 

of PCDD/Fs in breast milk of women living in the same area were significantly lower in 

2012 than those obtained in the 1998 survey (12.2 and 4.8 pg WHO-TEQ/g fat, 

respectively; p<0.001). Although the overall assessment of the data indicate a similar 

decreasing trend of PCDD/F burdens in the 3 biomonitors (plasma, breast milk, and 

adipose tissue), the profile of this latter is slightly different from the remaining two. The 

temporal decline of PCDD/Fs in plasma and breast milk has been progressive, being the 

values of the intermediate sampling campaigns lower than that of the baseline survey 

(1998), but higher than that of the most recent study (2012-2013). Thus, mean plasma 

concentrations of 15.7 and 9.36 pg I-TEQ/g lipid were found in 2002 and 2007, 

respectively, while PCDD/F levels in breast milk in 2002 and 2007 were 10.6 and 7.6 pg 

WHO-TEQ/g fat, respectively. On the other hand, the most important reduction of 

PCDD/Fs in fat tissue was only detected in the period 1998-2002, while no significant 

changes have been found since then. This would indicate that fat tissue acts more as a 

storage compartment, when compared with plasma and breast milk. Anyhow, the 

significant reduction in the levels of PCDD/Fs in fat tissue is consistent with the 

decreasing trend in the dietary intake of PCDD/Fs observed in recent years. The intake 

of PCDD/Fs through food consumption for the adult population of Tarragona County was 

210.1 pg I-TEQ/day in the baseline survey (1998) (Domingo et al., 1999), while in 2012 

the dietary intake dropped to 33.1 pg WHO-TEQ/day (Domingo et al., 2012), being this 

intake similar to that previously found in 2006 (Martí-Cid et al., 2008). Although human 

exposure to PCDD/Fs may occur through a number of routes such as inhalation, dermal 

contact, and ingestion of soils and dust, it is well known that the diet is quantitatively the 

main exposure pathway for non-occupationally exposed individuals (Nadal et al., 2004; 

Passuello et al., 2010; Windal et al., 2010).  

The current concentrations of PCDD/Fs in samples of adipose tissue from 

individuals of Tarragona County are within the range of those reported in the scientific 

literature. Takenaka et al. (2002) found mean PCDD/F concentrations of 49.0 pg WHO-

TEQ/g fat in fat tissue of Japanese people, collected in 1999, being this level similar to 

the results of our baseline survey, conducted only one year before. In Turkey, Çok et al. 

(2007) observed that PCDD/F concentrations ranged from 3.2 to 19.7 pg WHO-TEQ/g 

fat (mean: 9.2 pg WHO-TEQ/g fat) in 23 adipose tissue samples collected from men in 

2004. In turn, Shen et al. (2009) reported that the mean PCDD/F level in 24 adipose 

tissue samples collected in 2006 in the Zhejiang Province (China) was 19 pg TEQ/g fat 
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(range: 2.5-56 pg TEQ/g fat). In general terms, these levels are quite similar to those 

found in the present survey. Furthermore, our results indicate that the incineration of 

hazardous wastes did not result in any detectable exposure of PCDD/Fs to the 

population surrounding the facility, as indicated by the TEQ levels in adipose tissue. The 

PCDD/F congener profile showed that OCDD was the predominant congener, followed 

by 1,2,3,6,7,8-HxCDD and 1,2,3,4,6,7,8-HpCDD (Table 2). On the other hand, all 

samples showed considerably higher levels of dioxins (PCDDs) than furans (PCDFs), 

which is in agreement with the results of our previous studies (Schuhmacher et al., 

1999b, 2004). Table 3 summarizes the PCDD/F concentrations in adipose tissue of each 

one of the sampling campaigns, classified according to gender. Similarly to previous 

surveys, in the current (2013) study women showed notable higher levels of PCDD/Fs 

than men (16.4 vs. 8.3 pg WHO-TEQ/g fat). However, the difference was not significant 

in any of the four studies.  

 

Table 3. Concentrations of PCDD/Fs (in pg WHO-TEQ/g fat) in adipose tissue of 
individuals who had lived in Tarragona County (Catalonia, Spain), according to gender.  

 1998 2002 2007 2013 
Men 25.3 ± 9.4 7.2 ± 3.5 11.2 ± 8.1 8.3 ± 5.3 
Women 45.7 ± 16.7 17.4 ± 16.1 23.8 ± 23.9 16.4 ± 15.9 

Data given as mean ± standard deviation; n: number of samples 

 

An increase of PCDD/F levels in adipose tissue with age was observed (R2= 

0.4389) not only in the current (2013) survey but also in previous (1998, 2002 and 2007) 

studies. The concentrations of PCDD/Fs in 60 samples of adipose tissue collected 

between 1998 and 2012, according to the age at the time of death, are depicted in Fig. 

1. Additionally, in order to analyze the potential differences of the PCDD/F concentration 

in adipose tissue in the younger and older populations, samples were classified into two 

groups: people aged <55 years and ≥55 years. A separation point of 55 years old was 

selected because the average age of the individuals under study was 52.4 years old and 

the median was 53 years old. In 2013, PCDD/F concentrations of 5.85 and 17.40 pg 

WHO-TEQ/g fat were observed in the group of under and over 55 years, respectively, 

reaching this difference the level of statistical significance (p<0.05). Taking into account 

the global number of samples from the 4 campaigns (n=60), mean PCDD/F levels in 

adipose tissue of people who had died being <55 years and ≥55 years were 11.47 and 

25.52 pg WHO-TEQ/g fat, respectively (p<0.01). In Korea, Moon et al. (2011) found a 

mean concentration of PCDD/Fs of 3.4 pg TEQ/g fat in human adipose tissue from 
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women (aged between 40 and 68). No correlations were observed between the age of 

the subject and the burdens of dioxin-like contaminants. Similarly, no significant 

correlations between age and PCDD/F levels in human adipose tissue were found in 

China (Shen et al., 2008). In contrast, some European investigators have detected a 

positive association between PCDD/F levels in adipose tissue and age, in 420 individuals 

living in southern Finland (Kiviranta et al., 2005), and in 20 women living in southern 

Spain (López-Espinosa et al., 2008). Although notable differences in the PCDD/F body 

burdens have been noted in different geographical areas, mainly linked to fish 

consumption (Nadal et al., 2004b), the reasons of this should be studied in more detail. 

Age is likely an indicator of past cumulative exposures. People born in earlier times 

experienced higher environmental PCDD/F levels and thus they carry a higher body 

burden through life. There is evidence from human and animal studies that blood dioxin 

half-lives, in the absence of weight change or fat redistribution, increase with age. 

However, this effect is relatively minor compared to the birth cohort effect of historical 

exposures (Lorber and Phillips, 2002).  

 

 

Fig. 1.  PCDD/F concentrations in samples of adipose tissue from individuals of 
Tarragona County in 1998, 2002, 2007 and 2013. 
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The accumulation of PCDD/Fs according to gender has also been assessed in a 

number of investigations. However, most of them have focused on blood and plasma.  

Fromme et al. (2009) did not find any significant difference in the blood concentration of 

PCDD/Fs between men and women. However, they observed a significant increase in 

the WHO-TEQ levels with age. In the city of Mataró (Catalonia, Spain), Parera et al. 

(2013) recently found that PCDD/F levels in blood were higher in women than in men, 

showing both gender groups a slight reduction in comparison to precedent campaigns. 

Reis et al. (2007) also noted slightly higher PCDD/F levels in blood of Portuguese 

women, although differences in dioxin blood levels between males and females were not 

statistically significant. These authors also found that age was also associated with total 

TEQs in blood, with a significant correlation in a way that elder individuals owned higher 

PCDD/F values.  

In recent years, the evaluation of several NHANES data sets have shown that a 

number of POPs are related to either body mass index (BMI) or waist circumference (Lee 

et al., 2007; Elobeid et al., 2010). BMI is physiologically related to the body’s capacity to 

eliminate PCDD/Fs (Schildkraut et al., 1999). The elimination capacity of PCDD/Fs is 

indirectly proportional to the content of body fat, as individuals with less fat may eliminate 

2,3,7,8-TCDD more easily (Emond et al., 2005; Collins et al., 2007). Since BMI tends to 

increase with age, it is difficult to study the effects of BMI independently of age. Collins 

et al. (2007) reported that age and BMI are both important factors for assessing 

background levels of 2,3,7,8-TCDD. Several studies indicate that body fat turnover is 

regulated at least, in part, by fat patterning, and that upper body fat turns over at a higher 

rate than peripheral fat located below the hips (Rodin, 1992). Therefore, measures other 

than BMI may provide further insight into the relationship between the amount and 

distribution of body fat and the capacity to store and eliminate PCDD/Fs. Although the 

amount of body fat has been also correlated with PCDD/F levels, it is rarely adjusted 

when comparing potentially exposed populations to a surveyed background (Landi et al., 

1998). Pharmacokinetic properties of POPs can explain the observed relationships. 

POPs are stored in lipid reservoirs, while their concentrations change predictably with 

changes in adipose tissue volume. Levels in blood are proportional to blood lipid content, 

and weight gain increases the POP half-life (Thomaseth and Salvan, 1998). Lim et al. 

(2011) observed that weight gain over 10 years resulted in lower levels of polychlorinated 

biphenyls (PCBs) compared with weight stable or weight-loss conditions. However, the 

pharmacokinetics is complex, and relationships between POPs and a number of factors, 

such as BMI or weight change, are difficult to evaluate. Temporal changes depend on 

the magnitude and time of exposure, ongoing exposure, body fat mass, and changes in 
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fat mass during the time between exposure and the time of blood sampling, among 

others.  

The pharmacokinetic characteristics of each PCDD/F congener determine the 

transport of chemicals, which pass from blood to the fat tissue. These characteristics 

include, for example, lipophilicity of the substance, molecular diameter, molecular weight, 

molar volume, and octanol-water partition coefficient (Kow). Some constitutional 

descriptors such as the number and position of attached halogens and the number of 

hydrogen-bond acceptors, have also some contribution. The position of the halogen 

substitutes will determine the rigidity of the molecular structure and, consequently, its 

ability to pass from blood to other tissues (Mannetje et al., 2012). Recent studies suggest 

that different PCDD/F congeners have different partition coefficients that are dependent 

on the properties listed above (Needham et al., 2011). In addition, this ratio can be 

modified by the half-life of each PCDD/F congener. The ratio between the concentration 

of each PCDD/F congener in fat tissue and human plasma, expressed on a lipid basis, 

for the non-occupationally exposed subjects of Tarragona County (Spain) is shown in 

Table 4. All PCDD congeners showed fat:blood ratios >1, being 2,3,7,8-TCDD and 

OCDD those presenting the highest and lowest relationships (3.7 and 1.5, respectively). 

In turn, PCDFs showed a completely different pattern of the fat:blood ratio, with values 

under the unity for most congeners. The higher ratio was noted for 2,3,4,6,7,8-HxCDF 

(3.3), while 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, and 1,2,3,6,7,8-HxCDF showed 

values >1. The reasons behind these patterns need further investigations. These results 

have certain limitations because the samples of plasma and adipose tissue are not from 

the same individuals. Although studies did not differ in the timing of the sampling of both 

plasma and adipose tissue, being the mean age of subjects quite similar (52 and 50 

years for donors of fat tissue and blood, respectively), different dietary habits could have 

altered these ratios. 
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Table 4. Fat: blood ratio of PCDD/Fs in subjects living in Tarragona County (pg/g lipid).  

Congener PCDD/Fs in fat 
tissue (pg/g lipid) a 

PCDD/Fs in plasma 
(pg/g lipid) 

Fat:blood 
(unitless) 

2,3,7,8-TCDD  1.2 0.3 3.7 
1,2,3,7,8-PeCDD  4.1 2.1 1.9 
1,2,3,4,7,8-HxCDD  2.3 1.1 2.1 
1,2,3,6,7,8-HxCDD  25.3 10.2 2.5 
1,2,3,7,8,9-HxCDD  2.6 1.4 1.8 
1,2,3,4,6,7,8-HpCDD  20.3 9 2.3 
OCDD  113.3 75.8 1.5 
2,3,7,8-TCDF  0.3 4.4 0.07 
1,2,3,7,8-PeCDF  0.3 2.5 0.12 
2,3,4,7,8-PeCDF  7.4 4.4 1.7 
1,2,3,4,7,8-HxCDF  2.8 2.4 1.2 
1,2,3,6,7,8-HxCDF  2.7 1.9 1.4 
1,2,3,7,8,9-HxCDF  0.1 0.6 0.17 
2,3,4,6,7,8-HxCDF  0.7 0.2 3.3 
1,2,3,4,6,7,8-HpCDF  2.3 5.4 0.43 
1,2,3,4,7,8,9-HpCDF  0.1 0.5 0.2 
OCDF  0.3 6.5 0.05 

a From Nadal et al. (2013) 

 

3.2. Physiologically-based pharmacokinetic (PBPK) model 

Physiologically-based pharmacokinetic (PBPK) models are mathematical 

representations of the human body where the tissues are considered well-stirred 

compartments linked by the blood flow (Nestorov, 2007). The final result is a set of 

ordinary differential equations that can be mathematically solved to predict the 

concentration of chemicals in human tissues. In recent years, PBPK models have been 

used in human health risk assessment to estimate the burdens of chemicals in human 

tissues, thus avoiding the analysis of this kind of samples (Chiu et al., 2007; Clewell and 

Clewell III, 2008). In the present study, a previous PBPK model (Maruyama et al., 2003; 

Fàbrega et al., 2014) was adapted to assess the concentration of PCDD/Fs in adipose 

tissue in four temporal scenarios: 1998, 2002, 2007 and 2013. The simulations were run 

for adult individuals living in the same area of study. Oral intake was assumed to be the 

only exposure pathway. Data about dietary intake of PCDD/Fs were obtained from 

previous studies conducted in the same area (Domingo et al., 1999; Bocio and Domingo, 

2005; Martí-Cid et al., 2008; Domingo et al., 2012). Data of intakes and absorption rates 

were summarized in Table S1 (Annex 3). The characteristics and parameters of the 

model were previously described (Nadal et al., 2013). Briefly, 7 body compartments were 
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considered: blood, muscle, skin, richly perfused, adipose, kidney, and liver. The intake 

of PCDD/Fs, as well as other PBPK model parameters (e.g., volume, absorption, 

elimination and cardiac output of each tissue), were considered constant along time. The 

physical basis of the adipose tissue diffusion is related to the octanol:water partition 

coefficient (Kow). At steady state, the log Kow predicts the capacity of the chemical to 

diffuse into adipose tissue, being therefore accumulated in fat. 

PCDD/F concentrations in the flow limited compartments (muscle, skin, richly 

perfused, fat, kidney and liver) were estimated by applying the following equation: 

Vi

pKi

Ci
CaQi

dt

dCi 







−×

=
:

    (1) 

where Ci is the concentration of PCDD/Fs in the tissue i (pg/L), Qi is the blood 

flow in the tissue i (L/h), Ca is the arterial concentration (pg/L), Ki:p is the partition 

coefficient of tissue i, and Vi is the volume of the tissue i (L). 

The PCDD/F content in the blood compartment was assessed by using the 

following equation: 
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dCblood i i
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∑ ∑:
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where Cblood is the concentration of PCDD/Fs in blood (pg/L), Qi is the blood 

flow in the tissue i (L/h), Ci is the concentration in the tissue i (pg/L), Ki:p is the partition 

coefficient of tissue i, D is the oral dose (pg/day), Abs is the gastrointestinal absorption 

(%), and Vblood is the volume of the tissue i (L).  

Since liver was considered as an elimination organ, the predicted concentration 

of PCDD/Fs in this tissue was estimated by the following equation: 

Vliver

KVliverCliver
pKl

Cliver
CaQliver

dt

dCliver
1:

××−






 −×
=

  (3) 

where Cliver is the concentration of PCDD/Fs in blood (pg/L), Qliver is the blood 

flow in the liver, Ca is the arterial concentration, Kl:p is the partition coefficient in the liver, 

K1 is the elimination constant, partition coefficient (Kp) and Vliver is the volume in liver 

(L). Values of tissue volumes, cardiac output, absorption and elimination constants were 
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the same used in our previous models (Nadal et al., 2013), and were summarized in 

Table S2 and Table S3 (Annex 3). 

A density of 0.92 g/mL in adipose tissue was used to recalculate the final 

concentration in pg/g tissue (Brown et al., 1997). The final system was a set ordinary 

differential equations which was handled by using Berkeley Madonna v.8.3.18. Stiff was 

considered as the method to solve the differential equations, while the step size (SD) in 

the simulations was set at 0.0001. 

The measured and simulated concentrations of PCDD/Fs in fat tissue for the 

1998 (baseline), 2002, 2007 and 2013 (current) surveys are summarized in Table 5. 

When comparing the modelled and experimental concentrations of PCDD/Fs in fat 

tissue, expressed as total WHO-TEQ, it can be observed that similar values were 

obtained in the four scenarios. However, experimental results are slightly higher than 

those simulated for all the surveys. Analyzing PCDD/F congeners individually, the 

simulated concentrations of all PCDDs, excepting 1,2,3,7,8,9-HxCDD, tended to suffer 

an underestimation with respect to those observed levels. In turn, the simulated levels of 

PCDFs, excepting 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, were 

slightly higher than those experimentally obtained. OCDF showed the most important 

difference between simulated and measured concentrations of PCDD/Fs, being 2-3  

 

 

Fig. 2.  Comparison between measured and simulated concentrations of 
PCDD/Fs in samples of adipose tissue collected in 1998, 2002, 2007 and 2013. 
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Table 5. Comparison between simulated (Sim) and measured (Exp) concentrations of 
PCDD/Fs found in adipose tissue of adults living near the HWI of Tarragona County 
(Spain).  

  1998  2002  2007  2013 
   Sim Exp  Sim Exp  Sim Exp  Sim Exp 

2,3,7,8-TCDD  3.40 4.13  0.81 1.39  0.48 1.68  0.88 1.24 
1,2,3,7,8-PeCDD  3.91 11.37  2.25 3.73  1.68 5.28  1.62 4.11 
1,2,3,4,7,8-HxCDD  0.89 5.61  0.74 2.78  0.35 3.30  0.22 2.26 
1,2,3,6,7,8-HxCDD  10.22 59.40  3.29 19.20  2.03 28.10  0.87 25.35 
1,2,3,7,8,9-HxCDD  9.07 8.12  4.37 2.08  2.19 3.55  5.32 2.63 
1,2,3,4,6,7,8-  64.24 84.90  8.04 10.20  3.10 20.00  3.80 20.29 
OCDD  114.52 477.50  7.85 53.60  2.67 151.90  3.53 113.27 
2,3,7,8-TCDF  8.21 0.94  2.10 0.34  1.08 0.40  1.86 0.35 
1,2,3,7,8-PeCDF  9.23 0.92  2.18 0.50  0.88 1.40  0.91 0.31 

2,3,4,7,8-PeCDF  11.52 21.10  4.76 5.71  1.81 9.94  2.62 7.43 
1,2,3,4,7,8-HxCDF  9.70 7.02  2.37 2.32  0.92 3.29  1.50 2.83 
1,2,3,6,7,8-HxCDF  4.53 8.22  1.34 2.03  0.60 3.31  0.62 2.69 
1,2,3,7,8,9-HxCDF  1.54 0.62  1.43 0.39  0.49 0.06  1.35 0.07 
2,3,4,6,7,8-HxCDF  3.93 2.20  3.14 0.38  0.53 0.88  1.14 0.69 
1,2,3,4,6,7,8-  45.72 4.81  5.98 2.06  4.99 2.99  9.63 2.34 
1,2,3,4,7,8,9-  9.11 0.39  1.67 0.31  1.32 0.10  3.12 0.11 
OCDF  376.86 0.72  9.59 2.59  40.67 0.49  21.78 0.31 

WHO-TEQ  17.19 32.1  6.59 9.94  3.66 14.6  4.77 11.5 

Concentrations are given in pg/g tissue. 

