
Variants of unification considering
compression and context variables

Tesi doctoral presentada al Departament de Llenguatges i
Sistemes Informàtics (LSI)

de la Universitat Politècnica de Catalunya (UPC)

per a optar al grau de
Doctor en informàtica

per

Adrià Gascón Caro

sota la direcció del doctor

Guillem Godoy Balil

Barcelona, Abril 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33346246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Term unification is a basic operation in several areas of computer science,
specially in those related to logic. Generally speaking, it consists on solving
equations over expressions called terms. Depending on the kind of variables
allowed to occur in the terms and under which conditions two terms are con-
sidered to be equal, several frameworks of unification such as first-order unifi-
cation, higher-order unification, syntactic unification, and unification modulo
theories can be distinguished. Moreover, other variants of term unification
arise when we consider nontrivial representations for terms. In this thesis
we study variants of the classic first-order syntactic term unification problem
resulting from the introduction of context variables, i.e. variables standing
for contexts, and/or assuming that the input is given in some kind of com-
pressed representation. We focus on two of of such representations: Directed
Acyclic Graphs (DAGs) and Singleton Tree Grammars (STGs). Similarly as
DAGs allow compression by exploiting the reusement of repeated instances
of a subterm in a term, STGs are a grammar-based compression mechanism
based on the reusement of repeated (multi)contexts. An interesting property
of the STG formalism is that many operations on terms can be efficiently
performed directly in their compressed representation.

In the first part of this thesis, we study the classical first-order syntac-
tic unification and matching problems under the assumption that the input
terms are represented using STGs. We present polynomial time algorithms
for these problems, as well as proposed implementations and experimental re-
sults. These results are used later in this thesis in the analysis of compressed
context unification and matching.

In the second part of the thesis, we focus on variants of context unification.
We show that context matching is NP-Complete even when the input terms
are represented with STGs. We also study the particular case of context
unification where only one context variable is allowed in the input equations,
called one context unification. We show that one context unification can be
solved in nondeterministic polynomial time, not only when a explicit repre-
sentation for terms is used, but also when the input is represented by STGs
or DAGs. We also present a partial result in the task of finding a polyno-
mial time algorithm for this problem. Finally, we show that the restriction
of context matching where the number of context variables is bounded by a
constant k can be solved in polynomial time even when DAGs are used for
term representation.

Acknowledgements 1

En primer lloc, vull donar les gràcies al meu tutor, en Guillem Godoy, per
introduir-me en el món de la recerca amb honestedat, generositat, paciència
i bon humor. Li estic especialment agrait per les fantàstiques hores que he
passat al seu costat plantant-li cara a tot de problemes (i perdent ànima quan
calia). Trobo molt a faltar aquelles sessions. Li agraeixo molt tot el que he
après amb ell. Des de l’assignatura de TC fins a l’últim ”acertijo”.

A en Jorge i el seu ”sign & forget”, el Nikita, el Dani, en Josep Llúıs,
l’Alessandra, el Miquel, en Sergi, en Javier, en Ramon, l’Eva, l’Albert i
en Marc els agraeixo haver estat tan bons companys d’aventura. Gràcies per
tants senyals de suport, respecte, camaraderia i bon rotllo.

Vull agrair al Lander i al Carles la qualitat del temps que hem passat tre-
ballant junts. L’experiència d’escriure amb el Carles es mereix una menció
especial, aquelles sessions també les trobo a faltar molt́ıssim.

I also want to mention Sebastian Maneth, thanks for making me feel so
welcomed in Sydney and always being so honest, accesible, and easygoing.
Thanks also to Ashish Tiwari for giving me the possibility of visiting at SRI.
His way of approaching research is a great inspiration to me and I keep on
learning from him. Moltes gràcies també als professors que van saber fer de
la universitat una experiència estimulant, especialment a la Carme Àlvarez,
l’Albert Atserias i l’Albert Oliveras.

Pel que fa al veritable inici d’aquesta aventura, vull agrair infinits moments
de qualitat durant i després de la carrera a l’Èric (Texas inclós), el Miguel
i en Guillem. També a l’Àxel, el Marc, el Rafa i el Nin, per sempre ser-hi,
més enllà de problemes, teoremes, deadlines, demostracions i programes.

Als meus pares, moltes gràcies per tot el suport, l’exigència i confiança, els
ànims i la disponibilitat que m’heu ofert al llarg dels anys. Gran part del
necessari per a encarar aquest repte us ho dec a vosaltres. A la Clara, gràcies
per sempre ser-hi (presentació de màster inclosa), i per saber fer-me sentir
tan important i orgullós.

Finalment, i molt especialment, vull agrair-li a la Ĺıdia ser font de recolza-
ment incondicional i companya d’aventures tot aquest temps. El seu respecte,
generositat i estima han fet més fàcil cada pas d’aquesta tasca.

1Part of this work was supported by the FORMALISM project (TIN2007-66523),
funded by the Spanish government, and an FPU grant by the Spanish Ministry of Educa-
tion.

Contents

1 Introduction 7

2 Basic notions and notation 15

2.1 Contexts and Tree Patterns 18

2.2 Substitutions . 19

2.3 Unification and Matching . 19

3 Compressed Term Representation 26

3.1 DAGs . 26

3.2 Grammars . 27

4 Compressed First-Order Unification and matching 44

4.1 First-order Unification and matching with STGs 44

4.2 First-order matching with STGs 51

4.3 An implementation . 54

5 One Context Unification 64

5.1 The General Scheme . 64

5.2 PHASE1 Inference System: Eliminating the Context Variable 66

5.3 PHASE2 Inference System: Solving Exponent Equations . . . 72

6 Compressed One Context Unification 84

6.1 Known Results . 85

6.2 Approach . 90

6.3 Commutation of Substitutions 93

6.4 Complexity Analysis . 99

7 Context Matching 102

7.1 k-Context Matching with DAGs 102

7.2 Compressed Context Matching 121

5

8 Towards a PTIME algorithm for One Context Unification 125
8.1 Term representation . 126
8.2 Problem Definition: Basis for All Distinguishing Positions . . 127
8.3 Algorithm for Computing a Basis 131
8.4 Polynomial Bound for Size of Basis 133

9 Directions for further research 145

6

Chapter 1

Introduction

Term unification, the central concept of this thesis, was firstly introduced as
such in the work by J.A. Robinson, which settled the foundations of auto-
mated theorem proving and logic programming. More concretely, Robinson
presented in [Rob65] a procedure to determine the validity of a first-order
sentence that has term unification as its main subprocess. In the context
of Robinson’s work, unification corresponds to the task of combining two
premises with the aim of constructing a deductive logical argument. Later,
term unification was also used by Knuth and Bendix as a key component
of their critical pairs method to determine local confluence of term rewrite
systems. For a general survey in unification theory, we refer the reader to
Chapter 8 of the Handbook of Automated Reasoning [BS01].

Generally speaking, unifying two terms s and t corresponds to solving
an equation s

.
= t, which consists on finding a substitution σ for variables

occurring in s and t such that σ(s) = σ(t) holds. Hence, different frameworks
of unification are defined by specifying a range for the variables, the kind of
expressions s and t, and their semantics, as well as the semantics of =.
In Robinson’s unification, the well-known syntactic first-order unification,
expressions s and t are terms with leaf variables standing for terms (first-
order variables), all function symbols are noninterpreted, and = is interpreted
as syntactic equality. For example, consider the following instance of the
syntactic first-order unification problem.

f

f

aa

f

by

.
= f

f

ay

x

Note that the substitution σ = {x 7→ f(a, b), y 7→ a} satisfies the conditions

7

stated above.

The first-order term matching problem is a particular case of first-order
term unification. It is characterized by the condition that one of the sides
of the equation s

.
= t, say t, does not contain variables. Both first-order

term unification and matching are common problems in many areas of com-
puter science; specially those related to logic, such as functional and logic
programming, and automated deduction. These two problems were deeply
investigated in the last century (see [BS01]). Among other results, linear time
algorithms were discovered [MM82, PW78]. However, first-order unification
is not always expressive enough to deal with the problems arising in the ar-
eas mentioned above and therefore several variants have been considered. A
remarkable extension is unification modulo theories. In this notion of unifi-
cation, equality between terms is interpreted under equational theories such
as associativity, commutativity, and distributivity, among others [BS01].

Another widely considered notion of unification allows variables of arity
one standing for contexts, in addition to the leaf variables of first-order unifi-
cation. This extension is called context unification. Context unification is in
fact a particular case of second-order unification, which is itself a particular
case of higher-order unification. Intuitively, in second-order unification, not
only first-order variables may appear in the input, but also variables of arity
greater than 0 standing for transformations on terms.

While second-order unification is known to be undecidable [Gol81], decid-
ability of context unification is still open, although a proof that the problem
is in fact in PSPACE has been recently proposed. However, some interest-
ing results have been found for some particular cases, with applications in
computational linguistics [LNV05, EN07, LSSV11]. Furthermore, Schmidt-
Schauss and Schulz [SSS02] showed decidability of the case where at most
two distinct context variables appear in the equations, but their algorithm is
rather involved and no complexity bounds are known for it. Another recent
result is [LSSV11], where it was shown that stratified context unification is
NP-complete. Besides the higher-order unification perspective, context uni-
fication can also be seen as an extension of the problem of solving equations
on words.

In this thesis we consider another particular case of context unification:
one context unification. One of the motivations for the study of this problem
is its close relation to interprocedural program analysis [GT07], whose goal
is to compute all simple invariants of imperative procedural programs. In
one context unification, only one context variable, possibly with many oc-
currences, may appear in the input terms. Consider the following example:

8

F

f

bx

.
= f

F

y

a

where x, y are first-order variables and F is a context variable that can be
replaced by any context. One of the possible solutions of this instance is the
substitution {F 7→ f(a, •), x 7→ a, y 7→ b}. Note that when we instantiate
F by f(a, •) in the equation, replacing the occurrence of • by the argument
of F in each of its occurrences, we get f(a, f(x, b))

.
= f(a, f(a, y)), and thus

both sides of the equations become equal after applying {x 7→ a, y 7→ b}. As
we will see in Chapter 5 of this thesis, one context unification can be solved
in nondeterministic polynomial time [GGSST10]. However, it is not known
neither whether it is NP-hard nor whether a polynomial time algorithm exists
for this problem. In Chapter 8 we present an intermediate result in the effort
of finding a polynomial time algorithm for this problem.

Another particular case of context unification is context matching. The
input of context matching is an equation s

.
= t such that s may contain

context variables and first-order variables, and t does not contain variables
of any kind. Although this problem is known to be NP-complete, there are
several subcases that can be solved efficiently [GGSS11, SSS04]. In Chap-
ter 7 we consider k-context matching, the particular case of context matching
where the number of different context variables that may occur in the input
is bounded by a constant number k. As one of the contributions of this the-
sis, originally presented in [GGSS08], in Chapter 7 we present an algorithm
for k-context matching that runs in polynomial time even when DAGs are
used for term representation.

Interesting applications of one context unification and matching arise in
the search/extraction of information from tree data structures. For example,
a simple matching equation of the form F (s)

.
= t, where F is the context vari-

able, t is ground, and s may contain first-order variables but does not contain
occurrences of F , corresponds to searching instances of s within t. Another
example of the expressivity of context matching is a conjuntive search of
the form F1(s1)

.
= t ∧ · · · ∧ Fn(sn)

.
= t, where the Fis are pairwise different

and do not occur elsewhere. These equations correspond to searching for a
subterm ui of t that can be matched by si, for every i ∈ {1, . . . , n}; with
the additional constraint that variables within the sis must have a common
instance in t (see [GKS06] for the analysis of conjunctive query mechanisms
over trees). More generally, multiple occurrences of the same context vari-
able in the term s of a context equation s

.
= t, correspond to searching for

9

instances of subterms of t that differ at, at most, one position. This has
applications in computational linguistics [NPR97]. It is also easy to encode
questions that ask for subtrees that are equal up to several positions.

Finally, another application domain of variants of term unification is
logic programming languages for XML. Examples of such languages are
Xcerpt [BBSW03], which uses a form of asymmetric unification called simula-
tion, and Xcentric [CF07], which uses the variant of term unification studied
in [Kut02].

Term representation

Many of the applications dealing with the problems we have introduced and
their variants require some kind of internal succinct representation for terms.
Sometimes, such representation is useful to achieve efficiency. This is the case
of DAGs when solving first-order unification (see [BS01]). In other cases, the
succinctness of the representation is required in order to guarantee com-
putability in an environment with a limited amount of resources. This is the
case, for example, of the manipulation of XML data, which represents hierar-
chical data in the form of unranked trees. Therefore, compressed in-memory
representations have been developed, such as succinct trees (see, e.g., [SN10]),
or grammar-compressed trees [BLM08]. Finally, having succinct term rep-
resentations and efficient algorithms that operate on such representations is
useful also from a theoretical perspective [LSSV08, LSSV11, CGG12]. For
example, the main technical approach used to show membership of stratified
context unification in NP is based on the use of a grammar-based represen-
tation for terms to avoid a space explosion due to variable instantiations.

However, it is sometimes the case that the advantages of space efficient
encodings come at a price. In this thesis, we reconsider complexity issues for
some of the unification problems mentioned so far by assuming that the input
terms are given in some compressed representation. For instance, it is well-
known that first-order unification may require exponential space with a plain
term representation whereas only polynomial space is required when DAGs
are used for representing terms. Similarly, if terms are large but have lots
of common subterms, like t1 = f(a, b), t2 = f(t1, t1), . . . , tn = f(tn−1, tn−1),
then the context matching equation F (a) = tn requires exponential space
using the plain term representation to represent tn, whereas a DAG rep-
resentation requires linear space. This motivates the investigation of the
context matching problem with compression techniques like DAGs that we
present in Chapter 7 of this thesis.

Besides the DAG representation, more general grammar-based compres-

10

sion mechanisms for terms have recently drawn considerable attention in
research. Grammar-based compression was invented in the 1990s for string
representation (see [Ryt04] for a survey). The idea is to construct a context-
free grammar that generates only the string s that we want to represent.
Compression is obtained by reusing nonterminals that generate repeated
substrings of s. For example, assume that we want to represent the string
s = abaababaabaab. The following picture shows the derivation tree to ob-
tain s with a grammar with nonterminals X1, . . . , X7. Note that s, which
has length 13, can be represented by a grammar with 7 rules.

X7

X5

X3

X1

b

X2

a

X4

X2

a

X3

X1

b

X2

a

X6

X4

X2

a

X3

X1

b

X2

a

X5

X3

X1

b

X2

a

X4

X2

a

X3

X1

b

X2

a

Grammar-based compression allows to compress a string exponentially.
For example, the string a2n can be easy generated by grammar with n rules.
Unfortunately, finding a minimal grammar representation of a string is NP-
complete [CLL+05], but several well-behaved approximation algorithms ex-
ist [CLL+02]. One of the properties that makes grammar-based compression
useful is that efficient algorithms that run directly on the compressed repre-
sentation of their input string(s), and thus avoid the “decompress and check”
approach, have been developed. For example, we have algorithms for equiv-
alence checking and pattern matching [Pla94, Lif07, SSS12, Jez12], checking
membership for various classes of languages [LM11, Loh10, LM11], and effi-
cient indexing techniques have also been developed [CN12]. It is important to
remark that the technique introduced in [Jez12] led to important advances
in compression and solvability of word equations. The reader is referred
to [Loh12] for a survey in algorithms on compressed strings.

Later, grammar-based compression was extended to terms/trees [BLM08,
CDG+07] with applications in XML tree structure compression [BLM08] and
XPATH [LM06]. This extension led to Singleton Tree Grammars (STGs), a
grammar-based formalism more general than DAGs that has recently drawn
considerable attention in research. With an STG we can succinctly repre-
sent terms that are exponentially big in size and height. Similarly to the
string case, algorithms running on the compressed representation of the cor-
responding term(s), have been found, and applications have been developed.

11

Some examples are linear subpattern matching [SS13], i.e. finding instances
of a linear terms s within a ground term t, first-order and unification and
matching [GGSS11, GMR11], one context unification [CGG12], equivalence
checking [BLM08], congruence closure [SSSA11], and membership in several
classes of languages represented by tree automata [LM06, LMSS12]. More-
over, STG compressors have already been developed and proven useful in
practice for XML representation and processing [BLM08, LMM13], and ter-
mination analysis of Term Rewrite Systems [BLNW13].

Contributions and thesis organization

Although we already covered the results presented in this thesis, let us give
a more detailed overview of the contents of each chapter.

� In Chapter 2, we introduce basic concepts and notations used in this
thesis, along with explanations and examples, with the aim of helping
the reader to get familiar with the intuitions behind the ideas presented
in subsequent chapters.

� In Chapter 3 we formally define Directed Acyclic Graphs and Singleton
Tree Grammars from the perspective of term representation. Also in
this chapter, we present constructions on STG-compressed terms that
will be crucial in the results presented in subsequent chapters.

� In Chapter 4 we study the first-order unification and matching prob-
lems when the input is compressed using Singleton Tree Grammars.
We present the polynomial time algorithms for these problems orig-
inally presented in [GGSS11], whose running time improves previous
results [GGSS08, GGSS09]. Furthermore, in Section 4.3 of the same
Chapter we present an experimental comparison of three different im-
plementations of these algorithms originally published in [GMR11].

� In Chapter 5 we show that one context unification can be solved in
nondeterministic polynomial time [GGSST10]. We also present two
interesting particular cases that can be solved in polynomial time.

� In Chapter 6 we extend the result of the previous chapter to the com-
pressed setting, that is, we prove that one context unification with
STG-compressed terms is in NP, as originally presented in [CGG12].

� In Chapter 7 we prove the two results for the context matching prob-
lem originally presented in [GGSS08] and [GGSS11]. We first show,

12

in Section 7.1, that the k-context matching problem can be solved in
polynomial time even when DAGs are used for term representation.
Then, in Section 7.2 of the same chapter we prove that context match-
ing is NP-Complete also in the case when STGs are used for term
representation.

� In Chapter 8, we describe a recent partial result in the effort of finding
a polynomial time algorithm for one context unification.

� Finally, in Chapter 9, we present some possible lines of future research
that arise from the work presented in this thesis.

The following table summarizes the results presented in this thesis,
together with the previously known results and open questions related to
first-order unification and matching and the variants of context unification
covered in this work. Let us remark that a solution positive solution to he
decidability of context unification hs been recently proposed.

Problem
Term representation formalism

Explicit DAG STG

Context unification ? ? ?

One context unification NP [GGSST10] NP [CGG12] NP [CGG12]

Context matching NP-Complete NP-Complete NP-Complete [GGSS11]

k-context matching Ptime Ptime [GGSS11, GGSS08] ?

First-order unification Ptime Ptime Ptime [GGSS11, GGSS09]

First-order matching Ptime Ptime Ptime [GGSS11, GGSS08]

The work presented in this thesis led to the following publications.

[CGG12] Carles Creus, Adrià Gascón, and Guillem Godoy. One-context
Unification with STG-Compressed Terms is in NP. In 23rd In-
ternational Conference on Rewriting Techniques and Applica-
tions, RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, pages
149–164, 2012.

[GGSS08] Adrià Gascón, Guillem Godoy, and Manfred Schmidt-Schauß.
Context Matching for Compressed Terms. In Twenty-Third An-
nual IEEE Symposium on Logic in Computer Science, LICS
2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 93–102,
2008.

13

[GGSS09] Adrià Gascón, Guillem Godoy, and Manfred Schmidt-Schauß.
Unification with Singleton Tree Grammars. In Rewriting Tech-
niques and Applications, 20th International Conference, RTA
2009, Braśılia, Brazil, June 29 - July 1, 2009, Proceedings, pages
365–379, 2009.

[GGSS11] Adrià Gascón, Guillem Godoy, and Manfred Schmidt-Schauß.
Unification and Matching on Compressed Terms. ACM Trans.
Comput. Log., 12(4):26, 2011.

[GGSST10] Adrià Gascón, Guillem Godoy, Manfred Schmidt-Schauß, and
Ashish Tiwari. Context Unification with One Context Variable.
J. Symb. Comput., 45(2):173–193, 2010.

[GMR11] Adrià Gascón, Sebastian Maneth, and Lander Ramos. First-
order Unification on Compressed Terms. In 22nd Interna-
tional Conference on Rewriting Techniques and Applications,
RTA 2011, May 30 - June 1, 2011, Novi Sad, Serbia, pages
51–60, 2011.

14

Chapter 2

Basic notions and notation

In this chapter the necessary concepts and definitions in the scope of this
work are introduced. Most of the basic definitions and explanations regarding
terms and term unification were borrowed from [CDG+07] and [BS01].

sectionTerms Generally speaking, terms allow the representation of data
with substructure. A term is either:

� A constant symbol

� A variable

� A compound term

A compound term consists of a function symbol applied on a sequence of one
or more terms called arguments. It sometimes helps to think of a compound
term as a tree structure.

Example 2.0.1 The formula f(1 + x, 3 ∗ 4, 5 − y) could be depicted as the
structure:

f

−

y5

∗

43

+

x1

where f,+, ∗,− are function symbols 1, 3, 4, 5 are constants, and x, y repre-
sent variables.

The number of arguments taken by a function symbol is called its arity. In
the example above, +,− and ∗ have an arity of 2 and f has arity 3. The rest
of symbols have arity 0.

Once introduced the intuitive idea on what the terms are, we can define
them, as well as the notation used in this thesis, in a more precise way.

15

Terms and Positions

A ranked alphabet is a set F together with a function ar : F → N. Members
of F are called function symbols, and ar(f) is called the arity of the function
symbol f . Given a set of function symbols F = {f1, . . . , fn}, we may denote
a ranked alphabet more explicitly as {f1 : ar(f1), . . . , fn : ar(fn)}. Function
symbols of arity 0 are called constants. Let V be a set disjoint from F
whose elements are called variables. We assume the function ar to be also
defined for variables, i.e. ar : (F ∪ V) → N, but with ar(V) ∈ {0, 1} for
variables V ∈ V . Variables with arity 0, denoted x, y, z with possible indexes,
are called first-order variables, and variables with arity 1, denoted F with
possible subscripts, are called context variables. We use f, g, h for denoting
an element in F , and α for denoting an element in F ∪ V .

The set T (F∪V) of terms over F and V , also denoted T (F ,V), is defined
to be the smallest set having the property that α(t1, . . . , tm) ∈ T (F ∪ V)
whenever α ∈ (F ∪ V), m = ar(α) and t1, . . . , tm ∈ T (F ∪ V). The set
T (F) is called the set of ground terms over F , that is, the subset of terms of
T (F ∪ V) with no occurrences of variables. We denote by s, t, with possible
indexes, terms in T (F ∪ V).

Example 2.0.2 Let F = {f : 2, h : 1, a : 0, b : 0} be a ranked alphabet with
symbols f, h, a, and b with arity 2, 1, 0, and 0, respectively. Let V = {x :
0, y : 0, F : 1} be a set of first-order and context variables. Then, f(a, a)
and f(h(a), b) are ground terms in T (F), and f(x, y) and h(F (f(a, x))) are
terms in T (F ∪ V).

Positions of a term t, denoted p, q with possible subindexes, are sequences
of natural numbers that are used to identify subterms of t. The set Pos(t) of
positions of a term t is defined by Pos(t) = {λ} if t is a constant or a first-
order variable variable, and Pos(t) = {λ}∪{1 · p | p ∈ Pos(t1)}∪ . . .∪{m · p |
p ∈ Pos(tm)} if t = α(t1, . . . , tm), where λ denotes the empty sequence, also
called the root position, and p.q, or simply pq, denotes the concatenation of
p and q. If t is a term and p a position, then t|p denotes the subterm of t at
position p. More formally defined, t|λ = t and α(t1, . . . , tm)|i.p = ti|p. We use
≺ to denote the subterm relation on terms.

The length of a position p is denoted by |p|. Note that |λ| = 0 and
|i.p| = 1 + |p| hold. A position p1 is a prefix of a position p, denoted p1 ≤ p,
if there is a position p2 such that p1.p2 = p holds. Also, p1 is a proper prefix
of p, denoted p1 < p, if p1 ≤ p and p1 6= p hold. A suffix and a proper suffix
of a position p is defined analogously. Two positions p, p′ are called parallel
or disjoint, denoted by p‖p′, if p 6≤ p′ and p′ 6≤ p hold.

16

Functions on Terms

The size of a term t, denoted by |t| and the height of t, denoted by height(t)
are recursively defined as:

� height(t) = 0 and |t| = 1, if t is a constant or a first-order variable,
and

� height(t) = 1 + max1≤i≤n(height(ti)) and |t| = 1 +
∑n

i=0 |ti|, if t is of
the form t = α(t1, . . . , tm).

Therefore, the height of a term t refers to the number of edges in the deepest
branch of the tree representing t, and its size refers to its total number of
nodes.

We denote by root(t) the symbol at the root position of a term t =
α(t1, . . . , tm), which is defined as root(α(t1, . . . , tm)) = α, where m = ar(α).
Given a term t, a position p ∈ Pos(t) and a symbol α, we say that p is labeled
by α in t if root(t|p) = α, i.e t|p is of the form α(t1, . . . , tm).

The replacement of a term t at a position p ∈ Pos(t) by a term s, denoted
t[s]p, is defined recursively as t[s]p = s, if p = λ, and α(t1, . . . , tm)[s]i.p =
α(t1, . . . , ti[s]p, . . . , tm), otherwise.

Example 2.0.3 Let t be the term f(g(a, g(a, x)), f(a, b, a), a). Note that
height(t) = 3, root(t) = f , and |t| = 11. Moreover, the term g(a, x) occurs
at position 1.2 and thus t|1.2 = g(a, x). Finally, note that t[g(b, b)]1.1 =
f(g(g(b, b), g(a, x)), f(a, b, a), a).

Preorder Traversal of a Term

We denote by Pre(t) the preorder traversal (as a word) of a term t. It is
recursively defined as Pre(t) = t, if t is a constant or a first-order variable,
and Pre(t) = α.Pre(t1).Pre(tm), if t = f(t1, . . . , tm) with m > 0. Two
different trees may have the same preorder traversal, but when they represent
terms over a fixed alphabet where the arity of every function symbol is fixed,
the preorder traversal is unique for every term. Given a term t, there is
a natural bijective mapping between the indexes {1, . . . , |Pre(t)|} of Pre(t)
and the positions Pos(t) of t, which associates every position p ∈ Pos(t) to
the index i ∈ {1, . . . , |Pre(t)|} you find at root(t|p) while traversing the tree
in preorder. We can recursively define the two mappings pIndex(t, p) →
{1, . . . , |pre(t)|} and iPos(t, i)→ Pos(t) as follows.

� pIndex(t, p) = 1, if p = λ, and

17

� pIndex(α(t1, . . . , tm), i.p) = (1 + |t1|+ . . .+ |ti−1|) + pIndex(ti, p), oth-
erwise.

� iPos(t, i) = λ, if i = 1, and

� iPos(α(t1, . . . , tm), 1 + |t1|+ . . .+ |tj−1|+k) = i.iPos(ti, k) for 1 ≤ k ≤
|tj|.

2.1 Contexts and Tree Patterns

Intuitively, contexts are terms with a single occurrence of a hole, denoted
•, into which terms (or other contexts) may be inserted. We can provide
a formal definition by considering a context to be a term in an extended
alphabet that includes an extra constant symbol •. Hence, the smallest
context, also called empty context, contains just the hole and has size 1.

The set of contexts over a ranked alphabet F and a set of variables V is
denoted C(F ,V). We use c, d, with possible subindexes, to denote a context
in C(F ,V). The operations on terms defined above are extended to contexts
in the natural way. The hole position of a context c, denoted hp(c), is the
position in Pos(c) labeled by •.

Operations on Contexts

Given a context c and a term t, we define the term c[t] as the replacement
c[t]hp(c). Similarly, given another context d, the concatenation cd is the con-
text c[d]hp(c). Note that hp(cc′) = hp(c).hp(c′) holds. In other words, if c and
d are contexts and t is a term, cd and c[t] represent the term (context) that
is like c except that the occurrence of • is replaced by t (d).

The exponentiation of a context c to a natural number e, denoted ce, is
the context recursively defined as

� ce = cce−|hp(c)|, if e > |hp(c)| > 0, and

� ce = c[•]p, if |hp(c)| ≥ e, where p ≤ hp(c) and |p| = e.

Note that |hp(ce)| = e holds for any context c with |hp(c)| > 0 and natural
number e.

We say that c is a subcontext of a term t if c = t|p1 [•]p2 , for p1.p2 ∈ Pos(t).
Finally, if c1 = c2c3 for contexts c1, c2, c3, then c2 is called to be a prefix of
c1, and c3 is a suffix of c1.

18

Example 2.1.1 Let c be the context g(f(g(a, •), a), F (b)), d be the con-
text h(•) and t be the term g(c, x). Then hp(c) = 1.1.2, |c| = 8, c[t] =
g(f(g(a, g(c, x)), a), F (b)), |c[t]| = 10, cd = g(f(g(a, h(•)), a), F (b)), and
hp(cd) = hp(c).hp(d) = 1.1.2.1.

2.2 Substitutions

Fixed a ranked alphabet F and a set of variables V , a substitution, denoted by
σ, θ, is a total function σ : V → T (F ,V)∪C(F ,V) such that σ(α) ∈ T (F ,V)
if α is a first-order variable and σ(α) ∈ C(F ,V) if α is a context variable.
The concept of domain for substitutions differs from the usual one for arbi-
trary functions. We consider substitutions to be total functions by assuming
that σ(α) = α if σ(α) is not defined. Thus, we define the domain of a
substitution σ as Dom(σ) = {α | σ(α) 6= α}. For this reason, when defin-
ing a particular substitution σ we do not make explicit σ(α) for variables
α 6∈ Dom(σ). We also define the variables occurring in a substitution σ as
Vars(σ) =

⋃
α∈Dom(σ){α} ∪ Vars(σ(α)). Moreover, substitutions are extended

to be mappings from terms to terms, i.e. σ : T (F ,V) → T (F ,V), as fol-
lows: σ(g(t1, . . . , tn)) = g(σ(t1), . . . , σ(tn)), where g is a function symbol,
and σ(F (t)) = σ(F)[σ(t)], where F is a context variable in V . Similarly,
substitutions are also extended to be mappings from contexts to contexts,
i.e. σ : C(F ,V) → C(F ,V). The composition of two substitutions σ and
θ, denoted θ ◦ σ, is defined as {α 7→ θ(σ(α)) | α ∈ Dom(σ) ∪ Dom(θ)}.
Substitutions mapping from V into T (F) are called ground. Finally, given
substitutions σ, θ, σ = θ if ∀x ∈ X : σ(x) = θ(x). Moreover, σ is more
general than θ, denoted σ ≤ θ, if there exists η such that σ = θ ◦ η.

Example 2.2.1 Let t be the term f(x1, F (x2)), where x1, x2 are first-order
variables and F is a context variable, and let σ be the substitution {x1 7→
g(a, b), F 7→ g(a, •)}. Then σ(t) = f(g(a, b), g(a, x2)) and the domain of σ is
{x1, F}.

2.3 Unification and Matching

Very generally speaking, unification tries to make two symbolic expressions
equal by replacing certain subexpresions (variables) by other expressions.
Hence, this task consists on solving equations s

.
= t by finding a substitution

σ for variables occurring in both expressions s and t such that σ(s) = σ(t).

19

2.3.1 First-Order Unification and Matching

The classical first-order term unification problem seeks to find solutions for
term equations built over uninterpreted function symbols and first-order vari-
ables where = is interpreted as syntactic equality.

Example 2.3.1 Consider the following instance of the first-order unification
problem.

f

f

aa

f

by

.
= f

f

ay

x

It has the substitution σ = {x 7→ f(a, b), y 7→ a} as a solution. On the other
hand, the following equation has no solution.

f

xy

.
= f

g

bya

x

The term matching problem is a particular case of term unification. It is
characterized by the condition that one of the sides of the equation s

.
= t,

say t, contains no variables.

Definition 2.3.2 Given a ranked alphabet F and a set of first-order vari-
ables X , an instance of the first-order unification (matching) problem is a set
∆ of equations {s1

.
= t1, . . . , sn

.
= tn} where ti, si ∈ T (F ,V) (si ∈ T (F ,V)

and ti ∈ T (F)). The question is to compute a substitution σ such that
σ(si) = σ(ti) for all i ∈ {1, . . . , n}.

A first-order unification algorithm should not only state (non)unifiability
of the input terms s, t but also produce a solution σ when it exists. In that
sense, it is sufficient to consider a most general unifier of s and t, mgu(s, t) in
short, from which every other solution can be obtained by instantiation, and
is unique up to renaiming of variables. When s and t do not unify, we say
that mgu(s, t) is not defined. It can be proven that, for unifiable first-order
terms s, t, mgu(s, t) is guaranteed to exist.

A simple algorithm for first-order unification might be the one described
in Figure 2.1. Its correctness can be proved by induction on the complexity

20

measure 〈n1, n2〉 on terms, ordered by the (well-founded) lexicographic or-
dering on pairs of natural numbers where n1 denotes the number of distinct
variables in s and t, and n2 = height(s). Its termination can be argued
in a similar way. In this section we will not get into a detailed analysis of
its running time since the only purpose of this example is to illustrate the
intuition behind some of the algorithms presented later in this work.

Note that an iterative version of this algorithm would run while s and
t are different and traverse simultaneously pre(s) and pre(t) until finding
a position k such that pre(s)[k] 6= pre(t)[k]. If pre(s)[k] and pre(t)[k]
are function symbols then the unification fails. Otherwise, either pre(s) or
pre(t), say pre(s), contains a variable x at k. Note that, since s and t
are terms, their symbols have fixed arity and thus the index k corresponds
to a unique position p ∈ Pos(s) ∩ Pos(t), as commented in Section 2. If x
properly occurs in the subterm of t at p, then we terminate, again stating non-
unifiability. Otherwise, we replace x by the subterm of t at p everywhere,
and re-start the process until both s and t become syntactically equal, in
which case we state unifiability.

Global σ: substitution; {Initialized to ∅}

Function Unify(s, t) returns boolean:
If s = t Then return True

If s = f(s1, . . . , sm) ∧ t = f(t1, . . . , tm), m > 0 Then

return
(
Unify(s1, t1)

∧ Unify(σ(s2), σ(t2))
.
.
.

∧ Unify(σ(sm), σ(tm))
)

EndIf

If s = f(s1, . . . , sn) ∧ t = g(t1, . . . , tm), n,m ≥ 0 Then return False

If s = x is a variable Then

If x occurs in t Then return False

Else

σ := σ ∪ {x→ t}
return True

EndIf

ElseIf t = x is a variable Then

If x occurs in s Then return False

Else

σ := σ ∪ {x→ s}
return True

EndIf

EndIf

Figure 2.1: A First-order Unification Algorithm

On the other hand, an algorithm for first-order matching could be the one
shown in Figure 2.2. Its correctness can be shown by induction on height(t).

21

Note that, in this case, an iterative version of this algorithm would proceed
similarly as in the previous algorithm. However, in this case we do not need
to check whether s and t became equal after each instantiation of a variable
since σ will always be a ground substitution.

Global σ: substitution; {Initialized to ∅}

Function Match(s, t) returns boolean:
return AuxMatch(s, t) ∧ σ(s) = t

Function AuxMatch(s, t) returns boolean:
If s = t Then {Do Nothing}
If s = f(s1, . . . , sm) ∧ t = f(t1, . . . , tm), m > 0 Then

return
(
AuxMatch(s1, t1)

∧ AuxMatch(σ(s2), t2)
.
.
.

∧ AuxMatch(σ(sm), tm)
)

EndIf

If s = f(s1, . . . , sm) ∧ t = g(t1, . . . , tn), f 6= g, n,m ≥ 0 Then return False

If s = x is a variable Then

σ := σ ∪ {x→ t}
return true

EndIf

Figure 2.2: A First-order Matching Algorithm

These two simple algorithms for solving first-order unification and match-
ing will be important later in this thesis since we will adapt them to the case
when the input terms s and t are compressed.

2.3.2 Context Unification and Matching

As commented in the introduction, several variants and generalizations of the
first-order term matching and unification problems have been studied. The
extension introduced in this section consists on allowing context variables to
occur in the input terms besides first-order variables. Recall that context
variables are variables of arity one that can be replaced by contexts. By
allowing this kind of variables in the terms of the equations we define the
context unification problem and, consequently, the context matching problem.
Given two terms s, t ∈ T (F ,V), the context unification problem consists on
deciding whether s and t are unifiable, i.e. whether there exists a substitution
σ : V → T (F ,V)∪C(F ,V) such that σ(s) = σ(t). This definition generalizes
naturally to a set of equations, as stated in the following definition.

22

Definition 2.3.3 Given a ranked alphabet F , a set of first-order variables
X0, and a set of context variables X1, an instance of the context unification
(matching) problem is a set ∆ of equations {s1

.
= t1, . . . , sn

.
= tn} where

ti, si ∈ T (F ,X0,X1) (si ∈ T (F ,X0,X1) and ti ∈ T (F)). The question is to
compute a substitution σ mapping first-order variables to terms and context
variables to contexts, such that ∀i ∈ {1, . . . , n} : σ(si) = σ(ti) holds.

The decidability of context unification is a long-standing open question.
Several variants and particular cases has been solved [Vil04], and the case
where at most two different context variables occur in the input terms was
proven decidable in [SSS02].

On the other hand, it is easy to prove that context matching (and thus
context unification), is NP-hard. We will present a sketch of a proof to illus-
trate the difficulties to get NP-hardness of more restrictive cases of context
matching/unification. In fact, no NP-hardness results are known for context
unification with a bounded number of context variables. Moreover, the par-
ticular case where at most three different context variables occur in the input
terms is neither known to be NP-hard nor decidable.

We will use a reduction from monotone 1-in-3-SAT, which is known to
be NP-hard [Sch78]. The monotone 1-in-3-SAT problem consists on, given
a propositional formula φ in conjuntive normal form such that

� each clause has exactly three literals, and

� all literals in φ are positive, i.e. clauses do not contain negated variables,

decide whether there is a satisfying assignment for φ making true exactly one
variable of every clause.

For a clause C = (x ∨ y ∨ z), we define eq(C) as the equation
FC(f(x, y, z))

.
= f(f(1, 0, 0), f(0, 1, 0), f(0, 0, 1)), where FC is a context vari-

able, x, y, z are first-order variables, and 1, 0 are constants. It is easy to see
that an instance φ of monotone 1-in-3-SAT has a solution if and only if the
context matching instance ∆ = {eq(C) | C ∈ φ} has a solution. Moreover,
∆ has polynomial size with respect to φ. Note that, in this reduction, it is
crucial to have a different context variable FC for each clause C ∈ φ. It is
not clear how to obtain a reduction using only a constant number of con-
text variables, even if they are allowed to occur in the right-hand side of the
equations.

As mentioned in the introduction, in this thesis we deal with the particular
case of context unification where only one context variable may appear in
the input terms, possibly with many occurrences. We call that particular
case one context unification.

23

Example 2.3.4 Consider the following term equation:

F

f

bx

.
= f

F

y

a

where x, y are first-order variables and F is a context variable that can be
replaced by any context. This concrete instance of the one context unification
problem has several solutions, such as, {F 7→ f(a, •), x 7→ a, y 7→ b} and
{F 7→ f(a, f(a, •)), x 7→ a, y 7→ b}.

In [GGSST10], we proved that one context unification is in NP . That
result is presented in Chapter 5 of this thesis. While one context unification
is known to be in NP, neither a polynomial time algorithm nor a NP-hardness
proof are known for this problem. An interesting partial result presented in
Chapter 5 is that one context unification can be solved in polynomial time if
the input set of equations contains an equation of the form F (s)

.
= c(F (t)),

where F is the context variable and c is a non-empty context. It follows that,
to find a polynomial time algorithm for one context unification, it suffices
to consider the case where right hand-sides of equations do not contain the
context variable. Let us present an interesting example of this case that we
will reuse later in Chapter 8.

Example 2.3.5 Let s be f(x0, x0), let t0 be f(a, b), and let us de-
fine tn, for any n > 0, recursively as tn = f(f(xn, xn), tn−1),
where xi is a first-order variable, for every i ∈ {0, . . . , n}. Hence,
t1 = f(f(x1, x1), t0) = f(f(x1, x1), f(a, b)) and t2 = f(f(x2, x2), t1) =
f(f(x2, x2), f(f(x1, x1), f(a, b))).

Consider, the following instance of the one context unification problem:
{F (a)

.
= s, F (b)

.
= t2} where F is the context variable and a, b are con-

stants. Note that there are four different solutions σ1, σ2, σ3, σ4 that can be
univoquely characterized by the hole path of their respective instantiations
of F as hp(σ1(F)) = 1.1.2, hp(σ2(F)) = 1.2.1, hp(σ3(F)) = 1.1.1, and
hp(σ4(F)) = 1.2.2.

Now consider the instance {F (a)
.
= s, F (b)

.
= tn} where F is the context

variable and a, b are constants, which actually describes a family of instances
parametrized by n. This instance has 2n different solutions.

Another particular case of context unification covered in this work is k-
context matching, the particular case of context matching where the number

24

of different context variable occurring in the input is bounded by a constant
number k. In [GGSS08], we proved that k-context matching can be solved in
polynomial time even when the input terms are represented using a Directed
Acyclic Graph. That result is presented in Chapter 7 of this thesis.

25

Chapter 3

Compressed Term
Representation

As mentioned in the introduction, in this thesis we consider variants of the
term unification problem depending on which formalism is used for term
representation. In this chapter we introduce two different formalisms that
allow to represent terms exponentially more succinctly than using an explicit
representation: Directed Acyclic Graphs (DAGs) and Singleton Tree Gram-
mars (STGs). While having a succinct representation has many advantages
in practice, it also comes with a cost, since performing simple operations on
terms efficiently may become more complex in the compressed setting that in
the explicit representation. In this section we will also present constructions
to perform several basic operations on STGs efficiently that will be used later
in our algorithms and proofs.

3.1 DAGs

The main idea behind the well-known DAG representation is that, if a certain
subterm t has many occurrences in a given term, then we do not need to
maintain a copy of t for each of its occurrences, but simply a reference to it.

Definition 3.1.1 A term DAG is a rooted Directed Acyclic Graph whose
nodes are labeled with function symbols, constants, or variables, whose out-
going edges from a node are ordered, and the outdegree of any node labeled
with a symbol f is equal to the arity of f .

In such a graph, each node has an interpretation as a term, and hence we
refer to nodes and terms as if they were the same. DAGs allow to represent

26

Figure 3.1: Encoding using a DAG of term in example 3.1.2

terms of exponential width in linear space, as illustrated in the following
example.

Example 3.1.2 Given the set of equations {t1 = f(a, b), t2 =
f(t1, t1), . . . , tn = f(tn−1, tn−1)}, using a DAG to represent tn provides an
efficient encoding as shown in Figure 3.1.

