
Universitat Politècnica de Catalunya
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5.11 Graph Ĝ used to prove that Half vertex cover is NP-hard. 145

5.12 Influence graph (G3, f3) of the game ∆3(G, k). . . . . . . . . 147

6.1 Example of an opinion leader-follower system. . . . . . . . . . 161

6.2 An OLFM system with one layer of mediation. . . . . . . . . 163

6.3 The spread of influence starting from the initial activation of
X = {a} on an unweighted influence graph. . . . . . . . . . . 165

6.4 When followers have an even number of predecessors, the sat-
isfaction in each model produces different results. . . . . . . . 169

6.5 A strong influence graph with two layers of mediation. . . . . 185

6.6 A star influence system. . . . . . . . . . . . . . . . . . . . . . 189

7.1 Influence game representing a small social network. . . . . . . 201

7.2 Social network of monkeys’ interaction. . . . . . . . . . . . . 203

7.3 Comparisons between Bz, SS and CS measures for every case
in Monkeys’ interaction network. . . . . . . . . . . . . . . . . 204

7.4 Comparisons between Bz, F2 and F3 measures for every case
in Monkeys’ interaction network. . . . . . . . . . . . . . . . . 206

7.5 Comparisons between new and traditional centrality measures.207

7.6 Original network for dining-table partners. . . . . . . . . . . . 208

7.7 Influence graph from the original dining-table partners network.209

7.8 Comparisons between Bz, SS and CS measures for every case
in Dining-table partners network. . . . . . . . . . . . . . . . . 210

7.9 Comparisons between SS, F2 and F3 measures for every case
in Dining-table partners network. . . . . . . . . . . . . . . . . 212

7.10 Comparisons between SS, F2 and some traditional measures. . 213



List of Figures – XI

7.11 Student Government discussion network (up) and the adap-
tation to influence graph (down). . . . . . . . . . . . . . . . . 214

7.12 Comparisons between both new and traditional centrality
measures for Student Government discussion network. . . . . 216

7.13 Centrality scores for the Facebook interactions network, by
considering the F2 measure with p = 0.5. . . . . . . . . . . . . 217

7.14 Centrality scores for the Facebook interactions network, by
considering the F2 measure with p = 1. . . . . . . . . . . . . . 218



XII – List of Figures



Acknowledgements

I am grateful to my wife for being a wonderful partner in these five years of

adventure. I thank my family for their love and trust, and specially to my

parents and my sister, which endured me all the remaining years, in other

adventures.

I want to express my gratitude to my mentor, Andreas Polyméris, who
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Simple games are a fundamental class of cooperative games. They have

a huge relevance in several areas of computer science, social sciences and dis-

crete applied mathematics. The algorithmic and computational complexity

aspects of simple games have been gaining interest to the computer science

community in the recent years.

In this thesis we consider different computational problems related to

properties, parameters, and solution concepts of simple games. We analyze

the computational complexity of these problems under different forms of

representation of simple games, regular games and weighted games. We also

analyze the complexity required to transform a game from one representa-

tion to another. In this scenario, we study the decisive problem, which is

associated to the duality problem of hypergraphs and monotone Boolean

functions. We prove that the problem of deciding whether a simple game

in minimal winning form is decisive can be solved in quasi-polynomial time.

We also show that this decisive problem can be polynomially reduced to the

same problem but restricted to regular games in shift-minimal winning form.
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Furthermore, we prove that the problem of deciding whether a regular game

is strong in shift-minimal winning form is coNP-complete. Additionally, we

prove that the width, one of the parameters of simple games, can be com-

puted in polynomial time for games in minimal winning form. Regardless

of the form of representation, we also analyze counting and enumeration

problems for several subfamilies of simple games.

We introduce influence games, which constitute a new approach to study

simple games based on a model of spread of influence in a social network,

where influence spreads according to the linear threshold model. We show

that influence games capture the whole class of simple games. Moreover,

we study for influence games the complexity of the problems related to

parameters, properties and solution concepts considered for simple games.

We consider extremal cases with respect to demand of influence, and we

show that, for these subfamilies, several problems become polynomial.

We finish with some applications inspired on influence games. The first

set of results concerns the definition of collective choice models. For me-

diation systems, several of the problems of properties mentioned above are

polynomial-time solvable. For influence systems, we prove that computing

the satisfaction—a measure equivalent to the Rae index and similar to the

Banzhaf value—is hard unless we consider some restrictions in the model.

For OLFM systems, a generalization of OLF systems [255, 256], we provide

an axiomatization of satisfaction. The second set of results establishes a con-

nection with social network analysis. We apply power indices of cooperative

games as centrality measures of social networks, and we define new central-

ity measures based on the spread of influence phenomenon. We compare all

these measures on real networks with some classical centrality measures.
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Chapter 1
Introduction

Game theory arises in the first half of the 20th century from the need to study

formally situations of conflict and cooperation between intelligent rational

decision-makers [257, 258]. It is closely related with other disciplines such

as decision theory, voting theory and social choice theory. Decision theory

is devoted to identifying the values, uncertainties, rationality, optimality

and other issues relevant in an individual decision making; voting theory

studies the voting systems, i.e., methods by which voters make a choice

between different options; and social choice theory studies how the individual

preferences can be combined to reach a collective decision.

From the beginning, a relevant branch of game theory has been coop-

erative game theory [155], which addresses the study of cooperative games,

also called coalitional games or characteristic function games. A cooperative

game is a mathematical structure formed by a set of players that by forming

coalitions can achieve a common benefit, enforcing a cooperative behavior.

Unlike non-cooperative games, where individual players compete to obtain

the highest payoffs for themselves, here the players form coalitions, so that

the problem is how to divide the payoffs or the utility, trying to obtain to-

gether the highest benefits as posible. Cooperative games have been widely

studied by the scientific community [258, 236, 65, 201, 212, 44].

A well known subclass of cooperative games is the class of simples games,

also called simple coalitional games, simple voting games or cooperative sim-

ple games, in which the benefit that a coalition may have is always binary,

i.e., a coalition may be winning or losing, depending on whether the players

in the coalition are able to benefit themselves from the game by achiev-

7



8 – Chapter 1. Introduction

ing together some goal. Simple games were introduced in the seminal work

of game theory in 1944 [258], as an extensive class of cooperative games1,

whose study

“yields a body of information which is of value for a deeper un-

derstanding of the general theory”.

Furthermore, in the preface of [251] we can read:

“Few structures in mathematics arise in more contexts and lend

themselves to more diverse interpretations than do hypergraphs

or simple games.”

Simple games have a huge relevance in mathematics, computer science

and social sciences, being used to solve and represent problems arising in

voting theory, decision theory and social choice theory, logic and thresh-

old logic, circuit complexity, computational complexity theory, artificial

intelligence, geometry, linear programming, Sperner theory, order theory,

etc. [251, 71, 75] They are closely related with other mathematical and

computational structures, such as dual hypergraphs, Sperner families, an-

tichains, monotone Boolean functions, free distributive lattices, monotone

collective decision making systems and multi-agent systems, among oth-

ers [251, 71, 75].

A lot of effort has been devoted to understand which conditions a simple

game should have in order to meet some properties [251]. The development

of computer science as a scientific discipline in the 1950s and early 1960s,

helped to deal with these problems from a computational point of view.

Recently computer scientists have begun to question what is the computa-

tional complexity of deciding properties in simple games [10, 92]. Several of

these questions have been satisfactorily classified in complexity classes, and

the others remain still open. The way in which the game is represented is

crucial for this complexity analysis.

Nowadays, cooperation towards task execution when tasks cannot be

performed by a single agent is one of the fundamental problems in both social

1However, they considered a more restricted class of games, which nowadays are known
as strong games, i.e., simple games such that the complement of every losing coalition is
a winning coalition. According to Isbell [124], the definition that nowadays is used was
given by Gillies in 1953 [97] under the name of pseudogames.
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and multi-agent systems. There has been a lot of research understanding

collective tasks allocation under different models coming from cooperative

game theory. Under such framework, in general, cooperation is achieved

by splitting the agents into teams so that each team performs a particular

task and the payoff of the team is split among the team members. Thus,

cooperative game theory provides the fundamental tools to analyze this

context [272, 273, 44, 184, 12, 54]. In this vein, it is relevant to mention the

effort of some authors to make explicit the relationship or agreements among

some players or actors in a game before the conformation of coalitions. This

is the case of the communication structures of Myerson [191] and the a priori

unions or coalition structures of Owen [205], that help to deal with additional

real-world decision-making situations.

On the other hand, the ways in which people influence each other through

their interactions in a social network has received a lot of attention in the

last decade. Social networks have become a huge interdisciplinary research

area with important links to sociology, economics, epidemiology, computer

science, and mathematics [5, 127, 67, 116]. In the last decades the field

has grown extensively with the development of Internet and the emergence

of online social networks. A social network can be represented by a graph

where each node is an agent and each edge represents the degree of influence

of one agent over another one. Several “germs”—ideas, trends, fashions,

ambitions, rules, etc.—can be initiated by one or more agents and eventually

be adopted by the system. The mechanism defining how these motivations

are propagated within the network, from the influence of a small set of

initially “motivated” nodes, is called a model for influence spread.

Motivated by viral marketing and other applications, the problem that

has been usually studied is the influence maximization problem, initially

introduced by Domingos and Richardson [64, 226] and further developed

in [136, 76]. This problem addresses the question of finding a set with at most

k players having maximum influence, and it is NP-hard [64], unless additional

restrictions are considered, in which case some generality of the problem is

lost [226]. In social network analysis, the spread of influence is also related

with other interesting concepts, like the homophily phenomenon [171, 247].

Two general models for spread of influence were defined in [136]: the linear

threshold model, based in the first ideas of [108, 230], and the independent

cascade model, created in the context of marketing by [100, 101]. Models
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for influence spread in the presence of multiple competing products has also

been proposed and analyzed [23, 33, 5]. In such a setting there is also

work done towards analyzing the problem from the point of view of non-

cooperative game theory. Non-cooperative influence games were defined in

2011 by Irfan and Ortiz [122]. Those games, however, analyze the strategic

aspects of two firms competing on the social network and differ from the

context of this thesis.

Besides the spread of influence phenomenon, one of the most studied

concepts in social network analysis is the notion of centrality and the de-

velopment of mechanisms to measure how structurally important is an ac-

tor within a social network [85, 32, 247]. There are many centrality mea-

sures that provide different relevance criteria for the vertices within the

network [261, 150]. However, one of the major challenges for a successful

implementation of network management activities, such as viral marketing,

is the identification of key persons with a central structural position within

the network. For this purpose, social network analysis provides a lot of

measures for quantifying a member’s interconnectedness within social net-

works, providing strongly differing results with respect to the quality of the

different centrality measures [148].

The main goals of this thesis are two. Firstly, increase the number

of known complexity results for computational problems related to simple

games and subclasses of simple games. Secondly, to establish a relationship

between the spread of influence phenomenon on social networks and binary

decisions in voting systems. This can be done through the definition of

influence games, a new family of simple games based on the linear threshold

model. We determine for this new construction the complexity of the above

computational problems. Due to the interdisciplinary nature of these games,

we also find for them some applications in other areas, such as multi-agent

systems, decision theory, social choice and social network analysis.

1.1 Results Overview

Although this thesis is focused on simple games, the research topic is mul-

tidisciplinary. On one hand, we can mention game theory, voting theory,

social choice theory and decision theory, that arise from economy and pol-

itics. On the other hand, we have the computational complexity theory, as
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part of theoretical computer science, that arises from computer sciences and

discrete applied mathematics. Furthermore, we use several tools from other

fields of discrete mathematics, such as graph theory, hypergraph theory and

order theory, among others. We also need to mention social network analy-

sis, that comes from an intersection between mathematics and sociology.

The approach of the thesis is theoretical and algorithmic. We study

the computational aspects of problems of simple games. We show the com-

putational complexity of well known properties of traditional subclasses of

simple games. For some problems that can not be solved in polynomial time,

we present enumeration algorithms with polynomial-delay, when the output

size is exponential in terms of the size of the input.

We attempt to use standard notation, indicating in each case the refer-

ences in which they are used. For any question about nonstandard mathe-

matical symbols, see the chapter Abbreviations and Symbols at the begin-

ning of the thesis.

In order to present our computational results, we classify the properties

of simple games into three types: those that represent features of simple

games, players, or coalitions. About the first ones, we focus on the proper,

strong and decisive properties. Those properties have applications in several

areas such as interactive decision making, distributed computing, logic and

linear programming, category theory, social science, hypergraph theory and

reliability theory [151, 129, 18, 251, 157, 71]. We consider several properties

of players, such as the dummy, passer, vetoer, and dictator properties, among

others, closely related to the computation of solution concepts. In the same

vein, regarding the properties of coalitions, we consider the blocking and the

swing, which are useful to compute solution concepts, as well as to represent

simple games in a more succinct way [258, 16, 164, 251].

From the point of view of parameters, we study quantities that give inter-

esting information about simple games. We study the width and the length,

also used in decision making [221], among others. We also study solution

concepts, that come from cooperative game theory as a way to measure profit

allocations of players, by considering the profit of each coalition [10, 44].

Given a subclass of simple games, some problems of interest in simple

game theory are: Given a simple game, does it belongs to that class? Could

you give me one after another all the simple games in the class? How many
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simple games belong to that class?

The first of these problems is related to the conversion problem, which

is the problem of computing a representation of a game given in another

representation. It is relevant to ask which forms of representation are the

more appropriate when we face a computational problem [129]. Both the

feasibility of the representation and the computational complexity of the

problem are aspects that must be considered; and the first of these aspects

has direct implications about the second one. For instance, the decisive

property can be decided in polynomial time when the game is given in

extensive winning form; in quasi-polynomial time if the game is given in

minimal winning form [84, 229], and the problem is coNP-complete if the

game can be given in weighted representation form [92].

The second problem is the enumeration problem, that attempts to list

without repetitions every game belonging to a class of simple games. Fi-

nally, the third one is the counting problem, which refers to find the number

of elements of those classes. Note that every subclass of simple games is

finite whether it is restricted to a given number of players. However, the

subclasses of interest are typically huge, so the storage of their elements in

memory is not feasible at all. In this scenario, the enumeration algorithms

allow us to recover all the elements of a given subclass. The enumeration

algorithms are especially useful in benchmarking, because through complex

combinatorial operations, they may provide specific subfamilies of simple

games for experiments, that would be difficult to achieve manually.

In general, we consider these problems for simple games, but also for

the main subclasses of simple games, such as regular games, weighted games

and homogeneous games, one of the most studied subclasses of weighted

games [246].

In the context of both social and multi-agent systems, we propose to

analyze cooperation based on a model for influence among the agents in

their established network of trust and influence. Social influence is relevant

to determine the global behavior of a social network and thus it can be used

to enforce cooperation by targeting an adequate initial set of agents. From

this point of view, we consider a simple and altruistic multi-agent system in

which the agents are eager to perform a collective task but where their real

engagement depends on the perception of the willingness to perform the task

of other influential agents. We model this scenario by an influence game, a
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cooperative simple game in which a team of agents—or coalition—succeeds

if it is able to convince enough number of agents to participate in the task.

We take the deterministic linear threshold model [45, 5] as the mechanism

for influence spread in the subjacent social network.

In the considered scenario we adopt the natural point of view of decision

or voting systems, mathematically modeled as simple games [258]. This

approach brings into the analysis all the parameters, properties and solution

concepts for simple games previously mentioned.

1.2 Thesis Outline

This thesis is divided into three parts. The first one reviews the preliminary

aspects of simple game theory; the second part presents the different forms

of representation, and analyzes aspects of several problems on simple games;

and the last one is devoted to influence games and their applications. In

turn, each part is subdivided into chapters.

In Chapter 2 we establish basic definitions and notation related with

graph theory and computational complexity. Here we also define simple

games, their main properties, parameters, solution concepts and subfamilies.

In Chapter 3 we provide an easy way to access information about the dif-

ferent forms of representation of simple games, together with an analysis of

their relationships from a computational point of view. We study the most

classical forms of representation, such as the extended winning (losing) form

and the minimal winning (maximal losing) form, but also representations de-

rived from the binary trees and binary decision diagrams. For regular games

we consider the shift-minimal winning form and the fully condensed binary

trees. For weighted games we consider the usual weighted representation.

In this sense, the chapter behaves like a survey. Moreover, we also analyze

the complexity of the conversion problem in each case, i.e., the problem

of transforming a game from one form of representation to another. Some

of these results consider new algorithms which run with polynomial-delay.

This chapter correspond to the following paper:

[181] X. Molinero, F. Riquelme, and M. Serna. Forms of representation

for simple games: sizes, conversions and equivalences. Submitted to

Mathematical Social Sciences, 2014.



14 – Chapter 1. Introduction

In Chapter 4 we study the properties, parameters and solution concepts

of simple games from a computational point of view. The known results are

summarized on Tables 4.1 and 4.2. We solve some open computational prob-

lems, and we give ideas about how to deal with problems that remain open.

The main results obtained in these issues are summarized on Tables 4.3

and 4.4. In particular, we show that the decisive problem for simple games

is equivalent to the duality problem of hypergraphs, so it can be solved in

quasi-polynomial time, instead of being coNP-complete, as was conjectured

in [92]. We also prove that the decisive problem for weighted games in min-

imal winning form is polynomial time solvable. These results are presented

in the following publication:

[229] F. Riquelme and A. Polyméris. On the complexity of the decisive

problem in simple and weighted games. Electronic Notes in Discrete

Mathematics, 37:21–26, 2011.

Moreover, we show that the decisive problem for regular games in shift-

minimal winning form can also be solved in quasi-polynomial time, but it

seems unlikely that there is a polynomial algorithm to solve it, as in the case

of regular games in minimal winning form. This result can be found in the

following document:

[216] A. Polyméris and F. Riquelme. On the complexity of the decisive

problem in simple, regular and weighted games. CoRR, abs/1303.7122,

2013.

Another interesting result is that the width parameter—as well as the length—

can be computed in polynomial time for simple games in either extended

or minimal winning form. This problem was posted as open in [10], and its

solution is presented in the following paper:

[177] X. Molinero, F. Riquelme, and M. Serna. Cooperation through social

influence. Submitted to European Journal of Operational Research,

2013.

[175] X. Molinero, F. Riquelme, and M. Serna. Social influence as a voting

system: A complexity analysis of parameters and properties. CoRR,

abs/1208.3751v3, 2012.
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The final part of the chapter is devoted to the enumeration and counting

problems. We provide the main existing results from different analogous re-

search areas, and we propose a novel procedure to enumerate subclasses of

decisive games. These results remain unpublished, but a list of explicit enu-

merated decisive regular games is presented in Appendix A. The algorithm

presented in this chapter was also used for counting decisive homogeneous

games, whose numbers where introduced in the Online Encyclopedia of In-

teger Sequences (OEIS) [238], assuming the code A189360. The main ideas

of the enumeration of decisive regular games were presented in the following

conference:

[174] X. Molinero, A. Polyméris, F. Riquelme, and M. Serna. Efficient enu-

meration of complete simple games. In The Fifth International Confer-

ence on Game Theory and Management (GTM 2011). St. Petersburg,

Russia, June 27-29, 2011.

In Chapter 5 we define the influence games based on both an influence

graph and the linear-threshold model of influence spread. We show its ex-

pressiveness, by proving that they are equivalent to the whole family of sim-

ple games. We also analyze several of the previous properties, parameters

and solution concepts for influence games. These results are summarized on

Tables 5.1 and 5.2. For many cases in which the complexity of the prob-

lems is hard, we study some extremal cases for which the hard problems

become polynomial time solvable. Most of these results form part of an

article mentioned above:

[177] X. Molinero, F. Riquelme, and M. Serna. Cooperation through social

influence. Submitted to European Journal of Operational Research,

2013.

[175] X. Molinero, F. Riquelme, and M. Serna. Social influence as a voting

system: A complexity analysis of parameters and properties. CoRR,

abs/1208.3751v3, 2012.

Additionally, some results regarding solution concepts for influence games

were presented in the following conference:

[183] X. Molinero, F. Riquelme, and M. Serna. Solution concepts in influ-

ence games. In the 20th Conference of the International Federation
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of Operational Research Societies (IFORS). Barcelona, Spain, July

13-18, 2014.

The last two chapters of the third part consider several applications of

influence games in different topics of computer sciences.

In Chapter 6 we define some collective choice models, namely the opinion

leader-follower systems or OLF systems, mediation systems, and influence

systems. While the first one was defined in [255], the other two are new.

Mediation systems are influence games in which we consider a new kind of

actors called mediators, that are not part of the set of players. We prove

that several problems considered above for influence games, can be solved for

mediation systems in polynomial time. This model appears in the following

proceedings:

[180] X. Molinero, F. Riquelme, and M. Serna. Star-shaped mediation in in-

fluence games. In K. Cornelissen, R. Hoeksma, J. Hurink, and B. Man-

they, editors, 12th Cologne-Twente Workshop on Graphs and Combi-

natorial Optimization, Enschede, Netherlands, May 21-23, 2013, vol-

ume WP 13-01 of CTIT Workshop Proceedings, pages 179–182, 2013.

For OLF systems and influence systems, we address the computational com-

plexity of the satisfaction measure introduced in [255], that we show is equiv-

alent to the Rae index of cooperative games [220]. We prove that comput-

ing the satisfaction measure is hard even for influence systems on bipartite

digraphs. We also introduce subfamilies of these systems for which the sat-

isfaction can be computed in polynomial time. These results are presented

in the following paper:

[178] X. Molinero, F. Riquelme, and M. Serna. Measuring satisfaction in

societies with opinion leaders and mediators. Submitted to Discrete

Applied Mathematics, 2013.

We finish the chapter by proving the existence of an axiomatization of the

satisfaction measure for opinion leader-follower through mediators systems

or OLFM systems, a generalization of OLF systems that allows mediators in

the set of actors. It is a generalization of the axiomatization given by [256]

for the satisfaction measure in OLF systems. This results appear in the

following document:
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[228] F. Riquelme. Satisfaction in societies with opinion leaders and medi-

ators: properties and an axiomatization. CoRR, abs/1405.3460, 2014.

Finally, in Chapter 7 we propose and study new centrality measures for

social network analysis based on the spread of influence phenomenon. We

provide evidence that power indices can be applied as centrality measures,

and we also define the effort centrality and the satisfaction centrality. Ad-

ditionally, we define a family of centrality measures that can be computed

in polynomial time. We compare all these measures with some of the most

traditional ones in real social networks. Most of these results are presented

in the following publication:

[182] X. Molinero, F. Riquelme, and M. Serna. Power indices of influence

games and new centrality measures for agent societies and social net-

works. In C. Ramos, P. Novais, C. E. Nihan, and J. M. Corchado,

editors, Ambient Intelligence - Software and Applications: 5th Inter-

national Symposium on Ambient Intelligence, volume 291 of Advances

in Intelligent Systems and Computing, pages 23-30. Springer Interna-

tional Publishing, 2014.

[179] X. Molinero, F. Riquelme, and M. Serna. Power indices of influence

games and new centrality measures for agent societies and social net-

works. CoRR, abs/1306.6929, 2013.

Additionally, the use of power indices as centrality measures and some pre-

liminary validation were presented in the following conference:

[176] X. Molinero, F. Riquelme, and M. Serna. Centrality measures based on

power indices for social networks. In The 26th European Conference

on Operational Research (EURO2013). Rome, Italy, July 1-4, 2013.
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Chapter 2
Mathematical Preliminaries

In this chapter we describe the preliminary definitions concerning graph the-

ory, computational complexity and simple games. We assume basic knowl-

edge in computer sciences and discrete mathematics.

As usual, P(N) denotes the power set of N , and n its cardinality, i.e.,

n = |N |.

2.1 Graphs and Hypergraphs

In this thesis we use standard notation for graph theory [26], mainly used

in Chapters 3, 5 and 6. We also use hypergraphs, mainly in Section 4.2, for

which we use notation from [18, 214].

Definition 2.1. Let G = (V,E) be a graph, where V (G) is the set of vertices

or nodes, and E(G) is the set of edges. Let n = |V (G)| be the number of

vertices. A directed graph is a graph whose edges have a direction associated

with them. The directed edges are also known as arcs. An undirected graph

is a graph without direction in the edges. An edge and a vertex on that edge

are called incident. Two edges are called adjacent if they share a common

vertex. Similarly, two vertices are called adjacent if they share a common

edge.

For each i ∈ V , SG(i) = {j ∈ V | (i, j) ∈ E} is the set of successors of i,

and PG(i) = {j ∈ V | (j, i) ∈ E} is the set of predecessors of i. We extend

this notation to vertex subsets, given X ⊆ V , so that SG(X) = {i ∈ V |
∃j ∈ X, i ∈ SG(j)} and PG(X) = {i ∈ V | ∃j ∈ X, i ∈ PG(j)}. Finally, let

19
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δ−(i) = |PG(i)| and δ+(i) = |SG(i)| be the indegree and the outdegree of

the node i, respectively. The size of a graph is its number of vertices, |V |.

We use simply V and E rather than V (G) and E(G), when there is no

risk of confusion. Let i, j ∈ V be a pair of nodes. If G is a directed graph,

an edge from node i to node j is denoted by a pair (i, j) ∈ E; otherwise, if

G is undirected, an edge between nodes i and j is denoted by {i, j} ∈ E.

All the graphs considered in this thesis are directed, unless otherwise

stated, without loops and multiple edges. When there is no risk of confusion,

an undirected edge between nodes i and j is also denoted by (i, j). For

the remaining definitions, we consider interchangeably either directed or

undirected graphs.

Usually nodes or edges need to be labeled.

Definition 2.2. A weighted graph is a graph (G,w) where w : E(G) → N
is a weight function. A labeled graph is a weighted graph (G,w, f) where

f : V (G)→ N is a labeling function. An unweighted labeled graph is a graph

(G, f) in which every edge has weight 1.

Sometimes, we just need to pay attention to some portion of an entirely

graph. For this cases it is necessary the notion of subgraph.

Definition 2.3. Let G = (V,E) be a graph. A subgraph G′ = (V ′, E′) of

G is a graph whose vertex set is a subset of that of G, i.e. V ′ ⊆ V , and

whose adjacency relation is a subset of that of G restricted to this subset,

i.e. E′ = {(i, j) ∈ E | i ∈ V ′ and j ∈ V ′}. A subgraph G′ of a graph G is

induced if for all i, j ∈ V ′, (i, j) ∈ E′ if and only if (i, j) ∈ E; i.e., G′ is an

induced subgraph of G if it has exactly the edges that appear in G over the

same vertex set. If the vertex set of G′ is the subset X of V (G), then G′

can be written as G[X] and is said to be induced by X.

Another issue in graph theory is the connectivity in graphs.

Definition 2.4. A path in a graph is a sequence of edges which connect

a sequence of vertices. Two vertices i and j are connected in a graph if it

contains a path from i to j. A graph is connected if every pair of vertices

in the graph is connected. A connected component is a maximal connected

subgraph of a graph.

Now we define some kind of graphs with interesting properties that we

use in the following chapters.
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Definition 2.5. Let G = (V,E) be a graph, then:

• G is isolated if it has no edges. It is denoted by In.

• G is a cycle if it is a path starting and ending at the same vertex, with

no repetitions of vertices or edges allowed, other than the repetition

of the starting and ending vertex.

• G is complete if every vertex is connected with the others.

• G is bipartite if V can be divided into two disjoint sets V1 and V2 such

that every edge connects a vertex in V1 to one in V2, i.e., so that V1

and V2 are independent sets. Equivalently, a bipartite graph is a graph

that does not contain odd-length cycles.

• G is a complete bipartite graph if it is complete and bipartite. It is

denoted by Kr,s, where r = |V1| and s = |V2|. We denote by ~Kr,s to

the complete bipartite graphs in which the edges are all oriented from

V1 to V2.

• G is a star graph if it is a bipartite graph K1,k formed by k+1 vertices.

• G is a triangle if it is the complete graph with three vertices that forms

a cycle.

• G is a tree if it is connected and has no cycles.

• G is a binary tree if it is a tree such that each vertex has at most two

child vertices. Vertices with children are called inner nodes. Vertices

without children are called terminal nodes, leaf nodes, outer nodes or

external nodes. The root node is the ancestor of all nodes. The null

tree is the tree which does not have any vertex other than the root.

Observe that a graph where all edges are incident is either a triangle or

a star.

In binary trees, child vertices are usually distinguished as “left” and

“right” or by labels 0/1 on the corresponding arc. Any vertex in the data

structure can be reached by starting at the root node and repeatedly follow-

ing pointers to either the left or right child. In a binary tree, the outdegree

of every vertex is at most two and it holds that |E| = |V |−1. In some cases

the terminal nodes are labeled.
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Sometimes it is useful to consider a generalization of graphs where the

edges can connect multiple vertices, in such a way that instead of a set of

edges we obtain a family of sets. This generalization is known as hypergraph.

Definition 2.6. Let N be a finite set known as ground set, a hypergraph is

a family H ⊆ P(N) of hyperedges X ⊆ N .

We may represent a hypergraph H as an incidence matrix, whose rows

represent the incidence vectors x : N → {0, 1} of the hyperedges X ∈ H.

Thus, given i ∈ N , x(i) = 1 if and only if i ∈ X. The size of a hypergraphH,

i.e., the amount of bits needed in order to write down the family of incidence

vectors that characterize the hypergraph, is n · |H| = n · |H| ∈ N.

The following operators define several properties of hypergraphs. They

come from [214].

Definition 2.7. Given a hypergraph H over a set N , then we define:

• ¬(H) = {N \X | X ∈ H} is the family of complementaries of H.

• µ(H) = {X ∈ H | for all Z ∈ H, Z 6⊂ X} is the minimal of H, or

the family of irredundant elements of H.

• ν(H) = {Z ⊆ N | exists X ∈ H, X ⊆ Z} is the clutter of H, or

the family of subsets of N that respond to H.

• τ(H) = {Z ⊆ N | for all X ∈ H, X ∩ Z 6= ∅} is the blocker of H, or

the family of subsets of N that are transversal to H.

• λ(H) = µ(τ(H)) are the slices of H, or

the family of irredundant elements that are transversal to H.

Let H,K ⊆ P(N) be two hypergraphs. Since H ⊆ K implies ν(H) ⊆
ν(K), the operator ν is monotone. On the other hand, since H ⊆ K implies

τ(K) ⊆ τ(H), the operator τ is antitone. The application of these operators

can be seen in the following example.

Example 2.1. Let be N = {1, 2, 3}, consider the hypergraph given by

H = {{1, 2}, {3}, {1, 2, 3}}. The families obtained from the operators defined

above are the following.
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N 123

H 001

110

111

N 123

¬(H) 000

001

110

N 123

µ(H) 001

110

N 123

ν(H) 001

011

101

110

111

N 123

τ(H) 011

101

111

N 123

λ(H) 011

101

where each row in the binary matrices represents a hyperedge.

Note that the operators ν and τ are closely related:

Lemma 2.1. [214] Given a hypergraph H ⊆ P(N), then it holds that:

• ν(µ(H)) = ν(H),

• τ(µ(H)) = τ(H),

• τ(ν(H)) = τ(H),

• τ(τ(H)) = ν(H), and

• P(N) \ ν(H) = ¬(τ(H)).

Finally, we define three properties for hypergraphs that will be helpful

in Section 4.2.

Definition 2.8. A pair of hypergraphs (H,K) over the same ground set is:

• coherent, if ν(H) ⊆ τ(K),

• complete, if ν(H) ⊇ τ(K), and

• dual, if it is both coherent and complete, i.e. ν(H) = τ(K).
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2.2 Computational Complexity

In this section we recall the basic definitions and tools from [51, 207].

The computational complexity theory is a branch of theoretical computer

science and mathematics focused on classifying computational problems ac-

cording to their inherent difficulty. Thus, the problems that can be solved

by algorithms within a given resource are collected together in a specific

complexity class.

We usually distinguish between two kinds of complexity: time complexity

and space complexity. More formally, a complexity class is a set of computa-

tional problems that can be solved by algorithms with times of execution—

for the case of time complexity—or memory storage spaces—for the case of

space complexity—upper bounded by a function family, usually in terms of

the input size of the algorithm. From now on we call the computational

problems just as “problems”.

A standard way to describe computational complexity in terms of an

upper bound is given by the big O notation.

Definition 2.9. Let g be a function defined on the natural numbers, we

say that O(g) is the set of functions {f(n) | there exists positive constants

c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

Unless we say otherwise, we refer always to the time complexity. The

most common time complexity classes refer to decision problems, i.e., prob-

lems that can be answered with a “yes” or “no”.

Definition 2.10. The class P contains all the decision problems that can

be solved in time which is polynomial in the size of the input. The class NP

contains all the decision problems for which membership has a polynomial-

time verifiable certificate. The class coNP contains all the decision problems

whose complements are in NP. The class EXP contains all the decision prob-

lems that can be solved in time which is exponential in the size of the input.

We denote sEXP as the strict exponential class, i.e., the class of all the deci-

sion problems which belong to EXP but cannot be solved in sub-exponential

time in the size of the input. We denote QP as the class of all the deci-

sion problems that can be solved in quasi-polynomial—sub-exponential but

super-polynomial—time, i.e., by functions like nlogO(n), where n is the size

of the input.
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To show that a decision problem belongs to the class P, it suffices to find

a polynomial time algorithm that solves the problem. On the other hand,

there exist other classes of decision problems known as “hard problems”, for

which we need to define before what is a polynomial-time reduction. It is

well known that a decision problem A can be encoded as a string of binary

numbers, so that A ⊆ {0, 1}∗.

Definition 2.11. A polynomial-time reduction from a decision problem A ⊆
{0, 1}∗ to a decision problem B ⊆ {0, 1}∗ is a polynomial-time computable

function f : {0, 1}∗ → {0, 1}∗ such that, for every instance x ∈ {0, 1}∗,
x ∈ A if and only if f(x) ∈ B.

Consider two decision problems A and B, a polynomial-time reduction f

from A to B and an algorithm to solve B. If there exists a polynomial-time

reduction from A to B, then an instance x of A can be solved with the

algorithm that solves B, with the input given by the instance f(x).

Now we can define the remaining most common time complexity classes.

Definition 2.12. The class NP-hard—in short, NPH—contains all the de-

cision problems such that any problem in NP is polynomial time reducible

to them. The class NP-complete—in short, NPC—contains all the decision

problems that belong to NP and NP-hard.

Furthermore, the classes coNP, coNP-hard—in short, coNPH—and coNP-

complete—in short, coNPC—contain respectively all the decision problems

whose complements are in NP, NP-hard and NP-complete.

The NP-complete problem by antonomasia is the Satisfiability problem

(SAT), for which no one knows if there is an algorithm able to solve it in

polynomial time. The most accepted conjecture is that P 6= NP, so the

answer would be “no”. The membership of SAT in the class NP-complete

was established by Cook in 1971 [50]. All other NP-complete problems can

be polynomially reduced from SAT. Two lists of several NP-complete prob-

lems obtained through polynomial-time reductions from other NP-complete

problems are presented in [133, 95].

An additional interesting concept is given by the problems that can be

solved by an algorithm that runs in pseudo-polynomial time [95].

Definition 2.13. An algorithm runs in pseudo-polynomial time if its run-

ning time is polynomial in the numeric value of the input.
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Observe that this numeric value can be exponential in the length of the

input, that is given by the number of its digits. Further, there are several

computational problems that require a set of values to solve them, instead

of decision problems that just need a binary answer.

An enumeration problem is a problem which can be solved by an algo-

rithm that in the output set determines successively each one of the possible

solutions. The following definitions come from [129].

Definition 2.14. An enumeration problem can be solved with incremental

polynomial time if there exists an algorithm so that given an input and a set

of members of the output, find another member of the output, or determine

that none exists, can be done in time polynomial in the combined sizes of

the input and the given members of the output. Further, an enumeration

problem can be solved with polynomial-delay if there exists an algorithm

that returns the members of the output in some order, and such that the

delay between any two consecutive members is bounded by a polynomial in

the input size.

We denote Pd to the class of enumerating problems that can be solved

with polynomial-delay. Note that an algorithm that runs with polynomial-

delay implies that it runs in incremental polynomial time.

A counting problem refers to find the number of solutions of an enu-

merating problem. An algorithm that solves a counting problem returns a

natural number. The most representative complexity classes for this kind of

problems are the following.

Definition 2.15. The class #P or sharp-P contains all the counting prob-

lems such that the objects being counted can be verified in polynomial time.

The class #P-hard—in short, #PH—contains all the counting problems such

that any problem in #P is polynomial time reducible to them. The class #P-

complete—in short, #PC—contains all the counting problems that belong

to #P and #P-hard.

In Section 2.3.4 we introduce the enumeration and counting problems

specifically related to simple games.

Regarding space complexity, there are complexity classes which are anal-

ogous than for time complexity.

Definition 2.16. The class PSPACE contains all the decision problems that

can be solved by using a polynomial amount of space. The class EXPSPACE
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Complexity class Description

Decision problems

P Polynomial time solvable.

QP Quasi-polynomial time solvable.

EXP Exponential time solvable.

sEXP Exponential but not sub-exponential time
solvable.

NP Non-deterministic polynomial time solvable.

NP-hard (NPH) All NP problems are polynomial time
reducible to it.

NP-complete (NPC) In NP and NP-hard.

coNP Its complement is in NP.

coNP-complete (coNPC) Its complement is in NP-complete.

PSPACE Polynomial amount of space solvable.

EXPSPACE Exponential amount of space solvable.

Enumeration problems

Pd Polynomial-delay solvable.

Counting problems

#P Counting solutions of NP problems.

#P-hard (#PH) All #P problems are polynomial time
reducible to it.

#P-complete (#PC) In #P and #P-hard.

Table 2.1: A list of complexity classes.

contains all decision problems that can be solved by using an exponential

amount of space.

A succinct description of the previous complexity classes are summarize

on Table 2.1.

We finish this section with a list of NP-hard problems that we use in the

thesis for polynomial-time reductions [95].

Name: Vertex Cover

Input: Undirected graph G = (V,E) and an integer k.

Question: Is there a set X ⊆ V with |X| ≤ k such that

each edge in G has at least one vertex in X?

Name: Set Cover

Input: Finite set S, a collection of subsets C ⊆ S, and an integer k.

Question: Is there a subset C ′ ⊆ C with |C ′| ≤ k such that
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every element in S belongs to at least one member of C ′?

Name: Set Packing

Input: Collection C of finite sets, and an integer k.

Question: Is there a collection of disjoint sets C ′ ⊆ C with |C ′| ≥ k?

Name: Knapsack

Input: Finite set S of items i with weights wi, profits ni; an integer k.

Question: Is there a set C ⊆ S with
∑

i∈C wi ≤ k such that

the value
∑

i∈C ni is maximized?

It is known that using dynamic programming the Knapsack problem

can be solved in pseudo-polynomial time [135].

2.3 Simple Games

Simple games can be defined by using the notion of hypergraph. We follow

definitions and notations from [251].

Definition 2.17. Let N be a finite set, a simple game is a monotone hy-

pergraph W over N , i.e., such that for all X ∈ W, if X ⊆ Z, then Z ∈ W.

The set N is known as the grand coalition. Let W be the set of all

winning coalitions and L = ¬W = {X ⊆ N | X /∈ W} be the set of all

losing coalitions, we usually denote a simple game as a pair Γ = (N,W).

As a subclass of cooperative games, the simple games satisfy another

classical definition. For cooperative games, we use notation from [44, 10].

Definition 2.18. A cooperative game is a pair (N, ν), where N is a set of

players and ν : P(N) → R is the characteristic/valuation function of the

game, that associates, for each coalition X ⊆ N , a payoff ν(X) which the

coalition members may distribute among themselves.

Note that the characteristic function ν should not be confused with the

operator ν(H) for a hypergraph H. The clutter of a hypergraph is only used

in this thesis in Section 4.2, and both concepts are clearly distinguished

depending on the context.

By using cooperative games, a simple game can also be defined as follows.
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Definition 2.19. A simple game is a cooperative game Γ = (N, ν) such

that ν : P(N)→ {0, 1}, ν(∅) = 0, ν(N) = 1 and ν is monotonic, i.e., so that

ν(X) ≤ ν(Y ) whenever X ⊆ Y . A coalition X ⊆ N is winning whether

ν(X) = 1 and losing whether ν(X) = 0.

We say that a simple game (N,W) is given in extended winning represen-

tation form. However, there are many other forms of representations, as we

shall see in Chapter 3. To study the complexity of a computational problem,

we need to specify the form of representation on which the simple game is

given. Nevertheless, for the most definitions regarding simple games, we use

this form of representation, assuming that it is a generic form, and also that

the form of representation is independent of what is being defined. We will

use simple games as a pair (N, ν) only in the context of solution concepts, as

in Section 2.3.2, because solution concepts comes from cooperative games.

It is clear that P(N) can be partitioned into W and L, so that X ∈ W
if and only if X /∈ L. Further, note that Definition 2.19 excludes the games

(N, ν) with ν(∅) = 1 or ν(N) = 0. Indeed, these games are considered trivial,

because by monotonicity, all the coalitions of the first one are winning, and

all the coalitions of the second one are losing. Several authors exclude these

trivial games to avoid further difficulties in some proofs. We maintain this

convention, although in most of the results there is no problem accepting

the trivial games.

Note that simple games can also be defined through cooperative games

by determining a threshold q ∈ R, so that a coalition X ⊆ N is winning

whenever ν(X) ≥ q, and losing whenever ν(X) < q. In this sense, the simple

games are also known as threshold games [10].

To finish this section we define three operations on simple games: duality,

union and intersection.

Like hypergraphs or Boolean functions, every simple game has a dual.

The dual of a simple game is another simple game—or sometimes even the

same—which is obtained by an involution operation. If we apply the same

operation again over the new game, we obtain the original one.

Definition 2.20. Let Γ = (N,W) be a simple game, its dual is the simple

game Γd = (N,Wd), where for all X ∈ Wd, N \X ∈ L.

Note that for every simple game Γ, it is clear that (Γd)d = Γ.

For the remaining definitions, we need the following result.
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Lemma 2.2. Let Γ1 = (N,W1) and Γ2 = (N,W2) be two simple games,

both (N,W1 ∪W2) and (N,W1 ∩W2) are also simple games.

Proof. Let be X ∈ W1 ∪W2, it means that X ∈ W1 or X ∈ W2. If X ⊆ Z,

then Z ∈ W1—by monotonicity of Γ1—or Z ∈ W2—by monotonicity of

Γ2— so then Z ∈ W1 ∪W2 and (N,W1 ∪W2) is a simple game.

Let be X ∈ W1 ∩W2, it means that X ∈ W1 and X ∈ W2. If X ⊆ Z,

then Z ∈ W1 and Z ∈ W2—by monotonicity of Γ1 and Γ2, respectively—

so then Z ∈ W1 ∩W2 and (N,W1 ∩W2) is a simple game.

From the above we can define the following.

Definition 2.21. The intersection of two simple games is the simple game

where a coalition wins if and only if it wins in both games. In a similar way,

the union of two simple games is the simple game where a coalition wins if

and only if it wins in at least one of the two games.

2.3.1 Properties and Parameters

Now we discuss several relevant properties and parameters of simple games.

We start with well known properties regarding to coalitions.

Definition 2.22. Let Γ be a simple game. A winning coalition is minimal if

removing any of its players we obtain a losing coalition. A losing coalition is

maximal if adding any player on it we obtain a winning coalition. A coalition

X ⊆ N is a blocking coalition if N \ X is losing, and it is a swing if there

exists a player i ∈ X such that i is critical, i.e., X ∈ W and X \ {i} ∈ L.

We denote as Wm = {X ∈ W | for all Z ∈ W, Z 6⊂ X} the set of

minimal winning coalitions (MWCs), and as LM = {Y ∈ L | for all Z ∈
L, Y 6⊂ Z} the set of maximal losing coalitions. We denote the set of swings

for a player i as Si = {X ∈ W | X \ {i} ∈ L}. Furthermore, we use W(Γ),

L(Γ), Wm(Γ) and LM (Γ) to denote the set of winning, losing, minimal

winning and maximal losing coalitions of a simple game Γ, and simply W,

L, Wm and LM when there is no risk of ambiguity.

The sets Wm and LM are useful to represent simple games in more

succinct ways [258]. The blocking property was firstly defined in 1956 by

Richardson [225], as a way to simplify the notation of simple games given

in 1953 by Gillies [97]. The swing is a property which emerged from the

definition of critical player, described at least since 1965 by Banzhaf [16].
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Regarding simple games as a whole, the main properties are as follows.

Definition 2.23. A simple game (N,W) is:

• proper, if for all X ⊆ N , X ∈ W implies N \X ∈ L, i.e., every winning

coalition is a blocking;

• strong, if for all X ⊆ N , X ∈ L implies N \X ∈ W;

• decisive, if it is both strong and proper, i.e., X ∈ W iff N \X ∈ L.

Further, a simple game is dual-comparable if it is either proper or strong,

improper if it is not proper, and weak if it is not strong.

Proper (simple) games are also known as supperaditive [204] or coher-

ent [214]; strong games [258, 225, 123] as complete [214]; and decisive games

as constant-sum [258], zero-sum [258] or self-dual [235]. The decisive prop-

erty has been considered for simple games from its origins. However, in

other topics such as Boolean functions and Boolean logic, the self-duality

is even older, being defined in 1921 by Post [217]. Dual-comparability was

firstly studied in 1961 by Muroga et al. [189].

These properties are closely related to many computational problems,

such as the dualization problem of conjunctive normal forms (CNF) in logic

and Boolean functions, the problem of computing the minimal transversals

or hitting sets of a given hypergraph [18], the problem of computing the max-

imal independent sets of a hypergraph [151, 129], among others [71]. They

are also of special interest for voting systems [251]. In particular, decisive

games have applications in several areas, such as interactive decision mak-

ing, distributed computing, logic and linear programming, category theory,

social science, hypergraph theory and reliability theory [157]. Furthermore,

in [251] we read:

“properness rules out the possibility of disjoint winning coali-

tions (. . .) while strongness rules out the possibility of two losing

coalitions whose union is N (. . .) Some authors who view simple

games as models of voting systems have little interest in sim-

ple games that are not proper. Their argument is that disjoint

winning coalitions can allow contradictory decisions to be made

by the voting body. (. . .) A less vigorous argument is sometimes
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raised against games that are not strong, and thus, the argument

goes, leave some issues unresolved. Ramamurthy (1990) refers

to ‘the paralysis that may result from allowing a losing coalition

to obstruct a decision.’”

Note that Γ is proper (strong) if and only if Γd is strong (proper), and

it is decisive if and only if Γ = Γd.

Following with the definitions, now we describe the main properties fo-

cused in players of simple games.

Definition 2.24. Let (N,W) be a simple game and i ∈ N a player:

• i is a dummy if i ∈ X implies X /∈ Wm;

• i is a passer if i ∈ X implies X ∈ W, i.e. {i} ∈ W;

• i is a vetoer if i /∈ X implies X /∈ W, i.e. N \ {i} ∈ L;

• i is a dictator if i ∈ X iff X ∈ W, i.e. i is both passer and vetoer.

• Given a coalition X ⊆ N , i is critical in X if X ∈ W and X \ {i} ∈ L.

• Given another player j ∈ N , i and j are symmetric if for all X ⊆
N \ {i, j}, X ∪ {i} ∈ W if and only if X ∪ {j} ∈ W.

Dummies were defined in 1944 by von Neumann and Morgenstern [258]

and the symmetry of players in 1966 by Maschler and Peleg [164]. Crit-

ical players, also known as swing players are used at least since 1965 by

Banzhaf [16] to describe his popular power index, used to measure the vot-

ing power of players in a simple game. Passers, vetoers or veto players and

dictators are usually used in problems related with solution concepts. To

read about the Banzhaf index and other solution concepts, see Section 2.3.2.

It is easy to see that when there is a passer, then no other player can be

a vetoer, and vice versa. Therefore, a simple game may have at most one

dictator, and simple games with more than one passer or vetoer do not have

a dictator. We can also relate these three kind of players with the properties

of Definition 2.23.

Proposition 2.1. Let Γ = (N,W) be a simple game. If a player i ∈ N is:

• vetoer but not dictator, then Γ is proper and weak;
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• passer but not dictator, then Γ is strong and improper;

• dictator, then Γ is decisive.

Proof. If i is a vetoer, then X = N \ {i} ∈ L, so for all Y ∈ W, it holds

i ∈ W, and the complement N \ Y ⊆ X. Therefore, by monotonicity,

N \ Y ∈ L, so the game is proper.

If i is a passer, then X = {i} ∈ W, so for all Y ∈ L, it holds i /∈ L, and

X ⊆ N \ Y . Therefore, by monotonicity, N \ Y ∈ W, so the game is strong.

If i is vetoer and passer, then for all X ∈ W it holds i ∈ X, and for

all Y ∈ L it holds i /∈ Y , which means that |W| = |L|, i.e., the game is

decisive.

Besides the properties, there are some parameters which give interesting

information about simple games. The parameters can be useful, for in-

stance, to measure the inputs of the algorithms and thus to deal with their

computational complexities.

Definition 2.25. Let Γ = (N,W) be a simple game:

• The size of Γ is |Γ| = |N | · |W| = n · |W| ∈ N.

• The length of Γ is length(Γ) = min{|X| | X ∈ W}.

• The width of Γ is width(Γ) = min{|X| | N \X ∈ L}.

• The Nakamura number of Γ is min{|W ′| | W ′ ⊆ W,
⋂
W ′ = ∅}.

• The Coleman’s power of Γ is |W|/2n.

• The Chow parameters of Γ are the members of the vector

(ω1, . . . , ωn, ω), where for all i ∈ N , ωi = |Wi| = |{X ∈ W | i ∈ X}|
and ω = |W|.

The size of a simple game corresponds to a bound on the description

of the game. Therefore, it depends of how the game is represented. This

is discussed in detail in Chapter 3. The length and the width were firstly

defined in 1990 by Ramamurthy [221] as indicators of efficiency for decision

making. The Nakamura number was used in 1979 by Nakamura [192] to

prove that the rationality of collective choice critically depends on the num-

ber of alternatives [131]. The Coleman’s power, also known as the “power
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of collectivity to act”, was introduced in 1971 by Coleman [49] as a way

to represent the ease with which a decision can be made. At last, Chow

parameters, also known as degree sequence [251], were introduced in 1961 by

Chow [46] in the context of threshold functions, and then used by Dubey

and Shapley [66] to study some properties of the Banzhaf index.

Given a simple game Γ, note that the width of Γ is equal to the length

of Γd, and the length of Γ is equal to the width of Γd [10].

Now we define isomorphism and equivalence for simple games.

Definition 2.26. Let Γ = (N,W) and Γ′ = (N ′,W ′) be two simple games

with the same number of players. Γ and Γ′ are isomorphic if and only if

there exists a bijective function ϕ : N → N ′, such that for every coalition

X ⊆ N , X ∈ W if and only if ϕ(X) ∈ W ′. Moreover, when N = N ′ and ϕ

is the identity function, then we say that both simple games are equivalent.