 

orders of magnitude higher than the modelled results (21.78 vs. 0.31 pg/g fat). Notable 

dissimilarities between estimated and observed concentrations of OCDF in adipose 

tissue were also reported in previous campaigns (1998, 2002, and 2007). The transfer 

of POPs from the vascular environment to other biological tissues is highly influence by 

pharmacokinetic factors, such as tissue volume, anatomical localization, and blood flow 

rate. The default approach assumes that the tissue is flow limited. It means that the 

distribution of chemicals contained in blood across the well-stirred tissue compartment 

is fast and homogenous. Although this assumption is valid for the distribution of many 

xenobiotic chemicals into many tissues, because of their diffusion-limited characteristics, 

it appears to be incorrect for the movement of several highly lipophilic POPs across the 

adipose tissue (Levitt, 2010; La Merrill et al., 2013). In this case, the distribution of the 

chemicals is slower and may be incomplete. A comparison between measured and 

simulated concentrations of PCDD/Fs in samples of human adipose tissue collected in 

1998, 2002, 2007 and 2013, is depicted in Fig. 2. Because food intake was assumed to 

be the only single exposure pathway, a significant reduction of fat concentrations of 
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PCDD/Fs was noted. This is in agreement with the significant decrease found in the 

dietary intake of PCDD/Fs (Domingo et al., 2012). An important uncertainty, represented 

by the high standard deviations, was observed in the experimental concentrations of 

PCDD/Fs. As abovementioned, age and BMI of individuals can affect PCDD/F 

accumulation in fat tissue. In addition, diverse dietary patterns may be also the reason 

of the differences found between individuals. Anyhow, simulated concentrations of 

PCDD/Fs in fat were within the range of experimental values, irrespectively of the 

sampling year. According to Berezhkovskiy (2011), the classical pharmacokinetic 

analysis of highly lipophilic POPs at low concentrations often leads to a substantial 

underestimation of the distribution volume during steady state (Vss) in obese people. 

Therefore, an accurate determination of Vss is required to assess the distribution and 

kinetics of environmental chemicals. In any case, further research to improve the 

understanding of the adipose tissue:blood partitioning mechanisms, and the differences 

according to the PCDD/F congener, is needed. Moreover, the histological and 

anatomical structure of different types of adipose tissue can influence their contribution 

to toxicokinetics (Sbarbati et al., 2010). Furthermore, age and BMI may be also important 

in epidemiology studies, where back-extrapolation from current PCDD/F levels is used. 

In order to improve the model, different partition ratios for each PCDD/F congener should 

be taken into account. Another issue for improvement is the inclusion of dynamic 

parameters of exposure, such as time varying lifetime exposure. 

 

4. Conclusions 

The PCDD/F concentrations in adipose tissue of 15 individuals who had been 

living for at least the last 10 years near a HWI located in Tarragona County (Spain), were 

here determined. A mean PCDD/F level of 11.5 pg WHO-TEQ/g fat was found, being 

significantly lower than the concentration observed in 1998 (32.1 pg WHO-TEQ/g fat), 

when the facility was still inactive (Schuhmacher et al., 1999b). Current values of 

PCDD/Fs in adipose tissue in Tarragona County are of the same order of magnitude 

than those recently observed in a number of industrialized countries. The important 

decrease, which was also noted in other biological monitors such as plasma and breast 

milk (Nadal et al., 2013; Schuhmacher et al., 2013), agrees well with the notable 

reduction in the dietary intake of PCDD/Fs recently found for the population living in the 

same area. Our findings confirm that, after 14 years of regular operations, air emissions 

of PCDD/Fs from the HWI do not mean a significant additional exposure to these organic 

pollutants for the population living near the facility. 
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On the other hand, our adapted PBPK model has demonstrated to be a reliable 

tool to predict the levels of PCDD/Fs in fat tissue, as it was also in plasma (Nadal et al., 

2013). Although the application of the model should be of great interest to estimate the 

long-term accumulation of PCDD/Fs, not only in fat, but also in other biological tissues, 

an improvement of the PBPK model is required to obtain more accurate results. 
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Discussion of Chapters II and III 
 

The PBPK model was firstly developed for PCDD/Fs, which show a relatively 

simple PK/PD behavior in the human body. PCDD/Fs are highly absorbed, while it was 

assumed they are not metabolized and the elimination mechanism is only through feces. 

PCDD/Fs were mainly chosen as a representative of classic POPs. The simulated results 

of PCDD/Fs in plasma and adipose tissue were very coincident with the experimental 

values, not only in terms of I-TEQ, but also in the profile of the 17 PCDD/F congeners. 

Measured mean level in plasma was 6.18 pg I-TEQ/g lipid, while modelled concentration 

was 7.9 pg I-TEQ/ g lipid. According to WHO (2010), a PBPK model may be considered 

as adequate if, on average, simulation results are inside the range within a factor of two 

of experimental data. Furthermore, for the first time adipose tissue has been validated 

demonstrating the reliability of PBPK to simulate fat. Due to their high octanol water 

partition coefficient (log Kow>4), adipose tissue is the main site of accumulation of 

PCDD/Fs. Hence, it is highly important to monitor this compartment. In adipose tissue, 

the simulated vs experimental levels of PCDD/Fs were also of the same order of 

magnitude (4.77 vs 11.15 pg I-TEQ/g lipid). Therefore, PBPK models have proven to be 

validated to estimate long-term concentrations of PCDD/Fs in human tissues.  

The PBPK model was also applied to evaluate temporal trends of PCDD/Fs in 

the human body. The simulation was carried out in four temporal scenarios: 1998, 2002, 

2007 and 2013. As a consequence of the reduction of PCDD/F emission sources, the 

levels of PCDD/Fs in human tissues have been decreasing over the last years in 

Tarragona County. In plasma, the concentration of PCDD/Fs were 27.0, 15.7, 9.36 and 

6.18 pg I-TEQ/g lipid in 1998, 2002, 2007 and 2013. In adipose tissue, the concentrations 

were 32.1, 9.9, 14.6 and 11.5 pg WHO-TEQ/g fat, respectively, in the same campaigns.  

According to our results, the use of PBPK models may notably reduce the cost 

of surveillance studies by minimizing the number of biological samples, something critical 

in the context of the current economic crisis. Moreover, the PBPK models are capable to 

make predictions of future scenarios of concentrations of PCDD/Fs in human tissues. 
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 CHAPTER 4 

PBPK MODELING FOR PFOS AND PFOA: VALIDATION WITH 
HUMAN EXPERIMENTAL DATA 

Abstract 

In recent years, because of the potential human toxicity, concern on 

perfluoroalkyl substances (PFASs) has increased notably with special attention to 

perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Unfortunately, 

there is currently an important knowledge gap on the burdens of these chemicals in most 

human tissues, as the reported studies have been mainly focused on plasma. In order 

to overcome these limitations, the use of physiologically-based pharmacokinetic (PBPK) 

models has been extended. The present study was aimed at testing an existing PBPK 

model for their predictability of PFOS and PFOA in a new case-study, and also to adapt 

it to estimate the PFAS content in human tissue compartments. Model validation was 

conducted by means of PFOA and PFOS concentrations in food and human drinking 

water from Tarragona County (Catalonia, Spain), and being the predicted results 

compared with those experimentally found in human tissues (blood, liver, kidney, liver 

and brain) of subjects from the same area of study. The use of human-derived partition 

coefficient (Pk) data was proven as more suitable for application to this PBPK model 

than rat-based Pk values. However, the uncertainty and variability of the data are still too 

high to get conclusive results. Consequently, further efforts should be carried out to 

reduce parametric uncertainty of PBPK models. More specifically, a deeper knowledge 

on the distribution of PFOA and PFOS within the human body should be obtained by 

enlarging the number of biological monitoring studies on PFASs.  

 

1. Introduction 

Perfluoroalkyl substances (PFASs) are a group of man-made substances, whose 

chemical structure is a carbon backbone, where the hydrogen has been substituted by 

fluorine. The carbon fluorine bound is among the strongest covalent bounds, conferring 

a high molecular stability. PFASs have widely used in consumer and industrial 

applications, including protective coatings for fabrics and carpets, paper coatings, 

insecticides, paints, cosmetics, and fire-fighting foams (Domingo, 2012). However, the 

properties making these chemicals useful, turns into environmental problems. Thus, 

PFASs show a high persistence and spreading capacity in the environment (Fujii et al., 

2007). Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are among 
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the most widely spread PFASs, having been detected in a number of environmental 

matrices, including water, sediments, soils and biota (Post et al., 2009; Rumsby et al., 

2009; Shi et al., 2012; Zareitalabad et al., 2013). Detectable concentrations of PFOA and 

PFOS have been found in food (Domingo et al., 2012a), while measurements in whole 

blood, plasma or serum samples from humans are also available from the scientific 

literature (Ehresman et al., 2007). Because of their low degradation, high 

bioaccumulation, potential toxicity and long-range transport capacity, both PFOS and 

PFOA are considered as persistent organic pollutants (POPs) (Chaemfa et al., 2010). In 

fact, PFOS was included as a POP under the Stockholm Convention in 2009, while 

PFOA remains a serious candidate to enter that list shortly. Very recently, PFOS was 

also identified as a priority hazardous substance according to the European Directive 

2013/39/EU, in the field of water policy (European Commission, 2013). Consequently, 

regulatory agencies are paying considerable attention to the presence of PFOA and 

PFOS in the environment, as well as to the human health risks associated to their 

exposure. 

Pharmacokinetic and pharmacodynamic characteristics of PFOA and PFOS 

have been studied in animals (Lau et al., 2007; Vanden Heuvel et al., 1991). These 

compounds are highly absorbed, not metabolized and poorly eliminated, being plasma, 

liver, kidney and lungs the main distribution tissues (Cui et al., 2009; Hundley et al., 

2006). Both compounds have a high affinity to albumin, being therefore accumulated in 

plasma. Specific PFOA half-lives in a number of animal species are known. Elimination 

half-lives of PFOA, ranging 2–6 h, 17–19 days, and 30–21 days, have been estimated 

for rats, mice, and monkeys, respectively (Lau et al., 2007; Lau, 2012). Contrastingly, 

PFOA half-life in the human body is markedly higher, with an estimated value of 3.8 

years. Regarding PFOS, half-lives have been established in 1-2 months, 4 months, and 

4.8 years in rodents, monkeys, and humans, respectively (Chang et al., 2012). Although 

the reasons of these differences are not conclusive, it has been hypothesized that it can 

be due to a saturable process of resorption of PFASs from urine to plasma (Andersen et 

al., 2006). In addition to bioaccumulation, toxicity of PFOS and PFOA has been also 

characterized in animals (Lau et al., 2004; Stahl et al., 2011). A number of developmental 

effects, such as reduction of fetal weight, edema, cardiac abnormalities, and delayed 

ossification, as well as behavioral effects, have been reported following acute exposure 

to PFOS (Fuentes et al., 2006, 2007a,b). Subchronic and subacute toxicities induce 

hepatotoxicity, reduction of body weight, reduction of the levels of triglycerides and 

cholesterol in serum, liver hypertrophy and thyroid hormones reduction, while the 

neuroendocrine system seems also to be affected in rats exposed to PFOS (Austin et 
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al., 2003). Recently, PFOA exposure has been suggested to be associated with kidney 

and testicular cancer in human populations (Barry et al., 2013).  

The time dependent concentration of a certain pollutant in human tissues can be 

predicted using physiologically-based pharmacokinetic (PBPK) models. These models 

consider the human body as a set of well stirred compartments linked by the blood flow. 

Physiological processes are represented by a set of ordinary differential equations 

describing the processes of administration, distribution, metabolism and elimination of a 

specific chemical (Loizou et al., 2008; Péry et al., 2013). The final result is a model that 

simulates the time course distribution of a substance in the human body (Nadal et al., 

2013), which helps to quantify the relationship between measures of external exposure 

and internal dose. Detailed species-specific physiological, chemical, and biochemical 

parameters have been obtained. It allows not only extrapolating data to humans, but also 

assessing the possible sources of variability and uncertainty in model parameterization 

(Huizer et al., 2012). Due to their potential power, PBPK models have been largely used 

in pharmacological development and health risk assessment (Chiu et al., 2007; Clewell 

and Clewell III, 2008).  

The objectives of the present study were the following: (1) to test an existing 

PBPK model for their predictability of PFOS and PFOA in a new case-study, and (2) to 

adapt the PBPK model to estimate the burdens in various human tissue compartments. 

The performance of this PBPK model, when using different partition coefficients (Pk), 

either from rats or humans, was studied in detail. In PBPK models, Pk is the main 

regulator parameter of the distribution of chemicals in the human body. Model validation 

was conducted using data on PFOS and PFOA levels in food and drinking water from 

Tarragona County (Tarragona, Spain). The model was calibrated and validated by using 

experimental data from autopsy tissues of subjects residing in the Tarragona County 

area. 

 

2. Materials and Methods 

A new PBPK model for PFOA and PFOS was developed based on a previously 

reported model (Loccisano et al., 2011, 2013). The key process adopted in the model is 

the kinetics of resorption by renal transporters in the filtrate compartment, where 

chemicals are reabsorbed back to plasma through a saturable process (Andersen et al., 

2006; Tan et al., 2008). This resorption mechanism could be responsible for the high 

persistence of PFOA and PFOS in human blood, compared to the low persistence found 

in other animal species (e.g., rat, monkey). In addition to plasma, gut, liver, fat, kidney, 
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filtrate, and the remaining body compartments, the adapted PBPK model included lungs 

and brain. However, since it is not a potential site of absorption/accumulation for PFASs, 

skin was removed. The final compartmental structure of the adapted PBPK model is 

depicted in Fig. 1. The human tissues were selected due to their toxicokinetic relevance: 

plasma as a carrier tissue of PFASs in the human body, gut as an absorption site, kidney 

for its role in elimination (Barry et al., 2013), brain as target organ of PFASs neurotoxic 

effects (Mariussen, 2012), liver as an accumulative tissue for organic chemicals, lungs 

because they may exhibit immaturity after PFOS exposure (Grasty et al., 2005), and fat 

as a main site of accumulation in lipophilic tissues. The rest of the body was considered 

as an independent compartment to include PFASs remaining in other tissues of the 

human body. In plasma, more than 90% of PFOA and PFOS is bound to albumin, while 

<10% is free to move to other tissues (Han et al., 2003). 

 

 

Fig. 1.  Structure of the PBPK model for PFOA and PFOS. 

 

The PBPK model was based on a series of differential equations. The expression 

to estimate the levels of PFOA and PFOS in non-elimination tissues (fat, brain, lungs, 

and rest of the body) was the following: 

( )
Vi

pKiCiCafreeQi

dt

dCi :−××=     (1) 
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where Ci is the cellular concentration in each tissue (pg/mL), Qi is the blood flow 

(mL/h), free means the free amount of PFASs in plasma (unitless), Ca is the arterial 

concentration (pg/mL), Ki:p is the partition coefficient (unitless), and Vi is the tissue 

volume (mL). 

The cellular concentrations of PFOA and PFOS in gut were obtained by applying 

this equation:  

Vg

IntakepKg
CgCafreeQg

dt

dCg 






 +




 −××

=
:

   (2) 

where Cg is the cellular concentration in gut (pg/mL), Qg is the blood flow to gut 

(mL/h), free means the free amount of PFASs in plasma (unitless), Ca is the arterial 

concentration (pg/mL), Kg:p is the gut partition coefficient (unitless), Intake is theoral 

daily intake (pg/h), and Vg is the gut volume (mL). 

With respect to the liver compartment, estimated values of PFASs were 

estimated by means of the following expression: 

Vl

pKl
ClQgQlpKg

CgQgCaQlfree

dt

dCl 












×+−×+××

=
:)(:

  (3) 

where Cl is the cellular concentration in liver (pg/mL), free means the free amount 

of PFASs in plasma (unitless), Ql is the blood flow to liver (mL/h), Ca is the arterial 

concentration (pg/mL), Qg is the blood flow to gut (mL/h), Cg is the cellular concentration 

in gut (pg/mL), Kg:p is the gut partition coefficient (unitless), Kl:p is the liver partition 

coefficient (unitless), and Vl is the liver volume (mL). 

For the kidney compartment the following equation was used:  

Vk

CfilKt

CfilTm

pkK

Ck
CafreeQk

dt

dCk 










+
×+








−××

=
:

   (4) 

where Ck is the cellular concentration in kidney (pg/mL), Qk is the blood flow to 

kidney (mL/h), free is the free amount of PFASs in plasma (unitless), Ca is the arterial 

concentration (pg/mL), Kk:p is the gut partition coefficient (unitless), Tm is the resorption 

maximum (pg/h), Cfil is the cellular concentration in filtrate (pg/mL), Kt is the affinity 

constant (ng/mL), and Vk is the kidney volume (mL). 
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Finally, PFAS concentrations in the filtrate compartment were simulated by 

applying this equation:  

( )

Vfil

CfilKt

CfilTm
CfilCafreeQfil

dt

dCfil 








+
×−−××

=    (5) 

where Cfil is the cellular concentration in filtrate (pg/mL), Qfil is the blood flow to 

filtrate (mL/h), free is the free amount of PFASs in plasma (unitless), Ca is the arterial 

concentration (pg/mL), Tm is the resorption maximum (pg/h), Kt is the affinity constant 

(ng/mL), and Vfil is the filtrate volume (mL). 

Flow limited PBPK equations were used in all tissues (Thompson et al., 2012). 

Physiological data of volumes and cardiac output, which were time-constant, were 

obtained from Brown et al. (1997) (Table 1). Plasma concentrations of PFOA and PFOS 

were adjusted by calibrating the elimination values to fit experimental values from a case-

study (Ericson et al., 2007). Thus, our PBPK model was applied to estimate the burdens 

of PFOS and PFOA for a population living in Tarragona County (Catalonia, NE of Spain), 

from which data on human intake and body burdens were available (Domingo et al., 

2012a,b; Ericson et al., 2007; Pérez et al., 2013). Human exposure to PFOA and PFOS 

was evaluated through two different pathways: water consumption and food intake. 

Water ingestion was calculated as the product of the concentration in human drinking 

water (2.40 and 1.81 ng/L for PFOA and PFOS, respectively) in Catalonia (Domingo et 

al., 2012b) and the most typical value of water daily intake (1.23 L/day), according to the 

US EPA (2011). Similarly, dietary exposure was estimated based on the mean PFAS 

concentration in 40 food items, which are representative of the Catalan diet, and the 

respective daily consumption by the general population (Domingo et al., 2012a). In 

agreement with previous findings (Ericson Jogsten et al., 2012; Fromme et al., 2009; Kim 

et al., 2013), food intake was found to be the most important contributive route to the 

exposure of PFOS and PFOA, with percentages of 97% and 98% of the total intake, 

respectively. Dietary exposure of PFOA and PFOS was estimated in 1.55 and 1.80 ng/kg 

body weight/day, respectively. Overall, the total daily intake of PFOA through water and 

food consumption was estimated to be 0.11 g/day for PFOA, while that of PFOS was 

found to be 0.13 g/day. 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELING OF PCDD/FS AND PFASS IN HUMANS. 
Francesc Fabrega Bonadona 
Dipòsit Legal: T 1660-2014



Chapter 4. PBPK modeling for PFOS and PFOA: Validation with human experimental data 

 

93 

Table 1. Physiological parameters used in the PBPK model for PFOS and PFOA, and 
pharmacokinetic data. 

  Volume Cardiac output 
Plasma 2.78 -  

Fat 1.43 19.03 
Brain 1.50 36.50 
Lungs 1.00 10.61 
Rest of the 61.59 64.27 
Gut  1.14 56.47 
Liver  1.64 58.97 
Kidney 0.29 55.22 
Filtrate 0.03 10.92 
Total  71.4 312 
   PFOA  PFOS  

Tmc 147.4 86.0 
Kt 0.116 0.0176 

Free 0.03 0.03 

Data taken from Brown et al. (1997) and Loccisano et al. (2011); Tmc: resorption 
maximum (µg/h); Kt: affinity constant (µg/L); Free: free fraction in plasma (unitless); Conversion 
from weight to volume was assumed to be 1. 

