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Physics is like sex

Sure, it may give some practical results...

but that’s not why we do it.∗

∗Probably not by Richard Feynman.
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Resum

La difracció de neutrons és una tècnica molt potent que
permet sondar l’estructura de fases desordenades en un ventall
d’escales de longitud. Tanmateix, degut a la complexitat in-
herent d’aquestes fases desordenades, l’anàlisi de la informació
que es desprèn de les dades experimentals no és evident.

En aquest treball es presenten diversos mètodes alter-
natius que permeten treure el màxim profit de les mesures de
difracció de neutrons, aix́ı com de les configuracions molec-
ulars obtingudes en simulacions de dinàmica molecular o del
modelatge de les dades. Aquests mètodes consisteixen prin-
cipalment en un enfocament bayesià en l’ajust de les estruc-
tures moleculars mesurades amb difracció de neutrons, i en
una anàlisi multidimensional de les funcions de distribució
de probabilitat de l’estructura molecular obtingudes en sim-
ulacions o tècniques de modelatge de dades, en comptes del
mitjanat estàndard de diverses variables.

Aquestes metodologies s’apliquen a la investigació de di-
versos sistemes desordenats per tal de resoldre una sèrie
de qüestions obertes: l’origen de la transició ĺıquid-ĺıquid
en el trans-1,2-dicloroetà (C2Cl2H2), l’extrema fragilitat del
vidre orientacional del 1,1,2,2-tetracloro-1,2-difluoroetà (F-
112, C2Cl2F2), la paradoxa de la densitat local en el tetr-
aclorur de carboni (CCl4), i els rols de les interaccions
estèrica i electrostàtica en l’ordre de curt abast de ĺıquids
de molècules quasitetraèdriques, en particular el triclorobro-
mometà (CBrCl3) i el dibromodiclorometà (CBr2Cl2).

Addicionalment, també s’hi inclou un breu repàs del marc
teòric de la difracció de neutrons en sistemes desordenats, aix́ı
com dels aspectes pràctics de l’equip experimental i del trac-
tament de dades necessari, per tal que els investigadors inter-
essats disposin d’una visió general completa sobre tema.
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Abstract

Neutron diffraction is a powerful technique that allows
to probe the structure of disordered phases across a variety
of length scales. However, due to the inherent complexity
of these disordered phases, the analysis of the information
contained in the experimental data is not obvious.

In this work, a few alternative methods are presented that
allow to make the most of the neutron diffraction measure-
ments as well as the molecular configurations obtained from
molecular dynamics simulations or data modelling. They
mainly consist in a Bayesian approach to fit the molecular
structures measured with neutron diffraction, and a multi-
dimensional analysis of the molecular structure probability
distribution functions obtained from simulations or data mod-
elling techniques, instead of the standard averaging over many
variables.

These methodologies are then applied to the structural
investigation of several disordered systems in order to an-
swer a series of open questions: the origin of the liquid-liquid
transition in trans-1,2-dichloroethene (C2Cl2H2), the ex-
treme fragility of 1,1,2,2-tetrachloro-1,2-difluoroethane’s ori-
entational glass (F-112, C2Cl2F2), the local density paradox
in carbon tetrachloride (CCl4), and the roles of steric and elec-
trostatic interactions in the short range order of the liquids
of quasitetrahedral molecules, particularly trichlorobromome-
thane (CBrCl3) and dibromodichloromethane (CBr2Cl2).

Additionally, a concise summary of the theoretical frame-
work for neutron diffraction of disordered systems, as well
as the practicalities of the experimental setup and the neces-
sary data treatment, are also included to provide interested
researchers with a self-contained overview on the topic.
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2 CHAPTER 1. INTRODUCTION

Condensed matter is not continuous, it is made of atoms which
concentrate certain properties in very small regions, such as mass and
electron density. However, order or disorder is normally determined
by the small variations in charge distribution throughout the volume.
The reason why amorphous materials, such as liquids and structural
glasses, appear as generally homogeneous and isotropic, is because
they are microscopically disordered at atomic scales. They do not
only display a positional and orientational disorder of their atoms or
molecules, but they also often have defects such as dangling bonds,
vacancies, and intersticial elements [1–4].

1.1 Order and disorder

The atoms or molecules of a gas do not interact with each other
because the density is too low, therefore, their positions and orienta-
tions are completely uncorrelated. The fact that the molecules in an
ideal gas are distributed independently and randomly throughout the
whole available volume makes it the ideal limit of perfect disorder [1].

On the opposite side, the ideal limit of order is a perfect crystal,
where the density is large enough to allow the interactions between
atoms or molecules to fully determine all their positions and orienta-
tions. Because of this, the whole crystal can be reproduced simply by
knowing its ordering rules, normally described by the kind of crystal
symmetry and the arrangement of the atoms or molecules within the
unit cell.

Most crystals have translational symmetry, that is, their atomic
or molecular pattern is repeated periodically along the three spa-
tial dimensions. However, some systems have interactions that are
strong enough to completely determine the arrangement of its ele-
ments, thus being perfectly ordered, but at the same time lacking
any translational symmetry. These systems are called quasicrystals
and often display symmetries not possible in regular crystals, such as
five-fold.

Most materials lie somewhere between the ordered and disordered
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ideal limits. In them, a competition takes place between an order-
ing drive, due to interactions between atoms or molecules favouring
certain positions or orientations, and a disordering drive, often due
to randomness induced by thermal agitation [3]. In practice, since
there is always some kind of physical restriction, completely disor-
dered structures such as ideal gases never occur in nature. Neither
do completely ordered structures such as perfect crystals, due to par-
ticle vibrations at finite temperatures and even at zero-point, where
the uncertainty principle does not allow particles to stay simultane-
ously localized and completely still [5]. However, they are both good
approximations for many substances.

When the system is composed out of elements with spherical sym-
metry, only the positional degrees of freedom can show some level
of disorder. But elements with a certain internal structure, such
as irregularly shaped molecules, have the additional possibility of
having those internal degrees of freedom correlated with the rest of
the molecules through diverse kinds of interactions (steric, dipolar,
magnetic...). Whether this correlation affects only the nearest neigh-
bours, displaying a certain short range order, or extends throughout
the whole material, displaying long range order, is determined by
the span and strength of each type of interaction in the particular
conditions of the system [1, 2].

Depending on the complexity of the material and the dominant
interactions at play, it may happen that the disorder is only expressed
in some, or even just one, of the degrees of freedom (such as orienta-
tion of the molecules, position of their centres of mass, intramolecular
geometry, or dipole orientation), while keeping the rest perfectly or-
dered. Each kind of short or long range order will have to be studied
with a diversity of techniques and strategies.

Disordered phases are more abundant than the crystalline ones
and as interesting from a scientific and technological point of view.
In particular, from the point of view of basic science, many fascinating
solid state problems are connected with disorder, and two of the
fundamental states of matter, gas and liquid, are disordered as well.
Remarkably, a significant amount of the environmental phenomena
that affect human life takes place in the gaseous atmosphere that
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surrounds the earth, and about 70% of the surface of the earth is
covered by liquid water.

Besides, apart from the human body being made of about two
thirds of water, most biological materials are conglomerates composed
of ordered structures mixed with a certain amount of amorphous ones
(bone, muscle, connective tissue, wood, silk, etc.) [6]. And there is
an endless list of technological applications based on disordered ma-
terials: solar cells, liquid-crystal displays (LCDs), transistors, food
manufacture and processing, pharmaceuticals, cosmetics, soaps, lu-
bricants, construction, implants, and many more [3, 7–10].

1.2 Disordered materials

1.2.1 Liquids

A liquid is a material where the interactions between its atoms or
molecules allow them to freely diffuse among the other atoms or mo-
lecules of the material but that, at the same time, are also loosely
held together, so they do not tend to separate from each other as it
happens in gaseous phases.

Macroscopically, this is reflected in liquids being able to flow un-
der an arbitrarily small shear stress; and since pressure applied to a
particular region is transmitted to the rest of the liquid, they tend to
keep a constant volume [2, 4].

However, dynamics play an important role in the description of
the properties of fluids, such as elasticity or viscosity, and often their
response to stimuli strongly depends on the application rate of the
forces. For instance, liquids have an elastic response to shear at short
time scales, that is, they do not flow. This is particularly apparent in
very viscous liquids where atoms or molecules have less mobility and
forces from a wider time range induce this kind of response [11, 12].

Liquids exist in a very small range of possible temperature and
pressure values, but they are very important for physics, chemistry,
technology, and life [2].

Due to the high mobility of its constituents, liquids are normally
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homogeneous and isotropic and do not display translational nor ori-
entational long range order. After gases, they exhibit the most dis-
ordered structures. However, their atoms or molecules are affected
by interactions with their neighbours, which causes a certain short
range order. That means that the relative positions and orientations
between the closest atoms or molecules are correlated even though
this correlation does not persist over long distances [2].

If the packing is high and the elements are very close to each
other, their repulsive interactions of mutual impenetrability become
the dominant influence, which has an effect in the probability dis-
tribution of preferred structures. This is reflected by the fact that
substances that have an amorphous and a crystalline phase with the
same density usually display many resemblances in their short range
order [1].

Both, crystals and liquids, arrange in rather tight packings, which
results in liquids being almost as incompressible as crystals. In fact,
in most substances the volume occupied by each atom of the liquid
is very similar to that of its crystal [1].

This means that the structure of most simple liquids is determined
by its packing and that, in general, if we look at the arrangement of
the closest elements in the liquid, it is not so different from their
arrangement in the crystal. For instance, the number of covalent
bonds per atom may be the same on average (although in amorphous
materials dangling bonds can often be found). Consequently, the
liquid can be considered sometimes as simply a deformation from the
ordered structure of the crystal (see Figure 1.1) [1, 3, 13].

If we take a look at the packing of crystals made of identical hard
spheres, a good approximation for many atoms, we see that molecules
that arrange in face centred cubic (fcc) and hexagonal lattices, both
with a coordination number of 12, yield the maximum packing that
can be achieved. In these lattices, if neighbouring spheres are in
contact with each other, 74% of space is occupied. And other lattices,
such as the simple cubic, with a coordination number of 6, and the
body centred cubic, with a coordination number of 8, have packings
of only 52% and 68%, respectively. The larger the number of first
neighbours, the larger the packing.
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Figure 1.1: (a) A 2D example of the perfect translational order found
in crystals, and (b) an example of the kind of deviation from the crys-
talline structure that can be found in liquids and structural glasses.
Modified from Ref. [1].

Higher packings can be achieved when crystals with spheres of
different sizes are considered, because the smaller ones can fill the
intersticial spaces left by the larger ones, similarly to what happens
in ionic crystals. They can also be achieved in crystals with non-
spherical elements, although most tightly packed molecular crystals
have values ranging between 68 and 74% of occupancy [1, 3, 14].

Organising the elements randomly causes dilatation because the
disorder generates empty spaces that decrease the density. Empiri-
cally, the maximum occupation reached with random packing of hard
spheres is about 64%. That is why most liquids are less dense than
their respective crystals (although of course there are exceptions).
The packing in most molecular liquids around the fusion tempera-
ture is between 50 and 60%. The shape of their molecules has a
significant impact in their arrangement in the liquid, for instance,
long rigid molecules cannot be packed without inducing some sort of
orientational correlation. [1, 3]

Locally, the greatest difference between liquid and crystal is the
large parameter fluctuations such as the coordination number and
the atomic volume, but this can not be deduced directly from mea-
surements, that just provide an average of the diverse local structures
present in the liquid [1].
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There are many different kinds of liquids, and they display a rich
variety of characteristics and disparate behaviours. For instance, the
typical length scales of atomic liquids are just a few angstroms, but
in more complex liquids such as colloidal suspensions, where particles
are homogeneously dispersed in a different substance, those particles
or colloids normally have a size between a nanometre and a microm-
eter [15].

1.2.2 Other equilibrium phases

As has been mentioned, the highly correlated relative position and
orientation of the molecules in crystals leads to extremely ordered
structures that show extensive long range order throughout the whole
system, while molecular interactions in liquids are only enough to
favour certain positions and orientations of the closest neighbours
leading to some short range order.

Depending on the dominant interactions and their range in each
system, it can happen that some degrees of freedom are highly cor-
related yielding long range order, while at the same time others are
weakly interacting only showing short range order. This is the case
of plastic crystals where molecules can rotate more or less freely but
have their centres of mass in a highly ordered crystal lattice: they
display translational order but have rotational disorder at the same
time (see Figure 1.2) [2].

Liquid crystals also show a combination of ordered and disordered
degrees of freedom. For instance, in the nematic phase, molecules
show translational disorder such as liquids but with highly correlated
orientations. However, liquid crystals can have a variety of complex
phases, such as the smectic phase, where the molecules keep the orien-
tational order but organise in layers with inner translational disorder,
or the cholesteric phase, where there is translational disorder of the
molecular centres of mass but their orientations follow a swirl. The
shape of the molecules plays a crucial role on the kind of phases that
can form, for instance, long molecules tend to arrange their orienta-
tion in the same direction when packed, or flat molecules can have
discotic phases where they tend to arrange in layers [1, 2].
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Figure 1.2: Scheme of the degrees of freedom existing in plastic
and liquid crystal phases. The position and orientation of molecules
are perfectly ordered in a crystal, but both are quite disordered in a
liquid. In a plastic crystal the position of the centre of mass of the
molecules is perfectly ordered but not their orientation, and in the
case of a nematic phase of a liquid crystal what is ordered is their
orientation but not their position. More complex phases involving
other combinations of ordered or disordered degrees of freedom are
possible. Modified from Ref. [16].

1.2.3 Glasses

1.2.3.1 Avoiding crystallization

In gases the density is so low that the atoms or molecules do not
interact with each other. If the density increases, for instance be-
cause the temperature has been decreased, the neighbours are close
enough to at least weakly interact with each other and we can obtain
a liquid, where some short range order is favoured. But if the density
is increased even further, the constituents of the material may be so
close that their mutual interactions can perfectly determine all their
degrees of freedom. However, whether this lack of freedom results in
an ordered or disordered structure is another matter. And since crys-
tal formation is a probabilistic process, attaining the ordered phase
is not always guaranteed.

Due to the partially random nature of liquid structure, there is
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some probability that a few particles will spontaneously arrange lo-
cally in a small crystalline structure at a certain point. If this crys-
talline nucleus is thermodynamically unstable, because the tempera-
ture is too high, for example, it will simply dissolve again within the
liquid, otherwise it will start to grow. Below the melting tempera-
ture, the crystalline structure is energetically more favourable than
the liquid one, but that applies only if the whole system is completely
in one of the phases. If the liquid and the crystal have to coexist, as
in the case of small crystalline nuclei surrounded by liquid, there is
a mismatch at the interface that introduces an additional energetic
penalisation, which means that in practice crystallisation will always
start well below the melting temperature. Besides, since the crystal
and the liquid phases occupy different volumes, a spontaneously gen-
erated crystal nucleus within the liquid will induce a non-zero elastic
strain upon the rest of the sample, specially on viscous liquids, which
will contribute to its thermodynamic instability [12]. Hence, crystal
nuclei which get spontaneously generated in the liquid will dissolve
again until the thermodynamic conditions allow them to overcome
these energy barriers.

Crystal formation has two phases: nucleation and growth. And
while the first is dominated by surface tension (with an elastic correc-
tion in viscous liquids), the second is dominated by viscosity of the
background liquid, which allows or hinders additional particles from
moving into place at the boundaries of the already formed crystalline
structure [12].

Since nucleation is a statistical process, it is possible through dif-
ferent strategies to avoid crystallization for a long time even for liq-
uids quite below the melting temperature. These metastable phases
are called supercooled liquids, and they are equilibrium phases in
the sense that, except the system actually undergoing the first order
transition and crystallising, the measurement of the system proper-
ties yields the same results consistently, so it can not be determined
whether they are the most stable phase or not. That is because the
structural relaxation time of supercooled liquids is shorter than the
available experimental time, so the system can equilibrate, despite
their nucleation time becoming larger [12].
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The structure of supercooled liquids is essentially the same as their
structure above the melting temperature. Still, as the temperature
decreases, their short range order can also show some differences due
to the change in density. A greater difference can be observed in
their dynamic properties, such as lower particle mobility and higher
viscosity, which results in a more cooperative dynamics that tends
to segregate particles into fast- and slow-moving clusters. When the
sample is deeply supercooled, the viscosity becomes so huge that
the particles are under kinetic inhibition and unable to rearrange, so
nucleation cannot take place. However, if the system is cooled down
slowly, it has plenty of time to nucleate the crystal structure during
this process. Therefore, to avoid crystallisation, very fast cooling
rates are normally used, although other strategies are also possible,
such as adding other constituents to favour lattice irregularities [12].

1.2.3.2 Structural glass transition

If crystallization is successfully avoided, the viscosity of the super-
cooled liquid keeps progressively increasing and slowing down the
dynamics, due to the need to rearrange larger highly interacting re-
gions simultaneously, until a point is reached where it effectively traps
the system in a disordered structure (see Figure 1.3). The relaxation
time also increases, until there is a dynamic glass transition and it
takes longer for the system to equilibrate than the available experi-
mental time. When this happens, the supercooled liquid has become
a structural glass, and any measurement that we carry out is really
performed out of the equilibrium, which may not be of importance
for some quantities, but yields crucially different results for others,
such as many thermodynamic magnitudes specifically defined only in
equilibrated systems [12]. Window glasses, plastics, and caramel are
common everyday examples of these kind of materials.

Because the “available experimental time” is a rather arbitrary
concept, which depends on the experimental technique, it has been
defined as being between 100 and 1000 seconds for the purpose of
defining glassy phases, which means that the dynamic glass transition
will take place by definition when the relaxation time of the system
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Figure 1.3: Arresting different degrees of freedom results in different
kinds of glasses. For example, a structural glass with translational
and rotational disorder can be obtained from a liquid, while an ori-
entational glass with translational order and rotational disorder can
be obtained from a plastic crystal. Modified from Ref. [16].

reaches this value range or, equivalently, when its viscosity reaches
1013 Poise. Taking into account that most liquids rarely have more
than 0.001 or 0.01 Poise at the melting temperature, is clear that this
is a huge viscosity. These quantities are also taken as the empirical
values used to differentiate highly viscous liquids from amorphous
solids, which means that if the compound displays a larger viscosity
or relaxation time than these values it will not be considered a liquid
but a solid instead.

Liquids cooled down below the glass transition temperature Tg
have a very similar structure than the one they had above it, they lack
any long range order and are arrested in a similar short range order
than the one they had, although they can show slight changes due
to the existing density variation. However, drastic dynamic changes
take place at Tg, such as an increase of several orders of magnitude
in the relaxation time τ and the viscosity η.

There is no latent heat or discontinuity in the density as in a first
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order transition between equilibrium states (such as in the liquid to
crystal transition), but there is an abrupt change in several physical
properties of the system, such as the thermal expansivity (due to a
slope change of the volume) or the heat capacity, which would mark
a second order transition between equilibrium states. This justifies
the definition of a dynamical transition despite the glass being out of
the equilibrium [12, 17].

The glass transition temperature Tg depends on the cooling rate
but, since the dependence with temperature of the relaxation time
(or the viscosity) is exponential or even faster on cooling, it is in
practice very difficult to change Tg significantly, so it is still useful to
establish its value.

The glass transition will be more significant for liquids that have
a steeper variation of their viscosity η on approaching Tg, than for
those that have a milder one. This can be quantified through their
fragility m:

m = lim
T→Tg

d log η

d (Tg/T )
(1.1)

which is essentially the slope of the viscosity near Tg on an Arrhenius
plot. The relaxation time of a liquid changes together with its viscos-
ity, so both magnitudes can be used interchangeably in the definition
of the parameter m. Liquids that display an exponential behaviour
on approaching Tg are called “strong” and have small m values, while
liquids with super-Arrhenius behaviour, undergoing larger variations,
have larger m values and are called “fragile”.

Regardless of the meaning of the word “fragile” used in common
language, the former classification has nothing to do with the ten-
dency of the material of breaking easily, and it simply indicates how
abrupt its glass transition is. Since fragile liquids need a much nar-
rower interval of temperatures to experience huge viscosity or relax-
ation time changes, they are much better glass formers, easily quench-
ing one or more degrees of freedom even at moderate cooling rates.
Far from the glass transition, fragile liquids usually display smaller
viscosity and relaxation time variations than strong liquids [12].
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Figure 1.4: Energy landscape of a glass-former material. Point A
corresponds to a metastable equilibrium state (local minimum of the
energy), point B to an unstable state (out of the equilibrium), and C
to a stable equilibrium state (global minimum of the energy).

1.2.3.3 Thermodynamics

Analyses of the energy landscape of the material, that is, the potential
energy surface as a function of the particle coordinates, can be very
useful to understand the behaviour of supercooled liquids and the
formation of glasses [18]. For instance, the roughness of the energy
landscape has been linked to good glass formers, that is, fragile ones.
An arbitrary energy landscape has been depicted in Figure 1.4.

Supercooled liquids are metastable equilibrium states. Except if
they undergo an actual crystallization, measurements over time yield
the same properties, because their relaxation time is shorter than
their experimental time, so they are able to relax and reach a local
equilibrium state where they remain until they crystallize (such as
point A in Figure 1.4).

Glasses are out-of-equilibrium states. Their properties depend on
the time that has elapsed since they were cooled down below Tg and
entered the glassy phase. That is because their relaxation time is
larger than the experimental time, so they are in fact being observed
during their evolution towards the equilibrium, which means that
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they experience ageing (see point B in Figure 1.4 relaxing slowly
towards point C due to energy landscape roughness) [1, 12].

For this reason, they are fundamentally disparate states, and
structural glasses should not simply be considered highly viscous su-
percooled liquids [12].

An ergodic system has the same behaviour if averaged over time
than if averaged over the phase space, which means that with time
the system will explore the different available microstates. At the
glass transition a system loses its ergodicity because it is confined to
a local minimum of the phase space, and thus is not able to explore
a significant portion of the phase space during the available exper-
imental time. This is purely a dynamic effect but nonetheless has
measurable consequences.

For instance, the specific heat of supercooled liquids drops to val-
ues similar to crystals when they become structural glasses. The
explanation is that, in crystals, the only specific heat contribution
comes from particle vibrations about the ordered equilibrium posi-
tions, because there are no rearrangements, while in structural glasses
it mainly comes from particles vibrating as well, because the parti-
cles are effectively trapped and there are almost no rearrangements
during the experimental time, but in this case the vibration is about
the disordered equilibrium positions.

This is a consequence of measuring the specific heat, which is an
equilibrium concept, on a glassy system, which is out of equilibrium.
Measuring the specific heat on a crystal or a liquid, even if super-
cooled, does not show this phenomenon because in those systems the
experimental time is larger than the relaxation time, so they can
readily explore their phase space.

1.2.3.4 Correlation and cooperativity

A correlation function can measure how quickly particle correlations
decay with time, such as correlations on their position or orientation.
Very often these functions are normalized so that their values lay be-
tween one and zero. Where one means that the position or orientation
of the particle is perfectly determined by its position or orientation
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Figure 1.5: (a) In the liquid the correlation function has the short
time ballistics regime followed by the diffusive exponential decay.
But, when the glass transition is approached, a plateau is formed and
a two step relaxation appears. (b) In the liquid the mean square dis-
placement as a function of time shows the crossover from ballistic dy-
namics to diffusion. However, a plateau interrupting the crossover can
be observed as well when the glass transition is approached. Modified

from Refs. [19] and [20].

at the origin, and zero means that it is completely unrelated to its
values at the origin.

At high temperatures, a particle in the liquid will have a bal-
listic regime for very short times and travelled distances, where it
moves freely without interacting. This will be followed by a diffu-
sive regime at longer times and distances, where particle dynamics
are determined by the collisions with the rest of the particles, grad-
ually becoming uncorrelated (see Figure 1.5). As the liquid is cooled
down, the particles move progressively slower and the correlations
last longer until, eventually, a plateau emerges indicating a change
in the dynamics near the glass transition, where a two step relax-
ation takes place. This two step relaxation is a clear signature of
any type of glass transition. The fast relaxation process β depends
weakly on temperature and does not change much on approaching
the glass transition, but the slower relaxation process α does show
large variations.
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An analysis of the particle mean square displacement in a liq-
uid allows to shed some light on the origin of these two relaxations
near the glass transition. At high temperature, the particles move
ballistically without encountering any obstacle within very short dis-
tances at first (much smaller than interparticle distance), and then
they change to diffusive motion at the crossover, where they have to
push their way through neighbour particles. As the liquid approaches
Tg, the particles keep experiencing the ballistic and diffusive regimes,
but a plateau appears in between. This plateau, associated with the
distance travelled by the particle in a certain time interval, indicates
that the particles get stuck within that distance for a long time before
they can actually diffuse.

To understand this behaviour, we can imagine that the neighbours
surrounding a particle form a sort of cage. The size of the cage does
not change much with the temperature but, as the glass transition
temperature is approached, the viscosity increases and the cage be-
comes very stiff due to the lack of space available to rearrange the
particles. Hence, each particle is trapped within this cage, bounc-
ing back and forth, until a great number of neighbours cooperate to
‘open’ the cage and let the particle go. The β relaxation corresponds
to the rattling within the cage, and the α relaxation to the time it re-
quires for the particle to leave the cage, which varies greatly with the
temperature because it depends on the mobility of the neighbours.
In this picture, all particles are trapped and part of their neighbours
cages at the same time.

The relaxation time increases as the liquid is cooled down due to
the need of rearranging larger and larger correlated regions, hence,
the correlation length increases as the temperature is decreased. Since
there is an accentuated cooperative behaviour between the parti-
cles, as a consequence, particles tend to cluster together and super-
cooled liquids near the glass transition show heterogeneous dynamics.
Domains of particles with different mobility appear as viscosity in-
creases, segregating themselves in fast or slow clusters [12].

Intramolecular forces are usually much stronger than intermolec-
ular ones. In cooperative systems is normal that very short range
interactions propagate up to long distances, even if they are unable
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to originate long range order under those conditions [1, 2].

1.2.3.5 Other kinds of glasses

Until now we have been describing glasses as quenched liquids where
particles have become positionally and orientationally arrested, and
which have thus a similar structure to the original liquid [3]. However,
the glass transition is a much more diverse phenomenon than that. In
physics, any system that has a disordered degree of freedom that can
be dynamically arrested on a non equilibrium state can be a glass,
which means that there are a myriad of different kinds of glasses
depending on their structure and the degrees of freedom that have
been arrested.

Only the three types of glasses with a certain relevance in this
work will be mentioned:

Structural glasses These are the standard glasses obtained from
liquids which have been extensively described. They maintain
their lack of positional and rotational long range order but dis-
play certain short range order.

Orientational glasses These glasses are obtained from plastic crys-
tals that have experienced glass transitions. Since the position
of molecules in plastic crystals displays long range order, it is
their rotational disorder which gets arrested. They yield struc-
tures very similar to that of the original plastic crystal (see
Figure 1.3).

Conformational glasses These glasses are obtained from materi-
als where the molecules can take more than one possible con-
formation, and this conformational disorder becomes arrested.
Once the conformational glass transition takes place, the time
it would take molecules to switch from one conformation to
another is longer than the experimental time, so they remain
dynamically stuck in the last conformation they had before the
glass transition. This can happen regardless of the order or dis-
order state of other molecular degrees of freedom, such as the
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orientational or translational, which may still be able to relax
to their equilibrium positions.

If glasses lose all their degrees of freedom as they enter the glass
transition, they may be structurally very similar than before becom-
ing a glass, because it will be difficult for particles to rearrange fur-
ther. However, if not all degrees of freedom are fixed on entering
the transition, this will not necessarily be the case any more. For
instance, in a conformational glass without rotational arrest, the mo-
lecules cannot change their conformation but they can still rotate as
a whole, which means that the short range order of such conforma-
tional glass can experience large variations as the temperature (or
the significant variable) is further decreased.

Regarding the glass transition temperature, although other kinds
of glasses may not benefit from the empirical definition using viscosity
that was introduced for structural glasses in section 1.2.3.2, they can
surely benefit from the more general empirical definition using the
relaxation time. Therefore, the glass transition will by definition take
place in all kinds of glasses when the dynamical process being arrested
reaches a characteristic relaxation time, typically taken between 100
and 1000 seconds.

Although the cage interpretation that was used to understand the
two step relaxation in structural glasses is based on the arrangement
of the position of the particles, the transition from a one step re-
laxation to a two step relaxation shows up in all kinds of different
systems as the glass transition is approached, which means that the
presence of a fast and a slow relaxation is indeed a very fundamen-
tal distinctive mark of glassy behaviours, regardless of the degree of
freedom that is being arrested [12].

1.3 How to study disordered systems?

To determine the connection between the microscopic molecular inter-
actions and the macroscopic properties of the system has an obvious
scientific and technological interest [13].
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Gases have been studied since the 19th century, the understand-
ing of crystalline solids experienced an explosion since the middle
of the 20th, and scientific efforts during the last 50 years have led
to a complete basic understanding of the static and physicochemical
properties of liquids. However, no shared theory is able to explain
supercooled liquids and the glass transition in a single theoretical
framework, although several partial theories have succeeded in ex-
plaining some of the features [1, 12, 13, 15, 21].

1.3.1 Statistical description

When a system is perfectly ordered, an ordering rule allows to predict
the properties of all its elements, such as the position of all atoms in
a crystal from the properties of a single one. This becomes impossi-
ble when some randomness is present but, nonetheless, a statistical
description of the system can be obtained. A disordered system will
show a large deviation from the crystalline structure, hence, it will
not be possible to obtain a very detailed description. An order pa-
rameter, which quantifies how detailed the structural description can
be, might be used to evaluate the degree of disorder [3].

The Wigner-Seitz cell is defined as the smallest volume enclosed
by the planes that bisect the lines joining a particle with its neigh-
bours, and is used in crystals as a kind of primitive cell. In disordered
structures, the same construction is called Voronoi polyhedron. The
number of faces of either of them will equal the coordination num-
ber of the atom or molecule. Examples of a Wigner-Seitz cell and a
Voronoi polyhedron can be seen in Figure 1.1. Due to the disordered
nature of the system, the Voronoi polyhedra will display a range of
different geometries. The statistical distributions of volumes, shapes,
or first neighbours, provide very useful information to describe the
disordered material, but they are hard to link with measurable phys-
ical quantities [1, 3].

In practice, the average coordination number and atomic volume
of liquid molecules with respect to the crystal are very similar. The
greatest difference can be found in the huge local fluctuations of these
parameters in the liquid. Unfortunately, this cannot be directly as-
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sessed from certain statistical magnitudes that only account for av-
erages [1].

Probability distribution functions are one of the main tools to de-
scribe the microscopic structure of disordered materials [3, 4]. The
simplest one is the pair correlation function, which can be used to
statistically describe the characteristic distances between pairs of el-
ements (atomic nuclei of the same or different species, molecular cen-
tres of mass, etc.). The position of the reference element will corre-
spond to the origin, and the probability that another element is found
at a certain distance will determine the height of the pair correlation
function at that distance. Therefore, the height of the function will
depend on the coordination number of that shell [1].

Besides, given that the density of a system is homogeneous, the
number of elements at a certain distance of the reference molecule
increases as the distance is increased due to purely geometrical rea-
sons, hence, the density of pairs of elements contributing to the pair
correlation function will correspondingly increase with the distance.

In perfect ideal crystals, since these distances are precisely de-
fined, their probability distributions in the pair correlation function
appear as delta functions (see Figure 1.6(a)). However, the elements
of real crystals will always vibrate around their equilibrium posi-
tions, which will yield a certain probability distribution about that
distance. The area of the probability distribution of each element pair
should still be the same that its delta had, but the different peaks
may begin to overlap and the analysis become more complicated (see
Figure 1.6(b)).

A broadening of the peaks is also obtained if the reason for a
distribution of distances is caused by the inherent disorder of the
system, such as in a liquid or a structural glass (see Figure 1.6(c)).
The difference is that peak broadening about an equilibrium position
due to thermal agitation will be similar regardless of how large is the
distance to the reference molecule, but variability of the distance be-
tween elements due to lack of long range order will gradually increase
with the distance. Therefore, as distances become large and the num-
ber of peaks in the pair correlation function starts to increase, their
overlap in the case of disordered systems quickly leads to a uniform
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Figure 1.6: Pair correlation function. (a) In the ideal case of a per-
fect crystal all characteristic distances between the reference particle
and the rest of particles are very well determined, so they appear
as delta functions. (b) In real crystals the particles vibrate about
their equilibrium positions and a certain probability distribution of
finding the neighbour particle around each distance is obtained. If
the crystal is hot these peak broadenings are larger than if it is cold.
(c) In a disordered material, such as a liquid or a structural glass, a
distribution of distances is inherent to the variability of possible local
arrangements of the system, so the peaks largely overlap, quickly be-
coming a uniform function at distances where their short range order
is lost. Modified from Ref. [1].
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Figure 1.7: Radial distribution function of amorphous Si (solid line)
together with the radial distribution function that a continuous
medium would yield (dashed line). Modified from Ref. [1].

continuum that is conventionally normalised to one.
The radial distribution function contains the same kind of statis-

tical information on the structure of disordered systems (see Figure
1.7). However, the advantage of the radial distribution function is
that it is not normalised to the area of the spherical shell at each dis-
tance, as the pair correlation function is. For this reason, the fact that
the region under consideration is larger and more molecules will be
found as the distance to the reference particle increases is reflected on
the height of the function. This means that integration of the radial
distribution function will directly yield the number of atoms within
a coordination shell.

Most theories of simple liquids try to calculate the pair distribu-
tion function from the specified intermolecular potential to be able
to predict its structural and thermodynamic equilibrium properties.
This is so because, if the potential energy can be approximated by
pairwise spherically symmetric terms between the atoms or molecules
of the liquid, then the thermodynamic properties can be determined
only from their pair correlation functions [2, 22].

Besides, the pair correlation function and the radial distribution
function can both be obtained, with more or less success, through sev-
eral scattering techniques. Hence, predictions of theories and models
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can be, in principle, directly compared to the experiments.
However, describing the structure of non spherical molecules

greatly complicates the problem even if simplified models are used,
the relative orientation distribution functions for the different spatial
configurations have to be found as well, and they are usually very
hard to determine experimentally, if possible at all [1].

1.3.2 Theories and models

For dilute gases, where the constituents are completely disordered,
the ideal gas model based on point particles with uncorrelated mo-
tion is a good approximation or at least a good basis for the theoret-
ical discussion. There, the thermal motions of particles are explained
using random positions and movements, which greatly simplifies the
model. Regarding crystalline solids, their highly ordered arrange-
ments introduce many simplifications to describe their structure and
construct theories. In particular, application of symmetry principles
on the lattice periodicity has allowed huge progress in theory devel-
opment. The ideal simple model of a perfect crystal with harmonic
forces is a good zero order approximation for more refined calculations
of most crystals. There, the emphasis is on the structural order which
is slightly modified by the particles’ thermal motion [3, 11, 15, 23].

Liquids are more complex systems, and neither of these two ex-
treme approximations can be applied. Particles have a significant
amount of interaction in a liquid, which results in short range corre-
lations, so they can not be considered to have an uniformly random
distribution. But their interaction is not strong enough to neutralise
thermal agitation and perfectly determine a regular particle arrange-
ment, which results in symmetry breaking and prevents to use of the
same principles that are used in crystals. These short range correla-
tions are very hard to treat analytically, because they do not allow
an easy way to reduce the many body dynamics problem to just one
or at least a few bodies.

In practice, very few systems have analytical two-body distribu-
tion functions available and, if forces are many-body or the potential
lacks spherical symmetry, the situation becomes even worse. Ap-
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proximate semianalytical methods, such as those based in integral
equations or perturbation theories, can be used with varying success
for different systems, but computer simulations or modellings, us-
ing numerical methods, are nowadays for its adaptability the most
extensively used strategies to develop liquid models [13, 24].

The standard statistical physics definition of the correlation func-
tion includes a multiple integral of the intermolecular potential for
all the particles. For gases, a density expansion can be used that
leads to the virial series for thermodynamic functions, but for realis-
tic potentials, only the first terms of the series are known, hence, it
can only be used for low density systems. However, the hard spheres
model is an exception: several terms of the pressure virial series are
available for this potential [22].

Due to the high density of liquids, repulsive forces between atoms
or molecules play a dominant role making them almost as incom-
pressible as crystals. The simplest model to take this into account
corresponds to mutually impenetrable hard spheres without any other
interaction. This is expressed by a potential that is infinite for dis-
tances smaller than the radius of the spheres and null for larger val-
ues [1].

This ideal model for simple liquids is quite good for most liq-
uids where the constituents are approximately spherical, and is the
one most widely used as a first approximation and as the base of
further refinements. However, molecules with industrial interest are
non spherical and have complex interactions which cannot be char-
acterised by hard spheres or square wells [1, 2, 13, 15, 23].

Integral equations methods consist in using approximations to ob-
tain an integral equation that links the correlation function with a
certain potential, and that can be solved analytically or numerically.
The two main advantages of these methods are that they can pro-
vide with analytic expressions, and that an intermolecular potential
can be determined from a known correlation function, which may
be very interesting if the latter can be measured. The drawbacks
are, on the one hand, that since the obtained correlation function is
an approximation, thermodynamic consistency is lost, and, on the
other hand, that is not easy in practice to find analytical solutions
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to integral equations of correlation functions. The Percus-Yevick and
the hypernetted chain methods are two examples of this approach
[2, 15, 22, 24].

Perturbative methods consist in establishing a simple well known
reference system as the zero order approximation and calculating cor-
rections to that to describe the more realistic problem. The hard
spheres system is often used as the reference system in these meth-
ods because it is very well known and its analytic expressions are
available. The structure of liquids is normally given mainly by pack-
ing, which concerns the hard repulsive centre of the intermolecular
potential, and attractive interactions can be added as a uniform back-
ground potential that does not change the structure. This is the rea-
son that these methods work well in many cases. The disadvantage of
these methods is that a suitable reference system which can be used
as a first approximation cannot always be found. For instance, the
high densities of liquids do not allow normally to use perturbative
methods based on non interacting gases. Perturbative methods are
used for example by van der Waals, Zwanzig, Carnahan and Starling,
or Wertheim theories. This latter perturbative theory allows to build
non spherical molecules by joining smaller entities [2, 13, 15].

Computer simulations and modelling are widely used for their
adaptability to all kinds of problems and their high accuracy. How-
ever, they have the drawbacks that since they are numerical methods
they do not provide analytical expressions, and that some techniques
only provide solutions compatible to the problem, but which are not
unique. Molecular dynamics and reverse Monte Carlo are two pop-
ular examples of such methods. The first assumes an interaction
potential for the particles and solves the equations of motion of the
system averaging over several solutions. The potential can range
from very simple models, such as hard spheres or square well, to
Lennard-Jones or much more complex ones involving three bodies,
non spherical symmetries, or quantum effects. The second modifies
an initial structure until its calculated experimental outcome matches
the actual experiment [2, 3, 15, 22].

Glasses have additional complications due to being out of equi-
librium. On the one hand, it is difficult to take advantage of the
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thermodynamic tools that have been conceived to use with equilib-
rium phases, and on the other hand, thermal history becomes an
important player. The reason for this is that, depending on the pro-
cedure, different glasses will be obtained, and also that, since glasses
are in constant evolution, their properties depend on the time elapsed
from the glass transition.

Goldstein’s theory of the energy landscape scenario, and mode
coupling theory are two examples of theories that try to provide an
explanation of the glass transition or the non-equilibrium phases that
precede it. The latter, mode coupling theory, tackles relaxations in
supercooled liquids. It encompasses a dynamic transition at a certain
critical temperature and the two step relaxation at low temperatures.
But so far none of the theoretical frameworks provides a complete
understanding of the problem [12].

Regarding computational models or simulations, the ample vari-
ation of the relaxation times across the glass transition casts an
enormous obstacle for these attempts to reach unchallenged realis-
tic solutions, mainly because very demanding computational times
are required.

1.3.3 Diffraction experiments

Countless experiments can provide us with information on the struc-
tural and dynamic properties of liquids and glasses, however, our em-
phasis will be on diffraction experiments. It will become apparent,
throughout this work, that neutron diffraction has been particularly
useful to put to the test computer simulations and models obtained
for the systems under study.

This technique allows to measure the differential cross section
of our system, which contains averaged structural information of our
sample. In monoatomic cases this magnitude is directly related to the
pair-correlation function through a Fourier transform and a painstak-
ing series of manipulations of the experimental data. In more complex
cases other analogous functions can be obtained from data manipu-
lations and compared to simulations or theoretical models, but in-
terpretation of these functions is less straightforward. Additionally,
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since light atoms represent the largest fraction of elements of inter-
est in the compounds studied in this work, and they interact quite
weakly with x-rays, neutrons have been chosen as the most suitable
diffraction probe [1, 2, 4].

Although other techniques have been used in this work to study
the materials of interest, the main stress has been on neutron diffrac-
tion, therefore, only this technique will be described in some detail.
The following Chapters 2, 3, and 4 will mainly pursue to provide an
overview of the main theoretical explanations, experimental proce-
dures, and data treatment used here for this technique.

1.4 Scientific cases in this work

A brief overview is given here to enumerate the various scientific open
questions that have been tackled with the methodology presented in
this work. An understanding of the short range order of all studied
molecular liquids, plastic crystals and glasses is central to explain
those scientific problems. All cases have been further explained in
more detail in Chapter 6.

1.4.1 Liquid with different high and low
temperature behaviours (C2Cl2H2)

A number of anomalies between 243 and 257 K have been discovered
for this molecular liquid. These are not a consequence of supercool-
ing because its melting temperature is around Tm = 223 K. The
first to be reported were a tiny density anomaly, manifested as a con-
tinuous transition from one straight line to another with the same
thermal expansion coefficient, i.e. with the same slope, together with
a discontinuity and a minimum in the spin-relaxation time measured
by nuclear magnetic resonance (see Figures 1.8(a) and (b), respec-
tively) [28].

Subsequently, a maximum in the specific heat capacity was found
through the modulated differential scanning calorimetry technique
(see Figure 1.8(c)), which undoubtedly pinpointed the existence of
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Figure 1.8: Trans-1,2-dichloroethene anomalies between 243 and
257 K. (a) Specific volume, with an inset of the molecular geometry,
(b) minimum and discontinuity of the spin-lattice relaxation time, (c)
specific heat maximum on cooling with heat flow on heating to show
melting point, (d) pretransitional anomaly on the nonlinear dielectric
effect, and, lastly, (e) absorbance and (f) linewidth of a few infrared
frequency bands. Modified from Refs. [25–27].



1.4. SCIENTIFIC CASES IN THIS WORK 29

some sort of transition within the liquid phase and which led some
authors to suggest that this was an example of a liquid-liquid phase
transition [26]. However, the fingerprints of liquid-liquid phase tran-
sitions are still quite unclear and under intense debate, which makes
any such classification very polemic. So although it is clear that no
first order transition takes place, it has yet to be clarified whether this
falls into the liquid-liquid transition scheme or in some other class of
transitions yet to be characterised.

Also, nonlinear dielectric effect measurements show a strong pre-
transitional anomaly, which suggests that, on approaching the transi-
tion temperature, fluctuations involving local heterogeneities of sev-
eral molecules take place (see Figure 1.8(d)) [26]. And infrared spec-
troscopy measurements exhibit sharp discontinuities in several fre-
quency bands, which denote the transition to a more ordered phase
with a locally favoured structure and, thus, enhanced cooperativity
(see Figures 1.8(e) and (f)). Besides, the overall temperature depen-
dence of the infrared measurements also suggests that weak hydrogen
bonding with chlorine may be playing a role [27].

Therefore, it is very interesting to study this particular behaviour
of trans-1,2-dichloroethene and unravel the key differences in the
structure and dynamics between the liquid at high and low tem-
peratures. Finding the underlying causes driving its transition could
also shed some light on the general mechanisms behind liquid-liquid
transitions. The results of these efforts can be found in section 6.1.

1.4.2 Fragile orientational glass (C2Cl2F2)

Molecules with the same chemical composition that have their atoms
arranged differently are called isomers. Sometimes, a part of a
molecule can rotate about a flexible bond between two atoms and
change from one geometrical shape to another without breaking any
of its bonds. These kind of isomers are called conformations, or ro-
tamers if the molecule needs to overcome a certain energy barrier in
order to rotate.

One of such molecules is 1,1,2,2-tetrachloro-1,2-difluoroethane (F-
112), that has two different conformations: trans and gauche (see
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Figure 1.9: (a) The two coexisting conformers of 1,1,2,2-tetrachloro-
1,2-difluoroethane (F-112). (b) 1,1,1,2-tetrachloro-2,2-difluoroethane
(F-112a). (c) Fragility of compounds F-112 and F-112a compared to
other plastic crystals and to propylene carbonate, a typical fragile
structural glass former. Strong glasses are closer to an Arrhenius
behaviour (m = 16) while fragile glasses depart from it. Figure (c)

from Ref. [29].

Figure 1.9(a)). If the temperature is high and enough energy is freely
available, the molecule can easily switch between rotamers and the
two coexist in some proportion within the material, which is what
happens in its liquid phase.

Below the melting point this compound becomes a plastic crystal,
with the centres of mass of its molecules highly ordered in a body cen-
tred cubic (bcc) lattice, but with their orientations tumbling about.
The rotamers can also switch from one to the other in the higher
temperature range of this plastic phase, but at a certain point they
stop having enough energy to overcome the rotational barriers and
freeze in their last conformation, turning into a conformational glass
and leaving only the possibility of reorienting the whole molecule.
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If the temperature keeps decreasing and crystallization is avoided,
the orientational disorder can become arrested as well, and an orienta-
tional glass is formed (see Figure 1.3). Normally, several experimental
tricks have to be used to avoid crystallization, but F-112 is a very
good glass former and, on the contrary, is very hard to crystallize.

With regards to their behaviour on approaching the glass transi-
tion, most orientationally disordered phases are rather strong, show-
ing a moderate temperature dependence. However, F-112 is very
fragile, in fact, is the most fragile orientational glass former known so
far. This can be assessed in Figure 1.9(c) where the fragility of sev-
eral plastic crystals, including F-112, is depicted together with that
of a typical fragile liquid.

1,1,1,2-tetrachloro-2,2-difluoroethane (F-112a), which is an isomer
of F-112 (see Figure 1.9(b)) and displays a plastic phase below the
melting temperature that can become an orientational glass as well,
is also plotted in this figure and, as can be seen, it is quite strong,
as it would be expected of most orientational glass formers. This
suggests that the key to F-112 outstanding fragility has to lie on the
difference between the two isomers: their molecular geometry.

The glass transition is far from being fully understood but the
advantage of investigating these two similar molecules with such dif-
ferent glassy behaviour is that it helps isolate the variables that favour
some materials to be better glass formers than others. The results
on F-112 and F-112a isomers have been summarised in section 6.2.

1.4.3 Tetrahedral molecules (CCl4)

Carbon tetrachloride (CCl4) is a highly symmetric molecule. Since
the carbon atom is in the centre of the four chlorine atoms, a perfect
tetrahedral intramolecular structure can be assumed, and then only
one distance accounting for its size is needed to fully determine its
geometry.

This compound has a liquid and a plastic crystal phase which, due
to the simple structure of the molecule, have been among the first
and most extensively studied disordered phases. In particular, a large
number of short range order studies have been carried out to elucidate
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Figure 1.10: A few of the possible relative orientations for pairs of
carbon tetrachloride molecules.

the most probable arrangements of the first neighbour. A few possi-
ble relative orientations of CCl4 molecular pairs have been depicted
in Figure 1.10. Computer technology advances have allowed better
calculations that have challenged widely established CCl4 structural
models, so this compound has still been the object of recent scientific
discussions.

One of the open questions that justify further investigations is the
so called local density paradox. To introduce this paradox, the pair
correlation function between carbon atoms in the liquid and plas-
tic crystal phases is shown in Figure 1.11. Since the carbon atoms
correspond more or less to the molecular centres of mass, this corre-
sponds effectively to a pair correlation function of relative positions
between the molecules. The profile of the first peak is connected
to the probability distribution of distances between a molecule and
its first neighbour. As can be seen in this figure, the most likely
configuration in the liquid brings the molecules closer than the most
likely configuration in the plastic crystal. It would be expected that
the phase that allows the molecular pairs to be closer would yield a
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Figure 1.11: Carbon-carbon pair correlation function in the liquid
(red) and plastic crystal phases (black) of CCl4.

higher density, yet this is not the case. On the contrary, the plastic
phase of CCl4 is denser than its liquid.

Although this is not really a paradox due to correlation functions
having a statistical nature, which means that the most likely config-
uration does not necessarily account for the behaviour of the whole
system, and that all of them may have to be taken into account
to provide a complete picture, these counterintuitive and apparently
contradictory results deserve a closer examination of their underlying
causes. The solution to this conundrum is explored in Section 6.4.

1.4.4 Quasitetrahedral molecules (CBrCl3 and
CBr2Cl2)

The intramolecular simplicity of CCl4 also makes it a perfect candi-
date to be a model system, which can be used as a reference for other
more complex molecules of the tetrahedral family.

Due to its symmetry, the CCl4 molecule is nonpolar. Conse-
quently, its short range order is essentially determined by steric in-
teractions, which are the repulsive forces preventing two different
molecules from occupying the same space. Clearly, when the atomic
species of one or more of the molecular sites are substituted, a dif-
ferent contribution to the steric interaction will be obtained for the
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Figure 1.12: (a) CCl4, highly symmetric and nonpolar, with its four
identical and interchangeable carbon-chlorine bonds. (b) CBrCl3,
with a rotational symmetry axis that overlaps with one of the CCl4
axes. (c) CBr2Cl2, with the symmetry axis of the dipolar interaction
laying in a completely different direction.

new molecule due to the new atom being more or less bulky than the
original one. But conveniently enough, many compounds that can
be obtained this way, distort their geometry by very little, remaining
quite close to the tetrahedral ideal.

However, if for example only some of the four chlorines are re-
placed, the symmetry of the molecule breaks down and a dipole
moment is very likely to appear, which means that the dipolar in-
teraction can potentially become a significant contribution in this
other system. For instance, both CBrCl3 and CBr2Cl2 show a dipole
moment in the direction of the bromine atoms (see Figure 1.12).

To achieve a certain degree of insight on this class of materials,
it is necessary to resolve the contributions of the steric and dipolar
interactions, and to understand how breaking the symmetry affects
the short range order. To determine the influence of each kind of
interaction on the short range order of these materials, two strategies
can be used: either similar molecules that only differ on the quantities
of interest are studied, or computer simulations are performed where
the different types of interaction can be suppressed artificially. Both
have been undertaken to tackle this problem and are explained in
Section 6.5.
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1.5 Objectives

The following goals were set for this thesis:

• Development of tools to better systematise the structural anal-
ysis of liquids and glasses.

• These tools should ideally be:

Robust To be sure within reason that the results yielded by
the method will not be very far from the real solution or
too far from the expected error ranges, regardless of the
particular problem.

Flexible To potentially be able to analyse a wide range of
disordered systems.

Transparent That estimations based on the previous experi-
ence of the researcher are always accounted and explicitly
quantified, so that they can be subjected to criticism and
reproducible analyses are guaranteed.

• Analyse a range of disordered systems using this method in or-
der to explain the microscopic origin, specially of structural fea-
tures, from certain unexplained properties in these disordered
systems:

TDCE Unravel the microscopic explanation behind its anoma-
lies.

F-112 Understand the microscopic reasons behind its out-
standing fragility.

CCl4 Explain the local density paradox.

CBrCl3 and CBr2Cl2 Study the effect on the short range or-
der of quasitetrahedral molecules of the steric and electro-
static interactions.

• Contribute to the general understanding of disordered phases
phenomenology through the analysis of these case studies.
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2.1 Why use neutron diffraction?

Scattering techniques consist in measuring how a flux of known char-
acteristics is affected by passing through the sample that is investi-
gated. This flux can be anything that displays interference properties:
x-rays, visible light, electrons, neutrons, etc. Typically, the deviation
from the impinging trajectory and the energy loss or gain of the
probe are measured in these experiments, which allows to determine
structural and dynamical characteristics of the sample.

Diffraction is a particular case of these techniques, where the setup
allows to assume that the energy exchange of the probes with the
sample is negligible compared to the energy of the probes. This means
that their velocity does not change its magnitude after interacting
with the sample and that only deviations from the initial trajectory
have to be measured. This assumption is called static approximation,
and is the reason that diffraction experiments can only provide direct
information on the structure of the sample but not its dynamics [4,
23].

As has been outlined in Chapter 1, if we intend to study the
structure of a disordered material, whose elements organise in a range
of different local structures, a statistical description must be used,
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so our ultimate goal when studying these materials is to obtain the
distribution functions of how the elements arrange within the system.

When measuring these materials with diffraction, every occurring
structure contributes with a distinctive scattering and, therefore, the
resulting diffractogram reflects an average. Through a series of ma-
nipulations of diffraction measurements data, it is possible to obtain,
more or less accurately, a few of the distribution functions of the
system, which is what makes it one of the most suitable methods to
study disordered structures.

In particular, it allows in simple cases to obtain an approximation
of the pair correlation function, g(r), which is proportional to the
probability of finding a particle at a certain distance of another, but
it is possible that other distribution functions are obtained, depending
on the complexity of the structure.

The wavelength of the probes used in the diffraction experiment
will determine the accessible range of characteristic distances between
elements in the sample. Thermal neutrons and x-rays both display
a wavelength of the same order of magnitude: about one angstrom,
which allows to explore typical interatomic distances.

However, the nature of each probe’s interaction with the sample
is very different: x-rays interact with the electron cloud of the atom
through electromagnetic interaction, while neutrons interact mainly
with the nucleus of the atom through the strong interaction [3, 30, 31].

This has a series of practical consequences, such as:

Contrast X-ray scattering cross sections generally increase with the
atomic number (with absorption edges providing some of the
exceptions). Therefore, the lightest elements are practically
invisible, and neighbouring elements in the periodic table are
normally indistinguishable due to lack of contrast (see Figure
2.1). However, neutron scattering cross sections vary across the
periodic table in a non systematic way, which means that some
light atoms are extremely good scatterers, and that two isotopes
of the same element can display a huge intensity difference (see
Figure 2.2).
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Figure 2.1: X-ray scattering cross sections at 10 keV. As can be
observed, diffraction of light atoms (arrows) yields an extremely weak
signal with x-ray radiation, if detected at all. Experimental data to

draw the cross sections have been taken from Ref. [32].

This allows to perform isotopic substitution and enrich the sam-
ple with a particular isotope, which has a different scattering
cross section, to enhance or diminish the contrast between its
components without substantially changing its chemical prop-
erties.

Non-destructive bulk technique Neutrons interact with matter
much more weakly than x-rays, so the samples do not get dam-
aged during the measurement. This also means that is easier
for neutrons to penetrate within the sample and become scat-
tered from the bulk and not the surface but, at the same time,
that larger samples are needed to obtain a good measurement.

Simpler analysis In neutron diffraction, nuclei can be considered
to be point-like scatterers, hence, neutrons are not sensitive to
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Figure 2.2: Thermal neutron scattering cross sections. As can be
seen, scattering intensity using neutron diffraction has an erratic be-
haviour with respect to the atomic number. Besides, only the aver-
ages for the natural abundance of isotopes are shown here, but cross
sections can enormously vary between different isotopes of the same
element. Experimental data to draw the cross sections have been taken

from Ref. [33].

their inner structure and scattering of a single atom is isotropic.
On the other hand, x-ray scattering intensity is sensitive to
the structure of the electron cloud of the atoms (that is, their
electron density), so the scattering of a single atom shows an
angular dependence. This inner structure of the atom, reflected
in the form factor, becomes mixed up with the sample structure
and makes the analysis more complex.

Besides, since the rest mass energy of thermal neutrons is much
larger than their kinetic energy, they can be considered classical
particles and any relativistic effects can be disregarded. X-ray
photons, in contrast, with zero rest mass, are always super-
relativistic [30].
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For these and other reasons, neutron and x-ray scattering are com-
plementary techniques and allow to study different systems, or some-
times, different aspects of the same system. Hence, the particular
problem to be studied will determine which is the most appropriate
probe to use for the diffraction experiments.

The scientific problems that have been tackled in this work all
involve molecules composed fully or in part by light atoms. Since
these atoms have small interactions with x-rays, it would be difficult
to obtain the complete structure of the molecules under study with
them, which supports the choice of neutrons as the diffraction probe.

2.2 Which magnitude is measured?

2.2.1 Cross section

The probability that neutrons in the beam with a certain velocity in-
teract with the sample depends on its composition, that is, what kind
of atoms it is made of, and their concentration. Hence, measuring
this probability allows to characterize the sample.

This is carried out through the scattering cross section, which is
the quotient between Is, the total intensity scattered by the sample,
and Φ0, the incident flux. The flux provides the number of incident
neutrons per unit time that cross a perpendicular unit surface, that is,
how many neutrons impinge in the area occupied by the sample. And
the total scattering intensity provides the number of scattered neu-
trons per unit time in all directions, that is, the number of neutrons
from the flux that have interacted with the sample. Consequently,
the cross section has units of area:

σs ≡
Is
Φ0

=

(
dns

dt

)/(
d2n0

dtds

)
(2.1)

where n0 and ns are the incident and scattered neutrons, respectively.
Analogously to the fact that more rain water can be collected if

a set of vessels with large cross sections is used than small ones, this
effective area is used to characterise the probability that a particular



42 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.3: Cross section scheme representing three different kinds
of atoms under the neutron flux. The scattering cross section σs
is an effective area used to characterize the probability that each
kind of isotope interacts with neutrons of the incoming beam. Nuclei
with a higher probability of interacting with neutrons will be simply
described by a larger cross section. The same number of neutrons
would get scattered if all neutrons impinging in these effective areas
were scattered and none of the others were affected.

kind of atom or isotope will be able to influence incoming neutrons
(see Figure 2.3). The idea is that this area is the cross section that
the atoms would need to have, if 100% of the neutrons impinging
in that region interacted with the atom, and none of the others did.
Hence, those atoms with higher probabilities of interacting with the
neutrons in the beam will be described by larger cross sections and
the total cross section of a sample is simply the sum of the indi-
vidual cross sections of its elements. Figure 2.2 shows the thermal
neutron scattering cross sections for each kind of atom, averaged over
its natural abundance of isotopes.

The probability that neutrons of the incoming flux will be ab-
sorbed by an atom or isotope of the sample can be similarly quantified
through a magnitude called absorption cross section.

2.2.2 Differential cross section per atom (DCS)

If the direction of the scattered neutrons is also taken into account,
then valuable structural information from the sample, and not only
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Figure 2.4: Scheme of how the differential cross section is obtained
in diffraction measurements. Scattered neutrons are counted by the
detector in each direction, and neutrons that did not interact with the
sample are absorbed by the beam stopper. For disordered samples
such as liquids and glasses, the problem has axial symmetry in the
direction of the beam (z axis) and the angle ϕ does not play a role.

about its composition, can be obtained as well.
In fact, the magnitude that is normally obtained in neutron

diffraction experiments is the differential scattering cross section,
which is proportional to the probability of finding a scattered parti-
cle within a given solid angle. In this case, the number of scattered
neutrons per unit time measured in a particular direction Is(θ, ϕ), is
normalised to the incident neutron flux Φ0, as well as the solid angle
Ω covered by the detector in that position (see Figure 2.4):

dσs
dΩ

=
d

dΩ

[
Is(θ, ϕ)

Φ0

]
=

1

Φ0

[
dIs(θ, ϕ)

dΩ

]
(2.2)

where the angular dependence of the scattered intensity Is has been
written here explicitly to emphasize it.

For disordered systems such as liquids and glasses, the average
structure of the sample is isotropic and the problem can be considered
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to have axial symmetry in the direction of the beam, which means
that the diffraction patterns consist in circular rings around the z
axis (i.e. Debye-Scherrer rings). Since the probability that neutrons
get scattered in a certain direction only depends on the angle θ and
the angle ϕ can be disregarded, a bench of detectors spanning across
a single semicircle is enough to capture the structural information
that can be obtained from the experiment.

Note that the cross section and the differential cross section are
extensive magnitudes: they are a sum of all contributions, so the more
nuclei in the beam, the more neutrons will be scattered, and more
intensity will be measured. This means that if the samples are larger
or temperature variations increase their density, these magnitudes
will also increase.

In order to be able to compare the structure of different disor-
dered samples regardless of the specificities of each experiment, an
intensive magnitude must be used. To this end, a known sample
can also be measured, which will allow to normalize the differential
cross section measurement of the sample under study and obtain its
differential cross section per atom (DCS). However, the density and
isotopic composition of both, the sample and the reference material,
must be well known.

The ultimate goal of this chapter is to obtain mathematical ex-
pressions that connect the experimental DCS measured in diffraction
experiments with the probability distributions describing the struc-
ture of our systems. Note that, although most concepts are general,
the point of view taken here is for diffraction experiments in reactor
neutron sources (more details in Chapter 3).

2.3 Scattering by a single nucleus

Before tackling the problem of how to extract sample structures from
diffraction measurements, it is good to understand the physical mech-
anism behind neutron scattering phenomena. To do that, the differ-
ential scattering cross section yielded by a fixed single nucleus will be
explored in this section.
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Figure 2.5: Quantum mechanical representation of a neutron scat-
tered by a fixed nucleus when neither the neutron initial position nor
momentum are known with absolute certainty. In this case the par-
ticle can be represented by a localized wave packet although, even
for a free non-interacting particle (far from the nucleus), the position
becomes less localized with time due to the uncertainty in its initial
velocity.

As shown in Equation 2.2, the differential cross section is obtained
from the incident flux Φ0 and the intensity scattered by the sample
Is, so the next step is to describe these two quantities in terms of the
microscopic magnitudes involved in the scattering.

2.3.1 Particle flux

If a beam is homogeneous and perfectly collimated, all particles travel
with parallel velocities and the flux is constant along its axis.

In classical mechanics, a uniform collimated flux of particles mov-
ing with the same velocity can be easily computed with the expression
Φ = ρ v, where ρ represents the density of particles, and v their ve-
locity.

In quantum mechanics, particles are represented by wave func-
tions Ψ describing their state and behaviour. However, according
to the probabilistic interpretation, wave functions do not carry pre-
dicting information about the particular position and velocity of a
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particle, but rather they provide information on the distribution of
values that would be obtained if these magnitudes were measured
for a collection of particles in the same state [34]. For instance, the
magnitude |Ψ(r, t)|2 = Ψ∗(r, t)Ψ(r, t) yields the probability density
at every specific time and place of finding a particle characterized
by the state Ψ(r, t). Therefore, the particle flux can be computed
instead using the expression Φ (t) = |Ψ(r, t)|2v, where Ψ (r, t) is the
wave function describing the state of the particles in the beam, and
v is their group velocity [35].

Normally, a heavy particle such as a neutron, characterized by a
position and a momentum with their respective uncertainties, can be
described by a wave packet, which allows a reasonable localization of
the particle. However, even in the simple case of empty space, where
the particle does not feel any potential (that is, far from the sample),
this uncertainty in its initial velocity translates in an increasing un-
certainty on its position at a subsequent time, which means that the
wave packet will gradually but inexorably become more delocalised
(see Figure 2.5).

In diffraction experiments carried out at reactor sources, the neu-
tron beam wavelength is optimized to the length scale of the struc-
tures that are investigated, and only neutrons with that certain wave-
length are used. This means that the incoming beam is monochro-
matic and its neutrons have a well determined initial velocity but
that, as a consequence of Heisenberg’s Uncertainty Principle, their
position is completely unknown.

Far from the sample the particles of the incident beam will not be
affected by the interaction potential created by the nucleus, so they
will be able to travel freely and the probability of finding a neutron
is the same at any point of the incident beam. Therefore, the state
of neutrons in the incoming beam can be well described by a plane
wave propagating in the direction of the z axis (Figure 2.6):

Ψ0 = ψ0 e
i (k0z−ω0t) (2.3)

where ψ0 is the amplitude, k0 the angular wavenumber, and ω0 the
angular frequency of the wave. Plane wave functions represent states
with perfectly well defined momenta but complete uncertainty on
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Figure 2.6: Quantum mechanical representation of a particle from an
incoming beam scattered by a fixed nucleus when its velocity before
and after the event is perfectly known. Since the stationary beam can
be characterized by a well defined momentum, but there is no priv-
ileged position with a higher probability to find a particle, neutrons
can be represented by plane waves.

the position, hence, they will yield the same probability of finding
the particle at any point in space. For a neutron beam, the angular
wavenumber is k = (mnv)/~ and the frequency ω = mnv

2/2~, where
mn is the neutron mass, v is its velocity, and ~ = h/2π is the reduced
Planck constant.

Within the quantum mechanical formulation, the wave function
of any particle must be normalized in order to maintain the physical
meaning. This simply means that the amplitude ψ must be chosen so
that the probability P of finding the particle somewhere in space is
one. However, this is not possible for plane waves because integrating
the constant probability density everywhere would yield an infinite
probability. A common trick to overcome this problem consists in
imagining that the particle is enclosed in a very large box of volume
V , and just making sure that the probability of finding the particle
inside this box is one:

P =

∫
V

Ψ∗Ψ dv ≡ 1 (2.4)



48 CHAPTER 2. THEORETICAL FRAMEWORK

Then, the limit of the solution when this volume tends to infinity can
be calculated later on if necessary.