One of the reasons for the exponential execution time of Robinson’s al-
gorithm for first-order unification [Rob65] is the exponential size increase of
the terms to be unified due to instantiation of variables. The DAG structure
for term representation is used in later algorithms to keep the size of this
terms linearly bounded. Furthermore, note that since each node in a term
DAG has an interpretation as a term, once two subterms are unified they
are represented by the same node in the minimal DAG, which helps to avoid
repeated calculations. Moreover, a minimal DAG representing a set of terms
can be efficiently computed. We postpone giving a formal definition of DAGs
to the next section, since DAGs can be seen as a particular case of STGs, a
grammar-based formalism for term representation.

3.2 Grammars

In this work we consider Singleton Tree Grammars (STG) for term compres-
sion. This kind of grammars are a generalization of Singleton Context-Free
Grammars (SCFG) [LSSV08, Pla94], which can only generate strings, ex-
tending the expressivity of SCFGs by terms and contexts. This is consistent
with [BLM08], and also with the Context-Free tree Grammars in [CDG+07].

First of all it is necessary to define the well-known Context-Free Gram-
mars (CFG). Then, by making a restriction on the form of the rules we define
Singleton Context Free Grammars (SCFG), and finally, by extending SCFGs
to represent terms we introduce Singleton Tree Grammars (STG).

27

Definition 3.2.1 A context-free grammar is a quadruple G = (V,Σ, P, S)
where V is a finite set of variables (nonterminals), Σ is a finite set of ter-
minals disjoint with V , S ∈ V is the start symbol and P is a finite set of
production rules of the form Z → α where Z ∈ V and α ∈ (V ∪ Σ)∗ .

Example 3.2.2 A context-free grammar for the language consisting of all
strings over {a, b} with a different number of a’s and b’s is the one with the
following set of rules:

S → U S → V U → TaU
U → TaT V → TbV V → TbT
T → aTbT T → bTaT T → λ

Here, the nonterminal T can generate all strings with the same number of
a’s as b’s, the nonterminal U generates all strings with more a’s than b’s and
the nonterminal V generates all strings with fewer a’s than b’s. The symbol
λ denotes the empty string.

As we can see in the example above, the nonterminals T, U, V are recur-
sive. For this reason, arbitrarily long strings may be generated. Furthermore,
there is more than one rule containing a given nonterminal in its left-hand
side, i.e. the grammar in nondeterministic, and hence, some nonterminals
can generate more than one string. SCFGs are called singleton because each
nonterminal generates just one string. This property is guaranteed by forcing
such grammars to be deterministic and nonrecursive by definition.

Definition 3.2.3 A Singleton Context Free grammar (SCFG) is a nonre-
cursive context-free grammar such that every nonterminal occurs in the left
hand-side of a rule exactly once. Then every nonterminal Z generates just
one word, denoted wZ. We do not distinguish a particular start symbol.
Hence, SCFGs are defined as a 3-tuple G = (V,Σ, P), analogously to context-
free grammars.

Alternatively, SCFGs can be defined in the following way. They contain
nonterminals X1, . . . , Xn where every nonterminal Xi occurs in a left hand-
side of exactly one rule of the form either Xi → c, for some c ∈ Σ, or
Xi → XjXk, for some j, k < i. Note that, with this alternative definition,
SCFGs are in Chomsky Normal Form.

Example 3.2.4 Consider string s = abaababaabaab. It can be generated by
an SCFG with the following set of rules: {X7 → X6X5, X6 → X5X4, X5 →
X4X3, X4 → X3X2, X3 → X2X1, X2 → a,X1 → b}. We say that X7 gener-
ates s, denoted wX7 = s.

28

The following picture shows the derivation tree to obtain s. Note that
compression is obtained by reusing nonterminals that generate repeated sub-
words of s.

X7

X5

X3

X1

b

X2

a

X4

X2

a

X3

X1

b

X2

a

X6

X4

X2

a

X3

X1

b

X2

a

X5

X3

X1

b

X2

a

X4

X2

a

X3

X1

b

X2

a

As shown in the following example, using SCFG, words of exponential
size can be represented in linear space. This compression ratio is also an
upper bound for the compression ratio of SCFGs, which can be easily shown
by induction.

Example 3.2.5 The SCFG G with set of rules {A0 → a,A1 →
A0A0, . . . , An → An−1An−1} generates the word a2n.

Now we can define Singleton Tree Grammars (STGs) as an extension of
the already presented SCFGs in order to capture terms and contexts. As a
last ingredient, let us fix a countable set Y = {y1, y2 . . .} whose elements are
called parameters.

Definition 3.2.6 A Singleton Tree Grammar (STG) G is a 4-tuple
〈N ,Σ, R, S〉, where

� N is a ranked alphabet whose elements are called nonterminals.

� Σ is a ranked alphabet called signature.

� R is a finite set of rules of the form N → t where N ∈ N , t ∈ T (F ∪
N∪{y1, . . . , yar(N)}), t 6∈ Y, and each of the parameters {y1, . . . , yar(N)}
appears in t exactly once.

� S is the initial nonterminal of arity 0.

The sets N and Σ must be disjoint, each nonterminal N appears as a left-
hand side of just one rule of R. Let N1 >G N2 for two nonterminals N1, N2,
iff (N1 → α) ∈ R, and N2 occurs in α. The STG must be nonrecursive,
i.e., the transitive closure >+

G must be terminating. The depth of G is the

29

maximal length of a chain in >+
G. We define the derivation relation ⇒G on

T (F ∪N ∪Y) as follows: t⇒G t
′ iff there exists (A→ s) ∈ R with ar(A) =

n, t = c(A(t1, . . . , tn)) and t′ = c(σ(s)), where σ = {y1 → t1, . . . , yn →
tn} and c is a context in C(F ∪ N ∪ Y). The term pattern generated by
a nonterminal N of G, denoted wN , is the term t ∈ T (F ∪ Y) such that
N ⇒∗G t.

The following example shows how, in contrast to the DAG representation
that is based on sharing of repeated subterms, STGs allow to compress terms
by reusing repeated tree patterns.

Example 3.2.7 The STG with the two rules rules S →
A(A(a, b), A(b, a)) and A(y1, y2) → f(h(y1), h(y2)) generates the term
f(f(h(a), h(b)), f(h(b), h(a))) from S.

Definition 3.2.8 Let G = 〈N ,Σ, R, S〉 be an STG. G is called k-bounded if
k is the maximum arity of the nonterminals in N .

Definition 3.2.9 Let G = 〈N ,Σ, R, S〉 be an STG. The size of G, denoted
|G|, is defined as

∑
(A→tA)∈R |tA|.

Definition 3.2.10 The depth within G of a nonterminal N is defined recur-
sively as depth(N) := 1 + max{depth(N ′) | N ′ is a nonterminal in u where
N → u ∈ G} and the maximum of an empty set is assumed to be 0.

The depth of a grammar G is the maximum of the depths of all nonter-
minals of G, and it is denoted as depth(G).

In [LMSS12], it is shown how to transform a given STG into an equivalent
1-bounded STG. The transformation takes linear time and space. This result
allows us to consider, without loss of generality, a simpler definition of STG:

Definition 3.2.11 A Singleton Tree Grammar (STG) is a 4-tuple G =
(T N , CN ,Σ, R), where T N is a set of tree/term nonterminals, or nonter-
minals of arity 0, CN is a set of context nonterminals, or nonterminals of
arity 1, and Σ is a ranked alphabet whose elements are called terminals, such
that the sets T N , CN , and Σ are pairwise disjoint. The set of nonterminals
N is defined as N = T N ∪ CN . The rules in R may be of the form:

� A → α(A1, . . . , Am), where A,Ai ∈ T N , and α ∈ Σ is an m-ary
terminal symbol.

� A→ C1A2 where A,A2 ∈ T N , and C1 ∈ CN .

30

� C → • where C ∈ CN .

� C → C1C2, where C,Ci ∈ CN .

� C → α(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am),
where A1, . . . , Ai−1, Ai+1, . . . , Am ∈ T N , C,Ci ∈ CN , and α ∈ Σ is an
m-ary terminal symbol.

� A→ A1, (λ-rule) where A and A1 are term nonterminals.

Let N1 >G N2 for two nonterminals N1, N2, iff (N1 → t) ∈ R, and N2 occurs
in t. The STG must be nonrecursive, i.e. the transitive closure >+

G must be
terminating. Furthermore, for every nonterminal N of G there is exactly one
rule having N as left-hand side.

From now on, unless explicitly stated otherwise, we consider the previous
definition of STG. As mentioned above, the two definitions of STG given
here are equivalent up to a linear time and space transformation. Note that
we have chosen Σ instead of F to denote the set of terminals of the grammar,
although it is also a signature. The justification for that choice is as follows.
In this work, STG’s are used for representing terms with occurrences of
context and first-order variables. In particular, a terminal A of an STG G
generates a term. If Σ was F we would be able to represent just ground
terms. Thus, Σ must also contain first-order variables as terminals of arity
0 and context variables as terminals of arity 1.

A Directed Acyclic Graph can be defined as a particular case of an STG
(in fact, this representation is in direct correspondence with the classic im-
plementation of graphs using adjacency lists).

Definition 3.2.12 A DAG is a 0-bounded STG.

Example 3.2.13 Given the set of equations {t1 = f(a, b), t2 =
f(t1, t1), . . . , tn = f(tn−1, tn−1)}, using an STG to represent tn provides an
efficient encoding (as shown in example 3.1.2 for the case of the DAG repre-
sentation).

Tn → f(Tn−1, Tn−1)
...
T2 → f(T1, T1)
T1 → f(A,B)
A→ a
B → b

31

Analogously to the case of SCFGs, STG-represented terms may have
exponential height with respect to the size of the grammar in contrast to
DAGs, which only allow for a linear height in the (notational) size of the
DAGs as shown in the following example.

Example 3.2.14 The term s = f 2n(a) described by the following grammar
would have exponential height in a term or DAG representation.

S → CnAa
Aa → a
C• → •
C0 → f(C•)
C1 → C0C0

C2 → C1C1

C3 → C2C2
...
Cn → Cn−1Cn−1

A DAG G is called optimally compressed if equal terms are represented by
the same term nonterminal. Transforming a DAG into optimally compressed
form can be performed in time O(n log n) [DST80].

At this point, let us define a notion of size and depth of an STG (consid-
ering Definition 3.2.11), a DAG, and an SCFG.

Definition 3.2.15 The size |G| of an STG G is the number of non-terminals
in G The depth within G of a nonterminal N is defined recursively as
depth(N) := 1 + max{depth(N ′) | N ′ is a nonterminal in u where N →
u ∈ G} and the maximum of an empty set is assumed to be 0.

The depth of an STG G is the maximum of the depths of all nonterminals
of G, and it is denoted as depth(G).

In the case of DAGs and SCFGs, size and depth are defined analogously.

Plandowski [Pla94, Pla95] proved decidability in polynomial time of the
word problem for SCFGs, i.e., given an SCFG P and two nonterminals A
and B, deciding whether wA = wB. The best complexity for this problem
has been obtained recently by Lifshits [Lif07] with time O(|P |3). In [BLM08]
Plandowski’s result is generalized to STGs. Since the result in [BLM08] is
based on a linear reduction from terms to words and a direct application
of Plandowski’s result, it also holds for Lifshits result. Hence, we have the
following.

Theorem 3.2.16 ([Lif07, BLM08]) Given an STG G, and two tree nonter-
minals A,B from G, it is decidable in time O(|G|3) whether wA = wB.

32

Several properties of STGs are efficiently decidable. The following lemmas
will be used all along this thesis.

Lemma 3.2.17 Let G be an STG. The number |wN |, for every nonterminal
N of G, is computable in time O(|G|).

Proof. We give an alternative definition of |wN | recursively as follows.

� if (N → •) ∈ G then |wN | = 1.

� if (N → f(N1, . . . , Nm)) ∈ G then |wN | = 1 + |wN1| + . . . + |wNm|,
where N1, . . . , Nm are nonterminals of G and f is a function symbol
with ar(f) = m.

� if (N → C1N2) ∈ G then |wN | = |wC1|+|wN2|−1, where C1 is a context
nonterminal and N2 is a nonterminal of G.

The correctness of the above definition can be shown by induction on the size
of wN . Moreover, since the recursive calls in the definition of |wN | will be
done, at most, over all the nonterminals of G, |wN | is computable in linear
time with respect to |G| using a dynamic programming scheme. 2

Lemma 3.2.18 Given an STG G, a terminal α, and a nonterminal N of
G, it is decidable in time O(|G|) whether α occurs in wN .

Proof. Whether α occurs in wN can be computed efficiently again using a
dynamic programming scheme: note that α occurs in wN iff either wN → α ∈
G, or α occurs in wN ′ for some nonterminal N ′ occurring in the right-hand
side of the rule for N . 2

3.2.1 Grammar Constructions

In this section we describe the operations on STGs involved in our algorithms
for different variants of compressed term unification and matching.

For example, in [BLM08] it was shown how to succinctly represent the
preorder traversal word of a term generated by an STG using an SCFG. We
describe that construction in Section 3.2.1. More concretely, given STG-
compressed terms s, t, we show how to efficiently compute an SCFG PreG
with nonterminals Ps and Pt generating Pre(s) and Pre(t), respectively.

We also need to compute, given PreG, the smallest index k in which the
compressed strings Pre(s) and Pre(t) differ. In Section 3.2.1 we show how
to perform this task efficiently. Our approach is based on a recent result on

33

A→ f(A1, . . . , Am) ⇒ PA → fPA1 . . .PAm

A→ C1A2 ⇒ PA → LC1PA2RC1

A→ A1 ⇒ PA → PA1

C → C1C2 ⇒
{
LC → LC1LC2

RC → RC2RC1

C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am) ⇒
{
LC → fPA1 . . .PAi−1LCi

RC → RCiPAi+1 . . .PAn

C → • ⇒
{
LC → λ
RC → λ

Figure 3.2: Generating the Preorder Traversal

compressed string processing [Lif07]. As commented in Section 2, k corre-
sponds to a unique position p ∈ Pos(s)∩Pos(t). In Section 3.2.1, we present
the procedure, given G and k, to extend G such that a new nonterminal
generates t|p. Avoiding the explicit calculation of p refines the approach pre-
sented in previous work in STG-compressed first-order unification [GGSS09]
in order to obtain a faster algorithm.

We also need to apply substitutions once a variable is isolated. Performing
a replacement of a first-order variable x (context variable F) by a term u
(context c) is easily representable with STGs by simply transforming x (F)
into a nonterminal x (F) of the grammar and adding rules such that x (F)
generates u (c).

Finally, we also present operations of STG to adapt the subcontext op-
eration presented in Section 2.1 to the compressed setting.

Computing the preorder traversal of a term.

In [BLM08] it is shown how to construct, from a given STG G, an SCFG PreG
representing the preorder traversals of the terms and contexts generated by
G. We reproduce that construction here, presented in Figure 3.2 as a set of
rules indicating, for each term nonterminal A and its rule A→ α of G, which
rule PA → α′ of PreG is required in order to make a nonterminal PA of PreG
satisfy wPreG,PA

= Pre(wG,A). To this end, for each context nonterminal C
of G we also need nonterminals of PreG generating the preorder traversal to
the left of the hole (LC), and the preorder traversal to the right of the hole
(RC).

It is straightforward to verify by induction on the depth of G that, for ev-
ery term nonterminal A of G, the corresponding newly generated nonterminal
PA of PreG generates Pre(wA).

34

Lemma 3.2.19 Let G be an STG. An SCFG PreG of size O(|G|) can be
constructed in time O(|G|) such that, for each nonterminal N of G, there
exists a nonterminal PN in PreG satisfying wPreG,PN

= Pre(wG,N).

Proof. This follows trivially from the construction in Figure 3.2. 2

Computing the first different position of two words

Given two nonterminals p1 and p2 of an SCFG P , we want to find the small-
est index k such that wp1 [k] and wp2 [k] are different. In order to solve this
problem, a linear search over the generated words wp1 and wp2 is not a good
idea, since their sizes may be exponentially big with respect to the size of P .
Hence, one may be tempted to apply a binary search since prefixes are effi-
ciently computable with SCFGs and equality is checkable in time O(|P |3),
which would lead to O(|P |4) time complexity. However, we will use more
specific information from Lifshits’ work [Lif07] to obtain O(|P |3) time com-
plexity.

Lemma 3.2.20 [Lif07] Let G be an SCFG. Then a data structure can be
computed in time O(|G|3) which allows to answer to the following question in
time O(|G|): given two nonterminals N1 and N2 of G and an integer value
k, does wN1 occur in wN2 at position k?

Thus, assume that the precomputation of Lemma 3.2.20 has been done
(in time O(|P |3)), and hence we can answer whether a given wp1 occurs in a
given wp2 at a certain position in time O(|P |).

For finding the first different position between p1 and p2, we can as-
sume |wp1| ≤ |wp2 | without loss of generality. Moreover, we also assume
wp1 6= wp2 [1..|wp1 |], i.e wp1 is not a prefix of wp2 . Note that this condition is
necessary for the existence of a different position between wp1 and wp2 , and
that this will be the case when p1 and p2 generate the preorder traversals of
different trees. Finally, we can assume that P is in Chomsky Normal Form
i.e. every rule in P is either of the form X → Y Z or X → a, where a is a ter-
minal and X, Y, Z are nonterminals of P . Note that, if this was not the case,
we can force this assumption with a linear time and space transformation.

We generalize our problem to the following question: given two nonter-
minals p1 and p2 of P and an integer k′ satisfying k′ + |wp1| ≤ |wp2| and
wp1 6= wp2 [(k

′ + 1)..(k′ + |wp1 |)], which is the smallest k ≥ 1 such that wp1 [k]
is different from wp2 [k

′ + k]? (Note that we recover the original question by
fixing k′ = 0).

This generalization is solved efficiently by the recursive algorithm given in
Figure 3.3, as can be shown inductively on the depth of p1. By Lemma 3.2.20,

35

index(p1,p2,k′,P)=

1 , if |wp1| = 1
index(p11,p2,k′,P) , if (p1 → p11p12) ∈ P∧

wp11 6= wp2 [(k
′ + 1) . . . (k′ + |wp11|)]

|wp11|+ , if (p1 → p11p12) ∈ P∧
index(p12,p2,k′ + |wp11|,P) wp11 = wp2 [(k

′ + 1) . . . (k′ + |wp11 |)]

Figure 3.3: Algorithm for the Index of the First Difference

each call takes time O(|P |), and at most depth(P) calls are executed. Thus,
the most expensive part of computing the first different position of wp1 and
wp2 is the pre-computation given by Lemma 3.2.20, that is, O(|P |3).

Lemma 3.2.21 Let P be an SCFG, and let p1, p2 be nonterminals of P such
that wp1 6= wp2. The first position k where wp1 and wp2 differ is computable
in time O(|P |3).

Isolating variables

As commented in Section 2, every index k in the preorder traversal word of a
term t corresponds to the position p = iPos(t, k). We show how to efficiently
compute, given G and k, an extension of an STG G with a nonterminal
generating t|p. We use the SCFG PreG presented in Figure 3.2.

Definition 3.2.22 Let G be an STG. Let N a nonterminal of G, and let
k be a natural number satisfying k ≤ Pre(wG,N)|. We recursively define
kExt(G,N, k) as an extension of G as follows:

� If k = 1 then kExt(G,N, k) = G. In the next cases we assume k > 1.

� If (N → f(N1, . . . , Ni−1, Ni, . . . , Nm)) ∈ G and 1 + |wN1| + . . . +
|wNi−1

| = k′ < k ≤ k′+ |wNi
| then kExt(G,N, k) = kExt(G,Ni, k− k′).

� If (N → C1A2) ∈ G and k ≤ |wPreG,LC1
| then kExt(G,N, k) includes

kExt(G,C1, k), which contains a nonterminal N ′ generating the sub-
term of wG,C1 at position iPos(wG,C1 , k). If N ′ is a context nontermi-
nal then kExt(G,N, k) additionaly contains the rule A→ N ′A2, where
A is a new term nonterminal.

� If (N → C1C2) ∈ G and k ≤ |wPreG,LC1
| then kExt(G,N, k) includes

kExt(G,C1, k), which contains a nonterminal N ′ generating the sub-
term of wG,C1 at position iPos(wG,C1 , k). If N ′ is a context nontermi-
nal then kExt(G,N, k) additionaly contains the rule C → N ′C2, where
C is a new context nonterminal.

36

� If (N → C1N2) ∈ G and k′ = |wPreG,LC1
| < k ≤ |wPreG,LC1

|+ |wN2| then
kExt(G,N, k) = kExt(G,N2, k − k′).

� If (N → C1N2) ∈ G and |wPreG,LC1
| + |wN2| < k then kExt(G,N, k) =

kExt(G,C1, k − |wN2 |+ 1).

� If (N → A2) ∈ G then kExt(G,N, k) = kExt(G,A2, k).

� In any other case kExt(G,N, k) is undefined.

The following lemma states the correctness of the previous definition.

Lemma 3.2.23 Let G be an STG. Let N a nonterminal of G, and let k be
a natural number such that k ≤ |Pre(wG,N)|. Then G can be extended to an
STG G′ in time O(|G|) with O(depth(G)) new nonterminals such that one
of them generates the subterm of wG,N at position iPos(wG,N , k).

Proof.
The fact that kExt(G,N, k) is an extension of G satisfying the statements

of the lemma follows by induction on depth(N):
For the base case we assume depth(N) = 1, then |Pre(wN)| = 1 and, since

k ≤ |Pre(wN)|, k = 1. Hence, wN |iPos(wN ,k) = wN |iPos(wN ,1) = wN |λ = wN
by definition of iPos, and definition of subterm of wN . Thus, since N is a
nonterminal of G then kExt(G,N, k) = G generates wN . For the induction
step we distinguish cases according to the definition of kExt(G,N, k):

� Assume that (N → f(N1, . . . , Ni−1, Ni, . . . , Nm)) ∈ G and 1 + |wN1| +
. . . + |wNi−1

| = k′ < k ≤ k′ + |wNi
|. By definition of iPos(wN , k), it

holds that iPos(wN , k) = i · iPos(wNi
, k − k′). Hence, wN |iPos(wN ,k) =

wNi
|iPos(wNi

,k−k′) by definition of subterm of wN . Moreover, since in this
case kExt(G,N, k) = kExt(G,Ni, k − k′), the fact that kExt(G,N, k)
generates wN |iPos(wN ,k) follows by induction hypothesis.

� If (N → C1A2) ∈ G and k ≤ |wPreG,LC1
| then either iPos(wN , k) �

hp(wC1) or iPos(wN , k) and hp(wC1) are disjoint. Both situations are
ilustrated by the following figure:

In the former case, wC1 |iPos(wC1
,k) is a prefix of wC1 and wN |iPos(wN ,k) =

wC1|iPos(wC1
,k)wA2 . In this case kExt(G,N, k) is constructed using

kExt(G,C1, k), which constains a new nonterminal N ′ generating
wC1|iPos(wC1

,k) by induction hypothesis, plus the rule A→ N ′A2, where
A is a new term nonterminal. Hence, it holds that wA = wN ′wA2 =
wC1|iPos(wN ,k)wA2 = wN |iPos(wN ,k) and thus kExt(G,N, k) generates
wN |iPos(wN ,k). In the latter case, wN |iPos(wN ,k) = wC1 |iPos(wC1

,k).

37

wA2
wA2

iPos(wN , k) ≺ hp(wC1
) iPos(wN , k) and hp(wC1

) disjoint

iPos(wN , k)

iPos(wN , k)

hp(wC1
)hp(wC1

)

By induction hyphotesis, kExt(G,C1, k) generates wC1|iPos(wN ,k) and,
since wC1|iPos(wC1

,k) is a term, kExt(G,N, k) = kExt(G,C1, k) and
kExt(G,N, k) generates wN |iPos(wN ,k), again by induction hypothesis.

� The case where (N → C1C2) ∈ G and k ≤ |wPreG,LC1
| is solved analo-

gously to the previous one.

� If (N → C1N2) ∈ G and k′ = |wPreG,LC1
| < k ≤ |wPreG,LC1

| + |wN2|
then hp(wC1) � iPos(wN , k) and hence iPos(wN , k) is of the form
hp(wC1) · iPos(wN2 , k− k′). Moreover, by definition of subterm of wN ,
it holds that wN |iPos(wN ,k) = wN2 |iPos(wN2

,k−k′) and thus, since in this
case kExt(G,N, k) = kExt(G,N2, k − k′), the fact that kExt(G,N, k)
generates wN |iPos(wN ,k) follows from induction hyphotesis.

� Assume that (N → C1N2) ∈ G and |wPreG,LC1
| + |wN2| < k. Since

wN is of the form wC1wN2 , iPos(wN , k) = iPos(wC1 , k − |wN2| + 1)
(recall that the hole is considered an special constant of size 1).
Furthermore, wN |iPos(wN ,k) = wC1|iPos(wN ,k). All together implies
that wN |iPos(wN ,k) = wC1|iPos(wC1

,k−|wN2
|+1), and hence, the fact that

kExt(G,N, k) = kExt(G,C1, k − |wN2|+ 1) generates wN |iPos(wN ,k) fol-
lows from induction hyphotesis.

� If (N → A2) ∈ G (λ-rule) then the fact that kExt(G,N, k) generates
wN |iPos(wN ,k) directly follows by induction hypothesis.

To show that kExt(G,N, k) contains O(depth(G)) new nonterminals not in
G it suffices to remark that the number of recursive calls in the computation
of kExt(G,N, k) is bounded by depth(G) and each of them extends G with
at most one new nonterminal.

To compute kExt(G,N, k) in linear time we first build the SCFG PreG
generating the preorder traversals of the terms generated by G and precom-
pute the size of the term/word generated by each nonterminal in G and PreG.
Both operations can be done in linear time. Once this precomputations are
done, kExt(G,N, k) can be computed by a single run over the rules of G,
which leads to the desired time complexity. 2

38

Computing subcontexts

In this section we present operations to, given an STG G, a term nonterminal
A of G, and a position p ∈ Pos(wA), extend G with new nonterminals to
generate the prefix context of A with hole path p.

As a first ingredient, we show how to succinctly represent the hole path
of a compressed context.

Definition 3.2.24 Let G be an STG. We define the SCFG HG representing
the hole paths of wC for all context nonterminals C as follows. For each
context nonterminal C of G we construct a nonterminal HC of HG. For
each natural number i between 1 and the maximum arity of the signature
Σ, we construct a nonterminal Hi representing the position i. For each rule
with a context nonterminal C as left-hand side, we construct one rule of HG,
depending on the form of the rule of C in G, as follows.

� If (C → •) ∈ G, then HG contains the rule HC → λ.

� If (C → C1C2) ∈ G, then HG contains the rule HC → HC1HC2.

� If (C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)) ∈ G, then HG contains the
rules HC → HiHCi

.

Moreover, for each Hi, HG contains the rule Hi → i.

Lemma 3.2.25 The SCFG HG can be computed for an STG G in time
O(|G|). Let C ∈ G be any context nonterminal. Then the corresponding
nonterminal HC ∈ HG generates hp(wC). Moreover, |HG| ≤ |G| + M and
depth(HC) ≤ depth(C), where M is the maximum arity of the signature.

Proof. It is easy to prove that wHC
= hp(wC) as well as depth(HC) ≤

depth(C) using induction on depth(C). Moreover, from every rule of G we
produce one rule of HG, and for every i between 1 and M we produce one
rule of HG, which leads to a linear time algorithm with respect to |G|. 2

The following two definitions and lemmas present efficient algorithms to
compute prefixes and suffixes of a compressed context.

Definition 3.2.26 Let G be an STG describing first-order terms and con-
texts, let C be a context nonterminal of G, and let l be a natural number such
that l ≤ |hp(wC)|. We define the extension Pref(G,C, l) of G representing
a prefix of wC recursively as follows, where C ′ will be a context nonterminal
representing the prefix of wC with hole depth l.

� If l = 0, then Pref(G,C, l) contains G plus the rule C ′ → •, where C ′

is a new context nonterminal. In the next cases we assume l > 0.

39

� If l = |hp(wC)|, then Pref(G,C, l) = G and C ′ = C. In the next cases
we assume l < |hp(wC)|.

� If (C → C1C2) ∈ G and l ≥ |hp(wC1)|. Then Pref(G,C, l) includes
Pref(G,C2, l−|hp(wC1)|), which contains a nonterminal C ′2 generating
the prefix of wC2 with |hp(wC′2)| = l − |hp(wC1)|, plus the rule C ′ →
C1C

′
2, where C ′ is a new context nonterminal.

� If (C → C1C2) ∈ G and l < |hp(wC1)|, then, we define Pref(G,C, l) as
Pref(G,C1, l).

� If (C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)) ∈ G, then Pref(G,C, l)
includes Pref(G,Ci, l − 1), which contains a nonterminal C ′i gener-
ating the prefix of wCi

with |hp(wC′i)| = l − 1, plus the rule C ′ →
f(A1, . . . , Ai−1, C

′
i, Ai+1, . . . , Am)) ∈ G, where C ′ is a new context non-

terminal.

Lemma 3.2.27 Let G be an STG describing first-order terms and contexts,
let C be a context nonterminal of G, and let l be a natural number such
that l ≤ |hp(wC)|. Then, Pref(G,C, l) is an extension of G computable in
time O(|G|). It adds at most depth(C) nonterminals such that one of them,
called C ′, generates the prefix of wC satisfying |hp(wC′)| = l. Moreover,
depth(C ′) ≤ depth(C) and depth(Pref(G,C, l)) = depth(G).

Proof. The correctness of the definition of Pref(G,C, l), as well as
depth(C ′) ≤ depth(C) and depth(Pref(G,C, l)) = depth(G) can be eas-
ily shown by induction on depth(C). With respect to time complexity, we
first precompute |hp(wC)| for each context nonterminal of G, which can be
done in linear time thanks to Lemma 3.2.17 and Lemma 3.2.25. Time com-
plexity O(|G|) follows from the fact that the recursive definition decreases
the depth of the involved nonterminal. 2

Definition 3.2.28 Let G be an STG describing first-order terms and con-
texts, let C be a context nonterminal of G, and l a natural number such that
l ≤ |hp(wC)|. We define the extension Suff(G,C, l) of G representing the
suffix of wC starting at hole depth l by the nonterminal C ′ as follows:

� If l = 0, then Suff(G,C, l) = G. In the next cases we assume l > 0.

� If l = |hp(wC)| then Suff(G,C, l) contains G plus the rule C ′ → •,
where C ′ is a new context nonterminal. In the next cases we assume
l < |hp(wC)|.

40

� If (C → C1C2) ∈ G and l < |hp(wC1)|. Then Suff(G,C, l) includes
Suff(G,C1, l), which contains a context nonterminal C ′1 generating the
suffix of wC1 with |hp(wC′1)| = |hp(wC1)| − l, plus the rule C ′ → C ′1C2,
where C ′ is a new context nonterminal.

� If (C → C1C2) ∈ G and l ≥ |hp(wC1)|, then, with l′ = l − |hp(wC1)|,
we define Suff(G,C, l) as Suff(G,C2, l

′).

� If (C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)) ∈ G, then we define
Suff(G,C, l) as Suff(G,Ci, l − 1).

Lemma 3.2.29 Let G be an STG describing first-order terms and contexts.
Let C be a context nonterminal of G, and l a natural number such that
l ≤ |hp(wC)|. Then, Suff(G,C, l) is an extension of G computable in time
O(|G|). It adds at most depth(C) nonterminals such that one of them, called
C ′, generates the suffix of wC satisfying |hp(wC′)| = |hp(wC)| − l. Moreover,
depth(C ′) ≤ depth(C) and depth(Pref(G,C, l)) = depth(G).

Proof. The proof is analogous to the one of Lemma 3.2.27. 2

Finally, we are ready to present our construction to compute a subcontext
of a context in the compressed setting.

Definition 3.2.30 Let G be an STG generating terms and contexts, let A be
a term nonterminal of G, and let p be a position in wA. Then, we recursively
define pCon(G,A, p) as an extension of G representing the prefix context of
A with hole path p as follows.

� if A → α(A1, . . . , Am) ∈ G and p = i · p′ then pCon(G,A, p) in-
cludes pCon(G,Ai, p

′), which contains a nonterminal Ci generating
the context prefix of wAi

with hp(wCi
) = p′, plus the rule C ′ →

α(A1, . . . , Ci, . . . , Am), where C ′ is a new context nonterminal.

� If A→ A′, then pCon(G,A, p) = pCon(G,A′, p).

� if A → C1A2 ∈ G then p = p1 · p2 where p1 is the maximal common
prefix of p and hp(C1). We distinguish three cases:

– If p1 = hp(C1) then pCon(G,A, p) includes pCon(G,A2, p2), which
contains a nonterminal C2 generating the context prefix of wA2

with hp(wC2) = p2, plus the rule C ′ → C1C2, where C ′ is a new
context nonterminal.

– If p1 ≺ hp(C1) and p2 = λ then pCon(G,A, p) is defined as
Pref(C1, G, |p1|).

41

– (see Fig. 3.4) If p1 ≺ hp(C1) and p2 6= λ then p is of the form
p1 · i · p3 and hp(C1) is of the form p1 · k · p4, for some positions p3

and p4, and some integers i and k satisfying i 6= k. We assume
i < k, without loss of generality. Let l1 and l4 be |p1| and |p4|,
respectively.

Let G1 be Pref(G,C1, l1). The STG G1 contains a context non-
terminal C11 generating the prefix of wC1 such that |hp(C11)| = l1.
Let G2 be Suff(G1, C1, |hp(C1)| − l4). The STG G2 contains a
context nonterminal C12 generating the suffix of wC1 such that
|hp(C12)| = l4.

Let G′1 be Suff(G,C1, l1). The STG G′1 contains a context non-
terminal C ′12 generating the suffix of wC1 such that |hp(C ′12)| =
|hp(C1)| − l1 = l4 + 1. Let G′2 be Pref(G′1, C

′
12, 1). The STG G′2

contains a context nonterminal C ′11 generating the prefix of wC′12
such that |hp(C ′11)| = 1.

At this point, note that wG,C1 = wG2,C11wG′2,C′11wG2,C12.
Moreover, the rule of C ′11 in G′2 is of the form C ′11 →
α(A′1, . . . , A

′
k−1, C

′′
11, A

′
k+1, . . . , A

′
m), where all the A′i are term non-

terminals of the original G, and generating the same terms as in
G. Moreover, the rule of C ′′11 in G′2 is necessarily C ′′11 → •.
We define pCon(G,A, p) as pCon(G2, A

′
i, p3), which contains a

context nonterminal C3 generating the prefix context of wA′i
with hole at position p3 plus the rules C ′ → C11C4, C4 →
α(A′1, . . . , A

′
i−1, C3, A

′
i+1, . . . , A

′
k−1, A

′
k, A

′
k+1, . . . , Am), A′k →

C12A2, where C ′, C4, A
′
k are new nonterminals.

Figure 3.4: The involved case of Definition 3.2.30

42

Lemma 3.2.31 Let G be an STG describing terms and contexts, let A be
a nonterminal of G, and let p be a position in wA. Then, pCon(G,A, p)
contains at most depth(A) ∗ (2depth(A) + 1) new nonterminals such that
one of them, called C ′, generates the context prefix of wA with hp(wC′) = p.
Moreover, depth(C ′) ≤ depth(A).

Proof. The fact that pCon(G,A, p) contains a context nonterminal C ′ gen-
erating the context prefix of wA with hp(wC′) = p can be verified by in-
duction on depth(A) and distinguishing cases according to the definition
of pCon(G,A, p). As in previous constructions, pCon(G,A, p) can be com-
puted in a single run over the rules of the G. To show the upper bound
on the size of the computed extension, it suffices to note that the worst
case in this sense is when the rule of A is of the form A → C1A2 and
hp(wC1) and p are disjoint. In such a case, we add 3 new rules plus the
new rules in Pref(G,C1, |p1|) and Suff(G,C1, |p1|+ 1), where p1 is the max-
imal common prefix between hp(C1) and p. The number of added non-
terminals is bounded by depth(A) − 1 for both the Pref and the Suff

constructions by Lemma 3.2.27, and Lemma 3.2.29, respectively. The fact
depth(C ′) ≤ depth(A) can be verified by induction on depth(A) and using
Lemma 3.2.27, and Lemma 3.2.29 as follows: depth(A′j) ≤ depth(A) − 2,
hence depth(C3) ≤ depth(A) − 2. Also, depth(C4) ≤ depth(A) − 1 and
depth(C11) ≤ depth(A)− 1, hence depth(C ′) ≤ depth(A). 2

43

Chapter 4

Compressed First-Order
Unification and matching

In this chapter we present polynomial time algorithms for the first-order
unification and matching problems when their input is represented using
STGs. We will use some of the constructions introduced in Section 3.2.1 of
the previous chapter. Moreover, at the end of the chapter, we present an
experimental evaluation of different implementations of our algorithms.

4.1 First-order Unification and matching

with STGs

First of all, let us state our problem formally.

Definition 4.1.1 An instance of the first-order unification problem with
STGs is a triple 〈G,As, At〉, where G is an STG G representing first-order
terms, and As, At are term nonterminals terms s = wG,As and t = wG,At. The
problem consists in deciding whether s and t are unifiable. In the affirmative
case, its computational version asks for a representation of the most general
unifier.

Our algorithm generates the most general unifier in polynomial time and
represented again with an STG.

4.1.1 Outline of the algorithm

From a high level perspective the structure of our algorithm, described in
Figure 4.1, is very simple and rather standard: it is based on Robinson

44

Input: An STG G and term nonterminals As and At.

(we write s and t for wAs
and wAt

, respectively).

While s and t are different do:

Look for the first position k such that pre(s)[k] 6= pre(t)[k].
If both pre(s)[k] and pre(t)[k] are function symbols, Then

Halt stating that the initial s and t are not unifiable

// Here, either pre(s)[k] or pre(t)[k], say pre(s)[k], is a variable x.
If x occurs in t|p, where p = iPos(t, k), Then

Halt stating that the initial s and t are not unifiable

Extend G by the assignment {x 7→ t|p}
EndWhile

Halt stating that the initial s and t are unifiable

Figure 4.1: Unification Algorithm of STG-Compressed Terms

unification algorithm [Rob65]. Many algorithms for first-order unification are
variants of this scheme. In those algorithms, terms are usually represented
with Directed Acyclic Graphs (Dags), implemented somehow, in order to
avoid the space explosion due to the repeated instantiation of variables by
terms. For example, in the Martelli-Montanari algorithm [MM82, BS01]
instantiations are represented by equations. Note that, as commented in
Section 2.3, our algorithm is just an adaptation of the algorithm defined
in Figure 2.1 to the case where the inputted terms are compressed using
STGs. For this reason we do not argue about correctness and just focus in
proving that its running time is polynomial. Hence, we need to perform all
the operations mentioned in the algorithm of Figure 4.1 on the compressed
representation of terms. More concretely, given an STG G as a compressed
representation of two terms s and t, we need to compute a smallest index k in
which pre(s) and pre(t) differ. At this point, if both pre(s)[k] and pre(t)[k]
are function symbols, we terminate stating nonunifiability. Otherwise, either
pre(s) or pre(t), say pre(s), contains a variable x at k. Note that, since
the arity of the terminals in G is fixed, the index k corresponds to a unique
position p ∈ Pos(s)∩ Pos(t), as explained in Chapter 2. If x properly occurs
in the subterm of t at p, then we terminate, again stating nonunifiability.
Otherwise, we replace x by the subterm of t at p everywhere, and repeat the
process until both s and t become equal, in which case we state unifiability.

In Chapter 3 we showed how to efficiently perform some of the required
operations on STGs: Decide whether s and t are equal, generate a compressed
representation for pre(s) and pre(t), look for the smallest index k such that
pre(s)[k] 6= pre(s)[k], and construct the term t|p, where p = iPos(t, k).
However, we still need to see how to deal with instantiations of variables in

45

the STG setting. Performing a replacement of a first-order variable x by
a term u is easily representable with STGs by simply transforming x into
a nonterminal of the grammar and adding rules such that x generates u.
However, since successive replacements of variables by subterms modify the
initial terms, we have to show that this does not produce an exponential
increase of the size of the grammar, since its depth may be doubled after
each of these operations. To this end, in the following section, we develop a
notion of restricted depth, and show that its value is polynomial with respect
to the size of the input grammar, its value is preserved along the execution,
and the size increase after each instantiation can be bounded by the value of
the restricted depth.

4.1.2 Application of substitutions and a notion of re-
stricted depth

Term unification algorithms usually apply substitutions when one variable is
isolated. We need to emulate such applications when the terms are repre-
sented with STGs. In an STG, first-order variables are terminals of arity 0.
Replacing a first-order variable X can be emulated by transforming X into
a term nonterminal and adding the necessary rules for making X generate
the replacing value. We define this notion of application of a substitution as
follows.

Definition 4.1.2 Let G be an STG. Let X be a terminal representing a
first-order variable and let A be a term nonterminal of G, respectively. Then,
{X 7→ A}(G) is defined as the STG obtained by adding the rule X → A to
G, and converting X into a term nonterminal.

When one or more substitutions of this form are applied, in general the
depth of the nonterminals of G might increase. In order to see that the
size increase is polynomially bounded along several substitution operations
when unifying, we need a new notion of depth called Vdepth, which does not
increase after an application of a substitution. It allows us to bound the final
size increase of G. The notion of Vdepth is similar to the notion of depth,
but it is 0 for the nonterminals N belonging to a special set V satisfying the
following condition.

Definition 4.1.3 Let G = (T N , CN ,Σ, R) be an STG, and let V be a subset
of T N ∪ Σ. We say that V is a λ-set for G if for each term nonterminal A
in V , the rule of G of the form A→ α is a λ-rule.

46

Definition 4.1.4 Let G = (T N , CN ,Σ, R) be an STG and let V be a λ-set
for G. For every nonterminal N of G, the value VdepthG,V (N), denoted also
as VdepthV (N) or Vdepth(N) when G and/or V are clear from the context,
is defined as follows (recall the convention that max(∅) = 0).

Vdepth(N) := 0 for N ∈ V
Vdepth(N) := 1 + max{Vdepth(N ′) | N ′ is a nonterminal occurring in α,

where N → α ∈ G}, otherwise.

The Vdepth of G is the maximum of the Vdepth of its nonterminals.

The idea is to make V to contain all first-order variables, before and after
converting them into term nonterminals. The following lemma is completely
straightforward from the above definitions, and states that a substitution
application does not modify the Vdepth provided X ∈ V for the substitution
X 7→ A.

Lemma 4.1.5 Let G, V be as in the above definition. Let X ∈ V be
a terminal of G of arity 0, and let A be a term nonterminal of G. Let
G′ be {X 7→ A}(G). Then, for any nonterminal N of G it holds that
VdepthG′(N) = VdepthG(N).

We also need the fact that Vdepth does not increase due to the con-
struction of kext(G,A, k) from G. However, we first prove a more specific
statement.

Lemma 4.1.6 Let G be an STG, let C be a context nonterminal of G, let
V be a λ-set for G, let k be a natural number such that wC |iPos(wC ,k) is a
context, and let G′ be kext(G,C, k).

Then, for every nonterminal N of G it holds that VdepthG(N) =
VdepthG′(N), and for every new nonterminal N ′ in G′ and not in G, it
holds that VdepthG′(N

′) ≤ VdepthG(C). Moreover, the number of new added
nonterminals is bounded by VdepthG(C).