 

For validation purposes, data on PFOA and PFOS in human tissues from people 

living in the area of study (Tarragona County) were used. Ericson et al. (2007) reported 

the levels of 13 PFASs, including PFOA and PFOS, in blood samples of 48 residents in 

that same area. The mean PFOS concentration in blood was 7.64 ng/mL, while PFOA 

mean level was 1.80 ng/mL. Recently, Pérez et al. (2013) analyzed the concentrations 

of 21 PFASs in 99 samples of autopsy tissues (brain, liver, lung, bone, and kidney) from 

subjects who had been living in Tarragona County (Catalonia, Spain). At the time of 

death, the mean age of subjects was 57 years, with minimum and maximum values of 

28 and 86 years, respectively. A summary of the levels of PFOA and PFOS is shown in 

Fig. 2. Although PFASs have been largely monitored in human blood/plasma (Ehresman 

et al., 2007; Stahl et al., 2011), studies in other human tissues are certainly very limited, 

except some data on breast milk and liver (Kärrman et al., 2010; Lau et al., 2007; Yeung 

et al., 2013). To the best of our knowledge, to date only two studies have reported 

burdens of PFOS and PFOA in other human tissues. In Italy, Maestri et al. (2006) 

analyzed the concentrations of these compounds in samples of human liver, kidney, 

adipose tissue, brain, basal ganglia, hypophysis, thyroid, gonads, pancreas, lung, 

skeletal muscle, and blood. 
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Fig. 2.  Concentrations of PFOA and PFOS in autopsy tissues of 20 residents 
from Tarragona County (Catalonia, Spain). Data from Pérez et al., (2013).  

 

In addition to the model validation, a particular study on the best Pk was 

conducted. Hence, the model was tested by using, as input data, Pk from studies 

conducted with either rats (Loccisano et al., 2011) or humans (Maestri et al., 2006). Data 

sets were compared to detect any improvement in the performance of both original and 

adapted PBPK models. In a flow limited equation, Pk is the main parameter governing 

the distribution of a chemical in the human body. However, this variable is usually 

obtained in animal experimentation studies without taking into account allometric scaling 

factors (Knaak et al., 1995), and assuming a steady state condition between tissue 

concentration and blood level. The final results by applying both data sets were 

compared with those previously observed in human tissues from people living in 

Tarragona County (Ericson et al., 2007; Pérez et al., 2013). The PBPK model was coded 

and simulated by using Berkeley Madona TM v8.3.18 (University of California at Berkeley, 

USA). 
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3. Results and Discussion 

3.1. Original PBPK model 

In the first stage, the PBPK model developed by Loccisano et al. (2011) was used 

to predict PFOA and PFOS concentrations in human tissues for the current case-study. 

Parameterization data were taken from Loccisano et al. (2011), excepting those values 

regarding oral intake of food and drinking water, which were obtained from Domingo et 

al. (2012a). Simulation results were compared with experimental values regarding PFOA 

and PFOS in autopsy tissues from residents in the area of Tarragona (Table 2). Based 

on the model, the presence of PFOA and PFOS in plasma was mostly overestimated. 

The steady-state concentration of PFOA was estimated in 28.7 ng/g, while that of PFOS 

was 21.3 ng/g. Experimental values of PFOS and PFOA in plasma were reported to be 

3.2 ± 1.2 and 13.6 ± 6.3 ng/g, respectively. Similarly, some disagreements were found 

for other human tissues when comparing modeled and monitored levels of both 

chemicals. In liver, the simulated PFOA concentration was 4.5-fold higher than the 

monitored mean value (13.6 ± 35.2 ng/g), while the predicted steady-state level of PFOS 

in liver was lower than empirical concentrations (79.6 vs. 102 ± 123 ng/g). Similar 

relationships were also detected in kidney, where simulated concentrations of PFOA and 

PFOS were 36.1 and 20.5 ng/g, respectively. By contrast, experimental mean levels of 

PFOA and PFOS in kidney were 2.0 ± 2.7 and 75.6 ± 61.2 pg/g. Consequently, the ratio 

of estimated: observed kidney PFOA concentration was 18, while that of PFOS was 0.27. 

According to the model outcomes, PFOA and PFOS concentrations in adipose tissue 

were 1.2 and 3.0 ng/g, respectively. Unfortunately, since no experimental values are 

available for this specific compartment, a comparison could not be carried out in adipose 

tissue. In general terms, the model simulation somehow overestimated the concentration 

for PFOA and PFOS, with the exception of PFOS in liver and kidney. Simulations results 

of PFOA in plasma, liver and kidney were >4-fold higher than the mean experimental 

values. However, predicted and empirical concentrations were of the same order of 

magnitude. Considering that analytical results were highly uncertain and variable, the 

results of the PBPK model should be considered as reasonably good. 
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Table 2. PFOS and PFOA concentration (in ng/g) found in human tissues. 
Experimental vs. simulated data after applying the original PBPK model. 

  Tissue  Experimental  Simulated  

  Mean±SD Min-Max LOD  

PFOA Plasma 3.2±1.2 1.4-5.6 0.66 28.7 

 Liver 13.6±35.2 <3-98.9 3.0 63.1 

 Fat n.a. n.a. n.a. 1.15 

 Kidney 2.0±2.7 <3-11 3.0 36.1 

PFOS Plasma 13.6±6.3 1.4-28.9 0.09 21.3 

 Liver 102±123 <3-405 3.0 79.6 

 Fat n.a. n.a. n.a. 3.01 

  Kidney 75.6±61.2 <6-269 6.0 20.5 

LOD: limit of detection; SD: standard deviation; n.a.: not available. 

 

3.2. Adapted PBPK model 

Because of the toxicological significance of PFOS and PFOA (Huet al., 2012; 

Sato et al., 2009; Yahia et al., 2010), brain and lung were also included in the current 

model (Fig. 1). New Pk values coming from human autopsy tissues (Maestri et al., 2006) 

were also applied and compared with Pk data from rats (Loccisano et al., 2011) (Table 

3). As above mentioned, a constant oral intake of both PFOA and PFOS was considered. 

Descriptor parameters of the urinary elimination were calibrated by means of plasma 

concentrations (Ericson et al., 2007). Again, simulation results including the steady-state 

curve were compared with those recently reported in the same population group living in 

Tarragona County (Pérez et al.,2013). To understand the quality of experimental data, a 

statistical analysis was performed. Outliers (one for PFOA in liver and kidney, two for 

PFOS in brain, and one for PFOS in kidney) were eliminated from data treatment 

to avoid any potential distortion of the results. Predicted vs. observed 

concentrations of PFOA and PFOS, calculated by considering Pk values from 

human tissues are depicted in Fig. 3a and b, respectively. In the cases in which 

PFOA or PFOS levels were not detected in a sample, the concentration was 

assumed to be equal to the respective limit of detection (LOD). PFOA was not 

detected in brain, while it was only quantified in a single sample of kidney. 

Simulation results were clearly closer to empirical values when using Pk values 

from human autopsy tissues, rather than when applying Pk data coming from 
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experimental animal studies (Table 4). In general terms, simulated results were 

found inside the uncertainty range of experimental values, with the exception of 

PFOS in lung. This fact support the hypothesis that PFOS and PFOA are 

resorbed from urine back to plasma in a saturable process, as it was 

parameterized in the model. Although Pk is a key parameter in PBPK modelling, 

Pk values are usually obtained from studies in rodents. Our results highlight the 

importance to obtain Pk data from humans in order to estimate more accurately 

the body burdens of PFASs in particular, and chemical contaminants in general. 

For example, simulated liver concentrations for PFOA in steady-state were 7.03 

and 3.33 ng/g for rat- and human-derived Pk values, respectively, while the 

measured PFOA concentration was 13.6 ± 35.2 ng/g. Liver PFOS levels were 

estimated to be 50.7 and 36.4 ng/g, taking into account the rat- or human- derived 

Pk datum, respectively (observed value: 102 ± 122.9 ng/g). In brain, mean PFOS 

content ranged between 0.16 and 3.48 ng/g, depending on the use of Pk values 

from animal and human studies, respectively. According to the experimental 

investigation, brain contained PFOS in a concentration of 4.9 ± 6.6 ng/g. Simulation 

concentrations in lungs, using both Pk values from rats and humans, were notably lower 

than those experimentally obtained for PFOA (0.47and 4.06 ng/g vs. 29.2 ± 32.2 ng/g) 

and PFOS (2.04 and 2.11 ng/g vs. 29.1 ± 16.8 ng/g). Important disagreements were also 

observed when comparing PFAS concentrations in kidney from the modeling and 

monitoring studies. Overall, the results from our adjusted model seemed to 

underestimate the real concentrations of PFOA and PFOS in the steady-state, 

contrasting with the original PBPK model (Loccisano et al., 2011). Notwithstanding, the 

good performance of the latter model was validated by comparing only measurements 

of PFOA and PFOS in human serum. 

 

Table 3.  Partition coefficients (Pk) used in the PBPK model.  

  PFOA PFOS 
 Human -based  Rat-based  Human -based  Rat-based  

Liver 1.03 2.20 2.67 3.72 
Fat 0.47 0.04 0.33 0.14 
Brain 0.17 0.01 0.26 0.01 
Lung 1.27 0.15 0.15 0.15 
Kidney 1.17 1.05 1.26 0.80 
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Fig. 3.  Time course concentration of (a) PFOA and (b) PFOS in four human 
tissues from subjects who had been living in Tarragona County (Catalonia, Spain). 
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In the current study, validation was conducted by considering other tissue compartments, 

which increases the complexity in the model calibration. Although the use of data coming 

from studies with rodents or other animals (i.e., monkeys), is a common practice in PBPK 

modeling, the improvement in our model predictions confirms the World Health 

Organization (WHO) general guideline stating that the application of human data is 

always more desirable (WHO/IPCS,2010). 

 

Table 4.  Steady-state concentration (in ng/g) of PFOA and PFOS. Experimental vs. 
simulated data after applying the adapted PBPK model, considering rat- and human-
derived Pk values. 

 Tissue  Experimental  Simulated  
Mean ± SD Min-Max Rat-based Human -based 

PFOA Liver 13.6 ± 35.2 <3-98.9 7.03 3.33 
Brain >1.5 <1.5 0.04 0.54 
Lung 29.2 ± 32.2 <6-87.9 0.47 4.06 
Kidney 2.0 ± 2.7 <3 -11.9 4.02 4.50 

PFOS Liver 102.3 ± 122.9 <3-405 50.7 36.4 
Brain 4.9 ± 6.6 <1.5-22.5 0.16 3.48 
Lung 29.1 ± 16.8 <3-61.8 2.04 2.11 
Kidney 75.6 ± 61.2 <6-269 13.1 20.5 

SD: standard deviation. 

 

The results obtained in the present work are in agreement with previous results 

where a resorption mechanism also presented a reasonably good matching in the 

plasma concentrations of PFOS and PFOA (Loccisano et al., 2011). Nonetheless, the 

high half-lives of both compounds cannot lay only on this fact, as protein binding maybe 

also a key process. In the present model, a high binding between PFAS and plasma 

proteins was taken into account, as suggested by Loccisano et al. (2011). However, the 

variation of the protein binding percentage can cause a variation in the plasma 

concentration. Therefore, further studies should demonstrate the weight of the protein 

binding and renal resorption in the long half-lives of some PFASs.  

The significance of the model prediction when using two different partition 

coefficients was tested by performing a two-sample t-test. In both cases (PFOA and 

PFOS), the tests failed in rejecting the null hypothesis at the alpha significance level. It 

means that both data sets came from independent random samples of normal 

distributions, with equal means and equal, although unknown, variances. Further high P-

values (0.92 and 0.95 for PFOA and PFOS, respectively) strongly validate the null 
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hypothesis. To test the significance of the results, the correlation coefficient (R), which 

measures the linearity of relationship between observed and predicted values, was 

calculated. Regarding PFOA, values of R = −0.12 and R = 0.44 were found for rat- and 

human- derived Kp data, respectively. On the other hand, regarding PFOS, R values 

were 0.88 and 0.95 considering rat- and human-Kp data, respectively. No significant 

difference was observed in the distribution mean of predicted values, clearly indicating 

that a better prediction may be achieved by using human partition coefficients. 

 

4. Conclusions 

In the current study, a previously developed PBPK model was modified by 

considering the main target tissues of toxicological relevance for PFOA and PFOS. In 

agreement with the original model (Loccisano et al., 2011), trends in the simulation 

results indicate that the urinary PFAS resorption-based PBPK model seems to be a 

reliable approach to explain the relatively longer half-life of PFOA and PFOS in human 

plasma. 

Although the model had been successfully validated by using experimental data 

in human blood, good validation results were not achieved for other human tissues. 

Anyhow, current knowledge on the levels of PFASs in human tissues, other than 

blood/plasma, is very limited. Uncertainty and variability of experimental data, together 

with that limited knowledge, means an additional difficulty to analyze those data. Despite 

only blood is commonly used for PBPK modeling validation, the comparability with other 

human compartments would ensure the reliability of the model with respect to target 

tissues (WHO/IPCS, 2010). The present results clearly indicate the need to acquire more 

information concerning body burdens of PFASs in general and those of PFOA and PFOS 

in particular. Biological monitoring of these POPs is necessary, as they provide 

fundamental support for the development of PBPK models as well as other in-silico tools. 

The parameterization of the partition coefficient was also validated by comparing values 

derived from animal and human experimental studies. The use of human-derived Pk data 

was more suitable for application to this PBPK model than rat-based values. The model 

simulation assessed in the present study showed a huge uncertainty. Although results 

from PBPK modeling are usually uncertain (Barton et al., 2007), the characterization of 

variability and uncertainty in PBPK models is not a common practice. The uncertainty in 

PBPK models can be predicted by using Monte Carlo simulations, but also applying 

Bayesian inferences, or even fuzzy simulations (Gueorguieva et al., 2004). In order to 

assess the impact of the parameterization uncertainty in the model, a sensitivity analysis 
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was not performed. The reduction of uncertainty can be done by using more precise 

measurements of the parameterization data (Huizer et al., 2012), while the variability 

cannot be reduced, but only described. Therefore, the separate characterization of 

variability and uncertainty should be considered to address more appropriately this issue 

(Kumar et al., 2009). Finally, further research must be carried out to improve the 

performance of the PBPK model by introducing temporal dynamics of exposure 

concentration and physiological parameters for the long-term exposure to PFASs. Being 

the most sensitive known target organ for PFOA toxicity in animals (Post et al., 2012), 

the inclusion of the mammary gland within the PBPK model should be also considered 

in future studies. On the other hand, as humans are really exposed to multiple chemicals, 

future studies should be focused on assessing the suitability of PBPK modelling for the 

evaluation of mixtures of PFASs, instead of individual compounds, assuming that 

different PFASs show a relatively comparable toxicological profile (Borg et al., 2013). 
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CHAPTER 5 

PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) 
MODELING OF PERFLUOROALKYL SUBSTANCES (PFASs) IN 

THE HUMAN BODY 

Abstract 

Nowadays, there are limited data on the levels of perfluoroalkyl substances 

(PFASs) other than perfluorooctane sulfonic acid (PFOS) and pefluorooctanoic acid 

(PFOA) in the human body. Moreover, most of this information has been extracted from 

the biological monitoring of plasma, while the occurrence of PFASs in other human 

tissues is not well studied. In silico research has emerged as an effective complement to 

biomonitoring, being physiologically-based pharmacokinetic (PBPK) modeling a reliable 

method. The objective of the present study was to develop a generic PBPK model to 

assess the concentration of PFASs in human tissues, based on an existing model 

previously validated for PFOS and PFOA. Experimental data on PFAS concentrations in 

human tissues from individuals in Tarragona County (NE of Spain) were used to estimate 

the values of some distribution and elimination parameters needed for the simulation. No 

significant correlations were found between these parameters and the PFAS chain 

length. The model was finally validated for 5 PFASs by using data of intake and plasma 

concentrations from residents in Andøya Island (Northern Norway). 

 

1. Introduction 

In recent years, perfluoroalkyl substances (PFASs), a group of organic 

compounds, have attracted an important social and scientific attention. PFASs are 

chemically characterized for the total or partial replacement of hydrogen atoms with 

fluorine, except those hydrogen atoms whose substitution affects the nature of any 

functional group. Common PFASs include perfluoroalkyl carboxylic acids (PFCAs), with 

a carboxylic acid (-COOH) in the extreme of the carbon chain, and perfluoroalkyl sulfonic 

acids (PFSAs), with a sulfonic acid (-SO3H) in that extreme of the molecule (Buck et al., 

2011). Because of their resistance to thermic and chemical degradation, PFASs have 

been widely used in a number of industrial applications. Since PFASs are highly 

persistent in environment, bioaccumulative in living organisms, potentially toxic, as well 

as subjected to long-range atmospheric transport capacity, these compounds have been 

labeled as persistent organic pollutants (POPs) (Wang et al., 2009). Furthermore, PFASs 

have been detected worldwide in a wide range of environmental and biological samples 
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(Yoo et al., 2009; Stahl et al., 2010; Domingo, 2012; Boiteux et al., 2012; Custer et al., 

2014; Vorkamp et al., 2014).  

Due to their high covalent carbon fluorine bond, PFASs are not metabolized, 

being poorly eliminated in the human body (Lau et al., 2004; Lau, 2012). PFASs are 

mainly distributed to well-perfussed tissues such as plasma, liver and kidney. Half-lives 

in human blood have been estimated in 5.4 years for perfluorooctane sulfonic acid 

(PFOS), between 2.3 and 3.8 years for pefluorooctanoic acid (PFOA), and 8.5 years for 

perfluorohexane sulfonic acid (PFHxS) (Lau, 2012). In contrast, shorter half-lives: 32, 30 

and 3 days, have been estimated for perfluorohexanoic acid (PFHxA), perfluorobutane 

sulfonic acid (PFBS) and perfluorobutanoic acid (PFBA), respectively (Olsen et al., 2009; 

Lau, 2012; Russell et al., 2013). Some PFASs show a notably capacity to bind to human 

proteins, such as those in plasma and liver. Hence, liver PFASs may interact with fatty 

acid binding proteins (FABPs), making easier its displacement (Zhang et al., 2013). In 

plasma, PFASs are strongly bound to serum albumin, with a bound fraction >90 % for 

rats and humans (Han et al., 2003). Different PFASs seem to elucidate similar 

toxicological properties regardless their molecular structure, being liver the target tissue 

(Yeung et al., 2013). Despite the lack of toxicological studies, most PFASs elucidate 

hepatoxicity and reproductive toxicity as well as toxic effects on body weight, 

development, cholesterol, thyroid hormone and immunotoxicity (Fuentes et al., 2006, 

2007; Lau et al., 2007; Stahl et al., 2011). 

The U.S. company 3M was the primary global manufacturer of PFASs. The POP 

properties of PFOS and PFOA, the two most largely studied PFASs, began to raise an 

important concern for the regulatory agencies in the 1990s. Consequently, 3M 

completely phased out the production of PFOS in 2002 (Wang et al., 2009; Taniyasu et 

al., 2013). In 2009, PFOS was included in the list of POPs under the Stockholm 

Convention, while PFOA is a serious candidate to enter the same list. After ceasing 

PFOS production, its concentration in human tissues and environmental matrices has 

been progressively reducing (Armitage et al., 2006; Furdui et al., 2008; Olsen et al., 

2008). In 2006, the U.S. EPA created the PFOA 2010/2015 Stewardship program aimed 

at reducing the 95% of the PFOA product releases and product content in 2010, as well 

as completely eliminate the production of PFOA in 2015 in western countries (U.S. EPA, 

2014). Due to these regulatory restrictions, the producers of PFASs started to search 

alternatives to PFOS and PFOA. The company 3M has been developing a new line of 

products based in PFBS chemistry (Renner, 2006). In turn, other companies were 

partnered in the Fluoro Council, aimed at developing a new line of products based on 

the perfluorohexanoic acid (PFHxA) chemistry (Buck et al., 2011). Due to the higher 
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environmental degradation, quicker elimination rates in humans and low toxicity of PFBS 

and PFHxA, PFOA has been progressively replaced in industrial applications (Olsen et 

al., 2009; Russell et al., 2013). However, although PFOS and PFOA have been 

extensively studied, there is an important lack of pharmacokinetic studies of PFASs other 

than PFOS and PFOA. Furthermore, investigations on PFAS mixtures are very scarce, 

limited to few approaches (Borg et al., 2013).  