Hence, to normalize the wave function of the neutrons in the in-
coming beam shown in Equation 2.3, the probability of finding the
particle within the box must be set to one:

P =

∫
V

[ Ψ∗︷ ︸︸ ︷
ψ0������

e−i(k0z−ω0t)
] [ Ψ︷ ︸︸ ︷

ψ0�����
ei(k0z−ω0t)

]
dv (2.5)

=

∫
V

ψ2
0dv = ψ2

0 V ≡ 1 (2.6)

and, therefore, the amplitude of the incoming neutrons wave function
must have the value ψ0 = 1/

√
V . The incoming flux using this wave

function is then

Φ0 = |Ψ0|2 v0 = Ψ∗Ψ v0 = ψ2
0 v0 =

v0
V

. (2.7)

2.3.2 Determination of the scattering intensity

2.3.2.1 Rate of scattered particles and Fermi’s Golden
Rule

All particles in the beam begin in the same initial state but, on ap-
proaching the nucleus, some will interact with it and get scattered,
ending up in a different final state [1]. We are interested in how many
particles per unit time will get scattered in a certain direction.

Fermi’s Golden Rule (derived by Dirac) allows to compute the
transition rate W of particles going from an initial state i to a final
state f due to a given interaction potential U :

W =
2π

~
|〈f |U |i〉|2df (2.8)

where 〈f |U |i〉 is called the matrix element, and quantifies the strength
of the interaction between the initial and final states, while df is the
density of final states [23, 36]. The contribution of the density of final
states df in this expression is expected because statistical physics tells
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us that, the more states are available within a certain energy range,
the more likely it is that the system will end up in one of the states
with that energy (i. e., more particles will get scattered).

However, this expression can only be used when the transition
potential U is just a small perturbation to the initial state of the
particle. This is because Fermi’s Golden Rule is obtained from the
more general Lippmann-Schwinger Equation, which describes parti-
cle scattering in quantum mechanics, under the condition that the
potential is weak and that the resulting state of the neutron beam
at every point of the sample can be approximated by its initial state.
This assumption is called the first order Born approximation and cor-
responds to considering that only single scattering events take place
during the experiment [1, 23].

Hence, in order to use Fermi’s Golden Rule, it is necessary to de-
termine first the character of the potential driving neutron scattering,
to ascertain whether it falls within its validity range or not.

2.3.2.2 Character of the nucleus-neutron interaction and
Fermi pseudopotential

Even disregarding their electron clouds, bare atomic nuclei are still a
very complex ensemble of particles: the strong force compels quarks
to stick together in confinement forming protons and neutrons, and
an excess of this force is what keeps protons and neutrons together
within atomic nuclei. It is also a remnant of this force that affects neu-
tron probes passing by the nucleus in scattering experiments. Con-
sequently, attempting a quantum chromodynamics calculation of the
force that nuclei exert upon approaching neutrons would be exceed-
ingly impractical, if not directly unfeasible [30].

Luckily, apart from nuclei being very small, the range of their in-
teraction potential with neutrons is extremely short ranged: it only
affects particles about one femtometre away, which is 100.000 times
smaller than the wavelengths in the order of the angstrom that char-
acterize thermal neutrons. For this reason, nuclei can be considered
to a good approximation to be point-like particles in neutron diffrac-
tion experiments and, consequently, their scattering is isotropic (see
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Figure 2.7: Quantum mechanical representation of the scattering
of an incoming beam by a single punctual scatterer. Neutrons from
the incoming beam can be represented by a plane wave Ψ0 but, after
interacting with a fixed nucleus, they get scattered in all directions
and the superposition of their waves becomes a spherical wave Ψs.
Far from the scatterer the collective spherical wave can also be locally
approximated by a plane wave.

Figure 2.7) [30, 36].
The nuclear interaction potential is too strong with respect to the

kinetic energy of incident neutrons to be considered a perturbation in
Born’s approximation, which was described in the previous section.
However, a weaker pseudopotential can be constructed that yields
the same scattering, as long as this is compensated by an increased
interaction range. And since the real potential is so extremely short
ranged, this can be done by keeping the extended range of the weaker
pseudopotential still small enough to be considered punctual [23, 37,
38].

The Fermi pseudopotential gives an isotropic scattering charac-
terized only by the neutron scattering length b, and can be used for
calculation purposes instead of the real potential:

U(r) =
2π~2 b
mn

δ(r −R) (2.9)

where r and R are the neutron and nucleus positions, respectively,
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and b is normally a constant that quantifies the scattering intensity
yielded by each kind of isotope. The Dirac delta is used in this
effective potential to account for the short range of the interaction
between the neutron and the nucleus, which will only take place when
both are exactly in the same position.

Since the Fermi pseudopotential is weak enough for the Born ap-
proximation to be valid, this means that Fermi’s Golden Rule can
be used to calculate the rate of scattered particles Is in a neutron
diffraction experiment.

Due to their magnetic moment, neutrons also interact with un-
paired electrons in the atomic shell of the atom, but we will disregard
these forces because in diamagnetic systems they are much smaller
than the nuclear ones [37]. Since any interaction of the neutron with
the electron cloud of the atom will hereafter be ignored, the terms
atom and nucleus will be used interchangeably from now on.

2.3.2.3 Matrix element for scattered neutrons

After establishing that the Born approximation is valid in most neu-
tron scattering experiments, and that Fermi’s Golden Rule can be
used to calculate the rate of neutrons that get scattered, the magni-
tudes appearing in the equation can be computed.

The matrix element appears in Equation 2.8 of Fermi’s Golden
Rule in bra-ket notation, but it is just a compact denomination for
the following integral:

〈f |U |i〉 =
∫

Ψ∗
f U(r) Ψi dr (2.10)

where Ψi is the wave function of the initial state, corresponding to
neutrons in the incoming beam, and Ψ∗

f is the complex conjugate
of the wave function in the final state, corresponding to neutrons
scattered in the direction of one of the detectors.

Both states can be represented by plane waves, because their en-
ergy is well defined and the neutron is only affected by the potential
U when it is exactly at the same position as the atomic nucleus, so it
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can move freely before and after the interaction (see Figure 2.6) [1]:

Ψi =
1√
V

ei(kir−ωit) (2.11)

Ψf =
1√
V

ei(kfr−ωf t) (2.12)

where V is the volume of the imaginary box that contains the scat-
tering experiment, ki and kf are the wave vectors, and ωi and ωf

are the angular frequencies of the initial and final wave functions,
respectively.

Note that, since the angular frequency is related to the modulus
of its wave vector k through ω = ~k2/2mn, these wave functions can
be fully characterized by just their wave vectors.

The spherical symmetry corresponding to isotropic scattering
emerges when instead of counting neutrons scattered in a particu-
lar direction, all scattered neutrons are taken into account (see Fig-
ure 2.7). Such an outgoing spherical wave is observed whenever the
wavelength of the probes is significantly larger than the size of the
scatterer.

Replacing the initial and final wave functions Ψi and Ψf in the
calculation of the matrix element by the corresponding normalised
plane waves:

〈f |U |i〉 =
∫

Ψ∗
f U(r) Ψi dr (2.13)

=

∫ [
1√
V
e−i(kfr−ωf t)

]
U(r)

[
1√
V
ei(kir−ωit)

]
dr (2.14)

=
1

V

∫
U(r) ei(kir−kfr−ωit+ωf t) dr (2.15)

where the wave vector is k = (mn/~)v, and the angular frequency is
ω = mnv

2/2~ = E/~, with E being the energy of the neutron in that
state.

Since it has been assumed that the nucleus is fixed, no energy
from the incoming neutron can be transformed into recoil kinetic en-
ergy of the scatterer. Besides, it will be assumed that energy loss due
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Figure 2.8: Scheme of the relationship between the momentum trans-
fer q, the wave vectors ki and kf , and the scattering angle θ, in the
case of elastic scattering.

to an excitation of the nucleus is not possible either, because nuclear
excitations are normally in the range of mega electron volts, and neu-
trons used in scattering techniques are normally at least one million
times less energetic than that [23]. Therefore, the scattering will be
mainly elastic and the energy of the neutron after being scattered can
be approximated by the one it had before the interaction [1].

This means that ωi ' ωf , so that the matrix element becomes:

〈f |U |i〉 = 1

V

∫
U(r) ei(ki−kf)r������:1

e−i(ωi−ωf)t dr (2.16)

' 1

V

∫
U(r) eiqr dr (2.17)

where q = ki − kf is the momentum transfer and r is the neutron
position.

Figure 2.8 shows that, when the scattering is elastic and, hence,
the wave number is the same before and after interacting with the
nucleus |ki| = |kf | = k, the relationship of the momentum transfer
with the neutron wave number can be easily computed using simple
trigonometric functions:

q = 2k sin
θ

2
=

4π

λ
sin

θ

2
(2.18)

where the identity k = 2π/λ has been used. From this relationship
is also clear that there is a direct correlation between the scattering
angle θ and the modulus of the momentum transfer q.
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As it can be noted from Equation 2.17, the matrix element un-
der these conditions is proportional to the Fourier transform of the
interaction potential.

Fermi’s pseudopotential, shown in Equation 2.9, can be intro-
duced in Equation 2.17, and the extremely small range of the poten-
tial allows to greatly simplify the calculation of the matrix element:

〈f |U |i〉 = 1

V

(
2π~2 b
mn

)∫
δ(r −R) eiqr dr (2.19)

=
2π~2 b
mnV

eiqR (2.20)

where R is the nucleus position.
In the particular case of a single nucleus, its position can be simply

set as the coordinate origin, and the matrix element is just a constant
that depends on the isotope:

〈f |U |i〉 = 2π~2 b
mnV

. (2.21)

2.3.2.4 Density of states

Apart from the matrix element, the density of final states d must also
be evaluated to compute the rate of neutrons that are scattered by
the sample (see Equation 2.8). This is because a transition is more
likely to occur if a particle has a larger amount of available states
into which it can resolve [39].

The density of states describes the number of available final energy
states per unit volume in an energy interval: df ≡ dNE/dE. Taking
into account that we have assumed purely elastic scattering and that
we are measuring the amount of neutrons scattered in a particular
direction, only final states where the scattered neutron is travelling
in the direction (θ, φ) with energy Ef = Ei have to be considered.

The scattered neutron states can be described by plane wave func-
tions characterised by their wave vector k = (kx, ky, kz) (see Equation
2.12), which in homogeneous media is also their direction of propaga-
tion. However, their energy only depends on the wave number k, the
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Figure 2.9: Scheme of the calculation of a volume differential in
the momentum space in spherical coordinates. The width, height
and thickness of the volume are k sin θ dϕ, k dθ, and dk, respectively,
so the volume in the momentum space occupied by the interval of
parameters is dVk = k2dk sin θdθ dϕ = k2dk dΩ, where dΩ is the
solid angle occupied by the volume element.

modulus of the wave vector, through the relationshipE = (~2/2m) k2.
Hence, the number of final states must be evaluated by counting the
number of different wave numbers k available with directions between
(θ, φ) and (θ + dθ, φ+ dφ) and energies Ef and Ef + dE.

A strategy to determine the number of final wave vector states
available is to divide the total volume of the interval of interest defined
by the aforementioned ranges, dVk, by the volume occupied by a
single wave vector state, vk:

dNk =
dVk
vk

(2.22)

Please note that, since the differently scattered neutrons are charac-
terized by their wave vector k, these volumes are referring to momen-
tum space volumes, and not real space volumes.
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Figure 2.10: Stationary waves allowed in a box of length L must
satisfy λn = 2L/n, where n = 1, 2, 3 . . ., hence, only certain states
are accessible to scattered neutrons. But the direction of propagation
(right or left) is not fixed by this restriction, which means that there
are two states allowed for each n.

Figure 2.9 shows how the differential volume in the momentum
space containing this range of wave vectors can be obtained. The
interval with states in the direction (θ, φ) and energy Ef yields a
volume:

dVk = k2 dk dΩ (2.23)

where k is the wave number of the scattered neutron, and dΩ =
sin θ dθ dϕ is the solid angle differential in that direction.

Not all wave vectors within the boundaries defined by these energy
and direction intervals are really accessible. Recall that we have
temporarily adopted the computational artifice of imagining that the
whole experiment is enclosed in a large box of volume V , in order to
be able to normalise the wave functions. And, due to the fact that a
wave can only be stationary within a box when its wavelength value
allows it to fit exactly within the boundaries of the box, this trick
also prevents the wavelength of the plane wave function from taking
arbitrary values, and the system becomes quantized.

For example, in one dimension, if we assume a box of side L,
its allowed wavelengths can only be λn = 2L/n, with n = 1, 2, 3 . . .
(see Figure 2.10), although the wave can still be travelling in either
the positive or negative direction. Since the wavelength and the wave
number are related through k = 2π/λ, the only wave numbers allowed
will be those conforming to k = ±πn/L.
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In the case of a scattering experiment contained within the imagi-
nary box of volume V and sides Lx, Ly and Lz, the only wave vectors
allowed for scattered neutrons must satisfy:

k = π

(
±nx

Lx

, ±ny

Ly

, ±nz

Lz

)
(2.24)

where nx, ny and nz = 1, 2, 3 . . . Hence, each possible final momentum
state is characterized by a combination of three positive or negative
integer values: ±nx, ±ny, and ±nz.

This realisation allows us to compute the volume in the momen-
tum space occupied by a single state. The momentum separation
between neighbouring states is for each component ∆kx = π/Lx,
∆ky = π/Ly, and ∆kz = π/Lz, which means that each state will
occupy a volume of vk = π3/ (LxLyLz) = π3/V in momentum space
(see Figure 2.11).

With the volume occupied in momentum space by our interval of
interest dVk, and the volume occupied by a single state vk, Equa-
tion 2.22 can be used to find the number of final wave vector states
available within the interval of interest (see Figure 2.12):

dNk =
dVk
vk

=
k2dk dΩ

(π3/V )
=

(
V

π3

)
k2dk dΩ (2.25)

However, although the neutron states are characterised by their
wave vector k, the density of states is only concerned with the number
of energy states, and the energy of each state only depends on its wave
number k. Therefore, the combinations of signs in the wave vector
components in Equation 2.24 are lost and only the combinations of
nx, ny, and nz natural numbers remain:

E =
~2

2m
k2 =

~2

2m

[(
nx

Lx

)2

+

(
ny

Ly

)2

+

(
nz

Lz

)2
]

(2.26)

This means that there are 8 different wave vectors for each single
combination of nx, ny, and nz that give the same energy. This degen-
eracy has to be taken into account in the calculation of the number
of energy states, as a multiplicative factor: dNE = 1

8
dNk.
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Figure 2.11: If the experiment is enclosed in real space in a cubic
box of side L, the separation in the momentum space between al-
lowed states is π/L. Therefore, the volume occupied by each single
momentum vector state is vk = (π/L)3 = π3/V .

The dispersion relation in Equation 2.26 also allows to determine
that the relationship between the differentials dk and dE is

dE =
~2k
m

dk (2.27)

And, finally, substituting the number of momentum states in
Equation 2.25 and the relation in Equation 2.27 above into the density
of states definition, and taking into account the factor (1/8) due to
degenerate energy states, the density of states for neutrons scattered
in the direction (θ, φ) with energy Ef can finally be put together:

df ≡ dNE

dE
=

(
dNE

dk

)(
dk

dE

)
(2.28)

=

[
1

8

(
V

π3

)
k2fdΩ

](
mn

~2kf

)
=

V mn

8π3~2
kf dΩ (2.29)
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Figure 2.12: To find the number of available momentum states within
our interval of interest, we can divide the total volume of the interval
of interest by the volume occupied by a single state.

2.3.2.5 Scattering intensity

The two significant magnitudes that appear in Fermi’s Golden Rule,
i. e. the matrix element for a single fixed nucleus at the origin and
the density of states, have now been obtained:

〈f |U |i〉 = 1

V

(
2π~2

mn

)
b (2.30)

df =
V mn

8π3~2
kf dΩ (2.31)

Whith these, the scattering intensity in a particular direction (θ,
φ) can now be computed, although the result will not depend on the
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direction due to the spherical symmetry of the problem:

dIs =
2π

~
|〈f |U |i〉|2df (2.32)

=
2π

~

∣∣∣∣ 1V
(
2π~2

mn

)
b

∣∣∣∣2( V mn

8π3~2
kf dΩ

)
(2.33)

=
~kf
V mn

|b|2 dΩ =
vf
V

|b|2 dΩ (2.34)

where vf = (~kf )/mn is the velocity of the scattered neutron.

2.3.3 Differential cross section for a single
nucleus

The differential scattering cross section dσ/dΩ is proportional to the
probability that a neutron leaves the sample in the direction defined
by the solid angle element dΩ. The expression given at the beginning
of the section was:

dσs
dΩ

=
1

Φ0

(
dIs
dΩ

)
(2.35)

where dIs are the neutrons scattered per unit time counted by an
infinitesimal small detector located in the direction (θ,ϕ), and dΩ is
the solid angle occupied by this detector.

Now that we have the incident flux Φ0 (Equation 2.7) and the scat-
tering intensity dIs for a particular solid angle differential (Equation
2.34), we can use the differential cross section definition in Equation
2.2 to calculate the scattering due to a fixed single nucleus. Remem-
ber that, since the scattering has been assumed to be mainly elastic,
the energy of the neutron before and after the interaction is essen-
tially the same, hence, in a general case vf ≈ vi. Applied to this
particular case:

dσs
dΩ

=
1

Φ0

[
dIs
dΩ

]
=

(
V

v0

)(vf
V

|b|2
)vf ≈ v0

↓
= |b|2 (2.36)

where the scattering length b is a complex quantity that characterises
the neutron-nucleus interaction.
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If the neutrons scattered in all directions are taken into account,
then the total cross section of the nucleus is recovered:

σs =

∫
dσs
dΩ

dΩ =

∫
|b|2 dΩ = 4π |b|2 (2.37)

which exposes the simple relationship that exists between the cross
section and the scattering length in this simple case.

Therefore, the macroscopic quantities of the incident neutron flux
and the scattered intensity have been successfully described in terms
of the microscopic interactions between the particles, which was the
goal of this section.

2.4 A few remarks on the scattering

length

The neutron scattering length b is introduced by Fermi’s pseudopo-
tential (see Section 2.3.2.2), and it is an effective magnitude related
to the probability that the neutron and the nucleus interact. Scat-
tering lengths are normally empirical values that are measured and
tabulated, as opposed to calculated from first principles [40].

The scattering length is a complex magnitude. By definition its
real part is positive if the interaction between the neutron and the
nucleus is repulsive, and negative if the interaction is attractive [23].
Most of the naturally occurring elements display a repulsive interac-
tion with neutrons, only about 5% of the isotopes have an attrac-
tive interaction. Some of these rare examples are natural hydrogen,
lithium, titanium, vanadium, and manganese, which display a nega-
tive scattering length. The imaginary part of the scattering length
is related to the neutron absorption by the nucleus, and is generally
very small [36].

2.4.1 Neutron energy

The probability of interaction between neutrons and nuclei, and thus
their scattering length as well, depends on the energy of the incoming
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neutrons [1, 41]. However, in reactor sources, diffractometers use
monochromatic beams with a well defined incident energy, so the
scattering length is usually treated as a constant quantity. Tabulated
values normally correspond to thermal neutrons (such as the cross
section values used in Figure 2.2) and the scattering length for the
energy of interest must be calculated if cold or hot neutrons are used.

2.4.2 Isotopes

Each kind of nucleus has a characteristic interaction with impinging
neutrons, which means that the scattering length does not only allow
to distinguish between elements, but also between different isotopes
of the same element [1, 3].

In practice, most elements are a mix of isotopes with different
scattering lengths but, if a random distribution of these isotopes be-
tween the atomic sites can be assumed, an average scattering length
can be used and this variation only contributes as a flat background
without structural information [1, 36].

2.4.3 Nuclear spin

The relative orientation of the neutron spin with respect to that of
the nucleus also has an influence on the scattering length. This means
that, even in samples with a single isotopic species, the different spin
orientations of nuclei give rise to a scattering length distribution.

An exception to this are nuclei from isotopic species without nu-
clear spin (I = 0). In this case, there is no spin contribution to the
scattering and all nuclei display the same probability of interaction
with incoming neutrons, so they do not have a distribution of scat-
tering lengths. 4He, 12C, 16O, 18O, 20Ne, 22Ne, 24Mg, and 56Fe are
some examples of these isotopic species where all nuclei display the
same scattering length.

As with the distribution of scattering lengths due to isotopic va-
rieties, a random distribution of nuclear spin orientations among the
different atomic sites of the same isotope is normally assumed [36].
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Table 2.1: Comparison of the coherent and incoherent scattering
lengths for thermal neutrons of the elements used in this work. In-
coherent scattering lengths of elements which are a mix of isotopes
(Hnat, C, Cl, and Br) have been computed from their incoherent cross

sections using bincoh =
√
σincoh/4π , and their sign is arbitrary. All

values have been taken from Ref. [33].

Element bcoh (fm) bincoh (fm)

Hnat −3.7390 ±25.272
D 6.671 4.04
C 6.6460 ±0.09
F 5.654 −0.082
Cl 9.5770 ±6.5
V -0.3824 ±6.36
Br 6.9 ±0.9

2.4.4 Coherent and incoherent scattering
lengths

To account for both isotopic and nuclear spin orientation distribu-
tions, even present in samples with only one kind of atom, the scat-
tering length is split into two contributions: coherent and incoher-
ent [1].

The coherent scattering length is defined as the average scattering
length in the sample: bcoh ≡

∣∣b∣∣, and the incoherent scattering length
is the standard deviation of the distribution with respect to that
average:

bincoh ≡
√

|b|2 −
∣∣b∣∣2 (2.38)

Since isotopic species with nuclear spin I = 0 lack a distribu-
tion of scattering lengths, they have an incoherent scattering length
bincoh = 0. Table 2.1 shows the coherent and incoherent values of the
scattering length for the particular isotopes and isotopic mixes used
in this work.

As already stated above, if the different scattering length values
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can be assumed to be randomly distributed between its atomic sites,
then the incoherent scattering length of the sample does not con-
tribute to the structural information of the measurement, and is only
a homogeneous background.

2.4.5 Free and bound nuclei

It has been assumed up to here that the nucleus is completely fixed
and does not experience recoil due to the incident neutron. And,
as long as the neutron does not have enough energy to excite the
nucleus, this prevents the neutron from losing any energy in the colli-
sion and guarantees that the scattering is elastic [42]. The scattering
length values that can be found tabulated in the literature normally
correspond to this bound scenario.

Although this approximation is assumed to be valid while carry-
ing out diffraction experiments, in practice this is never observed in
nature, because the nucleus is never really completely bound.

The other extreme is to consider that the nucleus can move en-
tirely freely, uninfluenced by its surroundings, as it would happen in
an ideal gas. There, since the nucleus would undergo recoil, it would
lose some energy in the collision and the scattering would be inelastic.

The cross section of a single nucleus bound and totally fixed is
σs = 4π |b|2, but if the nucleus is free and can experience recoil, then
its total cross section is modulated by the ratio between the mass of
the neutron and that of the nucleus mn/M :

σs = 4π

∣∣∣∣ b

(1 +mn/M)

∣∣∣∣2 ≡ 4π |a|2 (2.39)

where a is called the free scattering length.
As it can be observed, the probability that a neutron interacts

with the nucleus becomes smaller if the latter is free and recoils out
of the way, than if it is bound. In the extreme case of hydrogen nuclei
(1H isotope), the free scattering length is only half the bound one
aH = 1

2
bH . It is clear that the larger the nucleus and its inertia, the

smaller the mn/M ratio, and the better the approximation provided
by the bound scattering length [42].
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Figure 2.13: Differential cross section for a 12C and 16O isotope.
Solid lines correspond to a completely bound nucleus, i. e., without
recoil, and dashed lines to a completely free one.

If the nucleus is allowed to recoil, scattering stops being isotropic
and starts having a θ dependence even if the scattering object does
not have an internal structure [42]. For instance, the differential cross
section of a single free nucleus is:

dσs
dΩ

= |a|2
 1 + (mn/M)2 cos 2θ√

1− (mn/M)2 sin2 θ
+ 2 (mn/M) cos θ

 (2.40)

where a = b
(1+mn/M)

is the free scattering length, and θ is the scat-
tering angle depicted in Figure 2.4.

Figure 2.13 shows the differential scattering cross section for 12C
and 16O isotopes, each with a ratio mn/M = 1/12 ∼ 8% and
mn/M = 1/16 ∼ 6%, respectively, and compares their scattering for
a bound and a free nucleus. When the nucleus is bound its differential
cross section is the constant dσs/dΩ = |b|2, as show in Equation 2.36
but, when the nucleus is free, the differential cross section decreases
for larger θ angles due to hindered backscattering, although it keeps
similar values for smaller ones, where the bound scattering length is
always a good approximation.
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It must be noted that, in molecular systems, the ones of interest
in this work, intramolecular bonds play a significant role, and nuclei
are never entirely free, regardless of the intermolecular interaction.
In these systems the effective scattering mass is much larger than
strictly that of the nucleus, because nuclear movements are transmit-
ted through interatomic potentials allowing the whole molecule to
partially experience the recoil. In materials where the molecules are
not allowed to undergo a significant translation but are free to rotate
as a whole, such as in plastic crystals, the nuclei will still experi-
ence a local recoil after the scattering, due to this molecular rotation.
However, intermolecular interactions are not negligible in liquids or
plastic crystals, so part of the energy lost by the neutron will also be
transmitted to nearby atoms and the recoil experienced by a small
volume of the sample.

Although it will be assumed from now on that atoms in the dis-
ordered materials studied here are perfectly bound, an inelastic cor-
rection will have to be carried out to the measurements to account
for the inaccuracy of this assumption.

2.5 Scattering by multiple nuclei

2.5.1 From one nucleus to many

The differential cross section for a single atom fixed at the origin has
been derived in Section 2.3:

dσs
dΩ

= |b|2 (2.41)

where b is the scattering length of that nucleus.
To undertake the computation of the differential cross section of a

macroscopic sample, it is possible to assume that its intricate poten-
tial is just a superposition of simpler potentials, each corresponding
to an individual atom [1]. In this case, the potential can be con-
structed using a sum of Fermi pseudopotentials Uj (r) centred on the
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fixed positions of the sample atoms:

U (r) =
N∑
j=1

Uj (r) =
2π~2

mn

N∑
j=1

bj δ (r − rj) (2.42)

where j is the atomic site, N is the total number of atoms, mn is the
neutron mass, bj is the scattering length of the atom at site j, and r
and rj are the neutron and atom positions, respectively.

To derive the differential scattering cross section for a collection
of fixed atoms, the procedure used in Section 2.3 can be repeated
with the composite potential U (r) in Equation 2.42.

The exact steps of the procedure consist in:

1. Calculate the matrix element 〈f |U |i〉 for this potential:

〈f |U |i〉 ' 1

V

∫
U (r) eiq·r dr =

2π~2

V mn

N∑
j=1

bje
iq·rj (2.43)

where q = ki − kf is the momentum transfer.

2. Introduce the matrix element 〈f |U |i〉, together with the density
of final states df = (V mnkf dΩ)/(8π

3~2) (details of its calcula-
tion in Section 2.3.2.4) into Fermi’s Golden Rule, to obtain the
scattering intensity differential:

dIs =
2π

~
|〈f |U |i〉|2df =

vf
V

∣∣∣∣∣
N∑
j=1

bje
iq·rj

∣∣∣∣∣
2

dΩ (2.44)

where vf is the velocity of the scattered neutron, and V is the
volume of an imaginary box that encloses the experiment.

(Remember that the use of Fermi’s Golden Rule is only possible
because it has been assumed that neutrons do not experience
any multiple scattering.)

3. Use the incoming flux (Φ0 = v0/V ), the just calculated scatter-
ing intensity dIs, and the elastic approximation (no significant
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amount of energy is lost in the collision, hence, vo ' vf ) to
obtain the differential scattering cross section:

dσs
dΩ

(q) =
1

Φ0

[
dIs
dΩ

]
=

∣∣∣∣∣
N∑
j=1

bje
iq·rj

∣∣∣∣∣
2

(2.45)

The scattering length bj is in general a complex magnitude with
real and imaginary components, so the property that |z|2 = zz∗ allows
to develop the equation a little further, yielding:

dσs
dΩ

(q) =
N∑
j=1

bje
iq·rj

N∑
k=1

b∗ke
−iq·rk (2.46)

=
N∑

j,k=1

bjb
∗
k e

iq·(rj−rk) ≡
N∑

j,k=1

bjb
∗
k e

iq·rjk (2.47)

where rjk ≡ rj − rk is the relative position between atoms j and k.
This equation describes the differential scattering cross section for

a collection of atoms fixed in their positions, each with its known and
well defined scattering length bj.

Since the cross section is an extensive magnitude and grows with
the number of atoms that contribute to the scattering, it is often con-
venient to normalize this magnitude to the total number of atoms in
the neutron beam. Such a normalization yields the average differen-
tial scattering cross section per atom (DCS), which allows an easier
comparison between samples and experiments.

1

N

(
dσs
dΩ

)
(q) =

1

N

N∑
j,k=1

bjb
∗
k e

iq·rjk (2.48)

2.5.2 Distribution of scattering lengths

In practice, most samples are composed of atoms with nuclear spin,
which scatter differently depending on the relative orientation be-
tween the neutron and nuclear spin, or with more than one isotopic
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species. This has the consequence that, instead of a unique and well
defined scattering length bj, each atomic species has a distribution of
them.

To account for this variability, the different scattering length val-
ues are assumed to be randomly distributed among the available
atomic sites, and then an average of the differential cross section
for all possible permutations of the system is carried out.

Hence, the differential scattering cross section for a collection of
atoms fixed at their positions, with nuclear spin or a mixture of iso-
topic species, is:

dσs
dΩ

(q) =
N∑

j,k=1

bjb∗k e
iq·rjk =

N∑
j,k=1

bjb∗k e
iq·rjk (2.49)

where it has been used that X + Y = X + Y , and also that XY =
X Y , thanks to the assumption that the scattering lengths distribute
randomly among the available atomic sites, and therefore, that they
and the positions are independent variables. In this equation, bjb∗k
denotes the average over possible bj and bk permutations.

2.5.3 Thermal agitation and ergodicity

Atoms in real matter do not sit perfectly still at their sites. Even
in crystalline systems, where nuclei are rather localized, they will al-
ways vibrate about their equilibrium positions. As temperature is
increased, thermal agitation quickly becomes the dominant contribu-
tion to that vibration but, even at the absolute zero, a minimum vi-
bration always remains due to the uncertainty principle. This means
that neutrons scattered at different moments interact with slightly
different structures, even if they are scattered from the same region,
i. e. coherence volume, of the sample.

Disordered systems also undergo such vibrations, but they have an
additional disorder arising from the variability of local arrangements
that makes distances between its atoms slightly different at each spot,
hence, a disordered macroscopic sample is really a collection of many
different local structures, even if just a snapshot is taken into account.
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Neutron diffraction experiments only allow to extract information
about the distribution of structures within the sample. This means
that structures that take place at distinct spatial regions are averaged
together with structures that take place at different instants of time,
and the dynamical disorder caused by thermal agitation is mixed with
the static spatial disorder that the sample may have.

Homogeneous systems in equilibrium such as liquids or plastic
crystals are ergodic, which means that structures coexisting in differ-
ent regions of the sample at a particular moment are equivalent to
the structures that a particular region explores with time. Therefore,
the differential cross section of homogeneous samples in equilibrium
can be written as:

dσs
dΩ

(q) =

〈
N∑

j,k=1

bjb∗ke
iq·rjk

〉
(2.50)

where the angle brackets 〈 〉 denote the average over structural vari-
ations due to thermal agitation.

In systems out of equilibrium such as glasses, ergodic theorems
do not apply any more, because the system dynamics is arrested
and the structure variation between different regions in the sample
is much larger than its structural variations through time (see Sec-
tion 1.2.3.3) [43].

2.5.4 Distinct and self contributions

The differential scattering cross section in Equation 2.50 can be sep-
arated in two contributions, one due to the scattering of pairs of
atoms located in different sites (distinct), and the other due to the
individual scattering of each atom (self):

dσs
dΩ

(q) =

〈
N∑

j,k=1
j 6=k

bjb∗k e
iq·rjk

〉
︸ ︷︷ ︸

distinct

+

〈
N∑
j=1

bjb∗j �
��

eiq·rjj

〉
︸ ︷︷ ︸

self

(2.51)
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where rjk ≡ rj − rk is the relative position between sites j and k.
Apart from the equivalence zz∗ = |z|2, if the different scattering

lengths are randomly distributed between the scattering sites and the
average includes all possible permutations, its averaged magnitudes
do not depend on the site, so the propertyXY = X Y for independent
variables can also be used, and the site index in bj can be dropped,
because the average of scattering lengths or their squares will be the
same at each site.

For the distinct contribution on the left, it can be derived that:

j 6= k → bjb∗k

(independent variables)
↓
= bj b∗k =↑

(bk=bj)

bj b∗j = bj bj
∗
=
∣∣bj∣∣2 ≡ ∣∣b∣∣2 (2.52)

And for the self contribution on the right,

j = k → bjb∗k =↑
(k=j)

bjb∗j = |bj|2 ≡ |b|2 (2.53)

Since it has been shown that the scattering length factors do not
depend on the site, they can be brought outside of the sums:

dσs
dΩ

(q) =

〈
N∑

j,k=1
j 6=k

∣∣b∣∣2 eiq·rjk〉+
N∑
j=1

|b|2 (2.54)

=
∣∣b∣∣2〈 N∑

j,k=1
j 6=k

eiq·rjk

〉
︸ ︷︷ ︸

distinct

+ |b|2N

︸ ︷︷ ︸
self

(2.55)

The self term accounts for the diffraction of individual sites. It
is independent of the position and provides a uniform intensity level
of scattering. The distinct term accounts for the diffraction of nuclei
pairs, which depends on their relative position and causes interfer-
ence, reflecting spatial correlations between the two nuclei. This con-
tribution oscillates around the constant intensity value provided by
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the self term and becomes zero when there are no spatial correlations
between the pairs.

For convenience, the interference function H (q), containing all
spatial correlations, can be defined:

H (q) ≡ 1

N

〈
N∑

j,k=1
j 6=k

eiq·rjk

〉
(2.56)

This function reflects local correlation fluctuations, so it will os-
cillate around zero, its value in absence of spatial correlations, and
provides a measure of the underlying order. It is also a dimensionless
magnitude normalised to the total number of atoms in the sample
N , which allows to easily compare the degree of ordering between
samples.

Replacing this definition ofH (q) in Equation 2.55, the differential
scattering cross section per atom becomes:

1

N

[
dσs
dΩ

(q)

]
=
∣∣b∣∣2H (q)︸ ︷︷ ︸
distinct

+ |b|2︸︷︷︸
self

(2.57)

2.5.5 Coherent and incoherent contributions

The distinct contribution on the left of Equation 2.55 does not include
any terms where j = k. These missing terms can be easily added
together yielding

∣∣b∣∣2〈 N∑
j=1

eiq·rjj

〉
=
∣∣b∣∣2N (2.58)

and then added to the left addend and subtracted to the right ad-
dend of Equation 2.55, to be able to perform the summation for all
combinations of j and k values.

This operation allows to obtain another version of the general
equation for the scattering cross section that is separated into coher-
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ent and incoherent contributions instead:

dσs
dΩ

(q) =
∣∣b∣∣2〈 N∑

j,k=1

eiq·rjk

〉
︸ ︷︷ ︸

coherent

+
(
|b|2 −

∣∣b∣∣2)N︸ ︷︷ ︸
incoherent

(2.59)

The coherent term accounts for the average scattering in terms of
the scattering length of all atomic sites, including the scattering of
individual sites and the scattering of nuclei pairs with spatial correla-
tions that give rise to interference. And the incoherent term accounts
for the individual variations of scattering lengths across the sample
and provides a constant value that is independent from any spatial
correlations. Please note that, although they are often confused, the
incoherent term and the self term are not equivalent magnitudes and
have different meanings (see Equations 2.55 and 2.59).

As was already explained in Section 2.4.4, the average scattering
length is also called the coherent scattering length (

∣∣b∣∣ ≡ bcoh) and its

standard deviation is the incoherent scattering length ( |b|2 −
∣∣b∣∣2 ≡

b2incoh ).
For convenience, a function called structure factor S (q), contain-

ing all spatial correlations plus the coherent (i. e. average) self terms,
can be defined:

S (q) ≡ 1

N

〈
N∑

j,k=1

eiq·rjk

〉
(2.60)

This function contains all contributions except the incoherent (i. e.
variation from the average) self terms, that don’t give rise to any in-
terferences. Since this function contains local correlation fluctuations
deviating from a uniform average (represented by one), it allows to
quantify the order in the sample. Therefore, its value is one when no
correlations are present and, otherwise, positive and negative corre-
lations oscillate around this value. It is a dimensionless magnitude
normalised to the total number of atoms in the sample N , such as the
interference function H (q) in Equation 2.56, so it allows to compare
the ordering degree in a similar way.



74 CHAPTER 2. THEORETICAL FRAMEWORK

The only difference between both magnitudes is that H (q) con-
tains only distinct terms and thus oscillates about zero, while S (q)
also contains the constant coherent self terms so it oscillates around
one. Hence, they are simply related by H (q) = S (q) − 1. And for
completely uncorrelated samples, such as ideal gases, their values will
be H(q) = 0 and S(q) = 1 [1].

Replacing this definition of S (q) in Equation 2.59, the differential
scattering cross section per atom becomes:

1

N

[
dσs
dΩ

(q)

]
= b2coh S (q)︸ ︷︷ ︸

coherent

+ b2incoh︸ ︷︷ ︸
incoherent

(2.61)

2.6 Scattering by disordered samples

2.6.1 Monoatomic systems

By monoatomic liquid or glass is meant a substance formed by in-
dividual atoms, not molecules, and where all of them are from the
same atomic species, that is, they have the same atomic number.

As has already been mentioned, more often than not, a range
of scattering lengths will be present in the sample due to different
isotopes of the same element or, if the nucleus has a non zero spin,
due to the different spin states. However, the scattering lengths will
be considered to be randomly distributed among the nuclear sites and
not correlated.

2.6.1.1 DCS of monoatomic liquids and glasses

The differential scattering cross section per atom (DCS) depends in
general of the vectors q and rjk and their relative orientation (see
Equations 2.50, 2.55, and 2.59). However, in homogeneous samples
for which the average structure is isotropic, such as in many liquids
and glasses, the orientational variations are averaged out and only
their norms q = |q| and rjk = |rjk| can have a role in the the calcu-
lation.
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This is because in such disordered arrangements of atoms, there
are still characteristic distances between atom pairs, but the vector
rjk describing their relative position takes random directions, which
means that the relative orientation between q and rjk is also ran-
dom. If the average of the exponential factor is computed for such a
distribution of relative orientations, we obtain:〈〈

eiq·rij
〉〉

= j0 (q rij) =
sin (q rij)

(q rij)
(2.62)

where 〈〈 〉〉 denotes an average over all possible directions, and j0 (z)
is the zeroth order spherical Bessel function [42].

This allows to simplify the exponential in the interference function
and to exchange the vector q dependence by the norm q:

H (q) =
1

N

〈
N∑

j,k=1
j 6=k

sin (q rjk)

q rjk

〉
(2.63)

On a practical note, it is interesting to determine the value of the
self term, on the right of Equation 2.57, because it provides the base-
line level for the correlation oscillations and it can help to quickly
determine the accuracy of the normalisations performed to the ex-
perimental data.

Since the scattering length can be written in terms of the scatter-
ing cross section (σs = 4π |b|2), it is quite clear that the self term is
simply:

|b|2 = σs
4π

=
1

4π

n∑
α=1

cασ
α
s (2.64)

where α designates each different isotope in the sample, n is the total
number of isotopes, and cα is the concentration of that particular
species.

Therefore, the differential cross section per atom in monoatomic
liquids or glasses will be:

1

N

[
dσs
dΩ

(q)

]
= b2cohH(q) +

σs
4π
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1

N

[
dσ

dΩ
(q)

]
= b2coh

1

N

〈
N∑

j,k=1
j 6=k

sin (qrjk)

qrjk

〉
+
σs
4π

(2.65)

Remember that q is directly related the the scattering angle θ
through the following relationship (only valid when the scattering is
essentially elastic and ki ' kf ):

q = |q| ' 4π

λ
sin

θ

2
, (2.66)

where λ is the neutron wavelength. Hence, the scattering intensity
in isotropic materials has an axial symmetry around the direction of
the incoming beam, and the measured diffractogram will be a series
of concentric rings only dependent on the θ angle.

2.6.1.2 Correlation functions in real space

A microscopic description has been obtained for the DCS measure-
ment, which can be already used to analyse the sample. However,
it is not straightforward to grasp the characteristics of the system
through a function in reciprocal space, such as the DCS, the interfer-
ence function or the structure factor, because the contributions of the
characteristic distances are spread in the form of complex oscillations.

On the other hand, the pair correlation function, which is in real
space, is proportional to the probability of finding an atom at a cer-
tain distance from a reference atom, so a description of the experiment
in terms of this more intuitive magnitude is quite useful.

In real samples, atoms occupy a certain volume and it is impossi-
ble to find another particle in the very same spot, so this probability
must be zero at very small distances. And at large distances the
probability becomes constant, because the disordered nature of the
systems provides a range of different possible structures that average
out, yielding a featureless profile. The pair correlation function is
constructed so that for large distances this constant is normalised to
one.



2.6. SCATTERING BY DISORDERED SAMPLES 77

Luckily, the pair correlation function g (r) and the interference
function H (q) or the structure factor S (q) are simply related by a
Fourier transform:

g(r) = 1 +
1

2π2ρr

∫ ∞

0

q H(q) sin (qr) dq (2.67)

H(q) =
4πρ

q

∫ ∞

0

r [ g(r)− 1] sin (qr) dr (2.68)

= S(q)− 1

where ρ is the average number density of atoms in the sample.
From this expression is clear that, since g (r) → 1 for r → ∞,

the integral to infinity would diverge if a direct Fourier transform of
g (r) was carried out. This is why the function g (r)− 1 has to be
transformed instead to shift from the real to the reciprocal space.

In practice it is not easy to obtain the experimental pair correla-
tion function of the sample. Any diffraction experiment has practical
limitations that make it impossible to measure H (q) for arbitrarily
small values or up to infinity, so the integral in Equation 2.67 can
only be carried out between a certain q-range, and errors inevitably
build up on the resulting g (r) [1].

The radial distribution function (RDF) is the average number of
elements in a spherical shell of radius r and differential thickness dr,
and is defined as [2]:

RDF (r) ≡ 4πr2ρ g(r) (2.69)

where ρ is the average number density of atoms in the sample, and
g(r) accounts for the local density fluctuations. Hence, the RDF is
the radial density of the sample at a certain distance of the reference
molecule, which means that, for purely geometric reasons, homoge-
neous systems will not yield a constant value with the distance, but
a quadratic growth instead.

It can also be integrated to obtain the coordination number (CN)
of a certain shell, which gives the average number of atoms at a
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certain range of distances from the reference atom:

CN =

∫ r2

r1

RDF (r) dr = 4πρ

∫ r2

r1

g (r) r2dr (2.70)

where r1 and r2 are the minimum and the maximum distances, re-
spectively.

These distribution functions in real space must all be zero for
distances smaller than the hard core of the reference element, which
reflects that strong repulsion forces prevent atoms from occupying
the same space [1].

2.6.2 Polyatomic systems

Here a polyatomic liquid or glass is understood as a substance formed
by a mixture of different atomic elements, but where these still do
not form molecular structures.

A different approach is needed for these systems, because there is
normally a spatial correlation between the scattering lengths corre-
sponding to different types of atoms, i. e., atoms with positive charge
may have a tendency to be surrounded by negatively charged atoms.
However, the different scattering lengths that correspond to the same
atomic species, i. e., due to isotopic or nuclear spin state variations,
are still considered as randomly distributed between those atoms.

2.6.2.1 DCS for polyatomic liquids and glasses

The aim in this section is to elaborate the distinct and self terms
to obtain an expression for the DCS that allows to determine the
structure of these samples.

The self term does not depend on the position so it remains iden-
tical as in Equation 2.65 (σs/4π). However, the distinct term in
Equation 2.55 is represented here for polyatomic liquids and glasses
by the total interference function F (q) instead of the b2cohH(q) used
in the previous section:

1

N

[
dσs
dΩ

(q)

]
= F (q) +

σs
4π

(2.71)
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The average scattering cross section per atom includes here all iso-
topes of every atomic species. Since every kind of atom is likely to
show a disparate distribution of other atoms around it, there is really
a superposition of intrinsically different structures. The definition of
the total interference function F (q) allows to compute the distinct
term from separate atomic species contributions and weight them
with their scattering lengths and concentrations:

F (q) ≡
n∑
α,β

cαcβbαb
∗
βHαβ(q) (2.72)

where α and β designate the species of the atom pairs of each con-
tribution, n is the number of different atomic species in the sample,
cα and cβ are the fraction of α and β atoms in the sample, and Hαβ

is the contribution to the distinct term of the distribution of atoms
β surrounding a reference atom α.

The partial interference functions can be calculated using the ex-
pression:

Hαβ(q) =
1

cαcβN

〈
Nα,Nβ∑
j,k=1
j 6=k

sin (qrjk)

(qrjk)

〉
(2.73)

where N is the total number of atoms in the sample, j and k label the
atomic sites, and Nα and Nβ are the number of atoms of the α and
β species, respectively. Since the system is isotropic and rjk = rkj, it
is clear that Hαβ = Hβα.

Note that since there is one partial interference function Hαβ for
each possible combination of atomic species pair, the number of con-
tributions will rapidly increase with the number of components in the
liquid. For instance, a polyatomic liquid with two kind of atoms will
have three partial interference functions Hαβ: the distribution of α
atoms around an α atom, idem for a β atom, and the distribution
of β atoms around a reference atom α. But for a liquid with three
kinds of atoms, the number of contributions will already increase to
six, and for four atoms to ten.



80 CHAPTER 2. THEORETICAL FRAMEWORK

These partial interference functions Hαβ(q) are dimensionless and
have the same properties than the monoatomic interference function,
namely Hαβ(q → ∞) = 0. However, the total interference func-
tion defined here, F (q), is the sum of these dimensionless functions
weighted by the scattering lengths of the pairs. Which means that,
although it still goes to zero for high q values, i. e., F (q → ∞) = 0,
it is not dimensionless and has cross section dimensions.

If all these definitions are merged together:

1

N

[
dσ

dΩ
(q)

]
=

n∑
α,β

cαcβbαb
∗
β

Hαβ(q) = Sαβ(q)− 1

=︷ ︸︸ ︷ 1

cαcβN

〈
Nα,Nβ∑
j,k=1
j 6=k

sin (qrjk)

(qrjk)

〉
︸ ︷︷ ︸

=

F (q)

+
σs
4π

Therefore, the differential cross section per atom of polyatomic
liquids or glasses can be calculated with:

1

N

[
dσ

dΩ
(q)

]
=

1

N

n∑
α,β

bαb
∗
β

〈
Nα,Nβ∑
j,k=1
j 6=k

sin (qrjk)

(qrjk)

〉
+
σs
4π

(2.74)

2.6.2.2 Correlation functions in real space

A real space function G(r) can be defined in this case as well through
the Fourier transform of the total interference function F (q):

G(r) ≡ 1

2π2rρ

∫ ∞

0

q F (q) sin (qr) dq (2.75)

=
1

2π2rρ

n∑
α,β

cαcβbαb
∗
β

∫ ∞

0

q Hαβ(q) sin (qr) dq (2.76)
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However, due to all α and β pair contributions being weighted by
their scattering lengths, this total pair correlation function cannot
be interpreted any more in terms of probability distribution alone,
which renders it a less intuitive magnitude than the g(r) available in
the monoatomic case.

In the case of neutron diffraction, it can be considered that the
scattering lengths are independent of q, and then the G(r) can be
written as a weighted sum of partial gαβ(r):

G(r) ≡
n∑
α,β

cαcβbαb
∗
β [ gαβ(r)− 1] (2.77)

where the individual partial pair distribution functions shown here
do have a straightforward interpretation in terms of probability: each
gαβ(r) is proportional to the probability of finding an atom β at a
certain distance from a reference atom α.

Additionally, every partial pair correlation function gαβ(r) is re-
lated with its corresponding partial interference function Hαβ(a)
through a Fourier transform as well, with the exact same form as
Equations 2.67 and 2.68.

A partial coordination number CNαβ, providing the average num-
ber of neighbours of species β contained in a certain shell of a refer-
ence atom α, can also be calculated from the integration of the partial
pair correlation function gαβ(r) using an expression of the same form
as Equation 2.70.

In Equation 2.77 it can be clearly seen that the definition of the
total pair correlation function G(r) makes it very different from its
monoatomic analogous g(r). Apart from not being dimensionless and
displaying cross section dimensions, exactly like its corresponding
reciprocal space function F (q), it does not tend to unity for high q
values, but to zero: G(r → ∞) = 0.

An alternative real space correlation function with a closer resem-
blance with the monoatomic g(r) form could be defined by adding a
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constant term to the G(r) definition such as:

G(r) ≡
n∑
α,β

cαcβbαb
∗
β +

1

2π2rρ

∫ ∞

0

q F (q) sin (qr) dq (2.78)

This function would tend to the constant value of the first term for
high q and could be written as a simple weighted sum of gαβ(r) con-
tributions such as the F (q) in Equation 2.72. However, its interpre-
tation is certainly not simpler, so it is not clear whether it is really
more advantageous as to justify the additional complexity of the ex-
pression.

2.6.3 Molecular systems

By molecular liquid or glass is meant here a substance that is formed
by a single type of molecule composed of the same or different atomic
species. As in the polyatomic case, the different scattering lengths,
due to isotopic and nuclear spin variations, that correspond to the
same atomic species, will be considered as randomly distributed be-
tween those atoms.

Since the interactions at play in neutron diffraction are with
atomic nuclei, neutron diffraction is sensitive to the internal structure
of the molecules composing the liquid (or glass) as well as their ori-
entations. This is in strong contrast with the mono- and polyatomic
cases, where only the position of point-like constituents has to be
taken into account.

Therefore, the spherical symmetry of the problem is normally
broken by the molecular structure, which cannot be expressed as
a one-dimensional radial fluctuation function any more but a full
three-dimensional structure instead. Besides, diffraction measure-
ments contain a superposition of these multiple structural levels,
enormously increasing the complexity of the analysis. As a conse-
quence, many assumptions are needed to quantitatively analyse the
data, and solutions are rarely unambiguous.
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2.6.3.1 DCS for molecular liquids and glasses

The goal in this section is to obtain a DCS for these systems that al-
lows to separate the contribution of the molecular structure from the
contribution of their arrangement within the compound, to facilitate
the analysis.

For the sake of clarity, the differential cross section will only be
normalised to the behaviour per atom later on and will be extensively
separated in its different contributions, which will be calculated in-
dividually. First, it will be divided into its distinct and self parts,
and then the distinct term will be further decomposed into its intra-
molecular and intermolecular contributions (the separation between
coherent and incoherent terms in this calculation is irrelevant, but is
it indicated for completeness):

[
dσ

dΩ

]
=

coherent︷ ︸︸ ︷[
dσ

dΩ

]intra
dist

+

[
dσ

dΩ

]inter
dist︸ ︷︷ ︸

distinct

+

[
dσ

dΩ

]coh
self

+

incoherent︷ ︸︸ ︷[
dσ

dΩ

]incoh
self︸ ︷︷ ︸

self

(2.79)

where the explicit q dependence has been dropped for compactness.
This separation simply means that the terms corresponding to each
atomic pair in Equation 2.50 will be grouped at convenience.

Regarding the molecular structure contribution, only spatial cor-
relations between atoms of the same molecule are included in the
summation, and then this average structure is simply multiplied by
the total number of molecules Nmol:[

dσs
dΩ

(q)

]intra
dist

= Nmol

〈
m∑

j,k=1

bjb
∗
k

sin (qrjk)

(qrjk)

〉
(2.80)

where j and k refer to sites on the same molecule, and rjk is their
separation. Since this calculation is for the distinct intramolecular
contribution, the j = k self terms from the same sites of the same
molecule are not taken into account.
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Due to the bonds existing between atoms in the molecule, their
thermal agitation can be considered to respond to a harmonic poten-
tial. If this is the case, the thermal average 〈 〉 can be simply taken
into account by the Debye-Waller factor, an exponential that smears
out each atom pair contribution:

[
dσ

dΩ
(q)

]intra
dist

= Nmol

m∑
j,k 6=j

bjb
∗
k

sin (qrjk)

(qrjk)
e−〈δr2jk〉q2/2 (2.81)

where, in the Debye-Waller factor, 〈δr2jk〉 =
〈
u2j
〉
+ 〈u2k〉 is the mean

square amplitude of thermal vibrations projected on the vector be-
tween sites j and k, with

〈
u2j
〉
the component corresponding to the

mean squared vibrational amplitude of the atom at site j [4, 44].
Regarding the intermolecular structure contribution, due to cor-

relations between atomic pairs in different molecules, it requires two
summations, one accounting for all sites within each molecule and
another accounting for all molecules:

[
dσ

dΩ
(q)

]inter
dist

=

〈
Nmol∑
A,B
A6=B

m∑
j,k

bjb
∗
k

sin (q rjAkB)

(q rjAkB)

〉
(2.82)

where j and k are atomic sites within the molecule, A and B refer to
different molecules, and rjAkB = |rjA −rkB | is the distance between a
pair of atoms in different molecules. Since this calculation is for the
distinct intermolecular contribution, self terms must be left out, but
atom pairs are already required here to belong to different molecules,
so this is ensured even if the atoms belong to the same molecular site.

The remaining two self terms of the differential scattering cross
section in Equation 2.79 correspond to individual contributions from
all atoms in the sample. Since the self terms do not depend on the
atomic positions, the result is exactly the same that has been used
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in the previous DCS equations:[
dσ

dΩ

]
self

=

[
dσ

dΩ

]coh
self

+

[
dσ

dΩ

]incoh
self

(2.83)

= ����∣∣b∣∣2N︸ ︷︷ ︸
coherent

+
(
|b|2 −�

�
∣∣b∣∣2)N︸ ︷︷ ︸

incoherent

= |b|2N =
σs
4π
N (2.84)

where σs is the average scattering cross section per atom, and N is
the total number of atoms.

The last step consists in normalising everything to the total num-
ber of atoms in the sample N and merging the intra- and inter-
molecular distinct contributions (Equations 2.81 and 2.82), which
corresponds to the interference function H(q) and contains the cor-
relation fluctuations, together with the self contribution (Equation
2.84), which is just a constant background:

1

N

[
dσ

dΩ
(q)

]
=

1

N

[
dσ

dΩ
(q)

]intra
dist

+
1

N

[
dσ

dΩ
(q)

]inter
dist

+
1

N

[
dσ

dΩ
(q)

]
self

So, in conclusion, the result for the differential scattering cross
section per atom for a molecular system is:

1

N

[
dσ

dΩ
(q)

]
=

1

m

m∑
j,k 6=j

bjb
∗
k

sin (qrjk)

(qrjk)
e−〈δr2jk〉q2/2

+
1

N

〈
Nmol∑
A,B
A 6=B

m∑
j,k

bjb
∗
k

sin (q rjAkB)

(q rjAkB)

〉
+
σs
4π

(2.85)

2.6.3.2 Correlation functions in real space

Fourier transforming the oscillations in Equation 2.85 to obtain a real
space correlation function is not a straightforward task.

As in the polyatomic case, the contributions arising from each
pair of atomic species are weighted by their scattering length. Since
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this factor changes the relative heights between correlation peaks,
the total function in real space does not have a direct interpretation
in terms of probability or density fluctuations. This complication
hinders a quantitative analysis of the data if a model is not available
for comparison, although the partial contributions from each pair of
atomic species can still be interpreted as a probability when properly
normalised.

Most general observations regarding a total correlation function
in real space for polyatomic systems, apply to molecular systems as
well. The main difference in this case is that the spherical symmetry
of the problem is broken due to the intramolecular structure.

Luckily, the linearity property of the Fourier transform F

F [Ag(q) +B h(q)] = AF [g(q)] +BF [h(q)] (2.86)

allows to transform separately the intra- and intermolecular contri-
butions to obtain their corresponding functions in real space, where
structural correlations can also be decomposed into a sum of intra-
molecular and intermolecular terms.

Regarding the intramolecular contribution, its real space correla-
tion function is calculated taking advantage of the detailed equation
that was presented in the previous section:

K(q) ≡ 1

m

m∑
j,k 6=j

bjb
∗
k

sin (qrjk)

(qrjk)
e−〈δr2jk〉q2/2 (2.87)

A Fourier transform in spherical coordinates has to be carried out
upon K(q), the intramolecular contribution of the differential cross
section per atom:

K̃(r) =
1

2π2rρ

∫ ∞

0

q K(q) sin (qr) dq (2.88)

=
1

2π2rρm

m∑
j,k 6=j

bjb
∗
k

rjk

∫ ∞

0

sin (qrjk) e
−〈δr2jk〉q2/2 sin (qr) dq (2.89)
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Mathematically, the solution to the integral is:∫ ∞

0

sin (qrjk) e
−〈δr2jk〉q2/2 sin (qr) dq

=

√
π

2〈δr2jk〉
e
−(rjk2+r2)

2 〈δr2jk〉 sinh

[
r rjk
〈δr2jk〉

]

=

√
π

8〈δr2jk〉

 e
−(r−rjk)

2

2 〈δr2jk〉 − e
−(r+rjk)

2

2 〈δr2jk〉

 (2.90)

which is a sum of a Gaussian function centred at rjk with variance
〈δr2jk〉, together with an identical negative function centred at −rjk.

Since the function K̃(r) does not have physical meaning for values
r < 0, and the contribution of the second term is negligible for pos-
itive r values, even for small intramolecular distances, the negative
term can be entirely disregarded (see Figure 2.14).

Therefore, the real space total correlation function per atom K̃(r),
corresponding to the intramolecular contribution of the differential
scattering cross section K(q), is:

K̃(r) '
√
π/2

4π2rρm

m∑
j,k 6=j

bjb
∗
k

rjk〈δr2jk〉
e
− (r−rjk)

2

2 〈δr2jk〉 (2.91)

where ρ is the average number density of the sample, m the number
of atoms within the molecule, j and k are different atomic sites within
the molecule, bj is the coherent scattering length of atoms in site j,
rjk is the distance between sites j and k, and 〈δr2jk〉 is its variance.

Although we have not found the preceding calculation elsewhere in
the literature, the correspondence of a Gaussian distribution for each
intramolecular distance is often used (albeit sometimes the factor
(1/rjk) is missing), and Johnson et al. quoted a similar equation with
a different normalization [45].

The individual terms corresponding to each intramolecular dis-
tance can be normalized separately ensuring that the probability of
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Å

tot2

GaussFit1

Figure 2.14: Gaussian fit (red line) of the integral in Equation
2.90 (black line) for an intramolecular distance of rjk = 1 Å with

〈δr2jk〉 = 0.4 Å
2
. It is clear that even in this extreme case of small

interatomic distance and large displacements from the equilibrium
position, the contribution of the negative term to the positive peak
shape is negligible.

finding the atom k at about a distance rjk of atom j is one, which is
analogous to assume that the molecular geometry will remain akin:

K̃jk(r) =
1√

2π 〈δr2jk〉
e
− (r−rjk)

2

2 〈δr2jk〉 (2.92)

Obviously, this may not be true for all distances in molecules with
various conformations, but in these cases Equation 2.87 for K(q) is
not valid anyway, because the atom pair does not fulfil the require-
ment of following a harmonic potential, which was assumed to obtain
Equation 2.81.

If the molecule under study has a central atom, such as the sim-
pler tetrahedral molecules, the partial pair correlation function of that
atom may conform to a good approximation with the one describing
the overall molecular positions [42]. However, the coincidence be-
tween the central atom of a particular molecule and the centre of
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mass will never be exact, because thermal agitation distorts molecu-
les from their equilibrium geometries, and thus effectively displaces
their centre of mass.

2.6.4 Isotopic substitution

The partial functions, i. e. the series of probabilities of finding an
atom of species β at a certain distance of an atom of species α,
provide valuable quantitative information about the structure under
study.

In a single experiment, all partial contributions are jammed to-
gether in one diffractogram. However, it is possible to obtain them
experimentally using isotopic substitution, a technique unique to neu-
tron scattering [3].

Ideally, the methodology to obtain these magnitudes consists in
measuring materials which have exactly the same structure but where
the weights of the partial contributions of each kind of atom is altered
in a controlled manner.

It is indeed possible to exchange a fraction of the isotopes in a
substance without a significant transformation of its chemical proper-
ties, because different isotopes of the same element normally interact
in a very similar fashion with other atoms. However, if the sample
is enriched with a particular isotope, this changes the weight of the
partial contribution in neutron scattering, because neutron scatter-
ing lengths depend mainly on the nuclei character, not the electronic
shell.

However, this does not mean that they are easily measured. Iso-
topic substitution within a sample is often difficult and expensive,
and is not possible in all cases. Besides, alteration of the sample be-
haviour is frequently underestimated, specially for hydrogen, which
is one of the most commonly targeted elements. Deuterium is twice
as heavy than hydrogen, so its mobility is quite different, which has
consequences in any property affected by the dynamics of the system:
transition temperatures (which decrease a few degrees with deuter-
ation), hydrogen bonding, pH variations, etc. For this reason, great
care must be taken before trying to change the contrast through iso-
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topic substitution, to make sure that the properties that need to be
measured are not altered. For example, performing measurements of
related properties with other techniques.
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What is measured in neutron scattering is the number of neu-
trons in a range of energies that has been scattered by the sample in
a certain direction. There are a myriad of neutron scattering tech-
niques and, moreover, even each single instrument usually has sev-
eral working configurations with different characteristics. Therefore,

91
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a comprehensive listing of all of them is out of the scope of this the-
sis and only a few details of the instruments and configurations that
have been used for the experiments will be mentioned here. Figure
3.1 shows an overview of the different neutron scattering techniques,
together with the length and time scales that can be measured with
each of them.

Although most theoretical derivations use the same nomenclature
that has been used in this work, it is customary in experimental neu-
tron scattering to define the scattering angle θ as 2θ. Thus, there is no
consistent notation across literature and it is important when consult-
ing other works to ascertain how the author has defined the scattering
angle. To avoid any confusion and facilitate equation comparison, the
scattering angle will be called on the following experimental chapters
2θE instead.

3.1 Neutron sources

There are two different kinds of neutron sources used in neutron scat-
tering: research nuclear reactors, and spallation sources. The basic
difference is that reactors provide a continuous flux of neutrons to the
instruments, while most spallation sources provide neutron pulses.
Although essentially the same kind of instruments can be built in ei-
ther of them, depending on the technique the instruments will differ
in their performance and efficiency.

In reactor sources, neutrons produced by spontaneous fission of
heavy atoms are slowed down by the large body of water in which
they are immersed and these moderated neutrons induce in turn more
fission events in other atoms, hence sustaining a chain reaction. This
yields a neutron flux φ with more or less a Maxwell-Boltzmann dis-
tribution of neutron energies:

φ(E) ∝ E exp

(
− E

kBTm

)
(3.1)

where E is the energy of the neutron, kB is the Boltzmann constant,
and Tm is the moderator temperature (see Figure 3.2(a)) [23, 47].
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Figure 3.2: Energy distributions of the neutron flux. (a) Theoretical
Maxwell-Boltzmann distributions at different Tm temperatures. (b)
Distributions obtained from different moderators in a reactor source,
and (c) a spallation source. Experimental data in (b) and (c) taken

from Ref. [48].

The peak of this distribution is at E = kBTm, hence the convention
to say that a neutron with energy E is at a temperature Tm.

Thermal neutrons are considered to be the ones with velocity vt ≡
2.2 km/s (E = 25.3 meV, and Tm = 293.5 K). At this thermal veloc-
ity the de Broglie wavelength of a neutron is λ = h/ (mvt) ' 1.8 Å,
where h is the Planck constant and m the neutron mass [23]. How-
ever, since the absorption cross section is higher for neutrons with
lower energy (see Figure 3.3) [47], a larger fraction of them will be
absorbed and the neutrons yielded by the reactor will show a peak at
higher energies than those predicted by the Maxwell-Boltzmann dis-
tribution. This distribution of neutron wavelengths is appropriate to
study interatomic distances and many of the excitations in condensed
matter, but to explore the whole range of characteristic distances and
excitations more efficiently it is convenient to use in some experiments
a neutron distribution with the maximum at a higher or lower energy.

To do that, a moderator at a much higher or lower temperature
than the surrounding water is placed close to the reactor core [49].
Neutrons going through the moderator thermalise at its temperature
after multiple scattering events, and yield an energy distribution with
a substantial enhancement of neutrons at the energy range of interest
(see different curves in Figure 3.2(b)) [48], hence a moderator can be
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Figure 3.3: Typical neutron absorption cross section of an atomic
nucleus as a function of the neutron energy. Restored from Ref. [47].

used as a hot or cold source.
In spallation sources, protons are accelerated and concentrated in

small clusters that hit a target made of heavy atoms. That process
ejects neutrons which are then also slowed down with moderators at
the appropriate temperatures required by the instruments. However,
since the time spent in the moderator broadens the neutron pulse,
moderators in these sources have to be small to keep a good time-of-
flight resolution, which results in neutrons being undermoderated and
not yielding a Maxwell-Boltzmann distribution for energies approxi-
mately above 100 meV, where the energy distribution of the neutron
flux is proportional to 1/E instead (see Figure 3.2(c)) [50, 51].

3.2 Instruments to determine the

structure

Reactor diffractometers are instruments with detectors that count all
neutrons scattered in certain directions from a more or less monochro-
matic incoming beam, but disregarding altogether their energy distri-
bution. They mainly allow to obtain information about the structure
of the sample but not its dynamics.
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Depending on whether our interest is on the structure of the
molecule itself, the relative arrangement of close molecules, or the
formation of superstructures, the length scales of interest will be dif-
ferent, so an instrument that can measure within the appropriate
range must be chosen (see Figure 3.1).