Proof. The identity VdepthG(N) = VdepthG′(N) for each nonterminal N
of G is straightforward from the fact that kext(G,C, k) does not change
the rules for the nonterminals occurring in G. To prove the fact that
VdepthG′(N

′) ≤ VdepthG(C) for each new nonterminal N ′ in G′ and not
in G, plus the fact that at most VdepthG(C) new nonterminals have been
added, we will use induction on Vdepth(C). The base case (Vdepth(C) = 1)
trivially holds since, in this case, the STG G is not modified. For the induc-
tion step we distinguish cases according to the definition of kExt(G,C, k):

47

� Assume that (C → f(A1, . . . , Ai−1, C
′, . . . , Am)) ∈ G. Note that, since

wC |iPos(wC ,k) is a context, it holds that 1 + |wA1 | + . . . + |wAi−1
| =

k′ < k ≤ k′ + |wC′ |. In this case, kext(G,C, k) = kext(G,C ′, k − k′)
and, since Vdepth(C ′) < Vdepth(C), the lemma directly follows by
induction hypothesis.

� Assume that (C → C1C2) ∈ G and k ≤ |wPreG,LC1
|. In this

case, the construction of kext(G,C, k) is done by computing
kext(G,C1, k) and adding the rule C ′ → C ′1C2, where C ′1 is the
context nonterminal generating wC1|iPos(wC1

,k) and C ′ is an ad-
ditional new nonterminal. Since Vdepth(C1) < Vdepth(C), by
induction hypothesis, it holds that for all the new nonterminals
N ′ in G′ = kext(G,C1, k), VdepthG′(N

′) ≤ VdepthG(C1) and at
most VdepthG(C1) new nonterminals have been added. It follows
that at most VdepthG(C) new nonterminals have been added in the
construction of kext(G,C, k), and VdepthG′(C

′
1) ≤ VdepthG(C1).

Moreover, since VdepthG(C) = 1 + max(VdepthG(C1), VdepthG(C2)),
VdepthG′(C

′) = 1 + max(VdepthG′(C
′
1), VdepthG′(C2)) and

VdepthG(C2) = VdepthG′(C2), it also holds that VdepthG′(C
′) ≤

VdepthG(C).

� Assume that (C → C1C2) ∈ G and k′ = |wPreG,LC1
| < k ≤ |wPreG,LC1

|+
|wC2|. In this case, kext(G,C, k) = kext(G,C2, k − k′) and, since
Vdepth(C2) < Vdepth(C), the lemma directly follows by induction
hypothesis.

Finally, note that the case (C → C1C2) ∈ G and |wPreG,LC1
|+ |wC2| < k

is not possible due to the assumption that wC |iPos(wC ,k) is a context.

2

Lemma 4.1.7 Let G be an STG, let N be a nonterminal of G, let V be a
λ-set for G, let k be a natural number satisfying k ≤ |Pre(wG,N)|, and let G′

be kext(G,N, k).
Then, for every nonterminal N ′ of G it holds that VdepthG(N ′) =

VdepthG′(N
′), and for every new nonterminal N ′′ in G′ and not in G, it

holds that VdepthG′(N
′′) ≤ Vdepth(G). Moreover, the number of new added

nonterminals is bounded by Vdepth(G).

Proof. The identity VdepthG(N ′′) = VdepthG′(N
′′) for each nonterminal

N ′′ of G is straightforward from the fact that kext(G,N, k) does not change
the rules for the nonterminals occurring in G. We will prove the fact that
VdepthG′(N

′′) ≤ Vdepth(G) for each new nonterminal N ′′ in G′ and not

48

in G, plus the fact that at most Vdepth(G) new nonterminals have been
added by induction on depthG(N). The base case (depth(N) = 1) trivially
holds since, in this case, the STG G is not modified. For the induction step
we distinguish cases according to the definition of kExt(G,N, k). The only
interesting cases are either when (N → C1A2) ∈ G and k ≤ |wPreG,LC1

| or
(N → C1C2) ∈ G and k ≤ |wPreG,LC1

|. Note that these are the only cases
in which the grammar might be extended with new nonterminals after the
recursive call. We will solve the first one, the other is solved analogously.

Hence, assume that (N → C1A2) ∈ G and k ≤ |wPreG,LC1
|. In this case

the nonterminal N ′ in kext(G,C1, k) generating the subterm of wG,C1 at
position iPos(wG,C1 , k) is a either a term nonterminal or a context nontermi-
nal. We will solve the two cases separately. First assume that N ′ is a term
nonterminal. In this case kext(G,N, k) is constructed as kext(G,C1, k).
Since Vdepth(C1) < Vdepth(N), the lemma holds by induction hypothesis
in this case. On the other hand, if N ′ is a context nonterminal, the con-
struction of kext(G,N, k) is done by computing kext(G,C1, k) and adding
the rule A → N ′A2, where A is an additional new term nonterminal. By
Lemma 4.1.6, for all the new nonterminals N ′′ in kext(G,C1, k) and not in
G, VdepthG′(N

′′) ≤ VdepthG(C1). Moreover, the number of new added non-
terminals is bounded by VdepthG(C1). Hence, VdepthG′(N

′) ≤ VdepthG(C1)
and, since Vdepth(C1) < Vdepth(N), at most VdepthG(N) ≤ Vdepth(G)
new nonterminals have been added in the construction of kext(G,N, k).
Furthermore, since VdepthG(N) = 1 + max(VdepthG(C1), VdepthG(A2)),
VdepthG′(A) = 1 + max(VdepthG′(N

′), VdepthG′(A2)) and VdepthG(A2) =
VdepthG′(A2), it also holds that VdepthG′(A) ≤ VdepthG(N) ≤ Vdepth(G).
2

Now our algorithm is completely defined. Before arguing about its run-
ning time, let us show a complete execution example.

Example of execution

Let G = ({At, As, A,B1, B2, Ax, By}, {C0, C1, C2, C3, C4, C., D},
{g, f, a, x}, R), where R = {At → g(B1, A), As → g(B2, A), A→ C4Aa, C4 →
C3C3, C3 → C2C2, C2 → C1C1, C1 → C0C0, C0 → f(C.), C. → •, Aa →
a,D → C3C2, B1 → DBx, B2 → C4By, Bx → x,By → y}, be an STG.
Note that wG,At = g(f 12(x), f 16(a)), and wG,As = g(f 16(y), f 16(a)). Hence,
〈G,As

.
= At〉 is an instance of first-order unification with STG. The goal is

to find a substitution σ such that σ(wG,As) = σ(wG,At).
The set of rules of the SCFG PreG obtained by applying the rules of

Figure 3.2. to G is
{PAt → gPB1PA,PAs → gPB2PA,PA → LC4PAaRC4 ,PAa →

49

a,PB1 → LDPBxRD,LD → LC3LC2 ,RD → RC2RC3 ,PBx → x,PB2 →
LC4PByRC4 ,LC4 → LC3LC3 ,LC3 → LC2LC2 ,LC2 → LC1LC1 ,LC1 →
LC0LC0 ,LC0 → fLC. ,LC. → λ,RC. → λ,RC0 → RC. ,RC1 →
RC0RC0 ,RC2 → RC1RC1 ,RC3 → RC2RC2 ,RC4 → RC3RC3 ,PBy → y, }.
Note that wPAt

= gf 12xf 16a and wPAs
= gf 16af 16a.

The SCFG PreG is not in Chomsky Normal Form, but it is easy
to adapt the algorithm of Figure 3.3 to this case. Thus, if we exe-
cute an adapted version of index(PAt ,PAs ,0,PreG), the following sequence
of calls is produced: index(PAt ,PAs , 0, PreG), index(PB1 ,PAs , 1, PreG),
index(PBx ,PAs , 13, PreG). The third call returns 1, the second one returns
13, and the first one returns 14, which corresponds to the first different po-
sition of wPAs

and wPAt
.

Note that iPos(wG,As , 14) = 113. We compute now and extension
kExt(G,As, 14) of G, as described in Definition 3.2.22, such that a new
term nonterminal A′s generates wAs |113 . We obtain the following set of
rules, where rules in bold correspond to the added nonterminals due to the
kext constructions w.r.t to the STG G given as input: {A′s → C2By, At →
g(B1, A), As → g(B2, A), A → C4Aa, C4 → C3C3, C3 → C2C2, C2 →
C1C1, C1 → C0C0, C0 → f(C.), C. → •, Aa → a,D → C3C2, B1 →
DBx, B2 → C4By, Bx → x,By → y}.

Note that, in the extended grammar, wA′s = wAs|iPos(wG,As ,14) = wAs|113 =
f 4(y). Then, we need to check that the variable x does not occur in wA′s ,
which can be done in linear time as shown in Lemma 3.2.18. Finally, we
perform the substitution {x 7→ A′s}(G) by converting x into a nonterminal
of the grammar generating wA′s as stated in Definition 4.1.2. The set of rules
of the obtained grammar G′ after the kext construction and this assignment
is {x→ A′s,A

′
s → C2By, At → g(B1, A), As → g(B2, A), A → C4Aa, C4 →

C3C3, C3 → C2C2, C2 → C1C1, C1 → C0C0, C0 → f(C.), C. → •, Aa →
a,D → C3C2, B1 → DBx, B2 → C4By, Bx → x,By → y}.

Note that wG′,A′s = wG,As |iPos(wG,As ,14) = wG,As|113 = f 4(y),
and thus, wG′,At = g(f 12(wG′,x), f

16(a)) = g(f 12(wG′,A′s), f
16(a)) =

g(f 12f 4(y), f 16(a)) = g(f 16(y), f 16(a)) = wG′,As . Hence, we state unifiability.
The solution σ is represented in the STG G′ as σ(x) = wG′,x.

4.1.3 Run time analysis

The algorithm runs in polynomial time due to the following observations. Let
n and m be the initial value of depth(G) and |G|, respectively. We define
V to be the set of all the first-order variables at the start of the execution
(before any of them has been converted into a nonterminal). Hence, at this
point Vdepth(G) = n. The value Vdepth(G) is preserved to be n along the

50

execution of the algorithm thanks to Lemmas 4.1.5 and 4.1.7. Moreover, by
Lemma 4.1.7, at most n new nonterminals are added at each step. Since at
most |V | steps are executed, the final size of G is bounded by m+ |V |n. Each
execution step takes time at most O(|G|3). Thus we have proved:

Theorem 4.1.8 First-order unification of two terms represented by an STG
can be done in polynomial time (O(|V |(m+ |V |n)3), where m represents the
size of the input STG, n represents the depth, and V represents the set of
different first-order variables occurring in the input terms). This holds for the
decision question, as well as for the computation of the most general unifier,
whose components are represented by the final STG.

4.2 First-order matching with STGs

Theorem 4.1.8 already provides a polynomial matching algorithm on STG-
compressed terms. However, we will describe a matching algorithm that
exploits the specific restrictions of matching and show that its worst case
running time is better than the one of the algorithm for the unification case.
First of all, let us define the problem properly.

Definition 4.2.1 An instance of the first-order matching problem with
STG’s is a triple 〈G,As, At〉, where G is an STG G representing first-order
terms, and As, At are term nonterminals representing terms s = wG,As and
t = wG,At, where t is ground. The problem consists in deciding whether s and
t are unifiable. In the affirmative case, its computational version asks for a
representation of the most general unifier.

First-order matching is a particular case of first-order unification. How-
ever, taking advantage of the fact that one of the terms is ground leads to
a faster algorithm with respect to the one presented in the previous section.
In [GGSS08], an algorithm for first-order matching with STGs running in
time O(m + n)4 was presented, where m represents the size of the input
STG, n represents its depth, and V represents the set of different first-order
variables occurring in the input terms. The construction presented in Defi-
nition 3.2.22 is the key idea to obtain a faster algorithm.

4.2.1 Outline of the algorithm

The structure of our algorithm is sketched in Figure 4.2. Note that, as com-
mented in Section 2.3, our algorithm is just an adaptation of the algorithm
defined in Figure 2.2 to the case where the inputted terms are compressed

51

using STGs. hence, the input of the problem consists of an STG G as a
compressed representation of two terms s and t. As in the first-order uni-
fication case, the algorithm works with compressed representations of the
preorder traversal words of the terms s and t to be matched. Hence, we first
compute a representation of pre(s) and pre(t). Then we find the index k of
the first occurrence of a variable x in pre(s), and, given G and k, compute
t′ = t|iPos(t,k). If t′ is undefined we halt giving a negative answer. Other-
wise we apply the substitution {x → t′}(s) and restart the process until all
variables are replaced. Finally, let s′ be the term obtained from s after all
replacements are done. We check whether s′ and t are syntactically equal
and answer accordingly. Note that, in contrast to unification algorithm, we

Input: An STG G and term nonterminals As and At.

(we write s and t for wAs
and wAt

and X for the set of variables in s).
Repeat |X | times:

Look for the smallest index k such that pre(s)[k] = x ∈ X.
If iPos(t, k) is undefined Then Halt stating that the initial s and t do not match.

Extend G by the assignment {x 7→ t|p}, where p = iPos(t, k).
EndRepeat

If s = t Then Halt stating that the initial s and t match.

Else Halt stating that the initial s and t do not match.

Figure 4.2: Matching Algorithm for STG-Compressed Terms

look for the first occurrence of a variable in pre(s) instead of looking for the
first difference between pre(s) and pre(t). This refines the approach used
in the previous section for the general case of first-order unification and im-
proves time complexity results in previous work on first-order matching with
STGs [GGSS08].

In the previous section we already showed how to compute a succinct
representation of pre(s) and pre(t), to compute, given a natural number k,
the subterm of a term t at position iPos(t, k), and to apply a substitution.
Hence, it only remains to show how to compute k, the index of the first
occurrence of a variable in pre(s).

4.2.2 Finding the first occurrence of a variable

The task of finding the index of the first occurrence of a variable in a com-
pressed word can be performed efficiently as stated in the following Lemma.

52

Lemma 4.2.2 Let P be an SCFG, and let p be a nonterminal of P repre-
senting the preorder traversal word of a first-order term. Then, the smallest
index k such that wp[k] is a terminal and a variable can be computed in time
O(|P |).

Proof. Let X denote the set of first-order variables. We define k =
index(p, P) as follows:

index(p,P)=

1 , if p→ α ∈ P ∧ α ∈ X
index(p1,P) , if (p→ p1p2) ∈ P ∧

∃x ∈ X : x occurs in wP,p1
|wP,p1|+ index(p2,P) , otherwise.

Note that we assumed that P is in Chomsky Normal Form. If this was
not the case, we can force this assumption with a linear time and space
transformation. The fact that index(p, P) computes the smallest index k
such that wp[k] is a variable can be shown by induction on depth(p). With
respect to the time complexity, for each nonterminal p of an SCFG P , both
the number |wp| and whether wp contains a variable can be precomputed in
linear time as stated in Lemmas 3.2.17 and 3.2.18, respectively. When these
pre-computations are done, index(p, P) can be computed by a single run
over the rules of P and hence, it runs also in linear time. 2

4.2.3 Run time analysis

The algorithm presented in the previous subsection runs in polynomial time
due to the following observations. Let n and m be the initial value of
depth(G) and |G|, respectively. We define V := X to be the set of all
the first-order variables at the start of the execution (before any of them has
been converted into a nonterminal). As in the unification case, the final size
of the grammar is bounded by m+ |V |n thanks to Lemmas 4.1.5 and 4.1.7.
Our algorithms iterates at most V times. By Lemmas 3.2.23, and 4.2.2 each
iteration takes linear time. Finally we check equality of two words generated
by an SCFG P , which takes time O(|P |3) thanks to Theorem 3.2.16. Hence,
we have the following:

Theorem 4.2.3 First-order matching of two terms represented by an STG
can be done in polynomial time O((m+ |V |n)3), where m represents the size
of the input STG, n represents its depth, and V represents the set of different
first-order variables occurring in the input terms). This holds for the decision
question, as well as for the computation of the unifier, whose components are
represented by the final STG.

53

Since |V |,m, n are bounded by |G|, a rough estimation of the upper bound
on the execution time is O(|G|6), which improves the O(|G|7)-bound for the
particular case of matching.

4.3 An implementation

Here, we present an implementation of the first-order unification algorithm
presented in Section 4.1. As explained above, the algorithm runs a variant
of Robinson’s standard unification algorithm [Rob65] over two given STGs;
it builds SCFGs for the preorder traversals of the input STGs, and then
applies equivalence checking for SCFGs, while instantiating the encountered
variables. For the equivalence check we implemented two competing algo-
rithms:

(1) the exact algorithm due to Lifshits [Lif07], and

(2) the recent randomized algorithms by Schmidt-Schauß and Schnit-
ger [SSS12].

Our tool, to which we refer as Unif-STG in the sequel, is integrated with
the STG compressor TreeRePair [LMM13]: it takes as input two terms rep-
resented in XML syntax and runs TreeRePair to build STGs. It then runs
the unification algorithm. For the version using (2), we implemented two
variants, one using large integers and one using prime numbers.

Through experiments we evaluate the performance of the resulting three
unification algorithms and compare them to an implementation of a classical
unification algorithm over uncompressed terms. Roughly speaking, unifica-
tion over STGs is more efficient than over uncompressed terms, whenever the
terms are well-compressible and are larger than 100,000 nodes. Our system
can be tested online at www.lsi.upc.edu/~agascon/unif-stg. All our code
is open source and will be available over the same web page.

4.3.1 Equality testing

Given an STG G = (N ,Σ, R) and two non-terminals A, B, equality testing
consists of deciding whether wA = wB. Let us assume that |wA| = |wB|,
since otherwise inequality is easily stated in linear time. As commented
above, the fastest known exact algorithm for equality testing for SCFGs
is Lifshits’ algorithm [Lif07]. In Unif-STG we implemented, in addition to
Lifshits’ algorithm, two new algorithms [SSS12]. These algorithms run faster
than Lifshits’ by using a randomized approach. They work by considering

54

an SCFG to represent a natural number, in addition to a word. The number
coded by a word w ∈ Σ∗ is defined in terms a fixed mapping f : Σ →
{0, . . . , |Σ| − 1}, as code(wA) = code(w′) ∗ |Σ| + f(a), if w = w′.a, and
code(w) = 0 if w = λ. The number code(wA), for every non-terminal A can
be computed in linear time w.r.t. |G|. See [SSS12] for further details.

The main idea of the algorithm is very simple. If we want to check whether
A and B represent the same word, we choose a natural number m satisfying
certain properties, and compute α = code(wA) and β = code(wB) modulo
m. If α 6= β then the words are obviously different. Otherwise, it is possible
that wA 6= wB, but a ≡ b mod m. In this case we do not detect inequality.
In [SSS12], two upper bounds for the choice of the m that guarantee that
we detect inequality with a probability ≥ 1

2
for any pair of words are given:

either m ≤ |wA|2 ∗ c or m ≤ |wA| ∗ c if m is prime, for a certain constant c.
We implemented both options in Unif-STG. By repeating the test k times
the probability of not detecting inequality is < 1

2k
. In Unif-STG k is set to

10 by default.
In order to assure that the chosen m is prime we implement a very simple

algorithm: generate a random number, and test primality. If the number is
not prime, then generate another number, and so on. We test primality with
the Fermat primality test, checking if ap−1 ≡ 1 mod p for a ∈ {2, 3, 5, 7}.
Due to the Prime number theorem, the average number of times we generate
a number until getting a prime is the logarithm of m, and hence linear in
—G—, and the Fermat primality test is also performed in logarithmic time.

We also need an algorithm to compute if wA is a prefix of wB in order
to find the first difference between two words represented with STGs (see
Figure 4.1). This problem can be reduced to computing code(wB[1..|wA|])
and applying the probabilistic algorithm. To perform this task in linear time
it is enough to precompute, for each non-terminal A of the grammar, the
numbers code(wA) and |wA| and compute code(wB[1..|wA|]) recursively.

Finally, it is important to remark a certain peculiarity of the version of
the probabilistic algorithms implemented in Unif-STG. They run in linear
time thanks to the fact that |wA| is limited by default to

√
L where L = 264,

the maximum value for a long long int, in the case of the algorithm using
primes; and to 4

√
L, in the algorithm using natural numbers. Otherwise,

computing code(wA) module m is not guaranteed to run in linear time.
The current implementation allows bigger values, but then does not guar-

antee an error probability of less than 0.5 for every possible instance of the
problem. In our experiments we never encountered a false reply by the prob-
abilistic algorithm.

Nevertheless, Unif-STG have been built to work with arbitrary arith-
metic, the size limitation has been added just for efficiency reasons and can

55

be removed at any time.

4.3.2 Unif-STG

Unif-STG is written in C++ using the standard template library. The sys-
tem can be tested online at www.lsi.upc.edu/~agascon/unif-stg and the
sources are also available as commented in the previous section, The system
implements three algorithms for solving the equality testing with SCFGs:
Lifshits’ exact algorithm, plus two versions of the randomized algorithm by
Schmidt-Schauß and Schnitger (one with integers and one with primes). We
refer to the corresponding three versions of the unification algorithm for
STG grammars by STG-exact, STG-rand, and STG-rand-prime. Our imple-
mentation of unification over uncompressed terms is denoted “tUnif”. As
commented before, this is a variant of Corbin-Bidoit algorithm. We refer the
reader to Chapter 8, Section 2.3 of [BS01] for the details of this algorithm.
Note that Unif-STG outputs a compressed representation of the solution
(again compressed with STGs).

4.3.3 Experiments

Experimental Setup. All tests are executed on a machine with Intel Xeon
Core 2 Duo, 3 Ghz processor, with 4GB of RAM. We use the Ubuntu Linux
9.10 distribution, with kernel 2.6.32 and 64 bits userland. Our implemen-
tation was compiled using g++ 4.4.1. We used TreeRePair (build data 01-
19-2011) which was kindly made available to us by Roy Mennicke. It is es-
sentially the version available at http://code.google.com/p/treerepair,
with the only difference that it allows to compress without prior applying a
binary tree encoding.

Protocol. Each test is executed three times, and the fastest time of
the three runs is reported. We run TreeRePair with the switches “-multiary
-bplex -c -nodag -optimize edges”. Note that “-optimize edges” gives slightly
better times (about 2% faster) for STG unification than “-optimize filesize”
We only measure the pure unification time, i.e, we ignore loading time and
setup of basic data structures, etc.

Design of the Experiments. Instead of trying to find instances of
unification problems with large terms that are realistic and likely to appear
in practice, we present results over artificial examples. The idea behind these
examples is to test the behaviour of our algorithms in the different extreme
corner cases. The main aspects that make up these cases are

(a) are the terms well-compressible by TreeRePair?

56

(b) do they unify or not?

(c) how many variables?

(d) is it only matching; how much copying of variables?

For question (a) we need to distinguish further: (a1) is the “top-matching
part”, i.e., parts where both terms do not have variables (and therefore must
match exactly) well-compressible? And (a2) is the “binding part”, that is,
parts that will be bound to variables during unification well compressible?
We constructed a family of instances that allows to test many of these aspects.
First we show two simple examples which compress well. Bin and Mon. For
a natural number n, let fn(a, b) denote a full binary tree with leaf sequence
ababab Given a natural number n, Bin(n) consists of the pair of trees

Bin(n) = (g(g(fn(a, b)), g(fn(a, b))), g(g(X,X), g(X, fn(a, Y)))).

Similarly, fn(a) denotes a monadic tree of height n with internal nodes la-
beled f and leaf a. The second example, called Mon(n) consists of this pair
of trees

Mon(n) = (h(fn(X), fn(Y), Y), h(T, Z, T)).

Clearly, both Bin and Mon are unifiable for every n. Moreover, they are
well compressible with TreeRePair. To see this, consider the right part of
Table 4.1 which shows the compression time, the number of edges in the
original tree and in the STG grammar, plus the file sizes of the original tree
(in XML format) and of the grammar (in text format). It also shows the
file size of the grammar in CNF in the special format that our unification
program uses. For both Bin and Mon, the TreeRePair algorithms achieves

Runtime (in ms) Input
STG- STG- STG- compr.

n/1000 tUnif randp rand exact edges time STG edges CNF file
5 2 8 8 24 10008 (69K) 55ms 38 (388B) 1K

10 5 10 8 28 20008 (137K) 62ms 40 (398B) 1.1K
20 11 11 9 30 40008 (157K) 140ms 42 (420B) 1.1K
50 44 11 9 30 100T (684K) 341ms 45 (434B) 1.2M

100 107 12 10 31 200T (1.4M) 681ms 47 (457B) 1.3M
200 232 13 10 32 400T (2.7M) 1387ms 49 (467B) 1.3M

Table 4.1: The example Mon(n)

exponential compression rates. As can be seen, for n > 20000, the STG-
rand algorithm is the fastest. Interestingly, for such small grammars we are
punished for using prime numbers and STG-rand-prime is slower than STG-
rand. This is different for larger grammars as the later examples show. Note

57

Runtime (in ms) Input
randSize tUnif STG-rp STG-r STG-e edges STG edges CNF file

10 3 18 19 78 20484 (111K) 62 (578B) 1.9K
11 7 20 20 96 40964 (221K) 66 (596B) 2.1K
12 16 22 22 108 81924 (441K) 70 (638B) 2.2K
13 35 23 23 131 163844 (881K) 74 (656B) 2.3K
14 72 26 25 146 327684 (1.8M) 78 (698B) 2.4K
16 290 30 28 (*) 1310724 (6.9M) 86 (758B) 2.7K

(*) STG-exact ran out of (int) bounds.

Table 4.2: The example Bin(n)

that here the exact algorithm still shows reasonable performance. This will
not be the case for larger grammars. Note that, in terms of XML, Mon
is actually quite relevant: a long list of items usually becomes a long list
of siblings in XML. Using the common “first-child/next-sibling”-encoding of
unranked into binary trees, such a list becomes a long path, similar to Mon.

Bad Instances for STG-Unif. Here consider instances where the STG-
based unification algorithm does not perform well. In general, this is the case
when the terms are not well compressible (see below). But, there are even
simpler reasons for this to happen. Consider unifying the trees f(t) and g(t′)
for large (arbitrary) terms t and t′. The run time of tree-based unification
is only 0.005ms for this instance. While, even for highly compressible t = t′,
STG-Unif will take > 15ms. This is due to the fact that STG-Unif always
needs to traverse the whole grammar to find the position of the first differ-
ence between f(t) and g(t′) and tUnif traverses the input tree only until the
position of the first difference is reached.

Meta. We now define a highly configurable example instance. Consider
the pair of trees (t1, t2), where both t1 and t2 are full binary trees (with inter-
nal nodes labeled ‘f) of height n. At the leaves of t1 and t2 appear monadic
trees of random height h, with minHeight ≤ h ≤ maxHeight. These monadic
trees are identical in t1 and t2. Now, t1 contains variables as leaves of the
monadic trees, randomly chosen from a given set Vars of variables. While t2
contains random trees at those leaf positions, chosen over a given signature Σ,
and maximal size of up to randSize. Moreover, a Boolean determines whether
at variable copies we force the random trees in t2 to be equal (which will guar-
antee that the instance is unifiable). Thus, the specification of an instance
is as follows: Meta(n,minHeight,maxHeight,Vars, randSize,Σ,Bool U).

Number of Variables. Using Meta, we experimented with the number
of different unification variables. The results were convoluted and no clear
trends were observable; both algorithms seemed similarly impacted by the
number of variables. For instance, for n = 4, maxHeigh = minHeight = 1000,
randSize = 1 and |Σ| = 3 we obtain, for 3 variables: 3ms/18ms (tUnif/STG-

58

rand-prime), for 5 variables: 7ms/32ms, and for 10 variables: 10ms/44ms.
Incompressible Terms. An interesting case is if large incompress-

ible terms appear at positions that will instantiate variables. In terms of
Meta, it suffices to take n = 1, and to use large random trees. For the
other parameters we use minHeight = maxHeight = 0, Vars = {X, Y },
Σ = {g(2), f (1), a(0)}, and Boolean U set to true. As Table 4.3 shows, STG-
Unif is indeed about 100-times slower than tree-based unification. The dif-
ference in speed seems to get slightly smaller for very large inputs. As com-
parison, if we add a larger binary tree on top of t1, i.e., use a larger n, then
the tree becomes more compressible and therefore STG-based unification
becomes efficient. This is shown in the right of Figure 4.3, where we pick
randSize = 20000, but now use monadic trees of size 0–1000. With respect

Runtime (in ms) Input
randSize tUnif STG-rp STG-r STG-e edges STG edges CNF file

1000 0.1 21 34 222 981 (5.9K) 214 (1.5K) 6.6K
5000 0.6 78 116 2430 4778 (29K) 774 (15K) 25K

20000 2.4 405 598 43632 26114 (157K) 3308 (21K) 107K
50000 12 1396 2074 (*) 94280 (564K) 9975 (63K) 327K

200000 43 5464 8036 (*) 334586 (2M) 30740 (196K) 1.1M

(*) STG-exact ran out of memory.

Table 4.3: Incompressible Terms in Substitution Positions

to unifiability, we observed that changing a few nodes to make the input
non-unifiable, causes STG-rand to take ca. twice the time given in Table 4.3,
while tUnif gets slightly faster.

There are also examples where the solution consists of deeper trees than
the input. This works well for the uncompressed algorithm too. But, we can
see the effect of compression: consider t1 = h(X, Y, Z) and t2 = h(s1, s2, s3),
where s1 is a full binary tree (over f ’s) of height n with all leaves labeled Y ,
s1 is a full binary tree (over f ’s) of height n with all leaves labeled Z, and
s3 the same but with leaves labeled X. Note that X will be assigned to s1.
Hence, all the X’s in s3 will be replaced by s1. Then, Y will be replaced
by s2 everywhere (also in s3). So finally t′ = Y → s2(X → s1(s3)) will be
compared to Z. Note that t′ is the complete tree of depth 3∗20 whose leaves
are all labeled Z. Since Z occurs in t′ unification fails. This example is called
“3-Stack” and timings are shown in Table 4.3

4.3.4 Operations on STGs

In this section we present a contruction that, given an STG G, a non-terminal
A of G and an natural number k, extends G with new non-terminals such

59

n tUnif STG-rp STG-r STG-e
18 99 7 9 35
19 200 8 9 38
20 401 8 10 (*)

n tUnif STG-rp STG-r STG-e
7 369 1694 2130 (*)
8 688 1726 2149 (*)
9 1730 2391 2982 (*)

(*) STG-exact ran out of memory.

Figure 4.3: The example 3-Stack (left) and randSize=20000 of Table 4.3
(right)

that one of them generates tG,A|iPos(wG,B ,k). This construction is analogous to
the one presented in Definition 3.2.22 for monadic grammars. We extended
this result to allow arbitrarily many holes in our implementation. The main
reason to do that is that TreeRepair works with grammars with parameters.

First of all we present some basic results and definitions.

Definition 4.3.1 Given a signature Σ and a set of parameters Y, we define
|t|, the size of a tree pattern t ∈ T (Σ,Y), as |t| = 1 + |t1| . . . |tn| if t =
f(t1, . . . , tn) with n > 0, |t| = 1 if t is a constant, and |t| = 0 if t ∈ Y.

We define Pre(t) to be the preorder traversal or a tree pattern t. Note
that the only difference with a preorder traversal of a term is that we skip
parameters.

Definition 4.3.2 Given a signature Σ and a set of parameters Y, we de-
fine Pre(t), the preorder traversal of a tree pattern t ∈ T (Σ,Y), as Pre(t) =
fPre(t1) . . .Pre(tn) if t = f(t1, . . . , tn) and n > 0, Pre(t) = c if t is a con-
stant, and Pre(t) = λ if t ∈ Y, where λ denotes the empty word.

Definition 4.3.3 ([LMSS12]) A linear STG G = N ,Σ, R, S) is in Chomsky
Normal Form (CNF) if for every (N → t) ∈ R with ar(N) = n, the term t
is of one of the following forms:

� f(y1, . . . , yn) with f ∈ Σ.

� B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj, . . . , yn) with B,C ∈ N , 1 ≤ i ≤ j ≤
n.

� A→ B (λ rule).

We assume that STGs are in CNF. This is not a loss of generality
since this assumption can be forced by a linear time transformation as
shown in [LMSS12]. In the rest of this section, for clarity, we represent
rules rule of the form f(y1, . . . , yn) as A → f , rules of the form A →
B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj, . . . , yn) with B,C ∈ N , 1 ≤ i ≤ j ≤ n

60

as A → (B, i, C), and λ rules as A → B. Actually, this is the internal
representation used by Unif-STG.

Let t be a tree pattern with parameters {y1, . . . , yn}. We define the
first chunk of t as the word obtained by traversing t in preorder from the
root position to the position labeled with y1, the second chunk as the word
obtained by traversing t in preorder from the position labeled with y1 to the
position labeled with y2, and so on. Finally, the (n+ 1)th chunk is the word
obtained by traversing t in preorder starting at the position labeled with yn.

Definition 4.3.4 (chunks) Let G be an STG. Let A be a non-terminal of G
with ar(A) > 0. For every 1 ≤ j ≤ ar(A) + 1, we recursively define the jth
chunk of A, denoted (A, j), as follows.

� If A→ f ∈ G and j = 1 then (A, j) = f .

� If A → f ∈ G and j > 1 then (A, j) = λ, where λ denotes the empty
word.

� If A→ (B, i, C) ∈ G and j < i then (A, j) = (B, j).

� If A → (B, i, C) ∈ G, j = i, and ar(C) = 0, then (A, j) =
(B, i)Pre(tC)(B, i+ 1).

� If A→ (B, i, C) ∈ G, j = i, and ar(C) > 0 then (A, j) = (B, i)(C, 1)

� If A→ (B, i, C) ∈ G, ar(C) > 0, and i < j < i+ ar(C) then (A, j) =
(C, j − i+ 1)

� If A → (B, i, C) ∈ G, ar(C) > 0, and i < j = i + ar(C), then
(A, j) = (C, ar(C) + 1)(B, i+ 1)

� If A → (B, i, C) ∈ G, ar(C) > 0, and j > i + ar(C) then (A, j) =
(B, j − ar(C) + 1).

� If A→ B then (A, j) = (B, j).

The following lemma can be easily proven by induction on depth(G) and
distinguishing cases according to definition 4.3.4.

Lemma 4.3.5 Let G be a k-bounded STG of size n. An SCFG Gc can
be computed in time O(nk) such that, for every non-terminal N of G with
ar(N) > 0 and natural number 1 ≤ j ≤ ar(N)+1, there exists a nonterminal
Nj of Gc that generates the jth chunk of N .

61

Now we have all the ingredients to define how subterms of terms repre-
sented by STGs are computed by Unif-STG. Recall that the following oper-
ation is needed in order to obtain a non-terminal that generates the term to
with a certain first-order variable is assigned in the unification process (see
Figure 4.1). Analogously as done in Definition 3.2.22, we recursively define
the grammar extension kext as follows.

Definition 4.3.6 Let G be an STG. Let A be a non-terminal of G, and
let k be a natural number satisfying k ≤ |Pre(tG,A)|. We recursively define
kext(G,A, k) as an extension of G as follows:

� If k = 1 then kext(G,A, k) = G. In the next cases we assume k > 1.

� If A → (B, i, C) ∈ G, and there exists j ≤ i such that
∑j

l=1 |(B, l)| ≤
k <

∑j+1
l=1 |(B, l)| then kext(G,A, k) includes kext(G,B, k), which

contains a non-terminal N ′ generating the subterm of tG,B at position
iPos(wG,B, k). If ar(N ′) ≥ i − j then kext(G,A, k) additionally con-
tains the rule A′ → (N ′, i− j, C), where A′ is a new term non-terminal
with ar(A) = ar(N ′) + ar(C)− 1.

� If A→ (B, i, C) ∈ G, and it holds that k′ =
∑i

l=1 |(B, l)| < k ≤ k′+|C|
then kext(G,A, k) = kext(G,C, k − k′).

� If A → (B, i, C) ∈ G, and there exists i < j ≤ ar(B) such
that

∑j
l=1 |(B, l)| < k ≤

∑j+1
l=0 |(B, l)| + |C| then kext(G,A, k) =

kext(G,B, k − |C|).

� If (A→ A1) ∈ G then kext(G,A, k) = kext(G,A1, k).

The following Lemma states the correctness of the previous definition and
is analogous to Lemma 3.2.23.

Lemma 4.3.7 Let G be an STG. Let A be a non-terminal of G, and let k
be a natural number satisfying k ≤ |Pre(tG,A)|. Then, G′ = kext(G,A, k)
contains a non-terminal N generating tG,A|iPos(wG,B ,k). Moreover, G′ can be
computed in time O(nk) and |G′| ≤ |G|+ depth(G).

Proof. The correctness of the construction can be checked by induc-
tion on depth(A) and distinguishing cases according to the definition of
kext(G,N, k). For the size bound it’s is enough to notice that the num-
ber of recursive calls in the construction of kext(G,A, k) is bounded by
depth(A) ≤ depth(G) and at most one non-terminal is added at each re-
cursive call. The time bound holds by Lemmas 4.3.5 the fact that the sizes

62

of the words represented by each non-terminal of an STG can be computed
in linear time. in time O(nk). 2

It rests to prove the analogous of Lemma 4.1.7 to non-monadic STG’s,
i.e. that the number of added non-terminals due to the kext construction is
bounded by the Vdepth of the STG and that the Vdepth of the STG does
not increase due to the kext extension. Since our construction is analogous
to the one presented for monadic grammars, this facts can be proved using
the same scheme that in the proof of Lemma 4.1.7.

63

Chapter 5

One Context Unification

In this chapter we tackle the one context unification problem, the particu-
lar case of context unification (Definition 2.3.3 in Chapter 2,) in which only
one context variable may occur in the input terms, possibly with many oc-
currences. Let us state again the definition of the one context unification
problem.

Definition 5.0.8 For a fixed ranked alphabet F , we define an instance of the
one context unification problem as a triple 〈∆,X , F 〉, where X is a set of first-
order variables, F is a context variable, and ∆ is a set of equations, i.e. a set
of unordered pairs, of the form s

.
= t, with s, t ∈ T (F ,X ∪ {F}). A solution

of 〈∆,X , F 〉 is a substitution σ : X ∪{F} → T (F ,X ∪{F})∪C(F ,X ∪{F})
such that ∀(s .

= t) ∈ ∆ : σ(s) = σ(t).

Note that, after applying the standard decomposition and variable elimi-
nation rules of first-order unification (see [BS01]), we can assume that an in-
stance of one context unification is of the form {F (s1)

.
= t1, . . . , F (sn)

.
= tn}.

This assumption can be forced by a polynomial time an space transformation.

Example 5.0.9 Consider the set of equations {F (a)
.
= g(a, x), F (b)

.
=

g(x, b)}. It can be unified by the substitution {F 7→ g(•, b), x 7→ b}. Now
consider the equation F (g(x, b))

.
= g(a, F (y)). It has infinitely many solu-

tions such as {F 7→ g(a, •), x 7→ a, y 7→ b} and {F 7→ g(a, g(a, •)), x 7→
a, y 7→ b}. Finally, consider the set of equations {F (a)

.
= g(x, y), F (b)

.
=

g(x, g(g(y, y), g(a, b)))}, which has no solution.

5.1 The General Scheme

Given a set ∆ of equations over terms containing some first-order variables
and at most one context variable F , we present an algorithm that determines

64

if the set ∆ has a solution. We will argue that our procedure is in NP.
The algorithm is described, analogously to some classical unification al-

gorithms, as an inference system that manipulates the set ∆. The inference
system runs in two phases. In a first phase, the inference rules deal with the
context variable F . The first phase ends when F is eliminated. At the end of
the first phase, we obtain either a first-order term unification problem, or a
term unification problem containing subexpressions of the form C |p|e, where
c is a context, p is the position of the hole in c, and e is a variable ranging
over non negative integers. The inference rules in the second phase deal with
this new kind of expressions and eliminate them.

Let c be a context. We use sp(c) to denote the list of func-
tion symbols occurring on the path from the root to hp(c). More
formally, if hp(c) is of the form i1.i2. · · · .i|hp(c)|, then sp(c) is
root(c), root(c|i1), root(c|i1.i2), . . . , root(c|i1.i2.··· .i|hp(c)|−1

).
The following is an alternative definition of the context exponentiation

operation defined in the preliminaries.

Definition 5.1.1 (Rotation and Context with exponent) Let c =
f(u1, . . . , ui−1, d, ui+1, . . . , um) be a non empty context, where d is a
context and ui is a term, for every i ∈ {1, . . . , i − 1, . . . , i + 1, . . . ,m}. For
any non negative integer n ≥ 0, we define rot(c, n) and cn recursively as
follows:

rot(c, 0) := c

rot(c, n) := rot(d[f(u1, . . . , ui−1, •, ui+1, . . . , um)], n− 1)

c0[•] := •
cn[•] := f(u1, . . . , rot(c, 1)n−1, . . . , um)

For any nonempty context c and any n ≥ 0, note that rot(c, n) =
rot(c, n mod |hp(c)|) and |hp(c)| = |hp(rot(c, n))|. Also note that c1 is not
necessarily equal to c, whereas c|hp(C)| = c always holds.

Example 5.1.2 Let c = f(g(•)) be a context. Then, rot(c, 0) = rot(c, 2) =
rot(c, 4) = c and rot(c, 1) = rot(c, 3) = g(f(•)). Moreover, c1[a] represents
f(a), the notation c5[a] succinctly represents the term f(g(f(g(f(a))))).

Let us extend the notion of unifier to allow variables to be mapped to
terms and contexts containing exponent expressions.

Definition 5.1.3 Given an instance ∆ of one context unification, a unifier
σ is a substitution mapping each first order variable x to a term tx and

65

the context variable F to a context cF , such that tx and cF possibly contain
expressions of the form c

|p|N
p for some fixed single integer variable N , such

that for every substitution δ that instantiates N by a non negative number
and for every equation s

.
= t ∈ ∆, δ(σ(s)) = δ(σ(t)) holds. We speak of a

ground unifier or a solution, if the unifier maps all variables to ground terms,
in which case no exponent expressions are required.

A set S of unifiers, where we assume that only a single integer variable
N is used, is a complete set of unifiers of ∆, iff for every ground unifier γ
of ∆ (i.e. for every solution), there is a σ ∈ S, and a ground substitution
ρ such that for all variables x occurring in ∆, we have γ(x) = ρ(σ(x)). By
abuse of notations we will refer as most general unifiers to the elements of
S.

5.2 PHASE1 Inference System: Eliminating

the Context Variable

The PHASE1 inference rules are given in Figure 5.1. These inference rules
are applied nondeterministically to transform the current set ∆ into one
of the finitely many possible sets ∆1, . . . ,∆k. The first phase ends when
either a contradiction (⊥) is reached, or the context variable disappears. For
efficiency reasons we will use a DAG representation of terms and contexts,
but use a notation as for terms.