Finally, we include an example that explains some of the concepts de-

scribed in this section.

Example 2.2. Consider the simple game Γ = (N,W) withN = {a, b, c, d, e}
andW = {{a, b, c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, b, e}, {a, c, d, e},
{a, c, d}, {a, c, e}, {a, d, e}, {b, c, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e},
{c, e}, {d, e}}. Hence,

Wm = {{a, b, e}, {a, c, d}, {b, c, d}, {c, e}, {d, e}}

and

LM = {{a, b, c}, {a, b, d}, {a, e}, {b, e}, {c, d}}.

This game is decisive, and it doesn’t have any dummy, passer, vetoer or dic-

tator. By definition, each player is critical in the MWCs to which it belongs,

and therefore, every MWC is a swing. Players a and b are symmetric. The

size of the game can be given by n · |W| = 5 · 16 = 80, but it also could be

defined—as we show in Chapter 3—by n · |Wm| = 5 · 5 = 25. The length

is |{c, e}| = |{d, e}| = 2. Since every coalition X ⊆ N with |X| = n − 1 is

winning, the width cannot be equals 1, so it is equal to |{d, e}| = 2. For

the Nakamura number, note that the intersection of any pair of MWCs is

nonempty; but {d, e} ∩ {c, e} ∩ {b, c, d} = ∅, so the Nakamura number is 3.

The Coleman’s power is equal to 16/32 = 0.5, and the Chow parameters are

given by the vector (9, 9, 11, 11, 13, 16).
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2.3.2 Solution Concepts

Solution concepts come from cooperative game theory as a way to measure

profit allocations of players, by considering the profit of each coalition. A

solution concept assigns for each game a set of payoffs or allocations. Ac-

cording to [10], the biggest attention in the development of cooperative game

theory has been to devise solution concepts to explain equilibrium in differ-

ent systems, in the sense of the profit allocations of players vs. the profit

of each coalition in which they belong. Since simple games are a family

of cooperative games, the solution concepts can also be studied when the

profit of each coalition is binary. While there are some solution concepts

whose definition is simplified in the context of simple games, there are oth-

ers specifically created for simple games, like the Banzhaf index. In this

thesis we concentrate in solution concepts in the context of simple games.

In this section we use notation mainly from [44, 10].

Definition 2.27. Let (N, ν) be a simple game, a payoff is a vector of non-

negative numbers p = (p1, . . . , pn) such that for all i ∈ N , pi is the payoff

of player i. The payoff of a coalition X ⊆ N is given by p(X) =
∑

i∈X pi.

The excess of X under p is e(p, X) = p(X)−ν(X) and the excess vector

of p is e(p) = (e(p, X1), . . . , e(p, X2n)), where X1, . . . , X2n is the list of all

coalitions over N ordered so that e(p, X1) ≤ . . . ≤ e(p, X2n).

The deficit of X under p is d(p, X) = ν(X)−p(X) and the deficit vector

of p is d(p) = (d(p, X1), . . . , d(p, X2n)) so that d(p, X1) ≥ . . . ≥ d(p, X2n).

A payoff is:

• efficient if p(N) = ν(N);

• individual rational if pi ≥ ν({i}), for all i ∈ N .

• homogeneous if each player receives either a payoff 0 or a fixed amount
1
r , where r is the number of players with payoff greater than zero.

A preimputation is an efficient payoff vector. An imputation is an indi-

vidual rational preimputation. The set of all preimputations of a game Γ is

denoted by I∗(Γ), and the set of all imputations is denoted by I(Γ).

For other properties of payoffs for solution concepts, see [10, 44]. Recall

that for simple games ν(N) = 1, hence the efficiency property implies that
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for these games every preimputation has p(N) = 1. Further, in simple games

the presence of imputations depends of the passer players [10].

Proposition 2.2. Let Γ = (N, ν) be a simple game, I(Γ) 6= ∅ if and only if

there is at most one passer in the game. Further, if there is only one passer

i ∈ N , then I(Γ) = {p} with pi = 1 and pj = 0, for all j ∈ N \ {i}.

Proof. If I(Γ) is nonempty, then there exists a payoff p with p(N) = 1 and

pi ≥ ν({i}) for all i ∈ N . This holds if either ν({i}) = 0 for all i ∈ N ,

or there exists a unique j ∈ N such that ν({j}) = 1, i.e., j is a passer. If

ν({j}) = 1, then an imputation p should have pi = 1 and also pj = 0 for all

j ∈ N \ {i}, because p(N) = 1. So this is the unique possible imputation.

Finally, if there is another passer h, then ν({h}) = 1; but if ph = 1, then

p(N) ≥ pi + ph > 1, so I(Γ) is empty.

According to [74, 44], two of the most relevant criteria to define a solu-

tion concept are the fairness, i.e., how well each player’s payoff reflects its

contribution, and the stability, i.e., what are the incentives for the players

to stay in a coalition.

The most common solution concepts based on the fairness criterion are

the power indices. The most classic and popular power indices are the

Banzhaf index and the Shapley-Shubik index. The first one comes from 1946

and it was firstly introduced by Penrose [213], being rediscovered in 1965 by

Banzhaf [16] and in 1971 by Coleman [49]. That is why the Banzhaf index

is also known as Penrose index, Penrose-Banzhaf index or Banzhaf-Coleman

index. Another name for the Banzhaf index is Dahlingham index, proposed

in [66] as a combination of results from Dahl [53] and Allingham [3].

The second one comes from 1953, when Shapley proposed the Shapley

value [232], a way to distribute the payoffs on the coalitions of a cooperative

game according to what would be the payoff for the grand coalition, em-

phasizing the fairness criterion. The power index restricted to simple games

was defined the following year by Shapley and Shubik [233].

Intuitively, the Banzhaf index is the proportion of coalitions in which a

player plays a critical role.

Definition 2.28. Let Γ = (N, ν) be a simple game and i ∈ N a player.

The Banzhaf value ηi(Γ) is the number of coalitions in which i is critical,

i.e., ηi(Γ) = |Si|. The probabilistic Banzhaf index of player i in Γ is the
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proportion of coalitions in which player i is critical, i.e.,

β′i(Γ) =
ηi(Γ)

2n−1
.

Some authors refer the probabilistic Banzhaf index just like Banzhaf in-

dex [167]. It also measures the probability that a player i turns a losing

coalition into a winning coalition when each one of the other players de-

cides independently with probability 1
2 whether to join the coalition or not.

However, note that the outcomes of the probabilistic Banzhaf index may

not be efficient. That is why we define the Banzhaf index, sometimes called

normalized Banzhaf index, starting from the probabilistic Banzhaf index:

βi(Γ) =
β′i(Γ)∑
i∈N β

′
i(Γ)

=
ηi(Γ)∑
i∈N ηi(Γ)

.

With these considerations, the Banzhaf index is efficient, in the sense

that
∑n

i=1 βi(Γ) = 1. Note that if player i is dummy, then βi(Γ) = 0.

To define the Shapley-Shubik index, first consider an ordered set of

players N and a permutation π : N → N . We said that the π(i)-th

player is a pivotal if the coalition {π(1), . . . , π(i − 1)} ∈ L and further

{π(1), . . . , π(i− 1), π(i)} ∈ W.

Definition 2.29. Let Γ = (N, ν) be a simple game and i ∈ N a player.

The Shapley-Shubik value κi(Γ) is the number of permutations for which

the player i is a pivotal, i.e., κi(Γ) =
∑

X∈Si(n − |X|)! (|X| − 1)! The

Shapley-Shubik index of player i in Γ, denoted by Φi(Γ), is

Φi(Γ) =
κi(Γ)

n!
.

Intuitively, the Shapley-Shubik index is the proportion of permutations

for which the player i is pivotal. Thus, if the players join the coalition in

a random order, this power index measures the probability that a player i

turns a losing coalition into a winning coalition.

This solution concept is also efficient, because
∑n

i=1 Φi(Γ) = 1. Fur-

ther, if player i is dummy, then Φi(Γ) = 0, and if two players i and j are

symmetric, then Φi(Γ) = Φj(Γ).

There are many other power indices in the literature. For instance, both

the Deegan-Packel index [59] and the Holler index [119] are based on the
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MWCs. The second one is similar to Banzhaf index, but only considering

the swings that are MWCs. For an overview about them, see [81, 88, 4, 22].

Now we concentrate on the most common solution concepts based on

the stability criterion.

The first solution concept for cooperative games was defined considering

this criterion. It was introduced in 1944 by von Neumann and Morgen-

stern [258] and it is called stable set or von Neumann-Morgenstern solution.

Definition 2.30. Let Γ = (N, ν) be a cooperative game. An imputation

p dominates an imputation q, which we denote p >dom q, if there is a

nonempty coalition X ⊆ N such that pi > qi for all i ∈ X and p(X) ≤ ν(X).

Two imputations can dominate each other. A stable set S(Γ) of the game is

a set of imputations which satisfies the following two properties:

1. Internal stability: No imputation in the stable set is dominated by

another imputation in the set, i.e., for all p,q ∈ S(Γ), p 6>dom q.

2. External stability: All imputation outside the stable set are dominated

by at least one imputation in the set, i.e., for all q ∈ I(Γ)\S(Γ), there

exists some p ∈ S(Γ) with p >dom q.

Note that a stable set is formed by imputations that are “maximal”

with respect to the dominance relation. Thus, no stable set is a subset of

another stable set [10]. A stable set may or may not exist for cooperative

games [159, 160], and when exists it is typically neither a singleton nor

unique [158], so for the same game we could define several stable sets S1(Γ),

S2(Γ), etc.

In simple games there exist stable sets that can be characterized by

using the set of MWCs. There are no stable sets if and only if the set

of imputations is empty. Besides, if there is at least one imputation, the

number of stable sets of the simple game is greater or equal to its number

of MWCs.

Proposition 2.3. Let Γ = (N, ν) be a simple game and X ∈ Wm. Then

SX(Γ) = {p ∈ I(Γ) | p(X) = 1} is a stable set of the game.

Proof. Given X ∈ Wm, we start by showing that SX(Γ) is internal stable.

Note that for all p ∈ SX(Γ) and i ∈ N \X, it holds pi = 0. Now consider
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Y ⊆ N and p,q ∈ SX(Γ). If X ⊆ Y , there exist i, j ∈ X such that pi > qi

and pj < qj , so for this kind of Y , p does not dominates q. If Y ⊂ X, then

ν(Y ) = 0, so to dominate q the imputation p must be such that p(Y ) = 0;

but this means that pi 6> qi for some i ∈ Y , and hence p 6>dom q. Therefore,

SX(Γ) is internal stable.

For external stability, note that every q ∈ I(Γ) \ S(Γ) has q(N) = 1

and qi > 0 for some i ∈ N \ X. Therefore, there exists some p ∈ SX(Γ)

so that p(X) > q(X), and moreover, with pi > qi for all i ∈ X. Since

p(x) = ν(X) = 1, SX(Γ) is external stable. Thus, SX(Γ) is a stable set.

Note that this result is not a double implication, because there can be

losing coalitions that are not comparable with MWCs. For instance, in our

Example 2.2 the maximal losing coalition {a, b, c} is not comparable to any

MWC.

In 1959, Gillies [98] formalized in modern terms the notion of core of a

cooperative game. The concept was introduced in 1881 by Edgeworth [68],

and it was initially known in economics as contract curve [132]. Although

in 1944 von Neumann and Morgenstern [258] considered the core as an

interesting concept, their work was focused on games with empty core.

Definition 2.31. Let Γ = (N, ν) be a cooperative game, the core is

C(Γ) = {p ∈ I(Γ) | for all X ⊆ N, e(p, X) ≥ 0},

i.e., the set of all the imputations which have a non-negative excess over any

coalition.

The core is an appealing solution concept, since its imputations guar-

antee that each coalition obtains at least what it could gain on its own. It

is known that for any cooperative game, if the core is nonempty, then it is

contained in all the stable sets of the game [10]. Moreover, if the core is a

stable set then it is the unique stable set. [65]. However, the core is empty

for many games of interest. In particular, for simple games we have a well

known result [74, 44]:1

1In [44] the authors warn that the second part of this result is only valid for proper
games, but this is exactly the case when there is a veto player, as we saw in Proposition 2.1.
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Proposition 2.4. Let Γ = (N, ν) be a simple game, it has a nonempty core

if and only if at least one player is a vetoer. Moreover, if the core is nonempty

then C(Γ) = {p ∈ I(Γ) | p(X) = 1 and pi = 0, for all i ∈ N non-vetoer}.

From the above and Proposition 2.3, it is easy to deduce what follows.

Proposition 2.5. Let Γ = (N, ν) be a simple game. If |Wm| = 1 and the

core is nonempty, then the core is the only stable set.

The usual emptiness of the core leads to the definition of the ε-core in

1966 [234] and the least core in 1979 [166] as a way to ensure nonempty

outcomes. The idea is to relax the notion of the core by allowing a small

error in the inequalities.

Definition 2.32. Let Γ = (N, ν) be a cooperative game, the ε-core is

Cε(Γ) = {p ∈ I∗(Γ) | for all X ⊆ N, d(p, X) ≤ ε},

i.e., the set of all the preimputations which have a deficit at most equal to

a parameter ε over any coalition. The least core of Γ, denoted by Cε1(Γ), is

the nonempty ε-core of the game with the smallest ε value.

Note that for a least core imputation p, ε1 represents the best deficit—or

the worst excess—of p. Note also that if ε is large enough, e.g., ε ≥ 1, then

the ε-core is guaranteed to be nonempty. By definition, the least core is the

intersection of all the ε-cores; it is always nonempty [10], it is not unique

and it may contain many payoffs [74].

For monotone cooperative games, and hence also for simple games, it is

known that given a least core imputation, every player belongs to a coalition

which gets the worst excess for that imputation [10]. Further, for simple

games with no vetoers, i.e., with empty core, there is no player that belongs

to any coalition which gets the worst excess for the imputation [10]. The

least core is also related to the length of a simple game [10]:

Proposition 2.6. Let (N, ν) be a simple game, p ∈ Cε1 with p1 ≥ . . . ≥ pn
and ε1(Γ) the best deficit of p. Then:

length(Γ) ≥ 1− ε1(Γ)

p1
.
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Proof. Let X ⊆ N be such that |X| = length(Γ). Since for all Y ⊆ N ,

ν(Y )− p(Y ) ≤ ε1(Γ), then 1− p(X) ≤ ε1(Γ). The minimum possible value

of p1 is p(X)/|X|, so |X| · p1 ≥ 1 ≥ p(X) ≥ 1 − ε1(Γ), and therefore

|X| ≥ (1− ε1(Γ))/p1.

Note that for the simple game with W = P(N) \ ∅, it holds that

length(Γ) = 1−ε1(Γ)
p1

= 1. Similarly, for the simple game with W = {N}, it

holds that length(Γ) = 1−ε1(Γ)
p1

= n.

Shortly before the ε-core was defined, in 1964 Aumann and Maschler

introduced the bargaining set [6], a solution concept similar to the core.

There are several slightly different definition of this concept [7]. Here we use

a version based on [10].

Definition 2.33. Let Γ = (N, ν) be a cooperative game, p,q, r payoff

vectors, X,Y ⊆ N and i, j ∈ N . A pair (p, X) is an objection to q of i

against j if i ∈ X, j /∈ X, p(X) = ν(X) and ph > qh for all h ∈ X. A

pair (r, Y ) is a counter-objection to the objection (p, X) of j against i if

j ∈ Y , i /∈ Y , r(Y ) = ν(Y ), rh ≥ qh for all h ∈ Y \X and rh ≥ ph for all

h ∈ X ∩ Y . The bargaining set B(Γ) is the set of all the imputations r such

that for any objection (p, X) to r of any player i against player j, there is

a counter-objection to (p, X) of j against i.

For simple games, the bargaining set is equivalent to the core if it is

nonempty. However, in some cases the core may be empty but the bargaining

set nonempty [70].

One year later, in 1965 Davis and Maschler [55] introduced the kernel,

a solution concept that represents all the imputations where players cannot

demand a part of the payoffs of the other players. The kernel can be de-

fined by using similar concepts to objections and counter-objections of the

bargaining set.

Definition 2.34. Let Γ = (N, ν) be a cooperative game, p a payoff vector

and i, j ∈ N . A coalition X ⊆ N is a kernel-objection to p of i against

j if i ∈ X, j /∈ X and pj > ν({j}). A coalition Y ⊆ N is a kernel-

counter-objection to the objection X of i against j if j ∈ Y , i /∈ Y and

e(p, Y ) ≤ e(p, X). Thus, the kernel K(Γ) is the set of all the imputations

p such that for every kernel-objection X to p of any i against any other j,



42 – Chapter 2. Mathematical Preliminaries

there is a kernel-counter-objection to X of j against i. Alternatively, the

kernel can also be defined as follows.

The maximum surplus sνij(p) of player i over player j with respect to a

payoff vector p is

sνij(p) = max{d(p, X) | X ⊆ N \ {j}, i ∈ X}.

Then the kernel of the game is the set of imputations p ∈ I(Γ) such that

(sνij(p)− sνji(p))(pj − ν({j})) ≤ 0

and

(sνji(p)− sνij(p))(pi − ν({i})) ≤ 0.

Intuitively, the surplus is a way to measure one player’s bargaining power

over another. It is known that the kernel is a subset of the bargaining set,

and it is also nonempty [55].

An auxiliary solution concept related to the kernel and introduced in

1972 is the prekernel [165].

Definition 2.35. Let Γ = (N, ν) be a cooperative game, the prekernel

PK(Γ) of the game is the set of preimputations p ∈ I∗(Γ) such that for all

i, j ∈ N ,

sνij(p) = sνji(p).

Note that for any cooperative game, the intersection among the prekernel

and the set of imputations of the game is a subset of the kernel. However,

the kernel is not a subset of the prekernel, and moreover, since the outcomes

of the prekernel do not need to be individually rational, the prekernel is not

a subset of the kernel [165]. Furthermore, both the prekernel preimputations

and the kernel imputations inside any Cε coincide [165], i.e., those prekernel

preimputations are imputations as well.

For simple games with no passers, symmetric players get both equal

prekernel and kernel payoffs [10].

The last solution concept that we comment is the nucleolus, defined in

1969 by Schmeidler [231]—see also [166]—as a way to find fairest payoffs

among the payoffs within the least core. In this sense, it can be thought as

a refinement of the least core [44]. In some sense, it is the most stable payoff
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allocation scheme, and it is particularly desirable when the stability of the

grand coalition is important [74, 231]. The nucleolus has also been used as

an alternative of the power indices to measure power in voting systems [37].

Definition 2.36. Let (N, ν) be a cooperative game. The nucleolus N (Γ) is

the imputation p ∈ I(Γ) with the lexicographically largest excess vector—or

minimal deficit vector—on the game.

It is known that if the game has imputations, then the kernel always

contains the nucleolus, and hence, it is guaranteed that is not empty. In

fact, when I(Γ) 6= ∅ the nucleolus always exists and it returns a unique

outcome for each game [231]. The nucleolus is in the least core, and if the

core is nonempty, the nucleolus is also in the core [10].

For simple games, it is known that if a player i is a dummy, the nucleolus

has a payoff pi = 0, and moreover, pi = 0 for all the kernel imputations [10].

Furthermore, if an imputation p is the nucleolus of a game and e(p, X) is

the first element of the excess vector e(p), then for any player i there exists

a coalition Y such that i ∈ Y and e(p, X) = e(p, Y ) [10].

Like the prekernel for the kernel, we can also define the prenucleolus,

which is also unique and it always exists [231].

Definition 2.37. Let (N, ν) be a cooperative game. The prenucleolus

PN (Γ) is the preimputation p ∈ I∗(Γ) with the lexicographically largest

excess vector on the game.

The prenucleolus always exists and it is unique while for every coalition

X ⊆ N with |X| = 1, ν(X) = 0 [231]. Further, the prenucleolus is always

contained in the least core [10].

To summarize, the inclusion relationships between the main solution

concepts based on the stability criterion, are as follows, where S(Γ) denotes

one of the many possible stable sets:

• N (Γ) ⊆ K(Γ) ⊆ B(Γ), N (Γ) ⊆ S(Γ) and N (Γ) ⊆ Cε1(Γ) ⊆ Cε(Γ).

• If C(Γ) 6= ∅, then N (Γ) ⊆ C(Γ) ⊆ S(Γ).

• If C(Γ) 6= ∅ and Γ is a simple game, then C(Γ) = B(Γ).

• PN (Γ) ⊆ Cε(Γ), PK(Γ) ∩ I(Γ) ⊆ K(Γ) and

PK(Γ) ∩ Cε(Γ) = K(Γ) ∩ Cε(Γ).
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Therefore, if the core is nonempty, for simple games we have:

• N (Γ) ⊆ K(Γ) ⊆ C(Γ) = B(Γ) ⊆ S(Γ) and N (Γ) ⊆ Cε1(Γ) ⊆ Cε(Γ).

For simple games with at least one imputation, S(Γ), Cε1(Γ), B(Γ), K(Γ),

PK(Γ), N (Γ) and PN (Γ) are always nonempty. In contrast, C(Γ) and Cε(Γ)

can be empty.

We finish this section by applying the previous solution concepts in a

specific simple game.

Example 2.3. Consider the same simple game of Example 2.2. The sets of

swings for each player are Sa = {{a, c, d}}, Sb = {{a, b, e}, {b, c, d}}, Sc =

{{a, b, c, d}, {a, c, d}, {a, c, e}, {b, c, d}, {b, c, e}, {c, e}}, Sd = {{a, b, c, d},
{a, c, d}, {a, d, e}, {b, c, d}, {b, d, e}, {d, e}} and Se = {{a, b, c, e}, {a, b, d, e},
{a, b, e}, {a, c, e}, {a, d, e}, {b, c, e}, {b, d, e}, {c, d, e}, {c, e}, {d, e}}. Thus,

the Banzhaf indices are given by βa(Γ) = 1
25 = 0.04, βb(Γ) = 2

25 = 0.08,

βc(Γ) = βd(Γ) = 6
25 = 0.24 and βe(Γ) = 10

25 = 0.4; and the Shapley-Shubik

indices are given by Φa(Γ) = 4
120 = 0.033, Φb(Γ) = 8

120 = 0.067, Φc(Γ) =

Φd(Γ) = 28
120 = 0.233 and Φe(Γ) = 48

120 = 0.4.

For the remaining solution concepts, first note that there are no vetoers

in the game, so the core is empty. Furthermore, since there are no passers

in the game, I(Γ) 6= ∅, so the nucleolus exists and it belongs to all the

remaining solution concepts.

By using for instance the MWC X1 = {a, b, e}, we can define a stable

set SX1(Γ) = {(pa, pb, 0, 0, pe) | pa + pb + pe = 1}, in such a way that some

valid imputations of the stable set are (0.3, 0.3, 0, 0, 0.4), (0.1, 0.2, 0, 0, 0.7),

(0.5, 0, 0, 0, 0.5), etc. Finally, it is possible to verify that the imputation

(1
9 ,

1
9 ,

2
9 ,

2
9 ,

1
3) is the lexicographically largest excess vector on the game, so

this is the nucleolus of the game. This is not obvious because it requires

to solve a linear program. In Section 4.1.2 we explain in detail how it is

computed the nucleolus in a simple game.

2.3.3 Regular and Weighted Games

There exist two particular subfamilies of simple games which are very im-

portant because of its many applications [258, 123, 187, 251], as well as the

possibility for them to be represented in succinct forms of representation.

That is why we introduce regular games and weighted games at the end of
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this chapter. Their succinct representations and the relationships between

them are stated in Chapter 3.

Definition 2.38. Let � be a desirability relation on a set of players N , that

linearly order the players by increasing power. Given X ⊆ N , an increasing-

shift on X, specified by a pair (i, j) ∈ N \ X × X such that j ≺ i, is an

operation which returns Z = X \ {j} ∪ {i}. Given two winning coalitions

Y, Z ∈ W, we said that Y � Z if and only if there exists a finite sequence

of increasing-shifts on Y which produces another coalition Y ′ ⊆ Z.

Note that the desirability relation on coalitions is not linear [251]. This

relation was firstly introduced for simple games in 1958 [124], and it is

also known as desirability order [251], dominance relation [82] or Winder

order [268] in threshold logic. The notion of desirability relation was gener-

alized to cooperative games in 1966 [164].

Depending on the order of the set players, the increasing-shift operation

is also known as right-shift or left-shift [202, 144, 43] This operation has

also been studied in other contexts such as non-cooperative games [35], fair

division [36] and Boolean functions [113].

Now we can define the regular games [209, 163].

Definition 2.39. Let Γ = (N,W) be a simple game where N is ordered by

a desirability relation �, then Γ is a regular game with respect to � if for

all X ∈ W, every increasing-shift returns an element of W; i.e. if replacing

a member of a winning coalition X ∈ W by a more powerful one, always

yields a winning coalition.

Analogously to the sets Wm and LM , we denote Ws = {X ∈ W |
for all Z ∈ W, Z 6≺ X} as the set of shift-minimal winning coalitions, and

LS = {Y ∈ L | for all Z ∈ L, Y 6≺ Z} as the set of shift-maximal losing

coalitions.

Regular games have been used at least since 1966 to study the kernel of a

game [164]. In the context of monotone Boolean functions, they are known

as regular functions at least since 1969 [235], and have been sometimes also

called directed games [144]. Outside the game theory, they have been used

to solve other problems like the regular set-covering problem [209] and the

problem of separating hyperplanes [69]. In monotone Boolean functions, the

shift-minimal winning coalitions are related with the shelters [210].

Moreover, we have the following [251].
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Definition 2.40. A simple game Γ = (N,W) is linear if there exists a linear

re-ordering of N , for which Γ becomes regular.

Linear games are also known as complete games [41], ordered games [246],

swap-robust games [251] or 2-monotone Boolean functions [268].

Now we introduce weighted games.

Definition 2.41. Let Γ = (N,W) be a simple game, then Γ is a weighted

game if there exists a weight function w : N → R and a real quota q ∈ R
such that for all X ⊆ N , X ∈ W if and only if w(X) ≥ q; where w(X) =

Σ{w(a) | a ∈ X}.

Weighted games are also called weighted voting games or weighted ma-

jority games. They were defined in the origins of game theory in 1944 [258],

but similar ideas were used one year before to define the Threshold Logic

Unit (TLU), the first artificial neuron [169]. Some years later, they were

deeply studied in 1956 [123] in the context of simple game theory, and since

then weighted games have also been studied in many different contexts under

different names: Linearly separated truth functions, to contact and to rec-

tifier nets [170]; linearly separable switching functions or threshold Boolean

functions, to separate circuits in switching circuit theory and analyze the

threshold synthesis problem [121]; trade robustness, for voting theory and

trade exchanges [249]; or threshold hypergraphs, to synchronizing parallel

processes [103, 224]. Sometimes, the inherent concept of weight function is

changed by the one of threshold criteria.

According to Hu [121]—see also [87, 90]—the weight function can be

replaced by integer non-negative weights with 0 ≤ q ≤ w(N).

Weighted games clearly are simple (monotone) games, and one can al-

ways linearly re-order the elements of N such that w : N → R becomes

monotone; i.e. for all i, j ∈ N with i ≺ j, w(i) ≤ w(j). And then clearly the

game becomes regular. So all weighted games are regular. The converse,

however, does not hold [187, 251].

Despite of the fact that weighted games are a strict subclass of simple

games, it is interesting to remark a well known result which says that every

simple game can be expressed as the intersection or the union of a finite

number of weighted games. This allow us to define the following [251].
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Definition 2.42. A vector-weighted game is a simple game formed by the

intersection of a finite number of weighted games. In a similar way, we say

that a co-vector-weighted game is a simple game formed by the union of a

finite number of weighted games.

Vector-weighted games are also called vector-weighted systems [250], mul-

tiple weighted games [10], weighted multiple majority games [2] or by some

other combinations of these words; in the context of hypergraphs, they are

known as threshold intersection dimensions [266, 162] and in switching func-

tions as canonical conjunctive forms [187].

This leads us to define the following.

Definition 2.43. The dimension (codimension) of a simple game is the

minimum number of weighted games whose intersection (union) is equivalent

to that simple game.

The expressiveness of vector-weighted games was firstly shown in [128]

for hypergraphs, and then expressed for simple games in [250]. The concept

of codimension and the equivalence between simple games and the union

of a finite number of weighted games was introduced in [89]. We highlight

these observations in the following theorem.

Theorem 2.1. [250, 89] Every simple game can be represented as a vector-

weighted game, an vice versa. Every simple game can be represented as a

co-vector-weighted game, an vice versa.

In the same vein, we shall see other expressiveness results for influence

games in Section 5.2.

Moreover, several subclasses of weighted games have been defined [258,

10, 251]. One of the most studied [246] is the class of homogeneous games,

which was firstly defined together with the class of weighted games [258].

Definition 2.44. An homogeneous game is a weighted game with weight

function w and quota q such that for all X ⊆ N , w(X) = q.

Due to the importance of the decisive problem of Definition 2.23, the

decisive weighted games have its own name [92].

Definition 2.45. A majority game is a decisive weighted game. We say

that a sub-majority game is a strong weighted game.
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simple games

decisive games

regular

weighted

homogeneous

Figure 2.1: Inclusion relationship between subclasses of simple games.

Figure 2.1 illustrates the main subclasses of simple games considered in

this chapter.

To finish with this section, note that every simple game that belongs to

any of the subclasses defined in this section requires that the grand coalition

be ordered. In most of this thesis we assume an increasing order given by

N = {1, . . . , n}; however, to simplify calculations we use in Sections 4.2.3

and 4.4.2 a decreasing order given by N = {n, . . . , 1}. Nevertheless, the

definitions and results apply to both orders.

2.3.4 Counting and Enumerating

In this section we introduce the problem of counting and enumerating sub-

classes of simple games.

In this thesis we concentrate especially on the subclasses presented in

Section 2.3.3, considering also the properties of simple games given by Def-

inition 2.23. We are not only interested in enumerating (and counting)

simple, regular, weighted and homogeneous games, but we also pretend to

enumerate (and count) these games that are decisive as well.

Both counting and enumeration algorithms of subclasses of simple games

have usually a high complexity. The subclasses of our interest grow expo-

nentially in function of n, so it is not possible to implement algorithms

which run in polynomial time. However, we do not even know whether

the considered counting problems are #P-hard, or if the enumeration prob-
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lems are polynomial-delay solvable. Regardless the above, as we shall see in

Section 4.4.1, some authors have designed algorithms that achieve a good

performance for the cases that reach to solve.

The interest in counting the number of simple games begins long before

the simple games were defined. According to [251], the first studies related to

simple games have to do with the enumeration of free distributive lattices,

started in 1897 by Dedekind [58]. It is well known that the number of

simple games available for a given set of players coincides with the so called

Dedekind number, and the problem of finding these numbers is called the

Dedekind’s Problem [274].

More than a half century later, in 1959 Isbell reactivated the interest on

counting, but focusing in the family of majority games, i.e., decisive weighted

games [125]. Since then, but especially with the rise of computer technology,

many authors have worked in the enumeration of different subclasses of

simple games, usually in the framework of monotone Boolean functions.

In particular, Muroga et al. in 1970 provided several counting results for

subclasses of monotone Boolean functions [190].

The known results for enumeration and counting are presented later

in Section 4.4. In that Section we also present some approaches to the

enumeration of decisive regular games.
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Chapter 3
Representation and

Conversion Problems

In this chapter we survey several standard forms of representation for simple

games, regular games and weighted games. The forms of representation here

considered are summarized in Table 3.1. Furthermore, an overview of the

results of the conversion problem for these forms of representation is given in

Tables 3.2–3.5. Results in bold face are new and question marks correspond

to open problems. For subfamilies of simple games in Tables 3.4 and 3.5 the

results are restricted to simple games in the considered subfamily. For these

last two Tables, we shall see that the reversed conversion problems can be

solved trivially in polynomial time.

In Section 3.1 we survey the main standard forms of representation for

general simple games. Analogously, in Section 3.2 we present standard forms

of representation for regular games, and in Section 3.3 the standard form

of representation for weighted games. At the end of each section we show

computational complexity results about the conversion problems among the

different considered forms of representation.

3.1 Representations for Simple Games

First we turn our attention to the ways in which a simple game can be

represented as the input to a problem.

Definition 3.1. Let G be a class of simple games, a form of representation

53
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Simple games

EWF Extensive or explicit Winning Form

ELF Extensive or explicit Losing Form

MWF Extensive or explicit Minimal Winning Form

MLF Extensive or explicit Maximal Losing Form

PCBF Partially Condensed Binary Tree Form

BDDF Binary Decision Diagram Form

VWRF Vector Weighted Representation Form

coVWRF co-vector Weighted Representation Form

Regular games

FCBF Fully Condensed Binary Tree Form

SWF Shift-minimal Winning Form

Weighted games

WRF Weighted Representation Form

Table 3.1: Forms of representation considered in this chapter.

of G is a finite data structure which allows to represent each simple game

Γ ∈ G, as well as verifying in polynomial time if a given instance of the data

structure represents a simple game Γ in G or not.

We use the notation F (Γ) to denote a representation of simple game Γ

in form F . As usual, |F (Γ)| denotes the size of F (Γ) that is the amount of

bits needed to write down the data structure representing Γ.

Definition 3.2. Let F1 and F2 be two forms of representation for a class of

simple games G, the conversion problem from F1 to F2, denoted by F1  F2,

is the problem of computing F2(Γ) from F1(Γ), i.e.:

Name: F1  F2

Input: Simple game Γ in F1 form

Output: A representation of Γ in F2 form.

It is well known that simple games can be described by monotone Boolean

functions [251], also known as positive Boolean function [163], and therefore

by several kinds of logical formulas [71].

Definition 3.3. A monotone Boolean function is a binary function f :

{0, 1}n → {0, 1} such that for all pair of vectors v, w ∈ {0, 1}n with v ≤ w,

it holds f(v) ≤ f(w). A vector x ∈ {0, 1}n is a true vector if f(x) = 1 and

it is a false vector if f(x) = 0.
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Output →
EWF MWF ELF MLF

Input ↓
EWF – P EXP P

MWF
sEXP

–
EXP EXP

Pd
ELF EXP EXP – P

MLF
sEXP sEXP sEXP

–
Pd

Table 3.2: Computational complexity of the conversion problem from the
row form to the column form, for representations of simple games based on
explicit descriptions of set families.

Output →
EWF MWF PCBF BDDF

Input ↓
EWF – P P P

MWF
sEXP

– P P
Pd

PCBF
sEXP

P – P
Pd

BDDF sEXP sEXP sEXP –

Table 3.3: Computational complexity of the conversion problem from the
row form to the column form, for representations of simple games based on
variants of binary trees.

Observe that the true (false) vectors represent the winning (losing) coali-

tions of the corresponding simple game. We do not consider this succinct

implicit representation and we refer to any of the references on Boolean

formulas [262, 52].

Furthermore, there exist some forms of representation based on graphs

that lead to the definition of subfamilies of simple games. These approaches

are usually introduced in contexts of trading, management and flow interac-

tions. Here we mention a few. Vertex connectivity games were motivated by

the context of network reliability: Given a graph in which the set of vertices

V is partitioned on three subsets (Vp, Vb, Vs), where Vs is the set of players

of the game, a coalition S ⊆ Vs is winning if and only if S ∪ Vb ∪ Vp fully

connects Vp, i.e., if for all vertices u, v ∈ Vp, there exists a path from u until

v [13]. A simplification of flow games—a model of cooperative games based
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Output →
EWF MWF PCBF BDDF FCBF SWF

Input ↓

FCBF
sEXP

P P P – P
Pd

SWF
sEXP sEXP sEXP sEXP? sEXP

–
Pd

Table 3.4: Computational complexity of the conversion problem from the
row form to the column form for representations of regular games.

Output →
EWF MWF PCBF BDDF FCBF SWF

Input ↓

WRF
sEXP sEXP sEXP sEXP sEXP sEXP
Pd Pd Pd

Table 3.5: Computational complexity of the conversion problem from the
row form to the column form for representations of weighted games.

on flow networks, which shortly are directed graphs with positive labels on

the edges [130]—called connectivity games is a model where every edge has

the same capacity 1, and the flow has a unitary value, in such a way that

winning coalitions correspond to paths from the source to the sink, and

losing coalitions are those subset of edges that do not induce a source-sink

path [14]. In spanning connectivity games the players are the edges of an

undirected weighted multigraph so that a coalition is winning if and only if

the edges in the coalition constitute a connected spanning subgraph [11]. A

threshold variant of shortest path games—given a flow network with various

“sources” and “sinks”, every shortest path P = (v1, . . . , vm) through the

edges (e1, . . . , em−1) is a coalition with value
∑m−1

i=1 wi −m if v1 is a source

and vm is a sink; or 0, otherwise [83, 259]—is a network with a threshold

T such that a coalition is winning if and only if
∑m−1

i=1 wi −m ≥ T [195].

Usually, these representations are related to cooperative games and do not

consider the whole class of simple games. In Chapter 5 we introduce influ-

ence games, and we show that this class capture the whole class of simple

games. It remains open to study the conversion problems related to these

forms of representations based on graphs.

We finish this section with the notion of reasonable representation, that

we use in the following chapters.
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Definition 3.4. Let Γ = (N,W) be a simple game, consider the game

Γ′ = (N ∪ {x},W ′), where x is a new player and W ′ = {S ∪ {x} | S ∈ W}.
A representation is reasonable if a representation of the game Γ′ can be com-

puted with only polynomial blow-up with respect to a given representation

of the game Γ.

3.1.1 Explicit Set Families and Incidence Vectors

In this section, we describe several usual forms of representation for sim-

ple games corresponding to standard explicit forms of representation of set

families [258]. We use matrix notation as an explicit representation of sets.

This form of representation is mostly used in the context of hypergraphs and

monotone Boolean functions [144, 71, 214]. Thus, each coalition X ∈ P(N)

is represented by its incidence vector x ∈ {0, 1}n. For each player i ∈ N ,

xi or x(i) is a component of x. If xi = 1 (resp. xi = 0), then xi is called a

1-component (resp. 0-component) of x. Given x, y ∈ {0, 1}n, recall that in

lexicographic order x ≤ y if and only if either x < y or x = y if and only if

xi ≤ yi, for each i ∈ N and considering as usual 0 < 1.

We start with the earliest forms of representation defined by von Neu-

mann and Morgenstern [258].

Definition 3.5. A simple game Γ is given in:

• (Extensive or explicit) winning form (EWF) as a pair (N,W), where

N is its set of players, and W its set of winning coalitions.

• (Extensive or explicit) minimal winning form (MWF) as a pair

(N,Wm), where Wm is its set of MWCs.

Observe that both forms of representations are valid since, given a subset

family, we can check in polynomial time whether it is monotonic and whether

it is minimal. Indeed, to check minimality we can just test whether removing

one of the elements of the coalition leads to a winning coalition.

Assuming that each set is represented by its incidence vector, we can rep-

resent a simple game by an incidence matrix with one row for each winning

coalition (or each MWC) and a column for each player.

Example 3.1. Consider the simple game Γ = (N,W) of Example 2.2. In

matrix notation, (N,Wm) is the following:
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N abcde

00011

00101

Wm 01110

10110

11001

Assuming a matrix representation, we have that |EWF(Γ)| = |N | · |W| =
n · |W| ∈ N and |MWF(Γ)| = n · |Wm|. For any simple game Γ, Wm ⊆ W.

Therefore |EWF(Γ)| ≤ |MWF(Γ)|. Moreover, ifW 6= ∅ andW 6= {N}, then

we have a strict containmentWm ⊂ W. In the following example we provide

a simple game whose representation in MWF is exponentially smaller than

in EWF.

Example 3.2. Let Γ be a simple game which contains the empty coalition

as winning coalition, i.e., such that all players are dummies. Hence, ∅ is the

unique MWC, so that |Wm| = 1, but the number of winning coalitions will

be |W| = 2n, which is exponential in terms of n.

From the above we have the following known result.

Lemma 3.1 ([92]). The problem MWF EWF can be solved in exponen-

tial time but it can not be solved in sub-exponential time. The problem

EWF MWF can be solved in polynomial time.

Besides EWF and MWF, there are other two classical forms of extensive

representations based on losing coalitions. Those representation forms were

also defined by von Neumann and Morgenstern [258].

Definition 3.6. A simple game Γ is given in:

• (Extensive or explicit) losing form (ELF) as a pair (N,L), where N is

its set of players, and L its set of losing coalitions.

• (Extensive or explicit) maximal losing form (MLF) as a pair (N,LM ),

where LM is its set of maximal losing coalitions.

Given a simple game in ELF and a subset X ⊆ N , we can check whether

or not X belongs to L in polynomial time. Furthermore, when the game is

given in MLF, checking whether a given subset family is maximal can also

be done in polynomial time, since we can test whether adding one of the
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elements of the complement of the coalition leads to a losing coalition. These

conditions characterize the fact that a set family is the set of (maximal)

losing coalitions of a game. Thus, both forms of representations are valid.

The size of a simple game Γ in both representations is |ELF(Γ)| = n · |L|
and |MLF(Γ)| = n · |LM |, respectively.

The conversion problem among representations based on losing coali-

tions and those based on winning coalitions was studied in [92]. While the

polynomial results come from the monotonicity of simple games, the expo-

nential ones are related with the size of the representations, in the same way

than in Lemma 3.1.

Lemma 3.2 ([92]). The problems EWF MLF, ELF MLF, ELF MWF

can be solved in polynomial time. The problems EWF ELF, MWF ELF,

MWF MLF, MLF EWF, MLF EWF and ELF ELF can be solved in

exponential time but can not be solved in sub-exponential time.

Moreover, based on a result of reliability functions from [15], Aziz proved

that the problem MWF EWF is #P-complete [9]. Since W ∪ L = P(N),

note that there are three possibilities for a given simple game which belongs

to a subclass:

1. Both |W| and |L| grow exponentially in terms of n.

2. |W| is polynomially bounded and |L| grows exponentially.

3. |W| grows exponentially and |L| is polynomially bounded.

When the first possibility holds, we need more accurate bounds to know

the differences between using EWF or ELF. When the second one holds,

then it is most useful to represent the game in EWF than ELF. Finally,

when the third condition holds, the dual game is one of the second type

and it can be represented in a most useful way in EWF. Remember by

Definition 2.20 that we can always get the original game using the dual of

the dual game with a potential increase in size.

Note that according to duality we have that |EWF(Γ)| = |ELF(Γd)|.
This allows to obtain a representation for a game from the representation

of its dual. Although this transformation might be useful to analyze the

computational complexity of some problems defined on simple games, it is
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Algorithm 1 GenerateEWFfromMWF

Input: A simple game Γ in MWF with Wm = {X1, . . . , Xm} sorted in
lexicographic order.

Output: Γ in EWF.
1: Generate(X,R, i)
2: for all j ∈ R in increasing order
3: X = X ∪ {j};
4: if for all k > i,Xk 6⊂ X
5: print X;
6: R = Nj \X;
7: Generate(X,R, i);
8: X = X \ {j};
9: {main}

10: for i = 1, . . . ,m do
11: print Xi;
12: R = N \Xi;
13: Generate(Xi, R, i);

not part of our objectives as we are interested in comparing representations

of the same game.

As we saw before, the sizes of the representations of simple games may

be a strong argument to prove that there is no polynomial time algorithm

for the conversion problem between some forms of representation. In these

cases we can study the complexity of the enumeration problem.

Lemma 3.3. MWF EWF can be solved with polynomial-delay.

Proof. First note that every MWC is a winning coalition, so they have to

be printed. Let (N,Wm) be a simple game, as usual we assume that N =

{1, . . . , n}, Ni = {i, . . . , n} andWm = {X1, . . . , Xm} according to increasing

lexicographical order.

See Algorithm 1. In order to enumerate all the winning coalitions with-

out repetitions, for each Xi ∈ Wm our algorithm enumerates only a subset

of the 2n−|X| − 1 winning coalitions that contain X. The algorithm is a

branch and cut algorithm that uses the usual backtrack tree providing an

enumeration of the subsets of a set without repetitions. Recall that in such

a tree a node has as children the superset obtained by adding one candidate

element. The set of candidates is formed by those elements that are not in

the current subset and that are posterior to all the elements in the current

subset. An example of the backtracking tree for a set with four elements
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{ }

{1}

{1, 2}

{1, 2, 4}

{1, 4}

{2}

{2.4}

{4}

00101

10101

11101

11111

10111

01101

01111

00111

Figure 3.1: Backtrack tree for {1, 2, 4} and backtrack tree for the enumera-
tion without repetitions of all the winning coalitions that contain 00101.

is given in Figure 3.1. We consider such a tree for every given winning

coalition.

We first sort the set of MWCs in increasing lexicographical order. Then,

for each MWC Xi, we perform a traversal of the backtrack tree correspond-

ing to all the subsets of N \ Xi as described before. On the traversal our

algorithm backtracks whenever it reaches a set X that is a superset of Xj ,

for some j > i. Thus our algorithm prints, for any MWC Xi, all the coali-

tion that are supersets of Xi but not supersets of any MWC Xj with i < j.

The first property guarantees that the winning coalitions are printed with-

out repetitions. Furthermore, monotonicity guarantees that the algorithm

prints all the winning coalitions.

Finally, take into account that in any of the backtracking trees con-

structed in an execution of Algorithm 1, the height is at most n, therefore

any backtrack path has length bounded by n. In consequence, the number

of steps between the printing of one winning coalition and the next one is

polynomial and the claim follows.

Example 3.3. Consider the simple game (N,Wm) of Example 3.1. Fig-

ure 3.2 shows the enumeration without repetition of all the winning coali-

tions of the game. They are printed in the following order: 00011, 10011,

01011, 00101, 10101, 01101, 00111, 01110, 01111, 10110, 11110, 10111,

11001, 11101, 11111, 11011.

For the case of forms of representations based in sets of losing coalitions

we get an equivalent result.

Lemma 3.4. MLF ELF can be solved with polynomial-delay.
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01011

01111
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11011

Figure 3.2: Computing MWF EWF for the simple game of Example 3.1.

Proof. The proof is similar to that of Lemma 3.3 and it corresponds to

Algorithm 2. Again our algorithm starts by sorting in lexicographic order

the set of maximal losing coalitions. Algorithm 2 backtracks over the family

of subsets associated to each maximal losing coalition. As before, to avoid

repetitions when we deal with a maximal losing coalition Xi, we backtrack

when the algorithm reaches a set that is also a subset of Xj , for some j > i.

Again, all the backtracking trees have height at most n and thus Algorithm 2

works with polynomial-delay.

It remains open to determine whether the conversions MWF ELF,

MWF MLF, MLF EWF and MLF MWF can be solved with polynomial-

delay.

3.1.2 Binary Tree Representations

In this section, we review several usual forms of representation for simple

games using different families of (extended) binary trees [163]. There are

several forms of representation based on directed binary trees [194].

As usual we assume a lexicographic order on the set N of players. Any

family of subsets F can be represented by a binary tree in different ways. The

simplest—and most costly—way of representation uses a complete binary

tree with height n.

Definition 3.7. A complete binary tree Bc with height n is a binary tree

such that for any node t ∈ Bc at depth j+1, the left edge (respectively, right

edge) from t represents that xn−j = 1 (respectively, xn−j = 0). Terminal



3.1. Representations for Simple Games – 63

Algorithm 2 GenerateELFfromMLF

Input: A simple game Γ in MLF with LM = {X1, . . . , Xm} sorted in lexi-
cographic order.

Output: Γ in ELF.
1: Generate(X,R, i)
2: for all j ∈ R
3: X = X \ {j};
4: if for all k > i,Xk 6⊃ X
5: print X;
6: R = X ∩Nj+1;
7: Generate(X,R, i);
8: X = X ∪ {j};
9:

10: {main}
11: for i = 1, . . . ,m do
12: print Xi;
13: R = Xi;
14: Generate(Xi, R).

nodes are labeled with labels from the set {0, 1}. Thus, a terminal node

t ∈ Bc at depth n represents a vector with n components corresponding to

the edge labels found in the path from the root to t. Those sets with vectors

corresponding to paths ending in a terminal node with label 1 belong to

the represented family. Sets whose vectors correspond to paths ending in a

terminal node with label 0 do not belong to the family.

Let us explain this construction with an example.

Example 3.4. Figure 3.3 illustrates the complete binary tree for the set of

winning coalitions of the simple game given in Example 3.1.

Note that every complete binary tree representing a subset family has 2n

terminal nodes and 2n − 1 inner nodes, including the root node. And thus

its size depends on n and not on the size of the represented set. Therefore,

complete binary trees are not the best form of tree representation. However,

we include them here in order to introduce other variants of binary trees.

A first variation could be to avoid the vector components represented by

the terminal nodes with label 0.

Example 3.5. Figure 3.4 represents a non-complete binary tree for the set

of winning coalitions of the simple game of Example 3.1.
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Figure 3.3: Complete binary tree Bc(W) representing the winning coalitions
for the simple game Γ = (N,W) of Example 3.1. The labels in the last level
of edges can be deduced from the other levels.
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Figure 3.4: Binary tree B(W) representing the winning coalitions for the
simple game Γ = (N,W) of Example 3.1.

From the computational point of view, any binary tree representation of

one of the fundamental sets describing a simple game—W, L, Wm or LM—

is related to the corresponding representation form in the same way. In what

follows—as it has been done in the literature—we consider only binary tree

representations of the subset of MWCs. We continue considering binary

trees that are not necessarily complete.

We keep the edge labels, with the same meaning, i.e., an edge from a

node at depth j to a node at depth j + 1 labeled l ∈ {0, 1} represents the

case xn−j = l. Terminal nodes—at depth n—do not have assigned labels.

Furthermore, all terminal nodes are at depth n. As before, a terminal node
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Figure 3.5: B(Γ) (left) and PCB(Γ) (right) representing the simple game Γ
of Example 3.1. PCB(Γ) is obtained from B(Γ), by removing the marked
nodes.

t ∈ B at depth n represents a vector with components resulting by the edge

labels in the path from the root to t. Those sets with vectors corresponding

to paths ending in a terminal node belong to the subset family represented

by the set. Observe that now the size of B(F) is polynomially related to

|F|. This binary tree data structure has been used in relation with simple

games in the context of monotone Boolean functions as a representation of

the set of MWCs [163].

Definition 3.8. A simple game Γ is given in binary tree form (BF) when

it is given by a binary tree representing the set Wm(Γ).

We use the notation B(Γ) to denote a simple game Γ given in binary tree

form. Observe that we can check in polynomial time whether a set belongs

or not to the set represented by a binary tree. Therefore, we can check in

polynomial time the minimality of the represented set. Thus, the binary

tree form is a valid representation for simple games.