As seen in Chapter 2, interatomic distances in the system, r,
and the modulus of the scattering vector, q, are related through the
Fourier transforms of the structure factor S(q) and the pair correla-
tion function g(r) (see Equations 2.67 and 2.68 in Section 2.6 for the
monoatomic case). And, if the scattering is elastic, that is, neutrons
do not transfer any energy to the sample, the relation between q and
θE is [42]:

q = 2k0 sin θE =
4π

λ0
sin θE (3.2)

where k0 and λ0 are the wave number and the wavelength of the in-
cident neutrons, respectively. Thus, the wavelength of the incoming
neutrons and the angular range that the detectors cover will deter-
mine the characteristic distances that can be measured with each
instrument.

Apart from that, some systems of interest display a mixture of
ordered and disordered structural features that must be studied with
differently optimized instruments. For example, disordered features
are more conveniently studied with low resolution instruments while
ordered features need higher resolutions. This is the case for plas-
tic crystals and orientational glasses, which have positional but not
orientational long range order. The study of structural variations in
non-equilibrium states (for instance, across phase transitions) will re-
quire an instrument capable of fast measurements, a practical issue
that has to be taken into account too.

3.2.1 D4 liquid and amorphous materials
diffractometer

D4 is a two-axis diffractometer specially designed to study the local
atomic order of amorphous materials like liquids and glasses. It is
located at the Institut Laue-Langevin (ILL) in Grenoble, France [49]



3.2. INSTRUMENTS TO DETERMINE THE STRUCTURE 97

(see Figure 3.4). The short wavelength of the incoming neutrons and
the angular range measurable by its detectors (2θE = 1.5◦ to 138◦),
allows to obtain good quality data up to rather high values of q, which
is a significant factor when data has to be Fourier transformed to real
space, because it gives a better resolution.

To determine the short range order of liquid and glassy sam-
ples, diffractograms were measured with a wavelength of λ = 0.5 Å
(327 meV), which yielded a momentum transfer range up to qmax =

23.5 Å
−1
.

The high flux reactor at the ILL generates the largest neutron flux
in the world. Thermal neutrons coming from its water moderator at
300 K have a peak at 1.2 Å, but neutrons at D4 come from its hot
source at 2600 K instead (peak flux at 200 meV), which increases the
flux of neutrons at smaller wavelengths (< 0.8 Å). This moderator is
a graphite sphere heated by the radiation generated inside the reactor
core [53, 54]. In Figure 3.2(b) an example of how a hot moderator
modifies the energy distribution of the reactor is shown.

The neutron beam goes through a monochromator that selects
neutrons within a small range of wavelengths. Since the neutron
energy distribution of the source is normally fixed, the more precise
the wavelength, the less neutrons are available for the experiment, so
an equilibrium must be found. The monochromator at D4 to obtain
neutrons at λ = 0.5 Å is a very large copper single crystal cut parallel
to the (220) crystallographic plane.

A low-efficiency detector, called monitor, is placed in the path of
the beam before the sample. The monitor allows to have a measure
of the incident neutron flux, needed for normalization, but lets most
neutrons travel through so that they can be used in the experiment,
interacting with only 0.1 to 1 % of them [55].

An orange cryostat (T = 1.5 K to 300 K) or a furnace (T =
300 K to 1100 K) were used as sample environments in the different
experiments. In Figure 3.5 an orange cryostat and the stick that holds
the sample holder inside the cryostat are shown. Since hydrogen is a
highly neutron scattering element (see Figure 2.2), the sample stick
must be carefully warmed and dried from condensed water vapour at
every sample change to avoid any spurious water contribution to the
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Figure 3.5: Orange cryostat with the sample stick in place (left).
Warming and drying of the stick during a sample change (upper
right). Vanadium-aluminium sample holders used in D4, D1B and
D20 (lower right). Respectively from Ref. [56], own picture, and Ref. [57].

measurements.
Sample holders are typically made of a vanadium body with an

aluminium cap and have cylindrical geometry (see Figure 3.5).
To remove from the measurement the unwanted high intensity

direct beam of neutrons that do not interact with the sample, two
beamstops of an absorbent material (10B4C) are located at the lowest
scattering angles between the sample and the detector to block their
path (see Figure 3.4).

The collimation tube in front of each detector ensures that scat-
tered neutrons which could arrive to the detector but are not even
coming from the direction of the sample, such as most of the neutrons
scattered by the cryostat walls, will be absorbed and will not reach
the detector. The drawback of this system is that the measured sig-
nal has alternating illuminated and blind spots cast by the shadow
of the collimator and also by the angular separation between the
detectors. Thus, to obtain a continuous measurement of the whole
scattering range, multiple measurements must be performed with the
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detector block at slightly different angles. A technique that, although
it greatly improves the quality of the signal, inevitably increases the
overall measuring time.

For example, five scans can be used to measure from 2θE = 1.5◦

to 140◦, which corresponds to setting the first detector at different
offsets of the angular position: 2θE = 0◦, 4.5◦, 7◦, 9◦, and 11◦. These
angles are carefully selected to avoid intense aluminium Bragg peaks
arising outside the sample position but that, albeit the collimator,
would find certain small windows to reach the detector. Aluminium
is an element frequently used in the building of sample environment
devices due to its high transparency to neutrons [33].

The detector bank is composed of nine microstrip gas chamber
detectors with pressurized 3He (15.4 bar) and a small quantity of
CF4 (0.6 bar). Neutrons are captured by 3He nuclei, which have
a large neutron absorption cross section (see Table 4.1), and then
decay to charged tritium and protons through the following nuclear
reaction:

3He + n → 3H+ 1H+∆E (3.3)

where ∆E = 0.764 MeV is released as kinetic energy. The free elec-
trons that result from this ionization are attracted by the strong
electric field of the metallic strips which in turn causes an avalanche
of secondary ionization. This kind of detectors have a good efficiency
even at small neutron wavelengths (82% at 0.5 Å) [58, 59]. However,
since 3He is mostly obtained from dismantling nuclear weapons and
this need has been gradually decreasing, there is now an acute world-
wide shortage of this isotope that is hampering the development and
fabrication of these detectors [60].

Since D4 is designed to measure the smooth features of disordered
systems, it has a low resolution in q and is not suitable to measure
the sharp diffraction peaks resulting from highly ordered structures.

To reduce the background and increase the quality of the mea-
surement, most of the path of the neutrons through the instrument
is within vacuum. For instance, the cryostat tail is held inside a
vacuum chamber, the collimating tube of each detector is also evac-
uated, etc. However, due to the intrinsic disorder of the samples
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measured at D4, the intensity of their coherent scattering is not very
high and the time needed to measure a complete diffractogram that
allows for quantitative analysis is usually of the order of hours [52].
For the samples studied in this work, a single good quality measure-
ment (with the aforementioned five scans at different offset angles)
takes around three hours, although it can take up to eight hours if
the isotopic substitution technique is used, due to the fact that, for a
successful subtraction of the different contributions, data quality has
to be extremely good.

Besides measuring the sample in the different external conditions
of interest, for each experiment a series of additional measurements
will have to be carried out to perform the subsequent corrections and
normalization of the sample measurements.

For instance, to subtract the background radiation as well as the
sample environment and sample holder contributions to the scatter-
ing, the empty cryostat or furnace, and the empty sample holder
inside the sample environment have to be measured for at least as
long as the sample. This is because a large error in these measure-
ments would propagate to the corrected sample measurement during
the addition or subtraction operations, and a large final error would
be then obtained regardless of how long the sample itself had been
measured (see Section 4.1.5). Besides, since the sample attenuates
part of the neutrons, these separate measurements without the sam-
ple yield higher intensity readings than the actual values. Thus, to
avoid subtracting too many neutrons, an attenuation correction must
be performed. This correction requires an additional measurement
that consists in replacing the sample by a highly absorbent material,
normally 10B4C or cadmium.

Finally, to be able to normalise the sample measurement to ob-
tain absolute scattering units, a known sample of reference must be
measured as well. Usually a vanadium rod is used for this purpose,
because this material has very weak Bragg peaks and gives a more or
less uniform intensity. But, since only the overall height is sought, a
precise measurement of the vanadium rod is not needed and a much
shorter scan than those of the sample is required.
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3.2.2 D1B two-axis diffractometer

D1B is a two-axis neutron diffractometer located at the ILL (see
Figure 3.6). The efficiency of its large detector and its high neutron
flux make this instrument suited for real time experiments with very
small samples. Diffraction patterns with enough statistics can be
measured in just a few minutes. Thus, a complete scan of diffraction
patterns with temperature can be obtained in just a few hours.

In disordered systems like plastic crystals and orientational glasses
the centres of mass of the molecules have a high positional symmetry,
often extremely high, such as body or face centred cubic lattices, thus,
they have a few distinct Bragg peaks that can be easily distinguished
through neutron diffraction without the need of high resolution mea-
surements. Several experiments were performed at D1B to explore
the variations of the ordered features in these systems as a function
of the temperature. Thanks to the fast acquisition rate of this instru-
ment, long range order structural changes could be followed through
phase transitions, and real-time measurements of the thermal history
dependence of the sample could be performed.

This instrument is located at a thermal guide, which means that
neutrons have been thermalised in the water moderator at 300 K and
have a peak at a wavelength of λ = 1.2 Å. Three monochromators
made of pyrolytic graphite cut parallel to the (002) crystallographic
plane focus on the sample and select neutrons with a wavelength of
λ = 2.52 Å.

Just as in D4, an orange cryostat (1.7 to 300 K) and vanadium
sample holders with cylindrical geometry were used to measure the
samples (see Figure 3.5).

During the measurements of this work, D1B had a multiwire posi-
tion sensitive 3He/Xe gas detector that covered 80◦ of the scattering
range, although it could be moved to allow it to collect a complete
diffractogram from 2θE = 2◦ to 130◦, and had a 60% efficiency at
λ = 2.52 Å [62]. Recently, its detector has been upgraded to a mi-
crostrip 3He/CF4 position sensitive detector that covers 128◦ of the
scattering range (from 2θE = 0.8◦ to 128.8◦), and has an increased
efficiency at the same wavelength of detecting 86% of the neutrons.
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Figure 3.6: Scheme of D1B, a two-axis diffractometer at the ILL,
before (left) and after (right) the detector upgrade. From Refs. [49]

and [61].

3.2.3 D20 high-intensity two-axis diffractometer
with variable resolution

D20 is a versatile extremely high flux diffractometer with variable
resolution located at the ILL (see Figure 3.7). The combination of a
very large position sensitive detector and its high neutron flux results
in the reactor diffractometer with the highest counting rate of the
world [63]. This allows to make very fast measurements of the struc-
ture of a sample as the temperature is continuously changed, even for
disordered materials that normally require long measurements.

In our case, about three minutes were needed to obtain a complete
diffraction pattern for liquid trans-1,2-dichloroethene. Hence, real-
time measurements at D20 of the structure factor of this compound as
a function of the temperature could be performed allowing to detect
any phase transition.
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Figure 3.7: (a) Sceme of D20, a high-intensity two-axis diffractometer
at the ILL (b) Radial oscillating collimator. From Refs. [49, 64, 65].

Neutrons at D20 are provided by a high flux thermal guide. A
range of wavelengths can be used, but a copper monochromator cut
in the (200) crystallographic plane that selects neutrons with a wave-
length of λ = 1.3 Å is the configuration that yields the highest flux.

A radial oscillating collimator was used to remove spurious signal
generated by neutrons impinging on the components of the sample
environment (see Fig. 3.7(b)). If no collimator at all had been used
in front of the detector, plenty of neutrons scattered on various parts
of the cryofurnace would also have been measured together with the
sample. The radial collimator focuses on the sample and absorbs any
neutron coming from a point farther than 11 mm to the left or right of
the sample. There are still a few neutrons measured by each detector
that have been scattered from the cryofurnace components located
in the same direction as the sample, but their overall contribution is
greatly diminished (see Figure 3.7(b)).

Due to the shadow cast by the collimator walls, to obtain a contin-
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uous diffractogram, more than one measurement has to be performed
setting the collimator at different positions. These are carried out
through an oscillation of the collimator, which is synchronised with
the capture times of the detector to avoid measuring during the dis-
placement of the collimator. This lateral oscillation of the collimator
is equivalent to the D4 procedure of measuring at different angles. In
our case, the time between the two farthest collimator positions was
set to 11.3 seconds.

The sample environment was controlled with a cryofurnace (1.5
to 550 K) and vanadium sample holders with cylindrical geometry
were used for the samples (see sample holders at Figure 3.5).

The large microstrip detector of D20 covers the full scattering
range: 2θE = 0.1 to 154◦, which at λ = 1.3 Å becomes a q range from
q = 0.08 to 9.30 Å in the diffractograms.

3.2.4 KWS 2 Small Angle Neutron Scattering

KWS 2 is a small angle neutron scattering diffractometer of the
Jülich Centre for Neutron Science located at the Forschungs-
Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching, Ger-
many (see Figure 3.8).

Small angle scattering measures the deviation of neutrons from
their path after they interact with structures which are much larger
than the wavelength of the neutrons. This technique allows to mea-
sure size, shape and orientation of structures between ' 10 and
1000 Å, also in partially or fully disordered systems.

Although the neutron flux generated by FRM II is lower than
at the high flux reactor of the ILL, a fuel element design enhancing
emission of neutrons, and the particular attention paid to reduce
background around the instruments and their detectors, make its
signal to noise ratio very good, which partially compensates for a
more modest reactor and results in very good quality measurements.

The neutron beam for this instrument comes from the cold source
at FRM II. The liquid deuterium moderator is at 25 K and the max-
imum of the distribution of neutron wavelengths is at λ = 1.4 Å
(E = 40 meV), which means that a wide range of momentum trans-
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Figure 3.8: Scheme of KWS 2, a small angle neutron scattering
instrument at the FRM II. Modified from Ref. [66].

fers q can be explored (between 10−4 and 0.5 Å
−1
).

For instance, for the experiments designed to detect any possi-
ble nematic ordering taking place in trans-1,2-dichloroethylene, the
sample was located at two meters of the detector and a wavelength
of 4.5 Å was selected. This yielded a measurement in the q range

between 0.003 and 0.3 Å
−1
, which corresponds to measure structures

in the range between 20 to 2000 Å.

3.3 Instruments to determine the

dynamics

Contrary to diffractometers, spectrometers are usually designed so
that the energy distribution of neutrons scattered in each direction
can be determined. This allows to infer the energy exchange between
each neutron and the sample as a function of q, so that information
about the sample dynamics can be obtained. Figure 3.1 shows the
time scale accessible with each neutron spectroscopy technique. In
these techniques it is crucial to avoid multiple scattering of the neu-
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trons that go through the sample for the measurement to be reliable.
Thus, a calculation of the optimal width of the sample must be per-
formed. The desired transmission of the beam through the sample is
conventionally taken as being about 90%, this way only about 10%
of the incoming neutrons interact with the sample, most of them ac-
counting for the single scattering contribution to the measurement, so
that only a small part of the incoming neutrons are scattered twice,
an even smaller part is scattered thrice, etc.

3.3.1 TOFTOF High Resolution Direct
Geometry Time-of-Flight Spectrometer

TOFTOF is a flexible time-of-flight spectrometer of the Technische
Universität München with a high flux and high resolution located
at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) in
Garching, Germany (see Figure 3.9). Among many other things, it
can be used to study the diffusion of atoms or molecules in liquids.

A small bunch of neutrons with the same wavelength are sent si-
multaneously towards the sample, a few of them will interact with it
and will loose or gain kinetic energy before they continue their path,
which will in turn affect their velocity. Thus, the energy exchange
experienced by scattered neutrons is directly reflected by the mea-
surement of the time-of-flight it takes for these neutrons to reach the
detectors.

Neutrons at the TOFTOF spectrometer are provided by the cold
source at 25 K. The maximum of the distribution of neutron wave-
lengths is at λ = 1.4 Å (E = 40 meV). This allows a variety of
wavelengths of interest. For instance, in trans-1,2-dichloroethylene
experiments, a wavelength of 6 Å and a resolution of 60 µeV were
used.

The neutron beam that must be used in a time-of-flight instru-
ment has to be composed by monochromatic pulses. In a continuous
neutron source, such as a reactor, this is usually achieved with a num-
ber of choppers. These are large disks made of a neutron absorbing
material, with small windows that let neutrons pass through (see Fig-
ure 3.9), so that the beam can be interrupted periodically. The first
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Figure 3.9: Scheme of TOFTOF, a time-of-flight high-resolution
spectrometer, together with a picture of one of its chopper disks.
From Refs. [67, 68].

rotating disk stops most of the neutrons and converts the continuous
beam generated by the reactor into bunches. Some subsequent disks
remove fast neutrons travelling at higher harmonics of the desired
wavelength, which can make it through the first disk, and avoid over-
lap between different pulses. The last disk is synchronised with the
first so that neutrons faster or slower than the desired speed will reach
this second chopper too soon or too late and will also be absorbed.
The faster the disks rotate the shorter the pulse and, therefore, the
higher the time resolution [69].

Typically, TOFTOF sample holders have a hollow cylinder geome-
try, which allows tiny sample thicknesses, and are made of aluminium,
which is quite transparent to neutrons.

Neutrons from these monochromatic bunches will exchange a va-
riety of momenta and energies with the sample which in turn will
change the velocities of the scattered neutrons. Therefore, after be-
ing scattered by the sample, the bunch will not be monochromatic
any more and neutrons will need different times-of-flight to arrive at
the detector. Measured detection times in each direction are con-
verted into neutron momentum and energy and, since the character
of the neutrons before being scattered is known, this allows to infer
the momentum and energy transferred between the sample and the
neutron [70, 71].



3.3. INSTRUMENTS TO DETERMINE THE DYNAMICS 109

To avoid background scattering from air molecules as the neutrons
scattered by the sample reach the detector bench, the four meters
that scattered neutrons must cross to reach the detector are inside a
chamber filled with argon gas. The detector bench covers a scattering
angle from −15◦ to 140◦, where 3He counting tubes are placed on
Debye-Scherrer rings (see Section 2.2.2 or Figure 4.2).
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The detectors at D4 count the number of neutrons that are scat-
tered in each direction, but this quantity depends on many param-
eters that are not directly related with the characteristic distances
present in the measured samples. Therefore, we seek to remove spu-
rious contributions and normalize the measurements to obtain magni-
tudes such as the differential scattering cross-section per atom (DCS),
the scattering function, the pair-correlation function, or the radial
distribution function (see Chapter 2).

4.1 Data treatment performed with

REGD4C

A fair amount of instrument-dependent data treatment is usually car-
ried out already at the instrument computer with programs RegD4c
or D4creg [72], two variations of the same program.

These manipulations account for the detector dead time correc-
tion, normalisation to monitor counts, the different efficiencies of each
detector cell, grouping of numors that correspond to the same mea-
surement, and calculation of experimental errors. A magnitude pro-
portional to the experimental differential cross-section per atom of
the sample and its surroundings, as well as its errors, is obtained.

4.1.1 Detector dead time

The detector dead time τ is the minimum amount of time that must
separate two neutrons arriving to the detector so that they will be
recorded as distinct events. Neutrons arriving too soon after a pre-
vious neutron has been detected, and the detector is still not ready,
will not be counted. This means that the detector will underestimate
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the number of neutrons that should be measured, specially as the
intensity increases.

In some detectors every particle that arrives to the detector trig-
gers again the dead time, even when this particle arrives during a
previous dead time and will not be counted. Such detectors are called
paralysable because they become overwhelmed in high event rate sit-
uations, overlapping several dead times and thus becoming unable to
detect any event at all.

Other detectors are unaffected by events that take place during
dead time. These detectors are said to have a nonparalysable response
and are able to measure again as soon as the dead time of the previous
event is over. Their counting rate upper limit is one event per τ , and
the overall fraction of the total time that the detector is dead, fτ ,
is directly proportional to the dead time and the measured counting
rate νm [73]:

fτ = νm τ (4.1)

Assuming a nonparalysable response of the detector, a simple ex-
pression can be found to correct the dead time effect from the mea-
surements at D4 so that they can be compared to experiments carried
out in other instruments.

On the one hand, the rate ντ at which true events are lost, is the
product of the dead time fraction fτ by the true event rate ν:

ντ = fτ ν = (νm τ) ν (4.2)

And on the other hand, the rate at which true events are lost can
also be simply computed by subtracting the measured counting rate
from the true event rate: ντ = ν − νm.

Merging these two expressions allows to estimate the true event
rate using the measured counting rate and the dead time of the de-
tector:

ν =
νm

(1− νmτ)
(4.3)

Since the monitor is a detector as well, albeit a low-efficiency one,
the monitor counts are also underestimated. If the monitor response
is nonparalysable this correction can also be performed to obtain the
true monitor count value.
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4.1.2 Monitor count normalization

The neutron flux at the reactor is very stable, however, it has small
fluctuations and may differ at different moments of the fuel cycle or
between different cycles.

Additionally, it is obvious that the detector will count more neu-
trons for long measurements of a sample than for short measurements
of the same sample. To account for this, all measurements are normal-
ized to the number of neutrons detected by the monitor (or a multiple
of that, such as millions of monitor counts), because this is propor-
tional to the number of neutrons that impinged in the sample. This
way, measurements of different lengths or experiments performed at
different times of the fuel cycle can be compared.

4.1.3 Detector efficiency

All detectors register a different number of neutrons when the same
flux is impinging on them. Even each one of the 574 cells (64 per
detector) that constitute the detector bank in D4 has a different ef-
ficiency.

This is normally calibrated before the experiment so that the ef-
ficiency of each cell is a known parameter of the instrument. In D4
these values are kept in a file and are afterwards used to weight the
data measured at the different cells.

This file can also be conveniently used to disregard data com-
ing from malfunctioning cells, or too heavily affected by collimator
shadowing effects to be successfully merged with the rest.

4.1.4 Numor grouping

As was explained in Section 3.2.1, due to the radial collimator shadow
and the angular separation between detectors at D4, several measure-
ments have to be performed with the detector bank at different offset
angles to be able to measure the whole scattering range. Each one of
these single measurements is called numor (number of run) and yields
an incomplete spectrum (see Figure 4.1). The grouping and averag-
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Figure 4.1: Numors measured at D4 for a vanadium rod at offset
angles 2θE = 0◦, 4.5◦, 7.5◦, 9◦, and 11◦ (empty symbols) compared
to the merged measurement without corrections (red line). The cen-
tral channels of the nine detectors measure the proper intensity of
the sample but in the edges the shadow effect of the collimator be-
comes apparent and there is an intensity drop. For the sake of clarity,
0.4x104 counts have been added to each subsequent numor.

ing of the different numors into a single measurement is also usually
performed at the instrument computer by the program RegD4c.

Since each cell will be in general at a different scattering angle
position for each numor, a 2θE value has to be assigned to every one
of them before the counts of the different numors can be merged (as
shown in Figure 4.1). This calculation takes into account the offset
angle of the detector bank during the measurement of each particular
numor and the detector geometry.

Apart from the different offset angles needed to scan the whole
scattering range, usually two or more short runs are preferred at
the same angle than a single long run. This way, even if a problem
occurs during the measurement of a numor which forces to discard it,
a measurement in the whole scattering range, albeit noisier, can still
be reconstructed taking the remaining runs that have been performed
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at the same angle.
RegD4c divides each count by the efficiency of that detector cell

and carries out for the selected numors an average of the values of
all the channels that correspond to the same angle. When grouping
the numors, this program will ignore any detector with a negative
value in the efficiency, thus, any detector cell can be easily removed if
necessary to minimize problems associated to shadow or to detector
malfunctioning.

Scattering occurring outside of the sample position is normally
absorbed by the collimators, but unfortunately a few intense Bragg
peaks coming from the sample environment do manage to get through
a small window and reach the detector at certain angles below 4.5◦.
The Bragg peaks are simply avoided by not measuring at the trou-
blesome angles, and to compensate for the lower statistics in that
range, measurements at the 0◦ position, where the Bragg peaks are
successfully absorbed by the collimation, may be performed twice or
run for longer times.

4.1.5 Errors and resolution

The experimental error of a measurement quantifies how much this
measurement differs from the true value of the magnitude. When the
true values of the magnitudes are not observable, such as in this work,
data errors are often estimated instead using the concept of residual,
which quantifies how much this particular measurement differs from
the average of all measurements (εi = xi − x).

Errors are estimated here using the fact that the standard devia-
tion in a counting experiment is predicted to tend to σ =

√
N as the

number of counts N tends to infinity [73]. This approximation is of
course only valid as long as the number of counts remains very large.

The counts of each detector cell dk are divided by the monitor
counts M in order to normalise them:

nk =
dk
M

(4.4)

where nk is the count of the k-th detector cell normalised to the
monitor counts. Since both magnitudes have certain error ε, the



116 CHAPTER 4. D4 DATA TREATMENT

Figure 4.2: Left: Curvy diffraction pattern corresponding to Debye-
Scherrer rings (shades of gray) measured by straight detectors (blue
rectangles) are the cause of the umbrella effect, which worsens the
instrumental resolution at angles near 2θE = 0◦, 180◦ but has no
effect at 2θE = 90◦. The incoming neutron beam is perpendicular to
the text, and darker shade means more neutrons are scattered in that
direction. Right: Slice of the diffraction pattern on the left (passing
through the origin). Modified from Ref. [74].

method of error propagation is used to calculate the error of the
resulting diffractogram:

εnk
=

√(
∂nk

∂dk

)2

εdk
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M
(4.7)

where ε '
√
N has been used in the first step.

The samples studied in this work are liquids and other amorphous
materials, so they are isotropic and the experiment has cylindrical
geometry along the axis of the neutron beam. That means that the
diffraction pattern only depends on 2θE and it consists of a series of
concentric rings.
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However, the detectors at D4 are straight and do not follow the
cylindrical symmetry. This gives rise to the umbrella effect, which af-
fects the resolution of the measurement as a function of the scattering
angle (see Figure 4.2), and has to be taken into account in addition to
the intrinsic detector resolution. At low angles the radii of the diffrac-
tion rings are smaller, and their curvature is more apparent, so the
effect on the resolution is larger. As the scattering angle increases,
this effect becomes less significant, until it reaches 2θE = 90◦ where
the pattern becomes a straight line, and as 2θE is further increased
beyond this angle the effect starts becoming significant again.

4.2 Data treatment performed with

CORRECT

After the corrections and normalizations usually applied at the in-
strument with the program RegD4c, a diffraction pattern of the
neutrons scattered by the sample and its surroundings normalized
to monitor counts (or a fixed multiple of them) is obtained. Further
data treatment is required to single out the sample contribution. The
goal is to obtain a scattering function in absolute units that can be
compared to experiments of the same material performed in similar
conditions in other instruments, or even with other techniques.

The computer code Correct [75] has been used to perform the
background, multiple scattering and container attenuation correc-
tions to the neutron diffraction data, as well as the normalization
to a known sample, modified by a parameter accounting for the full-
ness of the sample holder.

The program has also an adjustable parameter to multiply, if nec-
essary, the vanadium rod or the sample holder spectra by a factor (for
instance to account for a partially filled sample holder), and an op-
tion that allows to perform the Placzek correction, but these features
have not been used.

If all corrections and normalizations are successful, the differential
scattering cross-section per atom of the sample and its errors will be
obtained.



118 CHAPTER 4. D4 DATA TREATMENT

0 20 40 60 80 100 120 140
0

5000

10000

15000

20000

25000

C
o
u
n
ts
/
M
o
n
it
o
r
c
o
u
n
ts

2θ (degrees)

Cryostat + Sample holder + F-112 (310 K)

Cryostat + Vanadium rod

Cryostat + Sample holder

Cryostat

E

Figure 4.3: Standard set of measurements for a liquid sample at
D4 after RegD4c. They include: 1) sample environment + sample
holder + sample (black), 2) sample environment + known sample
(blue), 3) sample environment + sample holder (orange), 4) sample
environment (violet), and 5) sample environment + sample holder +
absorbing sample (not shown).

4.2.1 Non-sample contributions

The contribution to the detector counts arising from the background
radiation and electronic noise, and from neutrons scattered in the
sample environment and sample holder must be removed from the
measurement to be able to extract the sample contribution.

In our case, a measurement of the empty sample environment
(cryostat, furnace, or cryofurnace) will be considered to be the back-
ground. But a separate measurement of an absorbing sample (10B4C)
and of the empty sample holder within the sample environment will
also be carried out to remove the sample holder contribution and to
perform the attenuation corrections (see Figure 4.3).

An even finer correction can be performed if the sample envi-
ronment is considered to be a second container (besides the sample
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holder) and a measurement of the empty instrument without the sam-
ple environment is considered to be the background. However, such
fine correction was not necessary in our case.

4.2.2 Attenuation and multiple scattering

If the sample is considered point-like or very small, the mean free
path of the neutrons before they interact with the sample will be
much larger than the sample dimensions, thus virtually all of them
will travel through the sample undisturbed, and the tiny fraction of
neutrons that are indeed disturbed will certainly have not interacted
with the sample more than once. In this case a simple background
(sample environment and holder) subtraction would be enough to
obtain the scattering of the sample.

However, samples are usually not that small and they may absorb
or scatter several times a significant amount of the neutrons that go
through it. Therefore, we need to take into account attenuation and
multiple scattering when subtracting the different contributions to go
beyond this point-like limit case and account for a finite sample vol-
ume [76]. These corrections are specially important when the sample
of interest has nuclei with substantial absorption and scattering cross
sections.

This means that, normally, unwanted background contributions
can not be simply removed by subtracting the measurements that
have been carried out without the sample, because their scattering is
not additive. For instance, due to the fact that the sample absorbs
and scatters a fraction of the neutrons, less neutrons can be scattered
by the sample holder in the presence of the sample.

Using a highly absorbing sample, in our case 10B4C powder, with
the same dimensions and within the same container and sample en-
vironment than the sample of interest, allows to measure the back-
ground contribution of neutrons that do not go through the sample
position, and thus will be unaffected by its presence.

This measurement can be subtracted from the total background
to obtain the background contribution of neutrons that do indeed go
through the sample position, and apply a sample attenuation correc-
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Figure 4.4: Scheme of the parenthesis in the second term of Equa-
tion 4.8. The background contribution of neutrons that go through
the sample position can not be measured directly, but can be ob-
tained subtracting the absorbent (Iabs) from the background (Iempty)
measurements. Modified from Ref. [77].

tion to them (see Figure 4.4):

Ibkgd ≡ Iabs

︸ ︷︷ ︸
Background not
passing through
sample position

+Tsam [Iempty − Iabs]︸ ︷︷ ︸
Background arriving
at sample position︸ ︷︷ ︸

Background transmitted
by the sample

(4.8)

where Ibkgd is the total background contribution to the intensity when
measuring the sample, Iabs is the measured intensity of the absorbing
sample, i. e., the contribution of neutrons that did not go through the
sample, Iempty is the measurement of the empty sample holder within
the sample environment, i. e., the background without the sample,
and Tsam is the transmission of the sample.

Paalman and Pings [78] calculated the attenuation corrections
arising from absorption and scattering of an uniformly illuminated
sample and its container in a setup with cylindrical symmetry. The
coefficients, which depend on the scattering angle, allow to subtract
the empty sample holder measurement taking into account the sample
and container attenuation.

To be able to calculate those attenuation coefficients by the sam-
ple holder and the sample, their geometry, as well as their cross sec-
tions, must be known parameters. Thus, the external and internal
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radii of the sample holder must be carefully measured. The latter
being also the radius of the sample.

The approach described above assumes that neutrons measured
by the detector have been scattered only once, not taking into account
multiple scattering effects.

Multiple scattering corrections are quite complex and highly de-
pendent on sample and sample holder composition and geometry.
Numerical solutions which usually assume isotropic and elastic scat-
tering can be carried out to correct multiple scattering [79–81]. Monte
Carlo multiple scattering simulations can be quite precise and can
also be used for complex geometries, but require more computing
time [82–84].

4.2.3 Normalization

The normalization of the diffraction intensity of a particular sample
to an absolute cross section can be performed by comparing it to
another sample of known cross-section and volume in the beam. In
our case, a vanadium rod was measured in the experiments for this
purpose, as well as the empty sample environment, which corresponds
to the background of this measurement.

The advantage of using vanadium for normalization is that it has
an isotropic and almost fully incoherent cross section with just a few
Bragg peaks of low intensity (see Figure 4.1 or 4.3). This means that
it yields a diffraction pattern which is essentially a horizontal line,
quite appropriate to use for normalization purposes.

The scattering from the empty sample environment will have to
be subtracted from the vanadium to remove its background. If the
vanadium measurement is available, this is the calculation that the
program correct carries out:

C =
S
V

(
ρv r

2
v

ρs r2s

)
σscat
v

4π
(4.9)

where C is the output magnitude of the program, S is the measure-
ment corresponding to the sample (with the corrections mentioned in
Sections 4.1, 4.2.1 and 4.2.2 already performed), V is a polynomial
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fit to the vanadium rod measurement which effectively removes its
undesired Bragg peaks, ρv i ρs are the densities of scattering centres,
i. e., number of atomic nuclei, from the vanadium and the sample, rv
and rs are the radii of the vanadium rod and the sample, and σscat

v is
the scattering cross section of vanadium.

Since the geometry of the sample of interest and the sample of
reference must be known parameters, both radius must be carefully
measured. From a practical point of view, due to vanadium being a
quite malleable material, it may be not so straightforward to obtain
precise measurements of these two magnitudes, specially in the case
of the sample holder, which determines the sample radius. This is
because sample holder walls are very thin and, hence, quite fragile.
Therefore, they are susceptible of larger deformations that may yield
a different radius depending on the measurement.

Input data is usually the number of neutrons registered by the
detector normalized to the monitor counts of the instrument, but
after the additional normalization shown in Equation 4.9 we obtain
an absolute magnitude in cross section units.

If we take into account the cylindrical geometry of the experiment
and consider that the sample and the vanadium both have the same
height h within the neutron beam, the volumes of the vanadium and
the sample illuminated by the beam are Vv = πr2vh and Vs = πr2sh,
respectively. Thus, it is clear that this operation is no more than a
normalization by the number of nuclei contributing to the scattering:

C =
S
V

[
Nv︷ ︸︸ ︷

ρv

Vv︷ ︸︸ ︷
(πr2vh)

ρs (πr
2
sh)︸ ︷︷ ︸

Vs︸ ︷︷ ︸
Ns

]
σscat
v

4π
=

[
1
Ns
S

1
Nv

V

]
σscat
v

4π
(4.10)

whereNv andNs are the number of scattering centres of the vanadium
and the sample within the neutron beam, respectively.

To get further insight on the magnitude that we are obtaining,
we can use the fact that the vanadium rod is a monoatomic sample
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and write its differential scattering cross section per atom (dσv

dΩ
) as

a function of its coherent (bcoh,v) and incoherent (bincoh,v) scattering
lengths [4]:

1

Nv

[
dσv
dΩ

(q)

]
=������b2coh,v Sv(q) + b2incoh,v

∼=
σscat
v

4π
(4.11)

where Sv(q) is the vanadium structure factor. Here, the coherent
q-dependent contribution can be disregarded because the scattering
of vanadium is mainly incoherent (total scattering cross section is
σscat
v = 5.1 b, with the coherent contribution being only σscat, coh

v =
0.018 b), thus it yields a differential cross section per atom which
is essentially constant and does not show a q-dependence. With this
approximation it can be inferred that the magnitude that the program
correct computes is the differential cross section per atom of the
sample:

C ∼=
1

Ns

[
dσs
dΩ

(q)

]
lim
q→∞

C =
σscat

4π
(4.12)

where σscat is the mean scattering cross section per atom of the sam-
ple. Which means that, if the scattering is purely elastic, C should
oscillate around the σscat/4π value.

Just to cite two examples, according to this, the measured diffrac-
tograms of deuterated trans-1,2-dichloroethene (C2Cl2D2) should os-
cillate for large q around 0.80 b, and those of 1,1,2,2-tetrachloro-1,2-
difluoroethane and 1,1,1,2-tetrachloro-2,2-difluoroethane (F-112 and
112a, C2Cl4F2) should oscillate around 0.86 b:

lim
q→∞

CTDCE =
1

4π

[
1

3
(σC + σCl + σD)

]
= 0.7955 b (4.13)

lim
q→∞

CF-112 =
1

4π

[
1

4
(σC + 2σCl + σD)

]
= 0.8588 b (4.14)

However, some compounds may be highly affected by inelastic
scattering so, even if the normalization procedure is carried out with
great care, their differential cross section per atom would not oscillate
around this value until inelastic corrections were also carried out.
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4.2.3.1 Normalization using the vanadium sample holder

By default, if there is no normalization measurement, correct as-
sumes that the sample holder is made of vanadium and normalizes
the sample with it:

C =
S
H

[
ρv
(
r2h,ext − r2h,int

)
ρs r2s

]
σscat
v

4π
(4.15)

where H is the measurement of the empty sample holder without the
background, and rh,ext and rh,int are the external and internal radii of
the container.

This is equivalent to Equation 4.10 but taking into account that
instead of a vanadium rod to normalize we are using a hollow cylin-
der. This kind of normalization yields a worse result because the
sample holder measurement is much noisier than the vanadium rod
measurement.

4.2.3.2 Scattering lengths

Accurate quantitative interpretation of normalized data must be un-
dertaken with great caution. Usually, due to the limitations of the
approximations that are used to correct and analyse the data, a strict
coincidence of the experiment and the theoretical expressions can not
be expected. In particular, that holds for the limiting values at high
q, around which the scattering function oscillates.

To begin with, the tabulated values of the neutron scattering
lengths which are available for consultation usually refer to bound
scattering lengths b, and bound scattering lengths are the ones as-
sociated with nuclei that are fixed and have no recoil, either due to
their large masses compared to that of the neutron, or because they
are rigidly attached to such a large mass. This is an approximation
and in reality it never happens:

• Nuclei at finite temperature are never completely still.
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• Nuclei in molecules are not rigidly fixed because the bonds to
other atoms have certain flexibility. For instance, they can be
modelled as harmonic oscillator potentials.

• In molecular liquids, and even supposing completely rigid
molecular structures, the molecule as a whole recoils when a
neutron is scattered.

• In molecular liquids, and even supposing completely rigid
molecular structures and a high mass that prevents transla-
tional recoil, the molecule can always reorient itself, allowing
sort of a local “recoil” of the scattering atom due to rotation.

The nucleus’ recoil energy lost by the neutron gives rise to inelastic
effects. All those effects depend on the scattering angle and are hard
to correct accurately, because they yield complex expressions as a
function of this angle [42].

On the other hand, in the case of free and stationary nuclei, the
differential cross section is modulated by the free scattering length
a (see Section 2.4.5). But in molecular liquids the nuclei are never
completely free either.

In the case of a free rigid molecule where the energy of the neu-
tron is smaller than the typical energy between rotation states, each
nucleus has an effective mass ofMmol and the differential cross section
per atom can be computed using Equation 2.40.

As can be seen in Figure 3.3, cross sections, and hence scattering
lengths, are in general a function of the incoming neutron energy.
This means that we also need to take into account the neutron wave-
length to determine the scattering length of the sample.

Tabulated scattering lengths usually refer to thermal neutrons
but, in the case of D4, neutrons are coming from the hot source, there-
fore, they are more energetic than thermal neutrons, something that
has to be taken into account through the whole treatment of data.
The program correct already does take it into account through the
neutron wavelength parameter.

Additionally, absorption cross sections are generally small at stan-
dard neutron diffraction energies. A notable exception to this small
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Table 4.1: Comparison of the absorption cross sections for thermal
neutrons of the elements used in this work together with Cd and 10B,
which are two of the elements most commonly used for shielding, as
well as 3He, which is used to build neutron detectors. Scattering cross
sections are also quoted. All values are expressed in barns and have
been taken from Ref. [33].

Element σabs (b) σscat (b)

D 0.000519 7.64
C 0.0035 5.551
F 0.0096 4.018
Hnat 0.3326 82.02
Br 6.9 5.9
Cl 33.5 16.8
Cd 2520. 6.5

10B 3835. 3.1
3He 5333. 6.

absorption cross section is chlorine, which is a constituent atom of all
the materials studied in this work. Chlorine has an absorption cross
section which is not as large as the elements used for shielding (like
cadmium or 10-boron) but that is very large when compared to other
materials studied by neutron diffraction (see Table 4.1). Addition-
ally, its scattering cross section is also quite large compared to the
rest of the nuclides, with the only exception of hydrogen.

The possible presence of neutron absorption resonances, where
the absorption as well as the scattering cross sections, undergo strong
variations as a function of neutron energies, has also to be taken into
account (see Figure 3.3). Luckily, they are rare at standard diffraction
wavelengths.

Some of the materials with absorption resonances at standard
diffraction wavelengths are 103Rh, 113Cd, 149Sm, 151Eu, 155Gd, 157Gd,
164Dy, 167Er, 176Lu, 180Ta, and 191Ir. None of the studied samples
contained any of these isotopes.
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Figure 4.5: Example of complications that a partially full container
can pose. (a) Sample holder is filled with a mix of solid pellets and
air at room temperature. (b) Increasing the temperature melts the
sample, that is drained to the bottom. Part of the neutron beam
illuminates the empty container and, although sample concentration
is higher, the drainage to the bottom results in less scattering centres
within the beam. (c) Cooling to the previous temperature again in-
creases the density of the sample, but due to contraction, it results in
a further decrease of the scattering centres within the beam. Modified

from sample holder by T. Unruh.

4.2.3.3 Partially filled sample holder

To perform the normalization with cylindrical geometry, the heights
of the sample and the vanadium within the neutron beam are assumed
to be the same and to fill the whole height of the beam. Otherwise,
it has to be taken into account through the fullness of the sample
holder parameter.

The most desirable situation is that the sample holder is full so
we do not run into normalization problems, but in some situations
this is hard to avoid. Special attention must be put to this matter
in experiments where the temperature range causes the sample to
experience phase changes (see Figure 4.5).

When the sample holder is properly filled, and the beam is narrow
enough to illuminate the central portion of the sample holder leav-
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ing some margin above and below, temperature variations within the
same phase change the sample density but not its volume inside the
beam. That is because there is enough material above the beam to
allow for some contraction of the sample without affecting the mea-
surement. Thus, the intensity of the scattering is normally expected
to increase together with the density of the sample, because so does
the number of scattering centres in the beam.

If the sample is solid at room temperature and pellets of it are
used to fill the sample holder, some air will always remain between
the sample bits. The proper way to fill the sample holder would be
by melting the sample to make sure that no air bubbles were left
inside. Otherwise, this could pose a normalization problem when the
sample was afterwards melted during the experiment, because the
liquid would fall to the bottom of the sample holder filling the empty
spaces and the container would be only partially full. A partially
filled sample holder results in a sample volume inside the beam that
changes with temperature due to contraction and dilatation, an ef-
fect more significant when phase transformations are taking place and
the sample experiences larger volume changes. In this worst case sce-
nario, density would seem to increase with temperature in materials
that have the opposite behaviour, and a manual adjustment of the
container fullness would be necessary for each temperature to obtain
normalized measurements.

Highly volatile samples can also pose a problem because a large
fraction of them might evaporate before it is possible to close the
sample holder. Cooling the sample previously and filling the sample
holder in a cold environment might help alleviate this problem.

Great care must be taken to ensure that the sample holder is air
tight when dealing with liquid samples, otherwise the high vacuum
inside the sample environment could also drain the sample from the
container.

If the sample holder is set to partially full, correct does not
normalise using the whole measurements, but just taking the propor-
tional part.
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4.2.4 Sample density

It is indispensable to know the density of scattering centres of the
sample to be able to normalize the diffractogram. Usually density
changes are not large, except if the sample experiences phase trans-
formations, thus a reasonably approximate value for the density will
be normally enough. Small pressure differences will build inside the
air tight sample holder as the temperature is changed, but its effect
on the sample volume is negligible.

4.2.5 Error calculation

Calculation of errors in the code correct is performed through error
propagation and is calculated every time the experimental data is
manipulated.

For instance, when measurements are added or subtracted, like in
the case of the background correction, the error εzk of each point k
of the corrected scattering function is calculated using the following
expression:

εz,k =
√
εx,k2 + εy,k2 (4.16)

where k is the data bin, εx,k and εy,k are the errors in each measured
spectra, and εx,k are the errors of the corrected data. On the other
hand, when data is multiplied by a factor C, like in the case of the
fullness of the sample holder correction, the errors of the resulting
data are simply scaled with this factor: εz,k = Cεx,k.

4.3 Inelasticity correction

To derive the neutron diffraction expressions that have been used
in this work, the static approximation has been adopted. This ap-
proximation holds when the energy exchange between the scattered
neutron and the nucleus is much smaller than the initial energy of
the neutron or, equivalently, when the structure of the sample is suf-
ficiently static compared to the speed of the neutron. The fact that
the neutrons used for this purpose are relatively slow and that their
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Figure 4.6: Diffractograms of benzophenone (C13H10O) and hex-
achloroethane (C2Cl6) at 400 K, fully corrected except for the inelas-
ticity effects. The greater effect on high q and molecules with lighter
atoms, which can have a larger recoil after the scattering, can be ob-
served. In fact, atoms from the heavier and stiffer hexachloroethane
molecule appear on average essentially unaffected by inelasticiy. After
correcting this effect, benzophenone’s diffractogram should oscillate
around 2.97 b and hexachloroethane’s around 1.11 b.

mass is comparable to that of the nuclei explains why inelasticity
corrections are rather large in neutron diffraction when compared to
x-ray diffraction.

Breakdown of the static approximation takes place for higher scat-
tering angles, where the energy and momentum exchange is greater,
and for samples that contain light atoms, more subject to large re-
coil after the scattering event (see Figure 4.6). Additionally, when
this happens, the scattering angle begins depending on the energy
exchange as well, and q values do not correspond so well to 2θE.

A more intuitive explanation to this is that, although in non-
elastic scattering events, the atom is “free” and a fraction of the
incident neutron’s momentum is always lost due to the atom’s recoil,
in practice very little momentum is lost at low momentum transfers,
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so the event is almost elastic and the atom appears to be “bound”.
However, for large momentum transfers, a larger absolute amount of
momentum is lost to the atom recoil, and the scattered neutron is
measured at significantly lower momentum transfers, which explains
why there is a drop in the neutron count for large q.

Among the differential cross section contributions, the self part,
which corresponds to the recoil of each individual atom, is more
affected by inelastic effects than the distinct part. This happens
because the momentum transfer of the distinct contribution is dis-
tributed between all the atoms in the coherence volume, and since
the atoms tend to move together, their relative distances are less dis-
torted, and so is the distinct term. To be fully precise, an inelasticity
correction to the distinct term of the scattering function should be
performed, specially for samples with lighter atoms, because other-
wise inaccurate interatomic distances may be obtained in the analyses
[4]. However, its evaluation is not straightforward and is out of the
scope of this work.

4.3.1 Placzek correction

The most common way to perform inelastic corrections in diffrac-
tograms of liquids and glasses measured at reactor sources is follow-
ing the approximation devised by Placzek [85]. This method consists
in assuming that the static approximation is the best fit and deriving
corrections to that, which is reasonable for nuclei with little recoil.
This is not the only possible approach, since other authors have as-
sumed on the contrary that the free nucleus is the best approximation,
and then derived the corresponding corrections to that [86]. See Refs.
[42] and [87] for discussions on other alternative procedures.

The relationship between the measured self part of the scattering
function and its inelasticity corrected version can be expressed as

1

N

[
dσ

dΩ

]self
meas

(q) =
1

N

[
dσ

dΩ

]self
corr

[1 + P (q)] (4.17)

where P (q) is a polynomial expansion in powers of q2 and the ratio
mn/Mα of the neutron’s mass to that of atoms in the sample. The
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self part of the scattering function should yield the constant value
σscat/4π after inelasticity corrections have been performed [4] (see
Equation 2.64).

This equation concerns solely the inelastic correction of the self
term, it must not be generalized to the whole scattering function.
If the measured diffractogram, i. e., with both self and distinct part
contributions, were divided by [1+P (q)], this would also improperly
modify the relative height of each oscillation in the distinct part as
a function of q, yielding a diffractogram corresponding to a different
structure.

Formulae are available to calculate the coefficients of the polyno-
mial expansion P (q) but, since they strongly depend on the detector
efficiency, they must be calculated particularly for each instrument
[88]. Additionally, when dealing with molecular liquids or glasses,
the Mα needed to calculate the P (q) coefficients does not necessar-
ily strictly mean the mass of the atom, but rather an effective mass
that takes into account that the atom is neither bound nor free but
in a potential, so that the vibration of the molecular bonds, and
the molecular mobility within the liquid (both translational and ro-
tational) are considered. In a molecular glass the movement of the
atoms will be more restricted but it will still not correspond to a
completely bound atom.

In practice, the self and distinct contributions are mixed, but a
simple approach can be taken just by fitting the polynomial expansion
in q2 to the higher range of q of the measured scattering function, so
that the coefficients of the polynomial can be estimated empirically:

C ∼ σscat

4π
[1 + p2q

2 + p4q
4 + . . .] (4.18)

where C is the measured scattering function obtained after the cor-
rections and normalization performed by correct (but without the
Placzek correction), and pi is the coefficient of the qi term of the
Placzek polynomial. After subtracting this polynomial from the data,
we obtain a scattering function corrected from inelasticity effects on
the self part:

P = C− σscat

4π
[p2q

2 + p4q
4 + . . .] (4.19)



4.3. INELASTICITY CORRECTION 133

Figure 4.7: Diffractogram of deuterated trans-1,2-dichloroethene
(C2Cl2D2) at 275 K. Normalized measurement with all corrections
except Placzek (black line), corresponding polynomial fit to this curve
(red line), and fully corrected diffractogram including Placzek correc-
tion which subtracted the polynomial (violet line). Resulting diffrac-
togram should oscillate around 0.80 b.

where P is the scattering function after all corrections and normaliza-
tion (including also the Placzek correction), and which will oscillate
around the σscat/4π value.

Due to the fact that normalization is never perfect and the ap-
proximations performed during the derivation of the equations, the
σscat value must be left as a parameter of the fit when performing the
Placzek correction.

Experience has shown that adding the q6 term is usually counter-
productive and worsens the correction due to overfitting. When too
many parameters are used for the fit, the polynomial that aims to
describe the falloff of the self contribution to the scattering function
starts adapting at high q to the shape of the oscillation, which comes
from the distinct contribution, thus distorting the resulting diffrac-
tion profile when subtracted. Furthermore, when the Placzek falloff
due to inelastic effects is small, fitting the polynomial just up to the



134 CHAPTER 4. D4 DATA TREATMENT

q2 term will already be enough.
Since this procedure assumes that the static approximation is the

best starting point and then derives corrections from that, it can
be used for most atoms except the lightest ones. The high q range
of the measured scattering function can not be satisfactorily fitted
to a Placzek polynomial for hydrogen and other light atoms, but
other trial and error methods can be used to fit a curve that will
be subtracted afterwards. A pseudo-Voigt function has for instance
been found to be well suited for hydrogen concentrations higher than
20% [4].

Correct has an option to perform the Placzek correction to
measurements from reactor sources using the Yarnell et al. formulae
to calculate the coefficients [88], but better results were obtained
through the direct polynomial fit of the data discussed above, so it
has not been used in this work.

4.4 Alternative normalization

Many factors involved in the normalization of the measurement cause
the σscat value obtained through the fit of the Placzek polynomial to
differ from the theoretical one, a perfect coincidence should not be
expected.

Small differences between the real and the estimated density of
the sample cause a slight displacement of the oscillation centre of
P from the theoretical σscat/4π value, as well as discrepancies in the
peak heights. That means that if the sample is a bit warmer of cooler
than estimated, a different value will be found.

If the density of the sample is well known and there is a large dis-
crepancy between the fitted and theoretical values, there are chances
that the sample holder was not completely full or that the amount of
sample inside the container was not constant throughout the experi-
ment.

When in lack of a normalization standard, or when density, full-
ness of the sample holder or another key parameter for normalization
is unknown or ill defined, the parameter value that has to be used to
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obtain a properly normalized diffractogram in absolute units can be
obtained from the theoretical value to which the scattering function
will tend as q goes to infinity, σscat/4π.

However, the comparison of the measured value, around which
the diffraction pattern oscillates, with the theoretical one can only
be performed after the whole set of corrections have been performed.
Which means that every time a normalization parameter is slightly
adjusted, all the corrections must be carried out again before com-
paring. So a laborious process of trial and error must be undertaken
if any of these normalization parameters is not well known.

The procedure would be as follows: first we perform the correc-
tions with tentative values of the unknown parameter (density, radius,
fullness of the sample holder...), then we perform the corrections (in-
cluding the inelasticity one), and then we compare the value of the
measurement as q tends to infinity to the theoretical σscat

v /4π value.
If the Placzek correction has been carried out, the theoretical value
can be simply compared to the constant parameter in the polynomial.
Then, if the corrected measurement yields a smaller value than the
theoretical one, it means that we are in one of these situations:

• We have overestimated the number of scattering centres in the
sample that contribute to the measurement. Hence, we need
to reduce the density, the radius, or the fullness of the sample
holder accordingly.

• We have underestimated the number of scattering centres of the
vanadium rod that contribute to the normalization measure-
ment. Hence, we need to increase the radius of the vanadium
rod accordingly.

On the contrary, if the measurement yields a larger value than the
theoretical one, whether we have underestimated the number of scat-
tering centres of the sample or overestimated those of the vanadium
rod, we will have to change the unknown parameter accordingly be-
fore performing the corrections and comparing again. This procedure
will have to be repeated iteratively until an acceptable normalization
is reached.
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Note that the built-in default value of the vanadium scattering
cross section in some versions of correct (i. e. 4.95 b) is different
than the one accepted by the scientific community and tabulated in
standard tables (i. e. 5.1 b), thus the corrected and normalized mea-
surements could yield appreciable discrepancies with respect to the
theoretical value. Therefore, it is safer to manually specify the scat-
tering cross section of vanadium when using the program to perform
the corrections and normalization.

4.5 Fourier transform

When all corrections and normalizations have been performed, the
experimental differential cross section per atom 1

N

[
dσ
dΩ

]
is obtained

as a function of the scattering vector magnitude q, i. e. in reciprocal
space.

Although structural information can be extracted from this func-
tion, it is also convenient to have a function in real space to carry out
the analyses. For that it is necessary to perform a Fourier transform
of the distinct part of the corrected experimental data:

T = F

[
P− σscat

4π

]
(4.20)

where F is the Fourier transform operator, P is the fully corrected
and normalized data, and σscat/4π is the empirical value around which
P is oscillating. By Fourier transforming the distinct part of the
measurement, the characteristic distances of the system are obtained
from the interference phenomena.

From the point of view of the numerical computation of the discre-
tised Fourier transform of the experimental data, this is the operation
that has been carried out:

T(r) =
2

π

n∑
k=1

qk

[
P(qk)−

σscat

4π

]
sin(rqk)∆q (4.21)

where k = 1, . . . , n are the experimental points, and ∆q is the sam-
pling interval.
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Other real space functions that can be used for the structural anal-
ysis are the experimental radial distribution, pair-correlation func-
tions, or other related functions in the case of polyatomic of molecu-
lar liquids and glasses (see Section 2.6), which can be obtained from
the following calculation:

RDF(r) = 4πρr2 + rT(r) (4.22)

G(r) = 1 +
1

4πρr
T(r) (4.23)

where ρ is the density of scattering centres in the sample, that is,
atomic nuclei.

4.5.1 Experimental limitations

To properly perform the Fourier transform F , the reciprocal space
function must be integrated up to infinity, which means that in theory
we should perform measurements of the scattering function up to
q → ∞ to be able to integrate in the whole range. However, the
values of q are related to the incoming neutron wavelength λ and the
scattering angle 2θE, and will always have a finite value:

q =
4π

λ
sin θE qmax =

4π

λ
(4.24)

Additionally, neutron wavelengths used in the experiment can not be
arbitrarily small because this is at the cost of having to attain larger
and larger neutron energies.

The experimental truncation of the scattering function has two
effects in the Fourier transform: it leads to peak broadening in real
space thus reducing the resolution, and it gives rise to spurious un-
physical oscillations in the real space function. Due to their small fre-
quency, these oscillations pose a greater problem when determining
intramolecular distances, because they interfere more significatively
with peaks corresponding to the range of smaller distances.

To avoid these ripples and the loss of resolution, the scattering
function must be measured up to a q value as large as possible.
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Very noisy data also suffer from high frequency spurious oscilla-
tions after the Fourier transform, thus, it is not enough to measure
up to a high q range, a good quality of data must be ensured as well.

4.5.2 Smoothing

To minimize the unphysical ripples resulting from the Fourier trans-
form of a finite function, we must make sure that the scattering func-
tion reaches zero as smoothly as possible when q → qmax.

One way to do that is to Fourier transform the scattering function
only up to the oscillation’s last zero qcoff through multiplying it by a
window step function:[

P(q)− σscat

4π

]
Θ(qcoff − q) =

{
P(q)− σscat

4π
for q < qcoff

0 for q > qcoff
(4.25)

where qcoff is the chosen cutoff value of q that will become the new
qmax, so that any larger value will be discarded.

Another way to do it is applying a damping function to the data
before carrying out the Fourier transform, which will forcefully bring
the scattering function smoothly to zero at qcoff. A normalized sinc
function can be used for that purpose, with the advantage that the
area of the peaks in real space after performing the Fourier transform
will be preserved:

sinc(x) ≡ sinπx

πx
where x =

q

q coff
(4.26)

The drawback of this method is that the smoothing function does not
only reduce the magnitude of the spurious oscillations, it also damps
the whole scattering function, including the oscillations that describe
the sample, with the consequent loss of meaningful information. The
result is that the peaks appear smaller and broadened in real space,
effectively reducing the real space resolution and smearing out intra
and intermolecular features (Figure 4.8).

Additionally, the smaller the q cutoff value, the more smeared out
also the features appear in real space, thus, the chosen qcoff value
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Figure 4.8: Comparison of the obtained Fourier transform of the scat-
tering function of Freon 112a at 320 K when a window step function
(black line) or a modulating damping sinc function (red line) are
applied.

must correspond to the measured scattering function zero with the
highest q possible.

4.5.3 Convolution

The reason that the Fourier transform of experimental data broadens
the diffraction peaks in real space as well as generate a series of
spurious oscillations is that, due to the finite q-range available in
the measurements, in practice it is not the Fourier transform of the
scattering function that is carried out:

T(r) = F

{
P(q)− σscat

4π

}
6= F

{
1

N

[
dσ

dΩ
(q)

]}
= R(r) (4.27)

where T is the Fourier transform of the distinct part of the corrected
experimental data, and R is the hypothetical experimental data in
real space without broadening of peaks and spurious oscillations, and
containing only the structural information of the sample.

What is carried out instead, is the Fourier transform of the prod-
uct of the scattering function with a Heaviside step function that
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represents the finite measuring range [4]:

T(r) = F

{
1

N

[
dσ

dΩ
(q)

]
Θ(qmax − q)

}
(4.28)

= F

{
1

N

[
dσ

dΩ
(q)

]}
︸ ︷︷ ︸

R(r)

⊗ F {Θ(qmax − q)} (4.29)

and thus R is not directly accessible through just Fourier transforming
the corrected experimental data P.

The bottom line is that if we simply compare the Fourier trans-
formed data with the calculated theoretical models of functions in
the real space, they will never be an accurate match. However, the
effect of the experimental window can be taken into account together
with the theoretical model of R before this is compared or fitted to
the data by performing a convolution in real space of the model with
the Fourier transform of the window step function [89, 90]:

T(r) = R(r)⊗
[
sin (qmaxr)

r

]
(4.30)

which will yield a function that will fully account for the peak broad-
ening and the unphysical ripples, and can be directly compared to T,
the Fourier transform of the data.

This method has the drawback of being more complicated and
much more time consuming but it provides a much more accurate
and reliable analysis. The procedure has been implemented in the
program fabada and has been used in the data treatment of all
samples throughout the whole work.

4.5.4 Error calculation of Fourier transformed
data

Data errors are indispensable to quantify the accuracy of analyses
but, in the case of a Bayesian fit, they also have a key significance
during the fit itself. This is because they determine how much χ2{Pi}
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can be increased to explore sets of parameter values farther from the
minimum (this will be explained in more detail in Chapter 5).

Since the Fourier transform of the experimental scattering func-
tion will also be used to perform the fits, a careful calculation of its
errors after such procedure is in order. Since this calculation is not
obvious it will be explained in the following sections.

Two approaches have been used to perform this calculation: by
error propagation of the discretised Fourier transform, and through
a Monte Carlo method.

4.5.4.1 Error propagation

In this approach, error propagation theory is applied to the discre-
tised Fourier transform that has been used to calculate the real space
experimental functions [91].

In a general case, the value of function y = f (u, v, . . .) has been
determined from the measurements of its random variables u, v, . . .
and its error has to be determined as well. Function y must fulfil
the condition that its most likely value y can be calculated through
y = f (u, v, . . .) and we assume that errors are small enough for a
Taylor series expansion up to first order being a good approximation:

yi − y ' (ui − u)

(
∂y

∂u

)
+ (vi − v)

(
∂y

∂v

)
+ · · · (4.31)

where ui is the value of magnitude u corresponding to the particular
measurement i, and u is the most probable value of u.

Additionally, the variance and covariance are also defined through
data residuals:

σ2
y ≡ 1

m

m∑
i=1

(yi − y)2 (4.32)

σ2
uv ≡

1

m

m∑
i=1

(ui − u) (vi − v) = uv − u v (4.33)

where σ2
y is the variance of magnitude y, σ2

uv is the covariance of
magnitudes u and v, and m is the number of measurements at each
single point of function y.
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Squaring linear Equation 4.31 and using the variance and covari-
ance definitions above yields a general equation for the calculation of
the variance of y from which the familiar error propagation formula
can be obtained:

σ2
y ' σ2

u

(
∂y

∂u

)2

+ σ2
v

(
∂y

∂v

)2

+
����������: 0
2σ2

uv

(
∂y

∂u

)(
∂y

∂v

)
︸ ︷︷ ︸

σ2
uv=0

(u independent
from v)

+ · · · (4.34)

σy '

√
σ2
u

(
∂y

∂u

)2

+ σ2
v

(
∂y

∂v

)2

+ · · · (4.35)

where the variances σ2
u, σ

2
v , . . . of the measured magnitudes have

known values, and σ2
uv is the covariance between u and v, which

will be zero if they are independent variables.
In our case we have n different measurements to describe every

experimental scattering function, corresponding to the points in the
reciprocal space. The deviations of the values are characterised by
standard errors, so that each measured data point yields a normal
distribution of values around the “real” one. Considering that these
errors are independent random variables with normal distributions,
this scheme can be adopted to determine formulae that give the prop-
agated error of the data when using Equations 4.21, 4.22, or 4.23,
because these are all equations that transform data to real space
through the discretised Fourier transform, i. e, using a sum of terms.

Using the functional dependence of T, RDF, and G, these partial
derivatives have been obtained:

∂T
∂P

=
2

π

n∑
k=1

qk sin(rqk)∆q (4.36)

∂RDF
∂P

=
2r

π

n∑
k=1

qk sin(rqk)∆q (4.37)

∂G
∂P

=
1

2π2ρr

n∑
k=1

qk sin(rqk)∆q (4.38)
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which can then be substituted in Equation 4.35.
The following relationships between the normally distributed er-

rors of the structure factor and its Fourier transform have been ob-
tained through error propagation theory:

εT = εP

[
2

π

n∑
k=1

qk sin (qkr)∆q

]
(4.39)

εRDF = εP

[
2r

π

n∑
k=1

qk sin(rqk)∆q

]
(4.40)

εG = εP

[
1

2π2ρr

n∑
k=1

qk sin(rqk)∆q

]
(4.41)

The function 4.40 describing the error of the RDF has been plotted
in Figure 4.9(b) where it can be seen that it displays an overall linear
dependence with r but with a tiny sinusoidal modulation on top of
that.

4.5.4.2 Monte Carlo method

The Monte Carlo method consists in generating a large number of
scattering functions where each data point has a random value of a
normal distribution, and then Fourier transforming them to find the
probability distribution of the data points in real space [93].

Figure 4.9(a) shows an example of one of these scattering func-
tions generated using random values of a normal distribution with
mean value µ = 0 and variance σ2 = 1 for the data points. This
normal distribution accounts for the experimental error in q.

The Fourier transform of each of these random scattering func-
tions will yield an oscillation in real space of completely different
shape. Some examples of Fourier transformed random scattering
functions can be seen in Figure 4.9(b).

Using a large number of Fourier transformed random data sets,
and calculating the frequency of each value that the Fourier trans-
formed random scattering functions yielded for a particular r, the
error distribution at this r can be obtained. The fact that full proba-
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Figure 4.9: (a) Example of a scattering function generated as ran-
dom data points of a normal distribution. (b) Examples of Fourier
transformed random scattering functions (thin black lines). Errors
calculated through the Monte Carlo method (circles) and through er-
ror propagation (thick red line). A sample of the error distributions
in real space can be seen on the inset, showing that the error is also
normally distributed. The distribution at r = 2 Å was calculated
using 1000 random scattering functions. Modified from Ref. [92].

bility distribution functions of the error are obtained is a clear advan-
tage of this method, because no assumptions have to be made in this
regard, contrary to the error propagation method described before.

Normal probability distributions of errors in reciprocal space
yielded normal distributions of errors in real space as well. Although
they had different standard deviations for each r value. An example
of the probability distributions obtained can be seen in the inset of
Figure 4.9(b) where the distribution for r = 2 Å calculated through
the Fourier transform of 1000 random scattering functions is shown.

The probability distribution functions have been calculated in this
manner for five points. And the errors, obtained from the standard
deviation of each point’s normal distributions, are plotted in Figure
4.9(b).

Results from the these two independent methods lie on top of
each other, validating them and showing that they are both consis-
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Figure 4.10: Calculation of errors, after Fourier transformation of
the scattering function, using error propagation of random data with
a normal distribution (circles). Estimation of the same errors using
the empirical Equation 4.42 mentioned in this section is also shown
(lines). (a) Subset of errors calculated with the same ∆q, and (b)
with the same qmax. From Ref. [92].

tent ways to calculate the error after the Fourier transform is carried
out. However, the Monte Carlo method takes a much larger compu-
tational effort, thus, the error propagation method will be used in the
following sections.