Similarly to other substances, the use of experimental animals has been recurrent 

to identify the main toxic endpoints of PFASs and their distribution in the body (Inoue et 

al., 2012; Kowalczyk et al., 2012). Unfortunately, human data are particularly scarce 

because of the limitation to obtain tissue samples. Furthermore, alternatives to animal 

testing are being promoted at international level to avoid or minimize the use of live 

animals, being in silico tools one of the major promising alternatives (Benfenati et al., 

2010). Consequently, the development of physiologically-based pharmacokinetic 

(PBPK) models has progressively increased in recent years, being these not only applied 

to drugs, but also to environmental toxicants. PBPK models are mathematical 

representations of the human body, whose attempt is to describe the time course 

distribution of chemicals (Nestorov, 2007). PBPK models, which are often used in human 

health risk assessment (U.S. EPA 2006; WHO/IPCS 2010), may be used to elucidate 

the pharmacokinetics and pharmacodynamics (PK/PD) of chemicals in the human body 

(Medinsky, 1995; Wang et al., 2013). Recently, various PBPK models have been 

developed to estimate the distribution of PFOS and PFOA within the human body 

(Andersen et al., 2006; Tan et al., 2008; Loccisano et al., 2011, 2013; Fàbrega et al., 

2014). It has been suggested that the most important mechanism of removal of PFOS 

and PFOA in the human body is urinary elimination, with a renal resorption mechanism 

in the filtrate compartment (Andersen et al., 2006; Tan et al., 2008). The free fraction of 

PFOS and PFOA is also an important parameter to determine the distribution of PFOS 

and PFOA. However, there still exist some gaps and notable uncertainties around the 

pharmacokinetics and pharmacodynamics of PFASs different from PFOS and PFOA.  

The objective of the present study was to develop a generic PBPK model to 

assess the concentration of 11 PFASs in human tissues. A previous model (Fàbrega et 

al., 2014), validated for PFOS and PFOA, was here adjusted to other PFASs. 

Experimental data on PFAS concentrations in human tissues from individuals in 

Tarragona County (NE of Spain) were used to estimate the values of some distribution 

and elimination parameters needed for the simulation. The correlations with the chain 

length of each respective PFAS were also studied. Afterwards, the model was validated 

by using data of intake and plasma concentration from Andøya Island (Northern Norway).  
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2. Materials and Methods 

2.1. PBPK model for PFASs 

Based on previously obtained data for PFOS and PFOA (Fàbrega et al., 2014), 

a PBPK model to estimate the concentrations of 9 additional PFASs in different human 

tissues was here developed. Overall, up to 11 PFASs with different chain length were 

considered for the PBPK modeling (Table 1). The tissues studied in the present model 

were selected according to their pharmacokinetic relevance in the distribution and 

elimination of PFASs. Plasma, gut, liver, fat, kidney, filtrate, bone marrow, brain, lungs 

were selected as compartments of interest, while the rest of the body was integrated into 

an additional single compartment. The conceptual structure of the PBPK model is 

depicted in Fig. 1. The intake of chemicals was considered to occur only by food and 

water consumption through the gut. Kidney was selected because it is the organ where 

elimination takes place (Han et al., 2012). Liver, bone marrow, kidney, lungs and brain 

were chosen because quantifiable concentrations of PFASs have been found in autopsy 

tissues (Pérez et al., 2013). Finally, plasma was used as a descriptor of the systemic 

circulation. The PBPK model was based on flow-limited equations (Thompson and 

Beard, 2011). 

 

Fig. 1. Structure of the PBPK model 

 

 

Table 1. Structure of the selected PFASs 
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Compound name Abbreviation  CAS  Structure Molecular 
weight 

Perfluorobutane sulfonic 
acid  PFBS 375-73-5 

 
300.1 

Perfluorohexane sulfonic 
acid  PFHxS 355-46-4 

 
400.1 

Perfluorooctane sulfonic 
acid  PFOS 1763-23-1 

 
500.1 

Perfluorodecane sulfonic 
acid  PFDS 335-77-3 

 
600.2 

Perfluorohexanoic acid  PFHxA 307-24-4 
 

314.1 

Perfluoroheptanoic acid  PFHpA 375-85-9 

 

364.1 

Pefluorooctanoic acid PFOA 335-67-1 
 

414.1 

Perfluorononanoic acid PFNA 375-95-1 
 

464.1 

Perfluorodecanoic acid PFDA 335-76-2 
 

 
514.1 

Perfluoroundecanoic 
acid  PFUnDA 2058-94-8 

 
564.1 

Perfluorotetradecanoic 
acid  PFTeDA 376-06-7 

 

714.1 
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The concentrations of PFASs in non-eliminating tissues (bone marrow, fat, brain, 

lungs, and rest of the body) were estimated through the following mathematical equation:   

Vi

pKiCiCafreeQi

dt

dCi ):/( −××=
   (1) 

where Ci is the concentration in tissue i (pg/mL), Qi is the blood flow to the tissue 

i (mL/h), free is the unbound fraction in plasma, Ca is the arterial concentration (pg/mL), 

Ki:p is the partition coefficient, and Vi is the volume of tissue i. 

PFAS concentration in gut was calculated by means of the following expression: 

Vg

IntakepKgCgCafreeQg

dt

dCg +−××= ):/(

  (2) 

where Cg is the concentration in gut (pg/mL), Qg is the blood flow to gut (mL/h), 

free is the unbound fraction in plasma, Ca is the arterial concentration (pg/mL), Kg:p is 

the partition coefficient, Intake is the hourly ingestion of PFASs (pg/h), and Vg is the 

volume in gut compartment. 

For the liver compartment, the concentrations of PFASs were estimated by 

means of this equation: 

Vl

pKlClQgQlpKgCgQgCaQlfree

dt

dCl )):/()(:/( ×+−×+××=
(3) 

where Cl is the concentration in liver (pg/mL), free is the unbound fraction in 

plasma, Ql is the blood flow to liver (mL/h), Ca is the arterial concentration (pg/mL), Qg 

is the blood flow to gut (mL/h), Cg is the concentration in gut (pg/mL), Kg:p is the partition 

coefficient in gut, Kl:p is the partition coefficient in liver, and Vl is the volume in liver 

compartment. 

For the kidney compartment, the used equation was: 

Vk

CfilKt

CfilTm
pKkCkCafreeQk

dt

dCk +
×+−××

=
):/((

 (4) 

where Ck is the concentration in kidney (pg/mL), Qk is the blood flow to the kidney 

(mL/h), free is the unbound fraction in plasma, Ca is the arterial concentration (pg/mL), 

Kk:p is the partition coefficient in kidney, Tm is the resorption maximum (pg/h), Kt is the 

affinity constant (pg/mL), and Vk is the volume of kidney. 
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Finally, the levels of PFASs in the filtrate compartment were estimated by means 

of the following mathematical expression: 

Vfil

CfilKt

CfilTm
CfilCafreeQfil

dt

dCfil +
×−−××

=
)(

   (5) 

where Cfil is the concentration in filtrate compartment (pg/mL), Qfil is the blood 

flow to filtrate (mL/h), free is the unbound fraction in plasma, Ca is the arterial 

concentration (pg/mL), Tm is the resorption maximum (pg/h), Kt is the affinity constant 

(ng/mL), and Vfil is the volume of filtrate compartment. 

All the variables, including volumes, cardiac output, partition coefficient (Pk), 

intake and elimination parameters, were considered to be constant along time. Data on 

time volumes and cardiac output were taken from Brown et al., (1997). Due to their high 

absorption rates observed in rats, PFASs were assumed to be completely absorbed 

(D'Eon and Mabury, 2011; Hundley et al., 2006). In turn, since PFASs are poorly 

metabolized in animals, metabolism was considered negligible (Ophaug and Singer, 

1980; Hundley et al. 2006). Although other exposure pathways, such as air inhalation 

and dermal absorption, might have a relevant contribution to the total intake of PFASs 

(D'Eon and Mabury., 2011; Ericson et al., 2012; Nadal and Domingo, 2014), water intake 

and food consumption were considered as the only routes of PFAS entrance to the 

human body. For confirmation purposes, values of dust ingestion of PFASs from the 

population living in the same area of study (Ericson et al., 2012) were compared with the 

dietary and water intake of PFASs, being the former considerably lower. In addition, 

since PFASs were not detected in air samples, air inhalation was considered negligible 

(Ericson et al., 2012). Calculations were performed for the adult population of Tarragona 

County. Water intake was assumed to be 1.022 L/day, while the mean body weight was 

set at 70 kg. The daily intake of PFASs through food and water for the population of 

Tarragona County (Table 2), was obtained elsewhere (Ericson et al., 2009; Domingo et 

al., 2012). A constant intake was considered for the lifespan of the individuals under 

study. The mean lifetime of the individuals was set to 80 years.  
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Table 2.  Dust ingestion, water and food intake of PFASs in Tarragona County (Catalonia, 
Spain) (ng/day). Total exposure was assessed by considering only water intake and food 
consumption 

 Dust a Water b Food c Total intake  
PFBS 0.05 1.64 (25.0) 4.90 (75.0) 6.54 

PFHxS 0.05 0.49 (10.5) 4.20 (89.5) 4.69 
PFOS 0.18 2.23 (1.4) 160.30 162.53 
PFDS 0.00 n.d. 1.40 (100) 1.40 
PFHxA 0.07 1.06 (3.1) 33.60 (96.9) 34.66 
PFHpA 0.08 1.33 (0.5) 261.10 262.43 
PFOA 0.48 2.95 (0.8) 385 (99.2) 387.95 
PFNA 0.34 1.51 (1.5) 97.30 (98.5) 98.81 
PFDA 0.49 0.57 (3.3) 16.80 (96.7) 17.37 

PFUnDA 0.17 0.38 (0.4) 95.20 (99.6) 95.58 
PFTDA 0.04 n.d. 32.90 (100) 32.90 

n.d.: Non detected. aEricson et al., (2012); bEricson et al., (2009); cDomingo et al., (2012). 
Between parentheses, percentage of water and food intake, respect to total exposure.  

 

The distribution of PFASs in the human body was described by the Pk, which is 

defined as the concentration of a chemical in a specific tissue in relation to its 

concentration in blood. To calculate Pk, the concentration of each PFAS found in autopsy 

tissues from subjects of Tarragona County was divided by the mean blood level of the 

same compound found in samples of donors from the same area of study (Ericson et al., 

2007; Pérez et al., 2013). Pks were assessed for liver, bone marrow, brain, lung and 

kidney. For the remaining tissues (adipose, gut, filtrate and rest of the body), a constant 

value of the Pks, coming from data on PFOA in rats, was used (Kudo et al., 2007).  

The elimination parameters of the PBPK model (Tm and Kt) and the free fraction 

of PFASs in plasma were also assessed for the case-study of Tarragona County. Data 

on the body burdens of PFASs in plasma, as well as those in a number of tissues (liver, 

bone, kidney, lungs, and brain) were available from previous investigations (Ericson et 

al., 2007; Pérez et al., 2013). PFASs were considered to be bound to serum albumin in 

a fraction of 97%, while the remaining fraction (3%) was available for accumulation in 

other tissues and elimination through urine (Han et al., 2003; Chen and Guo, 2009; 

Bischel et al., 2010). In order to assess the elimination parameters (Tm, Kt) and free 

fraction, the model was coded and parameterized, being the simulated plasma 

concentration fitted with experimental values of PFASs (Ericson et al., 2007). Values of 

Tm, Kt and free fraction constants were here obtained. The model was coded by using 
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Berkeley MadonnaTM v 8.3.18, using a Stiff method to solve the differential equations 

(Macey et al., 2009). 

 

2.2. Validation of the PBPK model 

The validation step consisted on executing the PBPK model for another 

population. Adults living in Andøya Island (Norway), for which data on intake and plasma 

concentrations of PFHxS, PFOS, PFHpA, PFOA and PFNA were available (Rylander et 

al., 2009; Haug et al., 2010), were chosen as case-study. To obtain minimum and 

maximum values, the PBPK simulation was conducted for the whole range of elimination 

and distribution parameters. As previously demonstrated (Huizer et al., 2012) and 

confirmed by sensitivity analysis (unpublished results), Tm, Kt and free fraction were the 

variables with the highest uncertainty in the PBPK model. Minimum and maximum values 

for Tm and Kt were set as 0.3 times the coefficient of variation (CV) (Allen et al., 1996). 

In turn, 0.1% and 3% were considered as the minimum and maximum percentages of 

the free fraction, respectively (Huizer et al., 2012). The daily intake of food and water 

consumption by the adult Norwegian population, was set at 1.2, 18, 8.2, 31 and 9.5 

ng/day for PFHxS, PFOS, PFHpA, PFOA and PFNA, respectively (Haug et al., 2010). 

Levels of PFASs in plasma were taken from a biological monitoring study of 44 women 

and 16 men living in the coastal population of Northern Norway, which was performed in 

September 2005 (Rylander et al., 2009). Mean plasma concentrations of PFHxS, PFOS, 

PFOA and PFNA were 1.8, 33, 4.4 and 0.95 ng/mL, respectively. Although PFHpA was 

not detected, the limit of detection (0.26 ng/mL) was used to validate the model. Finally, 

model validation was based on the comparison of experimental data on PFASs in plasma 

and the range of values predicted by the PBPK model. Since the human body is a system 

subjected to a number of biological processes, PBPK models averaging within a factor 

of 2 in comparison to experimental data may be considered as validated (WHO/IPCS 

2010). 

 

3. Results and Discussion 

3.1. PBPK models for PFASs 

A PBPK model was developed to estimate the concentration of 11 PFASs in 

human tissues. To simulate the internal distribution of PFASs, values of some 

physicochemical (Pks) and biochemical (Tm, Kt, and free fraction) parameters were 

needed. Pks were estimated by using data on PFAS concentration in plasma and 
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autopsy tissues from individuals of Tarragona County, Spain (Ericson et al., 2007; Pérez 

et al., 2013). The partition coefficients of 11 PFASs are summarized in Table 3. Pk values 

ranged from 0.001 for PFDS, PFDA and PFTeA in liver, as well as PFTeA in bone 

marrow, to 201.6 for PFHxA in brain. The correlation between the carbon chain length 

and those physicochemical and biochemical parameters of each respective PFAS was 

also studied. No significant correlations were noted between the PFAS chain length and 

Pk (Fig. 2). However, available experimental information is relatively scarce, since PFAS 

concentrations from only 20 individuals had been obtained.  

 

Table 3.  Pks (unitless) of 11 PFASs obtained by using data on autopsy tissues  

  Liver  Bone Marrow  Brain  Lung  Kidney  
PFBS 1.38 4.91 0.74 27.31 12.27 
PFHxS 0.72 0.28 0.50 1.27 3.27 
PFOS 7.48 0.11 0.36 2.13 5.54 
PFDS 0.001 3.28 0.58 5.99 9.46 
PFHxA 128.80 39.87 201.60 56.11 6.27 
PFHpA 47.82 110.71 1.94 24.98 11.20 
PFOA 4.23 18.73 0.37 9.08 0.62 
PFNA 1.65 2.66 37.80 19.47 36.02 
PFDA 0.001 0.28 43.68 31.92 11.57 
PFUnDA 0.002 0.25 14.82 4.61 11.69 

PFTeDA 0.001 0.001 63.13 24.95 15.78 

 Data from Pérez et al., (2013). 
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Fig. 2. Correlation between PFAS chain length and a number of parameters: Tm, Kt, free fraction and Pk. 
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Based on the results of animal studies (Andersen et al., 2006; Tan et al., 2008), 

the elimination of PFOS and PFOA is mainly urinary, with a resorption mechanism in the 

filtrate compartment. Once in the urine, the chemicals are resorbed back to the plasma 

in a saturable mechanism, driven by resorption maximum (Tm) and affinity constant (Kt). 

Tm and Kt are analogous constants to the kinetics of the Michaelis-Menten reactions for 

the enzymatic reactions. This mechanism was expected to be the responsible of the high 

half-lives of PFOS and PFOA in human blood. However, it has not been proved yet to 

be involved in the elimination of shorter chain PFASs. In the present study, a resorption 

mechanism was assumed for all the compounds, including C4 and C6 shorter chain 

PFASs (Han et al., 2012). The elimination constants (Tm and Kt), and the value of free 

fraction of PFASs in plasma, were calibrated by running multiple simulations of the PBPK 

model until fitting the simulation results with experimentally obtained PFAS 

concentrations in plasma. The elimination constants resulting from the PBPK modelling 

are summarized in Table 4. The final results for Tm ranged from 6.1 to 2456.3 µg/h, Kt 

ranged from 0.018 to 30 µg/L, and free fraction ratios ranged from 0.001 to 0.03. 

Significant correlations between the carbon chain length and any of these constants were 

not found (p>0.05) (Fig. 2). The model was able to simulate the pharmacokinetic 

behavior of PFASs with a shorter chain than PFOS and PFOS, such as PFBA or PFBS, 

whose half-lives in blood are considerably lower. To the best of our knowledge, this is 

the first attempt to develop in humans a PBPK model for PFASs other than PFOS and 

PFOA. According to the present PBPK model, the urinary elimination, the resorption 

mechanism and the strong protein binding are the hallmark of the absorption, distribution, 

metabolism, and excretion (ADME) of PFASs in the human body. Although other 

mechanisms of elimination may play an important role (Harada et al., 2007), data are 

currently too scarce to accurately evaluate their influence. Moreover, this is a generic 

model that should be improved by including more refined individual PK data of each 

individual chemical compound. Anyhow, it is undoubtedly of great interest as information 

on the body burdens of PFASs, other than plasma, is not available. 
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Table 4.  Elimination constants coming from PBPK model simulation 

  Tm (μg/h) Kt (μg/L)  Free 
PFBS 2456.3 30 0.001 
PFHxS 2456.3 3 0.005 
PFOS 86.0 0.018 0.030 
PFDS 2456.3 15 0.001 

PFHxA 6.1 5 0.001 
PFHpA 368.4 7 0.015 
PFOA 147.4 0.116 0.030 
PFNA 491.3 4.5 0.010 
PFDA 245.6 0.6 0.010 

PFUnDA 2456.3 9 0.030 
PFTeDA 24.6 0.070 0.020 

Tm: resorption maximum (µg/h/); Kt: affinity constant (µg/L); Free: free fraction in 
plasma (unitless) 

 

The estimated steady-state concentration of PFASs in target tissues is shown in 

Table 5. The simulations followed a trend with a nearly lineal part at the beginning, 

reaching a plateau after 20-30 years. The result of the simulations found in tissues 

depends on the Pk, as well as on the elimination constants and the daily intake. In liver, 

the highest concentrations corresponded to PFOS, PFHxA, PFHpA, PFOA and PFNA, 

with values ranging from 1.32 to 127.6 ng/g (PFNA and PFOS, respectively). In contrast, 

the minimum values of other long-chain PFASs (PFDS, PFDA, PFTeDA, and PFUnDA) 

were also found in liver (0.0002, 0.0005, 0.0005, and 0.0016 ng/g, respectively). This 

fact is surprising, as liver is usually considered the main target organ where PFASs are 

accumulated. Furthermore, there are no evidences of low concentrations of long chain 

PFASs in liver (Karrman et al., 2010). PFOA was the predominant compound in bone 

marrow and lung (205.30 and 99.70 ng/g, respectively). Unexpectedly, the highest 

concentration of PFHxA (39.19 ng/g) was estimated in brain. Since PFHxA is rapidly 

cleared from biota, with elimination half-lives of 0.5-1.5 months in humans (Russell et al., 

2013), high levels of this compound should not be found in the human body. Kidney 

showed a similar profile of PFASs to those in plasma and liver, being PFOS the main 

contributor (113.40 ng/g).  
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Table 5.  Simulated concentration of PFASs in target tissues of individuals from 
Tarragona County, Spain. 

  Plasma  Liver  Bone Marrow  Brain  Lung  Kidney  
PFBS 0.65   0.55 1.92 0.29 10.70 5.70 
PFHxS 6.36   0.38 0.15 0.26 0.67 2.07 
PFOS 17.06 127.6 1.88 6.14 36.40 113.40 
PFDS 0.52   0.0002 0.53 0.09 0.98 1.85 

PFHxA 0.89   27.0 7.76 39.19 10.92 1.27 
PFHpA 0.70   34.5 79.25 1.39 17.86 9.40 
PFOA 10.97 46.5 205.30 4.06 99.70 8.19 
PFNA 0.79   1.32 2.08 29.60 15.20 33.40 
PFDA 0.54   0.0005 0.14 21.30 15.55 6.75 

PFUnDA 0.61   0.0016 0.15 8.97 2.79 8.50 
PFTeDA 0.39   0.0005 0.01 25.20 9.95 7.50 

Units: ng/g 

 

For model parameterization, data on PFAS concentrations in blood and other 

human tissues from two independent studies, performed in Tarragona County in 2007 

and 2008, were used (Ericson et al., 2007; Pérez et al., 2013). The number of analyzed 

autopsy samples was limited to 20, therefore contributing to a higher uncertainty of the 

PBPK model results. There is a lack of reliable experimental data for their use in model 

parameterization. Thus, limited available data may contribute to higher uncertainty in the 

PBPK model due to temporal variability (different years of sampling) and physiological 

variability (age group differences) associated with the experimental data. Moreover, 

sources of variability, like changes of body weight and cardiac output along time, which 

were not taken into account, should be explored in further investigations. 