Example 3.6. Figure 3.5 at left depicts the binary tree B(Γ) for the game

Γ = (N,Wm) given in Example 3.1.

In the following we introduce two other forms of representation based

on binary trees. Whereas the first one reduces the size of the binary trees,

the second one, based on binary decision diagrams, reduces the size of a

complete binary tree representation. In both cases the data structure allows

to check in polynomial time if a given set belongs to the represented family.

Therefore, both data structure are valid representation forms for simple

games.
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The first data structure is due to Makino [163].

Definition 3.9. A partially condensed binary tree (PCB) for a set family

F is the subgraph of B(F) which is obtained after removing recursively all

the leaves whose parent has no edge labeled 1, i.e., whose parent has no

left-child.

From the above definition we are able to define the following represen-

tation form.

Definition 3.10. A simple game Γ is given in partially condensed binary

tree form (PCBF) if it is given by the PCB obtained from B(Γ).

We denote by PCB(Γ) the partially condensed binary tree representa-

tion of Γ. Recall that the tree provides a representation of Wm(Γ).

Example 3.7. The right tree in Figure 3.5 represents PCB(Γ) for the simple

game given in Example 3.1. This tree is obtained from B(Γ), given as the

left tree in the same figure.

Our last representation form in this section is based on binary decision

diagrams.

Definition 3.11. A binary decision diagram (BDD) is a directed, acyclic

and labeled graph with decision nodes and two terminal nodes called 0-

terminal and 1-terminal. A BDD is ordered (OBDD) if the players appear

in the same order on all paths from the root; and it is reduced (RBDD) if

all its isomorphic subgraphs are merged and it does not have any node with

two isomorphic children. A binary decision diagram represents the set family

formed by all the vectors extracted from paths ending in the 1-terminal.

BDDs are also called branching programs [263, 172]. They were intro-

duced in the context of monotonic functions by Lee [153] and studied in

depth by Akers [1] and Boute [34]. For each given ordering on N , there is a

unique reduced and ordered BDD (ROBDD) representing the family [39, 40].

That is why usually by BDD it is meant the ROBDD corresponding to the

lexicographic order.

Definition 3.12. A simple game Γ is given in binary decision diagram form

(BDDF) by a BDD representing Wm(Γ).
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Algorithm 3 GeneratingBDDfromBT

Input: A binary tree representing a subset set S.
Output: A BDD representing S.

1: Merging duplicate terminal nodes that share the same label (0 or 1).
2: For each level from the bottom to the top:
3: loop
4: Merging duplicate inner nodes whose left-child and right-child are

connected with the same node.
5: Removing inner nodes with the same left-child and right-child.
6: end loop

The BDDF represents a set family in the same way as complete binary

trees, but in a more succinct way. The MWCs are represented by paths

leading to the 1-terminal.

Given a simple game Γ, we can compute BDD(Γ) from B(Γ). This

can be done through Algorithm 3, which was described in [40]. After each

step of the procedure, it is necessary to redirect all incoming arcs to the

corresponding new nodes. Steps 4 and 5 must be repeated as many times as

necessary. In general, starting with the level of the first component x1, and

ending with the level of the n-th component xn. Usually left-children are

denoted by a solid edge, whereas the right-children are denoted by a dashed

edge. In what follows, we use a double edge to represent a node in which

the left-child and the right-child are the same.

We can also consider the OBDD obtained by a procedure in which the

rule implemented in step 5 of Algorithm 3 is not used. In such a BDD every

path from the root to a terminal node has length n + 1. The so obtained

BDD is called a quasi-reduced binary decision diagram (QOBDD) [17, 29].

Note that for a fixed variable ordering, both QOBDD and ROBDD are

canonical representations, and hence, if we consider a QOBDD and its re-

spective ROBDD—sharing inner nodes—then checking whether both BDDs

are equivalent is trivial in the sense of computational complexity [115]. On

the other hand, let Γ1 and Γ2 be two simple games, such that the sizes of

their respective BDDs are r, s ∈ N; therefore, according to [28], determine

whether both BDDs are equal can be computed in O(min{r, s}).

Example 3.8. Given the simple game of Example 3.1, Figure 3.6 illustrates

the BDD obtained from the complete binary tree of Figure 3.3, after applying

Algorithm 3.
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1 0

1 0 1 0

1 0 1 0 1 0

Figure 3.6: BDD(Γ) obtained from the given binary tree B(Γ) for the game
Γ of Example 3.1. Marked nodes are merged or removed in the next step.

Let Γ be a simple game, we could construct, instead of BDD(W(Γ)),

any of the BDDs associated to any of the other fundamental set families,

BDD(L(Γ)), BDD(Wm(Γ)) or BDD(LM (Γ)). However, the differences be-

tween them and their corresponding forms of representation are the same

as for BDD(W(Γ)) and MWF. In some cases these alternatives provide big-

ger representation sizes than the others. For the particular case of regular

games, as we shall see in Section 3.2, some of those forms of representation

are of equivalent size.
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3.1.3 Representation Sizes and Conversion Problems

Now we summarize several known results related to the size of the forms of

representation defined before. We introduce some new results and we use

them to analyze the computational complexity of the corresponding conver-

sion problems. As the representation based on binary trees and variants are

based on the winning coalitions, we consider only the conversion problems

with respect to EWF and MWF.

First of all, it is necessary to remark that both the size of the PCBs

and BDDs (ROBDDs) depend on the ordering of players. It is interesting

to note that while a specific ordering could provide a very small size, an-

other one might mean an exponential size in terms of the number of players.

Moreover, the problem of finding the best variable ordering for a BDD is

NP-hard [25]. However, as in this work we use always an ordering of vari-

ables already given, we do not worry about this problem. Even so, there

exist classes of simple games Γ for which |BDD(Γ)| grows exponentially in

terms of n, independently of the order of the variables. For instance, con-

sider the Theorem 4 of [120], which shows a class of simple games—actually,

a class of weighted games—for which |BDD(Γ)| ∈ Ω(2
√
n/2). Additionally,

there exists a known result by Wegener which says that almost all QOB-

DDs for general Boolean functions—not only the monotone ones—have size

2n/(2n) [264]. The same author proved that QOBDDs are at most a factor

n+ 1 larger than their corresponding ROBDDs [265].

The relevance of BDDs with polynomial size has led to Ishiura and Ya-

jima to define the PolyBDD family [126]. This class, however, has no explicit

characterization, so it will not be discussed here. An interesting open ques-

tion is to characterize the simple games that can be represented by BDDs

with polynomial size.

It is easy to see that a simple game in MWF, PCBF or BDDF may turn

out to be very much smaller than in EWF. To see this, just consider the

simple game Γ of Example 3.2, where Wm = {∅}. In this case, |Wm| =

|PCB(Γ)| = |BDD(Γ)| = 1, but |W| = 2n is an exponential amount in

terms of n.

There are simple games whose representations in BDDF turn out to be

very much smaller than in MWF. For instance, the simple game given in

Example 3.14 in Section 3.3. Moreover, for a simple game with n > 1, to

represent a MWC in PCB(Γ) it is always required to have at least two nodes.
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Note that the game defined in Example 3.14 also shows that there exist

simple games for which their representation in BDDF grows exponentially

in terms of their representation in PCBF.

Hence, for every simple game Γ with n players, where n is sufficiently

large, |BDD(Γ)| ≤ |PCB(Γ)| ≤ n|Wm| ≤ n|W|. The above implies the

following easy results.

Lemma 3.5. PCBF EWF, BDDF EWF, BDDF MWF and also

BDDF PCBF can be solved in exponential time, and can not be solved

in sub-exponential time.

The following result establishes those conversion problems that can be

solved in polynomial time.

Lemma 3.6. EWF PCBF, EWF BDDF, MWF PCBF, MWF BDDF,

PCBF MWF and PCBF BDDF can be solved in polynomial time.

Proof. Polynomiality of MWF PCBF comes from [163]: Since the number

of nodes of PCB(Γ) is at most O(n|Wm|), then MWF PCBF can be com-

puted in O(n|Wm|) time. For PCBF MWF, as the number of paths from

the root to each terminal node is |Wm|, we can explore totally PCB(Γ) using

breadth-first traversal in O(|V |+ |E|) = O(|PCB(Γ)|) time, considering at

most n steps by each path for completing the coalitions that begins with

zeros. Thus, we can compute PCBF MWF in O(n · (|V |+ |E|)) time.

Polynomiality of EWF PCBF and EWF BDDF follow from the above.

As |BDD(Γ)| ≤ |PCB(Γ)| ≤ n|Wm|, for all x ∈ Wm we can build the cor-

responding path of BDD(Γ) in O(n|Wm|) time. Then the partial BDD(Γ)

can be explored with breadth-first traversal in O(|V | + |E|), joining each

node without right-child to the 0-terminal. Hence, as |V | ≤ n|Wm|, then

MWF BDDF can be computed in O(n|Wm|) time.

For PCBF BDDF, since all the leaves of PCB(Γ) have label 1, they can

be removed and replaced by a 1-terminal node, keeping the corresponding

edges. Then connect each node without right-child to the 0-terminal, and

finally merge duplicate inner nodes as in step 4 of Algorithm 3. All these

steps can be computed in polynomial time.

Note that, as MWF PCBF and PCBF MWF can be solved in poly-

nomial time, the computational complexity of each problem raised about
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simple games is the same, regardless of which of these two forms of rep-

resentation is chosen. On the other hand, if the simple game is given in

BDDF, changing the form of representation to MWF, PCBF or EWF, may

increase the complexity of the problem.

Let us now turn our attention to the cases in which the conversion prob-

lem requires exponential time. For PCBF EWF it is enough to compute

first an enumeration of MWF in polynomial time, according to Lemma 3.6,

and then apply Algorithm 1.

Lemma 3.7. PCBF EWF can be solved with polynomial-delay.

Note that Algorithm 1 cannot be applied for BDDs because we do

not have explicitly all the MWCs, and by Lemma 3.5, BDDF EWF can-

not be computed in polynomial time. The existence of an algorithm with

polynomial-delay for the conversion problems BDDF EWF, BDDF MWF

and BDDF PCBF remains open.

3.2 Representations for Regular Games

In what follows of this chapter, we assume that N = {1, . . . , n} is ordered

according to the usual lexicographical order ≤.

It is known that a regular game is completely determined by the set of

its shift-minimal winning coalitions—see [144], where authors are based on

the unpublished result of [203]. Furthermore, once the desirability ordering

is known, checking shift-minimality can be implemented in polynomial time.

Thus, we can consider this set as a valid form of representation for regular

games.

Definition 3.13. A regular game Γ is given in shift-minimal winning form

(SWF) as a pair (N,Ws), where Ws is the set of shift-minimal winning

coalitions.

As before, a matrix notation is useful to represent regular games in a

computational context. Consider an injective function f̄ : {0, 1}n → Nn

such that each winning coalition x is associated with a unique integer vector

x̄, defined for all a ∈ N as f̄(x)(a) = x̄(a) = Σ{x(b) | b ∈ N, a � b}. Thus,

X � Y if and only if x̄ ≤ ȳ.

Example 3.9. It is easy to see that the simple game Γ = (N,Wm) of

Example 3.1 is regular. Let be Wm
= {x̄ ∈ Nn | x ∈ Wm}, then:
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N abcde

22221 : x̄1

22211 : x̄2

Wm
33210 : x̄3

32210 : x̄4

32111 : x̄5

Since x̄2 ≤ x̄1 and x̄4 ≤ x̄3, it holds that:

N abcde

00101

Ws 10110

11001

It is clear that for every regular game, its set of shift-minimal winning

coalitions is a subset of all its MWCs. Furthermore, it is known that given

a simple game in MWF, it can be decided whether the game is regular or

linear in time polynomial in the size of the game. In fact, regularity can be

decided in linear time and linearity in O(n2 + n|Wm|)-time [163].

In what follows we consider a more succinct version of the form of repre-

sentation PCBF, restricted to regular games. However, it does not use the

set of shift-minimal winning coalitions defined above, keeping the focus in

the set of MWCs.

Definition 3.14. Given a simple game Γ and some total order over N ,

a fully condensed binary tree FCB(Wm(Γ)) is a binary tree obtained from

PCB(Wm(Γ)) by recursively removing all edges (ti, ti+1) such that ti has no

right-child, and for each removed edge, merging both nodes ti and ti+1.

It is clear that FCB(Wm(Γ)) can be carried out in polynomial time.

FCBs were defined by Makino [163] to decide in linear time the regularity

of a monotone Boolean function. In a non-binary, but alphanumeric context,

they were simultaneously defined in 1968 as Patricia tries [186] and without

name [110], being nowadays also known as radix trees.

Like PCBs, each MWC is represented by a leaf and its path from the root.

Analogously to previous data structures we have that determining whether

a coalition belongs to the represented set can be done in polynomial time.

Definition 3.15. A regular game Γ is given in fully condensed binary tree

form (FCBF) if Wm(Γ) is being represented by FCB(Wm(Γ)).
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Figure 3.7: FCB(Γ) obtained from PCB(Γ) for the game Γ of Example 3.1.
Nodes between dashed edges on the first tree are merged in the second one.

By abuse of notation, we use FCB(Γ) to denote FCB(Wm(Γ)).

For any regular game Γ, FCB(Γ) is always complete, in the sense that

it has no inner nodes having only one child. For non-regular simple games

this may not be true [163].

Example 3.10. Given the PCB(Γ) for the game of Example 3.1 (see Fig-

ure 3.5), we can construct the FCB(Γ) illustrated in Figure 3.7. The nodes

have been labeled with integers representing the number of left-children

merged with the current node. Each node labeled by the number m repre-

sents m components 1, and all the latest missing components are 0.

An additional succinct form of representation for regular games uses an

invariant (~v,M) where ~v is a set of players’ classes and M is a matrix

that considers some special type of winning coalitions [43]. This type of

representation is less succinct than SWF and it is also less usual in computer

science approaches, so we leave as an open problem to study the conversion

problems for this case.

3.2.1 Conversion Problems for Regular Games

It is clear that |FCB(Γ)| ≤ |PCB(Γ)| for every simple game Γ. Moreover,

since the number of root-nodes of both FCB and PCB is equal to |Wm|,
but their total number of nodes is lower than n|Wm|, we conclude that the

difference between |FCB(Γ)| and |PCB(Γ)| is always polynomial in terms

of n.

Furthermore, as we showed before, it always holds Ws(Γ) ⊆ Wm(Γ), so

|Ws(Γ)| ≤ |Wm(Γ)|. However, in this case there are subclasses of simple
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games in which the difference between |Ws| and |Wm| can grow exponen-

tially in terms of n.

Example 3.11. Consider the simple game Γ with the biggest size |Wm(Γ)|
as possible over N , i.e., the one given by Sperner [242]—see also [96]—with

Wm(Γ) = {X ⊆ N | |X| = bn2 c}. In this case, |Wm(Γ)| =
(

n
bn/2c

)
, but

|Ws(Γ)| = 1, because Ws(Γ) = {1n/20n/2}.

Note that in this example, |PCB(Γ)| ≥
(

n
bn/2c

)
and |FCB(Γ)| ≥

(
n
bn/2c

)
,

so the difference between |Ws(Γ)| and |PCB(Γ)|, as well as between |Ws(Γ)|
and |FCB(Γ)|, can also grow exponentially in terms of n.

The above does not mean, however, that |Ws(Γ)| is always “small”.

Actually, as proved Krohn and Sudhölter [144]—see also [147]—there are

subclasses of regular games for which the number of its shift-minimal win-

ning coalitions also grows exponentially in terms of n—only that more slowly

than the number of its MWCs.

Example 3.12. The following regular game Γ is the biggest as possible for

n = 8, with |Ws(Γ)| = 14. Note that the number of shift-minimal winning

coalitions almost doubles the number of players. Obviously, the number of

MWCs is even bigger.

N abcdefgh

00001110

00010101

00100011

00111100

01011010

01100110

Ws 01101001

10010110

10011001

10100101

11000011

11011100

11101010

11110001

All the above, in addition to Lemma 3.5, implies the following results.
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Lemma 3.8. For regular games, SWF EWF, SWF MWF, SWF PCBF,

SWF FCBF, BDDF FCBF and FCBF EWF can be solved in exponen-

tial time, and can not be solved in sub-exponential time.

By the same considerations,we can prove the following result.

Lemma 3.9. For regular games, the conversion problems EWF SWF,

MWF SWF, PCBF SWF, EWF FCBF, MWF FCBF, PCBF FCBF,

FCBF PCBF, FCBF MWF, FCBF BDDF and FCBF SWF can be

solved in polynomial time.

Proof. The two first claims follow from an algorithm similar to the one

derived to solve the EWF MWF problem. Just compare all (minimal)

winning coalitions to each other, but deleting those whose respective vectors

x̄ are bigger in the lexicographic order. Since f̄(x) can be simultaneously

computed when each (winning) coalition is compared, this procedure takes

O(n · |W|2) time for the first case, and O(n · |Wm|2) for the second one.

Since PCBF MWF and MWF SWF can be solved in polynomial time,

then PCBF SWF can also be solved in polynomial time. The remaining re-

sults are deduced in the same way from PCBF FCBF and FCBF PCBF,

which are clearly polynomial by what is said in Section 3.2.

In addition, it is known that for regular games MWF MLF can be

solved in polynomial time [210], regardless the exponentiality for simple

games in general. Unlike the previous cases, the size relationship between

SWF and BDDF is less clear.

As stated in Section 3.1.3, in Theorem 4 of [120] is presented a subclass

of regular games where for every game Γ of this subclass, |BDD(Γ)| grows

exponentially in function of n. However, it does not seems that in this

example |Ws(Γ)| grows much lower than |BDD(Γ)|. Furthermore, although

we saw in Example 3.11 a game Γ with |Ws(Γ)| = 1, in this case |BDD(Γ)|
does not seems to increase too much in terms of n. For instance, with n = 8

and n = 9 we obtain respectively |BDD(Γ)| = 27 and |BDD(Γ)| = 32,

in contrast to the sizes of each game in MWF, which are n · |Wm| = 560

and 1134, respectively. On the contrary, if in some example it were shown

that both |Ws| and |BDD(Γ)| have an exponential growth, it could not be

deduced from here that SWF BDDF can be solved in polynomial time.

To compute SWF BDDF (or BDDF SWF), we can always compute

first SWF MWF (resp. BDDF MWF) and then MWF BDDF (resp.
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MWF SWF). But if we do this, the whole process requires exponential

time. The absence of known algorithms that are able to skip this interme-

diate step, leads us to state the following conjecture.

Conjecture 3.1. For regular games, BDDF SWF and SWF BDDF can

be solved in exponential time, and can not be solved in sub-exponential

time.

It is interesting to note that there are some efficient algorithms that

benefit themselves from working with a smaller class of simple games such

as regular games. For instance, in [19] is shown that computing either

BDD(Wm(Γ)) or BDD(LM (Γ)) from BDD(W(Γ)) can be done in linear

time in the input size, if the game Γ is regular. Further, they designed an

algorithm to computing BDD(Ws(Γ)) from BDD(Wm(Γ)).

As at the end of Section 3.1.3, we finish this section with some enumer-

ation results considering the same notation as the proof of Lemma 3.3.

Lemma 3.10. For regular games, SWF MWF and FCBF EWF can be

solved with polynomial-delay.

Proof. Generation of Wm from Ws follows similar ideas than Algorithm 1

of Lemma 3.3, but considering as input the set Ws = {x1, . . . , xm}: See

Algorithm 4.

Given X ∈ Ws, let be R = {i ∈ X | i + 1 /∈ X}. It means that for

any j ∈ R we can do a 1-right-shift applied to j, i.e., to replace player j

by player j + 1. Note that given a winning coalition, to do a 1-right-shift

implies that the new coalition is still winning. Steps 7-10 update the set

R. Steps 7-8 consider the case where, being j > 1, j − 1 ∈ X, j ∈ X and

j+1 6∈ X, then a 1-right-shift applied to j implies that j 6∈ R but j−1 ∈ R.

Steps 9-10 consider the case where j ∈ X, j + 1 6∈ X and j + 2 6∈ X, then a

1-right-shift applied to j implies that j 6∈ R but j + 1 ∈ R.

Again, the algorithm is a branch and cut algorithm that uses the usual

backtrack tree providing an enumeration of all possible 1-right-shifts of a

minimal winning set without repetitions. Now, for each new MWC X, we

perform a traversal of the backtrack tree whenever it does not reach a set Xk

such that Xk � X, for any k > i—in this case it will be generated later—or

Xk ⊂ X, for any k < i—in this case it is not minimal. These properties and

the monotonicity guarantee that we generate all MWCs without repetitions.
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Algorithm 4 GenerateMWFfromSWF

Input: A simple game Γ in SWF with Ws = {X1, . . . , Xm} sorted in card-
lexicographic order.

Output: Γ in MWF.
1: Generate(X,R, i)
2: for all j ∈ R in increasing order
3: X = X ∪ {j + 1} \ {j};
4: if (for all k > i, Xk 6� X) ∧ (for all k < i, Xk 6⊂ X)
5: print X;
6: R = R \ {j};
7: if (j > 1) ∧ (j − 1 /∈ X)
8: R = R ∪ {j − 1};
9: if j + 2 /∈ X

10: R = R ∪ {j + 1};
11: Generate(X,R, i);
12: X = X ∪ {j} \ {j + 1};
13: {main}
14: for i = 1, . . . ,m do
15: print Xi;
16: R = {i ∈ Xi | i+ 1 /∈ Xi};
17: Generate(Xi, R, i);

00101

00011

10110

01110

01101

10101

11001

10101

Figure 3.8: Computing SWF MWF for the simple game of Example 3.1.

Following the same reasoning as for Algorithm 1 of Lemma 3.3, the

number of steps between the printing of one minimal wining coalition and

the next one is polynomial.

For FCBF EWF, just compute FCBF MWF in polynomial time—

Lemma 3.9—and then apply Algorithm 1.

We apply Algorithm 4 in the following example.

Example 3.13. Consider the simple game (N,Ws) of Example 3.9. Fig-

ure 3.8 shows the enumeration without repetition of all the MWCs of the

game. They are printed in the following order: 00101, 00011, 10110, 01110,

11001.
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We left as an open problem whether the conversion problem SWF EWF

can be solved with polynomial-delay. Similar to what happens for BDDs

with Lemma 3.3—see Conjecture 3.1—Algorithm 4 cannot be used with

BDDs. It also remains open to show whether for regular games BDDF SWF

can be solved with polynomial-delay.

3.3 Representations for Weighted Games

The following is the most natural way to represent weighted games.

Definition 3.16. A weighted game Γ is given in weighted representation

form (WRF) as a tuple [q;w1, . . . , wn], where q is the quota and w1, . . . , wn

are the weights of its players.

Observe that any tuple [q;w1, . . . , wn] represents a weighted game and

thus the WRF is a valid representation for weighted games.

Given a simple game in MWF, it can be decided in polynomial time

whether the game is weighted or not. This problem is known in the context

of Boolean functions as threshold synthesis problem and it was solved by

Peled and Simeone [209]. One common way to do this is solving the following

system of linear inequalities:

w(X) > w(Y ) for all X ∈ Wm, Y ∈ LM (3.1)

where w = (w1, . . . , wn) are the unknowns. The game is weighted if and only

if the linear system has a solution, i.e., if it produces a weighted realization

[q;w1, . . . , wn], where the quota can be derived from the weights by doing

q = min{w(X) | X ∈ Wm}. Hence each solution of this linear system defines

a weighted game.

Given an order over N , it is important to note that even though each sim-

ple (or regular) game can be univocally represented in EWF, MWF, PCBF

or BDDF (or SWF or FCBF), a weighted game may be represented in infinite

ways in WRF. This is true even for our restriction over natural numbers.

Actually, given a weighted game with realization [q;w1, . . . , wn], the real-

izations [cq; cw1, . . . , cwn], with c ∈ N, are all equivalent. But there may

be further equivalent realizations, as for instance [2; 2, 1, 1] and [3; 3, 2, 1].

In fact, given two realizations, determine whether both represent the same

weighted game is NP-hard [167].
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Regarding vector-weighted games, we know that any simple game Γ =

(N,W) can be represented by a certain number k of weighted games with

realizations [q(t);w
(t)
1 , . . . , w

(t)
n ], such that for all X ⊆ N and 1 ≤ t ≤ k,

X ∈ W if and only if w(t)(X) ≥ q(t), where w(t)(X) =
∑
{w(t)

a | a ∈ X}.
This expressions allow us to consider another valid form of representation

for simple games.

Definition 3.17. A simple game Γ is given in vector-weighted representation

form (VWRF) as a finite set of tuples [q(t);w
(t)
1 , . . . , w

(t)
n ], with 1 ≤ t ≤ k

for some k ∈ N.

The game represented by [q(t);w
(t)
1 , . . . , w

(t)
n ], for 1 ≤ t ≤ k, is the game

obtained as the intersection of the given family of weighted games.

In a similar way, regarding the codimension, we can consider the game

Γ represented by [q(t);w
(t)
1 , . . . , w

(t)
n ], for 1 ≤ t ≤ k, as the game obtained

as the union of the given family of weighted games. We refer to such rep-

resentation as co-vector-weighted representation form (coVWRF). Since any

simple game can be expressed as the union of a finite family of weighted

games [89], coVWRF is a valid representation form for simple games.

Observe that, for any representation of weighted games that is closed un-

der intersection or union, i.e., a representation of the intersection or union of

two games that can be obtained in polynomial time, the conversion problem

for simple games given in VWRF or coVWRF has the same complexity than

for weighted games given in WRF.

A generalization of games constructed through binary operators is the

family of binary games introduced in [80]. A binary game is defined by a

propositional logic formula and a finite collection of weighted games. The

boolean formula determines the requirements for a coalition to be winning

in the described game. When considering only monotone formulas, binary

games provide another representation of simple games.

3.3.1 Conversion Problems for Weighted Games

Ishiura and Yajima [126] proved that, for every weighted game in WRF, if

each weight is bounded by a polynomial of n, then the sizes of their respective

BDDs grow polynomially in terms of n. That is the case of the following

example, in which however the number of MWCs grows exponentially in

terms of n.
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n 10 11 12 13 14 15 16 17 18 19 20

|BDD(Γ)| 74 91 117 150 184 223 274 331 388 459 545
|Wm| 77 133 240 429 772 1414 2588 4742 8761 16273 30255

Table 3.6: Exponential growth of a class of weighted games in MWF, in
terms of n.

Example 3.14. Consider, for every number of players n, the family of

weighted games Γ = [q;n, . . . , 1] such that q = d(
∑n

i=1 i)/ 2e. The number

of MWCs for each one of these games is specified by the following sequence

s(q, n):

s(q, n) =



0 if q = 0 or n = 0 or q >
n∑
i=1

i

(weights are not enough to get q)

n− q + s(q, q) if q > n

({{n}, {n− 1}, . . . , {q + 1}} ∈ Wm)

1 + s(q, n− 1) if q = n (take n or not)

s(q − n, n− 1) + s(q, n− 1) if q < n (take n or not)

This sequence grows exponentially on n when q = d(
∑n

i=1 i)/ 2e, as also

we can see in Table 3.6. Such values can be checked with the application of

Bolus [27].

Despite of this, in Section 3.2.1 was mentioned that there are subclasses

of weighted games whose sizes in BDDF also grow exponentially in terms

of n, independently of the ordering of the players and the weights consid-

ered in WRF [120]. Moreover, there exist exponential algorithms to solve

WRF BDDF [17, 29].

As the size of a weighted game in WRF is always n + 1, the first part

of the following result is quite simple, and it is deduced from the previous

Sections 3.1.3 and 3.2.1. For the second part, just note that every weighted

game is a simple game with dimension 1.

Lemma 3.11. For weighted games, the conversion problems WRF EWF,

WRF MWF, WRF PCBF, WRF BDDF, WRF FCBF and also

WRF SWF can be solved in exponential time, and can not be solved in

sub-exponential time. For simple games, the same occurs replacing WRF

by VWRF.
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Despite of this result, there exist some subclasses of weighted games

for which WRF BDDF turns out to be polynomial. Such is the case of

homogeneous games.

Example 3.15. The regular game Γ of Example 3.11 is both weighted and

homogeneous, and can be represented in WRF by the vector [n2 ; 1, 1, . . . , 1].

It is known that every homogeneous game can be represented by a

QOBDD with size O(n2), and that from its weighted representations, this

QOBDD can be computed in O(n2 · log n) time [28]. Therefore, since

|BDD(Γ)| ≤ |QOBDD(Γ)|, then WRF BDDF for homogeneous games

can be solved in polynomial time.

Fredman and Khachiyan [84] showed that given a simple game Γ in

MWF, LM (Γ) can be computed in sub-exponential time; but until now, it

remains open to show if this can be done in polynomial time. However, if Γ

is regular or weighted, the problem turns out to be polynomial [210]. This

plus the fact that the linear programming is polynomial [138] proves that

the linear system (3.1) can be solved in polynomial time, implying together

with the previous lemmas the following result.

Lemma 3.12. For weighted games, the conversion problems EWF WRF,

MWF WRF, PCBF WRF, BDDF WRF, FCBF WRF and also

SWF WRF can be solved in polynomial time.

Proof. We just prove the last statement. As mentioned in Section 3.2.1,

according to Krohn and Sudhölter [144] each regular game Γ is completely

determined by Ws(Γ). Therefore, the system of linear inequalities (3.1) can

be replaced by the following:

w(X) > w(Y ) for all X ∈ Ws, Y ∈ LS (3.2)

where LS is the set of shift-maximal losing coalitions. Thus, as (3.2) has

less inequalities than (3.1), then it is clear that (3.2) can also be solved in

polynomial time.

For BDDF WRF we refer to [30], where the author solves the prob-

lem for QOBDDs using linear programming and producing real weighted

representations.
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Algorithm 5 GenerateMWFfromWRF

Input: Γ = [q;w1, . . . , wn] with
∑n

i=1wi ≥ q and w1 ≥ . . . ≥ wn.
Output: Γ in MWF.

1: WRFtoMWF(X, i, q′)
2: if i = n
3: print X ∪ {n}; return;
4: else
5: if (

∑n
j=i+1wj ≥ q) WRFtoMWF(X, i+ 1, q′);

6: if (wi ≥ q′) print X ∪ {i};
7: else WRFtoMWF(X ∪ {i}, i+ 1, q′ − wi);
8: return;
9: {main}

10: WRFtoMWF(∅, 1, q);

Algorithm 6 GenerateEWFfromWRF

Input: Γ = [q;w1, . . . , wn] with
∑n

i=1wi ≥ q and w1 ≥ . . . ≥ wn.
Output: Γ in EWF.

1: WRFtoEWF(X, i)
2: if i ≤ n
3: if w(X ∪ {i}) ≥ q
4: print X ∪ {i};
5: WRFtoEWF(X ∪ {i}, i+ 1);
6: WRFtoEWF(X, i+ 1);
7: {main}
8: WRFtoEWF(∅, 1);

We finish this section with some enumeration results. The proof of the

following Lemma 3.13 is based on an algorithm of [167], that the authors

used to compute the Deegan-Packel index [59] for weighted games in MWF.

Lemma 3.13. For weighted games, WRF EWF and WRF MWF can be

solved with polynomial-delay.

Proof. WRF MWF was shown by using Algorithm 5. Analogously to Al-

gorithms 1 and 4, steps 1-8 form the recursive procedure started by the

main routine of step 10. Each step has a time complexity bounded by O(1)

because of the updates of
∑n

j=i+1wj at each iteration. The whole algorithm

has time complexity O(n|Wm|) and memory complexity O(n) [167].

For WRF EWF, we show Algorithm 6 which is even simpler. Here also

every step has a time complexity bounded by O(1). Further, the algorithm

has time complexity O(n|W|) and memory complexity O(n). Both recur-
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sions of steps 5 and 6 allow to generate the winning coalitions in an orderly

fashion, so that none is repeated.

We think that there exists a similar procedure as Algorithms 5 and 6 to

postulate the following.

Conjecture 3.2. For weighted games, WRF SWF can be solved with

polynomial-delay.

Regarding vector-weighted games, note that there exist simple games

with exponential dimension in function of the number of players—see, for

instance, Theorem 8 of [72]. Therefore, it is not clear the complexity of the

conversion problem from other forms of representation to VWRF.
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Chapter 4
Computational Problems

In this chapter we present several complexity results related to the compu-

tation of the properties, parameters and solution concepts for simple games

defined in Sections 2.3.1 and 2.3.2.

In Section 4.1 we survey the known results presented in the literature. In

Section 4.2 we prove new results related to the IsDecisive and IsStrong

problem for simple games, regular games, and weighted games in different

forms of representation. These results solve some open problems and re-

fute some conjectures proposed in other works. In Section 4.3 we solve the

Width open problem for simple games in MWF, we propose two new param-

eters related to the width and the length, and we introduce the IsDummy

problem for regular games in SWF.

We finish this chapter with Section 4.4, where we focus on the problem

of counting and enumerating subclasses of simple games. We survey the

main known results on this topic, and we present an idea to deal with the

enumeration of decisive regular games.

4.1 Known Complexity Results

4.1.1 Properties and Parameters

The known results of this section are summarized in tables. The absence of

references means that the result is trivial, easily verifiable from its definition.

Question marks “?” represent open problems.

Similarly to [92], we use the following general notation for the problems

85
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to be studied in this section.

Name: IsX

Input: Simple game Γ

Question: Does Γ satisfy property X?

Name: X

Input: Simple game Γ

Output: X(Γ), i.e. the value of the parameter X for Γ.

In general, we extend the notation IsX to the problem of deciding a

property X for games, players or coalitions, considering an input formed by

a simple game and players and/or coalitions. Additionally, we consider the

following two problems.

Name: Iso

Input: Two games.

Question: Are both games isomorphic?

Name: Equiv

Input: Two games.

Question: Are both games equivalent?

Table 4.1 shows the known computational complexity results to decide

some properties and parameters of simple games defined in Section 2.3.1,

under different forms of representation. Some results of the table are up-

dated in Sections 4.2 and 4.3. The inputs of the problems IsBlocking

and IsSwing are a simple game in addition of a coalition. The inputs of

the problems of “Properties of players” consider a simple game and a player,

but the IsCritical problem also requires a coalition, and the IsSymmetric

problem also requires another player.

We denote gIso as the class of problems reducible to graph isomorphism.

Note that for simple games in MWF it is easy to see, using arguments

from [161], that the Iso problem and the graph isomorphism problem are

equivalent.

Regarding the dimension of a simple game, in [251] was shown that for

n ≥ 1 players, there is always a simple game of dimension n, and moreover,

that the dimension of a simple game may be exponential in the number of
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Simple games Regular Weighted

Problem EWF MWF VWRF SWF WRF

Properties of simple games

IsProper P P coNPC ? coNPC [92]

IsStrong P coNPC [215] coNPC ? coNPC [92]

IsDecisive P ? coNPC ? coNPC [10]

Properties of coalitions

IsBlocking P P P P P

IsSwing P P P P P

Properties of players

IsDummy P P coNPC [167] ? coNPC [167]

IsPasser P P P P P

IsVetoer P P P P P

IsDictator P P P P P

IsCritical P P P P P

IsSymmetric P P coNPC [167] P coNPC [167]

Parameters

Length P P NPH [10] P P [10]

Width ? ? P [10] ? P [10]

Coleman’s power P #PC [9] #PC [9] ? #PC [9]

Chow parameters P #PC [15, 9] #PC [9] ? #PC [99, 9]

Additional problems

Equiv P P coNPH [72] ? coNPC [72]

Iso gIso gIso ? ? ?

Table 4.1: Known complexity results for properties and parameters of simple
games.

players. Furthermore, it is known that given k weighted games, deciding

whether the dimension of their intersection exactly equals k is NP-hard [63].

Given k weighted games, it remains open to show whether the problem of

deciding if the codimension of their union exactly equals k is NP-hard.

For vector-weighted games in VWRF, these problems are at least as hard

as for weighted games in WRF. The results without references for this form

of representation are deduced from the column for WRF.

Properties of Simple Games

Given a simple game, to decide the IsProper problem it is just necessary

to consider the MWCs of the game. As a matter of fact, if the complement

N \X of a MWC X is losing, then it is clear that the complement N \Z of

every coalition Z with X ⊆ Z will be losing too.

Furthermore, given a simple game in EWF, to decide the IsStrong

problem we can verifying if the complement N \X of every maximal losing
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coalition X is winning. Then it is clear that the complement N \Z of every

coalition Z with Z ⊆ X will be winning too. Since by Lemma 3.2 we know

that EWF MLF can be solved in polynomial time, the IsStrong problem

can be solved in polynomial time when the simple game is given in EWF,

ELF and MLF.

However, it is hard to decide the IsStrong problem when only the set of

MWCs is given. Indeed, recall that MWF MLF and MWF ELF cannot

be solved in sub-exponential time. This difficulty seems to be impossible to

overcome even if the game is proper. Indeed, in [92] was conjectured that

the IsDecisive problem is coNP-complete for simple games given in MWF.

Fortunately, this assumption is wrong, as we shall see in Section 4.2.

Properties of Coalitions

The problems of this thesis regarding properties of coalitions are easy. In

general, to decide whether a coalition X ⊆ N is either blocking or a swing

can always be done in polynomial time, whenever ν(X) can be determined

in polynomial time.

Properties of Players

Most problems concerning properties of players are easy whenever for ev-

ery coalition X, ν(X) can be computed in polynomial time. For instance,

considering a player i, for the problems IsPasser and IsVetoer it is just

necessary to determine whether ν({i}) = 1 and ν(N \ {i}) = 0, respectively.

However, there are some exceptions for succinct forms of representations.

For the IsDummy problem it is necessary to check for the given player i

whether it is not contained in some MWC. Evidently this is easy when the

set of MWCs is explicitly given, which is not the case for weighted games in

WRF. As far as we know, the complexity of this problem for regular games

in SWF has not been determined. As a matter of fact, it is clear that if

there is some shift-minimal winning coalition that contains i, then i cannot

be a dummy player; but it is not so clear what happens when this is not the

case.

To solve the IsSymmetric problem in polynomial time it seems that

at least the set of shift-minimal winning coalitions must be given explicitly.

Let i, j two players in the grand coalition. For simple games in EWF, the
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problem is equivalent to deciding if for all X ∈ W, i ∈ X if and only if

j ∈ X. For simple games in MWF, the problem is equivalent to deciding

if for all X ∈ Wm, when i ∈ X and j /∈ X, there exists another MWC

Y ∈ Wm so that i /∈ Y and j ∈ Y . For regular games in SWF, the problem

is equivalent to the previous one, considering Ws instead of Wm, and the

fact that for every X ∈ Ws with i /∈ X and j /∈ X, it holds X � X ∪ {i}
and X � X ∪ {j}.

Parameters

Regarding the parameters, the Length problem can be computed in poly-

nomial time even for weighted games in WRF: Given a weighted game Γ =

[q;w1, . . . , wn], start with the player with less weight w1, and keep adding

more players with decreasing weights until
∑k

i=1wi ≥ q; then length(Γ) = k.

Since for any weighted game Γ its dual Γd can be obtained in polynomial

time, width(Γ) can also be computed in polynomial time [10]. However,

the dualization of a simple game in less succinct forms of representation

is not polynomial—see Section 4.2—so by the same reasoning we cannot

deduce the complexity of the Width problem for simple games in other

forms of representation. This open problem established in [10] is solved in

Section 4.3.

About both the Coleman’s power and Chow parameters problems,

it is clear that the second one is at least as computationally hard as the first

one. Further, if the Chow parameters problem can be computed in poly-

nomial time, then the Coleman’s power problem can also be computed

in polynomial time.

4.1.2 Solution Concepts

There is a lot of work done about solution concepts, although most is focused

in cooperative games rather than restricted to simple games. The compu-

tational complexity of solution concepts has been studied for many classes

of cooperative games, such as assignment games [105, 240, 196], coalitional

skill games [12], convex games [145], cyclic permutation games [241], flow

games [105, 60, 218], induced subgraph games [61], matching games [137],

min-cost spanning tree games [78], neighbor games [112], shortest path

games [195], spanning connectivity games [11], standard tree games [107],
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threshold network flow games [14], vertex connectivity games [13], among

several others.

There are various computational problems that can be defined over so-

lution concepts. We consider four kind of problems, restricted to simple

games, which were studied on [10, 73].

Name: Empty-X

Input: Simple game Γ

Question: Is the solution concept X empty in Γ?

Name: In-X

Input: Simple game Γ and payoff p

Question: Is the payoff p in the solution concept X of Γ?

Name: IsZero-X

Input: Simple game Γ and player i

Question: Is payoff of player i in game Γ zero according to solution X?

Name: Construct-X

Input: Simple game Γ

Output: A payoff in the solution concept X of Γ.

The known computational complexity results for these problems under

different solution concepts are illustrated on Table 4.2. Note that the fam-

ilies of problems Empty-X and In-X only apply to sets, and the family of

problems IsZero-X only applies to values. We omit from the table those

problems that do not apply, like for instance Empty-Banzhaf-value or

IsZero-Stable-set. The results without references are shown in the thesis

of Aziz [10].

The rows labeled Empty-, In-, IsZero- and Construct- refer to the

different kind of problems described above. The first column, below of each

of those rows, refers to the solution concepts considered for that problem.

The next four columns represent the complexity for each form of represen-

tation considered in the input of the problem. Thus, the fourth row, for

instance, means that the problem Empty-Stable-Set is always nonempty

for simple games in any representation form.

Henceforth, we denote the problems Construct-Banzhaf-value and

Construct-Shapley-Shubik-value as Bval and SSval, respectively.
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Simple games Weighted
Problem EWF MWF VWRF WRF
Empty-
Stable-set always nonempty
Core P P P P [73]
ε-core P P NPH NPH [73]
Least-core always nonempty
Bargaining-set always nonempty if no passer
Kernel always nonempty if no passer
Prekernel always nonempty
Nucleolus always nonempty if no passer
Prenucleolus always nonempty
In-
Banzhaf-value P ? ? ?
Shapley-Shubik-value P ? NPH NPH
Stable-set ? ? ? ?
Core P P P P [73]
ε-core P P NPH coNPH [73]
Least-core P P NPH NPH [73]
Bargaining-set ? ? ? ?
Kernel P P ? ?
Prekernel P P ? ?
Nucleolus P P ? ?
Prenucleolus P P ? ?
IsZero-
Banzhaf-value P P ? ?
Shapley-Shubik-value P P NPH NPH
Core P P P P [73]
Nucleolus P P NPH coNPH [73]
Prenucleolus P P NPH NPH
Construct-

Banzhaf-value P [9] #PC [9] #PC [9]
#PC [219]
NPC [168]

Shapley-Shubik-value P [9] #PC #PC [9]
#PC [61]
NPC [168]

Stable-set P P P P
Core P P P P [73]
ε-core P P NPH NPH [73]
Least-core P P NPH NPH [73]
Bargaining-set P P ? ?
Kernel P P ? ?
Prekernel P P ? ?
Nucleolus P P NPH NPH [73]
Prenucleolus P P NPH NPH

Table 4.2: Known complexity results for solution concepts on simple games.
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Power Indices

In Table 4.2 we consider the problems related to the Banzhaf value and the

Shapley-Shubik value, instead of the Banzhaf index and the Shapley-Shubik

index, respectively. It is clear by Definition 2.28 that since the denominator

of the Shapley-Shubik index is fixed, the computation of the Shapley-Shubik

index and the Shapley-Shubik value has the same complexity. This is also

true for the probabilistic Banzhaf index and the Banzhaf value, but it is not

necessarily true for the Banzhaf index and the Banzhaf value—see Defini-

tion 2.29. In this latter case we only can said that if the Banzhaf value can be

computed, then it can be used to compute the Banzhaf index. Furthermore,

it is known that for any form of representation, computing the Shapley-

Shubik index is at least as hard as computing the Banzhaf index [10].

Note that both the Bval and SSval problems correspond to compute

ηi(Γ) and κi(Γ), respectively, for every player i on the simple game Γ. In de-

spite of the hardness results for weighted games in WRF, in [167] was proved

that there exist pseudo-polynomial time algorithms based on dynamic pro-

gramming to solve both problems. Since then, several algorithms have been

designed to solve the problem as quickly as possible [253, 140, 29].

Core, ε-Core and Least Core

The core imputations satisfy a system of weak linear inequalities. It is

closed and convex, which means that it is a feasible set that can be solved

by using linear programming. Moreover, for simple games the core is well

characterized by Proposition 2.4. The computation of the core for simple

games is easy even for succinct forms of representation.

To decide the Empty-Core problem it is just enough to check for any

player i ∈ N whether ν(N \ {i}) = 0. If this is true for at least one player,

the answer of the problem is “yes”; otherwise is “no”. The problems In-

Core, IsZero-Core and Construct-Core can be solved by using the

same characterization.

On the other hand, the least core can be computed for any simple game
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(N, ν) by using the following linear program [74]:

min ε

s.t. pi ≥ 0 for all i ∈ N∑
i∈N pi = 1∑
i∈X pi ≥ ν(X)− ε for all X ∈ Wm

whose solution is a least core imputation and the smallest ε value of all

possible ε-cores. Note that the second inequality considers only minimal

winning coalitions. This is enough [10] because for any X ∈ Wm with

p(X) ≥ ν(X) − ε = 1 − ε, if X ⊂ Y then p(Y ) ≥ 1 − ε; and if Y ⊂ X

then p(Y ) ≥ 0 − ε. Therefore, as linear programming is solvable in poly-

nomial time [138], the problems Construct-Least-core and In-Least-

core can be solved in polynomial time whether the set of MWCs can be

obtained in polynomial time in terms of the input size.

Despite the hardness results for weighted games in WRF, the prob-

lems Empty-ε-core, In-ε-core, In-LeastCore, Construct-ε-core and

Construct-Least-core, can be solved by pseudo-polynomial time al-

gorithms. Indeed, all these problems are polynomial-time solvable if the

weights are at most polynomially large in n, or—equivalently—if they are

represented in unary notation [73]. The same occurs for vector-weighted

games in VWRF [73, 74].

In general, by using Proposition 2.6, if the problem Length is NP-

hard then the problem In-ε-core is also NP-hard [10]. Furthermore, it is

conjectured that if Length is NP-hard, then the problem Construct-

Least-core is also NP-hard [10].

Nucleolus and Prenucleolus

For any reasonable form of representation of a simple game, verifying whether

a payoff is an imputation or just a preimputation can be done in polyno-

mial time. Therefore, in terms of the computational complexity, there is no

difference between the problems concerning nucleolus or prenucleolus.

As the core, the nucleolus can also be computed with linear program-

ming. In this case, it is necessary to solve a sequence of at most n successive

linear programs [142]. The first linear program corresponds to the compu-
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tation of the least core:

min ε

s.t. pi ≥ 0 for all i ∈ N∑
i∈N pi = 1∑
i∈X pi ≥ ν(X)− ε for all X ∈ W ′

where, again, it is not necessary to consider all the set of coalitions, but

only W ′ = Wm ∪ {X ∪ {i} | X ∈ Wm, i ∈ N} [223, 10]. Lets denote the

output of this first linear program as (p1, ε1). Let
∑1 be the set of tight

constraints for (p1, ε1), which by a slight abuse of notation also represents

all the coalitions X ∈ W ′ such that p(X) = ν(X) − ε. Thus, the second

linear program is

min ε

s.t. pi ≥ 0 for all i ∈ N∑
i∈N pi = 1∑
i∈X pi = ν(X)− ε1 for all X ∈

∑1∑
i∈X pi ≥ ν(X)− ε for all X ∈ W ′ \

∑1

where the tight constraints now appear in an equality. The remaining coali-

tions appear in the same inequality that needs to be re-computed until the

payoffs to all coalitions are determined, i.e., until the solution space of the

current linear program consists of a single point [74]. Hence, the jth linear

program is given by

min ε

s.t. pi ≥ 0 for all i ∈ N∑
i∈N pi = 1∑
i∈X pi = ν(X)− ε1 for all X ∈

∑1

. . . . . .∑
i∈X pi = ν(X)− εj−1 for all X ∈

∑j−1∑
i∈X pi ≥ ν(X)− ε for all X ∈ W ′ \

⋃j−1
k=1

∑k .

The explanation of this computation can also be seen in [74].

Since the nucleolus is unique, it is clear that if Construct-Nucleolus

can be solved in polynomial time, then the In-Nucleolus problem can

be decided in polynomial time. Moreover, if the Construct-Least-core
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problem is NP-hard, then Construct-Nucleolus is also NP-hard [10].

Regarding weighted games in WRF, if the core is nonempty, then the

nucleolus can be obtained in polynomial time.

Theorem 4.1 ([73]). Let Γ be a weighted game with nonempty core and

k vetoers. The nucleolus N (Γ) is given by the homogeneous imputation

(p1, . . . , pn), such that for all i ∈ N we have

pi =

 1
k if i is vetoer

0 otherwise.

When the core is empty, the Construct-Nucleolus problem is NP-

hard, but as the problems Construct-ε-core and Construct-Least-

core, it can also be solved by a pseudo-polynomial time algorithm, so the

problem is polynomial-time solvable if the weights are at most polynomi-

ally large in n [73, 74]. The same occurs for vector-weighted games in

VWRF [73, 74]. Moreover, it is also interesting to note that there are sub-

classes of weighted games for which the problems Construct-Nucleolus,

In-Nucleolus and IsZero-Nucleolus are polynomial-time solvable, even

when the core is empty.

Proposition 4.1 ([211]). Let Γ = [q;w1, . . . , wn] be a decisive homogeneous

game in which each dummy player gets zero weight. Then the nucleolus is

N (Γ) = (w1/w(N), . . . , wn/w(N)).

Stable Set

The stable set is a solution concept slightly studied in simple games. It is

clear by Proposition 2.3 that the Construct-Stable-set problem can be

solved in polynomial time whenever a MWC can be obtained in polynomial

time. However, the same proposition does not implies that the In-Stable-

set problem can be decided in polynomial time, as it is stated in [10].

Actually, given an imputation, by using this result we can only verifying

whether it is contained in some of those stable sets provided by the MWCs.

But if the answer is “no”, there may exist other stable sets in which the

imputation is contained. In the absence of other explicit results, to our

knowledge this problem remains open.
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Kernel and Prekernel

The kernel has also been much studied in simple games, although unlike

the core, for this solution concept there are not too many complexity re-

sults. Analogously to the core and the nucleolus, it is known that the kernel

corresponds to a union of a finite number of closed convex polyhedra [55].

Given a simple game Γ = (N, ν) and a payoff p ∈ I(Γ), to decide both

the In-Kernel and In-Prekernel problems we can start by determining

the n(n− 1) maximum surpluses

sνij(p) = max{ν(X)− p(X) | X ∈ Wm, i ∈ X, j /∈ X}.

Note that, as in the core, we can concentrate the computation at the MWCs.