4.5.4.3 Empirical equation

A series of systematic calculations of the error as a function of r,
the sampling interval ∆q, and qmax have been carried out using error
propagation so that an empirical equation that describes the depen-
dence of the error with respect to these parameters could be found.
The aim was to have a simple and fast method to calculate the errors
of the Fourier transformed measurements, so they can be more easily
calculated for each data set.

Figures 4.10(a) and (b) show respectively the calculation of more

than a hundred errors at the same sampling interval ∆q = 0.1 Å
−1

but different r and qmax, and at the same qmax = 20 Å
−1

but different
r and ∆q.

From the systematic calculations of the Fourier transformed data
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errors, a linear dependency with the variable r could be observed,
with the slope m being a function of the other two parameters, ∆q
and qmax:

εRDF (r) = m (qmax,∆q) r εP (q) (4.42)

Since the qmax and ∆q values are usually constant throughout a
diffraction experiment, the value of the slope has to be calculated
only once for each particular experiment and then the trivial linear
Equation 4.42 can be used to estimate the errors of all points in the
radial distribution function.

The following empirical relationship between the slope m, qmax

and the sampling interval ∆q, was observed to yield a good approxi-
mation to the calculated errors:

m = 0.226 · (qmax)
1.5341 · (∆q)0.495 (4.43)

In Figure 4.10 error estimations calculated through this empirical
function can be compared to the points calculated using the method
of error propagation. Excellent agreement ascertains the accuracy of
the estimation. The validation of this formula provides a convenient
and straightforward method (through Equations 4.42 and 4.43) to
estimate the errors of the real space functions obtained from the
Fourier transform of the experimental scattering functions.
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To determine whether an hypothesis describing the physical world
is more valid than another is necessary to compare them with exper-
imental results and find out which hypothesis describes them bet-
ter [94].

However, the Occam’s razor principle also plays an important
role in the decision process to choose between competing hypotheses.
The more elements an hypothesis includes, the easier it will be that
it describes experimental data accurately, but the more complicated
the explanation.

To avoid superfluous complications it is necessary to find an equi-
librium between these two aspects and obtain an hypothesis that best
describes the data but that is as simple as possible, only adding fur-
ther elements when this is in exchange of increasing the ability of the
hypothesis to explain physical phenomena.

This basic principle that an hypothesis must describe the exper-
iments as accurately as possible and be kept as simple as possible
at the same time, can be used to refine models expressed in math-
ematical form where the parameter values are not determined by
theoretical assumptions. In these models, the parameter values can
be varied until the combination that makes the model more closely
resemble the experiment is found.

Another method widely used to find hypotheses that can describe
the collective properties of complex systems with a large series of
elements, is to start from simple models that describe only the indi-
vidual behaviour of these elements and their interactions with only
the nearest ones. If the resulting global behaviour is close enough
to the experiment, it is considered that the individual models yield
a good description of the problem, and the information generated
from this calculation can be used to analyse the arrangement and
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behaviour of the elements when they are within the group, so that
hypotheses that describe the collective phenomena can be obtained.

5.1 Frequentist approach to fit

experimental data

5.1.1 Introduction

The frequentist definition of probability assumes that the magnitude
being measured does not have a distribution but a true fixed value
instead. Whereas it assumes that the measured values do indeed have
a distribution, because their confidence interval depends on the par-
ticular set of measurements which are random (i. e., that the mea-
surements have errors). In particular, probability is interpreted as
the relative frequency to which an event would be observed if the
experiment was repeated a large number of trials:

P (a) = lim
N→∞

na

N
(5.1)

where P (a) is the probability of event a, N the total number of trials,
and na the number of times that the event a is observed.

From the measured distribution of values, a mean and a confi-
dence interval are defined for the sought parameter. The confidence
interval gives an estimate of the reliability of the estimated value for
the parameter, that is, if the experiment was repeated a large num-
ber of trials, which fraction of the estimations calculated from each
experiment would yield a value within that reliability interval.

Usually it is assumed that the parameter measurements follow a
normal distribution:

P (x) =
1√
2πσ2

exp

[
−1

2

(
x− µ

σ

)2
]

(5.2)

where x are the possible observed values of the parameter, σ is the
standard deviation, and µ the mean of the measured distribution.
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Errors are defined using the standard deviation of the measure-
ment so that the confidence interval is 68.3%. That is, if the exper-
iment was repeated many times, 68.3% of such experiments would
yield a value of the mean within that range.

5.1.2 Definition of χ2

The most common way to quantify how well an experiment is de-
scribed by a model is through the function called χ2. The smaller its
value, the smaller the difference between the experimental data and
the model prediction.

Given a set of experimental points {Dk}, each with an estimated
error σk, and the set of points predicted by the hypothesis {Hk},
which will depend on the values used for the parameters of the model
{pi}, the χ2 function of the model with a particular choice of param-
eters is defined as:

χ2 =
n∑

k=1

(Hk{pi} −Dk)
2

σ2
k

(5.3)

where k is a label to designate each point, n is the total number of
points, and i is a label to distinguish each parameter of the model.

The procedure to fit the parameters of the mathematical model,
so that they describe experimental data as accurately as possible, is
normally to find the set of values that minimizes χ2. This is geometri-
cally equivalent to finding the global minimum of the χ2 hypersurface
as a function of the parameter set {pi}.

The result of this procedure will be the estimated set of param-
eters and their errors (pi ± σi), together with the χ2 value, which
accounts for the goodness of the model to describe the data with
that set of parameters.

5.1.3 Levenberg-Marquardt algorithm

This χ2 minimization procedure as a function of the model parame-
ters is normally carried out using the iterative Levenberg-Marquardt
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algorithm, which is a general numerical method to minimize func-
tions [95].

In that iterative process, χ2 is evaluated from an initial set of
parameter values, as well as the direction into which χ2 decreases,
then an optimal magnitude for the parameter jump in that direction
is estimated, and finally the χ2 is evaluated again with the modified
new set of parameters. If χ2 has increased, it means the parameter
jump was too large and the slope calculation was not a good approx-
imation up to that distance, so the algorithm goes back that step,
and the calculation is repeated with a smaller parameter jump. If
χ2 has decreased, the approximation is assumed to be good and the
parameter jump is increased so that the minimum is reached faster.

During the iteration, to find out whether the parameters must be
increased or decreased, the algorithm computes the χ2 gradient and
determines the directions with negative slope. However, that does
not give information on the length of the jump.

The size of the jump is computed from the performance of the
linear approximation of the function. The algorithm compares the
estimated value of the approximated function with the actual value
of the function at that point. If the linear approximation is good for
a large area around that point, the step size can be large, but if it is
only a good approximation very close to the point, only a very small
step can be taken. This allows each jump to be scaled as a function
of the curvature so that the convergence of the iteration process is
fast even in the direction of small gradients.

The Levenberg-Marquardt algorithm uses a damping parameter
that forces the parameter jump size to larger values when the iteration
is far from the χ2 minimum, and to smaller values as the χ2 minimum
is approached. This optimization of the parameter jump depending
on the stage of the fit allows a faster convergence of the algorithm.

Since the Levenberg-Marquardt algorithm is an iterative process
that requires the χ2 value to decrease monotonously as the mini-
mum is approached, it can only systematically reach local minima.
Therefore, the solution to the minimization problem can only be
reached when the initial parameters given to the algorithm are set
close enough to the global minimum, thus, proper parameter initial-
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ization is crucial to avoid the algorithm getting stuck at local minima.
As mentioned previously, the result of this minimization proce-

dure yields the set of parameter values {pi}, their errors σi, and the
quantization of that difference through the χ2 value, where the pa-
rameter values {pi} are those that minimize the differences between
the model and the experimental data.

5.1.4 Error calculation and parameter
correlation

The errors of the parameters resulting from the fit are obtained from
the diagonal elements of the covariance matrix, calculated at the
minimum χ2. That is, the error on the i-th parameter is σ2

i = (α−1)ii,
where α is the curvature matrix:

αk,l =
1

2

∂2χ2(a)

∂ak∂al
(5.4)

Estimation of the error in the parameters is very sensitive to how
close the solution is from the true minimum.

The correlation between different parameters can be taken into
account when errors are calculated within the frequentist scheme
through the diagonalisation of the covariant matrix. However, the
parameters will be assumed to have a parabolic dependence with χ2.

This calculation is rarely carried out, which subsequently results
in the errors being underestimated.

5.1.5 Frequentist approach advantages and
disadvantages

The frequentist method described above is extremely popular in all
fields of science and is implemented in most of the statistical packages
due to its low computing requirements, but it has many limitations,
specially when dealing with complex problems. Some advantages of
the frequentist approach are:

• It is a quite robust and reliable method for simple models.
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• Due to the damping factor that optimizes the size of the pa-
rameter jump at the different stages of the fit, the Levenberg-
Marquardt algorithm has a very fast convergence to the mini-
mum.

• It requires a relatively low amount of computing time.

Nevertheless, it also has many drawbacks limiting the complex-
ity of the problems that can be tackled, and also regarding the fit
procedure:

• It assumes that the experimental data errors have a normal
distribution and are well known.

• The iterative process of the Levenberg-Marquardt algorithm
only accepts new sets of parameters when they reduce χ2, which
geometrically means that the algorithm can only travel downhill
through the χ2 hypersurface. A very important consequence is
derived from this limitation: this procedure will only be able
to find the local minimum where the starting set of values are
located.

For this reason, it will only yield the right solution with simple
models, if the χ2 hypersurface has only one minimum, or if the
initial parameters are already within the scope of the global
minimum. Otherwise, it will get stuck in local minima, unable
to overcome even small barriers and failing to explore other
regions which may contain the global minimum, or it will get
lost in flat areas of the χ2 landscape [96].

• To avoid that the Levenberg-Marquardt algorithm gets stuck in
local minima and ensure that is able to find the solution of the
minimization problem, a careful initialization of the parameters
must be performed to make sure they are located already near
the global minimum. This initialization can get very tricky,
specially in complex problems, and may include physical con-
strains as well as other non trivial assumptions, which often can
not be applied systematically and have to be tackled in a case
by case basis or through trial and error.
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• By construction, this procedure assumes that the problem has
one unique solution, and is unable to cope with problems that
have several solutions, multimodal distributions, or where mul-
tiple parameter combinations yield equally valid results all com-
patible with data errors.

• The parameters are assumed to have a quadratic functional
dependence on χ2, and only symmetric errors are considered.

• Although parameter correlations can be evaluated in the fre-
quentist scheme through the covariance matrix, this is too of-
ten overlooked when the errors of the fit are computed, which
results in the errors being underestimated.

5.1.6 Example: Long range order in
orientational glasses

Orientational glasses have the centre of mass of their molecules in
a regular lattice but their orientation lacks long range order. These
glasses and their plastic crystals show highly ordered translational
symmetries such as body- or face-centred cubic lattices (Fig. 5.1).

Since short and long range interactions are usually coupled, a
detailed study of their long range translational order has to reflect
significant changes in their orientational as well as intramolecular
structures (see Fig. 5.2).

A simple way to analyse this long range order is through the deter-
mination of the position of their first (or any other) diffraction peak
as a function of the temperature. A standard Levenberg-Marquardt
frequentist approach has been used to fit a pseudo-Voigt function to
the first diffraction peak of each measurement. This function is a
sum of a Lorentzian (L ) and a Gaussian (G) peaks with η being the
Lorentz fraction:

I(x) = ηL (x) + (1− η)G(x) (5.5)
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Figure 5.1: Diffractograms of 1,1,2,2-tetrachloro-1,2-difluoroethane
(F-112) and 1,1,2-trichloro-1,2,2-trifluoroethane (F-113) orientational
glasses. Long range translational order can be observed in the Bragg
peaks and short range orientational order in the background undula-
tions.

Figure 5.2: (a) Diffractograms of 1,1,2,2-tetrachloro-1,2-difluoro-
ethane (F-112), and (b) 1,1,2-trichloro-1,2,2-trifluoroethane (F-113),
warming up after quenching at 80 K and 60 K, respectively. Exotic
oscillations in the intensity of the first and second diffraction peaks,
due to coupling of the different interactions at play, stress the pro-
found complexity of these compounds.
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Figure 5.3: Lattice parameter a of 1,1,2,2-tetrachloro-1,2-difluoro-
ethane (F-112) and 1,1,2-trichloro-1,2,2-trifluoroethane (F-113) ob-
tained from the fits to the first diffraction peak at each temperature.
Measured on heating, but different curves were obtained for F-113
depending on the thermal history of the sample.

However, the fitted function has a single set of parameters:

I(x) = I0+A

{
η
2

π

w

4(x− x0)2 + w2
(5.6)

+(1− η)

√
4 ln 2√
πw

exp

[
−4 ln 2

w2
(x− x0)

2

]}
(5.7)

where x0 is the peak position, w is the full width at half maximum,
A is the amplitude, and I0 is the background intensity.

The frequentist approach is quite appropriate for this problem
because the model is rather simple, with only four parameters, and
the peak position is very well defined in the plastic crystal and the
orientational glass, thus being a fast and reliable method.

If the structure of the lattice is known, a simple transformation
using Bragg’s law and taking into account the crystallographic planes
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allows to obtain the lattice parameter a from the peak position x0.
In the case of the body centred cubic:

a =
√
2 d =

√
2

(
λ

2 sin θ

)
=

λ√
2 sin θ

(5.8)

where d is the distance between the crystallographic planes of the
closest centres of mass, λ is the neutron wavelength, and θ is the
Bragg peak position obtained from the fit.

The dependence of the lattice parameter a on the temperature
of 1,1,2,2-tetrachloro-1,2-difluoroethane (F-112) and 1,1,2-trichloro-
1,2,2-trifluoroethane (F-113) was calculated this way and presented
in Figure 5.3. The results show that different results were obtained for
samples with different thermal histories, thus proving that for some
compounds it is very important to determine their thermal history
in order to analyse the results meaningfully. However, this represen-
tation does not allow to clearly distinguish the changes in the slope.

To emphasize the different temperature regimes in the thermal
expansion of F-112 and F-113 samples, two curves in Figure 5.3 have
been normalised to a straight line (see Figures 5.4 and 5.5). This
representation reveals slope variations which were not apparent before
the normalisation.

For instance, in Figure 5.4, F-112 orientational and conforma-
tional glass transitions can be observed around 90 K and 120 K, re-
spectively, and in Figure 5.4, those of F-113 can be observed around
70 K and 120 K. Several other effects of unknown nature, which were
also observed in some neutron backscattering measurements, can be
observed as well at higher temperatures, reflecting the particularly
complex nature of these systems.
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Figure 5.4: Lattice parameter a of 1,1,2,2-tetrachloro-1,2-difluoro-
ethane (F-112) obtained from the fits to the first diffraction peak at
each temperature and then normalised to a straight line to emphasize
the different regimes.
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Figure 5.5: Lattice parameter a of 1,1,2-trichloro-1,2,2-trifluoro-
ethane (F-113) obtained from the fits to the first diffraction peak at
each temperature and then normalised to a straight line to emphasize
the different regimes.
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5.2 Bayesian approach to fit

experimental data

5.2.1 Introduction

The Bayesian definition of probability represents a state of knowl-
edge, and it can be assigned theoretically or be the degree to which
a statement is supported by the evidence. So it is possible to assign
a probability to any statement, even if there is no random process
taking place whatsoever.

All physical constrains and assumptions that are used in a fre-
quentist approach in a somewhat concealed and unclear manner are
made explicit in the Bayesian scheme, where a probability distribu-
tion is assigned to them (prior) and they are merged with the in-
formation obtained from the experimental data, thus contributing to
the final result (posterior).

In the frequentist approach, a given fraction of the experiments
would yield a calculated confidence interval that would include the
true value of the measured magnitude. This true value, although it is
unknown, it is not considered to be random, so the probability that
it lies within the interval it can only be 1 or 0 (either it is there or it
is not).

In the Bayesian approach the magnitude being measured is as-
sumed to have itself a probability distribution (prior) which can be
known and very well defined, pure speculation, or just very uninfor-
mative (maximum ignorance prior). This starting information con-
tained in the prior is then modified by the available data to yield
the posterior, a new probability distribution for the magnitude. Of
course, the prior used in the fit can be complete nonsense, but this
information is explicitly stated up-front so that all assumptions are
readily available for examination and criticism.

Although the results obtained from a Bayesian fit are the probabil-
ity distribution functions of the parameters, they can be summarized
using a credible interval, which just indicates the probability that the
parameter takes a value within that range.
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5.2.2 Bayes theorem

Bayesian methods [97] try to find the probability P (H | D) that a
hypothesis H is true given certain experimental evidence D. This
probability is also called posterior and can be computed using the
Bayes theorem [98]:

P (H | D) =
P (D | H) P (H)

P (D)
(5.9)

where P (H) is the prior that contains the previous knowledge about
the hypothesis, P (D) is a normalization factor so that the posterior
probability adds up to unity, and P (D | H) represents the likelihood
or probability of obtaining this particular set of data points given the
hypothesis was true.

Regarding the previous knowledge about the hypothesis, it can
always be assumed that there is no available information at all and
that all values are equally probable, therefore using a uniform dis-
tribution for the probability P (H). This is called the maximum
ignorance prior [97] and in this case it can be seen from the Bayes
theorem expression that P (H | D) ∝ P (D | H). So that the set of
parameters that yields the largest likelihood will also be the one to
yield the most probable hypothesis.

This maximum ignorance prior assumption will be adopted here-
after. Hence, the issue has now been reduced to finding for each kind
of problem the expression to compute the likelihood, which depends
on the distribution of the experimental data.

In the case of independent observations, the likelihood L can be
calculated from the joint density function of all observations:

L = P (D | H) =
n∏

k=1

P (Dk | H) (5.10)

where k is a label for each point, n is the total number of points,
and P (Dk | H) is the probability that the data point Dk is observed
given a certain model H. This means that, if the measurement at
each point is independent from the measurement at other points,
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the probability of obtaining that particular combination of values
is simply the product of the individual probabilities of obtaining a
particular value at each point.

5.2.3 Likelihood in a counting experiment

In the case of neutron diffraction, we are dealing with a counting
experiment so the probability to observe a particular number of neu-
trons at a certain point, given our hypothesis is true, will follow a
Poisson distribution:

P (Dk, H) =
Hk

Dk e−Hk

Dk!
(5.11)

where Hk is the expected value for that point predicted by the model,
and Dk is the observed value. And thus its likelihood will be:

L =
n∏

k=1

Hk
Dk e−Hk

Dk!
(5.12)

where k is a label for each point, and n is the total number of points.
When then number of counts in a counting experiment becomes

very large, the Poissson distribution can be well approximated with
a normal distribution [97]. Therefore, the probability of measuring a
number of counts Dk given that our hypothesis H is true, can also
be expressed as:

P (Dk | H) =
1√
2πσ2

k

exp

[
−1

2

(
Dk −Hk

σk

)2
]

(5.13)

where Hk is the expected value for that point predicted by the model,
Dk is the observed value, and σk is the standard deviation predicted
by the model, assuming a particular distribution of experimental
points around Hk.

The likelihood in this case (when the number of counts is very
large and the normal distribution is a good approximation) can be
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written as:

L =
n∏

k=1

{
1√
2πσk

exp

[
−1

2

(
Dk −Hk

σk

)2
]}

(5.14)

=

[
n∏

k=1

(
1√
2πσk

)]
exp

[
−1

2

n∑
k=1

(
Dk −Hk

σk

)2
]

︸ ︷︷ ︸
exp

(
−1

2
χ2

)
(5.15)

As can be seen, the χ2 function that was defined (but not justi-
fied) in section 5.1.2, and is normally used in the frequentist scheme,
is closely related to this likelihood, which is derived only from prob-
abilistic grounds and used in the Bayesian approach.

Finding the parameters of the model that maximize the likelihood
is equivalent to finding the parameters that minimize χ2. Thus, the χ2

function gives a measure of the probability that the data is described
by our model when experimental points are normally distributed. If
the data follows a Poisson distribution, other alternate definitions can
be constructed for χ2 [99].

Although this method is quite general, only the particular case
of the normal distribution of measured data at each point will be
considered hereafter.

5.2.4 Metropolis algorithm variation

A general Bayesian approach has been implemented in the program
fabada to perform fits of models to experimental data, so they de-
scribe the data as accurately as possible while taking their errors into
account [100].

This modification of the Metropolis algorithm generates at every
iteration a new parameter set from the previous one and compares
their χ2. If the new set reduces the χ2 value, is always accepted, if it
does not, it is accepted only with a certain probability closely related
to the data distribution around the values predicted by the model
(usually interpreted as the experimental errors) [101].
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To provide with an effective exploration of the parameter space,
clever modification of the parameter jump sizes is carried out for
each parameter, and also through an adjustable factor that artificially
increases the effective errors of the data, thus allowing the algorithm
to explore farther regions in the first stages of the fit and guarantee
that the global minimum is found.

The parameter space is explored to account for all the parameter
combinations that yield models predicting Hk values within the ex-
perimental error of Dk. Finally, the list of accepted parameter com-
binations is used to construct a histogram for each parameter and
also χ2, these histograms are proportional to the probability density
function of these quantities and contain all the complexity of the
problem.

Although the resulting probability distribution functions can take
an arbitrary shape, errors can be summarized for comparison with
frequentist results using the credible interval, which includes 68% of
the parameter probability around the most probable value.

5.2.4.1 Markov chain Monte Carlo

Markov chains are a succession of different states in a system, where
every new state only depends on the last state, but not on the history
of states. In this problem, each set of parameters {pi} will be a state
of the chain, generated through a Metropolis algorithm [101].

The algorithm has two phases: at first it explores large regions of
the parameter space to locate the section where the parameters yield
predictions that fall within data errors and, once such section has
been found, it explores that vicinity in detail to sample and construct
the probability distribution functions of the parameters and χ2.

Regardless of the starting values, the parameter Markov chain will
eventually reach the equilibrium distribution. That is, in this case,
the distribution of the parameter sets that yield model predictions
compatible with the data errors. However, the number of steps that
the chain will require to reach the stationary distribution is difficult
to determine.

Markov chain Monte Carlo methods are algorithms that are used
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to obtain random events with a certain probability distribution. Here,
the unknown probability distribution of the acceptable sets of param-
eters will be sampled a large number of times so that we can estimate
its distribution from the frequency that each set gets accepted.

5.2.4.2 Parameter sampling

Gibbs sampling in a multivariate distribution entails changing the
variables one at a time. This way each parameter is changed sep-
arately from the others, and the rest of the parameters which are
not being sampled take the values of the last accepted parameter set,
instead of simultaneously changing all of them.

The parameter that will be changed is chosen randomly and its
new value is also generated randomly using this formula:

pnewi = poldi +R ·∆pmax
i (5.16)

where R is a random number between −1 and 1, and ∆pmax
i is the

maximum change allowed for the parameter i, hereafter simply called
parameter jump.

New parameter sets will be always accepted if they reduce the
computed χ2 value, but they will also be accepted with a certain
probability if they increase it. The main consequence of this feature
is that the algorithm is able to travel uphill across the χ2 hypersurface
to overcome small barriers.

The probability that a new set of parameters is accepted given a
particular old set or parameters is the ratio of their likelihoods:

Pa =
Lnew

Lold
=
P (H{p new

i } | Dk)

P (H{p old
i } | Dk)

=
exp

(
−1

2
χ2
new

)
exp

(
−1

2
χ2
old

) (5.17)

= exp

[
−1

2

(
χ2
new − χ2

old

)]
. (5.18)

where this expression is only used when χ2
new > χ2

old, as has already
been mentioned.

Clearly, if the new set of parameters increases χ2 by a small
amount it is more likely to be accepted than if it is by a large quan-
tity. Likewise, if data errors are large, χ2 are smaller, and any new
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sets of parameters that increase χ2 are more likely to be accepted
anyway.

Experimental errors play a very important role during the fit pro-
cess in this approach, therefore, their proper determination is one of
the keys for the success of the procedure.

5.2.4.3 Boundary prior effects

The algorithm described here uses the maximum ignorance prior in
the sense that all sets of parameter values have a priori the same
probability of being considered and their probability of being ac-
cepted and taken into account will depend solely on the resulting χ2

value of the parameter set given by the experimental errors.
However, for practical reasons, a lower and upper boundary are

defined for each parameter. This reflects our previous knowledge
about the parameter values and is in fact equivalent to considering a
prior where any parameter value within the range is equally probable,
but the probability of being outside this range is zero. We are trying
to answer the question “If we assume that the parameter values are
within that range, what would be the probability distribution of the
parameters within these limits according to the experimental data?”.

If the boundaries are far from the probable parameter values, the
χ2 of any set of parameters located close to them will be very large
and these regions will never be explored. It means that, in these
cases, just through the use of the experimental data all those values
would already have been dismissed, so the use of a prior is superfluous
and is equivalent to not using a prior at all in the first place.

Thus, boundaries are usually defined in a non restrictive way so
that they will be very far from the likely values of the distribution,
and they could be used simply to ensure that the obtained results
for the parameters will have physical meaning. For instance, the
lower boundary of a parameter representing a distance could be set
to zero to guarantee the parameter would take only positive values,
even when the mathematical expression of the model does not allow
to determine the sign of this parameter.

However, sometimes we may erroneously define boundary limits
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that are more restrictive than what experimental data really allows.
Either because we made erroneous assumptions about the possible
parameter values, which are not true in our case, or because our
assumptions are right but data quality is not very good and the ex-
perimental error does not allow to get such precise information about
that parameter.

To avoid this and make sure the boundaries are in a region of
the probability distribution where the probability of the parameter
having that value is zero, parameter boundaries can be chosen farther
away when it is detected that the resulting probability distribution
has still high values at the boundaries that were initially set.

Occasionally, a certain parameter of the model may be ill defined
or represent an information which can not be determined from the
data. This can be due to wrongly choosing parameters that do not af-
fect the experiment outcome (and thus can not be measured through
that kind of experiment) or simply because data quality is too bad to
extract the details of all magnitudes that affect the measurements.

In these situations, further increasing the boundaries does not
help because the parameter distribution may not decrease to zero
at the edges. For instance, if the parameter cannot be determined
at all, it will yield equal probability for any value regardless of the
boundaries (maximum ignorance posterior), or if only a maximum or
minimum value of the parameter can be determined, the distribution
will decrease to zero on just one of its sides.

This can be a very powerful tool because some other methods
would not allow to extract any kind of information about a parame-
ter that is ill defined or perhaps they would yield a misleading result.
Here all the complexity of the problem is reflected through the prob-
ability distribution of the parameter.

Setting a boundary prior improves the efficiency of the algorithm
avoiding it to lose computing time exploring parameter values which
are believed to be impossible, and prevents ill defined model param-
eters (maybe just due to the bad quality of the data) to impede
obtaining a global solution that defines the probability distributions
of the rest of parameters.

When the boundaries lie within regions of the parameter values
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that have a non negligible probability, those regions will be more often
visited and it will happen more frequently that random parameter
jumps end up being outbounds. Depending on how these proposed
random parameter sets that lie outbounds are handled, it may lead
to poor sampling of the regions near the boundaries.

For instance, if outbound parameter sets are treated as non ac-
cepted values, and the algorithm returns to the previous accepted
value to try to generate another parameter set that lies within the
boundaries, it will be more difficult for the algorithm to get to the
edges, and regions near the boundary will not be properly explored
(they will be less likely to be explored the closer they are to the
boundary). Thus, this way of handling outbound parameter sets,
generates an artefact that interferes with the natural space explo-
ration process of the algorithm and artificially decreases the proba-
bility distribution of parameters near the edges, which is no longer
guided based only on experimental data distribution and its errors
(see Figure 5.6(a)).

To avoid this artefact, when an outbound parameter is proposed,
the algorithm does not simply return to the previous accepted value,
but it transforms the proposed outbound parameter value using a
mirror effect and bounces it back inside the interval:

p new
in = 2B − p new

out = B −∆p new
out (5.19)

where B is the boundary value, p new
out is the parameter value obtained

randomly that falls outside one of the boundaries, ∆p new
out is the excess

value of the random parameter that falls outside of the boundary, and
p new
in is the corresponding value inside the allowed parameter range.
The advantage of the mirror effect obtained through Equation

5.19 is that if the proposed jump is outbound but very close to the
boundary, the corresponding value inside the interval will be also
very close to the boundary. And likewise, if the proposed outbound
values are far, their corresponding values inside will be far from the
boundary as well. This way the the random sampling of near/far
values is not artificially forced to favour values far from the boundary
as it would if outbound parameter sets were simply not accepted.
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Figure 5.6: Resulting probability distribution function of a param-
eter that can take any value, that is, the proposed parameter values
are always accepted as long as they lie within the boundaries. The
two cases correspond to (a) outbound proposed parameter values are
simply not accepted, and (b) outbound proposed parameter values
are reinserted into the interval using Equation 5.19.

To illustrate the difference between both behaviours, an example
is shown in Figure 5.6(a) where all proposed parameter values inside
the interval are accepted and values outside the interval are not. Since
the distribution should be flat, it is clearly concluded that this method
would yield wrong results near the boundaries. Another example
in shown in Figure 5.6(b) where all values inside the interval are
accepted and values outside are bounced back in through Equation
5.19 and then accepted. As can be seen in the figure, this procedure
succeeds in getting rid of the artefact at the boundaries.

The algorithm does not allow parameter jumps larger than the
parameter interval to prevent successive proposed parameter values
to jump outbounds from one side to the other.

This procedure is inspired by the periodic boundary conditions
used in molecular dynamics, where molecules that travel outside of
the box on one side are reinserted on the other side of the box (con-
trary to our case where parameters are reinserted again from the same
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boundary).

5.2.4.4 Parameter jumps

5.2.4.4.1 Algorithm efficiency We saw in section 5.1.3 that, in
the Levenberg-Marquardt algorithm, parameter initialization is cru-
cial to guarantee a successful convergence to the global χ2 minimum.
In the case of the Metropolis algorithm, the critical issue is choosing
the most appropriate size for the parameter jumps (that is, for the
maximum size of the random parameter jumps ∆pmax

i ).
If parameter jumps are small, the algorithm will sample with great

detail a small region of the probability distribution and, if they are
large, it will sample very distant regions but without any details. Ide-
ally, the goal would be that the algorithm samples the whole parame-
ter space, and not just a region, to make sure that the local minimum
is reached, and at the same time explores the global minimum in de-
tail, that is, where the stationary distribution of the Markov chain is
found.

Regarding efficiency considerations, it has to be taken into ac-
count that this algorithm is able to travel uphill across the χ2 hy-
persurface but, as the χ2 difference between the two parameter sets
increases, the probability of doing so decreases exponentially. It is
easy for the algorithm to go uphill between close regions that will
have similar χ2, but it is not so easy to do so between distant regions
of the parameter space that may have very different χ2.

Therefore, exploring the whole parameter space with too large
jumps may be very inefficient because most of the jumps would be
rejected, but exploring it with too small jumps would be inefficient
too because it would cause the algorithm to get stuck in local minima
for a large number of steps before it travelled to other regions.

Additionally, the model is not equally sensitive to the modifica-
tion of all parameters and the χ2 landscape does not have the same
topography in all directions. A certain change may cause a large
χ2 variation in some parameters and go unnoticed in others, so that
what is considered an adequate jump size to explore each region may
be completely different for each parameter (i. e., direction in the χ2
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hyperspace).
To overcome the aforementioned obstacles and achieve maximum

efficiency in the exploration of the parameter space, the maximum
parameter jump for each parameter is changed to adapt it to the
shape of the χ2 hypersurface in that direction and it can also be
changed to adapt it to the phase of the fit process.

5.2.4.4.2 Adaptative parameter jumps To tailor the maxi-
mum parameter jump size to the χ2 shape, the method of an Adaptive
Markov Chain Monte Carlo Through Regeneration has been imple-
mented in the algorithm. This changes the way the parameter sets
are generated taking into account the history of the already accepted
parameter sets [102].

A good gauge to measure whether the maximum size of the pa-
rameter jumps is appropriate or not is using the acceptance ratio,
which is the fraction of proposed parameter jumps that have been
accepted. If the acceptance ratio is large this is an indication that the
algorithm is behaving conservatively and that the parameter jumps
are too small, if the acceptance ratio is small it means that the algo-
rithm is behaving too venturesome and the parameter jumps are too
large.

Therefore, a desired acceptance ratio of the proposed parame-
ter sets is predetermined initially, and the algorithm tries to adjust
through the iterative process the maximum jumps to fulfil this ra-
tio. Since we want to explore the parameter space with the same
efficiency in all directions and only one parameter is changed at a
time in every iteration, the desired total acceptance ratio Rdes will be
equally distributed among the different parameters, and the desired
acceptance ratio for each parameter Rdes

i will be used instead:

Rdes
i =

Rdes

m
(5.20)

where m is the number of parameters.
Before the algorithm starts the iteration process, a first guess has

to be made for the maximum parameter jumps ∆pmax
i . However, the
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particular value chosen for this purpose is not relevant because the
algorithm converges very fast to the appropriate values.

After a certain number of iterations N has been carried out with
this set of maximum parameter jumps, the real acceptance ratio of
each parameter Rreal

i is evaluated and compared to its desired ratio
Rdes

i , and the maximum parameter jump of each parameter is changed
accordingly:

∆Pmax,new
i = ∆Pmax,old

i

(
Rreal

i

Rdes
i

)
= ∆Pmax,old

i

(
Ki/N

Rdes
i

)
(5.21)

where Ki is the number of accepted jumps of the parameter i.
Note that if the changes in a parameter are already being accepted

with the desired ratio, that is, if Rreal
i /Rdes

i = 1, the maximum pa-
rameter jump will not be modified.

This equation increases the maximum jump of the parameters
accepted too often and decreases the maximum jump of parameters
which are rarely accepted, setting different jump sizes for every pa-
rameter and adapting to arbitrarily complicated shapes of the χ2

landscape, which results in an efficient exploration of the parameter
space in all directions.

5.2.4.4.3 Simulated annealing As has been mentioned in sec-
tion 5.2.4.1, the fit process has several phases: in the beginning large
portions of the parameter space must be explored to locate the global
minimum, but then only the region corresponding to that minimum
(the stable configuration of the Markov chain) must be explored in
detail.

Therefore, to optimise the efficiency of the algorithm, the maxi-
mum parameter jumps must be initially set to large values and then
progressively diminished to smaller values towards the end. This ef-
fectively smears out details of the χ2 landscape in the beginning so
that local minima are disregarded and, when the global minimum
is found, the algorithm focuses in that region to get a detailed χ2

probability distribution that is compatible with experimental errors
of the parameter values at the relevant points.
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To carry out such optimization of the parameter jumps, a param-
eter T is introduced in the calculation of an artificially constructed
χ2 value:

χ2
T =

n∑
k=1

(Hk −Dk)
2

Tσ2
. (5.22)

where χ2
T is the altered χ2 value modified artificially by the factor T .

Setting this parameter to higher values (T > 1) is equivalent to
artificially increasing the nominal error of the experimental data, so
that the overall acceptance of parameter sets will increase as well:

Pa = exp

[
− 1

2T

(
χ2
new − χ2

old

)]
. (5.23)

This favours uphill displacements of the algorithm beyond the
probability already allowed by the error, avoiding the need to realise a
large number of iterations in local minima and even overcoming large
barriers, so that the global minimum can be easily found. Reducing
its value again to T = 1 will return the ability of the algorithm to
go uphill with the probability given solely by the real error, so that,
in the last phase of the process, the actual probability distribution of
the parameters in the global minimum can be sampled.

This technique is called simulated annealing and it is analogous to
what is used in statistical physics when molecular configurations at
a certain temperature are determined through Monte Carlo methods
[103]. Since in that context this parameter T represents the temper-
ature, it will be called likewise here, although it has a completely
different meaning in this case.

5.2.5 Bayesian approach advantages and
disadvantages

The Bayesian approach is routinely used in many fields of science and,
although it is not as common in condensed matter physics, it has been
used successfully to analyze experimental data from several kind of
measurements, specially those requiring more complex models and a
more sophisticated approach for the data analysis [92, 104–107].
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It is a general method, but is specially useful when the χ2 land-
scape is particularly rough and the fit gets stuck in local minima
every now and then, the parameters are strongly correlated, or when
multiple solutions are possible. These are its main advantages in the
form that has been described here:

• Since parameter changes that increase χ2, i. e., uphill move-
ments, are allowed with a probability related to the experimen-
tal data error, it does not get stuck in local minima of the χ2

landscape during the fit process when barriers are smaller than
the associated experimental error, i. e., when the actual param-
eter set is not globally the best fit but any parameter change
increases χ2.

• The results of the fit are not single parameter values and their
errors, but the probability distribution functions of the param-
eter values which are compatible with the experimental errors.
Therefore, all the complexity of the problem is reflected in the
solution.

• Even in cases where parameters of the model are ill defined,
any meaningful information contained in the data can still be
extracted, for instance, when only a maximum or minimum
value can be determined for that parameter.

• Due to the fact that the whole region of the parameter space
around the minimum will be sampled, no assumptions regarding
the parameter correlations have to be made. They are directly
taken into account through the process and are reflected in the
resulting probability distribution functions of the parameters.

• No assumptions have to be made regarding the geometry of the
χ2 landscape, because this will be explicitly explored using the
data and its errors. Thus, its dependence with the parame-
ters in the minimum does not need to be well described by a
quadratic approximation like in the frequentist approach.
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• Since the result of the fit are the parameter probability distribu-
tion functions and a normal distribution is not assumed, errors
do not have to be symmetric and can be arbitrarily complex.

• Since there is no need to assume that the χ2 landscape has only
one minimum able to describe the data and its error, sensible
results can be found as well in the case of multimodal problems,
where there may be several disparate parameter sets with a high
probability. This will be simply reflected in the probability
distribution function of the parameters that will display more
than one peak.

• In cases where the normal distribution is not a good approxima-
tion of the measured points (for instance, for experiments with
very little counts that follow a Poisson distribution), the whole
procedure can be carried out as well simply redefining the χ2

used for minimization by a function suited to the problem.

• Jump sizes are tailored for each parameter so that the param-
eter space is explored with the same degree of efficiency in all
directions. The Levenberg-Marquardt algorithm uses a differ-
ent jump for each parameter as well.

• Using the temperature parameter, uphill movements can be ar-
tificially enhanced in the first phase of the fit, beyond what
the experimental errors allow, to increase the efficiency of the
algorithm.

• Initialization of parameters and maximum parameter jumps are
not relevant to obtain a good result efficiently, even if very small
acceptance ratios are used.

• The result of the fit also includes the probability distribution
function of the likelihood, directly related to the χ2, this means
that a more advanced quantitative model selection can be car-
ried out taking into account all parameter combinations com-
patible with the experiment.
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• Assumptions about acceptable parameter values can be in-
cluded upfront in the analysis through the prior boundaries.

It also has some disadvantages such as:

• It requires longer computing times than the frequentist ap-
proach.

• Although errors must be well known quantities in both methods
because they determine the shape of the χ2 hypersurface, in the
Bayesian approach they also greatly influence the way the whole
fit is carried out.

5.2.6 Example: Determination of molecular
structure

Fits with a Bayesian approach have been extensively used in this
work to determine the intramolecular structure of the compounds.

Realistic geometrical models of the molecules, with a large number
of parameters, which are not all completely independent from one
another, required an advanced method which was robust and that
could cope with complex χ2 topographies.

Probability distribution functions of the geometrical parameters
were obtained from the neutron diffraction measurements, and this
information was often used to shape the individual molecules before
carrying out the molecular dynamics simulations or the reverse Monte
Carlo molecular modelling.

Multiple examples of these fits can be found in Chapter 6, where
the results of this work are explained in more detail.

The Bayesian approach to fits has been implemented in the pro-
gram Fabada [100].

5.3 Model selection

Many interpretations of the outcome of the experiments are always
possible for any problem. Thus, to be able to choose between different
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models, we need to use a way to quantify how appropriate a model
is. This quantification can be easily carried out on both frequentist
and Bayesian approaches, but surprisingly this analysis is seldom
performed.

As has already been discussed, χ2 allows to compute how well the
hypothesis describes the data. However, this is just half of the issue,
because more complicated models can always be constructed so that
their predictions are closer to the data than the existing ones, but
without adding any explanatory insight. This means that, usually,
it is easier for models with more parameters to closely resemble the
experiment. This forces us to quantify Occam’s razor too so that
an equilibrium is found and the chosen models are those that yield
a good prediction of the experiment but also remain as simple as
possible.

Both considerations can be taken into account concurrently
through the use of the reduced χ2, which can be expressed as fol-
lows:

χ2
ν =

χ2

n−m
(5.24)

where χ2
ν is the reduced χ2, n is the number of experimental points,

and m is the number of parameters, so n−m is the number of degrees
of freedom.

This means that models that yield the same χ2 will be penalised
for each extra parameter they introduce to the explanation. There-
fore, this function allows to compare on equal footing mathematical
models with different numbers of parameters, so that models with
a high number of parameters, which normally yield smaller χ2, are
only favoured when they really introduce a significant improvement
on the description of data.

The reduced χ2 can be used in both, the frequentist and the
Bayesian approach, with the difference that in the first case it will
be expressed as a single number (only its smallest value) and in the
second case as a probability distribution function (all values within
the global minimum compatible with data error).

The frequentist approach to model selection has the same draw-
backs as the frequentist fit, including that a number of assumptions
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Figure 5.7: χ2
ν probability distribution functions of two models A

and B, where model A achieves the smallest χ2
ν value, but where the

probable values of model B are mostly smaller than probable values
of model A, as well as being better defined. The frequentist approach
would wrongly lead to choose model A as the preferred model.

are made regarding the topography of the χ2
ν hypersurface: that it has

a single minimum, that its shape is parabolic in all directions (i. e., it
has a square dependence with all parameters), and that parameters
are not correlated.

Besides, all the information contained in the χ2
ν probability dis-

tribution function that was obtained in the Bayesian approach and
would be useful for decision making is lost when only the smallest
value of the distribution is considered, such as whether a model is
better defined than another.

For instance, it is possible that a model A is chosen over a model B
using frequentist approach based on the criterion that the first yields
the smallest χ2

ν value. But that, when full information is obtained
in the Bayesian approach through the probability distribution, the
model B is chosen instead due to the fact that its most probable
values (the peak of the distribution) are smaller than those of model
A (see an example in Figure 5.7).

Bayes model selection is useful in cases of models which are com-
plex, ill defined and have more than one solution, or when some
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parameters can only be determined to be smaller or larger than a
certain value. An interesting example can be seen in Ref. [106].

5.4 Molecular modelling

Very often it is not straightforward to devise a model that describes
the arrangement of the molecules in a material, and thus having a
method to quantify the goodness of models is not enough.

However, several models describing the fundamental interactions
that take place between atoms are available and they can be used
to predict which will be the behaviour of an atom in the presence
of another atom (or multiple other atoms, depending on its sophisti-
cation). And since most molecular systems are composed of a large
number of atoms, iterative numerical methods can be used to find
out their collective behaviour.

Alternatively, an approach can also be carried out where no
assumption is made regarding the molecular interactions, and the
atomic positions of an initial configuration are modified until they fit
the experimental data.

In either method, other details, such as the intramolecular struc-
ture of the material or its density at a certain temperature, can also
be used to constrain the system and help to find a better solution.

From these procedures, a possible configuration of all atomic po-
sitions of the molecules can be obtained.

Normally this is performed several times with different initial con-
figurations so that a representative statistical sample is obtained and
the particularities of each resulting configuration can be averaged out.

Once the positions of the atoms are available, a very deep anal-
ysis of the properties and arrangement of the molecules within the
material can be performed. In the case of molecular dynamics, not
only their short range order can be modelled from the configurations,
but plenty of dynamic information can be extracted as well, because
the velocities of the atoms are also taken into account.
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5.4.1 Molecular modelling techniques

5.4.1.1 Molecular dynamics

Molecular dynamics is a simulation of the movements of the atoms
or molecules in a material. An initial state is defined and then it
is calculated how this is modified by the interaction models used in
our case, so that the variation which the atomic or molecular veloci-
ties would experience under the influence of such interactions can be
determined.

The interaction models or potentials may display any degree of
precision. Less precise models will require less computing time, so
that simulations with a lot of molecules and for longer times will be
possible. More precise models require more computing time, so that
only simulations with fewer molecules and simulating a shorter period
of time will be possible. Depending on the kind of phenomenon that
must be mimicked and explained, a less or a more accurate interaction
model will be required.

Ideally, after a certain number of iterations, the molecular system
will reach an equilibrium state, which frequently is the one of inter-
est. However, the convergence of the system to the equilibrium state
depends strongly on the initialization. If the initial state that has
been defined for the atoms or molecules is very far from the equilib-
rium one, a long simulated time may be needed for its components
to achieve it, and hence it may never be reached within the available
computing time.

A simpler interaction model will be sometimes not capable of
reproducing certain behaviours, but a more complex one may not be
able to run with a number of atoms or molecules large enough so that
the behaviour can be reproduced either. Physical phenomena which
take place through long periods of time, such as glass transitions, are
also very difficult to reproduce due to computational time limitations.

5.4.1.1.1 Standard potentials Most common interaction po-
tentials or models are empirical and have many adjustable parame-
ters, they include interactions between bonded atoms (stretch, bends
and torsions), and non bonded atoms (van der Waals and electro-
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static forces). But they assume classical behaviour of the mechanics
of the molecules, and quantum-mechanical effects are only somewhat
represented through the empirical functions. Thus, most structural
and conformational changes can be reproduced, but rarely chemical
reactions.

In this scheme two approximations are usually made:

• Electrons are so fast that they move together with the nu-
cleus (Born-Oppenheimer approximation), and thus they can
be treated separately as a single potential energy surface rep-
resenting the ground state.

• The nuclei are treated as classical heavy point particles.

In this work, several molecular dynamics simulations were anal-
ysed to explain in detail molecular short range order particularities,
conformational populations, and some dynamical properties of liq-
uids.

5.4.1.1.2 Ab initio potentials Ab initio molecular dynamics is
a specific case of molecular dynamics simulations where electronic be-
haviour is calculated from first principles using quantum mechanics
(for instance, through the Density Functional Theory). No empirical
fit is used to describe these interactions, although some theoretical
considerations may allow to carry out a certain degree of approxima-
tion.

It can be used in situations where quantum interactions play an
important role or the electronic cloud needs to be represented with a
detail beyond what empirical methods allow.

However, these simulations require much larger computational ef-
forts than classical molecular dynamics, so only a small number of
atoms during brief periods of time can be simulated.

In this work, ab initio molecular dynamics simulations have been
used to provide an estimation of molecular geometries. Due to com-
putational time limitations, no interaction between molecules has
been taken into account at all in these simulations, so they only re-
produce the molecular shape of single molecules in the void or at the
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limit of a highly diluted gas. In condensed matter, depending on the
rigidity of the molecule, molecular geometry can be highly affected
by the surrounding neighbours. Thus, extrapolation of such results
to liquid or solid states must be always taken with a grain of salt.

5.4.1.2 Reverse Monte Carlo

Reverse Monte Carlo is a method based on experimental data for
modelling the structure of disordered materials such as liquids,
glasses, amorphous materials, or disordered crystals.

Starting from an initial configuration which should be a reason-
ably good guess, the experimental measurement that would corre-
spond to this structure is calculated and compared with the actual
experiment.

If the calculation does not match the experiment, the positions of
the atoms in the configuration are randomly varied, within manually
predefined ranges, and the measurement that the new configuration
would yield is calculated again. If the new configuration resembles
the actual measurement more closely, it then becomes the starting
point of the next iteration. And if it is worse, the new configura-

tion is only accepted with a probability proportional to e−(
1
2)χ2

to
avoid that the algorithm gets stuck in local minima. If the config-
uration is disregarded, other variations in the atom positions of the
old configuration are explored, iterating until the modelled structure
is compatible with the data.

The process is repeated with several initial configurations so that
the particular deviations of each configuration can be averaged out
with the rest.

This is essentially a minimization procedure such as the one de-
scribed in Section 5.2. Thus, the same strategies can be used to
avoid getting stuck in local minima, and certain additional physical
constraints regarding the molecular geometry or macroscopic magni-
tudes of the system can be implemented as well.

The main advantage of this method is that it allows to obtain a
microscopic model of the structure of the system without any suppo-
sition on the interactions between the atoms or the molecules, so no
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previous knowledge about their functional form is needed.
However, due to the huge number of degrees of freedom of this

method, the χ2 hypersurface is very rough and the choice of the
initial structure is crucial to avoid the algorithm getting stuck in a
local minimum, a decision which is not trivial. Atoms in the same
molecular site from two identical molecules are allowed to behave
differently, even when they have the same environment, which is not
physically meaningful. It also tends to yield the most disordered
configurations compatible with the experimental results, and usually
multiple disparate solutions are equally complying with the data (for
instance, a configuration that has three neighbours in some molecules
and five in others may be indistinguishable from a configuration where
all molecules have four neighbours).

This method allows a refinement of the atom positions to obtain a
fit compatible with the experimental data without the need to know
the interactions, but it is not reliable when the system structure is
totally unknown.

5.4.1.3 Empirical Potential Structure Refinement

The Empirical Potential Structure Refinement is a hybrid method
that combines a direct Monte Carlo simulation with an energy min-
imisation procedure to overcome the limitations of the previous meth-
ods. Mainly, that if the available empirical or theoretical potentials
are not good enough, a solution that resembles the experimental data
might never be found with molecular dynamics simulations, and that
is necessary to start already with an extremely good structural model
to refine in reverse Monte Carlo, due to the large number of degrees
of freedom involved.

In the Empirical Potential Structure Refinement method, a first
guess on the atomic empirical potentials is used to calculate the en-
ergy of an initial configuration of the system. The positions of the
atoms are then randomly changed and the configurations that allow
to minimize the energy of the configuration are accepted until an
energetic equilibrium with the first potential is reached. Once the
energetic equilibrium of the configuration is found, its pair correla-
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tion function or structure factor is compared to that obtained from a
neutron or x-ray diffraction experiment or from a molecular dynamics
simulation, and the potential is slightly changed repeating the whole
process until the modelled configuration matches the experimental o
simulated structure, within the estimated errors.

The main advantage of this method is that, although we don’t
need to abide to a predefined rigid set of interactions between the
atoms, all atoms that are located in the same molecular site of dif-
ferent molecules will yield the same behaviour when in a similar sit-
uation, which is much more realistic from a physical point of view.

Besides, the number of degrees of freedom is much smaller than
in the case of the Reverse Monte Carlo fit, therefore a precise initial-
ization of the empirical potentials is not as important to reach the
global minimum.

Its main disadvantage is that the empirical potentials to be ad-
justed concern only intermolecular interactions, which means that the
intramolecular structure must be very well known in order to find a
good fit to the experimental data.

5.4.2 Neighbours in the coordination shells

Once the configurations of the system have been obtained using any of
the molecular modelling methods, their geometry must be analysed in
order to understand the resulting microscopic structure contained in
our solution. All structural calculations are averaged for all molecules
within the same configuration and for all other available equivalent
configurations as well.

The simplest analysis concerning the intermolecular structure that
can be carried out is to determine the average number of neighbour
molecules. This is done by taking the centre of mass of a reference
molecule and counting how many centres of mass of other molecules
can be found at a certain distance from it. Such histogram will yield
the molecular coordination number as a function of the distance (see
Figure 5.8).

This magnitude can theoretically be obtained as well from the ex-
perimental data, but only when they are perfectly normalised, which
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Figure 5.8: Molecular coordination number of liquid trans-1,2-
dichloroethene at two different temperatures (200 and 350 K). Ar-
rows correspond to the first coordination shell distances (about 7 and
7.5 Å, respectively) which, as can be seen, accommodate in average
a different number of molecules at each temperature (12 and 11 mo-
lecules, respectively).

in practice is quite tricky.
So, instead of using this magnitude to compare it with the exper-

iment, we can use its derivative:

gCM(r) =
1

4πρ0r2

[
dMCN

dr

]
(5.25)

To extract this information from the configurations, the number
of molecules that can be found at every small distance interval from
the reference molecule is counted, and then this number is normalised
to the surface of the spherical shell at that distance. This normal-
ization is done to remove the effect of the ever increasing volumes
as farther distances from the reference molecule are analysed, which
happens when a constant solid angle and distance interval are taken.
The result is also normalised to the number density ρ0 so that the re-
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Figure 5.9: Pair-correlation function of the molecular centres of mass
of liquid trans-1,2-dichloroethene at two different temperatures (200
and 350 K), and a close up of the function at 200 K in a range of
larger distances. Arrows indicate the distances from the reference
molecule to the minima, which are used to define the extent of the
coordination shells (around 7 and 7.5 Å for the first coordination shell
at 200 K and 300 K, respectively).

sulting magnitude gCM(r) is proportional to the probability of finding
a neighbour molecule at a certain distance of the reference one (see
Figure 5.9). This magnitude can be obtained from the experimen-
tal data in some special cases such as monoatomic systems, or when
isotopic substitution is carried out in systems with certain molecular
geometries.

The distinct features that this quantity shows allow us to define
the concept of neighbour (or coordination) shells in disordered sys-
tems: each peak corresponds to one of the shells, whose extent will
be defined using the positions of the surrounding local minima. Once
the extent of the coordination shell is determined, its average number
of neighbours can be read from the molecular coordination number.

For example, the first coordination shell of the system depicted
in Figure 5.9 at 200 K will include all molecules up to a distance
of about 7 Å. Looking at the molecular coordination number of the
same system, shown in Figure 5.8, it can be observed that the number
of neighbours contained up to 7 Å, which corresponds to the first
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Figure 5.10: Molecular density within the first neighbour shell for liq-
uid trans-1,2-dichloroethene at two different temperatures as a func-
tion of the molecular coordination number. The density at 350 K
increases up to the fourth neighbour and then decreases, while the
density at 200 K starts decreasing at the fifth neighbour. This is
reflecting a difference in the arrangement of the molecules in the first
coordination shell, which are better packed at the lower temperature.

coordination shell, is about 12 molecules. The number of neighbours
in farther coordination shells can be found simply by subtracting
the molecular coordination number values at the minima positions
surrounding the peak.

Another representation which can provide further insight on the
distribution of neighbours in the first neighbour shell is the local den-
sity. This can be depicted as a function of the molecular coordination
number (see Figure 5.10). This magnitude can provide information
on the packing behaviour of the compound, providing much more
information than just the number of neighbours in the shell.

The general advantage of using the molecular coordination num-
ber as a variable instead of the distance is that the expansion or
contraction effects of the temperature on the materials are naturally
removed, and thus allows to compare the differences between purely
structural behaviours at various temperatures without the interfer-
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Figure 5.11: Liquid 1,1,2,2-tetrachloro-1,2-difluoroethane has a
carbon-carbon bond that allows rotations, and thus displays two con-
formations. These two conformations coexist and their population
changes with temperature.

ence of the expansion coefficient. For this reason, this variable will
be often used henceforth in many of the analyses.

5.4.3 Intramolecular structure

Although intramolecular structure displayed by the configurations
obtained through molecular modelling is often a feature already built
in with the constraints, this is not always the case. Some simulations
allow detailed internal interaction potentials which can couple to the
other contributions and yield realistic variations of the intramolecular
structure driven by the surrounding molecules. An example of that
are simulations that have been carried out for the 1,1,2,2-tetrachloro-
1,2-difluoroethane liquid (see Chapter 6 for a detailed description),
which displays two conformations that coexist and whose population
changes with temperature, and that are affected by intermolecular
interactions (see Figure 5.11).

These simulations were carried out with an intramolecular poten-
tial that allowed the two sides of the molecule to rotate with respect
to each other, to account for the behaviour of the conformer popu-
lation. To find out the population distribution of each conformer in
the liquid phase yielded by the simulation, a histogram was calculated
counting the number of molecules that displayed an intramolecular
dihedral angle within each small angular interval (see Figure 5.12).
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Figure 5.12: Probability distribution function (PDF) of the dihedral
angle F–C–C–F of the 1,1,2,2-tetrachloro-1,2-difluoroethane molecule
in the liquid phase as simulated by molecular dynamics. A scheme
of the molecule and its dihedral angle (α) is also depicted.

The histograms obtained from counting the number of molecu-
les in a certain geometric range are proportional to the probability
distribution functions of each arrangement. Dividing by the total
number of molecules that are being counted normalises its integral
to one, so that it yields exactly the probability distribution function.
These functions contain a lot of information and are the basis of the
analyses that have been normally carried out in this work to account
for a detailed description of the intra- and intermolecular structure.

5.4.4 Intermolecular structure

In highly disordered materials such as the ones we are studying here,
the molecular short range order is not a precise position and orien-
tation of a certain neighbour with respect to the reference molecule,
but rather a tendency of the molecules of being in a certain rela-
tive arrangement. For that reason, the use of probability distribution
functions where all information is contained is much more adequate
than just its most probable value.

A particular molecule of the configuration will be chosen as the
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reference molecule and the relative orientation and position of all
other molecules with respect to this one will be accounted. Then
another molecule in the configuration will be chosen as the refer-
ence molecule, and the process will be repeated until every molecule
in the configuration and all its neighbours have contributed to the
histogram. As explained before, this histogram can be normalised,
using the total number of molecules and molecular pairs which have
been counted, to obtain the probability distribution function of every
particular magnitude.

If more than one equivalent configuration is available, the average
will be performed over all molecules included in all configurations.

5.4.4.1 Definition of reference system

The reference system will be built upon the reference molecule. De-
pending on the molecular geometry, it may be convenient to use one
of the atoms as the origin of the reference system. For instance, this
may be the case if the molecule has an atom at its centre.

In Figure 5.13 two examples can be seen where the origin of the
coordinate system has been chosen to coincide with one of the atoms
(in both cases a central carbon atom).

In the case of trichlorobromomethane, shown in Figure 5.13(a),
the direction of the bromine atom in each molecule has been used
to define the z axis, and one of the chlorines to define the yz
plane. While in the case of dibromodichloromethane, shown in Fig-
ure 5.13(b), the direction of the molecule dipole (between the bromine
atoms) has been used to define the z axis, and the plane formed by
the carbon and the chlorines to define the xz plane.

Note that choosing one of the atoms as the origin of the reference
system implies in nearly all cases that the analyses will not be per-
formed strictly with respect to the centres of mass. This is because in
most simulations the atoms within the molecule do not stand still and
are allowed to realistically vibrate within certain boundaries about
their equilibrium positions driven by thermal agitation. Which means
that every molecule in the configuration will be slightly distorted,
and at best this central atom will only be a good approximation of
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Figure 5.13: Examples of reference system definitions with the ori-
gin on one of the atoms of the molecule: (a) trichlorobromomethane
(CBrCl3), and (b) dibromodichloromethane (CBr2Cl2).

its centre of mass.
However, even in cases where the molecular geometry would be

reasonably convenient as to define the origin of the reference system
on one of the atoms, the real centre of mass of each molecule can
always be calculated and used as the origin of the reference system.

Figure 5.14 depicts two cases where, instead of a particular atom,
the centre of mass of each molecule in the configuration has been cal-
culated in order to define the origin of the coordinate system with it.

In Figure 5.14(a) the case of trans-1,2-dichloroethene is shown,
which is a planar and rather rigid molecule due to its carbon-carbon
double bond. Here, the axis running through the chlorine atoms has
been used to define the z axis, the molecular plane has been used to
define the yz plane of the reference system and, finally, to uniquely
distinguish between two possible mirror images of the molecule, the
positive direction of y has been defined using the hydrogen atom also
bonded to the chlorine atom that defines the positive direction of z.

The example for 1,1,2,2-tetrachloro-1,2-difluoroethane, shown in
Figure 5.14(b), is a bit more complicated because the molecular struc-
ture can be completely disparate from one molecule to the next, due
to the carbon-carbon flexible single bond that allows the molecule to
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Figure 5.14: Examples of reference system definitions with the origin
on the centre of mass of the molecule: (a) trans-1,2-dichloroethene
(C2Cl2H2), and (b) 1,1,2,2-tetrachloro-1,2-difluoroethane (C2Cl4F2).

rotate and adopt different conformations. For this reason, the system
of reference has been defined using only one half of the molecule, un-
affected by the rotation of the other half. The axis that runs through
the carbon-carbon atoms has been used to define the z axis, and the
fluorine atom in the positive z direction has been used to define the
yz plane and, in particular, the positive y direction. This definition
is unique regardless of the conformational disorder of the molecules
and allows to easily measure the intramolecular dihedral angle with
the same reference system as the intermolecular short range order,
which is quite convenient to better understand the interplay between
both interactions.

5.4.4.2 Distance range selection

When an analysis of the arrangement of neighbour molecules is car-
ried out, a meaningful selection of the volume that will be averaged
out in the analysis will have a huge impact on the insight that the
results will provide.

In this work the simulation box has been divided in concentric
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spherical shells around the reference molecule, but the inner and outer
radius of each shell (ri and ri+1, respectively) can be arbitrarily cho-
sen. This allows to analyse separately the behaviour of the molecules
located at each range of distances from the reference molecule. For
every particular magnitude, a probability distribution function of the
neighbours has been calculated for each shell. Typically, the first vol-
ume will include the origin (ri = 0 Å) so strictly speaking it will not
be a spherical shell but a sphere.

A fine grained counting of the molecules in each arrangement
for each distance interval will provide with a more noisy probabil-
ity distribution function, but also with a more precise localization of
different behaviours. If no restrictions are made, an average of all
neighbours within the simulation box will be carried out, which in
general may not be very informative for disordered systems, due to
the fact that usually only the closest molecules will retain certain
level of preferred order and the farther ones tend to be uncorrelated.

Four of the possible approaches to divide the volumes that will be
explored are: equal distance intervals, equal volumes, by coordination
shells, and by molecular coordination number.

5.4.4.2.1 Distance This approach consists in using distance as
a variable disregarding any possible structural information. The sim-
plest way to cover the whole space would be to define consecutive
spherical shells using regular intervals of ri and ri+1 distances (see
Table 5.1). Although it has the problem that the volume to analyse
becomes always larger as the distance increases:

V = (4π/3)
(
r3i+1 − r3i

)
(5.26)

Thus involving an ever increasing number of molecules and be-
haviours, which makes it more difficult to compare the results of
different shells.

Another alternative is to define spherical shells with smaller thick-
nesses ∆r as distance increases, to ensure they will all have the same
volume V (see Table 5.2). Of course, there will be density fluctuations
in the system from one shell to the other that will modify the num-
ber of molecules accounted, but the differences will be kept smaller
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Table 5.1: Example of dividing the volume to analyse in spherical
shells with the same thickness ∆r (liquid trans-1,2-dichloroethene
molecular dynamics simulation at 200 K).

Shell ∆r (Å) ri (Å) ri+1 (Å) V (Å
3
)

1st 1 0 1 4.2
2nd 1 1 2 29.3
3rd 1 2 3 79.6
4th 1 3 4 155.0
5th 1 4 5 255.5

Table 5.2: Example of dividing the volume to analyse in spherical
shells with a constant volume V (liquid trans-1,2-dichloroethene
molecular dynamics simulation at 200 K).

Shell V (Å
3
) ri (Å) ri+1 (Å) ∆r (Å)

1st 100 0.0 2.88 2.88
2nd 100 2.88 3.63 0.75
3rd 100 3.63 4.15 0.52
4th 100 4.15 4.57 0.42
5th 100 4.57 4.92 0.35

than in the previous case. The upper boundaries of the volumes are
calculated recursively using:

ri+1 =
3

√
3V

4π
+ r3i (5.27)

5.4.4.2.2 Coordination shells Considering that neighbours or-
ganise themselves in coordination shells, analysing the behaviour of
molecules separately in these naturally occurring subdivisions can
be quite insightful (see example of liquid trans-1,2-dichloroethene at
200 K in Table 5.3). The boundaries for the coordination shells have
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Table 5.3: Example of using the coordination shells to divide the
volume to analyse (liquid trans-1,2-dichloroethene molecular dynam-
ics simulation at 200 K).

Shell ri (Å) ri+1 (Å) ∆r (Å) V (Å
3
)

1st 0.0 7.06 7.06 1474
2nd 7.06 10.68 3.62 3629
3rd 10.68 13.76 3.08 5810
4th 13.76 18.08 4.32 13843
5th 18.08 21.83 3.75 18820

been taken from the local minima positions of the pair correlation
function gCM shown in Figure 5.9.

5.4.4.2.3 Molecular coordination number However, using
the coordination shells is a quite rough separation because it includes
a bunch of molecules that might be displaying a variety of behaviours.
A range of potentially distinct molecular arrangements which are ef-
fectively averaged out before they can even be examined.

In this work, to achieve an equilibrium between meaningful and
informative divisions and that at the same time do not average out
distinct arrangements too much, the approach of the average loca-
tion of each neighbour has been used. That is, using the molecular
coordination number as a function of the distance, it is determined
at which range of distances is each neighbour located on average,
and then these are the divisions used to analyse the behaviour of the
molecules.

Of course, since this is only an average, frequently a part of the
analysed molecules will be occupying the shell of the previous or
the next neighbour, but although it cannot be stated that certain
neighbour will take this or that configuration is still very useful to
see their tendencies.

This method has several advantages:

• It allows a qualitative analysis of the problem, and not only
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Table 5.4: Example of using the number of neighbour to divide
the volume to analyse (liquid trans-1,2-dichloroethene molecular dy-
namics simulation at 200 K).