The first two rules – Decompose and Var-Elim – are the standard rules
to simplify a unification problem and eliminate a first-order variable [BS01].
The rule Var-Elim2 partially guesses the context variable F in terms of a
new context variable F ′ and eliminates a first-order variable x. The rule
CVar-Elim eliminates F by (nondeterministically) guessing a context c to be
the value of F in the solution. Note that c here means a first-order context,
thus it cannot contain a context variable. The rule CVar-Elim2 eliminates F
by again (nondeterministically) guessing a position of length 0 ≤ k < |p| that
determines the value of F using the exponent notation (Definition 5.1.1).
Note that the instantiation F 7→ c|p|N+k introduces exponent expressions
containing a variable N ranging over the non negative integers. The term
c|p|N+k is actually represented as c|p|N [ck], that is, only exponent expressions
of the form c|p|N are introduced, and the term Ck is expanded (into a regular
term) according to Definition 5.1.1.

Example 5.2.1 Let ∆ = {f(F (f(y, z)), z)
.
= F (f(f(y, z), z))}. Rule

CVar-Elim2 is applicable to ∆. Here, C = f(•, z) and hence |p| = 1. There-
fore, k can only be 0 and we get the substitution {F 7→ f(•, z)N}. Apply-

66

Decompose:
∆ ∪ {α(t1, . . . , tn)

.
= α(u1, . . . , un)}

∆ ∪ {t1
.
= u1, . . . , tn

.
= un}

where α is either a function symbol (n = arity(α)) or a first-order
variable (n = 0) or a context variable (n = 1). One of α(t1, . . . , tn)
or α(u1, . . . , un) must have maximal depth among all terms in ∆ ∪
{α(t1, . . . , tn)

.
= α(u1, . . . , un)}.

Var-Elim:
∆ ∪ {x .

= t}
{x 7→ t}(∆)

where x is a first order variable that does not occur in t.

Var-Elim2:
∆ ∪ {F (t)

.
= c[x]}

({x 7→ F ′(ρ(t))} ◦ ρ)(∆)
where c 6= • is guessed (note that c does not contain F) and ρ = {F 7→
c[F ′(•)]}, and where x is not contained in t, and if F occurs in t, then
x must not occur in c.

CVar-Elim:
∆ ∪ {F (t)

.
= c[u]}

{F 7→ c}(∆ ∪ {t .= u})
where c is guessed (note that c does not contain F).

CVar-Elim2:
∆ ∪ {F (t)

.
= c[F (u)]p}

{F 7→ c|p|N+k(•)}(∆ ∪ {t .= rot(c, k)[u]})
where N is an integer variable and k is guessed such that 0 ≤ k < |p|
and p = hp(c) (note that c does not contain F).

Occurs-Check:
∆ ∪ {x .

= t}
⊥

where x occurs in t and t 6= F (. . . F (x) . . .), i.e. t is not a term consisting
only of F ’s and x.

Fail:
∆ ∪ {f(t1, . . . , tn)

.
= g(u1, . . . , um)}
⊥

where f 6= g.

Figure 5.1: PHASE1 inference system for eliminating a context variable.
The inference rules are applicable only when the side-condition holds.

67

ing CVar-Elim2 using this substitution, we get the new set {f(f(y, z), z)
.
=

rot(f(•, z), 0)[f(y, z)]}, which is simply {f(f(y, z), z)
.
= f(f(y, z), z)}. Fig-

ure 5.4 contains a more involved example.

The following correctness statements and their proofs provide further
intuition for the inference rules. Note that in each inference step, the new
set ∆′ is obtained from the old set ∆ by removing some equations, adding
some new equations, and applying a substitution to all the terms.

Lemma 5.2.2 (Soundness) Let ∆1 ` ∆2 be a PHASE1 inference step
and let σ1 be the substitution used in this inference step. If σ is a solution
for ∆2, then σ ◦ σ1 is a solution for ∆1.

Proof.
For each PHASE1 inference rule, we can write ∆2 as σ1(∆1 \∆d ∪∆a),

where ∆d are the deleted equations and ∆a are the added equations. If
∆a 6= ∅, it is easily verified that if σ is a solution for σ1(∆a), then σ ◦ σ1 is
a solution of ∆d. If ∆a = ∅, as in the rules Var-Elim and Var-Elim2, it is
easily verified that σ1 is a solution of ∆d, hence also σ ◦ σ1 is a solution of
∆d.

Consider, for example, the rule CVar-Elim2. Let σ1 = {F 7→ c|p|N+k},
where c is a first-order context, and suppose σ is a solution of σ1(∆ ∪ {t .=
rot(c, k)[u]}), for some term u. Obviously, σ ◦ σ1 solves ∆. We show that
σ ◦ σ1 also solves F (t)

.
= c[F (u)]p as follows, where θ = σ ◦ σ1:

θ(F (t)) = σ(c|p|N+k)[θ(t)] = σ(c|p|N+k)[θ(rot(C, k)[u])]
= σ(c|p|N+k)[σ(rot(c, k)[σ1(u)])] = σ(c|p|N+k[rot(c, k)[σ1(u)]])
= σ(c[c|p|N+k[σ1(u)]]) = θ(c[F (u)])

Apart from the definitions of σ and σ1, we also use the fact that
c|p|N+k[rot(c, k)] = c[c|p|N+k] above. Soundness of all other rules can be
argued similarly. 2

Lemma 5.2.3 (Completeness) Suppose ∆ can be transformed to one of
∆1, . . . ,∆m by the PHASE1 inference system using substitutions σ1, . . . , σm
respectively. If σ is a solution of ∆, then there exists a solution θ of some
∆i such that σ(x) = θ ◦ σi(x), σ(F) = θ ◦ σi(F) and σ(N) = θ ◦ σi(N), for
all variables x, F,N occurring in ∆.

Proof. Suppose that the solution σ for ∆ instantiates F by a context d, and
let p be hp(d). We consider different cases based on the form of the equations
in ∆. The interesting case is when ∆ contains an equation F (t)

.
= s. The

choice of which inference rule to apply to ∆ to identify the required ∆i can
be guided by d and the form of s.

68

� Assume that p is a position of s. Then p is a prefix of all positions
labeled with F in s, because, if not, then the context d will properly
contain d, which leads to a contradiction. Thus, s can be written as
d′[u] for a context d′ not containing F , and such that σ(d′) = d. In this
case, the rule CVar-Elim can be used to get the desired ∆i from ∆.

� Assume that p is not a position of s. Then s contains a unique maximal
position q that is a proper prefix of p, such that the roots of s|q′ and
d|q′ are identical signature symbols for all proper prefixes q′ of q. We
distinguish two cases two exclusive cases: either (a) s|q = x for some
first order variable x and s = c[x]q, or (b) s|q = F (s′) and s = c[F (s′)]q,
and F does not occur in c (otherwise the context d would properly
containing d, a contradiction).

In case (a), i.e. if s|q = x is a first-order variable, it follows that
s is of the form c[x]q, and d is of the form σ(c)[d′] = σ(F), for
some non empty context d′. Moreover, it must be the case that,
d[σ(t)] = σ(c)σ(x)]. In this case, the rule Var-Elim2 can be used: the
substitution ρ = {F 7→ c[F ′(•)]} replaces the equation F (t)

.
= c[x] by

the equation c[F ′(ρ(t))]
.
= c[x], which is equivalent to the F ′(ρ(t))

.
= x.

Since the system is unifiable, x is not contained in F ′(ρ(t)), hence the
second part of the conditions of Var-Elim2 is satisfied. The second part
of the substitution is then {x 7→ F ′(ρ(t))}, where x 6∈ Vars(F ′(ρ(t))).
We obtain the required ∆i where the required θ is the same as σ except
that θ(F ′) = d′.
Now, suppose s|q is F (s′). We know that F does not occur in c. Unifia-
bility of the equations and the fact that d cannot be a proper subcontext
of itself enforce that p has to be of the form qeq′ for a prefix q′ of q and
a non negative integer e. Let us write s as c[F (s′)]q. Then, d has to be
of the form σ(c)|q|e+|q

′|. This means that the rule CVar-Elim2 can be
used to obtain the required ∆i.

For other choices of the solution σ and the set ∆, we can argue similarly to
complete the proof. 2

Note that if ∆ contains a context variable, then at least one of the
PHASE1 rules can be used. Hence, when no more rules can be applied,
we are guaranteed to have eliminated all context variables.

We still need to argue that (a) the size of the representation of the set of
equations resulting from the first phase is polynomially bounded, and that
(b) the first phase terminates in a polynomial number of (nondeterministic)
steps.

69

We assume the DAG representation for terms introduced in Chapter 3.
In particular, in this section we refer to a DAG as a a graph, without using
its STG representation. Hence, we will refer to nodes of the DAG, and not to
its nonterminals. Contexts are represented like terms (in the DAG) with the
hole • as a constant (do not confuse this with the context nonterminals of
an STG). A slight exception is c|p|N which is represented using a single node
labelled with the triple (c, |p|, N). Recall that c|p|N+k is always represented
as c|p|N [ck], where ck is represented as a regular term.

The only rules that may increase the number of nodes in the DAG are
rules that instantiate the context variable F , namely Var-Elim2, CVar-Elim,
and CVar-Elim2. The rules CVar-Elim and CVar-Elim2 can be applied at
most once, since these rules eliminate all occurrences of context variables.
The number of additional nodes to create a context c is at most hp(c), which
is bounded by the current number of nodes in the DAGs. This implies that
the application of CVar-Elim and CVar-Elim2 may cause at most a quadratic
blowup. Now consider the application of the substitution {F 7→ c[F ′(•)]p}
in Var-Elim2. This causes an addition of l ∗ |p| new nodes in the DAG – l
copies of each node in sp(c) – where l is the number of occurrences of F in
∆.

Note that an application of the rule Var-Elim2 implies (by the definition
of contexts) that there is no occurrence of F in c[x]p. Hence, an application
of Var-Elim2 makes a copy of a node only when it has no context variable
F below it. However, each newly added node will necessarily have a context
variable (F ′) below itself. The property that a node has a context variable
below it is preserved by the rules Decompose, Var-Elim, and Var-Elim2 for
all nodes. Therefore, a newly created node will never be copied again. Thus,
the number of new nodes that can be added by Var-Elim2 is bounded by
l∗n, where n is the node count of the original DAG. It is easy to see that the
current number of nodes labeled with the context variable is also bounded
above by n, since the sum of the number of first-order variable nodes and of
the nodes labeled with the context variable is not increased by Var-Elim2.
This proves that the size of the DAG created in the first phase is polynomially
bounded.

Example 5.2.4 Consider ∆ = {F (t)
.
= f(h(x), h(x)), F (a)

.
= x}. Ap-

plying Var-Elim2 with 〈x 7→ F ′(t)〉(〈F 7→ f(h(x), h(F ′))〉) gives ∆′ =
{f(h(F ′(t)), h(F ′(a)))

.
= F ′(t)}. The DAG representations of (all terms in)

∆ and ∆′ are shown below. Note that the node representing F (a) in the orig-
inal DAG causes copying and the creation of two new nodes, marked with f
and h. However, these new nodes will never get copied in the future as they
will continue to have a context variable F ′ below them.

70

• (F)

��

f

{{##

• (F)

��
t h

��

a

x

Var−Elim2
;

• (F ′)

��

f

yy%%

f (F)

��vvmmmmmmmm

t h

\\

h
��

• (F ′)

��
a

Lemma 5.2.5 (Termination) Using DAGs to represent terms, any
PHASE1 derivation terminates in a polynomial number of steps.

Proof. Any PHASE1 derivation is immediately terminated if we apply
CVar-Elim, CVar-Elim2, Var-Elim2 where the second part is Occurs-Check,
Occurs-Check, or Fail. Single rule applications together with their appli-
cability checks can be done in polynomial time on DAGs using standard
techniques. The rules Var-Elim and Var-Elim2 eliminate a first-order vari-
able, and hence they can be applied at most a linear number of times. The
rule Decompose preserves the number of variables. Note that the maximal
number of possible equations is quadratic in the number of nodes in the DAG.
Sequences of applications that consist only of Decompose have an at most
polynomial length, since in every step at least one equation is processed that
cannot occur again in this sequence. Since the number of nodes in the DAG
is polynomially bounded, termination is guaranteed in (nondeterministic)
polynomial time. 2

Lemma 5.2.5 and the polynomial bound on the node count of the DAG
show that the first phase runs in nondeterministic polynomial time. We
remark here that the rules Decompose and Var-Elim can be applied ea-
gerly (since they correspond to “don’t care” nondeterminism). The rules
Var-Elim2, CVar-Elim, and CVar-Elim2 involve “don’t know” nondeter-
ministic guesses.

Lemma 5.2.6 (Result of Phase 1) The first phase terminates either with
Fail (i.e. ⊥), or with success and the output is an empty set of equations or
a set of equations including exponent expressions. If the output is an empty
set, then the unifier σ is the composition of the substitutions of the rule appli-
cations. The unifier can be represented in polynomial space if the substitution
is applied using DAGs as representation for term. If the output is a set of
equations including exponent expressions, then the combined partial solution
can be represented in polynomial space, as well as the set of equations.

Proof. The lemma follows from Lemma 5.2.5 and the arguments on the
polynomial number of nodes in the DAG. 2

71

5.3 PHASE2 Inference System: Solving Ex-

ponent Equations

In this section we solve the unification problem for sets of equations contain-
ing terms constructed over a ranked alphabet F , a set of first-order variables,
and a special expression c|p|N , where c is a context, p = hp(c), and N is a
variable taking values in the set of non negative integers. We assume that
terms are represented using DAGs. For the purposes of this section, we as-
sume that c is fixed. Thus p is also fixed. The expression c|p|N may occur
several times, but it is unique. Equations over such terms are called initial
exponent equations. This form of equations corresponds to the output of the
first phase, but the output of the first phase has to be preprocessed to ensure
efficiency, as explained below.

We prove that the unification problem for initial exponent equations is
solvable in polynomial time, and moreover, that an explicit description of a
complete set of unifiers can be computed also in polynomial time. This is
done by splitting the solutions into small ones and big ones, depending on
the instantiation for N . We prove the following interesting property: A set
of initial exponent equations ∆ has a solution if and only if it has a solution
where N is replaced by a non negative integer bounded by nf(∆) + 2, where
nf(∆) is just the number of occurrences of function symbols in ∆, without
counting the ones in expressions C |p|N . Thus, an efficient decision algorithm
is directly obtained by considering all these possible replacements and solving
each of them with a fast algorithm for first-order unification.

In order to prove this bound for N , we solve a set of initial exponent
equations ∆ using an inference system. While the initial set ∆ only con-
tains exponent terms of the form c|p|N , the sets derived using the inference
rules can, in general, contain special expressions (of arity 1) of the form
d|p|N−k, where d is a rotation of the original context c (after flattening, see
the preprocessing step below), and k is a non negative integer. The inter-
pretation of these expressions under substitution is analogous to before, but
now, |p|N − k ≥ 0 is an implicit condition for N . Hence, when N is replaced
by a non negative integer n, it should be the case that |p|n−k ≥ 0 and d|p|n−k

is then a context according to Definition 5.1.1. A set of equations containing
this kind of expressions is called a set of exponent equations.

Our inference system uses multiequations instead of just equations. A
multiequation M is a set of terms denoted as s1

.
= s2

.
= . . .

.
= sn−1

.
= sn. It

has the same meaning as the set of equations s1
.
= s2, s2

.
= s3, . . . , sn−1

.
= sn.

But having multiequations has some advantages from a computational point
of view such as avoiding duplication of terms. In particular they avoid the

72

substitution of non variable terms t by x, when an equation x
.
= t occurs.

Our inference system deals just with flattened terms, that is, terms with
depth at most one, and such that all the expressions of the form d|p|N−k satisfy
that D is a flattened context, i.e. a context whose subterms not containing
the hole have depth 0. Since our original set of equations is not necessarily
flattened, we need to transform it into a flattened one, while preserving its
set of solutions.

Definition 5.3.1 (Flattening) Let ∆ be a set of equations with first-order
terms including also expressions of the form d|p|e−k. We define flatten(∆)
to be the set of equations resulting from applying the following transformation
process to ∆ as many times as possible.

Flattening step: Let t be either a proper (non variable) subterm of a term
in ∆ or a proper (non variable) subterm of a context d. In the latter case
we assume that t does not contain the hole. Then, we create a new variable
z, replace t by z everywhere in ∆, including the occurrences of t in any
expression of the form d|p|N−k, and add the equation z

.
= t to ∆.

We say that a set of equations is flattened when the flattening step cannot
be applied to it.

The output of the first phase is a set of equations, where the terms are
represented by DAGs. Applying the flattening to DAGs is exactly the same
as for terms, and the results are terms, where every nonterminal in the DAG
is represented by a first order variable. Flattening of contexts produces con-
texts where every subterm not containing the hole is a first order variable.
Flattening causes an at most linear space increase.

In order to describe the inference rules, we need the following concepts of
compatible contexts and of expansion of two compatible contexts.

Definition 5.3.2 (Compatible Contexts and Expansion) Two contexts c1

and c2 are compatible if hp(c1) = hp(c2) and sp(c1) = sp(c2).

For compatible contexts c1 and c2, we recursively define the set
expand(c1, c2) as follows:

� If c1 = • and c2 = •, then expand(c1, c2) = ∅.

� If c1 is of the form f(u1, . . . , ui−1, d1[•], ui+1, . . . , un) and c2 is of the
form f(v1, . . . , vi−1, d2[•], vi+1, . . . , vn), then expand(c1, c2) = {u1

.
=

v1, . . . , ui−1
.
= vi−1, ui+1

.
= vi+1, . . . , un

.
= vn} ∪ expand(d1, d2).

73

The PHASE2 Inference System

The idea behind the PHASE2 inference system, shown in Figure 5.2, is to
simulate the usual decomposition rules for term unification, but applied to
terms that may also contain expressions of the form d|p|N−k of arity 1. For
convenience, we define the inference system on ∆s; ∆u, where the solved part
∆s is a set of equations, and the unsolved part ∆u is a set of multiequa-
tions. Initially, the solved part ∆s is empty. The inference system operates
essentially only on the unsolved part, except that certain rules may move
equations from the unsolved part into the solved part.

Example 5.3.3 Let ∆ be {f(•, y)N−2[z2]
.
= f(•, z)N [x4]}. The inference

rule NN is applicable with c1 = f(•, y), c2 = f(•, z), |p| = 1, k1 = 2 and
k2 = 0. The contexts c1 and c2 are compatible, and expand(c1, c2) = {y .

= z}.
Thus, applying NN to ∆ gives {y .

= z, flatten(z2
.
= f(•, y)2[x4])}. Figure 5.4

contains a more involved example.

The PHASE2 inference system is intended to compute only “big” uni-
fiers, i.e. unifiers for which the replacement for N is “big”. The solutions
with a small instantiation for N are computed by scanning over all small
instantiations of N and then using first-order unification for each. Recall
that, the goal of the PHASE2 inference system is not proving solvability of
a set of exponent equations in polynomial time. This inference system is just
an artifact in the proof of a periodicity lemma that leads to a polynomial
time algorithm

For a set of multiequations ∆ we define some measures on the unsolved
part that will help in formally defining “big”:

� nf(∆) denotes the number of occurrences of function symbols in ∆u

without counting the ones in expressions d|p|N−k,

� nx(∆) denotes the number of occurrences of first-order variables in ∆u,

� nk(∆) denotes the sum of all the k’s for all the occurrences of expres-
sions dp|N |−k in ∆u, and

� nc(∆) denotes the number of occurrences of expressions d|p|N−k in ∆u.

Let ∆0 be some fixed set of initial exponent multiequations. Recall that c

and p = hp(c) are fixed. Define B(∆0) := 2 +
nf(∆0)

|p|
.

Definition 5.3.4 (Big Unifiers) Let ∆ be a set of exponent equations derived
from the (implicitly assumed) set ∆0. We say σ is a big unifier of ∆ if σ is
a solution of ∆ and σ(N) ≥ B(∆0).

74

(xx)
∆s; ∆ ∪ {x .

= M1, x
.
= M2}

∆s; ∆ ∪ {x .
= M1

.
= M2}

(xy)
∆s; ∆ ∪ {x .

= y
.
= M}

∆s ∪ {x
.
= y}; 〈x 7→ y〉(∆ ∪ {y .

= M})
if x 6= y

(xM)
∆s; ∆ ∪ {x .

= t
.
= M}

∆s ∪ {x
.
= t}; ∆ ∪ {t .= M}

if x does not occur in ∆,M, t

(alone)
∆s; ∆ ∪ {t}

∆s; ∆

(ff)
∆s; ∆ ∪ {f(x1, . . . , xm)

.
= f(y1, . . . , ym)

.
= M}

∆s; ∆ ∪ {f(y1, . . . , ym)
.
= M,x1

.
= y1, . . . , xm

.
= ym}

(NN)
∆s; ∆ ∪ {c|p|N−k11 (x1)

.
= c

|p|N−k2
2 (x2)

.
= M}

∆s; ∆ ∪ {c|p|N−k22 (x2)
.
= M} ∪ expand(c1, c2) ∪

flatten({x1
.
= (rot(c2, k

′
1))k1−k2(x2)})

if c1,c2 are compatible, where k1 ≥ k2, and k′1 = |p| − k1 mod |p|.

(Nf)
∆s; ∆ ∪ {f(x1, . . . , xm)

.
= (f(y1, . . . , yi−1, c1, yi+1, . . . , ym))|p|N−k(x)}

∆s; ∆ ∪ {x1
.
= y1, . . . , xi−1

.
= yi−1, xi+1

.
= yi+1, . . . , xm

.
= ym} ∪

{xi = (c1[f(y1, . . . , •, . . . , ym)])|p|N−k−1(x)}

Figure 5.2: The PHASE2 unification rules for multiequations

Example 5.3.5 Let ∆ be {f(x)
.
= y, (g(f(•)))2N−2(y)

.
= g(z)

.
=

(g(f(•)))2N−5(w)}, where x, y, z, w are first-order variables. Then, nf(∆) =
2, nc(∆) = 2, nk(∆) = 7 and nx(∆) = 5. Here, c = g(f(•)) and |p| = 2.

We shall sometimes use the measures nf, nx, nk and nc without explicitly
showing their argument (∆), which either means the measures are being used
as functions, or the argument is clear by the context.

75

(cycle)
∆s; ∆ ∪ {x1

.
= t1

.
= M1} ∪ . . . ∪ {xn

.
= tn

.
= Mn}

⊥
if tn 6= x1 ∈ V(tn), t1 6= x2 ∈ V(t1), . . . , tn−1 6= xn ∈ V(tn−1).

(clash)
∆s; ∆ ∪ {s .

= t
.
= M}

⊥
if root(s), root(t) ∈ F and root(s) 6= root(t)

(clashfC)
∆s; ∆ ∪ {f(. . .)

.
= (g(. . . , c1, . . .))

|p|N−k(x)
.
= M}

⊥
if f 6= g

(clashCC)
∆s; ∆ ∪ {c|p|N−k11 (x1)

.
= c

|p|N−k2
2 (x2)

.
= M}

⊥
if c1, c2 are not compatible

Figure 5.3: The PHASE2 unification failure rules for multiequations

Termination

We first show that any derivation using the above inference rules terminates
in a polynomial number of steps. The following lemma follows by inspecting
the inference rules.

Lemma 5.3.6 Let ∆1,∆2, . . . ,∆n be a PHASE2 derivation. Then,
nf(∆n) + nk(∆n) ≤ nf(∆1) + nk(∆1).

Proof. It suffices to see that nf + nk is either preserved or decreased
after every rule application. This is easy by inspecting the inference rules.
Rules (xx), (xy) and (xM) preserve nf and nk. Rule (alone) either preserves
or reduces nf and nk. Rule (ff) reduces nf and preserves nk. Rule (Nf)
reduces nf by 1 and increases nk by 1. For the case of rule (NN), note that
expand(c1, c2) does not add any function symbol. Note also that the addition
of the term (rot(c2, k

′
1))k1−k2(t2) increases nf by k1− k2, while nk is reduced

by k1 since the term c
|p|N−k1
1 (x1) is removed. 2

Corollary 5.3.7 Let ∆0,∆1, . . . ,∆n be a PHASE2 derivation starting from
the initial set ∆0 (note that nk(∆0) is 0). Then, nk(∆n)+nf(∆n) ≤ nf(∆0),

76

and 2 +
(nk(∆n) + nf(∆n))

|p|
≤ B(∆0).

Lemma 5.3.8 The PHASE2 inference system terminates. The number of
inference steps of a derivation starting from a given starting set of flattened
exponent equations ∆ is bounded by (2 ∗ nc ∗ (nf + nk) + nx)(∆).

Proof. For termination, it suffices to see that the tuple 〈nc, nf, nx〉 de-
creases after every rule application, where tuples are compared using the
lexicographic extension of the usual ordering on integers. This is trivial by
inspecting the inference rules. Rules (xx), (xy) and (xM) preserve nc and
nf, but they reduce nx. Rule (alone) reduces some of nc, nf, nx, and either
reduces or preserves the rest. Rules (ff) and (Nf) reduce nf and preserve nc

and nx. For the case of rule (NN), we recall that (rot(c2, k
′
1))k1−k2 is a first

order context and not an expression of the form d|p|N−k. Hence, this rule
always reduces nc.

Now, for the termination measure, we note that the only rule which
adds new occurrences of variables is rule (NN), due to the application of
the flattening process. In this case, the number of newly added variables is
bounded by nk, and by Lemma 5.3.6, this is bounded by (nf + nk)(∆), for
the given original set of multiequations ∆. Once this occurs, nc is reduced
by 1. Hence, the total number of newly added variables along the inference
process is bounded by (nc(nf + nk))(∆). Therefore, (nx + nc(nf + nk))(∆)
is a bound for the number of times the third component of (nc, nf, nx) is
reduced along this process. Again by Lemma 5.3.6, the two first compo-
nents are reduced (nc ∗ (nf + nk))(∆) times at most. This gives the bound
(nc ∗ (nf + nk) + (nx + nc ∗ (nf + nk)))(∆) for the total number of inference
steps. 2

Correctness

The following property of big unifiers will allow us to justify compatibility of
contexts of certain equations below.

Corollary 5.3.9 In any PHASE2 derivation ∆0,∆1, . . ., if d|p|N−k occurs
in any ∆i and σ is a big unifier of ∆i, then σ(|p|N − k) ≥ 2|p|.

Proof. If d|p|N−k occurs in ∆i, then note that σ(|p|N − k) = |p|σ(N)− k ≥
|p|(2+nf(∆0)/|p|)−k = 2|p|+nf(∆0)−k ≥ 2|p|+nf(∆i)+nk(∆i)−k ≥ 2|p|,
using Lemma 5.3.6 and Definition 5.3.4. 2

The soundness of the PHASE2 inference system follows directly from
inspecting the rules and applying Corollary 5.3.9.

77

Lemma 5.3.10 (Soundness) Let ∆1 ` ∆2 be an inference step, and let σ be
a big unifier of ∆2. Then, σ is also a big unifier of ∆1.

Proof. For all rules, a big unifier σ of ∆2 is also a big unifier of ∆1, by
inspecting the rules. It is crucial to take into account the solved part of ∆2 for
the rules (xy) and (xM). The detailed proof is straightforward, but tedious.

We illustrate it for the rule (NN): Let σ be a big unifier of ∆∪{c|p|N−k22 (x2)
.
=

M} ∪ expand(c1, c2) ∪ flatten({x1
.
= (rot(C2, k

′
1))k1−k2(x2)}) where c1,c2

are compatible, k1 ≥ k2 and k′1 = |p| − k1 mod |p|. We only need to prove

that σ is a unifier of c
|p|N−k1
1 (x1)

.
= c

|p|N−k2
2 (x2). Since σ is big, it follows

from Corollary 5.3.9 that σ(|p|N − k1) > 0 and σ(|p|N − k2) > 0. Since
σ unifies expand(c1, c2) and c1 and c2 are compatible, we can conclude that
σ(c1) = σ(c2). Since σ is a unifier of x1

.
= (rot(c2, k

′
1))k1−k2(x2), we see that

σ is also a unifier of c
|p|N−k1
1 (x1) and c

|p|N−k1
1 (rot(c2, k

′
1))k1−k2(x2). The term

σ(c
|p|N−k1
1 (rot(C2, k

′
1))k1−k2(x2)) is equal to σ(c

|p|N−k2
2 (x2)) using properties

of rot and exponents, and the fact that σ(c1) = σ(c2). 2

Completeness of the inference system of Phase 2 depends on the following
lemma that shows compatibility of two contexts c1, c2 that occur in exponent
equations that are, roughly speaking, of the form c1[c1[. . .]]

.
= c2[c2[. . .]].

Lemma 5.3.11 Let c1, c2 be two flattened contexts such that each one is a
rotation of the other. Let t1, t2 be terms. Let k1, k2 be non-negative integers
greater than or equal to 2|p|. If ck11 (t1)

.
= ck22 (t2) has a solution, then c1 and

C2 are compatible.

Proof. We prove this by contradiction, i.e. under the assumption of
incompatibility of c1 and c2 we prove that ck11 (t1)

.
= ck22 (t2) has no solution.

Let q be the maximum position that is a prefix of hp(c1) and hp(c2). If
|q| = |hp(c1)| = |hp(c2)|, then hp(c1) = hp(c2). In this case, the incompat-
ibility of c1 and c2 implies sp(c1) 6= sp(c2), from which we conclude that
ck11 (t1)

.
= ck22 (t2) has no solution. Hence, assume that q < hp(c1) and q <

hp(c2). If some q′ ≤ q satisfies root(c1|q′) 6= root(c2|q′), then ck11 (t1)
.
= ck22 (t2)

has no solution again. Therefore, assume root(c1|q′) = root(c2|q′) for all
q′ ≤ q. The equation ck11 (t1)

.
= ck22 (t2) has solvability of rot(c1, |q|)k1−|q|(t1)

.
=

rot(c2, |q|)k2−|q|(t2) as a necessary condition. We write rot(c1, |q|) and
rot(c2, |q|) more explicitly of the form f(x1, . . . , xi−1, d1, xi+1, . . . , xm) and
f(y1, . . . , yj−1, d2, yj+1, . . . , ym), respectively. Note that, by the maximality
of q, the indexes i and j are different. Any solution σ of ck11 (t1)

.
= ck22 (t2),

and hence of rot(c1, |q|)k1−|q|(t1)
.
= rot(c2, |q|)k2−q(t2), makes σ(yi) equal to

σ(d1[t1]). But since k1 is greater than or equal to 2|p| and c1 is a rotation of
c2, D1 properly contains the variable yi as well, and hence σ(yi) is a proper
subterm of itself, a contradiction. 2

78

Lemma 5.3.12 Let ∆ be a set of exponent multiequations with ∆u 6= ∅, such
that (cycle), (clash), (clashfC) or (clashCC) can be applied to it. Then ∆
does not have any big unifier.

Proof. Assume that ∆ has a big unifier. We show that (cycle) or (clash)
cannot be applicable. From Corollary 5.3.9, we know that the existence of
a big unifier implies that for every expression d|p|N−k(s), the exponent is at
least 2|p|, and hence the context is at least d[d[. . . [•] . . .]].

For all multiequations of the form s
.
= t

.
= M where s, t are rooted by

function symbols, we must have root(s) = root(t). Hence (clash) is not
applicable. However, (cycle) is not applicable, either. The reason is that
the existence of equations x1

.
= t1

.
= M1, x2

.
= t2

.
= M2, . . . , xn−1

.
= tn−1

.
=

Mn−1, xn
.
= tn

.
= Mn in ∆ such that x2 occurs in t1,. . . , xn occurs in tn−1,

and x1 occurs in tn together with the existence of a big unifier would imply
that σ(x1) is a proper subterm of σ(x1), which is impossible. If there is a

multiequation of the form c
|p|N−k1
1 (x1)

.
= c

|p|N−k2
2 (x2)

.
= M , then by Lemma

5.3.11 c1, c2 are compatible, hence (clashCC) is also not applicable. If there
is a multiequation of the form f(. . .)

.
= (g(. . . , D[•], . . .))|p|N−k(x)

.
= M , then

the root of σ(g(. . . , d, . . .))|p|N−k(x) is g = f for every big unifier σ, hence
(clashfC) is not applicable. From this contradiction, we conclude that ∆
cannot have a big unifier. 2

Lemma 5.3.13 (Completeness for big unifiers) Let ∆1 ` ∆2 be an inference
step, and let σ be a big unifier of ∆1. Then there is an extension σ1 of σ that
is also a big unifier of ∆2.

Proof. For the case of rules (xx), (xy), (xM), (alone), (ff), and (Nf) the
same σ serves as a big unifier.

For the case of rule (NN), the same σ serves for ∆∪ {c|p|N−k22 (x2)
.
= M}.

It also serves for expand(c1, c2), because, by Corollary 5.3.9, the replace-
ment of N by σ(N) makes |p|N − k1 greater than or equal to 2p, and
hence, solvability of expand(c1, c2) is a necessary condition for solvabil-
ity of ∆1 by Lemma 5.3.11. But σ is not enough for flatten({x1

.
=

(rot(c2, k
′
1))k1−k2(x2)}), since it contains new variables. We just need to

extend σ in the following way. Whenever the occurrences of a term t are
replaced by a new variable z along the flattening process, we extend σ by
{z 7→ σ(t)}. The final extension of σ after the complete flattening process
is a big unifier of the resulting set of multiequations. Finally, note that by
Lemma 5.3.12, the remaining rules, (cycle), (clash), (clashfC) and (clashCC),
are not applicable, and this completes the proof. 2

Combining the soundness and completeness results for big unifiers, we
conclude that the inference rules can be applied in a “don’t care” manner.

79

Corollary 5.3.14 If ∆1 ` ∆2 then every big unifier σ of ∆1 can be extended
to a big unifier of ∆2, and every big unifier of ∆2 is a big unifier of ∆1.

We finally show that the inference system is progressive, that is, if there
is a solution and ∆u 6= ∅, then we can apply some rule.

Proposition 5.3.15 Let ∆0 be a set of initial exponent multiequations.
Then the following are equivalent:
(A) there is a PHASE2 derivation ∆0 ` ∆1 ` . . . ` ∆n with ∆n,u = ∅,
(B) ∆0 has a big unifier, and
(C) for all n ≥ B(∆0), ∆0 has a solution σ with σ(N) = n.

Proof.
(A)⇒(C): If ∆0 ` ∆1 ` . . . ` ∆n is a maximal derivation with ∆n,u = ∅,
then the final ∆n has a solution: ∆n,s can be arranged in the form x1

.
=

t1, x2
.
= t2, . . . , xm

.
= tm, such that all xi are different and such that xi is

not contained in any tj with j ≥ i. Hence a solution can be computed by
iterated instantiation. Since none of our inference rules instantiate N , we
can set σ(N) := n′ for any n′ ≥ B(∆0). By Lemma 5.3.10, each of these
solutions for ∆n are also solutions for ∆0.
(C)⇒(B): This is straightforward.
(B)⇒(A): If ∆0 has a big unifier, then let ∆0 ` ∆1 ` . . . ` ∆n be a maximal
derivation. By Lemma 5.3.13, ∆n has a big unifier. The assumption that
(clash), (clashfC) and (clashCC) are not applicable implies that for any s

.
=

t ∈ ∆n,u such that s, t are not variables, one of the rules (ff), (NN), (Nf)
could be applied. Since these rules are not applicable, this implies that
multiequations in ∆n,u must be of the form x

.
= t, and the variable x occurs

in t or somewhere else in ∆n,u. Since (cycle) is not applicable, this is in
conflict with the non-applicability of the rule (xM). Hence the final set ∆n,u

must be empty.
2

Complexity

An important consequence of Proposition 5.3.15 is the following corollary.
The following corollary is a direct consequence of Proposition 5.3.15.

Corollary 5.3.16 A flattened set of initial exponent multiequations ∆0 has
a big unifier if and only if the first-order problem {N 7→ dB(∆0)e}(∆0) is
unifiable.

Therefore, for deciding the existence of big unifiers of a given ∆0,
it suffices to ask for the solution of the first-order unification problem

80

{N 7→ d(nf)(∆0)/p + 2e}∆0, which can be solved efficiently. Hence, for
deciding the existence of any (big or small) solution we just need to con-
sider several first-order unification problems obtained by substituting N by
0, 1, 2, . . . , d(nf)(∆0)/p+ 2e.

Theorem 5.3.17 The unification problem for flattened exponent multiequa-
tions is solvable in O(n3log(n)) time.

Proof. By iteratively instantiating N by 0, 1, . . . , dB(∆0)e, and expand-
ing the exponents in each case, we get O(n) first-order unification problems
of size O(n2) each. Since first-order unifiability of multiequations of size n is
decidable in O(n∗log(n)) time [MM82, PW78], we get the desired result. 2

Combining Theorem 5.3.17 and the process of Phase 1, which runs in
nondeterministic polynomial time, yields the following result.

Theorem 5.3.18 One context unification is in NP.

From the first phase, we know that any set of equations of one context
unification containing an equation of the form F (s) = c[F (t)] can be trans-
formed into a unification problem of exponent flattened multiequations by
guessing just once over a linear number of possibilities. Hence, we obtain the
following.

Theorem 5.3.19 The unification problem for one context term equations
containing an equation of the form F (s) = c[F (t)], where c is a non empty
context, is solvable in polynomial time.

We can also construct a complete set of unifiers for ∆0 following a similar
approach. In the second phase, for unifiers σ where σ(N) < B(∆0), we
simply solve the term unification problems obtained by setting 〈N 7→ n〉
for every n < B(∆0); and for unifiers σ where σ(N) ≥ B(∆0), we use the
PHASE2 inference system to compute ∆n. By Lemma 5.3.8, this runs in
polynomial time. If ∆n,u = ∅, then ∆n,s represents exactly all big unifiers of
∆0 since, by Corollary 5.3.14, we know that solutions are not lost. We get
the following analogues of Theorem 5.3.17 and Theorem 5.3.18.

Theorem 5.3.20 Let ∆ be a set of initial exponent equations. Then, a
complete set of unifiers for ∆ with polynomially many unifiers (representable
in polynomial space) can be generated in polynomial time.

Combining the previous theorem with the results in the previous section
we obtain the following.

81

Theorem 5.3.21 Given an instance ∆ of the one context unification prob-
lem, a complete set of most general unifiers for ∆ can be generated in expo-
nential time. Each unifier is represented in polynomial space using mappings
from variables to exponent-terms.

We will give a polynomial complexity bound, if the number of first-order
variables is fixed. Although all the claims and proofs we have given above are
valid by assuming that the input is already represented by a DAG structure,
the following result requires the input to be given without any compression,
i.e. the terms are represented with a size proportional to the size of such
terms (as trees).

Theorem 5.3.22 If the number of first-order variables is fixed (say k), then
one context unification is solvable in polynomial time.

Proof. Assume for the purposes of this proof that we implement phase 1
without DAGS, i.e. no reuse of equal subterms occurs. Then, an assignment
for a variable produces as many copies of the assigned term as the number of
occurrences of this variable in the equations. If the number k of first order
variables is fixed, then the size increase of the equations and terms by the
algorithm in phase 1 without DAGs remains polynomial: Instantiation by
rules Var-Elim and Var-Elim2 does at most square the size, which happens
at most k + 1 times. I.e. if n is the size of the input, then the size (as
terms without using DAGs) of the equations and substitutions during the
whole phase 1 is at most n2k+1

. Now it is sufficient to argue that there is a
polynomial upper bound for the maximal total number of necessary guessing
possibilities in phase 1, since we have already established polynomiality of
phase 2, and since phase 1 computation is in NP. The rules Decompose and
Var-Elim are don’t care non-deterministic and thus it is not necessary to ex-
plore alternatives. The possibilities of the rules Var-Elim2, CVar-Elim, and
CVar-Elim2 have to be counted. They are applied at most k+1 times. Every

rule has at most
(
n2k+1)2

possibilities, due to the selection of the context C.
Thus we have shown that there is a polynomial number of possibilities, and
every possibility can be completely checked including phase 2 in polynomial
time. In summary, we have shown the claim of the theorem. 2

82

Var-Elim2:
{f(x)

.
= F [f(y)], f(f(x))

.
= F [f(f(y))], f(f(f(x)))

.
= F [f(f(f(y)))]}〈

x 7→ F ′[f(y)],
F 7→ f(F ′[•])

〉 {
f(f(F ′[f(y)]))

.
= f(F ′[f(f(y))]),

f(f(f(F ′[f(y)])))
.
= f(F ′[f(f(f(y)))])

}
Decompose: {f(F ′[f(y)])

.
= F ′[f(f(y))], f(f(f(F ′[f(y)])))

.
= f(F ′[f(f(f(y)))])}

CVar-Elim2: 〈F ′ 7→ fN [•]〉 {f(f(f(fN [f(y)])))
.
= f(fN [f(f(f(y)))])}

Flatten:
{
f(x1)

.
= f(z1), x1

.
= f(x2), x2

.
= f(x3), x3

.
= fN [x4], x4

.
= f(y),

z1
.
= fN [z2], z2

.
= f(z3), z3

.
= f(z4), z4

.
= f(y)

}
ff:

{
x1

.
= z1

.
= f(x2)

.
= fN [z2], x2

.
= f(x3), x3

.
= fN [x4],

x4
.
= f(y), z2

.
= f(z3), z3

.
= f(z4), z4

.
= f(y)

}
xy,xM:

〈
x1 7→ z1,
z1 7→ f(x2)

〉 {
f(x2)

.
= fN [z2], x2

.
= f(x3), x3

.
= fN [x4],

x4
.
= f(y), z2

.
= f(z3), z3

.
= f(z4), z4

.
= f(y)

}
Nf:

{
x2

.
= fN−1[z2]

.
= f(x3), x3

.
= fN [x4],

x4
.
= f(y), z2

.
= f(z3), z3

.
= f(z4), z4

.
= f(y)

}
Nf: 〈x2 7→ f(x3)〉

{
x3

.
= fN−2[z2]

.
= fN [x4],

x4
.
= f(y), z2

.
= f(z3), z3

.
= f(z4), z4

.
= f(y)

}
NN: 〈x3 7→ fN−2[z2]〉

{
z2

.
= f 2[x4]

.
= f(z3),

x4
.
= f(y), z3

.
= f(z4), z4

.
= f(y)

}
xM: 〈z2 7→ f 2[x4]〉 {z3

.
= f(x4)

.
= f(z4), x4

.
= f(y), z4

.
= f(y)}

xM: 〈z3 7→ f(x4)〉 {x4
.
= z4

.
= f(y)

.
= f(y)}

xM: 〈x4 7→ z4, z4 7→ f(y)〉

Figure 5.4: Example illustrating the inference rules of the two phases. Some
trivial applications are not shown, and we only show the insertions into the
solved part.

83

Chapter 6

Compressed One Context
Unification

In this chapter we extend the result of the previous chapter, one context
unification is in NP, to the case where the terms in the given set of equations
are represented using STGs.