Indeed, for any X ∈ Wm and another coalition X ′ ⊆ N , if X ⊂ X ′, then we

have ν(X)− p(X) = 1− p(X) ≥ 1− p(X ′) = ν(X ′)− p(X ′), and if X ′ ⊂ X,

then ν(X) − p(X) = 1 − p(X) ≥ 0 − p(X ′) = ν(X ′) − p(X ′). In the case

that for all X ∈ Wm, j ∈ X, then sνij(p) must be given by a losing coalition,

because it does not contain j; therefore, the coalition that provides the

maximum surplus containing i is the singleton {i}. In the case that for all

X ∈ Wm, when j /∈ X it also holds that i /∈ X, then sνij(p) must be given by

a non-MWC, provided by the coalition X ′ ∪ {i} with the minimum p(X ′),

so that j /∈ X ′. Finally, we verify whether the payoff in the maximum

surpluses satisfy both the inequalities (sνij(p) − sνji(p))(pj − ν({j})) ≤ 0

and (sνji(p) − sνij(p))(pi − ν({i})) ≤ 0 for the kernel, and the equalities

sνij(p) = sνji(p) for the prekernel.

We know that in simple games with a nonempty set of imputations, the

intersection of the kernel and the least core coincides with the intersection of

the prekernel and the least core. There exist two solution concepts, namely

the lexicographic prekernel and the lexicographic kernel, that belong to these

intersections [79]. It is also known that if the maximum surpluses and the

MWCs can be obtained in polynomial time, then an outcome of both the

lexicographic prekernel and the lexicographic kernel can be obtained in poly-

nomial time [79]. Therefore, these solution concepts can be used to solve

both the Construct-Kernel and Construct-Prekernel problems in

polynomial time, depending on the form of representation of the game.

For weighted games in WRF, the complexity of the In-Kernel, In-
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Prekernel, Construct-Kernel and Construct-Prekernel problems

is still open. This does not mean that these problems have not been studied.

We know at least the following.

Theorem 4.2 ([271, 10]). Let Γ = [q;w1, . . . , wn] be a weighted game with-

out vetoers and such that q ≥ w1 ≥ . . . ≥ wn. Let p = (p1, . . . , pn) ∈ I(Γ)

be a homogeneous payoff, where R = {1, . . . , r} ⊆ N is the set of r players

with payoff 1
r and N \R is the set of n− r players with payoff equals zero.

Let be T (R) = {1, . . . , k} ∪ N \ R, where k = maxm∈[0,r]

∑
i∈T (R)wi < q.

This payoff p is in the kernel if and only if w(T (R)) + wr − wr+1 ≥ q and

w(T (R))− w1 + wk+1 + wr ≥ q.

Moreover, for some kind of weighted games, the kernel is equivalent to

the nucleolus given by the homogeneous imputation of Theorem 4.1 [7].

Bargaining Set

Similarly to the stable set, the bargaining set has been little studied in

simple games. The existence of several slightly different definitions [7] makes

their study more difficult to address. However, every bargaining set can be

obtained by a system of linear inequalities in the space of the payoffs [6].

Moreover, it is important to remember that in simple games, when the core

is nonempty, it is equivalent to the bargaining set [70]. Therefore, all the

open complexity problems related with the bargaining set are reduced to

analyze simple games with empty core, i.e., with no vetoers.

Recall that the kernel, and hence the nucleolus, are contained in the bar-

gaining set. Thus, given a subclass of simple games in certain representation

form, if either the Construct-Kernel or the Construct-Nucleolus

problem can be solved in polynomial time, then Construct-Bargaining-

set can also be solved in polynomial time.

4.2 Decisiveness and Strongness

In this section we solve several open complexity problems related to both

the IsDecisive and the IsStrong problems for simple games. Recall by

Definition 2.23 that a simple game is decisive if and only if it is proper and

strong. The main results are illustrated in bold in Table 4.3, where the

question mark remains as a conjecture.
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Simple games Regular Weighted

Problem EWF MWF VWRF SWF WRF

Properties of simple games

IsProper P P coNPC P coNPC

IsStrong P coNPC coNPC coNPC coNPC

IsDecisive P QP coNPC QP? coNPC

Table 4.3: New complexity results for decisiveness of simple games.

The main result of the following Section 4.2.1 is Theorem 4.3, that solves

a conjecture given by [92], which suggested that the IsDecisive problem

for simple games in MWF, rather than QP, was coNP-complete.

In Section 4.2.2 we provide some results regarding weighted games. Given

a simple game in MWF, we design an algorithm to decide in polynomial time

whether the game is weighted or not. With some slight modifications, we

can also decide in polynomial time whether the game is homogeneous or not.

By using the first algorithm, we can also decide in polynomial time whether

the game is majority—i.e., weighted and decisive—or sub-majority—i.e.,

weighted and strong. Thus, Theorem 4.5 solves another conjecture given

by [92], which suggested that this last problem, rather than polynomial,

was coNP-complete.

Finally, in Section 4.2.3 we show a polynomial-time reduction from the

IsDecisive (resp. IsStrong) problem for simple games in MWF to the

IsDecisive (resp. IsStrong) problem for regular games in SWF. Thus,

we prove that the IsStrong problem for regular games in SWF is coNP-

complete, and the IsDecisive problem is most probably not coNP-complete,

but probably belongs to QP.

4.2.1 Decisiveness for Simple Games

In this subsection we establish the equivalence among the IsDecisive prob-

lem and the duality problem for hypergraphs. We show that decisiveness

can naturally be represented in the context of hypergraph theory, in such a

way that it can be decided for simple games in quasi-polynomial time.

Let Γ = (N,W) be a simple game, note from Definition 2.7 that W is a

hypergraph over N with ν(W) = W and µ(W) = Wm. Thus, the amount

of information needed to specify Γ is given by the size n · |µ(W)| of µ(W).

Note also that L = ¬(τ(W)) is the set of losing coalitions, and the simple
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game (N, τ(W)) corresponds to the dual game of (N,W).

Moreover, the properties of hypergraphs presented in Definition 2.8 are

closely related to some properties of simple games.

Lemma 4.1. Let Γ = (N,W) be a simple game, then:

• Γ is proper iff (W,W) is coherent iff (µ(W), µ(W)) is coherent,

• Γ is strong iff (W,W) is complete iff (µ(W), µ(W)) is complete,

• Γ is decisive iff (W,W) is dual iff (µ(W), µ(W)) is dual.

Proof. Just note that:

(W,W) is coherent iff ν(W) ⊆ τ(W) iff W ⊆ τ(W), i.e. iff Γ is proper.

(W,W) is complete iff ν(W) ⊇ τ(W) iff W ⊇ τ(W), i.e. iff Γ is strong.

(W,W) is dual iff ν(W) = τ(W) iff W = τ(W), i.e. iff Γ is decisive.

Example 4.1. In projective geometry, the Fano Plane is the smallest pro-

jective plane. It was introduced in simple game theory by [225] to define a

subclass of simple games called finite projective games. Since then, it has

been very much studied, due to it has special properties that make it a

likely counterexample for different results—for instance, without going into

details, it is the only non-partition game with the same number of mini-

mal winning coalitions and players [246]—as well as a case in which some

properties turn out to be the same—for instance, its reactive bargaining set

coincides with its kernel [106].

Observe that the Fano Plane can be represented by a hypergraph H over

N = {1, . . . , 7}, with seven evenly distributed hyperedges represented by the

following incidence matrix.

N 1234567

H 0000111

0011010

0101100

0110001

1001001

1010100

1100010
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It is easy to check that µ(H) = H and prove that (H,H) is coherent. It

is more difficult to prove the completeness of this pair—see the next Theo-

rem 4.3—but in fact it is dual. So the game (N, ν(H)) is proper and strong,

i.e., decisive. In addition, note that by its symmetry it is neither regular nor

linear.

It is well known that the IsProper problem can be solved in polynomial

time. In the context of hypergraphs, this is also clear because since ν is

monotone, (H,H) is coherent if and only if for all X,Z ∈ H, X ∩ Z 6= ∅, a

condition that can be verified in polynomial time.

Furthermore, it is known that the problem of deciding whether a pair

of hypergraphs (H,K) is complete is coNP-complete [215]. Since there is a

polynomial-time reduction from this problem to the same problem for the

case when H = K [84], then we conclude that the IsStrong problem for

simple games in MWF is also coNP-complete. Another proof for this last

result in simple games was shown in [92].

In turn, the IsDecisive problem for simple games in MWF belongs

to QP, since the duality of a pair of hypergraphs (H,H) can be decided

in quasi-polynomial time [84]. Thus, from all the above we conclude the

following.

Theorem 4.3. For simple games in MWF, the IsProper problem belongs

to P, the IsStrong problem is coNP-complete, and the IsDecisive problem

belongs to QP.

Note that the IsDecisive problem is most probably not NP-hard, unless

any NP-complete problem can be solved in quasi-polynomial time. But note

also that the mentioned quasi-polynomial algorithm does not allow us to

generate λ(H) = µ(τ(H)) in sub-exponential time, since |λ(H)| can not be

quasi-polynomially bounded by |µ(H)|. To prove this statement, consider

the following example.

Example 4.2. Let be N ′ = {1, . . . ,m} with m ∈ N, n = 2m and further

H = {{2i − 1, 2i} | i ∈ N ′}. Therefore, the irredundant transversals of H
are λ(H) = {X ⊆ N | for all i ∈ N ′, either 2i − 1 ∈ X or 2i ∈ X}. So

|H| = m, but |λ(H)| = 2m.
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Algorithm 7 DecideWeighted

Input: A simple game in MWF represented by a hypergraph H = µ(W).
Output: If the game is weighted, return “Yes”; otherwise “No”.

1: if H is not linear, return “No”;
2: Determine a linear ordering of N which makes H regular;
3: Generate J = ¬(λ(H));
4: if there is not exists a weighted representation [q;w1, . . . , wn] s.t.:

for all X ∈ H, w(X)≥ q;
for all Y ∈ J , w(Y ) ≤ q − 1;
for all i ∈ N , wi ≥ 0;

return “No”;
5: return “Yes”.

4.2.2 Decisiveness and Strongness for Weighted Games

The following result was firstly proved in the context of threshold functions.

Now we provide a proof related to hypergraphs and simple games.

Theorem 4.4. [209] For simple games in MWF, deciding whether it is

weighted or not, can be done in polynomial time.

Proof. Let us consider Algorithm 7. It is well known that steps 1 and 2 can

be computed in polynomial time [163]. For step 3 we can use the algorithm

provided in [210], that given H = µ(W), it generates λ(H) in linear time and

at the same time proves that |λ(H)| ≤ n·|H|+1. Finally, step 4 only demands

the solution of a system of linear inequalities, which can also be found in

polynomial time [138]. Therefore, since each step can be accomplished in

polynomial time, this algorithm runs in polynomial time. Finally, as the

weighted games are the simple games that admit a representation in WRF,

the algorithm is correct and it proves the theorem.

Slightly modifying Algorithm 7, we obtain the following result.

Corollary 4.1. For simple games in MWF, deciding whether it is homoge-

neous or not, can be done in polynomial time.

Proof. Just replace in Algorithm 7 the first inequation of step 4 by the

equation w(X) = q.

Based on the same idea of Algorithm 7, we have also the following result.

Theorem 4.5. For simple games in MWF, deciding whether it is majority—

i.e., weighted and decisive—or not, can be done in polynomial time.
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Algorithm 8 DecideMajority

Input: A simple game in MWF represented by a hypergraph H = µ(W).
Output: If the game is majority, return “Yes”; otherwise “No”.

1: if H is not linear, return “No”;
2: Generate K = λ(H);
3: if K 6= H return “No”;
4: if there is not exists a weighted representation [q;w1, . . . , wn] s.t.:

for all X ∈ H, w(X)≥ q;
for all Y ∈ ¬(K), w(Y ) ≤ q − 1;
for all i ∈ N , wi ≥ 0;

return “No”;
5: return “Yes”.

Proof. Let us consider Algorithm 8. The procedure to decide whether the

game is weighted is the same as the one given by Algorithm 7. Therefore,

we need to prove that the algorithm solves IsDecisive in polynomial time.

Let Γ = (N,W) be a simple game. By the proof of Lemma 4.1 we know

that Γ is decisive if and only if τ(W) = W. By Definition 2.7, applying

the operator µ on the expression we obtain λ(W) = µ(W). Moreover, it is

easy to see that λ(µ(W)) = λ(W). Therefore, we can decide IsDecisive

through the following question: Is λ(H) = H? which is equivalent to the

two conditions given above. This question is addressed in the opposite way

in step 3. Therefore, the algorithm is correct, and since the operators can

be computed here in polynomial time [210], then it proves the theorem.

Slightly modifying Algorithm 8, we also obtain the following result.

Theorem 4.6. For simple games in MWF, deciding whether it is sub-

majority—i.e., weighted and strong—or not, can be done in polynomial

time.

Proof. Note that a simple game is strong if and only if τ(W) ⊆ W if and only

if λ(W) ⊆ µ(W). Therefore, in the same vein than the proof of Theorem 4.5,

we can decide IsStrong through the following question: Is λ(H) ⊆ ν(H)?

This question is addressed in the opposite way by replacing in Algorithm 8

the inequality K 6= H of step 3 by K 6⊆ ν(H). Thus, the algorithm is correct,

and as in the previous theorem, it can be computed in polynomial time.

It is known that up to eight players—see Table 4.5—all the simple games

which are regular and decisive are also majority games. This implies that
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step 4 of Algorithm 8 is unnecessary in these cases, because the answer

would always be “Yes”. However, from nine players onwards, this is not

always true. Indeed, it is known that for n = 9 there are 319124 regular and

decisive games [144], but only 175428 majority games [190].

4.2.3 Decisiveness and Strongness for Regular Games

In this section we study both the IsStrong and IsDecisive problems for

regular games given in SWF. We consider a decreasing lexicographical order

of the players, so that N = {n, . . . , 1}.

Lemma 4.2. Let Γ = (N,Ws) be a regular game in SWF and Z ⊆ N .

Deciding whether Z ∈ W or Z ∈ L can be done in polynomial time in

function of the size of Γ.

Proof. Given a coalition Z, consider its associated integer vector z̄—see

Section 3.2. If there is some X ∈ Ws such that x̄ ≤ z̄, then Z is win-

ning; otherwise, it is losing. Note that this candidate can be computed in

polynomial time when Ws is given.

From the above result, we have the following.

Lemma 4.3. Given a regular game in SWF, the IsProper problem can be

solved in polynomial time.

Proof. Let be Γ = (N,Ws), for all X ∈ Ws, if N \X ∈ L—by Lemma 4.2

this can be determined in polynomial time—then by monotonicity the com-

plement N \ Z of every coalition Z with X ⊆ Z will be losing too.

Now we define some concepts related to the increasing-shift presented in

Definition 2.38.

Definition 4.1. A left-shift on X is either an increasing-shift specified by a

pair (a, b) ∈ N \X ×X such that a = b+ 1; or, if 1 ∈ N \X, a replacement

of X by X ∪ {1}.

We use X ⊆′ Z to denote the fact that there exists a sequence of left-

shifts that can be applied on X to produce Z. Note that this relation ⊆′ is a

variation of the desirability relation, and it can also be decided in polynomial

time.
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Lemma 4.4. Given X,Z ⊆ N , we can decide whether X ⊆′ Z in time

polynomial in n.

Proof. Given X,Z ⊆ N , X ⊆′ Z if and only if, for any a ∈ N , we have

|{b ∈ X | a � b}| ≤ |{b ∈ Z | a � b}|. If X ⊆′ Z, then the stated

inequalities evidently hold. If the inequalities hold, then starting from X we

can always perform a sequence of left-shifts that preserve the inequalities to

finally produce Z.

Note also that if X ⊆ Z then X ⊆′ Z, i.e., ⊆′ is a monotone variation of

the relation ⊆. Further, the complement of ⊆′—as for ⊆—is antitone, i.e.,

if X ⊆′ Z then N \ Z ⊆′ N \X.

From the above, we can define the operators ν ′, τ ′, µ′, λ′ like the already

familiar ν, τ, µ, λ—see Definition 2.7—but with the relation ⊆′ instead of ⊆.

For instance, given H ⊆ P(N), τ ′(H) = {Z ⊆ N | for all X ∈ H, X 6⊆′

N \ Z}, and µ′(W) = {X ∈ W | for all Z ∈ W, Z 6⊂′ X} yields the shift-

minimal winning coalitions of the given game.

Observe that, given a hypergraphW over N , it holds thatW ⊆ ν(W) ⊆
ν ′(W), so (N,W) is a regular game if and only if ν ′(W) = W. Therefore,

ν ′(W) = ν(W) = W is equivalent to ν ′(W) ⊆ W, and hence regular games

are ⊆′-monotone games, as simple games are ⊆-monotone games.

Note also that if Γ is regular, then τ(W) = τ ′(W), so its dual game

(N, τ(W)) is regular too.

Lemma 4.5. Let Γ = (N,W) be a regular game:

• Γ is proper if and only if ν ′(W) ⊆ τ ′(W);

• Γ is strong if and only if ν ′(W) ⊇ τ ′(W); and

• Γ is decisive if and only if ν ′(W) = τ ′(W).

Proof. It follows directly from Lemma 4.1 and the variations of the operators

based on the relation ⊆′.

For all the following results, we present a transformation T that from a

simple game, it produces a regular game over an expanded grand coalition.

We will show that this function reduces the IsDecisive problem for simple

games to the same problem for regular games, and further, this reduction

can be computed in polynomial time.
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Definition 4.2. Let N = {n, . . . , 1} and N ′ = {2n, 2n − 1, . . . , 2, 1}. Let

P(N) be ordered according to ⊆ and P(N ′) be ordered according to ⊆′.
Let T : P(N) → P(N ′) be a function such that given X ⊆ N and a ∈ N ,

2a ∈ T (X) if and only if a ∈ X, and 2a − 1 ∈ T (X) if and only if a /∈ X.

For any a ∈ N , let Za = {2a} ∪ {{2b − 1 | b ∈ N, a � b} ⊆ N ′ and let

G′ = {Za | a ∈ N} ⊆ P(N ′).

This definitions are applied later in Example 4.3. Note that T is an

injective function, and for all X,Z ⊆ N , X ⊆ Z if and only if T (X) ⊆′ T (Z).

Furthermore, the image T (P(N)) = {T (X) | X ⊆ N} of P(N) contains

only the coalitions X ′ ∈ P(N ′) such that, for all a ∈ N , either satisfy 2a ∈
X ′ or 2a− 1 ∈ X ′. Hence, if we restrict the codomain of the transformation

to T (P(N)), then T becomes bijective, i.e., what is called an isomorphism.

Lemma 4.6. For the transformation T and the set of coalitions G′ defined

above, it always holds that ν ′(G′) ∪ T (P(N)) = τ ′(G′).

Proof. If X ′ ∈ ν ′(G′) ∪ T (P(N)) and a ∈ N , then X ′ 6⊆′ N ′ \ Za, because

|{b′ ∈ X ′ | 2a− 1 � b′}| > n− a = |{b′ ∈ N ′ \ Za | 2a− 1 � b′}|. Therefore,

ν ′(G′) ∪ T (P(N)) ⊆ τ ′(G′).
Now it remains to prove that ν ′(G′) ∪ T (P(N)) ⊇ τ ′(G′). Note that this

inclusion is equivalent to P(N ′) \T (P(N)) ⊆ ν ′(G′)∪ ν ′(¬(G′)). Given Z ′ ∈
P(N ′) \ T (P(N)), let a ∈ N be maximal such that either {2a, 2a− 1} ⊆ Z ′

or {2a, 2a− 1} ∩ Z ′ = ∅. If the first holds, then Za ⊆′ Z ′; and if the second

one holds, then N ′ \ Za ⊆′ Z ′.

Now we are able to present the following key result, that applies the

transformation T on hypergraphs.

Lemma 4.7. Let be H,K ⊆ P(N) two hypergraphs, H′ = {T (X) | X ∈ H}
and K′ = {T (Y ) | Y ∈ K}, then:

• (H,K) is coherent if and only if (H′ ∪ G′,K′ ∪ G′) is coherent; and

• (H,K) is complete if and only if (H′ ∪ G′,K′ ∪ G′) is complete.

Proof. According to Definition 2.8 and Lemma 4.5, for the first statement

we need to prove that ν(H) ⊆ τ(K) if and only if ν ′(H′ ∪ G′) ⊆ τ ′(K′ ∪ G′).
Note that ν(H) ⊆ τ(K) if and only if X 6⊆ N \ Y , for all (X,Y ) ∈ H × K;

i.e., if and only if X ′ 6⊆′ N ′ \ Y ′, for all (X ′, Y ′) ∈ H′ × K′; i.e., if and
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only if ν ′(H′) ⊆ τ ′(K′). Moreover, Lemma 4.6 implies ν ′(G′) ⊆ τ ′(G′),
ν ′(H′) ⊆ τ ′(G′) and ν ′(G′) ⊆ τ ′(K′). So we completed the proof of the first

statement.

Analogously, for the second statement we prove that ν(H) ⊇ τ(K) if

and only if ν ′(H′ ∪ G′) ⊇ τ ′(K′ ∪ G′). Note that ν(H) ⊇ τ(K) if and only if

Z ∈ ν(H), for all Z ∈ P(N) with N \Z /∈ ν(K); i.e., if and only if Z ∈ ν(H′),
for all Z ′ ∈ T (P(N)) with N ′ \ Z ′ /∈ ν ′(K′). And since Z ∈ ν(G′) for all

Z ′ ∈ P(N ′) \ T (P(N)) with N ′ \ Z ′ /∈ ν ′(G′), we have proved the second

statement.

From Lemma 4.7, we obtain the main result of this section.

Theorem 4.7. For regular games given in SWF, the IsStrong problem

is coNP-complete. If the IsDecisive problem can be solved in polynomial

time for regular games in SWF, then the IsDecisive problem for simple

games in MWF will be also polynomial-time solvable.

Proof. The IsDecisive (resp. IsStrong) problem for simple games (N,W)

can polynomially be reduced to the IsDecisive (resp. IsStrong) problem

for regular games (N ′,W ′), specified by their shift-minimal winning coali-

tions µ′(W ′): Just apply the reduction T by setting H = K = W, and

considering that |G′| ≤ |N |.

This theorem translate the “bad news” of classical duality theory—

i.e., the NP-completeness of the IsStrong problem—to corresponding “bad

news” for the regular duality theory. However, it would also guaranty that

“good news” for the regular case—i.e., a possible polynomial-time algorithm

for the IsDecisive problem—translate to corresponding “good news” for

the classical theory.

Observe that, considering regular games in SWF rather than MWF, the

polynomial-time results of Theorems 4.4 and 4.5 do not hold any more.

Moreover, we do not know if the IsDecisive problem for regular games in

SWF can be solved in quasi-polynomial time. This problem remains open.

Recalling that T (P(N)) ∩ ν ′(G′) = ∅, we immediately get the following.

Corollary 4.2. GivenH ⊆ P(N), let K = λ(H), H′ = {T (X) | X ∈ H} and

K′ = {T (Y ) | Y ∈ K}. Then K′ ⊆ λ′(H′ ∪ G′) = µ′(K′ ∪ G′). Furthermore,

λ(H) can be obtained from λ′(H′ ∪ G′).
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Suppose that for any regular game in SWF, starting with H′ = µ′(W)

we could determine K′ = λ′(W) in time polynomially bounded by the input

plus output size n · (|H′|+ |K′|). This does not contradict Corollary 4.2; but

according to Lemma 4.7 it would imply that all the so much investigated

decision problems, that until now are only known to be quasi-polynomial,

are in fact polynomial.

Let us now apply Corollary 4.2 in a pair of hypergraphs (H,K) that

represents a simple game in SWF.

Example 4.3. Reconsider Example 4.2 at the end of Section 4.2.1, where

I = {m, . . . , 1}, N = {2m, 2m − 1, . . . , 2, 1}, H = {{2i, 2i − 1} | i ∈ I}
and K = {Y ⊆ N | for all i ∈ I, either 2i ∈ Y or 2i − 1 ∈ Y }. Then

|G′| = 2m, so |H′ ∪ G′| = 3m. Therefore, with k = 3m, |H′ ∪ G′| = k and

|λ′(H′ ∪ G′)| ≥ |K′| = ck, where c = 21/3 > 1; so the size of the hypergraph

λ′(H′∪G′) grows exponentially in the size of µ′(H′∪G′). The following table

presents the case m = 2.

N 4321

H 1100

0011

K 1010

1001

0110

0101

N ′ 87654321

H′ 10100101

01011010

K′ 10011001

10010110

01101001

01100110

Z4 11000000

Z3 01110000

Z2 01011100

Z1 01010111

This also proves that for regular games in SWF, |λ′(W)| can grow expo-

nentially in function of |µ′(W)|; although |λ(W)| can be bounded linearly

in function of |µ(W)| [209]. This result was already proven before, using

different techniques, in Corollary 3 of [56].

4.3 Other Parameters and Properties

In this section we study the computational complexity of some parameters

and properties for simple games. The main results are illustrated in bold in
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Table 4.4.

Simple games Regular Weighted

Problem EWF MWF VWRF SWF WRF

Properties of players

IsDummy P P coNPC coNP coNPC

Parameters

Width P P P P P

Coleman’s power P #PC #PC ? #PC

Chow parameters P #PC #PC ? #PC

Table 4.4: New complexity results for properties of players and parameters
of simple games.

The Width problem has been considered explicitly open for simple

games in EWF and MWF [10]. In Section 4.3.1 we show that both cases can

be computed in polynomial time. In that section we also define and analyze

two new parameters called strict width and strict length. They are closely

related to the strict and the width, so for all the considered cases, they can

also be computed in polynomial time.

Finally, in Section 4.3.2 we propose an approach to the study of the

IsDummy problem for regular games in SWF.

4.3.1 The Width of a Simple Game

Let Γ be a simple game, recall from Definition 2.25 that the parameter

width(Γ) = min{|X| | N \X ∈ L}.
Note that whether a given simple game Γ is strong, then for all Y ∈ L,

N \Y ∈ W, so therefore, the width only can be the cardinality of a winning

coalition, i.e., the width is the same that the length: length(Γ) = min{|X| |
X ∈ W}.

Lemma 4.8. Let Γ be a simple game, width(Γ) = n−max{|X| | X ∈ L}.

Proof. Let be Z ⊆ N such that |Z| = min{|X| | N \X ∈ L}. If Z ∈ L, then

|N \Z| = max{|X| | X ∈ L}, and due to n = |Z|+ |N \Z|, the lemma holds.

If Z ∈ W, then it also holds that |N \ Z| = max{|X| | X ∈ L}, because if

there exists Y ∈ L with |Y | > |N \ Z|, this implies that |N \ Y | < |Z|, a

contradiction.

Now we define two new parameters.
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Definition 4.3. Let Γ = (N,W) be a simple game:

• The strict length of Γ is the minimum cardinality from which all the

coalitions are winning, i.e.,

slength(Γ) = min{k ∈ N | Pk(N) ⊆ W}.

• The strict width of Γ is the complement of the maximum cardinality

to which all coalitions are losing, i.e.,

swidth(Γ) = n−max{k ∈ N | Pk(N) ⊆ L}.

So we have the following.

Lemma 4.9. Let Γ = (N,W) be a simple game, then:

• width(Γ) = n+ 1− slength(Γ), and

• length(Γ) = n+ 1− swidth(Γ).

Proof. For the first sentence, by Definition 4.3 and Lemma 4.8, we need to

prove that slength(Γ) = max{|X| | X ∈ L}+ 1. Let be k ∈ N, suppose that

k = slength(Γ). Then for all Y ∈ L, |Y | < k. Further, there exists at least

one Y ∈ L with |Y | = k − 1, because otherwise slength(Γ) would be k − 1,

a contradiction. Therefore, max{|X| | X ∈ L}+ 1 = k − 1 + 1 = k.

For the second sentence, we need to prove that swidth(Γ) = n + 1 −
min{|X| | X ∈ W}. Now suppose that k = n − swidth(Γ). Then for all

X ∈ W, |X| > k. Further, there exists at least one X ∈ W with |X| = k+1,

because otherwise swidth(Γ) would be k + 1, a contradiction. Therefore,

n+ 1−min{|X| | X ∈ W} = n+ 1− (k + 1) = n− k.

From the above we obtain the following result.

Theorem 4.8. Let Γ be a simple game in EWF or MWF, the problems

Length, Width, sLength and sWidth can be computed in polynomial

time.

Proof. Note that Length can trivially be computed in polynomial time.

Therefore, as length(Γ) = n+1−swidth(Γ), sWidth can also be computed

in polynomial time. Let k = slength(Γ). Observe that, by definition, all

the coalitions with k players are winning in Γ but at least one coalition with

cardinality k−1 is losing. Therefore, there is a MWC with cardinality k and

there are no MWCs with cardinality k+ 1. Thus, computing k is equivalent
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to compute the maximum cardinality of a MWC. The last quantity can be

obtained in polynomial time from a description of Wm, so sLength can be

computed in polynomial time. Finally, as width(Γ) = n + 1 − slength(Γ),

Width can be computed in polynomial time.

Moreover, for regular games in SWF it holds an analogous result.

Theorem 4.9. Let Γ be a regular game in SWF, the problems Length,

Width, sLength and sWidth can be computed in polynomial time.

Proof. If the game has a shift-minimal winning coalition {1, . . . , k} ∈ Ws,

with k ≤ n, then slength(Γ) = k, because for any other coalition Z ∈ Pk(N),

it holds that X � Z. Otherwise, slength(Γ) = max{|X| | X ∈ Ws} + 1,

because for all Z ∈ Ws, {1, . . . , |Z|} � Z, but {1, . . . , |Z|} /∈ Ws. The

remaining results are clear from Lemma 4.9 and the fact that Length here

can also trivially be computed in polynomial time.

4.3.2 Dummy Players in Regular Games

The following is an approach to the study of the IsDummy problem for

regular games in SWF. Let Γ be a simple game, recall that a player i ∈ N
is dummy when it does not belong to any MWC.

Since Ws(Γ) ⊆ Wm(Γ), it is clear that if for all X ∈ Wm, i /∈ X, then

for all X ∈ Ws, i /∈ X. Hence, if there exists some X ∈ Ws such that i ∈ X,

then i is not dummy. Furthermore, we have the following.

Lemma 4.10. Let Γ = (N,Ws) be a regular game in SWF. Given X ∈ Ws,

i ∈ X and j /∈ X with i ≺ j, deciding whether X \ {i} ∪ {j} is a MWC can

be done in polynomial time.

Proof. We know by definition that Z = X \ {i}∪ {j} is a winning coalition.

Therefore, Z is a MWC if and only if for all h ∈ N , Z \ {h} ∈ L; and by

Lemma 4.2, we know that deciding Z \ {h} ∈ L can be done in polynomial

time.

From the above we have the following result.

Lemma 4.11. For regular games in SWF, the IsDummy problem belongs

to coNP.
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Proof. We can decide whether i is dummy by checking if for every shift-

minimal winning coalition X and for every Z ⊆ N obtained by increasing-

shifts from X, Z is not a MWF.

In despite of the above, the number of permutations required to decide

whether a player is dummy can be exponential in the size of the input, so it

is possible that given a regular game in SWF, the IsDummy problem could

not be solved in polynomial time. In remains open to prove whether for

regular games in SWF, IsDummy is coNP-hard.

4.4 Counting and Enumerating Results

In this section we focus on the study of counting and enumerating specific

subclasses of simple games.

In Section 4.4.1 we survey the main known results related to the counting

of the members of subclasses of simple games, and we present some known

approaches to enumerate subclasses of simple games. In Section 4.4.2 we

propose a new strategy to enumerate decisive regular games. We use an

experimental approach. Although the correctness of the algorithm has not

yet been formally proved, the correctness of the algorithm has been vali-

dated experimentally for the considered cases. By using these ideas, we can

correctly enumerate all the decisive regular games up to eight players.

4.4.1 Known Results

The numbers of simple games in the subclasses defined in Chapter 3 are

summarized in Table 4.5. The references on the second last column show

the details of how the last value of the corresponding sequence was obtained.

The last column shows the sequence numbers according to the Online En-

cyclopedia of Integer Sequences (OEIS) [238]. Further, most of the question

marks refer to really difficult open combinatorial problems. In what follows

we explain some general aspects about those results. It is important to re-

mark that the counting of both the Dedekind numbers—i.e., the number of

simple games— and the decisive games consider all the isomorphic games

obtained by permutation of players. However, since in regular and weighted

games the grand coalition is ordered, the remaining sequences of the table

are up to isomorphism, i.e., the isomorphic games are counted only once.
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Number of players

Subclass 1 2 3 4 5 6 7

Simple games 3 6 20 168 7,581 7,828,354 2,414,682,040,998

↪→ Regular 3 5 10 27 119 1,173 44,315

↪→ Weighted 3 5 10 27 119 1,113 29,375

↪→ Homogeneous 1 3 8 23 76 293 1,307

↪→ Decisive 1 2 4 12 81 2,646 1,422,564

↪→ Regular 1 1 2 3 7 21 135

↪→ Weighted 1 1 2 3 7 21 135

Number of players

Subclass 8 9

Simple games 56,130,437,228,687,557,907,788 ?

↪→ Regular 16,175,190 284,432,730,176

↪→ Weighted 2,730,166 989,913,346

↪→ Homogeneous 6,642 37,882

↪→ Decisive 229,809,982,112 423,295,099,074,735,261,880

↪→ Regular 2,470 319,124

↪→ Weighted 2,470 175,428

Number of players

Subclass 10 Reference OEIS

Simple games ? [267] A000372

↪→ Regular ? [91] A132183

↪→ Weighted ? [248, 146] A000617

↪→ Homogeneous 239,490 [144] (n = 9) A189359

↪→ Decisive ? [38] A001206

↪→ Regular 1,214,554,343 [141] A109456

↪→ Weighted 52,980,624 [190] (n = 9) A001532

Table 4.5: Results of counting the number of members for subclasses of
simple games.

Note that the enumeration problems require an additional computational

effort than the counting problems, in order to represent explicitly the games

that are enumerated. As a matter of fact, the last values of the sequences of

Table 4.5 are obtained through counting algorithms, but usually the mem-

bers of the respective subclasses have not been yet explicitly enumerated.

The number of simple games up to 4 players—including trivial games—

were counted in 1897 by Dedekind [58]. The Dedekind number for n = 5 was

discovered in 1940 [47], and for n = 6 in 1946 [260]. The next number was

found in 1965 [48] and rediscovered again in 1976 [20]. The largest known

Dedekind number, for n = 8, was found in 1991 by Wiedemann [267], using
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a similar method than in [20]. All these numbers were found in the context

of order theory, using mathematical methods and enumerating the members

of free distributive lattices defined over n generators.

It is well known that the number of members of a free distributive lattice

is equivalent to the number of simple games. The definition of free distribu-

tive lattices generated by n elements, as we know it, was firstly introduced

by Skolem in 1931 [237], being even older than the explicit definition of

simple games of von Neumann and Morgenstern [258]. Furthermore, the

Dedekind numbers also describe the number of monotone Boolean functions

on n variables, the number of labeled Sperner families on n vertices, and the

number of antichains in the power set of a grand coalition [274].

The decisive games up to 4 players were illustrated in 1897 by Dedekind,

as the self-dual members of the free distributive lattices [58]. For 5 play-

ers they were counted in 1944 by von Neumann and Morgenstern [258].

For 6 players in 1959 by Gurk and Isbell [109]. For 7 players in 1992 by

Loeb [156]—see also [24]—and for 8 players in 1995 by Loeb and Con-

way [157], requiring only twelve minutes of computation. This latter result

takes advantages of symmetrical combinatorial structures called maximal

intersecting families (MIFs), which allow us to skip the redundant and au-

tomorphic games. The number of decisive games for 9 players was published

in 2013 by Brouwer et al. [38], and it was obtained through the counting of

independent sets in a sparse graph; computation time is not mentioned in

this case.

Regular games up to 8 players and decisive regular games up to 9 players

were counted in 1995 by Krohn and Sudhölter [144]. The authors not only

found the numbers but also enumerate the games. Their idea was to use

linear programming in order to enumerate regular games represented as lat-

tices formed by its shift-minimal winning coalitions. Taking advantage that

these lattices are rank-symmetric—i.e. the complement of a shift-winning

coalition on one level of the lattice is on their opposite side—the resulting

algorithms are faster, but they require a lot of memory, and that is why

they cannot enumerate games with larger number of players.

The number of regular games for 9 players was found in 2010 by Freixas

and Molinero [91]—see also [90, 93]. As above, they also enumerate the

regular games, allowing to verify the games that are weighted. Thus, they

are also able to enumerate weighted games in WRF. Their idea is to char-
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acterize the regular games in a form of representation slightly less succinct

than SWF. Thus, they generate the regular games, by using a brute-force

mechanism, not avoiding repetitions of isomorphic games. From this point,

they start a classification of weighted games. By using known upper bounds

for the weights of the weighted games [187, 102] they minimize the num-

ber of inequalities required to define these games—in a similar way than

expression (3.2) in Section 3.3.1—and then solve the obtained systems of

linear inequalities by using linear programming. Unfortunately, these re-

duced systems of linear inequalities may also have an exponential number

of restrictions, becoming in the main obstacle of this method.

The number of decisive regular games for 10 players was computed in

2008 by Knuth [141]. The first counting is based on regular games in a form

of representation similar to SWF, and the second one on binary decision

diagrams. In [146, 147] it is proposed an algorithm which counts cliques—

subsets of an undirected graph such that every pair of nodes is connected

by an edge—and establishes a bijection among these cliques and the reg-

ular games, achieving excellent results in computational speed to counting

regular games.

The first serious approaches for counting weighted games are in the con-

text of Boolean functions, i.e., have to do with counting threshold Boolean

functions. Those functions were counted up to 6 players in 1959 by Muroga

et al. [188], and for 7 players in 1964 by Winder [269]—see also [270, 62].

In 1967 Muroga et al. published several results counting threshold Boolean

functions and subclasses of them by using linear programming. Among other

results, the authors succeed to count the number of weighted games up to

8 players [190]. Several years later, in the context of simple game theory,

first Tautenhahn in 2008 on his Master’s thesis [248], and then Kurz [146]

in 2011, count the number of weighted games for 9 players, again by using

linear programming methods.

Regarding decisive weighted games, they were explicitly given up to 5

players in 1944 by von Neumann and Morgenstern [258], for 6 players in 1959

by Isbell and Gurk [109], and for 7 players in the same year by Isbell [125].

In the above mentioned result of Muroga et al. in 1967, they count the

number of decisive weighted games up to 9 players [190]. The number of

decisive weighted games for 10 players was given in OEIS by W. Lan—

sequence A001532 [238]—but it is not documented how the author found
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this number.

Finally, regarding homogeneous games, they can be counted by using

brute force mechanisms for a larger number of players. Besides the 239, 490

homogeneous games for 10 players showed on Table 4.5, we know that there

are 1, 661, 564 homogeneous games for n = 11, and 12, 548, 067 for n = 12.

The sequence could probably be extended. Moreover, Sudhölter provided in

1989 an explicit recursive formula to count them [244]. The author repre-

sents homogeneous games as step functions—i.e., a piecewise constant func-

tion with a finite number of pieces—in such a way that these games can

be counted and enumerated. The number of homogeneous games up to 9

players was presented in 1995 by Krohn and Sudhölter [144]. In that paper

the authors are not interested into count the homogeneous games for larger

number of players. However, by using the mentioned recursive formula of

Sudhölter, it could be possible to extend the counting results.

4.4.2 Enumerating Decisive Regular Games

In this section we propose a new strategy to enumerate decisive regular

games, motivated by the Master thesis of Riquelme, which was supervised

by Polyméris [227]. The main idea is to define a free distributive lattice on n

generators, where each member is a decisive regular game in SWF. In what

follows we consider a decreasing lexicographical order of the players, so that

N = {n, . . . , 1}.
The construction of the lattice attempts to ensure that all the decisive

regular games with n players belong to it, and also that the games are

never repeated. Furthermore, all the games are located into the lattice

in such a way that each one of them can be recognized by its neighbors.

The analogous lattice on n + 1 generators can be obtained constructively

by expanding the domain of the existing games, and then obtaining from

them all the missing games. The new games should be located into the new

lattice, being connected to all the games from which they can be generated.

The main obstacle of this process is the exponential increase in the size

of the lattices, in terms of n. However, this can be considered an intrinsic

complexity of the problem, and the complexity should be analyzed in terms

of the output size. Therefore, the efficiency of the algorithm must be based

mainly on two aspects: first, that it does not generate replicated games;

and second, that in order to generate the new lattice, the algorithm does
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not have to access to the elements of the original lattice more than once.

We start with the following definition.

Definition 4.4. Let Γ = (N,W) be a simple game and let Z ⊆ N . We say

that Γ responds to Z if either there exists X ∈ W with X ⊆ Z, or there

exists Y ∈ L with Z ⊆ Y .

Note that a simple game is strong if and only if it responds to all Z ⊆ N .

For regular games in SWF, we know that the IsProper problem belongs

to P but the IsStrong problem is coNP-complete—see Lemma 4.3 and

Theorem 4.7, respectively. As we want to enumerate regular games which are

decisive—i.e., proper and strong—it is important to avoid the computation

of the IsStrong problem. For this purpose we introduce the following.

Definition 4.5. A regular game is boring if for all X ∈ Wm, 1 /∈ X.

Note that every regular game with 1 /∈ X, for all X ∈ Ws, is boring. The

following result characterizes strong regular games from proper and boring

regular games.

Lemma 4.12. Let Γ be a proper and boring regular game. If for all Z ⊆ N
with 1 /∈ Z, Γ responds to Z, then Γ is strong, and therefore decisive.

Proof. Let Z ⊆ N with 1 ∈ Z and let Z ′ = Z \ {1}. If there exists X ∈ W
with X ⊆ Z ′, then it is clear that X ⊆ Z. If there exists Y ∈ L with Z ′ ⊆ Y ,

then Z � Y , so therefore Z ∈ L. Thus, Γ responds to Z.

For what follows we need an additional definition.

Definition 4.6. Let Γ be a regular game and X ∈ Ws(Γ). The set of im-

mediate successors of X is the set α(X) = {Z ⊆ N | X ≺ Z and for all Y ⊆
N with X ≺ Y � Z, then Y = Z}.

Now we prove that from any decisive regular game we can obtain a boring

decisive regular game. Recall that for decisive games, the complement of any

winning coalition is losing, and vice versa.

Lemma 4.13. Every decisive regular game produces a boring decisive reg-

ular game.
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Algorithm 9 BDRGfromDRG

Input: Decisive regular game Γ = (N,Ws) in SWF.
Output: Boring decisive regular game Γ′ = (N,Ws′) in SWF.

1: repeat
2: if for all X ∈ Ws, 1 /∈ X, return Γ′ = Γ;
3: Choose X ∈ Ws with 1 ∈ X;
4: Define X ′ = N \X;
5: Ws =Ws \ {X} ∪ α(X);
6: Ws =Ws \ {Z ∈ Ws | X ′ � Z} ∪ {X ′}.

Proof. We prove that by exchanging winning coalitions by its complemen-

tary losing coalitions, we can provide a construction that from any decisive

regular game produces a boring decisive regular game. See Algorithm 9.

Step 5 converts a shift-minimal winning coalition that contains the player 1

into a losing coalition, in such a way that the game continues responding as

many coalitions as possible. Step 6 brings the complementary losing coali-

tion X ′ into the set of shift-minimal winning coalitions, and removes from

Ws those coalitions Z so that Z � X ′.
Now we prove that the output is always a regular game in SWF. Let

be X ∈ Ws, Z ∈ α(X) and Z ′ ∈ Ws \ {X}. If Z � Z ′, since X ≺ Z we

have that X � Z ′, a contradiction. If Z ′ � Z, since X ≺ Z and there is no

Y 6= Z with X ≺ Y � Z, then Z ′ � X, a contradiction. Therefore, since

step 6 maintains the regularity, then the output is a regular game in SWF.

Now we prove that the output is a decisive game. Note that Γ is proper,

so X ∈ W(Γ) implies N \ X ∈ L(Γ). Therefore, in step 5 we also obtain

proper games, since for all Z ∈ α(X), Z � X and hence N \ Z is losing.

However, in this step the game is not strong, because both X and X ′ are

losing. But this is fixed in step 6, where the coalition X ′ is added to the

set of shift-minimal winning coalitions. Finally, since the coalitions Z ∈ Ws

with Z � X ′ that are removed maintain the properness of the current game,

the new game obtained in each repetition of the algorithm is decisive.

By step 2, it is clear that the output is always a boring game. Therefore,

Algorithm 9 always returns a boring decisive regular game.

In turn, note also that from boring decisive regular games we can obtain

decisive regular games.

Lemma 4.14. Let Γ = (N,Wm) and Γ′ = (N \ {1},Wm) be two simple
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Algorithm 10 DRGfromBDRG

Input: Boring decisive regular game Γ = (N,Ws) in SWF.
Output: Decisive regular game Γ′ = (N,Ws′) in SWF.

1: Choose X ∈ Ws with 1 /∈ X;
2: Define X ′ = N \X;
3: Ws =Ws \ {X} ∪ α(X);
4: Ws =Ws \ {Z ∈ Ws | X ′ � Z} ∪ {X ′};
5: return Γ′ = Γ.

games. Then Γ is a boring decisive regular game if and only if Γ′ is a decisive

regular game.

Proof. Let Γ be a boring decisive regular game. If X \ {1} ∈ W(Γ′), then

N \X ∈ L(Γ), because Γ is proper; therefore, N \ (X \ {1}) ∈ L(Γ′), so Γ′ is

proper. Note that Γ is boring, so for all X ∈ L(Γ), 1 /∈ X. If X\{1} ∈ L(Γ′),

then N \ (X \ {1}) ∈ W(Γ′), because 1 ∈ N \ (X \ {1}); so Γ′ is strong.

Let Γ′ be a decisive regular game. Note that Γ is clearly boring, because

we do not add new MWCs. If X ∈ L(Γ), then N \ X ∈ W(Γ), because

1 does not belong to any losing coalition; so Γ is strong. If X ∈ W(Γ),

we have two cases: 1) if 1 /∈ X, it is clear that X \ {1} ∈ W(Γ′), so then

N \ (X \ {1}) ∈ L(Γ′), because Γ′ is proper; hence N \X ∈ L(Γ), because

1 /∈ X, and thus Γ is proper. 2) if 1 ∈ X, it is clear that X ∈ W(Γ)\Wm(Γ),

so then X \ {1} ∈ W(Γ′), and since Γ′ is proper, N \ (X \ {1}) /∈ L(Γ′);

therefore, N \ X ∈ L(Γ), because it is formed from the losing coalition

N \(X \{1}) of Γ′, without adding any additional player. Thus, Γ is proper.

Finally, since Γ′ remains regular in both cases, then the lemma holds.

Note that Lemma 4.14 implies that every decisive regular game on n

players can be obtained from a boring decisive regular game on n+1 players.

Moreover, based on Lemma 4.13 we can show the following.

Lemma 4.15. Every decisive regular game on n players can be obtained

from a boring decisive regular game on n players.

Proof. We need to prove that by using the same exchange of coalitions used

in the proof of Lemma 4.13, we can obtain decisive regular games from boring

decisive regular games. See Algorithm 10, which is the same Algorithm 9,

but without repetitions, and choosing in step 3 of the previous algorithm

the coalitions X ∈ Ws with 1 /∈ X.
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Just note that when some shift-minimal winning coalition X ∈ Ws be-

comes losing and N \X becomes winning, the new coalitions Z ∈ Ws with

1 ∈ Z are such that X ≺ Z.

In what follows we construct enumeration algorithms. To display these

enumerations we use additional notation. To denote that we are enumerating

or printing a decisive regular game, we draw the game within a box, like for

instance:

10010

01110

When a decisive regular game Γ′ is obtained from other decisive regular

game Γ, by exchanging a coalition X ∈ Ws(Γ) by N \X—see steps 3 and 4

of Algorithm 10—we include an arrow pointing from the coalition X to Γ′,

like this:

10010

01110

10100

01101

10011

In turn, this notation derives some additional definitions.

Definition 4.7. Let G be a set of decisive regular games in SWF. We define a

function δ : G×P(N)→ G such that for all (Γ, X) ∈ G×P(N), δ(Γ, X) = Γ′,

where Ws(Γ′) = (Ws(Γ) \ {X}∪α(X)) \ {Z ∈ Ws | N \X � Z}∪ {N \X}.

We denote by a pair (G, δ) a set of decisive regular games connected by

arrows according to the relationship δ, i.e., such that for all Γ,Γ′ ∈ G, there

exists a coalition X such that either δ(Γ, X) = Γ′ or δ(Γ′, X) = Γ.

Note that Ws(Γ′) corresponds to the set Ws′ obtained from Γ by the

exchange of X by N \ X in steps 3 and 4 of Algorithm 10. Based on this

algorithm, in the following result we construct an enumeration algorithm to

list decisive regular games from a set of boring decisive regular games.

Lemma 4.16. There is an algorithm to enumerate all the decisive regular

games up to 4 players.

Proof. Let be N = {n, . . . , 1}. We consider the enumerations for n = 1 and

n = 2 as base cases, because by Table 4.5, we know that for both cases there

is only one decisive regular game. For n = 1, the only decisive regular game

in SWF is the one with Ws = {1}. Let us print this game:
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Algorithm 11 EnumeratingDRGs(WithRepetitions)

Input: A pair (G, δ) of connected decisive regular games on n− 1 players.
Output: A pair (G′, δ) of connected decisive regular games on n players.

1: N = N ∪ {1};
2: Define (G′, δ) = (G, δ);
3: for all Γ ∈ G repeat
4: print Γ;
5: for all X ∈ Ws with 1 /∈ X repeat
6: Define X ′ = N \X;
7: Ws =Ws \ {X} ∪ α(X);
8: Ws′ =Ws \ {Z ∈ Ws | X ′ � Z} ∪ {X ′};
9: print Γ′ = (N,Ws′);

10: G′ = G′ ∪ Γ′;
11: Define δ(Γ, X) = Γ′;
12: return (G′, δ).

1

For n = 2, the only decisive regular game in SWF can be obtained by

increasing the domain of the previous game, so we obtain the regular game

with Ws = {10}:

10

Now let us consider Algorithm 11, which repeats the procedure of Al-

gorithm 10 for every shift-minimal winning coalition that does not contains

the player 1. After each exchange of coalitions, this new algorithm enumer-

ates the obtained decisive regular game, and further saves the connections

created among the games due to this exchange.