Neighbour ri (Å) ri+1 (Å) ∆r (Å) V (Å
3
)

1st 0.0 4.37 4.37 349.6
2nd 4.37 4.79 0.42 110.8
3rd 4.79 5.10 0.31 95.3
4th 5.10 5.37 0.27 93.0
5th 5.37 5.60 0.23 87.0
6th 5.60 5.81 0.21 85.9
7th 5.81 6.01 0.20 87.8
8th 6.01 6.21 0.20 93.8
9th 6.21 6.42 0.21 105.2
10th 6.42 6.65 0.23 123.4
11th 6.65 6.89 0.24 138.2
12th 6.89 7.12 0.23 141.8

quantitative. It is more intuitive to determine the preferred
orientation of the molecules located at the average distance of
the third neighbour than the behaviour of molecules between
certain arbitrary range of distances.

• Emphasizes similarities and differences between different neigh-
bours that we might have not realised previously.

• The replacement of distance in favour of the neighbour number
in the analyses naturally removes the density effects such as the
expansion coefficient as temperature is changed or the simple
fact of dissimilar densities between different substances, which
allows to better compare strictly the short range order structure
of the different systems on absolute terms.

As said previously, shell boundaries can be defined using any set
of arbitrary values, hence, if neighbours in different ranges are as-
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Table 5.5: Example of using a neighbour grouping by their short
range order similarity to divide the volume to analyse (liquid trans-
1,2-dichloroethene molecular dynamics simulation at 200 K).

Shell Neighbours ri (Å) ri+1 (Å) ∆r (Å) V (Å
3
)

1st 1st 0.0 4.37 4.37 349.6
2nd 2nd+3rd 4.37 5.10 0.73 206.1
3rd 4th+5th 5.10 5.60 0.50 180.0
4th 6th+7th 5.60 6.01 0.41 173.7
5th 8th+9th+10th 6.01 7.12 1.11 602.4

+11th+12th

certained to yield similar results, the volumes can always be subse-
quently merged to optimise the analysis.

An example of dividing the analysis volume using the number
of neighbours, corresponding to liquid trans-1,2-dichloroethene at
200 K, is shown in Table 5.4. The values have been taken from
its corresponding molecular coordination number, depicted in Fig-
ure 5.8. A version dividing analysed volume into neighbours with a
similar behaviour is shown in Table 5.5.

5.4.4.3 Neighbour position

Once the coordinate frame is well defined on the reference molecule,
and the simulation has been divided in volumes to analyse separately,
the direction in which the central atom or the centre of mass of each
neighbour molecule is located can be determined.

With the range of distances to the reference molecule determined
by the shell division, two angles will be enough to describe the posi-
tion of the neighbour molecule. Figures 5.13 and 5.14 show several
examples where the two positional angles have been defined similarly
with respect to the reference frame: the standard polar angle mea-
sured from the z axis, θCM, and a variation of the azimuth angle
measured from the y axis towards the x axis instead of the usual re-
versed definition, ϕCM. Please note that at this point the orientation
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Figure 5.15: Probability distribution functions of the position of the
neighbour molecules located at less than 4.37 Å from the reference
molecule for liquid trans-1,2-dichloroethene at 200 K, which in aver-
age corresponds to the first neighbour. θCM and ϕCM are the angles
described in Figure 5.14.

of the neighbour molecule is completely disregarded and the analysis
is focused only on the position of its central atom or centre of mass.

The relative position of the neighbour molecules has been anal-
ysed for liquid trans-1,2-dichloroethene at 200 K and is shown in
Figure 5.15 as an example. The probability distribution function has
been calculated from the molecules up to a distance of 4.37 Å, which
on average corresponds to the location of the first neighbour. As
can be seen, the centres of mass of these molecules locate preferably
at angles around θCM = 90◦ and ϕCM = 90◦ (average of all possi-
ble orientations), but the liquid is quite disordered in this regard so
the distribution is not sharp but rather spread. This effect increases
with temperature due to thermal agitation, therefore, less contrasted
probability distribution functions will be always obtained for higher
temperatures even if the molecular short range order remains essen-
tially the same.

The information in Figures 5.15(a) and (b) can also be combined
in a 2D graph and be presented as a bivariate analysis (see Figure
5.16). The advantage of this graph is that no information is lost as in
the projections shown in Figure 5.15 so that, once some interpretation
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Figure 5.16: Probability distribution function of the angular posi-
tion of the first neighbour with respect to the reference molecule in
liquid trans-1,2-dichloroethene at 200 K. Darker shade means higher
probability.

skill is acquired, the location of the neighbours can be grasped in full
detail in just a glimpse.

For instance, although this graph still shows the position θCM =
90◦ and ϕCM = 90◦ as the most probable, it can be observed that the
centre of mass of the neighbour molecule is more likely to be at the
upper right and lower left sections of the graph than at the upper left
and lower right sections. This reflects the molecular geometry, and it
means that if the centre of mass of the first neighbour is located in
the molecular plane of the reference molecule (ϕCM = 0 or 180◦), it
will rather be in the direction between the chlorine and the hydrogen
not bonded to the same carbon, albeit being in this plane is globally
not its most likely position in the first place anyway.

Note that in the case of the θCM angle, the probability distribution
function of its cosine is shown instead of the angle itself. The rea-
son behind this is simply to guarantee that space is divided in equal
bins when molecules are counted. In spherical coordinates, for equal
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angular intervals the covered solid angle is larger for θCM near the
equatorial plane than near the pole, which means that larger bins
would be considered if the angle was taken. Therefore, the proba-
bility distribution function of θCM would yield a higher probability
of molecules being in angles near the equatorial plane in situations
where they are in fact evenly distributed in space, because it would
be counting more molecules simply by construction. On the contrary,
its cosine guarantees a regular binning and will indeed display a flat
distribution when molecules are evenly distributed in space. Thus, to
simplify the analysis and avoid any underlying shape of the uniform
distribution to mislead to wrong conclusions, the cosine has been
always used instead of the angle in cases like this.

A fast and reliable way to identify similarly behaved molecules
is to first define the analysis volumes with the range of positions
corresponding to each neighbour (see Table 5.4), and then depicting
side by side their short range order patterns for comparison. Similar
patterns can then be easily identified and its volumes grouped to
treat them jointly thereafter (see Table 5.5).

Depicting side by side the short range order patterns of the mole-
cules located in the volumes corresponding in average to every neigh-
bour, can be a fast and reliable way to identify similarly behaved
molecules, which can be treated jointly thereafter.

For instance, Figure 5.17 shows the probability distribution func-
tions regarding the relative position of the fourth to seventh neigh-
bours in liquid trans-1,2-dichloroethene at 200 K. In this case, two
kinds of distinct patterns can be identified: one that describes the ar-
rangement of neighbours fourth and fifth, and another that describes
the arrangement of the sixth and seventh. This realisation allows
to treat together the fourth and fifth neighbours on one hand and
the sixth and seventh on the other by defining a larger volume that
includes the average location of both neighbours involved. This in-
creases the statistics, reducing noise and enhancing the contrast of
the patterns, which allows for a better short range order analysis,
and it has the advantage that no assumptions are made regarding
the neighbours’ short range order, as was done in the case of the
coordination shells. Here, conclusions about similar arrangement of
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Figure 5.17: Probability distribution functions of the angular posi-
tion of the fourth to seventh neighbours with respect to the reference
molecule in liquid trans-1,2-dichloroethene at 200 K. Similar patterns
are averaged together to obtain better statistics.

molecules are drawn only after the actual short range order has been
examined.

However, this process must be carried out with great caution be-
cause molecules that display the same relative position may still have
very different orientations and vice versa, or they could even display
differences in just one of the orientation angles, while keeping the rest
very much alike. Therefore, if no details are to be missed, molecules
should only be grouped after similar behaviour has been ascertained
for all magnitudes under analysis.

A complete set of probability distribution functions describing the
position of the neighbours in the first neighbour shell of liquid trans-
1,2-dichloroethene at 200 K is shown in Figure 5.18 as an example.
The following neighbour groups with a similar short range order were
determined:

• Group A: 1st neighbour

• Group B: 2nd and 3rd neighbours

• Group C: 4th and 5th neighbours

• Group D: 6th and 7th neighbours
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• Group E: 8th, 9th, 10th, 11th and 12th neighbours.

This grouping of the analysis volumes is the one shown in Table 5.5.
Although only positional angles are shown here, neighbours have

been grouped using criteria regarding their relative orientations sim-
ilarity as well.

For illustration purposes, a scheme of the most probable relative
position of the centres of mass of the molecules for each group of
neighbours is shown in Figure 5.19: θCM = ϕCM = 90◦ for the first
neighbour, θCM = 60◦ and the wide range of ϕCM = 110 − 180◦

for neighbours second and third, θCM = 51◦ and ϕCM = 160 − 180◦

for neighbours fourth and fifth, θCM = 41◦ and ϕCM = 0◦ for neigh-
bours fourth and fifth, and the poles for neighbours eighth to twelfth.
However, this is just a fraction of all the information contained in
the probability distribution functions, which allows to represent the
whole complexity of the short range order.

5.4.4.4 Neighbour orientation

Relative orientation of neighbours with respect to the reference
molecule can be determined using a number of angle combinations,
depending on the molecular geometry.

The trans-1,2-dichloroethene example has been used again to il-
lustrate one of the possibilities for orientational angles definitions.
The particular choice of angles can be seen in Figures 5.20, (b), (c),
and (d). α is the angle between the axes than run through the hydro-
gen atoms of each molecule, β is the angle between the axes than run
through the chlorine atoms of each molecule, and γ is the angle be-
tween the axis than runs through the chlorine atoms of the reference
molecule and the hydrogen atoms of the neighbour.

The probability distribution function of one of the orientational
angles is shown in Figure 5.21 for liquid trans-1,2-dichloroethene mo-
lecules in the volume that corresponds to the average location of the
first neighbour. A drastic difference can be seen between the lower
and higher temperature distributions of angle α: at low temperature
this angle has a higher tendency to be 0◦or 180 ◦, which corresponds to
the hydrogen axes being parallel, and at high temperature it tends to
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Figure 5.20: Scheme of the positional and orientational angles defini-
tion system for the trans-1,2-dichloroethene molecule: (a) positional
angles θCM and ϕCM, (b) orientational angle α between the hydrogen
axes of both molecules, (c) orientational angle β between the chlo-
rine axes of both molecules, and (d) orientational angle γ between
the chlorine axis in one molecule and the hydrogen axis on the other.

have any other orientation, corresponding to perpendicular or slanted
relative orientations of the hydrogen axes.

Bivariant analysis can also be used with orientational angles which
can be represented as a function of some positional angle, to find
out the orientation of molecules located in a certain direction of the
reference molecule. Some examples for the first coordination shell of
liquid trans-1,2-dichloroethene at 200 K can be seen in Figures 5.22
and 5.23. As it can be seen in Figure 5.22, the chlorine axes are very
likely to be parallel (β = 0◦ or 180◦) between the closest neighbours
and the reference molecule, but from the sixth or seven neighbour
of the first coordination shell it becomes more likely that they are
perpendicular. However, for the very first neighbour the distribution
is not sharp and a whole range of intermediate angles are probable
as well.

Figure 5.23 shows that the most probable situation for the first
neighbour is that its hydrogen axis is parallel to the chlorine axis of
the reference molecule, for the second and third neighbours the most
likely value of the same angle is about γ ≈ 70◦, from the fourth to
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Figure 5.21: Probability distribution function of the orientational
α angle for the first neighbour in liquid trans-1,2-dichloroethene at
200 K (black squares) and 350 K (red circles).

seventh neighbours the most probable orientation for their hydrogen
axis is perpendicular to the chlorine axis of the reference molecule,
and from the eighth to the twelfth neighbour they become parallel
again.

Apart from representing the probability distributions of the neigh-
bours’ orientation as a function of the positional angle, another rep-
resentation which can be very powerful is to calculate the probability
distribution function only in terms of orientational angles. Keeping
the neighbour distance boundaries for the analysis allows us to use
two orientational angles instead of one, so that the preferred ori-
entation of every neighbour can be explored without the previous
ambiguity.

In Figure 5.24 the probability distribution function of two orien-
tational angles, β and γ, are shown for the very first neighbour of
liquid trans-1,2-dichloroethene at 200 K. These two angles deter-
mine uniquely the relative orientation between the neighbours and
the reference molecule.

This representation is a bit different from those shown before be-
cause here the molecule cannot just take any combination of angle
values. In this case, molecular geometry highly restricts the possible
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Figure 5.24: Bivariant probability distribution function of the β and
γ angles in liquid trans-1,2-dichloroethene molecule at 200 K.

combinations of the two angles, which means that a significant depar-
ture from the circle apparent in Figure 5.24 would only be possible if
the intramolecular structure was highly distorted.

Even with the restriction that all angle combinations must lay
near the circle, there’s a continuous range of possible orientations.
The four black spots in the graph show that there are a some config-
urations that are preferred over the rest. The configurational space
has been divided in 16 regions, each corresponding to a continuous
range of angle combinations. The four regions that contain the most
probable orientations have been labelled as P and C.

Configuration P corresponds to the chlorine axes of both molecu-
les being parallel (β = 0◦), and the hydrogen axis of the neighbour
molecule crossed with respect to the chlorine axis of the reference
molecule (in the range γ = 60◦ − 90◦). And in configuration C the
hydrogen axis of the neighbour molecule is parallel to the chlorine axis
of the reference molecule (γ = 0◦), and the chlorine axes are crossed
(in the range β = 60◦ − 90◦). In fact, due to the molecular sym-
metry of the trans-1,2-dichloroethene molecule, the configurations in
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Figure 5.25: Two sample configurations of the first neighbour in
trans-1,2-dichloroethene. The position of the centre of mass of the
neighbour molecule is θCM = ϕCM = 90◦ in both cases. The arrows
indicate the two axes that determine angle γ. Relative orientations
shown correspond to configurations (a) Parallel or P with α = β =
0◦, and (b) Crossed or C with γ = 0◦. The configuration names
correspond to the relative orientation of angles α and β.

the regions labelled as P are equivalent, and the configurations in the
regions labelled as C are equivalent as well.

An example of the Parallel (or P) orientational configuration can
be seen in Figure 5.25(a) and an example of the Crossed (or C) con-
figuration can be seen in Figure 5.25(b).

Since we are handling probability distribution functions, it is al-
ways possible to go beyond the qualitative description of the data,
and quantify what proportion of molecules contributes to each posi-
tional or orientational configuration simply through integrating this
function in our region of interest. In this case, it could be used to
calculate the fraction of molecules in each of the configurations.

Analysing all these orientations to try and get a picture of the
short range order can be very complicated. Mainly due to the fact
that the high disorder in these systems yields a continuous range of
different configurations which coexist without a clear separation, re-
garding both their position as well as their orientation. And also
because every representation is just a projection of the complex po-
sitional and orientational higher-dimensional space, allowing the vi-
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sualization of only part of the information every time. This means
that considering only the most probable value of each magnitude can
be quite misleading, because they may not correspond to each other,
i. e., the molecules at the most likely position may not necessarily
yield the most likely orientation, wich may be simply the preferred
orientation for all other molecules.

A strategy that can be useful is to try to limit the analysis even
more and analyse the arrangement of neighbours in a compartmented
way. This is already what is being done through the division in
spherical volumes but further restrictions can be imposed through
any of the studied magnitudes so that only the molecules within a
certain range of values will be accounted in the description.

In the case of trans-1,2-dichloroethene, a whole additional short
range order analysis was carried out separately for molecules in a
Parallel configuration and for molecules in a Crossed configuration,
so the relative positions of neighbours in each configuration could be
compared.
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The results of this work have been already presented in the form of
published articles and book chapters. These publications have been
included in this section for completeness reasons.

Although all articles rely on common experimental and analysis
techniques, they have been grouped by their main topic: either the
compound being studied (TDCE, F-112, CCl4, and CBrxCly) or the
method described (Bayesian analysis of data).

6.1 Structural and dynamic anomalies

in liquid trans-1,2-dichloroethene

(TDCE)

TDCE has a series of structural and dynamical anomalies within its
liquid phase, which some authors have attributed to a liquid-liquid
phase transition. The purpose of this research was to understand the
microscopic explanation behind these anomalies.

Molecular short-range order and dynamics changes were shown to
go hand in hand: both are more cooperative at the high-density than
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the low-density liquid. The microscopic mechanism driving these
cooperative motions was found to be a strongly correlated molecular
ordering.

Structural differences between both liquids were analysed in rich
detail and it was found that the number of molecules in the first
neighbour shell is 12 for the high-density liquid and 11 for the low-
density one. The angular position of the centre of mass of the first
neighbour is roughly the same but its molecular orientation is not:
In both liquids the first neighbour and its reference molecule arrange
mainly in two configurations, each being the most probable in one of
the liquids.

First neighbours in the configuration that predominates in the
high-density liquid tend to locate themselves closer to the reference
molecule, an evidence that they are more strongly bonded. This
arrangement facilitates a better packing of the rest of molecules in
the first neighbour shell so that on average an additional molecule
can be included, and explains both, the structural and the dynamical
anomalies.

Results were presented in several conferences, even obtaining a
best poster award at the 9th Conference on Quasielastic Neutron
Scattering (Villigen, Switzerland, 2009), and they have been pub-
lished mainly in the articles: M. Rovira-Esteva, N. A. Murugan, L.
C. Pardo, S. Busch, et al., Phy. Rev. B 81, 099902 (2010); and
M. Rovira-Esteva, N. A. Murugan, L. C. Pardo, S. Busch, et al., J.
Chem. Phys. 136, 124514 (2012).
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3Forschungszentrum Jülich GmbH, Institut für Festkörperforschung
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Abstract

We present a study of the dynamics and structural changes for trans-
1,2-dichloroethylene between high and low density liquids using neu-
tron scattering techniques (diffraction, small angle neutron scattering
and time of flight spectroscopy) and molecular dynamics simulations.
We show that changes in the short range ordering of molecules goes
along with a change of the molecular dynamics: both structure and
dynamics of the high density liquid are more cooperative than those
of the low density liquid. The microscopic mechanism underlying the
cooperative motions in the high density liquid has been found to be
related to the backscattering of molecules due to a strong correlation
of molecular ordering.

Article

Classical thermodynamics establishes the existence of one unique liq-
uid state and one unique vapour state for any material. Nevertheless,
recent experimental results and molecular dynamics (MD) simula-
tions suggest that, even for one-component systems, several liquid
phases can appear with an associated liquid-liquid phase transition
(LLPT). A noticeable number of cases has been found for atomic
liquids, the best-known example concerning liquid phosphorus [1, 2],
where the LLPT appears as a transition between thermodynamically
stable phases with strong structural changes [3]. As far as molecu-
lar liquids are concerned, the number of experimental evidences for
LLPT is still rather scarce and comprises only a limited number of
compounds such as triphenyl phosphite [4] and n-butanol [5]. Ac-
cording to the so called two order parameter theories that propose
an explanation for the LLPT, liquids must be described not only by
their density but also by an additional order parameter accounting
for changes in the molecular arrangement [6–9]. The LLPT can end
in a liquid-liquid critical point between a high-density liquid (HDL)
and a low-density liquid (LDL). However, changes in the dynamics
with an associated change in structural features can also be explained
by a singularity-free scenario [10]. In the latter case, changes in both
dynamics and structure from a HDL to a LDL also take place at the
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point where the isobaric heat capacity CP has a maximum, but no
critical point or LLPT are observed at non-zero temperature.

An early work on trans-1,2-dichloroethylene (Tmelt = 223 K) sug-
gested the existence of a LLPT at Tt = 247 K > Tmelt based on a
small jump in density (less than 0.06%) as well as in the compress-
ibility, and a clear discontinuity on the spin-lattice relaxation time T1
[11, 12]. The observed changes in T1 were tentatively related to a lack
of freedom of the molecular rotation in the HDL, not present in the
LDL. The change on the dynamics of this substance between both
liquids, was thereafter also supported by discontinuities in the viscos-
ity measurements and the slope of the rotational relaxation time [13],
and by the absorbance, frequency and linewidth of several infrared
vibrational spectroscopy bands [14]. Concerning structural related
magnitudes, subsequent measurements of the density as a function of
the temperature did not find a jump at the expected LLPT but only
a change in its slope [13]. More recently, some of the authors of the
present work have also undertaken calorimetric and nonlinear dielec-
tric experiments [15]. In that work a strong pre-transitional anomaly
of nonlinear dielectric effect was obtained, similar to the one observed
in the isotropic phase of nematic liquid crystals, together with a max-
imum of CP . Therefore, experimental results unambiguously show a
clear change in the dynamics, together with a slight change in the
structure, between HDL and LDL, that takes place when Cp is in a
maximum. However, those facts are not enough to unambiguously
determine if they are related to a singularity-free or a liquid-liquid
critical point scenario [10], i. e., the liquid undergoes a first-order
phase transition. The present study is aimed to investigate the mi-
croscopic structural and dynamical differences between the HDL and
LDL, from the experimental point of view and from MD simulations,
irrespective of which scenario would describe the present case.

Because the differences between the HDL and LDL in trans-1,2-
dichloroethylene were related to a change from a nematic-like to an
isotropic molecular ordering as temperature is raised [11, 12], we have
performed a series of small angle neutron scattering (SANS) measure-
ments from 220 K to room temperature to ascertain whether there is
formation of intermediate range nematic-like structures or clustering
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Figure 6.1: Total interference function of trans-1,2-dichloroethylene
for the LDL and the HDL, obtained by neutron scattering experi-
ments (a) and by molecular dynamics simulations (b), where an ab
initio calculation of the molecular structure is also shown. Inset shows
the macroscopic cross section for low Q values obtained by SANS ex-
periments also for temperatures above and below Tt.
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in the HDL. Experiments were performed on the KWS-2 diffractome-
ter of the Jülich Centre for Neutron Science at the Forschungsneu-
tronenquelle Heinz Maier-Leibnitz (FRM II, Munich, Germany) [16]
using a wavelength of 4.5 Å and a sample-detector distance of 2.0 m
that allowed to perform measurements in the Q range between 0.003

and 0.3 Å
−1
. The program qtikws [17] was used to perform data

correction and normalization. Results are shown in the inset of Fig.
6.1 for the HDL and LDL. No pronounced signal has been obtained
within the experimental error in the measured Q-range, which disfa-
vors the existence of a long range nematic-like ordering for the HDL
[18]. The data exclude that the differences between both liquids are
related to the emergence of molecular clustering on length scales of
about 20–2000 Å.

Going down in the spatial range, the microscopic short range or-
der (SRO) concerning a length scale of the order of a few molecular
lengths (lmol ≈ 4 Å) has been analysed by means of neutron scat-
tering experiments on the D4c diffractometer at the Institute Laue-
Langevin (ILL, Grenoble, France) [19] using a wavelength of 0.5 Å
and a deuterated sample. Data were corrected and normalized using
the program correct [20] and inelastic corrections were also carried
out (for details on data reduction see Ref. [21]). The obtained total
interference function F (Q) [22] is shown in Fig. 6.1 for two repre-
sentative temperatures. A change in the shape of the profile emerges
between the first and second peak which reflects a change in the SRO.
This change was also observed in a series of temperature dependent
experiments on the D20 diffractometer (ILL) using a wavelength of
1.3 Å, giving better access to the low-Q region. It should be pointed
out that similar changes have been found in the case of experiments
performed on HDL water at high pressures [23] and MD simulations
on HDL silicon [24–27].

The microscopic mechanisms giving rise to the changes in the in-
terference function F (Q) have been investigated through a series of
MD simulations (Fig. 6.1). Those were performed using the program
amber8 [28, 29] with a simulation box containing 3629 molecules
and a time step of 1 fs. The inter- and intra-molecular interactions
for the trans-1,2-dichloroethylene molecule were described using the
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GAFF force field [28, 29]. The simulations were carried out for the
temperature range 200–350 K in the NPT ensemble, therefore allow-
ing the box size to change, and the total time scale of each simulation
run was 40–50 ns [30, 31]. As can be seen in Fig. 6.1, the agreement
between simulations and experiment is excellent. Note that not only
the shapes of the simulated F (Q) closely resemble the experimental
ones, but also positions and intensities are equal within the experi-
mental error.

To emphasize quantitatively which are the SRO changes between
the HDL and LDL, we show in Fig. 6.2 the probability of finding
two molecules with a determined relative orientation for increasing
distances. To present the distance dependent SRO, the molecular
coordination number (MCN) has been chosen rather than distance
in order to avoid trivial effects due to density changes. Figure 6.2
shows that the relative orientation of nearest neighbours is virtually
the same and strongly defined for both liquids, in such a way that
their C–C vectors are parallel, i.e., with cosα = ±1. However, upon
increasing distance between the molecules (third to tenth neighbour),
a clear difference between the LDL and HDL can be seen in the SRO.
For instance, for MCN between eight and ten, more molecules are
arranged in an orthogonal way for HDL and are randomly oriented
for the LDL. Further analysis (not shown) tell us that besides the
relative orientation of the C–C axes of two molecules, the reported
changes are also reflected in the relative position of two molecules and
in the relative orientation of the planes defined by the Cl–C–H bonds
of two molecules. As proposed in the frame of two order parameter
theories [6–10], this liquid can therefore not be simply characterized
by its density, but also a parameter reflecting the SRO should account
for the changes occurring between the two liquids.

To ascertain the influence of the aforementioned structural
changes in the dynamics of the system, we have performed a series of
quasielastic neutron scattering (QENS) experiments for temperatures
ranging from 220 to 300 K, conducted with the TOFTOF spectrom-
eter at FRM II on a hydrogenated sample. Spectra were measured
using an energy resolution of 60 µeV and a wavelength of 6 Å, and
data reduction was performed using the program frida [32]. Two
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Figure 6.2: (color online). Short range order for the HDL (left) and
the LDL (right), at 230 and 280 K respectively. The y-axis is the
cosine of the angle α formed between the vectors defined by the C–
C double bonds of two neighbour molecules and the x -axis is the
number of molecules surrounding a central one. The z -axis represents
the probability of finding two molecules at a distance determined by
the MCN with a relative orientation defined by the α angle.

representative spectra at Q = 0.3 Å
−1

at the LDL and HDL are
shown in Fig. 6.3(a).

To have a first insight of possible changes in the dynamics, a
stretched exponential exp(−t/τ)β was fitted to the intermediate scat-
tering function, obtaining a decrease of the exponent β in the HDL,
which is related to a broadening of the relaxation time distribution,
i.e., an increase of the cooperativity of the molecular motion. A
deeper analysis was performed through a careful fit of data to several
models using a Bayesian approach with the program fabada [33–
35]. In order to keep the number of physical parameters describing
the data to a minimum, we performed the fits to the whole scat-
tering law S(Q,ω). Model selection was performed calculating the
maximum of the likelihood Lmax for each model.

The first model used to describe the data is composed by a dif-
fusion motion plus an isotropic rotation of the molecule [36]. In this
way, the only physical parameters to describe the whole experimen-
tal scattering function were the translational and rotational diffusion
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coefficients as well as the radius of rotation R. This simple model
is able to describe LDL data giving rise to a good quality fit and a
radius of rotation almost independent of temperature (R ≈ 1.72 Å,
see inset in Fig. 6.3(a)), in agreement with the aforementioned NMR
measurements [11, 12]. For the HDL an inability of this model to
describe experimental data (on quantitative grounds, a decrease on
the Lmax of the fit), makes the isotropic model for rotation not valid
to describe molecular rotation. This is also reflected on the sudden
drop of R below Tt (inset in Fig. 6.3(a)). Even when assuming a
free diffusion model for rotations [37] and assuming an anisotropic
rotation of molecules [38, 39], models could not account for spectra
obtained in the HDL. Only adding a confined motion to the previous
model, data could be successfully described. For the latter model,
S(Q,ω) can be expressed as:

S(Q,ω) = [A(Q)δ(ω) + (1− A(Q)) · L(ω)]
⊗ Srot(Q,ω)⊗ Sdiff(Q,ω)⊗R(Q,ω)

where A(Q) is the elastic incoherent structure factor of the confined
motion, L(ω) is a Lorentzian function accounting for a confined mo-
tion, Srot(Q,ω) is the component accounting for the molecular ro-
tation, Sdiff(Q,ω) the component for molecular diffusion [36], and
R(Q,w) is the instrumental resolution. Agreement with HDL spec-
tra is shown in Fig. 6.3(a). To estimate the length scale at which the
confined motion is taking place, A(Q) values have been fitted with a
model of diffusion inside a sphere, yielding R = 1.91 ± 0.07 Å and,
more realistically, a three-dimensional Brownian oscillator [40], yield-
ing a mean squared displacement

√
δ2 = 2.12±0.07 Å. Moreover, the

obtained A(Q) are almost independent of temperature for the HDL,
which means that the length scale of the confined motion is roughly
temperature independent for this liquid.

As previously performed for the microscopic structure investiga-
tion, the dynamics obtained from MD simulations have been analysed
as well. The liquid-like behaviour of the mean square displacement
guarantees that the simulation is within the liquid phase in all tem-
perature range (see inset in Fig. 6.3(b)). Agreement between trans-
lational diffusion activation energy determined using the neutron ex-
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Figure 6.3: (color online). (a) Fits of QENS spectra for Q = 0.3 Å
−1

at 300 K (shifted upwards) to a model considering diffusion and ro-
tation motions, and to a model with an additional confined motion
for 220 K (solid lines). Dotted lines show the experimental resolu-
tion. Inset shows radius of rotation in function of temperature for
the model with only diffusion and rotation (dashed lines are a guide
to the eye). (b) VACF obtained by MD simulations as a function
of time, for temperatures from 200 to 320 K in steps of 20 K (solid
lines for the LDL and dashed lines for the HDL). The inset shows the
obtained mean square displacement from simulations (solid lines for
the LDL and dashed lines for the HDL).

periments (EA = 76±1 meV) and MD simulations (EA = 75±2 meV)
confirms that the simulation is indeed describing the dynamics of our
system. The normalized velocity autocorrelation function (VACF) is
shown in Fig. 6.3(b). The fastest decay for the HDL is higher than
that of LDL indicating that interaction with neighbouring molecules
appears before in that phase. As can be seen, there is a clear change
in the dynamics of the two liquids, the VACF reaching negative val-
ues for HDL. Although interactions between neighbour molecules at
the LDL seem not to impede molecular diffusion, for the HDL a well
defined backscattering effect emerges, displaying a VACF with two
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minima characteristic to that of hydrogen bonded systems [41]. Such
a change in the dynamics is not expected to be due to temperature
effects [42]. Additionally, a change of density of the system would
not be able to explain this change in the dynamics since a change as
large as about 15% in density is needed to produce an effect on the
liquid dynamics in other systems [42]. Therefore, only a change in
the SRO is able to account for the change in the dynamics seen by
experiments and simulations.

The need for an additional confined motion at low temperatures
to describe the QENS data goes along with a backscattering effect
observed in the simulations. We can therefore assert that a cooper-
ative molecular motion is present for the HDL but not for the LDL,
which agrees with other experimental results [14]. The complex dy-
namics of the HDL agrees with a stronger molecular ordering present
in this liquid, where on average there are many orthogonally oriented
molecular pairs. This strong correlation is partially lost in the LDL,
where molecular movements are due to non-coupled movements of
diffusion and rotation.

We have shown that the microscopic ordering of molecules and
molecular dynamics are different between the HDL and the LDL.
The changes in the dynamics are not due to temperature or density
effects, but due to changes in the SRO: for the HDL there are mole-
cules perpendicularly oriented while for the LDL they are randomly
oriented. This accounts for the change of molecular dynamics from
simple non-cooperative motions in the LDL to cooperative motions
for the HDL. However, if these effects are to be explained in the frame
of a singularity-free scenario or a liquid-liquid critical point scenario
associated to a first-order phase transition remains an open question.
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Abstract

Trans-1,2-dichloroethene (HClC=CClH) has several structural and
dynamic anomalies between its low and high-density liquid, previ-
ously found through neutron scattering experiments. To explain the

http://dx.doi.org/10.1063/1.3697849
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microscopic origin of the differences found in those experiments, a se-
ries of molecular dynamics simulations were performed. The analysis
of molecular short-range order shows that the number of molecules
in the first neighbour shell is 12 for the high density liquid and 11 for
the low density one. It also shows that the angular position of the
centre of mass of the first neighbour is roughly the same although
the molecular orientation is not. In both liquids the first neighbour
and its reference molecule arrange mainly in two configurations, each
being the most probable in one of the liquids. First neighbours in the
configuration that predominates in the high density liquid tend to
locate themselves closer to the reference molecule, an evidence that
they are more strongly bonded. This arrangement facilitates a better
packing of the rest of molecules in the first neighbour shell so that
on average an additional molecule can be included, and is proposed
to be the key in the explanation of all the observed anomalies in the
characteristics of both liquids.

Introduction

Description of short-range order in molecular liquids poses a highly
challenging conundrum. The need to determine not only the corre-
lation between the molecular centres of mass but also the relative
molecular orientations to provide a complete picture of the structure
of the liquid makes that, even when considering reasonably simple
molecules, the number of degrees of freedom quickly increases with
respect to mono- or polyatomic liquids. These orientational correla-
tions are usually strongly dependent on the distance for the closest
neighbours but have no correlation for the farther ones.

The molecular arrangement has in turn a vast impingement on
the dynamics of a system [1, 2]. Thus, a detailed and careful analysis
of molecular short-range order is essential to the proper understand-
ing of any system. Several different approaches are used to study
molecular short-range order, such as Reverse Monte Carlo [3, 4], Em-
pirical Potential Structure Refinement [5, 6], and Molecular Dynamic
simulations [7, 8].

Trans-1,2-dichloroethene (HClC=CClH, in the following TDCE)
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Figure 6.4: Differential cross section per atom obtained at the D20
diffractometer (points, with a translation of +0.4 b) and from molec-
ular dynamics (lines) for the low (red) and high (black) density liquid.
The inset shows an ab initio calculation of the molecular structure
of TDCE in the gas phase. Close reproduction of the features in the
experimental differential cross section per atom validates the results
obtained from analysis of the simulation.

is a molecular liquid which manifests several anomalies in the be-
haviour of its high density liquid when compared with its low density
liquid. The molecular geometry of TDCE obtained from an ab ini-
tio calculation in the gas phase can be seen in the inset of Fig. 6.4,
where calculated intramolecular angles and distances are shown. First
claims of an anomalous behaviour in liquid TDCE between 243 and
257 K were made based on a small density singularity, and a local
minimum of the spin-lattice relaxation time (T1) measured by NMR,
as well as a T1 discontinuity, which was assigned to the appearance
of a nematic-like molecular ordering where the molecules have no ro-
tational freedom [9, 10]. A later measurement found a change in the
slope of the density but no discontinuity, although the study did find a
discontinuity in some dynamic magnitudes as viscosity or as the slope
of the rotational relaxation time measured by Raman spectroscopy.

It was therefore concluded that dynamic planar structures were
likely to form [11]. An infrared vibrational spectroscopy study also
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accounted for a clear discontinuity in several bands, attributed to the
existence of a weak Cl-H hydrogen bond which induces the formation
of dimers with a dipolar moment giving rise to local ordering [12].
These locally favoured structures increase the molecular cooperativ-
ity, and thus their reduced mass, slowing down the molecular motion.
Kawanishi et al. had even suggested the existence of a liquid-liquid
transition [9, 10], but a recent optical Kerr-effect experiment reported
that, although it is not a simple liquid, there is no sign of a first order
transition in TDCE .[13].

Some of the authors of the present work reported calorimetric
and nonlinear dielectric results (a maximum on cp and a strong pre-
transitional anomaly, respectively), and suggested that multimolec-
ular heterogeneities (fluctuations with dielectric permittivity slightly
different from the “isotropic” surrounding) appear in the high density
TDCE liquid [14].

Structure and dynamics of TDCE molecules in the high and low
density liquids have been approached through neutron scattering
measurements and molecular dynamics simulations in a previous work
[15]. There, diffraction experiments yielded structural changes in the
molecular short-range order domain, although no molecular cluster-
ing was observed. Experiments on the dynamics showed that the low
density liquid could be well described through a diffusion motion plus
an isotropic rotation, whereas in the high density liquid a confined
motion due to cooperative molecular behaviour had to be added.
Analysis of molecular dynamics simulations showed that molecules
are much more ordered in the high density liquid, and revealed the
appearance of two minima in its velocity autocorrelation function,
which is characteristic of a backscattering effect. Since the density
increase is too small to account for such backscattering effect, this
result supports that the confined motion found in the high density
liquid can only be accounted for through a change in the short-range
order.

Although it was rather clear that the dynamic anomalies found
between the high and low TDCE density liquids come down to a
change in the molecular arrangement, the precise nature of this struc-
tural difference was not analysed. The aim of the present study is to
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focus on the microscopic structure and elucidate the details behind
these anomalies in the high and low density TDCE liquids. Neutron
diffraction experiments of liquid TDCE performed in both density
domains, together with molecular dynamics simulations closely repro-
ducing the experiments, has allowed a thorough statistical analysis
of the simulation configurations, unraveling the structural differences
in the molecular short-range order of the liquid at both densities.

Experiment and simulation details

Neutron diffraction experiments on the short-range order of the low
and high density TDCE liquid were carried out with consistent re-
sults at the diffractometer dedicated to glasses and liquids D4c [16]
and at the high-intensity two-axis diffractometer D20 [17], both at
the Institute Laue-Langevin (ILL, Grenoble, France). A 99.70% pu-
rity sample was purchased from Acros Organics (Geel, Belgium) and
deuterated to 99% for both experiments.

Details of the measurement performed at the D4c diffractometer
and the obtained results have been published elsewhere (see Ref. [15]).
At D20, an incident neutron wavelength of λ = 1.30 Å was used
together with a radially oscillating collimator. In order to correct
and normalize the data, an empty sample holder and a vanadium rod
were also measured. Absorption and multiple scattering corrections
and the normalization of the data were performed using the program
correct [18].

A series of molecular dynamics simulations of the low and high
density TDCE liquid were performed using the program amber8 [19,
20] with a simulation box containing 3629 molecules and a time step
of 1 fs for the integration of the equations of motion. The inter- and
intramolecular interactions for the TDCE molecule were described
using the GAFF force field [19, 20]. The simulations were carried out
for the temperature range 200–350 K in the NPT ensemble, therefore
allowing the box size to change, and the total time of each simulation
run was 40–50 ns [21, 22]. This simulation is the same that was used
in Ref. [15] for the preliminary analysis of the short-range order in
liquid TDCE.
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The differential cross sections per atom obtained from the sim-
ulations for the low and high density liquids are shown in Fig. 6.4
together with the experimental ones, so they can be compared. The
structural differences between the low and high density liquids in the
short-range order domain, already established in a previous work [15],
can be observed. As can also be seen in this figure, agreement of the
simulation with the experimental data is extremely good and abso-
lute intensities are the same within the error. This close agreement
provides a solid ground for a detailed analysis of the simulation in
search of a microscopic explanation.

Angle definitions

To study the short-range order of molecules in the low and high den-
sity TDCE liquids, two kinds of degrees of freedom have been anal-
ysed separately: those regarding the relative positions of the molecu-
les and those regarding their relative orientations.

All the angles used in the analysis of the relative positions and
orientations of the molecules obtained from the simulation have been
depicted in Fig. 6.5.

The angles describing the relative position of the centre of mass
of a molecule with respect to the reference molecule, θCM and ϕCM,
can be seen in Fig. 6.5(a). θCM is the angle between the axis defined
by the chlorine atoms of the reference molecule and the vector that
goes through the centres of mass of both molecules. ϕCM is the angle
between the plane that contains the whole reference molecule and
the plane that contains the chlorine-chlorine axis of the reference
molecule and the centre of mass of the other molecule. θCM and ϕCM

will be referred to as angular position of the centres of mass to stress
the fact that the relative distance between the molecular centres of
mass is already fixed when the neighbours are analysed individually.

The angles α, β, and γ describing the relative orientation between
both molecules have been depicted in Figs. 6.5(b), (c), and (d), re-
spectively. α is the angle between the axes defined by the hydrogen
atoms of each molecule, β is the angle between the axes defined by
the chlorine atoms of each molecule, and γ is the angle between the
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Figure 6.5: (a) Angles θCM and ϕCM describing the position of the
centre of mass of one molecule with respect to the centre of mass
of the reference molecule. (b) Angle α between the axes formed by
the hydrogen atoms of both molecules. (c) Angle β between the axes
formed by the chlorine atoms of both molecules. (d) Angle γ between
the axes formed by the hydrogen atoms of a molecule and the chlorine
atoms of the reference molecule.

axis defined by the chlorine atoms of the reference molecule and the
axis defined by the hydrogen atoms of the other molecule.

Note that, strictly due to geometrical considerations, an isotropic
distribution of molecules around the reference molecule will yield a
higher probability of angle θCM being perpendicular rather than par-
allel. The same happens with angles α, β, and γ, although it does
not happen with ϕCM. To prevent misleading figures arising from
this fact, probability distributions have been plotted as a function of
the angle or the cosine of the angle to ensure they will appear as flat
functions for isotropic distributions.

Results and Discussion

A first step for the analysis of the relative positions of the molecules
in a liquid is to find out how many molecules can be found within the
first neighbour shell. Figure 6.6 shows the pair-correlation function
of the centres of mass of the TDCE molecules calculated from the
simulations for the low and high density liquid, which is proportional
to the probability of finding a molecule at a certain distance of a
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reference molecule. The first neighbour shell is defined as the mole-
cules comprised within the first peak of the pair-correlation function.
Figure 6.6 also shows the molecular coordination number for the two
liquids, calculated from the integration of the pair-correlation func-
tion. Usually, since density decreases as temperature increases within
the same phase, the gCM minimum that defines the first neighbour
shell moves to higher values of r because the mean distance between
the molecules is also increased. However, since the growth of the
molecular coordination number with respect to the distance is also
slower due to a lower density, the corresponding number of molecules
in the first neighbour shell ends up being the same. In the present
case, contrary to what would be commonly expected, a different num-
ber of molecules was found within the first neighbour shell for each
liquid, 12 molecules in the case of the high density liquid compared
with only 11 in the case of the low density one, an indication that
the liquid is undergoing a change in the molecular short-range order
and not only a density variation.

Another representation that can provide further insight into the
difference between the first neighbour shells of the two liquids, be-
cause it takes into account the volume change of the spherical shell as
the distance increases, is the density within the first neighbour shell
as a function of the molecular coordination number (see Fig. 6.7).
Using the molecular coordination number instead of r as abscissa re-
moves the expansion effects of increasing the temperature. In the
high density TDCE liquid the density increases up to the fifth neigh-
bour and then starts to decrease, while in the case of the low density
TDCE liquid the same behaviour is observed at the fourth neighbour.
This is a good indication that the structural differences between both
liquids are originating at the very first molecules.

A detailed analysis of the angular position of the centres of mass
and relative orientation with respect to the reference molecule was
performed for all molecules in the first neighbour shell. A strong
agreement was found with the observation that there is a gap of one
molecule in the structure patterns followed by both liquids, i.e., ex-
cept for the first neighbour, the position and orientation of neighbour
molecules in both liquids is qualitatively the same if every molecule
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Figure 6.6: Pair-correlation function of the centres of mass of the
molecules (gCM, black lines, scale on the left) and molecular coordina-
tion number (MCN, red lines, scale on the right) for the low and high
density liquids (dashed and continuous lines, respectively) calculated
from the simulation. The first neighbours shell contains 11 molecules
in the case of the low density liquid and 12 in the case of the high
density liquid.

in the low density liquid is compared to the next molecule in the high
density liquid instead of comparing the same molecule in both liq-
uids. The interested reader can turn to the supplementary material
available online for more details on this result [23].

Because the changes happen on the very first neighbours and the
orientational correlations in molecular liquids are lost as distance in-
creases, in this work we have focused on the analysis of just the single
first neighbour, to which the following molecules will have to accom-
modate [24]. Figure 6.8 shows the angular position (θCM and ϕCM)
of the centre of mass of the first neighbour with respect to the ref-
erence molecule (for more details and examples on bivariate analysis
see Refs. [25–28]), where no qualitative difference has been observed
between both liquids, since their first neighbour is equally located
around θCM ≈ 90◦ and ϕCM ≈ 90◦. Figure 6.9 shows two examples of
molecular pairs in such angular position. Although the high density
liquid is much more structured, it was a feature already expected due
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Figure 6.7: Density within the first neighbour shell for the high and
low density TDCE liquids (black squares and red circles, respectively)
as a function of the molecular coordination number. A maximum is
observed at the fifth and fourth neighbour for the high and low density
TDCE liquids, respectively, which shows that there is a gap of one
molecule in the structure patterns between both liquids and that the
difference originates in the closest neighbours.

to the smaller effects of thermal agitation, and cannot be viewed as
a meaningful difference in the structure.

Concerning the analysis of the relative orientation of the first
neighbour with respect to the reference molecule, the probability dis-
tribution of the angle α (angle between the hydrogen axes of both
molecules) of the first neighbour is shown in Fig. 6.10 for both liq-
uids, where a discrepancy in the shape of the high and low density
liquid distributions evidences an orientational contribution of the first
neighbour to the differences in the molecular short-range order. No
qualitative differences were observed when the same analyses were
performed for the orientational angles β and γ.

Although the observed angular position of the centre of mass of
the first neighbour with respect to the reference molecule between
both densities is almost the same, the relative orientation between
the molecules is conspicuously divergent, pointing out that this is
where the key for the explanation must be sought.

Figure 6.10 shows that there is a discrepancy in the molecular
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Figure 6.8: Probability of the angular position (θCM and ϕCM) of
the centre of mass of the first neighbour for the (a) high and (b) low
density liquid (darker shade means higher probability). As expected,
the high density liquid is more structured, but there are no qualitative
differences in the angular position of the first neighbour between both
liquids (around θCM ≈ 90◦ and ϕCM ≈ 90◦).

Figure 6.9: Scheme of the two most likely configurations of the
first neighbour and the reference molecule: (a) parallel or P, and (b)
crossed or C. To illustrate the P configuration a molecular arrange-
ment with α = 0◦, β = 0◦, and γ = 76.9◦ has been chosen, while in
the case of the C configuration it has been chosen with α = 76.9◦,
β = 76.9◦, and γ = 0◦. Both examples have the same relative angular
position (θCM = 90◦ and ϕCM = 90◦).
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Figure 6.10: Probability of the cosine of angle α of the first neigh-
bour for the low and high density liquid (red dots and black squares,
respectively). Lines are a guide to the eye. There is a difference
in the relative orientation of the first neighbour with respect to the
reference molecule between both liquids.

orientation of the two liquids but it does not explain the origin of the
density anomaly [10, 11]. Thus, a detailed analysis of the molecular
orientations must be undertaken to understand the reasons behind
the different molecular arrangements.

To learn which are the preferred relative orientations of the first
neighbour and the reference molecule, a mapping of the configura-
tion space is depicted in Fig. 6.11. This figure shows the probability
distribution of the orientation between the first neighbour and the
reference molecule (angles β and γ) for the high and low density
TDCE liquids. As expected in a highly disordered system, there is
a continuum of possible configurations, although not all of them are
equally probable. The configuration space has been divided into 16
regions of possible configurations, corresponding to the grid drawn in
this figure. In both liquids, the same four regions (labelled P and C in
Fig. 6.11) have a higher probability than the rest but, for molecular
symmetry reasons, they account only for two possible configurations
of the reference molecule and its first neighbour. The definition of
each configuration includes all the molecular arrangements between
the first neighbour and the reference molecule that contribute to the
two equivalent regions in Fig. 6.11. The combinations of ranges of
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Figure 6.11: Probability of combinations of β and γ cosines of the
first neighbour for the high (a) and low (b) density liquids (darker
shade means higher probability). The continuum of configurations
between the first neighbour and the reference molecule have been
grouped into 16 regions of possible configurations (grid), from which
those labelled P and C are the most likely at both temperatures.

Table 6.1: Range of values used to define which molecular pairs are
in P or C configuration.

Configuration cosβ cos γ

P 0.5 to 1.0 0.0 to 0.5
P −1.0 to −0.5 −0.5 to 0.0
C 0.0 to 0.5 0.5 to 1.0
C −0.5 to 0.0 −1.0 to −0.5

cos β and cos γ values that define the regions of P and C configura-
tions are shown in Table 6.1.

In Fig. 6.9 representative arrangements of molecular pairs in the
P and C configurations have been depicted to provide a scheme of
the relative orientation between the first neighbour and the reference
molecule. As can be seen in this figure, molecular pairs with parallel
chlorine axes and parallel hydrogen axes are denoted as P configura-
tion (Fig. 6.9(a)), while molecules with their chlorine axis parallel to
the hydrogen axis of the reference molecule and vice versa (crossed



238 CHAPTER 6. RESULTS

Table 6.2: Ratios of first neighbour molecules in P and C configu-
rations with respect to the total number of first neighbour molecu-
les. ∆ represents the increment of the fraction of molecules in that
configuration with respect to the total number of molecules, as the
temperature is decreased from 350 to 200 K.

Configuration 350 K 200 K ∆

P 0.19002 0.17494 −1.5%
C 0.17648 0.19880 +2.2%

molecules), are denoted as C configuration (Fig. 6.9(b)).
Although qualitatively Figs. 6.11(a) and (b) appear to be very

similar, a quantitative analysis shows that for the low density liquid,
configuration P represents a higher fraction of first neighbours than
configuration C. This situation is reversed in the high density liquid
(see Table 6.2). Hence, as the temperature is changed, there is an
inversion of the dominant population in the liquid.

Could this difference of population in the configurations of the first
neighbour between the low and high density liquid be the underlying
cause of the observed anomalies between both densities? To ascertain
whether having the first neighbour in different configurations can
explain the observed short-range order discrepancies of liquid TDCE
(and its dynamic properties), a separate analysis has been performed
to each configuration to compare their particularities.

As it has been previously explained, Fig. 6.8 shows the most prob-
able relative position of the molecular centres of mass when the first
neighbours in any of the configurations are taken into account. To ob-
tain more detailed information from this magnitude, in Fig. 6.12 the
probability density functions of the same angles (θCM and ϕCM) have
been evaluated but only for first neighbours in configurations P and
C, making a distinction between both configurations. From Fig. 6.12
it is inferred that first neighbours in P and C configuration tend to
locate themselves roughly around θCM ≈ 90◦ and ϕCM ≈ 90◦ regard-
less of their configuration (the same position seen in the analysis of
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Figure 6.12: Contribution of configurations P (circles) and C (stars)
to the probability of the centre of mass position of the first neighbour
molecule with respect to the reference molecule. (a) and (b) show the
cosine of θCM and ϕCM, respectively, for the high density liquid. And
(c) and (d) show the cosine of θCM and ϕCM, respectively, for the
low density liquid. The centre of mass of the molecules in the C
configuration tends to be exactly in front of the reference molecule
(θCM and ϕCM = 90◦) while the centre of mass of the molecules in the
P configuration tends to be slightly on a side or is evenly distributed
on a higher range of angles around this value. For the high density
liquid, the total contribution of the C configuration (area in this
graph) is greater than the contribution from the P configuration.
This situation is reversed in the low density liquid.

all first neighbours in Fig. 6.8). Further analyses of the remaining
configurations showed that this is the preferred arrangement of all
first neighbours and not only of those in configurations P and C.

Nevertheless, the angular position distributions of the first neigh-
bours are not completely equivalent for both configurations. In the
high density liquid (Figs. 6.12(a) and (b)), where the difference be-
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tween configurations is more easily observed, θCM and ϕCM distribu-
tions for the C configuration peak clearly at 90◦ while the P con-
figuration displays a double peak for the θCM and a flat top for the
ϕCM distribution that spans to a wider range of values. This means
that molecular pairs in C configuration sit comfortably in front of
each other while molecules in configuration P prefer to be slightly
displaced from that central position.

Probability distribution functions in Fig. 6.12 have been normal-
ized to the total number of molecules so that their area is directly
proportional to the number of molecules in that configuration, to
make the contribution to the total probability of each configuration
clear. Consequently, in this figure it is easier than in Fig. 6.11 to
appreciate, from the area of the distributions, that in the high den-
sity liquid the contribution of C configuration is higher than the P
configuration, and that in the low density liquid it is lower.

In addition to the difference in angular position between molecu-
les in configurations C and P, the distance between first neighbours
in one or the other configuration also varies significantly. Figure 6.13
shows the contribution to the probability that a first neighbour is
at a certain distance from a reference molecule for each of the con-
figurations for the high and low density liquids. As can be seen in
this figure, the centres of mass of molecules in the C configuration
are on average closer than in the P configuration, showing that mo-
lecules in C configuration are more tightly bonded than those in P
configuration.

Abundance of a configuration with a stronger bond between mo-
lecules means that on average they are closer to each other, and a
more ordered arrangement of the molecules makes it even easier to
pack them tighter and to fit in the first neighbour shell the additional
molecule that we have observed in the high density liquid.

The fact that there is a favoured local structure is in agreement
with the previous works [9–12, 15].



6.1. TRANS-1,2-DICHLOROETHENE 241

3.0 3.5 4.0
0.00

0.02

0.04

0.06

3.0 3.5 4.0 4.5

 

 

P
ro

ba
bi

lit
y 

/ b
ox

 s
iz

e

r (Å)

(a) (b)

r (Å)

Figure 6.13: Contribution of configurations P (circles) and C (stars)
to the probability of the centre of mass distance of the first neighbour
molecule with respect to the reference molecule for the (a) high and
(b) low density liquid. Irrespective of temperature, the centres of
mass of molecules in the C configuration are on average closer to the
reference molecule than in the P configuration.

Conclusions

We have unravelled the structural causes behind the density and spin-
relaxation time singularities, and the viscosity and slope of the rota-
tional relaxation time discontinuities in the TDCE liquid by means
of a detailed analysis of the molecular short-range order.

Except for the first neighbour, the position and orientation of
neighbour molecules in both liquids has been found to be qualita-
tively the same if an offset of one molecule is taken into account.
The first neighbour shell in the low density TDCE liquid contains 11
molecules. An additional molecule is contained in the first neighbour
shell of the high density liquid, adding up to 12 molecules. According
to the density distribution analysis, the difference in the molecular
arrangement must originate in the closest four to five molecules of
the first neighbour shell.

The angular position of the centre of mass of the first neighbour is
almost identical for both liquids, molecules gather around θCM ≈ 90◦

and ϕCM ≈ 90◦. But a strong difference is observed in the distribution
of α, the angle between the hydrogen axes, regarding the relative
orientation of the molecular pairs.

Further analysis of the relative molecular orientation of the first
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neighbour and the reference molecule reveals that two of the con-
figurations that have been defined are more probable than the rest
(parallel, P, and crossed, C). While the P configuration prevails in
the low density liquid, the C configuration prevails in the high den-
sity one. There is an inversion of the configuration populations when
the low density TDCE liquid turns into the high density one and vice
versa.

The first neighbours in C configuration have a tendency to locate
themselves closer to the reference molecule and exactly at the angular
position θCM = 90◦ and ϕCM = 90◦ displaying strong bonding. In
contrast, the first neighbours in P configuration tend to be further
apart and with their centres of mass slightly displaced from that
angular position.

Hydrogen bonding between the chlorine atoms of one molecule
and the hydrogen atoms of the other explains why molecular pairs in
C configuration can bond more tightly than those in P configuration.

A larger proportion of first neighbours in C configuration, that
can sit exactly in front of the reference molecule in an orderly manner
and much closer, facilitates a better packing, so that an additional
molecule fits in the first coordination shell of the high density TDCE
liquid, as it has been observed. This can also explain the density
anomaly between the high and low density TDCE liquids.

More structured molecular pairs given by a stronger bonding of
the first neighbours in C configuration is likely to be also the key
to the explanation of the dynamical anomalies reported in previous
studies [9–12, 15].
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644, E-48080 Bilbao, Spain

5Institut Laue Langevin, 6 Rue Jules Horowitz, BP. 156, F-38042 Grenoble Cedex

9, France

6Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid,

Community of Madrid, Spain

Published: The Journal of Chemical Physics 136,
124514 (March 2012).

DOI: ftp://ftp.aip.org/epaps/journ chem phys/
E-JCPSA6-136-045213/

Abstract
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dynamic anomalies between its low and high-density liquid, previ-
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ously found through neutron scattering experiments. To explain the
microscopic origin of the differences found in those experiments, a se-
ries of molecular dynamics simulations were performed. The analysis
of molecular short-range order shows that the number of molecules
in the first neighbour shell is 12 for the high density liquid and 11 for
the low density one. It also shows that the angular position of the
centre of mass of the first neighbour is roughly the same although
the molecular orientation is not. In both liquids the first neighbour
and its reference molecule arrange mainly in two configurations, each
being the most probable in one of the liquids. First neighbours in the
configuration that predominates in the high density liquid tend to
locate themselves closer to the reference molecule, an evidence that
they are more strongly bonded. This arrangement facilitates a better
packing of the rest of molecules in the first neighbour shell so that
on average an additional molecule can be included, and is proposed
to be the key in the explanation of all the observed anomalies in the
characteristics of both liquids.

Angle definitions

To study the short-range order of molecules in the low and high den-
sity TDCE liquids, two kinds of degrees of freedom have been anal-
ysed separately: those regarding the relative positions of the molecu-
les and those regarding their relative orientations.

All the angles used in the analysis of the relative positions and
orientations of the molecules obtained from the simulation have been
depicted in Fig. 6.14.

The angles describing the relative position of the centre of mass
of a molecule with respect to the reference molecule, θCM and ϕCM,
can be seen in Fig. 6.14(a). θCM is the angle between the axis defined
by the chlorine atoms of the reference molecule and the vector that
goes through the centres of mass of both molecules. ϕCM is the angle
between the plane that contains the whole reference molecule and
the plane that contains the chlorine-chlorine axis of the reference
molecule and the centre of mass of the other molecule. θCM and ϕCM

will be referred to as angular position of the centres of mass to stress
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Figure 6.14: (a) Angles θCM and ϕCM describing the position of the
centre of mass of one molecule with respect to the centre of mass
of the reference molecule. (b) Angle α between the axes formed by
the hydrogen atoms of both molecules. (c) Angle β between the axes
formed by the chlorine atoms of both molecules. (d) Angle γ between
the axes formed by the hydrogen atoms of a molecule and the chlorine
atoms of the reference molecule.

the fact that the relative distance between the molecular centres of
mass is already fixed when the neighbours are analysed individually.

The angles α, β, and γ describing the relative orientation between
both molecules have been depicted in Figs. 6.14(b), (c), and (d),
respectively. α is the angle between the axes defined by the hydrogen
atoms of each molecule, β is the angle between the axes defined by
the chlorine atoms of each molecule, and γ is the angle between the
axis defined by the chlorine atoms of the reference molecule and the
axis defined by the hydrogen atoms of the other molecule.

Note that, strictly due to geometrical considerations, an isotropic
distribution of molecules around the reference molecule will yield a
higher probability of angle θCM being perpendicular rather than par-
allel. The same happens with angles α, β, and γ, although it does
not happen with ϕCM. To prevent misleading figures arising from
this fact, probability distributions have been plotted as a function of
the angle or the cosine of the angle as appropiate to ensure they will
appear as flat functions in the case of isotropic distributions.
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Structure patterns

A thorough analysis of the position and orientation of the trans-1,2-
dichloroethene (HClC=CClH, in the following TDCE) molecules in
the first neighbour shell of the low and high density liquids obtained
from the molecular simulation has been performed. Although a lot of
information is presented from that analysis, the detailed short range
order results will not be discussed, the only objective here is to show
that there is an offset of one molecule between the patterns at 200 K
and 350 K, so special attention must be drawn to the fact that the
structure patterns of the low and high density liquids are matched
only when molecules within the first coordination shell are grouped
differently for the low and high density liquids before comparison.

The probabilities of the 1st to the 11th/12th neighbours of be-
ing at a certain position and orientation with respect to a reference
molecule has been averaged for all the molecules in 100 independent
simulations of 3629 molecules each. More details of the molecular
simulations performed can be found in the main text of the article.

The neighbours within the first neighbour shell have been grouped
by positional or orientational pattern similarity.

In all cases, simple visual inspection yielded the following neigh-
bour groups at 200 K:

• Group A: 1st neighbour

• Group B: 2nd and 3rd neighbours

• Group C: 4th and 5th neighbours

• Group D: 6th and 7th neighbours

• Group E: 8th, 9th, 10th, 11th and 12th neighbours.

And the following neighbour groups at 350 K:

• Group A: 1st neighbour

• Group B: 2nd neighbour

• Group C: 3rd and 4th neighbours



250 CHAPTER 6. RESULTS

F
igu

re
6.15:

A
n
gu

lar
p
osition

of
th
e
cen

tre
of

m
ass

of
th
e
m
olecu

les
w
ith

resp
ect

to
a
referen

ce
m
olecu

le
w
ith

in
th
e
fi
rst

n
eigh

b
ou

r
sh
ell

at
200

an
d
350

K
.



6.1. TRANS-1,2-DICHLOROETHENE 251

• Group D: 5th and 6th neighbours

• Group E: 7th, 8th, 9th, 10th and 11th neighbours.

Figure 6.15 shows the probability of each angular position (angles
θCM and ϕCM) of the neighbour centre of mass with respecto to the
reference molecule.

Figures 6.16–6.21 allow the analysis of the neighbour orientation
as a funtion of the neighbour position with respect to a reference
molecule. In particular, the probability of the orientational angle α
as a function of the positional angles θCM and φCM is shown in Figs.
6.16 and 6.17, β is shown in Figs. 6.16 and 6.19, and γ is shown in
Figs. 6.18 and 6.21.

Except for the first neighbour, it can be seen that the patterns
at both temperatures for each group are virtually the same. The
only difference is that, due to thermal agitation, patterns of the low
density liquid at 350 K appear less contrasted than patterns of the
high density liquid at 200 K. To ease the qualitative comparison of
the patterns, the probability colour scales have not been unified.

Here it has been shown that the structure patterns of the molecu-
les in the first neighbour shell have a gap of one neighbour between
the low and high density TDCE liquids, therefore supporting the con-
clusion that the high density TDCE liquid first coordination shell has
one more molecule than the low density one.
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6.2 Role of the conformational disorder

in the notable fragility of

1,1,2,2-tetrachloro-

1,2-difluoroethane (F-112)

In a glass transition one of the degrees of freedom of a system slows
down to a point that it effectively becomes arrested. In plastic crys-
tals the centres of mass of the molecules are located in a regular
lattice but they can rotate more or less freely. If this orientational
disorder freezes, an orientational glass (OG) is obtained. These kind
of glasses are usually strong, but F-112 is a remarkable exception, be-
ing the most fragile OG known so far. The purpose of this research
was to understand the microscopic reasons behind its outstanding
fragility.

F-112 has an additional disorder due to the fact that the molecule
has two possible conformations, which coexist with a different pro-
portion depending on the temperature. A secondary glass transi-
tion takes place when this conformational disorder gets frozen as
well. Large short-range order variations were observed throughout
the whole temperature range, but a sharp tendency change was ob-
served precisely at this secondary glass transition temperature. Anal-
yses of the liquid showed that, contrary to most compounds, the
gauche conformer is more stable than the trans.

For comparison reasons, a similar molecule but without confor-
mations, 1,1,1,2-tetrachloro-2,2-difluoroethane (F-112a), was studied
as well. This compound displayed a strong behaviour, as other OG,
evidencing the idea that conformations played a key role.

Fragility has been associated with the energy landscape complex-
ity. The lack of translational disorder of molecules in OGs can ex-
plain why they are usually strong glasses, but in the case of F-112,
the conformational degree of freedom originates competing intra- and
intermolecular interactions yielding a very complex energy landscape
and thus explaining its outstanding fragility.

Results were presented in several conferences, and published
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mainly in the articles: M. Rovira-Esteva, L. C. Pardo, J. Ll. Tamarit,
and F. J. Bermejo, Metastable Systems under Pressure, pp. 63-77
(book chapter) (2009); and M. Rovira-Esteva, N. A. Murugan, L. C.
Pardo, S. Busch, et al., Phys. Rev. B 84, 064202 (2011).
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Abstract

The temperature dependence of structural parameters of orienta-
tional glasses of the halogenomethane family, Freon 112 ((FCl2C) −
(CCl2F)) and Freon 112a ((F2ClC) − (CCl3)) are studied at short-
(molecular) intermediate- (orientational correlations) and long-range
(lattice parameters) scales by means of neutron diffraction. The two
materials which are chemical isomers display strikingly different prop-
erties in their ordering patterns resulting from a shift in balance be-
tween electrostatic and excluded-volume interaction. The relevance
of these findings to our understanding of glassy phenomena is dis-
cussed.

http://dx.doi.org/10.1007/978-90-481-3408-3_5
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Figure 6.22: In a plastic crystal the molecular centres of mass are
placed in a lattice but the molecules can rotate, more or less freely.
[From Brand et al. [3].]

Introduction

Liquids are systems devoid of both long-range translational and ori-
entational order whereas short-range order still remains at molec-
ular scales resulting from the subtleties of forces acting on their
constituent molecules. In turn, rotator-phase (plastic) crystals are
liquid-like in the sense that molecules may rotate rapidly about the
nodes of a crystal lattice defined by the molecular centres of mass.
Rapid cooling of a liquid leads to a system where disorder is now of
static nature, that is an amorphous material or a glass. Rather sim-
ilar phenomena are found when cooling many plastic crystals, where
the transition into a glassy state, now termed an orientational glass
(OD), involves freezing the rotational degrees of freedom leading to
a system with static orientational disorder (Figure 6.22) [1–3].

A glass transition may thus take place resulting from the dynam-
ical arrest of one or more degrees of freedom due to the action of
an external field such as a rapidly decreasing temperature or an in-
crease in pressure. By convention it is considered that a glassy state
has been achieved when the relevant relaxation time reaches a value
of 102 s.

In addition to positional and orientational degrees of freedom
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Figure 6.23: Freon 112, trans (left) and gauche (right) conforma-
tions.

characteristic of rigid-bodies further degrees of freedom need to be
considered for materials composed of molecules having internal de-
grees of freedom with characteristic energy levels not too far above
kBT . These usually concern motions involving molecular internal ro-
tation which lead to different molecular conformations and in this
sense one terms “conformational glasses” to systems with conforma-
tional disorder.