By considering that the input terms are compressed using STGs, we ob-
tain one context unification with STGs. Fixed a ranked alphabet F , an
instance of this problem is a tuple 〈∆, G,X , F 〉, where X is a set of first-
order variables, F is a context variable, G = 〈T N , CN ,F ∪ X ∪ {F}, R〉 is
an STG, and ∆ is a set of equations of the form {A1

.
= B1, . . . , An

.
= Bn},

where the Ais and the Bis are term nonterminals of G. With this represen-
tation, the context variable and first-order variables are initially represented
as unary and constant terminal symbols of the grammar, respectively. Given
an instance 〈{A1

.
= B1, . . . , An

.
= Bn}, G,X , F 〉, its corresponding uncom-

pressed one context unification instance is 〈{wG,A1

.
= wG,B1 , . . . , wG,An

.
=

wG,Bn},X , F 〉.
In order to prove that one context unification is also in NP in the STG-

compressed case, we adapt the inference system described in Chapter 5. Since
subterms, subcontexts, context exponentiation, and variable instantiations
are known to be efficiently computable with STGs, as seen in Chapter 3, one
may be tempted to simply reproduce the sequence of variable instantiations
resulting of the inference system of the previous chapter. However, the size
of the grammar may grow after certain operations and, in order to prove that
it does not explode, we need to use a different approach. In particular, the
difficulties rely on the fact that we do not have a bound on the size of the
grammar after successive partial instantiations of the context variable, which
require to compute a subcontext and thus increase the size of the grammar.

Our algorithm is built upon some of the constructions described in Sec-

84

tion 3.2.1 of Chapter 3 as well as the results from Chapter 5 and Chapter 4.
However, in the following section we restate some of the needed results in a
more convenient way to ease the presentation

6.1 Known Results

In this section we restate some of the results presented in previous chapters
regarding operations on STGs and solvability in nondeterministic polynomial
time of the one context unification problem.

6.1.1 Operations on STGs

In this section we describe the operations needed to compute a solution to an
STG-compressed one context unification instance. The following definition
of extension of an STG describes the result of those operations.

Definition 6.1.1 Let F be a ranked alphabet. Let G = 〈T N , CN ,Σ, R〉
be an STG such that F ⊆ Σ. An F -extension of G is an STG G′ =
〈T N ′, CN ′,Σ′, R′〉 such that T N ⊆ T N ′, CN ⊆ CN ′, R ⊆ R′, and F ⊆ Σ′.

The goal of the previous definition is to capture operations on STGs
that correspond to instantiation of variables. More concretely, let G =
〈T N , CN ,F ∪ V , R〉 be an STG and let G′ = 〈T N ′, CN ′,F ∪ V ′, R′〉 be
an F -extension of G. The terms generated by term nonterminals of G
and G′ are assumed to belong to the sets T (F ,V) and T (F ,V ′), respec-
tively, and analogously for contexts. Hence, by defining a substitution
σ : V → T (F ,V ′) ∪ C(F ,V ′) as σ(α) = wG′,α it holds that, for each nonter-
minal N of G, σ(wG,N) = wG′,N .

In Chapter 4, we saw that first-order unification can be solved in poly-
nomial time. Recall that the algorithm described in Figure 4.1 proceeds
analogously to the classical unification process: Given a first-order equation
s
.
= t, the algorithm iteratively finds a position p labeled by a variable x in

one of the terms, say s, and replaces all its occurrences by the correspond-
ing subterm t|p. This process ends when either s and t become equal, and
thus they are unifiable, or a contradiction is reached. Since each iteration
of the algorithm instantiates a variable, the solution σ can be described as
an ordered sequence of substitutions on first-order variables. We already
proved in Chapter 4 that this behaviour can be efficiently adapted to the
STG-compressed setting. Besides checking equality at each iteration, the
only operation that the algorithm needs to perform is to apply substitutions
of the form {x 7→ t|p}. This corresponds to computing an F -extension of the

85

grammar that adds n new nonterminals A1, . . . , An such that An generates t|p
using A1, . . . , An−1 and adds a new rule x→ An, i.e. converting the terminal
symbol x into a nonterminal generating t|p. The crucial result to prove that
such an F -extension can be computed in polynomial time is that all such
n are linearly bounded by the size of the initial input grammar and not by
the size of the current grammar at each step of the process. Note that this
implies that the size of the final grammar, i.e. the grammar obtained after all
the variables have been replaced, is polynomially bounded by the size of the
initial grammar. This technical fact is summarized in the following lemma,
which is a consequence of Lemma 4.1.7 proven in Chapter 4.

Lemma 6.1.2 Let G = 〈T N , CN ,Σ, R〉 be an STG describing a one context
unification instance. Let A be a term nonterminal of G and let t0 be wG,A. Let
t1, . . . , tn be terms, x1, . . . , xn be first-order variables, p1, . . . , pn be positions,
and σ1, . . . , σn be substitutions satisfying, for i ∈ {1, . . . , n}, pi ∈ Pos(ti−1),
xi ∈ Vars(ti−1) \ Vars(ti−1|pi), σi = {xi 7→ ti−1|pi}, and ti = σi(ti−1).

Then, there exists an F-extension G′ = 〈T N ′, CN ′,Σ \ {x1, . . . , xn}, R′〉
of G such that wG′,A = tn and |G′| ≤ |G|+ n(|G|+ 1).

In our current setting we also have to deal with the context variable F .
Similarly to the first-order case, instantiation of the special context variable
F is performed by adding a rule F → C to the grammar, i.e. turning the
terminal unary symbol F into a context nonterminal. This C is a new con-
text nonterminal defined through the concatenation of several subcontexts of
the input terms. In Chapter 3, we already saw how to compute subcontexts
from a given STG-compressed term. As stated in Lemma 3.2.31, the pCon

construction guarantees that, given a grammar G, a nonterminal A and a po-
sition p1.p2 ∈ Pos(wG,A), G can be extended with, at most, |G|(2|G|+3) new
nonterminals such that one of them generates the context wG,A|p1 [•]p2 . More-
over, given the context nonterminals C1, . . . , Cn of a grammar G, an extended
grammar containing a context nonterminal that generates the concatenation
wG,C1 . . . wG,Cn can be easily obtained by adding n new nonterminals to G.
These two facts are stated in the following lemma.

Lemma 6.1.3 Let G = 〈T N , CN ,Σ, R〉 be an STG describing a one context
unification instance. Let A be a term nonterminal of G and let t be wG,A.
Let p1, . . . , pn, p̂1, . . . , p̂n be positions and c1, . . . , cn be contexts satisfying, for
i ∈ {1, . . . , n}, pi.p̂i ∈ Pos(t) and ci = t|pi [•]p̂i.

Then, there exists an F-extension G′ = 〈T N ′, CN ′,Σ, R′〉 of G with a
context nonterminal C such that wG′,C = c1 . . . cn and |G′| ≤ |G|+n|G|(2|G|+
3) + n.

86

As seen in the previous chapter, in some cases, the context nonterminal
C that instantiates F is defined using one last construction: context expo-
nentiation. Computing a succinct grammar that generates the result of this
operation is straightforward, as shown in the following illustrative example.

Example 6.1.4 Let G be an STG with the following set of rules: {Ag →
g(Ah), Ah → h(Aa), Aa → a}. Note that wG,Ag is g(h(a)). The context
exponentiation (wG,Ag |λ[•]1.1)11 is g(h(g(h(g(h(g(h(g(h(g(•) . . .) and can be
generated by the STG with the set of rules:

{C → g(Ch), Ch → h(C•), C• → •}
∪ {Cexp4 → CC,Cexp8 → Cexp4Cexp4, Cexp10 → Cexp8C}
∪ {Cpref → g(C•)}
∪ {Cexp11 → Cexp10Cpref}

Note that we use the nonterminals C and Cpref to generate two different sub-
contexts, g(h(•)) and g(•), respectively. Moreover, the nonterminals Cexp4,
Cexp8, Cexp10, and Cexp11 are used for exponentiation and concatenation, with
Cexp11 generating the desired context.

As seen in the previous example, raising a context to a natural number e
requires to (i) compute two different subcontexts c1 and c2, (ii) concatenate
c1 with itself several times, and (iii) concatenate the resulting context with
c2. The construction done in (i) adds, at most, |G|(2|G| + 3) for each com-
puted subcontext, (ii) can be performed efficiently because the number of
new nonterminals to be added is logarithmic with respect to e, and (iii) only
adds one extra nonterminal to the grammar. This fact is stated formally in
the following lemma.

Lemma 6.1.5 Let G = 〈T N , CN ,Σ, R〉 be an STG describing a one context
unification instance. Let A be a term nonterminal of G and let t be wG,A.
Let p1, p2 be positions such that p1.p2 ∈ Pos(t) and let e ≥ 0 be a natural
number.

Then, there exists an F-extension G′ = 〈T N ′, CN ′,Σ, R′〉 of G with
a context nonterminal C such that wG′,C = (t|p1 [•]p2)e and |G′| ≤ |G| +
2|G|(2|G|+ 3) + dlog2(e)e+ 1.

6.1.2 Uncompressed One-Context Unification

Consider an instance 〈∆,X , F 〉 of the one context unification problem. In the
previous chapter, it is proven that this problem is in NP when the terms in ∆
are represented explicitly. The proposed algorithm is presented by means of
an inference system that modifies the set of equations until a contradiction is

87

found or the empty set is derived, which implies unifiability. By representing
∆ with DAGs, the size of the representation of the terms in the set of equa-
tions is guaranteed to stay polynomially bounded by the size of the input at
each step of a derivation. For the sake of clarity, we introduce in Figure 6.1
a simplified version of the algorithm of the previous chapter. In this sim-
plified version we have erased the rules used to early detect nonunifiability
and some restrictions that eased the proofs by guaranteeing a bound on the
length of every derivation. Moreover, the result from Section 5.3 have been
incorporated (see rule CVar-Elim2). Hence, the new version of the inference
system is simpler and still sound. Moreover, since it is less restrictive than
the original one, each derivation leading to a solution can still be performed,
and thus it is complete.

Decompose:
∆ = ∆′] {α(t1, . . . , tn)

.
= α(u1, . . . , un)}

∆′ ∪ {t1
.
= u1, . . . , tn

.
= un}

Var-Elim:
x
.
= t ∈ ∆

{x 7→ t}(∆)
where x 6∈ Vars(t)

Var-Elim2:
F (u)

.
= c[x] ∈ ∆

{x 7→ F (θ(u))}(θ(∆))

where θ = {F 7→ c[F (•)]} and c is guessed such that
F 6∈ Vars(c), x 6∈ Vars(u), and (F 6∈ Vars(u) ∨ x 6∈ Vars(c))

CVar-Elim:
F (u)

.
= c[t] ∈ ∆

{F 7→ c}(∆)
where c is guessed such that F 6∈ Vars(c)

CVar-Elim2:
F (u)

.
= c[F (t)] ∈ ∆

{F 7→ ce}(∆)

where c is guessed such that F 6∈ Vars(c) and e is guessed such that
0 ≤ e ≤ 3

∑
s
.
=t∈∆(|s|+ |t|)

Figure 6.1: Inference system for one-context unification.

The most basic rule of the inference system is the rule Decompose, which
is just used to simplify the unification problem. Note that it does not intro-
duce any new subterms in the set of equations. The remaining rules modify
the current set of equations by replacing variables by subterms and subcon-
texts constructed from the terms in the set of equations. In particular, rule
Var-Elim replaces a first-order variable by a term, rule Var-Elim2 partially
guesses the initial part of F and instantiates a first-order variable, and rules
CVar-Elim and CVar-Elim2 replace F by a context. As a technical detail,

88

note that the substitution applied due to the application of rule Var-Elim2

can be seen as an instantiation of F in terms of a freshly introduced context
variable, which, for clarity, we denote also as F . Finally, the rule CVar-Elim2
instantiates the context variable by a context raised to a natural number
whose value is linearly bounded by the size of the current set of equations.
Note that it is a bound on the exponent of periodicity of minimal solutions,
i.e. the maximum number of periodic repetitions of a context in a minimal
solution.

Example 6.1.6 Consider the one-context unification instance 〈∆, {x}, F 〉,
where ∆ contains only the following equation:

F

g

F

b

a

.
= g

g

xa

x

This instance has no solution. Note that neither Decompose, Var-Elim,
nor CVar-Elim2 can be applied. In the case of CVar-Elim, we need to choose
a position in Pos(g(x, g(a, x))) in order to guess a context c. Hence, there
exist five different options for c:

c = • c = g

g

xa

•

c = g

•x

c = g

g

x•

x

c = g

g

•a

x

Note that, in any case, the resulting first-order equation after applying the
substitution {F 7→ c} to ∆ does not lead to a solution. Finally, Var-Elim2
cannot be applied since the left-hand side of the equation is of the form F (u)
and F occurs in u, and the right-hand side of the equation has two occurrences
of x. In order to understand the conditions of rule Var-Elim2, note that they
allow either x to occur more than once in the right-hand side or F to occur
in u. The reason to consider these situations separately is that both facts
cannot hold at the same time since it would lead to an instantiation of F in
terms of itself, and thus a contradiction.

By the form of the rules, the following statement bounding the length of
the derivations holds trivially.

89

Lemma 6.1.7 Let 〈∆,X , F 〉 be a one context unification instance. Any
derivation from ∆ using the inference system of Figure 6.1 contains at most
|X | occurrences of Var-Elim and Var-Elim2, and at most one occurrence of
either CVar-Elim or CVar-Elim2.

6.2 Approach

Our approach consists of modifying the sequences of rule applications that
describe a solution in order to guarantee that they can be represented in
polynomial space using an STG. To simplify reasonings, we introduce in
Figure 6.2 a new inference system R that generalizes the previous one in
Figure 6.1. In R we assume without loss of generality that the initial set of
equations ∆ = {s1

.
= t1, . . . , sn

.
= tn} is encoded as a single term. This can

be done by extending the alphabet with new symbols d and e of arity n and
2, respectively, and defining term(∆) = d(e(s1, t1), . . . , e(sn, tn)). With this
notion, the question of whether there exists a substitution σ, the solution for
∆, such that σ(s1) = σ(t1), . . . , σ(sn) = σ(tn) corresponds to check whether
there exists a substitution σ, the solution for term(∆), such that σ(term(∆))
is of the form d(e(u1, u1), . . . , e(un, un)). This change in notation is useful to
refer to subterms of both sides of the equations in ∆ indistinctly as subterms
of term(∆).

Rx:
t

{x 7→ t|p}(t)
where p ∈ Pos(t) and x ∈ Vars(t) \ Vars(t|p)
RFF:

t
{F 7→ t|p1 [F (•)]p2}(t)

where p1.p2 ∈ Pos(t) and F ∈ Vars(t) \ Vars(t|p1)
RFC:

t
{F 7→ (t|p1 [•]p2)e}(t)

where p1.p2 ∈ Pos(t), F ∈ Vars(t) \ Vars(t|p1 [•]p2), and e ∈ {0, . . . , 3|t|}

Figure 6.2: The adapted inference system R.

It is easy to see that an application of Var-Elim, Var-Elim2, CVar-Elim,
or CVar-Elim2 corresponds to the application of at most two of the rules of R.
In particular, an application of Var-Elim is emulated by an application of Rx.
In the rest of this chapter, we use RxF and Rx¬F to refer to applications of Rx

in which the involved subterm t|p has an occurrence of F or not, respectively.

90

An application of Var-Elim2 corresponds to an application of RFF followed by
an application of RxF. Finally, applications of CVar-Elim and CVar-Elim2

are emulated by RFC. The remaining original rule, Decompose, was only
used to simplify the problem in order to apply other rules. Its behaviour
is implicitly emulated in R by defining its rules by means of subterms and
subcontexts of t.

With →RxF,x,p and →Rx¬F,x,p we denote an application of rules RxF and
Rx¬F, respectively, making explicit the position p and the first-order vari-
able x involved in the rule application. Analogously, with →RFF,p1,p2 and
→RFC,p1,p2 we denote an application of RFF and RFC, making explicit the
positions p1 and p2 involved in the rule application. Sometimes, we do not
make explicit x, p, p1, and p2 when they are clear from the context or not
relevant. By →R we denote the derivational relation using R and, as usual,
→+

R denotes its transitive closure and→∗R denotes its reflexive-transitive clo-
sure. Additionally, by →r and →∗r, we denote the derivational relation using
the rule r of R and its reflexive-transitive closure, respectively.

The following example illustrates the fact that R can emulate derivations
done with the inference system in Figure 6.1.

Example 6.2.1 Consider the one context unification instance 〈{F (a)
.
=

g(x0, x0), F (b)
.
= g(g(x1, x1), g(a, b))}, {x0, x1}, F 〉. In this example we use

→σ
r to denote a derivation step using the rule r and applying the substitution

σ and →∗Decompose to denote some derivation steps using the rule Decompose.
A possible successful derivation using the rules of Figure 6.1 is the following:

{F (a) .= g(x0, x0), F (b)
.
= g(g(x1, x1), g(a, b))}

→{x0 7→F ({F 7→g(x0,F (•))}(a))}◦{F 7→g(x0,F (•))}
Var−Elim2

{g(F (a), F (a)) .= g(F (a), F (a)), g(F (a), F (b))
.
= g(g(x1, x1), g(a, b))}

→∗Decompose
{F (a) .= g(x1, x1), F (b)

.
= g(a, b)}

→{x1 7→F ({F 7→g(x1,F (•))}(a))}◦{F 7→g(x1,F (•))}
Var−Elim2

{g(F (a), F (a)) .= g(F (a), F (a)), g(F (a), F (b))
.
= g(a, b)}

→∗Decompose {F (a) .= a, F (b)
.
= b} →{F 7→•}CVar−Elim {a .

= a, b
.
= b} →∗Decompose ∅

Since we could derive ∅, the considered instance is indeed unifiable.
The solution associated to the derivation is {F 7→ g(g(a, a), g(a, •)), x0 7→
g(a, a), x1 7→ a}.

We now show that the same solution can be derived also using R. The
initial set of equations, expressed with the new notation, corresponds to the

91

term t = term(∆) = d(e(F (a), g(x0, x0)), e(F (b), g(g(x1, x1), g(a, b)))). Note
that the subterm t|1 encodes the equation F (a)

.
= g(x0, x0) and t|2 encodes

F (b)
.
= g(g(x1, x1), g(a, b)). Our goal is to check whether there exists a sub-

stitution σ such that σ(t) is of the form d(e(t1, t1), e(t2, t2)). The previous
derivation corresponds to the following one using R:

d

e

g

g

ba

g

x1x1

F

b

e

g

x0x0

F

a

→RFF,1.2,2 d

e

g

g

ba

g

x1x1

g

F

b

x0

e

g

x0x0

g

F

a

x0

→RxF,x0,1.1.2

d

e

g

g

ba

g

x1x1

g

F

b

F

a

e

g

F

a

F

a

g

F

a

F

a

→RFF,2.2.1,2 d

e

g

g

ba

g

x1x1

g

g

F

b

x1

g

F

a

x1

e

g

g

F

a

x1

g

F

a

x1

g

g

F

a

x1

g

F

a

x1

→RxF,x1,2.1.1.2

d

e

g

g

ba

g

F

a

F

a

g

g

F

b

F

a

g

F

a

F

a

e

g

g

F

a

F

a

g

F

a

F

a

g

g

F

a

F

a

g

F

a

F

a

→RFC,2.2.2.1,λ
d

e

g

g

ba

g

aa

g

g

ba

g

aa

e

g

g

aa

g

aa

g

g

aa

g

aa

Note that, there are several equivalent options for the selection of the first
position used in the last rule application. We chose 2.2.2.1 because this is the
position that corresponds to the last steps of the previous derivation.

It is trivial that R is sound. Moreover, since R can emulate the original
inference system, it follows that it is also complete. The following lemma
states that soundness and completeness of R also hold when the length of
derivations is linearly bounded. This property follows from completeness of
the inference system of Figure 6.1, soundness of R, and Lemma 6.1.7, taking
into account that each rule of Figure 6.1 can be emulated with at most two
rules of R.

Lemma 6.2.2 Let 〈∆,X , F 〉 be a one context unification instance. ∆ has
a solution if and only if there exists a derivation term(∆) →∗R t of length at
most 2|X |+ 1 such that t is of the form d(e(u1, u1), . . . , e(u|∆|, u|∆|)).

In the case of one context unification with STGs, term(∆) is represented
by a single term nonterminal. More concretely, an instance of one-context
unification with STGs 〈{A1

.
= B1, . . . , An

.
= Bn}, Ḡ,X , F 〉 is represented as

〈T,G,X , F 〉, where G is an F -extension of Ḡ and T is a term nonterminal of

92

G such that wG,T = d(e(wḠ,A1
, wḠ,B1

), . . . , e(wḠ,An
, wḠ,Bn

)) = term({wḠ,A1

.
=

wḠ,B1
, . . . , wḠ,An

.
= wḠ,Bn

}) = term(∆). With this new representation, the
problem consists of deciding whether there exists a substitution σ such that
σ(wG,T) is of the form d(e(u1, u1), . . . , e(un, un)). Recall that NP can be
defined as the set of decisional problems whose positive instances can be
verified in polynomial time. Hence, to prove that one context unification
with STGs is in NP we need to prove that there exists an F -extension G′ of
G of polynomial size with respect to |G| that represents σ. More concretely,
in the rest of this chapter we prove that, for each derivation of the form
term(∆) →∗R t of length at most 2|X | + 1, there exists an F -extension G′

of G such that wG′,T = t and whose size is polynomial with respect to |G|.
This is enough for proving that one context unification with STGs is in NP
since the fact that t is of the form d(e(u1, u1), . . . , e(un, un)) can be checked
in polynomial time with respect to |G|.

6.3 Commutation of Substitutions

As commented in the previous section, our approach consists of modifying
the sequences of derivation steps with R in such a way that allows to con-
clude that every unifiable instance 〈∆,X , F 〉 has a solution σ that can be
represented in polynomial space using an STG. Our goal is to show that rule
applications can always be commuted to obtain an equivalent derivation, i.e.
a derivation describing the same substitution σ, that is of the following form:

term(∆)→∗Rx¬F
→∗RFF

→∗RxF
→0,1

RFC
→∗Rx¬F

σ(term(∆))

where →0,1
RFC

denotes either 0 or 1 applications of the rule RFC. As a first
ingredient in this argument, we define a particular notion of composition of
substitutions which will be useful to reason in our setting. Next, we present
some technical results to, finally, prove how to commute derivation steps until
obtaining an equivalent derivation of the desired form.

6.3.1 Strong Composition

Consider two substitutions σ1, σ2. The goal of the following notion of com-
position of σ1 and σ2 is to capture how instantiations due to σ1 are modified
by the later application of σ2.

Definition 6.3.1 Let σ1, σ2 be substitutions. The strong composition of σ1

and σ2, denoted σ2 � σ1, is defined as {α 7→ σ2(σ1(α)) | α ∈ Dom(σ1)}

93

The usual and the strong notions of composition are not equivalent in
general. Recall that, given substitutions σ1, σ2, the usual notion of composi-
tion can be defined as σ2 ◦ σ1 = {α 7→ σ2(σ1(α)) | α ∈ Dom(σ1) ∪Dom(σ2)}.
In order to stress the difference, consider θ1 = {y 7→ b} and θ2 = {x 7→ a}
and note that (θ2 � θ1)(x) = x, while (θ2 ◦ θ1)(x) = a. Moreover, strong
composition is not associative, i.e. (σ3 � σ2) � σ1 = σ3 � (σ2 � σ1) does not
hold in general: consider θ0 = {y 7→ g(x)} and note that (θ2 � θ1) � θ0 =
{y 7→ g(x)}, while θ2 � (θ1 � θ0) = {y 7→ g(a)}. Another property that distin-
guishes both notions of composition is that, when using strong composition,
Dom(σ2 � σ1) ⊆ Dom(σ1) holds. This inclusion is strict only in anomalous
cases, for example Dom({y 7→ x} � {x 7→ y}) = ∅. In fact, the condition
Dom(σ2 � σ1) = Dom(σ1) is ensured when Vars(σ2) ∩ Dom(σ1) = ∅, which is
usually the case in our setting.

The following lemma is straightforward from the definition of strong com-
position.

Lemma 6.3.2 Let σ1, σ2 be substitutions and let α be a variable in Dom(σ1).
Then, (σ2 ◦ σ1)(α) = (σ2 � σ1)(α).

The following lemma states how two substitutions can be “commuted”
using the strong composition.

Lemma 6.3.3 Let σ1, σ2 be substitutions such that Vars(σ2)∩Dom(σ1) = ∅.
Then, σ2 ◦ σ1 = (σ2 � σ1) ◦ σ2.

Proof. Let V be a set of variables such that Dom(σ1) ∪Dom(σ2) ⊆ V holds.
It suffices to prove that, for all α ∈ V , (σ2 ◦σ1)(α) = ((σ2 �σ1)◦σ2)(α) holds.

We distinguish cases depending on whether α ∈ Dom(σ1) and α ∈
Dom(σ2). If α ∈ Dom(σ1) then, by the assumption of the lemma, α 6∈
Dom(σ2) holds, and hence ((σ2 � σ1) ◦ σ2)(α) = (σ2 � σ1)(α) = (σ2 ◦ σ1)(α)
holds by Lemma 6.3.2. If α ∈ Dom(σ2) then, by the assumption of the
lemma, Vars(σ2(α)) ∩ Dom(σ2 � σ1) = ∅ and α 6∈ Dom(σ1) hold, and it fol-
lows ((σ2 � σ1) ◦ σ2)(α) = σ2(α) = (σ2 ◦ σ1)(α). Finally, the case where α 6∈
Dom(σ1)∪Dom(σ2) trivially holds and the case where α ∈ Dom(σ1)∩Dom(σ2)
is not possible by the assumption. 2

6.3.2 Subterm Preservation

Let t1 and t2 be terms such that t2 is obtained from t1 by applying a sub-
stitution. The following two lemmas state under which conditions a certain
subterm of t2 exists also as a subterm of t1. These results will be crucial to
argue about the commutation of derivation steps.

94

Lemma 6.3.4 Let F be a ranked alphabet and let V be a set with first-order
variables and a context variable F . Let t1, t2 be terms in T (F ,V) such that
t2 = {F 7→ c[F (•)]}(t1), where c is a context in C(F ,V). Let p be a position
in Pos(t2) such that F 6∈ Vars(t2|p). Then, either there exists a position
p̂ ∈ Pos(t1) such that t1|p̂ = t2|p or there exists a position p̂ ∈ Pos(c) such
that c|p̂ = t2|p.

Proof. We prove the lemma by induction on |p|. If p = λ, note that F cannot
occur in t1 since, otherwise, F ∈ Vars(t2|p). Hence, in this case, t1 = t2 holds
and we are done by defining p̂ as p. For the induction step, assume that
|p| > 0 and consider the following cases.

First, consider that t1 is of the form g(u1, . . . , un), where g is a function
symbol in F . Note that n > 0 holds since, otherwise, t2 = g and p =
λ, contradicting the assumption. Let p be i.p′ more explicitly written, for
i ∈ {1, . . . , n}. Note that t2|i = {F 7→ c[F (•)]}(ui), p′ ∈ Pos(t2|i), and
F 6∈ Vars(t2|i|p′) hold. By induction hypothesis on |p′|, there exists a position
p̂′ such that either ui|p̂′ = t2|i|p′ or c|p̂′ = t2|i|p′ . The statement follows by
defining p̂ as i.p̂′ in the former case and as p̂′ in the latter case.

Second, consider that t1 is of the form F (u). We distinguish cases de-
pending on whether p and hp(c) are parallel or not. Note that p cannot be
a prefix of hp(c) since it would lead to a contradiction with the fact that
F 6∈ Vars(t2|p). In the case where p and hp(c) are parallel, it follows that
c|p = t2|p, and we are done by defining p̂ as p. Otherwise, let p be hp(c).1.p′

more explicitly written. In this case, note that t2|hp(c).1 = {F 7→ c[F (•)]}(u),
p′ ∈ Pos(t2|hp(c).1), and F 6∈ Vars(t2|hp(c).1|p′) hold. Hence, by induction hy-
pothesis on |p′|, there exists a position p̂′ such that either u|p̂′ = t2|hp(c).1|p′
or c|p̂′ = t2|hp(c).1|p′ . The statement follows by defining p̂ as 1.p̂′ in the former
case and as p̂′ in the latter case.

Third, the case where t1 is a first-order variable is not possible because,
in such case, p must be λ, which contradicts the assumption. 2

Lemma 6.3.5 Let F be a ranked alphabet and let V be a set with first-order
variables and a context variable F . Let t1, t2 be terms in T (F ,V) such that
either t1 →RxF

t2 or t1 →RFF
t2. Let p be a position in Pos(t2) such that

F 6∈ Vars(t2|p). Then, there exists a position p̂ ∈ Pos(t1) such that t1|p̂ = t2|p.

Proof. We first consider the case where the applied rule is RFF. Let
t1 →RFF,p1,p2 t2 be the derivation step of the statement more explicitly writ-
ten. Hence, t2 = {F 7→ t1|p1 [F (•)]p2}(t1) and, by Lemma 6.3.4, the statement
holds.

Now assume that the applied rule is RxF with variable x and position q.
Let P be the subset of positions of Pos(t1) labeled by x in t1. Note that P is

95

a set of pairwise parallel positions. Moreover, note that p cannot be a prefix
of any of the positions in P since, otherwise, F ∈ Vars(t2|p), contradicting
the assumptions of the lemma. In the case where p is parallel with every
position in P , it follows that p ∈ Pos(t1) and t1|p = t2|p. Otherwise, exactly
one position p′ ∈ P is a proper prefix of p. Hence, p is of the form p′.q′ and
it follows that t1|q.q′ = t2|p. 2

The following lemma states how the instantiation of a context variable
and the computation of a subterm can be commuted.

Lemma 6.3.6 Let F be a ranked alphabet and let V be a set with first-order
variables and a context variable F . Let t be a term in T (F ,V), let p be
a position in Pos(t), and let σ = {F 7→ c} be a substitution, where c is a
context in C(F ,V). Then, there exists a position p̂ ∈ Pos(σ(t)) such that
σ(t|p) = σ(t)|p̂.

Proof. We prove the lemma by induction on |p|. The base case, i.e. when
p = λ, trivially holds by defining p̂ as p. For the induction step, assume that
|p| > 0. We distinguish cases depending on the form of t.

First, assume that t is of the form g(u1, . . . , un), where g is a function
symbol in F . Note that n > 0 necessarily holds since, otherwise, p = λ,
contradicting the assumption. Let p be i.p′ more explicitly written, for i ∈
{1, . . . , n}. By induction hypothesis, there exists a position p̂′ ∈ Pos(σ(ui))
such that σ(ui|p′) = σ(ui)|p̂′ holds. Hence, the statement holds by defining p̂
as i.p̂′.

Second, assume that t is of the form F (u). Let p be 1.p′ more explicitly
written. By induction hypothesis, there exists a position p̂′ ∈ Pos(σ(u)) such
that σ(u|p′) = σ(u)|p̂′ holds. Hence, the statement holds by defining p̂ as
hp(c).p̂′.

Third, the case where t is a first-order variable is not possible because, in
such case, p must be λ, which contradicts the assumption. 2

6.3.3 Reordering Derivations

In this section we show how derivations with R can be modified in order to
guarantee that rules are applied in a specific order. As basic ingredients, the
following three technical lemmas show how pairs of derivation steps can be
swapped.

Lemma 6.3.7 Let F be a ranked alphabet and let V be a set with first-order
variables and a context variable F . Let t1, t2, t be terms in T (F ,V) such that
t1 →RxF,x,p t→RFF,p1,p2 t2. Then, there exists a position p̂1 ∈ Pos(t1), a term

96

t′ ∈ T (F ,V), and a position p̂ ∈ Pos(t′) such that t1 →RFF,p̂1,p2 t
′ →RxF,x,p̂ t2

holds.

Proof. By the conditions on the application of RxF, x ∈ Vars(t1) \ Vars(t1|p)
and F ∈ Vars(t1|p) hold. In addition, since RxF instantiates x, then x 6∈
Vars(t) holds. Moreover, by the conditions on the application of RFF, we
know that F ∈ Vars(t) \ Vars(t|p1). Note that

t2 ={F 7→ t|p1 [F (•)]p2}({x 7→ t1|p}(t1)) (6.1)

=({F 7→ t|p1 [F (•)]p2} � {x 7→ t1|p})({F 7→ t|p1 [F (•)]p2}(t1)) (6.2)

={x 7→ {F 7→ t|p1 [F (•)]p2}(t1|p)}({F 7→ t|p1 [F (•)]p2}(t1)) (6.3)

={x 7→ {F 7→ t1|p̂1 [F (•)]p2}(t1|p)}({F 7→ t1|p̂1 [F (•)]p2}(t1)) (6.4)

={x 7→ {F 7→ t1|p̂1 [F (•)]p2}(t1)|p̂}({F 7→ t1|p̂1 [F (•)]p2}(t1)) (6.5)

where (1) follows from definition of RxF and RFF, (2) follows from
Lemma 6.3.3, which can be applied because Vars({F 7→ t|p1 [F (•)]p2}) ∩
Dom({x 7→ t1|p}) = ∅ holds since x 6∈ Vars(t) and x 6= F , (3) follows
from Definition 6.3.1, in (4) the implicit definition of p̂1 holding t1|p̂1 = t|p1
follows from Lemma 6.3.5, which can be applied since t1 →RxF,x,p t and
F 6∈ Vars(t|p1), and in (5) the implicit definition of p̂ holding {F 7→
t1|p̂1 [F (•)]p2}(t1)|p̂ = {F 7→ t1|p̂1 [F (•)]p2}(t1|p) follows from Lemma 6.3.6.

Finally, let the t′ of the lemma be defined as {F 7→ t1|p̂1 [F (•)]p2}(t1) and
note that t2 = {x 7→ t′|p̂}(t′). It remains to prove that t′ can be derived from
t1, and that t2 can be derived from t′, as stated in the lemma. First, note that
t1 →RFF,p̂1,p2 t

′ holds because F does not occur in t1|p̂1 , since t1|p̂1 = t|p1 , and,
moreover, F ∈ Vars(t1) holds because F ∈ Vars(t) and Vars(t) (Vars(t1).
Now, note that t′ →RxF,x,p̂ t2 holds because:

� x ∈ Vars(t′), which follows from the facts that x ∈ Vars(t1) and
Vars(t′) = Vars(t1),

� x /∈ Vars(t′|p̂), since x 6∈ Vars(t1|p), x 6∈ Vars(t), and t′|p̂ = {F 7→
t1|p̂1 [F (•)]p2}(t1)|p̂ = {F 7→ t|p1 [F (•)]p2}(t1|p), and

� F ∈ Vars(t′|p̂), since F ∈ Vars(t1|p) holds and thus F ∈ Vars({F 7→
t1|p̂1 [F (•)]p2}(t1|p)) = Vars({F 7→ t1|p̂1 [F (•)]p2}(t1)|p̂) = Vars(t′|p̂) also
holds.

Hence, t1 →RFF,p̂1,p2 t
′ →RxF,x,p̂ t2 holds, which concludes the proof. 2

Lemma 6.3.8 Let F be a ranked alphabet and let V be a set with first-order
variables and a context variable F . Let t1, t2, t be terms in T (F ,V) such that
t1 →RFF,p1,p2 t →Rx¬F,x,p t2. Then, there exists a position p̂ ∈ Pos(t1) and a
term t′ ∈ T (F ,V) such that t1 →Rx¬F,x,p̂ t

′ →RFF,p1,p2 t2 holds.

97

Proof. By the conditions on the application of rule RFF, F ∈ Vars(t1) \
Vars(t1|p1) holds. Moreover, by the conditions on the application of rule Rx¬F,
we know that x ∈ Vars(t) \ Vars(t|p) and F 6∈ Vars(t|p). Note that

t2 ={x 7→ t|p}({F 7→ t1|p1 [F (•)]p2}(t1)) (6.1)

=({x 7→ t|p} � {F 7→ t1|p1 [F (•)]p2})({x 7→ t|p}(t1)) (6.2)

={F 7→ {x 7→ t|p}(t1|p1 [F (•)]p2)}({x 7→ t|p}(t1)) (6.3)

={F 7→ {x 7→ t1|p̂}(t1|p1 [F (•)]p2)}({x 7→ t1|p̂}(t1)) (6.4)

={F 7→ {x 7→ t1|p̂}(t1)|p1 [F (•)]p2}({x 7→ t1|p̂}(t1)) (6.5)

where (1) follows from definition of RFF and Rx¬F, (2) follows from
Lemma 6.3.3, which can be applied because Vars({x 7→ t|p}) ∩ Dom({F 7→
t1|p1 [F (•)]p2}) = ∅ holds since F 6∈ Vars(t|p) and F 6= x, (3) follows from Def-
inition 6.3.1, in (4) the implicit definition of p̂ holding t1|p̂ = t|p follows from
Lemma 6.3.5, which can be applied since t1 →RFF,p1,p2 t and F 6∈ Vars(t|p),
and (5) holds because replacements of first-order variables and computation
of subterms can be commuted in this way.

Finally, let the t′ of the lemma be defined as {x 7→ t1|p̂}(t1) and note that
t2 = {F 7→ t′|p1 [F (•)]p2}(t′). It remains to prove that t′ can be derived from
t1, and that t2 can be derived from t′, as stated in the lemma. First, note
that t1 →Rx¬F,x,p̂ t

′ holds because neither F nor x occur in t1|p̂ since t1|p̂ = t|p
and, moreover, x ∈ Vars(t1) holds because x ∈ Vars(t) and Vars(t) = Vars(t1).
Now, note that t′ →RFF,p1,p2 t2 holds because:

� F ∈ Vars(t′), since F ∈ Vars(t1)\{x} = Vars({x 7→ t1|p̂}(t1)) = Vars(t′),
and

� F 6∈ Vars(t′|p1) since F 6∈ Vars(t1|p1) ∪ Vars({x 7→ t1|p̂}) and thus F 6∈
Vars({x 7→ t1|p̂}(t1|p1)) = Vars({x 7→ t1|p̂}(t1)|p1) = Vars(t′|p1).

Hence, t1 →Rx¬F,x,p̂ t
′ →RFF,p1,p2 t2 holds, which concludes the proof. 2

Lemma 6.3.9 Let F be a ranked alphabet and let V be a set with first-order
variables and a context variable F . Let t1, t2, t be terms in T (F ,V) such that
t1 →RxF,x1,p1 t →Rx¬F,x2,p2 t2. Then, there exists a position p̂2 ∈ Pos(t1) and
a term t′ ∈ T (F ,V) such that t1 →Rx¬F,x2,p̂2 t

′ →RxF,x1,p1 t2 holds.

Proof. By the conditions on the application of RxF, x1 ∈ Vars(t1) \
Vars(t1|p1) and F ∈ Vars(t1|p1) hold. Moreover, by the conditions on the
application of Rx¬F, we know that x2 ∈ Vars(t)\Vars(t|p2) and F 6∈ Vars(t|p2).

98

Note that

t2 ={x2 7→ t|p2}({x1 7→ t1|p1}(t1)) (6.1)

=({x2 7→ t|p2} � {x1 7→ t1|p1})({x2 7→ t|p2}(t1)) (6.2)

={x1 7→ {x2 7→ t|p2}(t1|p1)}({x2 7→ t|p2}(t1)) (6.3)

={x1 7→ {x2 7→ t1|p̂2}(t1|p1)}({x2 7→ t1|p̂2}(t1)) (6.4)

={x1 7→ {x2 7→ t1|p̂2}(t1)|p1}({x2 7→ t1|p̂2}(t1)) (6.5)

where (1) follows from definition of RxF and Rx¬F, (2) follows from
Lemma 6.3.3, which can be applied because Vars({x2 7→ t|p2})∩Dom({x1 7→
t1|p1}) = ∅ holds since x1 6∈ Vars(t) and x1 6= x2, (3) follows from Defini-
tion 6.3.1, in (4) the implicit definition of p̂2 holding t1|p̂2 = t|p2 follows from
Lemma 6.3.5, which can be applied since t1 →RxF,x1,p1 t and F 6∈ Vars(t|p2),
and (5) holds because replacements of first-order variables and computation
of subterms can be commuted in this way.

Finally, let the t′ of the lemma be defined as {x2 7→ t1|p̂2}(t1) and note
that t2 = {x1 7→ t′|p1}(t′). It remains to prove that t′ can be derived from t1,
and that t2 can be derived from t′, as stated in the lemma. First, note that
t1 →Rx¬F,x2,p̂2 t

′ holds because neither F nor x2 occur in t1|p̂2 since t1|p̂2 = t|p2
and, moreover, x2 ∈ Vars(t1) holds because x2 ∈ Vars(t) = Vars(t1) \ {x1}.
Now, note that t′ →RxF,x1,p1 t2 holds because:

� F ∈ Vars(t′|p1) since F ∈ Vars(t1|p1) and F 6= x2, and

� x1 ∈ Vars(t′) \ Vars(t′|p1) since x1 ∈ Vars(t1) \ Vars(t1|p1), and x1 6∈
Vars({x2 7→ t1|p̂2}).

Hence, t1 →Rx¬F,x2,p̂2 t
′ →RxF,x1,p1 t2 holds, which concludes the proof. 2

The following result follows from the three previous lemmas, summarizing
the goal of this section.

Lemma 6.3.10 Let 〈∆,X , F 〉 be a one-context unification instance. Let t
be a term such that term(∆)→∗R t in n derivation steps. Then, there exists a
derivation of length n of the form term(∆)→∗Rx¬F

→∗RFF
→∗RxF

→0,1
RFC
→∗Rx¬F

t.

6.4 Complexity Analysis

We now have all the ingredients needed to prove that the one-context unifi-
cation where the input terms are compressed using STGs is in NP. To prove
this fact, we show, for each unifiable instance, that there exists a witness of
polynomial size verifiable in polynomial time. In our setting, this witness is
an STG generating the unified term and the verification consists of checking
whether such a term is of a certain form.

99

Theorem 6.4.1 One context unification with STGs is in NP.

Proof. Let 〈∆,X , F 〉 be a one-context unification instance represented
by an STG G and a nonterminal T of G such that wG,T = term(∆).
By Lemma 6.2.2, ∆ has a solution if and only if there exists a deriva-
tion term(∆) →∗R t of length at most 2|X | + 1 such that t is of the form
d(e(u1, u1), . . . , e(u|∆|, u|∆|)). Moreover, by Lemma 6.3.10, we assume with-
out loss of generality that this derivation is of the form term(∆) →∗Rx¬F

t1 →∗RFF
t2 →∗RxF

t3 →0,1
RFC

t4 →∗Rx¬F
t, for some terms t1, t2, t3, t4.

We first prove that there exists an F -extension G′ of G such that wG′,T = t
and whose size is polynomially bounded by |G|. By Lemma 6.1.2, there exists
an F -extension G1 of G such that wG1,T = t1 and whose size is polynomially
bounded by |G|. Now we claim that there exists an F -extension G2 of G1

such that wG2,T = t2 and whose size is polynomially bounded by |G1|. By the
conditions on the application of RFF and by Lemma 6.3.5, the subcontexts
computed in each step of the subderivation t1 →∗RFF

t2 can be obtained
from t1. Hence, the sequence of applications of rules RFF can be seen as a
single application of a substitution of the form {F 7→ c1 . . . cnF (•)}, where
each ci is a subcontext of t1. By Lemma 6.1.3, there exists an F -extension
G′1 of G1 such that wG′1,T = t1 with a context nonterminal C such that
wG′1,C = c1 . . . cn and whose size is polynomially bounded by |G1| and |X |.
The STG G2 mentioned above is defined as the F -extension of G′1 obtained
by transforming the context variable into a context nonterminal generating
c1 . . . cnF (•), where F is a freshly introduced terminal symbol standing for
the context variable. Again by Lemma 6.1.2, there exists an F -extension
G3 of G2 such that wG3,T = t3 and whose size is polynomially bounded by
|G2|. At this point, note that the exponent e involved in the application of
RFC can be at most exponential with respect to |G3| since it is linear with
|t3|. Hence, by Lemma 6.1.5, there exists an F -extension G4 of G3 such
that wG4,T = t4 and whose size is polynomially bounded by |G3|. Hence, by
definition of G1, G2, G3, G4, it follows that |G4| is polynomially bounded by
|G|. Finally, the existence of the grammar G′ mentioned above follows from
Lemma 6.1.2 and the fact that |G4| is polynomially bounded by |G|. Note
that, as commented in Section 6.1.1, the size of the representation of G′ is
bounded by |G′| · (2 +m), where m is the maximum arity of the terminals of
G′.