For n = 3, note that G only contains the game withWs = {10}. In step 1

we increase again the domain of the previous game, obtaining a decisive reg-

ular game on three players with Ws = {100}. Note that by Lemma 4.14,

whenever we increase the domain of the games, we obtain a boring decisive

regular game, so the game is enumerated in step 4. Since α({100}) = {101},
in step 7 we have Ws = {101}; and then in step 8 we have Ws = {011},
because 011 ≺ 101. Thus, we enumerate in step 9 the new decisive regu-

lar game with Ws = {011}, and we save the changes in steps 10 and 11,

obtaining the following output in step 12:

100 011

Analogously, for n = 4, we increase the domain of the previous games,
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obtaining two boring decisive regular games on four players. Let us consider

first the game withWs = {1000}. Here α({1000}) = {1001}, so in step 8 we

obtain Ws = {1001, 0111}, because {0111} 6� {1001}. On the other hand,

from the second game, with Ws = {0110}, we have α({0110}) = {0111},
and moreover {1001} 6� {0111}. Therefore, from both games the algorithm

produces the following output:

1000

0110

1001

0111

which is the third decisive regular game that exists on four players.

Note that in the previous enumeration for n = 4, we obtain the same

decisive regular game from two different boring decisive regular games. Such

repetitions should be avoided if we eventually want to obtain algorithms with

polynomial-delay. When we are enumerating decisive regular games on n

players, the repetitions can be avoided: we recall the relation δ obtained from

the created games on n − 1 players, which are represented in our notation

by the arrows.

To denote a game that has been blocked, so it can not generate the same

game that has already been enumerated, we use a dotted arrow, like this:

01100

10010

01110

10100

01101

10011

Our next result explains how we can avoid this kind of repetitions.

Lemma 4.17. There is an algorithm to enumerate all the decisive regular

games up to 4 players, without repetition.

Proof. Let us consider Algorithm 12, which is the same Algorithm 11 but

with the new step 6. Until 3 players, the procedure is the same than the

explained in the proof of Lemma 4.16.

For n = 4, as usual we increase the domain of the games obtained on

three players, obtaining two boring decisive regular games on four play-

ers: Γ1, with Ws(Γ1) = {1000}; and Γ2, with Ws(Γ2) = {0110}. For Γ1,

note that δ(Γ1, 1000) = Γ2, so by step 6 we continue the procedure like in

Lemma 4.16 and we obtain the game Γ3 with Ws(Γ3) = {1001, 0111}. Note
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Algorithm 12 EnumeratingDRGsUpTo4

Input: A pair (G, δ) of connected decisive regular games on n− 1 players.
Output: A pair (G′, δ) of connected decisive regular games on n players.

1: N = N ∪ {1};
2: Define (G′, δ) = (G, δ);
3: for all Γ ∈ G repeat
4: print Γ;
5: for all X ∈ Ws with 1 /∈ X repeat
6: if δ(Γ, X) 6= ∅ then
7: Define X ′ = N \X;
8: Ws =Ws \ {X} ∪ α(X);
9: Ws′ =Ws \ {Z ∈ Ws | X ′ � Z} ∪ {X ′};

10: print Γ′ = (N,Ws′);
11: G′ = G′ ∪ Γ′;
12: Define δ(Γ, X) = Γ′;
13: return (G′, δ).

that Γ3 contains the coalition 0111, which is the complement of the coali-

tion 1000 of Γ1. Then, by step 12 the connection for Γ1 is updated with

δ(Γ1, 1000) = Γ3.

On the other hand, note that the remaining coalition of Γ3, 1001, could

also be obtained by the exchange of its complementary coalition, 0110, from

other decisive regular game. But this game is Γ2, which is the projection in

n = 3 of the game obtained from Γ1. Therefore, since δ(Γ2, 0110) = ∅, we

avoid to repeat again the same game, and we obtain the following:

1000

0110

1001

0111

Therefore, we have enumerated all the decisive regular games up to 4

players, without repetition.

Let us continue applying Algorithm 12, from the pair (G, δ) obtained for

n = 4 at the end of the proof of Lemma 4.17.

For n = 5, we increase the domain of the previous games, obtaining three

boring decisive regular games on five players. Applying the same procedure,

we obtain:
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10000

01100

10010

01110

10001

01111

10100

01101

10011

Note that the third boring game does not generates new games, because

it has only two coalitions, and its projection on n = 4 was pointed by exactly

two boring games.

However, by Table 4.5 we know that there are seven regular decisive

games on n = 5, instead of five. The remaining games must be obtained

from the non-boring game with coalition 10100. Thus, considering the same

Algorithm 12, but replacing step 3 by “for all Γ ∈ G′ repeat”, we obtain

the seven decisive regular games for 7 players:

10000

01100

10010

01110

10001

01111

10100

01101

10011

11000

01011

00111

This leads us to propose the following conjecture.

Conjecture 4.1. There is an algorithm that, with enough memory re-

sources, is able to enumerate all the decisive regular games, without rep-

etition and with polynomial-delay.

Now we show an experimental validation of the previous procedure.

Experimental Validation

The procedure described before was implemented in C++. We checked that

the algorithm enumerates all the 2, 470 decisive regular games on 8 players

and thousands of decisive regular games for 9 players. We verified that

all the enumerated games were decisive regular, and that they were not

repeated. Furthermore, with an Intel Core 2 Duo processor clocked at 3.16

GHz, we obtained for less than 9 players very good runtimes, as we can see

in Table 4.6.
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n 1 2 3 4 5 6 7 8
time (sec.) 0.002 0.002 0.002 0.002 0.005 0.005 0.027 1.307

Table 4.6: Time results for enumerating decisive regular games.

In Appendix A we provide the list of all the 170 decisive regular games

from n = 1 until n = 7.

Besides the correctness of the algorithm, the biggest problem of this

strategy of enumeration is that to generate the set of all decisive regular

games on n players, it is necessary to have in memory the set of all decisive

regular games on n−1 players. As the size of these sets grows exponentially

in terms of n, the enumeration is limited by memory resources. Indeed, it

was not possible to enumerate explicitly the set of all decisive regular games

on n = 9. After a long computation time, the computer ran out of memory

space. In despite of the above, we have been able to enumerate a good set of

decisive regular games over nine players. This set could be used for instance

as benchmarking to study other properties of decisive regular games.

Example 4.4. The following is a decisive regular game in SWF. By using

linear programming, we also know that it is not weighted.

N 987654321

Ws 011011011

011100100

100011100

100100011

100101000

101000000

Since every weighted game is regular—see Section 2.3.3— by Table 4.5

we can conclude that all the 2470 decisive regular games on eight players

are also weighted. As far as we know, explicit examples of simple games

with nine players, which are regular and decisive, but not weighted, have

not been illustrated until now. However, another regular game that in fact

meets these characteristics can be found in [245].
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Chapter 5
Influence Games

In this chapter we study influence games, a new subclass of simple games.

Briefly, an influence game is described by an influence graph, modeling a

social network, and a quota, indicating the required minimum number of

agents that have to cooperate to perform successfully the task. A team will

be successful or winning if it can influence at least as many individuals as

the quota establishes. We take the spread of influence in the linear threshold

model as the value that measures the power of a team. From this model

we can study all the problems related to simple games, including properties,

parameters and solution concepts, from the context of multi-agent systems,

social networks, social choice, among other topics.

In Section 5.1 we define the model. In Section 5.2 we explain its ex-

pressiveness, by showing that influence games capture the whole class of

simple games. In Section 5.3 we characterize the computational complexity

of several problems defined in Chapter 2 for influence games. Finally, in Sec-

tion 5.4 we analyze those problems for some particular extremal subclasses

of influence games, with respect to the propagation of influence, showing

tighter complexity characterizations.

5.1 Definitions and Preliminaries

Before introducing formally the family of influence games we need to define

a family of labeled graphs and a process of spread of influence based on the

linear threshold model [108, 230]. In this first analysis of influence games, we

draw upon the deterministic version of the linear threshold model, in which

127
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node thresholds are fixed, as our model for influence spread following [45, 5].

We use standard graph notation following [26]. As in graph theory, here

n = |V | and m = |E|. For any 0 ≤ k ≤ n, Pk(X) denotes the subsets of X

with exactly k-elements.

Definition 5.1. An influence graph is a tuple (G,w, f), where G = (V,E)

is a weighted, labeled and directed graph without loops. As usual V is the

set of vertices, agents or actors, E is the set of edges and w : E → N is a

weight function. Finally, f : V → N is a labeling function that quantifies

how influenceable each agent is. An agent i ∈ V has influence over another

j ∈ V if and only if (i, j) ∈ E. We also consider the family of unweighted

influence graphs (G, f) in which every edge has weight 1.

Given an influence graph (G,w, f) and an initial activation set X ⊆ V ,

the spread of influence of X is the set F (X) ⊆ V which is formed by the

agents activated through an iterative process. We use Fk(X) to denote the

set of nodes activated at step k. Initially, at step 0, only the vertices in X

are activated, that is F0(X) = X. At step i > 0, those vertices for which

the sum of weights of the edges connecting nodes in Fi−1(X) to them meets

or exceeds their label functions are activated, i.e.,

Fi(X) = Fi−1(X) ∪
{
v ∈ V |

∑
u∈Fi−1(X),(u,v)∈E w((u, v)) ≥ f(v)

}
.

The process stops when no additional activation occurs and the final set of

activated nodes becomes F (X).

Example 5.1. Figure 5.1 shows the spread of influence F (X) in an un-

weighted influence graph G = (V, f), with V = {a, b, c, d}, for the initial

activation X = {a}. In the first step we obtain F1(X) = {a, c}, and in the

second step (the last one) we obtain F (X) = F2(x) = {a, c, d}.

As the number of vertices is finite, for any i > n, Fi(X) = Fi−1(X).

Thus, F (X) = Fn(X) and we have the following well known basic result.

Lemma 5.1. Given an influence graph (G,w, f) and a set of vertices X,

the set F (X) can be computed in polynomial time.

In what follows, unless otherwise stated, results and definitions will be

stated for directed graphs. All of them can be restated for undirected graphs.

Now we define influence games.
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F0(X) = X = {a}
1a 1 b

1c 2 d

F1(X) = {a, c}
1a 1 b

1c 2 d

F2(X) = F (X) = {a, c, d}
1a 1 b

1c 2 d

Figure 5.1: The spread of influence starting from the initial activation of
X = {a} on an unweighted influence graph.

Definition 5.2. An influence game is given by a tuple (G,w, f, q,N) where

(G,w, f) is an influence graph, q is an integer quota, 0 ≤ q ≤ |V | + 1, and

N ⊆ V is the set of players. X ⊆ N is a successful team if and only if

|F (X)| ≥ q, otherwise X is an unsuccessful team.

As it was done for influence graphs, we also consider the family of un-

weighted influence games for the cases in which the graph G is unweighted.

In such a case we use the notation (G, f, q,N).

Influence games adopt a correspondence with simple games.

Example 5.2. Let (G, f) be an influence graph and N any subset of agents.

Two particular ranges of the quota lead to some trivial simple games. By

setting q = 0, thus considering influence games of the form (G, f, 0, N),

we have that every team of agents is successful, therefore (G, f, 0, N) is

a representation of the simple game (N,P(N)). When q > |V (G)|, the

influence game (G, f, q,N) is a representation of the simple game (N, ∅) as

there are no successful teams in the game.

Let us provide an example of influence game based on the influence graph

considered in Example 5.1.

Example 5.3. Consider the influence game (G, f, 3, V (G)), where (G, f)

is the influence graph considered in Example 5.1. In this case, we have

that F ({a}) = {a, c, d}, and thus {a} ∈ W. The fundamental set families

for Γ are Wm = {{a}, {b}}, LM = {{c, d}}, L = {{c, d}, {c}, {d}, {}} and

W = P(V (G)) \ L.
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5.2 Expressiveness

Influence games are monotonic as, for any X ⊆ N and i ∈ N , if |F (X)| ≥ q
then |F (X ∪{i})| ≥ q, and if |F (X)| < q then |F (X \{i})| < q. Thus, every

influence game is a simple game. Moreover, we will show that the opposite

is also true.

Theorem 5.1. Every simple game can be represented by an unweighted in-

fluence game. Furthermore, when the simple game Γ is given in either EWF

or MWF, an unweighted influence game representing Γ can be obtained in

polynomial time.

Proof. Assume that a simple game Γ is given by (N,W) or (N,Wm). It is

already well known that given (N,W), the family Wm can be obtained in

polynomial time. Thus we assume in the following that the set of players

and the set Wm are given.

In order to represent Γ as an influence game we first define an unweighted

influence graph (G, f). The graph G = (V,E) is the following. The set V

of nodes is formed by a set with n nodes, VN = {v1, . . . , vn}, one for each

player, and a set of nodes for each MWC. For any X ∈ Wm, we add a

new set VX with slength(Γ) − |X| nodes. We connect vertex vi with all

the vertices in VX whenever i ∈ X. Finally, the label function is defined as

follows, for any 1 ≤ i ≤ n, f(vi) = 1 and, for any X ∈ Wm and any v ∈
VX , f(v) = |X|. Observe that in the influence game (G, f, slength(Γ), VN )

a team is successful if and only if its players form a winning coalition in

Γ. Therefore (G, f, slength(Γ), VN ) is a representation of Γ as unweighted

influence game. It remains to show that given (N,Wm) a description of

(G, f, slength(Γ), N) can be computed in polynomial time. For doing so it

is enough to show that slength(Γ) can be computed in polynomial time. Let

k = slength(Γ).

Observe that, by definition, all the coalitions with k players are winning

in Γ but at least one coalition with size k − 1 is losing. Therefore there is a

MWC with size k and there are no MWCs with size k+ 1. Thus, computing

k is equivalent to compute the maximum size of a MWC. The last quantity

can be obtained in polynomial time from a description of Wm.

The following example provides an illustration of the construction.
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1

1

1

2

1

3

1

4

2 2

Figure 5.2: An unweighted influence graph associated to the simple game
({1, 2, 3, 4}, {{1, 2, 4}, {2, 3}, {3, 4}}).

1 . . . 1

q

n nodes

n nodes1 . . . 1

w1 wn

1 1

Figure 5.3: An influence graph (G,w, f) associated to the weighted game
[q;w1, . . . , wn].

Example 5.4. Let Γ = ({1, 2, 3, 4}, {{1, 2, 4}, {2, 3}, {3, 4}}) be a simple

game in MWF. We have that slength(Γ) = 3 because all subsets of N with

cardinality 3 are winning, i.e., {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} ∈ W. For

coalition {1, 2, 4} we do not need to add nodes to the graph. For each of the

teams {2, 3} and {3, 4}, we need to add one node with label 3 − 2 = 1. A

drawing of the resulting unweighted influence graph is given in Figure 5.2.

The proof of Theorem 5.1 shows the expressiveness of the family of in-

fluence games with respect to the class of simple games. However, the

construction cannot be implemented in polynomial time when the simple

game is given in succinct ways like WRF. Observe also that the number

of agents in the corresponding influence game is in general exponential in

the number of players. For the particular case of weighted games in WRF,

we can show that there exist representations by influence games having a

polynomial number of agents.

Theorem 5.2. Every weighted game can be represented as an influence

game. Furthermore, given a weighted representation of the game, a repre-

sentation as an influence game can be obtained in polynomial time.

Proof. Let [q;w1, . . . , wn] be a weighted game, consider the influence game

(G,w, f, n + 1, N), whose influence graph is shown in Figure 5.3. The n
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1 . . . 1 . . . 1

1

w1
. . . 1 1

wi
. . . 1 1

wn
. . . 1

q

1 1 1 1 1 1 1 . . . 1

n nodes

n∑
i=1

wi nodes

n +

n∑
i=1

wi nodes

Figure 5.4: An unweighted influence graph (G, f) associated to the weighted
game [q;w1, . . . , wn].

nodes in the first level of G correspond to the set N , each of them has as

associated label the value 1. Each node i ∈ N is connected to a central node

with label q and the corresponding edge has weight wi. The n nodes in the

last level are another set of n nodes with label 1. Observe that X ⊆ N

is a winning coalition in [q;w1, . . . , wn] if and only if
∑

i∈X wi ≥ q. The

last condition is equivalent to |F (X)| ≥ n + 1. Thus we have that X ⊆ N

is a winning coalition in [q;w1, . . . , wn] if and only if X ⊆ N is a winning

coalition in (G,w, f, n+ 1, N).

Finally, observe that the construction of (G,w, f, n+ 1, N) can be done

in polynomial time with respect to the size of [q;w1, . . . , wn].

Observe that in the previous construction the size of the influence graph

is polynomial in the number of agents but the overall construction is done in

polynomial time in the size of the weighted representation. We can change

slightly the construction and get a representation as unweighted influence

game by increasing again the proportion of players.

Theorem 5.3. Every weighted game can be represented as an unweighted

influence game. Furthermore, given a weighted representation of the game,

a representation as unweighted influence game can be obtained in pseudo-

polynomial time.

Proof. Let [q;w1, . . . , wn] be a weighted game, consider the unweighted in-

fluence graph (G, f) sketched in Figure 5.4. The n nodes in the first level
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correspond to the set N . For any i ∈ N , node i is connected to a set of wi

different nodes in the second level representing its weight. Thus, X ⊆ N

is a winning coalition if and only if
∑

i∈X wi ≥ q, which is equivalent to

|F (X)| ≥ n+
∑n

i=1wi. Therefore, the influence game (G, f, n+
∑n

i=1wi, N)

is a representation of the given weighted game.

Observe that given [q;w1, . . . , wn], constructing the graph G requires

time O(n+w1 + · · ·+wn) and thus the construction can be done in pseudo-

polynomial time.

In the previous results we have assumed that a weighted representation of

the game is given. It is known that there are weighted games whose weighted

representation requires that maxi∈N{wi} to be (n+1)(n+1)/2/2 [208]. There-

fore the construction of the previous lemma will require exponential space

and time with respect to the number of players.

Our next result establishes the closure of influence games under intersec-

tion and union. Furthermore, we show that an influence game representing

the resulting simple game can be obtained in polynomial time.

Theorem 5.4. Given two influence games, their intersection and union can

be represented as an influence game. Furthermore, both constructions can

be obtained in polynomial time.

Proof. Let Γ = (G,w, f, q,N) be an influence game with G = (V,E), recall

that, for any X ⊆ N , Fi(X) ⊆ V denotes the spread of influence of X in the

i-th step of the activation process and that we can assume that 0 < i ≤ n.

All the sets considered in our constructions are replications of either the set

N or the set V . For sake of simplicity, we use the term corresponding node

to refer to the same node in a different copy of N or V .

We start constructing an influence graph (G′, w′, f ′) as shown in Fig-

ure 5.5. G′ has 2n+ 1 columns of nodes. The first column F 0 represents V ,

and the remaining nodes are divided in pairs of sets (f i, F i), for 1 ≤ i ≤ n.

For any 1 ≤ i ≤ n, the sets f i and F i have n nodes each, as a replication

of the nodes in V . The edges are defined as follows, for any 1 ≤ i ≤ n, a

node y ∈ F i−1 is connected to a node z ∈ f i if and only if (y, z) ∈ E. These

edges have associated weight w(y, z). Furthermore, every node in F i−1 is

connected by an edge with weight 1 to its corresponding node in F i. Every

node in f i is connected by an edge with weight 1 to its corresponding node



134 – Chapter 5. Influence Games

F 0 f1 F 1 f2 F 2 fn Fn

1v1

...

1vn

f(v1)

...

f(vn)

1

...

1

f(v1)

...

f(vn)

1

...

1

. . .

. . .

. . .

f(v1)

...

f(vn)

1

...

1

Figure 5.5: The influence graph (G′, w′, f ′) associated to the influence game
(G,w, f, q,N).

F

1

...N

1

F 0
1 Fn1

F 0
2 Fn2

(G′1, w
′
1, f
′
1)

(G′2, w
′
2, f
′
2)

q1

q2

x

1 s1

...

1 s4n2+3n+2

Figure 5.6: The influence graph associated to the intersection (x = 2) or the
union (x = 1) of two influence games with influence graphs (G1, w1, f1) and
(G2, w2, f2) and quotas q1 and q2 respectively.

in F i. The labeling function assigns label 1 to all the nodes in sets F i and

maintains the original labeling for nodes in the sets f i.

Note that after the activation of a team X ⊆ F 0 in (G′, w′, f ′), for any

0 ≤ i ≤ n, the set of nodes in F i that are activated coincides with the

set Fi(X). Thus the subset of activated nodes in Fn coincides with F (X).

Observe also that (G′, w′, f ′) has 2n2+n nodes and that it can be constructed

in polynomial time in the size of a given influence game (G,w, f, q,N).

Now, given two influence games, namely Γ1 = (G1, w1, f1, q1, N) and

Γ2 = (G2, w2, f2, q2, N), we construct the two influence graphs (G′1, w
′
1, f
′
1)

and (G′2, w
′
2, f
′
2) as described before—see Figure 5.5. We use the construction

depicted in Figure 5.6 to construct another influence graph. In this last
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1 . . . 1 . . . 1

q1 q2

w1
1

w2
1

w1
i w2

i
w1
n w2

n

x

1 . . . 1

1 1

1 1

n nodes

n nodes

Figure 5.7: Influence graphs associated to [q1;w1
1, . . . , w

1
n] ∩ [q2;w2

1, . . . , w
2
n]

(x = 2), and [q1;w1
1, . . . , w

1
n] ∪ [q2;w2

1, . . . , w
2
n] (x = 1).

construction we add a set F which is a copy of N . All the nodes in F have

label 1. The nodes in F are connected to their corresponding nodes in F 0
1

and in F 0
2 through edges with weight 1. Furthermore, we add a node with

label q1, a node with label q2, a node with label x, and a set with 4n2+3n+2

nodes. Those new nodes are connected according to the pattern given in

Figure 5.6. The nodes in the last column, Fni , of (G′i, w
′
i, f
′
i) are all connected

to the node with label qi, for i ∈ {1, 2}. The nodes with labels q1 and q2

are connected to the node with label x which is connected to the last set of

nodes. All those new connections have assigned weight 1. Observe that in

total we have at most 2(2n2 + n) + n + 3 + 4n2 + 3n + 2 nodes. Thus the

overall construction can be computed in polynomial time.

Let (G∪, w∪, f∪) be the influence graph obtained by setting x = 1 and

(G∩, w∩, f∩) be the influence graph obtained by setting x = 2. Consider

the games Γ∪ = (G∪, w∪, f∪, 4n
2 + 3n + 2, F ) and Γ∩ = (G∩, w∩, f∩, 4n

2 +

3n+ 2, F ). By construction a team X is successful in Γ∪ if and only if X is

successful in either Γ1 or Γ2. Furthermore, a team is successful in Γ∩ if and

only if X is successful in both Γ1 and Γ2.

It is interesting to note that it is possible to devise a construction rep-

resenting the intersection or the union of weighted games as the influence

games (G′∪, w
′, f ′∪, n+2, N) and (G′∩, w

′, f ′∩, n+3, N). The corresponding in-

fluence graphs (G′∪, w
′, f ′∪) and (G′∩, w

′, f ′∩) are shown in Figure 5.7—setting

as before label x to be 1 or 2 depending on the considered operation. This

new construction requires only a linear number of additional nodes, however
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the graph is weighted.

Thus, as any simple game can be represented as the intersection or union

of a finite number of weighted games, we have an alternative way to show

the completeness of the family of weighted influence games with respect

to the class of simple games—Theorem 5.1. However, as the dimension

and the codimension of a simple game might be exponential in the number

of players—but bounded by the number of maximal losing and minimal

winning coalitions, respectively [94, 89]—we cannot conclude that any simple

game can be represented by a weighted influence game whose number of

agents is polynomial in the number of players. For the particular case of

unweighted influence game we know the following.1

Theorem 5.5. The family of unweighted influence games in which the num-

ber of agents in the corresponding influence graph is polynomial in the num-

ber of players is a proper subset of simple games.

Proof. We use a simple counting argument to show the result. Observe that,

for any n ≥ 0, there are more than 2(2n/n) simple games with n players [139].

Taking into account that a simple game has at most n! isomorphic simple

games we know that there are more that 2(2n/n)/n! different simple games

on n players.

Consider an unweighted influence game with n players and f(n) agents.

The possibilities for the edge sets are less than 2(f(n)+1)2 . It suffices to

consider label functions assigning values between 0 and f(n) + 1. Thus

there are at most (f(n) + 2)f(n)+2 possibilities for the labeling functions.

Finally, for the quota, only f(n) + 2 possibilities have to be considered.

Thus, the number of unweighted influence games with n players and f(n)

agents is at most 2O(f(n)2).

Taking f(n) = nlogn, the family includes all unweighted influence games

with n players and polynomial number of agents. Taking the logarithm

on both sides, one easily sees that 2O(f(n)2) is asymptotically smaller than

2(2n/n)/n!.

Even though we have shown in Theorem 5.2 that all games with polyno-

mial dimension or polynomial codimension can be represented as weighted

influence games in polynomial time—i.e., they admit weighted influence

1We thank Sascha Kurz for pointing out the proof of Theorem 5.5.
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Figure 5.8: The simple game whose set of players N = {1, . . . , n} admits
a partition N1, . . . , Nm in such a way that W = {S ⊆ N ; ∃Ni with Ni ⊆
S} has exponential dimension, n1 · . . . · nm−1 [94], but this game admits
a polynomial unweighted influence graph (G, f) with respect to n for the
corresponding unweighted influence game (G, f, n+ 1, N).

graphs with polynomial number of agents—a fundamental open question

is determining which simple games can be represented as an (unweighted)

influence games with polynomial number of agents. In particular, it remains

open to know whether there are games with exponential dimension that also

require an exponential number of players in any representation as influence

games.

In this line, we know that the simple game with exponential dimension

with respect to the players of Section 2 in [94] can be represented by an un-

weighted influence game—see Figure 5.8—in polynomial time with respect

to the number of players. Another candidate is the simple game with ex-

ponential dimension of Theorem 8 in [72] for which we have been unable to

show whether it can be represented by a (unweighted) influence game with

polynomial number of agents or not.

In Appendix B we show all the minimal unweighted influence games

(G, f, q,N) withN = V , over three and four players, and their corresponding

10 and 30 representations as simple games in MWF.

5.3 Problems and Complexity

Our second set of results settles the complexity of the problems related to

simple games presented in Section 2.3. Hardness results are obtained for

unweighted influence games in which the number of agents in the network



138 – Chapter 5. Influence Games

Influence games

Problem (G,w, f, q,N)

Properties of simple games

IsProper coNPC

IsStrong coNPC

IsDecisive coNPC

Properties of coalitions

IsBlocking P

IsSwing P

Properties of players

IsDummy coNPC

IsPasser P

IsVetoer P

IsDictator P

IsCritical P

IsSymmetric P

Parameters

Length NPH

Width NPH

Additional problems

Equiv coNPH

Iso coNPH

Table 5.1: New results of complexity for properties and parameters of influ-
ence games.

is polynomial in the number of players, while polynomial time algorithms

are devised for general influence games. The new results about properties

and parameters are summarized in Table 5.1, complementing the results for

simple games presented in Tables 4.1, 4.3 and 4.4.

The new results about solution concepts are summarized in Table 5.2,

complementing the results for simple games presented in Table 4.2. Recall

that problems Construct-Banzhaf-value and Construct-Shapley-

Shubik-value are also denoted as Bval and SSval, respectively. We omit

in this table the generic results of Table 4.2 regarding nonemptiness.

From Theorems 5.1 and 5.2 we know that all the computational prob-

lems related to properties and parameters that are computationally hard

for simple games in EWF or MWF, as well as for weighted games in WRF,

are also computationally hard for influence games. Nevertheless, the hard-

ness results do not apply to unweighted influence games with polynomial,

in the number of player, number of agents. In this section we address the

computational complexity of problems for games with a polynomial number

of agents. All the hardness proofs are given for the subclass formed by un-
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Influence games

Problem (G,w, f, q,N)

Empty-

Core P

In-

Core P

ε-core NPH

IsZero-

Core P

Construct-

Banzhaf-value #PC

Shapley-Shubik-value #PC

Stable-set P

Core P

Table 5.2: New results of complexity for solution concepts of influence games.

weighted influence games on undirected influence graphs, which is a subset

of all the other variations. The polynomial time algorithms are devised for

the biggest class of general influence games, i.e., weighted influence games

on directed graphs which includes all others.

Before starting to analyze problems we state here some basic results.

From Lemma 5.1 we know that, for a given team X, we can compute in

polynomial time the set F (X). Therefore we have the following.

Lemma 5.2. For a given influence game (G,w, f, q,N), deciding whether

a team X ⊆ N is successful can be done in polynomial time.

Our next result concerns a particular type of influence games that we will

use first as a basic construction, which associates an unweighted influence

game to an undirected graph, and later as a representative of a particular

subclass of influence games.

Definition 5.3. Given an undirected graph G = (V,E), the unweighted

influence game Γ(G) is the game (G, f, |V |, V ) where, for any v ∈ V , the

label f(v) is the degree of v in G, i.e., f(v) = dG(v).

Recall that a set S ⊆ V is a vertex cover of a graph G if and only if, for

any edge (u, v) ∈ E, u or v (or both) belong to S. From the definitions we

get the following result.

Lemma 5.3. Let G be an undirected graph. A team X is successful in

Γ(G) if and only if X is a vertex cover of G, Furthermore, the influence

game Γ(G) can be obtained in polynomial time, given a description of G.
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Theorem 5.6. Computing Length, Width, sLength and sWidth of an

unweighted influence game is NP-hard.

Proof. For Length, we provide a reduction from the minimum set cover

problem. Let C = {C1, . . . , Cm} be a collection of subsets of a universe with

n elements. We associate to C the unweighted influence game (G, f, q,N)

where G = (V,E). The graph G has three disjoint sets of vertices: Y =

{y1, . . . , ym}, T = {t1, . . . , tn}, and Z = {z1, . . . , zm+1}, together with an

additional vertex x. The components of the game are the following.

• V = Y ∪ T ∪ {x} ∪ Z,

• E = {(yj , ti) | i ∈ Cj}∪{(ti, x) | 1 ≤ i ≤ n}∪{(x, zk) | 1 ≤ k ≤ m+1},

• f(yj) = n+ 1, for any 1 ≤ j ≤ m,

• f(ti) = 1, for any 1 ≤ i ≤ n,

• f(zk) = 1, for any 1 ≤ k ≤ m+ 1,

• f(x) = n,

• q = m+ n+ 1 and

• N = Y .

Therefore, it is easy to see that a team X ⊆ N succeeds if and only if it

corresponds to a set cover, so the length of (G, f, q,N) coincides with the

size of a minimum set cover.

For Width we provide a reduction from the maximum set packing prob-

lem. Consider an influence game (G′, f ′, q′, N) where G′ is constructed from

G. We remove node {x}, add the connections {(ti, zk) | 1 ≤ i ≤ n, 1 ≤
k ≤ m + 1}, and set f ′(ti) = 2 for any 1 ≤ i ≤ n. We keep N = Y and

set q′ = m + 1. It is easy to see that a team X ⊆ N is unsuccessful in

(G′, f ′, q′, N) if and only if X corresponds to a set packing in C. Hence, the

width of (G′, f ′, q′, N) is n minus the size of a maximum set packing of C.

The remaining results for sLength and sWidth follow from the rela-

tionships of Lemma 4.9.

The hardness result for Length can also be obtained directly from

Lemma 5.3 which provides a reduction from the minimum vertex cover
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problem. However, the reductions from the minimum set cover problem

given in the previous theorem allow us to extract additional results about

the complexity of approximation. In particular, the reductions in Theo-

rem 5.6 imply that Length is neither approximable within (1 − ε) · logm

nor within c · log n, for some c > 0, and that Width is not approximable

within m1/2−ε, for any ε > 0, using the non-approximability results from [8]

for the problems minimum set cover and minimum set packing.

Our next result settles the complexity of the computation of the Banzhaf

and Shapley-Shubik values of a given player.

Theorem 5.7. Computing Bval and SSval for a given influence game and

a given player is #P-complete.

Proof. Both problems belong trivially to #P. To show hardness we construct

a reduction for the problem of computing the number of vertex covers of a

given graph which is known to be #P-complete [95]. Let G be a graph, we

first construct the graph G′ which is obtained from G adding a new vertex

x and connecting x to all the vertices in G. The associated input to Bval

is formed by the influence game Γ(G′) and the player x. Observe that the

reduction can be computed in polynomial time.

Let X be a successful team in Γ(G′) such that x ∈ X. When X 6= V (G′)

we know that X \ {x} must be a vertex cover of G. Furthermore x ∈ Cx
as X \ {x} is not winning in Γ(G′). When X = V (G′), X \ {x} is winning

in Γ(G′) and thus x /∈ Cx. As a consequence, we have that ηx(Γ) coincides

with the number of vertex covers of G minus one. As computing the number

of vertex covers of a graph is #P-hard, we have that Bval is #P-hard.

According to [10] (Theorem 3.29, page 50), to prove that SSval is #P-

hard, it is enough to show that Bval is #P-hard and that influence games

verify the property of being a reasonable representation. In the remaining

of this proof we show that influence games are a reasonable representation.

Let Γ = (G,w, f, q,N) be an influence game, and assume thatG = (V,E)

has n vertices and m edges. Consider the influence graph (G′, w′, f ′) where

• G′ = (V ′, E′) and V ′ = V ∪ {x, y} ∪ {a1, . . . , a2n},

• E′ = E ∪ {(x, y)} ∪ {(v, y) | v ∈ V } ∪ {(y, ai) | 1 ≤ i ≤ 2n},

• w′(e) = w(e), for any e ∈ E, and w′(e) = 1, for any e ∈ E′ \ E, and
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• f ′(v) = f(v), for any v ∈ V , f ′(x) = 1, f ′(y) = q + 1, and f ′(ai) = 1,

for any 1 ≤ i ≤ 2n.

Finally, we consider the influence game Γ+ = (G′, w′, f ′, q′, N ′) where q′ =

2n and N ′ = N ∪ {x}.
From the previous construction, it follows that all the winning coalitions

in Γ+ must include x. Furthermore, X ∪ {x} is a winning coalition in Γ+ if

and only if X is a winning coalition in Γ. Therefore, Γ+ is a representation

of Γ′ and has polynomial size with respect to the size of Γ. So, we conclude

that influence games are a reasonable representation.

For the following Theorem 5.8, we consider a new construction. Let

G = (V,E) be a graph where V = {v1, . . . , vn} and E = {e1, . . . , em}, and

let k be an integer—which will be useful to consider a set cover of size k

or less. Then the unweighted influence game ∆1(G, k) = (G1, f1, q1, N1)

is defined as follows, where Figure 5.9 shows the corresponding influence

graph. G1 = (V1, E1) has V1 = {v1, . . . , vn, e1, . . . , em, x, y, z, s1, . . . , sα}
where α = m + n + 4. The edges in E1 are constructed as follows. We

include the incidence graph of G: for any e = (vi, vj) ∈ E, we add to E1

the edges (e, vi), (e, vj) and (e, y). For any 1 ≤ i ≤ n, we add the edge

(vi, x). For any 1 ≤ j ≤ α, we add the edges (x, sj) and (y, sj). Finally, we

add the edge (z, y). The labeling function f1 is defined as: f1(vi) = m+ 2,

1 ≤ i ≤ n; f1(ej) = 1, 1 ≤ j ≤ m; f1(s`) = 1, 1 ≤ ` ≤ α; and f1(z) = 2,

f1(x) = k + 1, f1(y) = m+ 1. The quota is q1 = α and the set of players is

N1 = {v1, . . . , vn, z}.
Observe that by construction the games Γ(G) and ∆1(G, k) can be ob-

tained in polynomial time. As an immediate consequence of the defini-

tion, we have that X is a successful team in ∆1(G, k) if and only if either

(|X ∩ V | ≥ k + 1) or z ∈ X and X \ z is a vertex cover in G.

Our next result settles the complexity of the problems which are coNP-

complete.

Theorem 5.8. For unweighted influence games with polynomial number

of vertices, the problems IsSymmetric, IsDummy, IsProper, IsStrong

and IsDecisive are coNP-complete.

Proof. Membership in coNP follows from the definitions. To get the hardness

results, we provide reductions from the complement of the Vertex Cover
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Figure 5.9: Influence graph (G1, f1) of the game ∆1(G, k).

problem and some other problems derived from it. Let (G, k) be an input

to Vertex Cover, as usual we assume that G has n vertices and m edges.

Let us start considering the IsDummy problem. Starting from G =

(V,E) and k, we construct the unweighted influence game ∆1(G, k) and the

pair (∆1(G, k), z) which is an instance of the IsDummy problem. If G has a

vertex cover X with size k or less, by construction, we have that X∪{z} is a

successful team of ∆1(G, k). Furthermore, if X is a vertex cover of minimum

size, we have that X∪{z} is a minimal successful team. Therefore, z is not a

dummy player in ∆1(G, k). If G does not have a vertex cover with size k or

less and X is a successful team containing z, it must hold that |X \{z}| > k,

therefore X \ {z} is a successful team. In consequence z is a dummy player

in ∆1(G, k). As the pair (∆1(G, k), z) is computable in polynomial time, we

have the desired result.

Let us consider now the IsSymmetric problem. Starting from G =

(V,E) and k, we construct the unweighted influence game ∆2(G, k) =

(G2, f2, q2, N2) (see Figure 5.10). G2 is obtained from the graph G1 ap-

pearing in the construction of ∆1(G, k) by adding two new vertices t and

s and the edges (x, s), (y, s) and (t, s). Recall that the vertices of G1 are

V (G1) = {v1, . . . , vn, e1, . . . , em, x, y, z, s1, . . . , sα}. The label function is the

following: f2(v) = f1(v), for v ∈ V (G2) ∩ V (G1); f2(s) = 4; f2(t) = 2.

Finally, q2 = α + 1 = n + m + 5 and N2 = {v1, . . . , vn, z, t}. Note that a

description of G2 can be obtained in polynomial time as well as a description

of ∆2(G, k) given a description of (G, k). Let us show that the construction
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Figure 5.10: Influence graph (G2, f2) used in the definition of the game
∆2(G, k).

is indeed a reduction.

When G has a vertex cover X of size k or less, by construction the team

X ∪ {z} is successful in ∆2(G, k) while the team X ∪ {t} is unsuccessful.

Therefore z and t are not symmetric. When G does not have a vertex cover

X of size k or less, by construction, any successful team Y must contain

a subset with at least k + 1 vertices from {v1, . . . , vn}. Therefore both

Y ∪ {z} and Y ∪ {t} are successful teams in ∆2(G, k), i.e., vertices z and t

are symmetric.

To prove hardness for the next two problems, IsProper and IsDeci-

sive, we provide a reduction from the following variation of the Vertex

Cover problem:

Name: Half vertex cover

Input: Undirected graph with an odd number of vertices n.

Question: Is there a vertex cover with size (n− 1)/2 or less?

We first show that the Half vertex cover problem is NP-complete. By

definition the problem belongs to NP. To prove hardness we show a reduction

from the Vertex Cover problem. Given a graph G with n vertices and an

integer k, 0 ≤ k ≤ n, we construct a graph Ĝ—see Figure 5.11—as follows.

Ĝ has vertex set V̂ = V (G)∪X∪Y ∪{w}, where X has n−k−1 vertices,
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Figure 5.11: Graph Ĝ used to prove that Half vertex cover is NP-hard.

Y has k + 1 vertices, and edge set

Ê = E ∪ {(x, x′) | x 6= x′ ∧ x, x′ ∈ X}

∪ {(x, y) | x ∈ X, y ∈ Y }

∪ {(w, z) | z ∈ V ∪X ∪ Y }.

By construction, Ĝ has 2n + 1 vertices, so it can be constructed in

polynomial time. Note that any vertex cover S of Ĝ with minimum size has

to contain w, all the vertices in X and no vertex from Y . The remaining of

the cover, S ∩ V must be a minimum vertex cover of G. Therefore, G has a

vertex cover of size k or less if and only if Ĝ has a vertex cover of size n or

less.

Let us provide a reduction from the Half vertex cover to the Is-

Proper and the IsDecisive problems. Let G be an instance of Half

vertex cover with 2k + 1 vertices, for some value k ≥ 1. Consider the

unweighted influence game ∆1(G, (n − 1)/2) = (G1, f1, q1, N1). Recall that

V (G′) = {v1, . . . , vn, e1, . . . , em, x, y, z, s1, . . . , sα} where α = n + m + 4,

q1 = n+m+ 5, and N1 = {v1, . . . , vn, z}. Let k = (n− 1)/2.

If G has a vertex cover X with |X| ≤ k, the team X ∪ {z} is success-

ful and, as n + 1 − |X ∪ {z}| > k, we have that N \ (X ∪ {z}) is also

successful. Hence ∆1(G, k) is not proper. When all the vertex covers of

G have more than k vertices, any successful team Y of ∆1(G, k) verifies

|Y ∩ {v1, . . . , vn}| > k, i.e., |Y ∩ {v1, . . . , vn}| ≥ k + 1. For a successful

team Y , we have to consider two cases: z ∈ Y and z /∈ Y . When z ∈ Y ,

N \ Y ⊆ {v1, . . . , vn} and |N \ Y | < n − k − 1 = k. Thus, N \ Y is an

unsuccessful team. When z /∈ Y , |N \ (Y ∪ {z})| ≤ k and N \ Y is again
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an unsuccessful team. So, we conclude that ∆1(G, (n− 1)/2) is proper. As

∆1(G, (n−1)/2) can be obtained in polynomial time, the IsProper problem

is coNP-hard.

Observe that when G is an instance of the Half vertex cover and

all the vertex covers of G have more than (n − 1)/2 vertices, the game

∆1(G, (n− 1)/2) is also decisive. When this condition is not met, the game

∆1(G, (n−1)/2) is not proper and thus it is not decisive. Thus, we conclude

that the IsDecisive problem is also coNP-hard.

To finish the proof we show hardness for the IsStrong problem. We

provide a reduction from the complement of the following problem.

Name: Half independent set

Input: Undirected graph with an even number of vertices n.

Question: Is there an independent set with size n/2 or higher?

The Half independent set trivially belongs to NP. Hardness follows

from a simple reduction from the Half independent set. Starting from

a graph G with an odd number of vertices we construct a new graph G′ by

adding one new vertex connected to all the vertices in G. This construction

guarantees that G has a vertex cover of size (n−1)/2 or less if and only if G′

has a vertex cover with size n/2 or less. As the complement of a vertex cover

is an independent set, we have that G has a vertex cover of size (n− 1)/2 if

and only if G′ has an independent set with size n/2 or higher.

Now we show that the complement of the Half independent set prob-

lem can be reduced to the IsStrong problem. We associate to an input

to Half independent set the game ∆3(G,n/2) = (G3, f3, n+m+ 5, N3)

where N3 = V ∪ {z} and (G3, f3) is the influence graph described in Fig-

ure 5.12. Which is a variation of ∆1(G, k) using ideas similar to those in

the reduction from the Set Packing problem in Theorem 5.6.

When G has an independent set with size at least n/2, G also has an

independent set X with |X| = n/2. It is easy to see that both the team

X ∪ {z} and its complement are unsuccessful in ∆3(G,n/2). Therefore,

∆3(G,n/2) is not strong. Assume now that all the independent sets in G

have less than n/2 vertices. Observe that, for a team X in ∆3(G,n/2) with

|X ∩ V | < n/2, its complement has at least n/2 + 1 elements in V and thus

it is successful. When |X ∩ V | > n/2 the team is successful. Therefore we

have to consider only those teams with |X ∩ V | = n/2. In such a case, we
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Figure 5.12: Influence graph (G3, f3) of the game ∆3(G, k).

know that neither X ∩ V nor V \ (X ∩ V ) are independent sets. Then, by

construction, one of the setsX orN\X must contain z and is successful while

its complement is unsuccessful. In consequence ∆3(G,n/2) is strong.

The complexity of the remaining problems is summarized in the following

theorem.

Theorem 5.9. For influence games, the problems IsPasser, IsVetoer,

IsDictator, IsCritical, IsBlocking and IsSwing belong to P.

Proof. We provide characterizations of the properties in terms of the sizes

of F (X) for adequate sets X. Given an influence game Γ = (G,w, f, q,N),

i ∈ N and X ⊆ N , we have.

• Player i is a passer if and only if |F ({i})| ≥ q.

• Player i is a vetoer if and only if |F (N \ {i})| < q.

• Player i is a dictator if and only if |F (N \ {i})| < q and |F ({i})| ≥ q.

• Player i is critical for X if and only if |F (X)| ≥ q and |F (X \{i})| < q.

• Team X is blocking if and only if |F (N \X)| < q.

• Team X is a swing if and only if |F (X)| ≥ q and there is i ∈ X for

which |F (X \ {i}) < q.

Therefore, from Lemma 5.1, we get the claimed result.



148 – Chapter 5. Influence Games

Now we consider the complexity of the problems related to game isomor-

phism and equivalence. We state here the definitions for influence games.

Definition 5.4. Let Γ = (G,w, f, q,N) and Γ′ = (G′, w′, f ′, q′, N ′) be two

influence games with the same number of players. Γ and Γ′ are isomorphic if

and only if there exists a bijective function ϕ : N → N ′, such that for every

team X ⊆ N , |F (X)| ≥ q if and only if |F (ϕ(X))| ≥ q′. Moreover, when

N = N ′ and ϕ is the identity function, then we say that the two influence

games are equivalent.

Theorem 5.10. For unweighted influence games with polynomial number

of vertices, the problem Equiv is coNP-complete and the problem Iso is

coNP-hard and belongs to Σp
2.

Proof. Membership to the corresponding complexity classes follows directly

from the definition of the problems. For the hardness part we provide a

reduction from the complement of the Vertex Cover problem. Let G be

a graph and consider the influence game Γ1 = ∆1(G, k) as defined before—

see Figure 5.9. Recall that the set of players is N1 = {v1, . . . , vn, z}. To

define the second influence game Γ2 we consider the weighted game with

set of players N1 and quota q = k + 1. The weights of the players are the

following: w(vi) = 1, for any 1 ≤ i ≤ n, and w(z) = 0. A representation

of Γ2 as an unweighted influence game can be obtained in polynomial time

using the construction of Theorem 5.3. Our reduction associates to an input

to vertex cover (G, k) the pair of influence games (Γ1,Γ2). Observe that Γ1

is equivalent (isomorphic) to Γ2 if and only if G does not have a vertex cover

of size k or less.

We have been unable to provide a complete classification for the Iso

problem. It remains open to show whether the problem is Σp
2-hard or not.

Regarding the remaining solution concepts, we have the following result.

Theorem 5.11. For influence games, the problems Construct-Stable-

Set, Empty-Core, In-Core, IsZero-Core and Construct-Core be-

long to P.

Proof. Construct-Stable-Set belongs to P by Proposition 2.3, because

given an influence game, we can determine a minimal successful team in

polynomial time: starting by the empty team, then continue adding vertices
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until obtain a team whose spread of influence meets the quota; this team is

winning, but without the last vertex is unsuccessful, so the team is minimal.

The remaining problems belong to P by Proposition 2.4, since by Theo-

rem 5.9 it is polynomial to decide whether a player is vetoer.

We know by Theorem 5.6 that computing Length in influence games is

NP-hard, so according the conjecture of [10], for influence games Construct-

Least-Core would be NP-hard, and hence Construct-Nucleolus would

also be NP-hard. Furthermore, by Proposition 2.6 we have the following.

Corollary 5.1. For influence games, In-ε-Core is NP-hard.

5.4 Subclasses of Influence Games

In this section we focus in restricted subclasses of influence games. These

restrictions could be useful to model particular systems, as well as to char-

acterize subfamilies for which the computational complexity of some of the

considered problems changes, becoming in general more tractable.

There are several ways to restrict an influence game (G,w, f, q,N). In

the previous sections of this chapter, we have already considered unweighted

influence games, as well as cases in which all the agents are players, i.e.,

N = V . Later, in Section 6.1.1, we restrict the labeling function so that

it corresponds to the majority rule, when individuals are convinced when a

majority of their neighbors are active. Further, in Chapter 6 we consider

some restrictions in the topology of the influence graphs, considering bipar-

tite graphs and star graphs. Bipartite graphs have been already used in the

context of spread of influence through social networks [136], and also for

collective choice model for societies [255, 256].

In what follows we consider two extreme cases of influence spread for

undirected and unweighted influence games, with restricted levels of influ-

ence. In Section 5.4.1 we consider a maximum influence requirement, where

agents adopt a behavior only when all its peers have already adopted it.

In Section 5.4.2 we consider a minimum influence requirement, in which an

agent gets convinced when at least one of its peers does. We show that, in

both cases, the problems IsProper, IsStrong and IsDecisive, as well as

computing Width, have polynomial time algorithms. Computing Length
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is NP-hard for maximum influence and polynomial time solvable for mini-

mum influence.

5.4.1 Maximum Influence Requirement

Here we analyze first the case with maximum influence and maximum spread,

that is games of the form Γ = (G, f, |V |, V ) where f(v) = dG(v), or, as we

said in Definition 5.3, the game Γ = Γ(G), for some graph G. When the

graph G is disconnected with connected components C1, . . . , Ck, the associ-

ated game Γ(G) can be analyzed from the Γ(C1), . . . ,Γ(Ck). Observe that,

due to maximum spread, a successful team must influence all the vertices

in the graph. Therefore, the members of a successful team in a connected

component must influence all the vertices in their component. So, a team

X is successful in Γ(G) if and only if, for any 1 ≤ i ≤ k, the team X ∩V (Ci)

is successful in Γ(Ci). We analyze first the case in which G is connected.

Theorem 5.12. In an unweighted influence game Γ with maximum influ-

ence and maximum spread on a connected graph G it holds that:

• Γ is proper if and only if G is not bipartite.

• Γ is strong if and only if G is either a star or a triangle.

• Γ is decisive if and only if G is a triangle.

Proof. From Lemma 5.3 we know that the successful teams of Γ = Γ(G)

coincide with the vertex covers of G. We also recall that the complement of

a vertex cover is an independent set.

If G = (V,E) is bipartite, let (V1, V2) be a partition of V so that V1

and V2 are independent sets. In such a case, both V1 and V2 = N \ V1 are

successful teams in Γ. Therefore, Γ is not proper. For the opposite direction,

if Γ is not proper, then the game admits two disjoint successful team, i.e, two

disjoint vertex covers of G, and hence each of them must be an independent

set. Thus the graph G is bipartite.

Now we prove that Γ is not strong if and only if G has at least two non-

incident edges. Observe that a graph where all edges are incident is either

a triangle or a star. If G has at least two non-incident edges e1 = (u1, v1)

and e2 = (u2, v2), {u1, v1} and N \ {u1, v1} are both unsuccessful teams,

therefore Γ is not strong. When the game is not strong, there is a team X
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such that both X and N \X are unsuccessful. For this to happen it must

be that there is an edge uncovered by X and another edge uncovered by

N \X. Thus G must have two non-incident edges.

Finally, it is well known that non-bipartite graphs has at least one odd

cycle, so the only non-bipartite graph with all pair of edges incidents (proper

and strong) is a triangle (decisive).