Here we focus on the compound 1,1,2,2-tetrachloro-1,2-difluoro-
ethane (Freon 112) which has a transition from a liquid to a bcc plas-
tic phase at 299 K and an orientational glass transition at ca. 90 K,
the transition to the completely ordered phase being extremely slow
[4]. Freon 112 has two conformations energetically non-equivalent
named trans and gauche (Figure 6.23). The trans conformation (with
C2h symmetry) is somewhat more stable and has vanishing dipole
moment while the gauche conformation (with C2 symmetry) does
(0.26 D), the proportion between them being a function of tempera-
ture [5, 6].

Because a glass is defined by its dynamical properties, special at-
tention must be drawn to them when characterizing it. The fragility,
for instance, provides a measure of the temperature dependence of
dynamical properties such as the relaxation time associated to the
macroscopic viscosity [7]. In this respect, it turns out that most of
the orientational glasses are rather strong, showing an exponential
temperature dependence of their relaxation time, but Freon 112 is
quite fragile. In fact, is the most fragile plastic crystal known so far
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Figure 6.24: Angell plot of several orientational glasses, including
Freon 112 and 112a, and a structural fragile glass (propylene car-
bonate) for comparison. Strong glasses are closer to an Arrhenius
behaviour (m = 16) while fragile glasses depart from it. [From Pardo
et al. [12].]

(Figure 3) [3, 8–12].
To ascertain the reasons leading to this extreme fragility, the study

of the static, that is time-averaged, properties of Freon 112 is a must.
To such an end, we have taken the endeavour of a full characteriza-
tion of its structural properties, which apart from the intramolecular
structure comprise the conformational disorder, as well as the short-,
intermediate- and long-range order.

Neutron scattering is a powerful technique to get information from
the structure as well as from the molecular dynamics. In particu-
lar, neutron diffraction has several advantages over other diffraction
methods for studying liquid and amorphous structures which stem
from the fact that neutrons interact mainly with atomic nuclei via
the strong nuclear force (every isotope having a different scattering
length that quantifies the strength of the interaction). As a result, the
information contained in a diffraction pattern can be directly related
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Figure 6.25: Freon 112a.

to the internuclear (or interatomic) structure of the system [13].
In this work we will also study the compound 1,1,1,2-tetrachloro-

2,2-difluoroethane (Freon 112a), chemically very close to Freon 112
but with only one relevant conformation for temperatures of interest
(Figure 6.25) and displaying a permanent dipole moment.

This substance also shows a transition from a liquid to a bcc
plastic phase at 309 K but, unlike Freon 112, transits into a more
stable ordered phase at 158 K and then a glass transition at 90 K
[12], the same temperature as the transition of Freon 112. But, like
most orientational glasses, it is rather strong [3, 12, 14, 15].

In what follows we will thus compare the properties and behaviour
of Freon 112a to Freon 112, especially in liquid and bcc plastic phases,
because its study may shed some light on the causes that bring about
some of the peculiar characteristics of the latter.

Experiments and data reduction

The main objective of neutron diffraction is the determination of
structure in terms of the radial distribution function, gαβ(r). This
function is related to the probability of finding an atom β at position
r, relative to a reference atom α taken to be at the origin.

But what is measured in fact in neutron scattering is the differen-
tial scattering cross-section, dσ/dΩ(q), which is defined as the num-
ber of neutrons scattered per second towards a detector in a certain
direction per incident beam flux and solid angle.

In the case of a liquid or a glass sample for which the average
structure is isotropic, only the vector norms (r = |r| and q = |q|) are
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relevant.
The single differential scattering cross-section (1) can be split (in

the static approximation) into its incoherent and coherent contribu-
tions [13]. [

dσ

dΩ
(q)

]
=

[
dσ

dΩ
(q)

]incoh
+

[
dσ

dΩ
(q)

]coh
(6.1)

The first term is independent of spatial correlation of the atomic
sites and depends only on the distribution of scattering lengths
present in the sample (2), leading to an isotropic (angle-independent).[

dσ

dΩ
(q)

]incoh
= Nmol

m∑
i

b2incoh,i (6.2)

where Nmol is the number of molecules in the sample, i are the
atomic positions within a single molecule and bincoh,i is the incoherent
scattering length of the chemical species.

The second term concerns diffraction from all atomic sites (in-
cluding self-scattering from a single atom), but is independent from
the distribution of scattering lengths, including only an average of
them.

The coherent contribution can be further split into its self part (4),
which does not give rise to any interference, and its distinct part (6),
giving rise to interference due to the atoms within the same molecule
and also from different molecules (5).[
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where b2coh,i is the coherent scattering length of the chemical species
at site i. [
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The distinct intramolecular and intermolecular contributions of
the differential cross-section (5) are related to the sum of all partial
structure factors, which is essentially proportional to the differential
scattering cross-section, weighted by the respective coherent neutron
scattering lengths (6).[

dσ

dΩ
(q)

]coh
distinct

=
n∑
α,β

bcoh,αbcoh,β [Sαβ(q)− 1] = NF (q) (6.6)

where n is the number of atoms within the molecules of the sample, N
de total number of atoms and F (q) is the total interference function.

Once the total interference function, corresponding to the
weighted average on the summation (6) has been obtained, a sim-
ple Fourier transform of this reciprocal-space function will lead to
the total pair-correlation function (7).

G(r) ≡ 1

2π2rρ0

∫ ∞

0

qF (q) sin (qr)dq (6.7)

Experiments

To obtain precise information on the molecular correlations at atomic
scales together with information about the crystal lattice parameters
use is made of two neutron diffractometers, D1b and D4 at the Insti-
tut Laue-Langevin (Grenoble, France). The first instrument (D1b)
employed thermal neutrons with λ = 1.28 Å chosen to determine with
maximal precision the variation of the crystal lattice parameters by
means of the positions of the main Bragg peaks. The second set (D4)
was carried out using a diffractometer on a hot source with neutrons
having a wavelength λ = 0.502 Å, shorter than the first, and thus

with a broader momentum transfer range ( qmax = 23 Å
−1
), then

enabling the determination of the smaller distances corresponding to
intramolecular structure and short range order of the compounds.

Corrections and data reduction

The normalization of the diffraction intensity pattern of a sample to
an absolute cross section can be done through the comparison with
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another sample of known cross-section and volume with respect to
the first. In our case, a vanadium solid cylinder was also measured
in the experiments for this purpose.

The computer code Correct [16] has been used to perform this
normalization and also the background, multiple scattering and con-
tainer attenuation corrections to the neutron diffraction data.

When the energy exchange between the neutron and the sample
becomes comparable to the incident energy of the neutron, an inelas-
tic correction becomes necessary due to the breakdown of the static
approximation [13]. This is of greater magnitude with increasing q
values (in a reactor source) and for lighter atoms, since a neutron
striking an atom of small mass will transfer more energy.

A Placzek correction [17] to remove the inelastic effects has been
performed by fitting a polynomial (9) to the higher range of q linearly
weighting the data to account for the higher effect at higher values
of q.

F (q) = p0 + p2q
2 + p4q

4 + p6q
6 (6.8)

Once the corrected total interference function was obtained, a
Fourier transform had to be done to the experimental total interfer-
ence function to obtain the total pair-correlation function.

Another difficulty with which we must deal with in diffraction
experiments is that any instrumental setup has a maximum accessible
momentum transfer, qmax, and the Fourier transformation of that
finite pattern leads to peak broadening in real space as well as to
non-physical oscillations inG(r) and its related functions. Since those
ripples can be confused with the physical diffraction peaks, especially
in the range of smaller distances, they must be avoided to obtain a
reliable analysis.

A method commonly used to deal with that problem is to modu-
late the experimental total interference function by a damping win-
dow function before applying the Fourier transform [18] instead of
just using the step function.

In this work the normalized sinc function (10) has been used for
that purpose.

sinc (x) ≡ sin (πx)

πx
(6.9)
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Figure 6.26: Comparison of the obtained total pair-correlation func-
tion of Freon 112a at 320 K when doing the FT with or without a
sinc window function.

where x = q/qmax.
Although the use of this function preserves the area of the peaks in

the profile of the total pair-correlation function, one of the drawbacks
of this method is that not only the unphysical ripples are damped
but all the oscillations are, with the consequent loss of information
(Figure 6.26).

An alternative method consists on Fourier-transforming the step
function that describes the experimental q range and convolute it with
the theoretical r-space functions before comparing or fitting them to
the Fourier-transformed data [19].

Although this is a more accurate method is somewhat more so-
phisticated and time consuming and it was not considered necessary
in the present work.

Results and Discussion

The first result coming out from the powder diffraction measurement
carried out at D1B yields the temperature dependence of the molec-
ular density of the compounds and is shown in Figures 6.27 and 6.28.
The density is estimated within the bcc phase from the position of the
main Bragg peaks in the diffraction pattern. The molecular densities
for the liquid phase were previously measured by means of densito-
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Figure 6.27: Molecular density of Freon 112.

metry.
In Freon 112 a clear change at 90 K in the slope of the molecular

density yields a first signature of the main glass transition. A more
subtle change in the tendency of the density is also found at 130 K.
This change can be clearly seen in the inset of Figure 6.27 and it
corresponds to the freezing of the gauche-trans conformational dis-
order as proposed by Kishimoto et al. [4] according to specific heat
measurements.

The molecular density for the bcc phase is higher for Freon 112a
(Figure 6.28) than for Freon 112. This fact can be thought of as due
to a closer packing in the former thanks to an easier arrangement of
molecules when there is only one conformation in respect to the case
when there are several.

A series of molecular mechanics and ab initio calculations of an
isolated single molecule have been performed with the Gaussian soft-
ware package (using MM+ and STO-3G, 3-21G, 6-31G* and 6-31G**
basis sets, respectively) to explore the expected positions of the peaks
corresponding to intramolecular distances and also to determine the
optimal procedure to find them.

Every calculation has been made using the results of the previous
one as the initial conditions to reduce the computing time, except for
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Figure 6.28: Molecular density of Freon 112a.

the last one (6-31G**) were the results from the MM+ calculation
were also used to check the robustness of the method.

Since we have considered 0.01 Å as a lower bound for the minimum
distance between peaks that we can resolve, we have concluded that
in future works it is not worth it to increase the computing time using
the larger basis set. Within the needed precision, the use of 6-31G*
will yield the best result with an optimum computing time.

The experimental intramolecular part of the total pair-correlation
function at different temperatures has been plotted together with the
ab initio calculation to provide a visual aid for the intramolecular
distances assignment to the G(r) peaks for both Freon 112 and Freon
112a and is shown in Figure 6.29 and Figure 6.30 respectively.

The total pair-correlation function of Freon 112 contains contri-
butions from both the trans and gauche conformations, and so we
expect major changes in the shape of the peaks as the concentra-
tion of each conformation changes with temperature, as indeed is
observed.

A closer look into the change of the position of certain peaks
reveals a prominent variation of some relevant angles and distances
within the molecule, occurring at the temperature of conformational
freezing (Figure 6.31). The distances C-Cl and C-F, corresponding
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Figure 6.29: Total pair-correlation function for Freon 112 together
with the ab initio calculation of intramolecular distances.

Figure 6.30: Total pair-correlation function for Freon 112a together
with the ab initio calculation of intramolecular distances.
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Figure 6.31: Reduced distances C-Cl and C-F and angles Cl-C-Cl and
Cl-C-F (d0 and dT are the distances at 40 K and 275 K, respectively).

to directly bonded pairs, and the angle Cl-C-F, show this kind of
behaviour, while the angle Cl-C-Cl does not seem to be sensitive to
that particular temperature. The use of the relative distances within
the crystalline bcc phase, (d − d0)/(dT − d0), instead of the plain
distances, enables to scale the y-axis for an easier comparison.

The spatial extent of the total pair-correlation functions corre-
sponding to purely intermolecular distances has also been plotted for
Freon 112 and 112a to show the different short range order features
and is shown in Figures 6.32 and 6.33, respectively.

Rather significant changes on the total pair-correlation function
profile of Freon 112 can be observed for all the temperature range.
The prominent shoulder of the main peak merges with the latter at
130 K where the gauche-trans freezing occurs; and there is a strong
variation in the position of the peak around 9 Å, that has a change
in the tendency precisely at 130 K, probably indicating substantial
modifications in the short range order of the compound due to the
conformational disorder (see the inset on Figure 6.32).

The high fragility of glasses is linked to the idea of a more complex
energy landscape [20, 21]. The fact that orientational glasses are in a
regular lattice (disorder being only of orientational character) usually
accounts for the observation that most of them are rather strong.
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Figure 6.32: Total pair-correlation function for Freon 112 in the
range of intermolecular distances. Temperature dependent position
of the peak around 9 Å on the inset.

Figure 6.33: Total pair-correlation function for Freon 112a in the
range of intermolecular distances.
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The case of Freon 112 is quite different because the conformational
disorder provides an additional source of intramolecular and inter-
molecular competing interactions, giving rise to a higher complexity
that could explain its outstanding fragility among the orientational
glasses.

In stark contrast, the changes with temperature of the short-range
order pattern for Freon 112a are far milder. Its total pair-correlation
function appears with well-defined peaks that change only slightly
its position with temperature. Besides, there are bigger and less
numerous peaks in the total pair-correlation function of Freon 112a
which, altogether, denotes a simpler and rather unvarying features
on its short-range order.

Conclusions

The structural changes observed for Freon 112 at all length scales pro-
vide some clues for a better understanding its outstanding properties.
In particular, the main glass transition at 90 K of Freon 112 shows a
clear signature in the temperature dependence of the molecular den-
sity arising from the reduced volume expansivity within the glassy
state. On the other hand, the molecular density, short range order
and molecular structure for Freon 112 show a sharp change at 130 K,
the temperature at which the gauche-trans conformational freezing
is taking place. In contrast, Freon 112a, with no conformational dis-
order, shows a mild variation of its structural properties with much
more subtle changes. These results suggest that the conformational
disorder of this compound plays a major role on explaining its com-
plexity.

The differences in behaviour between the two compounds have
to be ascribed to the presence in Freon 112a of relatively strong
directional interactions due to its dipole moment as well as to the
different molecular shapes of the two chemical isomers. These dis-
tinct behaviours unveil large differences between the potential energy
surfaces of both isomers and thus exemplify how a shift in the bal-
ance between highly directional (electrostatic) and excluded-volume
(vdW) interactions induced by a change in molecular topology gives
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rise to a whole set of differences in structure and thermodynamics.
The present results constitute a step forward in our understanding

of the microscopic details that may lead too disparate behaviour in
macroscopic glassy properties such as the fragility and also come into
line with results given in Reference [22] on a study of the isomeric
effect concerning another glassy material.

In order to determine exactly which changes on short-range or-
der are taking place and to determine structural molecular scenarios
compatible with the experimental data, Monte Carlo and molecular
dynamics simulations are being performed to try to reproduce some
characteristics of its behaviour and to further understand the glass
transition on this kind of materials.
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Abstract

We report on the interplay between the short-range order of molecules
in the liquid phase of 1,1,2,2-tetrachloro-1,2-difluoroethane and the
possible molecular conformations, trans and gauche. Two comple-
mentary approaches have been used to get a comprehensive picture:
analysis of neutron diffraction data by a Bayesian fit algorithm and
a molecular dynamics simulation. The results of both show that the
population of trans and gauche conformers in the liquid state can
only correspond to the gauche conformer being more stable than the

http://dx.doi.org/10.1103/PhysRevB.84.064202
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trans. Distinct conformer geometries induce distinct molecular short
range orders around them suggesting that a deep intra- and inter-
molecular interaction coupling is energetically favouring one of the
conformers by reducing the total molecular free energy.

Introduction

The structure of molecular liquids has been extensively investigated
by both, diffraction and simulation techniques in the last few decades.
The evergreen question is the relation between the intra- and inter-
molecular parts of the structure. In this context, one of the most
studied systems has been CCl4, whose intramolecular structure has
been well known for a long time [1, 2]. In a recent study, partial pair-
distribution functions have shown that the intra- and intermolecular
characteristic distances are well separated from each other [3]. How-
ever, such a clear decoupling occurs only in a minority of molecular
systems; even for molecular liquids with one molecular centre, like
SbCl5 and WCl6, the interplay between intra- and intermolecular
contributions can be considerable [4]. The structure of liquid water,
arguably the most important of all molecular liquids, has also been
widely studied in this respect. Both the decoupled [5] and the coupled
[6] approaches have been applied in structural modelling applications.
In more complex systems, such as alcohols [7, 8], the intramolecular
structure has been proven to have an effect on the intermolecular
structure at short and even intermediate distances [9].

The determination of the intramolecular structure in the liquid or
the solid phases is not an easy task. First because the diffraction ex-
periments used for its determination allow the access to information
only in reciprocal space, and second because any attempt of perform-
ing a fit has to deal with strong correlations between intramolecular
parameters making it difficult to find the best fit to the data [9, 10].
These difficulties have been summarized in a recent work [11] where
a modification of the Levenberg-Marquardt algorithm is presented.
In this paper we present a different approach to the problem based
on Bayes theorem [12] that helps making non linear fits less challeng-
ing [13].
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Figure 6.34: Ab initio calculation of the F-112 molecular structure
in the gas phase for the trans (left) and gauche (right) conformers,
together with the name convention of the atoms used in the present
work.

The case of 1,1,2,2-tetrachloro-1,2-difluoroethane (hereafter F-
112) is particularly interesting due to the fact that this compound
has two rotamers and its liquid phase is a mixture of different intra-
molecular geometries. Figure 6.34 shows the intramolecular structure
of the two possible F-112 conformers, trans and gauche. As there are
two degenerate possibilities for a gauche conformation but only one
for a trans conformation, the fraction of molecules in the gauche state
would be 2/3 if there were no noticeable energy difference between
the gauche and trans conformers. The structure has been determined
at 0 K in the vacuum, i. e., without taking intermolecular interactions
into account, through an ab initio calculation using the program hy-
perchem[14] with the 6–31G** basis set (see Table 6.3). The atoms
are arranged in staggered conformation and other dihedral angles ex-
ist only in transition states between the conformers. The ab initio
calculation has yielded a very similar energy for both conformers with
a difference ∆H = 0.006 eV, being gauche slightly more stable.

The energy barrier (∆H∗) and energy difference between the two
conformers (∆H) were experimentally determined using NMR, Ra-
man and far infrared spectroscopy, and specific heat measurements,
which yielded ∆H∗ = 0.3 eV − 0.42 eV and ∆H = 0.005− 0.008 eV
[15–19]. This means that at 310 K (RT ≈ 0.027 eV) hardly any
molecule can be found in a transition state and that gauche and
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Table 6.3: Comparison of the parameters obtained from the ab ini-
tio calculation of the F-112 molecule in the gas phase with the mean
and standard deviation obtained from the normal distributions of
the parameters found with the fits of the experimental measurements
(gauche fraction cg, interatomic dihedral angle α and distances rij,
and vibrational parameters lij). Distances related to atomic bonds
and atoms bonded to the same carbon have been considered com-
mon parameters to both conformers, and distances related to atoms
bonded to different carbons have been separately fitted for each con-
former, those corresponding exclusively to the gauche conformation
have been labelled rg. Lengths are given in Å, the angle α in degrees,
and cg is dimensionless.

Parameter Ab initio Fit values

cg 0.67 0.68 ± 0.02
α 59.7 64 ± 2
rC0F0 1.33 1.361 ± 0.001
rC0Cl1 1.76 1.7446± 0.0006
rC0C5 1.56 1.65 ± 0.02
rF0Cl2 2.52 2.536 ± 0.009
rCl1Cl2 2.88 2.64 ± 0.02
rC5Cl1 2.73 2.70 ± 0.01
rgC5F0

2.31 2.269 ± 0.006
rgC5Cl2

2.76 2.93 ± 0.02
rgC5Cl1

2.73 2.70 ± 0.01
rgCl1Cl2

2.89 2.70 ± 0.04

Parameter Fit values

lCF 0.069 ± 0.001
lCCl 0.0829 ± 0.0009
lCC 0.27 ± 0.02
lClF 0.27 ± 0.01
lF1Cl 0.290 ± 0.008
lC1Cl 0.16 ± 0.01
lCl1C 0.19 ± 0.01
lF2Cl 0.079 ± 0.003
lCl2C 0.13 ± 0.01
lF2F < 0.002
lCl2C 0.07 ± 0.01
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trans conformers are nearly equally populated – with a slightly higher
number of the lowest energy conformer.

Usually, gauche rotamers are less stable than trans because the
atoms have a higher steric strain as they are closer to each other.
Nonetheless, several compounds have been reported to display the
opposite behaviour with gauche being more stable, which has been
called ”gauche-effect” [20, 21]. In particular, this effect has already
been reported long time ago in some halogenoethanes [22, 23].

The F-112 NMR spectra were measured from a 33% and a 10%
solution, and found the trans conformer to be at a lower energy than
the gauche [15, 16]. However, energy differences between rotational
isomers strongly depend on the dielectric constant of the medium
due to interactions between the polar groups of the molecule and
the solvent. Therefore, these results can not be simply applied to
the case of the pure compound [24, 25]. Most references assume
the trans rotamer to be the most stable conformer but a calculation
of the intramolecular energy of the rotamer geometries, where the
difference was ∆H = 0.003 eV, returned a gauche conformer slightly
more stable than the trans [23].

The intramolecular structure of F-112 has previously been as-
sumed to be decoupled from the ordering of molecules at short dis-
tances, in some molecular dynamics simulations the molecules are
even assumed to be rigid [26]. Nevertheless, studies on the structure
at the inter- and intramolecular scale showed that the interplay of
features at these two different length scales may explain the complex
dynamics of F-112 [27–29].

The present work is focused on the determination of the molecular
structure of F-112, its interplay with intermolecular ordering in the
liquid phase, and a deep analysis of the short range order, and is or-
ganized as follows: after a short description of the experimental and
simulation procedures, a fit method to obtain molecular parameters
from the neutron diffraction data is presented. The molecular struc-
ture of F-112 will then be obtained from experimental data. Finally,
in order to find out its relation with intermolecular length scale fea-
tures, the short range ordering of molecules will be determined with
molecular dynamics simulation results using flexible F-112 molecules.



282 CHAPTER 6. RESULTS

In the appendix, it is explicitly explained how the errors are cal-
culated when using the Fourier transform, the proposed method is
validated by fitting artificially generated data of the structure of an
ethene molecule, and the F-112 analysis is crosschecked by fitting the
molecular dynamics results and comparing the intramolecular param-
eters with those obtained from the experimental fit.

Experimental and simulation details

6.2.0.4.1 Molecular dynamics simulation For the molecular
dynamics simulations, the initial molecular geometry for F-112 was
obtained by optimizing the molecular geometry at HF/6-31+G* level
using the gaussian 03 program [30]. Because a generalized AM-
BER force field [31] was used in the simulation to describe the intra-
and intermolecular interactions of F-112, which provides a completely
flexible molecular model, the molecules could change between the
trans and gauche conformers to reach the equilibrium population.
After assuring that consistent results were obtained for the simu-
lation irrespective of the initial molecular conformations, a gauche
conformation was adopted as the initial molecular geometry for all
the molecules in the simulation. The charges used in the simulation
were obtained as best fit to the molecular electrostatic potential in
a certain number of points around the molecule using the chelpg
procedure [32].

The simulations were carried out for liquid F-112 using the
sander module in the amber8 software package [33]. The simu-

lation box size was on average 78.5×79.7×77.02 Å
3
containing 2345

molecules of F-112. The temperature of the isothermal-isobaric en-
semble was maintained at 310 K and the pressure was set to 1 bar
using the Nose-Hoover and the Parrinello-Rahman algorithms, re-
spectively [34]. Once stabilization was reached, the density within
the simulation box varied between 1.64 and 1.65 g/cm3, very close to
the experimental density which is 1.62 g/cm3 [35]. The time step for
integrating the equations of motion was 1 fs and the total time scale
of the run was 10 ns.



6.2. 1,1,2,2-TETRACHLORO-1,2-DIFLUOROETHANE 283

6.2.0.4.2 Neutron diffraction experiments Diffraction pat-
terns of a F-112 sample with 99% purity purchased from ABCR
GmbH & Co. KG (Karlsruhe, Germany) were measured in the liq-
uid phase at 310 K. Experiments were performed at the liquids and
glasses neutron diffractometer D4c at the Institute Laue-Langevin
(Grenoble, France) [36], using a wavelength of λ = 0.5 Å and an
angular range for the detectors that yielded a scattering vector up

to qmax ≈ 23 Å
−1
. In order to correct and normalise the data, the

empty cryostat, an empty sample holder, a boron powder sample and
a vanadium rod were also measured, as in previous works [37, 38].
Absorption and multiple scattering corrections and normalization of
the data were performed using the program correct [39]. Addi-
tionally, inelastic corrections were also carried out by subtracting a
polynomial expansion in powers of q2 [40].

Evaluation of the diffraction data

6.2.0.4.3 Bayesian fit method Bayesian methods are routinely
used in many branches of science [41]. Their use in condensed matter,
although it has been proven to be very powerful, is still quite scarce
[42, 43]. Among them, the atomic Reverse Monte Carlo method [44,
45] provides a maximum entropy solution to the problem of finding
a molecular configuration that fits diffraction patterns within their
errors. This method has been successfully used in the study of simple
molecules such as water [6] or tetrahedral molecules [3, 37]. However,
usually a careful preparation of the initial configuration is needed in
order to be able to reproduce the experimental results. A preparation
that, if not properly done, can be misleading in the case of complex
molecules such as polyalcohols [7].

This problem of a strong dependence of the result on the initial
choice of parameters is typical for fits with many parameters. In the
case of Reverse Monte Carlo, the number of degrees of freedom of
the system is extremely high because the description of the data is
done by molecular configurations. To avoid this problem, we have
developed an alternative Bayesian fit method to extract only the in-
tramolecular structure from diffraction data. In this way, the amount
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of parameters to describe a F-112 flexible molecule is reduced to only
23 (see below for the description of the parameters).

The classical approach to fit models to datasets is finding the
parameters {Pi} that minimizes the figure of merit χ2. In contrast,
Bayesian methods allow successive sets of parameters {P l+1

i }, where
l is a given step in the fit process, to be accepted with a probability

Paccept = exp

[
χ2{P l+1

i } − χ2{P l
i }

2

]
. (6.10)

This algorithm accepts parameters that do not decrease χ2 if they
are consistent with the data error bars.∗ From a geometrical point of
view, the parameter values are allowed to go “uphill” in the χ2{Pi}
hypersurface. This method has two main consequences (i) The algo-
rithm does not get stuck in local minima of the parameter space {Pi}
during the fit process. This is why the initial choice of the parameter
values do not matter with this fit method [47]. ii) The results are
described by means of probability distribution functions (PDF) that
reflect all the complexity of the problem under study. This is because
once the best fit is found, the program explores the whole parame-
ter space compatible with the data and its errors. Note that in the
following sections the word ”parameter” will often be used instead of
”parameter PDF” in a language abuse.

6.2.0.4.4 Fit function Independently from the choice of a
Levenberg-Marquardt or a Bayesian approach to determine the best
parameter set to describe the experimental data, a function has to
be formulated that the algorithm should fit to the data. In our case,
we have applied the Bayesian method to find molecular structures
compatible with a diffraction pattern – simultaneously in reciprocal

and in direct space.† This procedure helps to select the best set of
parameters by optimizing the path used to approach the minimum

in the χ2 hypersurface.†

∗See Appendix 6.2.0.4.4.
†See Appendix 6.2.0.4.5.
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With respect to the first, in neutron diffraction of a molecular liq-
uid the differential scattering cross section per atom can be separated
into the q-dependent coherent contribution from different atomic sites
and a constant term arising from other contributions [49]. Because
the fit is intended to extract the intramolecular structure, in recip-
rocal space we will focus only on the intramolecular contribution of
the aforementioned q-dependent term as performed previously [8–
10, 50, 51],

1

N

[
dσ

dΩ
(q)

]intra
coh

=

1

m

m∑
i,j 6=i

bib
∗
j

sin (qrij)

(qrij)
exp

[
−
〈
δr2ij
〉
q2/2

]
, (6.11)

where N is the total number of atoms in the sample, i and j are sites
on the same molecule, m is the number of molecular sites, bi is the
coherent scattering length of the chemical species at site i, rij is the
modulus of the mean separation between atoms i and j, and in the
Debye-Waller term

〈
δr2ij
〉
= 〈u2i 〉 +

〈
u2j
〉
where 〈u2k〉 (k = i, j) is the

mean squared vibrational amplitude for the atom at site k [49].
In the case of real space a radial distribution function, RDF(r) ≡

4πr2ρg(r), is used as defined in Ref. [49], derived from a Taylor se-
ries expansion of the distances through the quadratic terms of the
displacements [52–56]. For distances compatible with those of the
intramolecular structure [57],

RDFcalc(r) =

P (r) +
1

B

m∑
i,j 6=i

bib
∗
j

r

rij

exp

[
−1

2

(r−rij)
2

〈δr2ij〉

]
√
2π
〈
δr2ij
〉 , (6.12)

where B = 1
m

∑m
i,j 6=i bib

∗
j is a normalization constant, and P (r) is a

polynomial accounting for the density term (4πρr2) and any inter-
molecular contribution that is visible at the intramolecular length
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scale. The introduction of this polynomial term is justified by the
fact that the width of the first peak describing intermolecular struc-
ture (circa 2-3 Å) is at least an order of magnitude wider than those
contributing to the intramolecular structure (between 0.01 Å and
0.1 Å), i.e., the peaks arising form the intramolecular structure are
much sharper than the first one describing short range order (see for
example Refs. [7, 37]).

Because changing the relative position of a single atom within the
molecule will affect all interatomic distances rij related to that atom,
those parameters have been reduced to a minimum set of independent
variables, and since the fits are also performed taking into account
molecular symmetries, the m·(m+1) parameters that would describe
the molecular structure have been drastically diminished.

In order to obtain the experimental RDF from diffraction data,
one needs to perform a Fourier transform of the measured scattering
function (SF) to go from reciprocal space to real space. Unfortu-
nately, the Fourier transformation of experimental data has two main
well-known undesired effects in the RDF which are due to the finite
experimentally available q-range: the peaks described by Eq. 6.12 are
broadened, and a series of spurious peaks appears in addition to those
defining molecular structure. The reason is that due to experimental
limitations the recorded data is not only the SF but its product with
Θ(qmax − q), where Θ is the Heaviside step function representing the
experimental window. Therefore, what is obtained in direct space is
the convolution of the Fourier transformation of both functions [49]:

RDFexp(r) = RDFcalc(r)⊗Θ′ (r) (6.13)

where Θ′(r) = [1− cos (qmaxr)] /r is the Fourier transform of
Θ (qmax − q).

The spurious peaks can be minimized (but not fully corrected) by
previously applying a smoothing function to the SF that approaches
zero for q = qmax but this solution has the drawback that the peaks are
even more broadened in real space, smearing out intramolecular fea-
tures [58]. Instead, we have carried out this convolution in real space
to fully account for both effects (peak broadening and spurious peaks)

of the limited reciprocal space accessible by the experiment [59, 60].†
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The proposed algorithm to find the structure describing the data
within their errors is implemented in the program fabada [61], and
it has already successfully been used to describe the dynamics from
quasielastic neutron scattering experiments [62, 63] and from dielec-
tric spectroscopy [64].

The intramolecular structure of F-112

The intramolecular structure of F-112 in the liquid phase has been de-
termined by simultaneously fitting the experimental neutron diffrac-
tion SF and the RDF obtained from the Fourier transform of the data
to assure the robustness of the best fit.†,‡ For simplicity, the notation

lij ≡
√〈

δr2ij
〉
has been used. The molecular parameters rij and lij

follow the notation of the atoms in Fig. 6.34 and, since the two con-
formers have different molecular symmetries, the needed parameters
are not the same. Distances related to atomic bonds and to atoms
bonded to the same carbon have been considered common parame-
ters to both conformers, and distances related to atoms bonded to
different carbons have been separately fitted for each conformer (see
Table 6.3).

Due to the symmetry of the trans conformer the dihedral angle
between its atoms F–C–C–F has been assumed to be a distribution
around 180◦. The parameter α, shown in the inset of Fig. 6.35, has
been used to fit the dihedral angle of the gauche conformer. In order
to account for the fraction of the gauche and trans conformers in
the liquid state, the parameter cg has been introduced. It gives the
gauche fraction (cg) and the reciprocal fraction of trans (1 − cg) in
the liquid state. Thus, the total radial distribution function can be
written as:

RDFintra = (1− cg) · RDFintra
t + cg · RDFintra

g (6.14)

for the RDF, and correspondingly

SFintra = (1− cg) · SFintra
t + cg · SFintra

g (6.15)
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for the SF. It must be stressed that cg and 1−cg are in this equation,
like all the parameters through the Bayesian method, probability

distribution functions and not just scalars.†
Since we are interested in analysing the intramolecular part there

is no interference between the scattering contributions of the dis-
tances between atoms in different molecules, therefore, a simple ad-
dition of each conformer contribution can be performed. However,
this approach is based on the assumption that the molecules are
either in the gauche or in the trans conformation and only a neg-
ligible amount is in a transition between the two. To address the
point if the molecules are mainly present in the gauche or trans
state, the probability Ptransition of finding a molecule in a transi-
tion state between the trans and gauche conformers at the highest
point of the energy barrier, with respect to Pconf , the probability
of finding it in a trans or gauche conformer, has been calculated:
Ptransition/Pconf = exp (∆H∗/kBT ) ≈ 10−5−10−7 when taking the lit-
erature values for ∆H∗. We can therefore assess that molecules will
be either in trans or gauche conformation.

This fact is also reflected in the molecular dynamics simulation,
as can be clearly seen in Fig. 6.35 where only the dihedral angles cor-
responding to trans and gauche conformers are found. The weighting
method to account for the contribution of each conformer to the RDF
and to the SF has been tested using data from the simulation.‡

The values obtained from the ab initio simulation have been used
as the initial parameters to fit simultaneously in direct and recip-
rocal space the composed diffraction functions (Eqs. 6.14 and 6.15).
An excellent agreement with the experimental data is obtained for
the whole experimental q-range (Fig. 6.36). The mean and standard
deviations of the normal PDFs obtained from the fit of the diffraction
data of the liquid phase together with the parameters obtained from
ab initio calculations in the gas phase are compiled in Table 6.3.
The molecular structure could be unambiguously determined from
the experiment; of the dynamic parameters only the one related to
the atomic vibrational amplitudes (lF2F) could not. This is due to the

‡See Appendix 6.2.0.4.6.
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Figure 6.35: Probability distribution function (PDF) of the dihedral
angle F–C–C–F of the F-112 molecule as extracted from the molecular
dynamics simulation in the liquid state. Inset shows the definition of
the dihedral angle α in a F-112 molecule.

small contribution that these atomic pairs have to the total intensity

of the SF and the RDF.† Results summarized in Table 6.3 clearly
show that the ab initio calculations (on vacuum) are substantially
different.

One of the most remarkable result presented in Table 6.3 is that
the obtained proportion of gauche conformer is (68±2)%. Taking into
account the energy differences between trans and gauche conformers
determined by previous experiments, this fraction should be between
60% and 62% at 310 K if the trans rotamer is assumed to be the most
stable. Conversely, Fig. 6.37 shows that the cg PDF is clearly peaked
at 68%. In addition, this value is even higher than 2/3 which is the
maximal value that could theoretically be reached at high tempera-
tures if this were the case. On the other hand, if the gauche rotamer
is assumed to have the lowest energy, the gauche fraction should be
between 71% and 73%, and 2/3 would become the minimum theoret-
ical value that could be reached at high temperatures, slightly below
the actual observed value of the PDF peak.

Another way to lend further support to the hypothesis Hfree of
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Figure 6.36: (a) Experimental SF of F-112 (circles) with its best fit
(dashed orange line) in the range of higher q-values (here 7− 23 Å),
where the intermolecular contribution is not significant, and the SF
obtained by the molecular dynamics simulation (solid violet line).
The inset zooms into the fitted portion of the experimental SF which
is shown together with the best fit. (b) Experimental RDF (circles)
with its best fit (dashed orange line) in the intramolecular distances
domain. Note that the experimental RDF is the Fourier transform
of the experimental SF and the fit is the calculated RDF convolved
with Θ′.

having an additional parameter with any concentration PDF over
the hypothesis H2/3 of having a fixed gauche fraction of 2/3, is to
compare the χ2 PDFs of these two models [62]. As it can be seen in
the inset of Fig. 6.37, the Hfree model is preferred to the model H2/3,
because the χ2 PDF has its peak at a smaller value.

This analysis provides strong indication that gauche is the more
stable conformer in the F-112 liquid phase. Deviations of the gauche
population from the expected values can be ascribed to possible dif-
ferences in the short range order seen by trans and gauche molecules,
that could energetically favour one or the other conformer. This
being analogous to the effect produced on the energy difference of
the conformers by different mixtures of solvents with a distinct di-
electric constant, thus coupling its intramolecular structure with the
surrounding intermolecular interactions [24, 25].
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Figure 6.37: The probability density function (PDF) associated with
the fraction of gauche conformer population in the sample cg obtained
from the fit to the experimental data. Inset shows the χ2 PDF of
hypothesis H2/3 (dashed black line) and Hfree (solid red line).

In order to ascertain the validity of the previously stated assump-
tion concerning the proportion of the gauche conformer due to dif-
ferences in the molecular ordering, a molecular dynamics simulation
using flexible molecules was performed. The simulation yields the
same result that is obtained by fitting experimental data: a large
fraction of gauche conformer. The value of the gauche population
obtained in the simulations is 74%, even higher than the one ob-
tained experimentally, thus supporting the conclusion that gauche is
the most stable conformer in the liquid phase. Last but not least, the
agreement between experimental results and the simulations confers

a reliable proof of the validity of the used method.‡

The intermolecular short range ordering of F-112

The first step to analyse the short range order of F-112 is to determine
the number of molecules in the first coordination shell. The molecular
coordination number was obtained through the integration of the
RDF of the distances between the centres of mass (with respect to a
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Figure 6.38: Radial distribution function (RDF) of the molecular
centres of mass (dashed red line) together with the molecular coordi-
nation number (MCN) (solid black line) of F-112 from the molecular
dynamics simulation. An upward arrow indicates the MCN value
that corresponds to the RDF minimum, which was used to define the
first neighbour shell. The corresponding MCN (black point) is 13.

central one). The number of molecules within the first coordination
shell is 13 as can be seen in Fig. 6.38.

We analyze the differences between the relative positions of F-
112 molecules in the first coordination shell around trans and gauche
molecules. Figure 6.39 displays a scheme to define the angle φ used
to analyse the short range order around each conformer. For both
conformers φ is the equatorial molecular angle defined as the one
between the reference molecule plane (defined by the C–C axis and
a fluorine atom) and the neighbour molecule position plane (defined
by the C–C axis of the reference molecule and the central point of
the C–C axis in the neighbour molecule). This angle gives direct
information about the arrangement of molecules. Roughly speaking,
φ = 0◦ corresponds to configurations where neighbour molecules are
in the direction of one of the fluorine atoms.

The PDF associated to the equatorial angle φ only for the first
neighbour around trans and gauche conformers is depicted in Fig.
6.40. The ordering of the molecules is different around trans and
gauche conformers as can be directly seen in the figure. Closest
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Figure 6.39: Scheme of the definition of the equatorial angle φ be-
tween the reference molecule plane and the position plane of the
neighbour molecule in F-112. For both conformers the reference
molecule plane is defined by the C–C axis and a fluorine atom, and
the position plane of the neighbour molecule is defined by the C–C
axis of the reference molecule and the central point of the C–C axis
of the neighbour molecule. In the case of the trans conformer, the
plane containing the other fluorine atom will be located at φF = 180◦

while, in the case of the gauche conformer, this plane will be located
at an angle φF = α.

neighbours align preferably in the direction of the fluorine atoms,
hence, due to the different geometries of both conformers, molecules
tend to locate at φ = 0◦ and 180◦ around trans conformers, and at
φ = 0− 60◦ around gauche conformers (in the direction of the small
region between the fluorine atoms). Both profiles reflect the symme-
try of its conformer geometry, which is the plane going through the
C–C axis with φ = 0◦ and 180◦ for the trans, and the plane going
through the C–C axis with φ = 30◦ and 210◦ for the gauche.

It is now clear that there is a difference in the ordering of the first
neighbouring molecules around a central trans or gauche conformer.
How far does this difference reach? Figure 6.40 shows the probability
density of finding a neighbour molecule at a certain angle φ around
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Figure 6.40: Top: Probability density of the equatorial angle of the
central point φ of the first neighbour molecule (MCN = 1) surround-
ing trans (black lines) and gauche (red lines) conformers, extracted
from the molecular dynamics simulation in the liquid state. Vertical
lines show the direction in which the fluorine atoms are found for each
conformer. Bottom: The same probability density as a function of
MCN surrounding trans (a) and gauche (b) conformers (darker shade
means higher probability).
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a trans or a gauche reference molecule as a function of the molecular
coordination number. This representation provides information at a
first glance about the angular distribution of neighbouring molecu-
les when moving away from the reference molecule, and thus gives a
picture of the short range order inside the whole first coordination
shell. A look to this figure readily tells us that the relative position
of molecules is different for each conformer even at rather long dis-
tances from the reference molecule. As expected, at longer distances
the molecular ordering starts to smear out but, even then, trans and
gauche molecules try to fill the gaps that the closest neighbours left
empty, so a difference in the molecular arrangement is still main-
tained, a phenomenon observed as well in carbon tetrachloride [37].
A complete characterization of the short range order of F-112 using
this kind of bivariate analysis [66, 67] is being carried out, and addi-
tional differences in the relative orientation of molecules have already
been found.

Concluding remarks

Concerning the intramolecular structure of F-112, it has been possible
to show that within the liquid phase the gauche conformer represents
(68±2)% of the molecular population, which supports the conclusion
that it is the most stable conformer in the liquid phase.

The model with a distribution of an adjustable gauche conformer
fraction is preferred over the model with a fixed fraction of 2/3, which
is a reflection that the intra- and intermolecular degrees of freedom
are deeply interwined in F-112. Thus, it is essential to use flexible
molecular models that allow conformation population variability to
get true insight on the behaviour of this compound.

Departure from the expected conformer population has been ten-
tatively attributed to the difference in the short range order around
trans and gauche molecules, that energetically favours one of the
conformers, coupling intra- and intermolecular interactions. It has
been shown through the analysis of molecular dynamics simulations
that the first neighbour molecules tend to locate in the direction of
the fluorine atoms, therefore a different molecular short range order-
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ing around trans and gauche molecules is induced by each conformer
geometry. Angular distribution differentiates trans and gauche ro-
tamers up to relatively long distances because, even when defined
positions start to blur, since F-112 molecules fill the gaps that the
closest neighbours did not occupy, a contrast is still preserved.

Successful use of this Bayesian analysis based method to deter-
mine the molecular structure from diffraction data, through the fit
of not only the experimentally obtained SF in the reciprocal space,
but also simultaneously the RDF in the real space obtained through
Fourier transformation, will help to pave the way to understanding
the molecular structures and the short range order in complex disor-
dered systems.
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Appendix: Calculating the error in Fourier transformations

Errors associated with the data play a major role in the proposed
fit scheme to obtain molecular structure parameters because they
regulate the capability of the program to go uphill in the χ2{Pi}
hypersurface.

Because the method is optimized by the simultaneous fit of the
functions in both the reciprocal and the direct space, it is not enough
to know the experimental error from the measured SF, it is also neces-
sary to calculate the errors of the RDF obtained after Fourier trans-
forming the experimental data and convolving with Θ′. And since
this is not an obvious calculation, it is explained in detail in this
Appendix.
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Errors have been calculated following two alternative approaches:
by error propagation of the discretised Fourier transform and by using
a Monte Carlo method [68].

The discretised version of the Fourier transform that has been
applied to the experimental SF to obtain the RDF is

RDFexp(r) = 4πρr2 +
2r

π

n∑
k=1

qkFexp(qk) sin(qkr)∆q (6.16)

where k = 1, . . . , n are the experimental points, ∆q is the sampling
interval and Fexp is the differential scattering cross section per atom
subtracted by the constant term σscatt/4π, the average scattering
cross section σscatt. If the theory of error propagation is applied to
Eq. 6.16 and it is assumed that errors are normally distributed, a
relationship is obtained between the errors of the SF and the RDF:

εRDF(r) = εF (q)

n∑
k=1

2

π
(qkr) sin (qkr)∆q . (6.17)

Errors in the RDF calculated in this way have been plotted in Fig.
6.41(b) and are essentially linear with respect to r (the slight sinu-
soidal modulation can barely be seen).

The Monte Carlo method to calculate errors consists in Fourier
transforming SFs generated with normally distributed random points
and obtain the PDFs of the points in real space as a function of r af-
ter a number of SFs have been generated and Fourier transformed in
this manner. A single example of such a SF and several RDFs corre-
sponding to Fourier transformation of different SF are shown in Figs.
6.41(a) and (b), respectively. The PDFs of the points have been cal-
culated in this case after Fourier transformation of 1000 random SFs.
As it can be seen in the inset of Fig. 6.41(b), normal distributions for
the data were obtained in real space as well allowing thus to calculate
errors using Eq. 6.17. The error at each point has been obtained from
the standard deviation of its normal distribution and they have been
plotted in Fig. 6.41(b) together with the errors calculated from error
propagation. As we can see in the figure, both methods lead to the
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Figure 6.41: (a) Scattering function SRND generated as normally
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errors calculated by Monte Carlo simulation (points) and by error
propagation (thick red line). The inset represents the distribution of
RDFRND values at a single point obtained by Fourier transforming
1000 SRND, showing that data are also normally distributed in real
space.
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Figure 6.42: Calculation of RDF errors after Fourier transformation
of the SF using error propagation of random data with a normal
distribution (dots) and convenient estimation of these errors through
Eq. 6.18 (lines). Errors have been calculated as a function of qmax

with ∆q fixed (a) and vice versa (b).

same result (points from Monte Carlo calculation lie on top of the
curve from error propagation) despite the fact that the Monte Carlo
method needs a considerably greater computational effort.

Using the error propagation method, a grid of the RDF error as
a function of r, ∆q, and qmax has been calculated. Figure 6.42 shows
two series of error calculations: for fixed ∆q and for fixed qmax (points
in Figs. 6.42(a) and 6.42(b), respectively).

From the calculated ε(r,∆q, qmax) at different qmax and ∆q, the
following relationship has been obtained:

εRDF(r) = m(qmax,∆q) · r (6.18)

where the value of the slope m(qmax,∆q) satisfies the empirical equa-
tion log10m = 1.5341 · log10 qmax + 0.495 · log10 ∆q − 0.646. The ad-
vantage of using this equation is that since qmax and ∆q are usually
constant parameters in diffraction experiments, m(qmax,∆q) has to
be computed only once.

The errors obtained using the proposed relationship have also
been plotted in Fig. 6.42 as straight lines. Excellent agreement be-
tween both validates the proposed relationship as a convenient way
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Figure 6.43: Structure of the ethene molecule used to validate the
proposed algorithm, together with the name convention used in Ta-
ble 6.4.

to estimate errors of RDFs obtained through the Fourier transform
of experimental SFs.

Appendix: Bayesian fit method validation

In order to attest the validity and robustness of the proposed fit
method to obtain molecular structure parameters from diffraction
data, the whole process will be performed to two known samples so
that the outcome of the fit can be compared to the real values.

6.2.0.4.5 Fitting a synthetic test molecule The sample used
for this test consists on a generated SF dataset corresponding to a
deuterated ethene molecule (see Fig. 6.43) with a known geometry.
The SF has been generated using Eq. 6.11 without the polynomial
term P (r) and adding normally distributed random numbers to those
values so that the error associated with the generated experimen-
tal dataset is σ = 0.002. The geometric parameters used to build
the molecule, listed in Table 6.4, do not exactly correspond to the
empirical ones. Once the distance between carbon atoms rCC and
between carbon and deuterium atoms rCD, and the angle between
two deuterium atoms bonded to the same carbon αDCD are known,
the structure of this molecule can be fully determined. Furthermore,
as far as the vibrational parameters lij are concerned, only six have
been considered independent after taking into account the molecular
symmetry.
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Table 6.4: Comparison of the parameters used to generate the ethene
molecular data (interatomic distances rij and angle αijk, and vi-
brational parameters lij) with the mean and standard deviation of
the normal distributions of the parameters obtained from the fits.
Lengths are in Å and angles in degrees.

Parameter Seed values Fit values

rC1C2 1.3 1.294 ± 0.004
rC1D1 1.1 1.100 ± 0.001
αDCD 117.0 116.9 ± 0.4
lC1C2 0.05 see Fig. 6.46
lC1D1 0.1 0.103 ± 0.001
lC1D2 0.1 0.098 ± 0.003
lD1D4 0.1 0.107 ± 0.005
lD1D2 0.2 0.200 ± 0.010
lD1D3 0.2 0.200 ± 0.015

In Fig. 6.44 we show the RDF of ethene obtained by Fourier trans-
formation of the constructed experimental SF and the RDF obtained
directly from the model (calculated using the seed parameters of Ta-
ble 6.4 in Eq. 6.12) after convolving the model with Θ′. Good agree-
ment of the latter (see inset in Fig. 6.44) supports the validity of both,
the Taylor approximation in Eq. 6.12, and the method accounting for
the truncation effects in the SF.

Two ways of fitting the generated data have been undertaken to
check the suitability of the proposed method: using only the SF, and
using both the SF and the RDF. As it can be seen in Fig. 6.45(a),
although both methods are able to describe the data within experi-
mental error, the second method leads to a smaller χ2 value for the
SF (inset in this figure). In order to clarify why fitting in both direct
and reciprocal space is more desirable than just in reciprocal space,
we have plotted in Fig. 6.45(b) the RDFs obtained with the fit of
only the SF and the fit where direct and reciprocal space were simul-
taneously used. As it can readily be seen in this figure, very similar
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Figure 6.44: RDF of ethene obtained by Fourier transformation of
the generated SF (circles), RDF calculated directly using the model
(dash-dot red line), and RDF obtained through the convolution of
the model with Θ′ (solid blue line). Dashed black lines are individual
contributions from the different atomic pairs (also convolved with Θ′).
Inset zooms the part of the RDF where the small rCC contribution is
located (solid black line).

functions in reciprocal space (both of them fit the SF data within
the error) may be completely different in real space, leading in some
extreme cases as this one to results devoid of physical meaning. That
is because the profile of the χ2{Pi} hypersurface is different in re-
ciprocal and direct space, and since the parameters we are using for
the fit are natural real space magnitudes their minima appear bet-
ter defined in real space. Fitting in both spaces at the same time
helps thus to select the sets of parameters that are more likely to
yield a closer description to the real system. Consequently, fits were
performed hereafter in this way.

Figure 6.46 shows the PDFs as a function of rescaled parameters
(rCC, rCD, αDCD) with respect to their maximum probability values.
Figure 6.46(a) clearly evidences that PDFs are well described by nor-
mal distributions. Errors were calculated as usual in these PDFs, i.e.,
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304 CHAPTER 6. RESULTS

0.99 1.00 1.01
0.00

0.05

0.10

0.15 (a)

P
D

F

X/X
Pmax

-3 -2 -1

(b)

P
D

F

log
10 

[l
CC

(Å)]

Figure 6.46: (a) PDFs obtained for the structural parameters of
ethene, x-axis rescaled by the most probable value of each parameter
(rCD red squares, rCC black circles and αDCD blue triangles). (b) PDF
obtained for lCC , the vibrational parameter of the two carbon atoms
of ethene.

one standard deviation from the mean of the PDF containing 68% of
values.

The same conclusion (not shown) has been obtained for the vi-
brational lij parameters (Table 6.4), except lCC, which could not be
described at all by a normal distribution. Because not even the length
scale of lCC could be determined, a maximum ignorance prior distri-
bution in logarithmic scale, or Jeffreys prior [69], has been used to
calculate its PDF, which is shown in Fig. 6.46(b). From the figure
it is clear that it makes no sense to give a value to this parameter,
because any lCC will be able to fit both the SF and RDF equally well
within the error. In order to further understand this fact, a zoom of
the area in the RDF where this peak is located has been displayed
in the inset of Fig. 6.44. The contribution of the carbon-carbon term
is so small that the peak can barely be distinguished in this figure,
that is the reason why lCC can not be determined. Nevertheless, we
would like to point out that, even if this peak is not visible, since the
fit is performed taking into account the whole molecular geometry
and differences in the distance between carbon atoms induce changes
in the positions of many other peaks, it has been possible to accu-
rately determine the parameter rCC concerning the peak position of
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the distance between carbon atoms contribution.

6.2.0.4.6 Fitting the intramolecular parameters from a
molecular dynamics simulation The mathematical procedure,
i. e., the fit method and the way it has into account termination ef-
fects of experimental data, has been already tested in the preceding
section using a synthetic dataset generated from a reasonably sim-
ple known molecular geometry. Nevertheless, it would be useful to
test the validity of the method from a dataset, not directly obtained
from a mathematical description of a known geometry, but from a
situation much closer to the experiment.

In this test the known sample will be the SF and RDF datasets ob-
tained from the F-112 molecular dynamics simulation. The molecular
structure obtained from the SF fit will be compared to the molecular
parameters that have been used in the simulation. Special attention
has been devoted to test if the fit procedure is able to obtain the
parameter accounting for the concentration of gauche conformer cg.
That is to say, whether the existence of two conformers with two dif-
ferent geometries can be accounted by generating a function weighted
by that concentration PDF (see Eqs. 6.14 and 6.15), in Fig. 6.47(a)
we show the excellent agreement between the SF obtained from the
simulation and its best fit obtained using the proposed algorithm.
The intramolecular parameters used in the simulation and those ob-
tained from the fit procedure are in all cases compatible with the
errors.

To quantify the discrepancies between the original intramolecular
structure and the parameters obtained from the fit, we introduce the
relative error calculated as (PMD − Pfit) /PMD, where PMD are the pa-
rameters that have been used in the molecular dynamics simulation,
and Pfit are the parameters obtained from the fit of the SF produced
by the simulation. This relative error ranges from 0.03% to 0.5% for
the intramolecular distances, and from 0.6% to 13% for the vibra-
tional parameters. As discussed in the previous section, vibrational
parameters are in first approximation uncorrelated for every atomic
pair, and are thus subjected to a greater error. This error is greatly
increased, even to the extreme of avoiding its determination, if the



306 CHAPTER 6. RESULTS

8 12 16 20

0.84

0.86

0.88

0.90

1 2 3 40

5

10

15

20

1 2 3 4
0

1

2

(a)

 

 

(1
/N

)d
/d

 (b
)

q (Å-1)

(b)

 

 

R
D

F 
(Å

-1
)

r(Å)

R
D

F in
tra

 (Å
-1
)

 r (Å)

Figure 6.47: Scattering function (a) and Radial distribution function
(b) obtained from the molecular dynamics simulation (black circles)
together with the best SF fit obtained through the proposed algo-
rithm (red line). The inset shows the RDF intramolecular contribu-
tion of the simulation, together with the RDF calculated from the
parameters of the SF best fit.

atomic pair contribution to the total SF is small. Concerning the
gauche conformer concentration, the determination from the fit has
a relative error of 2%, a value which lays within the cg error given
by its resolved PDF. Therefore we conclude that Eq. 6.11 correctly
describes the data, and that the fit procedure is able to reproduce the
original values used in the molecular dynamics simulation, including
the gauche conformer fraction.

In order to verify whether Eq. 6.12 is a valid approximation, we
have also calculated the intramolecular RDF shown in the inset of
Fig. 6.47 using the parameters that have been obtained through the
fit of the SF. The resemblance between the intramolecular RDF cal-
culated from the simulation and the one calculated from the SF fit is
virtually perfect, thus evidencing that the approximation in Eq. 6.12
used to describe the RDF is appropriate. Moreover, we have also
tested which is the effect of modelling the intermolecular contribu-
tion as a polynomial, as it is performed in our work with the real
data. The fit obtained using this approximation is extremely good,
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as it can be seen in Fig. 6.47(b). The parameters determined from
this fit are again close to those used in the simulation. In this case,
the relative errors of the distances range from 0.1% to 3%, errors from
the vibrational parameters range from 0.6% to 7%, and error in the
gauche concentration is about 2%, all of them within the error bars
of the fit determination.

6.2.0.4.7 Validation summary The tests performed using a
generated ethene SF and RDF datasets, and that performed on
molecular dynamics data, allow to conclude the following:

• We properly accounted for finite information effects of experi-
mental data (termination effects of the SF).

• The approximation used to describe the RDF derived from a
Taylor series expansion of the distances through the quadratic
terms of the displacements is valid.

• The fit procedure is robust both determining intramolecular dis-
tances and rotamer concentrations, due to the fact that these
parameters are strongly interrelated. Even distances whose con-
tribution can not be observed neither in the SF nor the RDF
can be determined due to their dependence on the remaining
intramolecular distances.

• Vibrational parameters may be determined only if their con-
tribution is significant enough. But in any case, the obtained
PDFs using the proposed method allow, at least, to limit their
values.

• A polynomial can be used to model the intermolecular contri-
bution to the RDF, with the drawback of slightly increasing the
associated errors of the intramolecular parameters. Concerning
the particular case of F-112, the modelling carried out to have
into account the rotamer population in the calculation of the
SF and the RDF has been successfully established by weighting
each conformer contribution by its concentration.
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6.3 Fits and model selection with a

Bayesian approach

The frequentist approach to fits is extensively used in all fields of
science but it has a series of limitations: a) It assumes experimental
data errors with a normal distribution, parameters with symmetric
errors, a quadratic functional dependence with χ2, and a unique so-
lution (never multimodal distributions). b) The iterative Levenberg-
Marquardt algorithm can only find the local minimum in the region
where its initialization values are located, thus, the choice of those
values is critical to find the global minimum, and often involves non-
trivial guessing. c) Parameter correlations evaluated through the
covariance matrix are often overlooked, resulting in underestimated
errors.

The purpose of this research was to develop a fit method and
quantitative model selection scheme that allowed to express the whole
complexity of the scientific problems, and that took into account the
experimental limitations of the data, using the minimum number of
assumptions possible. The developed method based on the Bayesian
approach overcomes the aforementioned limitations and yields results
in the form of probability distribution functions, which are able to
reflect this complexity. No assumptions are needed, but they can be
included in the analysis if desired. Additionally, quantitative model
selection is inbuilt within the algorithm.

Results were presented in several conferences, and published
mainly in the articles: L. C. Pardo, M. Rovira-Esteva, S. Busch,
M. D. Ruiz-Mart́ın, et al., Bayesian Analysis of QENS data:
From parameter determination to model selection, arXiv:0907.3711v3
[physics.data-an] (2009); L. C. Pardo, M. Rovira-Esteva, S. Busch, M.
D. Ruiz-Mart́ın, et al, J. Phys.: Conf. Ser. 325, 012006 (2011); and
L. C. Pardo, M. Rovira-Esteva, S. Busch, J.-F. Moulin, et al, Phys.
Rev. E 84, 046711 (2011).
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Abstract

The extraction of any physical information from quasielastic neutron
scattering spectra is generally done by fitting a model to the data
by means of χ2 minimization procedure. However, as pointed out by
the pioneering work of D.S. Sivia et al. [1], also another probabilistic
approach based on Bayes theorem [2] can be employed. In a nutshell,
the main difference between the classical χ2 minimization and the
Bayesian approach is the way of expressing the final results: In the
first case, the result is a set of values of parameters with a symmetric
error (Pi± εi) and a figure of merit such as χ2, whereas in the second
case the results are presented as probability distribution functions
(PDF) of both, parameters and merit figure. In this contribution, we
demonstrate how final PDFs are obtained by exploring all possible
combinations of parameters that are compatible with the experimen-
tal error. This is achieved by allowing the fitting procedure to wander
in the parameter space with a probability of visiting a certain point

http://arxiv.org/abs/0907.3711v3
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P = exp (−χ2/2), the so called Gibbs sampling. Three advantages of
this method will be emphasized: First, correlations between parame-
ters are automatically taken into account, which implies, for example,
that parameter errors are correctly calculated, correlations show up
in a natural way and ill defined parameters (i. e., parameters for
which data only support the calculation of lower or upper bounds)
are immediately recognized from their PDF. Second, it is possible to
calculate the likelihood of a determined physical model, and therefore
to select the one among many that fits the data best with a mini-
mal number of parameters, in a correctly defined probabilistic way.
Finally, in the case of a low count rate where the Gaussian approx-
imation to the Poisson statistics fails, this method can also be used
by simply redefining χ2.

Introduction

Science is based on the success of an hypothesis to describe experi-
mental results, i. e., is based on the amount of “truth” and “falsity” of
an hypothesis when contrasted with experimental results [3]. In order
to find a quantitative method to determine this “amount of truth”,
hypotheses in science should at the end be reduced to a mathemati-
cal expression depending on a set of parameters with some physical
meaning. The “amount of truth” is then determined by fitting the
mathematical model to some experimental data. The general method
to do so is to minimize the squared distance between experimental
data and the points generated by the mathematical model. Further-
more, taking also into account the error associated with experimental
data, a figure of merit χ2 can be defined

χ2 =
n∑

k=1

(Hk{Pi} −Dk)
2

σ2
k

(6.19)

where n is the number of experimental points and m is the number
of parameters, Dk (k = 1, . . . n) are the experimental data, Hk{Pi}
(k = 1, . . . n) are the values obtained from our hypothesis (the math-
ematical model) using the {Pi} (i = 1, . . .m) set of parameters con-
tained in the model, and σk (k = 1, . . . n) are the experimental errors
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associated with the respective Dk. Therefore, the fitting procedure
has a twofold goal: first, to find the set of parameters {Pi} which
describes the experimental data best, and second, using this set of
parameters, to define a figure of merit which quantifies the “amount
of truth” of the proposed hypothesis. In order to be able to compare
different hypotheses with different numbers of parameters it is reason-
able to define a figure of merit which penalizes additional parameters
such as the reduced χ2 defined as:

χ2
ν =

χ2

n−m
(6.20)

where n is the number of experimental points and m is the number of
parameters, so n−m is the number of degrees of freedom. The afore-
mentioned way to quantify how good experimental data are described
by a hypothesis is based on what is called a “frequentist” approxima-
tion to the problem∗ and has many drawbacks associated with both
the fitting procedure and the way to quantify the correctness of the
hypothesis describing experimental data.

Data fits are usually done by minimizing the aforementioned χ2

(Equation 6.19) using the Levenberg-Marquardt algorithm, which
aims to find the minimum of the χ2{Pi} hypersurface. Unfortunately,
usually local minima make the algorithm unable to find the absolute
minimum. For this reason, this method can find a final solution only
when the algorithm is initialized with parameters near the global min-
imum. The final solution is then characterized by a set of parameters
with an associated error (Pk ± εk) and the figure of merit χ2

ν . This
way of quantifying the best fit to the data is based on the supposition
that there is only one minimum in the χ2(Pk) hypersurface compati-
ble with data error, and that the functional dependence of χ2(Pk) is
quadratic on each parameter (i. e., one can stop at the second term
of a Taylor expansion of the obtained minimum), and thus allowing
only symmetric errors. Moreover, errors are usually calculated disre-

∗ The “frequentist” description defines probability of a certain event A, P (A),
as the limiting frequency with which the event A is observed when a great number
of events A is taken into account.
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garding possible correlations between them† and are thus generally
underestimated.

We present in this work a method both to perform fits and to anal-
yse results based exclusively on probability by using what is called
Bayesian inference. The main difference with the previously exposed
frequentist method is the absence of any supposition on the χ2{Pi}
landscape which will rather be explored using the probabilities deter-
mined from experimental data. The method results in a different way
to express fitted parameters and the figure of merit showing all the
complexity of the final solution: they become Probability Distribu-
tion Functions (PDFs) obtained directly from exploring the χ2{Pk}
hypersurface.

The paper will be organized as follows: first the ubiquitous χ2

will be defined using exclusively probability theory, and on this ba-
sis a method to sample the χ2{Pk} hypersurface will be presented:
the Gibbs sampling. We will then refer on how both the frequentist
and Bayesian methods select an hypotheses among others, stressing
the advantages of using the second approach. Finally the presented
method implemented in the FABADA package [4] will be applied to
three real cases related to neutron scattering each stressing different
aspects of the proposed method. In the first example, the impor-
tance of letting parameters free or fixed in the fitting process will
be stressed. The second example will focus on the PDF obtained
from a set of data fitted simultaneously, and model selection will be
addressed in the third example.

What is behind the ubiquitous χ2?

The objective of the so called Bayesian methods [1, 2] is to find the
probability that a hypothesis is true given some experimental ev-
idence. This is done taking into account both our prior state of

† In fact it is possible to calculate errors taking into account the correlation
between parameters using the frequentist approach (still supposing a parabolic
dependence of parameters on χ2{Pi}). This could be done diagonalizing the co-
variant matrix. This procedure is nevertheless not usually found in the literature
resulting in an underestimation of errors.
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knowledge concerning the hypothesis, and the likelihood that the data
is described by the proposed hypothesis. Using probability notation,
and only considering the case that the experiment consists of a series
of data Dk and that the hypothesis is represented by Hk, we can
relate the aforementioned probabilities using the Bayes theorem [5]:

P (Hk | Dk) =
P (Dk | Hk)P (Hk)

P (Dk)
(6.21)

where P (Hk | Dk) is called the posterior, the probability that
the hypothesis is in fact describing the data. P (Dk | Hk) is named
the likelihood, the probability that our data is well described by our
hypothesis. P (Hk) is called the prior, the knowledge we have be-
forehand about the hypothesis, and P (Dk) is a normalization factor
to assure that the integrated posterior probability is unity. In the
method here presented we will assume no prior knowledge (maximum
ignorance prior [2]), and in this special case Bayes theorem takes the
simple form:

P (Hk | Dk) ∝ P (Dk | Hk) ≡ L (6.22)

where L is a short notation for likelihood.
We need first to find the likelihood that one data point Dk is de-

scribed by the mathematically modelled hypothesisHk. In a counting
experiment such as those related to neutron scattering this probabil-
ity follows a Poisson distribution

P (Dk | Hk) =
Hk

Dk e−Hk

Dk!
. (6.23)

Nevertheless, for a high enough number of counts, the Poisson
PDF can be well approximated by a Gaussian one with σ =

√
Dk as

it is shown in Figure 6.48, and hence the likelihood that the set of
data points Dk is correctly described by the hypothesis Hk can be
written as
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Figure 6.48: Poisson statistics followed by a counting experiment
such as a neutron scattering experiment (lines). For an increasing
number of counts, the Poisson distribution can be approximated by
a Gaussian function (points) with σ =

√
n, being n the number of

counts.