 

3.2. Validation of the PBPK model 

For validation purposes, the current PBPK model was applied in a case-study in 

Norway, where information about dietary intake and plasma concentration of a number 

of PFASs was available (Haug et al., 2010; Rylander et al., 2009). The concentrations of 

PFHxS, PFOS, PFHpA, PFOA, and PFNA were assessed in 21 samples of selected 

foods and beverages, including meat, fish, vegetables, fruits, eggs, milk, cereals, bread 

and drinking water (Haug et al. 2010). The samples were purchased between 2008 and 

2009 in Norway, and the daily consumption of foodstuffs for the adult population was 

assessed by using statistical data. The total intake of PFASs for the adult Norwegian 

population was estimated in 1.2, 18, 8.2, 31 and 9.5 ng/day for PFHxS, PFOS, PFHpA, 
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PFOA and PFNA, respectively. In turn, plasma concentrations of PFASs for the 

Norwegian population were also obtained from the scientific literature (Rylander et al., 

2009). Samples from 44 men and 16 women (aged 26-60) living in Andøya Island 

(Northern Norway) were collected, and the PFAS content was determined. Mean 

concentrations of PFHxS, PFOS, PFOA and PFNA in plasma were 1.1, 29, 3.9 and 0.81 

ng/mL plasma, respectively. In turn, PFHpA was not detected in any sample. The 

experimental concentrations were compared with the results of the PBPK simulation. 

The ranges of experimental concentrations were reported for all the compounds, with the 

exception of PFHpA, which was not detected (Rylander et al., 2009). Since the limit of 

detection (LOD) for PFHpA was provided (0.26 ng/g), this value was used to validate the 

model. The minimum and maximum values for the simulation were assessed by running 

the model with the minimum and maximum values of Tm, Kt, and free fraction. These 

have been identified as the most uncertain parameters of the PBPK model (Allen et al., 

1996; Huizer et al., 2012), being also identified as the most sensitive (unpublished 

results). The comparison of the simulated and experimental concentrations of 5 different 

PFASs in plasma from people living in Norway is depicted in Fig. 3. Excepting for PFHpA, 

which was undetected in plasma, the experimental concentrations of PFASs were slightly 

higher than the modeled results, therefore underestimating the internal dose of PFASs. 

This fact could be linked to a potential interaction among PFASs, as well as between 

these and other chemicals present in blood. In the past, PBPK modeling has been 

increasingly used to assess the pharmacokinetics of chemical mixtures (El-Masri et al., 

2004; Dennison et al., 2004). These approaches are based on the comparison of the 

levels of simulated mixture responses with those anticipated from the individual response 

addition. The main objective is to determine the interaction threshold, which is defined 

as the combined total dose of chemicals at which interactions become significant in terms 

of joint toxicity of a mixture (Mumtaz et al., 2012). More specifically, complex interactive 

effects of PFOS and PFOA in zebrafish embryos have been observed, being additive, 

synergistic or antagonistic according to the mixture ratios of individual chemicals (Ding 

et al., 2013). Anyhow, since the range of experimental data fell within the range of 

simulation results, the PBPK model was confirmed to be validated and applicable to 

PFHxS, PFOS, PFHpA, PFOA and PFNA. However, further investigations are still 

needed in order to incorporate more refined PK/PD data in the model, as well as to 

reduce its uncertainty. 
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Fig. 3.  Experimental and simulated concentrations of PFASs (ng/mL) in plasma 
from people living in Andøya Island (Norway). 

 

4. Conclusions 

A PBPK model was here developed and validated to simulate the body burdens 

of 9 PFASs, additionally to PFOS and PFOA. The model structure was characterized by 

owning a mechanism of urinary elimination, a mechanism of resorption of the chemicals 

from urine to plasma, and a strong protein binding for all the compounds. This generic 

PBPK model was able of simulating compounds with important pharmacokinetic 

differences, including half-lives in plasma (Lau et al., 2012). Our findings support that the 

regulation of both short- and long-chain PFASs is done by the abovementioned PK 

mechanism. Although further evidence is still necessary, this is a first and successful 

attempt to describe and simulate the PK of PFASs by using these mechanisms. 

Furthermore, the PBPK model was validated for 5 of the compounds by means of a case-

study in Norway. The relatively small differences between the experimental and the 

modeled results are a good indicator of the reliability of the model. However, some 

biochemical and mathematical aspects, such as the involvement of other elimination 

mechanisms and the uncertainty of parameterization data, deserve further research. 

Moreover, because of the scarcity of PK data for PFASs, other than PFOS and PFOA, 

differences among the compounds could not be studied in depth by PBPK modeling. 

Since the generation of quantitative time-course data sets is essential for the validation 

of PBPK models, an increase of well-conducted human biomonitoring investigations 

should be also enhanced to assure the validity of these models and their suitability for 

estimating PFAS body burdens. 
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Discussion of Chapters IV and V 
 

After the development of the PBPK model for PCDD/Fs, the model was adapted 

to a different group of POPs: PFASs. PFOS and PFOA, two of the most well known 

PFASs, were originally selected. The elimination mechanism was changed, and the role 

of the protein binding to plasma albumin was added. The mechanism of elimination was 

considered to occur by urine elimination with a saturable resorption mechanism from 

urine back to the plasma. In liver, the target tissue of PFOS and PFOA, the simulated 

concentration of PFOA was 3.33 ng/g, while the experimental value was 13.6±35.2 ng/g. 

For PFOS, the simulated and experimental concentrations were 36.4 ng/g and 

102.3±122.9 ng/g, respectively. Due to the coincidence of the simulated concentrations 

within the range of measured levels of PFOS and PFOA, the model was considered as 

validated. 

A comparison of Pks values obtained by using data from rats and humans, was 

conducted. As expected, the use of Pks coming from human data simulated better the 

concentration in human tissues. This clearly indicates the need to acquire more 

information regarding the body burdens of PFOS and PFOA to improve the accuracy of 

Pks. Although PBPK model validation is commonly carried out by using only blood data, 

this should be extended to other human tissues to ensure its reliability, with special 

emphasis on target tissues.  

Due to the regulatory restrictions for PFOS and PFOA, industrial producers are 

searching alternatives and developing new lines of products with lighter PFASs, such as 

PFBS or PFHxA. Thus, the PBPK model was extended to 9 PFASs more. For the first 

time, PFASs in human tissues other than PFOS and PFOA were simulated by using 

PBPK models. Although the mechanism of elimination of PFASs other than PFOS and 

PFOA is not well known, the PBPK model was capable to simulate PFASs through 

urinary elimination via resorption mechanism. This is not the proof of the resorption of all 

the PFASs but it is a successful first attempt to simulate PFASs using this mechanism. 

Notwithstanding, further evidence is still necessary. PBPK modeling demonstrates to be 

a reliable tool to elucidate the mechanism of elimination of different environmental 

pollutants, as well as other PK processes. Moreover, the parametric data of elimination 

(Tm and Kt), free fraction and Pk were also assessed using the PBPK model. Significant 

correlations between the carbon chain length of the PFASs and the elimination 

parameters were not found. However, this should be further explored, as these variables 

should be better calibrated using more experimental data. The number of analyzed 
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autopsy samples was limited to 20, therefore contributing to a higher uncertainty of the 

PBPK model results. Limited available data may contribute to a higher uncertainty in the 

PBPK model due to temporal variability (different years of sampling) and physiological 

variability (age group differences) associated with the experimental data. 

For validation purposes, the extended PBPK model was applied in a case-study 

in Andøya Island (Northern Norway), where information about dietary intake and plasma 

concentration was available for PFHxS, PFOS, PFHpA, PFOA and PFNA. The 

experimental concentrations were compared with the results of the PBPK simulation. 

The model was considered as validated because experimental concentrations were 

within the range of the PBPK simulation results. The relatively small differences between 

the experimental and the modeled results are a good indicator of the reliability of the 

model. 
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CHAPTER 6 

INFLUENCE OF THE UNCERTAINTY IN THE VALIDATION OF 
PBPK MODELS: A CASE-STUDY FOR PFOS AND PFOA.  

Abstract 
 Physiologically-based pharmacokinetic (PBPK) models are mathematical 

representations of the human body that aims to describe the time course distribution of 

chemicals in human tissues. PBPK models are developed using experimental data which 

may have an error associated with the measurements. The uncertainty associated with 

the parametric data used in PBPK modeling is huge, thus affecting the process and 

reliability of model validation. The objective of the present work was to assess the 

parametric uncertainty associated to a PBPK model developed for perfluorooctane 

sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), and validated by using 

experimental data from people living in Tarragona County (NE of Spain). A sensitivity 

analysis was performed to understand the degree of influence of input parameters on 

the final outcomes. Data of partition coefficients (Pks), elimination constants (Tm and Kt) 

and unbound fraction in plasma (Free) were obtained from autopsy individuals in the 

area of Tarragona, while data on human intake of PFOS and PFOA were also compiled 

from previous studies in the same area. The uncertainty of the PBPK models were 

assessed by propagating the parametric uncertainty using Latin Hypercube Sampling 

(LHS) technique, and the uncertainty bound with mean concentrations of PFOS and 

PFOA in different tissue compartments, was estimated. Finally, the simulation results 

were compared with the experimental data and Student’s t-test was executed to assess 

the validity of the model. Significant differences were found when comparing the visual 

and statistical validation of the PBPK model. 

 

1. Introduction 
Physiologically-based pharmacokinetic (PBPK) models aim to simulate the time 

course concentration of chemical compounds in the human body (Nestorov, 2007). In 

PBPK modeling, tissues are considered compartments linked by the blood flow, and the 

time course concentration of chemicals are described by mathematical equations that 

can be solved computationally (Thompson and Beard, 2011, 2012). The complexity of 

the PBPK models depends on the administration, distribution, metabolism and 

elimination (ADME) properties of the chemicals in the human body. Although, the first 
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PBPK model was developed in 1937, it was impossible to compute the equations for the 

model resolution (Teorell, 1937). Later, in the 1970s, the development of computational 

tools allowed the resolution and the development of the PBPK modeling (Bischoff et al., 

1970; Jones and Rowland-Yeo, 2013). Nevertheless, the scarcity of pharmacokinetic 

and pharmacodynamic (PK/PD) data and the implementation of the in vivo and in silico 

tools to estimate PK/PD data, have delayed the extensive use of PBPK models until the 

last decade (Mumtaz et al., 2012; Rowland et al., 2011). Nowadays, PBPK modeling is 

extensively used in drug development and human health risk assessment (Chiu et al., 

2007; Rowland et al., 2011).  

PBPK modeling involves the use of input parameters that were generated by 

experimental assays. Consequently these variables own some variability and error 

associated with the measurements. The variability is the inter-individual differences in 

the anatomical and physiological characteristics among individuals, and cannot be 

eliminated but only reduced (Kumar et al., 2009). On the other hand, the uncertainty is 

due to the lack of knowledge in the parameter estimation, being this reducible (Bois et 

al., 2010a). To estimate the model variability and uncertainty several approaches have 

been used in PPBK modeling such as Monte-Carlo simulation, Fuzzy simulations and 

Bayesian Markov chain Monte Carlo (MCMC) (Bois et al., 2010b; Gueorguieva et al., 

2005; Hack, 2006; Sweeney et al., 2001; Woodruff et al., 1992). In the past, some studies 

characterized the differences between uncertainty and variability in PBPK models (Chiu 

et al., 2009; Huizer et al., 2012; Kumar et al., 2009; Mörk et al., 2009). The variability 

and uncertainty of input parameters affect the time course concentration, being 

dependent on the sensitivity of the parameters. A sensitivity analysis (SA) provides a 

quantitative assessment of the degree of influence of the input parameters on model 

results and have been used in PBPK models in the past (Loizou and McNally, 2010; 

McNally et al., 2011). Uncertainty plays a key role in the validation of the PBPK models. 

Validation is the process of evaluation of the model with the reliability and relevance of 

a particular approach (Chiu et al., 2007; WHO., 2010). PBPK models can be validated in 

many ways, and until now no single method has been accepted by the regulatory 

agencies. In general, the simulations whose results are within a factor of 2 of the 

experimental results may be considered as valid (WHO., 2010). The most common 

approach is the visual comparison of the experimental data with the simulated results 

(Chiu et al., 2007). This process of validation is highly affected by the structural and 

parametric error of the PBPK models. Instead, any model can be proven to be absolutely 

valid, the process of validation may be meaningless if the uncertainty of the PBPK model 

is excessively high. When high values of uncertainty are found in a PBPK model, any 
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experimental value may fall within the range of the model simulation, and thus the model 

can be easily considered valid. To improve the reliability of the PBPK models, a proper 

study of the model uncertainty is necessary for an accurate validation of the model 

(WHO., 2010). Until nowadays, the uncertainty in PBPK modeling has been poorly 

studied (WHO., 2010), and therefore case the process of model validation may be 

doubtful.  

The objective of the present work was to study the uncertainty associated to 

PBPK modeling parameterization, and the subsequent validation of the PBPK model. A 

previous PBPK model developed for perfluorooctanesulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA) in Tarragona County was used (Fàbrega et al., 2014). In 

a first step, a sensitivity analysis was performed, and the most sensitive parameters were 

selected for the uncertainty analysis. In the second step, the uncertainty of the PBPK 

models were assessed by propagating the parametric uncertainty using Latin Hypercube 

Sampling (LHS) technique and uncertainty bound along with mean concentrations of 

PFOS and PFOA in different tissue compartments. Finally, the uncertainty of PBPK 

model parameterization was compared with the experimental values from the area under 

study and a statistical analysis was performed to validate the result.  

 

2. Materials and Methods 

2.1. PBPK model for PFOS and PFOA 

In a previous study, a PBPK model was developed for two perfluoroalkyl 

substances (PFASs): PFOS and PFOA (Fàbrega et al., 2014). PFOS and PFOA are well 

absorbed via oral route, not metabolized in human body, and poorly eliminated. The 

mechanism of elimination for PFOS and PFOA has been proved to be mainly through 

urine elimination, with a resorption mechanism: once in the urine PFOS and PFOA are 

resorbed back from urine to plasma. (Andersen et al., 2006; Loccisano et al., 2011; Tan 

et al., 2008). Moreover, these compounds strongly bind to serum albumin, and only a 

small fraction is available to move to tissues and be eliminated (Bischel et al., 2010; 

Chen and Guo, 2009; Han et al., 2003). Model structure, parameterization data and 

equations were previously described in Fàbrega et al. (2014). In summary, the model 

structure includes plasma, gut, liver, kidney, filtrate, storage, fat, brain, lungs and rest of 

the body. Structure of the PBPK model is depicted in Figure 1. The model was carried 

out for a case study in Tarragona County (NE of Spain). The intake was considered to 

occur through ingestion of food and water (Domingo et al., 2012a; Domingo et al., 

2012b). The key parameter for the distribution is the partition coefficient (Pk), defined as 
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the concentration of a chemical in a tissue over its concentration in blood. Pks were 

assessed by using data of blood donors and autopsy tissues (Ericson et al., 2007; Pérez 

et al., 2013). Elimination was assumed to be through a resorption mechanism in kidney. 

The elimination constants are resorption maximum (Tm) and affinity constant (Kt), being 

previously assessed using data in human tissues (Fàbrega et al., 2014).Tm and Kt are 

analogous parameters to the maximum velocity (Vmax) and Michaelis-Menten constant 

(KM) in the Michaelis-Menten kinetics. Finally, PFOS and PFOA are strongly bound to 

plasma albumin. The remaining unbound fraction was called Free fraction, and is one of 

the key parameters in the distribution of PFOS and PFOA in PBPK modeling.  

 

 
Fig. 1.  Structure of the PBPK model. 

 

2.2. Case-study  

The PBPK model for PFOS and PFOA was applied in a case study in Tarragona 

County (NE of Spain) (Fàbrega et al., 2014), where data of human intake (Domingo et 

al., 2012a; Domingo et al., 2012b) and human autopsy tissues were available (Ericson 

et al., 2007; Pérez et al., 2013). Data from the general population with no contact with 

industrial production or manufacture of PFASs (Ericsson et al., 2007; Pérez et al., 2013) 

were used. The ingestion of food was assessed by using data from Domingo et al. 

(2012b), data for all the population cohorts. For PFOS, the mean concentration in food 
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was 2.26 ng/kg body weight/day, and the minimum and maximum concentrations were 

1.57 and 4.48 ng/kg body weight/day, respectively. For PFOA, the mean concentration 

in food was 4.68 ng/ kg body weight/day, and the minimum and maximum concentrations 

were 0.83 and 19 ng/ kg body weight/day, respectively. The estimated concentrations in 

water were 1.8 ng/L and 2.4 ng/L for PFOS and PFOA, respectively (Domingo et al., 

2012a). Finally, considering a body weight of 70 kg and a water consumption of 1.23 L 

day (US EPA, 2011), the total intake of PFOS and PFOA in the adults of Tarragona 

County was estimated in 0.16 µg/day and 0.33 µg/day (Fàbrega et al., 2014). The 

minimum intake was assessed in the range 0.06-0.11 µg/day, and the maximum intake 

was considered to be within 0.32 and 1.33 µg/day, for PFOS and PFOA, respectively.  

The concentration of PFOS and PFOA in human tissues has been poorly 

analyzed in the past (Karrman et al., 2010; Maestri et al., 2006; Pérez et al., 2013). In 

Tarragona County, data of PFOS and PFOA were available for blood, liver, brain lung 

and kidney. These were used for validation purposes. PFOS and PFOA concentrations 

in blood were previously assessed for 48 blood donors, where the average age of the 

blood donors was 40 years old, with a range between 20 and 60 years old (Ericson et 

al., 2007). For PFOS, blood level was 7.64±3.54 ng/mL, while PFOA concentration was 

1.80±0.66 ng/mL. Similarly, the concentration of PFOS and PFOA were previously 

assessed in liver, brain, lung, bone marrow and kidney in 20 autopsies of individuals in 

Tarragona County (Pérez et al., 2013). The average concentration of PFOA was 

13.6±35.2, 29.2±32.2 and 2.00±2.70 ng/g wet weight for liver, lung and kidney, 

respectively. In brain, PFOA was under its respective detection limit (DL), being the mean 

concentration 1.50 ng/g wet weight (½ of the DL). For PFOS the concentrations found in 

human tissues were 102±123, 4.90±6.60, 29.1±16.9 and 75.6±61.2 ng/g wet weight for 

liver, brain, lung and kidney, respectively. At the time of death, the average age of the 

individuals was 57 years old, with a range of ages between 28 and 86 years old.  

 

2.3. Sensitive analysis (SA) 

A SA for the PBPK model parameterization was performed to study the 

parameters with the most important contribution to the final outcomes (Evans and 

Eklund, 2001). SA was performed using the method of sensitivity index (SI), which is 

based on the absolute value of the difference between the maximum and minimum value 

over the maximum value (Hamby, 1994): 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELING OF PCDD/FS AND PFASS IN HUMANS. 
Francesc Fabrega Bonadona 
Dipòsit Legal: T 1660-2014



Chapter 6. Influence of the uncertinty in the validation of PBPK models: A case-study for PFOS and PFOA 

 

134 

max

minmax

D

DD
SI

−=
     (1) 

To assess the SA in the PBPK model, the range of the parameters under study 

were used. PBPK parameters included body weight (BW), plasma volume, liver volume, 

brain volume, lung volume, kidney volume, cardiac output to liver, cardiac output to brain, 

cardiac output to lungs, cardiac output to kidney, Tm, Kt, Free fraction and Intake. 