To conclude the proof, note that the property whether the term gener-
ated by a certain nonterminal, in our case by the nonterminal T of G′, is of
the form d(e(u1, u1), . . . , e(u|∆|, u|∆|)) can be checked in polynomial time with
respect to the size of the given grammar. To see this, first note that checking
whether the symbol labeling wG′,T at position p, with |p| = 0 or |p| = 1, is

100

d or e, respectively, can be computed in linear time. Finally, nonterminals
generating wG′,T |i.1 and wG′,T |i.2, for i ∈ {1, . . . , |∆|}, can be computed effi-
ciently, and thus, by Theorem 3.2.16, checking whether wG′,T |i.1 = wG′,T |i.2
can be solved in polynomial time. 2

101

Chapter 7

Context Matching

In this chapter, we prove two results for context matching, the particular
case of context unification in which one of the sides of the input equations
does not have variables of any kind.

7.1 k-Context Matching with DAGs

The context matching problem is NP-complete [SSS98]. In this section we
reconsider this problem by introducing the additional restriction stating that
the maximum number k of different context variables of a given instance
is fixed for the problem. We refer to this problem as k-context matching,
which is in fact a family of problems indexed by k. Our goal is to prove
that a complete representation of all solutions is computable in polynomial
time when the input terms are represented with DAGs. This variant is called
k-context matching with DAGs (k-CMD problem).

Our algorithm is presented as nondeterministic, but where the guessing is
restricted to a polynomial number of possibilities. In Section 7.1.1, we solve
the problem for the simpler case of uncompressed terms. This case is easy,
but serves for a better understanding of some ideas presented later, and shows
how the use of nondeterminism simplifies explanations. In Section 7.1.2, we
present a particular case in which the context solution for a context variable
can be inferred. This idea is used several times in the algorithm. In Sec-
tion 7.1.3, we give the intuition behind the algorithm in order to help getting
over the technical difficulties. In Section 7.1.4 we specify the data represen-
tation used in the algorithm, based on STGs. We explain the advantages of
using STGs for representing DAGs, such as clarity, but also simplicity when
analyzing complexity of the required operations on DAGs. In Section 7.1.5
we present the algorithm by means of a set of rules that modify the initial set

102

of equations and prove that they are sound and complete. Moreover, we show
that they give a complete representation of all the solutions of the initial set
of equations. In Section 7.1.6 we analyze the computational complexity of
our algorithm, to conclude that it runs in nondeterministic polynomial time.

7.1.1 k-Context Matching for Uncompressed Terms

The k-context matching problem can be easily solved in polynomial time.
Let {s .

= t} be an instance of the problem, where t is a ground term and
s contains at most k different context variables. Any solution of {s .

= t}
instantiates each context variable by a subcontext of t. The number of dif-
ferent subcontexts of t is bounded by |t|2, since any context occurring in t
can be defined by two positions of t: the root position and the hole posi-
tion of the context. Hence, it suffices to do at most k guessings of contexts
for the context variables among |t|2 possibilities. After applying this partial
substitution, we have to check if the resulting first-order matching problem
has a solution. Since k is assumed to be fixed and the application of the
partial substitutions does not lead to a exponential blowup of the size if the
equations, the overall execution time is polynomial.

When the input is compressed with DAGs, the problem becomes more
difficult. In particular, the number of different contexts of the right-hand
side can be exponential with respect of the size of the representation. The
following example illustrates this fact.

Example 7.1.1 Consider a natural number n > 1 and the term tn de-
fined by the set of equations {t0 = f(a, b), t′0 = f(b, a), t1 = f(t0, t

′
0), t′1 =

f(t′0, t0), t2 = f(t1, t
′
1), t′2 = f(t′1, t1), . . . , tn = f(tn−1, t

′
n−1)}. Note that the

number of different subcontexts of tn is exponential with respect to n. Hence,
the approach used to solve k-CMD in polynomial time in the uncompressed
case cannot be applied when the input is compressed. For instance, guessing
the solution of F in the matching equation F (f(f(b, a), f(a, b)))

.
= tn would

take exponential time when tn is represented with a DAG.

7.1.2 Inferring the Joint Context

One of the key points for obtaining a polynomial time algorithm is the fact
that in some cases, the context solution for a context variable can be in-
ferred. In this section we present this particular case regardless of which is
the representation for terms: consider the simple case where we have two
matching equations of the form F (s)

.
= u and F (t)

.
= v, and suppose that u

and v are different. Suppose also that we know the existence of a solution

103

σ for these equations, but the only known information about the solution σ
is |hp(σ(F))|, i.e. the length of the hole position of σ(F). It can be proved
that this information suffices to obtain σ(F). With this aim we define below
JointCon(u, v, l), the joint context of u and v, for any terms u and v, and
natural number l, which intuitively corresponds to the known information
|hp(σ(F))|.

Definition 7.1.2 Let u 6= v be terms and let l ∈ N. We
define JointCon(u, v, 0) to be the empty context •. We
also define JointCon(f(u1, . . . , um), g(v1, . . . , vm), l + 1) =
f(u1, . . . , ui−1, JointCon(ui, vi, l), ui+1, . . . , um) in the case where f = g and
there exists i ∈ {1, . . . ,m} such that uj = vj for all j 6= i. Otherwise,
JointCon(f(u1, . . . , um), f(v1, . . . , vm), l + 1) is undefined.

Note that in the second case of the previous definition, if f = g and such
an i exists, then it is unique. This is because f(u1, . . . , um) and g(v1, . . . , vm)
are different, and hence, uj = vj for all j 6= i implies that ui 6= vi.

Example 7.1.3 Let u, v, w be f(a, g(h(a, a), c), b), f(a, g(h(b, b), c), b) and
g(f(a, b, c), b), respectively. Then, JointCon(u, v, 0) = JointCon(u,w, 0) =
•, JointCon(u, v, 1) = f(a, •, b), JointCon(u,w, 1) is undefined,
JointCon(u, v, 2) = f(a, g(•, c), b), and JointCon(u, v, 3) is undefined.

The following lemma relates the JointCon operation with our problem.

Lemma 7.1.4 Let s, t, u, v be terms with u 6= v. Let σ be a solution of
{F (s)

.
= u, F (t)

.
= v}. Then σ(F) = JointCon(u, v, |hp(σ(F))|).

Proof. We prove the claim by induction on |hp(σ(F))|. If |hp(σ(F))|
is 0, then σ(F) is •, which coincides with JointCon(u, v, |hp(σ(F))|).
Now, suppose that |hp(σ(F))| is l + 1 for some natural number l. This
implies that σ(F) is of the form f(w1, . . . , wi−1, c, wi+1, . . . , wm) for some
function symbol f , context c, and i ∈ [1,m]. Since σ is a solution of
{F (s)

.
= u, F (t)

.
= v}, then u and v are of the form f(u1, . . . , um) and

f(v1, . . . , vm), respectively. For the same reason, wj = uj = vj for all j 6= i,
and moreover, σ(c[s]) = ui and σ(c[t]) = vi. Since u 6= v holds, we also
have ui 6= vi. Consider a new context variable F ′ and the extension of σ
as σ(F ′) = c. Then, σ is also a solution of {F ′(s) .

= ui, F
′(t)

.
= vi}. Note

that |hp(σ(F ′))| is l, which is smaller than |hp(σ(F))|. By induction hy-
pothesis, σ(F ′) = JointCon(ui, vi, |hp(σ(F ′))|). Hence, we conclude σ(F) =
f(w1, . . . , wi−1, c, wi+1, . . . , wm) = f(w1, . . . , wi−1, σ(F ′), wi+1, . . . , wm) =
f(w1, . . . , wi−1, JointCon(ui, vi, |hp(σ(F ′))|), wi+1, . . . , wm) =
JointCon(u, v, |hp(σ(F))|) 2

104

7.1.3 The Intuition Behind the Algorithm

Our algorithm is presented as a set of nondeterministic rules that deal with
a set of equations on terms represented by DAGs. When we reason about
its complexity, we argue about the determinized version that computes all
guessing possibilities.

As already mentioned, we cannot directly guess a context of the right-
hand side for every context variable, since there may be exponentially many
contexts. In spite of this fact, we show that making an adequate use of the
cases where the joint context can be inferred, the number of possibilities for
each guessing can be drastically reduced. This fact allows us to use this
approach also for the case when terms are represented with DAGs.

After some standard applications of simplification and first-order variable
elimination, we can assume that every matching equation in the set ∆ is of
the form F (s)

.
= t, for some context variable F . Now, our goal is to remove

one context variable by performing a guess, where the overall number of
possibilities remains polynomial.

Suppose first that ∆ contains two equations of the form F (s1)
.
= t1 and

F (s2) = t2 with t1 6= t2. Our goal is to infer the solution context for F as in
the last subsection. However, to apply Lemma 7.1.4, we still need the length
of the hole position of σ(F), for a possible solution σ. But this length can
be guessed from {0, . . . , min(height(t1), height(t2))} which is linear in the
input size, since we are using DAGs for term representation.

Another situation is when ∆ is of the form {F (s1)
.
= t, . . . , F (sn)

.
= t}∪∆′

for some term t and F does not occur elsewhere. In this case, a solution σ
for ∆ necessarily satisfies that σ(F) is a certain context c such that t is of
the form c[t′] for some subterm t′ of t. There may be exponentially many
occurrences of t′ in t as a term, but there is only a linear number of different
subterms of t. Hence, we only have to look for t′, which can be guessed among
only a linear number of possibilities of subterms of t. Then the problem can
be reduced to {s1

.
= t′, . . . , sn

.
= t′} ∪∆′. Note that the variable F does not

appear any more.

Now, suppose that some context variable has an occurrence at some non-
root position in some term occurring in ∆. A particular case occurs when
there is an equation F (s)

.
= t in ∆ such that a subterm of s is of the form

F (s′), i.e. the context variable F appears twice, at the root, and at some other
position. Any possible solution σ satisfies that either σ(F) is the empty
context •, which can be decided with a single guessing, or else σ(F (s′))
equals a proper subterm t′ of t. In the latter case, the pair of equations
{F (s)

.
= t, F (s′)

.
= t′} with t 6= t′ allows us to proceed again by inferring the

context, as in the first case.

105

If none of the previous cases hold, then there exist equations F1(s1)
.
=

t1, F2(s2)
.
= t2, . . . , Fn(sn)

.
= tn in ∆, where F1 occurs in s2, F2 occurs in

s3, and so on, and Fn occurs in s1. In this sequence there is a maximal
height term, say t1. Thus, height(t1) ≥ height(t2). Note that s2 contains
a subterm of the form F1(s′2). Then, similarly as above, either σ(F2) = • or
we can use the equations F1(s1)

.
= t1, F1(s′2)

.
= t′2, with t′2 chosen from the

proper subDAGs of t2, to infer σ(F2).
With this approach each one of the k context variables is instantiated by

a guessing among a polynomial number of possibilities. Hence, at this point
we can bring forward that the final cost of the algorithm will be exponential
in k, which is a constant of the problem. However, we also need to choose a
representation for DAGs that allows to efficiently instantiate both first-order
and context variables. This is done in the next section.

7.1.4 DAG Representation of the k-CMD Algorithm

Before presenting our algorithm for the k-CMD problem in detail, it is nec-
essary to define how we represent DAGs and how our algorithm deals with
such a representation. As stated in Definition 7.1.5 of Chapter 3, DAGs can
be represented as a particular case of an STG, i.e an STG which does not
have context nonterminals. Let us restate such definition here.

Definition 7.1.5 A DAG is an STG where the set of context nontermi-
nals CN is empty, and moreover, there are only rules of the form A →
f(A1, . . . , Am).

For reasons that will be made clear soon we denote DAGs using this
representation.

Definition 7.1.6 An instance of the k-context-matching problem with DAGs
is a pair 〈∆, G〉 where the STG G is a DAG and ∆ is a set of equations {As1

.
=

At1 , . . . , Asn
.
= Atn}, where each Asi and each Ati is a term nonterminal of

G, and each wAti
is ground. The question is to compute a substitution σ (the

solution) for the variables such that σ(wAsi
) = wAti

for every equation i in
∆.

During the execution of the k-CMD algorithm, the equations are pro-
cessed, and G is transformed in order to represent the partial solution at
each step. More concretely, first-order variables are converted into term non-
terminals, and context variables are converted into context nonterminals,
whose generated terms and contexts represent substitutions of a partial so-
lution. By variables we mean the variables of the problem and by function

106

symbols we mean the terminals of the grammar which are not variables al-
though, initially, all of them are terminals of the grammar. The initial G has
no context nonterminals, and it may incorporate them in order to represent
that the context variables have been instantiated. Our algorithm implements
the instantiation of variables as a transformation of the STG: the variables
are transformed into nonterminals by adding rules for them, without chang-
ing the original rules. This ensures that right-hand sides of equations always
represent subterms of an original wG,Ati

. Hence, although context variables
are created during the execution, right-hand sides are always represented by
a subset of the initial G, which is still a DAG according to Definition 7.1.5.

Using STGs for describing DAGs, instead of just talking about DAGs
understood as directed acyclic graphs, has several advantages. First, we do
not have to think about nodes and arrows. STGs are more syntactic and
it is easier and clearer to add(remove) rules to(from) an STG than to talk
about redirecting arrows, new inserted nodes, etc. Second, the formalism of
STGs is an improvement in clarity and simplicity with respect to the usual
concept of solved form for representing partial and final solutions. At the end
of the execution, the obtained substitution for a first-order variable x will be
wx, i.e. this variable will be a term nonterminal, and its generated term will
be the substitution computed for it. Analogously, a context variable F will
be transformed into a context nonterminal, and the substitution computed
for it will be wF . Third, analyzing the size increase of the representation
due to variable instantiation is much simpler: adding a rule F → α for a
context variable F and transforming F into a context nonterminal is easy
to analyze, whereas replacing each node in the DAG labeled with F by new
nodes representing its substitution is a more complicated operation. On the
other hand, this representation has the disadvantage that the set of equations
is not enough by itself, but needs the STG. For this reason, our algorithm
needs to use the rules of G and perform some replacements of nonterminals
by their corresponding definition.

There is a case where our algorithm has to guess a partial solution from
an exponential number of possibilities. This happens when we have equa-
tions F (s1)

.
= t, . . . , F (sn)

.
= t, and the context variable F does not ap-

pear elsewhere. In this case, the only important information to be kept is
which subterm t′ of t has to be selected in order to generate the equations
s1

.
= t′, . . . , sn

.
= t′. The solution for F might be any context c such that

c[t′] = t, that is, the hole position of the solution of F is any path from the
root of t to an occurrence of t′. This situation is illustrated in the following
example.

Example 7.1.7 Let G be an STG with set of rules {A0 → f(A1, A1), A1 →

107

f(A2, A2), . . . , An−1 → f(An, An), An → a, As1 → F (An), As2 →
F (Ax), Ax → x}, where the terminals F and x stand for a context vari-
able and a first-order variable, respectively. As seen in Chapter 3, A0 rep-
resents the complete binary tree of height n. Consider the 1-CMD instance
〈{As1

.
= A0, As2

.
= A0}, G〉. Note that, any context C of wA0 with |hp(C)| = n

is a solution for F .

We want to show that all solutions can be computed in polynomial time,
but the number of solutions may be exponentially large only due to the
choice possibilities of c. For this reason, in the algorithm we have a third
component, apart from the set of equations ∆ and the STG G, representing
the possible elections for the variables F of this kind. This component is a
set of expressions of the form F ∈ Contexts(A,A′), representing that F can
be replaced by any context c such that c[wA′] = wA for unifiers σ. Hence,
our algorithm deals with triples 〈∆, G,Γ〉 where Γ is the set containing this
kind of expressions.

As a last ingredient, we need to adapt the operation JointCon, presented
in Section 7.1.2, to our representation.

Definition 7.1.8 Let G be an STG and A,B be two term nonterminals of
G such that wA 6= wB and restriction(G, {A,B}) is a DAG representing
ground terms. Let l be a natural number.

Then, JointCG(G,A,B, l) is defined as an extension of G recursively as
follows. JointCG(G,A,B, 0) contains G plus the rule C → •, where C is
a new context nonterminal. For the case of JointCG(G,A,B, l + 1), if the
rules of A and B are of the form A→ f(A1, . . . , Ai−1, Ai, Ai+1, . . . , An) and
B → f(A1, . . . , Ai−1, Bi, Ai+1, . . . , An), for some i satisfying wAi

6= wBi
,

then JointCG(G,A,B, l+1) contains JointCG(G,Ai, Bi, l), which has a con-
text nonterminal C ′ generating JointCon(wAi

, wBi
, l), plus the rule C →

f(A1, . . . , Ai−1, C
′, Ai+1, . . . , An), where C is a new context nonterminal. In

any other case, JointCG(G,A,B, l + 1) is undefined.

Lemma 7.1.9 Let G be an STG and A,B be two term nonterminals
of G such that wA 6= wB and restriction(G, {A,B}) is a DAG rep-
resenting ground terms. Let l be a natural number. Assume also that
restriction(G, {A,B}) is compressed optimally, i.e. equal terms are repre-
sented by the same term nonterminal.

Then, JointCG(G,A,B, l) adds at most depth(G) new context nontermi-
nals to G, and has one symbol generating JointCon(wA, wB, l). Moreover,
all the added context nonterminals C have rules which are of the form C → •
or C → f(A1, . . . , Ai−1, C

′, Ai+1, . . . , An), where the terminal f is necessar-
ily a function symbol, i.e. it is not a variable. The time complexity of this
construction is O(depth(G)).

108

Definition 7.1.10 Let G be an STG and A,B be two term nonterminals of
G such that wA 6= wB and restriction(G, {A,B}) is a DAG representing
ground terms. Let F be a context variable which is a terminal of arity 1 of
G. Let l be a natural number. Assume also that restriction(G, {A,B})
is compressed optimally, i.e. equal terms are represented by the same term
nonterminal.

Then, JointCGF(G,F,A,B, l) is an STG obtained from
JointCG(G,A,B, l), which has a context nonterminal C not occurring
in G and generating the context JointCon(wA, wB, l), by transforming F
into a context nonterminal, and replacing the nonterminal C by F every-
where. This corresponds to the instantiation of F by the context generated
by C.

Example 7.1.11 We give a simplified example for the k-CMD algorithm.
In particular we illustrate that two equations F (s1)

.
= t1, F (s2)

.
= t2 with

t1 6= t2 allow a simple guess of the solution of F . Let the equations be
F1(F2(F3(x)))

.
= f(a, f(f(a, b), c)) and F1(F3(F2(y)))

.
= f(a, f(a, f(a, c))),

where Fi, for i ∈ {1, 2, 3}, is a context variable and x, y are first-order vari-
ables. Then F1 can only be replaced by • or f(a, •), since f(f(a, b), c) 6=
f(a, f(a, c)). Let us choose the second possibility. After decomposition we
obtain:
F2(F3(x))

.
= f(f(a, b), c), F3(F2(y))

.
= f(a, f(a, c)).

Now F3 may be the empty context or a nonempty one. Let us guess that it is
nonempty. Then we can choose among the equations F2(y)

.
= f(a, c), F2(y)

.
=

a, F2(y)
.
= c. Let us choose the first one, which leads to the intermediate equa-

tions F2(F3(x))
.
= f(f(a, b), c), F2(y)

.
= f(a, c), with f(f(a, b), c) 6= f(a, c).

The only possibility for F2 is f(•, c), which leads to an instantiation. The
equations are, after decomposition:
F3(x)

.
= f(a, b), F3(f(y, c))

.
= f(a, f(a, c)).

Using the same scheme, we obtain the solution F3 = f(a, •), x = b, y = a.

Example 7.1.12 We give another simplified example for the k-CMD
algorithm illustrating the case F (s1)

.
= t, F (s2)

.
= t. Let the

equations be F (f(x, b))
.
= f(f(a, b), f(f(a, b), f(a, b))) and F (y) =

f(f(a, b), f(f(a, b), f(a, b))). In principle, F can be instantiated by any sub-
context of the right term. There are as many different subcontexts as po-
sitions in the right term. But only guessing among the proper subterms,
i.e. {a, b, f(a, b), f(f(a, b), f(a, b)))}, we obtain, for a concrete selection, the
equations f(x, b)

.
= f(a, b), y

.
= f(a, b). Later, we represent the solutions for

the context F as Contexts(f(x, b), f(f(a, b), f(f(a, b), f(a, b)))). If the right
term is represented as a DAG, then the number of positions may be far larger
than the number of possible subterms.

109

7.1.5 Rules of the k-CMD Algorithm

The k-CMD algorithm is presented in Figures 7.1, 7.2 and 7.3 as a set of
transformation rules which deal with triples 〈∆, G,Γ〉, where ∆ is a set of
equations defined over an STG G, where the right hand sides of equations are
nonterminals in a DAG representing ground terms, and Γ is a set of expres-
sions each one representing all solutions for a context variable, as described
in the previous section. We assume that, initially, equal subterms in the
right-hand sides of equations are represented by the same term nonterminal,
i.e. optimal DAG compression is used. This will hold during the execution.
Given an instance of the problem 〈{As1

.
= At1 , . . . , Asn

.
= Atn}, G〉, the start-

ing triple is 〈{As1
.
= At1 , . . . , Asn

.
= Atn}, G, ∅〉, and the constant L occurring

in the rules is max1≤i≤n(height(wG,Ati
)).

There are two kinds of choices the algorithm can do. On the one side there
are the “don’t care” selections, which include the strategy stating which rule
is applied and the selection of the equations involved in the rule application.
On the other side we have the guessings, which make the algorithm nonde-
terministic. Those correspond to the decisions marked as “guessed” in the
conditions of the rules, but also to the selection performed when the resulting
part of a rule has a disjunction.

Unfold1:

〈
∆ ∪ {A .

= B}, G = (T N ∪ {A,B}, CN ,Σ, R ∪ {A→ u}),Γ
〉

〈∆ ∪ {u .
= B}, G,Γ〉

Unfold2:

〈
∆ ∪ {CA .

= B}, G = (T N ∪ {A,B}, CN ∪ {C},Σ,
R ∪ {C → f(A1, . . . , Ci, . . . , Am)}),Γ

〉
〈∆ ∪ {f(A1, . . . , CiA, . . . , Am)

.
= B}, G,Γ〉

Unfold3:

〈
∆ ∪ {CA .

= B}, G = (T N ∪ {A,B}, CN ∪ {C},Σ, R ∪ {C → •}),Γ
〉

〈∆ ∪ A .
= B}, G,Γ〉

Figure 7.1: Unfold-Rules of the k-CMD Algorithm

We differentiate our set of inference rules in two disjoint subsets. We
call the first rules unfolding rules (see Fig. 7.1), since their purpose is to
replace the nonterminals of G occurring in the equations by their definition
in G. Hence, these rules are related to our grammar-based representation for
DAGs. We refer to the rest of the rules as solving rules, since they represent
the actual algorithm as described in Section 7.1.3; these are splitted into the
first-order rules (see Fig. 7.2) and the context-variable rules (see Fig. 7.3).
The application of solving rules transforms the set of equations into a new
set. Depending on the case, more than one rule can be applied to a given
set of equations. Hence, the inference system represents, in fact, a family

110

Decompose:

〈
∆ ∪ {f(u1, . . . , um)

.
= B}, G = (T N ∪ {B1, . . . , Bm},

CN ,Σ ∪ {f}, R ∪ {B → f(B1, . . . , Bm)}),Γ
〉

〈∆ ∪ {u1
.
= B1, . . . , um

.
= Bm}, G,Γ〉

where f is a function symbol (m = arity(f))

Fail:

〈
∆ ∪ {f(u1, . . . , um)

.
= B)}, G = (T N ∪ {B1, . . . , Bm′},

CN ,Σ ∪ {f, g}, R ∪ {B → g(B1, . . . , Bm′)),Γ
〉

⊥
where f 6= g are function symbols (m = arity(f), m′ = arity(g))).

Elimx:

〈
∆ ∪ {x .

= B}, G = (T N ∪ {B}, CN ,Σ ∪ {x}, R),Γ
〉

〈∆ ∪ {x .
= B}, G′ = (T N ∪ {B, x}, CN ,Σ, R ∪ {x→ B}),Γ〉

where x is a first-order variable and a terminal.

Figure 7.2: First-Order-Rules of the k-CMD Algorithm

of algorithms, depending on the strategy for deciding which rule to apply
and to which subset of equations. As commented before, our initial set of
equations is of the form {As1

.
= At1 , . . . , Asn

.
= Atn}. But after applying the

transformation rules, the form of these equations may change. Nevertheless,
at any step of the algorithm the current equations are simple, according to
the following definition.

Definition 7.1.13 Let G = (T N , T C,Σ, R) be an STG, and let u
.
= v be

an equation, where u, v ∈ T (T N ∪ T C ∪ Σ). The equation u
.
= v is called

simple over G if it is of one of the following forms.

� A
.
= B

� CA
.
= B

� α(A1, . . . , Am)
.
= B

� f(A1, . . . , Ai−1, CiA,Ai+1, . . . , Am)
.
= B,

where A is a term nonterminal of G, B is a term nonterminal of G
representing a ground term, C is a context nonterminal of G, and the terms
α(A1, . . . , Am) and f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am) are right-hand sides of
rules of G, for a terminal α, a terminal f , which is also a function symbol,
term nonterminals A1, . . . , Am, and a context nonterminal Ci. Variables can
only occur as some α.

The following lemma shows that no rule of the form C → C1C2 occurs in
the k-CMD algorithm.

111

ElimF1:

〈
∆ ∪ {F (A1)

.
= B1, F (A2)

.
= B2},

G = (T N ∪ {A1, A2, B1, B2}, CN ,Σ ∪ {F}, R),Γ
〉

〈∆ ∪ {F (A1)
.
= B1, F (A2)

.
= B2}, G′ = JointCGF(G,F,B1, B2, l),Γ〉

where F is a context variable and a terminal and wB1 6= wB2 . l is
guessed over [0, L] such that JointCG(G,B1, B2, l) is defined.

ElimF2:

〈
∆ ∪ {F (A1)

.
= B,F (A2)

.
= B, . . . , F (An)

.
= B},

G = (T N ∪ {A1, . . . , An, B,B
′}, CN ,Σ ∪ {F}, R),Γ

〉
〈∆ ∪ {A1

.
= B′, A2

.
= B′, . . . , An

.
= B′}, G,Γ ∪ {F ∈ Contexts(B,B′)}〉

where F is a context variable and a terminal not occurring in the wAi
’s,

nor wu, for all equations u
.
= v ∈ ∆. B′ is guessed over the term

nonterminals of restriction(G, {B}).

ElimF3:

〈
∆ ∪ {F (A)

.
= B}, G = (T N ∪ {A,B,B′}, CN ,Σ ∪ {F}, R),Γ

〉〈
∆ ∪ {F (A)

.
= B}, G = (T N ∪ {A,B,B′}, CN ∪ {F},

Σ, R ∪ {F → •}),Γ
〉∣∣ 〈∆ ∪ {F (A)

.
= B}, G′ = JointCGF(G,F,B,B′, l),Γ〉

where F is a context variable and a terminal occurring in wA.
The term nonterminal B′ is guessed over the term nonterminals of
restriction(G, {B}) excluding B, and l is guessed over [1, L] such
that JointCG(G,B,B′, l) is defined.

ElimF4:

〈
∆ ∪ {F1(A1)

.
= B1, F2(A2)

.
= B2},

G = (T N ∪ {A1, A2, B1, B2, B
′
2}, CN ,Σ ∪ {F1, F2}, R),Γ

〉〈
∆ ∪ {F1(A1)

.
= B1, F2(A2)

.
= B2}, G = (T N ∪ {A1, A2, B1, B2, B

′
2},

CN ∪ {F2},Σ ∪ {F1}, R ∪ {F2 → •}),Γ
〉∣∣ 〈∆ ∪ {F1(A1)

.
= B1, F2(A2)

.
= B2}, G′ = JointCGF(G,F1, B1, B

′
2, l),Γ〉

where F1 6= F2 are context variables that are terminals, F1 occurs in
wA2 , and height(wB1) ≥ height(wB2). B′2 is guessed over the term
nonterminals of restriction(G, {B2}) excluding B2, and l is guessed
over [0, L] such that JointCG(G,B1, B

′
2, l) is defined.

Figure 7.3: Elim-F-Rules of the k-CMD Algorithm

Lemma 7.1.14 Let 〈∆, G,Γ〉 be a triple obtained by our algorithm at any
point of the execution. Then, the rules of G are of the following forms.

� A→ A1

� A→ α(A1, . . . , Am),

� A→ CA1

� C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)

� C → •

where A,A1, A2, . . . , Am are term nonterminals of G, C,Ci are context
nonterminals of G, α is a terminal of G, and f is a terminal of G, which is
also a function symbol.

112

Proof. We prove the lemma by induction on the number of applied inference
rules. For the base case, note that the lemma holds for the STG G0 given as
input since, by Definitions 7.1.5 and 7.1.6, all the rules in G0 are of the form
A → α(A1, . . . , Am) for some term nonterminals A1, . . . , Am and a terminal
α of G0.

For the inductive case, let 〈∆′, G′,Γ′〉 be the triple from which 〈∆, G,Γ〉
was obtained by an inference rule application. By induction hypothesis
〈∆′, G′,Γ′〉 satisfies the conditions of the lemma. We distinguish cases ac-
cording to the inference rule applied to 〈∆′, G′,Γ′〉 in order to show that the
rules in G follow the conditions of the lemma. Note that for the inference
rules that do not modify the STG (unfolding rules, Decompose, Fail, and
ElimF2), this is straightforward. Otherwise, if Elimx was the applied rule,
x became a term nonterminal and a rule of the form x→ A was added to G′

for some terminal x representing a first-order variable and term nonterminal
A. Note that the added rule satisfies the conditions of the lemma. Finally, if
the applied rule was either ElimF1, ElimF3, or ElimF4 then either G was
extended by the JointCon construction or a rule F → • was added to G′,
for some context variable F . By Lemma 7.1.9, in both cases all the added
rules satisfy the condition of the lemma. 2

Lemma 7.1.15 Let 〈∆, G,Γ〉 be the triple obtained by our algorithm at a
point of the execution. Then, the set ∆ consists of simple equations over G.

Proof. Since for the triple given as input 〈∆0, G0,Γ0 = ∅〉 all the equations
in ∆ are of the form As

.
= At for some term nonterminals As, At in G0, the

statement of the Lemma holds in this case. Hence, for proving this lemma
it suffices to check that after an inference step where 〈∆, G,Γ〉 was obtained
from a triple 〈∆′, G′,Γ′〉, each new equation in ∆ is simple over G. Checking
this is an easy task for rules Fail, Elimx, ElimF1, ElimF2, ElimF3,
ElimF4, Unfold2, and Unfold3, since the new produced equations are
explicitly defined. For Decompose the result follows by induction hypothesis.
Finally, the produced equations due to the application of Unfold1 are of
the form u

.
= B, where B is a term nonterminal and u corresponds to a

right-hand side of a rule in G′ and hence, they satisfy the condition to be
simple over G due to Lemma 7.1.14. 2

Before proving soundness, completeness and termination of our inference
system we should define a notion of solution of the triples the k-CMD algo-
rithm deals with.

Definition 7.1.16 A solution of 〈∆, G,Γ〉 is a substitution σ such that
σ(wG,u) = wG,v for each equation u

.
= v in ∆, σ(wG,x) = σ(x) for each

113

first-order variable x, and σ(wG,F) = σ(F) for each context variable F . Fur-
thermore, for each context variable F such that (F ∈ Contexts(A1, A2)) ∈ Γ,
where A1 and A2 are term nonterminals of G, it holds that σ(F)σ(wG,A2) =
wG,A1.

Let 〈∆, G,Γ〉 be a triple generated by our algorithm at any point of the
execution. Note that some of the variables may have been isolated and,
hence, the STG G was extended in order to represent the corresponding
instantiations. As stated in the previous definition, a solution of 〈∆, G,Γ〉
has to be consistent with this extensions. The following lemma, together
with the definition of a solution σ of 〈∆, G,Γ〉, states that our representation
for partial solutions by extending the grammar is correct in the sense that
the same term is obtained by applying a solution to the term generated by G
before and after such an extension. It will be helpful when proving soundness
and completeness.

Lemma 7.1.17 Let G = (T N , CN ,Σ ∪ {V }, R) be an STG obtained at
any point of the execution of the k-CMD algorithm. Let V be a terminal
of G representing either a first-order or a context variable. Let G′ be the
STG obtained from G by converting V into a nonterminal of the grammar
and adding some new rules and nonterminals such that V generates a certain
term or context wG′,V . Let σ be a substitution such that σ(V) = σ(wG′,V). Let
t be a term in T (T N ∪CN ∪Σ∪{V }) or a context in C(T N ∪CN ∪Σ∪{V }).
Then, σ(wG,t) = σ(wG′,t).

Proof. The proof is an easy induction on the size of t and the number of
rule applications to derive wG,t. 2

Lemma 7.1.18 The set of rules is sound.

Proof. Let 〈∆′, G′,Γ′〉 be the triple obtained by our algorithm by applying
an inference step on 〈∆, G,Γ〉. By inspecting the rules, we can check that
every solution σ of 〈∆′, G′,Γ′〉 is also a solution of 〈∆, G,Γ〉: We distinguish
cases depending on which rule was applied for obtaining 〈∆′, G′,Γ′〉 from
〈∆, G,Γ〉.

Note that the rules Elimx, ElimF1, ElimF3 and ElimF4 instantiate
either a first-order or a context variable V . Therefore, if one of those rules was
the rule applied to 〈∆, G,Γ〉 then G′ was obtained from G by transforming
V into a nonterminal of the STG and adding some nonterminals and their
corresponding rules such that V generates wG′,V . By Definition 7.1.16, for
being a solution of 〈∆′, G′,Γ′〉, σ satisfies σ(V) = σ(wG′,V). Hence, G and
G′ satisfy the conditions of Lemma 7.1.17 and we can conclude σ(wG,t) =

114

σ(wG′,t) for every term t in T (T N ∪ CN ∪ Σ), where G = (T N , CN ,Σ, R).
It follows that σ(x) = σ(wG,x) for every first-order variable x, and σ(F) =
σ(wG,F) for every context variable F . Moreover, since none of these rules
changed neither the set ∆ nor Γ, σ is also a solution for 〈∆, G,Γ〉.

Suppose the rule applied is ElimF2. In this case, G′ = G but both sets
∆ and Γ are changed. Concretely, a set of equations of the form {F (A1)

.
=

B,F (A2)
.
= B, . . . , F (An)

.
= B} of ∆ is replaced by a set of equations of

the form {A1
.
= B′, A2

.
= B′, . . . , An

.
= B′} to obtain ∆′ and the restriction

F ∈ Contexts(B,B′) was added to Γ to obtain Γ′. By Definition 7.1.16, since
σ is a solution of 〈∆′, G′,Γ′〉, it holds σ(wG′,Ai

) = wG′,B′ for each i ∈ [1, n],
and σ(F)wG′,B′ = wG′,B. Since G = G′ and ∆ − {F (Ai)

.
= B | i ∈ [1, n]} =

∆′ − {Ai
.
= B′ | i ∈ [1, n]}, it suffices to prove that σ(wG,F (Ai)) = wG,B

for i ∈ [1, n] to show that σ is also a solution of 〈∆, G,Γ〉. Since G =
G′ and σ(wG′,Ai

) = wG′,B′ then σ(wG,Ai
) = wG,B′ holds. Furthermore, it

holds that σ(wG,F (Ai)) = σ(F (wG,Ai
)) = σ(F)σ(wG,Ai

) = σ(F)σ(wG,B′) =
σ(F)σ(wG′,B′) = wG′,B = wG,B. Hence, we proved that σ(wG,F (Ai)) = wG,B
and thus σ is also a solution of 〈∆, G,Γ〉.

For rule Fail, it is obvious that the assumption of a solution σ for the
resulting triple 〈∆′, G′,Γ′〉 cannot be satisfied.

Suppose the rule applied is Decompose. Then, G′ = G, Γ = Γ′ and
an equation f(u1, . . . , um)

.
= B in ∆ where B → f(B1, . . . , Bm) is the

rule in G is replaced by the equations u1
.
= B1, . . . , um

.
= Bm to ob-

tain ∆′. Hence, it suffices to prove that σ(wG,f(u1,...,um)) = wG,f(B1,...,Bm)

in order to show that σ is also a solution for 〈∆, G,Γ〉. Since σ is a so-
lution of 〈∆′, G′,Γ′〉 it holds σ(wG′,u1) = wG′,B1 , . . . , σ(wG′,um) = wG′,Bm .
Thus, σ(wG,f(u1,...,um)) = σ(wG′,f(u1,...,um)) = f(σ(wG′,u1), . . . , σ(wG′,um)) =
f(wG′,B1 , . . . , wG′,Bm) = f(wG,B1 , . . . , wG,Bm) = wG,f(B1,...,Bm).

In the case where the rule applied is an unfolding rule, note that these
rules just replace nonterminals of G by their definition in G. Hence, since
wN = wα for each nonterminal N with a rule N → α ∈ G, every solution of
〈∆′, G′,Γ′〉 is also a solution of 〈∆, G,Γ〉. 2

The following lemma is an adaptation of Lemma 7.1.4 to our STG-based
representation for DAGs, which will be helpful when proving completeness.

Lemma 7.1.19 Let G = (T N , CN ,Σ, R) be an STG. Let u1, u2 be terms in
T (T N ∪ CN ∪Σ). Let B1, B2 be term nonterminals of G such that wG,B1 6=
wG,B2 and both wG,B1 and wG,B2 are ground. Let restriction(G, {B1, B2})
be compressed optimally as a DAG. Let σ be a solution of 〈{F (u1)

.
=

B1, F (u2)
.
= B2}, G,Γ〉 where the context variable F is a terminal of G.

Let G′ = JointCGF(G,F,B1, B2, |hp(σ(F))|). Then, σ(F) = wG′,F .

115

Proof. This lemma directly follows from Lemma 7.1.4 and Definition 7.1.10.
2

Rules can be applied in a “don’t care”-fashion, whereas the selections
within the rules are “don’t know”-nondeterministic:

Lemma 7.1.20 For every solution σ of 〈∆, G,Γ〉, and for every rule applica-
tion, there is a result 〈∆′, G′,Γ′〉 such that σ is also a solution of 〈∆′, G′,Γ′〉.
Moreover, any maximal sequence of rule applications computes a representa-
tion of all solutions, by gathering all guesses and alternatives in the rules.

Proof. Let σ be a solution for some triple 〈∆, G,Γ〉 obtained by our
algorithm. It suffices to show that after applying any applicable rule to
〈∆, G,Γ〉, one of the resulting triples 〈∆′, G′,Γ′〉 among the possible guesses
also has σ as solution. We distinguish cases depending on which inference
step was applied for obtaining 〈∆′, G′,Γ′〉 from 〈∆, G,Γ〉. We state explicitly
here G = (T N , CN ,Σ, R) because it will be necessary, in some cases, to refer
to the set of terms T (T N ∪ CN ∪ Σ).

Assume the applied rule is Decompose. Then, G′ = G, Γ = Γ′ and an
equation f(u1, . . . , um)

.
= B in ∆ with rule B → f(B1, . . . , Bm) is replaced by

the equations u1
.
= B1, . . . , um

.
= Bm to obtain ∆′, where each ui ∈ T (T N ∪

CN ∪ Σ). Hence, it suffices to prove σ(wG′,u1) = wG′,B1 , . . . , σ(wG′,um) =
wG′,Bm in order to show that σ is also a solution for 〈∆′, G′,Γ′〉. Since σ is
a solution of 〈∆, G,Γ〉, it holds that σ(wG,f(u1,...,um)) = wG,f(B1,...,Bm) which
implies σ(f(wG,u1 , . . . , wG,um)) = f(wG,B1 , . . . , wG,Bm), and hence σ(wG,u1) =
wG,B1 , . . . , σ(wG,um) = wG,Bm . Finally, since G = G′, σ is also a solution of
〈∆′, G′,Γ′〉.

Assume the applied rule is Elimx. Then Γ = Γ′ and ∆ = ∆′. For
a concrete equation x

.
= B ∈ ∆, G was extended to G′ by converting x

into a term nonterminal and adding the rule x → B. Since σ is a solution
of 〈∆, G,Γ〉 and x is a terminal of G, wG,x = x and σ(x) = wG,B holds.
Furthermore, wG′,x = wG′,B = wG,B since B is the definition of x in G′ and
none of the rules of G were changed to obtain G′. Hence, σ(x) = wG,B =
wG′,B = wG′,x = σ(wG′,x), where the last equality holds because wG′,x is
ground. Thus, we can apply Lemma 7.1.17 and claim that, for every term t
in T (T N ∪ CN ∪ Σ), σ(wG,t) = σ(wG′,t). Hence, since Γ = Γ′ and ∆ = ∆′,
σ is also a solution for 〈∆′, G′,Γ′〉.

For the Fail rule it is clear that the assumption on the existence of a
solution cannot be satisfied.

Suppose that the applied rule is ElimF1. In this case, ∆ = ∆′, Γ = Γ′

and G was extended to G′ by converting the terminal F , which is a context
variable, into a context nonterminal. Some rules and nonterminals were

116

added such that F generates a ground context wG′,F . We first show that
σ(F) = σ(wG′,F) holds for one of the possible guesses when applying this
rule.

Since |hp(σ(F))| is smaller than or equal to L (|hp(σ(F))| ∈ [0, L]) we can
assume that l is guessed as |hp(σ(F))| in the rule application. Then, by the
conditions for this rule application, there are equations of the form F (A1)

.
=

B1, F (A2)
.
= B2 in ∆ such that wB1 6= wB2 . Furthermore, both wB1 and

wB2 are ground and G′ is constructed as JointCGF(G,F,B1, B2, |hp(σ(F))|).
Hence, by Lemma 7.1.19, σ(F) = wG′,F . Moreover, we can apply
Lemma 7.1.17 and conclude that σ(wG,t) = σ(wG′,t) for every term t ∈
T (T N ∪ CN ∪ Σ). Thus, σ is a solution of 〈∆′, G′,Γ′〉.

Suppose now that the applied rule is ElimF2. In this case, G = G′,
and some equations of the form F (A1)

.
= B,F (A2)

.
= B, . . . , F (An)

.
= B

of ∆ such that F does not occur in wu for any other equation u
.
= v in

∆ were replaced by the equations A1
.
= B′, . . . , An

.
= B′ to obtain ∆′.