L ∝
n∏

k=1

exp

[
−1

2

(
Hk −Dk

σk

)2
]

= exp

[
−1

2

n∑
k=1

(
Hk −Dk

σk

)2
]
= exp

(
−χ

2

2

)
.

Therefore, we have found the meaning of the ubiquitous χ2 based
only on probabilistic grounds: it is related to the probability that a
certain set of data is well described by an hypothesis, and hence the
goal of minimizing χ2 is finding a set of parameters that maximizes
the likelihood associated with the proposed mathematical model. The
probability theory behind χ2 allows therefore also to deal with the
case of experiments with only few counts where the Gaussian approx-
imation is not valid any more and the Poisson distribution must be
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employed simply by redefining χ2 as

χ2 = −2
n∑

k=1

ln

[
Hk

Dke−Hk

Dk!

]
(6.24)

The Bayesian method: Gibbs sampling of parameter space

The probabilistic understanding of χ2 makes it possible to define a
unique method, first to fit the experimental data, and then to analyse
the obtained results, using a Markov Chain Monte Carlo (MCMC)
technique. A set of parameters P new

i is generated from an old set

P old
i by randomly changing one of the parameters.‡ The probability

to accept the new set of parameters is given by

P (H(P new
i ) | Dk)

P (H(P old
i ) | Dk)

= exp

(
−χ

2
new − χ2

old

2

)
(6.25)

where χ2
new and χ2

old correspond to the χ2 (as defined in Equation 6.19)
for the new and old set of parameters. This way of exploring the
parameter space (called Gibbs sampling) is similar to the way used
to find the possible molecular configurations of a determined system
at a given temperature using the classical Monte Carlo method: the
values of physical constants such as the potential energy will in fact be
a PDF related to all the configurations explored by the Monte Carlo
method. It is therefore possible to relate energy to

∑
(Hk−Dk)

2, the
magnitude giving information about the fit quality of the hypothesis
with respect to the data, and temperature to the error associated
with the data (T ∼ σ2). This way of exploring the parameter space
has two main advantages:

• In the fitting process, the Bayesian method is able to accept a
new set of parameters that do not decrease χ2, if this change
is compatible with the experimental error and therefore does

‡ Parameters are changed randomly, but their maximum change is restricted.
A new parameter is therefore generated following P new

i = P old
i + (RND − 0.5) ·

2Pmax
i where RND is a random number between 0 and 1, and Pmax

i is the maxi-
mum change allowed.
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not get stuck in local minima as the Levenberg-Marquardt al-
gorithm. In other words, the presented method is able to go
“uphill” in the χ2{Pi} hypersurface if the barrier is compat-
ible with the error. Nevertheless, in order to avoid the pre-
sented algorithm to get stuck even in the case when barriers are
greater than those associated to experimental error a simulated
annealing can be used. This algorithm calculates a fictitious

χ2 =
∑n

k=1
(Hk−Dk)

2

Tσ2 where T is a constant defined to artificially
increase the experimental error, and by similitude with classi-
cal Montecarlo simulation is named as “temperature”. Fits are
then started at high temperature, and the system is relaxed by
lowering the temperature up to T=1.

• Concerning the analysis of the results obtained by the fit, the
exploration of the whole parameter space compatible with data
using the MCMC method allows both to find the PDF associ-
ated with the likelihood directly related the figure of merit χ2

(see Equation 6.24), and the parameters, taking into account
possible correlations between them, or minima not describable
by a quadratic approximation.

Model selection

Data can usually be described by more than one hypothesis, each
implying a different physical mechanism to explain experimental re-
sults. Albeit the importance to perform model selection accurately,
vague arguments are usually given to prefer a model among others
and usually no quantitative arguments are given to justify why an hy-
pothesis is preferred, although it is possible to do so using both the
frequentist and Bayesian methods. Model selection can be performed
using the frequentist approach by using the χ2

ν figure of merit (see
Equation 6.20) which takes into account the addition of parameters
to a model by dividing χ2 by the degrees of freedom. Therefore, if
two models fit the data with equal success, i. e., with the same χ2, the
model with less parameters (with the smallest χ2

ν) will be favoured. In
some sense this is nothing but quantifying the Ockham’s razor princi-
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ple: it is necessary to shave away unnecessary assumptions (parame-
ters). Model selection performed by using χ2

ν has the same drawbacks
as the determination of parameter errors: we suppose that there is
a single minimum in χ2{Pi}, that this minimum parabolic depends
on all parameters and that there are no correlations between param-
eters. In fact, if these three suppositions are accomplished, then the
PDF of the χ2 reads [2]

P (χ2) ∝ (χ2)N/2−1 exp (−χ2/2) (6.26)

N is, in this simple case, the number of parameters. In Figure 6.49
the chi-square distribution for increasing degrees of freedom (num-
ber of parameters) is shown. As can be seen in the inset from Figure
6.49, this distribution has a term which is independent from the num-
ber of parameters, exp (−χ2/2), and that decreases together with the
quality of the fit, or when the error associated with the experimental
data σk increases. The term (χ2)N/2−1, depending on the number
of degrees of freedom, increases exponentially with the number of
parameters, displacing the maximum of the χ2 distribution to higher
values. Therefore, even using the frequentist approach, the aforemen-
tioned preference for models that fit equally well the data with the
minimum number of parameters is based on probability theory: those
models with the maximum in the χ2 distribution placed at lower val-
ues will be preferred. The Bayesian method finds in a natural way the
PDF of χ2 by exploring the parameter space without the suppositions
made in the frequentist approximation, hence the obtained PDF will
in general not follow the χ2 distribution described by Equation 6.26.

Examples

Determining the intramolecular structure of CCl4 Molecular
structure can be calculated from diffraction experiments by fitting the
high q-range of the scattering function S(q) to the following equation
(see Reference [6]):

S(q) = h

m∑
i,j

bcohi bcohj

sin(qrij)

qrij
exp

[
−1

2
(lijq)

2

]
(6.27)
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Figure 6.49: χ2 distribution ((χ2)N/2−1 exp (−χ2/2)) for an increasing
number of fit parameters N. The inset shows the terms associated to
the quality of the fit exp (−χ2/2) together with the one depending
on the number of parameters of the model (χ2)N/2−1.

where bcohi are the coherent cross sections for each element, rij are
the intramolecular distances and l2 =

〈
u2ij
〉
are the vibrational Mean

Square Displacements (MSD) between elements i and j, and h is a
scaling factor.

In the proposed example, our objective is to calculate the intramo-
lecular structure of carbon tetrachloride (one of the first molecular
liquids studied by diffraction methods). The determination of its
molecular structure implies to obtain the distance between carbon
and chlorine atoms, the Cl-Cl distance is fixed by the tetrahedral
symmetry, and the MSD between chlorine atoms and carbon and
chlorine atoms.

Experiments were performed at the diffractometer D1b in the
Institute Laue Langevin (Grenoble, France) using a wavelength of
λ = 2.52 Å (see [7]). Figure 6.50a shows a good agreement between
experimental data and two fits of Equation 6.27, one with a fixed
scale factor h, and the other with h as a free parameter. Figures
6.50b and c show the PDF from parameters rCCl and lCCl obtained
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through the two aforementioned fits. Concerning the rCCl PDF, we
can immediately see that its determination is robust since both fixed
and free scale factor h lead to the same PDF. On the contrary, the
PDF associated with lCCl is sensible to the way we have performed
the fit: if the scale factor is fixed we obtain a most probable value
for this parameter (lCCl = 0.066 Å), but for a free scale factor h only
a maximum value for lCCl can be obtained due to the correlation be-
tween both parameters (h and lCCl). Defining the upper limit as that
for which the integrated probability is 0.682 (as errors are usually

defined in the frequentist approach §) the upper limit lCCl = 0.02 Å
can be determined from the cumulative distribution function (see
Figure 6.50).

This example shows the main difference compared to the frequen-
tist approximation: the results are presented as PDF. This has the
advantage that, as it happens with the determination of lCCl leaving
h free, the result to our parameter determination can be expressed
as a limit for the parameter, which is impossible with the frequentist
approximation.

Parameter estimation: isotropic rotation Quasi Elastic Neu-
tron Scattering (QENS) is perfectly suited to determine the molec-
ular dynamics in the liquid phase. Usually this dynamics is studied
by splitting the spectra into diffusion and rotation contributions

S(q, ω) = S(q, ω)trans ⊗ S(q, ω)rot (6.29)

where S(q, ω)trans is the translational contribution and S(q, ω)rot
is associated with the rotation of the molecule, assuming that both
movements are independent from each other. If we assume that the
translation is described by a diffusion mechanism and, therefore, de-

§ Errors are defined supposing that parameter PDFs follow a Gaussian dis-
tribution:

P (parameter) =
1

σ
√
2π

exp

(
− x2

2σ2

)
. (6.28)

The probability that a parameter is within the interval ±σ is 0.683.
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Figure 6.50: (a) High momentum transfer scattering function for
CCl4, where the main contribution to S(q) is that related to the
molecular structure. Lines are the best fits to S(q) setting the scale
factor fixed and free in the fitting procedure. (b) Probability dis-
tribution functions obtained for the distances between carbon and
chlorine atoms rCCl, and Mean Square Displacement between carbon
and chlorine atom (lCCl) for both cases (fixed h, points, and free h,
line). PDF (lCCl) has been represented in logarithmic scale to show
the different length scales explored by the Bayesian method. In ad-
dition, for lCCl using a h free fit the integrated probability is shown,
arrow points an integrated probability of 0.68 following the standard

definition of errors in the frequentist approximation.§

scribed by the Fick Equation, and that rotation is isotropic [8]:

S(q, ω)trans =
1

π

Dq2

ω2 + (Dq2)2
(6.30)

S(q, ω)rot = A0(q ·R) δ(ω)+
∞∑
l=1

Al(q ·R)
1

π

l(l + 1)Dr

ω2 + [l(l + 1)Dr]
2 (6.31)

where D and Dr are the translational and rotational diffusion coef-
ficients, Al(q · R) are spherical Bessel functions and R is the radius
of rotation. We have performed QENS experiments at the TOFTOF
spectrometer [9, 10] at the FRM II reactor (Munich) in order to deter-
mine the dynamics of 1,2-trans-dichloroethylene. The data were cor-
rected for self-absorption using the program FRIDA [11]. A series of
fits for each temperature with the model described by Equations 6.29,
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6.30 and 6.31. Usually, each q value is fitted separately, obtaining the
diffusion coefficient from a second linear fit to the q2 dependence of
the broadening of the central Lorentzian Γtrans(q

2) = Dq2, and the
radius of rotation from the obtained A0(q ·R) = sin (qR)/qR or even-
tually by independently fitting all spectra using Equation 6.29 to
each S(q = qi, ω). However, our hypothesis is described by the whole
set of the aforementioned Equations 6.29, 6.30 and 6.31, and thus
errors arising from the two-step fitting procedure can be minimized
by simply fitting the spectra S(q, ω) for all q values, i. e., fitting the
complete q-dependent data set with only D, Dr and R as physical
parameters. The results for the radius of rotation are shown in Fig-
ure 6.51 using the presented Bayesian method together with those
obtained using a Levenberg-Marquardt algorithm for each q-value.
First of all, because fits were performed by the frequentist approxi-
mation separately for each q-value (see Figure 6.51b), the radius of
rotation has a q-dependence which is not present in the Bayesian fit
(see Figure 6.51a), consequently stressing the importance of fitting
the whole data set together. A fit using the Bayesian algorithm has

also been performed to a spectrum for q = 0.4 Å
−1

and T = 300 K in
order to compare the error bars obtained by both methods. The er-
ror bar using the Bayesian approach was calculated by obtaining the
PDF for the radius of rotation and then fitting a Gaussian function
with σ = ε, being ε the frequentist parameter error. This error bar
is plotted in Figure 6.51b, together with that determined by the fre-
quentist method. As it can be seen in the Figure the error obtained
by the presented method is much bigger that that estimated by the
frequentist method. The presented Bayesian method is therefore able
to deal with simultaneous fits of various curves, obtaining the PDF of
physical parameters as a function of temperature (see Figures 6.51c,
d, and e).

Model selection: Diffusion in phospholipid membranes
Phospholipids are the main component of cell walls and can also be
used in technological applications as for example drug delivery or food
industry. Their dynamics is studied on many time- and length-scales



6.3. BAYESIAN ANALYSIS 327

Figure 6.51: Radius of rotation obtained (a) from the Bayesian fitting
procedure applied to all S(q, ω) spectra and (b) from the frequentist
fit to each q-value individually (here only q = 0.4 Å and q = 0.9 Å
values are shown). An error bar obtained from the Bayesian method
is plotted in (b) for S(q = 0.4, ω) at T = 300 K. In (c) the PDF for
the radius of rotation is also shown as a function of the temperature
(P (R, T )) with two cuts (P (R)) for T = 240 K and T = 290 K.

with different techniques, among them quasielastic time-of-flight neu-
tron scattering which probes the motions that dominate on times of
about 100 ps.

As will be discussed in detail elsewhere [12], the question arose
from previous neutron scattering experiments [13, 14] whether the
long-range motion of phospholipids is visible on these times or if the
motion appears rather localized, trapped in a cage of neighbours.
This difference can be seen in the line shape of S(q, ω): Motions that
are localized during the observation time cause a central line that is
not broadened beyond the resolution of the instrument but cause a
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Figure 6.52: (a) Spectra of the hydrated phospholipid DMPC to-
gether with a fit and the instrumental resolution. Internal motions
were approximated with two Lorentzians, the long-range motion was
either assumed to be invisible (delta-shaped central line, not shown)
or visible (broadened central line, shown here). (b) The χ2 PDF
associated with both the broadened central line and a delta func-
tion, showing that for any combination of parameters the broadened
model is preferable compared to the delta model: The data justify
the assumption that the long-range motion is visible.

foot in the spectrum. In contrast, long-range motions do broaden the
central line.

The neutron scattering experiments were performed with the
phospholipid DMPC (1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine)
in a liquid crystal fully hydrated with D2O at the neutron time-of-
flight spectrometer TOFTOF at the FRM II (Munich). A typical
spectrum is shown in Figure 6.52a after standard corrections includ-
ing self absorption and subtraction of the D2O spectra, obtained with
the program FRIDA [11]. It is possible to fit the data “satisfactorily”
with both, a broadened and a delta-shaped central line.

As stated before, Bayesian analysis is able to quantify how “sat-
isfactory” the fits are, taking into account the whole χ2{Pi} land-
scape and avoiding assumptions about it. In Figure 6.52b, the PDFs
associated with χ2 for the two models are displayed. The normal
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Levenberg-Marquardt algorithm would simply return the parameters
at the minimal reachable value of χ2 together with this quantity.
It is obvious that introducing an additional parameter, the nonzero
width of the central line, reduces the χ2. The question that needs
to be answered is if this reduction is significant enough to justify the
additional parameter.

The χ2
ν gives this answer, however relying on the assumptions

discussed above. Employing the Bayesian Analysis, no assumptions
are made as the χ2{Pi} landscape is rendered explicitly. One can
see in Figure 6.52b that the model incorporating a broadened central
line does not only yield the smaller χ2 minimum but also the PDF
associated with χ2 is for any combination of parameters smaller than
the one of the delta model.

Therefore, the model comparison between the two possibilities of
broadened and non-broadened central line favours the model with a
broadened line.

Summary

We have proposed a general Bayesian method to fit data, analyse re-
sults from the fit, and from these results to perform model selection
between competing hypotheses. In contrast to the classical frequen-
tist approach, where some assumptions are done concerning the χ2

landscape (there is only a minimum of χ2{Pi} able to describe data
within its error, this minimum has a square dependence on the pa-
rameters, and parameters are not correlated), the proposed method
samples the parameter space with the only guide of probability, thus
having the following advantages:

• In the fitting procedure, the Bayesian method will not get stuck
in local minima if its barrier is smaller than the error associated
with the experimental data set.

• Parameters are obtained as PDFs and, because the whole pa-
rameter space is sampled, correlations between parameters are
naturally taken into account. Moreover, a natural way to define
errors based on the PDF of parameters is obtained within this
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method, which following the frequentist approximations would
be the 68% confidence interval around the most probable pa-
rameter value, i. e., the parameter is inside these limits with a
probability P = 0.68. PDFs may take an arbitrary form, for
example indicating that only a superior limit to the parameter
can be extracted from the experimental data.

• The likelihood (which as we have seen is directly related to χ2)
obtained with this method is also a PDF hence revealing the
whole complexity of the parameter landscape. Model selection
is then performed taking into account all parameter combina-
tions compatible with the experiment.

• The presented method is flexible enough to deal with low counts
experiments where the Poissson distribution cannot be approx-
imated by a Gaussian function, by simply redefining χ2 in the
Gibbs sampling algorithm.

This work was supported by the Spanish Ministry of Science and
Technology (FIS2008-00837) and by the Government of Catalonia
(2005SGR-00535).
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Abstract

The fit of data using a mathematical model is the standard way to
know if the model describes data correctly and to obtain parameters
that describe the physical processes hidden behind the experimental
results. This is usually done by means of a χ2 minimization proce-
dure. Although this procedure is fast and quite reliable for simple
models, it has many drawbacks when dealing with complicated prob-
lems such as models with many or correlated parameters. We present
here a Bayesian method to explore the parameter space guided only
by the probability laws underlying the χ2 figure of merit. The pre-
sented method does not get stuck in local minima of the χ2 land-
scape as it usually happens with classical minimization procedures.
Moreover correlation between parameters are taken into account in a
natural way. Finally, parameters are obtained as probability distri-
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bution functions so that all the complexity of the parameter space is
shown.

Introduction

Science is based on the success of an hypothesis to describe experi-
mental results, i. e., is based on the amount of “truth” and “falsity” of
an hypothesis when contrasted with experimental results [1]. In order
to find a quantitative method to determine this “amount of truth”,
hypotheses in science should at the end be reduced to a mathemati-
cal expression depending on a set of parameters with some physical
meaning. The “amount of truth” is then determined by fitting the
mathematical model to some experimental data. To quantify that, a
figure of merit χ2 can be defined as

χ2 =
n∑

k=1

(Hk{Pi} −Dk)
2

σ2
k

(6.32)

where n is the number of experimental points, Dk (k = 1, . . . , n) are
the experimental data, Hk{Pi} (k = 1, . . . , n) are the values obtained
from our hypothesis (the mathematical model) using the {Pi} (i =
1, . . . ,m) set of parameters contained in the model, m is the number
of parameters, and σk (k = 1, . . . , n) are the experimental errors
associated with the respective measured points Dk.

Data fitting is usually done by minimizing χ2 (Equation 6.32) us-
ing the Levenberg-Marquardt algorithm, which aims to find the min-
imum of the χ2{Pi} hypersurface. This fit procedure has a twofold
goal: first, to find the set of parameters {Pi} which best describes the
experimental data within their errors, and second, using this set of
parameters, to define a figure of merit which quantifies the “amount
of truth” of the proposed hypothesis, taking into account how well it
describes the data. In order to be able to compare different hypothe-
ses with different numbers of parameters, it is reasonable to define a
figure of merit which penalizes the addition of parameters such as the
reduced χ2, defined as χ2

ν = χ2

n−m
. In this equation, n is the number

of experimental points and m is the number of parameters, so n−m
is the number of degrees of freedom.
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This way to quantify how well experimental data are described by
a hypothesis is based on what is called a frequentist approximation of
the problem,∗ and has many drawbacks associated with both the fit
procedure (it usually gets stuck in local minima of the χ2 hypersurface
when the model is complex) and the way to quantify the correctness
of the hypothesis describing experimental data. The final result using
this method is characterized by a set of parameters with an associated
error (Pk±εk) and the figure of merit χ2

ν . This way of quantifying the
best fit to the data is based on the supposition that there is only one
minimum in the χ2{Pi} hypersurface within the data error, and that
the functional dependence of χ2{Pi} is quadratic on each parameter
i (i. e., one can stop at the second term of a Taylor expansion of the
obtained minimum), and thus allowing only symmetric errors. More-
over, errors are usually calculated disregarding possible correlations
between parameters and are thus generally underestimated.

The main difference of Bayesian inference from the previously ex-
posed frequentist method is the absence of any supposition on the
χ2{Pi} landscape which will rather be explicitly explored taking into
account experimental data. The method results in a different way
to express fitted parameters and the figure of merit showing all the
complexity of the final solution: they become Probability Distribu-
tion Functions (PDFs) obtained directly from exploring the χ2{Pi}
hypersurface. Although Bayesian methods are widely used in astron-
omy or biology [2–5], they are scarcely used in condensed matter
and usually for very specific tasks such as in the analysis of QENS
data [6], and the analysis of diffraction data [7–10]. We present in
this work a general method to perform fittings and to analyse results
based exclusively on probability by using Bayesian inference.

Although the presented Bayesian method is general, it is specially
useful in three situations. Firstly, when the classical fitting procedure
gets stuck in a local minimum of the chi squared hypersurface, i.e,
when the present parameter set does not correspond to the best ob-
tainable fit but any small parameter value change even decreases the

∗The frequentist description defines probability of a certain event A (P (A))
as the limiting frequency with which the event A is observed when a great number
of events A is taken into account.
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fit quality. This may happen for example when fitting the intra-
molecular structure to diffraction data [11, 12] but is a well known
problem in basically every fit normally surpassed by a careful choice
of the initial parameter values. Secondly when an intricate model se-
lection shall be performed, such as in the case of models that describe
molecular motions using QENS [13] or dielectric data [14]. Finally
when the model is ill defined and more than one combination of pa-
rameters is able to describe data, or when data only allows to limit
the range of parameters but not to obtain a best fitting value [15].

Data analysis using the Bayesian method

What is behind the ubiquitous χ2? The objective of the so
called Bayesian methods [6, 16] is to find the probability that a hy-
pothesis is true given some experimental evidence. This is done by
taking into account both our prior state of knowledge concerning the
hypothesis, and the likelihood that the data is described by the pro-
posed hypothesis. Using probability notation, and considering the
case that the experiment consists of a series of data Dk and that the
hypothesis is represented by Hk, we can relate the aforementioned
probabilities using the Bayes theorem [16, 17]:

P (Hk |Dk) =
P (Dk |Hk)P (Hk)

P (Dk)
(6.33)

where P (Hk |Dk) is called the posterior, the probability that the hy-
pothesis is in fact describing the data. P (Dk |Hk) is the likelihood,
the probability that our data is well described by our hypothesis.
P (Hk) is called the prior, the PDF summarizing the knowledge we
have beforehand about the hypothesis, and P (Dk) is a normalization
factor to assure that the integrated posterior probability is unity. In
the following, we will assume no prior knowledge (maximum igno-
rance prior [16]), and in this special case Bayes theorem takes the
simple form P (Hk |Dk) ∝ P (Dk |Hk) ≡ L, where L is a short nota-
tion for likelihood.

In order to quantify the Bayes theorem, we need first to find the
likelihood that one data point Dk is described by the mathematically
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Figure 6.53: Poisson statistics followed by data in a counting experi-
ment such as a scattering one (lines), and its usual Gaussian approx-
imation (points) for an increasing number of expected counts. For an
increasing number of counts, the Poisson distribution (line) can be
approximated by a Gaussian function (points) with σ =

√
n, being

the number of counts n. The inset shows that for a number of counts
as great as 100 the approximation works quite well.

modelled hypothesis Hk. In a counting experiment, this probability
follows a Poisson distribution. It can be well approximated by a
Gaussian distribution with σ =

√
Dk (see also [16]) if the number of

counts is high enough as it is shown in Figure 6.53. Therefore for one
experimental point (k = i, i = 1, . . . , n):

P (Dk=i |Hk=i) =
Hk

Dk e−Hk

Dk!
≈ 1

σ
√
2π

exp

[
−1

2

(
Hk −Dk

σk

)2
]

(6.34)
Where on the right hand side of the expression it is not explicitly
written that the equation is related to a single experimental point
i = k for simplicity. The likelihood that the set of data points Dk is



6.3. BAYESIAN ANALYSIS 337

correctly described by the hypothesis Hk can be therefore written as

P (Dk |Hk) ∝
n∏

k=1

exp

[
−1

2

(
Hk −Dk

σk

)2
]

= exp

[
−1

2

n∑
k=1

(
Hk −Dk

σk

)2
]
= exp

(
−χ2

2

)
. (6.35)

The figure of merit χ2 is therefore related to the likelihood that
the data is well described by the hypothesis Hk. The probability
theory behind χ2 also allows to deal with the case of experiments
with only few counts where the Gaussian approximation, for which
χ2 = −2 lnL, is not valid any more and the Poisson distribution must
be employed, simply by redefining χ2 [16] as

χ2 = −2
n∑

k=1

ln

[
Hk

Dke−Hk

Dk!

]
(6.36)

The Bayesian method The probabilistic understanding of χ2

makes it possible to define a unique method, first to fit the experimen-
tal data, and then to analyse the obtained results, using a Markov
Chain Monte Carlo (MCMC) technique where a set of parameters
P new
i is generated from an old set P old

i by randomly changing one of
the parameters, i. e., P new

i = P old
i + (RND− 0.5) 2∆Pmax

i . In the last
equation, ∆Pmax

i is the maximum change allowed for the parameter
and will be called parameter jump for short, and RND is a random
number between 0 and 1. The probability to accept the new set of
parameters is given by

P (H(P new
i ) |Dk)

P (H(P old
i ) |Dk)

= exp

(
−χ

2
new − χ2

old

2

)
(6.37)

where χ2
new and χ2

old correspond to the χ2 (as defined in Equation
6.32) for the new and old set of parameters. Both fitting and anal-
ysis consist therefore in the successive generation of parameter sets
{Pi} (Markov Chains) with the successive acceptances ruled by Equa-
tion 6.37.
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Two academic examples

Fitting a Gaussian In order to test the fit algorithm, a standard
function such as a Gaussian

y(x) =
a√
2πw

exp

[
−(x− xc)

2

2w2

]
+ b (6.38)

was generated with the parameter set {a, w, xc} = {10.0, 1.0, 5.0}
and being b fixed to zero. The data were generated with a normally
distributed error associated with each point of 0.05 and subsequently
fitted by the presented algorithm using the same formula (with b = 0).

The calculated PDFs associated with each parameter Pi are shown
in the top row of Figure 6.54 together with the χ2 dependence on this
parameter, calculated by varying only the parameter Pi and leaving
the others fixed, i. e., making a cut of the hypersurface χ2{a, w, xc}.
As one may expect, the minimum of χ2 coincides with the maximum
probability of each parameter PDF.

The most probable parameter values – the ones where the PDF
is maximal – coincide very nicely with the original values as can be
seen in the top row of Figure 6.54. In the following, the discussion
will focus on the determination of the parameter errors. There are
two ways to determine the parameter errors: (i) the commonly used
definition of the error as the value of the parameter that increases χ2

by one unit (∆P = |P (χ2
min) − P (χ2

min + 1)|) and (ii) the width of
the Gaussian associated with the PDF (the width of the Gaussian at
y = e−0.5 · ymax).

The obtained PDFs can be well described by a Gaussian func-
tion in the present examples (solid line in the PDFs shown in Figure
6.54). This proves that in this simple case the minimum of χ2{Pi} is
quadratic in each parameter, and therefore the frequentist definitions
of errors can be used – the two measures of the parameter errors
should coincide. The error is the defined in such a way that Pi has a
68% probability to be within Pi − σPi

and Pi + σPi
(see [18]).

In Figure 6.54 it can be seen that errors calculated from the PDFs
are equal (for xc) or larger (for a and w) than those calculated us-
ing the method of incrementing χ2. This discrepancy can be ex-
plained by parameter correlations seen in the contour plots of the
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Figure 6.54: Upper row: PDFs associated with the centre xc, am-
plitude a and width w of a Gaussian function (solid circles) together
with the χ2(Pi) around its minimum value, fixing all parameters ex-
cept Pi (lines). Bottom row: χ2(Pi, Pj) plots showing the correlation
between parameters, the contour lines have a distance of ∆χ2 = 1.

two-dimensional cuts through the χ2(Pi, Pj) hypersurface shown in
the bottom row of Figure 6.54: from the symmetry of the contours
involving xc it can be concluded that xc is independent from both,
a and w, whereas these two parameters are correlated, causing the
main axis of the contour ellipsoids to be not parallel to the parameter
axes. For the parameters a and w, the error calculated from the PDF
coincides with the limits of the contour χ2 = χ2

min+1. The error cal-
culated from χ2 coincides with the intersection of the contour with
the x axis, thus underestimating its value.

Although this fact is well known in the frequentist approxima-
tion [18], to take correlation between parameters into account would
involve diagonalizing the covariant matrix. That is scarcely done
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and in any case is useful only in simple cases as the one presented
when errors are symmetric, i. e., when χ2{Pi} is quadratic in Pi. The
Bayesian approach takes in a natural way any correlation between pa-
rameters into account, and can also treat non-Gaussian PDFs, being
much more powerful than the frequentist approximation.

Fitting with Poisson statistics The standard way of fitting data
using the minimization of χ2 (as defined in Equation 6.35) is no longer
valid when the number of counts is low. However, as we have seen,
simply by redefining χ2 using Equation 6.36, we can perform the fits
when the number of counts is arbitrarily low.

To test our algorithm we have generated a series of random num-
bers DK following a Poisson distribution around different fixed values
HK . We have then fitted these series of randomly generated points
using the usual definition of χ2, Equation 6.35, therefore wrongly as-
suming that the numbers were generated following a Gaussian PDF
(see Figure 6.53) and with the definition given in Equation 6.36, that
is, correctly assuming that DK follows a Poisson PDF around HK .

In Figure 6.55 we show the relative discrepancy between the fitted
value and the value HK used to generate the series of points using
both methods as a function of the valueHK on a logarithmic scale. As
expected, forHK greater than about 103 both methods yield the same
result. On the contrary for smaller values the discrepancy increases,
reaching 30% for HK = 1.

It is therefore important to take into account that in the limit
of low counts the usual approximation between Poisson and Gaus-
sian statistics should not be used. In Figure 6.55 it is displayed
the fit of a Gaussian function (Equation 6.38) with parameters
{a, w, xc, b} = {20, 5, 1, 2} each point DK being generated following a
Poisson distribution. The fit using Poisson statistics is closer to the
generated function, i. e., unaffected by the error, as it can be seen in
the figure, proving that the proposed algorithm is also useful to fit in
the case of low count rates.



6.3. BAYESIAN ANALYSIS 341

100 101 102 103 104 105

-10

0

10

20

30

-20 -10 0 10 20
0

2

4

6

8

10

12

gaussian statistics

 

 

%
 d

is
cr

ep
an

ce

HK

Poisson statistics

a

 

 

f(x
)

X

b

Figure 6.55: (a) Discrepancy between the fits to a constant value
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Poisson statistics. (b) Gaussian function generated assuming a low-
count experiment (circles), i. e., assuming a Poisson statistics for each
point. The solid line is the generated function unaffected by the error,
and the dashed line the fitted function. Dotted line is the fit assuming
a normal distribution of errors.

Conclusions

We have proposed a general Bayesian method to fit data and analyse
results from the fit [19]. The classical frequentist approach makes
some assumptions concerning the χ2 landscape: there is only a min-
imum of χ2{Pi} able to describe data within its error, this minimum
has a quadratic dependence on the parameters, and the parameters
are not correlated. The here proposed method avoids such problems,
sampling the parameter space only with the guide of probability rules.
This method has already been successfully used to analyse experi-
ments coming from diffraction experiments [20], quasielastic neutron
scattering [13, 15, 21] and dielectric spectroscopy [14]. We finally
summarize the main advantages of the proposed method:

• The Bayesian method will not get stuck in local minima of the
χ2 hypersurface during the fit procedure if its barrier is smaller
than the error associated with the experimental data set [20].
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• Parameters are obtained as PDFs and, because the whole pa-
rameter space is sampled, correlations between parameters are
taken into account. Moreover, a natural way to define errors
based on the PDF of parameters is obtained within this method
[14, 15, 21].

• The likelihood (which as we have seen is directly related to
χ2) obtained by this method is also a PDF hence revealing the
whole complexity of the parameter landscape. Model selection
is then performed taking into account all parameter combina-
tions compatible with the experiment [13].

Acknowledgements

This work was supported by the Spanish Ministerio de Ciencia
e Inovación (FIS2008-00837) and by the Catalonia government
(2009SGR-1251). We would also like to thank helpful comments on
the manuscript made from K. Kretschmer, T. Unruh, and I. Pereyra.

References

All online references accessed on July 22, 2014.

[1] K. R. Popper. Conjectures and Refutations: The Growth of Sci-
entific Knowledge. Routledge (1963).

[2] R. Trotta. Contemp. Phys. 49(2), 71 (2008).

[3] J. P. Huelsenbeck, F. Ronquist, R. Nielsen, and J. P. Bollback.
Science 294, 5550 (2001).

[4] G. A. T. McVean, S. R. Myers, H. S, P. Deloukas, et al. Science
304, 5670 (2004).

[5] R. Diehl, H. Halloin, K. Kretschmer, A. W. Strong, et al. A&A
449(3), 1025 (2006).

[6] D. S. Sivia, C. J. Carlile, W. S. Howells, and S. Konig. Physica
B 182(4), 341 (1992). International Workshop On Quasielastic
Neutron Scattering, Windsor, England, Apr 06-07, 1992.



6.3. BAYESIAN ANALYSIS 343

[7] F. J. Bermejo, J. Santoro, F. J. Mompean, and J. C. Dore. Nucl.
Instrum. Meth. Phys. Res. B 34, 505 (1988).

[8] S. Bacallado, J. D. Chodera, and V. Pande. J. Chem. Phys.
131(4), 45106 (2009).
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Abstract

Fitting a data set with a parametrized model can be seen geometri-
cally as finding the global minimum of the χ2 hypersurface, depending
on a set of parameters {Pi}. This is usually done using the Levenberg-
Marquardt algorithm. The main drawback of this algorithm is that
despite of its fast convergence, it can get stuck if the parameters are
not initialized close to the final solution. We propose a modifica-
tion of the Metropolis algorithm introducing a parameter step tuning
that optimizes the sampling of parameter space. The ability of the
parameter tuning algorithm together with simulated annealing to find

http://dx.doi.org/10.1103/PhysRevE.84.046711
http://dx.doi.org/10.1103/PhysRevE.84.046711
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the global χ2 hypersurface minimum, jumping across χ2{Pi} barriers
when necessary, is demonstrated with synthetic functions and with
real data.

Introduction

Fitting a parametrized model to experimental results is the most
usual way to obtain the physics hidden behind data. However, as
nicely reported by Transtrum et al. [1], this can be quite challeng-
ing and it usually takes “weeks of human guidance to find a good
starting point”. Geometrically, the problem of finding a best fit cor-
responds to finding the global minimum of the χ2 hypersurface. As
this hypersurface is often full of fissures, local minima prohibit an ef-
ficient search. The human guidance consists usually of a set of tricks
(depending on every particular problem) that allow to choose the
starting point in this landscape such that the first minimum found is
indeed the global minimum.

This problem is usually due to the mechanism that is behind
classical fit algorithms such as Levenberg-Marquardt (LM) [2]: a set
of parameters {Pi} is optimized by varying the parameters and ac-
cepting the modified parameter set as a starting point for the next
iteration only if this new set reduces the value of a cost or merit func-
tion such as χ2. From a geometrical point of view, those algorithms
allow only downhill movements in the χ2{Pi} hypersurface. There-
fore they can get stuck in local minima or get lost in flat regions of
the χ2 landscape [1]. This means that they are only able to find an
optimal solution if they are initialized around the absolute minimum
of the χ2 hypersurface.

The challenge of finding the global minimum can be alterna-
tively tackled by Bayesian methods [3, 4] as demonstrated in different
fields such as astronomy or biology [5–9], solid state physics [10–12],
quasielastic neutron scattering data analysis [13], and Reverse Monte
Carlo methods [14–18]. We follow a Bayesian approach to the fit
problem in this contribution. This method is based on another mech-
anism to wander around in parameter space: instead of allowing only
downhill movements, parameter changes that increase χ2 can also be
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accepted if the change in χ2 is compatible with the data errors.
To do that, a Markov Chain Monte Carlo (MCMC) method is

used, where the Markov Chains are generated by the Metropolis al-
gorithm [19, 20]. However, while in the case of the LM algorithm
the initialization of parameters is critical to the convergence of the
algorithm, it is here the tuning of the maximum parameter change
allowed at each step (called parameter jumps hereafter) that will de-
cide the success of the algorithm to find the global χ2{Pi} minimum
in an efficient way.

If the parameter jumps are chosen too small, the algorithm will al-
ways accept any parameter change, getting lost in irrelevant details of
the χ2{Pi} landscape. If chosen too large, the parameters will hardly
be accepted and the algorithm will get stuck every now and then.
Moreover, in the case of models defined by more than one parameter,
when parameter jumps are not properly chosen, the parameter space
can be over-explored in the direction of those parameters with too
small jump lengths, in other words, the model would be insensitive to
the proposed change of these parameters. On the other hand, some
other parameters can be associated to a jump so big that changes are
hardly ever accepted.

Different schemes have been proposed in order to change param-
eter jumps to explore the target distribution efficiently using Markov
Chains under the generic name of adaptive MCMC [21]. Using the
framework of the Stochastic Approximation [22] we present in this
work an algorithm belonging to the group of “Controlled Markov
Chains” [23, 24] where the calculation of new parameter jumps takes
the history of the Markov Chain and previous parameter jumps into
account.

Two main approaches are known which take the Markov Chain
history into account: Adaptive Metropolis (AM) algorithms[25] (im-
plemented for example in PyMC [26]) and algorithms that use rules
following Robbins-Monro update [24, 27, 28]. In the first case, pa-
rameter jumps are tuned using the covariance matrix at every step,
so that once the adaptation is finished the algorithm should be wan-
dering with a parameter jump close to the “error” of the parameter
(defined as the variance of the posterior parameter PDF). In some
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cases, this kind of algorithm [21] can get stuck if the acceptance ra-
tio of a parameter is too high or too low. In this case the Markov
Chain stops learning from the past history, thus the optimization is
stopped with suboptimal parameter jumps. This problem is over-
come by Robbins-Monro update rules that change parameter jumps
so that they are accepted with an optimal ratio.

The main danger of optimized Metropolis algorithms is that adap-
tation might cause the Markov Chain to not converge to the target
distribution any more. In other words, the Markov Chain might lose
its ergodicity. For example in the case of AM algorithms, the gen-
erated chain is not Markovian since it depends on the history of the
chain. However, as demonstrated by Haario et al. [25], the chain
is able to reproduce the target distribution, i. e., is ergodic. In the
second type of algorithms, the Robbins-Monro type, ergodicity prop-
erties must be assured by updating only at regeneration times [28].
In any case, as pointed out by Andrieu et al. [21] the convergence to
the target distribution is assured if optimization vanishes. In other
words, if parameter jumps oscillate around a fixed value the ergodic
property of the Markov Chain is assured.

The presented algorithm is based on the stochastic approach of
Robbins-Monro with an updating rule inspired by the one of Gilks
et al. [28]. Optimization of parameter jumps is therefore performed
with two goals in mind:

• To calculate them in such a way that all parameters are ac-
cepted with the same ratio. Adjusting parameter jumps so
that all parameter changes will have the same acceptance ra-
tio is important to explore the χ2{Pi} landscape with the same
efficiency in all parameter directions.

• To adjust parameter jumps to a value tailored to the stage of
the fit. This will turn out to be important when exploring
the χ2{Pi} hypersurface using the simulated annealing tech-
nique [29], since this allows the parameter jumps to be opti-
mized to explore χ2{Pi} (see subsection fitting in a complex χ2

landscape): at the beginning of the fit process the algorithm will
set parameter jumps to a large value to explore large portions of
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the χ2 landscape, and at the final stages these parameter jumps
will be set to small values by the same algorithm in order to
find its absolute minimum.

Geometrically, we can interpret the algorithm as setting the pa-
rameter step sizes to a value related to the hypersurface landscape.
First, it modifies the parameter jump to take into account the shape
of the hypersurface along a parameter direction. If χ2{Pk} (the cut
along a parameter k) is flat (the parameter direction is “sloppy” fol-
lowing Sethna’s nomenclature [30]), the parameter step size is set
to a larger value, and parameters will move faster in this sloppy di-
rection. On the contrary, in the directions where the χ2{Pk} has a
larger slope (the “stiff” direction following Sethna’s nomenclature),
parameter steps will be set to a smaller value so that they are ac-
cepted with the same as the previous ones. Second, it modifies the
parameter jumps to take the shape of the global χ2 landscape into
account when the simulated annealing is used. At the beginning of
the fit parameter jumps will be set to a large value so that details of
χ2{Pk}, i. e., local minima, will be smeared out, making it easier to
find the global minimum. However, during the last steps of the fitting
process, parameter steps will be set to a small value by the algorithm
so that the system will be allowed to relax inside the minimum.

The present work gives a detailed description on how the algo-
rithm works, and will be organized as follows: We first recall briefly
on the Metropolis method applied to generate Markov Chains. In
the next section, the proposed algorithm to optimize the parameter
step size is introduced. Afterwards, we check its robustness to find
optimized parameter jumps using a simple test function; and finally
we test the ability of the regenerative algorithm combined with the
simulated annealing technique to find the global minimum of χ2, even
with poor initialization values, using a simple function with a com-
plex χ2{Pi} landscape. The algorithm presented in this work has
been implemented in the program FABADA [31].
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The fit method

Fitting with the Bayesian ansatz Fitting data using the
Metropolis algorithm is based on an iterative process where succes-
sively proposed parameter sets are accepted according to the proba-
bility that these parameters describe the actual data, given all avail-
able evidence. Hence this method makes use of our knowledge of the
error bars of the data.

We now briefly recall how this can be done using a Metropolis
algorithm, to proceed in the next section with the algorithm to adjust
parameter jumps.

We should first start with the probabilistic bases behind the χ2

definition. The probability P(H | D) that an hypothesis H is cor-
rectly describing an experimental result D is related to the likelihood
P(D | H) that experimental data Dk (k = 1, . . . , n) are correctly
described by a model or hypothesis Hk (k = 1, . . . , n); using Bayes
theorem [3, 4],

P(Hk | Dk) =
P(Dk | Hk) P(Hk)

P(Dk)
(6.39)

where P(Hk | Dk) is called the posterior, the probability that the
hypothesis is in fact describing the data. P(Dk | Hk) is the likelihood,
the probability that the description of the data by the hypothesis
is good. P(Hk) is called the prior, the probability density function
(PDF) summarizing the knowledge we have about the hypothesis
before looking at the data. P(Dk) is a normalization factor to assure
that the integrated posterior probability is unity.

In the following we will assume no prior knowledge (maximum
ignorance prior [4]), in this special case Bayes theorem takes the
simple form

P(Hk | Dk) ∝ P(Dk | Hk) ≡ L (6.40)

where L is a short notation for likelihood.
Although this is by no means a prerequisite, we will assume in the

following that the likelihood that every single data pointDk described
by the model or hypothesis Hk follows a Gaussian distribution. The
case of a Poisson distribution was discussed previously [32, 33]. For
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data with a Gaussian distributed uncertainty with width σ, the like-
lihood for each individual data point takes the form

P(Dk | Hk) =
1

σ
√
2π

exp

[
−1

2

(
Hk −Dk

σk

)2
]

(6.41)

and correspondingly, the likelihood that the whole data set is de-
scribed by this hypothesis is

P(Dk | Hk) ∝
n∏

k=1

exp

[
−1

2

(
Hk −Dk

σk

)2
]

= exp

[
−1

2

n∑
k=1

(
Hk −Dk

σk

)2
]

= exp

(
−χ

2

2

)
. (6.42)

The Metropolis algorithm will in this special case consist on the
proposition of successive sets of parameters {Pi}. A new set of pa-
rameters is generated changing one parameter at a time using the
rule

P new
i = P old

i + r ·∆Pmax
i (6.43)

where ∆Pmax
i is the maximum change allowed to the parameter or

parameter jump and r is a random number between -1.0 and 1.0. The
new set of parameters will always be accepted if it lowers the value of
χ2, or, if the opposite happens it will be accepted with a probability

P(H{P l+1
i } | Dk)

P(H{P l
i} | Dk)

= exp

(
−
χ2
l+1 − χ2

l

2

)
(6.44)

where χ2
l+1 and χ2

l correspond to the χ2 for the proposed new set
of parameters and the old one, respectively. Otherwise, this new
parameter value will be rejected and the fit function does not change
during this step.

The Metropolis algorithm described here is very similar to the
one used in statistical physics to find the possible molecular con-
figurations (microstates) at a given temperature. In that case the
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algorithm minimizes the energy of the system while allowing changes
in molecular positions that yield an increase of the energy if it is
compatible with the temperature.

Inspired by the similarities between fitting data using a Bayesian
approach and molecular modelling using Monte Carlo methods, a
simulated annealing procedure proposed by Kirkpatrick [29] might
optionally be used (see for example [10, 34]). Following the idea of
that work, the χ2 landscape might be compared with an energy land-
scape used to describe glassy phenomena [35]. What we do is to start
at high temperatures, i. e., in the liquid phase, where details of the
energy landscape are not so important. By lowering the temperature
fast enough the system might fall into a local minima, i. e., in the
glassy phase. In that case the system is quenched as it is normally
done by standard fitting methods. The presented algorithm aims to
avoid being trapped in local minima using an “annealing schedule”
as suggested by Kirkpatrick. This is done by artificially increasing
the errors of the data to be fitted and letting the errors slowly relax
until they reach their true values. Because this is very similar to
what is performed in molecular modelling, the parameter favouring
the uphill movements in Equation 6.45 is usually called temperature,
yielding the acceptance rule

P(H(P l+1
i ) | Dk)

P(H(P l
i ) | Dk)

= exp

(
−
χ2
l+1 − χ2

l

2T

)
. (6.45)

As it happens with Monte Carlo simulations, increasing the tem-
perature will increase the acceptance of parameter sets that increase
χ2, thus making the jump over χ2 barriers between minima easier.

Adjusting the parameter step size The objective of tuning the
parameter step size is to choose a proper value for ∆Pmax

i in Equation
6.43 to optimize the parameter space exploration.

Given the total number of algorithm steps N and the number
of steps that yield a change in χ2, i. e., the number of successful
attempts, K, the ratio R of steps yielding a χ2 change is R = K/N .
Rdesired is defined as the ratio with which some parameter should
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be accepted in a step. As we want every parameter to be changed
with the same ratio, Ri,desired = Rdesired/m where m is the number of
parameters.

The algorithm is initialized with a first guess for the parameter
step sizes. This first guess, as will be seen shortly, is not important
due to the fast convergence of the algorithm to the optimized values.
The calculation of a new ∆Pmax

i , i. e., the regeneration of the Markov
Chain, is done after N steps, i. e., at regeneration times, through the
equation

∆Pmax,new
i = ∆Pmax,old

i

Ri

Ri,desired

(6.46)

where Ri is the actual acceptance ratio of parameter i. Following the
previous equation, if the calculated ratio Ri/Ri,desired is equal to one,
i. e., if all parameters are changing with the same predefined ratio,
∆Pmax

i will not be changed.
If during the fit process a change of parameter Pi is too often

accepted, the parameter space is being over explored with regard to
parameter i. The algorithm will then make ∆Pmax

i larger in order
to reduce its acceptance. The contrary happens if the acceptance
is too low for a parameter: the algorithm makes ∆Pmax

i smaller to
increase its acceptance ratio. This will set different step sizes for each
parameter, making the exploration of all of them equally efficient.

Demonstrations of fitting functions

Fitting in a well-behaved χ2 landscape The optimization of
the parameter step size is shown using the Gaussian function

y(x) =
A

W
√
2π

exp

[
−(x− C)2

2W 2

]
(6.47)

where A is the amplitude, W is the width and C is the centre of
the Gaussian. A function has been generated with the parameter set
{A,W,C} = {10, 1, 5} and a normally distributed error with σ = 0.1
was added. A series of tests with different initial values for param-
eter jumps and different desired acceptance ratios have been carried
out (see below for details). The initial parameters for the fit were
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Figure 6.56: Circles: Generated Gaussian function to test the al-
gorithm with the parameters {A,W,C} = {10, 1, 5}. Dashed line:
starting point for all performed tests ({A,W,C} = {2, 2, 2}). Solid
line: best fit, i. e., minimum χ2 fit, of the Gaussian function.

{A,W,C} = {2, 2, 2}. In all cases the algorithm was able to fit the
data as can be seen in Figure 6.56.

The parameter step size was adjusted every 1000 steps. Three
cases are shown in Figure 6.57: an initial ∆Pmax

i of 10 (a very large
jump compared to the parameter values, nearly always resulting in
a rejection of the new parameters) and an Rdesired of 66%, the same
∆Pmax

i with an Rdesired of 9% and finally a ∆Pmax
i of 10−4 (a very

small jump compared to the parameter values, resulting in a slow
exploration of the parameter space) and an Rdesired of 9%. It can be
seen that the algorithm manages in all these extreme cases to adapt
the jump size quickly and reliably in order to make R equal to Rdesired.

In Figure 6.58 we show the three individual acceptance ratios Ri

for the different parameters as a function of the fit steps for differ-
ent initialization values of the parameter jumps ∆Pi, for different
values of Rdesired, and setting the number of steps to recalculate pa-
rameter jumps N to 1000. When the total acceptance ratio is set
to Rdesired = 66% (solid line), the algorithm is able to change all pa-
rameter jumps (see Figure 6.58(b)), making the acceptance ratio Ri

of every parameter equal to Rdesired/m = 22% and thus the total ac-
ceptance ratio R to 66%. The same happens if the acceptance is set
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Figure 6.57: Total acceptance ratio R as a function of the number
of steps when Rdesired is set to 66% and 9% (solid and dashed or
dotted lines). In the second case (Rdesired = 9%), dashed and dotted
lines represent the values of R as a function of algorithm step for
two different parameter step size initializations (∆Pmax

i = 10 and
∆Pmax

i = 10−4, respectively)

to 9%: the algorithm finds the parameter step sizes (see dashed line
in Fig. 6.58(b)) which yield a total acceptance ratio of 9% within
the first 5000 steps, no matter how the parameter step sizes were
initialized.

To explicitly show how this is linked with the geometrical features
of the χ2 landscape, the inset of Figure 6.58(b) shows a cut of the χ2

hypersurface along parameters A and C, leaving parameter W fixed
to its best fit value WBF. As can readily be seen, the χ2{A,C,W =
WBF} hypersurface is sloppy in the direction of parameter A and stiff
in the direction of parameter C. The algorithm has thus correctly
calculated a parameter step size which is larger forA than for C, along
whose direction the χ2 well is narrower. This fact makes the final
parameter step sizes proportional to the errors of each parameter – if
the global minimum is not multimodal, is quadratic in all parameters,
and those are not correlated.

In order to show the robustness of the algorithm, we have also
made disparate initial guesses for parameter step sizes ∆Pmax

i about
three decades below the correct acceptance ratio, setting Rdesired =
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Figure 6.58: a) Acceptance ratio Ri for parameters A, W , C involved
in the fit of the Gaussian following Equation 6.47 (red triangles, green
squares and blue circles respectively) when Rdesired is set to 66% and
9% (solid and dashed lines). b) Parameter step size as a function of
the number of steps (line and symbols code as in figure a). The inset
shows a cut through the χ2 hypersurface along A and C directions
fixing W to the best fit value.

9%. As displayed in Figure 6.58, after about 5000 steps the accep-
tance ratio R (N is again 1000 steps) has already reached the desired
value. It can be seen in Figure 6.59(a) that the acceptance ratio
for each parameter reaches again the value Rdesired/m = 3% and pa-
rameter step sizes are virtually equal to those obtained previously as
shown in Figure 6.59(b).

To stress the relevance of the aforementioned algorithm to explore
the parameter space correctly, thus assuring its convergence, we have
calculated the normalized ∆χ2PDF in all tested cases. As can be seen
in Figure 6.60, the ∆χ2 PDF after 105 steps matches the chi-square
distribution

P(∆χ2) ∝
(
∆χ2

)(m
2
−1)

exp

(
−∆χ2

2

)
(6.48)

with m = 3 as expected [2]. In Figure 6.60 we show the ∆χ2 PDF
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Figure 6.59: a) Acceptance ratio Ri for parameters A (triangles), W
(squares), C (circles) involved in the fit of the Gaussian following
Equation 6.47 when initial parameter step sizes are set to ∆Pi = 10
(dashed line) and ∆Pi = 10−4 (dotted line). b) Parameter step size
as a function of the number of steps (lines and symbols as in figure
a).

obtained after 104 steps for different cases: first setting ∆Pmax
i equal

to the value calculated by the algorithm and second setting ∆Pmax
i

equal to the initial guess and finally to a value, calculated a posteriori,
which is proportional to the best fit parameters ∆Pmax

i = 0.1Pi (inset
of Figure 6.60)

As can be seen in Figure 6.60, when ∆Pmax
i is set much higher

than the optimal step sizes, the Metropolis algorithm scans the whole
parameter space {Pi}, but jumping between disparate regions with
very different values of χ2, therefore with a low acceptance rate of new
parameter sets (dashed line in Figure 6.60). This causes a poor ex-
ploration of parameter space. In contrast, a small value over-explores
only a restricted portion of {Pi}, falling very often in local minima of
the parameter space (dotted line in the same figure). Also choosing
parameter jumps proportional to the final parameters leads to a poor
exploration of parameter space (solid line in the same figure). Finally,
after the same number of steps, when using the optimized parameter
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Figure 6.60: The dashed line represents a chi-square distribution for
three parameters, i. e., m = 3 (see text for details). Solid line is the
obtained PDF associated to ∆χ2 when calculated for 105 steps. Cir-
cles represent the same distribution when calculated using only 104

steps. The inset shows the χ2 PDFs when calculated with parame-
ters allowed to change with ∆Pi = 10−4, ∆Pi = 10, ∆P = 0.1Pi.
Successive PDFs are displaced on the ordinate axis for clarity of the
figure.

step sizes obtained by the algorithm the χ2 PDF follows the theo-
retical expectation, meaning that the parameter space is correctly
sampled.

Fitting in a complex χ2 landscape As pointed out before, one
of the main problems when dealing with data fitting using the LM
algorithm is to find a proper set of initial parameters close enough to
the global minimum of the χ2{Pi} hypersurface. As an example we
show in Figure 6.61 the function sin(x/W ) for W = 5 affected by a
normal distributed error with σ = 0.1. In Figure 6.62(a) we show the
χ2{W} landscape associated to the generated function. As it can be
seen, the χ2{W} landscape for this function has a great number of
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Figure 6.61: Synthetic sin(x/5) function (circles) together with the
best fit using parameter step sizes tuning together with simulated
annealing (line). Dashed lines are the fits using the LM algorithm
with starting parameters Wi = 2 and Wi = 15.

local minima and a global minimum at W = 5. We have fitted the
function using the LM algorithm and initializing the parameter at
Wi = 2 and Wi = 15 (see Figure 6.61). As expected, both fits were
not able to find the global minimum that fits the function. In fact
only if the LM algorithm is initialized betweenW = 3.6 andW = 9.0
it is able to succeed in fitting the data.

We now test the ability of our algorithm to jump across χ2 barriers
delimiting successive local minima to find the global one. For this
task we have used the simulated annealing method, decreasing the
temperature one decade every 3000 steps from T = 1000 to T = 1.
The parameter jump calculation has been performed every N = 1000
steps. While the initial temperature allows to explore wide regions
of the parameter space, the last temperature will let the acceptance
be determined only by the real errors of the data.

In Figure 6.62(b) we show the parameter W as a function of al-
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gorithm step for the two aforementioned initializations together with
the χ2 landscape (a). Parameter step sizes were initialized after a
first run of optimization of 2000 steps. As can be seen in this figure,
after 3000 steps both runs have already reached the absolute χ2 mini-
mum. Successive steps just relax the system to the final temperature
T = 1.

As it can be seen in Figure 6.62, the way the minimum is reached
depends on the parameter initialization. Parameter step sizes are
larger for the run started with Wi = 15 with a flat local minimum.
The contrary happens with the run initialized at Wi = 2, parameter
step sizes are set small due to the narrow wells of the χ2 landscape
in this region. However, both runs are able to avoid getting stuck in
local minima, jumping over rather high χ2 barriers and successfully
reaching the best fit.

Conclusion

Classical fit schemes are known to fail when the parameters are not
initialized close enough to the final solution. We have proposed in
this work to use an Adaptive Markov Chain Monte Carlo Through
Regeneration scheme, adapted from that of Gilks et al. [28], combined
with a simulated annealing procedure to avoid this problem.

The proposed algorithm tunes the parameter step size in order to
assure that all of them are accepted in the same proportion. Geo-
metrically the parameter step size is set large when a cut of χ2{Pi}
along this parameter is flat, i. e., when the change of the χ2{Pi} hy-
persurface along this parameter is sloppy. Similarly the parameter
step size is set small if χ2{Pi} wells are narrow.

Moreover, the step sizes can be modulated by a temperature
added to the acceptance equation that makes jumps across χ2 bar-
riers easier, i. e., using a simulated annealing method [29]. From a
geometric point of view, a high temperature makes the χ2{Pi} wells
artificially broader, smearing out details of local minima. This is
important at the first stages of a fit process. At final stages of the
fitting, temperature is decreased, making parameter jumps smaller,
and thus allowing the system to relax, once it is inside the global



360 CHAPTER 6. RESULTS

0

2

4

6

0 5 10 15 20
0

3

6

9
b

 
2 /1

00
0

 

a

T=1000

T=100

T=10

 

 

st
ep

/1
00

0

W

T=1

Figure 6.62: (a) χ2{W} landscape obtained for the function sin(x/W )
with a normal error associated of σ = 0.1 (see Figure 6.61). (b)
Algorithm steps for two different initializations , black solid line for
Wi = 2 and red dashed line forWi = 15, as a function of parameterW

minimum.
By fitting simulated data including statistical errors we verified

that our algorithm actually fulfils the requirements of ergodicity (it
converges to the target distribution), robustness (the ability to reach
the χ2 minimum independent of the choice of starting parameters),
ability to escape local minima and to explore efficiently the χ2 land-
scape, and guarantee that it will self tune to converge to the global
minimum avoiding an infinite search with large steps.

More complex problems have already successfully been studied
with this algorithm such as model selection using Quasielastic Neu-
tron Scattering data [36, 37], non-functional fits in the case of dielec-
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tric spectroscopy [38] or finding the molecular structure from diffrac-
tion data with a model defined by as many as 27 parameters [39].
In the last case, the proper initialization of parameters to use a LM
algorithm would have been a difficult task, made easy by the use of
the presented algorithm.
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6.4 Solution to the local density

paradox in carbon tetrachloride

(CCl4)

In molecular liquids both the position and the orientation of the mo-
lecules are highly disordered. In plastic crystals molecules can rotate
more or less freely but their centres of mass are located in a regular
lattice, this results in a structure that displays long range positional
order but keeps the orientational disorder of the molecules.

Carbon tetrachloride shows both phases and its disordered struc-
ture was one of the first and most extensively studied. The goal of
this research was to determine the short range order of this com-
pound at each phase to solve the local density paradox, that is, the
reason why the density of the liquid is lower than in the plastic phase
although molecules are located closer in the first case.

On the one hand, a Bayesian method was used for the fit to the
experimental data and to obtain the parameters regarding its in-
tramolecular geometry and, on the other hand, molecular dynamics
simulations as well as reverse Monte Carlo modelling was used to
study its intermolecular structure.

The analysis showed that although the configuration preferred by
molecules in the liquid allows them to sit closer to each other, it
does not allow them to stack properly, which results in a mixture of
configurations that prevents the molecules from attaining long range
order, yielding a poorer global packing and thus a lower density.

Results were presented in several conferences, and partially pub-
lished in the article: L. C. Pardo, M. Rovira-Esteva, J. Ll. Tamarit,
N. Veglio, et al., A procedure to quantify the short range order of dis-
ordered phases, Metastable Systems under Pressure, pp. 79-91 (book
chapter) (2009).
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Abstract

Determination of the short- and intermediate-range structure of dis-
ordered materials is a necessary step to fully understand their prop-
erties. Despite of this, no generally accepted procedure exists to date
to extract structural information from diffraction data. In this paper
we describe a method which enables determination of the short-range
structure of disordered molecular phases. This general method is ap-
plied to one of the first studied molecular liquids, carbon tetrachlo-
ride, and to its plastic phase being able to unravel the so called local
density paradox: although molecules are closer in the liquid than in

http://dx.doi.org/10.1007/978-90-481-3408-3_6
http://dx.doi.org/10.1007/978-90-481-3408-3_6
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the plastic phase, the density of the former is lower than that of the
later. The analysis of the short range order in both phases shows that
although the minimal energy configuration allows a closer approach
of molecules, it hinders the formation of the face centred cubic long
range ordered lattice due to the difficulty of molecules to form stacked
structures.

Introduction

Crystallography is a well established science that allows, among other
things, to extract structural information of an ordered arrangement
of atoms from a diffraction experiment. In fact, the knowledge of its
structure is fundamental in order to characterize a crystalline phase
and this helps in the comprehension of a large amount of physical
data, from dynamics to thermodynamics. This is done by means
of well established procedures (as Rietveld refinement) supported by
a huge amount of software. Astonishingly enough this is not the
case for disordered phases such as liquids or plastic phases (a phase
where, although the centres of mass of the molecules are in long
range ordered positions, the molecules rotate more or less freely) and
their non-ergodic associated states, or in other words, their glasses.
In these cases physical data is usually interpreted not taking into
account the Short Range Order (SRO) structure, probably simply
due to the lack of a well established procedure to determine their
structures.

In this chapter we offer a method to fully determine the structure
of disordered phases, from the molecular structure to the SRO, and
we apply it to the determination of the structure of one of the first
molecular liquids studied ever, carbon tetrachloride, and its not so
well studied plastic phase. Concerning the SRO of the liquid phase,
regarded as the most probable dimmer configuration between two
“close” molecules, no consensus exists so far. Considering the CCl4
molecule as a tetrahedron, where the chlorine atoms are sitting in its
corners and the central carbon atom is equidistant to those corners,
we find in the literature the configurations face to face [1, 2], corner
to face (also called Apollo) [3], corner to corner [4], and edge to edge
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or interlocked [5]. However a recent work of Rey [6], where for the
first time a clear quantitative definition of the aforementioned con-
figurations is presented, demonstrates that although the edge to edge
(or interlocked) configuration (as defined there) clearly dominates,
other configurations such as face to face are also possible at very
short distances between molecules. Concerning the plastic phase, all
the members of the methyl-halogenomethane family (CCln(CH3)(4−n)

with n = 0, 1, 2, 3, 4; including CCl4 (n = 4) has a phase transition
from the liquid phase to a plastic phase with a high-symmetry lat-
tice (cubic or rhombohedral) [7, 8], which in the case of CCl4 is Face
Centred Cubic (FCC) [9–11].

Experiments and data treatment

A series of neutron diffraction experiments were carried out using
the D1b diffractometer at the Institute Laue Langevin, Grenoble,
France. The instrument is a general purpose powder diffractometer
which uses a banana-shaped detector covering a wide angular range.
The measurements were performed using a wavelength λ = 1.2805 Å
which, combined with data acquisition at two different detector posi-

tions, allowed us to cover a q-range up to 8 Å
−1

large enough to study
the structure factor, account made of the small intermolecular dis-
tances. Details concerning the instrument settings and data correc-
tion procedures (inelastic contributions, multiple scattering, detector
efficiency, self absorption, and normalization to a known vanadium
sample) are given elsewhere [12, 13]. Concerning the plastic phase
phase, the growth of a polycrystalline FCC phase was ascertained by
the emergence of a set of crystalline Bragg peaks as described previ-
ously [12, 13]. Experimental results for the liquid phase are shown
in Figure 6.63a, as well as the total radial distribution function for
the FCC phase (calculated as G(r) = 1 + ρ−1

0 (2π)−3FT [S (q)− 1],
where FT means Fourier Transform). For a description of data treat-
ment see in this series the paper entitled “Neutron diffraction as a
tool to explore the free energy landscape in orientationally disordered
phases” or Reference [14–16].
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Figure 6.63: a) Scattering function for liquid Carbon Tetrachloride
together with its determination by means of molecular dynamics and
Reverse Monte Carlo (RMC). With dotted lines we show the determi-
nation of the intramolecular structural parameters determined by the
Bayesian method described in the text. b) Total radial distribution
function for the FCC phase, together with the results of RMC.

Extracting the molecular structure from data

Total scattering function S(q) has two terms corresponding to dis-
tances between atoms at two different length scales: a long scale con-
tribution from intermolecular distances that is the most important
contribution in the low-q region of S(q), and a short scale contribu-
tion which will mainly contribute in the high-q region of the scattering
function. A common method to determine the molecular structure is
to fit the scattering function using the expression:

S(q) =
m∑
i,j

bibj
sin (qrij)

qrij
e−

1
2(u2

ij q
2) (6.49)

where rij are the intramolecular distances and u2ij are the mean square
displacements between i and j atoms (the Debye-Waller term, see
Reference [14–16]).