Moreover, the partition coefficient (Pk) to gut, liver, kidney, fat, brain, lungs and rest of 

the body were also included. Physiological data and their ranges, came from Huizer et 

al. (2012) and Brown et al. (1997). The partition coefficients (Pk) of the different organs 

were previously assessed using experimental data found in human tissues (Fàbrega et 

al., 2014; Maestri et al., 2006). The mean and uncertainty range (minimum – maximum) 

for the parametric data are summarized in table 1. Data of Tm, Kt and Free fraction 

comes from our previous PBPK model (Fàbrega et al., 2014). For sensibility analysis of 

the different parameters a coefficient of variation (CV) of 0.3 was used (Allen et al., 1996; 

Brochot et al., 2007; Sweeney et al., 2001). The parametric uncertainty of intake was 

assessed for different population cohorts (Domingo et al., 2012b). Although, the intake 

has usually both uncertainty-variability components, we only assumed that a significant 

part of uncertainty comes from data treatment. 

 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELING OF PCDD/FS AND PFASS IN HUMANS. 
Francesc Fabrega Bonadona 
Dipòsit Legal: T 1660-2014



 

 

 

Table 1. Mean, range and sensitivity of the parameters used in the PBPK model, ranked according their sensitivity.  

PFOS  PFOA 

Parameter Mean  Range Sensitivity   Parameter Mean  Range Sensitivity  
Tmc  3.50 0.617-17.2 22.7  Free  0.03 9.46e-7-70.9 185696 
Q. kidney 0.17 0.118-0.265 3.82  Kt  0.116 1.12e-4-39.8 585 
Free  0.03 9.45e-7-70.9 1  Q. kidney 0.177 0.118-0.265 4.01 
Kt  0.018 3.30e-7-56.5 0.999  Intake 0.331 0.061-1.33 0.952 
Pk Rest body 0.2 0.0007-17.9 0.781  Tm  6.0 1.46-20.9 0.929 
Intake 0.161 0.112-0.316 0.624  Pk Rest body 0.12 0.0002-40.2 0.664 
Pk fat 0.033 0.004-15.0 0.438  BW  71.4 64.7-79.1 0.161 
BW  71.4 64.7-79.1 0.158  Pk fat 0.467 0.008-16.2 0.055 
Pk gut 0.57 0.013-17.7 0.073  Pk gut 0.05 9.97e-6-33.7 0.025 
Pk brain 0.255 0.002-16.8 0.017  Pk liver 1.03 0.077-14.1 0.002 

Pk lung 0.155 0.0003-24.8 0.017  Pk brain 0.17 0.0005-20.8 0.0008 
Pk liver 2.67 0.494-13.6 0.007  Pk kidney 1.17 0.096-11.5 0.0006 
Pk kidney 1.26 0.105-14.7 0.003  Volume plasma 0.04 0.026-0.059 0.0004 
Volume brain 0.021 0.014-0.032 0.001  Volume lung 0.014 0.009-0.021 0.0003 
Q. brain 0.117 0.078-0.176 0.0008  Volum liver 0.023 0.015-0.034 0.0003 
Volum liver 0.023 0.015-0.034 0.0007  Pk lung 1.27 0.105-13.72 0.0002 
Q. liver 0.189 0.126-0.283 0.0005  Q. liver 0.189 0.126-0.283 0.0002 
Q. lung 0.034 0.023-0.051 0.0002  Volum kidney 0.004 0.003-0.006 0.0002 
Volume plasma 0.04 0.026-0.059 0.0002  Q. brain 0.117 0.078-0.176 0.0002 
Volum kidney 0.004 0.003-0.006 0.0001  Q. lung 0.034 0.023-0.051 0.0002 
Volume lung 0.014 0.009-0.021 0.0001   Volume brain 0.021 0.014-0.032 0.0001 

BW: Body weight (kg); Tm: Resorption maximum (µg/h); Kt: Affinity constant (µg/L); Free: free fraction (unitless); Pk: partition coefficient (unitless); 
Intake (µg/day). Cardiac output to tissues and tissue volumes are given in the fraction of total cardiac output and total volume. 
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2.4. Uncertainty analysis  

The uncertainty of the PBPK model was assessed for those parameters with a 

higher contribution according to the SA. In a first step, the Latin Hypercube Sampling 

(LHS) method was used. LHS is a stratified sampling method to reduce the number of 

runs necessary for a Monte Carlo (MC) simulation and to achieve a distribution with a 

reasonable calculation (McKay et al., 1979). In LHS, the range of each variable is divided 

into N intervals, where N is the number of iterations of MC simulation. Then, a random 

value is obtained for each segment following a uniform distribution. After that, the 

variables are randomly grouped for each MC simulation. The outcomes were used to 

simulate the minimum and maximum concentration of PFOS and PFOA in the human 

tissues. The final results were the simulation of the concentration of PFOS and PFOA for 

plasma, liver, brain lung and kidney. The minimum and maximum simulation bands were 

used to validate the experimental results by comparing the experimental data with the 

simulation results obtained in the PBPK model (Chiu et al., 2007).  

 

2.5. Statistical analysis 

The t-test was applied to the results obtained for the PBPK model to assess the 

validity of the model simulation. T-test is used to determine if two populations means are 

equal (Snedecor and Cochran, 1989). The statistic test was assessed using:  
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where x and y are the means, sx and sy are the standard deviation, and “n” and 

“m” are the size of the sample. When the variances of the data samples are different, the 

statistical test under the null hypothesis has Student’s distribution, and the sample 

standard deviation is replaced by the pooled standard deviation: 
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To test the significance, a level of significance calls alpha (α) need to be set. Alpha 

explains how the extreme observed results must be in order to reject the null hypothesis 

of the t-test. Alpha is associated to the confidence level of the t-test. Commonly, alpha 

has a value between 0.05 to 0.01, indicating a 95% and 99% of level of confidence, 
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respectively. On the other hand, p-value is the probability that the observed statistic 

occurred by chance alone. To test the significance α is compared with p-value to accept 

or reject the null hypothesis. 

 

3. Results and Discussion 

3.1 Sensitivity analysis (SA) 

SA was performed to identify how input uncertainty impacts the final outcomes. 

SA outcomes were ranked and summarized in Table 1. For PFOS, the highest values 

obtained in the SA were Tm, followed by cardiac output to kidney (Q. kidney), Free, Kt, 

Pk for the rest of the body and the oral intake. For PFOA, the main parameters according 

to the SA was for Free fraction, followed by Kt, Q. kidney, oral intake, Tm and Pk for the 

rest of the body. In general, cardiac output and volumes to tissues showed the smallest 

values of SA, with the only exception of Q. kidney. The reason of the high SA for Q. kidney 

may be that kidney is the elimination tissue, and elimination parameters, whose 

uncertainty is important, give a higher degree of influence to this parameter. SA in Q. 

kidney was not studied because it is a physiological parameter with natural variability, and 

the present study was limited to parametric uncertainty (Huizer et al., 2012). Similarly, the 

results of the SA for Pks were among the lower results with the exception of Pk for rest of 

the body that was considerably big. The most plausible explanation for the high value in 

the rest of the body is that this compartment is a lumped tissue that receives all the 

uncertainty of the other tissues together (Thompson and Beard, 2012). Using the result 

of SA, the study of the uncertainty was focused on the most sensitive parameters, namely 

Tm, Kt, Free and intake. For PFOA, more than the 99.9% of the contribution comes from 

these four parameters, whereas for PFOS, the contribution percentage for the selected 

parameters was 82.6%.  

 

3.2. Uncertainty assessment of parametric data  

The mean, minimum and maximum concentrations of PFOS and PFOA in plasma, 

liver, brain, lung and kidney were simulated, and compared with experimental data 

(Figures 2, 3, 4, 5 and 6). The parametric samples of the LHS were used to simulate the 

concentrations of PFOS and PFOA in human tissues. In many cases, the result was a set 

of simulations that were not converging. For those set of unconverged simulation, the 

values of Tm, Kt, Free and intake were adjusted by calibrating the value of the parameter 

to obtain the minimum and maximum results where the simulation trend converged. Table 
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2 summarizes the parametric data obtained for the Tm, Kt, Free and Intake for the PBPK 

model (Fàbrega et al., 2014). This process of calibration may underestimate the final 

value for the true range of uncertainty but allows to obtain simulations that converges with 

close aproximation to the true range of uncertainty. In the next paragraph, the behaviour 

of the parameters studied is discussed. 

 

Table 2. Values of Tm, Kt and Free fraction used in the PBPK model to assess the 
mean, minimum and maximum concentration of PFOS and PFOA.  

    PFOS   PFOA 

  Mean Minimum  maximum   Mean Minimum  Maximum  
Tm  86 17.4 2456  147 35.9 245 
Kt  0.02 24.9 0.2  0.11 41.5 0.04 
Free  0.03 1.0 0.02  0.03 1.0 0.01 
Intake  0.17 0.11 0.32  0.33 0.06 1.33 

Tm: Resorption maximum (µg/h); Kt: Affinity constant (µg/L); Free: free fraction (unitless); 
Intake (µg/day).  
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 Fig. 2 . Time course concentration of PFOS and PFOA in plasma. Simulated 
concentrations (mean, minimum and maximum) vs measured concentrations of PFOS 
and PFOA.  
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Fig. 3 . Time course concentration of PFOS in liver, brain, lung and kidney. Simulated concentrations (mean, minimum and maximum) vs 

measured concentrations of PFOS. 
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Fig. 4 . Time course concentration of PFOA in liver, brain, lung and kidney. Simulated concentrations (mean, minimum and maximum) vs 
measured concentrations of PFOA.  
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Fig. 5 . Simulated vs experimental concentrations of PFOS and PFOA in plasma from two population groups, whose mean age is 25 and 54 
years old.  
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Fig. 6 . Simulated vs experimental concentrations of PFOS in liver, brain, lung and kidney.  
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Fig. 7 . Simulated vs experimental concentration of PFOA in liver, brain, lung and kidney. 
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Regarding the elimination process, the behaviour of the parameters Tm and Kt 

is analogous to the metabolic reaction of the Michaelis-Menten (Kou et al., 2005). Tm is 

the maximum amount of PFOS or PFOA that can be resorbed back from the urine to 

plasma compartment, being analogous to the maximum velocity of reaction (Vmax) in 

the Michaelis-Menten reactions. In turn, Kt is obtained when Vmax is equal to Vmax/2, 

and it is analogous to the Michaelis-Menten constant (Km). When Tm increases, the final 

values of concentration in tissues also increase. In contrast, when Kt increases the 

concentration in tissues decreases, because the increasing of Kt generates a decreasing 

of the slope of the trend, and subsequently the final result when the simulation 

converges. For Free fraction, the increasing of the parameter generates a decreasing of 

the final outcomes because the amount of free fraction is proportional to the tissue 

concentration. For the intake, the bigger the value the bigger the final concentration 

found in human tissues, because a higher amount of chemicals enter the human body. 

 

3.3. Model validation 

3.3.1 Visual validation 

The most usual process of model validation in PBPK models is the visual 

comparison of simulation results and experimental values (Chiu et al., 2007). The 

simulation of the mean, minimum and maximum was conducted in plasma, liver, brain, 

lung and kidney for PFOS and PFOA, and compared with the experimental values found 

in Tarragona County (Ericson et al., 2007; Pérez et al., 2013). The comparison of 

experimental data and the simulation trends is depicted in Figures 2, 3 and 4. The 

simulations were run for 90 years that is the maximum age of the experimental data 

available. All the simulations trends followed a hyperbolic profile similar to the Michaelis-

Menten saturation curve (Kou et al., 2005), that reach the convergence when the age of 

the population is close to 60 years old. The results for the most of the simulations were 

that the simulation trend was in between the data of experimental results. The differences 

between the minimum and maximum values of the experimental results were statistically 

significant. For PFOS, the minimum and maximum concentrations in the steady state 

ranged 3.0-405, 1.5-23.0, 3.0-61.8 and 6.0-269 ng/g in liver, brain, lung and kidney, 

respectively. For PFOA, the minimum and maximum concentration in the steady state 

ranged 3.0-99, 6.0-88 and 3.0-12 for liver, brain and kidney, respectively. The ranges 

found in experimental data imply that the range of simulation results would be bigger 

than the experimental ranges and thus a visual validation can be established. For 

plasma, all the experimental results were between the maximum and minimum for PFOS 
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and PFOA (Figure 2 and 5). The most part of the experimental results found in plasma 

were close to the median. For PFOA, the distribution of the experimental results in 

plasma was closer to the median in comparison to PFOS, where the dispersion was 

higher. In liver, all the experimental PFOA values were in the range of minimum and 

maximum concentration. In contrast, few outliers were found for PFOA, being out of the 

simulation range. In brain, all the experimental data were in the range for PFOA, but in 

PFOS two experimental points were out of simulation range. In lung, for PFOA five 

experimental points were out of the range and for PFOS all the experimental points were 

out of the range with only one exception. Finally, in kidney, for PFOA all the experimental 

points were in the range, but for PFOS seven experimental points were out of the range. 

Over all, visual inspections establish that the simulations results for PFOA were better 

than the simulations results for PFOS, thus validating the PBPK model.  

Furthermore, the box plot of experimental data and simulation results (in the 

steady state) is depicted in Figures 6 and 7. Two population groups according to age 

were studied: adults from 20 to 30 years old (average: 25 years old), and people aging 

from 50 to 60 years old (average: 54 years old). Many outliers were found in the 

simulation box plot, but the simulated and experimental box plot were very coincident in 

the ranges. Regarding the other tissues, the box plot showed a bigger dispersion of the 

results in the experimental tissue in comparison to the simulation. The most notably 

dispersion was in lungs and kidney, for PFOS, and in lung, for PFOA. The analysis of 

the box plot is in agreement with the simulation trends and improves the visual analysis 

of the results.  

However, the validation of the model depends also on the range of the simulation 

results. In a first step, the simulations generated by the LHS were not converging, and 

the concentration of PFOS and PFOA were out of the range. Afterwards, the values of 

Tm, Kt and Free were recalibrated to get the convergence of the simulations, obtaining 

its minimum and maximum values (Table 2). The values of Tm, Kt and Free were lower 

than those generated with the LHS and, therefore, the final simulations of PFOS and 

PFOA may be underestimated. Lung and kidney were the tissues with more experimental 

points out of the range, and the model may be considered useless to simulate PFOS in 

these of PFOS tissues. This fact evidences the necessity to include the uncertainty of 

the parameters for the evaluation of the validity of the PBPK models. The validity of the 

model in lungs, for PFOS and PFOA, and kidney, for PFOS, should be reconsidered.  

Concentration of PFOS and PFOA in tissues depends highly on Pk values. The 

Pks were previously assessed using data found in human tissues and plasma (Fàbrega 
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et al., 2014; Maestri et al., 2006). Whereas the simulated concentration in plasma was 

fitted with the experimental values for both PFOS and in PFOA, the simulation 

concentration found in some tissues were far from the experimental value. This fact 

demonstrated that these Pks should be better estimated using better experimental data. 

Mathematical algorithms used to provide a good estimation tool for the assessment of 

Pks in environmental contaminants, but for PFOS and PFOA the behaviour of these 

compounds makes it difficult to estimate due to the ambiphilic structure of PFASs (Peyret 

et al., 2010). Thus, the only way to estimate the Pks in PFOS and PFOA is the use of 

experimental data. Due to the relatively good fitting between simulation and experimental 

results in plasma, we can assume that one of the main factors responsible of the results 

obtained in tissues others than plasma were the PKs, besides of the parametric 

uncertainty.  

 

3.3.2. Statistical validation 

To assure the statistical validity of the final results, a student’s t-test was 

performed. Data are summarized in Tables 3 and 4. Plasma levels corresponding to two 

age groups were compared (25 and 45 years old). Probabilities (p values) ranged from 

0.69 to 0.86 for PFOS and PFOS, assuming equal variance. In consequence, there was 

no significant difference between experimental and simulated results. Assuming unequal 

variance, p values ranged from 0.53 to 0.73, and no significant differences were proved 

between experimental and simulation results. In other tissues, the validity of the model 

depends on the α value. For α=1% the results had significant differences for PFOA in 

brain and lung, and for PFOS in lung and kidney. Assuming α=5% significant differences 

were observed in liver, brain and lung in PFOA and in liver, lung and kidney in PFOS. 

The PBPK model is validated to simulate plasma, but in other tissues the model do not 

successfully simulates the concentration of PFOS and PFOA. The process of model 

validation differed depending on the fact of using visual analysis or statistical analysis for 

model validation. For visual analysis, all the simulation should be considered as a valid, 

since most experimental values fell in simulation ranges. In contrast, statistical analysis 

test statistical significance of two groups of data with clear set of criteria and avoid human 

biases in judgement. Althought, visual analysis are predominant in PBPK modeling, 

statistical analysis should be incorporated in the model validation to avoid biases in the 

visual validation. 
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Table 3 : Two sample t- test of simulated and experimental concentration of PFOS and 
PFOA in plasma tissue for different age groups, assuming equal and unequal variances. 

     Equal variances    Unequal variances  
Age Group   Hα = 1% Hα = 5% P  Hα = 1% Hα = 5% P 

PFOS 
25 years old  0 0 0.69  0 0 0.61 
54 years old  0 0 0.69  0 0 0.53 

PFOA 
25 years old  0 0 0.86  0 0 0.72 
54 years old  0 0 0.85  0 0 0.73 

 

Table 4 : Two sample t- test of simulated and experimental concentration of PFOS and 
PFOA.  

    PFOS   PFOA 
Tissue   Hα = 1% Hα = 5% P  Hα = 1% Hα = 5% P 
Liver  0 1 0.027  0 1 0.05 
Brain  0 0 0.34  1 1 1.56E-15 
Lung  1 1 5.42E-07  1 1 0.003 

Kidney  1 1 5.23E-04  0 0 0.162 
 

4. Conclusions  
The study of the uncertainty depends on the parametric data and the structure of 

the model. Thus, the study of the parametric uncertainty is model-dependent. 

Consequently, the conclusions are also model-dependent and cannot be extrapolated to 

all the PBPK models. The result of this study may help PBPK modelers to identify the 

most uncertain parameters and the influence of the uncertainty in PBPK modelling. The 

parameters studied were Tm, Kt, free and intake, since they had the highest contribution 

according to the SA. In fact, the SA contribution onto the variance of these four 

parameters was 82.6, for PFOS, and 99.9%, for PFOA. A greater confidence in 

uncertainty and variability analyses would result if parameter distributions and 

correlations among parameters etc. are based on the best available biological 

understanding of the systems. Therefore, the real uncertainty associated to the PBPK 

parameters may be underestimated. The validation of the PBPK model was performed 

visually and using statistical analysis (t-test). For plasma the model outcomes were 

considered as a validated for PFOS and PFOA, either by using visual analysis or the t-

test. In contrast, the visual validation of the PBPK model appeared to be suitable for the 

most part of the scenarios, but the statistical analysis showed that for many scenarios 

was not valid. The tissue simulations were not considered as valid for lungs and kidney 

in PFOS, and for brain and lungs in PFOA, according to the student’s t-test. Statistical 
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analysis should to be included in the validation process of PBPK modeling to avoid 

biases in the visual validation. Pk is the responsible of the distribution of PFOS and PFOA 

to tissues other than plasma. To adjust the simulations, more accurate Pks values should 

be found by using better experimental data. 
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Discussion of Chapter VI 

The uncertainty associated to the PBPK model was studied to the case-study of 

PFOS and PFOA. The visual validation of the model suggests that the PBPK model was 

able to simulate very precisely PFOS and PFOA in plasma, liver, kidney, brain and lungs. 

However, a deep statistical treatment, based on the Student’s t-test, revealed that 

models may not be fully validated. In general terms, there was a good fitting for plasma, 

while the statistical validation for the rest of the tissues was not so successful. Assuming 

a level of significance of the 1% (α=1%), significant differences were noted for PFOA in 

brain and lungs, and PFOS in lung and kidney. Assuming α=5%, significant differences 

were observed for PFOA in liver, brain and lung, and for PFOS in liver, lung and kidney. 

This means that the PBPK model can perfectly predict the concentration in plasma, but 

there is more uncertainty regarding its suitability for other body compartments. In liver, 

which is a target organ for both chemicals, the PBPK model may be considered as valid 

according to the visual validation, but not validated according to the statistical analysis. 

This uncertainties could be linked to the Pks, whose values were obtained by using 

experimental data coming from only 20 autopsy individuals. To adjust the simulations 

results, more accurete Pks should be found by using better experimental data. 