Moreover, the restriction F ∈ Contexts(B, B′) was added to Γ to obtain
Γ′. Since σ is a solution of 〈∆, G,Γ〉, it is also a solution of {F (A1)

.
=

B,F (A2)
.
= B, . . . , F (An)

.
= B}. Hence, there exists some subterm wG,B′ of

wG,B satisfying σ(wG,A1) = wG,B′ , . . . , σ(wG,An) = wG,B′ which corresponds
to wG,B|hp(σ(F)). In our representation choosing a subterm of wG,B is equiv-
alent to choosing one of the term nonterminals of restriction(G, {B}).
Thus, we can consider the case where B′ is the term nonterminal guessed in
the rule application. In this case σ(wG′,A1) = wG′,B′ , . . . , σ(wG′,An) = wG′,B′
holds since G = G′. Therefore, σ is also a solution for 〈∆′, G′,Γ′〉. With re-
spect to σ(F), it satisfies σ(F)wG,B′ = wG,B, which is exactly the condition
added to Γ by the rule application in order to keep a representation of all
possible instantiations for the context variable F .

Suppose that the applied rule is ElimF3. In this case, ∆ = ∆′, Γ = Γ′

and G was extended to G′ by converting a terminal F representing a context
variable into a context nonterminal. Some rules and nonterminals were added
such that F generates the ground term wG′,F . We first show that σ(F) =
σ(wG′,F) holds for one of the possible guesses when applying this rule.

By the condition of this rule application, F (A)
.
= B is an equation in ∆

where F occurs in wA. The case σ(F) = • is covered by the first alternative
of the rule. Now assume that σ(F) 6= •. Since F occurs in wG,A, there
exists a proper subterm of wG,F (A) (a subterm of wG,A) of the form F (u)
for some term u ∈ T (Σ). Since σ(F (wG,A)) = wG,B holds and σ(F) 6= •,
there exists a proper subterm wG,B′ of wG,B such that σ(F (u)) = wG,B′
and, for the same reason as in the previous case, B′ is a term nontermi-
nal in restriction(G, {B}) excluding B. We consider the case where the

117

term nonterminal B′ is guessed by the rule application and l is guessed
as |hp(σ(F))|. When these two guesses are done, G′ is constructed as
JointCGF(G,F,B,B′, |hp(σ(F))|). Furthermore, we know that σ satisfies
σ(F (u)) = wG,B′ and σ(wG,F (A)) = wG,B. Moreover, wG,B′ and wG,B are
ground, and wB′ 6= wB, since wB′ is a proper subDAG of wB. Hence, we can
apply Lemma 7.1.19 and conclude σ(F) = wG′,F . As before, we can apply
Lemma 7.1.17 and conclude that σ is a solution of 〈∆′, G′,Γ′〉.

Suppose that the applied rule is ElimF4. In this case, ∆ = ∆′, Γ = Γ′

and G was extended to G′ by either converting a terminal F2 or a terminal
F1 6= F2, each of them representing a context variable, into a context non-
terminal. Each of these cases corresponds to one of the two alternatives of
the rule. In the first case the rule F2 → • was added, such that F2 generates
wG′,F2 = •, the empty context. In the second case some rules and nontermi-
nals were added, such that F1 generates the ground context wG′,F1 . We first
show that either σ(F2) = σ(wG′,F2), in the former case, or σ(F1) = σ(wG′,F1)
in the latter case.

By the condition of the application of ElimF4, there is a pair of equa-
tions in ∆ of the form F1(A1)

.
= B1 and F2(A2)

.
= B2. Furthermore, F1

occurs in wG,A2 , and height(wG,B1) ≥ height(wG,B2). The case σ(F2) =
• is covered by the first alternative of the rule, and it is obvious that
σ(F2) = σ(wG′,F2) = • holds in this case. Now assume that σ(F2) 6= •.
Since F1 occurs in wG,A2 , there exists a proper subterm of wG,F2(A2) (a
subterm of wG,A2) of the form F1(u), for some u ∈ T (T N ∪ CN ∪ Σ).
Moreover, since σ(wG,F2(A2)) = wG,B2 holds, and σ(F2) 6= •, there exists
a proper subterm wG,B′2 of wG,B2 such that σ(F1(u)) = wG,B′2 and, for the
same reason as in the previous case, B′2 is represented by a term nonter-
minal in restriction(G, {B2}) excluding B2, since the subterm is proper.
We consider the case where the term nonterminal B′2 is guessed by the
rule application and l is guessed as |hp(σ(F1))|. Hence, G′ is constructed
as JointCGF(G,F1, B1, B

′
2, |hp(σ(F1))|). We know that σ has to satisfy

σ(wF1(A1)) = wG,B1 and σ(F1(u)) = wG,B′2 . Moreover, wG,B1 and wG,B′2 are
ground, and wG,B1 6= wG,B′2 holds, since height(wG,B1) ≥ height(wG,B2) and
wG,B′2 is a proper subterm of wG,B2 . Hence, by Lemma 7.1.19, σ(F1) = wG′,F1 .
As before, we can apply Lemma 7.1.17 and conclude that σ is a solution of
〈∆′, G′,Γ′〉.

Finally, assume that the applied rule is an unfolding rule. Note that the
application of an unfolding rule does not modify the set of restrictions Γ
nor the grammar G. ∆′ is obtained by replacing the left-hand side of an
equation u

.
= v in ∆ by a new equation u′

.
= v. Since G = G′, it holds

that wG,u = wG′,u. Moreover, since σ is a solution of 〈∆, G,Γ〉, it satisfies

118

σ(wG,u) = wG,v. Hence, it suffices to check that wG,u = wG,u′ when u
.
= v is

replaced by u′
.
= v by the rule application. But this is direct from the fact

that this replacements are due to a rule application of G, and we are done.
2

Definition 7.1.21 A triple 〈∆, G,Γ〉 is solved if there are no occurrences of
terminals of G representing first-order or context variables in ∆.

Proposition 7.1.22 For every initial triple 〈∆0, G0,Γ0 = ∅〉, the de-
terminized algorithm will compute a complete set of solved triples
〈∆1, G1,Γ1〉, . . . , 〈∆n, Gn,Γn〉, such that σ is a solution of 〈∆0, G0,Γ0 = ∅〉
iff it is a solution of some 〈∆i, Gi,Γi〉, for i ∈ [1, n].

Proof.
Termination holds, see the argumentation on the complexity in the next

section. Since we have proved soundness and completeness, it remains to
show that if some intermediate 〈∆, G,Γ〉 is not solved, then an inference
rule can be applied. The k-CMD algorithm represents instantiations of vari-
ables by transforming them into nonterminals of the STG. Hence, the fact
that a triple 〈∆, G,Γ〉 is not solved means that there are occurrences of
terminals of G representing first-order variables or context variables in ∆
(Definition 7.1.21).
Assume that no inference rule can be applied. We will deduce the form of
the equations u

.
= B ∈ ∆ under this assumption until we reach a contradic-

tion. Let A,A1, . . . , Am, B,B1, . . . , Bm be term nonterminals of G, let Ci, C
be context nonterminals of G, and let f, g be terminals of G representing
function symbols of arity m and m′, respectively.
Note that u cannot be of the form f(A1, . . . , Am) nor
f(A1, . . . , Ai−1, CiA,Ai+1, . . . , Am) since, as v is a nonterminal B with
rule B → g(B1, . . . , Bm′), either Decompose (if f = g), or Fail (if f 6= g)
would be applicable. Hence, by 7.1.15, at this point u can be of the forms x,
F (A) or CA, where x is a terminal of the grammar representing a first-order
variable and F is a terminal of the grammar representing a context variable.
This implies that, if u = x then Elimx is applicable, and if u = CA then
Unfold2 is applicable. Thus, u can only be of the form F (A). Hence, since
we argued about an arbitrarily chosen equation u

.
= v ∈ ∆, every equation i

in ∆ is of the form Fi(Ai)
.
= Bi. Moreover, since neither ElimF1,ElimF2

nor ElimF3 can be applied, for every terminal Fi representing a context
variable occurring in ∆ there exists an equation Fj(Aj)

.
= Bj in ∆, such that

Fi is different from the terminal Fj, and Fi occurs in wAj
. Since the set ∆

is finite, there exist equations F1(A1)
.
= B1, F2(A2)

.
= B2, . . . , Fn(An)

.
= Bn

119

with n ≥ 2 satisfying that F1 occurs in wA2 , F2 occurs in wA3 , . . . , Fn−1

occurs in wAn , and Fn occurs in wA1 , and where the Fi’s are pairwise differ-
ent. Let i be such that wBi

has maximal height among the wB1 , . . . , wBn ,
say i = 1. Hence, we may take the equation F1(A1)

.
= B1 and the equation

F2(A2)
.
= B2 and apply rule ElimF4, which is a contradiction. 2

The following example shows that the Decompose rule may have an ex-
ponential number of executions if multiple insertions of the same equation in
one inference sequence are allowed. Hence, our algorithm must keep track of
already treated equations in order to avoid this execution sequence.

Example 7.1.23 Let G be an STG defined by the following set of rules:
{B1 → f(B2, B2), B2 → f(B3, B3), . . . , Bi → f(Bi+1Bi+1), . . . , Bn−1 →
f(Bn, Bn), Bn → a,A1 → f(A2, A

′
2), A2 → f(A3, A

′
3), . . . , Ai →

f(Ai+1A
′
i+1), . . . , An−1 → f(An, A

′
n), An → a,A′1 → f(A2, A

′
2), A′2 →

f(A3, A
′
3), . . . , A′i → f(Ai+1A

′
i+1), . . . , A′n−1 → f(An, A

′
n), A′n → a,A →

f(A1, A
′
1), B → f(B1, B1)} We now consider a decomposition sequence

for the equation A
.
= B, it decomposes depth-first. Note that G

satisfies the assumption on an optimally compressed representation of
restriction(G, {B}), whereas the representation of A is not optimally com-
pressed.

{A .
= B} =⇒ {f(A1, A

′
1)

.
= B}

=⇒ {A1
.
= B1, A

′
1
.
= B1}

=⇒ {f(A2, A
′
2)

.
= B1, A

′
1
.
= B1}

=⇒ {A2
.
= B2, A

′
2
.
= B2, A

′
1
.
= B1}

=⇒ {f(A3, A
′
3)

.
= B2, A

′
2
.
= B2, A

′
1
.
= B1}

=⇒ {A3
.
= B3, A

′
3
.
= B3, A

′
2
.
= B2, A

′
1
.
= B1}

...
=⇒ {Ai

.
= Bi, A

′
i
.
= Bi, A

′
i−1

.
= Bi−1, . . . , A

′
1
.
= B1}

...
=⇒ {An

.
= Bn, A

′
n
.
= Bn, A

′
n−1

.
= Bn−1, . . . , A

′
1
.
= B1}

=⇒ {a .
= a, a

.
= a,A′n−1

.
= Bn−1, . . . , A

′
1
.
= B1}

Hence, the depth-first strategy may lead to an exponentially long sequence
of decompositions.

7.1.6 Complexity of the k-CMD Algorithm

Let 〈∆ = {As1
.
= At1 , . . . , Asn

.
= Atn}, G = (T N , CN ,Σ, R),Γ = ∅〉 be the

initial configuration of the execution, and let 〈∆′, G′,Γ′〉 be the last one.

120

Recall that L = max1≤i≤n(height(wG,Ati
)) and k denotes the number of

different context variables in the problem. Let V denote the set of first-order
variables.

Our inference rules may add new nonterminals and their corresponding
rules to the grammar. Concretely, at most |V | rules of the form x→ A and
at most kL rules of the forms C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am) and
C → • are added to G during an execution. Therefore, at any point of the
execution, any right-hand side of a rule of the current STG G′′ of the form
f(A1, . . . , Am) is in fact a right-hand side of a rule of the initial G.

We count the number of different equations u
.
= v that may ap-

pear during the execution. Our equations are simple with respect to
the final G′ by Lemma 7.1.15. Thus, u is either of the form A
(|T N | + |V | possibilities), or f(A1, . . . , Am) (an original right-hand side of
a rule, thus |T N | possibilities), or CA (kL(|T N | + |V |) possibilities), or
f(A1, . . . , Ai−1, CiA,Ai+1, . . . , Am) (kL(|T N |+ |V |) possibilities).

On the other hand, v can only be a term nonterminal A, an original term
nonterminal, thus there are |T N | possibilities.

Therefore, the total number of different equations in a branch of nonde-
terministic execution is O(depth(G)|G|2). Assuming we avoid repetition
of equations, this will also be the maximum number of execution steps.
Each of those steps chooses an equation and applies an inference rule to
it. The corresponding operations can be performed in logarithmic time with
the adequate data structures. Thus, the nondeterministic execution time is
O(depth(G)|G|2log(|G|)).

k guessings over L possibilities are done during the execution. There-
fore, the execution time of the deterministic version of this algorithm is
O((depth(G))k+1|G|2log(|G|)).

Theorem 7.1.24 Computing all solutions (and hence deciding solvability) of
an instance of the k-context matching with DAGs problem can be done in poly-
nomial time. The worst case running time is O((depth(G))k+1|G|2log(|G|)),
where k is the number of context variables and |G| is the size of the input
DAG.

7.2 Compressed Context Matching

As a complement to Theorem 7.1.24, we are now ready to show that context
matching with STG-compressed terms is NP-complete. NP-hardness with
STGs follows from NP-hardness of the same problem without any compres-
sion (see [SSS98]). Hence, we just have to prove that this problem is in NP.

121

Our goal is to be able to guess a solution of polynomial size for a given input
context matching problem, and to check it efficiently. To this end, we will
use once again the constructions defined in Chapter 3 to define applications
of substitutions, subterms, and subcontexts in the STG setting.

Let us remark on how we represent the input and the solutions for this
problem. An input consists of an STG G and two nonterminals As an At of
G. We want to decide whether there exists a substitution σ for the first-order
and context variables occurring in wAs such that σ(wAs) = wAt . In the input
of the algorithm, the first-order and the context variables are 0-ary and 1-
ary terminals of G, respectively. A solution σ can be represented by another
STG G′, where the first-order and the context variables are term and context
nonterminals of G′, respectively. That is, σ(x) = wG′,x and σ(F) = wG′,F , for
each first-order variable x and context variable F . For proving NP inclusion,
we just show that, if such σ exists then there exists an extension G′ of G,
which is polynomially bounded in the size of G, satisfying wG′,As = wG′,At =
wG,At . The fact that this equality can be checked in polynomial time follows
again from Theorem 3.2.16. In the proof of the following Lemma we use the
construction kExt and pCon defined in Section 3.2.1.

Lemma 7.2.1 Let G be an STG, and let As and At be term nonterminals of
G. Let 〈As, At, G〉, be an STG-context-matching problem instance, and let σ
be a substitution such that σ(wG,As) = wG,At (a solution). Then, there exists
an extension G′ of G such that wG′,As = wG′,At = wG,At. Furthermore, |G′|
is polynomially bounded by |G|.

Proof. Let {x1, . . . , xn} and {F1, . . . , Fm} be the set of first-order variables
and context variables, respectively, occurring in wG,As . For each first-order
variable xi, σ(xi) is a subterm of wAt at some position pi. Thus, for each
first-order variable xi, we construct the STG G′xi = (T N ′xi , CN

′
xi
,Σ′xi , R

′
xi

)
as kExt(At, G, pIndex(wAt , pi)), which contains a term nonterminal Axi gen-
erating wAxi

= σ(xi). Then we convert xi into a nonterminal generating
σ(xi) by defining Gxi = (T N xi , CN xi ,Σxi , Rxi) from G′xi as Gxi = (T N ′xi ∪
{xi}, CN ′xi ,Σ

′
xi
−{xi}, R′xi∪{xi → Axi}). Similarly, for each context variable

Fj, σ(Fj) = C is a prefix context of some subterm of t = wAt . Therefore,
there exist positions qj, q

′
j satisfying that C is the prefix context of t|qj with

the hole at position q′j. Thus, for each context variable Fj, we constructG′Fj
=

(T N ′Fj
, CN ′Fj

,Σ′Fj
, R′Fj

) as pCon(kExt(At, G, pIndex(t, qj)), AFj
, q′j), where

kExt(At, G, pIndex(t, qj)) contains a term nonterminal AFj
generating t|qj ,

and G′Fj
contains a context nonterminal CFj

generating σ(Fj). Then we con-
vert Fj into a context nonterminal by defining GFj

= (T N Fj
, CN Fj

,ΣFj
, RFj

)
from G′Fj

as GFj
= (T N ′Fj

, CN ′Fj
∪ {Fj},Σ′Fj

− {Fj}, R′Fj
∪ {Fj → CFj

}).

122

Note that each extension of G that instantiates certain variables is indepen-
dent from the others, since all of them ask for subterms/subcontexts of wAt ,
which is ground, and does not change after substituting a variable. Hence,
each wAxi

and each wCFj
can be defined independently from the rest us-

ing the STG G given as input. In fact, without loss of generality, we can
assume that the new added nonterminals for each Gxi and each GFj

are dis-
joint. Thus, we construct G′ as G′ = (

⋃n
i=1 T N xi ∪

⋃m
j=1 T N Fj

,
⋃n
i=1 CN xi ∪⋃m

j=1 CN Fj
,
⋂n
i=1 Σxi ∩

⋂m
j=1 ΣFj

,
⋃n
i=1Rxi ∪

⋃m
j=1 RFj

).
By Lemma 3.2.23, each kExt(At, G, pIndex(t, pi)) and each

kExt(At, G, pIndex(t, qj)) has at most depth(G) new nontermi-
nals. By the same Lemma, each depth(kExt(At, G, pIndex(t, pi)))
and each depth(kExt(At, G, pIndex(t, qj))) is bounded by depth(G).
Thus, each Gxi has at most depth(G) + 1 new nonterminals, each
depth(Gxi) is bounded by depth(G) + 1. By Lemma 3.2.31, each
pCon(kExt(At, G, pIndex(t, qj)), AFj

, q′j) has at most depth(G) ∗
(2depth(G) + 3) new nonterminals. Thus, each GFi

has at most
depth(G) + depth(G) ∗ (2depth(G) + 3) + 1 new nonterminals, that
is 2 depth(G)2 + 4 depth(G) + 1.

Therefore, |G′| is bounded by |G|+ n(depth(G) + 1) +m(2 depth(G)2 +
4 depth(G) + 1). 2

Theorem 7.2.2 Context matching with STGs is in NP and hence it is NP-
complete.

Proof. Let G be an STG, and let As and At be term nonterminals of G. In
order to verify that a given extension G′ of G represents a solution for the
match equation {As

.
= At, G} it suffices to decide whether wG′,As = wG′,At

which can be done in polynomial time w.r.t. |G′| by Theorem 3.2.16. By
Lemma 7.2.1 if {As

.
= At, G} has a solution σ then there exists an extension

of polynomial size w.r.t |G| representing σ. Thus there is a polynomial time
verifier for the STG-context-matching problem, and hence it belongs to NP.
Since context matching is already known to be NP-hard [SSS98], we obtain
NP-completeness. 2

For the special case of matching of strings compressed with SCFGs we ob-
tain also NP-completeness: An instance of the matching problem for strings
is a list of equations s1

.
= t1, . . . , sn

.
= tn, where si, ti are strings, only si

may contain string variables, and a solution σ may replace string variables
by strings, and must solve all equations, i.e. σ(si) = ti for all i.

Corollary 7.2.3 String-matching where left and right hand sides are com-
pressed using an SCFG, is NP-complete.

123

Proof. It is well-known that string matching is NP-hard [BKN87], and using
a monadic signature, Theorem 7.2.2 shows the claim. 2

124

Chapter 8

Towards a PTIME algorithm
for One Context Unification

As seen in the previous chapter, one context unification can be solved in
nondeterministic polynomial time. Moreover, it can be solved in polynomial
time if the input set of equations contains an equation of the form F (s)

.
=

c(F (t)), where F is the context variable and c is a non empty context. Since
we can assume that the left hand-side of every equation in the input has
an occurrence of the context variable at position lambda, we should focus
in the particular case of one context unification where right-hand sides of
equations do not contain the context variable. Let us argue about an even
more restricted case, and consider the instance {F (s1)

.
= t1, . . . , F (sk)

.
= tk}

of the one context unification problem where the sis are ground terms and
the tis do not contain the context variable F . Whether there is a solution σ
satisfying σ(t1) = · · · = σ(tk) can be checked efficiently. If it is not the case
then, for any solution θ, there must be a position p such that the θ(ti)s are
all equal in every position parallel to p. Note that p can be chosen to be λ,
but hp(θ(F)) also satisfies such property. In other words, if such solution θ
exists then t1, . . . , tk unify up to a position. Let us further develop this idea
by first taking a step back and looking again at first-order unification.

In contrast with other variants of term unification, first-order unification
is very strict: it requires the unifier to make the two given terms exactly
equal, and if that is not possible, then the unification process fails. For ex-
ample, while f(x, f(a, y)) unifies with f(f(a, b), x), changing an a into a b
in one of these two terms makes them nonunifiable. The terms f(x, f(a, y))
and f(f(b, b), x) are, however, almost unifiable: if we are willing to accept
disagreement at one position, the rest of the terms unify. In the terms
f(x, f(a, y)) and f(f(b, b), x), but for the position 21, the two terms unify.
Hence, we call position 21 a distinguishing position of these two terms, since

125

we can find a unifier, namely σ = {x 7→ f(b, b), y 7→ b}, that causes agree-
ment on all other positions. When we apply σ to the two terms, then at
position 21, we get two distinct terms: namely, a and b. For the distinguish-
ing position 21, the pair (a, b) is the distinguishing witness.

Consider again an instance {F (s1)
.
= t1, . . . , F (sk)

.
= tk} of the one con-

text unification problem where the sis are ground terms and the tis do
not contain F . If a solution σ satisfies that σ(t1) = · · · = σ(tk) does not
hold, then hp(σ(F)) is a distinguishing position of t1, . . . , tk. Thus, roughly
speaking, if we can find “all” distinguishing positions of the multiequation
t1
.
= · · · .= tk, then we can test each one in polynomial time to see if it is the

position of the hole in σ(F). In the affirmative case, σ can be easily obtained
from hp(σ(F)) in polynomial time. In this chapter, we focus on finding all
distinguishing positions for an equation t1

.
= t2 and leave the extension to

multiequations and the application to one context unification for future work.

8.1 Term representation

In this chapter we deal with the explicit representation for terms. However,
we will often refer to subterms(t) to denote the set of subterms of a term t
and, for a set of terms S, we define subterms(S) to be the set that contains
all subterms of terms in S. Moreover, given a set of term equations ∆, by
terms(∆) we denote all terms occurring as right-hand side or left hand-side of
some equation in ∆. We also define subterms(∆) to be subterms(terms(∆)).
Intuitively, subterms(∆) corresponds to the set of nonterminals in an opti-
mally compressed DAG representing the terms in ∆. In fact, all the results
of this chapter can be presented using DAGs for term representation as done
in Chapter 7. However, doing so would not improve the presentation.

In this section, we define the most general unifier of terms s and t, denoted
mgu(s = t), as any substitution σ such that, for every unifier θ of s and t,
σ ≤ θ holds. If such substitution does not exist we say that mgu(s = t) is not
defined. In our considerations in this section, we need to argue about two
different terms u, v becoming equal after the application of a substitution σ,
regardless of the specific form of σ. The intuition behind this consideration
is that once two (sub)terms u, v are made equal due the applicaton of a
substitution σ, u and v become different names for the same term. In other
words, u and v are equivalent in the equivalence relation induced by σ. Hence,
an application of a substitution can be defined by means of such equivalence
relation on terms.

If s and t are unificable then there exists a unification relation, i.e. a
homogeneous, acyclic term relation satisfying the unification axiom, that

126

makes s and t equivalent (see Definition 2.11 and Lemma 2.12 in [BS01]).
We call the least of such unification relations the closure of s and t, and
denote it by ≡s,t.

It is easy to see that ≡s,t is uniquely determined by any most general
unifier of s,t (and hence mgu(s, t)). This fact is proven in Lemma 2.12
in [BS01]. We define, for a set of terms S and terms u, s, t ∈ S, [u]mgu(s,t)

as {v ∈ S | u ≡s,t v}, i.e. the equivalence class of u in the equivalence
relation induced by mgu(s, t) in S. For terms s, t ∈ S and most general
unifiers σ, θ of terms in S, we define the relation ∼= as (s, σ) ∼= (t, θ) if
(a) [s]σ \ X = [t]θ \ X 6= ∅ holds, i.e [s]σ and [t]θ contain the same non
empty set of non variable terms, or (b) [s]σ and [t]θ are sets of variables and
their intersection is non empty. The definition of ∼= is extended to sets of
terms S, T as (S, σ) ∼= (T, θ) if there exists a bijection b : S → T such that
∀s ∈ S : (s, σ) ∼= (b(s), θ).

Although the definition of ∼= might seem quite involved, we will only
apply it on sets S, T satisfying |S| = |T | = 2. Moreover, in the non trivial
cases, σ(S) and θ(T) will always contain at least one variable.

The following simple lemma, which follows by induction on the size of
dom(σ), is key in some of our arguments and captures the reason why the
DAG representation leads to space efficient solutions in some term unification
problems.

Lemma 8.1.1 Let S ⊂ T (F ,X) be a finite set of terms and σ : X 7→ S
be a substitution satisfying that σ is acyclic as a system of equations. Then,
|subterms(σ(S))| ≤ |subterms(S)|.

Note that, if we have a set of term equations ∆ and a subset Γ ⊆ ∆
such that mgu(Γ) is defined, then σ = mgu(Γ) satisfies the conditions of the
previous lemma and hence |subterms(σ(∆))| ≤ |subterms(∆)| holds.

8.2 Problem Definition: Basis for All Distin-

guishing Positions

We use the notation s|p to describe the context obtained from the term s by
“forgetting” the subterm at position p in s.

Definition 8.2.1 (s|p) Given a term s and a position p, define s|p = s[•]p.

Recall that • is considered to be a constant and hence term unification and
syntactic equality naturally extend to contexts. We can now define formally
the concepts of distinguishing position and distinguishing witness mentioned
in the introduction.

127

Definition 8.2.2 (Distinguishing position) A position p is a distinguishing
position of two terms s and t if there exists a substitution σ satisfying σ(s|p) =
σ(t|p) and σ(s) 6= σ(t). The set of all distinguishing positions of terms s, t is
denoted by DP(s, t).

We are interested in the set of all distinguishing positions of two given
terms s, t, denoted DP(s, t).

Example 8.2.3 For any term s, DP(s, s) = ∅. For two terms s, t such that
s 6= t, λ ∈ DP(s, t) always holds. For two distinct variables x, y, the set
DP(x, y) is infinite because it contains every position. We also have that
DP(a, b) = DP(a, f(a)) = DP(a, x) = {λ}, and DP(f(a), x) = {λ, 1}.

As another example, let us consider the set DP(x, s). This set is different
depending on whether the term s contains x. If s has two occurrences of x,
then this set will be finite; for example, DP(x, f(x, x)) = {λ}. If s has exactly
one occurrence of x, then this set can be infinite; for example, DP(x, f(x, a)) =
{λ, 1, 11, . . .}. Finally, if x does not occur in s, DP(x, s) includes all positions
pos(s) in s; for example, DP(x, h(a)) = pos(h(a)), but it may still be infinite;
for example, DP(x, h(y)) is infinite. Finally, note that the set DP(s, t) is
prefix-closed; that is, if position p is in DP(s, t), then any prefix of p is also
in DP(s, t).

The following example, which was already presented in Section 2.3.2 of
Chapter 2, is carefully crafted to illustrate the difficulties in computing the
set of all distinguishing positions in polynomial time. This example will also
help in understanding several technical details of the proof later.

Example 8.2.4 Let s be f(x0, x0) and let t0 be f(a, b). Then, DP (s, t0)
contains {1, 2}. Let t1 be f(f(x1, x1), f(a, b)). Then, DP (s, t1) contains
{11, 12, 21, 22}. In general, define tn recursively as tn = f(f(xn, xn), tn−1).
Then, DP (s, tn) is finite and it has size exponential in n.

Example 8.2.4 shows that if we try to output all the distinguishing posi-
tions explicitly, then we cannot hope to do better than an exponential time
bound. Hence, there is a need to define some notion of equivalence on distin-
guishing positions. Before we do that, we first define a distinguishing witness
for a given distinguishing position p. Intuitively speaking, for a distinguishing
position p, if σ is the most-general unifier of s|p

.
= t|p, then the distinguishing

witness for p is the ordered pair 〈σ(s)|p, σ(t)|p〉; and we call σ the p-tolerant
most-general unifier, or p-mgu in short.

However, the definition is complicated by the fact that the position p
may not be a valid position in the original term s and t and hence s|p

.
= t|p

128

may not be well-defined a priori. Hence we have to define these concepts
recursively. In the following definition, we use a substitution of the form
{x 7→ c[x]}. This is a way to avoid introducing new variables, which eases
the presentation.

Definition 8.2.5 (Distinguishing Witness) Let p be a distinguishing posi-
tion of s

.
= t. The distinguishing witness of p in s

.
= t, denoted dw(s

.
= t, p),

and the p-mgu of s
.
= t, denoted mgup(s

.
= t), can be recursively defined as

follows.

� If p = λ then dw(s
.
= t, p) = 〈s, t〉 and mgup(s

.
= t) is the identity

mapping.

� If p = i.p′ and i ∈ N is a valid position in s and t then dw(s
.
= t, p) =

dw(σ(s)|i
.
= σ(t)|i, p′) and mgup(s

.
= t) = (σ ◦ mgup′(σ(s)|i

.
= σ(t)|i)),

where σ = mgu(s|i
.
= t|i).

� If p = i.p′ and i ∈ N is a valid position in t and not in s, then s is
a variable x and dw(s

.
= t, p) = dw(x

.
= σ(t)|i, p′), and mgup(s

.
= t) =

(σ ◦ mgup′(x
.
= σ(t)|i)), where σ = {x 7→ t[x]i}.

� If p = i.p′ and i ∈ N is a valid position in s and not in t, then t is
a variable x and dw(s

.
= t, p) = dw(σ(s)|i

.
= x, p′), and mgup(s

.
= t) =

(σ ◦ mgup′(σ(s)|i
.
= x, p′)), where σ = {x 7→ s[x]i}.

� dw(s
.
= t, p) = 〈s, t〉 and mgup(s

.
= t) is the identity mapping in any

other case.

Note that in the last case of the previous definition s and t must be
variables, due to the fact that p is a distinguishing position of s

.
= t.

Later in the paper, we will use the fact that, if we have parallel distin-
guishing positions p, q of s

.
= t and a substitution θ such that θ ≤ mgup(s

.
= t)

and θ ≤ mguq(s
.
= t) hold, then dw(s

.
= t, p) = dw(θ(s)

.
= θ(t), p) and

dw(s
.
= t, q) = dw(θ(s)

.
= θ(t), q) also hold.

Example 8.2.6 Let s = f(x0, x0) and t1 = f(f(x1, x1), f(a, b)) be as de-
fined in previous example. Consider the distinguishing position p = 21.
Then, mgup(s

.
= t1) is the substitution {x0 7→ f(x1, x1), x1 7→ b}. Moreover,

mgu1(x
.
= h(x)) = {x 7→ h(x)}.

Consider s = f(x0, x0) and t1 = f(f(x1, x1), f(a, b)) and the distinguish-
ing position p = 21 as before. Then, dw(s

.
= t, p) is the pair 〈b, a〉. Note

that the pair is ordered, and hence it is different from the pair 〈a, b〉, which

129

happens to be dw(s
.
= t, 22). Moreover, dw(x

.
= h(x), 1) = 〈x, h(x)〉 and, for

every position p, dw(x
.
= y, p) = 〈x, y〉, where x, y are different variables.

Note that the following follows from Definition 8.2.5, for any variable x,
term t not containing x, and distinguishing position p of x and t: dw(x

.
=

t, p) = 〈x, t|p〉 if p ∈ pos(t) and dw(x
.
= t, p) = 〈x, t|q〉 otherwise, where q is

the longest prefix of p such that q ∈ pos(t). On the other hand, if t is of the
form C[x]q, for some context C, then dw(x

.
= t, p) is defined only if p is of the

form qn.p′, where p′ < q, in which case dw(x
.
= t, p) is of the form 〈x,C ′[x]〉,

where C ′ is a rotation of C.

Now, we can define a notion of equivalence between distinguishing posi-
tions. We will consider two distinguishing positions equivalent if they have
the same distinguishing witness (viewed as an ordered pair).

Example 8.2.7 Consider s = f(x0, x0) and t1 = f(f(x1, x1), f(a, b)) as
before. Note that dw(s

.
= t1, 12) = dw(s

.
= t1, 21) = 〈b, a〉. Similarly, dw(s

.
=

t1, 11) = dw(s
.
= t1, 22) = 〈a, b〉. In fact, if tn is defined in Example 8.2.4,

then p1 = 11 and p2 = 22 are distinguishing positions of s, tn for all n; and
moreover, dw(s

.
= tn, p1) and dw(s

.
= tn, p2) are equal for all n.

As another example, for any two different positions p, q, it holds that
dw(x

.
= y, p) = dw(x

.
= y, q), where x, y are different variables.

Now that we have associated a distinguishing witness with every dis-
tinguishing position, we can define a basis for the set of all distinguishing
positions. To this end, we first define the set of all distinguishing witnesses.

Definition 8.2.8 The set of distinguishing witnesses of s
.
= t, denoted

SDW(s
.
= t), is defined as {dw(s

.
= t, p) | p is a distinguishing position of

s
.
= t}.

Definition 8.2.9 (Basis) A set P of distinguishing positions of s
.
= t is a

basis if {dw(s
.
= t, p1) | ∃p ∈ P : p = p1.p2} = SDW(s

.
= t).

Example 8.2.10 Consider s = f(x0, x0) and t1 = f(f(x1, x1), f(a, b)) as
before. Note that DP(s

.
= t) = {λ, 1, 2, 11, 12, 21, 22}. However, the smaller

set {λ, 1, 2, 11, 12} is a basis. In fact, the even smaller set {11, 12} is also
a basis. It can be observed that, for every n, even though DP(s

.
= tn) has

exponentially many positions, there is a polynomial size basis for DP(s, tn).

As seen in the previous example, there might be basis of many cardinalities.
We are interested in the ones with minimal cardinality. Such minimal basis
will only contain parallel positions.

130

Global: S = ∅
Global: D = ∅
BASIS (s, t: terms, p: position)

If (∀w ∈ D : 〈s, t〉 6= w) Then
Add 〈s, t〉 to D and add p to S
P = {q | q ∈ DP(s, t) ∧ |q| = 1}
For q ∈ P Do:

BASIS(dw(s
.
= t, q), p.q)

return S

Figure 8.1: Algorithm to compute the basis for all distinguishing positions
of input equation s

.
= t.

8.3 Algorithm for Computing a Basis

In this section we present an algorithm to compute a (not necessarily min-
imal) basis for s

.
= t in polynomial time. The algorithm, described in

Figure 8.1, is a naive enumeration of all positions. Specifically, the proce-
dure maintains two global variables: the variable D keeps all (non equiv-
alent) distinguishing witnesses found so far, and the variable S keeps the
corresponding distinguishing positions. The algorithm just enumerates all
distinguishing positions in a depth-first manner. If it finds a position whose
distinguishing witness is equivalent to a pair that has been seen before, then
we do not go down further (in the depth-first search). The correctness of
our algorithm to compute the basis is straightforward. The difficult part is
to show that the procedure terminates in a polynomial number of steps. We
can prove such polynomial time bound if we prove that the computed basis
has polynomial size. This is stated in the following theorem.

Theorem 8.3.1 Let s, t be two terms. The set SDW(s
.
= t) and a basis of

SDW(s
.
= t) can be computed in polynomial time.

The rest of this chapter is devoted to proving the above theorem. As
seen in the previous section, there might be basis of exponential size. First,
we argue that the length of any position in a minimal basis is polynomially
bounded. This fact is proven in the following lemma, which states, roughly
speaking, that a minimal basis cannot contain distinguishing positions of
length greater-than O(n2), where n is the size of s

.
= t. Moreover, this fact

also implies the existence of a finite basis for every equation s
.
= t, and hence,

our notion of a minimal basis is well defined.

131

Lemma 8.3.2 Let s, t be terms over T (F ,X) and let p be a distinguishing
positions of s

.
= t such that |p| > |subterms(s

.
= t)|. Then, there exists a

position q < p such that dw(s
.
= t, p) = dw(s

.
= t, q).

Proof. The lemma can be proven by induction on the number ns of differ-
ent subterms of s and t. In the base case (ns = 2), s and t are variables
and the lemma holds. Otherwise, let p = i.p′, with i ∈ N. If s or t is
a variable, the lemma follows from Definition 8.2.5. Otherwise, note that
|p′| > |subterms(dw(s

.
= t, i))| < ns holds by Definition 8.2.5, and the lemma

follows from the induction hypothesis. 2

Now, we only need to prove a polynomial upper bound on the size of a
minimal basis, where size of a basis is its cardinality. First of all, to simplify
our arguments, we introduce a notion of equivalence between distinguishing
witnesses that is weaker than equality. In this notion, the order of the terms
in a distinguishing witness is irrelevant.

Definition 8.3.3 Let 〈s1, t1〉 and 〈s2, t2〉 be pairs of different terms. We say
they are equivalent, denoted 〈s1, t1〉 ≡ 〈s2, t2〉, if {s1, t1} = {s2, t2}.

We define SDWw and basis with respect to ≡, which we call set of weakly
distinguishing witnesses and weak basis, respectively, analogously to SDW and
basis in Definitions 8.2.8 and 8.2.9. Note that, if we have a weak basis B
for s

.
= t, then there must be a basis B′ of size at most 2|B|. Due to this

observation, henceforth we will only use the weak notion of a basis. Hence,
we consider distinguishing witnesses to be sets of cardinality 2, and thus the
notion of equivalence of Definition 8.3.3 just reduces to equality. Therefore,
we write SDW for SDWw and basis for weak basis in the rest of this chapter.

Before we prove that the cardinality of the minimal basis is polynomially
bounded, let us generalize from s

.
= t to a set {s1

.
= t1, . . . , sk

.
= tk}. The

reason for this generalization is that we get such a set of equations as soon
as we apply the decomposition rule (from syntactic unification) to a single
initial equation f(s1, . . . , sk)

.
= f(t1, . . . , tk). In this new setting, a basis is

a function mapping equations to sets of distinguishing positions defined as
follows.

Definition 8.3.4 Let ∆ = {e1, . . . , en} be a set of term equations such that
σi = mgu(∆ \ {ei}), for every i ∈ {1, . . . , n}, is defined. A distinguishing
function of ∆ is a mapping B : ∆ 7→ P(pos(F)) such that B(ei) is a set of
distinguishing positions of σi(ei), for every i ∈ {1, . . . , n}.

According to the previous definition, a function mapping every equation
of ∆ to the empty set is a distinguishing function of ∆. However, it is

132

obviously not a basis, since, roughly speaking, it does not span SDW. Hence,
we define basis as follows.

Definition 8.3.5 Let ∆ = {e1, . . . , en} be a set of term equations such that
σi = mgu(∆ \ {ei}), for every i ∈ {1, . . . , n}, is defined.

The set of distinguishing witnesses of ∆, denoted SDW(∆), is defined as⋃n
i=1{dw(σi(ei), p) | p is a distinguishing position of σi(ei)}.

Let B : ∆ 7→ P(pos(F)) be a distinguishing function of ∆. B is also a
basis of ∆ if

⋃n
i=1{dw(σi(ei), p1) | p1.p2 ∈ B(ei)} = SDW(∆).

The following definition of size of a basis is motivated by the fact stated
in Lemma 8.3.2: distinguishing positions in a basis must have polynomial
length. Hence, we define the size of a basis just as the total number of
positions in its image.

Definition 8.3.6 (size of a basis) Let ∆ = {e1, . . . , en} be a set of term
equations and let B : ∆ 7→ P(pos(F)) be a basis of ∆. Then, the size
of B, denoted size(B), is defined as

∑n
i=1 |B(ei)|.

As mentioned above, we are interested in basis of minimal size. The fol-
lowing definition is motivated by the fact that if two different distinguishing
positions p1, p2 have equivalent distinguishing witnesses in ∆, then any ex-
tensions p1.q, p2.q of p1 and p2 will also be equivalent (equal) and hence both
of them will not be in a minimal basis. Similarly, if B is a minimal basis of
∆, then the positions in B(e) must be pairwise parallel, for every equation e
in ∆.

Definition 8.3.7 Let ∆ = {e1, . . . , en} be a set of term equations such
that σi = mgu(∆ \ {ei}), for every i ∈ {1, . . . , n}, is defined. Let B :
∆ 7→ P(pos(F)) be a distinguishing function of ∆. Then, we say that B
is redundant for ∆ if ∃i, j, p1.p2 ∈ B(ei), q1.q2 ∈ B(ej) : (i 6= j ∨ p1 6=
p2) ∧ dw(σi(ei), p1) = dw(σj(ej), q1) holds.

8.4 Polynomial Bound for Size of Basis

Given a set of equations ∆ and a minimal basis B of ∆, our goal is to polyno-
mially bound size(B). We count the number of distinct distinguishing posi-
tions (witnesses) by reasoning about three cases separately. In Section 8.4.1
we count witnesses of the form {x, s} (where x is a variable), in Section 8.4.2
we count witnesses of the form {s, C[s]}, and in Section 8.4.3 we count all
remaining witnesses.

133

8.4.1 Counting distinguishing witnesses of form {x, s}
Let us distinguish two kinds of distinguishing positions depending of the form
of their distinguishing witnesses.

Definition 8.4.1 Let s, t be terms and let p be a distinguishing position of
s and t. Let {u, v} = dw(s

.
= t, p). We say that p has a λ-defined witness in

s
.
= t if neither u nor v are variables.

The following two lemmas follow from Definition 8.2.5.

Lemma 8.4.2 Let s, t be terms and let p be a distinguishing position of
s, t such that p has a λ-defined witness in s

.
= t. Then, ∀q ≤ p :

q has a λ-defined witness in s
.
= t.

Lemma 8.4.3 Let s, t be terms and let p be a distinguishing position of s, t
such that p does not have a λ-defined witness in s

.
= t. Then, ∀q : p ≤

q, q does not have a λ-defined witness in s
.
= t.

Let us modify a basis B of ∆ to obtain a nonredundant distinguishing
function B′ : ∆ 7→ P(pos(F)) by removing positions that do not have λ-
defined witnesses, and replacing them by their prefix position that have such
a witness. We will polynomially bound the size of B with respect to the size
of the obtained B′. After that, it remains to prove a polynomial bound on
size(B′), using the fact that all the positions in its image have a λ-defined
witness and that B′ is non redundant. The following two definitions state
the transformation mentioned above formally.

Definition 8.4.4 Let s, t be terms and let p be a distinguishing position of
s, t. Let p1 be the longest prefix of p such that p has a λ-defined witness. We
define trim(p, s

.
= t) as p1 if p1 exists and ⊥, otherwise.