6.4. CARBON TETRACHLORIDE 369

In order to fit experimental data, a standard Levenberg-
Marquardt (LM) method for minimizing χ2 is usually performed.
This method has two main drawbacks: it can get stuck in local min-
ima of the χ2-parameter space and therefore must be initialized using
values close enough to the final parameters somehow inferred before-
hand. In addition the method supposes that there is only one mini-
mum in the χ2-parameter space (i.e., the solution is not multimodal)
and that this minimum must have a quadratic form on all param-
eters involved. The first problem can be avoided using a “shake”
algorithm, i.e., once the LM procedure is stopped at some point, the
fitting is repeated from a close set of parameters in order to assure the
robustness of the result. The second problem is unavoidable using a
minimum χ2 approach. It implies that LM can only deal with sym-
metric errors around the highest probable value of parameters, and
that the correlation between parameters can only be lineal. Moreover,
even if the χ2 minimum is in fact quadratic, the procedure makes very
difficult to take into consideration the correlation between parame-
ters. To obtain them the covariant matrix should be diagonalized,
being the eigenvalues the real error of the parameters along the eigen-
vectors defined by linear combinations of parameters. This implies
that in many works errors are calculated under the hypothesis that
parameters are independent, and for this reason are underestimated.

An alternative way to reach the minimum of χ2 is the use of the
Bayesian approach, which deals with the direct determination of the
Probability Distribution Function (PDF) for the final parameters.
This method has the advantage that all the parameter space com-
patible with the experimental error is explored and therefore correla-
tion between parameters and multimodal minima in the χ2-parameter
space are naturally taken into account. For a review on Bayesian
methods the reader is refereed to the excellent monograph of Sivia
et al. (Reference [17]), while in this work we will only briefly explain
the method used for our specific problem.

In order to obtain the PDF for the parameters, we have used a
Markov Chain Monte Carlo method to explore the parameter space.
This method is similar to a classical Monte Carlo simulation where
the distance between calculated and experimental data ((ycalc−yexp)2)
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plays the role of energy, and the experimental error (σ) plays the role
of temperature. The method (as employed in this work) is based
on the hypothesis that experimental data have a Gaussian distribu-
tion around the real value. This is true for a counting experiment
with large enough amount of counts, because in this case a Poisson
distribution can be approximated by a Gaussian one. Therefore the
probability that a function with given fitting parameters (Dk) (what
is called the “Hypothesis” in Bayes theorem) is describing your n ex-
perimental data points (xk) with an error σk (i.e., data xk supposed
to be normally distributed around Dk with a standard deviation of
σk) can be expressed as:

L ∝ P (xk|Dk) =
n∏
k

e
− 1

2

(
xk−Dk

σk

)2

(6.50)

= e
− 1

2

∑n
k

(
xk−Dk

σk

)2

= e−
χ2

2 (6.51)

This is usually called the likelihood of the hypothesis, or in other
words the probability that the fitted function with a given set of
parameters is describing the data within the experimental error. In
regard to the previous expression, it is easy to see that in fact mini-
mizing χ2 is just maximizing the likelihood (logL ∝ −χ2/2) when a
Gaussian distribution is assumed for the data. However, the previous
method for fitting functions is more general because other distribu-
tions than Gaussian can also be used, as in the case of an experiment
with a low count rate where the Gaussian approximation to the Pois-
son distribution is no more applicable.

In order to obtain the PDFs, starting from a set of parameters
that minimizes χ2, we generate randomly a new set of them, being
the change between the new and old accepted having in to account
the likelihoods of the two parameter sets

P (xk|Dnew
k )

P
(
xk|Dold

k

) = e−
1
2
(χ2

new−χ2
old) (6.52)

where D
new (old)
k are the points generated using the new (old) set of

parameters.
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In Figure 6.64 we show the PDFs obtained for the parameters
fitted to the intramolecular structure of CCl4 using equation (6.49):
the distance between the carbon and chlorine atom, and the mean
square displacement between the C-Cl and Cl-Cl atom pairs (Cl-
Cl distance can be calculated form the tetrahedral geometry of the
molecule). In Figure 6.63a we show the fitted function together
with experimental data, taking the highest probable parameters ob-
tained by the proposed Bayesian method: dCCl = 1.768 ± 0.004 Å;

uClCl = 0.18 ± 0.01 Å
2
and uCCl = 0.06 ± 0.02 Å

2
. Having a careful

look at the last parameter uCCl depicted in Figure 6.64 we can see
that the probability distribution is not symmetric, being more prob-
able for this parameter to be smaller than larger with respect to the
highest probable one. In the case of the simple molecule studied in
this work, the proposed method gives the real error of parameters
and improves the robustness of their determination in comparison
with the standard minimum χ2 method, but will give the same final
parameters as the LM algorithm. We have seen however that for
more complicated molecules only the Bayesian method exposed in
this work is able to give reasonable results, avoiding the aforemen-
tioned danger of LM algorithm being stuck at a local minimum (as
the ones studied in the article “Neutron diffraction as a tool to ex-
plore the free energy landscape in orientationally disordered phases”
in this series, and Reference [18]).

Extracting the short range order from data

In order to extract the configurations to be analysed in the next sec-
tion, we have both taken the results obtained in a previous Molecular
Dynamics (MD) simulation (details on the simulation are given else-
where [5], and also performed a Reverse Monte Carlo (RMC) analysis
of the obtained data on both phases, liquid and ODIC [12, 13]. It
should be kept in mind that the two methods are from first principles
completely different, needing the first one (MD) a priori information
about the intermolecular interaction potentials. In the case of RMC
no initial information is needed (except from macroscopic density),
and only the experimental result is driving the algorithm to find a



372 CHAPTER 6. RESULTS

Figure 6.64: Normalized PDFs for the intramolecular structural pa-
rameters, together with the fitting of a Gaussian function. The max-
imum of each PDF, i.e., the most probable parameter value, has been
used to calculate the intramolecular structure function of Figure 6.63.

final configuration compatible with the experimental data [19, 20].
It should also be pointed out that a third way combining the ad-
vantages of the two methods is possible, the so called Empirical Po-
tential Structure Refinement (EPSR) [21], but this method has not
been used in the present work. Flexible molecules have been used in
both cases (MD and RMC), being their initial geometry determined
by ab initio calculations [12, 13]. The total structure factor for the
liquid at 298 K was analysed by RMC method using a simulation
box composed by 1000 molecules, with dimensions set to reproduce
the experimental density of the liquid (L = 54.34 Å). As it has been
shown in Figure 6.63, the agreement between the spectra simulated
from the RMC and MD configurations and the experimental S(q) is
excellent. In what concerns the ODIC phase, a RMC simulation at
240 K has been performed using a box containing 6x6x6 cells, with
a length extracted from the Bragg peaks appearing in the spectra
(L = 50 Å). In this case, the fit was performed using the total ra-
dial distribution function as in Reference [22]. The RMC fitting has
been performed allowing only small-amplitude motions of the molec-
ular centres about the lattice sites defined by the Bragg peaks, and
changing the orientations of the molecules. The agreement between
fitted and experimental data can be seen in Figure 6.63b (for further
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Figure 6.65: Molecular Coordination Number (MCN) as a function
of the distance, for the liquid phase (filled circles MD, empty cir-
cles RMC) and the FCC phase (squares). Arrows show the maxima
of MCN for the aforementioned phases, i.e., the maximum of local
density.

details, see Reference [12, 13]).

Analysis of final configurations

Positional ordering In Figure 6.65 we have plotted the Partial
Radial Distribution Function (PRDF) gCC(r) for the molecular cen-
tres (ρgαβ(r)dr is defined as the probability of finding a molecule β
within the shell rdr surrounding an atom α, being ρ the macroscopic
density). Astonishingly enough, although the macroscopic density is
larger in the FCC plastic phase than in the liquid phase, molecules
are closer in the second phase. Moreover, the maximum of the PRDF
is located at higher distances independently of the used method to
obtain the molecular centres PRDF. This “local density paradox”
adds new interest in studying the SRO of the two disordered phases,
and only a careful method taking into account the 3D SRO would
lead to a correct answer.

To obtain the SRO, we have taken the idea of the bivariate analy-
sis, used to study the molecular ordering at interfaces between liquids
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and vapors [23], and we have applied it to the study of liquid and
plastic phases of CCl4. In order to locate the position of a second
molecule from a central one, three orthogonal axis must be defined
in relation with the molecular structure. In our case the z-axis is
set along the direction of a C-Cl bond, being another C-Cl bond in
the zy-plane (see Figure 6.66). Using this convention we can calcu-
late the azimuthal angle θ as the scalar product between the unit
vector along the intramolecular C-Cl bond defined as the z-axis and
the intermolecular C-C distance joining the molecular centres of two
molecules.

θ = ~rC1−Cl1i · ~rC1−C2 (6.53)

being Ci (i = 1, 2) the carbon atom from the reference molecule or
from the molecule the position of which is to be calculated respec-
tively, and Clij (i = 1, 2, j = 1, 4) one of the four i(j) chlorine atoms
of molecule i(j).

In the same way we can define the equatorial angle ϕ as the scalar
product between the unit vectors perpendicular to two planes: the
zy-plane defined by two different intramolecular C-Cl vectors and the
plane defined by the z-axis and the intermolecular C-C vector:

φ = ~rC1−Cl1i × ~rC1−Cl1j · ~rC1−Cl1i × ~rC1−C2 (6.54)

In Figure 6.67 we show the probability of finding a molecule at a
position determined by the equatorial and azimuthal angles (φ,cos(θ))
for the first four neighbours (a,c) and therefore molecular distances
rCC less than 5.73 Å and 5.63 Å for MD and RMC configurations
respectively. The same is depicted in Figures 6.67b and 6.67d also
for MD and RMC but in this case for the next four-molecule shell
(5.63 < rCC < 6.5 Å and 5.63 < rCC < 6.6 Å). As it can be im-
mediately appreciated, although RMC gives a much more disordered
distributions of molecules, for the first molecules the SRO obtained
using the two methods is the same, being both completely indepen-
dent. Unfortunately, because RMC method is a Maximum Entropy
method, i.e., it gives the most disordered solution compatible with
experiment and therefore the most probable, no clear SRO is appre-
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Figure 6.66: Chosen axis in order to calculate the positional ordering
of two CCl4 molecules.

ciated for long distances, and therefore for the liquid phase the dis-
cussion will be focused on the MD configurations (see Figure 6.68).
On the contrary, in the case of the FCC phase, because a positional
ordering already exists, the SRO is clearly determined by the RMC
method (see Figure 6.68c).

We define the First Molecular Coordination Shell (FMCS) as the
molecules within the first peak of the C-C PRDF, i.e., for distances
rCC < 7.5 Å (see Figure 6.64). In Figure 6.68 we have depicted the
probability of finding a molecule at a position (φ, cos(θ)) for succes-
sive shells surrounding a central molecule within the FMCS contain-
ing only four molecules each: in Figure 6.68a we have therefore the
positional ordering for the first four molecules, in Figure 6.68b for
the next four molecules and in Figure 6.68c for the last four mole-
cules inside the FMCS. A glance to Figure 6.68 clearly reveals that
the distribution of molecules changes as a function of their distance
to the central molecule even inside the FMCS. Moreover, molecules
in a shell tend to fill the gaps left by the molecules in a shell closer
to the central molecule. Taking into account the tetrahedral symme-
try of the molecule, the first four neighbours are sitting in the faces
of the central molecule (Figure 6.68a), the next four neighbours in
the edges and a small fraction in the corners (Figs. 6a,b), and the
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Figure 6.67: Comparison of the ordering obtained for the liquid phase
by means of MD (a,b) and RMC (c,d) for the first four molecules sur-
rounding a central one (a MD,c RMC), and for the next four molecu-
les (b MD, d RMC). The color scale represents the normalized proba-
bility of finding the molecule at a given position (P (φ, cos(θ))/Pmax).

last four neighbours in the corners of the central molecule (Figure
6.68c). On the other hand, for the FCC phase, due to its positional
ordered nature, we must consider the 12 closer molecules at a distance
r ≈ a/

√
2. In fact what is represented in Figure 6.68c is the relative

orientation of the molecule with respect to the lattice axes, since the
positional ordering of molecular centres is fixed in the FCC lattice.
Our results are in complete agreement with previous MD simulations
[3, 10, 11, 24] where it is asserted that C-Cl vectors lie along [110]
and [100] directions. To make this point clear, we can see in Figure
6.68c spots at (cos θ, φ) = (−0.33, 0◦) and (0.33, 60◦), which means
that molecules are placed in the corners and faces with respect of the
first neighbours, which lie in the [110] directions. Molecules oriented
along the [100] directions are represented at the spots (0.7, 0◦) and
(−0.7, 60◦) and would correspond to the molecules placed in the edge
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Figure 6.68: Comparison of the positional ordering obtained for the
liquid phase (a,b,c) and for the FCC phase (d) by means of MD
simulation. Colour scale is defined as in Figure 6.67.

of the molecules in the liquid phase represented by the large spots at
about (0.58, 0◦) and (−0.58, 60◦).

Orientational ordering In order to extract the maximum quan-
titative information about the relative orientation of molecules we
have calculated an histogram of the angle between all possible com-
binations of C-Cl vectors of two different molecules

α = ~rC1−Cl1i · ~rC2−Cl2j (6.55)

Nevertheless if only the probability P (α) of finding an angle α
between two C-Cl vectors is studied, the information about the po-
sition of molecules is lost, and therefore we would add orientational
information for molecules that are placed at different points. For
this reason in Figure 6.69 we have plotted the probability P (α) as
a function of the cosine of their azimuthal angle P (cos θ, cosα), and
therefore we would be eventually able to distinguish between differ-
ent orientations of molecules sitting in different places. Nevertheless
that is not the case as it can be seen in Figure 6.69, where the spots
found in the cosα are independent of that found in the cos θ, that is,
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the position. Lets now define molecules that are “parallel” oriented
as those with C-Cl vectors of different molecules pointing in the same
direction (therefore cosα = 1), and “antiparallel” as those with C-Cl
vectors pointing in opposite directions (therefore cosα = −1). Then
the first four molecules surrounding the central one are antiparallel
oriented, the next four parallel, and the last four molecules within
the FMCS are again antiparallel oriented, standing for the spots at
cosα = −1, cosα = 1 and cosα = −1, respectively. For the case of
the FCC phase, molecules are parallel oriented irrespective of their
position, as can be seen in Figure 6.69d.

Regarding the previous works carried out on CCl4 in which dif-
ferent or even contradictory molecular arrangements are proposed,
and taking into account the present analysis, we can understand the
origins of the controversy on the molecular arrangement of this sim-
ple molecular liquid. First, the structure of the liquid is distance-
dependent and an analysis of the whole first FMCS will lead to wrong
results, and second, a bivariate analysis, or any other analysis taking
into account the three spatial degrees of freedom of the SRO, must be
performed to obtain SRO and must avoid collapsing information in
1-D representations. Joining the aforementioned results obtained for
positional and orientational ordering of CCl4 molecules in the liquid
phase we can tentatively assign some configurations found in the liter-
ature to molecular arrangements although, as pointed out by Rey [5]
only a quantitative definition of those molecular arrangements makes
fully sense. Then we can characterize the molecular arrangement of
the first four molecules in the liquid as the face to face configuration
[1, 2], the next four molecules would be in an Apollo [3] or edge to
edge configuration (interlocked of Reference [5]), and the last four
molecules of the FMCS in a corner to corner configuration [4]. On
the contrary, for the case of the plastic phase, no matter how mole-
cules are positionally arranged, C-Cl vectors are parallel giving rise
to Apollo or edge to edge like configurations. This fact provides us a
hint to solve the aforementioned “local density paradox”. The min-
imum energy dimmer arrangement is so that faces of the tetrahedra
are touching each other (face to face arrangement), but such an ar-
rangement avoids the possibility of a long range ordered lattice. On
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Figure 6.69: Comparison of the orientational ordering obtained for
the liquid phase (a,b,c) and for the FCC phase (d) by means of MD
simulation. Colour scale is defined as in Figure 6.67.

the contrary for the FCC phase, although closest molecules are not
arranged in a minimum energy configuration, they are in all cases
arranged in a parallel way, allowing therefore the formation of molec-
ular stacking. It must be borne in mind that this ordering is dynamic
in nature, but favouring the aforementioned parallel orientation of
molecules.

Conclusions

In this paper we have described a method to fully characterize the
SRO in disordered phases. The Bayesian method exposed in the
first part of this work allows a robust determination of molecular
parameters, and a clearly defined calculation of the errors on the
basis of probability theory. In addition we offer an easy method to
extract from molecular configurations the SRO (positional and ori-
entational). Using these two methods we have been able to unravel
the structure of the liquid phase for carbon tetrachloride, which has
been revealed to be richer than previously thought within the first
molecular coordination shell. In this phase positional and orienta-
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tional short range ordering of molecules simply tries to minimize the
energy, the molecules filling the gaps left by successive shells of mole-
cules, and therefore changing the molecular arrangement along shell
distance. The situation is different for the plastic phase, for which
not only minimizing the energy plays a role in the SRO, but also the
possibility of forming molecular stacking, and therefore allowing the
formation of a positional long range ordered structure.
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Phys. Chem. 105, 10326 (2001).

[9] I. McDonald, D. G. Bounds, and M. L. Klein. Mol. Phys. 45,
521 (1982).

[10] W. Breymann and R. M. Pick. J. Chem. Phys. 91, 3119 (1989).

[11] M. More, H. B. Lefebvre, J. and, B. M. Powell, and C. M. E.
Zeyen. J. Phys. C 13, 2833 (1980).

[12] N. Veglio, F. J. Bermejo, L. C. Pardo, J. Ll. Tamarit, et al. Phys.
Rev. E 72, 031502 (2005).

[13] L. C. Pardo, N. Veglio, F. J. Bermejo, J. Ll. Tamarit, et al. Phys.
Rev. B 72, 014206 (2005).

[14] G. J. Cuello. J. Phys.-Condens. Mat. 20(24), 244109
(2008). URL http://stacks.iop.org/0953-8984/20/i=24/a=

244109.

[15] H. E. Fischer, A. C. Barnes, and P. S. Salmon. Rep. Prog. Phys.
69(1), 233 (2006).

[16] C. Talón, F. J. Bermejo, C. Cabrillo, G. J. Cuello, et al. Phys.
Rev. Lett. 88(11), 115506 (2002).

[17] D. Sivia and J. Skilling. Data Analysis: A Bayesian Tutorial.
Oxford University Press (2006).

[18] L. C. Pardo, F. J. Bermejo, J. Ll. Tamarit, G. J. Cuello, et al.
J. Non-Cryst. Solids 353(8-10), 999 (2007).

[19] R. L. McGreevy. J. Phys.: Cond. Matter 13, R877 (2001).

[20] G. Evrard and L. Pusztai. J. Phys.: Cond. Matter 17, S1 (2005).

[21] URL http://www.isis.rl.ac.uk/Disordered/DMGroup/DM_

epsr.htm. See this link and references therein.

[22] L. Karlsson and R. L. McGreevy. Physica B 100, 234 (1997).

[23] P. Jedlovszky, A. Vincze, and G. Horvai. Phys. Chem. Chem.
Phys. 6, 1874 (2004).

[24] R. Rey. J. Phys. Chem. B 112(2), 344 (2008).

http://stacks.iop.org/0953-8984/20/i=24/a=244109
http://stacks.iop.org/0953-8984/20/i=24/a=244109
http://www.isis.rl.ac.uk/Disordered/DMGroup/DM_epsr.htm
http://www.isis.rl.ac.uk/Disordered/DMGroup/DM_epsr.htm


382 CHAPTER 6. RESULTS

6.5 Steric and electrostatic influences

in trichlorobromomethane (CBrCl3)

and dibromodichloromethane

(CBr2Cl2)

The structure of the liquid of the carbon tetrachloride tetrahedral
molecule (CCl4), which does not have a dipole moment, has been
one of the most extensively studied. Other molecules of the form
CBrxCl(4−x) (x = 0, 1, 2, 3) essentially retain this tetrahedral geom-
etry except for minor distortions, but the magnitude and direction
of their molecular dipole varies greatly due to differences between Br
and Cl electronegativities.

The aim of this work was to study the effect on the short range
order of quasitetrahedral molecules of the steric and electrostatic in-
teractions. Trichlorobromomethane (CBrCl3) and dibromodichloro-
methane (CBr2Cl2) are suitable model systems because the dipole of
the first is in the direction of the bromine atom, located in one of the
tetrahedron vertices, and the dipole of the second is between the two
bromine atoms, midway on one of the edges, but they both display a
similar magnitude.

The short range order analysis of the two liquids was carried out
through reverse Monte Carlo modelling of the experimental data as
well as molecular dynamics simulations. Two sets of simulations, one
where the atoms had their partial charges and another where they
did not, allowed to single out the electrostatic contribution from the
structural changes. Comparison was carried out with previous CCl4
studies, which provided an ideal reference system.

The relative position of the centres of mass of the neighbour mo-
lecules in CBrCl3 and CBr2Cl2 were shown to be the same as in CCl4.

The relative orientation of the closest molecules in CBrCl3 favours
an antiparallel configuration of their dipoles. No difference can be
observed when electrostatic effects are taken into account.

In CBr2Cl2, when no electrostatic interactions are included in the
simulation, the molecules above the equatorial plane of the reference
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molecule dipole prefer a parallel configuration of the dipoles while
the ones below the equatorial plane prefer an antiparallel configu-
ration. This is solely due to the steric effects induced by the more
bulky bromine atoms of the reference molecule, which are located
above the equatorial plane. Since electrostatic interactions favour an
antiparallel configuration of the dipoles, when they are included in
the simulation they increase the antiparallel configuration where it
was already predominant and counteract the parallel configuration
elsewhere.

Results were presented in several conferences, and mainly pub-
lished in the article: Sz. Pothoczki, A. Ottochian, M. Rovira-Esteva,
L. C. Pardo, et al., Phys. Rev. B 85, 014202 (2012).
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Abstract

The study of how both steric and electrostatic interactions affect the
structure of liquids formed by quasitetrahedral molecules has been
undertaken in this work. We have studied trichlorobromomethane
(CBrCl3) and dibromodichloromethane (CBr2Cl2), both displaying
a dipole along their C3v and C2v molecular symmetry axes, respec-
tively. The short-range order of the liquid state has been determined
using neutron diffraction experiments that were modelled through the
reverse Monte Carlo (RMC) technique. To study changes in steric
effects due to the distortion of the tetrahedral symmetry, we have
compared our results with a previous RMC modelling of carbon tetra-
chloride (CCl4). The subtle effects of the dipole in the structure of
the liquid have been determined using a set of molecular dynamics
simulations with and without atomic partial charges, being the force
field validated via comparison with the diffraction data. In a first
approximation, neither steric nor electrostatic interactions are able

http://dx.doi.org/10.1103/PhysRevB.85.014202
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to modify the molecular ordering of a fully tetrahedral liquid such as
CCl4. A more detailed analysis indicates that, although the interac-
tion between dipoles does not have appreciable effects when aligned
along the C3v molecular axes, as for the CBrCl3, it enhances the an-
tiparallel orientation of dipoles when it is oriented along the C2v axes,
as in the case of CBr2Cl2.

Introduction

Molecular disordered systems such as liquids are devoid of ordering
only at long length scales. Locally, each molecule tends to mini-
mize the configuration energy relative to its neighbours, giving rise
to a short-range ordered structure. This local ordering that does not
minimize the energy of the system as a whole but, only locally, has
been identified as one of the reasons for the existence of glasses [1, 2].
Quantifying the local ordering of a polyatomic molecular liquid from
diffraction experiments is not a simple task. The basic problem is
that, due to the isotropy of the liquid, diffraction experiments give
an average of the distance between molecules. In other words: the
subtle spatial short-range order (SRO) of the liquid is collapsed into
a one-dimensional pattern or, at best, when enough isotopic substitu-
tions are possible, into as many patterns as contributions from atomic
pairs. In any case, molecular orientations must be inferred somehow
from a histogram of distances measured in the reciprocal space. To
overcome such a problem, two types of computational methods are
mainly proposed to study the liquid structure: molecular dynamics
(MD) simulations and reverse Monte Carlo (RMC) methods.

In MD simulations, after a force field between the molecules is
set, the equations of motion of the system are integrated along a mi-
crocanonical path. The information on the structure is calculated by
averaging uncorrelated configurations collected along this path. The
correctness of the force field is then tested by comparing the obtained
structure factor S(q) with the experimental one. The main advantage
of this method is that the system by itself reaches the single struc-
ture compatible with the given force field and the thermodynamic
conditions. The great drawback is that the force field must be known
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beforehand to describe real data [3].
The RMC method [4, 5] and the empirical potential structure re-

finement (EPSR) [6, 7] are inverse methods that produce structures in
real space consistent with experimental data measured in the recipro-
cal space. Then the structure is analysed only from the configurations
that match the experimental diffraction pattern within its error. The
considerable advantage of RMC modelling for molecular liquids is
that no knowledge of the system is required beforehand (apart from
the density and a reasonable initial molecular structure that will be
refined during the process).

In this paper, we have used both self-contained MD and RMC
techniques for two reasons, first, because if the short-range order ob-
tained from both of them is the same, it will reinforce the conclusions
obtained from the present work and, second, because a lack of a direct
comparison between the two methods is found in the literature.

Concerning the intermolecular structure in disordered phases, dif-
ferent methods to characterize the relative orientations of molecules
can be found in the literature [8–13]. In this paper, the local molecu-
lar ordering is studied with an extensive up-to-date analysis by means
of 2D distribution maps already used in previous works [14–17].

The molecular structure of the halogenomethane derivatives for-
med by a central carbon atom and a combination of four chlorine and
bromine atoms, CClxBr(4−x) (x = 0, . . . , 4), is close to a perfect tetra-
hedron. Moreover, their quasiglobular shape results in a similar phase
behaviour. They display, on cooling from the liquid, a plastic phase
where the molecules can rotate almost freely, but the centres of mass
are unable to diffuse away from the equilibrium points of a regular
lattice. On further cooling, all of them form also a low-temperature
ordered monoclinic phase with the same structure [18–20]. The choice
in this work of the trichlorobromomethane CBrCl3 (TCl) and dibro-
modichloromethane CBr2Cl2 (DBr) substances is based on the sym-
metry properties of their dipolar moments, which are quite similar in
magnitude [21] but aligned along their C3v and C2v axes, respectively.
These facts make these systems especially suited to study the effects
of both steric and electrostatic interactions in tetrahedral molecular
liquids.
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In order to disentangle the features of the molecular ordering aris-
ing from the steric effects or from the electrostatic interaction, two dif-
ferent strategies exploiting the advantages of the two aforementioned
methods (MD and RMC) have been adopted. Firstly, we have com-
pared our results with the well-known CCl4 molecular liquid [22–27].
Due to the fact that the latter has a perfect tetrahedral symmetry, it
can be used as a reference system to study the steric effects that arise
from the symmetry breaking in the distorted tetrahedral molecules
TCl and DBr. Afterwards, the influence of the electrostatic effects is
analysed by a series of two MD simulations: one without electrostatic
interactions, the other adding partial charges to the atoms.

The paper is organized as follows: in Section 6.5, the details of
the neutron diffraction experiments, RMC and MD simulations, and
their consistence are exposed. In Section 6.5, the SRO analyses for
TCl, DBr, and their comparison with the reference system (CCl4) are
conducted using a bivariate angular analysis. We will first analyse
the relative position of two molecules and then their relative orien-
tations. Finally, we summarize the main results comparing the two
compounds with the reference system.

Experimental and computational details

Experimental details Samples of TCl (CBrCl3) and DBr
(CBr2Cl2) were obtained from Sigma-Aldrich (St. Louis, USA) and
Acros Organics (Geel, Belgium) with a purity of 99+% and 99%, re-
spectively. Since the measured melting points agreed well with the
ones reported in the bibliography, no further purification was per-
formed. Experiments were carried out at the Institute Laue Langevin
(Grenoble, France). In the case of DBr, the D4C diffractometer was
used with a wavelength of λ = 0.5 Å, and for TCl, the D1B diffrac-
tometer with λ = 1.28 Å. Empty cryostat, empty sample holder, and
an absorbing sample were also measured to perform corrections on
the data due to the sample environment contributions to the pattern,
and a cylindrical vanadium rod was also measured in order to normal-
ize data and correct the detector efficiency. Self-absorption correc-
tions were performed using the Paalman and Pings approach. As in
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previous works [15–17], all the aforementioned effects, together with
multiple scattering corrections, were performed using the software
CORRECT [28], and inelastic corrections were additionally carried
out by subtracting a polynomial expansion in powers of q2.

Reverse Monte Carlo modeling: computational details Neu-
tron diffraction experiments were interpreted by means of RMC com-
puter modelling, which constructs large structural models that are
consistent with experimental results within the experimental errors.
The total scattering structure factor was modelled considering both
intra- and intermolecular parts. A detailed description of RMC mod-
elling can be found in References [4], [5], [29], and [30], and, therefore,
we provide here only the relevant points.

The initial configurations contained 2000 randomly oriented mo-
lecules in cubic boxes with periodic boundary conditions. The box
lengths were 68.998 Å for TCl and 69.282 Å for DBr, corresponding

to atomic densities of 0.03044 Å
−3

for TCl and 0.03007 Å
−3

for DBr,
chosen according to the experimental densities [18, 20]. The molecu-
lar units are held together by fixed neighbour constraints (fnc), which
allow bond lengths to fluctuate within predefined tolerances. This ap-
proach proved to be very useful for other molecular liquids [31, 32].
The basic parameters of the simulations such as fnc limits and in-
termolecular minimum atom-atom (cutoff) distances can be found in
Table 6.5.

All calculations were run for several million accepted moves, where
the ratio of accepted/rejected moves varied between 1:3 and 1:10, i.e.,
typically several thousand moves were accepted per atom. The RMC
modelling of CCl4 has been taken from previous work [25, 27].

Molecular dynamics simulations: computational details In
the MD simulations, we considered for both TCl and DBr liquids
models without and with atomic partial charges. We studied there-
fore four liquid systems of N = 864 molecules (256 when the electro-
static interaction is included for TCl) enclosed in a cubic box with
periodic boundary conditions. The box dimensions are chosen in
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TCl (CBrCl3) DBr (CBr2Cl2)

fnc (Å) rcutoff (Å) fnc (Å) rcutoff (Å)

C-C 3.5 3.5
C-Br 1.83 − 2.07 2.5 1.83 − 2.03 2.5
C-Cl 1.63 − 1.90 2.5 1.65 − 1.85 2.5
Br-Br 3.0 3.083 − 3.283 3.0
Cl-Br 2.89 − 3.17 2.9 2.87 − 3.07 2.9
Cl-Cl 2.77 − 3.03 2.7 2.8 − 3.1 2.7

Angle (◦) Angle (◦)

Cl-C-Cl 110± 8 112.5± 0.5
Br-C-Cl 110± 8 107.5± 0.5
Br-C-Br 112.5± 0.5

Table 6.5: Characteristics of the molecular computer models used in
the RMC modelling (fnc: fixed neighbour constraints corresponding
to the tolerances of intramolecular bond lengths; rcutoff: intermolecu-
lar closest approaches between atoms).

order to reproduce the same density of the experimental samples.
Since for the moment we neglect internal motions, the models con-
sist of rigid molecules. The bonds and the intramolecular angles,
detailed in Table 6.6, were provided by fitting the high-q region of
the total scattering structure factor of the neutron diffraction using
a Bayesian fit scheme [16, 33, 34]. This ensures the best coincidence
of the structure function S(q) at high q between the MD model and
the experiments; in other words, it ensures the molecular geometry
is realistic. The matching between the values that provides a good
description of the data using the RMC modelling (Table 6.5) and
those arising from the high-q fit (Table 6.6) is excellent. Moreover,
with regard to the molecular geometry, the obtained values for the
angles yield that TCl and DBr are indeed quasitetrahedral molecules
(tetrahedral angle is around 109.5◦).

The corresponding geometrical constraints were satisfied with the
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TCl (CBrCl3) DBr (CBr2Cl2)

C-Br 1.949Å 1.953Å
C-Cl 1.760Å 1.775Å
Cl-C-Cl 108.5◦ 109.2◦

Br-C-Cl 110.4◦ 109.2◦

Br-C-Br 111.0◦

Table 6.6: Bond lengths and angles for the rigid molecule model of
TCl and DBr obtained by the high-q fit of the diffractogram.

SHAKE algorithm [35] with a relative accuracy of 10−6. For the
intermolecular interaction, the Optimized Potentials for Liquid Sim-
ulations parameters were used, and a spherical truncation scheme be-
tween molecular centres was taken with a cutoff value of 12 Å. When
electrostatic forces are introduced, the Ewald summation method has
been used, with the convergence parameter α ∼ 13/L and kmax = 14.
The equations of motion have been integrated with the Leapfrog al-
gorithm and a time step of 1 fs. Molecules were initially placed in an
Face-centred cubic lattice with random orientation for all systems,
and then the system was equilibrated at 450 K in the NVT ensemble.
Then successive NVT equilibrations using Berendsen method with a
relaxation time of t = 0.01 ps were applied for a time of 20 ps at
300 and 273 K for TCl and DBr, respectively. A production run was
performed in order to obtain at least 25 independent configurations.
We considered independent two configurations if the elapsed time be-
tween them is 0.1τ , where τ is the relaxation time of the orientational
self-correlation function.

Consistency with experiments Figure 6.70 shows the total scat-
tering structure factors of TCl and DBr obtained from the experiment
together with those obtained from RMC and MD techniques. The
agreement with the experiment is nearly perfect for both liquids and
both techniques, especially for the RMC modelling. In the high-
q region, the good agreement of RMC simulation suggests that the
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Figure 6.70: Total scattering structure factors for (a) liquid TCl
and (b) DBr. Circles: experimental data; red solid lines: RMC; blue
dashed lines: MD simulation.

molecular structures defined by the fncs are appropriate for these
liquids. Concerning the intramolecular structure, the tetrahedral an-
gles arising from RMC (Table 6.5) and MD (Table 6.6) do not differ
significantly from each other. This ascertains the quasitetrahedral
geometry of the molecules that can be seen in Figure 6.72, where the
molecules have been depicted following the intramolecular parameters
of Table 6.6.

Results and discussions

Positional ordering The local ordering analysis of the molecules
in the liquid phase of TCl and DBr has been restricted to the closest
molecules because, as shown in Reference [15], they fully determine
the position and orientation of successive molecular shells. However,
as it will be seen, due to the quasitetrahedral symmetry of the mo-
lecules, it will be possible to find this first molecule at four different
positions. In other words, the first molecule might be placed in any of
the four positions imposed by the quasitetrahedral symmetry of the
molecules with a probability P = 0.25. We consider therefore only
the molecules up to a distance r1 defined by the following condition:
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MCNCC = 4πρ0

∫ r1

0

gCC(r)r
2dr = 1 (6.56)

where MCNCC is the carbon-carbon molecular coordination number,

ρ0 is the molecular number density (in Å
−3

units), and gCC(r) is the
carbon-carbon radial distribution function. As seen in Figure 6.71,
the gCC(r) values obtained for TCl, DBr, and CCl4 using the RMC
technique are very similar. No big changes with respect to CCl4
are thus expected to arise in the short-range molecular order from
the tetrahedral symmetry breaking in TCl and DBr. Concerning the
gCC(r) obtained by MD [Figure 6.71(b) and 6.71(c)], the electrostatic
effects seem to be negligible for TCl since no significant change is seen
adding or not partial charges to the molecules in the simulation. On
the contrary, atomic partial charges in DBr impose a more marked
structure in gCC(r) with higher peaks and a slightly different packing
distance. Its origin will be explained later together with the orienta-
tional ordering features.

The probability of the relative position between two molecules
can be fully determined by the 3D function gCC[r, cos (θ), ϕ], where
r is the distance between carbon atoms of the molecules, ϕ is the
equatorial angle, and θ is the azimuthal angle of the vector joining
two carbon atoms. In order to define the azimuthal θ and equatorial
ϕ angles for a given reference molecule, a polar frame must be set
taking into account the molecular symmetry [14, 16, 17].

For TCl, the Z axis lies along the C3v symmetry axis, i.e., the
C-Br vector, which is parallel to its dipolar moment, while the origin
of angle ϕ lies in one of the Br-C-Cl molecular planes [see Figure
6.72(a)]. Similarly, for the DBr molecule, the Z axis is set along its
C2v symmetry axis, i.e., parallel to the bisecting vector between the
two C-Br vectors which, as in TCl, is also parallel to the dipolar
moment of the molecule. The ϕ equatorial angle origin is set in
this case in the Br-C-Br plane [see Figure 6.72(b)]. For the sake of
comparison between the three molecular liquids, the CCl4 reference
system has been defined both along its C3v axis, as in TCl, and along
its C2v axis, as in DBr.

The positional molecular ordering for each system is described
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Figure 6.71: (a) Carbon-carbon partial radial distribu- tion function
for TCl (circles), for DBr (triangles), and for CCl4 (solid line) from
the analysis of RMC configurations. The results from MD simulation
switching on (squares) and off (circles) the electrostatic interaction,
respectively, are also shown in (b) for TCl and (c) for DBr.

through a 2D probability map (Figures 6.73 and 6.74) given by the
bivariate analysis of ϕ and cos (θ). The probability related to the
azimuthal angle θ is calculated using the cosine of the angle instead
of the angle. To meet the requirement that an isotropic distribution
should lead to a flat probability map, P has been normalized to the
map area. Four calculations have been performed for each compound
(TCl and DBr): (a) reference system CCl4 obtained from RMC mod-
elling using the symmetry axis of the molecule studied: C3v in the
case of TCl and C2v in the case of DBr, (b) RMC modelling of the
studied system, (c) MD simulation without partial charges, and (d)
MD simulation with partial charges. As it is seen in Figures 6.73 and
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Figure 6.72: Arbitrary arrangements of two (a) TCl and (b) DBr
molecules showing the axes and θ and ϕ angle definitions used to
determine the molecular position. Green (light gray), red (dark gray),
and gray spheres represent the Cl, Br, and C atoms, respectively.

6.74, results arising from the RMC model (b) and the MD simula-
tion (d) are virtually the same, thus assuring the robustness of the
obtained positional orderings.

In order to analyse the positional maps of Figures 6.73 and 6.74,
we present in Table 6.7 the coordinates where the spots arising from
the relative positions [ϕ, cos (θ)] should appear, assuming that the
carbon atom of the neighbour molecule sits in front of the tetrahedral
faces of the reference one and that the molecule has full tetrahedral
symmetry as in CCl4, i.e., that there is a carbon atom in front of all
four tetrahedron faces. The calculations were performed using the
two axes definitions of Figure 6.72, thus setting the Z axis along the
C3v and C2v symmetry axes of the tetrahedron. In the first case, a
carbon atom of a neighbour molecule placed in front of the bottom
face of the tetrahedron [see Figure 6.72(a)], that is θ = 180◦, would
give a contribution to the 2D positional map at cos (θ) = −1, and
ϕ would be undetermined because it corresponds to the pole of the
coordinate system. Molecular symmetry, however, imposes that the
neighbour molecules are also found in front of the three upper faces
of the tetrahedron, with an azimuthal angle of θ = 70.5◦. These
are the positions corresponding to the [ϕ, cos (θ)] pairs (60◦, 0.33),
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Figure 6.73: Positional ordering for studied liquids (TCl) with C3v

symmetry. (a) Reference system (RMC modelling of CCl4), (b) RMC
modelling, (c) MD simulation without charges, and (d) MD simula-
tion with charges.

(180◦, 0.33), and (300◦, 0.33), the last being equivalent to (60◦, 0.33)
in the probability map due to XZ symmetry.

The [ϕ, cos (θ)] pairs obtained by placing the Z vector in the C2v

molecular axis are calculated in a similar way. In this case, the spots
appear at the [ϕ, cos (θ)] pairs (0◦,−0.58) and (180◦,−0.58) and also
at (90◦,+0.58), equivalent to (270◦,+0.58) due to the XZ symmetry.
The first two pairs correspond to neighbour molecules located at θ =
125.3◦ in front of the lower faces formed by two Cl and one Br atoms,
and the last two correspond to molecules located at θ = 54.7◦ in front
of the upper faces formed by one Cl and two Br atoms. Note that
changing the frame of reference in CCl4 changes the position and the
shape of the probability spots in the positional maps, but not their
meaning. In the case of TCl, the change of the spot shape is extreme
because molecules sitting in the lower face of the molecule are to be
seen as a large spot without a well-defined equatorial angle (in fact,
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Figure 6.74: Positional ordering for studied liquids (DBr) with C2v

symmetry. (a) Reference system (RMC modelling of CCl4), (b) RMC
model, (c) MD simulation without charges, and (d) MD simulation
with charges.

this happens whenever trying to perform a projection from spherical
coordinates into a 2D map).

Concerning CCl4, since only the spots calculated in Table 6.7
appear in Figures 6.73(a) and 6.74(a), we conclude that the preferred
relative positions of the two closest molecules are the neighbouring
molecules being arranged in front of the respective tetrahedron faces
of the reference molecule (see Table 6.7) in concordance with previous
works [15].

In order to study how the distortion of the tetrahedral symmetry
affects the liquid structure of TCl and DBr, RMC results for both
liquids [Figures 6.73(b) and 6.74(b)] have been compared with the ref-
erence system CCl4 [Figures 6.73(a) and 6.74(a)]. It can be seen that
this distortion seems to have no effect in the relative position of two
neighbour molecules, given the similarity of the maps. In other words,
TCl and DBr behave as fully tetrahedral liquids concerning the rela-
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Symmetry ϕ cos (θ) θ

C3v Undetermined −1 180.0◦

(Figure 6.73) 60◦, 180◦, 300◦ +0.33 70.5◦

C2v 0◦, 180◦ −0.58 125.3◦

(Figure 6.74) 90◦, 270◦ +0.58 54.7◦

Table 6.7: Coordinates of the spots expected to appear in the 2D
probability maps describing the relative position of two molecules, if
carbon atoms of a neighbour molecule sit on the face of the tetrahe-
dron of a reference molecule. Calculations have been performed in
the frames of reference parallel to both the C3v and C2v axes of the
tetrahedron (see Figure 3). For molecules located in the poles, the ϕ
coordinate is undetermined.

tive position of two neighbouring molecules. Moreover, the positional
maps of TCl and DBr obtained from the MD simulations performed
without and with partial charges [Figures 6.73(c) and 6.74(c), and
Figures 6.73(d) and 6.74(d), respectively] both yield a high similar-
ity to that obtained for the CCl4 [Figures 6.73(a) and 6.74(a)]. This
shows that the electrostatic interaction plays no relevant role in the
relative position of neighbour molecules, neither in TCl nor in DBr,
and indicates also that the differences between the gCC(r) from the
two MD simulations for DBr [see Figure 6.72(a)] arise not from the
positional ordering but from their relative orientation (see next sec-
tion).

Orientational ordering The orientational ordering is usually
studied simply taking into account an angle between two characteris-
tic vectors of a reference molecule and its first neighbours. Typically,
only the probability distribution of the cosine of that angle is cal-
culated in the literature. However, this unidimensional distribution
hides the fact that molecules in different positions might have differ-
ent orientations. In order to identify the position of the molecules
with a given orientation, the probability distribution has been calcu-
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Figure 6.75: Orientational ordering for studied liquids with C3v (TCl)
symmetry. (a) Reference system (RMC modelling of CCl4), (b) RMC
model, (c) MD simulation without charges, and (d) MD simulation
with charges.

lated as a function of an angle characterizing molecular orientation,
α, and an angle related to the relative position, the azimuthal angle
θ, thus generating a 2D probability map [10] (Figures 6.75 and 6.76).
As explained before, probabilities are calculated using the cosines of
the angles when necessary so that isotropic distributions lead to flat
probability maps. As in the case of the molecular position determi-
nation, four types of calculations have been performed for each liquid
(TCl and DBr): (a) reference system CCl4, obtained with the same
method as in Figures 6.73 and 6.74, (b) RMC modeling of the stud-
ied system, (c) MD simulation without partial charges, and (d) MD
simulation with partial charges. It is worth pointing out that the
good agreement between the RMC [Figures 6.75(b) and 6.76(b)] and
the MD simulations [Figures 6.75(c) and 6.76(c), and Figures 6.75(d)
and 6.76(d)] ascertains that also the orientational ordering analysis
for both TCl and DBr is grounded on a solid base.
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Figure 6.76: Orientational ordering for studied liquids with C2v

(DBr) symmetry. (a) Reference system (RMC modelling of CCl4),
(b) RMC model, (c) MD simulation without charges, and (d) MD
simulation with charges. Arrows in (c) and (d) indicate, respectively,
the steric and the steric plus electrostatic effect on the molecular
ordering.

First of all, we should recall that the x and y axes are related to rel-
ative orientation and position of two molecules, respectively. There-
fore, concerning the position, the lower horizontal bands in Figure
6.75 in the probability maps correspond to orientations of the neigh-
bour molecule located in front of the bottom face of the tetrahedron,
and the upper bands correspond to the orientations of neighbours
located in front of the three upper faces. On the other hand, Figure
6.76 shows in the higher bands the orientation of the neighbours in
front of the two upper faces of the tetrahedron and in the bottom
bands of the molecules located in front of the two bottom faces.

At a first stage, we will only focus on two relative molecular orien-
tations to simplify our discussion: the parallel configuration and the
antiparallel one. The orientation of two molecules is parallel when
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the characteristic vectors chosen to describe the relative orientation
of two molecules (the C3v and C2v symmetry axis for CCl4 and the
dipolar moment for molecules DBr and TCl) are parallel, giving a
trivial contribution at cos (α) = 1 (spots appearing at the right edge
of the graphs in Figures 6.75 and 6.76). In the case of an antipar-
allel ordering, the spot in the probability map should be located at
cos (α) = −1 (at the left edge of the same graphs). However, due
to molecular symmetry and the degeneration of the reference frame
definition, additional orientational spots can appear for the same po-
sition of a neighbour molecule, i.e., for the same value of cos (θ).

In the case of two fully tetrahedral CCl4 molecules with one C-Cl
vector (the C3v molecular axis) oriented antiparallel to each other, the
trivial contribution will be found at cos (α) = −1 in Figure 6.75(a).
The contributions at cos (α) = 0.33 are given by the angles between
the remaining three C-Cl vectors of each molecule that, for symmetry
reasons, are the only compatible with the closest packing of a tetra-
hedral molecule. On the other hand, if the same molecular ordering
is evaluated, taking into account a C2v molecular axis as in Figure
6.76(a) in addition to the contribution at cos (α) = −1, nontrivial
spots will appear at cos (α) = 1 and cos (α) = 0. The calculations
for the pairs [cos (α), cos (θ)], taking into account the orientations us-
ing the C2v and C3v tetrahedron axes, are gathered in Table 6.8. As
it can be seen, these spots are not enough to distinguish between
parallel and antiparallel configurations in the case of C2v symmetry.
However, the calculated spots in Table 6.8 are compatible with the
antiparallel configuration [see Figures 6.75(a) and 6.76(a)], in agree-
ment with previous results on CCl4 [15]. Concerning TCl and DBr,
the orientational map also corresponds to the antiparallel configura-
tion, regardless of whether they are distorted tetrahedra and do not
possess the C3v or C2v symmetry axes, respectively. This yields to
the conclusion that, in a first approximation, neither steric nor elec-
trostatic effects substantially change the short-range ordering of the
DBr and TCl nearly tetrahedral molecules, neither the position nor
the orientation of neighbouring molecules.

In Figure 6.77, we have depicted the most probable configuration
of the first neighbour for both liquids TCl and DBr obtained from
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Symmetry Orientation (cosα, cos θ) (α, θ)

C3v Parallel (1,−1) (1,−0.33) (0◦, 180◦) (0◦, 109.5◦)
(Figure 6.75) Antiparallel (−0.33,−1) (−0.33, 0.33) (109.5◦, 180◦) (−70.5◦, 70.5◦)

(−1,−1) (−1,−0.33) (180◦, 180◦) (180◦, 109.5◦)
(0.33,−1) (0.33, 0.33) (70.5◦, 180◦) (70.5◦, 70.5◦)

C2v Parallel (1,±0.58) (0◦, 125.3◦) (0◦, 54.7◦)
(Figure 6.76) Antiparallel (0,±0.58) (90◦, 125.3◦) (90◦, 54.7◦)

(−1,±0.58) (180◦, 125.3◦) (180◦, 54.7◦)
(−1,±0.58) (180◦, 125.3◦) (180◦, 54.7)
(0,±0.58) (90◦, 125.3◦) (90◦, 54.7◦)
(1,±0.58) (0◦, 125.3◦) (0◦, 54.7◦)

Table 6.8: Spots expected to appear in the probability map
P (cosα, cos θ) when the parallel or antiparallel orientation is as-
sumed, being the molecules located in front of the faces of the refer-
ence molecule. In addition to the trivial cosα = ±1 contributions,
the spots that would appear just due to assuming a fully tetrahedral
symmetry, as in the case of CCl4, have also been calculated.

the information of the probability maps in Figures 6.73–6.76. Ref-
erence molecules have been oriented along their C3v and C2v axes,
respectively, as in Figure 6.72. As seen in Figures 6.73 and 6.74, first
neighbours can be in front of any of the four faces of the tetrahe-
dron, but for the sake of clarity, only the molecule in front of one
of the faces has been depicted. Concerning the orientation, we show
in Figure 6.77 only the configuration corresponding to the spots at
cos (α) = −1 in Figures 6.75 and 6.76 because this probability is
slightly higher for DBr. The other configurations can be obtained
from successive rotations around the axes of their associated tetrahe-
dra, generating the large spots at cos (α) ≈ 0.

A more detailed analysis of the relative molecular orientation in
TCl and DBr can be carried out, taking into account that the ob-
tained probability maps constitute a quantitative way to determine
molecular orientation. Molecules with an unlikely arrangement will
hardly be observed and will prefer to have the relative position and
orientation associated to high-probability regions. Therefore, the low-
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Figure 6.77: Most probable configuration for (a) TCl and (b) DBr
molecular pairs obtained from the probability maps of Figures 6.73,
6.74, 6.75, and 6.76. TCl and DBr molecules are oriented along their
C3v and C2v axes according to the axis definition of Figure 6.72.

probability regions might be seen as barriers between the molecular
configurations described by the high-probability regions. The max-
imum probability value in each map, Pmax, is thus related with the
height of such barriers and will give us information about how strong
a certain molecular ordering is defined. As it can be seen in Figures
6.75 and 6.76, the Pmax value of CCl4 is smaller than that of TCl
and DBr, respectively. Since this difference is the same for all MD
simulations, regardless of whether partial charges are added or not to
the atoms, this fact has to be related with the steric effects produced
by the loss of tetrahedral symmetry that imposes a more restricted
orientation of the neighbour molecules.

Taking into account this relation between a high value of Pmax and
a more defined orientation of a neighbouring molecule, some general
features concerning the molecular reorientation based on Figures 6.75
and 6.76 should be highlighted. In the foregoing discussion, we will
assume that both TCl and DBr are perfect tetrahedra. For example,
when referring to a rotation about the C3v symmetry axis of DBr, it
will implicitly mean that we assume for that molecule a perfect tetra-
hedral symmetry and that the rotation is done around a vector going
from the central carbon to a Cl or Br atom. When calculations are
made taking into account C2v symmetry as in Figure 6.76, the proba-
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bility map appears more smeared out than the one calculated for the
C3v molecular symmetry (see Figure 6.75). As aforementioned, this
feature might be quantified by the maximum of the color scale Pmax.
For the CCl4 molecule, Pmax decreases from 1.4 in Figure 6.75 to 0.4
in Figure 6.76, this decrease is more extreme when TCl (Pmax = 2.2)
is compared with DBr (Pmax = 0.6). It clearly emerges then that, by
modifying the frame of reference from a C3v- to a C2v-oriented axis
[Figures 6.72(a) and 6.72(b), respectively], the height of the orienta-
tional barrier that a molecule must overcome to change the relative
orientation with respect to the neighbour molecule around the axes
is decreased, thus the C3v axis being stiffer than the C2v axis.

To explain this fact, it should be noted that rotations that leave
the C3v axis unchanged are precisely those around the C3v axis, and
these rotations will be responsible for changes in the orientation of
the C2v molecular axis. Therefore, the higher value of Pmax of the ori-
entational map calculated using the C3v axis (Figure 6.75), compared
to that obtained using the C2v axis (Figure 6.76), evidences that the
molecular reorientations around the C3v axis (which leave this axis
unchanged) are more probable than those around a C2v axis. More-
over, since the probability scale in Figures 6.75 and 6.76 is unchanged
by adding or not partial charges, we conclude that the stiffness of the
C3v axis is mainly determined by steric effects.

To prove this statement, a simple calculation of the configuration
energy profile is shown in Figure 6.78 for two neighbouring molecu-
les: the first fixed and the other rotating along its C3v and C2v axes,
assuming as aforementioned a fully tetrahedral symmetry for the mo-
lecules. For both TCl and DBr, the starting relative orientation is
energetically the most stable. For both compounds, the energy bar-
riers are much higher for rotations around the C2v axes, which imply
a displacement of the C3v axes, than for those around the C3v axes,
which leave these axes unchanged, as it is revealed by Figure 6.78,
in agreement with the conclusion obtained directly from the orienta-
tional maps.

Concerning the influence of electrostatic forces in the molecular
ordering of TCl, we have compared the orientational maps without
and with electrostatic interactions [Figures 6.75(c) and 6.75(d), re-
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Figure 6.78: Energy for a dimer formed by the two closest molecules
of (a) TCl and (b) DBr as a function of the angle rotated around their
C2v axes and around their C3v axes, assuming that both molecules
are perfect tetrahedra. Insets show the most stable configuration,
chosen as starting configuration for the rotation along C3v and C2v

axes, respectively.

spectively]. Since the probability maps are almost identical for TCl,
we conclude that electrostatic effects do not affect the molecular or-
dering in this compound. On the other hand, the DBr case is slightly
different. The central spots around [cos (α), cos (θ)] = (0,±0.58) are
symmetric for CCl4, whereas in DBr, they become slightly asymmet-
ric. If no partial charges are added to the molecule, a neighbour at
positive cos (θ) prefers to orient the dipole toward positive values of
cos (α), and at negative cos (θ) towards negative values of cos (α) [see
the arrows in Figure 6.76(c)]. The reason why changes on the dipole
orientation are seen in DBr and not in TCl is because, in the first
case, the dipole is oriented along the C2v axis that is more mobile
than the dipole of TCl oriented along its C3v axis.

To understand this point, we must recall some geometrical
facts. The distance from the central carbon to the chlorine atom,
dCCl = 1.775 Å, is smaller than that to the bromine atom, dCBr =
1.953 Å. Therefore, since the Z axis is oriented towards the bromine
atoms, the molecule is bulkier upwards (cos (θ) > 0) than downwards
(cos (θ) < 0). The molecular shape of DBr induces thus the neigh-
bours to move in such a direction that the empty space between



6.5. QUASITETRAHEDRAL MOLECULES 405

molecules is minimized. To accomplish this requirement, molecules
in the upper part tilt aside of the molecular z axis, and those in the
lower tilt inside the z axis. This is seen in Figure 6.76(c) as a dis-
placement of the central spot located around cos (θ) = 0.58 towards
larger values of cos (α) and in the opposite direction for spots located
around cos (θ) = −0.58 [see the arrows in Figure 6.76(c)]. So in DBr,
the steric effect promotes the parallel or the antiparallel orientation
of the C2v axis depending on the relative position of the neighbour
molecule.

The electrostatic interaction, on the contrary, tends to orient
dipoles in an antiparallel direction to minimize the electrostatic en-
ergy. This can be seen when comparing the maps obtained using the
MD simulations without and with the partial charges of the molecule
[cf. Figures 6.76(c) and 6.76(d), respectively], where the large central
spots tend to move towards negative values of cos (α), irrespective of
their position, i.e., irrespective of the sign of cos (θ) [see arrows in
Figure 6.76(d)], when the electrostatic interaction is added. The ori-
entation of two molecules in DBr depends therefore on both steric
and electrostatic effect, and their effects are balanced or reinforced
depending on the molecular position.

Conclusions

Reverse Monte Carlo modelling of neutron diffraction measurements
has been performed to investigate the intermolecular structure of
CBrCl3 and CBr2Cl2 liquids composed by slightly distorted tetra-
hedral molecules. Simultaneously, molecular dynamics simulations
have been carried out to study the role of electrostatic interactions
in these systems. We provide a comparison with a reference system
(CCl4) to highlight the influence of the steric effects in the short-
range order. Our results concerning both mutual position and orien-
tation of molecules are validated by the excellent agreement between
the measurements and the simulations (using RMC and MD). Once
the robustness of the obtained short-range ordering of molecules is
assessed, three sets of conclusions concerning relative position and
orientation of molecules and concerning molecular reorientations re-
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sult.
First of all, as seen when TCl and DBr molecular arrangements

in the liquid phase are compared with that of CCl4, neither steric nor
electrostatic interactions produce a change of the relative position of
two neighbouring molecules with respect to the reference tetrahedral
molecule CCl4 (see Figures 6.73 and 6.74). This statement is sup-
ported by the fact that switching on and off the electrostatic forces
in the MD simulations of the liquid TCl and DBr does not change
their position distributions with respect to liquid CCl4.

Concerning the relative orientation of two molecules (Figures 6.75
and 6.76), all the spots present on CCl4 appear as well on both polar
molecules, DBr and TCl. Therefore, steric and electrostatic effects
are not able to avoid any of the molecular orientations present in
CCl4. A more detailed analysis, though, allows us to detect some
differences between TCl and DBr: In the case of TCl, no appreciable
change in any of the studied cases has been seen in comparison with
CCl4. Together with the previous result on the relative position, we
can conclude that, in TCl, none of the effects, steric or electrostatic,
change the short-range order from that of a fully tetrahedral molecule
such as CCl4.

In contrast, the relative orientation of two molecules shows some
differences in the case of DBr. For this compound, the balance
between two competing effects determines the molecular ordering.
Steric effects force neighbours to reorient, optimizing the molecular
packing. This reorientation takes place in opposite directions for each
molecule depending on its position due to the molecular asymme-
try [see the arrows in Figure 6.76(c)]. The electrostatic interactions,
on the other hand, tend to orient the molecular dipoles antiparal-
lel, irrespective of their position [see the arrows on Figure 6.76(d)].
Therefore, electrostatic and steric effects either reinforce each other
or compete depending on the relative molecular position, thus de-
termining the molecular orientation. Finally, the probability maps
related to the molecular orientation (Figures 6.75 and 6.76) yield the
conclusion that, due to steric effects, movement of the C3v axis in
quasitetrahedral molecules is more restricted than the movement of
the C2v axis. Two consequences can be drawn from this fact. First
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of all, the higher mobility of C2v axis causes that electrostatic effects
are clearer when the dipole is oriented parallel to this axis, as it hap-
pens in DBr. On the other hand, since movements of the C3v axis
are more constrained than those of C2v , rotations are more probable
around the C3v axis. This conclusion is confirmed by a calculation
of the energy barriers that molecules must overcome when rotating
around these two molecular axes.
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Mater. 17, 6146 (2005).

[20] M. Barrio, J. Ll. Tamarit, P. Negrier, L. C. Pardo, et al. New J.
Chem. 32, 232 (2008).

[21] M. Barrio, P. Negrier, J. Ll. Tamarit, L. C. Pardo, et al. J. Phys.
Chem. B 111, 8899 (2007).

[22] A. H. Narten, M. D. Danford, and H. A. Levy. J. Chem. Phys.
46, 4875 (1967).

[23] P. A. Egelstaff, D. I. Page, , and J. G. Powles. Mol. Phys. 20,
881 (1971).

[24] P. Jedlovszky. J. Chem. Phys. 107(18), 7433 (1997).

[25] P. Jóvári, G. Mészáros, L. Pusztai, and E. Sváb. J. Chem. Phys.
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Chapter 7

Conclusions

The knowledge of the intramolecular geometry and short range order
of disordered systems is essential to understand their behaviour. This
kind of insight is a great help to unravel the significant interactions
at play in complex systems, simply because the resulting structure
has been shaped by them.

However, their study involves many difficulties, partly due to dis-
ordered systems being intrinsically more complex, but also because
measurements are usually an average of all possible 1D projections
of the 3D structure, so there is not a unique solution and a great
number of assumptions have to be made.

Motivated by the scientific problems, several analysis methods
have been developed, tested, and put to use throughout this work.

The Bayesian approach to obtain molecular structure from exper-
imental data has shown to be very robust to determine its geometry,
allowing to make less assumptions than with other methods, natu-
rally taking into account parameter correlations, and providing the
full complexity of the fit in the solution.

This is quite crucial because intramolecular structure is usually
needed to tackle the analysis of intermolecular structure. Techniques
such as reverse Monte Carlo and molecular dynamics simulations of-
ten require input parameters in their models which account for the
molecular structure, and they may be very sensitive to them.

Extensive use of bivariant analysis has been successfully applied to

410
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the simulation and modelling configurations, and multiple approaches
have been explored to obtain the maximum amount of information
from the data.

Limiting the analysis to convenient distance intervals from the
reference molecule, probability density functions of the molecular ar-
rangements were calculated as a function of two positional angles,
one positional and one orientational angle, or two orientational an-
gles. This last case showed to be specially interesting because it gives
the most popular relative orientations of the molecular pairs.

It was possible to select a small range of molecular-pair orien-
tations to analyse their relative location separately from the rest of
molecules in the simulation, which could also be done vice versa.
And a powerful quantitative analysis was carried out through inte-
gration of the probability density functions in certain positional and
orientational ranges of interest.

Using these and other methods several compounds were studied.
Here, work on trans-1,2-dichloroethene (HClC=CClH), 1,1,2,2-tetra-
chloro-1,2-difluoroethane (Cl2FC−CCl2F), 1,1,1,2-tetrachloro-1,1-
difluoroethane (Cl3C−CClF2), carbon tetrachloride (CCl4), trichlo-
robromomethane (CBrCl3), and dibromodichloromethane (CBr2Cl2)
has been presented.

Trans-1,2-dichloroethene structural and dynamic anomalies be-
tween its high and low density liquids were shown to be related to a
strongly correlated molecular ordering at lower temperatures that al-
lows a better packing, yielding the higher than expected density and
the highly cooperative motions. Therefore, regardless of whether the
anomalies correspond to a first order liquid-liquid phase transition
or not (continuous versus discontinuous changes), it has been shown
that this liquid has different properties and displays different short
range order structures depending on the external conditions.

The gauche conformation of 1,1,2,2-tetrachloro-1,2-difluoroetha-
ne was shown to be more stable in the liquid than the trans con-
formation, contrary to most compounds, due to a coupling between
intra- and intermolecular interactions that favours it. A coupling
which stems mainly from its conformational disorder. The excep-
tional fragility of this compound could be then explained through
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the complexity of its energy landscape.
1,1,1,2-tetrachloro-1,1-difluoroethane, a similar compound which

is rather strong, does not have this conformational disorder and
showed a much more simple short range order.

The local density paradox between the liquid and plastic phase
of carbon tetrachloride was made clear through comparison of the
intermolecular structure in both phases. Even if the liquid favours
configurations where molecules can sit closer to each other, these
particular configurations do not allow proper stacking, such as in the
plastic phase, which results in worse molecular packing and globally
yields a lower density.

The quasi-tetrahedral molecule trichlorobromomethane did not
show any significant deviation with respect to the short range order
of carbon tetrachloride. It was shown that, although its molecules
have dipolar moments that display antiparallel arrangements and,
hence, electrostatic interactions are at play, they fit into the steric
symmetry of the molecule leaving it mainly undisturbed.

Dibromodichloromethane, also a quasi-tetrahedral molecule, did
show some differences in the relative orientation of the neighbours
with respect to carbon tetrachloride, although not in the position.
Without electrostatic interactions, steric interactions favour neigh-
bours near the bromine side of the molecule to arrange in parallel
configuration and those near the chlorine side to arrange in antipar-
allel configuration. Electrostatic interactions favour antiparallel con-
figurations everywhere, thus cooperating or competing with the steric
interactions depending on the relative position of the molecules con-
sidered.

Some general conclusions can be drawn:

• When comparing different phases of the same molecule or com-
pounds of the same family, often the relative position of the
center of mass of molecules is essentially the same, and the dif-
ferences in their relative orientation are what really determines
the packing and the behaviour of the compound.

• A lack of long range order indicates that the aggregated inter-
actions strongly affect at a short range but quickly lose their
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intensity with distance. Therefore, arrangement of the closest
molecules is strongly determined but farther neighbours simply
fill the available gaps that are left.

• There is a strong influence of the intramolecular structure of the
molecule on the short range order, and vice versa, with many
competing interactions. Thus, both structures must be stud-
ied together in order to provide a comprehensible full picture
of the problem, specially when the molecule is not completely
rigid and has several degrees of freedom. In particular, different
intramolecular structures may display diverse dipole moments,
which can radically change the role of the electrostatic interac-
tions and alter the delicate equilibrium.

• In disordered systems, a delicate equilibrium between the con-
tributions of different interactions often exists, and thus a qual-
itative description may be not enough to understand the be-
haviour of the system, and a quantitative analysis must be per-
formed. In particular regarding the population of each type of
arrangement, either intramolecular or intermolecular.

• In glassy systems that have frozen degrees of freedom and are
out-of-equilibrium, taking into account thermal history is very
important because different states may be achieved through
different paths. To be able to reproduce the experiment and to
understand the physics of the compounds, it is crucial that the
dynamics of the process are accounted for.

Several methods and procedures have been detailed in this work
that can be used to elucidate the structure of disordered systems.
Although much work remains to be done understanding the behaviour
of many other compounds, this contribution will help to provide some
insight in the behaviour of those systems, to devise and test future
theories that fully explain them.
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