In conclusion, it is here confirmed that the visual study of the PBPK model 

outcomes must be complemented with some statistical treatment for a correct model 

validation. Although the statistic validation of PBPK models has been poorly used in the 

past, our results indicate that this should be an extended practice to avoid visual biases. 
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GENERAL DISCUSSION 
 

PCDD/Fs and PFASs are widely spread environmental contaminants. They are 

highly persistent in the environment and bioaccumulative in living organisms. Moreover, 

these pollutants are very toxic for human health, while they own a long-range transport 

capacity. PCDD/Fs were originally included in the Stockholm Convention as POPs, while 

PFOS was also added in 2009. In addition PFOA is a serious candidate to enter that list. 

Consequently, the human health risk associated to these two families of pollutants need 

to be carefully assessed.  

In silico techniques are receiving an important attention as alternative methods 

to classical toxicological methods. PBPK models may improve the assessment of human 

health risk, and therefore there is a need of reliable PBPK models. The use of PBPK 

models, as techniques to estimate the internal dose to environmental pollutants, has 

been incipient in the past. Even more, approaches on PCDD/Fs and PFASs are 

particularly scarce. Previous studies have been mainly focused on specific PCDD/F 

congeners, on one hand, and only on PFOS and PFOA, on the other one. PBPK models 

may improve the assessment of health risks by predicting the time-course concentration 

of pollutants in human tissues. The use of PBPK in human health risk assessment allows 

extrapolating the cross-species, cross-route, the dose and the time of the predictions, 

without the need of experimental analysis.  

The main objective of this thesis was to demonstrate the capability of PBPK 

models to estimate the body burdens of mixtures of environmental pollutants. The 

present work was focused on the development of a PBPK model to assess the time 

course concentration of PCDD/Fs and PFASs in human tissues, as a tool of potential 

use in health risk assessment. 

In the process of PBPK model development, PCDD/Fs were chosen as classic 

POPs, while there are also extensive PK data available in the scientific literature. 

Moreover, PCDD/Fs have a relatively simply PK for its high absorption, since they are 

not metabolized in humans and whose elimination mechanism takes place mainly 

through bile. On the other hand, PFASs were also selected as representative of “new” 

POPs. In order to prioritize chemicals, a SOM-based hazard index was here developed. 

PFASs are toxic chemicals whose hazard was compared to other pollutants, including 

pharmaceuticals, pesticides, and endocrine disruptors among others. In addition to 

PCDD/Fs, the PBPK model was applied to PFOS and PFOA, being the most well known 
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PFASs in the research literature. After that, the model was also extended to PFASs other 

than PFOS and PFOA, for the very first time. 

Extrapolation of the PBPK model to other groups of environmental pollutants is 

subject to PK/PD knowledge. For chemicals with similar PK/PD characteristics to 

PCDD/Fs and PFASs, the PBPK model may be extended by changing the parametric 

data (basically the Pks and elimination constants) and slightly modifying the mechanism 

of elimination and/or metabolism. Thus, POPs like polychlorinated biphenyls (PCBs) or 

polybrominated diphenyl ethers (PBDEs) are good candidates to be modelled by 

applying the present PBPK model. However, the robustness and accuracy of PBPK 

models should be improved in the future. For instance, temporal dynamics of exposure 

concentration and physiological parameters should be included to consider the long-term 

exposure to POPs. Furthermore, taking into account toxicity of POPs and related 

substances in the neonate development, PBPK models could incorporate the mammary 

gland in the model structure in order to assess the transfer of the chemicals. On the other 

hand, since humans are really exposed to chemical mixtures, future PBPK modeling 

studies should incorporate possible interactions among the chemical compounds.  

The simulations of both PCDD/Fs and PFASs were, in general terms, reasonably 

coincident with experimental results. Moreover, the uncertainty in the PBPK model was 

incorporated to improve the process of model validation. The PBPK model developed in 

the present thesis has been demonstrated to be a reliable tool to simulate the levels of 

PCDD/Fs and PFASs in human tissues. PBPK models are not only a promising tool, but 

also a reality to simulate the concentrations of environmental pollutants in human tissues, 

for their subsequent use in human health risk assessment.  
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CONCLUSIONS 
 

General conclusion 

The PBPK model here developed has proven to be a reliable tool to simulate 17 

PCDD/F congeners and 11 PFASs in human tissues. The model was successfully 

validated for PCDD/Fs in adipose tissue for the first time, being this the target tissue 

where PCDD/Fs accumulate. Moreover, the model was simulated for PFOS and PFOA 

as well as other PFASs, elucidating its mechanism of elimination. Finally, the statistical 

analysis carried out in the PBPK model for PFOS and PFOA demonstrates that statistical 

analysis of the final outcomes is a necessary practice to be integrated in PBPK modeling 

to ensure the reliability of the simulations.  

 

Specific conclusions 

1) A SOM-based hazard index (HI) have been able to create a ranking of 

environmental chemicals based on their PBT properties. The pollutants studied 

using HI were 205 pollutants, including pharmaceutic compounds, pesticides, 

illicit drugs, PFASs, endocrine disruptors and UV filters. According to the HI 

outcomes, PFASs are among the most hazardous environmental pollutants for 

human health. 

2) IRICAP may assess the human health risk associated to the exposure of 

chemical mixtures and its aggregate effect. Although chemical interactions have 

not been considered in the IRICAP, the ranking should be able to prioritize 

chemical mixtures in river water, being extensible to other environmental 

compounds. 

3) PBPK models have proven to be a reliable tool to assess the concentration of 

PCDD/Fs in plasma and adipose tissue. Values from PBPK model simulations 

and experimental results of PCDD/Fs in plasma and adipose tissue were very 

similar.  

4) PBPK models are a feasible tool to reduce the cost of biological surveillance 

studies by minimizing the number of biological samples (e.g., blood and adipose 

tissue) where PCDD/Fs must be analyzed. They also allow estimating the long-

term accumulation of PCDD/Fs in human tissues, highlighting adipose tissue as 

the target tissue where PCDD/Fs mainly accumulate. 
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5) For the first time, a generic PBPK model was developed for PFASs. The structure 

of the PBPK model simulated a mechanism of urinary elimination with a 

mechanism of resorption of PFASs from urine to plasma, and a strong protein 

binding for all the compounds. According to data from the population in Tarragona 

County (Spain), the model was able to successfully simulate the concentration of 

PFASs in plasma. Although it is not the definitive proof of the pharmacokinetics 

of the PFASs under study, it demonstrates that this mechanism is able to simulate 

PFASs in plasma. 

6) The PBPK model for PFASs was validated in a case study in Norway, where 

experimental data of 5 PFASs in blood were available for the PFAS exposure for 

general population. The model was validated for PFHxS, PFOS, PFHpA, PFOA 

and PFNA. 

7) The visual and the statistical validation of the PBPK model differed for some 

tissues depending on the level of significance (α). The visual validation seemed 

to be sufficient for validation purposes, being the most largely extended method 

of PBPK validation. However, the statistical tests showed that the visual 

validation may not be enough to assure the reliability of the model.  
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ANNEX 1 

Supporting Information in Chapter 1 

Integrated risk index of chemical aquatic pollution 
(IRICAP): Case studies in Iberian rivers 

 

Table S1 

Geographical distribution of 77 sampling points where IRICAP was applied. 

Code  River  River Basin  Coordinates UTM  
Zone X Y 

LLO1 Llobregat Llobregat 31 416304 4679359 
LLO2 Llobregat Llobregat 31 407020 4659392 
LLO3 Llobregat Llobregat 31 405907 4617415 
CAR1 Cardener Llobregat 31 381484 4656936 
CAR2 Cardener Llobregat 31 387429 4643298 
CAR3 Cardener Llobregat 31 397127 4629284 
CAR4 Cardener Llobregat 31 403881 4616871 
LLO4 Llobregat Llobregat 31 403792 4607459 
LLO5 Llobregat Llobregat 31 410078 4594291 
ANO1 Anoia Llobregat 31 378856 4606045 
ANO2 Anoia Llobregat 31 388339 4602206 
ANO3 Anoia Llobregat 31 401051 4586728 
LLO6 Llobregat Llobregat 31 411036 4592524 
LLO7 Llobregat Llobregat 31 420247 4577928 
EBR1 Ebro Ebro 30 405193 4761644 
OCA Oca Ebro 30 466118 4731520 
EBR2 Ebro Ebro 30 503672 4726140 
ZAD Zadorra Ebro 30 517732 4742302 

EBR3 Ebro Ebro 30 513141 4715725 
NAJ Nájerilla Ebro 30 523620 4703281 
ARG Arga Ebro 30 602161 4740847 
EBR4 Ebro Ebro 30 565335 4696194 
EBR5 Ebro Ebro 30 619147 4653811 
GAL1 Gállego Ebro 30 714638 4705571 
GAL2 Gállego Ebro 30 681725 4622524 
HUE Huerva Ebro 30 673724 4609044 
EBR6 Ebro Ebro 30 692418 4604252 
MAR Martín Ebro 30 693300 4535853 
ESE Ésera Ebro 30 280915 4676203 
CIN1 Cinca Ebro 31 271142 4667380 
CIN2 Cinca Ebro 31 264776 4642241 

continue on next page 
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continued from previous page 
Code River  River Basin  Zone X Y 
RS Ribera Salada Ebro 31 370389 4658269 

SEG Segre Ebro 31 292482 4601301 
MAT Matarranya Ebro 31 262933 4564305 
ALG Algars Ebro 31 265824 4554895 

EBR7 Ebro Ebro 31 299521 4559714 
EBR8 Ebro Ebro 31 294619 4513636 
EBR9 Ebro Ebro 31 306788 4509432 
JUC1 Júcar Júcar 30 598583 4453975 
JUC2 Júcar Júcar 30 573092 4436231 
JUC3 Júcar Júcar 30 562110 4414506 
JUC4 Júcar Júcar 30 601713 4336027 
JUC5 Júcar Júcar 30 665927 4340496 
CAB1 Cabriel Júcar 30 627162 4439354 
CAB2 Cabriel Júcar 30 612534 4422400 
CAB3 Cabriel Júcar 30 614272 4410987 
CAB4 Cabriel Júcar 30 628595 4376486 
CAB5 Cabriel Júcar 30 642129 4355758 
JUC6 Júcar Júcar 30 707741 4328283 
JUC7 Júcar Júcar 30 720584 4336933 
MAG1 Magro Júcar 30 667953 4362542 
MAG2 Magro Júcar 30 711245 4348964 
JUC8 Júcar Júcar 30 729360 4343192 
BOR Borosa Guadalquivir 30 512435 4207084 

GUA1 Guadalquivir Guadalquivir 30 497027 4214205 
GUAM Guadiana 

Menor 
Guadalquivir 30 481267 4192450 

GUA2 Guadalquivir Guadalquivir 30 452771 4200519 
MAG Magaña Guadalquivir 30 456338 4242400 

GUAN Guadabullón Guadalquivir 30 431850 4199348 
GUA3 Guadalquivir Guadalquivir 30 395434 4207864 
YEG Yeguas Guadalquivir 30 384664 4246754 

GUAL Guadalmoral Guadalquivir 30 375522 4166800 
GUA4 Guadalquivir Guadalquivir 30 334794 4189933 
PIC Picachos Guadalquivir 30 315008 4180807 
BEM Bembézar Guadalquivir 30 279446 4224770 
CAC Cacín Guadalquivir 30 423215 4086558 

GEN1 Genil Guadalquivir 30 396109 4116460 
GEN2 Genil Guadalquivir 30 314734 4161417 
GUA5 Guadalquivir Guadalquivir 30 294339 4174415 
COR Corbones Guadalquivir 30 272990 4153778 
HER Herreros Guadalquivir 30 235090 4156650 

GUAA Guadaira Guadalquivir 30 267816 4123619 
GUA6 Guadalquivir Guadalquivir 29 761545 4129986 
GUA7 Guadalquivir Guadalquivir 29 759226 4107247 
GUA8 Guadalquivir Guadalquivir 29 751405 4094029 
GUAR Guadiamar Guadalquivir 29 742717 4130496 
GUA9 Guadalquivir Guadalquivir 29 736448 4084204 
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Table S2. 

SOM input PBT values after normalization. 

 Half -life  Bioaccumulationn  Toxicity  
Acetaminophen 0.066 0.117 0.268 
Acridone 0.089 0.045 0.346 
Albendazol 0.067 0.397 0.535 
Alprazolam 0.120 0.250 0.547 
Amlodipine 0.077 0.386 0.536 
Amoxicillin 0.033 0.117 0.238 
Atenolol 0.049 0.117 0.297 
Atorvastatin 0.050 0.410 0.684 
Azaperol 0.155 0.334 0.493 
Azaperone 0.179 0.295 0.506 
Azithromycin 0.274 0.544 0.466 
Bezafibrate 0.072 0.117 0.520 
Carazolol 0.066 0.417 0.472 
Carbamazepine 0.082 0.301 0.435 
Cefalexin 0.022 0.117 0.202 
Cimetidine 0.092 0.117 0.355 
Ciprofloxacin 0.115 0.117 0.177 
Citalopram 0.162 0.501 0.540 
Clarithromycin 0.218 0.411 0.462 
Clopidogrel 0.131 0.513 0.546 
Codeine 0.118 0.106 0.379 
Desloratadine 0.127 0.638 0.602 
Dexamethasone 0.161 0.221 0.307 
Diazepam 0.084 0.358 0.506 
Diclofenac 0.105 0.117 0.442 
Diltiazem 0.085 0.339 0.465 
Dimetridazole 0.086 0.117 0.411 
Enalapril 0.029 0.117 0.335 
Enalaprilat 0.014 0.117 0.112 
Erithromycin 0.212 0.395 0.416 
Famotidine 0.098 0.117 0.244 
Fluoxetine 0.111 0.513 0.603 
Fluvastatin 0.044 0.117 0.443 
Furosemide 0.129 0.117 0.354 
Gemfibrozil 0.067 0.117 0.524 
Glibenclamide 0.119 0.663 0.664 
Hydrochlrothiazide 0.124 0.117 0.258 
Hydrocodone 0.154 0.133 0.385 
Ibuprofen 0.054 0.117 0.438 
Indomethacine 0.083 0.117 0.602 
Iopromide 0.088 0.117 0.000 
Irbesartan 0.077 0.742 0.716 
Ketoprofen 0.055 0.117 0.350 
continue on next page 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELING OF PCDD/FS AND PFASS IN HUMANS. 
Francesc Fabrega Bonadona 
Dipòsit Legal: T 1660-2014



   Annex 1 

 

170 

continued from previous page 
 Half -life  Bioaccumulationn  Toxicity  
Levamisol 0.077 0.207 0.459 
Loratadine 0.121 0.726 0.724 
Lorazepam 0.095 0.292 0.475 
Losartan 0.123 0.407 0.507 
Meloxicam 0.072 0.452 0.530 
Metformin 0.066 0.117 0.157 
Metoprolol 0.135 0.203 0.317 
Metronidazole 0.077 0.117 0.332 
Metronidazole-OH 0.060 0.117 0.203 
Nadolol 0.070 0.117 0.370 
Naproxen 0.044 0.117 0.365 
Norfluoxetine 0.108 0.569 0.574 
Ofloxacin 0.156 0.117 0.160 
Olanzapine 0.154 0.386 0.468 
Oxycodone 0.164 0.117 0.335 
Paroxetine 0.073 0.656 0.607 
Phenazone 0.074 0.117 0.557 
Piroxicam 0.077 0.117 0.326 
Pravastatin 0.019 0.117 0.381 
Propranolol 0.061 0.400 0.474 
Propyphenazone 0.080 0.222 0.619 
Ranitidine 0.118 0.117 0.311 
Ronidazole 0.068 0.117 0.308 
Salbutamol 0.064 0.117 0.347 
Sertraline 0.137 0.740 0.646 
Sotalol 0.070 0.117 0.323 
Sulfamethoxazole 0.104 0.117 0.357 
Tamsulosin 0.086 0.304 0.444 
Tenoxicam 0.100 0.000 0.272 
Tetracyclin 0.161 0.117 0.262 
Thiabendazole 0.077 0.304 0.467 
Torasemide 0.123 0.443 0.431 
Trazodone 0.215 0.419 0.498 
Trimethoprim 0.096 0.117 0.307 
Valsartan 0.030 0.117 0.458 
Venlafaxine 0.142 0.429 0.517 
Warfarin 0.065 0.339 0.554 
Xylazine 0.107 0.620 0.617 
9-Tetrahydrocannabinol  (THC) 0.084 1.000 0.886 
2-oxo-3-hydroxy-LSD 0.104 0.117 0.311 
1S,2R(+)Ephedrine 0.055 0.037 0.368 
11-hydri-9-THC 0.073 0.686 0.768 
11-nor-9-carboxy-9-THC 0.051 0.410 0.673 
6-acetylmorphine 0.116 0.162 0.404 
Amphetamine 0.069 0.194 0.449 
continue on next page 
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continued from previous page 
 Half -life  Bioaccumulationn  Toxicity  
Benzoilecgonine 0.057 0.117 0.095 
Cannabidiol 0.072 0.850 0.847 
Cannabinol 0.083 0.940 0.859 
Cocaethylene 0.076 0.333 0.469 
Cocaine 0.074 0.278 0.438 
EDDP perchlorate 0.141 0.686 0.628 
Heroin 0.100 0.166 0.404 
Lysergic acid diethylamide (LSD) 0.113 0.378 0.441 
MDMA 0.063 0.255 0.467 
Metaamphetamine 0.071 0.242 0.476 
Methadonehydrochloride 0.151 0.530 0.571 
Morphine 0.120 0.117 0.344 
1H-Benzotriazole (BT) 0.065 0.145 0.457 
Benzil paraben 0.054 0.473 0.561 
Bisphenol a (BPA) 0.089 0.436 0.578 
Caffeine 0.076 0.117 0.263 
Etilparaben 0.047 0.304 0.499 
Diethylstilbestrol (DES) 0.078 0.706 0.704 
Estradiol (E2) 0.101 0.542 0.598 
Estradiol 17-glucuronide (E2-17G) 0.062 0.117 0.448 
Estriol (E3) 0.089 0.301 0.434 
Estriol 16-glucuronide (E3-16G) 0.038 0.117 0.082 
Estriol 3-sulfate (E3-3S) 0.107 0.117 0.182 
Estrone (E1) 0.119 0.406 0.557 
Estrone 3-glucuronide (E1-3G) 0.072 0.117 0.318 
Estrone 3-sulfate (E1-3S) 0.140 0.117 0.245 
Ethinyl estradiol (EE2) 0.141 0.489 0.556 
Metilparaben 0.045 0.225 0.472 
Nonylphenol (NP) 0.056 0.491 0.776 
Nonylphenol diethoxylate (NP2EO) 0.054 0.360 0.678 
Nonylphenol monocarboxylate 
(NP1EC) 

0.028 0.234 0.621 
Nonylphenol monoethoxylate 
(NP1EO) 

0.047 0.402 0.712 
Octylphenol (OP) 0.054 0.450 0.738 
Octylphenol diethoxylate (OP2EO) 0.054 0.360 0.678 
Octylphenol monocarboxylate 
(OP1EC) 

0.070 0.234 0.553 
Octylphenol monoethoxylate 
(OP1EO) 

0.045 0.326 0.667 
Propilparaben 0.049 0.392 0.527 
Tolytriazon (TT) 0.106 0.117 0.393 
Triclocaraban 0.159 0.680 0.636 
Triclosan 0.137 0.658 0.654 
Tris (2-cloroetil) phosphate (TCEP) 0.072 0.000 0.419 
Tris (butoxietil) phosphate (TBEP) 0.000 0.308 0.489 
Tris (cloroisopropil) phosphate 
(TCCP) 