When the graph is disconnected, a successful team Xi in the game Γ(Ci)

can be completed to a winning coalition in Γ. Observe that, if Xi = V (Ci)\
Xi, the set V \Xi is successful in Γ and contains Xi. For an unsuccessful

team Xi in Γ(Ci) both Xi and V \Xi are unsuccessful in Γ. Therefore, the

previous result can be extended to disconnected graphs by requesting the

conditions to hold in all the connected components of the given graph.

Corollary 5.2. In an unweighted influence game Γ with maximum influence

and maximum spread on a graph G the following properties hold.

• Γ is proper if and only if all the connected components of G are not

bipartite.

• Γ is strong if and only if all the connected components of G are either

a star or a triangle.

• Γ is decisive if and only if all the connected components of G are

triangles.

Furthermore, the problems IsProper, IsStrong and IsDecisive belong

to P for unweighted influence games with maximum influence and maximum

spread.

In regard to the complexity of the two main parameters we have the

following result.

Theorem 5.13. For unweighted influence games with maximum influence

and maximum spread on a connected graph G, computing Length is NP-

hard. Computing Width of Γ(G) can be done in polynomial time even when

G is disconnected.

Proof. As before we use the fact that Γ(G) can be computed in polynomial

time. Furthermore, from Lemma 5.3, length(Γ(G)) is the minimum size of

a vertex cover of G. Therefore Length is NP-hard.
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We prove that Width can be computed in polynomial time by a case

analysis. If G is just an isolated vertex or just one edge, the empty set is the

unique unsuccessful team, thus width(Γ) = 0. Otherwise, either G has no

edges or has at least one edge and an additional vertex. In the first case, the

graph is an independent set with at least two vertices. Assume that u ∈ V ,

then V \ {u} is unsuccessful and we conclude that width(Γ) = n− 1.

In the second case G has at least one edge e = (u, v) and V \ {u, v} is

nonempty. We have again two cases, either G has an isolated vertex u or

all the connected components of G have at least one edge. When u is an

isolated vertex the team V \{u} is unsuccessful, therefore width(Γ) = n−1.

When all the connected components of G have at least one edge, any team

with n− 1 nodes is a vertex cover, thus width(Γ) < n− 1. Observe that the

set V \ {u, v} is not empty and, furthermore it does not cover the edge e,

thus we have an unsuccessful team with n − 2 vertices. Thus, in this case

width(Γ) = n− 2.

As the classification can be checked trivially in polynomial time we get

the claimed result.

For the case of maximum influence but not maximum spread, that is

influence games of the form (G, f, q, V ) where f(v) = dG(v) and q < n, the

game cannot be directly analyzed from the games on the connected com-

ponents, as the total quota can be fulfilled in different ways by the agents

influenced in each component. Nevertheless, as the influence is maximum,

any set of vertices X can influence another vertex u only when all the neigh-

bors of u are included in X, alternatively when u becomes an isolated vertex

after removing X. This leads to the following characterization of the suc-

cessful teams.

Lemma 5.4. In an unweighted influence game with maximum influence

Γ = (G, dG, q, V ) where G has no isolated vertices, X ⊆ V is a successful

team if and only if removing X from G leaves at least q − |X| isolated

vertices.

This characterization gives rise to the following problem:

Name: AreIsolated

Input: Graph G = (V,E) and q, k ∈ N.

Question: Is there S ⊆ V such that |S| ≤ k and removing S from G
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there are at least q − k isolated vertices?

Observe that for q = n we have that the solution S in the previous

problem must be a vertex cover, and thus the AreIsolated problem is

NP-hard.

Theorem 5.14. For influence games Γ with maximum influence, Length

is NP-hard and Width belongs to P.

Proof. The hardness result follows from the previous observation. Observe

that computing the minimum size of a solution to the AreIsolated problem

is equivalent to compute the Length of the game Γ = (G, dG, q, V ) and thus

the later problem is NP-hard.

When computing the Width of Γ = (G, dG, q, V ) we want to maximize

the size of the unsuccessful teams. Therefore, we can restrict ourselves to

analyze only unsuccessful teams X for which F (X) = X. We have that X

is an unsuccessful team with F (X) = X if and only if |X| < q and every

non isolated vertex in V \X remains non isolated in the subgraph induced

by N \X, i.e., G[V \X].

We consider first the case in which G has no isolated vertices. We first

solve the problem of deciding whether, for a given α, it is possible to discard

α nodes from G without leaving isolated vertices. For doing so we sort

the sizes of the connected components of G in increasing order of size. As

G has no isolated vertices all the connected components have at least two

vertices. Assume that G has k connected components C1, . . . , Ck with sizes

2 ≤ w1 ≤ w2 ≤ · · · ≤ wk.
When wk = 2, all the connected components have exactly two vertices.

Therefore, if α is even and at most n, we can discard the α vertices in

the first α/2 components, without leaving isolated vertices. Otherwise, the

removal of any set of size α will leave at least one isolated vertex.

When wk > 2. We compute the first value j for which
∑j

i=1wi ≤ α

but
∑j+1

i=1 wi > α. Let β =
∑j

i=1wi. Let Sj be the set of vertices in the

first j-components. If β = α, Sj can be removed without leaving isolated

vertices. When β < α we have two cases:

(1) wj+1 > α− β+ 1. Let C ⊂ Cj+1 be a set with wj+1− (α− β) vertices

such that G[C] is connected. The vertices in Sj together with the α−β
vertices of Cj+1 not in C can be removed without leaving any isolated

vertex.
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(2) wj+1 ≤ α−β+1. By construction, α < β+wj+1, thus wj+1 = α−β+1.

If j+1 < k, removing the vertices in Sj together with α−β−1 vertices

from the j+1-th component—as in case (1)—and one additional vertex

from the k-th component leaves no isolated vertices. If j + 1 = k, the

removal of any set of size α will leave at least one isolated vertex.

The previous characterization can be decided in polynomial time for any

value of α. By performing the test for α = q−1, q−2, . . . , 1 we can compute

in polynomial time the maximum value of α (αmax) for which α nodes can

be discarded without leaving isolated vertices. As the Width of the game

is just αmax we get the desired result for graphs without isolated vertices.

When G has n0 isolated vertices, we consider the graph G′ obtained

from G by removing all the isolated vertices. Note that for a team X with

X = F (X) and any set Y of isolated vertices we have that F (X∪Y ) = X∪Y ,

thus width(Γ) = min{width(Γ′) + n0, q − 1}. Therefore Width can be

computed in polynomial time.

5.4.2 Minimum Influence Requirement

Let be Γ = (G, 1V , q,N) where 1V (v) = 1 for any v ∈ V . Observe that if

G is connected, the game has a trivial structure as any nonempty vertex

subset of N is a successful team. For the disconnected case we can analyze

the game considering an instance of the Knapsack problem. Assume that

G has k connected components, C1, . . . , Ck. Without loss of generality, we

assume that all the connected components of G have nonempty intersection

with N . For 1 ≤ i ≤ k, let wi = |V (Ci)| and ni = |V (Ci) ∩N |.

Lemma 5.5. If a successful team X is minimal then it has at most one node

in each connected component. Minimal successful teams are in a many-to-

one correspondence with the MWCs of the weighted game [q;w1, . . . , wk].

Moreover, we have the following result.

Theorem 5.15. For unweighted influence games with minimum influence,

the problems Length, Width, IsProper, IsStrong and IsDecisive be-

long to P.

Proof. Let Γ = (G, 1V , q,N) be an unweighted influence game with mini-

mum influence.
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To compute Length, assume that the connected components of G are

sorted in such a way that w1 ≥ · · · ≥ wk. To minimize the size of a winning

coalition we consider only those coalitions with at most one player in a

connected component. Observe that, the length(Γ) is the minimum j for

which
∑j

i=1wi ≥ q but
∑j−1

i=1 wi < q. Of course this value can be computed

in polynomial time.

To compute Width, observe that an unsuccessful team of maximum

size can be obtained by computing a selection S ⊆ {1, . . . , k} of connected

components in such a way that
∑

i∈S wi < q and
∑

i∈S ni is maximized.

Computing such selection is equivalent to solving a Knapsack problem

on a set of k items, item i having weight wi and value ni, and setting the

knapsack capacity to q. As the Knapsack problem can be solved in pseudo-

polynomial time and, in our case, all the weights and values are at most n,

we conclude that Width can be computed in polynomial time.

To compute IsStrong, observe that in order to minimize the influence

of the complementary of a team X it is enough to consider only those teams

X that contain all or none of the players in a connected component. Let

wN =
∑k

i=1wi, and let αmax be the maximum α ∈ {0, . . . , q − 1} for which

there is a set S ⊆ {1, . . . , k} with
∑

i∈S wi = α. Note that α can be zero

and thus S can be the empty set. Observe that Γ is strong if and only

if wN − αmax ≥ q. The value αmax can be computed by solving several

instances of the Knapsack problem. As the weights are at most n, the

value can be obtained in polynomial time.

To compute IsProper, note that to check whether the game is not

proper it is enough to show that there is a winning coalition whose com-

plement is also winning. For doing so we separate the connected compo-

nents in two sets: those containing one player and those containing more

that one player. Let A = {i | ni = 1} and B = {i | ni > 1}. Let

NA = ∪i∈A(N ∩ V (Ci)) and NB = N \ NA. Let wA =
∑

i∈Awi and

wB = wN − wA. As all the components in B have at least two vertices,

we can find a set X ⊆ NB such that |F (X)| = |F (NB \X)| = wB. Thus if

wB ≥ q the game is not proper. When wB < q the game is proper if and

only if the influence game Γ′ played on the graph formed by the connected

components belonging to A and quota q′ = q − wB is proper. Observe that

Γ′ is equivalent to the weighted game with a player for each component in

i ∈ A with associated weight wi and quota q′. Let αmin be the minimum
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α ∈ {q′, . . . , wA} for which there is a set S ⊆ A with
∑

i∈S wi = α. Observe

that Γ′ is proper if and only if wA−αmin < q′. The value αmin can be com-

puted by solving several instances of the Knapsack problem having item

weights polynomial in n. Therefore, αmin can be computed in polynomial

time and the claim follows.



Chapter 6
Collective Choice Models

In the previous chapter, through the definition of influence games, we studied

the ways in which the actors of a multi-agent system influence each other

through their interactions in a social network and, in particular, the social

rules that can be used for the spread of influence. This chapter concerns

to some applications of unweighted influence games in multi-agent systems,

decision theory and social choice.

In Section 6.1 we define four collective choice models: OLF systems,

OLFM systems, mediation systems and influence systems. All of them can

be studied in the context of influence games.

OLF systems were defined in [255] as a kind of opinion leader-follower

collective choice model. Opinion leadership is a well known and established

model for communication policy in sociology and marketing. It comes from

the two-step flow of communication theory proposed since the 1940s [152].

This theory recognizes the existence of collective decision making situations

in societies formed by actors called opinion leaders, who exert influence over

other kind of actors called the followers, becoming in a two-step decision

process [152, 134]. In the first step of the process, all actors receive infor-

mation from the environment, generating their own decisions; in the second

step, a flow of influence from some actors over others is able to change the

choices of some of them [252].

The other three models are new. OLFM systems are a generalization of

OLF systems that supports inner nodes. In influence games, a set of agents

have to take a decision among two possible alternatives with the help of the

social environment or network of the system itself. However, sometimes not

157
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all individuals play the same role in the process of taking a decision. Thus,

mediation systems are inspired in a multi-agent system with a very simple

topology, but nevertheless it allows to study systems with a mediator, an

external kind of actor that can exert influence, in different degrees, to the

agents and thus help to reach a decision. In this sense, mediation systems

are an extension of unweighted influence games, in order to incorporate

an additional level of influence spread, exerted by the mediator. These

systems allows to model a natural mediation schema occurring in society.

Furthermore, we shall see that the main difference between influence games

and OLF systems is that in the first ones only one of the two alternatives

of the actors can be propagated, while in OLF systems it is propagated the

alternative with majority. Two kind of influence systems are defined to deal

with this difference.

In Section 6.2 we study some computational problems for mediation sys-

tems, showing that the presence of a single mediator facilitates the compu-

tation of several problems that are hard for influence games—see Table 5.1

of Section 5.3.

In Section 6.3 we study the computational complexity of computing the

satisfaction or Rae index for influence systems. The satisfaction measure was

defined in [255] for OLF systems, motivated by the theoretical study of the

effects that different opinion leader-follower structures can exert in collective

decision making systems. However, this measure is the same than the Rae

index, a power index introduced by Douglas W. Rae [220] for anonymous

games, that afterwards it was applied by Dubey and Shapley [66] for simple

games. We show that the computation of this measure is hard, and then we

present polynomial results for some particular cases. One of this particular

cases is closely related to the mediation systems.

In Section 6.4 we generalize for OLFM systems some properties that

the satisfaction measure meets for OLF systems. By using these properties,

we provide an axiomatization of the satisfaction score for the case in which

followers maintain their own initial decisions unless all their opinion leaders

share an opposite inclination. This new axiomatization generalizes the one

given by [256] for OLF systems under the same restrictions.
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6.1 Models

In general, a collective decision making model or collective choice model M
for a set of n actors is a decision system that defines a collective (choice)

decision function CM(x), where x ∈ {0, 1}n is the initial decision vector

or initial choice vector of the actors, assigning one of the values 1 or 0 as

collective decision. Let V be a set of actors, abusing of notation we may

consider CM(X) instead of CM(x) where i ∈ X ⊆ 2V if and only if xi = 1.

Note that the decision process may include many parameters in the model,

but in all models considered in this chapter we assume that the collective

decision function can be computed in polynomial time.

Definition 6.1. We said that x ∈ {0, 1}n is an initial decision vector, where

xi represents the initial decision of the i-th actor of some decision system.

Observe that we can associate to any simple game a collective decision

function in a natural way:

Definition 6.2. Let Γ = (N,W) be a simple game. Let x ∈ {0, 1}n be

an initial decision vector of the players. The collective decision function

associated to Γ is defined as follows:

CΓ(x) =

1 if X(x) ∈ W,

0 otherwise

where X(x) is defined as {i ∈ N | xi = 1}.

6.1.1 OLF Systems

OLF systems are structured on directed bipartite graphs. The decision pro-

cess considers three kind of actors: opinion leaders, followers and indepen-

dent actors. Opinion leaders cannot be influenced but they may exert their

influence over its followers. Followers can change their initial decision when

the influence from the leaders is high enough. Independent actor neither

can influence nor can being influenced by others. At the end of the process

all actors arrive to an stable solution and the collective decision function

corresponds to the simple majority voting system.

Note that the influence games are able to represent a “more-than-two-

step flow of communication”, providing more complex influence relationships
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between the different actors than in this model. The model can be formalized

as follows.

Definition 6.3. Let n be an odd number. An opinion leader-follower

system—OLF system, in short—for a set of n actors is a pair S = (G, q)

where G = (V,E) is a bipartite digraph, representing the actors’ relation,

and q is a rational number with 1/2 ≤ q < 1, here called fraction value. The

set V is partitioned into three subsets:

• The opinion leaders: L(G) = {i ∈ V | PG(i) = ∅ and SG(i) 6= ∅}.

• The followers: F(G) = {i ∈ V | PG(i) 6= ∅ and SG(i) = ∅}.

• The independent actors: I(G) = {i ∈ V | PG(i) = ∅ and SG(i) = ∅}.

Moreover, the fraction value q represents the fraction of opinion leaders with

the same inclination that is necessary to influence the decision of a follower.

When there is no risk of ambiguity, we simply use I, L or F instead

of I(G), L(G) or F(G). Note that in an OLF system S = ((V,E), q), if

(i, j) ∈ E then i ∈ L and j ∈ F.

Now we define the collective decision process of an OLF system, accord-

ing to [255].

Definition 6.4. Given an OLF system S, the collective decision vector

c = cS(x) associated to an initial decision vector x is defined as

ci =

b if |{j ∈ PG(i) | xj = b}| > bq · |PG(i)|c,

xi otherwise.
(6.1)

where b ∈ {0, 1} and q ∈ [1
2 , 1), and thus the collective decision function

CS(x) is defined as

CS(x) =

1 if |{i ∈ V | ci = 1}| > |{i ∈ V | ci = 0}|,

0 if |{i ∈ V | ci = 1}| < |{i ∈ V | ci = 0}|.
(6.2)

corresponding to the alternative with the greatest number of “votes” in the

final choice vector.

Observe that an OLF system S requires the number of actors to be

odd in order to ensure that decisions by the simple majority rule can be
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1

2 3 4 5

Figure 6.1: Example of an opinion leader-follower system.

reached [255, 256]. That is why inequalities in the last expression are strict.

Furthermore, both leaders and independent actors always follow their own

inclinations in the collective choice decision vector. A follower follows the

majority decision among its predecessors or their own inclination. In par-

ticular, when a follower has an even number of predecessors and q = 1
2 , it is

produced a tie, so the tiebreaker is given by the initial decision of the fol-

lower. Finally, note also that SG(L) = F, PG(F) = L and SG(I) = PG(I) = ∅.

Example 6.1. Figure 6.1 illustrates a bipartite digraph G = (V,E) corre-

sponding to an OLF system S = (G, 1
2) over a set of five actors. For both

initial decision vectors x = (0, 1, 1, 0, 0) and y = (1, 1, 1, 0, 0) we obtain the

same collective decision vector cS(x) = cS(y) = (1, 1, 1, 0, 0) and the same

collective decision CS(x) = CS(y) = 1.

Note that the collective decision function of OLF systems is monotonic.

Lemma 6.1. Let S = (G, q) be an OLF system, its corresponding collective

decision function is monotonic, with respect to inclusion, on P(V (G)).

Proof. Let be x ∈ {0, 1}n. If i ∈ L ∪ I, as ci(x) = xi and xi ∈ {0, 1}, it is

clear that C(x− i) ≤ C(x) ≤ C(x+ i). If i ∈ F, we have three possibilities:

1) xi = 0 and ci(x) = 1, implying ci(x+ i) = 1, so C(x) ≤ C(x+ i);

2) xi = 1 and ci(x) = 0, implying ci(x− i) = 0, so C(x− 1) ≤ C(x); and

3) xi = ci(x), which is the same case as for opinion leaders and independent

actors.

6.1.2 OLFM Systems

In this section we define opinion leader-follower through mediators systems—

OLFM systems—as a generalization of the OLF systems of the previous

section. OLFM systems allow us to model decision making situations with

inner nodes that we called mediators, i.e., actors that behave as opinion

leaders and followers, in the sense that they receive their influence from
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opinion leaders or other mediators, and can influence the followers or other

mediators. Thus, while OLF systems are supported on directed bipartite

graphs, OLFM systems are supported on layered digraphs.

Definition 6.5. A layered digraph is a digraph G = (V,E) where V can

be partitioned into k subsets L1, . . . ,Lk called layers, so that every edge

connects a vertex from one layer to another vertex in a layer immediately

below, i.e., for all (a, b) ∈ E, a ∈ Li and b ∈ Li+1, for some 1 ≤ i < k.

This generalization allows to represent more complex social structures

in which there are more than only two hierarchical levels.

Definition 6.6. An opinion leader-follower through mediators system—

OLFM system, in short—for a set of n actors is a pair S = (G, q), where

G = (V,E) is a layered digraph and q ∈ [1
2 , 1) is the fraction value. The set

V is partitioned into four subsets:

• The opinion leaders: L(G) = {i ∈ V | PG(i) = ∅ and SG(i) 6= ∅}.

• The followers: F(G) = {i ∈ V | PG(i) 6= ∅ and SG(i) = ∅}.

• The independent actors: I(G) = {i ∈ V | PG(i) = ∅ and SG(i) = ∅}.

• The mediators: M(G) = {i ∈ V | PG(i) 6= ∅ and SG(i) 6= ∅}.

As for OLF systems, for OLFM systems we also restrict our attention

to an odd number of actors. Both the collective decision vector and the

collective decision function of the system coincide with the ones for OLF

systems—see expressions (6.1) and 6.2) in Definition 6.4. However, here the

collective decision vector must be determined in order, starting from the

actors in the first layer, then the ones in the second layer, and so on.

Observe that the opinion leaders and independent actors belong to the

first layer of the graph, L1. The mediators are distributed into layers of

mediation, whereas there are no mediators pointing to upper layers. The

opinion leaders can only be connected with the mediators of the first layer

of mediation, L2; the mediators of the last layer of mediation can only be

connected with the followers, and the mediators of interlayers can only be

connected with the mediators of the layer immediately below. Moreover,

L1 = L ∪ I and for all i ∈ Lk, i ∈ F. Hence, the OLF systems can be seen

as OLFM systems with only two layers, i.e., with k = 2. Note also that the
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Figure 6.2: An OLFM system with one layer of mediation.

influence of actors in higher layers can affect the actors’ decision in much

lower layers.

Example 6.2. Figure 6.2 illustrates a graph G corresponding to an OLFM

system S = (G, 1
2) over a set of seven actors. Here L = {1, 2}, I = {3},

M = {4, 5} and F = {6, 7}. The computation of the collective decision

function is shown in Table 6.1, where the initial decision vectors are ordered

according to binary numeration. The vertical suspension points on the table

indicate that both the collective decision vector and the collective decision

function are the same than for the previous and the next decision vector.

It is clear by Lemma 6.1 that the collective decision function for OLFM

systems is also monotonic.

6.1.3 Mediation Systems

In this section we consider a social network together with an external par-

ticipant, namely the mediator. The mediator can exert influence on some

nodes and accept advice from others, thus introducing a modification on the

way that influence spreads through the network. On the bottom layer, the

influence is exerted among the agents; on the second layer, the relationship

of influence between the agents and an external mediator is kept.

We model the society by a set of nodes where the relation with the me-

diator can be expressed by three disjoint sets (A,B,C). The set A is formed

by the agents that can influence the mediator but are not influenced by him.

The set B contains those agents that influence and can be influenced by the

mediator. Finally, the set C is formed by the agents that can be influenced

by the mediator but cannot exert influence. This kind of relationship can

be understood by means of the following star influence graph.
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x c(x) C(x) x c(x) C(x) x c(x) C(x)
0000000 0110100 0110110 1 1001110 1001101 1... 0000000 0 0110101 0110111 1 1001111 1001101 1
0001111 0110110 0110110 1 1010000 1011000 0
0010000 0110111 0110111 1 1010001 1011001 1... 0010000 0 0111000 0110010 0 1010010 1011000 0
0011111 0111001 0110010 0 1010011 1011001 1
0100000 0100010 0 0111010 0110010 0 1010100 1011101 1
0100001 0100010 0 0111011 0110010 0 1010101 1011101 1
0100010 0100010 0 0111100 0110110 1 1010110 1011101 1
0100011 0100010 0 0111101 0110111 1 1010111 1011101 1
0100100 0100110 0 0111110 0110110 1 1011000 1011000 0
0100101 0100111 1 0111111 0110111 1 1011001 1011001 1
0100110 0100110 0 1000000 1001000 0 1011010 1011000 0
0100111 0100111 1 1000001 1001001 0 1011011 1011001 1
0101000 0100000 0 1000010 1001000 0 1011100 1011101 1
0101001 0100000 0 1000011 1001001 0 1011101 1011101 1
0101010 0100010 0 1000100 1001101 1 1011110 1011101 1
0101011 0100010 0 1000101 1001101 1 1011111 1011101 1
0101100 0100110 0 1000110 1001101 1 1100000

0101101 0100111 1 1000111 1001101 1
... 1101111 1

0101110 0100110 0 1001000 1001000 0 1101111
0101111 0100111 1 1001001 1001001 0 1110000

0110000 0110010 0 1001010 1001000 0
... 1111111 1

0110001 0110010 0 1001011 1001001 0 1111111
0110010 0110010 0 1001100 1001101 1
0110011 0110010 0 1001101 1001101 1

Table 6.1: Collective decision function for an OLFM system.

Definition 6.7. A star influence graph (A,B,C, k) is an unweighted influ-

ence graph ((V ∪ {x}, E), f), where V can be partitioned into three sets

A,B,C ⊆ V and x is the central node or mediator, in such a way that

E = {(u, x) | u ∈ A ∪ B} ∪ {(x, v) | v ∈ B ∪ C}. The labeling function is

given by f(x) = k ∈ N and f(i) = 1, for all i ∈ V .

Based on this definition, we can define the following.

Definition 6.8. A star influence game is a tuple (A,B,C, k, q), where

(A,B,C, k) is a star influence graph, and a team X ⊆ V is successful if

and only if, for some q ∈ N, either:

• |X| ≥ q, or

• |X ∩ (A ∪B)| ≥ k and |X ∪B ∪ C| ≥ q.

Thus, we can introduce our mediation systems as follows.
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Figure 6.3: The spread of influence starting from the initial activation of
X = {a} on an unweighted influence graph.

Definition 6.9. A star mediation influence game is represented by a tu-

ple (G, f,A,B,C, k, q), where (G, f) is an unweighted influence graph and

(A,B,C, k) is a star influence graph, so that a team X ⊆ V is successful if

and only if, either:

• X is successful in the unweighted influence game (G, f, q, V ), or

• X ∪B ∪ C is successful in (G, f, q, V ) and also |X ∩ (A ∪B)| ≥ k.

Note that when a team is able to influence the mediator, then all the

agents influenced by the mediator are activated and they propagate the

alternative through the network.

Example 6.3. Let Γ = (G, f, 3, V ) be the influence game whose influence

graph (G, f) is illustrated at the left of Figure 6.3. For Γ we have Wm =

{{a, b, d}, {c}}, LM = {{a, b}, {a, d}, {b, d}}, L = LM ∪ {∅, {a}, {b}, {d}}
and W = P(V ) \L. Now let Γ′ = ({a}, {b}, {c, d}, 2, 3) be the star influence

game whose star influence graph—see Figure 6.3 at the right—is defined on

the same vertices of Γ. Thus, W(Γ′) = {{a, b}, {a, b, c}, {a, b, d}, {a, c, d},
{b, c, d}, {a, b, c, d}}. The team {a, b} is obtained from the second condition

of Definition 6.8, and the remaining teams from the first condition. Hence,

for the star mediation influence game Γ′′ = (G, f, {a}, {b}, {c, d}, 2, 3) we

obtain W(Γ′′) =W(Γ) ∪ {a, b}.

6.1.4 Influence Systems

In this section we consider two collective decision making models: the obliv-

ious influence system and the non-oblivious influence system. In the first

one, as in influence games—see Definition 5.2—the initial decision of the

actors in V \N is not taken into account and a pessimistic point of view of

their opinion is taken. In the second one, as in OLF systems—see Definition
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6.4—the initial decision of actors in V \N is taken into account under some

considerations.

Definition 6.10. An oblivious influence system is a collective decision mak-

ing model defined on the set of vertices of an unweighted influence game

Γ = (G, f, q,N) whose collective decision function CΓ is defined as follows:

CΓ(x) =

1 if |F (X(x) ∩N)| ≥ q,

0 if |F (X(x) ∩N)| < q

where x ∈ {0, 1}|N | is the initial decision vector of the players.

Definition 6.11. A non-oblivious influence system is a collective decision

making model defined on the set of vertices of an unweighted influence game

Γ = (G, f, q,N) whose collective decision function CΓ is defined as follows:

CΓ(x) =

1 if |{i ∈ V | ci = 1}| ≥ q,

0 otherwise

where x ∈ {0, 1}|N | is the initial decision vector of the players, and the

collective decision vector c = cΓ(x) is defined, for any i ∈ N , as

ci =

1 if i ∈ F (X(x)),

0 otherwise

and for any i ∈ V \N , as

ci =


1 if pi(x) ≥ f(i) and qi(x) < f(i),

0 if qi(x) ≥ f(i) and pi(x) < f(i),

xi otherwise,

where pi(x) = |F (X(x) ∩N) ∩ P (i)| and qi(x) = |P (i) \ F (X(x) ∩N)|.

Note that for influence games in which N = V the oblivious and non-

oblivious model coincide because, in that case, for the non-oblivious model

we have that CΓ(x) = 1 if and only if |{i ∈ V | i ∈ F (X)}| = |F (X)| ≥ q.
Now we analyze some properties of the collective decision functions.
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Lemma 6.2. Let Γ = (G, f, q,N) be an unweighted influence game. For

both the oblivious and the non-oblivious system defined by Γ, the corre-

sponding collective decision functions are monotonic, with respect to inclu-

sion, on P(V (G)).

Proof. For the oblivious case, let be X,X ′ ⊆ V , it is enough to observe that

if X ⊆ X ′ ⊆ V then (X ∩N) ⊆ (X ′ ∩N) ⊆ N , and by monotonicity of the

spread of influence CΓ(X) ≤ CΓ(X ′).

For the non-oblivious case, let be X ⊆ V and i 6∈ X. When i ∈ N the

monotonicity of the spread of influence gives that CΓ(X) ≤ CΓ(X ∪ {i}).
When i 6∈ N we have that (F (X ∩N) ∩ P (i)) ⊆ (F ((X ∪ {i}) ∩N) ∩ P (i));

therefore, pi(X) ≤ pi(X ∪{i}) and qi(X) ≥ qi(X ∪{i}), and by definition it

follows that CΓ(X) ≤ CΓ(X ∪ {i}).

Observe that the above property allow us to use the collective decision

function of an influence system to define a simple game on the set of actors.

Note also that since OLFM systems are non-oblivious influence systems,

then by Lemma 6.2 it is easy to see that the collective decision function for

both OLFM and OLF systems are monotonic, as it was previously stated in

Lemma 6.1.

In order to relate OLF systems with influence games we consider the

following construction. Given an OLF system S = (G, q) we associate the

unweighted influence game Γ(S) = (G, f, q′, N) constructed as follows: N =

L ∪ I, q′ =
⌊
n
2

⌋
+ 1 and the labeling function f is defined as

f(i) =

dq · δ−(i)e if i ∈ F,

1 if i ∈ L ∪ I.

Furthermore, note that N omits the set of followers because, under the

influence model, after their initial choice followers never can enforce their

personal conviction and their final decision depends exclusively on whether

the opinion leaders can influence them or not.

Lemma 6.3. The collective decision functions of both an OLF system S =

(G, q) and the non-oblivious influence system defined by Γ(S) coincide.

Proof. Let Γ(S) be the oblivious influence system associated with S. Let

X ⊆ V be the initial decision of the actors, c = cS(X) and c′ = cΓ(S)(X).
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For any actor i ∈ L ∪ I, by construction we have that i ∈ F (X ∩N) if and

only if i ∈ X. Observe that for i ∈ L ∪ I, the nodes can not be influenced

by any other node in S. Therefore ci = c′i. For any actor i ∈ F, we have

that {j ∈ P (i) | xj = 1} = F (X ∩N) ∩ P (i). Therefore ci = c′i because the

tie-breaking rule is the same in both systems. Thus, we have CS = CΓ(S)

and the claim follows.

As a consequence of the previous result we have a way to map OLF

systems to a subfamily of the non-oblivious influence systems. In general,

an OLF system cannot be cast as an oblivious influence system because the

tie-breaking rules are different. Nevertheless, we can consider a subfamily,

the odd-OLF systems, in which ties do not arise.

Definition 6.12. An odd-OLF system is an OLF system (G, 1
2) in which,

for any i ∈ F, δ−(i) is odd.

With no ties we can define a similar notion for influence graphs.

Definition 6.13. A majority influence graph is an influence graph (G, f)

in which, for any i ∈ V (G), δ−(i) is either odd or zero. If δ−(i) is odd, then

f(i) = (δ−(i) + 1)/2 and if δ−(i) = 0, then f(i) = 1.

Similarly to Lemma 6.3, we have the following.

Lemma 6.4. The collective decision functions of both an odd-OLF system

S = (G, 1
2) and the oblivious influence system defined by Γ(S) coincide. The

collective decision functions of both oblivious and non-oblivious influence

systems on a majority influence graph coincide.

Proof. Let S = (G, 1
2) be and odd-OLF system and let Γ(S) be the influence

game associated to S. Let X ⊆ V be the initial decision of the actors. As

in Lemma 6.3, for any actor i ∈ L∪ I we have that cS(i) = cΓ(S)(i). For any

actor i ∈ F, we have that {j ∈ P (i) | xj = 1} = F (X ∩ N) ∩ P (i). Since

1/2 ≤ q ≤ 1 and δ−(i) is odd, we cannot have |F (X ∩N)∩P (i)| = |P (i)| −
|F (X ∩N) ∩ P (i)| and thus no tie in the size of the expanded predecessors

arises. Therefore, in the oblivious model we have that CS = CΓ(S) and the

claim follows. The proof for the second part of Lemma is analogous.

Note that Lemma 6.4 is not true for OLF systems where some follower

has even indegree, as it is shown in the following example.
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Figure 6.4: When followers have an even number of predecessors, the satis-
faction in each model produces different results.

Example 6.4. Consider the OLF system S = (G, 1
2), whose graph G =

(E, V ) is depicted on the left hand side of Figure 6.4, and its associated in-

fluence game Γ(S) = (G, f, 3, V \ {1}) is shown on its right hand side. Note

that in the influence game, f(1) > 1
2δ
−(1), being δ−(1) an even number, so

that considering an initial activation containing exactly 1
2δ
−(i) = 2 prede-

cessors of i, then the follower can not be influenced. Therefore, assuming

an initial choice vector x with these characteristics, according to the oblivi-

ous influence system CΓ(x) = 0, but for the non-oblivious influence system

CΓ(x) depends of the initial choice x1 of the follower 1.

6.2 Computational problems of mediation systems

In this section we study several problems of simple games and influence

games for the mediation systems defined in Section 6.1.3.

For star influence games, the characterization of successful and unsuc-

cessful teams given by Definition 6.8 allow us to decide in polynomial time

whether a coalition of the associated simple game is either minimal winning

or maximal losing.

Theorem 6.1. Let (A,B,C, k, q) be a star influence game. Given a team

X ⊆ A ∪ B ∪ C, deciding whether X represents either a minimal winning

coalition or a maximal losing coalition, can be done in polynomial time.

Proof. Note that for all X ∈ Wm, X ∩C 6= ∅ if and only if |X ∩A∩B| < k,

so that every X ⊆ (A ∪ B ∪ C) with |X| = q and X ∩ C 6= ∅ is a MWC.

The remaining MWCs depend of the quota. If q ≤ k, then every team

X ⊆ (A ∪ B) with |X| = q represents a MWC, and there are no other

MWCs. On the other hand, if q > k, we need to distinguish two cases: If

q > k+|B|+|C|, then every team X ⊆ A with |X| = q−|B|−|C| is a MWC;

otherwise, every team X ⊆ (A∪B) with |X| = k and |X∩A| ≥ q−|B|−|C|
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Algorithm 13 EnumeratingMWCs

Input: Star influence game (A,B,C, k, q).
Output: Minimal winning coalitions of the associated game (N,Wm).

1: print {X ⊆ (A ∪B ∪ C) | |X| = q,X ∩ C 6= ∅, |X ∩A ∩B| < k};
2: if (q > k + |B|+ |C|)
3: print {X ⊆ A | |X| = q − |B| − |C|};
4: else
5: if (q > k)
6: print {X ⊆ (A ∪B) | |X| = k, |X ∩A| ≥ q − |B| − |C|};
7: if (q ≤ k)
8: print {X ⊆ (A ∪B) | |X| = q};
9: return.

is a MWC. Since these conditions cover all possible cases, there is no other

MWC. Further, since each condition can be verified in polynomial time,

deciding whether X is a MWC can be done in polynomial time.

Furthermore, note that for all X ∈ LM , |X| = q − 1. Therefore, we

need to consider two cases. If |X ∩ (A ∪ B)| < k, then X ∈ LM if and

only if |X| = q − 1; otherwise, X ∈ LM if and only if |X| = q − 1 but also

(B∪C) ⊆ X. Since these conditions cover all possible cases, and both cases

can be verified in polynomial time, then the theorem holds.

Based in the previous result, we can construct algorithms with good

performance to enumerate both the MWCs and the maximal losing coalitions

of the associated simple game.

Theorem 6.2. Given a star influence game, both Wm and LM can be

enumerated with polynomial-delay.

Proof. Let us consider Algorithm 13, that follows the conditions given in the

proof of Theorem 6.1 for MWCs. By using standard techniques in steps 1,

3, 6 and 8, we can list every MWC in polynomial time.

Analogously, Algorithm 14 follows the conditions given in the proof of

Theorem 6.1 for maximal losing coalitions. Again, by using standard tech-

niques in steps 3 and 5, we can list every maximal losing coalition in poly-

nomial time. Note that in this case we only worry about the coalitions with

size q − 1.

From Theorem 6.1, we obtain that it is easy to decide several properties

for star influence games.
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Algorithm 14 EnumeratingMLCs

Input: Star influence game (A,B,C, k, q).
Output: Maximal losing coalitions of the associated game (N,LM ).

1: for all Y ⊆ N repeat
2: if (|Y ∩ (A ∪B)| < k)
3: if (|Y | = q − 1) print Y ;
4: else
5: if (|Y | = q − 1 and (B ∪ C) ⊆ Y ) print Y ;
6: return.

Theorem 6.3. For star influence games, the IsProper, IsStrong, IsDe-

cisive, IsDummy, IsPasser, IsVetoer and IsDictator problems can be

computed in polynomial time.

Proof. Let X ⊆ N be a team, α = |A|, β = |B|, γ = |C|; nα = |X ∩ A|,
nβ = |X∩B|, nγ = |X∩C|; and n̄α = |A|−nα, n̄β = |B|−nβ, n̄γ = |C|−nγ .

From the conditions of Definition 6.8, we can characterize every considered

property through equations and linear systems. Recall that linear systems

can be checked in polynomial time.

For IsProper, a star influence game is improper if at least one of the

following four linear systems is satisfiable.

Case I:

nα + nβ + nγ ≥ q;
n̄α + n̄β + n̄γ ≥ q.

Case II:

nα + nβ + nγ ≥ q;
n̄α + n̄β + n̄γ < q;

n̄α + n̄β ≥ k;

n̄α + β + γ ≥ q.

Case III:

nα + nβ + nγ < q;

nα + nβ ≥ k;

nα + β + γ ≥ q;
n̄α + n̄β + n̄γ ≥ q.

Case IV:

nα + nβ + nγ < q;

nα + nβ ≥ k;

nα + β + γ ≥ q;
n̄α + n̄β + n̄γ < q;

n̄α + n̄β ≥ k;

n̄α + β + γ ≥ q.

For IsStrong, if at least one of the following linear systems is satisfiable,

then the star influence game is weak.

Case I:

nα + nβ + nγ < q;

nα + nβ < k;

n̄α + n̄β + n̄γ < q;

n̄α + n̄β < k.

Case II:

nα + nβ + nγ < q;

nα + nβ < k;

n̄α + n̄β + n̄γ < q;

n̄α + n̄β ≥ k;

n̄α + β + γ < q.

Case III:

nα + nβ + nγ < q;

nα + nβ ≥ k;

nα + β + γ < q;

n̄α + n̄β + n̄γ ≥ q.

Case IV:

nα + nβ + nγ < q;

nα + nβ ≥ k;

nα + β + γ < q;

n̄α + n̄β + n̄γ < q;

n̄α + n̄β ≥ k;

n̄α + β + γ < q.
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Let i ∈ N be a player, the polynomial results for IsDummy, IsPasser,

IsVetoer and IsDictator comes from the following characterizations:

Conditions to fulfill the property

i ∈ A i ∈ B i ∈ C

Dummy never
γ = 0 and

q > k + β + 1
q ≥ k + γ

Passer
either q = 1, or k = 1

and q ≤ β + γ + 2

either q = 1, or k = 1

and q ≤ γ + 2
q = 1

Vetoer q = α+β+γ+1 = n q = α+β+γ+1 = n q = α+β+γ+1 = n

Dictator
q = β + γ + 2

and α = k = 1

q = γ + 2

and β = k = 1
never

Since every condition can be decided in polynomial time, the theorem

holds.

In despite of the above, since the successful teams of star mediation

influence games depend of a general influence game, then from Theorems 5.8

and 5.9 we have the following.

Corollary 6.1. Given a star mediation influence game, the IsProper, Is-

Strong, IsDecisive and IsDummy problems are coNP-complete, while Is-

Passer, IsVetoer and IsDictator can be computed in polynomial time.

Observe that when we restrict the games to only certain types of actors,

then we can get some interesting equivalences. The following result is related

to the Equiv problem mentioned in Section 4.1.1.

Proposition 6.1. Let (A,B,C, k, q) be a star influence game, then:

• if |A| = |C| = 0, the games (∅, B, ∅, k, q), (∅, B, ∅, q, q) and (∅, B, ∅, k, k)

are equivalent. Moreover, if q ≤ k, (∅, B, ∅, k, q) and (A, ∅, B, 1, q) are

equivalent; otherwise, (∅, B, ∅, k, q) and (∅, ∅, B, 1, k) are equivalent.

• if |B| = |C| = 0, then if q ≤ k, (A, ∅, ∅, k, q), (A, ∅, ∅, q, q) and

(A, ∅, ∅, k, k) are equivalent; otherwise, (A, ∅, ∅, k, q) and (A, ∅, ∅, 1, q)
are equivalent.

• if q ≤ |B| + |C| + 1 and q ≤ k, then the games (A,B,C, k, q) and

(∅, A ∪B ∪ C, ∅, q, q) are equivalent.

We finish this section with some restrictions that help us to obtain char-

acterizations of homogeneous games.
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Proposition 6.2. Let Γ = (A,B,C, k, q) be a star influence game, then:

1. if |A| = |B| = 0, Γ is always homogeneous with realization [q; 1, . . . , 1].

2. if |A| = |C| = 0, Γ is always homogeneous. If q ≤ k, with realization

[q; 1, . . . , 1], otherwise, with realization [k; 1, . . . , 1].

3. if |B| = |C| = 0, Γ is always homogeneous with realization [q; 1, . . . , 1].

6.3 Computing Satisfaction or Rae Index

According to [255], the satisfaction of an actor in a society refers to the

number of possible decisions that all actors can take as a group, such that

the collective decision coincides with the decision taken by the actor in

the initial choice vector. This general formulation allow us to define the

satisfaction measure for a generic collective decision making model.

Definition 6.14. Let M be a collective decision making model over a set

of n actors. The satisfaction measure of the actor i is defined as follows:

SatM(i) = |{x ∈ {0, 1}n | CM(x) = xi}|.

It is relevant to note that when the collective decision making modelM
is monotonic, with respect to inclusion, the satisfaction measure coincides

with the known Rae index.

Definition 6.15. LetM be a monotonic collective decision making model—

such as a simple game—over a set of n = |V | actors. The Rae index of the

actor i is defined as follows:

RaeM(i) = |{X ⊆ V | i ∈ X ∈ W or i /∈ X /∈ W}|.

In the context of simple games, Dubey and Shapley [66] established an

affine-linear relation between the Rae index and the Banzhaf value [149]:

Sat(i) = Rae(i) = 2n−1 + η(i) (6.3)

where η(i) = ηi(Γ) denotes the Banzhaf value of player i in a game Γ—see

Definition 2.28.
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It is clear that this equality holds for any collective decision making

model that is monotonic, such as OLF systems, OLFM systems, oblivious

and non-oblivious influence systems.

In what follows we analyze the computational complexity of Bval or

Construct-Banzhaf-value, and that of the following problem, for influ-

ence systems, simple games and subfamilies of simple games.

Name: Rae

Input: A collective decision making model M and an actor i.

Output: RaeM(i).

By equation (6.3), for simple games and influence games, the Rae prob-

lem and the Bval problems are computationally equivalent. The second

problem has received more attention and its complexity has been analyzed

before—see Sections 2.3.2, 4.1.2 and 5.3. For instance, from Theorem 5.7

we know that for influences games the Bval problem—and therefore, the

Rae problem—is #P-complete. In the same vein, note that given an actor i

and a value k, to determine whether Rae(i) ≤ k or Rae(i) ≥ k is NP-hard,

because we can just to apply a dichotomic search taking into account that

0 ≤ Rae(i) ≤ 2n.

It is also interesting to note that the Rae problem is closely related to

the Chow parameters problem for simple games—see Section 4.1.1—but

considering also losing coalitions. We continue with some additional results.

Lemma 6.5. Let M be any monotonic collective decision making model.

For any player i we have Rae(i) ≥ 2n−1. Moreover, if i is dummy then

Rae(i) = 2n−1, and if i is a dictator then Rae(i) = 2n.

Proof. The sentence Rae(i) ≥ 2n−1 is deduced from the equation (6.3). If i

is dummy, we know from Section 2.3.2 that η(i) = 0, so then Rae(i) = 2n−1.

If i is dictator, then for any coalition X ⊆ N , if X ∈ W then i ∈ X, and if

X 6∈ W then i 6∈ X, so hence Rae(i) = 2n.

The following example uses the reformulation of Lemma 6.4 to compute

the satisfaction measure of an odd-OLF system.

Example 6.5. Let S = (G, 1
2) be an odd-OLF system whose graph is

given in Figure 6.1. The equivalent oblivious influence system is Γ(S) =

(G, f, 3, N), where f(1) = 2 and, for any i 6= 1, f(i) = 1. Therefore,
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Rae(1) = Rae(5) = 16 and Rae(2) = Rae(3) = Rae(4) = 24. Note

that for every actor i ∈ V , the number of winning coalitions that contain

i coincides with the number of losing coalitions that not contain i, and it

corresponds to Rae(i)/2.

In the following Section 6.3.1 we show that the Rae problem remains

hard when the influence graph is restricted to be bipartite. In Section 6.3.2

we show two subfamilies of bipartite influence graphs on which Rae and

Bval can be solved in polynomial time.

6.3.1 Hardness Results

Let (G, f) be an unweighted influence graph, for any 1 ≤ k ≤ n define

F k(V,G, f) = {X ⊆ V | |F (X ∩ N)| = k}. When there is no risk of

ambiguity, we say simply F k(V ). Since F k(N) = {X ⊆ N | |F (X)| = k},
we have |F k(V )| = 2|V |−|N | · |F k(N)|. Associated with this quantity we

consider the following problem:

Name: Expansion

Input: An influence graph (G, f), a set of vertices N and an integer k.

Output: |F k(N)|.

Our next result shows the relationship among the Rae and the Expan-

sion problems for oblivious influence systems. Before stating it we intro-

duce some notation. For an influence graph (G, f) and a vertex i ∈ V (G),

Fi = {j ∈ SG(i) | |PG(j)| = 1}. We denote as R(G, f, i) the influence graph

(G′, f ′) where G′ = G[V (G) \ (Fi ∪ {i})], f ′(j) = f(j) for j /∈ SG(i), and

f ′(j) = f(j)− 1 for j ∈ SG(i).

Lemma 6.6. Let (G, f, q,N) be an oblivious influence system, the satis-
faction, for the actors i ∈ V (G) \ N that can not participate in the initial
activation set and the ones without predecessors, is given by the following
expression:

Rae(i) =


2n−1 if i /∈ N

2n−1 + 2n−|N| · |F q−1(N\{i}, R(G, f, i))| if i ∈ N,PG(i) = ∅, SG(i) = ∅

2n−1 + 2n−|N| ·
r∑
j=1

|F q−j(N\{i}, R(G, f, i))| if i ∈ N,PG(i) = ∅, SG(i) 6= ∅

where r = 1 + |Fi|.
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Proof. Let z be an initial decision vector, set Z = {i ∈ V | zi = 1} and

X = Z ∩N .

For an actor i /∈ N , we consider two cases. When X ∈ W, CΓ(z) = 1.

Thus, actor i is satisfied only when zi = 1. When X ∈ L, CΓ(z) = 0, hence

actor i is satisfied only when zi = 0. Therefore, since for any initial decision

vector V \ {i} there is only one way to complete the initial decision vector

in such a way that the collective decision coincides with actor i’s decision,

then Rae(i) = 2n−1.

For a player i ∈ N , we have three cases in which i is satisfied by the

collective decision. The first two cases are the following: When X \{i} ∈ W
and zi = 1, so CΓ(z) = 1 = zi; and when X \ {i} ∈ L and zi = 0, so

CΓ(z) = 0 = zi. These two first cases provide a total of 2n−1 initial decision

vectors for which the collective decision coincides with the initial decision

of player i. However, when X \ {i} ∈ L and zi = 1, then CΓ(z) = 1 if

X ∈ W. So we have another set of initial decision vectors for which player

i is satisfied.

We have to count all the winning coalitions X so that X \ {i} is losing.

To remove the influence of actor i we have to take into account the influence

graph R(G, f, i).

When SG(i) = ∅, actor i cannot influence any other actor. Observe that

Y ∈ F q−1(N \{i}, R(G, f, i)) if and only if Y ∈ L but Y ∪{i} ∈ W. Thus, as

the system is oblivious, we have 2n−|N | · |F q−1(N \{i}, R(G, f, i))| additional

initial decision vectors than can be completed, by adding zi = 1, to an initial

decision vector z with CΓ(z) = 1.

When SG(i) 6= ∅, player i can influence other actors. In this case we

have to separate those vertices which can be influenced directly and only by

i, those in the set Fi, from the rest. Observe that all the vertices in SG(i)\Fi
have degree at least 2. Now for a coalition Y , Y ∈ L but Y ∪{i} ∈ W if and

only if Y ∈ F q−j(N\{i}, R(G, f, i)), for some 1 ≤ j ≤ r. Taking into account

that the system is oblivious, there are 2n−|N | · |F q−j(N \ {i}, R(G, f, i))|
additional initial vectors that can be completed, by adding zi = 1, to an

initial vector z giving expansion q − j, with CΓ(z) = 1.

Note that in the case of odd-OLF systems N = L ∪ I. Furthermore,

for i ∈ I, PG(i) = SG(i) = ∅, and for i ∈ L, PG(i) = ∅ and SG(i) 6= ∅.
Therefore, the previous lemma provides a complete characterization of the
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Rae measure. Note that it also shows that, as expected, opinion leaders

have always a satisfaction greater or equal than the independent actors, and

that both have always a satisfaction greater or equal than the followers.

For our hardness result we need to consider a variation of the counting

vertex cover problem [95]:

Name: #2
3-VC

Input: An undirected graph G = (V,E).

Output: Number of vertex covers of size exactly 2
3 |V | in G.

It is known that the problem of computing the number of independent

sets with size exactly 2
3 |V | in a graph is hard, in the sense that it cannot

be computed by a sub-exponential time algorithm, unless the well known

#P-complete #3-Sat problem—the counting version of the 3-satisfiability

problem—could be computed in sub-exponential time [118]. Hence, as the

complement of an independent set is a vertex cover, then the same result

shows that #2
3-VC is also hard. Now we are able to present the following

result, by using the same notion of hardness.

Theorem 6.4. The Expansion problem is hard for directed bipartite in-

fluence graphs.

Proof. We provide a reduction from the #2
3-VC problem. In our reduction

we produce two influence graphs. Let G = (V,E) be a graph, without loss

of generality we assume that G is connected, m = |E(G)|, n = |V (G)| is a

multiple of three, and n ≥ 6.