Definition 8.4.5 Let ∆ = {e1, . . . , en} be a set of equations, let B be
a distinguishing function of ∆, let σi be mgu(∆ \ {ei}), and let Si be
{trim(p, σi(ei)) | p ∈ B(ei)}, for each i ∈ {1, . . . , n}.

We define trim(B,∆) : ∆ 7→ P(pos(F)) as trim(B,∆)(ei) = {p ∈
Si | ∀q ∈ Si : p 6< q} if Si 6= {⊥} and trim(B,∆)(ei) = ∅, otherwise, for
each i ∈ {1, . . . , n}.

Let us remark that, for each of the sets Si in the previous definition,
⊥ ∈ Si ⇔ Si = {⊥} follows from Lemma 8.4.3. Moreover, note that if
B is a minimal basis of ∆, trim(B,∆) might no longer be a basis of ∆.
However, in that case, trim(B,∆) will be non redundant as stated in the

134

following lemma, which directly follows from Lemmas 8.4.2 and 8.4.3, and
the definition of trim, and specifically the fact that we guarantee that the
positions in trim(B,∆)(e), for each equation e ∈ ∆, are pairwise parallel.

Lemma 8.4.6 Let ∆ = {e1, . . . , en} be a set of term equations such that
σi = mgu(∆ \ {ei}), for every i ∈ {1, . . . , n}, is defined. Let B be a basis of
∆ minimal in size. Then, trim(B,∆) is a distinguishing function of ∆ and
it is not redundant. Moreover, ∀i ∈ {1, . . . , n}, p ∈ trim(B,∆)(σi(ei)), t ∈
dw(σi(ei), p) : t is not a variable.

As mentioned above, we prove a polynomial bound on size(B) with
respect to size(trim(B,∆)). We will use three technical auxiliary lemmas.
The first of them directly follows from the definition of dw (Definition 8.2.5).

Lemma 8.4.7 Let x be a variable and let t be a term. Then, |SDW(x
.
= t)| ≤

|subterms(t)|.

The next lemma states that computing dw for distinguishing positions
that have a λ-defined witness does not increase the number of different sub-
terms.

Lemma 8.4.8 Let s, t be terms. Then, |subterms(u) ∪ subterms(v)| ≤
|subterms(s)∪ subterms(t)| holds for every position p ∈ DP(s, t) such that p
has a λ-defined witness in s

.
= t, where {u, v} = dw(s

.
= t, p).

Proof. The lemma can be proven by induction on |p| using Lemma 8.1.1
and distinguishing cases according to the definition of dw (Definition 8.2.5).
Note that cases 3, 4 in Definition 8.2.5 will not be applied by the conditions
of the lemma and Lemma 8.4.2. 2

Lemma 8.4.9 Let ∆ be a set of term equations over T (F ,X) and let {x1
.
=

t1, . . . , xm
.
= tm} be a subset of ∆, where x1, . . . , xm ∈ X , satisfying that

1. ∀i ∈ {1, . . . ,m} : mgu(∆ \ {xi
.
= ti}) is defined,

2. ∀i ∈ {1, . . . ,m} : (mgu(∆ \ {xi
.
= ti}))(terms((xi

.
= ti)) contains a

variable, and

3. ∀i, j ∈ {1, . . . ,m} : i 6= j ⇒ ({xi, ti}, mgu(∆ \ {xi
.
= ti})) 6∼=

({xj, tj}, mgu(∆ \ {xj
.
= tj})).

Then, x1, . . . , xm are pairwise different.

135

Proof. Let Γ be mgu(∆ \ {x1
.
= t1, . . . , xm

.
= tm})({x1

.
= t1, . . . , xm

.
= tm})

and note that ∀i ∈ {1, . . . ,m} : mgu(Γ\{xi
.
= ti}) = mgu(∆\{xi

.
= ti}) holds.

Moreover, Γ must be of the form {y1
.
= s1, . . . , ym

.
= sm}, for some variables

y1, . . . , ym. To argue by contradiction, assume also that y1 = y2 and let θ
be mgu(Γ \ ({y1

.
= s1, y2

.
= s2})). Note that y1θ must be a variable by the

assumptions of the lemma, and that θ ≤ mgu(Γ \ (y1
.
= s1)) and θ ≤ mgu(Γ \

(y2
.
= s2)) hold. Hence, {y1, s1}(mgu(Γ \ (y2

.
= s2))) = {y2, s2}(mgu(Γ \ (y1

.
=

s1))), which contradicts the third assumption of the lemma. 2

We are now ready to prove the promised bound.

Lemma 8.4.10 Let ∆ be a set of equations over T (F ,X) and
let B be a minimal basis of ∆. Then, size(B)| ≤ (1 +
size(trim(B,∆)))|X ||subterms(∆)|.

Proof. Let us partition ∆ as ∆ = ∆1 ∪ ∆2 ∪ ∆3, with the ∆is defined
as follows. Let ∆1 be the biggest subset of ∆ such that B(e) 6= ∅ and
trim(B,∆)(e) = ∅, for every e ∈ ∆1. Let ∆2 be the biggest subset of ∆ such
that trim(B,∆)(e) 6= ∅, for every e ∈ ∆2, and let ∆3 be ∆ \ (∆1 ∪∆2), i.e.
equations in ∆ whose image in B is the empty set.

We first prove that |size(B|∆1)| ≤ |X ||subterms(∆)|. Let ∆1 be
{e1, . . . , en}, more explicitly written. Let σi be mgu(∆ \ {ei}), for every
i ∈ {1, . . . , n}. Note that |subterms(σi(ei))| ≤ |subterms(∆)| holds by
Lemma 8.1.1 and, by Lemma 8.4.3 and the definition of trim, terms(σi(ei)) =
terms(dw(σi(ei), λ)) contains a variable, for every i ∈ {1, . . . , n}. Hence,
by Lemma 8.4.9 and the minimality of B, it follows that |∆1| ≤ |X | and
|size(B|∆1)| ≤ |X ||subterms(∆)|.

Now, consider the equations in ∆2 and let us write ∆2 more explicitly
as {e1, . . . , em}. Let θi be mgu(∆ \ {ei}), for every i ∈ {1, . . . ,m}. Let ej
be any equation in {e1, . . . , em} and let p be a position in trim(B,∆)(ej).
We show that there exist at most |X ||subterms(∆)| positions in B(ej) that
are extensions of some prefix of p. Let p1.k1, . . . , pl.kl be all positions such
that, for every i ∈ {1, . . . , l}, pi ≤ p, ki ∈ N, and pi.ki is the prefix of some
position in B(ej). By Lemma 8.1.1, |subterms(θj(ej))| ≤ |subterms(∆)|
holds. Note that, it follows from Lemmas 8.4.7 and 8.4.8 that, to prove that
there exist at most |X ||subterms(∆)| positions in B(ej) that are extensions
of some prefix of p, it suffices to show that l ≤ |X |. Hence, to conclude
the proof, we prove that l ≤ nv, where nv is the number of variables in
subterms(u

.
= v), with (u

.
= v) = θj(ej). We use induction on nv. Note

that, if nv = 0, then p must be λ and l = nv = 0. Hence, for the inductive
step, assume that nv > 0. Let q be the shortest position among {p1, . . . , pl}
and let {q.n1, . . . , q.nc} = {pi.ki ∈ {p1.k1, . . . , pl.kl} | pi = q}. Also, let
〈uq, vq〉 = dw(u

.
= v, q) and note that, by definition of q, uq and vq are not

136

variables, and hence uq and vq are of the form f(uq,1, . . . , uq,arity(f)) and
f(vq,1, . . . , vq,arity(f)). Moreover, we can assume without loss of generality,
that uq,ni

is a variable, for every i ∈ {1, . . . , c}. We also define the equation
(u′

.
= v′) as u′ = α(uq,b) and v′ = α(vq,b), with b ∈ N being such that q.b is

a prefix of p and α = mgu(
⋃
i 6=b(uq,i

.
= vq,i)). By Lemma 8.4.9, the variables

uq,ni
, such that i ∈ {1, . . . , c}, are pairwise disjoint and thus |dom(α)| ≥ c.

It follows that the number of variables in subterms(u′
.
= v′) is smaller than

nv − c. By induction hypothesis, l ≤ nv − c+ c ≤ nv, and we are done.
Altogether implies that size(B) ≤ size(B|∆1) + size(B|∆2) +

size(B|∆3) = |X ||subterms(∆)| + size(trim(B,∆))|X ||subterms(∆)| + 0,
which concludes the proof. 2

Thanks to the previous lemma and Lemma 8.4.6, to prove Theorem 8.3.1,
it suffices to show a bound on the size of a nonredundant distinguishing
function B of a set of equations ∆. In the following section we state simple
assumptions on the form of B and ∆ with the goal of easing the presentation.

Simplifying assumptions

Consider a set of equations ∆ = {e1, . . . , en} and a nonredundant distin-
guishing function B of ∆. Let σi = mgu(∆ \ {ei}), for each i ∈ {1, . . . ,m}.
Note that, by Definition 8.3.5, it must be the case that σi is defined for all
i ∈ {1, . . . ,m}. First, we assume that

∀i ∈ {1, . . . , n} : B(ei) 6= ∅

Note that, if there is an equation ei ∈ ∆ such that B(ei) = ∅, then we
can force our assumption by defining a new set ∆′ as mgu(ei)(∆ \ {ei}), and
a new distinguishing function B′ = (B \ {(ei, B(ei))}). To see that this
transformation is correct, note that B′ is a distinguishing function of ∆′ and
that SDWw(∆′) = SDWw(∆). Let us remark, although it is not necessary for
our argument, that the transformation can be performed in polynomial time
and it can be applied at most |∆| times. Moreover, B′ is not redundant for
∆′, since B is not redundant for ∆, and |subterms(∆′)| ≤ |subterms(∆)|.

Let ei = (si
.
= ti), for i ∈ {1, . . . , n}. Due to the previous assumption

and the nonredundancy of B, the following holds:

∀i, j ∈ {1, . . . ,m} : i 6= j ⇒ σi({si, ti}) 6= σj({sj, tj})

The previous observation will be a key component of our argument. Finally,
note that the previous assumptions trivially hold in the case when ∆ contains
a single equation s

.
= t.

During our argument, we will transform the initial set of equations ∆
and a nonredundant distinguishing function B of ∆ by unifying some of the

137

equations in ∆ and restricting the domain of B to obtain a new ∆′ and B′

such that B′ is a nonredundant distinguishing function of ∆′. The following
Lemma states the correctness of such operation.

Lemma 8.4.11 Let ∆ = {e1, . . . , en} be a set of equations and let B be a
nonredundant distinguishing function of ∆. Let ∆′ be mgu(e1)(∆ \ {e1}) and
let B′ be defined as B′(mgu(e1)(e)) = B(e), for every e ∈ ∆\{e1}. Then, B′ is
a nonredundant distinguishing function of ∆′, size(B) ≤ |B(e1)|+size(B′),
and |subterms(∆′)| ≤ |subterms(∆)|.

Proof. If |∆| ≤ 1 the lemma holds trivially. Otherwise, let σi be
mgu(∆ \ {ei}), which is defined by the definition of distinguishing function,
for every i ∈ {2, . . . , n}. It suffices to note that ∀i ∈ {2, . . . , n}, p ∈ B(ei) :
mgu(e1) ≤ p-mgu(σi(ei)) and hence ∀i ∈ {2, . . . , n}, p ∈ B(ei) : dw(σi(ei), p) =
dw((mgu(e1)◦mgu(∆′\{ei}))(ei), p) holds. Thus, B′ is a nonredundant distin-
guishing function of ∆′, the fact that size(B) ≤ |B(e1)|+ size(B′) follows
from the definition of size, and |subterms(∆′)| ≤ |subterms(∆)| follows
from Lemma 8.1.1. 2

8.4.2 Counting distinguishing witnesses of form
{s, C[s]}

Recall that syntactic unification fails if we try to unify s with C[s], for non-
trivial context C (usually called “occur-check”). We separately identify the
set of equations that can lead to such “occur-check” violations, because they
can have very few distinguishing positions (formalized in Lemma 8.4.15). A
stable set of equations is defined so that it does not (immediately) lead to
“occur-check” failures.

Definition 8.4.12 Let ∆ = {s1
.
= t1, . . . , sm

.
= tm} be a non empty set of

term equations. We call ∆ stable if, for every s
.
= t ∈ ∆, the following holds:

1. ∆ \ {s .
= t} unifies,

2. mgu(∆ \ {s .
= t})(s) 6≤ mgu(∆ \ {s .

= t})(t), and

3. mgu(∆ \ {s .
= t})(t) 6≤ mgu(∆ \ {s .

= t})(s).

Example 8.4.13 ∆1 = {f(h(a))
.
= g(h(h(a)))} and ∆2 = {x .

= f(y, y), x
.
=

f(s, x1), x
.
= f(x2, t)} are stable sets of equations, where x, y, x1, x2 are vari-

ables and s, t are terms.

138

Lemma 8.4.14 Let ∆ be a stable set of equations. Then, there exists a non
empty subset ∆′ ⊆ ∆ such that

1. ∀t1, t2 ∈ terms(∆′) : t1 6< t2, and

2. ∀t1 ∈ terms(∆′), t2 ∈ terms(∆ \∆′) : t1 6≤ t2.

Proof. We argue by contradiction. Hence, assume that ∆ does not satisfy
the condition of the lemma. Consider the equations in ∆ to be unordered
and let Γ1 ⊂ ∆ be any subset of the form {s1

.
= t1, . . . , s1

.
= tn} satisfying

that s1 6∈ terms(∆ \ Γ1). Note that Γ1 must exist and can be chosen to be
non empty since ∆ is non empty by the definition of stable set of equations.
Moreover, ∀t ∈ {t1, . . . , tn} : s1 6≤ t holds by the stability of ∆ and thus Γ1

does not violate the first condition of the lemma. Hence, Γ1 must violate
the second condition of the lemma which implies that there must be a term
s2 ∈ terms(∆ \ Γ1) such that ∃t ∈ {s1, t1, . . . , tn} : t ≤ s2 holds. Then, we
define the subset Γ2 of ∆ of the form {s2

.
= t′1, . . . , s2

.
= t′n′} analogously to

Γ1. Iterating this argument we can obtain sets Γ1,Γ2,Γ3, . . . such that every
Γi in the sequence satisfies that it is a non empty subset of ∆ of the form
{si

.
= ti1, . . . , si

.
= tini

}, si 6∈ terms(∆ \ Γi), ∀t ∈ {ti1, . . . , tini
} : si 6≤ t, that

si+1 ∈ terms(∆ \ Γi), and that there exists a term ui ∈ {si, ti1, . . . , tini
} such

that ui ≤ si+1 holds. Note that, there must be indexes j, k, with j < k, such
that sk ∈ subterms(Γj). It follows that ∆ contradicts condition (2) or (3) of
the definition of stable, a contradiction. 2

Lemma 8.4.15 Let V be a set of variables. Let ∆ be a non empty set of
equations over T (F ,V). Let B : ∆ 7→ P(pos(F)) be a nonredundant distin-
guishing function of ∆. If ∆ is not stable then there exists e ∈ ∆ such that
|B(e)| ≤ 1.

Proof. Note that condition (1) in Definition 8.4.12 must hold, since otherwise
∆ does not satisfy the conditions in Definition 8.3.5 and thus B would not be
a distinguishing function of ∆. Hence, first assume that there is an equation
(s

.
= t) ∈ ∆, such that mgu(∆ \ {s .

= t})(s) = mgu(∆ \ {s .
= t})(t) and note

that this case is also not possible since, in this case B(s
.
= t) would be empty,

contradicting our assumptions from the previous section. Hence, without loss
of generality, it holds that mgu(∆ \ {s .

= t})(s) ≺ mgu(∆ \ {s .
= t})(t). Let

u
.
= v be mgu(∆ \ {s .

= t})(s .
= t) and note that there exists some position

p 6= λ such that v|p = u. We now prove that |B(s
.
= t)| ≤ 1. Since B

is nonredundant, it suffices to show that u
.
= v does not have two parallel

distinguishing positions. To argue by contradiction, assume that u
.
= v has

two parallel distinguishing positions q1, q2. One of them, say q1, must be

139

parallel with p. Let σ be mguq1(u
.
= v). Since σ is defined, σ(u|p) = σ(v|p)

must hold but, by the conditions of the lemma σ(u|p) is a proper subterm of
σ(v|p), a contradiction. 2

8.4.3 Counting the remaining distinguishing witnesses

We are now ready to prove the desired bound. As a first ingredient in the
last part of the proof, let us define an operation to decompose a given set of
equations ∆ and its corresponding distinguishing function B. This operation
is similar to decompose rule in syntactic unification. It will be a key com-
ponent of our final argument, since, using Lemma 8.4.14, we will make sure
that the number of different subterms in ∆ decreases after applying this de-
composition while the size of the distinguishing basis after the decomposition
is preserved.

Definition 8.4.16 (Decompose) Let ∆ be a set of equations and let Γ ⊆ ∆
be a subset satisfying ∀t ∈ terms(Γ) : h(t) > 0, and ∀(s .

= t) ∈ Γ : root(s) =
root(t). Let B : ∆ 7→ P(pos(F)) be nonredundant distinguishing function
of ∆ such that ∀e ∈ Γ : B(e) is non empty and does not contain λ.

For each equation e = (f(s1, . . . , sm)
.
= f(t1, . . . , tm)) in Γ, we define

decomposeEq(e) as the set {si
.
= ti | i ∈ {1, . . . ,m}}, and decomposeFun(e)

as as the set of pairs {〈si
.
= ti, {p | i.p ∈ B(e)}〉 | i ∈ {1, . . . ,m}}.

We define decompose(∆,Γ, B) to be the pair
(⋃

e∈Γ(decomposeEq(e)) ∪
(∆ \ Γ),

⋃
e∈Γ(decomposeFun(e)) ∪ {〈e′, B(e′)〉 | e′ ∈ (∆ \ Γ)}

)
.

The following lemma states that decompose preserves size and non re-
dundancy of distinguishing functions.

Lemma 8.4.17 Let ∆ be a set of equations and let B : ∆ 7→ P(pos(F))
be nonredundant distinguishing function of ∆. Let Γ be any subset of
∆ satisfying the conditions of Definition 8.4.16. and let (∆′, B′) be the
decompose(∆,Γ, B).

Then, B′ is nonredundant distinguishing function of ∆′ and size(B′) =
size(B).

The following lemma states some conditions under which the size of a set
of equations ∆ is bounded by the number of non variable terms occurring in
the equations of ∆. This will be useful in our final argument, since, to always
be able to apply the decompose operation, we may transform the initial set
of equations ∆ by applying substitutions that add fresh variables.

Lemma 8.4.18 Let V be a set of first-order variables and let ∆ = {s1
.
=

t1, . . . , sm
.
= tm} be a set of term equations over T (F ,V) satisfying that

140

1. ∀i ∈ {1, . . . ,m} : mgu(∆ \ {si
.
= ti})(si) 6= mgu(∆ \ {si

.
= ti})(ti),

2. ∀i ∈ {1, . . . ,m}, u ∈ {si, ti} : mgu(∆ \ {si
.
= ti})(u) 6∈ V, and

3. ∀i, j ∈ {1, . . . ,m} : i 6= j ⇒ ({si, ti}, mgu(∆ \ {si
.
= ti})) 6∼=

({sj, tj}, mgu(∆ \ {sj
.
= tj})).

Then, m ≤ 2|terms(∆) \ V|.

Proof. If ∆ = ∅ then the lemma holds trivially. Hence, assume that ∆ 6= ∅
and consider the graph G(V = {s1, t1, . . . , sm, tm}, E = {(s, t) | s .

= t ∈
∆}). G must be acyclic since otherwise there exists (s

.
= t) ∈ ∆ such that

mgu(∆ \ {s .
= t})(s) = mgu(∆ \ {s .

= t})(t), contradicting the first condition
of the lemma. Note that, by the second condition of the lemma, every leaf
of G must be a non variable term. Moreover, by the third condition of the
lemma, every node in V ∩ V must have degree at least 3. Assume, without
loss of generality that, that G has only one connected component. Pick any
node of G to be its root and let T (n) be the number of nodes of a subtree
of G with n nodes that are not variables. Note that T (1) = 0, T (2) = 1,
and T (n) ≤ T (n1) + . . . + T (nk) + 1, where k ≥ 2,

∑k
j=1(nj) ≤ n, and

∀i ∈ {1, . . . , k} : ni > 0. The fact that T (n) ≤ 2n − 1 follows by induction
on n. Hence, |V | ≤ 2n− 1 and m = |E| ≤ 2n− 2 ≤ 2n, which concludes the
proof. 2

Lemma 8.4.19 Let X ,Y be disjoint sets of variables. Let ∆ = {s1
.
=

t1, . . . , sn
.
= tn} be a set of equations over T (F ,X) ∪ Y. Let B : ∆ 7→

P(pos(F)) be a nonredundant distinguishing function of ∆ satisfying that
∀i ∈ {1, . . . , n}, u ∈ {si, ti} : mgu(∆ \ {si

.
= ti})(u) is not a variable. Then,

size(B) ≤ |subterms(∆) \ (X ∪ Y)|2.

Proof. First of all, note that ∆ satisfies the conditions of Lemma 8.4.18:
condition (1) follows from the fact that B is a distinguishing function of ∆
and the fact that ∀e ∈ ∆ : B(e) 6= ∅, which is one the assumptions stated
in Section 8.4.1, condition (2) follows from the conditions of the lemma,
and condition (3) follows from the non redundancy of B and, again, the
fact that B(e) is non empty for every equation in ∆. Hence, we can apply
Lemma 8.4.18 and conclude that |∆| ≤ 2|terms(∆) \ (X ∪ Y)|.

We use induction on m = |subterms(∆) \ (X ∪ Y)|. By the condi-
tions of the lemma, m must be at least 2. In that case, it follows from
the conditions of the lemma that size(B) = 1, and the lemma holds in
this case. For the inductive step, assume that m > 2. First, note that
if ∆ is not stable then, by Lemma 8.4.15, there exists an equation e ∈ ∆

141

such that B(e) only contains one position. In that case, we define ∆1 as
mgu(e)(∆ \ {e}) and B1 : ∆1 7→ P(pos(F)) as B(mgu(e)(e′)) = B(e′), for
every e′ ∈ (∆ \ {e}). Note that size(B) = 1 + size(B1) and B1 is a nonre-
dundant distinguishing function of ∆1, by Lemma 8.4.11. Note that we can
repeat this construction to obtain sets of equations and nonredundant distin-
guishing functions ∆1, B1, . . . ,∆l, Bl such that size(B) ≤ l + size(Bl) and
Bl is a nonredundant distinguishing function of ∆l. Clearly, if ∆l = ∅,
then size(Bl) = 0, size(B) ≤ 2|terms(∆) \ (X ∪ Y)| ≤ m2, and the
lemma holds in this case. Otherwise, we have that size(B) ≤ l + size(Bl),
l < 2|terms(∆) \ (X ∪ Y)|, and ∆l is stable. Moreover, |subterms(∆l)| ≤
|subterms(∆)| by Lemma 8.1.1 and |∆l| ≤ 2|terms(∆) \ (X ∪ Y)| − l.

As a second step of the proof, let ∆λ ⊆ ∆l be the set {e ∈ ∆l | B(e) =
{λ}}, let θ = mgu(∆λ), let Γ = θ(∆l \ ∆λ), and let BΓ : Γ 7→ P(pos(F))
be defined as B(θ(e)) = B(e), for every e ∈ (∆l \ ∆λ). Then, size(B) ≤
|∆l| + size(BΓ) ≤ |∆l| ≤ 2|terms(∆) \ (X ∪ Y)| + size(BΓ). and BΓ is a
nonredundant distinguishing function of Γ, by Lemma 8.4.11. Also note that
|subterms(Γ)| ≤ |subterms(∆l)| ≤ |subterms(∆)|. Our goal now is to prove
a suitable bound on size(BΓ).

Clearly, if Γ = ∅, then size(BΓ) = 0, size(B) ≤ 2|terms(∆) \ (X ∪
Y)|, and we are done. Hence assume that Γ 6= ∅. In this case we have
size(B) < 2|terms(∆) \ (X ∪ Y)| + size(BΓ) as mentioned above and,
since |terms(∆) \ (X ∪ Y)| ≤ |subterms(∆) \ (X ∪ Y)| = m, size(B) ≤
2m−1+size(BΓ) holds. Note that, since ∆ is stable, then Γ is also stable. By
Lemma 8.4.14, there exists a non empty subset Γmax ⊆ Γ such that, for every
term t occurring in terms(Γmax), t is not a proper subterm of any other term
occurring in terms(Γmax), and t is not a subterm of any other term occurring
in terms(Γ \ Γmax). Moreover, there must be an equation (s

.
= t) ∈ Γmax

such that either s or t, say s, is a term of height greater than 0 and thus
s ∈ (subterms(∆) \ (X ∪ Y)). To see this, assume that all the terms in the
equations of Γmax are variables and note that, in that case, mgu(Γ\Γmax) does
not instantiate any term in ∆max. This either contradicts the assumption of
the lemma that ∀i ∈ {1, . . . , n}, u ∈ {si, ti} : mgu(∆ \ {si

.
= ti})(u) is not a

variable, or the fact that BΓ is a nonredundant distinguishing function since,
by construction, it holds that ∀e ∈ Γ : B(e) 6= {λ} ∧ B(e) 6= ∅ and we
assumed that Γ 6= ∅. For clarity, let us refer to such s as smax. Now, consider
the set {x1, . . . , xk} of all variables satisfying that there exists an equation of
the form (xi

.
= v) ∈ Γmax, for some i ∈ {1, . . . , k} and term v, and let αi be

{xi 7→ f(yi,1, . . . , yi,arity(f))}, where the yi,j’s are freshly introduced variables
from Y and thus not in X , and f is root(mgu(Γ \ {xi

.
= v})(xi)), which must

be a non variable function symbol by the conditions of the lemma and thus
the αis are correctly defined. We define the substitution α =

⋃k
i=1(αi), ∆′

142

as α(Γ), and B′ : ∆′ 7→ P(pos(F)) as B(α(e)) = B(e), for every equation in
e ∈ Γ. Note that B′ is a nonredundant distinguishing function of ∆ and that
size(B′) = size(BΓ). Hence, we have size(B) ≤ 2m − 1 + size(BΓ) =
2m− 1 + size(B′)

Note the application of α does not instantiate variable occurring at depth
greater than 0 in the terms in Γ, by construction of Γmax. Recall that BΓ(e) is
non empty and contains positions of length greater than 0, for every equation
in e ∈ Γ. It follows that, by definition of α, ∀t ∈ (α(Γmax)) : h(s) >
0∧h(t) > 0 holds. Hence, let ∆′max ⊆ ∆′ be α(Γmax) and note that (∆′′, B′′) =
decompose(∆′,∆′max, B

′) is well defined by Definition 8.4.16. Note that smax
does not occur in subterms(∆′′) and all the newly introduced variables from
Y occur at positions λ in the terms of ∆′. Thus |subterms(∆′′) \ (X ∪
Y)| < |subterms(Γ) \ (X ∪ Y)| ≤ m. Also, note that, by Lemma 8.4.17,
size(B′) = size(B′′), B′′ is a nonredundant distinguishing function of ∆′′.
Moreover, B′′ and ∆′′ satisfy the conditions of the lemma. By induction
hypothesis, size(B′′) ≤ |subterms(∆′′) \ (X ∪ Y)|2 ≤ (m− 1)2 and we have
size(B) ≤ 2m− 1 +size(BΓ) ≤ 2m− 1 +size(B′) ≤ 2m− 1 +size(B′′) ≤
2m − 1 + (m − 1)2 ≤ m2 = |subterms(∆) \ (X ∪ Y)|2, which concludes the
proof. 2

Lemma 8.4.20 Let ∆ be a set of equations over T (F ,X) and let B : ∆ 7→
P(pos(F)) be a basis of ∆. Then, size(B) ≤ 2|subterms(∆) \ X)|3|X|.

Proof. The lemma follows from Lemmas 8.4.6, 8.4.10, 8.4.19, and the ob-
servation that the size of a basis is at most twice the size of a weak basis.
2

We are now ready to prove Theorem 8.3.1.

Theorem 8.4.11 Let s, t be two terms. The set SDW(s
.
= t) and a basis of

SDW(s
.
= t) can be computed in polynomial time.

Proof. As commented above, the correctness of the algorithm in Figure 8.1
is straightforward. Moreover, by the previous lemma, it terminates in poly-
nomial time. 2

Note that the previous result holds even when the terms in the input
equation are represented as a Directed Acyclic Graph (DAG), since the bound
on the size of a basis given by Lemma 8.4.20 only depends on the number of
different subterms and number of variables, which are linear with the size of
a DAG representation of a term. Moreover, the result is independent of the
arity of the function symbols in F .

We proved that a useful representation of the potentially exponential set
of distinguishing positions of two terms s, t can be computed in polynomial

143

time an space. We believe that our result can be extended to multiequa-
tions, which leads to a polynomial time solution of a particular case of one
context unification that is crucial to prove that the problem can be solved
in polynomial time. An interesting question is whether our result can be
extended to the case where s and t are compressed using a grammar-based
representation, in the line of the work done in [GGSST10].

144

Chapter 9

Directions for further research

In previous chapter, we covered a variety of results related to variants of
unification, term compression, and the combination of both. Naturally, the
proposed extensions of the work presented in this thesis fall into the same
categories.

Algorithms on compressed terms

In Chapter 3 we showed how some basic operations on terms such as checking
equality, applying a substitution, computing a subcontext, a subterm, and
a compressed representation of the preorder traversal of a term can be effi-
ciently performed directly on an STG-compressed representation. Also, as
mentioned in the introduction, the compressed linear submatching problem,
i.e. finding an instance of a linear term s within a ground term t, is known to
be solvable in polynomial time even when both input terms s and t are com-
pressed using STGs [SS13]. The motivation for that work is in compressed
term rewriting, since linear submatching corresponds to finding a redex of a
left-linear term rewriting rule. A question that was left open in that work
is whether a polynomial time algorithm also exists if we drop the linearity
restriction, since NP-hardness is not known for this problem.

Another interesting question related to operations on terms is whether,
given compressed terms s and t, and an order < on terms, s < t holds. This
problem can be parameterized by the class of the ordering <, e.g. lexico-
graphic path orderings or knuth-bendix orderings. At least for these two
classes of orders on terms, this problem is not trivial.

More general grammar-based tree compression mechanism than STGs
have been also studied. The definition of STGs given in Definition 3.2.6 does
not allow repeated occurrences of parameters and hence, roughly speaking,

145

STGs do not allow copying. If we drop that restriction, we obtain nonlinear
STGs, a formalism equivalent to Lamping’s sharing graphs [Lam90] that
allows for a doubly exponential compression ratio [BLM08]. However, the
existence of an efficient equivalence checking procedure for nonlinear STGs
is open, since the best known complexity upper bound for this problem in
PSPACE [BLM08]. I suspect that this bound can be improved to coNP, but
the existence of a polynomial time algorithm does not seem plausible since,
in the worst-case, O(2n) bits are needed to simply store the size of a term
represented with a non-linear STG of size n. In any case, no hardness result
is known.

As mentioned in the introduction, the STG encoding has been proven
successful for XML representation and processing. Improvements in that
direction include the study of self-indexing of STG-based representations,
similarly to what has been successfully done in the case of strings. More
concretely, in [CN12], Claude and Navarro presented a representation of a
SCFG-compressed string that can be queried in logarithmic time with respect
to the size of the compressed representation. The goal in this context is
to, given an STG representation of a set of terms, use a reasonable space
overhead to enrich the representation with additional precomputed data that
allows to answer some common queries efficiently.

One context unification and unification on

compressed terms

From the perspective of unification on compressed terms, we presented, in
Chapter 4, efficient algorithms for first-order matching and unification. We
also presented an experimental analysis of several possible implementations
of such algorithms. Although those results have been already useful from
a theoretical perspective to prove that compressed one context unification
is in NP in Chapter 6, more practical applications should be explored. In
particular, we would like to study the feasibility of using an STG-based rep-
resentation for term indexing in the context of automatic theorem provers.
However, efficient updates need to be supported over such representations.
Updates on STGs have been considered in [FM07], but have not been imple-
mented in any large system yet.

Regarding context matching, and as shown in the table in the contribu-
tions section of the introduction, there is a missing result regarding context
matching with STG-compressed terms. In particular, it is not known whether
the result presented in Chapter 7, stating that k-context matching can be

146

solved in polynomial time with DAG-compressed terms, can be extended
to the STG setting. The main idea behind the algorithm of Chapter 7 is
based in the fact that the length of the position of the hole in the image of
a context variable in a solution is polynomially bounded by the size of the
input. This might no longer be true when the input is compressed using
STGs and hence the algorithm of Chapter 7 cannot be directly adapted to
the STG-compressed case.

An interesting variant of unification used in the context of XML process-
ing is simulation unification [BS02]. Roughly speaking, simulation unification
corresponds to term unification with context variables, sequence variables,
and first-order variables, where at most one occurrence of each context and
each sequence variable is allowed in the input terms, i.e. context and sequence
variables are anonymous. Moreover, in some cases the direct subterms of a
term are considered to be unordered. The case of simulation unification of
terms s,t where t is ground and represented with an STG and s is repre-
sented explicitly is particularly interesting, since it corresponds to the situa-
tion where t comes from the data and is large but compressed and s comes
from a program or query. Note that this case is similar to the subcontext
matching problem mentioned above.

Another interesting problem to be studied in the compressed setting
is antiunification. In contrast to term unification, antiunification corre-
sponds to the task of constructing a common generalization of two given
symbolic expressions. Analogously to the case of unification, different vari-
ants have been studied depending on what kinds of variables are allowed
in the expressions and what notion of equality is used. Antiunification
has been applied in program analysis, inductive learning, and clone detec-
tion [LMHH00, FM92, KLV11, BKLV13].

Finally, one of the natural extensions of the work presented in the last
chapters of this thesis is to find a polynomial time algorithm for one context
unification, if it exists. We already presented in Chapter 5 a polynomial time
solution for a particular case and, in fact, extending the results of Chapter 8
to multiequations directly yields a polynomial time algorithm for another
particular case.

147

Bibliography

[BBSW03] Sacha Berger, François Bry, Sebastian Schaffert, and Christoph
Wieser. Xcerpt and visXcerpt: From pattern-based to visual
querying of XML and semistructured data. In VLDB, pages
1053–1056, 2003.

[BKLV13] Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu
Villaret. A variant of higher-order anti-unification. In RTA,
pages 113–127, 2013.

[BKN87] Dan Benanav, Deepak Kapur, and Paliath Narendran. Complex-
ity of matching problems. J. Symb. Comput., 3(1/2):203–216,
1987.

[BLM08] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Effi-
cient memory representation of XML document trees. Inf. Syst.,
33(4-5):456–474, 2008.

[BLNW13] Alexander Bau, Markus Lohrey, Eric Nöth, and Johannes Wald-
mann. Compression of rewriting systems for termination analy-
sis. In Femke van Raamsdonk, editor, RTA, volume 21 of LIPIcs,
pages 97–112. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2013.

[BS01] Franz Baader and Wayne Snyder. Unification theory. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of
Automated Reasoning, pages 445–532. Elsevier and MIT Press,
2001.

[BS02] François Bry and Sebastian Schaffert. Towards a declarative
query and transformation language for xml and semistructured
data: Simulation unification. In ICLP, pages 255–270, 2002.

[CDG+07] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding,
Florent Jacquemard, Denis Lugiez, Sophie Tison, and Marc

148

Tommasi. Tree automata techniques and applications. Avail-
able on: http://www.grappa.univ-lille3.fr/tata, 2007. release
October, 12th 2007.

[CF07] Jorge Coelho and Mário Florido. Xcentric: logic programming
for XML processing. In Irini Fundulaki and Neoklis Polyzotis,
editors, WIDM, pages 1–8. ACM, 2007.

[CGG12] Carles Creus, Adrià Gascón, and Guillem Godoy. One-context
unification with stg-compressed terms is in np. In RTA, pages
149–164, 2012.

[CLL+02] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj
Prabhakaran, April Rasala, Amit Sahai, and Abhi Shelat. Ap-
proximating the smallest grammar: Kolmogorov complexity in
natural models. In STOC, pages 792–801, 2002.

[CLL+05] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj
Prabhakaran, Amit Sahai, and Abhi Shelat. The smallest
grammar problem. IEEE Transactions on Information Theory,
51(7):2554–2576, 2005.

[CN12] Francisco Claude and Gonzalo Navarro. Improved grammar-
based compressed indexes. In SPIRE, pages 180–192, 2012.

[DST80] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Vari-
ations on the common subexpression problem. J. ACM,
27(4):758–771, 1980.

[EN07] Katrin Erk and Joachim Niehren. Dominance constraints in
stratified context unification. Inf. Process. Lett., 101(4):141–
147, 2007.

[FM92] Cao Feng and Stephen Muggleton. Towards inductive general-
ization in higher order logic. In ML, pages 154–162, 1992.

[FM07] Damien K. Fisher and Sebastian Maneth. Structural selectivity
estimation for xml documents. In ICDE, pages 626–635, 2007.

[GGSS08] Adrià Gascón, Guillem Godoy, and Manfred Schmidt-Schauß.
Context matching for compressed terms. In LICS, pages 93–
102, 2008.

149

[GGSS09] Adrià Gascón, Guillem Godoy, and Manfred Schmidt-Schauß.
Unification with singleton tree grammars. In RTA, pages 365–
379, 2009.

[GGSS11] Adrià Gascón, Guillem Godoy, and Manfred Schmidt-Schauß.
Unification and matching on compressed terms. ACM Trans.
Comput. Log., 12(4):26, 2011.

[GGSST10] Adrià Gascón, Guillem Godoy, Manfred Schmidt-Schauß, and
Ashish Tiwari. Context unification with one context variable.
J. Symb. Comput., 45(2):173–193, 2010.

[GKS06] Georg Gottlob, Christoph Koch, and Klaus U. Schulz. Conjunc-
tive queries over trees. J. ACM, 53(2):238–272, 2006.

[GMR11] Adrià Gascón, Sebastian Maneth, and Lander Ramos. First-
order unification on compressed terms. In RTA, pages 51–60,
2011.

[Gol81] Warren D. Goldfarb. The undecidability of the second-order
unification problem. Theor. Comput. Sci., 13:225–230, 1981.

[GT07] Sumit Gulwani and Ashish Tiwari. Computing procedure sum-
maries for interprocedural analysis. In ESOP, pages 253–267,
2007.

[Jez12] Artur Jez. Faster fully compressed pattern matching by recom-
pression. In ICALP (1), pages 533–544, 2012.

[KLV11] Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification
for unranked terms and hedges. In RTA, pages 219–234, 2011.

[Kut02] Temur Kutsia. Pattern unification with sequence variables, flex-
ible arity symbols. Electr. Notes Theor. Comput. Sci., 66(5):52–
69, 2002.

[Lam90] John Lamping. An algorithm for optimal lambda calculus re-
duction. In POPL, pages 16–30, 1990.

[Lif07] Yury Lifshits. Processing compressed texts: A tractability bor-
der. In CPM, pages 228–240, 2007.

[LM06] Markus Lohrey and Sebastian Maneth. The complexity of tree
automata and XPath on grammar-compressed trees. Theor.
Comput. Sci., 363(2):196–210, 2006.

150

[LM11] Markus Lohrey and Christian Mathissen. Compressed mem-
bership in automata with compressed labels. In CSR, pages
275–288, 2011.

[LMHH00] Jianguo Lu, John Mylopoulos, Masateru Harao, and Masami
Hagiya. Higher order generalization and its application in pro-
gram verification. Ann. Math. Artif. Intell., 28(1-4):107–126,
2000.

[LMM13] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. XML
tree structure compression using repair. Inf. Syst., 38(8):1150–
1167, 2013.

[LMSS12] Markus Lohrey, Sebastian Maneth, and Manfred Schmidt-
Schauß. Parameter reduction and automata evaluation for
grammar-compressed trees. J. Comput. Syst. Sci., 78(5):1651–
1669, 2012.

[LNV05] Jordi Levy, Joachim Niehren, and Mateu Villaret. Well-nested
context unification. In CADE, pages 149–163, 2005.

[Loh10] Markus Lohrey. Compressed membership problems for regular
expressions and hierarchical automata. Int. J. Found. Comput.
Sci., 21(5):817–841, 2010.

[Loh12] Markus Lohrey. Algorithmics on slp-compressed strings: A sur-
vey. Groups Complexity Cryptology, 4(2):241–299, 2012.

[LSSV08] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. The
complexity of monadic second-order unification. SIAM J. Com-
put., 38(3):1113–1140, 2008.

[LSSV11] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. On
the complexity of bounded second-order unification and strati-
fied context unification. Logic Journal of the IGPL, 19(6):763–
789, 2011.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification
algorithm. ACM Trans. Program. Lang. Syst., 4(2):258–282,
1982.

[NPR97] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. A uni-
form approach to underspecification and parallelism. In ACL,
pages 410–417, 1997.

151

[Pla94] Wojciech Plandowski. Testing equivalence of morphisms on
context-free languages. In ESA, pages 460–470, 1994.

[Pla95] Wojciech Plandowski. The Complexity of the Morphism Equiva-
lence Problem for Context-Free Languages. PhD thesis, Warsaw
University, 1995.

[PW78] Mike Paterson and Mark N. Wegman. Linear unification. J.
Comput. Syst. Sci., 16(2):158–167, 1978.

[Rob65] John Alan Robinson. A machine-oriented logic based on the
resolution principle. J. ACM, 12(1):23–41, 1965.

[Ryt04] Wojciech Rytter. Grammar compression, lz-encodings, and
string algorithms with implicit input. In ICALP, pages 15–27,
2004.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems.
In STOC, pages 216–226, 1978.

[SN10] Kunihiko Sadakane and Gonzalo Navarro. Fully-functional suc-
cinct trees. In SODA, pages 134–149, 2010.

[SS13] Manfred Schmidt-Schauß. Linear Compressed Pattern Match-
ing for Polynomial rewriting (extended abstract). In TERM-
GRAPH, pages 29–40, 2013.

[SSS98] Manfred Schmidt-Schauß and Klaus U. Schulz. On the exponent
of periodicity of minimal solutions of context equation. In RTA,
pages 61–75, 1998.

[SSS02] Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of
context equations with two context variables is decidable. J.
Symb. Comput., 33(1):77–122, 2002.

[SSS04] Manfred Schmidt-Schauß and Jürgen Stuber. The complexity of
linear and stratified context matching problems. Theory Com-
put. Syst., 37(6):717–740, 2004.

[SSS12] Manfred Schmidt-Schauß and Georg Schnitger. Fast equality
test for straight-line compressed strings. Inf. Process. Lett.,
112(8-9):341–345, 2012.

152

[SSSA11] Manfred Schmidt-Schauß, David Sabel, and Altug Anis. Con-
gruence closure of compressed terms in polynomial time. In
FroCoS, pages 227–242, 2011.

[Vil04] Mateu Villaret. On some Variants of Second Order Unification.
PhD thesis, Universitat Politècnica de Catalunya, 2004.

153