0.081 0.251 0.521 
3-hydroxycarbofuran 0.058 0.117 0.327 
Acethochlor 0.092 0.391 0.627 
continue on next page 
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continued from previous page 
 Half -life  Bioaccumulationn  Toxicity  
Alachlor 0.092 0.466 0.627 
Atrazine 0.130 0.204 0.511 
Azynphos ethyl 0.052 0.448 0.569 
Azinphos methyl 0.049 0.347 0.486 
Buprofezin 0.110 0.587 0.644 
Carbofuran 0.075 0.281 0.494 
Chlorfenvinphos 0.098 0.318 0.567 
Chlorpyriphos 0.106 0.689 0.666 
Deisopropylatrazine 0.122 0.000 0.426 
Desethylatrazine 0.125 0.034 0.447 
Diazinon 0.059 0.511 0.591 
Dichlofenthion 0.080 0.726 0.677 
Dimethoate 0.022 0.117 0.342 
Diuron 0.119 0.336 0.470 
Ethion 0.020 0.706 0.787 
Fenitrothion 0.059 0.432 0.558 
Fenoxon 0.048 0.086 0.466 
Fenoxon sulfone 0.052 0.117 0.331 
Fenoxon sulfoxide 0.050 0.117 0.326 
Fenthion 0.050 0.555 0.609 
Fenthion sulfone 0.054 0.239 0.471 
Fenthion sulfoxide 0.052 0.218 0.465 
Hexythiazox 0.120 0.784 0.706 
Imazalil 0.133 0.513 0.742 
Imdacloprid 0.105 0.117 0.688 
Isoproturon 0.085 0.366 0.490 
Malathion 0.015 0.287 0.453 
Methiocarb 0.074 0.374 0.536 
Metolachlor 0.094 0.370 0.621 
Molinate 0.056 0.418 0.514 
Omethoate 0.021 0.117 0.279 
Parathion ethyl 0.055 0.514 0.584 
Parathion methyl 0.051 0.364 0.525 
Prochloraz 0.161 0.556 0.589 
Propanil 0.093 0.397 0.535 
Propazine 0.133 0.254 0.564 
Pyriproxyphen 0.072 0.780 0.700 
Simazine 0.128 0.138 0.457 
Terbutryn 0.134 0.379 0.634 
Tolclofos methyl 0.085 0.627 0.651 
i,p-PFNA 0.329 0.234 0.583 
I,p PFNS 0.458 0.234 0.525 
L-PFBS 0.165 0.117 0.226 
L-PFDS 0.570 0.234 0.586 
L-PFHpS 0.305 0.117 0.404 
continue on next page 
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continued from previous page 
 Half -life  Bioaccumulationn  Toxicity  
L-PFHxS 0.249 0.117 0.344 
L-PFOS 0.373 0.117 0.464 
PFBA 0.066 0.117 0.289 
PFDA 0.276 0.234 0.567 
PFDoA 0.550 0.410 0.748 
PFHpA 0.197 0.117 0.445 
PFHxA 0.160 0.117 0.387 
PFHxDA 1.000 0.117 1.000 
PFNA 0.295 0.234 0.565 
PFOA 0.242 0.117 0.505 
PFODA 1.000 0.117 0.891 
PFOSA 0.438 0.819 0.689 
PFPeA 0.128 0.117 0.590 
PFTeDA 0.897 0.234 0.875 
PFTrDA 0.694 0.234 0.811 
PFUdA 0.550 0.410 0.748 
2,2'-dihydroxy-4-
methoxybenzophenone (DHMB) 

0.069 0.376 0.586 
4,4'-dihydroxybenzophenone (4DHB) 0.073 0.123 0.486 
4-hydroxybenzophenone (4HB) 0.074 0.259 0.510 
4-methylbenzylidene camphor 
(4MBC) 

0.132 0.838 0.674 
Benzophenone-1 (BP1) 0.072 0.243 0.536 
Benzophenone-2 (BP2) 0.070 0.215 0.518 
Benzophenone-3 (BP3) 0.071 0.371 0.573 
Ethyl 4-aminobenzoate (Et-PABA) 0.060 0.210 0.454 
Ethylexyl dimethyl PABA (OD-PABA) 0.067 0.814 0.683 
Ethylexyl methoxycinnamate (EHMC) 0.036 0.819 0.653 
Octocrylene (OC) 0.056 0.986 0.672 
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Table S3. 

PBT properties of the studied compounds after SOM application.  

  Half -life  Bioaccumulation  Toxicity  
PFHxDA 2.48 0.77 2.33 
PFODA 2.48 0.77 2.33 
PFTeDA 2.48 0.77 2.33 
PFTrDA 2.48 0.77 2.33 
PFDoA 2.11 0.93 2.53 
PFUdA 2.11 0.93 2.53 
THC 0.35 2.70 2.40 
Cannabidiol 0.35 2.70 2.40 
Cannabinol 0.35 2.70 2.40 
4MBC 0.35 2.70 2.40 
OD-PABA 0.35 2.70 2.40 
EHMC 0.35 2.70 2.40 
OC 0.35 2.70 2.40 
Hexythiazox 0.42 2.57 2.33 
PFOSA 0.42 2.57 2.33 
Irbesartan 0.30 2.57 2.40 
Pyriproxyphen 0.30 2.57 2.40 
Loratadine 0.36 2.47 2.30 
Sertraline 0.36 2.47 2.30 
Dichlofenthion 0.36 2.47 2.30 
L-PFDS 1.93 0.80 2.33 
Glibenclamide 0.41 2.30 2.20 
EDDPperchlorate 0.41 2.30 2.20 
Triclocaraban 0.41 2.30 2.20 
Triclosan 0.41 2.30 2.20 
Chlorpyriphos 0.41 2.30 2.20 
DES 0.29 2.27 2.30 
11-hydri-9-THC 0.25 2.20 2.40 
Ethion 0.25 2.20 2.40 
Paroxetine 0.34 2.13 2.17 
Tolclofos methyl 0.34 2.13 2.17 
Desloratadine 0.44 2.07 2.07 
Xylazine 0.44 2.07 2.07 
Buprofezin 0.37 1.97 2.03 
NP 0.24 1.70 2.40 
Inazalil 0.24 1.70 2.40 
Fenthion  0.26 1.87 2.13 
I,p PFNS 1.46 0.73 2.00 
L-PFOS 1.46 0.73 2.00 
Norfluoxetine 0.43 1.80 1.90 
Methadonehydrochloride 0.43 1.80 1.90 
Prochloraz 0.43 1.80 1.90 
Fluoxetine 0.29 1.77 2.00 
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continued from previous page 
  Half -life  Bioaccumulation  Toxicity  
E2 0.29 1.77 2.00 
Diazinon 0.29 1.77 2.00 
Parathion ethyl 0.29 1.77 2.00 
i,p-PFNA 1.12 0.87 2.00 
Atorvastatin 0.24 1.47 2.27 
11-nor-9-carboxy-9-THC 0.24 1.47 2.27 
NP1EO 0.24 1.47 2.27 
OP 0.24 1.47 2.27 
Terbutryn 0.44 1.27 2.23 
Azithromycin 0.50 1.63 1.77 
Citalopram 0.50 1.63 1.77 
Clopidogrel 0.50 1.63 1.77 
EE2 0.50 1.63 1.77 
Alachlor 0.23 1.50 2.17 
NP2EO 0.27 1.30 2.17 
OP2EO 0.27 1.30 2.17 
OP1EO 0.27 1.30 2.17 
Acethochlor 0.27 1.30 2.17 
Meloxicam 0.26 1.50 1.87 
Benzilparaben 0.26 1.50 1.87 
BPA 0.26 1.50 1.87 
Azynphos ethyl 0.26 1.50 1.87 
Fenitrothion 0.26 1.50 1.87 
DHMB 0.24 1.33 2.03 
Venlafaxine 0.48 1.43 1.67 
PFDA 0.86 0.80 1.87 
PFNA 0.86 0.80 1.87 
Metolachlor 0.33 1.13 2.00 
E1 0.29 1.40 1.77 
Molinate 0.29 1.40 1.77 
Propanil 0.29 1.40 1.77 
Azaperone 0.58 0.93 1.93 
Clarithromycin 0.53 1.33 1.53 
Erithromycin 0.53 1.33 1.53 
Olanzapine 0.53 1.33 1.53 
Torasemide 0.53 1.33 1.53 
Trazodone 0.53 1.33 1.53 
Carazolol 0.35 1.30 1.67 
Losartan 0.35 1.30 1.67 
Warfarin 0.25 1.17 1.87 
BP3 0.25 1.17 1.87 
Albendazol 0.24 1.30 1.73 
Amlodipine 0.24 1.30 1.73 
Propilparaben 0.24 1.30 1.73 
Methiocarb 0.24 1.30 1.73 
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continued from previous page 
  Half -life  Bioaccumulation  Toxicity  
Azaperol 0.43 1.23 1.57 
LSD 0.43 1.23 1.57 
Diazepam 0.27 1.23 1.67 
Propranolol 0.27 1.23 1.67 
Isoproturon 0.27 1.23 1.67 
Chlorfenvinphos 0.33 0.97 1.87 
Alprazolam 0.46 0.83 1.87 
Propazine 0.46 0.83 1.87 
Parathion_methyl 0.21 1.13 1.73 
Carbamazepine 0.32 1.13 1.57 
Diltiazem 0.32 1.13 1.57 
Lorazepam 0.32 1.13 1.57 
Tamsulosin 0.32 1.13 1.57 
Thiabendazole 0.32 1.13 1.57 
Cocaethylene 0.32 1.13 1.57 
Diuron 0.32 1.13 1.57 
Azinphos methyl 0.22 1.10 1.63 
NP1EC 0.29 0.80 1.83 
OP1EC 0.29 0.80 1.83 
BP1 0.29 0.80 1.83 
Propyphenazone 0.34 0.67 1.90 
Etilparaben 0.20 0.93 1.67 
TBEP 0.20 0.93 1.67 
Carbofuran  0.20 0.93 1.67 
Metaamphetamine 0.22 0.80 1.70 
Metilparaben 0.22 0.80 1.70 
TCCP 0.22 0.80 1.70 
Fenthion sulfone 0.22 0.80 1.70 
Fenthion sulfoxide 0.22 0.80 1.70 
4HB 0.22 0.80 1.70 
BP2 0.22 0.80 1.70 
E3 0.37 0.97 1.37 
MDMA 0.21 0.90 1.57 
Malathion 0.21 0.90 1.57 
Indomethacine 0.29 0.50 1.87 
Phenazone 0.29 0.50 1.87 
Imdacloprid 0.29 0.50 1.87 
PFPeA 0.29 0.50 1.87 
Atrazine  0.26 0.63 1.70 
Cocaine  0.28 0.87 1.40 
Bezafibrate 0.25 0.47 1.70 
Gemfibrozil 0.25 0.47 1.70 
Levamisol 0.22 0.67 1.47 
Amphetamine 0.22 0.67 1.47 
Et-PABA 0.22 0.67 1.47 
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continued from previous page 
  Half -life  Bioaccumulation  Toxicity  
L-PFHpS 0.60 0.33 1.37 
L-PFHxS 0.60 0.33 1.37 
PFHpA 0.60 0.33 1.37 
PFOA 0.60 0.33 1.37 
Fenoxon 0.26 0.47 1.57 
4DHB 0.26 0.47 1.57 
Fluvastatin 0.24 0.43 1.53 
Ibuprofen 0.24 0.43 1.53 
Valsartan 0.24 0.43 1.53 
BT 0.24 0.43 1.53 
E2-17G 0.24 0.43 1.53 
Deisopropylatrazine 0.48 0.29 1.43 
Desethylatrazine 0.48 0.29 1.43 
Hydrocodone 0.49 0.37 1.30 
Oxycodone 0.49 0.37 1.30 
PFHxA 0.49 0.37 1.30 
Dimetridazole 0.30 0.43 1.40 
Diclofenac 0.32 0.33 1.47 
TCEP 0.32 0.33 1.47 
Simazine 0.32 0.33 1.47 
6-acetylmorphine 0.26 0.50 1.33 
Heroin 0.26 0.50 1.33 
Codeine 0.36 0.40 1.30 
TT 0.36 0.40 1.30 
Dexamethasone 0.42 0.67 0.93 
Pravastatin 0.22 0.50 1.27 
Cimetidine 0.34 0.37 1.20 
Furosemide 0.34 0.37 1.20 
Sulfamethoxazole 0.34 0.37 1.20 
Morphine 0.34 0.37 1.20 
Nadolol 0.26 0.40 1.20 
Naproxen 0.26 0.40 1.20 
Enalapril 0.23 0.40 1.13 
Ketoprofen 0.23 0.40 1.13 
Metronidazole 0.23 0.40 1.13 
Piroxicam 0.23 0.40 1.13 
Salbutamol 0.23 0.40 1.13 
3-hydrosycarbofuran 0.23 0.40 1.13 
Dimethoate 0.23 0.40 1.13 
Fenoxon sulfone 0.23 0.40 1.13 
Fenoxon sulfoxide 0.23 0.40 1.13 
Acridone 0.25 0.37 1.13 
1S,2R(+)Ephedrine  0.25 0.37 1.13 
Ranitidine 0.26 0.40 1.03 
Trimethoprim 0.26 0.40 1.03 
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continued from previous page 
  Half -life  Bioaccumulation  Toxicity  
2-oxo-3-hydroxy-LSD 0.26 0.40 1.03 
Metoprolol 0.04 0.60 1.00 
Atenolol 0.24 0.37 1.03 
Ronidazole 0.24 0.37 1.03 
Sotalol 0.24 0.37 1.03 
E1-3G 0.24 0.37 1.03 
Famotidine 0.31 0.40 0.87 
Hydrochlrothiazide 0.31 0.40 0.87 
Tetracyclin 0.31 0.40 0.87 
E1-3S 0.31 0.40 0.87 
Acetaminophen 0.26 0.37 0.90 
Tenoxicam 0.26 0.37 0.90 
Caffeine 0.26 0.37 0.90 
Omethoate 0.26 0.37 0.90 
PFBA 0.26 0.37 0.90 
L-PFBS 0.32 0.43 0.70 
Amoxicillin 0.27 0.40 0.73 
Cefalexin 0.27 0.40 0.73 
Metronidazole-OH 0.27 0.40 0.73 
Ciprofloxacin 0.28 0.40 0.57 
Enalaprilat 0.28 0.40 0.57 
Iopromide 0.28 0.40 0.57 
Metformin 0.28 0.40 0.57 
Ofloxacin 0.28 0.40 0.57 
Benzoilecgonine 0.28 0.40 0.57 
E3-16G 0.28 0.40 0.57 
E3-3S 0.28 0.40 0.57 
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ANNEX 2 

Supporting Information in Chapter 2 

PCDD/Fs in plasma of individuals living near a 
hazardous waste incinerator. A comparison of measured 
levels and estimated concentrations by PBPK modeling 
 
 
 

 
Figure S1. Temporal trends of PCDD/Fs in plasma of residents near the HWI of 

Constantí, Tarragona County (Catalonia, Spain). 
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Figure S2. Conceptual representation of the PBPK model for PCDD/Fs in 
humans. 
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Table S1.  

PCDD/F concentrations (pg/g lipid) in plasma of 40 individuals living in the vicinity of the 
HWI. 

Sample Age  Gender  I-TEQ WHO-TEQ 
1 49 Male 7.47 5.91 
2 50 Male 13.3 12.7 
3 61 Male 18.8 25.4 
4 56 Female 7.67 6.73 
5 40 Male 8.89 7.54 
6 50 Female 7.67 7.14 
7 65 Female 17.5 16.1 
8 47 Male 8.12 7.73 
9 48 Female 5.26 5.25 

10 28 Female 6.54 5.5 
11 33 Female 9.21 7.8 
12 53 Male 4.4 4.6 
13 55 Male 4.86 4.53 
14 22 Female 3.83 3.88 
15 56 Female 7.68 7.99 
16 51 Male 11 10.7 
17 52 Female 6.89 6.81 
18 23 Male 3.82 4.05 
19 51 Female 4 4.15 
20 26 Male 12.1 11.9 
21 36 Female 3 3.29 
22 32 Female 2.04 2.16 
23 44 Male 6.02 5.33 
24 41 Male 8.05 7.5 
25 67 Female 5.72 6.63 
26 48 Male 2.67 2.87 
27 43 Female 4.14 4.46 
28 52 Male 5.08 5.62 
29 45 Male 2.7 3.03 
30 51 Female 2.35 2.51 
31 44 Male 2.75 2.95 
32 50 Female 2.03 2.59 
33 64 Female 5.93 7.38 
34 43 Female 2.5 2.77 
35 48 Male 2.21 2.52 
36 50 Male 2.56 2.87 
37 49 Male 2.67 2.7 
38 49 Female 3.8 4.04 
39 60 Female 9.75 10.5 
40 47 Male 2.11 2.17 
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continued from previous page 

   I-TEQ WHO-TEQ 
Mean   6.18 6.26 

Standard deviation   5.37 4.06 
Minimum   2.03 2.16 
Maximum     18.8 25.4 
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ANNEX 3 

Supporting Information in Chapter 3 

A PBPK model to estimate PCDD/F levels in adipose 
tissue: Comparison with experimental values of 
residents near a Hazardous Waste Incinerator. 

 

Table S1. 

Absorption and intake used in the PBPK model. 
 

 
 
 
 
 
 
 
 
 
 
 
 

   Intake of PCCD/F (pg day -1) 

 Absorption 
(%) 

 1998 2002 2007 2012 

2,3,7,8-TCDD 97  28.6 6.1 3.9 5.6 

1,2,3,7,8-PeCDD 99  14.9 9.6 8.5 7.6 

1,2,3,4,7,8-HxCDD 98  43.4 11.6 5.3 3.6 

1,2,3,6,7,8-HxCDD 97  114 21.5 7.1 10.9 

1,2,3,7,8,9-HxCDD 96  41.6 11.5 4.8 6.9 

1,2,3,4,6,7,8-HpCDD 86  1292 92.4 28.3 69.6 

OCDD 76  9623 525 141 297 

2,3,7,8-TCDF 97  192 48.9 25.2 40.6 

1,2,3,7,8-PeCDF 99  125 28.2 11.4 9.2 

2,3,4,7,8-PeCDF 98  109 46.8 12.4 25.7 

1,2,3,4,7,8-HxCDF 97  231 53.3 20.9 33.4 

1,2,3,6,7,8-HxCDF 97  107 27.6 12.3 13.9 

1,2,3,7,8,9-HxCDF 95  10.2 10.4 3.1 6.6 

2,3,4,6,7,8-HxCDF 96  42 32.7 5.8 9.3 

1,2,3,4,6,7,8-HpCDF 87  708 69.8 72.2 127 

1,2,3,4,7,8,9-HpCDF 99  89.7 15.8 13 23.9 

OCDF 95  4420 93.4 476 201 
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Table S2.  

Physiological parameters used in the PBPK model.  

Tissue Tissue volume 
(L) 

Cardiac output (L/h)  

Blood 4.5 - 

Liver 1.5 182.2 

Fat 10.3 11.1 

Kidney 0.3 3.5 

Muscle 24 43.2 

Richly perfused 1.8 51.1 

Skin 2.2 3.2 
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Table S3. 

Partition coefficients (Pk) used in the PBPK model (unitless).  

 Liver  Kidney  Fat Muscle  Richly perfused  Skin  

2,3,7,8-TCDD 9.8 3.1 247 17 4.1 2.5 

1,2,3,7,8-PeCDD 17 2.9 432 19 4.5 2 

1,2,3,4,7,8-HxCDD 30 1.2 117 5.1 2.4 2.6 

1,2,3,6,7,8-HxCDD 55 3 219 13 2.7 1.7 

1,2,3,7,8,9-HxCDD 297 11 1466 134 30 2.6 

1,2,3,4,6,7,8-HpCDD 34 2.3 143 39 14 14 

OCDD 56 2.8 55 26 16 14 

2,3,7,8-TCDF 18 0.97 55 4.7 2.3 9.4 

1,2,3,7,8-PeCDF 19 1.4 130 10 6.3 9.2 

2,3,4,7,8-PeCDF 45 2.1 336 38 3.5 2.6 

1,2,3,4,7,8-HxCDF 25 1.6 75 11 6 2.1 

1,2,3,6,7,8-HxCDF 45 1.7 130 25 2.2 2.4 

1,2,3,7,8,9-HxCDF 1.8 0.4 172 2.9 3.7 11 

2,3,4,6,7,8-HxCDF 3.8 0.9 48 3.1 3.5 6.2 

1,2,3,4,6,7,8-HpCDF 22 0.9 139 7.3 2.3 11 

1,2,3,4,7,8,9-HpCDF 8.7 0.3 113 3.1 1.9 11 

OCDF 15 1.7 144 5.5 4.5 14 
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