We construct a bipartite graph G1 associated to G which is defined as

follows. The set of vertices is given by V (G1) = V ∪ {E1, . . . , En+2} ∪ {z},
where z is a new vertex, and for 1 ≤ j ≤ n + 2, Ej is a marked copy of E.

Observe that |V (G1)| = n+ (n+ 2)m+ 1. The set of arcs is the following:

E(G′) ={(u, ej) | u ∈ V, e = {u, v} ∈ E and ej ∈ Ej is the marked copy

of e, 1 ≤ j ≤ n+ 2} ∪ {(z, a) | a ∈ Ej , 1 ≤ j ≤ n+ 1}.

G1 is a directed bipartite graph and all the vertices have indegree either 0

or 3. Next we define the labeling function to define an associated influence

graph (G1, f1). We set f1(u) = 1, for u ∈ V , f1(z) = 1, and f1(u) = 2, for

u /∈ V ∪ {z}.
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Now we can define the reduction from #2
3-VC to Expansion, which

associates to G the input h(G) to Expansion defined as follows

h(G) =

(
(G1, f1), V ∪ {z}, 2

3
n+ (n+ 2)m+ 1

)
Let be X ⊆ V and α = |X|. We analyze the expansion of the sets

X ∪ {z} and X in (G1, f1).

When the initial activation set is X ∪{z}, we have two cases, either X is

a vertex cover or not. When X is a vertex cover all vertices corresponding

to edges get activated, therefore |F (X ∪{z})| = α+ (n+ 2)m+ 1. This last

quantity is equal to the required size only when α = 2
3n. When X is not a

vertex cover, we know that at least one edge e ∈ E is not covered, therefore

F (X∪{z}) misses—at least—all the marked copies of e. On the other hand,

we assume α ≤ n− 2, because a set with either n− 1 or n vertices is indeed

a vertex cover. Hence, we have |F (X ∪ {z})| ≤ α + (n + 2)(m − 1) + 2 ≤
n− 2 + (n+ 2)m− (n+ 2) + 2 ≤ (n+ 2)m− 2 which is strictly smaller than

the required size.

Now we consider the case when the initial activation set is X. Note that

in G1 only the copies of those edges with both endpoints in X are activated.

In the case that, for every e = (u, v) ∈ E, {u, v} ⊆ X, since G is connected

we have |F (X)| = n + (n + 2)m > k. Otherwise, again, at least the copies

of one edge and at least one vertex are not activated. Therefore we have

|F (X)| ≤ α+ (n+ 2)(m− 1) ≤ n− 1 + (n+ 2)m− (n+ 2) = (n+ 2)m− 3

which is strictly smaller than the required size.

From the previous case analysis, we have that the elements in F k(V ∪
{z}), for (G1, f1), are in a one-to-one correspondence with the vertex covers

of size 2
3n in G. As the reduction can be computed trivially in polynomial

time the claim holds.

The hardness of the Expansion problem does not rule out the possibility

of having some cases for which computing Rae or Expansion is easy. One

easy case for Expansion is when the value of k is smaller that the minimum

value of the labeling function over the actors not in N . It is easy to see that

for an oblivious influence system, in that case |F k(N)| =
(n−|N |

k

)
. For an

OLF system, we know by Lemma 6.6 that Rae(i) = 2n−1, for any follower

i, and thus it can be computed in polynomial time.
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Observe that in the reduction provided in the proof of Theorem 6.4 we

have constructed a majority influence graph. This leads us to the following

result.

Theorem 6.5. Both the Rae and the Bval problems are hard for directed

bipartite majority influence systems.

Proof. We prove hardness by showing a polynomial time reduction from the

Expansion problem to the Rae problem. Our construction starts with a

directed bipartite influence graph (G, f), a set N ⊆ V (G) and a value k

verifying the conditions required to be an input to sc Expansion. Let be

n = |V (G)|, we consider the influence graph (G′, f ′) which is obtained from

(G, f) by adding an isolated vertex z with label 1. We consider the influence

system associated to the game Γ(G, f) = (G′, f ′, N∪{z}, k+1) and the input

to the Rae problem (Γ(G, f), z).

In order to compute Rae(z) in Γ(G, f), according to the second case in

Lemma 6.6, we have to consider the reduced influence graph R(G′, f ′, z) and

the parameter q = k+ 1. By construction R(G′, f ′, z) = (G, f) and thus we

have Rae(z) = 2n + 2n−|N ||Fk(N, (G, f))|.
Therefore, if we could solve Rae in polynomial time we are also able to

solve Expansion in polynomial time, and the claim follows.

As a consequence of the previous result and the Lemma 6.4 we have the

following.

Corollary 6.2. Both the Rae and the Bval problems are hard for OLF sys-

tems and oblivious and non-oblivious influence systems on bipartite graphs.

Observe that in our reduction, the quota may assume any value. Thus,

the reduction does not show hardness for the Rae problem when it is being

applied to odd-OLF systems, where the quota is different than the required

majority. Therefore, it remains open to show the complexity of the Rae

problem for odd-OLF systems.

6.3.2 Polynomially Results for Bipartite Influence Graphs

In this section we focus our attention on two classes of unweighted influence

graphs, for which we can show that the Expansion and the Rae problems

are polynomial time solvable under the oblivious influence system. Like in
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Section 6.1.3, we consider an additional set of actors called mediators, that

receive their influence from opinion leaders and may influence the followers,

allowing several layers of influence, and hence establishing a more complex

hierarchy among the different actors. Our families of bipartite graphs ex-

tend, in some sense, the OLF systems by allowing an intermediate set of

actors that play the role of mediators between leaders and followers. The

first family, the strong influence graphs, contains layered directed graphs in

which the influence is exerted in an all to all fashion following a hierarchical

structure. In this case the mediators are interposed between the leaders

and the followers. The second family is based in the star influence games of

Definition 6.8, and it contains only one mediator.

The mediators in the influence graph are not players. Thus, according

to Lemma 6.6, for any mediator i, we have Rae(i) = 2n−1.

Strongly mediated influence system

The first class is based on directed bipartite influence graphs. It verifies

the property that any of the subgraphs constructed in Lemma 6.6 belong

to the family. We show that the Expansion problem can also be solved in

polynomial time for those subfamilies.

Our graphs family is defined recursively, by using isolated and complete

bipartite graphs. Recall notation from Definitions 2.5 and 6.3.

Definition 6.16. The family of strong hierarchical digraphs is formed by di-

rected bipartite graphs obtained by applying recursively the following rules:

• The graph Ia, for a > 0, and the graph Ka,b, for a, b > 0 are strong

hierarchical digraphs.

• If H1 and H2 are strong hierarchical digraphs their disjoint union is a

strong hierarchical digraph.

• If H1 and H2 are strong hierarchical digraphs and Ia is a set of a

independent vertices, the graph H with

V (H) = V (H1) ∪ V (H2) ∪ V (Ia) and

E(H) = E(H1) ∪ E(H2) ∪ E(Ia) ∪ {(u, v) | u ∈ F, v ∈ V (Ia)},

where F = F(H1) ∪ F(H2), is a strong hierarchical digraph.
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We use the term strong influence graph to denote an influence graph (G, f)

where G is a strong hierarchical digraph. Finally, a strongly mediated in-

fluence system is an influence system (G, f, q,N) where (G, f) is a strong

influence graph and N = L(G) ∪ I(G).

Observe that, for a strong hierarchical digraph G = (V,E), the set V

can be partitioned into t subsets or layers A1, . . . , At, so that edges occur

only between consecutive layers and are directed from layer i to layer i+ 1,

with i = {1, . . . , t− 1}.
Furthermore, the graph G′ which is obtained from G by removing a node

u ∈ I(G)∪ L(G) is also a strong hierarchical digraph. According to this, we

use for the following result the constructions provided in Lemma 6.6, taking

care of the fact that, by removing a vertex in an influence graph, some of the

labels of its neighbors may become zero. Our algorithm will thus allow for

a more general class of labeling functions in which some nodes might have

associated a label zero and therefore form part of the expansion of any set.

Lemma 6.7. Let (G, f) be a strong influence graph in which for each u ∈ V ,

0 ≤ f(u) ≤ n + 1. Let be N = I(G) ∪ L(G) and an integer k such that

0 ≤ k ≤ n, then |F k(N)| can be computed in polynomial time.

Proof. For a given (G, f) our algorithm tabulates the function T (a, b), with

0 ≤ a ≤ n and 0 ≤ b ≤ |F(V )|, defined as

T (a, b) = |{X ⊆ N | |F (X)| = a and |F (X) ∩ F(G)| = b}|.

Observe that, if we can compute in polynomial time an array holding all the

T (a, b) values, we can obtain |F k(N)| by adding up the values in the row

corresponding to k.

We show by induction how to construct an array storing the desired

values inductively, following the structure of G. The base cases, according

to Definition 6.16, are sets of isolated vertices and the complete bipartite

digraphs.

When G = Iα, all the actor are independent, therefore F (X) = X for

any set of actors X, and thus we have

T (a, 0) =

(
α

a

)
for any 0 ≤ a ≤ α.

Observe that all those values can be computed in polynomial time.
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When G = Kα,β, for a set X ⊆ L(G) we have that F (X) = X ∪ {u ∈
F(G) | |X| ≥ f(u)}. To express the function T we need an auxiliary function

R(c), 0 ≤ c ≤ n, defined as R(c) = |{v ∈ F(G) | f(v) ≤ c}|. Observe that

a vector storing the values of R can be computed by sorting the actors of

F(G) in increasing order of labels and then counting the number of repeated

values. Using this information, we know that a X ⊆ L(G) will expand its

influence to all the followers u for which f(u) ≤ |X|, so therefore we have

T (a, b) =
∑

{c|a=c+R(c),b=R(c)}

(
α

c

)
.

The above values can be computed in polynomial time using a double

scanning as follows:

1: Initialize T (a, b) to 0;
2: for c = 0 to n
3: T (c+R(c), R(c)) = T (c+R(c), R(c)) +

(
α
c

)
.

We split the rest of the proof into two cases. The first case corresponds

to connected strong influence graphs and the second one to disconnected

strong influence graphs.

When G is connected assume that it is obtained from a set of connected

strong influence graphs {G1, . . . , Gk} and a set of isolated vertices Iα that

have to be fully connected to a set of isolated vertices Iβ in the next level.

For the correctness of the proof it is relevant to consider as a unique set all

the independent vertices that appear in the decomposition.

To get an expression for T we proceed inductively by considering the

graphs H1, H2, . . . ,Hk, where Hi, 1 ≤ i ≤ k is the strong influence graph

obtained by fully connecting the vertices with outdegree 0 in the graphs

G1, . . . , Gi to the vertices in Iβ. Then we finalize by incorporating Iα and

the connections until Gk to obtain G. We have to consider separately the

first step, H1, the intermediate steps, H2,. . . , Hk, and the last step, G. In

order to avoid confusion we use Ti to denote the values of the function T

when its definition is restricted to the graph Hi, and T ′i when it is restricted

to Gi. As before, we consider the function R defined over the vertices in Iβ,

R(c) = |{v ∈ V (Iβ) | f(v) ≤ c}|.
For the first step assume that T ′ holds the values of the function T

for the graph G1. The equation for T1 is quite similar to the one for Kα,β
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taking into account that the number of sets with the required expansion and

number of followers is already precomputed in T ′. Thus a set X activating

a1 = |FG1(X)| nodes of which b1 are followers will activate in addition R(b1)

vertices in Iβ. Hence we have

T1(a, b) =
∑

{a1,b1|a1+R(b1)=a,R(b1)=b}

T ′1(a1, b1)

which can be computed in polynomial time using a double scan.

For the intermediate step, 1 < i < k, we want to obtain Ti+1 from Ti

and T ′i+1. The main difference now is that we have to compute the number

of additional vertices in Iα that an expansion set in Gi+1 will activate. For

doing so we introduce some additional notation. For a value b, b ∈ Imf , let

c(b) = c if and only if R(c) = b. For any d, 0 ≤ d ≤ |F(Gi+1)| and 0 ≤ b ≤ β,

define

∆(d, b) =

0 if d ≤ c(b),

c(d)− c(b) otherwise.

Observe that if b nodes in Iβ are activated by a set in Hi, a set in V (Gi+1)

activating d followers in Gi+1 will activate a total of ∆(d, b) new followers

in Hi+1. Therefore we have

Ti+1(a, b) =
∑

{a1,b1,a2,b2|a=a1+a2,b=b1+∆(b2,b1)}

Ti(a1, b1) ∗ T ′i+1(a2, b2).

As before, an array holding this set of values can be computed trivially in

polynomial time.

For the last step, we have to join Hk with Iα. This case is similar to

the previous one. We have only to take into account that Iα has a simpler

structure and that F Iα(X) = X. Thus, from Tk we can define T restricted

to G as follows:

T (a, b) =
∑

{a1,b1,a2|a=a1+a2,b=a2+∆(a2,b1)}

Tk(a1, b1) ∗
(
α

a2

)
.

Again, an array storing those values can be computed in polynomial time.

Finally, we have to consider the case in which the graph G is disconnected

an thus it is the disjoint union of k directed and connected strong influence

graphs G1, . . . , Gk, and possibly an independent set with size α. For the case
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of disjoint union, influence in different subgraphs cannot be aggregated. So,

if G is the disjoint union of G1 and G2, for X1 ⊆ V (G1) and X2 ⊆ V (G2) we

have that FG(X1 ∪X2) = FG1(X1) ∪ FG2(X2). We proceed again by steps

showing first how to define the T -values for the graphs H ′2 . . . H
′
k, where H ′i

is the disjoint union of G1, . . . , Gi and finally for G. Assume that Ti holds

the T -values restricted to Hi and that T ′i+1 correspond to those for Gi+1.

As influence is just added we have that

Ti+1(a, b) =
∑

{a1,b1,a2,b2|a=a1+a2,b=b1+b2}

Ti(a1, b1) ∗ T ′(a2, b2).

Finally, observe that again an array holding the T -values can be computed

from Tk as

T (a, b) =
∑

{a1,b1,a2|a=a1+a2,b=b1+a2}

Tk(a1, b1) ∗
(
α

a2

)
.

Since all those tables can be computed in polynomial time, the result follows.

As we mention before the graphs constructed in Lemma 6.6, since (G, f)

is a strong influence graph and v ∈ L(G) ∪ F(G) are also strong influence

graphs, then the above results gives also the following:

Theorem 6.6. The Rae and Bval problems are polynomial time solvable

in oblivious strongly mediated influence system.

Example 6.6. Consider the strongly mediated influence system given in

Figure 6.5. According to Lemma 6.7, we have to consider first the disjoint

union of the two connected components of G with at least one edge and

finally incorporating to the graph the two independent actors, vertices 15

and 16, together.

For the second level in the graph we have three connected components

G1 = G[1, 2, 4, 5, 6], G2 = G[3, 7, 8] and G3 = G[12, 13, 14]:
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Figure 6.5: A strong influence graph with two layers of mediation.

In the next table we record the T -values for each subgraph.

TG1 0 1 2 3 TG2 0 1 2 TG3 0 1 2

0 1 0 0 0 0 1 0 0 0 1 0 0

1 2 0 0 0 1 1 0 0 1 0 0 0

2 0 0 0 0 2 0 0 0 2 0 0 0

3 0 0 0 0 3 0 0 0 3 0 0 1

4 0 0 0 0 - - - - - - - -

5 0 0 0 1 - - - - - - - -

The following subgraph to be considered is G4 = G[{x|1 ≤ x ≤ 11}] which is

created by combiningG1 andG2 with an independent set with two vertices in

the next layer. According to the algorithm, we have to compute in according

to the first step rules the T -values for the graph H, so we have the following:

1

1

1

2

2

4

2

5

2

6

3

9

4

10

TH 0 1 2

0 1 0 0

1 2 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 1 0

7 0 0 0

From H, following the equations of the second step, we can compute the

T -values for the graph G4, which are:
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1

1

1

2

1

3

2

4

2

5

2

6

3

7

3

8

3

9

4

10

TG4 0 1 2

0 1 0 0

1 3 0 0

2 2 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 1 0

7 0 1 0

8 0 0 0

9 0 0 0

10 0 0 0

The next step is to incorporate the connections in the last layer to get G1.

For this we have to use the rule of the first step applied to G4 and an

independent set with one vertex. This gives the following:

1

1

1

2

1

3

2

4

2

5

2

6

3

7

3

8

3

9

4

10

2

11

TG1 0 1

0 1 0

1 3 0

2 2 0

3 0 0

4 0 0

5 0 0

6 1 0

7 1 0

8 0 0

9 0 0

10 0 0

11 0 0

Now the algorithm computes the T -values for the disjoint union of G1 and

G2, obtaining:
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1

1

1

2

1

3

2

4

2

5

2

6

3

7

3

8

3

9

4

10

2

11

1

12

1

13

1

14

TG1∪G2 0 1 2 3

0 1 0 0 0

1 3 0 0 0

2 2 0 0 0

3 0 0 1 0

4 0 0 3 0

5 0 0 2 0

6 1 0 0 0

7 1 0 0 0

8 0 0 0 0

9 0 0 1 0

10 0 0 1 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

From this table we have to incorporate, as a disjoint union, an independent

set of size 2, to get the T -values for G. The following table gives the T -values

as well as the sum for each row, which corresponds to the value |F a(N)|.

TG1∪G2 0 1 2 3 4 5 |F a(N)|
0 1 0 0 0 0 0 1

1 3 2 0 0 0 0 5

2 2 6 1 0 0 0 9

3 0 4 4 0 0 0 8

4 0 0 5 2 0 0 7

5 0 0 2 6 1 0 9

6 1 0 0 4 3 0 8

7 1 2 0 0 2 0 5

8 0 2 1 0 0 0 3

9 0 0 2 0 0 0 2

10 0 0 1 2 0 0 3

11 0 0 0 2 1 0 3

12 0 0 0 0 1 0 1

13 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0

Star influence systems

Another way to extend the odd-OLF systems is to allow the possibility

that some actors at the same time could influence and be influenced by

other actor. The next definition is based on the star influence games of

Definition 6.8.
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Definition 6.17. A star influence system is an influence game (G, f, q,N),

where V (G) = L ∪ F ∪ I ∪ R ∪ {c} is formed by a set of opinion leaders

L, a set of followers F, a set of independent actors I, a set of reciprocal

actors R, and a central actor {c}, who acts like a mediator between the

followers and both the opinion leaders and the reciprocal actors. Thus,

E(G) = {(u, c) | u ∈ L ∪ R} ∪ {(c, v) | v ∈ R ∪ F}. For all i ∈ V (G) \ {c},
f(i) = 1, and f(c) ∈ {1, . . . , |L|+ |R|}. Further, q ∈ (0, n] and N = L∪ R∪ I.

Recall that by Theorem 6.4, the Expansion problem is hard for directed

bipartite influence graphs. Now we prove that for oblivious star influence

systems, the problem becomes polynomial time solvable.

Theorem 6.7. The Expansion problem can be solved in polynomial time

on oblivious star influence systems.

Proof. Let (G, f, q,N) be a star influence system, we show how to compute

|F k(N)| for any 0 ≤ k ≤ n in polynomial time. Let c be the central node of

the star influence system. For |F k(N)|, if k < f(c) then there is no initial

activation X ∈ F k(N) such that c ∈ F (X); hence, |F k(N)| corresponds to

the number of initial activations with k actors. On the contrary, if k ≥ f(c)

then |F k(N)| corresponds to the number of initial activations that cannot

influence the central actor, plus the initial activations that can do it; and

for the latter case, it is necessary to take into account that |F (X)| is at least

|R|+ |F|+ 1—where 1 is for the central actor—plus the number of actors in

L ∪ I. Therefore, we have:

|F k(N)| =



(
|L|+ |R|+ |I|

k

)
if k < f(c),

f(c)−1∑
i=0

(
|L|+ |R|

i

)(
|I|
k − i

)

+

|L|+|R|∑
i+j=f(c)

(
|L|
i

)(
|R|
j

)(
|I|

k − i− (|R|+ |F|+ 1)

)
if k ≥ f(c).

Using the above the total amount can be computed in polynomial time.

In Theorem 6.2 we proved that the enumeration of both the MWCs and

the maximal losing coalitions can be done with polynomial-delay. There-

fore, Theorem 6.7 allows to count the number of winning and losing coali-

tions for any star influence system in polynomial time, by computing 2|F|+1 ·∑n
i=q |F i(N)| and 2|F|+1 ·

∑q−1
i=0 |F i(N)|, respectively.
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1 1

1 3 1

1 1 1

Figure 6.6: A star influence system.

Example 6.7. Consider the star influence system (G, f, q,N) of Figure 6.6

with q = 4. Here |I| = |F| = 1, |R| = 2, |L| = 3 and f(c) = 3. Hence,

|W| = 22 ·
∑8

i=4 |F i(N)| = 4 · (0 + 3 + 12 + 13 + 4) = 128, and |L| =

22 ·
∑3

i=0 |F i(N)| = 4 · (1 + 6 + 15 + 10) = 128. Note that it holds that

|W|+ |L| = 256 = 28, as expected.

In order to transfer the previous result just observe that for a given star

influence system (G, f, q,N) the graphs required in Lemma 6.6 are obtained

from G by removing a vertex in N , and thus both are star influence systems.

As a consequence we have the following.

Theorem 6.8. The problems Rae and Bval are polynomial solvable on

oblivious star influence systems.

6.4 OLFM systems: Axiomatization of Rae index

For any collective decision making modelM, there exists an alternative def-

inition for the satisfaction measure or Rae index, that facilitates the writing

of some proofs of this section. The definition is as follows [255]:

RaeM(i) =
∑

x∈{0,1}n
RaeM(i, x) (6.4)

where

RaeM(i, x) =

1 if CM(x) = xi

0 otherwise.

In what follows, we use simply Rae(i, x) and Rae(i) when there is no risk

of confusion about M.

Example 6.8. Let us consider the OLFM system given in Example 6.2. Ac-

cording to our computation, for this case we have Rae(1) = 104, Rae(2) =

Rae(5) = 88, Rae(3) = Rae(7) = 72 and Rae(4) = Rae(6) = 64.
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Note that since OLFM systems are non-oblivious influence systems—see

Definition 6.11—then by Lemma 6.2 it is easy to see that the collective de-

cision function under OLFM systems—like in OLF systems—is monotonic.

Consider the collective decision vector in expression (6.1), Definition 6.4.

When the fraction value q is large enough, the expression becomes in

ci,S(x) =

b if xj = b for all j ∈ PG(i),

xi otherwise
(6.5)

where b ∈ {0, 1}, i.e., such that followers maintain their own initial decisions

unless all their opinion leaders share an opposite inclination. This specific

case was studied by [256], where the authors provided an axiomatization

for the Rae index in OLF systems. For all what follows we shall consider

OLFM systems also restricted to this case, so we dispense of the quota q.

Recall by Lemma 6.6 that in oblivious influence systems, the actors of

the same type have always the same satisfaction score. However, this is not

the case for OLFM systems. Observe that in Example 6.2, for instance, the

satisfaction of a follower may be greater than the satisfaction of a mediator,

and equal than the satisfaction of an independent actor.

For what follows, we denote a score as a function f : V → R that assigns

some real value to each actor of the system. The following properties were

introduced by [255, 256] for OLF systems.

Definition 6.18. Let S and S ′ be OLF systems represented by the graphs

G and G′, respectively, with V (G) = V (G′). Let i, j, h be three different

actors. A measure given by the function f : V → R satisfies the properties:

1. Symmetry: if S(i) = S(j) and P (i) = P (j), then f(i) = f(j).

2. Dictator property: if S(i) = V \ {i}, then f(i) = 2n.

3. Dictated independence: if |PG(i)| = |PG′(i)| = 1, fS(i) = fS′(i).

4. Equal gain property: if i ∈ L∪I, j ∈ F and E(G′) = E(G)∪{(i, j)},
then fS′(i)− fS(i) = fS′(j)− fS(j).

5. Opposite gain property: if i ∈ L ∪ I, j ∈ I and E(G′) = E(G) ∪
{(i, j)}, then fS′(i)− fS(i) = fS(j)− fS′(j).

6. Horizontal neutrality: if i ∈ L ∪ I, j ∈ F, h ∈ L, E(G′) = E(G) ∪
{(i, j)} and h ∈ PG(j), then fS′(i)− fS(i) = fS(h)− fS′(h).
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The above are desirable properties for scores. The symmetry property

means that the score for actors with a symmetric position in the system is

the same. A non-symmetrical measure could lead to unconventional results,

e.g., two independent actors with different scores.

In this context, a dictator is an actor that points to all other actors of

the system. Hence, in OLF systems there may be at most one dictator, and

if n > 1, the dictator is always an opinion leader. Furthermore, if there

is a dictator, then all other actors follow this actor, so they adopt as final

decision the initial decision of the dictator. The dictator property states

that the dictators have the highest score as possible. Observe that this

notion corresponds to the dictator players of simple games. Furthermore,

this property is closely related to Lemma 6.5.

The dictated independence states that all the followers with only one

opinion leader have the same score. However, note that a follower who has

only one opinion leader has always to follow this opinion leader. Therefore,

since any actor with only one predecessor is a dummy, for Lemma 6.5 the

dictated independence is equivalent to the following:

if |P (i)| = 1, then f(i) = 2n−1.

The remaining properties involve changes in the structure of the OLF

systems, by assigning to an actor a new opinion leader. These properties

were inspired by similar properties for solution concepts in cooperative game

theory [255, 254]. In particular, the equal gain property is closely related

with the fairness concept by [191].

In a reasonable score, the addition of an influence relationship—a di-

rected edge—from one actor to another should increase the score of the

first actor, because now it is exerting more influence in the system. In this

scenario, we can consider two cases:

On the one hand, if the influenced actor was a follower before the addition

of the edge, then the score of this follower should also increase, because now

it is more difficult to change its initial decision. The equal gain property

states that when a follower gets an additional opinion leader, the changes

in scores of this follower and of its new opinion leader are the same. For a

score that does not meet this property, the addition of a relationship between

these kind of actors could be unfair for one of them.
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On the other hand, if the influenced actor was an independent actor,

then the score of this actor should decrease, because its final decision now

depends of the initial decision of the opinion leader. The opposite gain

property states that when an independent actor gets an opinion leader, the

sum of the scores of these two actors does not change. For a score that does

not meet this property, the addition of a relationship between two actors

could be unfair for the opinion leader, because it is not getting a profit

according to the effort it took to influence the independent actor.

Finally, horizontal neutrality is inspired by the properties considered for

collusion of players in cooperative games with transferable utility [154, 111,

254]. This property states that, if a follower with at least one opinion leader

gets an additional opinion leader, then the sum of scores of the old and new

opinion leaders does not change. This means that the increase in the score

for the new opinion leader comes fully from a decrease in the score for the

other opinion leaders. For a score that does not meet this property, the

new opinion leader could not get a profit according to the effort it took to

influence an additional follower.

It is known that these properties hold for Rae in OLF systems.

Theorem 6.9 ([255, 256]). For OLF systems, the Rae score satisfies the

six properties of Definition 6.18.

To show the axiomatization of satisfaction in OLF systems, in [256] the

authors introduce an additional axiom, which corresponds to the total sum

of the satisfaction scores over all actors, i.e., a satisfaction normalization.

Definition 6.19. Let S be an OLF system represented by a graph G =

(V,E). A score given by the function f : V → R is normalized if it satisfies

the following property:

7. Satisfaction normalization:∑
i∈V f(i) =

∑
x∈{0,1}n |{i ∈ V | C(x) = xi}|.

It is not hard to see that these properties are independent, in the sense

that there is no property that could be implied by other. In fact, note

that the equation of property 4 considers a follower, the one of property

5 considers an independent actor that becomes in a follower, and the one

property 6 does not consider any follower. Moreover, these seven properties

provide an axiomatization of the satisfaction for OLF systems.



6.4. OLFM systems: Axiomatization of Rae index – 193

Theorem 6.10 ([256]). For OLF systems, the Rae score is the unique

measure that satisfies the properties 1, 2, 3, 4, 5, 6 and 7 of Definitions 6.18

and 6.19.

In what follows we shall prove that all the properties for satisfaction in

OLF systems also apply for OLFM systems. However, to establish an axiom-

atization in OLFM systems, we need to generalize the equal gain property

and the opposite gain property, in order to consider the mediators in the

layered graphs. Although it is not required for the axiomatization, we also

introduce a generalization of the horizontal neutrality that is fulfilled for

satisfaction in OLFM systems.

Definition 6.20. Let S and S ′ be two OLFM systems represented by the

graphs G and G′, respectively, such that V (G) = V (G′). Let i, j, h be three

different actors, and k ∈ N such that k ≥ 0. We say that a measure given

by the function f : V → R satisfies the properties:

4b Equal absolute change property: if i ∈ Lk−1, j ∈ Lk and E(G′) =

E(G) ∪ {(i, j)}, then either fS′(i)− fS(i) = fS′(j)− fS(j) or fS′(i)−
fS(i) = fS(j)− fS′(j).

5b Opposite gain property: if i ∈ V , j ∈ I and E(G′) = E(G) ∪
{(i, j)}, then either fS′(i)− fS(i) = fS(j)− fS′(j) or fS′(i)− fS(i) =

fS′(j)− fS(j).

6b Power neutrality for two opinion leaders: if h ∈ Lk−1, i ∈ Lk−1,

j ∈ Lk with PG(j) = {h} and E(G′) = E(G) ∪ {(i, j)}, then either

fS′(i)− fS(i) = fS(h)− fS′(h) or fS′(i)− fS(i) = fS′(h)− fS(h).

Note that the opposite gain property is a generalization of the prop-

erty 5 of Definition 6.18, because when i ∈ L ∪ I, it only holds fS′(i) −
fS(i) = fS(j) − fS′(j). The equal absolute change property is a gener-

alization of equal gain property, because when i ∈ L ∪ I, it only holds

fS′(i)− fS(i) = fS′(j)− fS(j). The power neutrality for two opinion lead-

ers is a generalization of horizontal neutrality, because for k = 2, it only

holds fS′(i) − fS(i) = fS(h) − fS′(h). Moreover, the properties 4b and 6b

were introduced by [255] for OLF systems—i.e., OLFM systems with two

layers—not restricted to unanimity, i.e., so that followers can change their

decisions based on a majority proportion of their opinion leaders.
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The following result proves that all the previous properties are fulfilled

by the satisfaction in OLFM systems.

Theorem 6.11. For OLFM systems, the Rae score satisfies the properties

1, 2, 3, 4b, 5b and 6b of Definitions 6.18 and 6.20.

Proof. For symmetry, for all x ∈ {0, 1}n, P (i) = P (j) implies ci(x) = cj(x).

Further, as S(i) = S(j), if xi 6= xj , then c(x) = c(x− i+ j); and if xi = xj ,

the satisfaction score does not change for the actors i and j.

For the dictator property, if S(i) = V \ {i} we have that i ∈ L and

|I| = |M| = 0, which is the same case proved for OLF systems in [255], i.e.,

as C(x) = xi for all x ∈ {0, 1}n, then Rae(i) = 2n.

For the dictated independence, let be P (i) = {j}, then for all x ∈ {0, 1}n

it holds ci(x) = xj , so the collective choice C(x) is independent of the

decision of the actor i. Hence, let be b = {0, 1}, if C(x) = b, there are

exactly 2n−1 initial decision vectors with xi = b, and 2n−1 with xi = 1− b.
For what follows, note that for every x ∈ {0, 1}n such that CS(x) =

CS′(x), it holds RaeS(i, x) = RaeS′(i, x), for all i ∈ V . Therefore, to

determine RaeS(i) and RaeS′(i) we only need to consider the initial decision

vectors x ∈ {0, 1}n where CS(x) 6= CS′(x).

For the equal absolute change property, first consider that i ∈ L ∪ I

and j ∈ M ∪ F. As cj,S(x) 6= xi and cj,S′(x) = xi, then CS(x) 6= xi and

CS′(x) = xi; hence RaeS′(i, x) − RaeS(i, x) = 1. If cj,S(x) = xj , then

xj 6= xi, so CS(x) = xj and CS′(x) 6= xj , which implies RaeS(j, x) −
RaeS′(j, x) = 1; and if cj,S(x) 6= xj , then xj = xi, so CS(x) 6= xj and

CS′(x) = xj , implying RaeS′(j, x) − RaeS(j, x) = 1. The possible change

of inclinations or decisions of successors of j keeps that CS(x) 6= CS′(x),

and this does not contradicts the above. Thus, by expression (6.4) we have

either RaeS′(i)−RaeS(i) = RaeS′(j)−RaeS(j) or RaeS′(i)−RaeS(i) =

RaeS(j)−RaeS′(j).

Second, consider i ∈ M. Note that in this case, the inclination of actor i

also depends of their predecessors. To deal with this, just replace xi in all

the above equations by ci(x), and note that ci(x) = ci,S(x) = ci,S′(x), so if

xi = ci(x), we obtain the same equations, and if xi 6= ci(x), we obtain that

RaeS(i, x)−RaeS′(i, x) = 1, getting the same final equations that above.

For the opposite gain property, first consider i ∈ L ∪ I and j ∈ I. As it

must hold that xi 6= cj , then CS(x) = xj 6= xi and CS′(x) = xi 6= xj ; hence
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RaeS′(i, x) − RaeS(i, x) = 1 and RaeS(j, x) − RaeS′(j, x) = 1. Second,

consider that i ∈ M∪F. For this case, just replace xi in all the above equations

by ci(x), and note that ci(x) = ci,S(x) = ci,S′(x), so it holds ci(x) 6= xj ,

CS(x) = xj and CS′(x) = ci(x); hence, RaeS(j, x) − RaeS′(j, x) = 1 and

either RaeS′(i, x)−RaeS(i, x) = 1 or RaeS(i, x)−RaeS′(i, x) = 1. Thus,

by expression (6.4) we have either RaeS′(i)−RaeS(i) = RaeS(j)−RaeS′(j)

or RaeS′(i)−RaeS(i) = RaeS′(j)−RaeS(j).

For the power neutrality for two opinion leaders, first consider i ∈ L∪ I,

j ∈ M ∪ F and h ∈ L. As |PG(j)| = 1, cj,S(x) = xh, and as |PG′(j)| =

2, cj,S′(x) 6= xj iff xh = xi 6= xj . Let b ∈ {0, 1}, if CS(x) = b and

CS′(x) = 1 − b, then cj,S(x) = b = xh and cj,S′(x) = 1 − b = xi = xj ,

hence RaeS′(i, x)−RaeS(i, x) = 1 = RaeS(h, x)−RaeS′(h, x). The pos-

sible change of inclinations of successors of j keeps that CS(x) 6= CS′(x),

and this does not contradicts the above. Thus, by expression (6.4) we have

RaeS′(i)−RaeS(i) = RaeS(h)−RaeS′(h).

Second, consider h ∈ M. For this case, just replace xh in all the above

equations by ch(x), and note that ch(x) = ch,S(x) = ch,S′(x), so either

RaeS(h, x) − RaeS′(h, x) = 1 or RaeS′(h, x) − RaeS(h, x) = 1. Finally,

consider i ∈ M∪F. Replacing xi by ci(x), where ci(x) = ci,S(x) = ci,S′(x), we

obtain analogous equations. Therefore we have either RaeS′(i)−RaeS(i) =

RaeS(h)−RaeS′(h) or RaeS′(i)−RaeS(i) = RaeS′(h)−RaeS(h).

Note that the satisfaction normalization of Definition 6.19 remains the

same for OLFM systems, because the collective decision function is the

same. From the previous theorem, since for OLFM systems the satisfaction

score satisfies power neutrality for two opinion leaders, then it also satisfies

horizontal neutrality. Moreover, note that both properties 4b and 5b remain

independent with the others. Indeed, in property 5b the actor j ∈ V (G) is

an independent actor, but in property 4b it is not true, because j belongs

to level k > 1. Furthermore, there is no equation in these properties where

both actors are in the same level, as it happens in property 6.

In what follows we prove an axiomatization of satisfaction for OLFM

systems.

Theorem 6.12. For OLFM systems, the Rae score is the unique measure

that satisfies the properties 1, 2, 3, 4b, 5b, 6 and 7 of Definitions 6.18, 6.19

and 6.20.
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Proof. We know by Theorem 6.11 that in OLFM systems the Rae score

satisfies properties 1, 2, 3, 4b, 5b, 6 and 7. To prove uniqueness it remains

to show that, on the assumption that f : V → R satisfies the seven axioms,

then this score must be equal to Rae.

By Theorem 6.10, we know that if there are no mediators—i.e., we have

an OLF system—then property 4b is replaced by property 4, so the score is

equal to Rae. Now we proceed constructively.

First, given an OLFM system S without mediators, we can transform

a follower i in a mediator by connecting it with an independent actor j,

obtaining a new OLFM system S ′. Thus, by property 5b, it holds either

fS′(i) − fS(i) = fS(j) − fS′(j) or fS′(i) − fS(i) = fS′(j) − fS(j). As fS(i)

and fS(j) are uniquely determined by Theorem 6.10, both equations yield

a system of linear equations easy to solve, so that the unknowns, fS′(i) and

fS′(j), can be uniquely determined.

From the above, note that actor j in S ′ becomes in a follower. And

also note that we can transform step by step other independent actors j in

followers, such that PG′(j) = {i}. In each step, satisfaction score can be

uniquely determined by using the same property.

Secondly, suppose that we have an OLFM system S with only one layer

of mediation, like the obtained above, with a follower j ∈ L3 so that PG′(j) =

{i}. Now we can transform a follower h ∈ L2 in a mediator, by connecting it

with follower j, obtaining a new OLFM system S ′. Thus, by property 4b, it

holds either fS′(h)−fS(h) = fS(j)−fS′(j) or fS′(h)−fS(h) = fS′(j)−fS(j).

This is basically the same kind of system of linear equations obtained with

property 5b), and as fS(h) and fS(j) are uniquely determined, then fS′(h)

and fS′(j) can also be uniquely determined. We can also repeat this process

by transforming new followers h ∈ L2 in mediators, obtaining in each step

that satisfaction can be uniquely determined.

Of course, the same kind of transformations can be done to create lower

layers, and therefore to produce any OLFM system.

Finally, note that property 1 implies that there is a constant c ∈ R such

that for all i ∈ I, f(i) = c. Hence, for every OLFM system, we can provide

new independent actors and then using them as opinion leaders, followers

or mediators, in such a way that f can always be uniquely determined.



Chapter 7
Centrality in Social Networks

The aim of this chapter is to propose new centrality measures that can be

used to analyze the relevance of the participants in a social network within

a process related to spread of influence.

In Section 7.1 we define some traditional centrality measures, namely

degree, closeness, betweenness, flow closeness and flow betweenness. After

that, we provide new centrality measures. The first two correspond to the

Banzhaf and the Shapley-Shubik power indices, which can be bring to this

centrality context through the use of influence games. There is some pre-

vious work where the Shapley-Shubik index is used as centrality measure

for specific game-theoretic networks [193, 173], but as far as we know, the

Banzhaf index has not been used before for this purpose. Other two new

centrality measures are the effort and the satisfaction, that take advantage

directly from the notion of influence games. While effort’s centrality mea-

sures the effort required to make the social network follow the opinion of an

individual, satisfaction’s centrality measures the level of satisfaction of each

individual, so that it is influential if and only if it is taken into account. The

last family of centrality measures consider only influence graphs, so they

dispense of the quota of influence games. This help us to measure centrality

in time polynomial in the size of the network.

In Section 7.2 we perform an experimental comparison between these

new centrality measures and the classic ones. We compare them in some real

social networks on which the computations can be performed in reasonable

time.

197
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7.1 Centrality Measures

A social network can be represented by a graph, where each vertex is an

actor, individual, agent or player, and each edge connecting two vertices

represents an interpersonal tie among the respective actors. These graphs

may usually be directed, so that the interpersonal ties represent either a

flow of communication or an influence relation from one actor to another.

Furthermore, the graphs may be weighted, in such a way that the weight

of every edge represents the strength of that interpersonal tie. As far we

know, there are no traditional centrality measures defined for labeled graphs,

despite of the fact that a labeling function in a social network may provide

interesting additional information about the actors.

In this section we consider static networks, defined beforehand, so that

the number of vertices remains unchanged and there is no creation, deletion

nor strengthening of interpersonal ties. Recall that undirected graphs can be

treated as symmetric directed graphs, considering that an undirected edge

{i, j} between two actors i and j is the same that two directed edges (i, j)

and (j, i).

The centrality of a vertex refers to its relative importance inside of a

network, and depends of structural aspects at a global level. Centrality is

one of the most studied concepts in network analysis, and since the late 1970s

in social network analysis [85, 86]. There are several centrality measures that

provide different importance criteria to the vertices [143]. Three of the most

well-known and widely applied are defined as follows [261, 150].

Definition 7.1. Let be a social network with a set of vertices V and i ∈ V .

• The degree centrality (CD) corresponds to the indegree or outdegree

of each actor, i.e.,

C−D(i) = δ−(i) or C+
D(i) = δ+(i).

In normalized version:

C ′−D (i) =
δ−(i)

n− 1
or C ′+D (i) =

δ+(i)

n− 1
.

For undirected networks, δ(i) = δ−(i) = δ+(i), so CD is without dis-

tinction C−D and C+
D .
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• The closeness centrality (CC) is the inverse of the sum of shortest paths

from i to the other actors, i.e., let D be the usual distance matrix of

the network,

CC(i) =
1∑

i 6=j(D)ij
.

In normalized version:

C ′C(i) =
n− 1∑
i 6=j(D)ij

.

If there is no path from i to j, we assume that (D)ij = n.

• Let bjk be the number of shortest paths from the vertex j until k, and

bjik the number of these shortest paths that pass through i, with i 6= j,

i 6= k and j 6= k, then the betweenness centrality (CB) is

CB(i) =
∑
j 6=k

bjik
bjk

.

In normalized version:

C ′B(i) =
1

(n− 1)(n− 2)

∑
j 6=k

bjik
bjk

.

If there is no path from j to k, then
bjik
bjk

= 0.

There are many other centrality measures based on the previous ones,

such as the Katz centrality, Bonacich centrality, Hubbell centrality, Newman

betweenness, among others [247]. The differences between these variations

are few, and do not involve a change of paradigm. Additionally, there are

other measures based on other ideas, like Eigenvector and Alpha central-

ity [247]. Some of these measures were initially defined only for undirected

graphs. However, some of them can naturally be generalized to directed

graphs and even to weighted graphs [243, 199].

Note that there are also traditional centrality measures that were defined

exclusively for weighted graphs. That is the case of the flow betweenness [86]

and the flow closeness [104], which are based on flow networks.

Definition 7.2. Let mjk be the maximum flow from the node j to the node

k, and mjik the maximum flow from j to k that passes through the node i,

with i 6= j, i 6= k and j 6= k.
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• The flow betweenness centrality (FB) is given by

FB(i) =
∑
j 6=k

mjik.

In normalized version:

F ′B(i) =

∑
j 6=kmjik∑
j 6=kmjk

.

• The flow closeness centrality (FC) is given by

FC(i) =
∑
i 6=k

mik.

Recently have been defined new centrality measures for flow networks,

based on the previous ones [104].

Henceforth, we represent social networks as influence games (G,w, f, q),

so we assume that N = V . The labeling of the vertices can be conditioned

to the nature of the network. Note that the isolated vertices can not be

convinced in any way. Since a power index is a measure of the importance

of the players in a game, then we can use them as centrality measures,

interpreting that an actor is more central in the network while it is more

necessary to generate successful teams. In this scenario, observe that, like

CB, both the Banzhaf index β—from now on Bz—and the Shapley-Shubik

index Φ—from now on SS—correspond to medial measures, in the sense that

they take as reference the sets of actors which pass through a given vertex.

Other measures like CD or CC are radial measures in the sense that they

take as reference a given vertex which starts or ends some paths through

the network [247].

Influence games can also provide new criteria to determine measures

of centrality. The following centrality measure, for instance, takes advan-

tage of the labeling function. Note that it does not consider explicitly the

weight function, although it is implicitly considered in the spread of influ-

ence. Other measures that consider the weight function could be defined as

well.

Definition 7.3. Let (G,w, f, q) be an influence game representing a social
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1c 4 d
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Figure 7.1: Influence game representing a small social network.

network, the (minimum) effort required by the network to choose a success-

ful team that contains a required actor is given by

Effort(i) = min{f(S) | |F (S ∪ {i})| ≥ q}.

A normalized version of the effort centrality measure (CE) is

CE(i) =
f(N)− Effort(i)

f(N)
.

Note that while greater is the required effort for a vertex, this vertex

should be less central.

Example 7.1. Let us consider the influence game given by the influence

graph of Figure 7.1 and a quota q = 4. Regarding the Banzhaf index, since

actor b is the unique critical player, we have that η(b) = 8 and Bz(b) = 1,

while η(j) = 0 and Bz(j) = 0 for j ∈ {a, c, d}. Regarding the Shapley-Shubik

index, as |{b}| = 1, |{b, a}| = |{b, c}| = |{b, d}| = 2, |{b, a, c}| = |{b, a, d}| =
|{b, c, d}| = 3 and |{b, a, c, d}| = 4, then κ(b) = 24 and SS(b) = 1, while

SS(j) = 0 for j ∈ {a, c, d}. Furthermore, Effort(b) = 1, Effort(a) =

Effort(c) = 2 and Effort(d) = 5, so CE(b) = 6/7 > CE(a) = CE(c) =

5/7 > CE(d) = 2/7.

The following measure is based on the satisfaction score defined in [255],

which is equivalent to the Rae index as we saw in Section 6.3.

Definition 7.4. Let (G,w, f, q) be an influence game representing a social

network, Wi = {X ⊆ V (G) | i ∈ X, |F (X)| ≥ q} and L−i = {X ⊆ V (G) |
i /∈ X, |F (X)| < q}, the satisfaction centrality measure (CS) is

CS(i) =
|Wi|+ |L−i|

2n
.

Note that we could define other measures based on CE or CS . For
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instance, we can define a simplified version of the effort, based on the pa-

rameter width:

Width(i) = min{|S| | |F (S ∪ {i})| ≥ q}

and to consider

CW (i) =
n− Width(i)

n
.

We have analyzed this measure CW , but it does not provide significant

differences on the results, so it is not considered in this thesis. Note that

the normalizations chosen for both CW and CE require a subtraction in the

numerator, like for CC .

In the next section we shall see that these new centrality measures are

useful for social networks with a relatively small number of actors. How-

ever, it is known by Theorem 5.7 that computing the Banzhaf value and

the Shapley-Shubik value for influence games is #P-complete, as well as by

Section 6.3.1 that computing the satisfaction score is usually a hard prob-

lem. Fortunately, we can define an additional family of centrality measures

that dispense of the quota of influence games, so they only need an influ-

ence graph and thus can be computed in polynomial time in the size of the

network.

Definition 7.5. Let (G,w, f) be an influence graph representing a social

network, the k-influence centrality is given by

Fk(i) =
∑

X⊆V,|X|=k,i∈X

|F (X)|.

In normalized version:

F ′k(i) =
Fk(i)∑
j∈V Fk(j)

.

Thus, for instance, when k = 2 the 2-influence centrality is equals to

F2(i) =
∑
j∈V
|F ({i, j})|.

Observe that flow measures consider networks where there exists infor-

mation that is transported through the edges with an associated cost. In

this case, it has influence exerted by the actors to other actors, and each
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Figure 7.2: Social network of monkeys’ interaction.

actor has an associated label that represents the difficulty to be influenced.

7.2 Cases of Study

In this section we consider three real social networks to compare the new

centrality measures with the traditional ones. The first one, monkeys’ in-

teraction, corresponds to an unlabeled and undirected graph; the second

one, dining-table partners, is a weighted directed graph; and the third one,

student Government discussion, is a weighted and labeled directed graph.

We finish with an additional social network with a high number of actors.

For this weighted directed graph we apply the 2-influence centrality measure,

obtaining a good computational performance.

7.2.1 Monkeys’ Interaction

Everett and Borgatti [77] provided a network that represents the real in-

teractions amongst a group of 20 monkeys observed during three months

alongside a river. It is an undirected graph where an edge {i, j} exists when

monkeys i and j were witnessed together in the river. The graph is formed

by 6 isolated vertices and a connected component of 14 vertices, as shown

in Figure 7.2. The authors considered the centrality measures CD, CC and



204 – Chapter 7. Centrality in Social Networks

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CS-C1
CS-C2
CS-C3
CS-C4
Bz-C1
SS-C1
Bz-C2
SS-C2
Bz-C3
SS-C3
Bz-C4
SS-C4

Monkeys

S
co

re

Figure 7.3: Comparisons between Bz, SS and CS measures for every case in
Monkeys’ interaction network.

CB, as well as generalized versions of these measures for groups instead of

individuals. Years later, Latora and Marchiori [150] use the same network to

compare the previous results with the measure called information centrality.

In order to analyze this network we assume that the graph is symmetric,

and that the weight function is defined by w(e) = 1, for all edge e ∈ E.

In the context of our work, this means that a monkey can influence and be

influenced by other monkey if and only if they have interacted before. To

deal with influence games we use a quota q = 14, which corresponds to the

maximum spread of influence that can be obtained from a monkey. This

helps to obtain lower measures in isolated vertices, as it is to be expected

from a centrality measure. Now we consider the following natural labeling

functions for every vertex i ∈ V :
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Figure 7.4: Comparisons between Bz, F2 and F3 measures for every case in
Monkeys’ interaction network.

• Case 1 (C1): Minimum influence required to convince, f(i) = 1.

• Case 2 (C2): Average influence required, f(i) = ddeg(i)/2e.

• Case 3 (C3): Majority influence required, f(i) = bdeg(i)/2c+ 1.

• Case 4 (C4): Maximum influence required, f(i) = deg(i).

The comparison between the rankings for traditional measures and the

new ones are presented on Table 7.1. Note that for minimum influence

required to convince (C1), we have that |F ({i})| = 14 for every non-isolated

vertex i. Thus, for this case the new measures are not good representatives,

because all the non-isolated vertices assume the same score. By the same

reason, F3-C1 produces an extreme case, when isolated actors are more

central than the non-isolated ones, and CE does not provide a good ranking

for any case. However, for the remaining cases the labeling function is

relevant.

For Bz, SS, CS and sometimes for F2 the only pairs of monkeys with

the same ranking are (10, 17) and (13, 15). These measures allow a more
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Figure 7.5: Comparisons between new and traditional centrality measures.

relevant hierarchization than the given by the others. Note that Bz, SS and

CS provide very similar rankings. In Figure 7.3 we can see that Bz and SS

produce not only very similar rankings, but also similar scores. Moreover,

subtracting a value equals 0.5 to the scores of CS we obtain also similar

values than for the power indices. This is due to the definition of the mea-

sures. Furthermore, remember by Lemma 6.5 that the score of satisfaction

or Rae index is always greater or equal than 2n−1, so it is predictable that

the normalization produces scores greater or equal than 0.5. Additionally,

note that for CS the difference between the scores of the actors grows as

the differences among the labels of the vertices—from case C1 until C4—are

higher. Since Bz, SS and CS produce relatively similar results, we compare

the remaining new measures only with Bz.

See Figure 7.4. As we can see, F2 and F3 are very similar, and excluding

case C1, they recognize—in the same way than the previous measures—the

same actors as the most relevant. In contrast to CS , the measures F2 and

F3 are lower from one case to the next one, and the variability of the results

is lower in general.
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Figure 7.6: Original network for dining-table partners.

In Figure 7.5 we compare the traditional measures with Bz and F2-C2.

The results for the remaining measures are not so much different than for

the latter two. Leaving aside the case 1 for the new measures, there are

similarities between traditional measures and new ones. In the same way

than traditional measures, the most central monkey for Bz, SS, CS , F2 and

F3 is 3. The second score is for monkey 12, except for Bz-C3 and SS-C3,

where it is replaced by monkeys 13 and 15. Third score is for monkeys 13

and 15, except for CS-C4, F2-C4 and F3-C4, where they are replaced by

monkey 8. Finally, as expected, for almost every case the less central non-

isolated monkey is monkey 9, except for Bz-C2, SS-C2 and CS-C2, in which

case is monkey 5.

7.2.2 Dining-Table Partners

A second real network is illustrated in Figure 7.6. It was firstly provided by

a sociometric research [185] and, years later, it was also used to be handled

and displayed by a computational application [57].

It represents the companion preferences of 26 girls living in one cottage at

a New York state training school. Each girl was asked about who prefers as

dining-table partner in first and second place. Thus, each girl is represented
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Figure 7.7: Influence graph from the original dining-table partners network.

by a vertex, and there is a directed edge (i, j) per each girl i preferring girl j

as dining-table partner. Every vertex has an outdegree equals 2: edges with

weight 1 denote the first option of the girl, and edges with weight 2 denote

her second option.

We could assume that a girl has some ability to influence over another

one which has chosen her as a partner. Figure 7.7 shows the corresponding

network of this influence game, reversing each arc (i, j) by (j, i), so that

a vertex points to another when the first one has some influence over the

second one. Further, the weights of the edges must be exchanged, so that an

original edge (i, j) with weight 1 now becomes in an edge (j, i) with weight

2, and vice versa. This is due to a girl has more influence over another one

if that other has chosen her in first place rather than in second place. Of

course, now every vertex has an indegree equals 2: one edge with weight 1

and the other with weight 2.

Instead of the Monkeys’ interaction network, here there are no isolated

vertices, but we can still obtaining scores for Bz and SS measures equals

zero. For instance, see the scores for Bz-C1 and SS-C1 on Figure 7.8.

A common voting system is the one of absolute majority, in which an

option wins whether it has more than the half of the votes. According to

this idea, we consider for our experiments a quota q = 14, so that a team is
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Figure 7.8: Comparisons between Bz, SS and CS measures for every case in
Dining-table partners network.

considered successful if and only if through its spread of influence, this team

achieves to convince most of the girls. Moreover, for every vertex i ∈ V we

consider the following reasonable labeling functions:

• Case 1 (C1): Minimum influence required to convince, f(i) = 1.

• Case 2 (C2): Average influence required to convince, f(i) = 2.

• Case 3 (C3): Maximum influence required to convince, f(i) = 3.

The comparison between some traditional measures and the new ones

are shown on Table 7.2. We avoid the indegree centrality C−D because since

the indegree for each vertex is always 2, it does not provide any relevant

information.

Analogously to the previous section, Bz-C1, SS-C1, CS-C1 and CE have

several vertices with the same ranking, but when the required influence to

convince increases, the values of the measures are more diverse for the power

indices and satisfaction centrality. On the other hand, the measures Bz-C3,

SS-C3 and CS-C3 have the same values only for girls 1 and 2. Indeed, in
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Figure 7.9: Comparisons between SS, F2 and F3 measures for every case in
Dining-table partners network.

this sense girls 1 and 2 are equivalent for all the considered measures. Fur-

thermore, as in the previous network the measures Bz, SS and CS produce

very similar rankings and scores. See Figure 7.8. For the remaining com-

parisons we use the measure SS, because for some of the three studied cases

the results of the previous measures are similar to this one.

In Figure 7.9 we can see that the higher variability is obtained for the

Case 2. Note that F2 and F3 are very similar too. Moreover, F2-C1 and

F3-C1 have a similar behavior than SS-C1 and Bz-C1, although they present

important differences on the actors 17, 19 and 21. To compare with the

remaining measures, we consider in Figure 7.10 as representatives the mea-

sures SS and F2. In that figure we can see that for this network different

measures provide different centrality criteria.

The most central girls are highlighted in Table 7.2. Observe that girl 15

has a high centrality in all measures, but the high centrality of girl 9 depends

of the considered case: for Case 1 and 3, girl 9 has a high centrality, but in

Case 2 is far less central. Note that girl 13 is fairly central in C+
D and for

the Case 3. For the other two cases, in despite of its high outdegree, only

exist paths from this vertex to another four, which is a severe restriction for

the new measures.
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Figure 7.10: Comparisons between SS, F2 and some traditional measures.

Additionally, unlike traditional measures, girl 10 plays an important role

in our new measures. This is because in despite of neither having a high

outdegree nor having too short paths to more distant vertices, she plays

an essential role in the spread of influence to convince distant sets of girls,

which in turn have no convincing power over her.

7.2.3 Student Government Discussion

Out third case of study considers the social network illustrated at the top of

Figure 7.11. This network represents the communication interactions among

different members of the Student Government at the University of Ljubljana

in Slovenia. Data were collected through personal interviews in 1992 [117],

being used later [57].

Every directed edge is a communication interaction and all of them have

the same weight equals 1. Each vertex is a member of the Student Govern-

ment, and unlike the previous cases, here vertices are labeled beforehand:

There are three advisors labeled 1, seven ministers labeled 2, and one prime

minister labeled 3. Note that these labels are not related with the spread of

influence.

We slightly modified this network to obtain the influence graph at the

bottom of Figure 7.11. We assume that every communication interaction is
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Figure 7.11: Student Government discussion network (up) and the adapta-
tion to influence graph (down).

an attempt to influence over another student, and the capacity to influence

depends on the student’s position. For instance, the advise of a prime min-

ister does not have the same effectiveness—marked with weight 3—than the

advise of an advisor—marked with weight 1. Furthermore, since the labels

of the vertices should represent the difficulty of each student i ∈ N to be

influenced according to their position in the Student Government, they have

been changed by the following values:

• f(i) = 1 if i is an advisor.

• f(i) = ddeg−(i)/2e if i is a minister.
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Scores

Node C−D C+
D CC CB Bz SS CE CS F2 F3

1 0.2 0.3 0.357 0.009 0.164 0.176 0.91 0.516 0.110 0.100
2 0.5 0.1 0.200 0.004 0.154 0.076 0.45 0.515 0.084 0.086
3 0.2 0.6 0.435 0.023 0.164 0.176 0.91 0.516 0.110 0.100
4 0.7 0.2 0.208 0.015 0.005 0.009 0.55 0.500 0.079 0.085
5 0.2 0.5 0.238 0.022 0.164 0.176 0.91 0.516 0.094 0.091
6 0.4 0.5 0.238 0.127 0.164 0.176 0.82 0.516 0.094 0.091
7 0.6 0.4 0.227 0.110 0.005 0.009 0.64 0.500 0.079 0.085
8 0.8 0.4 0.227 0.159 0.005 0.009 0.55 0.500 0.079 0.085
9 0.2 0.4 0.227 0.007 0.005 0.009 0.82 0.500 0.076 0.085
10 0.0 0.4 0.556 0.000 0.164 0.176 0.91 0.516 0.119 0.108
11 0.3 0.3 0.227 0.122 0.005 0.009 0.82 0.500 0.076 0.085

Rankings

Node C−D C+
D CC CB Bz SS CE CS F2 F3

1 7-10 8-9 3 8 6-10 7-11 1-4 1-5 2-3 2-3
2 4 11 11 10 11 6 11 6 6 6
3 7-10 1 2 5 6-10 7-11 1-4 1-5 2-3 2-3
4 2 10 10 7 1-5 1-5 9-10 7-11 7-9 7-11
5 7-10 2-3 4-5 6 6-10 7-11 1-4 1-5 4-5 4-5
6 5 2-3 4-5 3 6-10 7-11 5-7 1-5 4-5 4-5
7 3 4-7 6-9 4 1-5 1-5 8 7-11 7-9 7-11
8 1 4-7 6-9 1 1-5 1-5 9-10 7-11 7-9 7-11
9 7-10 4-7 6-9 9 1-5 1-5 5-7 7-11 10-11 7-11
10 11 4-7 1 11 6-10 7-11 1-4 1-5 1 1
11 6 8-9 6-9 2 1-5 1-5 5-7 7-11 10-11 7-11

Table 7.3: Comparison of centrality measures for the adapted version of the
Student Government discussion network. The more central values of the
measures are highlighted. We consider for influence games a quota q = 6.

• f(i) = deg−(i) if i is the prime minister.

Note that this labeling function provides a finer classification of the types

of actors in the network. Moreover, for this network we consider a majority

influence required to win, i.e., a quota q = 6.

Table 7.3 shows the results of the centrality measures corresponding to

the adapted network of Figure 7.11.

Note that for this network, traditional measures provide different rank-

ings. This can also be seen in Figure 7.12. In fact, none of the most central

actors for CC and CB coincide, and while the most central vertex for CC

is the advisor 10, this is the less central according to CB. This is because

vertex 10 has a high accessibility to all other vertices, but it is not a good

intermediary for connecting distant vertices through paths. In turn, regard-

ing the new centrality measures, as usual Bz and SS are similar, as well as

F2 and F3. Moreover, these last two measures are also similar to CS . For

this network, note also that CB and F2 produce the highest hierarchization
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Figure 7.12: Comparisons between both new and traditional centrality mea-
sures for Student Government discussion network.

of the actors.

In general, note that the prime minister—node 2—does not have a high

centrality. Regarding the power indices and the measures F2 and F3, this

is because this actor has only been reported with minister 8, on which may

exert some influence, but he has received many interactions—which we can

understand as comments, advice, suggestions, etc.—from other ministers

and advisors, exerting a strong influence on him. On the other hand, for

CE the low centrality of the prime minister is explained because he can not

influence any other member by himself, and at the same time his activation

requires the most highest effort.

7.2.4 Facebook interactions

We finish this chapter by considering a bigger social network, formed by

1, 899 students at University of California, Irvine. These students, intercon-

nected by Facebook in the period between April to October 2004, shared

59, 835 online messages in total, represented by 20, 296 directed edges. The
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Figure 7.13: Centrality scores for the Facebook interactions network, by
considering the F2 measure with p = 0.5.

weight of each edge represents the number of messages sent from one student

to another. This network can be downloaded from [197]. It was presented

in [198] and also used in [200, 206] for different purposes than those discussed

in this chapter.

In this case, for the labeling function we consider a parameter p ∈]0, 1]

such that for each vertex i ∈ V ,

f(i) =
⌊
p ·

∑
j∈P (i)

w(j, i)
⌋

where w(j, i) is the weight of the edge (j, i) in the network.

The considered measures were implemented in C++. In Figure 7.13 we

show the score results for the 2-influence centrality measure by considering
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Figure 7.14: Centrality scores for the Facebook interactions network, by
considering the F2 measure with p = 1.

a parameter p = 0.5. For an Intel Core 2 Duo processor clocked at 3.16

GHz, it took 20 minutes and 23.834 seconds of computation. In this case,

the most central vertex is 9 with a score F2(9) = 77, 241; the second one

is vertex 400 with F2(400) = 75, 330, and the third one is vertex 523, with

F2(523) = 65, 810.

Analogously, for p = 1 it took 14 minutes and 30.354 seconds of compu-

tation. The results are shown in Figure 7.14. In this case, the most central

vertex is 523, with F2(523) = 30, 769; the second one is vertex 400 with

F2(400) = 30, 767, and the third one is vertex 42 with F2(42) = 28, 867.

Note that measures based on the quota q for influence games—like Bz,

SS, CE or CS—can not be computed in polynomial time. Indeed, none of

these measures could obtain any result even in several weeks of computation.
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Concluding Remarks

In this thesis we have studied the computational aspects of many problems

of simple games. By introducing the influence games, we have been able

to apply several properties and problems from game theory, voting theory

and decision theory into other fields like social network analysis, multi-agent

systems and social choice.

Chapters 1 and 2 were devoted to explain the main known concepts

related to this thesis.

In Chapter 3 we have summarized the most usual forms of represen-

tation for simple games, regular games and weighted games. We examined

and obtained results about the complexity of the conversion problem related

to these representation forms. In some cases where the conversion problem

cannot be computed in polynomial time, we designed algorithms to solve this

problem with polynomial-delay. Our results show that MWF, PCBF and

FCBF representations are very compatible between them and with their re-

lationship with the others. However, bear in mind that FCBF—introduced

for regular games—will always be the most succinct of these forms of rep-

resentation. On the other hand, BDDF seems to have a similar perfor-

mance than SWF—recall that the second one can only be used to represent

regular games. Indeed, both BDDF and SWF can be useful because of

their succinctness, although the games in SWF and BDDF may also have

an exponential size in terms of n, i.e., the number of players. In turn,

weighted games have a more succinct form of representation, namely WRF,

based on a n + 1-vector of integers. However, it is known that there are

weighted games whose weighted representation requires that maxi∈N{wi}
to be (n+ 1)(n+1)/2/2 [208]. Furthermore, converting a weighted game from
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any of the considered forms of representation to WRF turns out to be poly-

nomial, but converting from WRF to any other representation requires ex-

ponential time and can not be done in polynomial time. We conjecture that

WRF SWF can also be solved with polynomial-delay. Also recall that

WRF is not univocal, in the sense that two weighted representations may

represent the same game. In this vein, another interesting problem that is

currently being studied by several researchers is to find the minimal integer

representations of weighted games, i.e., the weighted representation given

by the vector with the minimum integer numbers [22].

In Chapter 4 we started with a survey of the main computational com-

plexity results regarding many properties, parameters and solution concepts

for simple games. Although the list pretends to cover a wide spectrum of

problems in simple game theory, it is not exhaustive. In particular, there

exist several other power indices that have not been studied in this thesis

and could be considered in the future, such as the Holler index, the Deegan-

Packel index, the Johnston index, among many others. Several comparisons

and open problems between power indices are presented in [21]. Another

possible line of work is to find approximations of the values of power indices,

by using probabilistic techniques [22].

In this chapter we have solved some relevant open problems, such as

the decisive problem for simple games, regular games, and weighted games,

which is equivalent to the duality problem of hypergraphs or monotone

Boolean functions. For simple games in MWF and regular games in SWF, it

remains open to show whether the IsDecisive problem is polynomial-time

solvable or not. This problem remains open since 1996 [84] from the context

of hypergraphs, Boolean functions and propositional logic. Furthermore, we

solved the problem of computing the width parameter for a simple game

in MWF, and we introduced the problem of deciding whether a player is

dummy or not in a regular game in SWF. In general, most of the open prob-

lems are related to regular games in SWF, as for instance the IsDummy

problem. These games have been studied enough in MWF, where many

problems can be solved in polynomial time. However, as we have seen in

this chapter and the previous one, it is also relevant to find out the compu-

tational complexity of the problems for regular games in their most succinct

representation form.

These results, together with the ones in the previous chapter, can be
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useful for having at hand a comparative of the different usual forms of rep-

resentation. When we want to solve some decision problem on simple games,

if we know how the problem behaves for some particular form of represen-

tation, then we can know under which other forms of representation the

problem has similar complexity. For instance, since the IsDecisive prob-

lem belongs to QP for simple games in MWF—see Theorem 4.3—now we

deduce that it is also in QP for simple games in PCBF and for regular games

in FCBF.

At the end of this chapter we proposed a way to explicitly enumerate

decisive regular games. The ordering of the games within a lattice seems

helpful to list without repetition the various elements of a class. The pro-

posed enumeration algorithm is presented as a first line of research that

could be explored in depth in future work. It remains open to prove the

correctness of the algorithm, and attempting to parallelize the proposed

algorithm, in order to improve its performance.

Chapter 5 is perhaps the most innovative contribution of the thesis.

Inspired in the threshold model of spread of influence, the influence games

represent winning coalitions as successful teams that can convince enough

actors to perform a task. This approach reveals the importance of the

influence between some players over others in order to form successful teams.

Influence games are a new line of research that relates cooperative game

theory with other topics like multi-agent systems or social networks.

Influence games have been introduced and extensively studied in the

thesis. For these games we have determined the computational complexity

of the main computational problems considered in Chapter 2. As a succinct

way to represent simple games, several problems are hard in the context of

influence games. However, there are also many properties of players and

coalitions that are polynomial-time solvable. Moreover, there exist hard

problems that for interesting subfamilies of influences games can be solved

in polynomial time. It is interest to analyze influence games under other

spreading models, in particular the linear threshold model with random

thresholds. Another possible area of future research is to study both the

counting problem and enumerating problem for influence games. There

are many works related to count graphs that could help to this purpose.

Furthermore, it would be of interest to determine the complexity of the

conversion problems related to families of simple games defined through
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graphs, such as influence games or other families such as the ones studied

in [44].

The last two chapters of this thesis emerge as applications of influence

games. In Chapter 6 we have provided several collective choice models based

on variations of influence games. For mediation systems, based on influence

games restricted to star influence graphs, we proved that many problems

become polynomial-time solvable, since they can be reduced to the problem

of solving some systems of linear inequalities.

We also studied the satisfaction measure for the opinion leader-follower

systems—OLF systems—and other influence systems inspired in this one.

Interestingly enough, the satisfaction measure coincides with the well es-

tablished Rae index, that is closely related to the Banzhaf value over the

set of monotonic decision functions which can be casted as characteristic

functions of simple games. We proved that even for influence systems on bi-

partite digraphs, the satisfaction measure is hard, in the sense that it cannot

be computed by a sub-exponential time algorithm, unless the #P-complete

#3-Sat problem could be computed in sub-exponential time. Besides this

hardness result, we provided subfamilies of influence systems where the com-

putation of the measure becomes polynomial-time solvable. We have shown

that Rae and Bval can be solved in polynomial time for oblivious strongly

mediated influence system and oblivious star influence systems. It will be of

interest to know if the problems can be solved in polynomial time for those

families of graphs when we use the non-oblivious decision function. In this

vein, it remains open to study the computational complexity of other mea-

sures for OLF systems and their generalizations through mediators. Due

to the relationship between these models and simple games, all the power

indices introduced in the context of simple games can also be studied here.

As the satisfaction measure, power indices generally have a high complexity.

Nevertheless, it is possible that under some restrictions, these measures may

be computed in polynomial time. A first measure that could be studied is

the power measure defined in [255, 256] because it is strongly related with

satisfaction. However, the power measure has additional difficulties, since

it concerns both the set of minimal winning coalitions Wm and the set of

maximal losing coalitions LM of simple games. All in all, for any actor i in a

collective decision making modelM, power measure (POW) can be defined

by the following:
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POW(i) = |{x ∈ {0, 1}n | i has a swing in CM(x)}|
= |Wm

i |+ |LM−i|

where Wm
i = {X ⊆ V | i ∈ X, (X ∩ N) ∈ Wm, (X \ {i} ∩ N) ∈ LM}

and LM−i = {X ⊆ V | i /∈ X, (X ∩ N) ∈ LM , (X ∪ {i} ∩ N) ∈ Wm}. While

satisfaction is related to the Chow parameters, power measure is related with

the Holler index [119], also studied in the context of simple game theory.

Additionally, in this chapter we provide an axiomatization for the sat-

isfaction measure for OLFM systems, thus generalizing the corresponding

results for OLF systems proposed in [256]. OLFM systems are OLF systems

that incorporate mediators, allowing the presence of several layers of influ-

ence, and hence establishing a more general hierarchy among the different

actors. Equation (6.3) suggests that through small modifications, such as a

change in the normalization of Definition 6.19, it is also possible to define an

axiomatization of the Banzhaf value for OLFM systems. In the same vein,

note that there exist other axiomatizations of the Banzhaf value and other

power indices for simple games [66, 21]. It also remains open to determine

if the POW measure admits an axiomatization for OLF systems.

Our results show that there are many social models whose characteris-

tics can be efficiently addressed from a computational point of view. One

interesting direction for future work is to identify real social systems, whose

behavior could be analyzed with the techniques developed in this thesis. For

instance, by allowing connections among actors that belong to not imme-

diately consecutive layers. A first approach could be dealing with the star

mediation influence games proposed in Section 6.1.3. The interesting fact

of this model is that despite it breaks the layered structure of the graphs, it

is still simple, because the fraction value only affects the mediator.

Finally, in Chapter 7 we define new centrality measures for social net-

works represented by influence games. We have shown that weighted and

labeled social networks can represent influence games, and thus we can define

several measures over the set of actors in order to determine the relevance

of these actors in the network. Our experimental results do not contradict

the relevance criteria provided by traditional centrality measures. In some

cases, the resulting hierarchization of the players between the new central-

ity measures and the traditional ones are almost equal. However, there are

cases where the results are quite different. This is the case of the Student



226 – Concluding remarks

Government discussion network studied in Section 7.2.3. Thus, the new

proposed centrality measures provide new approaches and insights for so-

cial network analysis. Moreover, the new centrality measures defined here

can be naturally used for edge-labeled and vertex-labeled directed graphs, a

feature that is not supported by the most usual measures of centrality [31].

Influence games allow us to consider any power index as centrality mea-

sure. However, the biggest problem about some of these measures is their

high computational complexity. To overcome this difficulty, we have pro-

posed some alternative measures that consider influence graphs and they

can be computed very efficiently for social networks with a huge number of

actors. In this line, we proposed in Definition 7.5 the family of k-influence

centrality measures. It could be interesting to study other possibilities. For

instance, let d(i, j) be the size of the shortest path from the vertex i to j,

then a measure could be based on the influence of the set of neighbors at a

distance k, i.e.,

FNk (i) =
∑

{j∈V |d(i,j)=k}

|F ({i, j})|.

Another interesting line for future research is the comparison of the pro-

posed centrality measures with others more related with flow networks, such

as the flow betweenness and the flow closeness of Definition 7.2, or the re-

cently defined flow-cost betweenness centrality measure [104]. An example

of social network used to compare flow measurements is the Iranian Gov-

ernment’s network [104]. In addition, there are several other repositories of

social networks that could be used as cases of study [197, 239].
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Appendix A
List of decisive regular games

The following Table A.1 shows all the decisive regular games in SWF from

n = 1 until n = 7. They were obtained by implementing the ideas of

Section 4.4.2. Consider N = {n, . . . , 1}.

n decisive regular games in SWF

1 1

2 10

3 011 100

4
1001
0111

0110 1000

5 00111
01011
11000

01101
10100
10011

01111
10001

10010
01110

01100 10000

6 001111
100011

001111
011001

001111
100101
011100

001111
101001
100110
011010

010110
001111
110001

001110
100011
010111
110000

011001
010111
110000

010111
100101
011100
110000

100110
011010
010111
110000
101001

010110
110000

100011
011011
101000

101000
100101
011100
011011

100111
101000
011001

011010
101000
100110

100001
011111

100100
100011
011101

011110
100010

100100
011100

011000 100000

7
1000000 0110000

1001000
0111000

1000100
0111100

1010000
0110100
1001100

1100000
0101100

0011100
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1000010
0111110

1010000
0110010
1001110

0111000
1010000
1001010
0110110

1001000
0111010
1000110

0110100
1001100
1100000
1010010
0101110

0101100
1100010
0011110

0110010
1100000
0101110

1010000
0110110
1000110

0111000
1001010
1100000
0101110

0110100
1001100
1010010
0011110

0110010
0011110

1000110
1100000
0101110

0111000
1001010
0011110

1000110
0011110

1000001
0111111

1010000
0110001
1001111

0111000
1010000
1001001
0110111

1001000
0111001
1000111

0111100
1001000
1000101
0111011

1000100
0111101
1000011

0110100
1001100
1100000
1010001
0101111

1010000
1001100
0111000
0110101
1001011

1010000
0110100
1001101
0110011

0101100
1100001
0011111

1100000
1001100
0110100
0101101
1010011

0101100
0011101
1100011

0110010
1001110
1100000
0101111

1010000
1001010
0110110
0111001
1000111

0111000
1001010
0110110
1100000
1010001
0101111

0111010
1000110
1010000
1001001
0110111

1001100
1100000
1010010
0101110
0111000
0110101
1001011

0110100
1100000
1010010
0101110
1001101
0110011

0110100
1001100
1010010
0101110
1100001
0011111

1100010
0011110
1001100
0110100
0101101
1010011

0110010
0101110
1100001
0011111

0110110
1000110
1100000
1010001
0101111

1001010
1100000
0101110
0111001
1000111

0111000
1001010
0101110
1100001
0011111

1001100
1010010
0011110
0111000
0110101
1001011

0110100
1010010
0011110
1001101
0110011

1000110
0101110
1100001
0011111

1001010
0011110
0111001
1000111

0110001
1100000
0101111

1010000
1001001
0110111
0111001
1000111

0111000
1001001
1100000
0101111

1001000
0111011
1000011

0111100
1000101
1010000
0110111

1001100
1100000
1010001
0101111
0111000
0110101
1001011

0110100
1100000
1010001
0101111
1001101
0110011

0110100
1001100
1010001
0011111

1010000
0111000
1001011
0110011

1010000
1001100
0110101
1000111

1100001
0011111
1001100
0110100
0101101
1010011

1100000
0110100
0101101
0110011

1100000
1001100
0101101
0111000
1001011

0011101
1001100
0110100
1010011
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0110010
1001110
1010001
0011111

1001010
0110110
0111001
1000111
1100000
1010001
0101111

0111000
1001010
0110110
1010001
0011111

0111010
1000110
1001001
1100000
0101111

1100000
1010010
0101110
0111000
1001011
0110011

1001100
1010010
0101110
0111000
0110101
1001011
1100001
0011111

1001100
1100000
1010010
0101110
0110101
1000111

0110100
1010010
0101110
1001101
0110011
1100001
0011111

1100010
0011110
0110100
0101101
0110011

1100010
0011110
1001100
0101101
0111000
1001011

0110110
1000110
1010001
0011111

1001010
0101110
0111001
1000111
1100001
0011111

1010010
0011110
0111000
1001011
0110011

1001100
1010010
0011110
0110101
1000111

0110001
0011111

1001001
0111001
1000111
1100000
0101111

0111000
1001001
0011111

1000011
1010000
0110111

0111100
1000101
1100000
0101111

1100000
1010001
0101111
0111000
1001011
0110011

1001100
1010001
0111000
0110101
1001011
0011111

1001100
1100000
1010001
0101111
0110101
1000111

0110100
1010001
1001101
0110011
0011111

1010000
0110011
1000111

1100001
0011111
0110100
0101101
0110011

1100001
0011111
1001100
0101101
0111000
1001011

1100000
0101101
0110011
1010100
0111000
1001011

1100000
1001100
0101101
1000111

0011101
0110100
0110011

0011101
1001100
0111000
1001011

1001010
0110110
0111001
1000111
1010001
0011111

0111010
1000110
1001001
0011111

1010010
0101110
0111000
1001011
0110011
1100001
0011111

1100000
1010010
0101110
0110011
1000111

1001100
1010010
0101110
0110101
1100001
0011111
1000111

1100010
0011110
0101101
0110011
1010100
0111000
1001011

1100010
0011110
1001100
0101101
1000111

1010010
0011110
0110011
1000111

1001001
0111001
1000111
0011111

1000011
1100000
0101111

0111100
1000101
0011111

1010001
0111000
1001011
0110011
0011111
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1100000
1010001
0101111
0110011
1000111

1001100
1010001
0110101
0011111
1000111

1100001
0011111
0101101
0110011
1010100
0111000
1001011

1100001
0011111
1001100
0101101
1000111

1100000
0111000
0101011

1100000
0101101
0110011
1010100
1000111

0011101
0110011
1010100
0111000
1001011

0011101
1001100
1000111

1010010
0101110
0110011
1100001
0011111
1000111

1100010
0011110
0111000
0101011

1100010
0011110
0101101
0110011
1010100
1000111

1000011
0011111

1010001
0110011
0011111
1000111

1100001
0011111
0111000
0101011

1100001
0011111
0101101
0110011
1010100
1000111

1100000
0101011
1011000
1000111

0011101
0111000
1100100
0101011

0011101
0110011
1010100
1000111

1100010
0011110
0101011
1011000
1000111

1100001
0011111
0101011
1011000
1000111

1100000
0100111

0011101
1100100
0101011
1011000
1000111

0111000
0011011

1100010
0011110
0100111

1100001
0011111
0100111

1011000
1000111
0011011

0011101
1100100
0100111

0011011
1101000
0100111

1110000
0010111

0001111

Table A.1: List of decisive regular games in SWF from n = 1 until n = 7.



Appendix B
List of Influence Games

In this appendix we enumerate all the minimal unweighted influence games

(G, f, q,N) with N = V , for 3 and 4 players. By “minimal” we refer to

those influence games that are minimal with respect to their edges, labels

and quota. We consider as restrictions that 0 ≤ q ≤ n and for all i ∈ N ,

0 < f(i) ≤ δ−(i); if δ−(i) = 0, we assume f(i) = 1.

Unweighted Influence Games for Three Players

Table B.1 shows the digraphs without loops for 3 nodes [222, 114]. Observe

that there are 3 graphs disconnected and 13 connected. See the sequences

A000273 and A003085 of [238].

1 •

•

• 2 •

•

• 3 •

•

• 4 •

•

•

5 •

•

• 6 •

•

• 7 •

•

• 8 •

•

•

9 •

•

• 10 •

•

• 11 •

•

• 12 •

•

•

13 •

•

• 14 •

•

• 15 •

•

• 16 •

•

•

Table B.1: Digraphs without loops with 3 nodes.
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The following Table B.2 shows all the minimal unweighted influence

games corresponding to the 10 simple games up to isomorphism for n = 3.

Observe that only the trivial games 1 and 5 cannot be represented by con-

nected graphs.

] Wm connected q ] digraph disconnected q ] digraph

1 ∅ – – – 1

1

1 4 1

2 000 1

1

1

any connected graph

with 2 edges

0 4, 5, 6 1

1

1 0 1

3 100 1

1

1 1

1

1 3 4, 5 – – –

4 110 1

1

1 3 6 1

1

1 3 2

5 111 – – – 1

1

1 3 1

6
010
100

1

1

1 1

1

1 2 5, 6 1

1

1 2 3

7
100
011

1

1

1 2 4 1

1

1 2 2

8
101
110

1

2

2 3 13 1

1

1 3 3

9
001
010
100

1

1

1

any connected graph

with 2 edges

1 4, 5, 6 1

1

1 1 1

10
110
101
011

1

2

1 2 6 1

1

1 2 1

Table B.2: The minimal unweighted influence games corresponding to the
10 simple games up to isomorphism for n = 3.
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Unweighted Influence Games for Four Players

For n = 4 there are 218 directed graphs—including 19 disconnected graphs—

and 30 simple games up to isomorphism; 29 of them are listed in [42], and

here we add also (N, {∅}). The number of the digraphs correspond to the

codes given in [222].

The following Table B.3 shows all the minimal unweighted influence

games corresponding to the 30 simple games up to isomorphism for n = 4.

] Wm connected q ] digraph disconnected q ] digraph

1 ∅ – – – 1 1

1 1

5 D21

2 0000 1 1

1 1

any connected graph
with 3 edges

0

D28, D31
D32, D33
D36, D38
D39, D40

1 1

1 1

0 D21

3 1000
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1
4
D28, D31
D32, D38

– – –

4 1100
1 1

1 1

1 1

1 1

1 1

1 1
4
D33, D36
D39

1 1

1 1

1 1

1 1

1 1

1 1
4
D23, D25
D27

5 1110 1 1

1 1

4 D40 1 1

1 1

4 D22

6 1111 – – – 1 1

1 1

4 D21
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7
1000
0100

1 1

1 1

1 1

1 1

1 1

1 1
3
D31, D36
D38

1 1

1 1

3 D29

8
1000
0110

1 1

1 1

1 1

1 1

1 1

1 1
3
D32, D33
D39

1 1

1 1

3 D25

9
1000
0111

1 1

1 1

3 D28 1 1

1 1

3 D23

10
1100
0011

1 2

2 1

3 D63 – – –

11
1100
1010

1 1

1 2

1 1

1 1

3

4

D39

D56

1 1

1 1

4 D37

12
1100
1011

1 3

1 1

1 2

2 1

4 D91, D92 1 2

1 1

4 D47

13
1110
1101

1 1

1 3

1 1

2 2

4 D62, D63 1 1

1 1

4 D24

14
1000
0100
0010

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1
2
D36, D38
D39, D40

1 1

1 1

1 1

1 1

1 1

1 1
2
D34, D35
D37
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15
1000
0100
0011

1 1

1 1

1 1

1 1

1 1

1 1
2
D31, D32
D33

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1
2
D24, D25
D26, D27

16
1000
0110
0101

1 1

1 1

3 D54 1 1

1 1

3 D34

17
1100
1010
0110

1 1

1 1

3 D40 1 1

1 1

3 D26

18
1100
1010
0101

2 1

1 1

3 D54 1 1

1 1

3 D27

19
1100
1010
1001

1 1

2 1

1 2

1 1

1 2

1 1
4
D92, D93
D94

1 1

1 1

4 D35

20
1100
1010
0111

1 1

3 1

3 1

1 1

1 2

2 1
3
D61, D62
D72

1 1

1 1

3 D22

21
1100
1011
0111

1 1

2 1

3 D36 1 1

1 2

3 D26

22
1110
1101
1011

1 1

1 3

4 D88 1 2

2 2

4 D116
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23

1000
0100
0010
0001

1 1

1 1

any connected graph
with 3 edges

1

D28, D31
D32, D33
D36, D38
D39, D40

1 1

1 1

1 D21

24

1000
0110
0101
0011

1 1

1 1

2 D28 1 1

1 1

2 D22

25

1100
1010
1001
0110

1 1

1 2

1 1

2 1

3 D61, D63 – – –

26

1100
1010
0101
0011

1 1

1 2

1 1

1 2

3 D56, D64 1 1

1 1

3 D24

27

1100
1010
1001
0111

1 2

2 2

3 D129 – – –

28

1110
1101
1011
0111

1 1

1 3

3 D40 1 1

1 1

3 D21

29

1100
1010
1001
0110
0101

1 1

1 2

3 D62 – – –

30

1100
1010
1001
0110
0101
0011

1 1

1 2

2 D40 1 1

1 1

2 D21

Table B.3: The minimal unweighted influence games corresponding to the
30 simple games up to isomorphism for n = 4.
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[20] J. Berman and P. Köhler. Cardinalities of finite distributive lattices. Mit-
teilungen aus dem Mathem. Seminar Giessen, 121:103–124, 1976. 112, 113

[21] C. Bertini, J. Freixas, G. Gambarelli, and I. Stach. Comparing power indices.
International Game Theory Review, 15(2), 2013. 222, 225

[22] C. Bertini, J. Freixas, G. Gambarelli, and I. Stach. Some open problems in
simple games. International Game Theory Review, 15(2):18, 2013. 38, 222

[23] S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization
in social networks. In X. Deng and F. C. Graham, editors, Internet and
Network Economics, Third International Workshop, WINE 2007, San Diego,
CA, USA, December 12-14, 2007, Proceedings, volume 4858 of Lecture Notes
in Computer Science, pages 306–311, 2007. 10

[24] J. C. Bioch and T. Ibaraki. Generating and approximating nondominated
coteries. IEEE Transactions on Parallel and Distributed Systems, 6(9):905–
914, 1995. 113



Bibliography – 241

[25] B. Bollig and I. Wegener. Improving the variable ordering of obdds is np-
complete. IEEE Transactions on Computers, 45(9):993–1002, 1996. 69

[26] B. Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, NY, 1998. 19, 128

[27] S. Bolus. SimpleGame Lab. June 2014. http://www.informatik.uni-kiel.
de/~progsys/simple_games/lab. 80

[28] S. Bolus. Testing homogeneity of directed simple games. Resource doc-
ument. http://www.informatik.uni-kiel.de/~stb/files/Bolus_2010_

TestingHom.pdf, 2010. 67, 81

[29] S. Bolus. Power indices of simple games and vector-weighted majority games
by means of binary decision diagrams. European Journal of Operation Re-
search, 210(2):258–272, 2011. 67, 80, 92

[30] S. Bolus. A QOBDD-based approach to simple games. PhD thesis, Depart-
ment of Computer Science, University of Kiel, 2012. 81

[31] S. P. Borgatti. Centrality and network flow. Social Networks, 27(1):55–71,
2005. 226

[32] S. P. Borgatti and M. G. Everett. A graph-theoretic perspective on centrality.
Social Networks, 28(4):466–484, 2006. 10

[33] A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive influ-
ence in social networks. In A. Saberi, editor, Internet and Network Economics
- 6th International Workshop, WINE 2010, Stanford, CA, USA, December
13-17, 2010. Proceedings, volume 6484 of Lecture Notes in Computer Science,
pages 539–550, 2010. 10

[34] R. Boute. The binary decision machine as a programmable controller. EU-
ROMICRO Newsletter, 1(2):16–22, 1976. 66

[35] S. Brams and P. Straffin Jr. Prisoners’ dilemma and the professional sports
drafts. American Mathematical Monthly, 86(2):80–88, 1979. 45

[36] S. Brams and A. Taylor. The win-win solution: Guaranteeing fair shares to
everybody. W. W. Norton & Company, New York, NY, 1999. 45

[37] M. Le Breton, M. Montero, and V. Zaporozhets. Voting power in the eu coun-
cil of ministers and fair decision making in distributive politics. Mathematical
Social Sciences, 63(2):159–173, 2012. 43

[38] A. E. Brouwer, C. F. Mills, W. H. Mills, and A. Verbeek. Counting families of
mutually intersecting sets. The Electronic Journal of Combinatorics, 20(2),
2013. 112, 113

[39] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986. 66

[40] R. Bryant. Symbolic boolean manipulation with ordered binary decision di-
agrams. ACM Computing Surveys, 24(3):293–318, 1992. 66, 67

[41] F. Carreras. A characterization of the Shapley-Shubik index of power via
automorphisms. Stochastica, 8(2):171–179, 1984. 46

http://www.informatik.uni-kiel.de/~progsys/simple_games/lab
http://www.informatik.uni-kiel.de/~progsys/simple_games/lab
http://www.informatik.uni-kiel.de/~stb/files/Bolus_2010_TestingHom.pdf
http://www.informatik.uni-kiel.de/~stb/files/Bolus_2010_TestingHom.pdf


242 – Bibliography

[42] F. Carreras. A decisiveness index for simple games. European Journal of
Operational Research, 163(2):370–387, 2005. 235

[43] F. Carreras and J. Freixas. Complete simple games. Mathematical Social
Sciences, 32(2):139–155, 1996. 45, 73

[44] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational aspects of
cooperative game theory. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2011. 7, 9, 11, 28, 35, 36,
39, 42, 224

[45] N. Chen. On the approximability of influence in social networks. SIAM
Journal on Discrete Mathematics, 23(3):1400–1415, 2009. 13, 128

[46] C. K. Chow. On the characterization of threshold functions. In 2nd Annual
Symposium on Switching Circuit Theory and Logical Design, Detroit, Michi-
gan, USA, October 17-20, 1961, pages 34–38. IEEE Computer Society, 1961.
34

[47] R. Church. Numerical analysis of certain free distributive structures. Duke
Mathematical Journal, 6(3):732–734, 1940. 112

[48] R. Church. Enumeration by rank of the free distributive lattice with 7 gen-
erators. Notices of the American Mathematical Society, 11:724–727, 1965.
112

[49] J. S. Coleman. Control of collectivities and the power of a collectivity to
act. In B. Lieberman, editor, Social Choice, Monographs and Texts in the
Behavioral Sciences, pages 269–300. Gordon & Breach, 1971. 34, 36

[50] S. A. Cook. The complexity of theorem-proving procedures. In M. A. Harri-
son, R. B. Banerji, and J. D. Ullman, editors, Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights,
Ohio, USA, pages 151–158, 1971. 25

[51] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT Press & McGraw-Hill Book Company, Cambridge, MA,
1990. 24

[52] Y. Crama and P. L. Hammer. Boolean functions: Theory, algorithms, and
applications, volume 142 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, New York, NY, 2011. 55

[53] R. A. Dahl. The concept of power. Behavioral Science, 2(3):201–215, 1957.
36

[54] A. Darmann, G. Nicosia, U. Pferschy, and J. Schauer. The subset sum game.
European Journal of Operational Research, 233(3):539–549, 2014. 9

[55] M. Davis and M. Maschler. The kernel of a cooperative game. Naval Research
Logistics Quarterly, 12(3):223–259, 1965. 41, 42, 96

[56] B. de Keijzer, T. B. Klos, and Y. Zhang. Finding optimal solutions for voting
game design problems. Journal of Artificial Intelligence Research, 50:105–140,
2014. 107



Bibliography – 243

[57] W. de Nooy, A. Mrvar, and V. Batagelj. Exploratory social network analysis
with Pajek, volume 27 of Structural analysis in the social sciences. Cambridge
University Press, New York, NY, 2005. 208, 213
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ε-core
complexity, 90
definition, 40
history, 40

#P class, 26
#P-complete, 26
#P-hard, 26
2-monotone Boolean function, see linear

game

adjacency in graphs, 19
allocation, see payoff
assignment game, 89

Banzhaf index, 32, 33, 37, 92
complexity, 90, 138
history, 36

Banzhaf value, 36, 173
Banzhaf-Coleman index, see Banzhaf in-

dex
bargaining set, 42, 97

complexity, 90
definition, 41
history, 41

betweenness centrality, 198
binary decision diagram, 66
binary decision diagram form, 66
binary game, 79
binary tree, 20
binary tree form, 65
bipartite graph, 20
blocker, see transversal
blocking coalition

complexity, 86, 138
definition, 30
history, 30

boring game, 116

branching program, see binary decision
diagram

central node, 163
centrality, 198
characteristic function

of a cooperative game, 28
Chow parameters

complexity, 86, 108
definition, 33
history, 33

chow parameters, 174
closeness centrality, 198
clutter, 22
co-vector-weighted game, 46
coalition, 28
coalitional skill game, 89
codimension, 47
coherent, see proper game
Coleman’s power

complexity, 86, 108
definition, 33
history, 33

collective decision function, 159, 160
of a simple game, 159

collective decision making model, 159
collective decision vector, 160
complement

of a hypergraph, 22
complete binary tree, 62
complete bipartite graph, 180

definition, 20
complete game, see strong game, see lin-

ear game
complete graph, 20
computational complexity, 24
connected component, 20
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connectivity game, 56
connectivity in graphs, 20
coNP class, 24
constant-sum game, see decisive game
contract curve, see core
conversion problem, 11, 54
convex game, 89
cooperative game

definition, 28
history, 7

core, 39–41, 43, 92
complexity, 90
definition, 39
history, 39

counting problem, 11, 26
history, 49
results, 111

critical player, 30, 36
complexity, 86, 138
definition, 32
history, 30, 32

cycle, 20
cyclic permutation game, 89

decision problem, 24
decision theory, 7
decision vector, 159
decisive game, 32, 104

complexity, 86, 97, 100, 138, 149
definition, 31, 99
history, 31
of a dual game, 32

decisive problem
applications, 31

Dedekind number, 49
Dedekind’s problem

history, 49
results, 111

Deegan-Packel index, 37, 82
deficit vector, 35
degree centrality, 198
degree sequence, see Chow parameters
desirability order, see desirability rela-

tion
desirability relation

definition, 45
history, 45

dictator, 32, 174
complexity, 86, 138
definition, 32

dimension, 47
directed game, see regular game
directed graph, 19
dominance relation, see desirability rela-

tion
domination of imputations, 38
dual-comparable, 31
duality

of CNF, 31
of hypergraphs, 23
of simple games, 29, 98

dummy player, 37, 43, 174
complexity, 86, 108, 138
definition, 32
history, 32

efficient payoff, 35
effort, 200
enumeration problem, 11, 26

history, 49
equivalence

of influence games, 138, 148
of simple games, 34

excess vector, 35
EXP class, 24
EXPSPACE, 26
extensive minimal winning form, 57
extensive winning form, 57
external node, see terminal node

fairness, 36
false vector, see losing coalition
flow betweenness, 199
flow closeness, 199
flow game, 55, 89
follower, 159

definition, 160
form of representation, 53
fraction value, 160
fully condensed binary tree, 72
fully condensed binary tree form, 72

game theory, 7
grand coalition, 28
graph, 19
ground set, 22

Holler index, 37, 224
homogeneous game, 172

complexity, 101
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definition, 47
history, 47

homogeneous payoff, 35
hyperedge, 22
hypergraph, 22

immediate successor, 116
improper game, 31, 32
imputation, 36

definition, 35
incidence in graphs, 19
increasing-shift, 45

history, 45
incremental polynomial time, 26
independent actor, 159

definition, 160
independent set, 20
individual rationality, 35
induced subgraph, see subgraph
induced subgraph game, 89
influence game, 128
influence graph, 128
inner node, 20
intersection of simple games, 30
irredundant hypergraph, 22
isolated graph, 180

definition, 20
isomorphism

of influence games, 138, 148
of simple games, 34

k-influence centrality, 202
kernel, 42, 43, 96

complexity, 90
definition, 41
history, 41

Knapsack problem, 27

labeled graph, 20
labeling function, 20
layer, 162
layer of mediation, 162
layered digraph, 162
leaf node, see terminal node
least core, 40, 42, 43, 92

complexity, 90
definition, 40
history, 40

left-shift, see increasing-shift
length, 40, 109

complexity, 86, 138, 149
definition, 33
history, 33
of a dual game, 34

linear game, 45
linearly separable switching function, see

weighted game
linearly separated truth function, see

weighted game
losing coalition, 7

definition, 28

majority game
complexity, 101
definition, 47

majority influence graph, 168
matching game, 89
maximal losing coalition

definition, 30
min-cost spanning tree game, 89
minimal hypergraph, see irredundant hy-

pergraph
minimal kernel, see irredundant hyper-

graph
minimal winning coalition, 37, 38, 40

definition, 30
monotone Boolean function, 54
multiple weighted game, see vector-weighted

game

Nakamura number
definition, 33
history, 33

neighbor game, 89
non-cooperative game, 7
non-oblivious influence system, 166
NP class, 24
NP-complete, 25
NP-hard, 25
nucleolus, 43, 93

complexity, 90
definition, 43
history, 42

oblivious influence system, 166
odd-OLF system, 168
OLF system, 160
opinion leader, 159

definition, 160
ordered game, see linear game
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outer node, see terminal node

P class, 24
passer, 32, 36, 38, 42

complexity, 86, 138
definition, 32

path, 20
Patricia trie, see fully condensed binary

tree
payoff, 35
Penrose index, see Banzhaf index
Penrose-Banzhaf index, see Banzhaf in-

dex
pivotal, 37
polynomial-delay, 26
polynomial-time reduction, 25
positive Boolean function, see monotone

Boolean function
power index, 36, 37
predecessor, 19
preimputation, 40, 42, 43

definition, 35
prekernel, 96

complexity, 90
definition, 42
history, 42

prenucleolus, 93
complexity, 90
definition, 43
history, 43

probabilistic Banzhaf index, 36
proper game, 32, 104

complexity, 86, 97, 100, 138, 149
definition, 31, 99
history, 31
of a dual game, 32

pseudo-polynomial time, 25
pseudogame, see simple game
PSPACE, 26

QP class, 24
quasi-reduced binary decision diagram,

67

radix tree, see fully condensed binary
tree

Rae index
definition, 173, 189

reasonable representation, 57
regular function, see regular game

regular game
definition, 45
history, 45

right-shift, see increasing-shift
root node, 20

satisfaction, see Rae index
satisfaction centrality, 201
self-dual game, see decisive game
set cover, 27
set packing, 27
sEXP class, 24
Shapley value

history, 36
Shapley-Shubik index, 37, 92

complexity, 90, 138
history, 36

Shapley-Shubik value, 37
shift-maximal losing coalition, 45
shift-minimal winning coalition, 45
shift-minimal winning form, 71
shortest path game, 56, 89
simple coalitional game, see simple game
simple game

definition, 28, 29
history, 7
utility, 7

simple voting game, see simple game
size

of a graph, 19
of a hypergraph, 22
of a simple game, 33

slice, 22
social choice theory, 7
social network, 198
space complexity, see computational com-

plexity
spanning connectivity game, 56, 89
spread of influence, 128

complexity, 128
stability, 36
stable set, 38–40

complexity, 90
definition, 38
history, 38

standard tree game, 89
star graph, 20
star influence game, 164
star influence graph, 163
star mediation influence game, 164
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strict length, 109
complexity, 109
definition, 108

strict width, 109
complexity, 109
definition, 108

strong game, 8, 32, 104, 116
complexity, 86, 97, 100, 138, 149
definition, 31, 99
history, 31
of a dual game, 32

strong hierarchical digraph, 180
strong influence graph, 180
strongly mediated influence system, 180
sub-majority game, see majority game
subgraph, 20
successful team, see winning coalition
successor, 19
supperaditive, see proper game
swap-robust game, see linear game
swing coalition, 44

complexity, 86, 138
definition, 30
history, 30

swing player, see critical player
symmetric players, 37, 42

complexity, 86, 138
definition, 32
history, 32

terminal node, 20
threshold Boolean function, see weighted

game
threshold criteria, see weight function of

a weighted game
threshold game, see simple game
threshold hypergraph, see weighted game
threshold intersection dimension, see vector-

weighted game
threshold network flow game, 89
time complexity, see computational com-

plexity
transversal, 22
tree, 20
triangle, 20
true vector, see winning coalition

undirected graph, 19
union of simple games, 30
unsuccessful team, see losing coalition

unweighted influence game, 129
unweighted influence graph, 128

valuation function, see characteristic func-
tion

vector-weighted game, see vector-weighted
game

definition, 46
vector-weighted representation form, 79
vector-weighted system, see vector-weighted

game
vertex connectivity game, 55, 89
vertex cover, 27
vetoer, 32, 39

complexity, 86, 138
definition, 32

von Neumann-Morgenstern solution, see
stable set

voting theory, 7

weak game, 31, 32
weight function

of a graph, 20
of a weighted game, 46
of an influence game, 128

weighted game
complexity, 101
definition, 46
history, 46

weighted graph, 20
weighted majority game, see weighted

game
weighted multiple majority game, see vector-

weighted game
weighted representation form, 78
weighted voting game, see weighted game
width, 108, 109

complexity, 86, 108, 109, 138, 149
definition, 33
history, 33
of a dual game, 34

Winder order, see desirability relation
winning coalition, 7

definition, 28

zero-sum game, see decisive game
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